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Preface to the Third Edition

I would like to thank Claus Ascheron for suggesting a third edition of this book.
This has allowed me to add a considerable amount of new material, mainly in the
applications part, that is rounding off the presentation.

In Chap. 3, the discussion of the Volkov solution for the laser-driven free
particle has been extended to 3D and plane waves. In the atomic physics chapter, a
discussion of the two-electron Helium atom and of the knee structure in its double
ionization, as well as a review of ATI rings and of low energy structures, that can be
observed in the photo-electron spectra of rare gas atoms, have been added.
Furthermore, dominant interaction Hamiltonians are discussed and used in the
context of high-order harmonic generation. In addition, the section on the Keldysh
parameter has been extended. In the molecular physics part, the sections on the
Born-Oppenheimer approximation and on pump-probe spectrocopy have been
expanded by a more explicit discussion of nonadiabatic dynamics and the inclusion
of 2D IR spectroscopy in the frequency domain. For those readers who have caught
fire and would like to dig deeper into the literature, I have now more clearly
structured the “Notes and Further Reading” sections. Finally, some more exercises
together with their solutions have been added, mainly to the chapters on atomic and
molecular physics.

I am grateful for inspiring discussions and scientific as well as teaching col-
laborations with Jan-Michael Rost and Ulf Saalmann. Furthermore, Carlos Zagoya
has produced exciting new results on high-order harmonic generation during his
Ph.D. thesis, that are the basis for the new discussion of dominant interaction
Hamiltonians in the present edition. Valuable input in terms of graphs and/or
fruitful discussions from John Briggs, Thomas Fennel, Stefanie Gräfe, Jost Henkel,
Manfred Lein, Max Möller, Yoshitaka Tanimura and Sandro Wimberger is grate-
fully acknowledged. For help with technical issues I thank Sandra Grossmann, and
for uncountable day-to-day discussions on quantum dynamics in general, I am
grateful to Max Buchholz, Tobias Fiedlschuster, Jan Handt, and Michael Werther.
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Finally, I would once more like to express my pleasure and gratitude for the
opportunity to interact with highly motivated students and to participate in the very
inspiring scientific environment in atomic and molecular physics in Dresden.

Dresden, Germany Frank Grossmann
November 2017
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Preface to the Second Edition

The main motivation for this second edition of the book was the inclusion of more
exercises and, most importantly, also a collection of solutions of these exercises at
the end of the book. Some type errors and more severe flaws of the first edition that
have come to my attention have been corrected. The book is, however, intended as
a comprehensive introduction to a topic of current interest and not as a complete
review of the field. I have therefore not added more (advanced) material into the
main text. Furthermore, I have reservedly updated the literature list by including a
few more research papers, although a lot more work has been done in the last five
years and a related new field, the field of attosecond physics, has emerged. Some
more textbook references and reviews have also been added where appropriate.

Again, I would like to express my thanks for enlightening discussions on the
topics touched herein to more generations of students that attended my related
lectures at TU Dresden and also to Larry Schulman, Jan Handt, Werner Koch,
Christoph-Marian Goletz, Alexander Kästner, Michael Fischer, Carlos Zagoya,
Sebastian Krause, Niklas Rohling, Max Buchholz, and Tobias Fiedlschuster for
ongoing exchange of ideas and to Alexander Kästner for providing numerical
results.

For making the book available as part of the series “Graduate Texts in Physics”,
and for support during the production stage I would like to thank Claus Ascheron
and his team from Springer Verlag.

Dresden, Germany Frank Grossmann
March 2013
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Preface to the First Edition

The development of modern pulsed lasers with intensities larger than 1016 W
cm2 and

with very short pulse duration in the femtosecond regime enables experimentalists
to study elementary processes such as chemical reactions and excitation mecha-
nisms in different areas in physics in the time domain. In parallel to the experi-
mental investigations, analytical and numerical studies of laser driven atoms and
molecules with a limited number of degrees of freedom are performed. These
theoretical investigations have led to the prediction and/or the explanation of a large
variety of partly counter-intuitive phenomena. Among those are the generation of
high harmonics using laser excited atoms or molecules, the ionization of atoms
above the continuum threshold, the stabilization of atoms against ionization in very
strong fields, counter-intuitive pulse sequences to selectively populate vibrational
states in molecules and, last but not least, the control of chemical reactions by
specially tailored laser pulses.

This book originated out of a course, that I have given on a regular basis since
2000 for advanced undergraduate and graduate students at Technische Universität
Dresden. It offers a theoretically oriented approach to the field of laser driven
atomic and molecular systems and requires some knowledge of basic classical and
quantum mechanics courses as well as of classical electrodynamics. The book has
two introductory chapters in part I that pave the way for the applications in part II.
Part I and also Chap. 3 of Part II contain a selection of textbook material that is
needed to understand the rest of the book. The material presented in the last two
chapters is close to the recent literature. I have chosen only such works, however,
that deal with fundamental concepts and are based on simple model calculations.
A biased and incomplete list a references is given at the end of the chapters,
preceded by some notes and hints for further reading. For those readers who are
interested in some computational details, these are given in the appendices at the
end of the corresponding chapters. Furthermore, at several places throughout the
text, exercises are placed, whose independent solution allows a deeper under-
standing of the material presented.
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In Chap. 1, we start with a short introduction into the foundations of the laser.
We will especially concentrate on those aspects of pulsed lasers that will be
important for the theoretical investigations in part II of the book.

The next fundamental chapter is devoted to the non-relativistic time-dependent
Schrödinger equation. In the case of lasers of up to atomic field strengths, this
equation allows the theoretical description of the phenomena we want to investigate
in part II. Analytical as well as numerical methods to solve the time-dependent
Schrödinger equation are thus in the focus of Chap. 2. Throughout the whole
presentation, in order to keep the approach as simple as possible, we touch the topic
of correlated many particle dynamics only where necessary and concentrate on the
description of electronic as well as nuclear dynamics with the help of models with
as few degrees of freedom as possible. The contents and the presentation of Chap. 2
are inspired by the excellent new textbook by David Tannor, Introduction to
Quantum Mechanics: A Time-Dependent Perspective, which hopefully will start a
“revolution” in the way quantum mechanics is taught in the future.

The second part of the book, starting with Chap. 3, contains a collection of
equivalent ways to couple a charged particle to a classical electromagnetic field. As
the basic postulate we use the principle of minimal coupling. By using unitary
transformations, one can then either derive the length form or the
Kramers-Henneberger form of the coupling. As first examples of laser-matter
interaction, we study the dynamics of (structure-less) two-level systems in laser
fields. Phenomena like Rabi oscillations of the occupation probability, occurring
there, will be encountered off an on in the remainder of the book. Furthermore, also
the fundamental so-called rotating wave approximation will be discussed for the
first time in this context.

Selected examples of laser-matter interaction in atomic physics are reviewed in
Chap. 4. Here, we concentrate on the phenomena of ionization and high harmonic
generation of a single electron in a Coulomb potential of possibly reduced
dimensionality. It turns out that a perturbation theoretic approach would not be
suited to understand most of the phenomena presented in this chapter. Thus the
numerical wavepacket methods that were in the focus of Chap. 2 will find their first
application.

The next step in the direction of higher complexity of the dynamics will be taken
in Chap. 5. Here we deal with laser-driven systems in molecular and chemical
physics. The simplest molecule, the hydrogen molecular ion, Hþ

2 , will serve as a
vehicle to understand some of the basic concepts of molecular physics such as
electronic potential surfaces. In the following, the full numerical solution of the
coupled electron nuclear problem of Hþ

2 in a monochromatic laser field will be
reviewed. After discussing the fundamental Born-Oppenheimer approximation, for
the rest of the chapter, we then assume that the solution of the electronic many body
problem is at our disposal in the form of analytically or numerically given potential
energy surfaces. After a short digression on nuclear motion on a single electronic
surface, and the discussion of a simple two coupled surfaces problem, we then
review some modern applications in the fields of femtosecond spectroscopy,

xii Preface to the First Edition



optimal control theory, and quantum information processing under the foregoing
assumption.

At this point I thank the students at TU Dresden who have attended my lectures.
They have inspired me enormously, through their intense collaboration, during the
lectures, as well as during the exercise classes. This has motivated me to rethink the
material presented again and again and the students have thus contributed sub-
stantially to the improvement of the manuscript. Also the hospitality of the
Max-Planck-Institute for the Physics of Complex Systems, that offered me the
opportunity to attend and run several conferences in the field was very important to
shape my understanding presented here. Furthermore, I express my deep gratitude
to Jan-Michael Rost and Rüdiger Schmidt for their continuous availability for
discussions and for long-term collaboration. Moreover, I am grateful to Peter
Hänggi for the introduction to the field of driven quantum systems during my Ph.D.
work with him, and to Eric Heller for opening the world of time-dependent
semiclassics to me. In addition, I have benefitted from uncountable discussions with
and valuable advice of former members of the Theoretical Quantum Dynamics
Group in Freiburg, especially Gernot Alber, Richard Dehnen, Volker Engel,
Christoph Meier, Gerd van de Sand, and Gerhard Stock. Furthermore, former and
present members of the Theoretical Atomic and Molecular Physics Group at the
Institute of Theoretical Physics of TU Dresden and the Finite Systems Department
at the MPIPKS in Dresden have helped shape my understanding. Among many
others these are Andreas Becker, Agapi Emmanouilidou, Celal Harabati, Anatole
Kenfack, Thomas Kunert, Ulf Saalmann, and Mathias Uhlmann. For helping me by
answering specific questions or supplying information and valuable graphs, I would
like to thank Wolfgang Schleich, Jan Werschnik, Matthias Wollenhaupt and Shuhei
Yoshida. For advice and help with respect to graphics issues, I thank Arnd Bäcker
and Werner Koch. Finally, I am indebted to David Tannor, who supplied me with
preliminary versions of his book at a very early stage and thus helped shape the
presentation here to a substantial degree. The focus of David’s book on a
time-dependent view of quantum phenomena is an absolute necessity if one wants
to study laser-driven systems.

Dresden, Germany Frank Grossmann
May 2008
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Chapter 1
A Short Introduction to Laser Physics

To study the influence of light on the dynamics of an atom or a molecule experimen-
tally, laser-light sources are used most frequently. This is due to the fact that laser
light has well-defined and often tunable properties. The theory of the laser dates back
to the 1950s and 1960s and by now is textbook material. In this introductory chapter,
we start by recapitulating some basic notions of laser theory, which will be needed
later-on.

More recently, experimentalists have been focusing on pulsed mode operation of
lasers with pulse lengths on the order of femtoseconds, allowing for time-resolved
measurements.At the end of this chapter,we therefore put together someproperties of
pulsed lasers that are important for their application to atomic andmolecular systems.
The characterization of laser fields by windowed Fourier transforms concludes this
chapter.

1.1 The Einstein Coefficients

Laser activity may occur in the case of nonequilibrium, as we will see below. Before
dealing with this situation, let us start by considering the case of equilibrium between
the radiation field and the atoms of the walls of a cavity. This will lead to the Einstein
derivation of Planck’s radiation law.

The atoms will be described in the framework of Bohr’s model of the atom,
allowing the electron to occupy only discrete energy levels. For the derivation of the
radiation law, the consideration of just two of those levels is appropriate. They shall
be indexed by 1 and 2 and shall be populated such that for the total number of atoms

N = N1 + N2 (1.1)

© Springer International Publishing AG, part of Springer Nature 2018
F. Grossmann, Theoretical Femtosecond Physics, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-319-74542-8_1

3

This copy belongs to 'veltien'



4 1 A Short Introduction to Laser Physics

holds. This means that N2 of the atoms are in the excited state with energy E2 and
N1 atoms are in the ground state with energy E1. Transitions between the states shall
be possible by emission or absorption of photons of the appropriate energy. The
following processes can be distinguished:

• Absorption of light, leading to a transition rate

dN2

dt

∣
∣
∣
∣
abs

= ρN1B12 (1.2)

from the ground to the excited state
• Induced (or stimulated) emission of light, leading to a transition rate

dN1

dt

∣
∣
∣
∣
emin

= ρN2B21 (1.3)

for the population change of the ground state
• Spontaneous emission of light, leading to a rate

dN1

dt

∣
∣
∣
∣
emsp

= N2A, (1.4)

which amounts to a further increase of the ground state population

The first two processes are proportional to the energy density ρ of the radiation field
times the population of the initial state with the constants B12, respectively B21.
The process of spontaneous emission does not depend on the external field and is
proportional to A. These coefficients are called Einstein’s A- and B-coefficients.

In thermal equilibrium, the rate of transition from level 1 to 2 has to equal that
from 2 to 1, leading to the stationarity condition

N1B12ρ = N2B21ρ + N2A. (1.5)

This equation can be resolved for the energy density ρ leading to

ρ = (N1B12/(N2B21) − 1)−1A/B21. (1.6)

Furthermore, in thermal equilibrium the ratio of populations is given by the Boltz-
mann factor according to

N1/N2 = exp

{

− E1 − E2

kT

}

, (1.7)

with the temperature T and the Boltzmann constant k.
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1.1 The Einstein Coefficients 5

AsT → ∞ alsoρ → ∞, and the B-coefficients have tobe identical B12 = B21 = B.
Using Bohr’s postulate

E2 − E1 = hν, (1.8)

where ν is the frequency of the light, we can conclude from (1.6) that

ρ =
(

exp

{
hν

kT

}

− 1

)−1

A/B. (1.9)

holds. The ratio of Einstein coefficients A/B can now be determined by comparing
the formula above with the experimentally confirmed Rayleigh-Jeans law

ρ(ν) = (

8π/c3
)

ν2kT, (1.10)

which is valid in the case of low frequencies (see also Fig. 1.1) and where c is the
speed of light in vacuum. One then arrives at

A/B = (

8π/c3
)

hν3 =: D(ν)hν (1.11)

for the ratio, where D(ν)dν = 8πν2/c3dν is the number of possible waves in the
frequency interval from ν to ν + dν in a cavity of unit volume [1]. Inserting this
result into (1.9) yields Planck’s radiation law

ρ(ν)dν = (D(ν)dν)hν

(

exp

{
hν

kT

}

− 1

)−1

. (1.12)

The last factor in this expression is the number of photons with which a certain wave
is occupied. As a function of the wavelength,1

λ = c

ν
, (1.13)

Figure1.1 shows a comparison of Planck’s law with the two laws valid in the limits
of either long or short wavelength. These are the Rayleigh-Jeans and Wien’s law
(which emerges fromPlanck’s law by omitting the constant term in the denominator),
respectively.

In the case of nonequilibrium an extension of the formalism just reviewed leads
to the fundamentals of laser theory, as we will see in the following. The explicit
calculation of the B-coefficient shall be postponed until Chap.3.

1Due to dν = −c/λ2dλ, we get ρ(λ)dλ = 8πhc/λ5dλ
(

exp
{ hc
kTλ

} − 1
)−1

.
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6 1 A Short Introduction to Laser Physics

Fig. 1.1 Energy density (per
wavelength interval) plotted
double logarithmically as a
function of wavelength for
different radiation laws
(Planck (solid black), Wien
(dashed blue),
Rayleigh-Jeans (dotted red))
at a temperature of
T = 1,500 K

T =1,500 K
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1.2 Fundamentals of the Laser

The derivation of the conditions for laser activity can be done in a crude way by again
considering the populations of two levels between which the laser transition occurs.
They shall be driven out of equilibrium by pumping and are interacting with a light
field with photon number n (considered to be a continuous variable in the following)
in a resonator [2].

First, we consider the processes leading to a change in the populations. In addition
to the ones introduced in Sect. 1.1, these are pump (or gain) and loss processes. We
concentrate on laser activity and therefore spontaneous emission can be neglected
for the time being. Secondly, the realization of the laser process, requiring more than
a bare two-level system will be discussed.

1.2.1 Elementary Laser Theory

In close analogy to the Einstein coefficients for the induced transition rates, coef-
ficients can be defined that fulfill Wi j = Wji = W , leading to an induced emission
rate of (N2 − N1)Wn.2 Including the gain and loss processes depicted in Fig. 1.2 the
rate equations

dN1(t)

dt
= γ12N2 − Γ N1 + (N2 − N1)Wn, (1.14)

dN2(t)

dt
= Γ N1 − γ12N2 − (N2 − N1)Wn (1.15)

2Note that in the previous section the rate was proportional to ρ and here it is proportional to the
dimensionless variable n; we therefore have to use a different symbol for the coefficients.
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1.2 Fundamentals of the Laser 7

Fig. 1.2 Two-level system
with elementary transitions
(from the left to the right):
Pump process, loss processes
(e.g. by radiationless
transitions), induced
emission and absorption;
spontaneous emission is not
considered; adapted from [2] N1

N2

ΓN1 γ12N2 BρN2 BρN1

emerge. Subtracting the first from the second equation leads to a rate equation for
the difference D = N2 − N1, which is also referred to as population inversion

dD

dt
= −2WnD − 1

T1
(D − D0). (1.16)

Here the definitions of the unsaturated inversion D0 = N (Γ − γ12)/(Γ + γ12),
which will become clear below, and the relaxation time T1 = (Γ + γ12)

−1 have
been introduced. Including loss effects of the optical cavity via a parameter tcav, the
rate equation for the photon number

dn

dt
= WnD − n

tcav
(1.17)

follows, where the first term is due to the increase of radiation due to stimulated
processes and the effect of spontaneous emission has been neglected. Equation (1.16)
for the inversion together with (1.17) for the photon number are a simplified version
of the full quantum mechanical laser equations, allowing one to understand some
basic laser properties [2, 3].

For an amplification of the light field to occur by starting from a low initial photon
number n0 with unsaturated inversion D0, the right hand side of (1.17) has to be larger
than zero. For reasons of simplicity, let us here just consider the steady state defined
by

dn

dt
= 0

dD

dt
= 0, (1.18)

however. For the inversion we get from (1.16)

D = D0/(1 + 2T1Wn), (1.19)

i.e., a reduction for a finite photon number as compared to the unsaturated value D0.
The photon number in the steady state is

n

(
WD0

1 + 2T1Wn
− 1

tcav

)

= 0, (1.20)
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8 1 A Short Introduction to Laser Physics

Fig. 1.3 Steady state photon
number versus unsaturated
inversion

D0

n0

Dthr

leading to two different solutions:

(1) n0 = 0
(2) n0 = (D0 − Dthr)

tcav
2T1

.

In order for the nontrivial solution to be larger than zero, the inversion has to be larger
than a threshold value Dthr = 1/(Wtcav). As a function of D0, the transition from the
trivial solution to the one with a finite number of photons is depicted in Fig. 1.3.

In principle, laser theory has to be formulated quantum theoretically. This is
done in, e.g., in [2]. There the transition from a standard light source to a laser above
threshold is explained in a consistent framework. For large photon numbers one finds
the phenomenon of anti-bunching, i.e. the photons leave the cavity equidistantly. The
corresponding laser light has a constant amplitude. Therefore in the applications part
of this book, we will assume that the field can be described classically by using a
sinusoidal oscillation.

1.2.2 Realization of the Laser Principle

As we have just seen, nonequilibrium, characterized by population inversion, is
crucial for operating a laser. Since the invention of the first maser,3 it has been
shown that inversion can be achieved in many different ways. A small collection of
possibilities (including also the microwave case) will now be discussed.

1.2.2.1 The Ammonia Maser

In the NH3-maser [4], the umbrella mode (see Fig. 1.4) leads to a double-well poten-
tial and thus quantum mechanically tunneling is possible. A corresponding doublet
of levels in the double well exists, which is used for the maser process. Inversion
is created by separating the molecules in the upper level from the ones in the lower
level by using the quadratic Stark effect in an inhomogeneous electric field.

3Maser stands for “Microwave amplification by stimulated emission of radiation”.
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1.2 Fundamentals of the Laser 9

H

N

H

H
Δ ≈ 1.5 × 1011Hz

EB ≈ 0.257 eV

ωe ≈ 1.8 × 1014Hz

Fig. 1.4 Umbrella mode of NH3 indicated by the arrow and schematic double well (frequency of
oscillation around the minima ωe, tunneling frequency Δ, and barrier height EB are indicated) with
the two levels (their separation is vastly exaggerated for reasons of better visibility) used for the
maser process

This principle cannot be applied in the optical (laser) case, however, since typically
hν � kT at optical frequencies and therefore N2 � N1. Increasing the number of
atoms in the upper level via pumping is therefore necessary.

1.2.2.2 The Ruby Laser

In order to achieve inversion in a laser, more than two levels are needed. Solid state
lasers like the three level ruby laser [5] are pumped optically. Lasing is then done out
of the metastable level E2, shown in Fig. 1.5. By considering just the pumping and
the loss terms in the stationary rate equations for the 3 level system one can show
that

Γ > γ12

(

1 + γ13

γ23

)

(1.21)

has to hold for N2 > N1, which can be fulfilled with moderate pumping under the
conditions γ12 � γ13 and γ23 � γ13 [3].

1.1. In the stationary case, consider an extension of the rate equations to the three
level case and neglect the induced terms. Under which condition for the pumping
rate Γ can population inversion between the second and first level be achieved?
Discuss the final result.

1.2.2.3 Other Types of Lasers

Other types of lasers are gas lasers, in which the laser active medium is pumped by
collisions with electrons or atoms and the transitions can be either electronic (He-Ne
laser) or ro-vibronic ones (CO2 laser).
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10 1 A Short Introduction to Laser Physics

Fig. 1.5 3 level system of
the ruby laser with the
metastable level E2

E1

E3

E2

γ13

γ23

γ12

In addition, there are semiconductor based lasers, dye lasers, excimer lasers, to
name but a few. Their working principles are described in some detail in [2, 6]. A
common principle in the experimental setup of all lasers is the fact that spontaneous
emission (being a form of isotropic noise) should be suppressed. This is a difficult
task, especially for high frequencies, however, due to the fact that A ∼ Bν3, see
(1.11), holds for the Einstein coefficients. Details of the experimental setup, like
the quality factor of the cavity, have to be considered in order to understand how
temporal fluctuation tend to get washed out [7].

A special laser type is the free electron laser (FEL), where a high speed electron
beam is accelerated in a spatially modulated magnetic field and thereby emits coher-
ent light. The role of the laser medium as well as that of the energy pump are both
played by the electron beam [8]. The FEL principle has been and will be realized in
several large scale facilities around the globe.

1.3 Pulsed Lasers

Experimentally, lasers have led to a revolution in the way spectroscopy is performed.
This is due to the fact that lasers are light sources with well defined properties. They
can be operated in a single mode continuous wave (cw) modus with a fixed or a
tunable frequency or in a multi-mode modus [6]. Most importantly for the remainder
of this book is the possibility to run lasers in a pulsed mode. There the laser only
oscillates for a short time span (some femtoseconds) with the central frequency of
the atomic transition that is used.

1.3.1 Frequency Comb

Experimentally, ultrashort laser pulses can be created by using the principle of mode
locking, explained in detail in [6]. We will shortly discuss the superposition of a
centralmodewith side bands, underlying that principle below. The net result is shown
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1.3 Pulsed Lasers 11

Fig. 1.6 Laser resonator with end mirror (EM), output coupler (OC) and a pulse, propagating
between EM and OC and being partially transmitted, from [10]

in Fig. 1.6, where a train of femtosecond pulses coupled out of a cavity is depicted.
Among other possible applications to be discussed in detail in later chapters, a pulse
train can be used to measure frequencies very precisely [9].

How are the side bands obtained experimentally, andwhy does their superposition
togetherwith the central frequency ν lead to a train of pulses?Thefirst question can be
answered by considering the periodicmodulation of the inversionwith the frequency

δν = c/(2L) = 1/TRT, (1.22)

corresponding to the round trip time of the light in a resonator of length. With the
modulator placed at some position inside the cavity, the possible resonator modes
with the angular frequencies

ω + 2πn δν, (1.23)

with ω = 2πν and n = 0,±1,±2,±3, . . . are amplified [6]. Peaks at these equidis-
tantly spaced frequencies are called the frequency comb.

To answer the second question, the amplitude of the electric field at a fixed point
in space,

E(t) =
p

∑

n=−p

En cos[(ω + 2πn δν)t + ϕn], (1.24)

has to be considered, where ϕn = nα are the locked phases. A total of 2p + 1 modes
shall have a gain above the threshold value. In the case of constant En = E0 and for
α = 0 this leads to an intensity of

I (t) ∼ E2
0

∣
∣
∣
∣

sin[(2p + 1)π δν t]
sin(π δν t)

∣
∣
∣
∣

2

cos2(ωt). (1.25)
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12 1 A Short Introduction to Laser Physics

Fig. 1.7 Envelope of the
intensity (arbitrary units) of a
pulse train as a function of
time for the superposition of
7 (solid black line) 11
(dashed blue line) and 15
modes (dotted red line)
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1.2. Derive a closed expression for the electric field and the corresponding intensity
in the case of the mode locked laser by using the geometric series.

The intensity of (1.25) contains a term describing a fast oscillation with the central
frequency and an envelope function leading to peaks separated by the round trip time
TRT = 1/δν. Furthermore, the pulse length4 is Tp ≈ 1/�ν, with the inverse width
parameter �ν = (2p + 1)δν, increasing linearly with the number of participating
modes. The intensity as a function of time for three different total numbers of con-
tributing modes is displayed in Fig. 1.7. The peak intensity increases proportional to
(2p + 1)2, whereas the pulse length decreases with 1/(2p + 1).

The effect of the pulse generation can also be understood in the photon picture.
Those photons passing through the modulator at times where its transmission has
a maximum will experience a minimum loss and the corresponding light will be
maximally amplified. Enormously high intensities on the order of 1016Wcm−2 can
be generated using the principle of passive mode locking [6]. They prevail only for
short times on the order of several femtoseconds, however. Pulses with 6 fs length
are nowadays generated with Ti:sapphire lasers with Kerr lens mode locking and
operate at a center wavelength of 800nm [11]. Only around 2 oscillations of the
field are contained in such a short pulse at those wavelengths. The light is therefore
extremely polychromatic. Many further details regarding experimental parameters
can be found in Chap.3 of [10].

1.3.2 Carrier Envelope Phase

Let us look at the electric field of the last section in a bit more detail. It consists of
an oscillation with the central frequency ω under an envelope and is plotted for a
certain choice of parameters in Fig. 1.8.

4Defined as the full width at half maximum (FWHM) of the intensity curve.
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1.3 Pulsed Lasers 13

Fig. 1.8 Laser field (in units
of E0) consisting of the
superposition of 17 modes of
maximum amplitude E0 with
central frequency ν = 4,
L = 3.0625, and α = 0 (all
quantities in arbitrary units)
as a function of time
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Fig. 1.9 Schematic
(normalized) laser field
oscillation for unit frequency
under a single pulse envelope
for two different values of
the carrier envelope phase
(dotted red line: �ϕ = 0,
dashed blue line: �ϕ = π)
as a function of time in
arbitrary units, analogous to
the two different pulses
depicted in Fig. 1.8 −1.0

−0.5

0.0

0.5

1.0
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The parameters in Fig. 1.8 have been chosen such that the separation of the main
peaks does coincidewith an odd integermultiple of half the period of the fundamental
oscillation. This results in the fact that the phase of the fundamental oscillation is
different by π, whenever the envelope has reached its next maximum. In general this
phase difference is the so-called carrier envelope phase (CEP) �ϕ, and later on we
will adopt the form

E(t) = E0 f (t) cos
(∫ t

0
ω(t ′)dt ′ + �ϕ

)

(1.26)

for the amplitude of the laser field with an envelope function f (t), which is chosen
from a large variety of suitable analytic functions. In addition the frequencyω may be
time-dependent and the carrier envelope phase can be varied, leading to tremendous
effects as we will see later. In Fig. 1.9 a single pulse with fixed frequency is shown
for two different values of �ϕ (0, respectively π).
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14 1 A Short Introduction to Laser Physics

1.3.3 Husimi Representation of Laser Pulses

As mentioned in Sect. 1.3.2, we will model a laser pulse by an oscillation times
a freely chosen pulse envelope. This is reasonable due to the fact that arbitrarily
formed laser pulses can be generated experimentally by so-called pulse shapers [10].
Use will be made of this fact in Chap.5 in connection with the control of chemical
reactions. In the following, the representation of the frequency content of general
laser fields will be discussed.

A very intuitiveway to characterize a laser pulse is given by a “windowed” Fourier
transformation (or Husimi transformation)

F(τ ,Ω) =
∣
∣
∣
∣

∫ ∞

−∞
dt g(t − τ )E(t)e−iΩ(t−τ )

∣
∣
∣
∣

2

, (1.27)

with the window function

g(t) = exp[−t2/(2σ2)]/
√
2πσ2. (1.28)

The function F(τ ,Ω) depending on a time-like variable, as well as on a frequency
is also referred to as a spectrogram. It tells us at which time τ a certain frequency
Ω is present in the original signal E(t). The term frequency resolved optical gating
(FROG) is used for a measurement technique of a pulse which is designed by using
(1.27) [10, 12]. In the field of molecular spectra the term vibrogram [13] is used
for a quantity which is constructed in a similar way from a time-signal called auto-
correlation function, to be defined in the next chapter.

The case of two pulses which are temporally delayed with respect to each other
will occur frequently later-on. For such a so-called pump-dump pulse, with slightly
different central frequency of the pump versus the dump pulse, a spectrogram is
shown in Fig. 1.10. The frequency change and also the temporal delay is clearly
visible in the spectrogram. Also the case of a single pulse with a so-called “up
chirp” (central frequency increasing as a function of time) or a “down chirp” (central
frequency decreasing) are very obvious in a corresponding Husimi plot. In order
to verify this for a simple Gaussian pulse envelope, a Gaussian integral has to be
performed (see Exercise 1.3). This is by far not the last one that appears in this book
and for convenience some Gaussian integrals are collected in Appendix 1.A.

1.3. For the case of a linearly chirped frequency,

ω(t) = ω0 ± λt,
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Fig. 1.10 Husimi transform
of a pump-dump pulse as a
function of τ and Ω in
arbitrary units
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calculate and schematically depict the Husimi transform of the pulsed field

E(t) = E0 exp
[

− (t − t0)2

2σ2
+ iω0(t − t0) ± i

λ

2
(t − t0)

2

]

.

1.4 Notes and Further Reading

Laser Theory
The theory of the laser is treated on the level of the rate equations as well as in its
full quantum version in the book by Haken [2] (the first book of the series [1, 2]
contains the derivation of Plancks’s law that we have followed) and by Shimoda
[3]. In these books one can find also a more detailed discussion of the rate equations
beyond the steady state solution, especially concerning the build-up of the oscillation.
A comment on the probabilistic nature of Einstein’s derivation of Planck’s law (as
opposed to the concept of superposition of probability amplitudes thatwewill discuss
in depth in Sect. 2.2.1) can be found in [14].

The concept of a photon, describing the particle aspect of electromagnetic radi-
ation will be used many times in this book. It will become especially fruitful in the
discussion of (above threshold) ionization in Chap. 4. The breakthrough in Einstein’s
famous 1905 work [15] is put into historical context in [16].

Short Laser Pulses
A lot of information on the experimental aspects of lasers and about mode locking
are contained in the book by Demtröder [6]. The handbook article by Wollenhaupt
et al. deals with the properties, the creation via mode locking, and the measurement
of femtosecond laser pulses [10]. It also contains a long list of additional references.
The characterization of short pulses by using FROGs is the topic of [10, 12].
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1.A Some Gaussian Integrals

Throughout this book, Gaussian integrals will be encountered. For complex valued
parameters a and b with Re a ≥ 0, the following formulae hold:

∫ ∞

−∞
dx exp{−ax2} =

√
π

a
, (1.29)

∫ ∞

−∞
dx x exp{−ax2} = 0, (1.30)

∫ ∞

−∞
dx x2k exp{−ax2} = 1 · 3 · · · (2k − 1)

(
1

2a

)k √
π

a
, (1.31)

∫ ∞

−∞
dx exp{−ax2 + bx} =

√
π

a
exp

{
b2

4a

}

, (1.32)

∫ ∞

−∞
dx x exp{−ax2 + bx} =

(
b

2a

) √
π

a
exp

{
b2

4a

}

, (1.33)

∫ ∞

−∞
dx x2 exp{−ax2 + bx} =

(
1

2a

) (

1 + b2

2a

)√
π

a
exp

{
b2

4a

}

. (1.34)

A generalization of one of the expressions above to the case of a d-dimensional
integral that is helpful is

∫

dd x exp{−x · Ax + b · x} =
√

πd

detA
exp

{
1

4
b · A−1b

}

, (1.35)

valid for positive definite symmetric matricesA. Like in the 1D case, it can be proven
by using a “completion of the square” argument. Furthermore, the convention that
non-indication of the boundaries implies integration over the whole range of the
independent variables has been used.
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Chapter 2
Time-Dependent Quantum Theory

The focus of our interest will be the coupling of atomic andmolecular systems to laser
fields, whose maximal strength is of the order of the field experienced by an electron
in the ground state of the hydrogen atom.1 This restriction allows us to describe the
field matter interaction non-relativistically by using the time-dependent Schrödinger
equation (TDSE) [1]. Analytical solutions of this linear partial differential equation
are scarce, however, even in the case without external driving.

In this chapter, we continue laying the foundations for the later chapters by review-
ing some basic properties of the time-dependent Schrödinger equation and the corre-
sponding time-evolution operator. After the discussion of two analytically solvable
cases, we will consider various ways to rewrite and/or solve the time-dependent
Schrödinger equation. Formulating the solution with the help of the Feynman path
integral will allow us to consider an intriguing approximate, so-called semiclassi-
cal approach to the solution of the time-dependent Schrödinger equation by using
classical trajectories. The last part of this chapter is dealing with numerical solution
techniques for the time-dependent Schrödinger equation that will be referred to in
later chapters.

2.1 The Time-Dependent Schrödinger Equation

In the heyday of quantum theory, Schrödinger postulated a differential equation for
the wavefunction of a quantum particle. The properties of this partial differential
equation of first order in time and the interpretation of the complex valued wave-
function are in the focus of this section. The importance of Gaussian wavepackets

1This is the atomic unit for the electric field, given by E = 5.14 × 109 V/cm.

The original version of this chapter was revised: Belated correction in figure has been incorporated.
The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-74542-8_7
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20 2 Time-Dependent Quantum Theory

as (approximate) analytical solutions of the Schrödinger equation will show up for
the first time by considering the so-called Gaussian wavepacket dynamics

2.1.1 Introduction

In position representation, the time-dependent Schrödinger equation for the wave-
function of a single particle of massm, moving in three spatial dimensions (3D) with
r = (x, y, z) is the linear partial differential equation

i�Ψ̇ (r, t) = Ĥ(r, t)Ψ (r, t). (2.1)

The Hamilton operator

Ĥ(r, t) = T̂k + V (r, t) = p̂2

2m
+ V (r, t) = − �

2

2m
� + V (r, t) (2.2)

is the sum of kinetic and potential energy, where

� ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(2.3)

is the Laplace operator in cartesian coordinates and the potential energy may (and in
the cases to be considered later will) be time-dependent.

In order to gain a physical interpretation of the wavefunction, one multiplies (2.1)
byΨ ∗(r, t) and from the resulting expression subtracts its complex conjugate. In the
case of real valued potentials, V (r, t) = V ∗(r, t), this procedure yields the equation
of continuity

ρ̇(r, t) = −∇ · j(r, t), (2.4)

with the so-called probability density

ρ(r, t) = |Ψ (r, t)|2 (2.5)

and the probability current density

j(r, t) = �

m
Im

{
Ψ ∗(r, t)∇Ψ (r, t)

} = 1

m
Re

{
Ψ ∗(r, t) p̂ Ψ (r, t)

}
, (2.6)

and where

∇ ≡ ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
(2.7)
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is the nabla operator.We thus conclude that |Ψ (r, t)|2d3r is the probability to find the
particle at time t in the volume element d3r around r . It may change by probability
density flowing in or out, which is expressed via j . Integration of (2.4) over all space
yields that if Ψ is normalized at t = t0 it will be normalized at all times, i.e.

∫ ∞

−∞
d3r |Ψ (r, t)|2 = 1 ∀t (2.8)

holds in the case of real potential functions and provided that the current density falls
to zero faster than 1/r2 for r → ∞.

2.1. Derive the equation of continuity and prove that the norm is conserved in case
that j falls to zero faster than 1/r2 for r → ∞.

For time-independent (autonomous) potentials V (r, t) = V (r) equation (2.1) can
be solved by separation of variables using the product Ansatz

Ψ (r, t) = ψ(r)ϕ(t). (2.9)

After insertion into the time-dependent Schrödinger equation, we get

i�
ϕ̇(t)

ϕ(t)
=

{
− �

2

2m� + V (r)
}

ψ(r)

ψ(r)
. (2.10)

Due to the fact that they depend on different variables, both LHS and RHS of this
equation must be equal to a constant, which we name E . We thus arrive at the two
equations

i�ϕ̇(t) = Eϕ(t), (2.11)

Ĥ(r)ψE (r) = EψE (r). (2.12)

The first of these equations can be solved immediately by

ϕ(t) = ϕ0e
−iEt/�. (2.13)

The second equation is the so-called time-independent Schrödinger equation [2]. It
can be solved after specification of the potential V (r). An exact analytical solution,
however, is possible only in special cases. The energies E and the corresponding
wavefunctions ψE (r) are the eigenvalues and eigenfunctions of the problem. In their
terms a particular solution of the time-dependent Schrödinger equation is given by

Ψ (r, t) = ψE (r)ϕ0e
−iEt/�, (2.14)

where the constant ϕ0 later on will be absorbed in ψE .
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Due to the linearity of the time-dependent Schrödinger equation, its most general
solution in the case of a discrete spectrum of energies, {En}, is a linear combination
of eigenfunctions given by

Ψ (r, t) =
∞∑

n=0

anψn(r)e−iEnt/�, (2.15)

with

an =
∫

d3r ψ∗
n(r)Ψ (r, 0) = 〈ψn|Ψ (0)〉 (2.16)

and where we have used that the eigenfunctions ψn corresponding to the discrete
energies form a complete orthonormal set, i.e.,

∑

n

|ψn〉〈ψn| = 1̂, (2.17)

〈ψn|ψm〉 = δnm, (2.18)

formulated in Dirac’s bra-ket notation.
In the case of a purely continuous spectrum, the general solution is

Ψ (r, t) =
∫ ∞

0
dEa(E)ψE (r)e−iEt/�. (2.19)

For spectra that consist of discrete aswell as continuous parts, we get a corresponding
sum of the two expressions given above.

For a Hamiltonian with a discrete spectrum of energy levels that can be arranged
in ascending order, E0 ≤ E1 ≤ E2 ≤ ..., the expectation value of the energy with a
trial wavefunction |φ〉 is

〈φ|Ĥ |φ〉 =
∑

n,m

〈φ|ψn〉〈ψn|Ĥ |ψm〉〈ψm |φ〉

=
∑

n

En|〈ψn|φ〉|2

≥ E0

∑

n

|〈ψn|φ〉|2 = E0〈φ|φ〉. (2.20)

For any trial wavefunction one therefore gets

〈φ|Ĥ |φ〉
〈φ|φ〉 ≥ E0, (2.21)
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the so-called Rayleigh-Ritz variational principle. In the variational method of Ritz,
one is choosing the trial state as an explicit function of a parameter α and determines
a minimum of the LHS of the equation above as a function of that parameter. In this
way, an upper bound for the ground state energy can be determined.

In the derivation above, we started from the time-dependent Schrödinger equation
in order to derive the time-independent Schrödinger equation. Schrödinger, however,
published them in reverse order. Furthermore, one can derive the time-dependent
from the time-independent version, if one considers a composite system of many
degrees of freedom and treats the “environmental” degrees of freedom classically,
leading to the “emergence of time” for the subsystem [3].

2.1.2 Time-Evolution Operator

Conservation of the norm of the wavefunction can also be proven on a more abstract
level by using the unitarity of the so-called time-evolution operator. This operator
allows for the formal solution of the time-dependent Schrödinger equation without
going to a specific representation, and we therefore continue the discussion using the
bra-ket notation. Furthermore, we consider time-independent Hamiltonians to start
with. The time-dependent Schrödinger equation then reads

i�|Ψ̇ (t)〉 = Ĥ |Ψ (t)〉. (2.22)

A formal solution of this equation is given by

|Ψ (t)〉 = e−iĤ(t−t0)/�|Ψ (t0)〉 =: Û (t, t0)|Ψ (t0)〉, (2.23)

where we have defined the time-evolution operator Û (t, t0) which “evolves” the
wavefunction from time t0 to time t . The solution above can be easily verified by
inserting it into (2.22). However, we should be careful in differentiating an exponen-
tiated operator, see also Exercise 2.3.

With the help of the formal solution of the time-dependent Schrödinger equation
it can be shown that the normalization integral

∫ ∞

−∞
d3r |Ψ (r, t)|2 = 〈Ψ (t)|Ψ (t)〉

= 〈Ψ (t0)|eiĤ †(t−t0)/�e−iĤ(t−t0)/�|Ψ (t0)〉
= 〈Ψ (t0)|Ψ (t0)〉 (2.24)

is equal to unity for all times, if it was unity at the initial time t0. As in the previous
subsection, this is true if the Hamiltonian is Hermitian

Ĥ † = Ĥ , (2.25)
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which is equivalent to the time-evolution operator being unitary

Û †(t, t0) = Û−1(t, t0), (2.26)

as can be inferred from the definition given in (2.23). Also the composition property
of the time-evolution operator

Û (t, t0) = Û (t, t ′)Û (t ′, t0), (2.27)

where t ′ ∈ [t0, t] can be deduced from its definition.
Things become much more involved as soon as the Hamiltonian is explicitly

time-dependent. To investigate this case, it is very convenient to re-express the time-
dependent Schrödinger equation in terms of an integral equation. It can be shown by
insertion into (2.22) that

|Ψ (t)〉 = |Ψ (t0)〉 − i

�

∫ t

t0

dt ′ Ĥ(t ′)|Ψ (t ′)〉 (2.28)

is a formal solution of the time-dependent Schrödinger equation.2 The wavefunction
and thus the sought for solution also appears under the integral on the RHS, however.
The equation above therefore is an implicit, so-called integral equation. It can be
solved iteratively, starting with the zeroth iteration

|Ψ 0(t)〉 = |Ψ (t0)〉 (2.29)

of a constant wavefunction. For the first iteration, one uses the zeroth iteration for
|Ψ (t ′)〉 on the RHS and finds

|Ψ 1(t)〉 = |Ψ (t0)〉 − i

�

∫ t

t0

dt ′ Ĥ(t ′)|Ψ (t0)〉. (2.30)

After infinitely many iterations, the full solution for the time-evolution operator
follows to be

Û (t, t0) = 1̂ +
∞∑

n=1

(−i

�

)n

∫ t

t0

dtn

∫ tn

t0

dtn−1 · · ·
∫ t2

t0

dt1 Ĥ(tn)Ĥ(tn−1) · · · Ĥ(t1), (2.31)

2We stress that the integral form given in (2.28) is equivalent to the differential form of the time-
dependent Schrödinger equation (as can be shown by differentiation) and in addition it has the initial
condition “built in”.
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where the integration variables in the nested integrals fulfill the inequalities tn ≥
tn−1 ≥ · · · ≥ t1 ≥ t0 and in general, the order of the Hamiltonians taken at different
times may not be interchanged.

One can confirm this Dyson series solution [4] for the time-evolution operator
by inserting it into (2.23) and finally into the time-dependent Schrödinger equation.
Alternatively, one could have derived (2.31) also by “time-slicing” the interval [t0, t]
into N equal parts of length �t and by successively applying the infinitesimal time-
evolution operator

Û (tν + �t, tν) = exp

{
− i

�
Ĥ(tν)�t

}
lim�t→0= 1̂ − i

�
Ĥ(tν)�t, (2.32)

with constant Hamiltonians at the beginning of each time step.3 It is rewarding to
explicitly check the equivalence of this procedure with the general formula above by
working through Exercise 2.2. The fact that unitarity (and thus norm conservation)
and the composition property of the time-evolution operator also hold in the time-
dependent case can be most easily shown by using the decomposition in terms of
infinitesimal evolution operators.

2.2. Verify the first three terms in the series for the time-evolution operator by
collecting terms up to �t2 in the time-sliced expression

Û (t, t0) = [1̂ − i

�
Ĥ(tN−1)�t][1̂ − i

�
Ĥ(tN−2)�t] · · · [1̂ − i

�
Ĥ(t0)�t]

and taking the limit N → ∞,�t → 0, such that N�t = t − t0. Furthermore, show
that Û (t, t0) is unitary, using the expression above.

Although (2.31) gives the time-evolution operator in terms of a series, this expres-
sion is the most convenient one to work with. For reasons of completeness it shall
be mentioned that a closed form expression is possible. With the definition

T̂ [ Â(t1)B̂(t2)] ≡
{
B̂(t2) Â(t1) if t2 > t1
Â(t1)B̂(t2) if t1 > t2

(2.33)

of the time-ordering operator,4 it can be shown that

Û (t, t0) = T̂ e−i/�
∫ t
t0
dt ′ Ĥ(t ′) (2.34)

3This is how Dyson proceeded in [4].
4At t1 = t2 and for Â = B̂ additional assumptions on ordering would have to be made.
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holds for the time-evolution operator in the general case of time-dependent Hamil-
tonians. Furthermore, by working through Exercise 2.3, or even more easily from
(2.31), it can be shown that the time-evolution operator fulfills

d

dt
Û (t) = − i

�
ĤÛ (t), (2.35)

i.e., the appropriate time-dependent Schrödinger equation.

2.3. For the verification of the formal solution of the TDSE, we need the time deriva-
tive of an operator of the form

Û (t) = exp[B̂(t)].

(a) Calculate dÛ
dt by using Taylor expansion of the exponential function (keep in

mind that, in general, an operator does not commute with its time derivative).
(b) Consider the special case B̂(t) ≡ − i

�
Ĥ0t and give a closed form solution for

dÛ
dt .

(c) Consider the special case B̂(t) ≡ − i
�

∫ t
0 dt

′ Ĥ(t ′) and convince yourself that a

simple closed form expression for dÛ
dt can not be given!

(d) Show that the construction Û (t) = T̂ exp[B̂(t)] with the time ordering operator
and the operator B̂ from part (c) allows for a closed form solution of the time-
evolution operator as well as of its time derivative by proving that the relation

T̂ B̂n = n!
(−i

�

)n ∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1 Ĥ(tn)Ĥ(tn−1) · · · Ĥ(t1)

holds.

In order to study some further properties of the time-evolution operator, we go
into position representation again by multiplication of (2.23) from the left with 〈r|
and insertion of unity in terms of position states. Setting t0 = 0, we find for the
propagated wavefunction

Ψ (r, t) =
∫

d3r ′〈r|Û (t, 0)|r ′〉Ψ (r ′, 0). (2.36)

The position matrix element of the time-evolution operator

K (r, t; r ′, 0) := 〈r|Û (t, 0)|r ′〉 (2.37)

is frequently referred to as the propagator. As can be shown by differentiation of
(2.36) with respect to time, K (r, t; r ′, 0) itself is a solution of the time-dependent
Schrödinger equation with initial condition K (r, 0; r ′, 0) = δ(r − r ′). For this rea-
son, and under the assumption that t ≥ 0, K is also termed time-dependent (retarded)
Green’s function of the Schrödinger equation.
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Again starting from (2.37) another important property of the propagator can be
shown. Due to the fact that the propagator itself is a special wavefunction, the closure
relation5

K (r, t; r ′, 0) =
∫

d3r ′′K (r, t; r ′′, t ′′)K (r ′′, t ′′; r ′, 0), (2.38)

follows. It could have also been derived directly from (2.27) by going into position
representation and inserting an additional unit operator in terms of position eigen-
states.

2.1.3 Spectral Information

In the applications to be discussed in the following chapters, the initial state frequently
is assumed to be the ground state of the undriven problem. In this section we will
see how spectral information can, in general, be extracted form the propagator via
Fourier transformation.

To extract spectral information of autonomous systems from time-series, we start
from (2.37) in the case of a time-independent Hamiltonian and insert unity in terms
of a complete set of orthonormal energy eigenstates |ψn〉 = |n〉 twice, in order to
arrive at the spectral representation

K (r, t; r ′, 0) =
∞∑

n=0

ψ∗
n(r

′)ψn(r) exp
{
− i

�
Ent

}
(2.39)

of the propagator. Taking the trace (let r ′ = r and integrate over position) of this
expression one arrives at

G(t, 0) :=
∫

d3r K (r, t; r, 0)

=
∫

d3r
∞∑

n=0

|ψn(r)|2 exp
{
− i

�
Ent

}

=
∞∑

n=0

exp

{
− i

�
Ent

}
. (2.40)

For large negative imaginary times only the ground state contribution to the sum
above survives. This observation leads to the so-called Feynman-Kac formula

E0 = − lim
τ→∞

1

τ
lnG(−i�τ , 0). (2.41)

5In cases where no inverse group element exists this is called semi-group property.
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If one performs a Laplace transform on G(t, 0),6 then the energy-dependent Green’s
function

G(z) = i

�

∫ ∞

0
dt G(t, 0) exp

{
i

�
zt

}

=
∞∑

n=0

1

En − z
(2.42)

emerges. This function has poles at the energy levels of the underlying eigenvalue
problem.

For numerical purposes it is often helpful to study the time-evolution ofwavepack-
ets. By considering the auto-correlation function of an initial wavefunction

|Ψα〉 =
∑

n

|n〉〈n|Ψα〉 =
∑

n

cα
n |n〉, (2.43)

which is defined according to

cαα(t) := 〈Ψα|e−iĤ t/�|Ψα〉 =
∑

n

|cα
n |2e−iEnt/�, (2.44)

one gains the local spectrum by Fourier transformation

S(ω) = 1

2π�

∫
dt eiωt cαα(t)

=
∞∑

n=0

|cα
n |2δ(En − �ω). (2.45)

This result is a series of peaks at the eigenvalues of the problem that are weighted
with the absolute square of the overlap of the initial state with the corresponding
eigenstate |n〉. A recent development in this area is the use of so-called harmonic
inversion techniques instead of Fourier transformation. This is a nonlinear procedure
which allows for the use of rather short time series to extract spectral information [5].

Not only the spectrum but also the eigenfunctions can be determined from time-
series. To this end one considers the Fourier transform of the wavefunction at one of
the energies just determined

lim
T→∞

1

2T

∫ T

−T
dt eiEmt/�|Ψα(t)〉 =

∞∑

n=0

cα
n lim

T→∞
1

2T

∫ T

−T
dt e−i(En−Em )t/�|n〉

= cα
m |m〉. (2.46)

6In order to ensure convergence of the integral, one adds a small positive imaginary part to the
energy, z = E + iε.
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This procedure filters out an eigenfunction if the overlap with the initial state is
sufficiently high.

Alternatively, the concept of imaginary time propagation is again helpful if one
wants to determine the ground state. To this end the time evolution of (2.43)

|Ψα(−i�τ )〉 =
∑

n

cα
n |n〉e−τEn (2.47)

is considered for large τ , when only the ground state contribution survives. At the
end of the calculation the ground state has to be renormalized and can be subtracted
from the initial wavefunction. Repeating the procedure with themodified initial state,
the next highest energy state can in principle be determined.

2.4. Use the propagator of the 1D harmonic oscillator with V (x) = 1
2mω2

e x
2, given

by [6]

K (x, t; x ′, 0) =
√

mωe

2πi� sin(ωet)
exp

{
imωe

2� sin(ωet)

[
(x2 + x ′2) cos(ωet) − 2xx ′]

}

to derive the spectrum.
Hint: Use the geometric series.

2.1.4 Analytical Solutions for Wavepackets

To conclude this introductory section, we review an Ansatz for the solution of the
time-dependent Schrödinger equation with the help of a Gaussian wavepacket and
will derive equations of motion for the parameters of this wavepacket. We then
continue with a review of the dynamics of a wavepacket in the box potential. Due
to the specific nature of the spectrum in this case, insightful analytic predictions for
the probability density as a function of time can be made.

2.1.4.1 Gaussian Wavepacket Dynamics (GWD)

Already in 1926, Schrödinger has stressed the central importance of Gaussian
wavepackets in the transition from “micro-” to “macro-mechanics” [7]. For this rea-
son, we will now consider a wavefunction in the form of a Gaussian as the solution
of the time-dependent Schrödinger equation.

In Heller’s GWD [8], one uses a complex-valued Gaussian in position represen-
tation (for reasons of simplicity here in 1D),

Ψ (x, t) =
(
2α0

π

)1/4

exp

{
−αt (x − qt )

2 + i

�
pt (x − qt ) + i

�
δt

}
, (2.48)
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as an Ansatz for the solution of (2.1). The expression above contains real valued
parameters qt , pt ∈ R and complex valued ones αt , δt ∈ C that are undetermined
up to now. The initial parameters q0, p0,α0 = αt=0 shall be given and δ0 = 0. Equa-
tions of motion for the four time-dependent parameters can be gained by a Taylor
expansion of the potential around x = qt , according to

V (x, t) ≈ V (qt , t) + V ′(qt , t)(x − qt ) + 1

2!V
′′(qt , t)(x − qt )

2 (2.49)

and by using the time-dependent Schrödinger equation.
After insertion of the time- and position-derivatives of the wavefunction

Ψ̇ (x, t) =
{
−α̇t (x − qt )

2 + 2αt q̇t (x − qt ) + i

�
ṗt (x − qt ) − i

�
pt q̇t + i

�
δ̇t

}

Ψ (x, t), (2.50)

Ψ ′(x, t) =
[
−2αt (x − qt ) + i

�
pt

]
Ψ (x, t), (2.51)

Ψ ′′(x, t) =
{

−2αt +
[
−2αt (x − qt ) + i

�
pt

]2
}

Ψ (x, t), (2.52)

the coefficients of equal powers of (x − qt ) can be compared, as the time-dependent
Schrödinger equation has to be fulfilled at every x . This leads to the following set of
equations

(x − qt )
2 : − i�α̇t = −2�

2

m
α2
t + 1

2
V ′′(qt , t), (2.53)

(x − qt )
1 : i�2αt q̇t − ṗt = i�2αt

pt
m

+ V ′(qt , t), (2.54)

(x − qt )
0 : pt q̇t − δ̇t = �

2

m
αt + p2t

2m
+ V (qt , t). (2.55)

From (2.54), after separation of real and imaginary part, we find

q̇t = pt
m

, (2.56)

ṗt = −V ′(qt , t). (2.57)

The real-valued parameters therefore fulfill Hamilton equations with initial condi-
tions qt=0 = q0 and pt=0 = p0. From (2.55) and with the definition of the classical
Lagrangian

L = Tk − V, (2.58)
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where

Tk = p2t
2m

(2.59)

is the classical kinetic energy, the differential equation

δ̇t = L − �
2

m
αt (2.60)

can be derived. The remaining equation for the inverse width parameter αt follows
from (2.53). It is the nonlinear Riccati differential equation

α̇t = −2i�

m
α2
t + i

2�
V ′′(qt , t). (2.61)

The width of the Gaussian is a function of time and in contrast to an approach, that
will be discussed later in this chapter, where the width of the Gaussians is fixed (i.e.
“frozen”), the approach reviewed here is also referred to as the “thawed” GWD.

In the cases of the free particle and of the harmonic oscillator, all equations of
motion can be solved exactly analytically and, because the Taylor expansion is also
exact in these cases, the procedure above leads to an exact analytic solution of the
time-dependent Schrödinger equation.

2.5. Use the GWD-Ansatz to solve the TDSE.

(a) Use the differential equations for qt , pt ,αt , δt in order to show that the Gaussian
wavepacket fulfills the equation of continuity.

(b) Solve the differential equations for qt , pt ,αt , δt for the free particle case
V (x) = 0.

(c) Solve the differential equations for qt , pt ,αt , δt for the harmonic oscillator case
V (x) = 1

2mω2
e x

2.

(d) Calculate 〈x̂〉, 〈 p̂〉, and�x = √〈x̂2〉 − 〈x̂〉2,�p = √〈 p̂2〉 − 〈 p̂〉2 and from this
the uncertainty product using the general Gaussian wavepacket. Discuss the
special cases from (b) and (c). What do the results for the harmonic oscillator
simplify to in the case αt=0 = mωe/(2�)?

The GWD method can also be applied to nonlinear classical problems, however,
where it is typically valid only for short times. In this context one often uses the notion
of the Ehrenfest time, after which non-Gaussian distortions of a wavepacket become
manifest. In general, the solutions of the equations of motion have to be determined
numerically in the nonlinear case (see Sect. 2.3.4), and the Taylor expansion and thus
the final result is only an approximation.
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2.1.4.2 Particle in an Infinite Square Well

As another example for an exactly solvable problem in quantum dynamics, we now
consider the evolution of an initial wavepacket in an infinite square well (box poten-
tial). This problem has been presented in the December 1995 issue of “Physikalische
Blätter” [9] and leads to aesthetically pleasing space-time pictures, which are some-
times referred to as “quantum carpets”.

In the work of Kinzel, a Gaussian initial state localized close to the left wall
has been investigated. For ease of analytic calculations, let us consider a wavefunc-
tion made up of a sum of eigenfunctions with equal weight in the following. The
eigenfunctions and eigenvalues of the square well extending from 0 to L are given
by

ψn(x) =
√

2

L
sin

{nπ

L
x
}

, (2.62)

En = n2E1, n = 1, 2, 3, . . . (2.63)

with the fundamental energy

E1 = 1

2m

(
�π

L

)2

. (2.64)

The corresponding frequency and period are

ω = E1/�; T = 2π

ω
. (2.65)

2.6. A particle shall be in the eigenstate ψn with energy En of an infinite potential
well of width L (0 ≤ x ≤ L). Let us assume that the width of the well is suddenly
doubled.

(a) Calculate the probability to find a particle in the eigenstate ψ′
m with energy E ′

m
of the new well.

(b) Calculate the probability to find a particle in state ψ′
m whose energy E ′

m is equal
to En.

(c) Consider the time evolution for n = 1, i.e. at t = 0 the wavefunction is the lowest
eigenfunction of the small wellΨ (x, 0) = ψ1(x). Calculate the smallest time tmin

for which Ψ (x, tmin) = Ψ (x, 0).
(d) Draw a picture of the wavefunction Ψ (x, t) at t = tmin/2.

In the following we will use dimensionless variables for position and time

ξ = x

L
; τ = t

T
(2.66)
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Fig. 2.1 Time-evolution of
the absolute value of a
superposition of 20
eigenfunctions of the box
potential [10]

ξ

τ

0 0.5 1
0

0.25

0.5

and will consider an initial wavefunction consisting of N eigenfunctions with equal
weights. As can be seen in Fig. 1 of [10], for large N the wavefunctions have the
same initial localization properties as the ones used in [9]. Each eigenfunction is
evolving with the exponential of the corresponding eigenenergy according to (2.14).
The time-evolution of the normalized wavepacket thus is

Ψ (ξ, τ ) =
√

2

LN

N∑

n=1

sin(nπξ) exp(2πin2τ ). (2.67)

In Fig. 2.1, we show the absolute value of the time-evolved wavefunction with
N = 20 in the range 0 ≤ ξ ≤ 1; 0 ≤ τ ≤ 0.5 of the ξ − τ plane. In this density plot
darkness corresponds to a low and brightness to a large value of the plotted function.
A detailed explanation of the features of the time-evolved wavefunction has been
given in [10]. Let us here concentrate on the suppression of the wavefunction along
the lines τ = ξ

2k . In order to make progress, we express the sine function with the
help of exponentials and arrive at terms of the form

ϑ(±ξ, τ ) =
N∑

n=1

qn2 e±inπξ, (2.68)

with q ≡ e2πiτ . We now shift the argument ξ by 2kτ , with positive k = 1, 2, 3, . . ..
Using n = n + k/2 − k/2 we get
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ϑ(ξ + 2kτ , τ ) =
N∑

n=1

qn2 einπ(ξ+2kτ )

= q−( k
2 )

2

e−i k2 πξ
N∑

n=1

q(n+ k
2 )

2

ei(n+ k
2 )πξ, (2.69)

ϑ(−(ξ + 2kτ ), τ ) =
N∑

n=1

qn2 e−inπ(ξ+2kτ )

= q−( k
2 )

2

e−i k2 πξ
N∑

n=1

q(n− k
2 )

2

e−i(n− k
2 )πξ. (2.70)

The wavefunction along the straight lines originating from ξ = 0 can thus be written
as

Ψ (2kτ , τ ) =
√

2

LN

1

2i
q−( k

2 )
2

N∑

n=1

{q(n+ k
2 )

2 − q(n− k
2 )

2}

=
√

2

LN

1

2i
q−( k

2 )
2

{q(N+ k
2 )

2 · · · + q(N+1− k
2 )

2 − q( k
2 )

2 · · · − q(1− k
2 )

2}. (2.71)

Using the analogy with two combs shifted against each other, as shown in Fig. 2.2,
it is obvious that from the expression in curly brackets above, only 2k terms of order
1 do survive, due to the fact that the major part of the sum cancels term-wise. In the
case k � √

N , we thus can conclude

Ψ (2kτ , τ ) ∼ k/
√
N ≈ 0. (2.72)

These considerations explain the “channels” of near extinction of the wavefunction
along lines of slope 1/2k, emanating from (ξ = 0, τ = 0) to the right. For a given
value of N , the higher the value of k, fewer terms cancel each other and the less
visible the “channel effect” becomes.

Fig. 2.2 Comb analogy for
N = 20 and k = 2. The
overlapping parts of the two
combs are representing the
terms that cancel each other.
Only the terms without
partner (here 4) do not cancel

0

2 N

N

+1

−1
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2.2 Analytical Approaches to Solve the TDSE

A review of some exactly analytically solvable cases in nonrelativistic quantum
dynamics is given in [11], and we have seen two examples for wavepacket solutions
at the end of the previous section. For most problems of interest, however, an exact
analytical solution of the time-dependent Schrödinger equation cannot be found.
It is therefore of quite some interest to devise alternative approaches to quantum
dynamics and/or some approximate or exact Ansätze that are generally applicable
and lead to viable approximate and/or numerical schemes.

A notable reformulation of the time-dependent Schrödinger equation is the Feyn-
man path integral expression for the propagator [12]. This is of utmost importance
in the following, because from the path integral a much used approximation can be
derived: the time-dependent semiclassical formulation of quantum theory. Further-
more, in the case of small external perturbations, time-dependent perturbation theory
maybe themethod of choice for the solution of the time-dependent Schrödinger equa-
tion. Moreover, for systems with many degrees of freedom, as a first approximation,
the wavefunction can be factorized. We thus discuss the so-called Hartree Ansatz
and for the first time also the Born-Oppenheimer method in this chapter. Finally,
the exact analytical Floquet Ansatz for the treatment of periodically driven quantum
systems is reviewed.

The discussion of the numerical implementation of some of these concepts will
be postponed to Sect. 2.3.

2.2.1 Feynman’s Path Integral

For time-dependent quantum problems, which occur naturally if we want to describe
the interaction of a system with a laser field, as we will see in Chap. 3, an approach
that deals with the propagator is very well suited. With the propagator at hand, we
can calculate the time evolution of every wavefunction according to (2.36).

2.2.1.1 The Propagator as a Path Integral

A very elegant approach that gives an explicit formula for the propagator goes back
to an idea that can be found in later editions of the famous text book by Dirac [13],
and has finally been formulated by Feynman [12]. The derivation of the path integral
is a prime example for the new quantummechanical reasoning in terms of probability
amplitudes in contrast to the classical way of thinking in probabilities. The famous
double slit experiment serves as the chief parable to understand the new twist of
quantum mechanical thinking. The postulates that form the basis for the derivation
of the path integral are:

http://dx.doi.org/10.1007/978-3-319-74542-8_3
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Postulate 1: If, in the particle picture, an event (e.g., an electron hitting the screen
after passing a double slit) can have occurred in two mutually exclusive
ways, the corresponding amplitudes have to be added to find the total
amplitude

Postulate 2: If an event consists of two successive events, the corresponding ampli-
tudes do multiply.

In the book by Feynman andHibbs [6] it is shown how the usage of the two postulates
above leads to the composition (or semigroup) property of the propagator, which we
have already stated in (2.38). At this point, however, only physical intuition helps.
How can the probability amplitude K (r f , t; r i , 0) itself be determined?

Inspired by an idea of Dirac, and using the first postulate above, Feynman in 1948
[12] expressed the propagator as a sum over all paths from r i to r f in time t . Each
of these paths contributes with a phase factor to the sum. The phase is the ratio of
the classical action of the respective path and �. Mathematically this can be written
as

K (r f , t; r i , 0) =
∫ r(t)=r f

r(0)=r i

d[r] exp
{
i

�
S[r]

}
, (2.73)

withHamilton’s principal function (being a functional of the path, which is expressed
by the square brackets)

S[r] =
∫ t

0
dt ′L . (2.74)

The classical Lagrangian L has already appeared in (2.58). The symbol
∫
d[r] is

denoting the integral over all paths (functional integral). In contrast to standard
integration, where one sums a function over a certain range of a variable, in a path
integral one sums a function of a function (a so-called functional) over a certain
class of functions that are parametrized by t and that obey the boundary conditions
r(0) = r i , r(t) = r f . Feynman’s path integral is therefore sometimes referred to as
a “sum over histories”. In Fig. 2.3, for an arbitrary one-dimensional potential, we
depict the classical path and some other equally important nonclassical paths.

The exact analytic calculation of the path integral, apart from a few exceptions
involving quadratic Lagrangians, is not possible. One therefore frequently resorts to
approximate solutions. A principal way to calculate the path integral shall, however,
be hinted at. In order to make progress, the time interval [0, t] is divided into N
equal parts of length �t , analogously to the procedure in Sect. 2.1.2. This “time-
slicing” is depicted in Fig. 2.3. In this way the path integral is discretized and in the
limit N → ∞ can be written as an (N − 1)-dimensional Riemann integral times a
normalization constant BN . In one spatial dimension this reads
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Fig. 2.3 Paths in
space-time. Time-slicing and
the classical path (thick red
line) are also depicted

0 t

x i= x0

xf= xN

x1 xj xN−1

K (x f , t; xi , 0) = lim
N→∞ BN

∫
dx1

∫
· · ·

∫
dxN−1

exp

⎧
⎨

⎩
i

�

N∑

j=1

[
m(x j − x j−1)

2

2�t
− V

(
x j + x j−1

2

)
�t

]
⎫
⎬

⎭
. (2.75)

Proving this expression and deriving BN is most elegantly done by using a Weyl
transformation and will be performed explicitly in Appendix 2.A.

Obviously, the expression above can be interpreted as the successive application
of the closure relation (2.38), concatenating short-time propagators

K (x j ,�t; x j−1, 0) ∼ exp

{
i

�

[
m(x j − x j−1)

2

2�t
− V

(
x j + x j−1

2

)
�t

]}
. (2.76)

It considerably deepens one’s understanding to derive the short-time propagator
directly from the infinitesimal time-evolution operator of (2.32). The interesting ques-
tion how the Hamilton operator “mutates” into the classical Lagrangian is answered
in Exercise 2.7. In the second part of this exercise, the time-dependent Schrödinger
equation can be derived. To this end a simplified version of the short-time propagator
with a simple end point rule for the discretization of the potential part of the action

by replacing V
(
x j+x j−1

2

)
by V (x j−1) in (2.76) is sufficient.

2.7. Study the short-time propagator and use it to derive the TDSE.

(a) Derive the short-time propagator starting from

Û (�t) = exp{−iĤ�t/�}

for the infinitesimal time-evolution operator.
Hint: Use first order Taylor expansion of the exponential function.
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(b) Use the short-time propagator in order to propagate an arbitrary wavefunction
Ψ (x, t) over an infinitesimal time interval �t via

Ψ (x, t + �t) =
∫

dyK (x,�t; y, 0)Ψ (y, t)

and derive the TDSE!
Hint: To this integral only a small intervall of y centeredaround x is contributing.
Expansion of the expression above to first order in �t and up to second order
in η = y − x leads to a linear partial differential equation for Ψ (x, t).

2.2.2 Stationary Phase Approximation

By inspection of (2.75) it is obvious that the calculation of the propagator for arbi-
trary potentials becomes arbitrarily complicated. In the case of maximally quadratic
potentials all integrals are Gaussian integrals, however, and thus can be done exactly
analytically. There are some additional examples, for which exact analytic results
for the path integral are known. These are collected in the supplement section of the
Dover edition of the textbook by Schulman [14].

In general, however, approximate solutions for the path integral are sought for.
The idea is to approximate the exponent in such a fashion that only quadratic terms
survive. The corresponding approximation is the stationary phase approximation
(SPA). It shall be introduced by first looking at a simple 1D integral of the form

∫ +∞

−∞
dx exp{i f (x)/δ}g(x). (2.77)

To proceed, we perform a Taylor expansion of the function in the exponent up to
second order according to f (x) ≈ f (x0) + f ′(x0)(x − x0) + 1/2 f ′′(x0)(x − x0)2

under the condition of stationarity of the phase, i.e.,

f ′(x0) = 0. (2.78)

Then with the help of the formula7

∫ +∞

−∞
dx exp(iαx2) =

√
iπ

α
, (2.79)

7This is a Fresnel integral, i.e., the Gaussian integral of (1.29) with purely imaginary a.

http://dx.doi.org/10.1007/978-3-319-74542-8_1
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Fig. 2.4 The function
f (x) = x2 (solid black line)
and the real part of
exp{ix2/δ} with δ = 0.01
(dashed red line)
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we get

∫ +∞

−∞
dx exp{i f (x)/δ}g(x) δ→0=

√
2πiδ

f ′′(x0)
exp{i f (x0)/δ}g(x0) (2.80)

for the integral above. This approximation becomes the better, the faster the exponent
oscillates, which is determined by the smallness of the parameter δ. In order to
demonstrate this fact, in Fig. 2.4 the function exp{ix2/δ} is displayed using δ = 0.01.
The fast oscillations of the function at x values further away than

√
δ from the

point of stationary phase lead to the mutual cancellation of the positive and negative
contributions to the integral. Around the stationary phase point (which here is x = 0)
this argument does not apply and therefore the major contribution to the integral is
determined by the properties of the function f (x) around that point.

In the next subsection, the notion of stationary phase integration will be extended
to the path integral, being an infinite dimensional “normal” integral. Before doing
so, a remark on the direct numerical approach to the path integral is in order. As
can be seen already by looking at the integrand of our 1D toy problem, a numerical
attack to calculate the integral of a highly oscillatory function will be problematic
due to the near cancellation of terms. This is even more true for the full fledged path
integral and the associated problem is sometimes referred to as the sign problem,
which is a topic at the forefront of present day research. Much more well-behaved
with respect to numerical treatment are imaginary time path integrals, which will not
be dealt with herein, however.

2.2.3 Semiclassical Approximation

The semiclassical approximation of the propagator goes back to van Vleck [15].
Its direct derivation from the path integral followed many years later, however, and
finally led to the generalization of the van Vleck formula by Gutzwiller [16]. We
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will later-on use semiclassical arguments quite frequently, because they allow for a
qualitative and often also for a quantitative explanation of many interesting quantum
phenomena. For this reason we will go through the derivation of the so-called van
Vleck-Gutzwiller (VVG) propagator in some detail.

In order to derive a time-dependent semiclassical expression, the SPA will be
applied to the path integral (2.73). In this case the exponent S[x] is a functional.
Therefore, we need the definition of the variation of a functional (see, e.g., [17]).
The analog of (2.78) is

δS[xcl] = 0. (2.81)

This, however, is Hamilton’s principle of classical mechanics. The SPA is thus based
on the expansion of the exponent of the path integral around the classical path with
boundary conditions x(0) = xi and x(t) = x f . This is also the reason why we have
highlighted the classical path in Fig. 2.3. By defining the deviation from the classical
path as

η(t ′) = x(t ′) − xcl(t
′) η(0) = η(t) = 0, (2.82)

the second order expansion needed for the SPA is given by

S[x] = S[xcl] + 1

2

∫ t

0
dt ′η(t ′)Ôη(t ′), (2.83)

with the stability operator

Ô = −m
d2

dt2
− V ′′∣∣

x=xcl(t)
. (2.84)

More details about the underlying variational calculus can be found in Chap.12 of
[14] and in Appendix 2.B.

For the time being, we assume that only one single point of stationary phase exists.
In SPA the propagator can then be written as

K (x f , t; xi , 0) ≈
∫ η(t)=0

η(0)=0
d[η] exp

{
i

2�

∫ t

0
dt ′η(t ′)Ôη(t ′)

}

exp

{
i

�
S[xcl]

}
. (2.85)

Due to the additive nature of the action in (2.83), the propagator factorizes into
a trivial factor coming from the zeroth order term in the expansion and a so-called
prefactor coming from the fluctuations around the classical path. Due to its boundary
conditions, this prefactor is also referred to as 0–0-propagator.
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The condition for the applicability of the SPA is that the exponent oscillates
rapidly. For the functional integral this means that � must be small compared to the
action of the classical trajectory. The main contribution to the propagator in the SPA
thus stems from the classical path that solves the boundary value problem defined
by the propagator labels and from a small region surrounding the classical path. In
this context the SPA is therefore also called the semiclassical approximation. There
are several ways to derive an explicit expression for the prefactor in (2.85), see, e.g.,
[14]. As shown in detail in this textbook the final expression for the propagator is
given by

K (x f , t; xi , 0) ≈
√

i

2π�

∂2S[xcl]
∂x f ∂xi

exp

{
i

�
S[xcl]

}
. (2.86)

The classical information that enters the expression above can be gained by solv-
ing the root search problem defined by the propagator labels and calculating the
corresponding action and its second derivative with respect to the initial and final
position.

As mentioned at the beginning of this section, van Vleck succeeded already in
1928 in finding the expression above in a more “heuristic” manner [15]. He started
in his derivation from the observation that the insertion of the Ansatz8

K ∼ exp{iS(x,α, t)/�}, (2.87)

with an integration constant α, into the time-dependent Schrödinger equation, after
cancellation of all�-dependencies, leads to the classicalmechanical Hamilton-Jacobi
equation [18]

H

(
∂S

∂x
, x

)
+ ∂S

∂t
= 0. (2.88)

Invoking the correspondence principle, S must thus be a generator of a canonical
transformation, the classical action functional, and we have found the exponential
part of the propagator.

The yet undetermined prefactor of the propagator follows from a more involved
reasoning: the classical probability density for reaching point x f after starting from
point xi can be determined by integrating over all possible initial momenta (vertical
line in the phase space plot in Fig. 2.5) and is given by

ρcl(x f , t; xi , 0) = 1

h

∫
dpiδ[x f − xt (xi , pi )] = 1

h

∣∣∣∣∣
∂x f

∂ pi

∣∣∣∣
xi

∣∣∣∣∣

−1

, (2.89)

8This Ansatz is also the starting point of so-called Bohmian mechanics approaches to quantum
dynamics.
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Fig. 2.5 The case of two
classical solutions of the
boundary value problem
x(0) = xi ; x(t) = x f . The
phase space manifold of
initial conditions is indicated
by the solid vertical line.
This manifold evolves into
the bent curve, whereby two
of the initial conditions,
indicated by the colored
dots, fulfill the boundary
value problem

xi xf

p

where |xi denotes that xi is kept fixed and for the time being, we have assumed
that there is just one single solution of the double-ended boundary value problem.
Furthermore, Planck’s constant enters for dimensionality reasons in a similar fashion
as in classical statistical mechanics. Converting to quantum mechanical amplitudes,
the square root of the classical probability density has to be taken to arrive at the
correct semiclassical prefactor. From basic classical mechanics we have the identity

∂2S[xcl]
∂x f ∂xi

= − ∂ pi
∂x f

, (2.90)

for the so-called van Vleck determinant,9 however. Thus up to the absolute value in
(2.89), reflecting the fact that the probability density is a positive definite quantity,
the semiclassical propagator of van Vleck and the one from the SPA to the path
integral are proportional.

Almost 40years later, Gutzwiller has extended the validity of the van Vleck
expression to longer times [16]. First of all for finite times there may be several
solutions to the classical root search problem. Such a situation is depicted graphi-
cally in Fig. 2.5. In the case of multiple solutions an additional summation therefore
has to be introduced in (2.86). Using the path integral derivation together with the
summation over several points of stationary phase one finally arrives at the van
Vleck-Gutzwiller expression

KVVG(x f , t; xi , 0) ≡
∑

cl

√
i

2π�

∣∣∣∣
∂2S[xcl]
∂x f ∂xi

∣∣∣∣ exp
{
i

�
S[xcl] − iνπ/2

}
, (2.91)

with the so-called Maslov (or Morse) index ν, introduced into the semiclassical
propagator by Gutzwiller and counting the caustics a path has gone through. The
Maslov phase allows one to use the absolute value inside the square root.

9In general, x f and xi have to be replaced by vectors!
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This final expression has interference effects built in, because of the summation
over classical trajectories and is very elegant and intuitive, because it relies solely
on classical trajectories. However, it has also a major drawback, especially for sys-
tems with several degrees of freedom. Then the underlying root search problem
becomes extremely hard to solve and a semiclassical propagator using the solution
of classical initial value problems would be much needed. Such a reformulation
of the semiclassical expression is possible and will be discussed in Sect. 2.3.4 on
numerical methods.

2.2.4 Pictures of Quantum Mechanics and Time-Dependent
Perturbation Theory

Another approximate way to solve the time-dependent Schrödinger equation starts
directly from the infinite sumof time-ordered operator products in (2.31) for the time-
evolution operator. Considering this series as a perturbation expansion and taking
only a few terms into account will lead to reasonable results only for short times. In
the case of additive Hamiltonians,

Ĥ(t) = Ĥ0(t) + Ŵ (t), (2.92)

we can, however, split the problem into parts and can possibly treat the first one
analytically and the rest perturbatively. Please note that in (2.92) both the first and
second term may depend on time. This will come in handy when we discuss the
different pictures of quantum mechanics in a unified manner.

The time-evolution operator for the unperturbed problem is formally given by

Û0(t, 0) = T̂ exp

{
− i

�

∫ t

0
dt ′ Ĥ0(t

′)
}

. (2.93)

With its help we define a wavefunction in the interaction picture, indicated by the
index I,

|ΨS(t)〉 =: Û0(t, 0)|ΨI(t)〉, (2.94)

where the wavefunction |ΨS(t)〉 is the one in the Schrödinger picture, which we have
considered up to now. Inserting (2.94) into the time-dependent Schrödinger equation
and using

i� ˙̂U0(t, 0) = Ĥ0(t)Û0(t, 0) (2.95)
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yields

i�|Ψ̇I(t)〉 = ŴI(t)|ΨI(t)〉, (2.96)

i.e., theSchrödinger equation in the interactionpicture,where the perturbationHamil-
tonian in the interaction picture is given by

ŴI(t) := Û †
0 (t, 0)Ŵ (t)Û0(t, 0). (2.97)

The time-evolution operator in the interaction picture is

ÛI(t, 0) := T̂ exp

{
− i

�

∫ t

0
dt ′ŴI(t

′)
}

. (2.98)

Using (2.94), we note that at t = 0 the wavefunctions are identical, i.e. |ΨS(0)〉 =
|ΨI(0)〉 = |Ψ (0)〉. Furthermore, calculating an expectation value in the Schrödinger
picture and using (2.94), we get

〈 Â〉(t) = 〈ΨS(t)| ÂS|ΨS(t)〉
= 〈ΨI(t)|Û †

0 (t, 0) ÂSÛ0(t, 0)|ΨI(t)〉. (2.99)

With the definition of an operator in the interaction picture

ÂI(t) := Û †
0 (t, 0) ÂSÛ0(t, 0), (2.100)

the expectation value becomes

〈 Â〉(t) = 〈ΨI(t)| ÂI(t)|ΨI(t)〉, (2.101)

which is identical to the Schrödinger picture expectation value.

2.8. Verify that the time evolution operator in the interaction picture ÛI(t, 0) =
Û+

0 (t, 0)Û (t, 0) fulfills the appropriate differential equation.

The third picture that is frequently applied is the one named after Heisenberg. By
an appropriate choice of the unperturbed Hamiltonian in (2.93) and the perturbation
all three pictures can be dealt with in the same framework:

• Ĥ = Ĥ0 + Ŵ leads to the interaction picture
• Ĥ0 = 0 und Ŵ = Ĥ leads to the Schrödinger picture
• Ĥ0 = Ĥ and Ŵ = 0 leads to the Heisenberg picture

The relations between the different cases are given in Table2.1 for the wavefunc-
tions and in Table2.2 for the operators. In Schrödinger’s original representation,
the wavefunction is time-dependent, whereas the operators are time-independent. In
the Heisenberg picture it is the other way around. The interaction picture has both
wavefunction and operators being time-dependent.
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Table 2.1 Relations between the wavefunctions in the different pictures of quantum mechanics

|ΨS(t)〉 |ΨH〉 |ΨI(t)〉
|ΨS(t)〉 Û (t, 0)|ΨH〉 Û0(t, 0)|ΨI(t)〉
|ΨH〉 Û†(t, 0)|ΨS(t)〉 Û†

I (t, 0)|ΨI(t)〉
|ΨI(t)〉 Û†

0 (t, 0)|ΨS(t)〉 ÛI(t, 0)|ΨH〉

Table 2.2 Relations between the operators in the different pictures of quantum mechanics

ÂS ÂH(t) ÂI(t)

ÂS Û (t, 0) ÂH(t)Û†(t, 0) Û0(t, 0) ÂI(t)Û
†
0 (t, 0)

ÂH(t) Û†(t, 0) ÂSÛ (t, 0) Û†
I (t, 0) ÂI(t)ÛI(t, 0)

ÂI(t) Û†
0 (t, 0) ÂSÛ0(t, 0) ÛI(t, 0) ÂH(t)Û†

I (t, 0)

With the interaction picture defined, we can now derive time-dependent pertur-
bation theory for small perturbations Ŵ (t). Iterative solution of the corresponding
time-dependent Schrödinger equation leads to an expression for the propagator in
the interaction picture

ÛI(t, 0) = 1̂ +
∞∑

n=1

(−i

�

)n ∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1

ŴI(tn)ŴI(tn−1) · · · ŴI(t1), (2.102)

analogous to (2.31). In perturbation theory, the series is truncated at finite n and in
case of n = 1, we get

|Ψ 1
I (t)〉 = |Ψ (0)〉 − i

�

∫ t

0
dt ′Û †

0 (t ′, 0)Ŵ (t ′)Û0(t
′, 0)|Ψ (0)〉. (2.103)

Going back to the Schrödinger picture, by using (2.94), we get

|Ψ 1
S (t)〉 = Û0(t, 0)|Ψ (0)〉 − i

�

∫ t

0
dt ′Û0(t, t

′)Ŵ (t ′)Û0(t
′, 0)|Ψ (0)〉. (2.104)

in first order. We will interpret and use expressions of this kind in the discussion of
pump-probe spectroscopy in Chap. 5. Terms of higher order will contain multiple,
nested integrals but will not be needed there.

http://dx.doi.org/10.1007/978-3-319-74542-8_5
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2.2.5 Magnus Expansion

Another approach to solve the time-dependent Schrödinger equation starting from
the time-evolution operator is the so-calledMagnus expansion. The basic idea of this
method is resummation and can be understood by considering a function depending
on a parameter λ. Expanding this function in powers of the parameter leads to

A = A0(1 + λA1 + λ2A2 + · · · ) . (2.105)

Alternatively, the function can be written as a prefactor times an exponential

A = A0 exp(F) . (2.106)

Also the exponent F can be expanded in powers of the parameter

F = λF1 + λ2F2 + · · · . (2.107)

The exponential function can now be Taylor expanded and after comparing the coef-
ficients of equal powers of λ, the Fn can be expressed in terms of the An . Now If
we now truncate the series in (2.105) after n = 2, by using the coefficients in the
exponent via

A ≈ A0 exp(λA1 + λ2(A2 − A2
1/2)) , (2.108)

an expression of infinite order in λ has been gained.
In quantum dynamics, the technique presented above is used for the infinite sum in

(2.102), representing the time-evolution operator. The parameter λ is equal to −i/�

in this case. The final result for the time-evolution operator is

ÛI(t, 0) = T̂ exp

{
− i

�

∫ t

0
dt ′ ŴI(t

′)
}

= exp

{ ∞∑

n=1

1

n!
(

− i

�

)n

Ĥn(t, 0)

}

, (2.109)

where

Ĥ1 =
∫ t

0
dt ′ ŴI(t

′), (2.110)

Ĥ2 =
∫ t

0
dt2

∫ t2

0
dt1[ŴI(t2), ŴI(t1)], (2.111)
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Ĥ3 =
∫ t

0
dt3

∫ t3

0
dt2

∫ t2

0
dt1

([ŴI(t3), [ŴI(t2), ŴI(t1)]]
+ [[ŴI(t3), ŴI(t2)], ŴI(t1)]

)
(2.112)

are the first three terms in the expansion of the exponent.

2.9. Verify the second order expression Ĥ2 of the Magnus expansion in the exponent
of the time-evolution operator in the interaction picture.

The main advantage of the expression in (2.109) is that, in principle, it is an exact
result and that it does not contain the time-ordering operator any more. In numerical
applications the summation in the exponent will be terminated at finite n, however,
and leads to a unitary propagation scheme at any order. If one would truncate the
expansion after n = 1, then the time-ordering operator in (2.109) would have been
ignored altogether.Although this seems to be rather a crude approximation, inChap. 4
we will see that it leads to reasonable results in the case of atoms subject to extremely
short pulses. Furthermore, it has turned out that in the interaction picture with a
suitable choice of Ĥ0, truncating the Magnus expansion is a successful numerical
approach [19].

2.2.6 Time-Dependent Hartree Method

Especially in Chap. 5, we will investigate systems with several coupled degrees of
freedom. The factorization of the total wavefunction is a first very crude approxi-
mative way to solve the time-dependent Schrödinger equation for such systems. It
shall therefore be discussed here for the simplest case of two degrees of freedom
corresponding to distinguishable particles.

The total Hamiltonian shall be of the form

Ĥ =
2∑

n=1

Ĥn(xn) + V12(x1, x2), (2.113)

with single particle operators

Ĥn(xn) = − �
2

2m

∂2

∂x2n
+ Vn(xn) (2.114)

and the coupling potential V12 depending on the two coordinates in a non-additive
manner. The so-called Hartree Ansatz for the wavefunction is of the form

Ψ (x1, x2, t) = Ψ1(x1, t)Ψ2(x2, t) (2.115)

of a product of single particle wavefunctions.

http://dx.doi.org/10.1007/978-3-319-74542-8_4
http://dx.doi.org/10.1007/978-3-319-74542-8_5
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This Ansatz is exact in the case that the coupling V12 vanishes. The single particle
functions then fulfill

i�Ψ̇n(xn, t) = ĤnΨn(xn, t). (2.116)

We now plug the Hartree Ansatz into the full time-dependent Schrödinger equation
and find

i�
(
Ψ2Ψ̇1 + Ψ1Ψ̇2

) = Ψ2 Ĥ1Ψ1 + Ψ1 Ĥ2Ψ2 + V12Ψ1Ψ2 . (2.117)

Multiplying this equation with Ψ ∗
2 and integrating over the coordinate of particle 2

yields

i�
(
Ψ̇1 + Ψ1〈Ψ2|Ψ̇2〉2

) = Ĥ1Ψ1 + Ψ1〈Ψ2|Ĥ2|Ψ2〉2 + 〈Ψ2|V12|Ψ2〉2Ψ1. (2.118)

By using the single particle equations of zeroth order with the index 2, the second
terms on the LHS and the RHS cancel each other and one finds

i�Ψ̇1(x1, t) =
(

− �
2

2m
�1 + V1,eff(x1, t)

)
Ψ1(x1, t), (2.119)

with an effective, time-dependent potential

V1,eff(x1, t) = V1(x1) + 〈Ψ2(t)|V12|Ψ2(t)〉2. (2.120)

An analogous equation can be derived for particle 2

i�Ψ̇2(x2, t) =
(

− �
2

2m
�2 + V2,eff(x2, t)

)
Ψ2(x2, t), (2.121)

by multiplying the time-dependent Schrödinger equation with Ψ ∗
1 and integrating

over x1.
The particles move in effective “mean” fields that are determined by the dynamics

of the other particle. The coupled equations have to be solved self-consistently. This is
the reason that theHartreemethod sometimes is called aTDSCF (time-dependent self
consistent field)method. Themulti-configuration time-dependentHartree (MCTDH)
method [20] goes far beyond what has been presented here and in principle allows
for an exact numerical solution of the time-dependent Schrödinger equation.

2.2.7 Quantum-Classical Methods

In quantum-classical methods, the degrees of freedom are separated into a sub-
set that shall be dealt with on the basis of classical mechanics and a subset to be
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described fully quantum mechanically. Analogously to the Hartree method, the clas-
sical degrees of freedom will move in an effective potential that is determined by the
solution of the quantum problem.

For reasons of convenience we start the discussion with the time-independent
Schrödinger equation and restrict it to the case of two degrees of freedom: a light
particle with coordinate x and mass m and a heavy one with X and M , respectively.
Having the full solution of the time-independent Schrödinger equation

Ĥψn(x, X) = Enψn(x, X), (2.122)

with the Hamiltonian

Ĥ = p̂2

2m
+ P̂2

2M
+ v(x, X) + V (X) (2.123)

at hand would allow us to construct a time-dependent solution according to

Ψ (x, X, t) =
∑

n

cn exp

[
− i

�
Ent

]
ψn(x, X). (2.124)

Away to treat the coupled systemapproximately is intimately related to the separation
Ansatz of the previous section and will be discussed in much more detail later-on
in Sect. 5.3.1 on the Born-Oppenheimer approximation. The idea is simple: one
replaces the coupled problem by a pair of uncoupled single particle problems. In
order to do so, first the light particle is dealt with under certain (fixed) conditions for
the heavy particle (denoted by |X )

Ĥ 0(x |X)φ j (x |X) = ε0j (X)φ j (x |X), (2.125)

where

Ĥ 0(x |X) = p̂2

2m
+ v(x, X) (2.126)

depends parametrically on X and j is the quantum number of the light particle.
Using the product Ansatz

ψn(x, X) ≈ φ j (x |X)χl, j (X) (2.127)

in the full time-independent Schrödinger equation and integrating out the coordinate
of the light particle in the same way as in Sect. 2.2.6, one arrives at equations of the
form

Ĥ 1
j (X)χl, j (X) = ε1l, jχl, j (X), (2.128)

http://dx.doi.org/10.1007/978-3-319-74542-8_5
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with the Hamiltonian

Ĥ 1
j (X) = P̂2

2M
+ V (X) + ε0j (X) (2.129)

and eigenvalues, which are approximately given by

En ≈ ε1l, j , (2.130)

depending on j aswell as on l, which is the quantumnumber of the heavyparticle. The
heavy particle is thus governed by an effective potential, V (X) + ε0j (X), depending
on the quantum state of the light particle.

Let us now turn to dynamics. In the Ehrenfest method one postulates the classical
treatment of the heavy particle. Analogous to the effective potential an effective force
can be derived which reads

Feff = − ∂

∂X

{
V +

∫
dx Φ∗ Ĥ 0Φ

}
, (2.131)

andwhere thewavefunctionof the light particle fulfills the time-dependentSchrödinger
equation

i�Φ̇(x |X (t), t) = Ĥ 0(x |X (t))Φ(x |X (t)). (2.132)

Expanding this wavefunction in eigenfunctions of the light particle

Φ(x |X (t), t) =
∑

j

c j (t)φ j (x |X (t)) (2.133)

yields coupled differential equations for the coefficients

i�ċ j (t) = ε0j c j − i�Ẋ
∑

k

d jkck, (2.134)

where d jk = ∫
dxφ j

∂φk

∂X . Together with the explicit expression

Feff = −∂V

∂X
−

∑

j

|c j |2
∂ε0j

∂X
+

∑

j,k< j

[c∗
j ck + c∗

k c j ][ε0j − ε0k]d jk (2.135)

for the effective force, this can be proven by solving Exercise 2.10.

2.10. Verify the fundamental equations of the Ehrenfest method.

(a) First prove the validity of the coupled differential equations for the coefficients
c j (Use the product and the chain rule of differentiation).

(b) Calculate the effective force by using dkj = −d jk (Proof?)
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The first term in the expression of the force is the so-called external force, whereas
the second one describes adiabatic and the third one nonadiabatic dynamics.10 The
last two terms have to be determined by solving the quantum problem of the light
particle. An alternative quantum-classical approach is the so-called surface hopping
technique. Its relation to the Ehrenfest approach, and which method is suited under
which circumstances is discussed in [21].

2.2.8 Floquet Theory

For the description of cw-laser driven systems, the problem of time-periodic Hamil-
tonians is of central importance. In this case we have

Ĥ(t + T ) = Ĥ(t), (2.136)

with the period T = 2π/ω of the external perturbation.
As in the general time-dependent case, the time evolution operator can be used to

propagate a wavefunction. In addition to the properties discussed in Sect. 2.1.2, we
can now make use of the property

Û (t + T, s + T ) = Û (t, s). (2.137)

In order to solve the time-dependent Schrödinger equation, we prove that the Hamil-
tonian extended by the time derivative

Ĥ(t) ≡ Ĥ(t) − i�∂t (2.138)

commutes with the time-evolution operator over one period. The time-dependent
Schrödinger equation can be rewritten by using the above definition and we apply
the time-evolution operator from the left

Û (t + T, t)Ĥ(t)|Ψ (t)〉 = 0, (2.139)

Û (t + T, t)Ĥ(t)Û−1(t + T, t)Û (t + T, t)|Ψ (t)〉 = 0, (2.140)

Ĥ(t)Û (t + T, t)|Ψ (t)〉 = 0. (2.141)

The last, decisive step follows form the periodicity of the Hamiltonian and with the
help of the chain rule.11 We can thus conclude that

[Û (t + T, t), Ĥ(t)] = 0 (2.142)

10The explanation of these terms follows in Chap. 5.
11We have used Û (t + T, t)Ĥ(t)Û−1(t + T, t) = Ĥ(t + T ) = Ĥ(t + T ) − i�∂t+T = Ĥ(t) −
i�∂t .

http://dx.doi.org/10.1007/978-3-319-74542-8_5
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holds. The two operators thus have a common system of eigenfunctions, which shall
be denoted by |Ψε(t)〉.

From the composition property (2.27) and with (2.137) it follows that

Û (2T, 0) = Û (2T, T )Û (T, 0) = Û 2(T, 0). (2.143)

The group of time-evolution operators over one period therefore is an Abelian group.
Its eigenfunctions have to transform according to a one-dimensional irreducible rep-
resentation [22]

Û (T, 0)|Ψε(0)〉 = exp

{
− i

�
εT

}
|Ψε(0)〉. (2.144)

Comparing this equation with the time-evolution over one period

Û (T, 0)|Ψε(0)〉 = |Ψε(T )〉 (2.145)

leads to the Floquet theorem for the solution of the time-dependent Schrödinger
equation

Ψε(x, t) = exp

{
− i

�
εt

}
ψε(x, t), (2.146)

ψε(x, t) = ψε(x, t + T ). (2.147)

The wavefunction is a product of an exponential factor times a periodic function.12

The factor ε in the exponent of (2.146) is sometimes referred to as Floquet exponent
and the correspondingperiodic functionψε is calledFloquet function in order to honor
the frenchmathematician Gaston Floquet, whoworked on differential equations with
periodic coefficients in the 19th century.

The product in (2.146) is formally analogous to the separation (2.9) in the station-
ary case. In order to use this analogy, we rewrite the time-dependent Schrödinger
equation as in (2.139), to read

Ĥ(x, t)Ψ (x, t) = 0. (2.148)

Inserting the Floquet solution (2.146) and performing the time-derivative of the
exponential part yields

Ĥ(x, t)ψα(x, t) = εαψα(x, t), (2.149)

where the quantum number index α has been introduced. This “Floquet type
Schrödinger equation” has the same formal structure as the time-independent
Schrödinger equation. Therefore the Floquet exponents are also called quasi-energies

12Formally this Ansatz is equivalent to the Bloch theorem of solid state physics.
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and the Floquet functions are referred to as quasi-eigenfunctions. In the case of a
Hermitian Hamiltonian the quasi-energies are real.

2.11. Use the extended scalar product

〈〈uα|vβ〉〉 := 1

T

∫ T

0
dt

∫ ∞

−∞
dxu∗

α(x, t)vβ(x, t)

and the extended Hamiltonian Ĥ = Ĥ(t) − i�∂t , with Ĥ(t + T ) = Ĥ(t), in order
to show that the Floquet energies εα are real in case of Hermitian Hamiltonias Ĥ(t).

In the case of vanishing external field theHamiltonian becomes time-independent.
This implies that also ψα is time-independent. The index α therefore is related to
the quantum numbers of the unperturbed problem. It is a special feature of the
Floquet solution (2.146) and (2.147) that the modified quasi-eigenfunctions and
corresponding energies

ψα′(x, t) := ψα(x, t) exp(ikωt), (2.150)

εα′ := εα + k�ω, (2.151)

with k = 0,±1,±2, . . . 13 are equivalent to ψα(x, t), εα, due to the fact that they
correspond to the same total solution Ψα(x, t). The index

α′ := (α, k) k = 0,±1,±2, . . . (2.152)

denotes a class of infinitely many solutions. Out of each class only one lays in a so-
called Brillouin zone of width �ω, however. The discussion above and more details
on the underlying Hilbert space theory can be found in [23]. Without proving the
completeness, we will use

1̂ =
∑

α′
|ψα′(0)〉〈ψα′(0)| (2.153)

as the representation of unity in terms of (discrete) Floquet states. In order for this
representation to be true also in the nondriven case, it is clear that only onemember of
the class of equivalent eigensolutions may contribute to the sum above. A solution of
the time-dependent Schrödinger equation can therefore be written as a superposition
of quasi-eigenfunctions with appropriate coefficients

|Ψ (t)〉 =
∑

α′
cα′ |ψα′(t)〉 exp

{
− i

�
εα′ t

}
, (2.154)

cα′ = 〈ψα′(0)|Ψ (0)〉. (2.155)

13Note that k has to be an integer in order for the modified quasi-eigenfunction to be periodic.
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This equation exhibits clearly that the quasi-energies determine the long-term time-
evolution of a periodically driven quantumsystem.Thebehavior of the quasi-energies
as a function of an external parameter (e.g., the field strength or the frequency) will
therefore be very important. In order to study this behavior, the symmetry of the
Hamiltonian will be decisive. We will come back to this point in Appendix 3.A to
the Chap. 3.

2.3 Numerical Methods

Apart from special two-level problems that will be dealt with in the next chapter and
systems with maximally quadratic potentials (and problems that can be mapped onto
such cases) there are only a few exactly analytically solvable problems in quantum
dynamics, as can be seen by studying the review by Kleber [11].

Almost all interesting problems of atomic andmolecular physics with andwithout
the presence of laser fields classically display nonlinear dynamics, however, and the
Gaussianwavepacket dynamics of Sect. 2.1.4will be valid only for short times. Exact
numerical solutions of the quantum dynamics are therefore sought for. Apart from
time-dependent information that is, e.g., needed for the description of pump-probe
experiments, to be discussed in Chap. 5, also spectral information for systems with
autonomous Hamiltonians can be gained from time series, as was shown in Sect.
2.1.2.

In the following, different ways to solve the time-dependent Schrödinger equation
numericallywill be described. First, wewill review some numerically exactmethods,
and in the end the implementation of the semiclassical theory lined out in Sect.
2.2.3 by so-called initial value methods will be discussed, thereby also touching the
numerical solution of the underlying classical equations of motion.

Most methods to solve the TDSE that we discuss can be characterized according
to two formal criteria, which will be called problem (a) and problem (b) in the
following:

(a) Which (finite) basis is used to represent the wavefunction?
(b) In which (approximate) way is the time-evolution performed?

We will distinguish the methods according to their different approach to the solution
of the problems above.

2.3.1 Orthogonal Basis Expansion

All methods to solve the time-dependent Schrödinger equation numerically have
to deal with a way to express the wavefunction in a certain representation. Here
we shall consider the expansion of the wavefunction in a set of orthogonal basis

http://dx.doi.org/10.1007/978-3-319-74542-8_3
http://dx.doi.org/10.1007/978-3-319-74542-8_3
http://dx.doi.org/10.1007/978-3-319-74542-8_5
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functions, which are eigenfunctions of a certain (simple) Hamiltonian like, e.g., the
1D harmonic oscillator one

ĤHO = − �
2

2m

∂2

∂x2
+ 1

2
mω2

e x
2. (2.156)

Its eigenfunctions are given by

ψn(x) =
√

σ

n!2n√π
Hn(σx) exp

{
−1

2
σ2x2

}
, (2.157)

where Hn with n = 0, 1, 2, . . . are Hermite polynomials [56], the first three of which
are

H0(x) = 1, (2.158)

H1(x) = 2x, (2.159)

H2(x) = 4x2 − 2, (2.160)

and σ = √
mωe/�.

The alternative representation of the harmonic oscillator Hamiltonian

ĤHO = �ωe

(
â†â + 1

2

)
(2.161)

in terms of so-called creation and annihilation operators

â† = 1√
2

(
σx̂ − 1

σ

∂

∂x

)
, (2.162)

â = 1√
2

(
σx̂ + 1

σ

∂

∂x

)
(2.163)

is very helpful. These operators fulfill the commutation relation

[â, â†] = 1̂ (2.164)

and have the properties

â†|n〉 = √
n + 1|n + 1〉 n = 0, 1, 2, . . . , (2.165)

â|n〉 = √
n|n − 1〉 n = 1, 2, . . . , (2.166)

i.e., they either allow to “climb up” or “climb down” the ladder of harmonic oscillator
states (in short hand notation just denoted by the index n) and are therefore also
referred to as ladder operators.



56 2 Time-Dependent Quantum Theory

By resolving the definition of the ladder operators in terms of the position and the
derivative operator

x̂ = 1√
2σ

(â + â†), (2.167)

∂

∂x
= σ√

2
(â − â†), (2.168)

one can express arbitrary powers of these operators in terms of products of â† and
â. Matrix elements of any operator between harmonic oscillator states can then be
calculated by employing (2.165) and (2.166).

An arbitrary time-dependent wavefunction can now be expanded into eigenfunc-
tions of the harmonic oscillator according to

|Ψ (t)〉 =
∞∑

l=0

dl(t)|l〉. (2.169)

After insertion of this expression into the time-dependent Schrödinger equation
governed by the Hamiltonian Ĥ , and multiplication from the left with 〈n|, an
infinite linear system of coupled ordinary differential equations for the expansion
coefficients

i�ḋn(t) =
∞∑

l=0

dl(t)〈n|Ĥ |l〉 (2.170)

is gained. This system can (in principle) be solved if the initial conditions were
known. At this point, however, we should address our “problems” as stated in the
introduction to this section:

(a) The basis problem is solved by truncating the expansion at a large l = L − 1,
which is determined by the initial state that shall be described. One thus uses
a “Finite Basis Representation”. Convergence of the results can be checked by
increasing the size L of the finite basis.

(b) The numerical integration of the linear system of differential equations could be
performed with the help of a suitable integration routine like the Runge-Kutta
method [25].

Solving the system of coupled differential equations can be circumvented, however,
by finding the (first N ) eigenvalues En and eigenfunctions |nH 〉 of theHamiltonian Ĥ
in case this is autonomous. By determining the (now time-independent) expansion
coefficients of the wavefunction in terms of these eigenfunctions, the wavefunc-
tion is in principle exactly14 time-evolved by using the corresponding eigenenergies
according to

14This would be true, if the energies were exact, which is prohibited by problem (a).
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|Ψ (t)〉 =
N−1∑

n=0

cn|nH 〉e−iEnt/�. (2.171)

We should keep inmind, however, that the solution of the eigenvalue problem requires
a numerical effort of order L3 if L × L is the size of the matrix to be diagonalized
[25] and is therefore only suitable if L can be kept small.

2.3.1.1 The Floquet Matrix

The alternative method to tackle problem (b) by solving the eigenvalue problem is
fortunately not restricted to autonomous Hamiltonians. It also works for periodically
driven systems that have been discussed in Sect. 2.2.8 and leads to the calcula-
tion of the quasi-energies and quasi-eigenfunctions. We start from the Floquet type
Schrödinger equation in Dirac notation

Ĥ(t)|ψα(t)〉 = εα|ψα(t)〉, (2.172)

with the extended Hamiltonian defined in (2.138). Due to the periodic time-
dependence of the Floquet functions, they can be Fourier expanded according to

|ψα(t)〉 =
∞∑

n=−∞
|ψn

α〉e−inωt . (2.173)

The Fourier coefficients on the RHS of this expression can in turn be expanded in a
complete orthogonal system of basis functions {|k〉} via

|ψn
α〉 =

∞∑

k=0

ψn
k,α|k〉 (2.174)

and the Schrödinger equation thus is given by

∞∑

n=−∞

∞∑

k=0

Ĥψn
k,α|k〉e−inωt =

∞∑

n=−∞

∞∑

k=0

εαψn
k,α|k〉e−inωt . (2.175)

Multiplying this equation with 〈lm| := 〈ψle−imωt | from the left and integrating over
one period of the external force yields

∞∑

n=−∞

∞∑

k=0

〈〈lm|Ĥ|kn〉〉ψn
k,α = εαψm

l,α, (2.176)
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where we have used the definition 〈〈· · · 〉〉 := 1
T

∫ T
0 dt〈· · · 〉 of the extended scalar

product that has already been used in Exercise 2.11.
Equation (2.176) has first been given by Shirley [26] in the case of a two-level

system. Shirley then transformed the equations in order to recover an eigenvalue
problem, whose solutions are the quasi-energies. This procedure can also be used
for an infinite dimensional Hilbert space, however. In order to do so, one rewrites
the equation above according to

∞∑

n=−∞

∞∑

k=0

{
〈l|Ĥ [m−n]|k〉 − n�ωδmnδlk

}
ψn
k,α = εαψm

l,α, (2.177)

where the definition

Ĥ [m−n] = 1

T

∫ T

0
dt Ĥ(t) exp(i[m − n]ωt) (2.178)

has been introduced and we have used

1

T

∫ T

0
dt exp((i[m − n]ωt) = δmn. (2.179)

In the case of a monochromatic perturbation,

Ĥ(t) ≡ Ĥ0 + Ĥ1 sin(ωt), (2.180)

time integration yields

Ĥ [m−n] = Ĥ0δmn + Ĥ1

2i

{
δm,n−1 − δm,n+1

}
. (2.181)

Equation (2.176) is the eigenvalue problem of the extended Hamiltonian Ĥ, whose
matrix elements are given by

〈l|Ĥ [m−n]|k〉 − n�ωδmnδlk . (2.182)

The Fourier expansion (2.173) has rendered the problem time-independent. One has
to cope with an additional “dimension” (n = 0,±1,±2 . . . ), however.

After choosing a basis (e.g., the harmonic oscillator basis) and calculating the
matrix elements, the quasi-energies are the eigenvalues and the quasi-eigenfunctions
are the eigenvectors of (2.177). The Floquet matrix to be diagonalized is
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⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

·
·

H0 − 2�ω1 1
2iH1 0 0 0

− 1
2iH1 H0 − 1�ω1 1

2iH1 0
0 − 1

2iH1 H0
1
2iH1 0

0 0 − 1
2iH1 H0 + 1�ω1 1

2iH1

0 0 0 − 1
2iH1 H0 + 2�ω1

·
·

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

. (2.183)

Here 1, 0 are unit and zero matrices, and in principle the block matrices have to be
added ad infinitum, i.e., n → ∞. In the numerics, however, one uses matrices H0

and H1 of finite size L × L as well as a finite number 2M + 1 of Fourier terms.
Convergence can be checked by increasing L as well as M .

In general the basis function expansion method is only a viable approach if the
matrix elements of the Hamiltonian can be calculated easily. If the basis is the har-
monic oscillator one, this is the case if the potential is given by a polynomial of low
order. In other cases or if the potential is multidimensional, so-called “discrete vari-
able representations” (DVR) [27] are frequently used. Finally, it should be noted that
the diagonalization of the Floquet matrix becomes much more difficult, if the system
under consideration contains a continuum of states. Then the method of complex
rotation can be employed [28].

2.3.2 Split-Operator Method

The split-operator method for the solution of the time-dependent Schrödinger equa-
tion is based on the approximate representation of the time-evolution operator, i.e.,
the treatment of problem (b) by using the Zassenhaus formula [29]15

ex̂+ŷ = ex̂e ŷe−1/2[x̂,ŷ]e1/3[ŷ,[x̂,ŷ]]+1/6[x̂,[x̂,ŷ]] . . . . (2.184)

In the following, we restrict the discussion to a particle moving in one spatial
dimension under a Hamiltonian of the usual form

Ĥ = T̂k( p̂) + V̂ (x̂). (2.185)

For very short but finite time steps �t , one then finds from the Zassenhaus formula
that

e−iĤ�t/� ≈ e−iT̂k�t/�e−iV̂�t/� (2.186)

15The Baker-Campbell-Haussdorff (BCH) formula is the dual relation and reads exp{x̂} exp{ŷ} =
exp{x̂ + ŷ + 1/2[x̂, ŷ] + 1/12([x̂, [x̂, ŷ]] + [ŷ, [ŷ, x̂]]) + · · · }.
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is accurate to first order in �t . This approximation is also the basis for the (exact)
Trotter product formula [14]

e−iĤ t/� = lim
N→∞

[
e−iT̂k t/(N�)e−iV̂ t/(N�)

]N
. (2.187)

By working through Exercise 2.12 one can prove that a Strang splitting according to

e−iĤ�t/� = e−iV̂�t/(2�)e−iT̂k�t/�e−iV̂�t/(2�) + O(�t3) (2.188)

leads to an approximation of higher accuracy.

2.12. Show that the Strang splitting of the time-evolution operator leads to a second
order method.
Hint: use the Zassenhaus as well as the BCH formula

Problem (a) is now dealt with by representing the wavefunction at t = 0 on an
equidistant position space grid xn ∈ [xmin, xmax], n = 1, . . . , N . The wavefunction
propagated for a time �t at the grid point xn is then given by

Ψ (xn,�t) = 〈xn|e−iĤ�t/�|Ψ (0)〉
≈ 〈xn|e−iV̂�t/(2�)e−iT̂k�t/�e−iV̂�t/(2�)|Ψ (0)〉. (2.189)

By inserting unity twice in terms of position states and once in terms of momentum
states, the threefold integral (for the numerics, the integrations are discretized due to
the grid based representation of the wavefunction)

Ψ (xn,�t) ≈
∫

dx ′
∫

dp′
∫

dx ′′〈xn|e−iV̂�t/2�|x ′′〉

〈x ′′|e−iT̂k�t/�|p′〉〈p′|e−iV̂�t/2�|x ′〉〈x ′|Ψ (0)〉 (2.190)

emerges. The integral over x ′′ can be performed immediately due to the diagonal
nature of the potential operator in position space and the δ-function appearing in

〈xn|e−iV̂�t/(2�)|x ′′〉 = e−iV (xn)�t/(2�)δ(x ′′ − xn). (2.191)

Also the second exponentiated potential term simplifies, yielding

〈p′|e−iV̂�t/(2�)|x ′〉 = 〈p′|x ′〉e−iV (x ′)�t/(2�)

= 1√
2π�

e−ip′x ′/�e−iV (x ′)�t/(2�). (2.192)

The x ′ integration is a Fourier transformation of the intermediate wavefunction

Ψ̃ (x ′, 0) = e−iV (x ′)�t/(2�)Ψ (x ′, 0) (2.193)
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into momentum space. This leads to the fact that the exponentiated operator of the
kinetic energy becomes a multiplicative factor and can be applied easily via

〈x ′′|e−iT̂k�t/�|p′〉 = 〈x ′′|p′〉e−iTk(p′)�t/�

= 1√
2π�

eip
′x ′′/�e−iTk(p′)�t/�. (2.194)

The p′ integration transforms the wavefunction back into position space.
The main numerical effort is the need to perform two Fourier transforms of the

wavefunction during the propagation over one time step. These can be performed
by using the fast Fourier transformation (FFT) algorithm [25], however. The imple-
mentation of the split-operator based FFT method16 can therefore be summarized as
follows:

1. Represent the initial wavefunction on a position space grid
2. Apply the operator e−iV̂�t/(2�)

3. Perform a FFT into momentum space
4. Apply the operator e−iT̂k�t/�

5. Perform an inverse FFT back into position space
6. Apply the operator e−iV̂�t/(2�).

This procedure is applied for the propagation over a small time step. For the propa-
gation over long times it will be repeated frequently and if the intermediate values
of the wavefunction are not needed, the two half time steps of potential propagation
can be combined (apart from the first and the last one). Furthermore, we stress that to
propagate the wavefunction over the next time step, we will need its value not only
at xn but at all values of x . This is reflecting the nonlocal nature of quantum theory.
For the calculation of the new wavefunction the old one is needed everywhere. This
is in contrast to classical mechanics. A trajectory only depends on its own initial
conditions; classical mechanics is a local theory.

A nice review of the details of FFT and a corresponding subroutine can be found
in [25]. Some facts will be briefly repeated here. A function Φ(xn) can be written as
a discrete Fourier transform according to

Φ(xn) =
N/2∑

k=−N/2+1

ake
2πikxn/X , (2.195)

with the Fourier coefficients

ak = 1

N

N∑

n=1

Φ(xn)e
−2πikxn/X . (2.196)

16Originally this approach was proposed by Fleck, Morris and Feit for the solution of the Maxwell
wave-equation [30].
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For the implementation it is important to note that:

• N = 2 j has to be an integer power of 2
• The grid length is X = xmax − xmin and xn are equidistant with �x = X/N
• The numerical effort scales with N ln N [25]
• The maximal momentum that can be described is

pmax = h/(2�x) = Nh/(2X),

and pmin = −pmax

• The covered phase space volume is VP = 2Xpmax = Nh
• The time step should fulfill �t < �π/(3Vmax), with Vmax the maximal excursion
of the potential [31]. For very long propagation times, see also [32].

• If calculated using (2.45), energy resolution is given by �Emin = �π/Tt , with Tt
the total propagation time.

There are more recent implementations of FFT which do not have the restriction
to integer powers of 2 and which, through adaption to the platform that is used for
the calculations can have considerable advantages in speed (FFTW: fastest Fourier
transformation in the West [33]).

The usage of the time-evolution operator for constant Hamiltonians at the begin-
ning of our discussion is no restriction of the presented methodology to time-
independent Hamiltonians. As in the case of the infinitesimal time-evolution opera-
tor (2.32), one can use a constant Hamiltonian for the propagation over a small time
interval �t . At the beginning of the next time step a slightly changed Hamiltonian
is employed.

Finally, one drawback of the method that will not come into play in the present
book, however, shall be mentioned. The split-operator idea only succeeds in pro-
ducing simple multiplicative exponentials if there are no products of p̂ and x̂ in the
Hamiltonian. These would appear in the treatment of dissipative quantum problems,
which are outside the scope of this presentation.

2.3.2.1 Negative Imaginary Absorbing Potentials

Another possible drawback of a grid basedmethod like the split-operator FFTmethod
shall be dealt with in a bit more detail. It can be cast in the form of a question: What
happens to a wavepacket, when it hits the grid boundaries? It would reenter on the
other side of the grid, leading to nonphysical results! This can be avoided by adding
a negative imaginary potential of the form

V (x) = −i f (x)Θ(x − xa), (2.197)

which is nonzero for values x > xa , close to the right grid boundary xmax and a
similar term at the left side of the grid. In Sect. 2.1 we have made use of the fact that
the potential is real valued in order to show that the norm of any wavefunction is
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conserved. The fact that the total potential is now complex leads to a loss of norm.
This may, however, be not as disturbing as the re-entrance phenomenon, especially
in situations where the wavepacket would just move on in “free-space” like in a
scattering situation after the scattering event is over.

The choice of the functional form of f (x) in (2.197) is crucial. It turns out that
the potential has to rise smoothly and rather slowly in order that there do not occur
unphysical reflections of the wavefunction induced by the negative imaginary poten-
tial. A detailed study of several different functional forms of the imaginary potential
can be found in [34].

2.3.3 Alternative Methods of Time-Evolution

In the material presented so far we have dealt both, with the solution of problem
(a) as well as problem (b). In the following some alternative ways of treating the
time-evolution, i.e., problem (b) shall be reviewed.

2.3.3.1 Method of Finite Differences

The discretization of the time-derivative in (2.22) with the help of the first order
formula

|Ψ̇ (t)〉 ≈ |Ψ (t + �t)〉 − |Ψ (t)〉
�t

(2.198)

leads to an explicit numerical method if the RHS is evaluated with the “old” wave-
function |Ψ (t)〉. This means that the wavefunction at a later time is explicitly given
by the wavefunction at the earlier time. Unfortunately, however, this so-called Euler
method is numerically instable.

An at least conditionally stable method can be constructed by application of the
second-order formula

|Ψ̇ (t)〉 ≈ |Ψ (t + �t)〉 − |Ψ (t − �t)〉
2�t

(2.199)

for the time-derivative. The corresponding method is referred to as second order
differencing (SOD) and has been advocated for the solution of the time-dependent
Schrödinger equation by Askar and Cakmak [35]. The method can be shown to be
energy and norm conserving. The condition under which it is stable can be derived
by considering the eigenvalues of the propagation matrix that appears by using the
discrete form of the time-derivative

( |Ψn+1〉
|Ψn〉

)
=

(
1̂ − 4Ĥ 2�t2/�

2 −2iĤ�t/�

−2iĤ�t/� 1̂

)( |Ψn−1〉
|Ψn−2〉

)
. (2.200)
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The eigenvalues of the matrix are (replacing Ĥ by E)

λ1,2 = 1 − 2E2�t2/�
2 ± 2E�t

�

√
E2�t2

�2
− 1. (2.201)

The discrete mapping is norm conserving due to λ1λ2 = 1. For stability, the radicand
in the expression above has to be negative, such that the eigenvalues become complex.
Otherwise after the n-th iteration an exponential increase of numerical instabilities
would occur. Thus for stability �t < �/Emax has to hold, where Emax is the largest
eigenvalue of Ĥ taking part in the dynamics [36]. A slightly different look at the
second order differencing method method is taken in Exercise 2.13.

2.13. Show that in the second order differencing method the following holds if Ĥ is
Hermitian (and time-independent)

(a) Re〈Ψ (t − �t)|Ψ (t)〉 = Re〈Ψ (t)|Ψ (t + �t)〉 = const
(b) Re〈Ψ (t − �t)|Ĥ |Ψ (t)〉 = Re〈Ψ (t)|Ĥ |Ψ (t + �t)〉 = const
(c) Interprete the results gained above.
(d) Consider the time-evolution of an eigenstate ψ of the Hamiltonian with eigen-

value E and derive a criterion for the maximally allowed time step �t .
Hint: Insert the exact time-evolution into the SOD scheme and distinguish the
exact eigenvalue from the approximate Eapp due to SOD time evolution.

2.3.3.2 Crank-Nicolson Method

Analternative possibility to circumvent the problemof instability of theEulermethod
is given by the Crank-Nicolson procedure. Here the first order formula

Û (�t) ≈ 1̂ − iĤ�t/�, (2.202)

representing the short-time evolution operator is used forward as well as backward
in time

|Ψn+1〉 = Û (�t)|Ψn〉, (2.203)

|Ψn−1〉 = Û (−�t)|Ψn〉. (2.204)

In order to make progress one resolves both equations for |Ψn〉 by multiplying with
the corresponding inverse operators. Equating the gained expressions yields

(1̂ + iĤ�t/�)|Ψn+1〉 = (1̂ − iĤ�t/�)|Ψn−1〉. (2.205)

The procedure now is an implicit one, that is stable as well as norm conserving.
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Due to its implicit nature, the method requires a matrix inversion and formally
leads to the Cayley approximation (see also Chap.19.2 of [25])

|Ψn+1〉 = 1̂ − iĤ�t/(2�)

1̂ + iĤ�t/(2�)
|Ψn〉 (2.206)

for the propagated wavefunction. The CN scheme is second order accurate in �t ,
as can be seen by a Taylor expansion of the final expression and comparing to the
Taylor expansion of the exact time-evolution operator.

2.3.3.3 Polynomial Methods

The idea behind polynomial methods is the expansion of the time-evolution operator
in terms of polynomials, according to

e−iĤ t/� =
∑

n

an Pn(Ĥ) . (2.207)

Two different approaches are commonly used:

• In the Chebyshev method, the polynomials are fixed to be the complex valued
Chebyshev ones. A first application to the problem of wavefunction propagation
has been presented by Tal-Ezer and Kosloff [37]. These authors have shown that
the approach is up to six times more efficient than the SOD method, presented
above. It allows for evolution over relatively long time steps. Drawbacks are that
intermediate time information is not readily available and, evenworse in the present
context, that time-dependent Hamiltonians cannot be treated.

• In contrast to the first approach, in the Lanczos method, the polynomials are
not fixed but are generated in the course of the propagation. A very profound
introduction to the commonly applied short iterative Lanczos method can be found
in [38].

2.3.4 Semiclassical Initial Value Representations

As the final prerequisite before we deal with the physics of laser-matter interaction,
a reformulation of the semiclassical van Vleck-Gutzwiller propagator presented in
Sect. 2.2.3 shall be discussed. We have already mentioned that the VVG method is
based on the solution of classical boundary value (or root search) problems, which
makes it hard to implement. A much more user friendly approach would be based on
classical initial value solutions and is therefore termed initial value representation.
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We start the discussion of a specific initial value representation of the semiclas-
sical propagator with a short introduction to commonly used symplectic integration
procedures for the solution of the underlying classical dynamics.

2.3.4.1 Symplectic Integration

Positions andmomenta of a classical Hamiltonian systemwith N degrees of freedom
obey the equations of motion

q̇n = ∂H( p, q, t)

∂ pn
, (2.208)

ṗn = −∂H( p, q, t)

∂qn
. (2.209)

Using the Poisson bracket

{a, b} =
N∑

n=1

(
∂a

∂qn

∂b

∂ pn
− ∂a

∂ pn

∂b

∂qn

)
, (2.210)

the equations above can also be cast into an equation for the 2N - dimensional phase-
space vector ηT = (qT, pT), reading

η̇ = −{H,η} =: −Ĥη . (2.211)

Although we are dealing with classical mechanics an operator, Ĥ , appears here. In
the present subsection this operator stands for the application of the Poisson bracket
with the Hamilton function.

Formally, the equation above can be integrated over a small time step, yielding

η(t + �t) = exp{−�t Ĥ}η(t). (2.212)

Now we can again use the split-operator method, i.e. an “effective Hamiltonian” can
be introduced according to

exp{−�t Ĥeff} := exp{−�t T̂k} exp{−�t V̂ }. (2.213)

This effective operator is only an approximation to the true one. The total phase space
volume is conserved, however, i.e., Liouville’s theorem holds also for the approx-
imate dynamics [39]. More generally, it can be shown that symplectic integration
methods preserve the N Poincaré invariants of the Hamiltonian system [40].

2.14. By expanding up to second order in�t show that there is a difference between
exp{−�t Ĥ} and exp{−�t T̂k} exp{−�t V̂ }.
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Hint: The Jacobi identity {A, {B,C}} + {B, {C, A}} + {C, {A, B}} = 0 might be
helpful.

In the numerics, the splitting of the exponentiated Hamiltonian into the kinetic
and the potential part means that first one solves a problem in which only V̂ operates,
i.e., the momentum is altered due to the effect of the potential. This is the so-called
kick step. Then the position is shifted using constant updated momentum. This is the
so-called drift step. For very short times (expand the exponential to first order) one
gets

p1 = p0 + �tFq=q0 , (2.214)

q1 = q0 + �tGp= p1 , (2.215)

where the superscript denotes the iteration step and the abbreviations

G = ∂Tk
∂ p

(2.216)

F = −∂V

∂q
(2.217)

have been used. This procedure is a variant of the symplectic Euler method. It per-
forms much better than the highly unstable “standard” Euler method, for which in
the second line the old momentum p0 is used.

Analogously to the discussion of the split-operator procedure in quantummechan-
ics inSect. 2.3.2, a split-operator procedure of higher order canbeused.By employing
the Strang splitting

exp{−�t Ĥeff} := exp{−�t T̂k/2} exp{−�t V̂ } exp{−�t T̂k/2}, (2.218)

the so-called leap frog method

q1 = q0 + �t

2
G( p = p0), (2.219)

p2 = p0 + �tF(q = q1), (2.220)

q2 = q1 + �t

2
G( p = p2) (2.221)

arises. In general, any symplectic integration scheme (where the kick step comes
first) can be cast into the following form:

do k = 1, M

pk = pk−1 + bk�tF(qk−1)

qk = qk−1 + ak�tG( pk)

enddo
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Coefficients ak, bk of different symplectic methods are gathered in Table2.3. Addi-
tional coefficients can be found in [39]. In order to keep the numerical effort of force
calculation rather low, it is desirable to have as many b-coefficients equal to zero as
possible.

In a thorough study of the numerical accuracy of symplectic integrators it has been
found that they yield very stable trajectories and that, for autonomous Hamiltonians,
the standard deviation of the energy and the energy drift are comparatively small [39].

2.3.4.2 Coherent States

Having set the stage with the discussion of the solution of the classical equations
of motion, we now come to the central ingredients for the reformulation of the
semiclassical propagator expression. These are the so-called coherent states, which
are discussed in detail in the textbook of Louisell [43] and in Heller’s Les Houches
lecture notes [44]. In Dirac notation they are given by

|z〉 = e−1/2|z|2 ez·â
† |0〉, (2.222)

where |0〉 is the ground state of N uncoupled 1D harmonic oscillators of massm and
frequency ωe. Furthermore, we have used the multi dimensional analog of (2.162)

â† = 1√
2

(
q̂
b

− i
p̂
c

)
, (2.223)

for the vector of creation operators with b = √
�/mωe, c = √

�mωe and

Table 2.3 Coefficients for some symplectic integration methods of increasing order

Ruth’s leap frog
(position Verlet)

a1 = 1/2
a2 = 1/2

b1 = 0
b2 = 1

Fourth-order Gray [41] a1 = (1 − √
1/3)/2 b1 = 0

a2 = √
1/3 b2 = (1/2 + √

1/3)/2

a3 = −a2 b3 = 1/2

a4 = (1 + √
1/3)/2 b4 = (1/2 − √

1/3)/2

Sixth-order Yoshida [42] a1 = 0.78451361047756 b1 = 0.39225680523878

a2 = 0.23557321335936 b2 = 0.51004341191846

a3 = −1.1776799841789 b3 = −0.47105338540976

a4 = 1.3151863206839 b4 = 0.068753168252520

a5 = a3 b5 = b4
a6 = a2 b6 = b3
a7 = a1 b7 = b2
a8 = 0 b8 = b1
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z = 1√
2

(q
b

+ i
p
c

)
, (2.224)

with the expectation values q and p of the operators q̂ and p̂.
In position representation, the coherent states are N -dimensional Gaussian

wavepackets of the form

〈x|z〉 =
(

1

πb2

)N/4

exp

{
− 1

2b2
(x − q)2 + i

bc
p ·

(
x − q

2

)}
. (2.225)

Coherent states form an (over-)complete set of basis states [43] and can be used to
represent unity according to

1̂ =
∫

d2N z

πN
|z〉〈z| =

∫
dN p dNq

(2π�)N
|z〉〈z|. (2.226)

2.15. Restricting the discussion to N = 1, prove that the coherent states form a
complete set by expressing them as a sum over harmonic oscillator eigenstates.

The basis for the reformulation of the semiclassical propagator is the matrix
element of the time-evolution operator17 between coherent states

K (z f , t; zi , 0) ≡ 〈z f |e−iĤ t/�|zi 〉. (2.227)

The semiclassical approximation for this object can be performed quite analogously
to the derivation of the van Vleck-Gutzwiller propagator by starting from the appro-
priate path integral [45]. However, it turns out that the final expression contains a
classical over-determination problem due to the fact that not only the position is fixed
at the initial and the final time but also the momentum! This problem is solved by the
complexification of phase space. We will not dwell on that rather involved topic any
longer. Fortunately the over-determination problem will be resolved rather elegantly
in the following.

2.3.4.3 Herman-Kluk Propagator

The next step in order to make progress is to consider the time-evolution operator
in position representation. It can be expressed via the coherent state propagator, by
inserting unity in terms of coherent states twice, according to

17For notational convenience, we assume the Hamiltonian to be time-independent; the following
results are also valid in the general case of a time-dependent Hamiltonian, however.
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K (x f , t; xi , 0) = 〈x f |e−iĤ t/�|xi 〉
=

∫
d2N z f

πN

∫
d2N zi
πN

〈x f |z f 〉〈z f |e−iĤ t/�|zi 〉〈zi |xi 〉.(2.228)

If we now replace the coherent state matrix element of the propagator by its semiclas-
sical approximation and perform the final phase space integration in the stationary
phase approximation, the over-determination problem is resolved and the semiclas-
sical propagator is reformulated in terms of real classical initial value solutions [46].
This procedure yields

KHK(x f , t; xi , 0) ≡
∫

dN pidNqi
(2π�)N

〈x f | z̃t 〉R( pi , q i , t)

exp

{
i

�
S( pi , q i , t)

}
〈z̃i |xi 〉, (2.229)

which is the so-called Herman-Kluk propagator. By a different reasoning it has first
been derived by Herman and Kluk [47], based on previous work by Heller [48].
Definitions that are used in the expression above are the classical action functional,
that depends on the initial phase space variables, and time and for this reason is
written (and denoted) as a function here, according to

S( pi , q i , t) ≡
∫ t

0
dt ′

[
pt ′ · q̇ t ′ − H

]
. (2.230)

Furthermore,

R( pi , q i , t) ≡
∣∣∣∣
1

2

(
m11 + m22 − i�γm21 − 1

i�γ
m12

)∣∣∣∣

1/2

, (2.231)

with γ = mωe/�, denotes the Herman-Kluk determinantal prefactor, which contains
classical stability (monodromy) block-matrices mi j . They are solutions to the lin-
earized Hamilton equations and for reference they are defined in Appendix 2.C.

The Gaussian wavepackets in (2.229) have a slightly different phase convention
than the ones of (2.225). For this reason a new symbol with a tilde,

〈x| z̃〉 =
(γ

π

)N/4
exp

{
−γ

2
(x − q)2 + i

�
p · (x − q)

}
, (2.232)

has been introduced. To complete the explanation of all abbreviations, the centers
of the final Gaussians in phase space are { pt ( pi , q i ), q t ( pi , q i )}, which are initial
value solutions of the classical Hamilton equations.

In contrast to the VVG prefactor, the expression (2.231) does not exhibit singu-
larities at caustics. Recently, it has been proven that the Herman-Kluk method is a
uniform semiclassical method [49]. Furthermore, for the numerics it is important
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that the square root in the prefactor has to be taken in such a fashion that the result
is continuous as a function of time [50]. This is reminiscent of the Maslov phase in
the van Vleck-Gutzwiller expression (2.91), which does not have to be calculated
explicitly, however.

A final remark on the connection between the two semiclassical expressions for
the propagator, which we have discussed so far, shall be made. After performing the
integration over the initial phase space variables in (2.229) in the stationary phase
approximation, the van Vleck-Gutzwiller expression will emerge. One can also turn
around that reasoning and derive the Herman-Kluk prefactor, by demanding that the
SPA applied to the phase space integral yields the van Vleck-Gutzwiller expression
[50]. For the derivation of a more general form of the prefactor in this way, see
[51]. An even simpler way to derive the VVG propagator from the Herman-Kluk
expression by taking the limit γ → ∞ is explicitly given in Appendix 2.D.

2.3.4.4 Semiclassical Propagation of Gaussian Wavepackets

The pure HK propagator is a clumsy object, due to the need to integrate over all of
phase space. Fortunately, however, in the focus of our interest will not be the bare
propagator but its application to an initial Gaussian wavepacket. Let us therefore
consider the mixed matrix element

K (x f , t; z̃α, 0) ≡ 〈x f |e−iĤ t/�| z̃α〉
=

∫
dN xi K (x f , t; xi , 0)〈xi | z̃α〉 (2.233)

of the time-evolution operator, where K (x f , t; xi , 0) shall be replaced by the HK
approximation of (2.229).

The Gaussian to be propagated 〈xi | z̃α〉 is determined by its phase space center
(qα, pα) and shall have the same inverse width parameter γ as the coherent state
basis functions. The calculation of the overlap in (2.233) can be done analytically
and yields the simple result

〈z̃i | z̃α〉 = exp

{
−γ

4
(qi − qα)2 + i

2�
(q i − qα) · ( pi + pα)

− 1

4γ�2
( pi − pα)2

}
. (2.234)

In (2.233), the integration over initial phase space still has to be done. It is, however,
much more user friendly than in the case of the bare propagator, due to the fact that
the overlap just calculated is effectively cutting off the integrand too far away from
the initial center in phase space. In numerical applications the phase space integration
is often performed by usingMonte Carlo methods [52]. Pictorially, the application of
the Herman-Kluk propagator to a Gaussian can be represented as shown in Fig. 2.6.
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Fig. 2.6 Pictorial
representation of the
semiclassical initial value
procedure to propagate a
Gaussian wavepacket à la
Herman and Kluk in one
dimension: The propagated
wavepacket 〈x f |Ψ 〉 is a
weighted sum over many
Gaussians. The weights are
the product of a prefactor
times a complex exponential
function R exp{iS/�}〈z̃i |z̃α〉;
adapted from [53]

qα

(p i ,q i)

(pt ,q t)

xf

|Ψ |

pα

How is all that related to the thawed GWD of Heller that we have used in Sect.
2.1.4? There the Gaussianwavepacket has been propagated using its center trajectory
alone. The GWD therefore is much more crude than the HK method! There should
be a way to derive GWD from the more general expression, however. This is indeed
the case. To this end one has to expand the exponent in the integral over initial phase
space around the center ( pα, qα) of the initial Gaussian up to second order. The
integration is then a Gaussian integration and can be performed analytically.18 One
finally gets [51]

KGWD(x f , t; z̃α, 0) ≡
(γ

π

)N/4 |(m22 + i�γm21)|−1/2

exp

{
−1

2
(x f − qαt ) · γt (x f − qαt )

+ i

�
pαt · (x f − qαt ) + i

�
S

}
, (2.235)

with the time-dependent N × N inverse width parameter matrix

γt = γ
(
m11 + 1

iγ�
m12

)(
m22 + iγ�m21

)−1
. (2.236)

The width of the single Gaussian can thus change in the course of time, in con-
trast to the widths of the many Gaussians in the case of the HK propagator. This
is the reason, why the more simple single Gaussian method is called “thawed”
Gaussian wavepacket dynamics, whereas the more complex, multiple Gaussian HK
method applied to a Gaussian initial state is closely related to the “frozen” Gaussian

18Note that this procedure is more approximative than a stationary phase approximation.
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wavepacket dynamics of Heller [48]. When speaking of frozen Gaussians propaga-
tors, strictly, this refers to a HK-like approach but with a unit prefactor [54].

Finally, it is worthwhile to check that the time-dependent parameter γt fulfills
a nonlinear Riccati differential equation similar to (2.61). To this end, in Exercise
2.16, the equations of motion of the stability matrix elements given in Appendix 2.C
should be used.

2.16. The TGWD inverse width parameter allows for a reformulation of the HK
prefactor. For reasons of simplicity, consider the 1D case.

(a) Show that the nonlinear Riccati differential equation

γ̇t = − i�

m
γ2
t − 1

i�
V ′′

is fulfilled by the inverse width parameter γt .
(b) Writing the inverse width parameter in the log-derivative form

γt = m

i�

Q̇

Q
,

with Q = m22 + i�γm21, show that the complex conjugate of the HK prefactor
can be entirely formulated in terms of γt via

R∗ =
√
1

2
(1 + γt/γ) exp

{
1

2

∫ t

0
dt ′

i�

m
γt ′

}
.

The different level of accuracy of the two approximations is illustrated in Fig. 2.7,
where a comparisonof themulti-trajectoryHKmethod and the single trajectoryGWD
are contrasted with exact numerical results, gained by using the split-operator FFT
method of Sect. 2.3.2. The displayed quantity is the real part of the auto-correlation
function

cαα(t) ≡ 〈Ψα(0)|Ψα(t)〉 (2.237)

of an initial Gaussian wavepacket in a Morse potential with dimensionless Hamilto-
nian

Ĥ = p̂2

2
+ D(1 − exp{−λx})2, (2.238)

with parameters D = 30,λ = 0.08.19 GWD describes the envelope of the quantum
curve rather well. The fine oscillations that are captured almost perfectly by the
multiple trajectory method are not described at all, however.

19In Sect. 5.1.2 the physical background of the Morse oscillator will be elucidated.

http://dx.doi.org/10.1007/978-3-319-74542-8_5
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Fig. 2.7 Different
trajectory-based and fully
quantum mechanical
auto-correlation functions of
a Gaussian wavepacket with
dimensionless parameters
qα, pα = 0 und γ = 12 in a
Morse potential. a thawed
GWD (solid line) versus
exact quantum mechanics
(dashed line) b HK (solid
red line) versus exact
quantum mechanics (dashed
line); adapted from [55]

(a)

(b)

2.4 Notes and Further Reading

TDSE and Time-Evolution Operator
The restriction to the use of the nonrelativistic TDSE for the description of laser-
matter interaction is due to the focus of this book on intermediate field strengths,
maximally of the order of an atomic unit (see also Appendix 4.A), and wavelengths
around the visible range. If stronger fields are considered (and for longer wave-
lengths), in the case of electrons, the Dirac equation has to be solved. A concise
discussion of the Dirac equation and relativistic corrections to the Schrödinger equa-
tion can be found in Appendix 7 of [56]. The spinor character of the wavefunction
leads to a considerable complexification of the problem, which may not be necessary
if the dipole approximation (see Chap. 3) is still applicable [57].

The very detailed book by Schleich [58] contains a lot of additional information
on Schrödinger type time-evolution operators and also the time-evolution of the
density operator is discussed therein.More on time-dependent and energy-dependent
Green’s function can be found in Economou’s book [59]. The extraction of spectral
information from time-dependent quantum information goes back to work of Heller,
which is reviewed, e.g., in [44] and is covered also in the book by Tannor [38]. In
both previous citations many additional references concerning Gaussian wavepacket
dynamics can be found. A recent book by Schuch is focusing on the nonlinear Riccati
equation, appearing in theGWD,with applications to quantum theory and irreversible
processes [60].

http://dx.doi.org/10.1007/978-3-319-74542-8_4
http://dx.doi.org/10.1007/978-3-319-74542-8_3
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Analytical Methods
A lot of additional material on the path integral formulation of quantummechanics is
contained in the tutorial article by Ingold [61] and the books by Feynman and Hibbs
[6] and by Schulman [14]. The second book has more details on variational calculus
and on exactly solvable path integrals (especially in the new Dover edition). It has
been pointed out by Makri and Miller that a simple short-time propagator, based on
the trapezoidal rule for the discretization of the potential part of the Lagrangian (or
taking a midpoint rule), is not correct through first order inΔt , even in the case of the
harmonic oscillator [62], although it leads to the correct propagator (2.75). Improved
short-time propagators have been proposed there.

The significance of generating functions of canonical transformations in the
(semi-)classical limit of quantummechanics is discussed in depth byMiller [63]. The
book byReichl [64] contains chapters on semiclassicalmethods and on time-periodic
systems, dealing with Floquet theory. These methods are then used in the context
of quantum chaology. The book by Billing contains more material on semiclassics
and on mixed quantum classical methods [65]. A book devoted to the semiclassical
approach to the solution of the TDSE, as well as to the understanding of quantum
mechanics, using this approach, is the one by Heller [66].

The Magnus expansion of the time-evolution operator is formally closely analo-
gous to the so-called cumulant expansion, known from statistical physics [67].

Numerical Methods
The book by Tannor [38] contains more information on methodological and numer-
ical approaches to solve the time-dependent Schrödinger equation. Polynomial and
DVR methods are dealt with in detail there. A book that is fun to read, although it
covers a seemingly dry topic is the classic “Numerical Recipes” [25]. Among many
other things, more details on FFT and on finite difference methods to solve the TDSE
can be found therein. Methods for the solution of the TDSE in the case of strong
field driving are discussed in [68]. More recently, a phase space approach has been
devised that is taylored for the solution of the TDSE for laser-driven electronic wave-
packet propagation [69]. In [70], molecular quantum dynamics is discussed from the
viewpoint of the MCTDH method.

A review of different semiclassical approximations based on Gaussian wavepack-
ets is given in [55], whereas a combination of the Herman-Kluk method with thawed
GWD for correlated many-particle systems, termed semiclassical hybrid dynamcis
(SCHD), is laid out in [51]. The coupled coherent states (CCS) method of Sha-
lashilin and Child [71] allows in principle for an exact numerical solution of the
TDSE and has the Herman-Kluk method as a limiting case, as shown very elegantly
in [72]. Finally, we have not discussed Bohmian mechanics that is recently being
used not only as an interpretational tool, but in a synthetic way, in order to generate
solutions of the TDSE using (nonclassical) trajectories [73]. For another very good
discussion of this topic, see Chap.4 of [38]. The nonlocality of quantum mechanics
is especially apparent in Bohmian mechanics, due to the presence of the so-called
quantum potential that couples the motion of individual trajectories.
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2.A The Royal Road to the Path Integral

An elegant proof of the representation of the path integral as an infinite dimensional
Riemann integral can be performed by using the Weyl transformation [74]

A(p, q) =
∫

du eiqu/�〈p + u/2| Â|p − u/2〉 , (2.239)

that transforms an operator into a phase space function. The inverse transformation
is

Â = 1

h

∫
dp dq A(p, q)Δ̂(p, q), (2.240)

Δ̂ =
∫

dv eipv/�|q + v/2〉〈q − v/2| . (2.241)

Using the time-slicing procedure introduced in Sect. 2.2.1, the propagator can be
represented by a product of short-time propagators according to

K (x f , t; xi , 0) =
∫

dq1 · · ·
∫

dqN−1

N−1∏

k=0

〈qk+1|e− i
�
Ĥ( p̂,q̂)�t |qk〉 , (2.242)

where qN = x f and q0 = xi and where we have switched from x to q notation for
reasons of convenience. Using the Weyl transform of the Hamiltonian

H(p, q) = p2

2m
+ V (q) (2.243)

and (2.240), (2.241), the short-time propagators can be written as an integral

〈qk+1| exp
{
− i

�
Ĥ( p̂, q̂)�t

}
|qk〉

= 1

h
〈qk+1|

∫
dp dq exp

{
− i

�
H(p, q)�t

}∫
dv eipv/�|q + v/2〉〈q − v/2|qk〉

= 1

h

∫
dp dq exp

{
− i

�
H(p, q)�t

}
eip(qk+1−qk )/�δ

{
qk+1 + qk

2
− q

}

= 1

h

∫
dp exp

{
i

�

[
p
qk+1 − qk

�t
− H

(
p,

qk+1 + qk
2

)]
�t

}
. (2.244)

Inserting this expression into (2.242), the phase-space integral form of the
propagator [74]
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K (x f , t; xi , 0) =
∫

dp0 · · · dpN−1dq1 · · · dqN−1

(2π�)N

exp

{
i

�

N−1∑

k=0

[
pk

(
qk+1 − qk

�t

)
− H

(
pk,

qk+1 + qk
2

)]
�t

}

(2.245)

can be derived. Please note that the number of p-integrations is higher by one than
the number of q-integrations. Furthermore, the expression above does not contain
operators any more!

Due to the quadratic form of the Weyl transform (2.243) in p, the p integrals are
Gaussian, however, and can be done exactly analytically. For N → ∞ and N�t = t ,
this leads to the expression in the main text,

K (x f , t; xi , 0) = lim
N→∞

[ m

2πi��t

]N/2
∫ N−1∏

k=1

dqk

exp

{
i

�

N−1∑

k=0

[
m(qk+1 − qk)2

2�t
− V

(
qk+1 + qk

2

)
�t

]}

, (2.246)

where the classical action appears in the exponent. Furthermore, the normalization
constant (or measure factor) that was still undetermined in (2.75) is given by

BN =
[ m

2πi��t

]N/2
. (2.247)

2.B Variational Calculus

In general the variation of a functional Φ depending on a function h(x) is defined
via

δΦ ≡ Φ[h + δh] − Φ[h] =
∫

dx
δΦ

δh(x)
δh(x) . (2.248)

For the specific cases

Φ1[h] =
∫ b

a
dx h(x) f (x), (2.249)

Φ2[h] =
∫ b

a
dx F(x, h(x)), (2.250)

Φ3[h] =
∫ b

a
dx F

(
x, h(x),

dh(x)

dx

)
, (2.251)



78 2 Time-Dependent Quantum Theory

from the definition above

δΦ1

δh(x)
= f (x), (2.252)

δΦ2

δh(x)
= ∂F

∂h
, (2.253)

δΦ3

δh(x)
= ∂F

∂h
− d

dx

∂F

∂h′ (2.254)

can be deduced for the functional derivatives and the variation is reduced to the
calculation of well-known partial derivatives.

To perform the stationary phase approximation to the path integral, the second
variation of the classical action functional S at the classical path is needed. To cal-
culate this quantity, we are using the first equation in (2.248) and are considering the
classical path xcl(t) and deviations η that vanish at the initial and final time t ′ = 0, t .

The first variation of the action is then given by

δS[xcl] = S[xcl + η] − S[xcl]

=
∫ t

0
dt ′

{
m

2

[
d

dt ′ (xcl + η)

]2
− V (xcl + η)

}

− S[xcl]

=
∫ t

0
dt ′

{m
2
ẋ2cl + mẋclη̇ − V (xcl) − V ′(xcl)η

}
− S[xcl]

=
∫ t

0
dt ′

{
mẋclη̇ − V ′(xcl)η

}

=
∫ t

0
dt ′

{−mẍclη − V ′(xcl)η
} + mẋclη|t0

=
∫ t

0
dt ′

{−mẍcl − V ′(xcl)
}
η . (2.255)

The vanishing of the first variation of the action, δS[xcl] = 0, is Hamilton’s principle
of classicalmechanics and in the simple 1D case considered here, it leads toNewton’s
equation

mẍcl + V ′(xcl) = 0 (2.256)

for the classical path, which we could have also concluded directly from (2.254) by
identifying the independent variable with t and F with L(ẋ, x, t) = T (ẋ) − V (x).

Up to second order we get

S = S[xcl] + 1

2
δ2S[xcl]. (2.257)
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Here the second variation is given by

δ2S[xcl] = δS[xcl + η] − δS[xcl]
=

∫ t

0
dt ′

{
−m

d2

dt ′2
(xcl + η) − V ′(xcl + η)

}
η

−
∫ t

0
dt ′

{−mẍcl − V ′(xcl)
}
η

=
∫ t

0
dt ′

{−mη̈ − V ′′(xcl)η
}
η

=
∫ t

0
dt ′ηÔη, (2.258)

with the stability operator Ô from (2.84) of Sect. 2.2.1.

2.C Stability Matrix

Wehave seen that the central ingredient of the prefactor of the semiclassical Herman-
Kluk propagator is the stability (or monodromy) matrix defined by

M =
(

m11 m12

m21 m22

)
=

( ∂ pt
∂ pTi

∂ pt
∂qTi

∂q t
∂ pTi

∂q t
∂qTi

)

. (2.259)

Thismatrix determines the time-evolution of small deviations in the initial conditions
of a specific trajectory according to

(
δ pt
δq t

)
= M

(
δ pi
δq i

)
, (2.260)

where δ pt = p̃t − pt and δq t = q̃ t − q t . Pictorially, this is represented for one spa-
tial dimension in Fig. 2.8. The area that is spanned by the deviation vectors is not
changing in the course of time.

The equations of motion for the stability matrix can be gained by linearizing
Hamilton’s equations for the deviations. After Taylor expansion, we get

˙δ pt = −∂H

∂q
( p̃t , q̃ t ) + ∂H

∂q
( pt , q t ) = − ∂2H

∂q∂ pT
δ pt − ∂2H

∂q∂qT
δq t , (2.261)

˙δq t = ∂H

∂ p
( p̃t , q̃ t ) − ∂H

∂ p
( pt , q t ) = ∂2H

∂ p∂ pT
δ pt + ∂2H

∂ p∂qT
δq t , (2.262)
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Fig. 2.8 Variation of initial
conditions in phase space for
one degree of freedom. The
shaded area is constant in
time (Liouville’s theorem),
adapted from [44]

p

qi qi+ qi

pi

(pt,qt)

(p̃t, q̃t)

pi+ pi

q

pt

qt

where the vectors are column vectors and their transposes are row vectors. The linear
differential equation of first order for the stability matrix thus reads

d

dt
M = −JHM , (2.263)

with the skew symmetric matrix

J =
(

0 1
−1 0

)
, (2.264)

and the Hessian of the Hamiltonian

H =
(

∂2H
∂ p∂ pT

∂2H
∂ p∂qT

∂2H
∂q∂ pT

∂2H
∂q∂qT

)

. (2.265)

The initial conditions follow directly from the definition (2.259) to be

M(0) =
(

m11(0) m12(0)
m21(0) m22(0)

)
=

(
1 0
0 1

)
. (2.266)

Using the equations of motion (2.263) and the initial conditions, it can be shown that
d
dt M

TJM = 0 and therefore MTJM = MT(t = 0)JM(t = 0) = J for all times, i.e.,
M is a symplectic matrix.

Written out more explicitly, the previous statement reads

mT
22m11 − mT

12m21 = 1 ∀t, (2.267)

mT
11m21 − mT

21m11 = 0 ∀t, (2.268)

mT
22m12 − mT

12m22 = 0 ∀t. (2.269)
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The determinant of the stability matrix is equal to unity as can be shown by using
the relations above.20 This is equivalent to the conservation of phase space volume
mentioned previously. In 1D one does not need to take care of block matrix calculus,
and in addition Liouville’s theorem can be checked by calculating the vector product
of the vectors drawn in Fig. 2.8.

Finally it should be mentioned that the matrix element m21, up to a sign, is the
inverse of the second derivative of the action appearing in the prefactor of the VVG
propagator (2.91)

m21 = −
(

∂2S

∂q t∂q
T
i

)−1

. (2.270)

2.D From the HK- to the VVG-Propagator

The most straightforward way to derive the van Vleck-Gutzwiller from the Herman-
Kluk propagator is by taking the limit γ → ∞ in

KHK(x f , t; xi , 0) =
∫

dN pidNqi
(2π�)N

〈x f | z̃t 〉R( pi , q i , t)

exp

{
i

�
S( pi , q i , t)

}
〈z̃i |xi 〉 , (2.271)

which is reproduced here for convenience. TheGaussianwavepackets in that limit are
“almost” δ-functions. δ-functions are normalized differently, however, and therefore
in order to make use of their properties we note that in the limit γ → ∞

lim
γ→∞

(
4π

γ

)−N/4

〈x f | z̃t 〉 = δ(x f − q t ), (2.272)

lim
γ→∞

(
4π

γ

)−N/4

〈z̃i |xi 〉 = δ(xi − qi ). (2.273)

The inverse of the γ-dependent factors in front of the Gaussians together with the
prefactor (2.231) give

lim
γ→∞

(
4π

γ

)N/2

R( pi , q i , t) = (2π�i)N/2
√−|m21| , (2.274)

20Be careful to use the formula det M = det m22 det(m11 − m12m−1
22 m21) valid for blockmatrices!
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where the bars stand for taking the determinant of the stability submatrix. The q i
integration can be performed immediately allowing us to replace q i by xi . For the
pi integration we use the relation

δ[x f − q t ( pi , xi )] =
∑

j

1

||∂q t/∂ pi ||
δ( pi − p j ) (2.275)

for δ-functions of functions of the integration variable. Here we have to sum over
all momenta p j leading to zeros of x f − q t ( pi , xi ) and the double bars denote the
absolute value of the determinant.

Due to ∂q t/∂ pi = m21 and with (2.270) from Appendix 2.C, we finally arrive at
the N degree of freedom form of the VVG expression

KVVG(x f , t; xi , 0) =
(

i

2π�

) N
2 ∑

j

√

det

(
∂2Sj

∂x f ∂xTi

)

exp

{
i

�
Sj (x f , xi )

}
. (2.276)

References

1. E. Schrödinger, Ann. Phys. (Leipzig) 81, 109 (1926)
2. E. Schrödinger, Ann. Phys. (Leipzig) 79, 489 (1926)
3. J.S. Briggs, J.M. Rost, Eur. Phys. J. D 10, 311 (2000)
4. F. Dyson, Phys. Rev. 75, 486 (1949)
5. V.A. Mandelshtam, J. Chem. Phys. 108, 9999 (1998)
6. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals, emended edn. (Dover,

Mineola, 2010)
7. E. Schrödinger, Die Naturwissenschaften 14, 664 (1926)
8. E.J. Heller, J. Chem. Phys. 62, 1544 (1975)
9. W. Kinzel, Physikalische Blätter 51, 1190 (1995)
10. F. Grossmann, J.M. Rost, W.P. Schleich, J. Phys. A Math. Gen. 30, L277 (1997)
11. M. Kleber, Phys. Rep. 236, 331 (1994)
12. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)
13. P.A.M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford, London, 1958)
14. L.S. Schulman, Techniques and Applications of Path Integration (Dover, Mineola, 2005)
15. J.H. van Vleck, Proc. Acad. Nat. Sci. USA 14, 178 (1928)
16. M.C. Gutzwiller, J. Math. Phys. 8, 1979 (1967)
17. S. Grossmann, Funktionalanalysis II (Akademie Verlag, Wiesbaden, 1977)
18. H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd edn. (Addison Wesley, San Fran-

cisco, 2002)
19. W.R. Salzman, J. Chem. Phys. 85, 4605 (1986)
20. M.H. Beck, A. Jäckle, G.A. Worth, H.D. Meyer, Phys. Rep. 324, 1 (2000)
21. D. Kohen, F. Stillinger, J.C. Tully, J. Chem. Phys. 109, 4713 (1998)
22. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964)
23. H. Sambe, Phys. Rev. A 7, 2203 (1973)
24. M. Abramowitz, I.A. Stegun,Handbook of Mathematical Functions (Dover Publications, New

York, 1965)



References 83

25. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, 2nd
edn. (Cambridge University Press, Cambridge, 1992)

26. J.H. Shirley, Phys. Rev. 138, B979 (1965)
27. J.C. Light, Time-Dependent Quantum Molecular Dynamics, ed. by J. Broeckhove, L. Lath-

ouwers (Plenum Press, New York, 1992), p. 185
28. U. Peskin, N. Moiseyev, Phys. Rev. A 49, 3712 (1994)
29. W. Witschel, J. Phys. A 8, 143 (1975)
30. J.A. Fleck, J.R. Morris, M.D. Feit, Appl. Phys. 10, 129 (1976)
31. M.D. Feit, J.A. Fleck, A. Steiger, J. Comp. Phys. 47, 412 (1982)
32. M. Braun, C. Meier, V. Engel, Comp. Phys. Comm. 93, 152 (1996)
33. M. Frigo, S.G. Johnson, Proceedings of the IEEE 93(2), 216 (2005). Special issue on Program

Generation, Optimization, and Platform Adaptation
34. A. Vibok, G.G. Balint-Kurti, J. Phys. Chem 96, 8712 (1992)
35. A. Askar, A.S. Cakmak, J. Chem. Phys. 68, 2794 (1978)
36. C. Leforestier, R.H. Bisseling, C. Cerjan, M.D. Feit, R. Friesner, A. Guldberg, A. Hammerich,

G. Jolicard, W. Karrlein, H.D. Meyer, N. Lipkin, O. Roncero, R. Kosloff, J. Comp. Phys. 94,
59 (1991)

37. H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81, 3967 (1984)
38. D.J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University

Science Books, Sausalito, 2007)
39. S.K. Gray, D.W. Noid, B.G. Sumpter, J. Chem. Phys. 101, 4062 (1994)
40. J.D. Meiss, Rev. Mod. Phys. 64, 795 (1992)
41. M.L. Brewer, J.S. Hulme, D.E. Manolopoulos, J. Chem. Phys. 106, 4832 (1997)
42. H. Yoshida, Phys. Lett. A 150, 262 (1990)
43. W.H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1990)
44. E.J. Heller, Chaos and Quantum Physics, ed. by M.J. Giannoni, A. Voros, J. Zinn-Justin. Les

Houches Session LII (Elsevier, Amsterdam, 1991), pp. 549–661
45. J.R. Klauder, Random Media, ed. by G. Papanicolauou (Springer, New York, 1987), p. 163
46. F. Grossmann, J.A.L. Xavier, Phys. Lett. A 243, 243 (1998)
47. M.F. Herman, E. Kluk, Chem. Phys. 91, 27 (1984)
48. E.J. Heller, J. Chem. Phys. 75, 2923 (1981)
49. K.G. Kay, Chem. Phys. 322, 3 (2006)
50. K.G. Kay, J. Chem. Phys. 100, 4377 (1994)
51. F. Grossmann, J. Chem. Phys. 125, 014111 (2006)
52. E. Kluk, M.F. Herman, H.L. Davis, J. Chem. Phys. 84, 326 (1986)
53. F. Grossmann, M.F. Herman, J. Phys. A Math. Gen. 35, 9489 (2002)
54. S. Zhang, E. Pollak, J. Chem. Phys. 121(8), 3384 (2004)
55. F. Grossmann, Comm. At. Mol. Phys. 34, 141 (1999)
56. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Pearson Education,

Harlow, 2003)
57. S. Selstø, E. Lindroth, J. Bengtsson, Phys. Rev. A 79, 043418 (2009)
58. W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001)
59. E.N. Economou, Green’s Functions in Quantum Physics, 3rd edn. (Springer, Berlin, 2006)
60. D. Schuch,Quantum Theory from a Nonlinear Perspective: Riccati Equations in Fundamental

Physics (Springer International Publishing, 2018)
61. G.L. Ingold, Coherent Evolution, inNoisy Environments, ed. by A. Buchleitner, K. Hornberger,

Lecture Notes, in Physics, (Springer, Berlin, 2002), pp. 1–53
62. N. Makri, W.H. Miller, Chem. Phys. Lett. 151, 1 (1988)
63. W.H. Miller, Adv. Chem. Phys. 25, 69 (1974)
64. L.E. Reichl, The Transition to Chaos, 2nd edn. (Springer, New York, 2004)
65. G.D. Billing, The Quantum Classical Theory (Oxford University Press, New York, 2003)
66. E.J. Heller, The Semiclassical Way to Dynamics and Spectroscopy (Princeton University Press,

Princeton, 2018)
67. A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford University Press, Oxford, 2006)



84 2 Time-Dependent Quantum Theory

68. K.J. Schafer, Strong Field Laser Physics, ed. by T. Brabec. Springer Series in Optical Sciences,
vol. 134 (Springer, Berlin, 2009), chap. 6, pp. 111–145

69. N. Takemoto, A. Shimshovitz, D.J. Tannor, J. Chem. Phys. 137, 011102 (2012)
70. F. Gatti, B. Lasorne, H.D. Meyer, A. Nauts, Applications of Quantum Dynamics in Chemistry.

Lecture Notes in Chemistry, vol. 98 (Springer International Publishing, 2017)
71. D.V. Shalashilin, M.S. Child, J. Chem. Phys. 113, 10028 (2000)
72. W.H. Miller, J. Phys. Chem. B 106, 8132 (2002)
73. R.E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics,

Interdisciplinary Applied Mathematics, vol. 28 (Springer, New York, 2005)
74. M. Mizrahi, J. Math. Phys. 16, 2201 (1975)



Part II
Applications

This copy belongs to 'veltien'



Chapter 3
Field-Matter Coupling and Two-Level
Systems

With this chapter, we start the applications part of this book by considering the
interaction between lasers andmatter. Lasers have already been discussed in Chap. 1.
Therefore, we begin immediately with the theoretical description of the coupling of a
given classical light field realized, e.g., by a laser, to a quantum mechanical system.1

After the discussion of different gauges or frames, related by unitary transformations,
the Volkov solution for the laser-driven free particle is reviewed.

Due to their simplicity and the fact that they serve as paradigms for many phe-
nomena observed in more complex systems, some analytically solvable two-level
systems will be discussed in the remainder of this chapter. We will first look at Rabi
oscillationsmediated by a static electric field and after the introduction of the rotating
wave approximation, the laser-driven case will be reviewed.

3.1 Light-Matter Interaction

The interaction of a single quantum particle with an electromagnetic field shall be
considered in the following. Starting from the principle of minimal coupling and
using several unitary transformations, some commonly used ways of setting up a
field driven Hamiltonian will be presented.

1In the literature this is frequently called semiclassical lasermatter interaction [1].Wehave, however,
used the expression “semiclassics” already differently in Chap.2.
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88 3 Field-Matter Coupling and Two-Level Systems

3.1.1 Minimal Coupling

The most straightforward approach to the coupling of a charged particle with charge
q to an electromagnetic field is given by the principle of “minimal coupling”. In
classical mechanics this principle aims at producing Newton’s equation with the
Lorentz force by constructing a corresponding Lagrangian.

3.1. Study classical minimal coupling by answering the following questions:

(a) Under which conditions for the potentials Aand Φ does the classical Lagrangian

L(ṙ, r, t) = m

2
ṙ2 − qΦ(r, t) + q ṙ · A(r, t)

lead to Newton’s equation of motion with the Lorentz force?
(b) Give explicit expressions for the canonical momentum p = ∂L/∂ ṙ and for the

mechanical momentum pm = m ṙ .
(c) What is the explicit form of the Hamiltonian H( p, r, t) = ṙ · p − L(ṙ, r, t)?

To arrive at the quantum version of minimal coupling, we could just use the
classical result and invoke the correspondence principle. More instructive is a direct
approach to quantum minimal coupling, however, which shall be discussed in some
detail now.

Let us first consider the effect of a local unitary transformation with the scalar
field χ(r, t)

Ψ ′(r, t) = ei
q
�

χ(r,t)Ψ (r, t) (3.1)

on the time-dependent Schrödinger equation [2]. For the transformed wavefunction
the transformed equation

i�Ψ̇ ′(r, t) = Ĥ ′Ψ ′(r, t) (3.2)

holds, where the primed Hamiltonian is given by

Ĥ ′ = ei
q
�

χ(r,t) Ĥe−i q
�

χ(r,t) − qχ̇ (r, t), (3.3)

with

Ĥ = p̂2

2m
+ V (r). (3.4)

Shifting the momentum operator p̂ = �

i ∇ twice past the exponential factor of the
unitary transformation, we get the identity

ei
q
�

χ(r,t) p̂2e−i q
�

χ(r,t)Ψ ′(r, t) = ( p̂ − q∇χ)2Ψ ′(r, t), (3.5)
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3.1 Light-Matter Interaction 89

and therefore

Ĥ ′ = 1

2m

(
�

i
∇ − q∇χ

)2

+ V (r) − q
∂χ

∂t
(3.6)

holds for the primed Hamiltonian.
Following Weyl [3], the time-dependent Schrödinger equation has to be invariant

under the unitary transformation (3.1) introduced above. To satisfy this requirement,
the original time-dependent Schrödinger equation has to be modified slightly, how-
ever, according to

i�Ψ̇ (r, t) =
[

1

2m

(
�

i
∇ − q A(r, t)

)2

+ V (r) + qΦ(r, t)

]
Ψ (r, t). (3.7)

This equation is now formally equivalent to the transformed time-dependent
Schrödinger equation

i�Ψ̇ ′(r, t) =
[

1

2m

(
�

i
∇ − q A′(r, t)

)2

+ V (r) + qΦ ′(r, t)

]
Ψ ′(r, t) (3.8)

if the relations

A′ = A + ∇χ, Φ ′ = Φ − χ̇ (3.9)

hold. These, however, are the gauge transformations of the potentials A(r, t) and
Φ(r, t) of classical electrodynamics. The electromagnetic fields

E = −∂A
∂t

− ∇Φ, (3.10)

B = ∇ × A (3.11)

are unchanged by such transformations.
Summarizing, minimal coupling amounts to replacing the canonical momentum

p̂ by the kinetic momentum p̂ − q A(r, t) and shifting the potential by qΦ(r, t) in
the Hamiltonian. The probability current density in the equation of continuity (2.4)
of Chap.2 has to be changed accordingly, as can be seen by solving Exercise 3.2.

3.2. Find the modified expression for the probability current density j in the case
of coupling of the motion of a charged particle to an external field. Show that the
expression you gained is gauge invariant.

Expanding the square of the kinetic momentum, cross terms of the form p̂ · A and
A · p̂ appear. In the Coulomb gauge, which, for sources at infinity, is defined by

Φ(r, t) = 0, ∇ · A(r, t) = 0 , (3.12)
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90 3 Field-Matter Coupling and Two-Level Systems

we can conclude that p̂ commuteswith A. Therefore the two cross-terms are identical
as in classical mechanics.

Furthermore, the energy obviously is not conserved any more in the presence of
a time-dependent external field. The question, which operator could be considered
as the energy operator, does not have a straightforward answer, however. Studying
Exercise 3.3 and the literature given in the solutions shedsmore light on this question.

3.3. Let Θ̂(A, Φ) be an operator that depends on the potentials of the electromag-
netic field.

(a) Show that for the operator Θ̂ to have a gauge invariant expectation value

ei
q
�

χΘ̂(A, Φ)e−i q
�

χ = Θ̂(A′, Φ ′)

has to hold.
(b) Show that Ĥ = ( p̂−q A)2

2m + V (r) + qΦ is not a gauge invariant operator and
its expectation value cannot be the energy. Discuss an alternative, that may be
considered as the energy operator.

In general, the case of a system of many charged particles which are coupled to
a laser field has to be studied. As we will see in Chap. 5, the motion of the center
of mass and the relative motion without a laser can be separated. With the laser
they do not necessarily separate any more [3]. We will deal with the coupling of an
electromagnetic field to a many particle system in more detail in Chap.5.

3.1.2 Dipole Approximation and Length Gauge

Another well-known form of light matter interaction rests on the dipole approxima-
tion, in which case the vector potential is assumed to be independent of position.2

For an atom of typical size of the order of Angstroms in a field of optical wavelength
of several hundred nanometers this is a well founded approximation, as depicted in
Fig. 3.1.

Fig. 3.1 An atom in the field of a light wavewithwavelengthmuch longer than the typical extension
of the atom

2Therefore, due to (3.11), the magnetic induction vanishes in dipole approximation.

This copy belongs to 'veltien'

http://dx.doi.org/10.1007/978-3-319-74542-8_5
http://dx.doi.org/10.1007/978-3-319-74542-8_5


3.1 Light-Matter Interaction 91

The effect of the vector potential in the minimal coupling Hamiltonian of (3.7)
in Coulomb gauge and in dipole approximation is a time-dependent shift of the
momentum leading to

Ĥv = [ p̂ − q A(t)]2
2m

+ V (r). (3.13)

Due to the corresponding Lagrangian (vector potential couples to velocity), the term
velocity gauge is therefore frequently used.3 Applying a gauge transformation with
the scalar field

χ(r, t) = −r · A(t) (3.14)

leads to transformed potentials of the form

A′ = 0, Φ ′ = −∂χ

∂t
= r · Ȧ = −r · E(t), (3.15)

where the last step follows from (3.10) in Coulomb gauge. The present gauge is thus
also called length gauge (electric field couples to the position). The corresponding
time-dependent Schrödinger equation then reads

i�Ψ̇l(r, t) =
[

p̂2

2m
+ V (r) − q r · E(t)

]
Ψl(r, t) (3.16)

and contains the laser-matter interaction in terms of the dipole operator q r̂ . His-
torically it has been introduced by Göppert-Mayer [5] by using the fact that the
Lagrangians in the length as well as in the velocity gauge only differ by a total
time-derivative.

3.4. Switch from the velocity to the length gauge by adding a total time derivative
to the Lagrangian.

(a) Show first that adding a total time-derivative d
dt f (r, t) to the Lagrangian does

not alter the equations of motion.
(b) In the dipole approximation and the Coulomb gauge (Φ = 0, A = A(t))

add −q d
dt (r · A) to the velocity gauge Lagrangian and simplify the resulting

expression.

We stress that in dipole approximation and under the Coulomb gauge, the vector
potential as well as the electric field are independent of the position vector and the
magnetic induction is zero. A coupling to the magnetic field by going beyond the

3Synonymously, some authors [3, 4] use the expression A · p gauge.
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92 3 Field-Matter Coupling and Two-Level Systems

dipole approximation would become necessary for a large electron quiver velocity
(see Sect. 3.1.4) on the order of the speed of light.4

Velocity and length gauge are related by a unitary transformation and therefore any
measurable quantity may not depend on the gauge used. If one uses approximations
during the solution process, however, there may be orders of magnitude and even
qualitative [7] differences between the results predicted in the different gauges. A
recent investigation of a gauge independent strong field approximation is given in
[8]. A more technical question is, in which gauge numerical calculations should
be performed. For the investigation of high-order harmonic generation using laser
irradiated hydrogen atoms, to be discussed in Sect. 4.5, it was found that for high laser
intensities, the velocity gauge seems to be favorable from a numerical perspective
[9]. This fact was corroborated in a recent publication on the ionization of hydrogen
atoms, see the supplemental material of [10]. The case of very short (down to half
cycle) pulses is discussed with respect to gauge invariance in [11].

Finally, it is worthwhile to note that, as shown in Appendix 3.A, the notion of
parity, well-known in autonomous Hamiltonian systems, can be generalized to the
case of periodically, dipolarly driven systems.

3.1.3 Kramers-Henneberger Transformation

In the case of strong fields, another unitary transformationwill turn out to be very use-
ful.We start again from theminimally coupled time-dependent Schrödinger equation
(3.7) in the Coulomb gauge and in dipole approximation, leading to

i�Ψ̇v(r, t) =
[

1

2m

(
�

i
∇ − q A(t)

)2

+ V (r)

]
Ψv(r, t)

=
[
− �

2

2m
∇2 + iq�

m
A(t) · ∇ + q2

2m
A2(t) + V (r)

]
Ψv(r, t). (3.17)

Successively performing two unitary transformations

Ψa(r, t) = Û2Û1Ψv(r, t), (3.18)

with

Û1 = exp

{
iq2

2m�

∫ t

0
dt ′A2(t ′)

}
, (3.19)

Û2 = exp

{
− q

m

∫ t

0
dt ′A(t ′) · ∇

}
(3.20)

4For a charged particle in a plane electromagnetic wave, the magnetic part of the Lorentz force is
smaller by a factor v/c than the electric one [6].
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defines a wavefunction in the Kramers-Henneberger frame [12, 13]. The use of
the subscript “a” will become apparent below. The first transformation eliminates
the squared vector potential, whereas the displacement operator (3.20) moves the
coupling into the argument of the potential, as can be seen by solving Exercise 3.5.
The time-dependent Schrödinger equation in theKramers-Henneberger frame is then
given by

i�Ψ̇a(r, t) =
[
− �

2

2m
� + V [r + α(t)]

]
Ψa(r, t) , (3.21)

where

α(t) = − q

m

∫ t

0
dt ′A(t ′). (3.22)

3.5. Show that the two unitary transformations into the Kramers-Henneberger frame
eleminate the terms proportional to A2 and A in the Hamiltonian. Due to the fact that
the first transformation is a global phase transformation, it just remains to calculate

Û2V̂ Û−1
2 ,

to prove the shift in the argument of the potential.
Hint: Use the operator relation known as Baker-Haussdorff (or Hadamard) lemma
eL̂ M̂e−L̂ = ∑∞

n=0
1
n! [L̂, M̂]n, where [L̂, M̂]n = [L̂, [L̂, M̂]n−1] and [L̂, M̂]0 = M̂.

Differentiating (3.22) twice and using (3.10) in the Coulomb gauge, we find that

mα̈(t) = qE (3.23)

holds. The Kramers-Henneberger transformation thus is characterized by a spatial
translation into an accelerated frame, corresponding to the oscillatory quiver motion
of the charged particle in the electric field. The present case is therefore also fre-
quently referred to as the “acceleration gauge”, although the use of the term gauge is
misleading, since no gauge transformations of the potentials can be given here [11].

In the high-frequency limit, the TDSE in the Kramers-Henneberger frame can
be averaged over a (short) period of the external field. This has, e.g., been done in
the calculations in [14] for the case of a periodically driven double-well potential,
to be discussed in more detail in Sect. 5.5.1. This way, analytical predictions of the
influence of high-frequency driving on the system dynamics can be given.
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3.1.4 Volkov Wavepacket and Ponderomotive Energy

Tofill the presented formalismwith life,we now turn to an important, exactly solvable
model. For the case of 1D free motion, i.e., V (x) = 0 of an electron with mass
me and charge q = −e in a cw laser field E = E0 cos(ωt), the time-dependent
Schrödinger equation in length gauge (3.16) can be solved exactly analytically under
the assumption of a Gaussian initial state.

Due to the fact that the total time-dependent potential

VL(x, t) = exE0 cos(ωt) (3.24)

is linear, the resulting Volkov wavepacket with initial phase space center (0, q0) is
given by using the GWD of Sect. 2.1.4 for α0 = γ /2 according to5

Ψ (x, t) =
(γ

π

)1/4
√

1

1 + iγ �t/me
exp

{
i

�

[
Up

2ω
sin(2ωt) − Upt + xp(t)

]}

exp

{
− γ

2(1 + iγ �t/me)
[x − q(t)]2

}
, (3.25)

where the general solutions

p(t) = p0 − eE0 sin(ωt)/ω, (3.26)

q(t) = q0 + p0t

me
+ eE0[cos(ωt) − 1]/(meω

2) (3.27)

of the classical equations of motion for position and momentum have been used with
the initial conditions p(0) = p0 = 0, q(0) = q0.

The amplitude of oscillations of position eE0/(meω
2) is the so-called quiver ampli-

tude.Wecan convince ourselves of the analytic formof theVolkov solution by solving
Exercise 3.6. As a side result it will turn out that the derivative of the kinetic energy
averaged over a period of the external field vanishes. A free particle can therefore
not accumulate energy from the field.

3.6. Using Gaussian Wavepacket Dynamics calculate the wavefunction of a free
electron in a laser field with the potential

VL(x, t) = exE0 cos(ωt)

in length gauge.

5The gauge index will be mostly suppressed in the remainder of the book, as we will explicitly state
which gauge is used.
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(a) Determine the solutions (pt , qt ) of the classical equations of motion with the
initial conditions (0, q0). Then calculate the classical kinetic energy and its
derivative and average the results over one period T = 2π/ω of the external
field. Interprete the results.

(b) Use the result for αt from the free particle case (why is this possible?).
(c) Employing integration by parts, show that

∫ t

0
dt ′L = −

∫ t

0
dt ′ p2

t ′

2me
+ qt pt

holds. Use this result to determine the phase δt = ∫ t
0 dt ′(L − αt ′) and insert

everything in the GWD expression. Why is the final result exact?

As could be seen by working through the previous exercise, there is an important
quantity hidden in the Volkov solution. This is the average of the kinetic energy over
one period, which is given by

Up := 1

T

∫ T

0
dt

p2

2me
= e2E2

0

4meω2
, (3.28)

as can be shown by using (3.26). This quantity is called ponderomotive energy (or
ponderomotive potential). 2Up is the maximal kinetic energy that an electron may
have at a certain time. It is important to keep in mind that low frequency fields lead
to high ponderomotive energies.

A generalization of the results to 3D can be performed in several ways. Alterna-
tively to replacing all occurences of position and momentum in the solution above
by the corresponding 3D vectors, we start from the TDSE in velocity gauge with the
Hamiltonian of (3.13) in the case of V (r) = 0. After a Fourier transformation of the
wavefunction to the momentum representation (see also Sect. 2.3.2) via

Ψ ( p) = 1

(2π�)3/2

∫
d3r exp

{
− i

�
p · r

}
Ψ (r), (3.29)

we get

i�Ψ̇ ( p, t) = 1

2me

[
p + eA(t)

]2
Ψ ( p, t) (3.30)

for the time-dependent Schrödinger equation. There is no operator hat on themomen-
tum any more because we have used the corresponding eigenvalue equation.

A solution to the ordinary differential equation above is given by

Ψ ( p, t) = Ψ ( p, 0) exp

{
− i

�

∫ t

0
dt ′

[
p + eA(t ′)

]2
2me

}
, (3.31)

This copy belongs to 'veltien'

http://dx.doi.org/10.1007/978-3-319-74542-8_2
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as can be proven by separation of variables and checked by differentiation with
respect to time. Inverse Fourier transformation back to position space now gives the
Volkov wavepacket

Ψ (r, t) = 1

(2π�)3/2

∫
d3 p exp

{
i

�
p · r

}

exp

{
− i

�

∫ t

0
dt ′

[
p + eA(t ′)

]2
2me

}
Ψ ( p, 0). (3.32)

If we use as a special case a delta function centered around p0,

Ψ ( p, 0) = δ( p − p0), (3.33)

for the initial p state, then the Volkov state

Ψv(r, t) = 1

(2π�)3/2
exp

{
i

�
p0 · r − i

�

∫ t

0
dt ′

[
p0 + eA(t ′)

]2
2me

}
(3.34)

in velocity gauge emerges.
Starting from the velocity gauge result and using the gauge transformation from

(3.14) leads to

Ψl(r, t) = 1

(2π�)3/2
exp

{
i

�
[ p0 + eA(t)] · r

− i

�

∫ t

0
dt ′

[
p0 + eA(t ′)

]2
2me

}
, (3.35)

which is the Volkov state in length gauge.
In the Kramers-Henneberger frame, starting again from (3.34), the dependence

on A(t) cancels out and we arrive at the corresponding Volkov state

Ψa(r, t) = 1

(2π�)3/2
exp

{
i

�
p0 · r − i

�

p20
2me

t

}
, (3.36)

which is just a plane wave.
A more general initial state, e.g., a Gaussian centered around p0, will lead to a

generalization of theGWDsolution to 3D. It is a nice exercise inGaussian integration
to rederive the 1D result (3.25) from (3.32).
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3.2 Analytically Solvable Two-Level Problems 97

3.2 Analytically Solvable Two-Level Problems

Driven two-level systems are the easiest realizations of the field-matter coupling
formalism just reviewed. Several paradigms in the theory of laser induced dynamics
can be found already in the solutions of these simple systems. They shall therefore
now be studied in some detail. We will concentrate on analytically solvable cases,
which can either be solved exactly or under some approximations.

3.2.1 Dipole Matrix Element

First of all, the Hamilton matrix has to be set up. To this end, we consider two
energy levelswith the unperturbed orthogonal states |ψ1〉, |ψ2〉 and the corresponding
energies E1 = −�ε, E2 = �ε, which are the diagonal elements of the Hamilton
matrix.

To write down an expression for the off-diagonal elements of the Hamilton matrix
in the case of an external perturbation, we assume that it is due to the coupling to an
electric field of the form

E(r, t) = E0 cos(k · r − ωt). (3.37)

We now turn to the dipole approximation of Sect. 3.1.2, i.e., λ = 2π/k shall be much
larger than the size of the quantum system, as depicted in Fig. 3.1. In the argument
of the cosine, r can then be replaced by r0 which can be set to zero without loss of
generality. The electric field is then purely time-dependent

E(t) = E0 cos(ωt) (3.38)

and the coordinate independent force

F(t) = −e E(t) (3.39)

acts on the electron. The corresponding potential energy is given by

VL(r, t) = e r · E(t). (3.40)

Adding this potential energy to the Hamiltonian leads to the length gauge form of
the Hamiltonian in (3.16).

If the two levels under consideration have real eigenfunctions with different parity
(see Exercise 3.8) then

�ν12(t) ≡ E(t) ·
∫

d3r ψ1 e rψ2 = μ12 · E(t) = �ν21(t) (3.41)
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98 3 Field-Matter Coupling and Two-Level Systems

follows for the non-vanishing off-diagonal elements of the Hamilton matrix, which
are proportional to the matrix element

μ12 ≡
∫

d3r ψ1 e rψ2 (3.42)

of the (negated) dipole operator. The diagonal matrix elements due to the laser poten-
tial are zero.

3.2.2 Rabi Oscillations Induced by a Constant Perturbation

For the following, we assume that the perturbation is time-independent, i.e., we set
ω → 0 and define ν := limω→0 ν12(t). As an Ansatz for the solution of the time-
dependent Schrödinger equation (2.22), a superposition of the unperturbed eigen-
states with time-dependent coefficients

|Ψ (t)〉 = c1(t)|ψ1〉 + c2(t)|ψ2〉 (3.43)

can be chosen. For the vector cT = (c1, c2) of coefficients, the linear system of
coupled ordinary differential equations

i�ċ = Hc , (3.44)

with the two by two Hamilton matrix

H = �

(−ε ν

ν ε

)
(3.45)

emerges. This Hamiltonian can be expressed in terms of the Pauli spin matrices,
which are discussed in Appendix 3.B.

As mentioned in Sect. 2.3.1, the time-evolution can be determined by solving the
eigenvalue problem. The eigenvalues of the matrix in (3.45) are

E± = ±�

√
ε2 + ν2 (3.46)

and the corresponding eigenstates are given by

|ψ+〉 = sin(Θ)|ψ1〉 + cos(Θ)|ψ2〉, (3.47)

|ψ−〉 = cos(Θ)|ψ1〉 − sin(Θ)|ψ2〉, (3.48)
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3.2 Analytically Solvable Two-Level Problems 99

where the definition

Θ ≡ 1

2
arctan

(ν

ε

)
(3.49)

has been used.6 In the case of degeneracy of the unperturbed states (ε = 0)Θ = π/4,
and the eigenstates are the symmetric, respectively antisymmetric combination of the
two unperturbed states.

The spectral representation of the time-evolution operator for the solution of the
Schrödinger equation is given by

Û (t, 0) =
∑
±

|ψ±〉 exp
{
− i

�
E±t

}
〈ψ±|, (3.50)

as can be seen by comparison with (2.39). In the basis of the eigenvectors (1,0) and
(0,1) of the unperturbed Hamilton matrix, the matrix

U(t, 0) =
(

sin2(Θ) sin(Θ) cos(Θ)

sin(Θ) cos(Θ) cos2(Θ)

)
exp

{
− i

�
E+t

}

+
(

cos2(Θ) − sin(Θ) cos(Θ)

− sin(Θ) cos(Θ) sin2(Θ)

)
exp

{
− i

�
E−t

}
(3.51)

for the time-evolution operator can be derived. This matrix allows us to calculate

P21(t) = |〈ψ2|Û (t, 0)|ψ1〉|2 = |U21(t, 0)|2, (3.52)

which is the probability to find the system in state |ψ2〉 at time t , if it was in state
|ψ1〉 at time zero (in terms of the coefficients this corresponds to the initial conditions
c1(0) = 1, c2(0) = 0). From the matrix representation of Û by using sinΘ cosΘ =
1
2 sin(2Θ), we get

P21(t) = ν2

ν2 + ε2
sin2(ΩRt/2), (3.53)

where

ΩR ≡ 2
√

ε2 + ν2 (3.54)

is the definition of the so-called Rabi frequency. P21(t) performs Rabi oscillations
with the amplitude

6The identities arctan(x) = arccos(1/
√
1 + x2) and arctan(x) = arcsin(x/

√
1 + x2) can be used

to resolve the cosine and sine terms in (3.47) and (3.48).
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Fig. 3.2 Rabi oscillations of
the probability to be in the
upper state, starting from the
lower state, induced by the
perturbation ν = 1. The
degenerate ε = 0 (solid
black line), as well as the
non-degenerate case ε = 0.5
(dashed blue line) are
depicted as a function of
time in units of 1/ν; all
energies in arbitrary units
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, (3.55)

which are depicted in Fig. 3.2. Only in case of degeneracy, ε = 0, do the oscillations
have an amplitude of 1. Furthermore, for non-degenerate systems the oscillations are
faster than for degenerate unperturbed levels.

Rabi oscillations are analogous to the tunneling dynamics of the probability ampli-
tude in a symmetric double well, which will be considered in Chap.5. There the
eigenstates of the unperturbed problem are the symmetric, respectively antisymmet-
ric superposition of localized states in the left and right well and thus for a localized
initial condition c1 = ±c2 = 1/

√
2 has to be chosen.

3.2.3 Time-Dependent Perturbations and Rotating Wave
Approximation

In the presence of a time-dependent perturbation V̂ (t) = �ν̂(t), and with E1,2 =
�ε1,2, the time-dependent Schrödinger equation for the coefficients is

iċ1 = c1ε1 + c2ν12(t), (3.56)

iċ2 = c2ε2 + c1ν21(t). (3.57)

In the “strong-coupling” limit, i.e., for ν21 	 ε2−ε1, these coupled differential equa-
tions can be solved perturbatively [15]. There exists, however, another approximate
approach to solve the differential equations, starting from the Ansatz

c1(t) = d1(t) exp[−iε1t], (3.58)

c2(t) = d2(t) exp[−iε2t], (3.59)
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which leads to

iḋ1 = d2ν12(t) exp[−iω21t], (3.60)

iḋ2 = d1ν21(t) exp[iω21t], (3.61)

where the abbreviation ω21 = ε2 − ε1 has been introduced. Note that the transfor-
mation from the vector c to the vector d of coefficients is equivalent to a unitary
transformation into the interaction picture.

In the case of a monochromatic (coherent) perturbation ν12(t) ∼ cos(ωt), the
system of differential equations can be solved analytically by using the so-called
rotating wave approximation, as will be shown in the following. In the case of inter-
action with incoherent radiation (a random superposition of monochromatic laser
fields) we can use perturbation theory and in this way give a microscopic derivation
of the B-coefficient of Chap.1. This last case will be dealt with in Appendix 3.C.

3.2.3.1 Rotating Wave Approximation

For the monochromatic field in (3.38), the Schrödinger equation in the interaction
picture (3.60) and (3.61) can be written as

iḋ1 = d2
μ12 · E0

2�
{exp[i(ω − ω21)t] + exp[−i(ω + ω21)t]} , (3.62)

iḋ2 = d1
μ21 · E0

2�
{exp[−i(ω − ω21)t] + exp[i(ω + ω21)t]} . (3.63)

In order to introduce the rotating wave approximation (RWA), we define the detuning
between the field and the external frequency

Δd ≡ ω − ω21. (3.64)

For Δd � ω21, the terms that oscillate at about twice the frequency of the external
field are the so-called counter-rotating terms. In the differential equations above they
can be neglected, if we assume that the coefficients d1,2 change on a much longer
time scale. To prove this proceduremathematically, one has to average the differential
equations over times much larger than 1/(ω + ω21), see Exercise 3.7.

The differential equations in RWA are now dramatically simplified and read

iḋ1 = d2
μE0
2�

exp[iΔdt], (3.65)

iḋ2 = d1
μE0
2�

exp[−iΔdt], (3.66)

where we have assumed in addition that the polarization of the field is in the direction
of the dipole matrix element, which has the absolute value μ = μ12 = μ21. The
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102 3 Field-Matter Coupling and Two-Level Systems

solution of the two coupled differential equations can be found by differentiating
(3.65)with respect to time and inserting (3.66). The secondorder differential equation
that emerges can be solved, and one gets

d1(t) = �

μE0 exp[iΔdt/2]{(Δd − ΩR)C exp[iΩRt/2]
+ (Δd + ΩR)D exp[−iΩRt/2]}, (3.67)

d2(t) = exp[−iΔdt/2]{C exp[iΩRt/2] + D exp[−iΩRt/2]} (3.68)

with the Rabi frequency in the time-dependent case

ΩR =
√

Δ2
d +

(
μE0
�

)2

. (3.69)

The parameters C and D have to be determined from the initial conditions. In the
case of non-resonance (corresponding to the non-degenerate case for constant per-
turbations) the oscillations are again faster than on resonance.

3.7. Consider a two-level system interacting with a monochromatic laser field.

(a) Average the TDSE over times long in comparison to 1/(ω + ω21) in order to
motivate neglecting the counter-rotating terms.

(b) Using the initial conditions d1(0) = 1 and d2(0) = 0, give explicit expressions
for C and D and for d1(t) and d2(t). Depict |d2(t)|2 for resonance as well as
for off-resonance.

Furthermore, the quality of the RWA depends on the soundness of the approxi-
mation of neglecting the counter-rotating terms. The validity of this assumption can
be studied explicitly for a specific example in Exercise 3.8.

3.8. An electron shall move in an inversion symmetric potential V (x) = V (−x) in
one spatial dimension.

(a) Show that the eigenfunctions of the TISE must fulfill either

ψ2n(x) = ψ2n(−x) or ψ2n+1(x) = −ψ2n+1(−x),

and that diagonal dipole matrix elements μnn = 〈ψn|ex̂ |ψn〉 therefore always
vanish.

(b) Calculate the dipole matrix element between the ground and the first excited
state of the harmonic oscillator

V (x) = 1

2
meω

2
e x2
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with a frequency in the visible range, ωe = 3.14 × 1015 s−1. Determine the
Rabi frequency in the resonance case for 3 different field strengths E0 =
1, 106, 1010 V m−1. Is the condition for the applicability of the RWA fulfilled
for all field strengths?

3.2.3.2 Area Theorem

Finally, we consider the case of resonance, Δd = 0, in which � times the external
frequency equals the level spacing. Furthermore, we assume that the external field
shall be of finite duration, i.e., it shall consist of a laser pulse with an envelope, so
that we have to replace E0 by E0 f (t) in the time-dependent Schrödinger equation.
According to (3.69), a time-dependent Rabi frequency

ΩR(t) = μE0 f (t)

�
(3.70)

emerges, with the help of which the coupled differential equations can be written as

iḋ1 = ΩR(t)

2
d2, (3.71)

iḋ2 = ΩR(t)

2
d1. (3.72)

For the initial conditions d1(0) = 1, d2(0) = 0 the solutions are given by

d1(t) = cos

(∫ t

0
dt ′ ΩR(t ′)

2

)
, (3.73)

d2(t) = −i sin

(∫ t

0
dt ′ ΩR(t ′)

2

)
, (3.74)

as can be verified by insertion. In RWA the population transfer in the resonance case
does not depend on the specific shape of the pulse, but only on the area below the
pulse. This is the so-called area theorem. A π -pulse, for which

∫ t
0 dt ′ΩR(t ′) = π ,

allows for a complete transfer of population.

3.2.4 Exactly Solvable Time-Dependent Cases

In very few special cases, also in the case of a time-dependent perturbation an exact
analytical solution of the time-dependent two-level Schrödinger equation can be
found [16]. As our starting point we use (3.44) in the case of time-dependent ε and
ν. After elimination of c1, the second order differential equation
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c̈2 − ν̇

ν
ċ2 +

(
ε2 + ν2 − iε̇ + iε

ν̇

ν

)
c2 = 0 (3.75)

for the other coefficient can be derived, see also Exercise 3.9. Reasons for the time-
dependence of the diagonal as well as for the off-diagonal elements of the Hamilto-
nian may be the coupling to a light field or nuclear motion in a molecule, which will
be considered in detail in Chap.5.

3.2.4.1 The Rosen-Zener Model

In the case of coupling to a pulsed laser field and in RWA7 we can choose

ε = Δ/2, ν(t) = ν0sech(t/Tp), (3.76)

defining the Rosen-Zener model with a pulse length parameter Tp, see Fig. 3.3. As
found by these authors, the solution of the time-dependent Schrödinger equation
for this choice can be determined exactly analytically. With the initial condition
c1(−∞) = 1 and for t → ∞ it is given by [17]

|c2(∞)|2 = sin2(πν0Tp)sech
2(πΔTp/2). (3.77)

For the resonance case,Δ = 0, this solution is proven inExercise 3.9. In the resonance
case it is also rewarding to note that in the argument of the sine, the pulse area
ν0

∫ ∞
−∞ dt sech(t/Tp) = ν0πTp appears. This is yet another manifestation of the area

theorem discussed at the end of Sect. 3.2.3.

3.9. Consider the TDSE for the two-level Rosen-Zener model.

(a) Prove the equation for c2 that can be gained by the elimination of c1.
(b) Transform the independent variable with the help of

z = 1

2
(tanh

t

Tp
+ 1).

What is the differential equation for c2(z)?
(c) Consider the special case ε = 0 and determine c2(t = ∞) for the initial

conditions c2(t = −∞) = 0 and c1(−∞) = 1.
Hint: Use the hypergeometric function (see I. S. Gradshteyn and I. M. Rhyzik,
Tables of Integrals Series and Products (Academic Press, San Diego, 1994),
Sect.9.1, or http:// dlmf.nist.gov/ 15) and
F(a, b; c; 1) = Γ (c)Γ (c−a−b)

Γ (c−a)Γ (c−b)
, Γ (1 − x)Γ (x) = π

sin(πx)
, Γ (3/2) = √

π/2

7This is an approximation and therefore the notion of exact solubility refers to the final equation
and not the initial problem.
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Fig. 3.3 Laser pulse
envelope and width
parameter Tp for the
Rosen-Zener model

ν(t)

t

2 Tp

3.2.4.2 The Landau-Zener Model

Apart from the Rosen-Zener case, an exact analytic solution is available in the case
of a linear time-dependence

ε(t) = λt, ν(t) = ν0 (3.78)

of the diagonal terms. This kind of time-dependence can, e.g., be induced in a scat-
tering experiment, by nuclear motion in a molecule, or by time-dependent magnetic
fields applied to atoms. The model has been investigated by Landau [18], as well
as by Zener [19], Stückelberg [20], and Majorana [21]. An asymptotic solution of
(3.75) for the initial condition c1(−∞) = 1 is given by

|c2(∞)|2 = 1 − exp[−2πγ ], (3.79)

where γ = ν2
0/|2λ|. The expression for γ can be further specified inmolecular theory

and leads to the celebrated Landau-Zener formula [22].
We note that for an infinitely fast change of the energy, i.e., λ → ∞, it follows that

γ → 0 and no population will be transferred, i.e., |c2(∞)|2 → 0. On the contrary
in the case of λ → 0, one finds γ → ∞, yielding complete population transfer, i.e.,
|c2(∞)|2 → 1.

3.3 Notes and Further Reading

Minimal Coupling and Gauge Transformations
Unitary (gauge) transformations of the wavefunction are discussed in depth in [2, 3].
The theory of minimal coupling and the different gauges or frames for field-matter
interaction are at least partly covered in the books just mentioned as well as in many
other quantum theoretical textbooks, see, e.g. [4]. Schleich’s book [3] focuses on
the subtleties arising from the inclusion of center of mass motion and contains an
appendix, dealing with terms beyond the dipole approximation.
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The inclusion of magnetic field coupling is discussed in [23] and in [24]. In [23]
an intensity/wavelength diagram is presented that delineates regions, where a fully
relativistic treatment (including order (v/c)2 terms) is needed from those, where
(magnetic) terms of order v/c have to be taken into account and those, where the
inclusion of the electric field only is sufficient. A similar discussion can be found on
page 868 of [4]. For the example of a Ti:sapphire laser with 800nm wavelength, the
intensity above which magnetic field effects can become important is 10 16W/cm2.
An insightful discussion of the gauge invariant calculation of expectation values and
probabilities is given in [25].

Two-Level Systems
Our formulation of the interaction of two-level systems with coherent and incoherent
(see Appendix 3.C) light is based on the presentation in Haken’s book [26]. A land-
mark paper in this field is the one by Shirley [27], treating the periodically driven
two-level problem in Floquet theory. The Rosen-Zener model is a special case of the
first Demkov-Kunike model, which is discussed in the appendix of [28].

The theory of two-level systems interacting with magnetic fields has not been
dealt with here but is covered in the book on photon-atom interactions byWeissbluth
[29]. This book is also a treasure-house, if one is interested in the effect of damping
on the dynamics of a two-level system. Thewide field of dissipative quantum systems
is usually described in a density matrix formulation (see also Appendix 3.B). More
details on that exciting field can be found in the books by Weiss [30] and by Breuer
and Petruccione [31].

The laser field is considered to be a classical field throughout the rest of this book.
In quantum optics, where the light field is treated quantum mechanically, the RWA
can also be performed, and if applied to a driven two-level system, this is known as
the Jaynes-Cummings model, which is treated in detail in the book by Schleich [3].

3.A Generalized Parity Transformation

In the case of a symmetric static potential V (x) = V (−x) and in length gauge, with
a sinusoidal laser potential of the form eE0x sin(ωt), the extended Hamiltonian Ĥ in
(2.138) is invariant under the generalized parity transformation

P̂ : x → −x, t → t + T

2
. (3.80)

The Floquet functions thus transform according to

P̂ψα′(x, t) = ±ψα′(x, t) , (3.81)

i.e., they have either positive or negative generalized parity.With the help of (2.150) it
follows thatψα′(x, t), ψβ ′(x, t) have the sameor different generalized parity, depend-
ing on (α − k) − (β − l) being even or odd.

This copy belongs to 'veltien'

http://dx.doi.org/10.1007/978-3-319-74542-8_2
http://dx.doi.org/10.1007/978-3-319-74542-8_2


3.A Generalized Parity Transformation 107

As we will see in Chap.5, exact crossings of the quasienergies as a function of
external parameters are of utmost importance for the quantum dynamics of period-
ically driven systems. For stationary systems, the possibility of exact crossings has
been studied in the heyday of quantum theory by von Neumann and Wigner [32].
These authors found that eigenvalues of eigenfunctions with different parity may
approach each other arbitrarily closely and may thus cross exactly. This is in contrast
to eigenvalues of the same parity, which always have to be at a finite distance, a fact
which is sometimes referred to as the non-crossing rule. The corresponding behavior
in the spectrum as a function of external parameters is called allowed, respectively
avoided crossing. In the Floquet case, the Hamiltonian can also be represented by
a Hermitian matrix, see e.g. (2.183), and therefore the same reasoning applies, with
parity replaced by generalized parity.

For the investigations to be presented in Sect. 5.5.1 it is decisive if these exact
crossings are singular events in parameter space or if they can occur by variation of
just a single parameter. In [32] it has been shown that for Hermitianmatrices (of finite
dimension) with complex (real) elements, the variation of three (two) free parameters
is necessary in order for two eigenvalues to cross. Using similar arguments, it can
be shown that for a real Hermitian matrix with alternatingly empty off-diagonals
(as it is e.g., the case for the Floquet matrix of the periodically driven, quartic,
symmetric, bistable potential) the variation of a single parameter is enough to make
two quasienergies cross.

In the case of avoided crossings an interesting behavior of the corresponding
eigenfunctions can be observed. There is a continuous change in the structure in
position space if one goes through the avoided crossing [33]. Pictorially this is very
nicely represented in the example of the driven quantum well, depicted in Fig. 3.4,
taken out of [34], where for reasons of better visualization the Husimi transform of
the quasi-eigenfunctions as a function of action angle variables (J,Θ) [35] is shown.

3.B Pauli Spin Matrices and the Two-Level Density Matrix

The Pauli spin matrices

σ x =
(
0 1
1 0

)
; σ y =

(
0 −i
i 0

)
; σ z =

(
1 0
0 −1

)
, (3.82)

together with the 2×2 unit matrix, form a complete basis in the space of complex
hermitian 2×2 matrices. In their terms our Hamiltonian (3.45) reads

H = �νσ x − �εσ z . (3.83)
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108 3 Field-Matter Coupling and Two-Level Systems

Fig. 3.4 Avoided crossing of Floquet energies (here denoted byΩα) as a function of field amplitude
(upper panel) and associated change of character of the Floquet functions, corresponding to the
two levels labelled by A and B in the driven quantum well (lower panels (a–f)); from [34]
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3.B Pauli Spin Matrices and the Two-Level Density Matrix 109

Furthermore, a general density operator can be written as

ρ̂ = 1

2

(
1̂ + r · σ̂

)
, (3.84)

with a vector r that is of unit length for all times in the case of pure state dynamics,
and a vector-operator σ̂ , composed of the Pauli operators. This then allows for a
geometrical interpretation of two-level dynamics by going to the Feynman-Vernon-
Hellwarth (or Bloch sphere) representation, discussed in the book by Tannor [36].

The pure state density matrix, in the case of a two-level system with energies
E1, E2, in the basis of the corresponding eigenstates is given by

ρ =
( |d1|2 d1d∗

2 exp{−i(E1 − E2)t/�}
d∗
1d2 exp{i(E1 − E2)t/�} |d2|2

)
, (3.85)

with the populations of the different energy levels on the diagonal and where the
off-diagonal elements are sometimes called coherences.

A frequently considered mixed state is the thermal density matrix at temperature
T with only diagonal elements

ρmn = e−βEn

Q
δmn, (3.86)

where β = 1/(kBT ) with Boltzmann constant kB and where Q = ∑2
n=1 e

−βEn is
the partition function. An initial pure state evolves into a thermal mixed state by
relaxation (due to coupling to an environment) which is governed by the time scale
for population decay T1 and the dephasing or coherence decay time scale T2, which
are related via

1

T2
= 1

2T1
+ 1

T ∗
2

, (3.87)

with the pure dephasing time T ∗
2 [36].

3.C Two-Level System in an Incoherent Field

As the starting point of the perturbative treatment of a two-level system in an incoher-
ent external field, we use the Schrödinger equation in the interaction representation
(3.60) and (3.61) with the initial conditions d1(0) = 1 and d2(0) = 0. For very small
perturbations, the coefficient d1 is assumed to remain at its initial value, leading to

iḋ2 = ν21(t) exp[iω21t] . (3.88)
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This equation can be integrated immediately to yield

d2(t) = −i
∫ t

0
dt ′ν21(t ′) exp[iω21t ′] , (3.89)

analogous to the first order iteration in (2.28). Thefield shall consist of a superposition
of waves with uniformly distributed, statistically independent phases φ j

E(t) = 1

2

∑
ω j >0

E j exp[iφ j − iω j t] + c.c. . (3.90)

If we insert this into the equation above, we get

d2(t) = − i

2�

∑
j

E j · μ21 exp[iφ j ]
∫ t

0
dt ′ exp[i(ω21 − ω j )t

′]

= − i

2�

∑
j

E j · μ21 exp[iφ j ]Sj , (3.91)

where the definition

Sj = [i(ω21 − ω j )]−1
{
exp[i(ω21 − ω j )t] − 1

}
(3.92)

has been introduced. The occupation probability of the second level is then given by
the double sum

|d2(t)|2 = (2�)−2
∑

j

∑
j ′

exp[i(φ j − φ j ′)]E j · μ21E j ′ · μ∗
21Sj S∗

j ′ . (3.93)

Averaging over the phases is now performed and denoted by <>, yielding

< exp[i(φ j − φk)] >= δ jk . (3.94)

One of the sums in (3.93) therefore collapses and

< |d2(t)|2 >=
∣∣∣ e · μ21

�

∣∣∣2 ∑
j

|E j |2(ω21 − ω j )
−2 sin2[(ω21 − ω j )t/2] (3.95)

follows for identical polarization, e, of the light waves.
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Now we have to sum over the distribution of frequencies. To this end we consider
the time derivative of the expression above8

d

dt
< |d2(t)|2 >=

∣∣∣∣ e · μ21√
2�

∣∣∣∣
2 ∑

j

|E j |2(ω21 − ω j )
−1 sin[(ω21 − ω j )t] . (3.96)

With the definition of an energy density per angular frequency interval ρ(ω j ) =
1
2ε0|E j |2/Δω j , assuming that the frequencies are distributed continuously, and
replacing ρ(ω j ) by its resonance value ρ(ω21), due to

∫ ∞

−∞
dω sin(ωt)/ω = π , (3.97)

we get

d

dt
< |d2(t)|2 >= π

ε0

∣∣∣ e · μ21

�

∣∣∣2 ρ(ω21) . (3.98)

The right hand side of this expression is a constant and therefore consistent with the
assumptions made in the derivation of Planck’s radiation law in Chap. 1.

Comparing the equation above with (1.2) for N1=1 and after switching from the
angular to the linear frequency case [37]

B = 2π2

ε0

∣∣∣ e · μ21

h

∣∣∣2 (3.99)

is found for Einstein’s B coefficient.
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Chapter 4
Atoms in Strong Laser Fields

In this chapter, modern applications of laser-matter interaction in the realm of atomic
physics shall be reviewed. Our focus will be on the interaction of atoms with strong
and/or short laser pulses. Due to their availability, a range of new and partly counter-
intuitive phenomena can be observed. Some of these are:

• Above Threshold Ionization (ATI)
• Multi-Photon Ionization (MPI)
• Knee structure in double ionization of helium
• Localization of Rydberg atoms by Half-Cycle Pulses (HCP)
• High-order Harmonic Generation (HHG)

These phenomena can in general not be understood in the framework of pertur-
bation theory. It turns out that the time-dependent wavepacket approach of Chap. 2
is the method of choice to describe and understand a lot of the new atomic physics
in strong laser fields.

In the following, we will mostly deal with the dynamics of just a single electron
(or a single active electron), initially bound in a Coulomb potential. The chapter
will therefore begin with a short review of the unperturbed hydrogen atom, together
with atomic units that will be used subsequently. After a brief introduction to the
two-electron helium atom, different aspects of field-induced ionization, as well as of
HHG will be reviewed in detail.

4.1 The Hydrogen Atom

At the beginning of this chapter some well-known results from basic quantum me-
chanics are gathered. These are the eigenvalues and eigenfunctions of the 3D hydro-
gen atom. Many numerical studies are performed in 1D and therefore also the less
familiar eigensolutions in one dimension will be reproduced here.

© Springer International Publishing AG, part of Springer Nature 2018
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114 4 Atoms in Strong Laser Fields

4.1.1 Hydrogen in 3 Dimensions

The simplest atomic problem is that of the hydrogen atom, where a single electron
feels the bare Coulomb potential,

VC(r) ≡ − 1

4πε0

e2

r
, (4.1)

due to the proton. This problem is solvable exactly analytically and therefore is at
the heart of every basic quantum mechanics course. We assume familiarity of the
reader with the solution procedure and only reproduce the final results here.

4.1.1.1 Eigenvalues and Eigenfunctions

Under the approximation of an infinite nuclear mass (i.e. for Mp/me ≈ ∞1) the
time-independent Schrödinger equation can be solved and the eigenvalues and eigen-
functions for E < 0 are given by [1]

En = − e2

8πε0a0

1

n2
, n = 1, 2, . . . , (4.2)

ψnlm(r,ϑ,φ) = Rnl(r)Ylm(ϑ,φ), (4.3)

where the Bohr radius

a0 = 4πε0
�
2

mee2
(4.4)

has been introduced, spherical coordinates (r,ϑ,φ) have been used, and

Ylm(ϑ,φ) = (−1)m

√
(2l + 1)(l − m)!

4π(l + m)! eimφPlm(cosϑ); m ≥ 0, (4.5)

Yl−m(ϑ,φ) = (−1)mY ∗
lm(ϑ,φ) (4.6)

are the spherical harmonics, defined with the help of the associated Legendre func-
tions Plm(x) [2, 3]. In Fig. 4.1, the absolute values of the spherical harmonics up to
l = 2 are depicted in a polar representation.

The radial function is of the form

Rnl(r) = Nnl exp(−r ′/n)

(
2r ′

n

)l

L2l+1
n−l−1

(
2r ′

n

)
, (4.7)

1Taking the finiteness of the proton mass into account would lead to the replacement of the electron
mass by the reduced mass μ = meMp/(me + Mp) in the final solution.
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Fig. 4.1 Polar plot of the absolute value of some spherical harmonics as a function of the angle ϑ,
measured from the z-axis. The figure is to be imagined rotationally symmetric around the z-axis.
The sign of the spherical harmonic with l = 1, m = 0 is indicated

with the associated Laguerre polynomials2

Ls
k(x) =

k∑
ν=0

(k + s)!
(k − ν)!(s + ν)!

(−x)ν

ν! , (4.8)

the dimensionless radius r ′ = r/a0, and a normalization factor

Nnl = 2

n2

√
(n − l − 1)!

(n + l)! a−3/2
0 . (4.9)

The radial quantum number nr = n − l − 1 gives the number of nodes in the region
r > 0 of the radial function (4.7), while the angular momentum quantum number
fulfills 0 ≤ l ≤ n − 1 and the magnetic quantum number m runs between −l and
+l. In spectroscopic notation, the levels are indicated by two symbols, the principle
quantum number n and the angular quantum number l, which is encoded by a letter
according to 0=̂s, 1=̂p, 2=̂d, 3=̂f, to be continued alphabetically.

For future reference we note that the Laguerre polynomials are related to the
confluent hypergeometric functions according to [4]

2Note that we are using the definition of [4] which leads to a slightly different normalization factor
as compared to the one in [1].
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Ls
k(x) =

(
k + s

k

)
1F1(−k; s + 1; x) . (4.10)

For the nodeless ground state wavefunction of hydrogen, which is also referred to as
the 1s wavefunction, we use that L1

0 = 1 and Y00 = 1/
√
4π in order to arrive at

ψ100(r,ϑ,φ) = 1√
πa30

exp{−r ′}, (4.11)

which will be needed again in Chap. 5.
Using the Rayleigh-Ritz variational principle of Sect. 2.1.1 with a Gaussian trial

function, an upper bound for the ground state energy can be determined using the
variational method of Ritz.

4.1. Use the trial function

ψvar(r) =
(
2α

π

)3/4

exp{−αr2} (4.12)

with the variational parameter α, to determine an upper bound for the ground state
energy of the 3D hydrogen atom (use atomic units).
Hint: The radial part of the Laplace operator in spherical coordinates can be written
as Δr = ∂2

∂r2 + 2
r

∂
∂r .

4.1.1.2 Atomic Units

To simplify the notation considerably, from now on we will almost exclusively use
atomic units (a.u.). They are defined by

h- = e = me = a0 = 1a.u. . (4.13)

Using combinations of powers of these units one can construct atomic units for other
observables, as can be seen by looking at Table4.3 in Appendix 4.A, where SI and
atomic units are given for some frequently occurring physical quantities.

From the definition (4.4), the Bohr radius in SI units follows to be a0 ≈ 0.53 ·
10−10 m. Other SI base units as those of time and current are given by 1s ≈ 4.13 ·
1016 a.u. and 1A ≈ 151a.u.. The atomic unit of time therefore is of the order of 24
attoseconds. The relation of atomic units to expectation values of the 3D hydrogen
problem is elucidated in Appendix 4.A.

4.1.2 The One-Dimensional Coulomb Problem

After having reviewed the hydrogen atom in full dimensionality, we now concentrate
on its one-dimensional analog, which is very frequently used for numerical studies.
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4.1 The Hydrogen Atom 117

4.1.2.1 Exact 1D Coulomb Potential

In atomic units, the exact or “bare” 1D Coulomb potential is given by

V (x) = − 1

|x | (4.14)

and, similar to the 3D potential, has the problem of being singular at the origin.
Fortunately, the eigenvalues of the singular potential can be determined analytically
[5] and are given by

En = − 1

2n2
n = 1, 2, 3 . . . . (4.15)

They are converging to the “continuum threshold” E = 0 and are equivalent to the
eigenvalues of the 3D problem. In addition, however, in the 1D case there is also an
eigenvalue E0 = −∞, with a δ-function type eigenfunction. If the initial state to be
propagated is chosen such that it is zero at the origin then the unphysical state [6] is
eliminated from the dynamics [7].

The eigenfunctions of the non-singular eigenvalues, which are doubly degenerate
are given by [5]

ψσ
n =

√
2/n3|x |(sign(x))σ exp

{
−|x |

n

}
1F1

[
1 − n; 2; 2|x |

n

]
, (4.16)

where 1F1 is the confluent hypergeometric function and where the similarity to the
radial functions in the 3D-case for l = 0 is obvious. For a given n there are two
eigenfunctions, one with positive and one with negative parity (σ = 0: even, σ = 1:
odd). This seems to be contradicting the theorem that there is no degeneracy in 1D
quantum spectra. The theorem, however, can only be derived under the assumption
that the potential has no singularities, which is not true for the bare Coulomb problem
[5, 8].

Furthermore, a short remark on the 1D Coulomb potential restricted to the half
space x > 0 shall be made. It is given by

V (x) =
{ ∞ x ≤ 0

− 1
x x > 0

(4.17)

and in suitable units describes the problem of a “surface state electron” [9]. The
spectrum is again identical to the 3D case. Surface state electrons are hovering above
a dielectric surface and are especially interesting in the context of quantum chaos if
they are driven by microwave radiation. In [9] this is discussed in great detail.
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Fig. 4.2 Soft-core Coulomb
potential with a = 1 (solid
line) versus a = 0.1 (dashed
line) as a function of x in
atomic units
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4.1.2.2 Soft-Core Coulomb Potential

For ease of computation, non-singular approximations to the bare (hard-core)
Coulomb potential are used frequently. These are created by adding a constant term
under the square root in the denominator, leading to

Vsc(x) ≡ − 1√
x2 + a

(4.18)

for the “soft-core” Coulomb potential in atomic units, thereby introducing a length
scale into the problem already in the potential [10].3 Frequently, the Bohr radius
is used for a in dimensioned units and therefore a = 1 in atomic units. Another
potential can be gained by choosing a = 2a.u., which leads to a ground state energy
of −0.5a.u., equivalent to the bare 3D case. Choosing very small values of the
parameter a, the bare Coulomb potential is approached, see Fig. 4.2.

In Sect. 4.3.4, numerical results for the laser-driven dynamics in the soft-core as
well as for the bare Coulomb potential will be compared.

4.2 The Helium Atom

In the following, we gather some basic information about the simplest neutral “many
electron” atom, the helium atom, consisting of an α particle and two electrons.

4.2.1 Hamiltonian and TISE

For the helium atom with nuclear charge Z = 2, we will again consider the approxi-
mation of an infinitely heavy nucleus, such that in atomic units the Hamiltonian and
the TISE for the undriven 3D problem becomes

3The length scale a0 in the bare 3D Coulomb problem appears only in the solution.
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2

r1

r12

r2

1

Fig. 4.3 Helium atom consisting of an α particle with Z = 2 and two electrons with the distances
r1 and r2 from the nucleus, and the interelectronic distance r12

Ĥ(r1, r2) =
{
−1

2
�r1 − 1

2
�r2 − 2

r1
− 2

r2
+ 1

r12

}
, (4.19)

Ĥψ(r1, r2) = Eψ(r1, r2), (4.20)

where the definitions of the distances displayed in Fig. 4.3 have been used.
Also in the helium case, soft-core potentials are frequently used. In a 1D model

with electron coordinates x and y the soft-core Hamiltonian reads

Ĥsc(x, y) = −1

2

(
∂2

∂x2
+ ∂2

∂y2

)

− 2√
x2 + a

− 2√
y2 + a

+ 1√
(x − y)2 + a

. (4.21)

If the soft-core parameter is chosen as a = 0.55, this leads to a ground state energy
of −2.897 (in atomic units), which is close to the true ground state energy, −2.902,
of 3D helium [11].

In the bare Coulomb case but in 1D, one distinguishes between the eZe and the
Zee configuration, with the corresponding Hamiltonians

Ĥ±(x, y) = −1

2

(
∂2

∂x2
+ ∂2

∂y2

)

− 2

|x | − 2

|y| + 1√
(x ± y)2

. (4.22)

For the eZe configuration, i.e., when the two electrons are on opposite sides of the
nucleus, the plus sign holds and in the Zee case, the minus sign holds.

4.2.2 Spin and the Pauli Principle

Although the Hamiltonian (4.19) is not spin-dependent, now the spin of the electrons
plays a decisive role. The total wavefunction, which can bewritten as a direct product
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120 4 Atoms in Strong Laser Fields

ψ(r1, r2)χ(1, 2) (4.23)

of a spatial times a spin part, denoted by χ(1, 2), must be antisymmetric with respect
to the interchange of the particle index, due to the Pauli principle.

To achieve this required antisymmetry, the spin part as well as the spatial part must
have a definite symmetry with respect to particle exchange. We first briefly consider
the spin states of a single electron. Denoting the single particle spin operator for
electron one (in atomic units) by

Ŝ1 = 1

2
(σ̂1,x , σ̂1,y, σ̂1,z), (4.24)

with the Pauli spin matrices from (3.82) in Appendix 3.B, the eigenvalue equation
for the total spin as well as for its z-component read

Ŝ
2
1|±〉 = S1(S1 + 1)|±〉, (4.25)

Ŝ1,z|±〉 = MS1 |±〉, (4.26)

where S1 = 1/2 and MS1 can be either 1/2 or −1/2. In the following, we denote
the single spin up state |+〉 with MS1 = 1/2 by α and the down state |−〉 with
MS1 = −1/2 by β.

Spin states of the composite system that fulfill the requirement of definite symme-
try can be classified with respect to their eigenvalues S, which can be either zero or
one, and the corresponding MS , which runs from −S to S, of the total spin operator
Ŝ = Ŝ1 + Ŝ2 of the two-electron system and its z-component

Ŝ
2
χ = S(S + 1)χ, (4.27)

Ŝzχ = MSχ. (4.28)

The four possible spin states in the two-electron case are gathered in Table4.1.
There is only one antisymmetric combination with S = 0, denoted as singlet state,

whereas one can form a total of three symmetric so-called triplet states with S = 1.
Now the full wavefunction has to be antisymmetric with respect to particle exchange

Table 4.1 There are one antisymmetric (S = 0, singlet) and three symmetric (S = 1, triplet)
combinations of two single-particle spin states

Two electron spin state χ S MS
1√
2
[α(1)β(2) − β(1)α(2)] 0 0

α(1)α(2) 1 1
1√
2
[α(1)β(2) + β(1)α(2)] 1 0

β(1)β(2) 1 −1
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and thus the spin singlet has to be multiplied by a symmetric spatial wavefunction,
whereas the spin triplets have to be multiplied by an antisymmetric spatial part.

4.2.3 Semiclassical Determination of Helium Spectra

Provided that spin-orbit interactions can be neglected, radiative transitions between
singlet and triplet states are forbidden in the electric dipole approximation. Because
of the absence of intercombination lines in the spectroscopy of helium, historically,
the atomic “species” with total spin S = 0 is called parahelium and the one with
S = 1 is refered to as orthohelium.

The determination of the spectrum of (both species of) helium is not such an
easy exercise as in the hydrogen case. In the heyday of quantum mechanics a lot
of unsuccessful efforts have been made to determine the spectrum on the basis of
Bohr-Sommerfeld quantization [3]. The main reason for the failure is the fact that a
two-electron system is classically unstable, because for almost all initial conditions
one of the electrons can approach the nuclueas arbitrarily closely and thereby transfer
its energy to the other one, eventually leading to ionization.

Only in 1991 a satisfactory semiclassical determination of the energy levels for
collinear helium (electrons are restricted to lie on a straight line on different sides of

Table 4.2 Comparison of semiclassical (Herman-Kluk) and full quantum singlet and triplet state
binding energies of the collinear helium (eZe) atom in atomic units, adapted from [13]

State Singlet Triplet

N n HK QM HK QM

1 1 3.2102 3.2459 . . . . . .

2 2.2225 2.2028 2.2393 2.2254

2 2 0.8216 0.8224 . . . . . .

3 0.6045 0.6098 0.6150 0.6184

3 3 0.3621 0.3662 . . . . . .

4 0.2883 0.2890 0.2906 0.2935

5 0.2615 0.2603 0.2616 0.2618

4 4 0.2050 0.2061

5 0.1690 0.1695

6 0.1528 0.1532

7 0.1437 0.1441

5 5 0.1314 0.1320

6 0.1112 0.1117

7 0.1006 0.1016

6 6 0.09127 0.09204

7 0.07922 0.07928
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the nucleus, see the Hamiltonian in (4.22) in the eZe case) was achieved by using
semiclassical periodic orbit quantization techniques (cycle expansion) based on the
dynamical zeta function [12]. Compared to a full numerical solution of the TISE, the
results have an accuracy of a few percent of the average level spacing.

The same case has lateron also been treated by using the Herman-Kluk propa-
gator of Sect. 2.3.4 for both the singlet as well as the triplet states with comparable
accuracy [13], see Table4.2. There, the binding energies −Re(ENn) as a function of
the approximate quantum numbers N , n = N , N + 1, . . . for the inner and outer
electron are shown for both bound states, i.e. N = 1, as well as resonance states
N > 1. The semiclassical energies have been extracted from autocorrelation func-
tions as indicated in Sect. 2.1.3, whereas the full quantum results have been obtained
by using the complex rotation method.

4.3 Field-Induced Ionization

Apart from the excitation of higher lying states, the most prominent effect that an
external field can have on the dynamics of an electron initially bound in an atom is
ionization.We will deal with relatively strong fields in the following and will thereby
focus on ionization phenomena in several different regimes, ranging from the quasi-
stationary case to the case of almost δ-function like perturbation by half-cycle pulse
fields.

4.3.1 Tunneling Ionization

In the case of long wavelengths and relatively strong fields (I ≈ 1014Wcm−2), the
ionization of an atom induced by a laser can be treated under the assumption of a
strong quasi-static field, leading to a relatively low potential barrier. A snapshot of
the distorted Coulomb potential

V (r, t) = VC(r) + r · E0 sin(ωt) (4.29)

at t = −π/(2ω) with the electric field polarized in the z-direction is shown in
Fig. 4.4. Due to the low barrier, an electron, initially in the ground state, can tunnel
out of the regionof attractionwith a rate givenbelow.For stronger fields, a direct “over
the barrier” ionizationwould even be possible. In early experiments, the experimental
realization of tunneling ionization was done with the help of mid-infrared lasers like,
e.g., the CO2-Laser with a rather long wavelength of 10.6µm [14], leading to a
large ponderomotive energy and thus a small Keldysh parameter, to be discussed
in Sect. 4.3.3. Nowadays, laser intensities in the near infrared are high enough to
generate small Keldysh parameters, but the quasi-static nature of the tunneling barrier
becomes more and more questionable in these cases.
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Fig. 4.4 Statically distorted Coulomb potential (solid line) along the z-axis and potential induced
by an external field of amplitude E0 = 0.05a.u., polarized in the z-direction (dashed line). The
ground state energy of the unperturbed hydrogen atom in atomic units is indicated by the horizontal
dotted line

For the 3D hydrogen atom, the tunneling ionization rate in the case of E0 � 1a.u.
is given by (see Exercise 1 on p. 283 in [15])

Γtu = 4

E0 exp
{
− 2

3E0

}
. (4.30)

A generalization of this formula for arbitrary atoms has been given by Ammosov,
Delone and Krainov (ADK) [16]. An easy derivation of an analogous form of the
exponential dependence on inverse field strength is done in Exercise 4.2, where we
consider tunneling out of a distorted square potential well of zero range, which for
better visibility can also be thought of as a finite range potential.

4.2. Calculate the Gamov factor

Γtu ∼ exp

[
−23/2

∫ r f

0
dr

√
V (r) − Eg

]

for the rate of tunneling at a negative energy Eg out of a bound state of a tilted square
well in 1D (with V(r=0)=0) in the presence of a quasistatic external field E0 (see Fig.
4.5) and compare the result with the exponential factor in the case of 3D hydrogen.

4.3.2 Multi-Photon Ionization

Up to nowwe have considered the quasi-static case of a Coulomb potential, distorted
by a constant electric field. In the focus of the presentation below, however, is the
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Fig. 4.5 Tunneling out of a
square well, supporting a
bound state at Eg

Eg

0

r

V (r)

rf0

question which effect a time-dependent external field exerts on an initially bound
electron. If the energy of the photon is not enough to overcome the ionization thresh-
old and if tunnel ionization is extremely unlikely, then the transition to the continuum
may happen via the absorption of several photons. In this so-called multi-photon ion-
ization (MPI) two principally different scenarios are usually distinguished:

• ResonantMPI (REMPI):Here the spectrumof the unperturbed systemhas spacings
close to the photon frequency, a review of that topic can be found in [17]

• Nonresonant MPI: The frequency of the photons is not in resonance with energy
differences of the system

A simple model that allows to understand the basic features of MPI is that of an
electron in a Gauß potential given by

VG(x) ≡ −V0 exp{−σx2} . (4.31)

This choice allows the investigation of resonance phenomena, that occur whenever
the average level spacing is equal to the external frequency. Furthermore, the poten-
tial has the nice feature that, in contrast to the Coulomb case, it allows only for a
finite number of bound states and therefore, the ionization probability can be calcu-
lated with great ease, see below and [18]. We will review numerical results for the
ionization in the Coulomb case in Sect. 4.3.4 for 1D, as well as in Sect. 5.2.1, where
3D H-atom results are compared to the ones for the hydrogen molecular ion H+

2 .
For the parameters V0 = 0.6a.u. and σ = 0.025a.u., the potential together with

its bound state energies at E0 = −0.518, E1 = −0.37, E2 = −0.23, E3 = −0.12,
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Fig. 4.6 Gauß potential
(solid line) with the six
eigenvalues (horizontal
lines) for the parameters
given in the text
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E4 = −0.04, E5 = 0 (all in a.u.) is depicted in Fig. 4.6.4 The average distance
between nearest neighbors is

�E = 1

4

3∑
n=0

(En+1 − En) ≈ 0.12 a.u.. (4.33)

In order to study ionization, the initial state is taken as the ground state of the
system, which is to a good approximation given by a Gaussian wavepacket

Ψγ(x, 0) =
(γ

π

)1/4
exp

{
−γ

2
x2

}
(4.34)

with γ = 0.154a.u.. The ionization probability under laser irradiation as a function
of time in the case of the Gauß potential can be calculated most easily from the
finite(!) sum

PI(t) = 1 −
5∑

n=0

|〈Ψγ(t)|ψn〉|2, (4.35)

because it has a finite number of bound states (six). This is the probability not to
be in a bound state (calculated by solving the TISE numerically) any more. This
probability typically increases as a function of time, if the electron can climb up the
ladder of energy eigenstates and leave the bound states. In order to calculate it, the
solution of the time-dependent Schrödinger equation is needed, and therefore we
need to know the explicit form of the laser field. The one that has been used in the
investigations of van de Sand [19] is

VL = E0x sin2
(

ωt

16

)
sin(ωt) , (4.36)

4Note that each symmetric well potential in 1D has at least one bound state, no matter how shallow
it is [15]. Furthermore, by using Wentzel Kramers Brillouin (WKB) quantization

W (E) =
∮

dx p = 2π(n + 1/2) (4.32)

with the short action W (E) = S(t) + Et , the spectrum is very well reproduced [19].
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where the first sine factor is the envelope of the pulse, extending over 8 cycles,
T = 2π/ω, of the field (thereafter the pulse is assumed to be zero). The field strength
is E0 = 0.032a.u.. The frequency of the laser has been varied in order to study
resonance phenomena. The numerical results have been gained by solving the full
quantum problem, using the split-operator FFT method, as well as by using the
semiclassical Herman-Kluk propagator (see Sect. 2.3).

(a) Nonresonant case: ω = 0.09a.u. :
In Fig. 4.7, the ionization probability aswell as the occupation probabilities of the
states 0–2 are depicted as a function of time.AnonresonantRabi oscillation (with
amplitudemuch smaller than unity) between the ground and the first excited state
can be observed. The fast oscillations (with 2ω) in the occupation probabilities
are due to the counter-rotating term, which would not be present if the RWA had
been invoked.5 Furthermore, some probability leaks into the continuum and at
the end of the pulse the ionization probability is about 15%. The semiclassical
results in panel (b) very nicely reproduce the quantum ones.

(b) Resonance case: ω = 0.124a.u. :
For the results shown in Fig. 4.8, the same field strength as above has been
used. The frequency, however, is now close to the average level spacing. The
final ionization then is around 80% and the wavepacket methodology is very
well suited to describe this nonperturbative effect of the laser field. From the
figure it can be seen that the occupation of the ground state decreases in a quasi
monotonous way (and does not rise at the end of the pulse as in case (a)).
Probability is being transferred successively into higher states and finally into
the continuum E > 0. This process is called REMPI (Resonantly Enhanced
Multi Photon Ionisation). As in case (a), the semiclassical results reproduce the
main features of the resonant dynamics very well.

The ionization probability after the laser excitation as a function of external
frequency is given in Fig. 4.9. Maxima in PI(8 T ) occur at ω = 0.12a.u. and at
ω = 0.14, 0.107a.u.. These are again very well reproduced semiclassically and are
related to transitions in the spectrum as follows

n = 2 → n = 3 : ω = 0.107 a.u. (4.37)

and

n = 0 → n = 1 and n = 1 → n = 2 : ω = 0.14 a.u.. (4.38)

In principal, even higher ionization probabilities could be achieved if the frequency
of the external field would be allowed to change in the course of time. So-called
down-chirps have been investigated in molecular dissociation and will be dealt with
in detail in Chap. 5.

5A direct comparison with the RWA results of Chap. 3 would ask for an extension of the two-level
results to pulsed driving and in addition the dipole matrix element would have to be calculated.
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Fig. 4.7 Ionization probability (solid line) and occupation probabilities (n = 0 long dash-short
dash, n = 1 dashed, n = 2 dotted) as a function of time in the nonresonant case ω = 0.09a.u. a
full quantum results, b semiclassical results; adapted from [19]

Fig. 4.8 Ionization probability (solid line) and occupation probabilities (n = 0 long dash-short
dash, n = 1 dashed, n = 2 dotted) as a function of time in the resonant case ω = 0.124a.u. a full
quantum results, b semiclassical results; adapted from [19]

To finish this section, a short remark on classical trajectory calculations to repro-
duce the quantum results is in order. These calculations are based on the solution
of Hamilton’s equations and do not take phase information into account. They have
been performed by van de Sand, and for the present problem lead to considerably
worse results than semiclassics [19].
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Fig. 4.9 Ionization
probability PI as a function
of the laser frequency,
semiclassical results are
depicted by the filled
diamonds; from [19]

4.3.3 Keldysh Parameter and Strong-Field Approximation

Of central importance for the understanding of the ionization mechanism is the
Keldysh parameter, defined by

γK =
√

Ip
2Up

, (4.39)

where Ip is the ionization potential of an atom and the ponderomotive energy Up is
given by (3.28). γK compares the energy of the external field with a typical atomic
energy. In the case of the hydrogen atom and in SI units Ip ≈ 13.6eV and at a
wavelength of 800nm and intensity of 1014Wcm−2, γK ≈ 1.

For γK � 1 the external field is considered to be a small perturbation and multi-
photon ionization of Sect. 4.3.2 is the main ionization mechanism, whereas for γK <

1 the atomic potential plays the role of a perturbation and tunneling ionization of
Sect. 4.3.1 starts to become dominant.

With the two different breakups of a system field Hamiltonian

Ĥ(t) = Ĥi + VL(t) = T̂k + VC + VL(t) = Ĥ f (t) + VC (4.40)

in mind, one defines the T-matrix element for the transition probability amplitude
from an initial to final state either as

f (t) = 〈Φ f (t)|Ψ +
i (t)〉, (4.41)

with Ψ +
i (−∞) = Φi being an eigenstate of Ĥi or as

f (t) = 〈Ψ −
f (t)|Φi (t)〉, (4.42)

with Ψ −
f (∞) = Φ f being the Volkov state in length gauge of Sect. 3.1.4 in atomic

units.

This copy belongs to 'veltien'

http://dx.doi.org/10.1007/978-3-319-74542-8_3
http://dx.doi.org/10.1007/978-3-319-74542-8_3


4.3 Field-Induced Ionization 129

From the time-dependent Schrödinger equation it can be shown by solving
Exercise 4.3 that, up to an irrelevant phase factor,

f (t) =
∫ t

−∞
dt ′〈Φ f (t

′)|VC|Ψ +
i (t ′)〉, (4.43)

f (t) =
∫ ∞

t
dt ′〈Ψ −

f (t ′)|VL(t
′)|Φi (t

′)〉, (4.44)

i.e., the transition amplitudes can also be put in an integral form [20].

4.3. By using the TDSE, show that the transition amplitudes can be written in
integral form.
Hint: use the derivative of a parameter integral d

dt

∫ b(t)
a(t) dt

′ f (t ′) = db(t)
dt f (b(t)) −

da(t)
dt f (a(t)).

Using the above integral forms, one can apply the first-order Born approximation
[21], which amounts to the replacements of the solutions of the full time-dependent
Schrödinger equation by the one of the corresponding arrangement channel according
to (4.40). In the present context this is the so-called strong-field approximation (SFA)
or Keldysh-Faisal-Reiss (KFR) approximation [22] and leads to the two equivalent
forms

f SFA =
∫ ∞

−∞
dt ′〈Φ f (t

′)|VC|Φi (t
′)〉, (4.45)

f SFA =
∫ ∞

−∞
dt ′〈Φ f (t

′)|VL(t
′)|Φi (t

′)〉. (4.46)

Therefore in the SFA, one can use either potential to evaluate the transition ampli-
tude. The first form can be viewed as scattering of the electron from the ionic core
and subsequent overlap with a Volkov state. In both cases, multiphoton as well as
tunneling ionization can be described, depending on the magnitude of γK. The sec-
ond form is interpreted as absorption of a single photon and an overlap with the same
Volkov state.

Based on the exact expression (4.41), an investigation of the transition from tun-
neling ionization to the multiphoton type by varying γK has been performed [20],
which has corroborated the prediction by Keldysh [23]. The starting point is the
time-periodic Ansatz (Fourier expansion, see also (2.173))

|Ψ (t)〉 = exp[iIpt]
∑
j

|ψ j 〉e−i jωt (4.47)

for the solution of the TDSE. In the case of a circularly polarized external field

E(t) = E0
[
ex cos(ωt) + ey sin(ωt)

]
(4.48)
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the solution of the inhomogenous equations

[
Ĥ0 + (Ip − nω)

]
|ψn〉 = E0

2
(x + iy)|ψn−1〉 (4.49)

for off-shell Coulomb wavefunctions (energy is not conserved in the laser driven
case) is determined as decribed in Appendix A of [20]. The derivation of (4.49) from
the TDSE is very similar to the procedure in Sect. 2.3.1 and a term proportional to
|ψn+1〉 has been discarded in the spirit of perturbation theory.

Tunneling will then be monitored at the tunnel exit r f , which is calculated from
the static potential at maximal field strength (see Fig. 4.5), and by looking at

Ψ +(r f , t f ) =
∫

d3ri K (r f , t f ; r i , ti )Ψ (r i , ti ). (4.50)

Inspired by the Fourier series above, Ψ +
n (r f ) is defined as a virtual state that has

absorbed n photons. For the quantity

P rel
n = |Ψ +

n (r f )|2
|Ψ +

max(r f )|2 , (4.51)

which is the relative ionization probability (normalized to the maximal value) after
absorption of n photons, in the case of the 3Dhydrogen atom, the behaviour displayed
in Fig. 4.10 is found [20]. For small Keldysh parameter, the highest probabilities are
found for ionization without absorption, i.e. ionization from the ground state via
tunneling. For larger values of γK multiphoton ionization becomes more probable.

In the case of higher frequencies, the transition to predominant ground state tun-
neling proceeds already at larger values of the Keldysh parameter, as can be seen in
the right panels of Fig. 4.10.

4.3.4 ATI in the Coulomb Potential

If the photon frequency is of the order of an atomic unit, then already the absorption
of a single photon is enough to ionize an atom (the ground state energy of hydrogen
is −0.5a.u.). Intriguingly, even in that case an atom can absorb more than one single
photon, however, as we will see in the following. This breed of MPI is called above
threshold ionization (ATI). Experimentally, the effect has first been shown to exist in
the end of 1970s by using laser driven Xe atoms [24]. Theoretical studies showing
the effect have been done for several models of the hydrogen atom by solving the
time-dependent Schrödinger equation.

In the following a study using both 1D models, the soft-core and also the bare
Coulomb potential from Sect. 4.1.2, will be reviewed. A lot of work in this field has
also been done by using the strong-field approximation [25].
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(a)

(b)

(c) (f)

(e)

(d)

Fig. 4.10 Relative ionization probabilities of laser (circularly polarized) driven hydrogen as a
function of the number of absorbed photons, n, for ω = 0.025 (a–c) and for ω = 0.05 (d–f), for
different values of Keldysh parameter (here denoted by γ) [20]

For the numerical study of ATI an external field of the form

E(t) = E0 f (t) sin(ωt), (4.52)

f (t) =
⎧⎨
⎩

sin2[πt/(2τ1)] 0 < t < τ1
1 τ1 ≤ t ≤ τ2 − τ1

cos2[π(t + τ1 − τ2)/(2τ1)] τ2 − τ1 < t < τ2

(4.53)

with the parameters

E0 = 1 a.u., (4.54)

ω = 1 a.u. (4.55)

has been used in [7]. The ponderomotive energy and the Keldysh parameter then
have the values Up = 0.25a.u., and γK = 1, respectively. The total pulse duration
is 25 optical cycles (τ2 = 50π/ω) and the field is switched on over 5 optical cycles
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(τ1 = 10π/ω), is constant for 15 optical cycles, and is switched off in another 5
optical cycles.

Numerical results from [7] for the initial condition

Ψ (x, 0) = ψσ=1
1 (x) = √

2xe−x (4.56)

are depicted in Fig. 4.11 for the bare and the soft-core (with a = 1a.u.) Coulomb
potential. Especially in the case of the bare Coulomb potential a distinct splitting of
the wavepacket into different subpackets can be observed. These subpackets corre-
spond to parts of the wavefunction that have absorbed a different number of quanta of
radiation energy. Although the field is treated classically, the excitation of the system
shows clear peaks around multiple integers of the photon energy, which leads us to
speak of the absorption of quanta of energy.

There is a certain probability that an electron has asymptotically the velocity
�x/�t corresponding to a kinetic energy

Ekin = n�ω − Ip (4.57)

equal to the energy of the ATI peak.6 For the present field parameters and for the
hard-core potential, the first peak in the spectrum is at an energy of 1/2a.u.. This is
the Einstein peak, because it is the peak well known from the photo-electric effect,
for the explanation of which Einstein was awarded the 1921 Nobel Prize in Physics.
Further ATI peaks well visible in the bare Coulomb case are separated by 1a.u..

Comparing the results for the bare and the soft-core Coulomb case in Fig. 4.11,
we first notice that the Einstein peak is shifted towards lower energies in the second
case. This is due to the fact that a = 1a.u. has been chosen for the soft-core pa-
rameter here. For a = 2a.u. the peak would be at the same position as in the bare
Coulomb case.More importantly, however, the soft-core potential leads to a dramatic
underestimation of the first as well as all higher ATI peaks!

A theoretical understanding of ATI can be gained by using the Herman-Kluk
propagator, as has been shown by van de Sand [19]. It turns out that interfering
trajectories are responsible for the formation of the ATI peaks, which cannot be
described by using pure classical mechanics.

Furthermore, for very high intensities, the low energy ATI peaks are usually
shifted and suppressed due to the AC Stark shift of the atomic Rydberg levels and
the continuum in the presence of the laser field. If theACStark shift of the groundstate
can be neglected, it turns out that the ionization potential in the presence of a laser
with intensity I , leading to a ponderomotive energyUp (see (4.58)), is given by [27]

Ip(I ) � Ip +Up (4.58)

6The increase of Ip by Up (see (4.58)) does not play a role here [26].
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Fig. 4.11 Photo electron
spectra and wavefunctions
for ATI in the “bare” (upper
panels) and in the
“soft-core” (lower panels)
Coulomb-Potential, adapted
from [7]
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and if nω < Ip(I ) ionization by n photons is forbidden, although this is not a strict
argument, because the laser pulse usually has a smoothly varying envelope. In the
case of atomic hydrogen, however, also the AC Stark shift of the ground state has be
considered, see [28].

4.3.5 Stabilization in Very Strong Fields

A counter-intuitive phenomenon has been predicted theoretically to occur in very
strong external fields, i.e., fields that are even stronger than an atomic unit. It has been
shown that a continued increase of the field strength will eventually lead to a decrease
of photoionization. Frequently used techniques to study this phenomenon are, as in
the ATI case, the strong-field or Keldysh-Faisal-Reiss approximation discussed in
Sect. 4.3.3.

Due to the fact that most of the features of stabilization can be understood clas-
sically, in the following we focus on a classical mechanics study of a 1D soft-core
Coulomb potential, driven by a “monochromatic” electric field

E(t) = E0 f (t) sin(ωt) . (4.59)

If the field is switched on over 5 periods (ω = 0.8a.u.) and then oscillates for 50
periods with the constant amplitude E0, the behavior shown in Fig. 4.12 is observed
[29]. For this figure5000 different bound (E < 0) initial conditions have been chosen
and the solution of Newton’s equation has been calculated numerically. As a function
of the field amplitude, the fraction of electrons that have positive energy after the
pulse (the fraction of ionized electrons) is then plotted. For fields larger than an atomic
unit, ionization as a function of field strength on average drops monotonically.

This phenomenon, which is referred to as stabilization against ionization, can be
explained by going to the Kramers-Henneberger frame of Chap. 3. The classical
soft-core Hamiltonian of the driven system then is given by

Fig. 4.12 Fraction of
ionized electrons in an
almost monochromatic laser
pulse as a function of field
strength [29]
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Fig. 4.13 Phase space orbit
of an electron for ω = 0.8,
α0 = 11.7 and
q(0) = p(0) = 0, all in
atomic units, adapted from
[29]

H(p, q) = p2

2
− 1√

1 + [q + α(t)]2 , (4.60)

in atomic units (and in 1D with q denoting the position in phase space) and

α̇(t) = −A(t), (4.61)

and thus

α̈(t) = E(t) (4.62)

hold. The solution of this differential equation after the field is switched on is given
by

α(t) = −α0 sin(ωt), (4.63)

with the quiver amplitude α0 = E0/ω2. In the KH frame, the nucleus can be thought
of as oscillating with a typical velocity of ωα0 between the turning points ±α0.

For the electron,moving in the field of the nucleus, the behavior shown in Fig. 4.13
is typically found. Starting from the origin of phase space, after an initial acceleration,
the electron is drifting into a certain direction for a long time and is passed by the
nucleus frequently (twice in an optical cycle). At each encounter (a spike in the phase
space orbit) it is shortly pulled either to the left and then to the right (or the other way
round). The net effect is very small because the two pulls almost cancel each other.
If the nucleus is at a turning point, however, its influence on the electron motion can
be very strong. First of all, the nucleus is very slow at the turning point and can act
for a long time on the electron and secondly, both pulls can have the same effect,
because the nuclear motion may have changed its direction in-between both events.
The electron then also turns around [29] and acquires energy until it has enough to
leave the nucleus.

Stabilization can now be explained by the fact that for strong fields, the electron
stays for longer and longer times in regions where no energy gain is possible. These
regions increase in size with growing α0.
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Fig. 4.14 Schematic plot of
a half-cycle pulse of length
Tp

E (t)

tTp

4.3.6 Atoms Driven by Half-Cycle Pulses

The external driving considered so far was either static or (almost) monochro-
matic. What happens if a pulse, which is very short and therefore very poly-
chromatic, hits an atomic system? The ultimate form of such a short pulse is
a half-cycle pulse (HCP) schematically depicted in Fig. 4.14. It is assumed to
be nonzero only for half an oscillation period. The generation of such puls-
es is the subject of a book on its own. Depending on the shortness required,
they can be generated by irradiating semiconductors with pulsed optical lasers
[30, 31], or by applying voltage pulses on capacitor electrodes [32].

We begin this section by considering a hydrogen atom initially in its ground state,
given in (4.11), in the field of a single pulse and then turn to the case of a Rydberg
atom in a periodic train of half-cycle pulses.

4.3.6.1 Ground State Hydrogen Under a Single HCP

A hydrogen atom coupled to an electric field in length gauge is governed by the
Hamiltonian

Ĥ(t) = Ĥ0 + r̂ · E(t), (4.64)

with the unperturbed 3D Coulomb Hamiltonian Ĥ0. How can the time-dependent
Schrödinger equation be solved for half-cycle pulse driving? The answer to this
question is given by an application of theMagnus expansion of Sect. 2.2.5. When the
length Tp of the pulse is very short compared to a typical orbital time, like Te = 2π
in the case of ground state dynamics in the hydrogen atom, and the field amplitude
is very high, the first order Magnus approximation

|Ψ (t)〉 ≈ exp

(
−i

∫ t

0
dt ′ Ĥ(t ′)

)
|Ψ (0)〉

≈ exp

[
−i

(∫ t

0
dt ′E(t ′)

)
· r̂

]
exp[−iĤ0t]|Ψ (0)〉 (4.65)
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for the wavefunction can be used [33]. Analogous to the procedure in the interaction
picture presented in Sect. 2.2.5, it can be derived from the exact time-evolution oper-
ator in the Schrödinger picture by neglecting the time-ordering operator. In addition,
also the non-commutativity of the perturbation with the unperturbed Hamiltonian is
neglected. Both approximations improve, the shorter the time span of the perturba-
tion is.

The first exponent in the second line of the solution above, by comparison to a
plane wave eik·r , leads to the definition of the momentum that is transferred to the
atomic system

� p := −
∫ t

0
dt ′E(t ′) . (4.66)

If the initial state is an eigenstate of Ĥ0, then apart from the phase due to the applica-
tion of the unperturbed Hamiltonian, the momentum change is the main effect of the
total Hamiltonian. Due to the fact that only the pulse area7 appears in the expression
above, the HCP could also have been a δ-pulse with the appropriate strength

E(t) = −� pδ(t − t1), t1 ∈ (0, Tp) . (4.67)

In Fig. 4.15, taken from [33], it is shown that in the case of the hydrogen atom starting
from the ground state, for a half-cycle pulse with Tp = 0.3a.u. and for the absolute
value of the momentum transfer q = −�p > 3a.u. the atom finally is ionized with
almost certainty. Furthermore, full DVR calculations show that no matter if the pulse
is rectangular, with E0 = q/Tp or sinusoidal, with E0 = πq/(2Tp), the outcome is
identical to the first order Magnus results.

4.4. Calculate the excitation probability by a half cycle pulse from the 1s ground
state of hydrogen into the 2p state as well as into the 2s state as a function of the
(negative) momentum transfer q in first order Magnus approximation.

So far the length gauge was used for the calculation of the ionization probability.
It is worthwhile to note that including terms of third order in the pulse length (in the
length gauge this means that the third order Magnus expansion has to be employed)
the gauge invariance of the results for excitation and/or ionization probabilities has
been shown [34]. By solving Exercise 4.5, analogous findings can be rederived for
the velocity gauge and in the Kramers-Henneberger frame.

4.5. Consider the time-evolution operator (TEO) Û (Tp, 0) for the velocity gauge
Hamiltonian

Ĥv = [ p̂ + A(t)]2
2

+ V (r)

as well for the Kramers-Henneberger (KH) Hamiltonian

7This is another occurrence of the area theorem (here assumed to be positive) of Sect. 3.2.
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Fig. 4.15 a Ionization
probability and occupation
probability of the ground
state, b some occupation
probabilities for excited
states of the hydrogen atom
in very intense HCPs as a
function of momentum
transfer q [33]

Ĥa = p̂2

2
+ V [r + α(t)]

in the Schrödinger picture.

(a) Use the second order Magnus expansion and the Zassenhaus formula to derive
the TEO in the velocity gauge up to third order in the pulse length Tp.

(b) Use the first order Magnus expansion and the Zassenhaus formula to derive the
TEO in the KH frame up to third order in the pulse length Tp.

(c) Show that both results amount to the same result for excitation and/or ionization
probabilities

P = |〈Ψ (Tp)|Û (τ , 0)|ψ100〉|2

from the ground state.
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This section shall be closed by a brief remark on the orders of magnitude that are
needed to experimentally realize the findings shown above. In order for the first order
Magnus approximation to be applicable Tp � 1a.u. and thus the pulse length has
to be of the order of attoseconds (10−18 s). Furthermore, the momentum transfer for
total ionization has to be larger than one atomic unit and therefore, the corresponding
field strengths have to be of the order of several atomic units and the intensities should
be of the order of 1018Wcm−2.

4.3.6.2 Rydberg States in Periodic Trains of HCP

If the initial state with energy En is a highly excited Rydberg state with a relatively
long Kepler period of

Tn = Ten
3 = 2πn3 , (4.68)

in atomic units then the absolute length of the half-cycle pulse may be very much
longer than in the case studied in the previous section and can still be considered to
deliver a δ-function like kick to the atom. For Rydberg states of principal quantum
number around n = 400, Kepler periods are in the range of nanoseconds and for n
around 60 they still are in the picosecond range.

An investigation of the effects of a single pulse on the dynamics of Rydberg atoms
has been done in [35]. Many interesting effects do emerge, however, if a periodic
train of HCPs with period T is applied to a Rydberg atom. A combined experimental
and theoretical study of such a system is reported in [32].

In the following, we consider in some detail the bare 1D Coulomb potential with
a periodic kicking term that leads to the classical Hamiltonian

H 1D(p, q, t) = p2

2
− 1

q
− q�p

N∑
k=1

δ(t − k/νT ) (4.69)

in terms of phase space variables (q, p) with νT = 1/T . Here we also assume that
the motion is restricted to the positive half space, which can be motivated by the
presence of a centrifugal barrier due to a quasi angular momentum Λ, which we let
go to zero [32], and which can also be realized experimentally by photo excitation of
selected Stark states [36]. Due to the instantaneous kicking, the stroboscopic classical
dynamics (over one period) can be factorized according to

(qk, pk) = MCoulM�p(qk−1, pk−1) (4.70)

into the kick contribution and an unperturbed Coulomb term analogous to the second
line in (4.65).
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Like in quantummechanics, the kicking term’s action is to change the momentum
according to

(qk−1, pk−1 + �p) = M�p(qk−1, pk−1) , (4.71)

leading to the new energy

Ek = �p2

2
+ pk−1�p + Ek−1 . (4.72)

The energy conserving Coulomb dynamics over one period of the driving can be
extracted from the parametric form of the orbit, which for negative energies is given
by [37]

q = n2k(1 − ε cos ξ), ξ − ε sin ξ = n−3
k t, (4.73)

with the eccentricity ε,which for vanishingquasi-angularmomentumconsidered here
is equal to unity, and nk = (2|Ek |)1/2. Due to the fact that the Coulomb potential is
a homogenous function, depending only on a single power of the position variable,
the scaling transformations with the initial quantum number n

q = n2q0, (4.74)

p = n−1 p0, (4.75)

t = 2πn3t0 (4.76)

can be used to extract the factor n−2 from the Hamiltonian. Analogously, for the
frequency

ν = ν0

2πn3
(4.77)

applies.
Two different types of classical dynamics can be distinguished. For �p0 > 0,

i.e., a kicking force that acts away from the center, one finds that even for very weak
driving the phase space plot is completely chaotic, see, e.g., Fig. 4.16a. For a force
that acts towards the center of Coulomb attraction (�p0 < 0), however, classical
dynamics with a mixed phase space emerges, which is depicted in Fig. 4.16b, where
regular and chaotic regions are both present.

Let us concentrate on kicks towards the singularity (�p0 < 0) in the following.
The scaled frequency can be chosen either such that the phase space contour for the
initial energy is in a regular area (see the left Poincaré section in Fig. 4.17, where
the microcanonical initial state is indicated by a red line), or it can be chosen such
that the red line is in a chaotic area (see the Poincaré section on the right). In the
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Fig. 4.16 Stroboscopic phase
space plot with n = 50 and
a �p0 = 0.01, ν0 = 16.8and
b �p0 = −0.3, ν0 = 15.9,
all in atomic units. The
crosses are periodic orbits
and the dashed line shows
the location of the ionization
threshold energy E = 0 [38]

first case by comparing classical and quantum ionization dynamics a stabilization
(or localization) of the classical results for the survival probability in a bound state
(i.e., 1 − PI)

P(t) =
{∑

n |〈ψn|Ψ (t)〉|2 quantum∫
E<0 dp dq f (q, p, t) classical

(4.78)

is found. In the quantum result, the summation runs over all bound eigenstates and f
is the phase space function corresponding to the quantum mechanical wavefunction.
In the second case, if the initial state is in the chaotic range, the opposite effect is
observed. Now quantum mechanically the results are localized. This effect remains
if the number of kicks is increasing as can be seen in Fig. 4.18.

A semiclassical understanding of the observed effects would be a real break-
through. First indication of semiclassical localization has been given in a study of
the kicked rotor [40]. Right at the onset of localization, however, it is becoming ex-
tremely hard to converge the numerical results. In the case of HCP driven Rydberg
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Fig. 4.17 Survival probability after 200 kicks as a function of the scaled frequency (n = 60) for
�p0 = −0.3a.u. (upper panel), and Poincaré sections for different scaled frequencies (two lower
panels); red lines indicate the initial state [39]

atoms, as can be seen in Fig. 4.18, application of the Herman-Kluk propagator shows
the localization up to around 100 kicks for the chosen parameters. For a larger number
of kicks, the results tend towards the classical ones, however. Also here, convergence
is a problem due to the fact that at longer times, the Herman-Kluk prefactors assume
values of 1020 [38].
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Fig. 4.18 Quantum (dotted
line), semiclassical (solid
line), and classical (dashed
line) survival probability as a
function of time for
�p0 = −0.3a.u. and
ν0 = 15.9. Quantum result is
shifted by 0.2 for better
visibility [38]

1 10 100
Number of kicks

0

0.2

0.4

0.6

0.8

1

1.2

S
ur

vi
va

l p
ro

ba
bi

lit
y

Quantum

Semiclassical

Classical

4.4 Sundry Topics

We will come back to the discussion of ionization phenomena in sinusoidally driven
dynamics of electrons and will discuss some surprising effects that have emerged
recently, due to the advent of more powerful computers as well as more elaborate
experimental techniques.

Firstly, a more thorough discussion of above threshold ionization, going beyond
the 1D model of Sect. 4.3.4 is presented and secondly, the ionization of atoms (and
molecules) in mid infrared fields and at low energies of the emitted electrons will
be discussed. Thirdly, in the last subsection, surprisingly large double ionization
probabilities of the helium atom will be in the focus.

4.4.1 Three-Step Model and ATI Rings

An electron, initially bound in an atom, can undergo different kinds of dynamics,
when it is driven by an external laser field as we have learned already. Depending on
the value of the Keldysh parameter this can be multi-photon ionization or tunneling
ionization.

Some more subtle effects to be discussed below can be well understood by con-
sidering the three-step model [41], displayed in Fig. 4.19. After the initial ionization
step (i) and subsequent acceleration in the laser field (ii), the possibility of recollision
(iii) leads to the interesting effect of High-order Harmonic Generation (HHG) if the
electron recombines with the atom and will be discussed in the next section. Ac-
companying this process is the generation of photo-electrons. In terms of a classical
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Fig. 4.19 Different scenarios in a laser driven atom based on the three-step model: (i) tunneling
of the electron, (ii) acceleration in the laser field (iii) recollision of the electron with the ionic
core. The final step can result either in stimulated recombination of the ejected part of the electron
with a remaining part at the ionic core under photo emission (this then leads to high-order harmonic
generation, discussed in the next section) or to the emission of photo-electrons. Themaximal energy
of the single photon created and the maximal energies of emitted photo-electrons with or without
backscattering are also indicated (courtesy of Thomas Fennel)

description with electron trajectories, the exact timing of the initial ionization event
with respect to the laser field is discriminating the possible outcomes (HHG or final
photo emission).

In a 2D study of the soft-core hydrogen atom, initially in its groundstate, under a
12 cycle 532nm pulse (ω ≈ 0.0857 a.u.) with intensity of 5× 1013 W/cm2, linearly
polarized in the y direction, the ATI rings displayed in Fig. 4.20 have been found
[42]. They are emerging in the Fourier transformed unbound part of the propagated
wavefunction of the electron after the pulse is over. The radius of the rings

Kr =
√
K 2

x + K 2
y (4.79)

Fig. 4.20 ATI rings for a 12
cycle laser driven 2D
hydrogen atom with laser
wavelength λ = 532 nm,
intensity
I = 5 × 1013 W/cm2,
linearly polarized in the y
direction [42]
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Fig. 4.21 Photo-electron raw image for ionization of xenon with vertical laser polarization parallel
to the page (on the left) and with laser polarization perpendicular to the page (on the right) [45]

gives the photoelectron momentum and if n is the index of the ring, then (in atomic
units)

1

2
[K 2

r (n) − K 2
r (n − 1)] = ω, (4.80)

in close analogy to the 1D study of the hydrogen atom discussed in Sect. 4.3.4.
Experimentally, similar rings havefirst beenobservedbyYanget al. [43]. The rings

would display a higher symmetry, if the laser polarizationwas oriented perpendicular
to the (x, y)-plane, see Fig. 4.21. A formula for the differential cross section for ATI
depending on the angle between the laser polarization axis and the direction of
emission of the electron has been given in strong-field approximation by Reiss [44].

In a 2D study of the helium atom within a single active electron description and
under a two-color laser field

E(t) = f (t)E0
[
ex cos(ωt) + 0.1ey cos(2ωt + Φ)

]
, (4.81)

with a strong field with 800nm wavelength (ω ≈ 0.057 a.u.) with E0 = 0.107 a.u.
in the x-direction and a weaker field with 400nm wavelength in the y-direction,
with a phase delayΦ, the photoelectron emission probabilities displayed in Fig. 4.22
have been found [46]. Also in this case, ATI rings are visible inside the circle with
radius 2Up. The delay between the two fields is barely influencing the slow electrons
with maximal ponderomotive energy of 2Up, whereas a strong delay dependence is
observed for fast electrons (with up to 10Up) that have undergone at least one recolli-
sion. The circles of the fast electrons (whichwere rescattered after a different number
of recollisions) are also centered around nonzero momentum in the x direction, due
to the fact that they are accelerated by the field.

Furthermore, it has been shown how ionization times can be extracted from the
two-color TDSE results [46].
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Fig. 4.22 Photo-electron momentum distribution in a single active electron model of helium under
a two-color laser field with two-color delay Φ = 0.96π, giving the largest fast electron yield
(courtesy of Jost Henkel)

4.4.2 Low-Energy Structure

In an experimental study of electron emission on rare gas atoms, using 40 fs laser
pulses with 630nm central wavelength and peak intensities up to 4.4 × 1014 W/cm2,
the results displayed in Fig. 4.23 have been found. The sharp ATI peaks are blurred
into a continuous distribution at this high laser intensity and a plateau in the generation
of the photo-electrons builds up (see inset in Fig. 4.23), which is most clearly visible
for Ar and Xe gases [47]. It was lateron shown that the cutoff of this so-called ATI
plateau is at around 10Up [48], because this is the maximal energy that an electron
can acquire after recollision (see also Fig. 4.22).

A surprising detail in the photo-electron emission was measured in the forward
direction along the laser polarization axis for atoms (and also molecules) irradiated
by long wavelength lasers (λ > 1µm) such that the Keldysh parameter is well
below unity [49]. On top of the prediction of the strong-field KFR approximation, a
maximum is located at low energies, see Fig. 4.23. This maximum has been dubbed
“low-energy structure” (LES).

For a theoretical understanding of the LES we now follow closely the review of
[50] in [51]. There it is shown that the position of the maximum of the peak depends
algebraically on theKeldyshparameter and canbedeterminedby aminimal extension
of what we have learned in Sect. 3.1.4 in the 1D case. In the spirit of the three-step
model, we concentrate on step two, i.e., the classical motion in the electric field only,
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Fig. 4.23 Low-energy
structure (LES) in
photo-electron yield under
150 TW/cm2, 2 µm pulses
with γK ≈ 0.4 on top of the
strong field (KFR) prediction
in the photo-electron
spectrum of atomic argon
and two molecular species.
The inset shows a wider
energy range with the
recollision induced ATI
plateau [49]. EH is the high
energy limit at which a break
in the slope of the yield
curve exists

after the initial tunneling step. Furthermore, the solutions of the classical equations
of motion are generalized to the case of an arbitrary initial time t0 and it is assumed
that at the initial time the initial position as well as the initial velocity of the electron
are both zero. Then the solution of the classical equations of motion in 1D and for a
cw-laser polarized in the z-direction is given by

ż(t) = E0
ω

[sin(ωt0) − sin(ωt)] , (4.82)

z(t) = E0
ω2

[(ωt − ωt0) sin(ωt0) + cos(ωt) − cos(ωt0)] . (4.83)

This is the atomic unit version of (3.26) and (3.27) for variable initial time t0 and
initial conditions z(t0) = 0, ż(t0) = 0. The LES is due to a recollision at low energy
at a time t1, so we investigate in the following the “final” conditions8

ż(t1) = 0 (4.84)

z(t1) = 0. (4.85)

Under the well founded assumptions cos(ωt0) = 1, sin(ωt0) = ωt0 this then leads to
the condition

t0 = 1

(n + 1
2 )πω

(4.86)

8In 3D, a finite distance of the recolliding electron to the core is observed, see the discussion below.
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Fig. 4.24 Drifting trajectories according to (4.83) for ω = 1 and E0 = 1 and different values of
t0, adapted from [51]. Recollision takes place where both z = 0 (green dashed-dotted line) and the
slope of the curve is zero, i.e., once for every trajectory. For the solid black curve with n = 1 this
is at t1 = 3π, for the dashed blue curve with n = 2, we find t1 = 5π and for the dotted red curve
with n = 3, we get t1 = 7π

for the initial time, which in turns yields the recollision time

t1 = (2n + 1)
π

ω
. (4.87)

This means that the LES trajectories form a series with the recollision taking place
after an odd number of half cycles. The drift momenta (i.e., the slope of the cycle-
averaged trajectory) of the corresponding trajectories (see Fig. 4.24) are

pz = E0
ω

1

(n + 1
2 )π

. (4.88)

As the order of the recollision increases, the ionization takes place closer to the field
maximum, giving a smaller drift momentum. The energies of the (multitude of) peaks
corresponding to the drift momenta are proportial to the ponderomotive energy

ELES ∼ Up ∼ γ−2
K , (4.89)

which has also been observed experimentally.
The generalization of the presentation above to pulsed laser driving is discussed

in [51]. Furthermore, in [50], it shown in a 3D simulation by using cylindrical coor-
dinates (z, ρ) that the recollisions responsible for LES formation are soft, i.e., they
occur at finite values of ρ in contrast to the head-on collisions, responsible for HHG
and ATI, see also [52] and Chap.4 of [51].
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4.4.3 Double Ionization of Helium

In this final section on ionization, we will come back to the helium atom introduced
in Sect. 4.2 and discuss different ionization scenarios by strong laser fields. There
are several ionization possibilities due to the fact that helium contains two electrons:

• single ionization: He→He++e−
• sequential double ionization: He→He++e− →He2++2e−
• nonsequential double ionization: He→He2++2e−

A knee shape (see Fig. 4.25) is present in the experimental results for the double-
ionization probability out of the singlet ground state spatial wavefunction under
irradiation with linearly polarized light of 780nm wavelength as a function of in-
tensity [53]. The single ionization can be treated very effectively by a single active
electron model, as has been has shown in [53]. The increased double ionization rate
at low intensities has been a topic of intense study and debate, being one of the most
prominent and clear electron correlation effects that can be observed experimentally.

It turns out that a classical description on the basis of Newton’s equation is ad-
equate to reproduce the knee formation in the double ionization [54]. There it has

Fig. 4.25 Single and double
ionization probabilities of
helium for linearly polarized
light with a wavelength of
780nm and a pulse length of
100 fs. The dashed curve is
the ADK result for single
ionization of Helium and the
solid curve on the left is
from a single active electron
calculation. The solid curve
on the right is the
corresponding result for He+
[53]
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Fig. 4.26 Total energies of
the two electrons in the laser
driven case (wavelength
780 nm, intensity
1014W/cm2) as a function of
time [54]

also been shown by a 1D soft-core simulation using Newton’s equation that a rec-
ollision of an initially ionized electron (orange trajectory) with the remaining ion
finally leads to the simultaneous liberation of both electrons, i.e., nonsequential dou-
ble ionization, see Fig. 4.26. Two different cases can be distinguished. Either the final
electronic quiver (jitter) motion of the liberated electrons is in phase, or it is out of
phase. These differences in the phase relation of the electrons are related to the final
ion momentum distribution, which can either be around nonzero (NZ) or around zero
(Z) values [54].

In the sequel, we will go into some more detail by reviewing the closely related
work of Mauger and coauthors [55], who discuss all three different ionization sce-
narios listed above in a unified manner. These authors have also used the classical
analog of the 1D model Hamiltonian in (4.21) with a soft-core parameter a = 1 and
an additional laser potential in the form of a socalled 2-4-2 pulse, i.e., a linear ramp
turn-on for 2 periods of the field followed by a 4 period constant envelope function
and a 2 period linear ramp turn-off. The frequency of the sinusoidal oscillation was
chosen as ω = 0.0584, corresponding to the experimental wavelength of 780 nm.

The discussion of the electron dynamics in [55] begins with a dynamical systems
theoretical study of the undriven problem. It was found that periodic orbits allow
to distinguish an inner from an outer electron. The inner one is denoted by the y-
coordinate and the outer one by x . The initial conditions for the classical dynamics
were taken from a microcanonical distribution at the quantum mechanical ground
state energy of helium, which in the present 1D case and for the chosen soft-core
parameter is at −2.24 a.u.. 3000 trajectories were randomly chosen in the accessi-
ble phase space. The ionization criterion was defined by a distance of the classical
particle(s) of more than 30 a.u. away from the nucleus.

Single ionization happens during the linear ramp turn on of the field. It can be
described by the Hamiltonian of the outer electron

H1 = p2x
2

+ E0 f (t)x sin(ωt) (4.90)
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with f (t) = ωt/(4π). An approximate solution for the dynamics is given by

x(t) = x0 + p0t − E0
4πω2

[ωt sin(ωt) + 2 cos(ωt) − 2]. (4.91)

For the description of the effective dynamics of the inner electron, one can neglect
the effect of the outer electron as well as that of the laser field (which is still weak
during turn on) and finds a bound motion with a period of 2π/

√
2.

Sequential double ionization after one electron has been ionized can be understood
by looking at the Hamiltonian

H2 = p2y
2

− 2√
y2 + 1

+ E0y sin(ωt). (4.92)

In the (py, y) phase space, a core region corresponding to inner electrons that are
not ionized (single ionization in total) can be distinguished from an outer region in
which the y electrons are captured by the field and driven away from the nucleus (the
soft-core potential plays no role for them) if the intensity is large enough. Complete
sequential double ionization in this reduced model is expected at an intensity of
Ic = 1.86× 1016 W/cm2 [55], which is also corroborated by the results in Fig. 4.27.

For the case of nonsequential double ionization another intensity I (c) = 4.58 ×
1014W/cm2 has been derived in the case of ω = 0.0584. This intensity is indicated
by the green line in Fig. 4.27 and is the intensity for which each outer electron returns
back to the nucleus and has enough energy to ionize the inner one and to stay ionized
itsself (see also Fig. 4.26 for a special realization). In essence, this scenario is again a
three-step model. To derive the above intensity it was used that the maximum kinetic

Fig. 4.27 Double ionization
probability for laser
(ω = 0.0584) driven helium
(red dots) [56]. Vertical lines
indicate intensities for which
complete nonsequential and
sequential double ionization
are expected, which are
I (c) = 4.57 × 1014 W/cm2

(green line), respectively
Ic = 1.86 × 1016 W/cm2

(blue line)
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152 4 Atoms in Strong Laser Fields

energy of the returning electron is 3.17 Up and an implicit equation for the value of
the field at which maximum nonsequential double ionization occurs was derived and
solved [55].

Full grid based quantum calculations of the dynamics of helium under a laser
pulse in 3D are at the forefront of what is computationally possible [57, 58] and the
main correlation effect can already be reproduced classically. Nevertheless, alter-
native methods, more quantum in nature, have been applied to the problem and we
finish the discussion of double ionization by briefly commenting on some of them.An
early success in reproducing the experimental result of knee formation in the dou-
ble ionization probability theoretically was based on the intense-field many-body
S-matrix theory of Becker and Faisal [59]. Lateron, using a 1D model, the rescat-
tering mechanism (three-step model) has been found to be responsible for double
ionization, and shake-off [60] as well as collective tunneling mechanisms have been
ruled out [61]. In addition, in a time-dependent density functional theory (TDDFT)
study by de Wijn and coauthors [62] it was shown that functionals with a derivative
discontinuity are able to reproduce the knee structure in the double ionization at the
experimentally used wavelength of 780 nm. The question how (double) ionization
probabilities can be calculated from the density via the Runge-Gross theorem is elu-
cidated in [63]. Two approximations have to be made in a corresponding numerical
approach. Firstly, the exchange correlation functional is known only approximately
and secondly, the functional dependence of the pair-correlation function (necessary
for double ionization) on the density is also only approximately known.

Finally, in the work by Kirrander and Shalashilin [64], it could be shown that the
experimental results of Walker et al. [53] can be reproduced by the CCS method,
which is close in spirit to the semiclassical Herman-Kluk working horse, used
frequently throughout this book. CCS goes beyond a pure semiclassical method,
however, as the coherent states are coupled, leading, in principle to a full numerical
solution of the TDSE. In the present context, the method had to be adapted to the
fermionic character of the electrons.

4.5 High-Order Harmonic Generation

Apart from being ionized, an atom that is irradiated by laser light of a certain fre-
quency ω can be radiating itself by emitting photons at odd harmonic frequencies
(2n+1)ω of the original radiation. In the following, we will put our focus on this ef-
fect, a schematic representation of which is given in Fig. 4.28. High-order harmonic
generation (HHG) via laser excitation has been demonstrated experimentally with
harmonics as high as 500 times the fundamental frequency9 having been reported,
and it is reviewed in [26].

9The creation of radiation in the soft X-ray regime (with photon energies around 1keV) is thus
feasible [65].
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Fig. 4.28 Schematic of
HHG for a single electron
atom: After irradiation by a
field of frequency ω, odd
harmonics are emitted

ω

(2n+1)ω

4.5.1 Three-Step Model of HHG

A simple explanation of HHG in a system with a single active electron can be given
by considering the three-step model [41], that was already mentioned in Sect. 4.4,
and which is repeated here for the case of HHG in a bit more detail:

• The laser field distorts the Coulomb potential, such that (part of) the electron can
tunnel out of the range of attraction (see Fig. 4.19)

• The (almost) free electron, born with zero velocity, is accelerated in the laser field
• When the laser field turns around, depending on the phase of the field at its birth,
the “free” electron may recombine at the ion and the energy is released in the form
of a single photon

It is important to note that the answer of the electron to the applied field is not
instantaneous like in the case of low field nonlinear optics but there is a time delay
between the stimulus and the radiation of the high harmonics. Furthermore, part of
the electron wavefunction has to remain in the ground state, leading to stimulated
recombination [66].

In order to describe HHG theoretically, a measurable quantity has to be defined.
This is the harmonic spectrum which can be expressed in terms of the Fourier trans-
formation of the dipole acceleration, given by

a(t) = d2

dt2
〈x̂〉(t) = d2

dt2
〈Ψ (t)|x̂ |Ψ (t)〉

= d

dt
〈Ψ (t)| p̂|Ψ (t)〉

= −
〈
Ψ (t)

∣∣∣∣∣dV̂dx̂
∣∣∣∣∣Ψ (t)

〉
. (4.93)
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In the equations above, the general form of the Ehrenfest theorem

i
d

dt
〈 Â〉 = 〈[ Â, Ĥ ]〉 + i

〈
∂

∂t
Â

〉
(4.94)

for the time-evolution of expectation values has been applied once for Â = x̂ and
once for Â = p̂ with the length gauge Hamiltonian

Ĥ = p̂2

2
+ V̂C + V̂L . (4.95)

The term due to the laser potential in (4.93) leads only to a contribution at the
fundamental frequency and is therefore usually subtracted. In the expectation value

then only the term dV̂C
dx̂ remains. The spectrum is finally given by the Fourier transform

σ(Ω) = 1√
2π

∫ Tt

0
dt e−iΩt d

2

dt2
〈x̂〉(t)

= 1√
2π

[
e−iΩTt

d

dt
〈x̂〉(Tt) + iΩe−iΩTt 〈x̂〉(Tt) − Ω2

∫ Tt

0
dt e−iΩt 〈x̂〉

]
.

(4.96)

In going to the second line using integration by parts, it has been assumed that
〈x̂〉(0) = d

dt 〈x̂〉(0) = 0. In some early literature also the Fourier transformation of
the dipole expectation value, i.e., only the last term in the second line of the equation
above is used to calculate the harmonic spectrum. This is generally not correct, due
to the fact that the boundary terms in the partial integration do not necessarily vanish
[67]. The unraveling of the harmonic spectrum when the length Tt of the integration
interval is increased is displayed in the full quantum calculations shown in Fig. 4.29.

As expected by using perturbation theory, the intensity of the harmonics initially
decreases with higher order. Unexpectedly, however, a long plateau region can be
observed in Fig. 4.29, which is ending with a sharp so-called cutoff. These main
features are once more depicted schematically in Fig. 4.30. The following questions
regarding HHG await an answer:

(a) Why is there a sharp cutoff and what is its value?
(b) Why are harmonics only observed at odd multiples of the fundamental frequency?
(c) Why is there a long plateau in the intensity of the harmonics?

By a simple argument using classical mechanics, the answer to question (a) can be
given. The explanation of questions (b) and (c) are a little bit more involved. Before
explaining the different features, a further remark on the non-instantaneous nature
of HHG shall be made, however. It has been shown by numerical simulations of an
experiment with Ne atoms that the highest harmonics are created in very short time
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Fig. 4.29 Features of HHG emerging by increasing the time interval Tt in the Fourier transform
(4.96) [68]

Fig. 4.30 Schematic of the
HHG spectrum: after an
initial decay and a long
plateau, the spectrum drops
sharply at a cutoff value (of
approximately 3.2Up + Ip)
of the harmonic order
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intervals of the length of attoseconds [69]. Figure 4.31 shows the Husimi transform,
defined in Chap. 1, of the dipole acceleration. This observation also opens a road to
the generation of attosecond pulses of electromagnetic radiation.
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156 4 Atoms in Strong Laser Fields

Fig. 4.31 Husimi plot of the dipole acceleration, simulating an experiment with Ne in a 5 fs laser
pulse at 800nm wavelength and with an intensity of 5 × 1014Wcm−2 [69]

4.5.2 The Cutoff

The cutoff can be explained by using the three-step model. The decisive question
is how much energy an electron can acquire from a monochromatic laser field. To
answer this question, numerical studies based on classical mechanics have been
performed [41].10 The outcome of these calculations is depicted in Fig. 4.32. It is
shown there that an electron that is initially bound in an atom can acquire a kinetic
energy of maximally 3.17Up with the ponderomotive energy from (3.28).

The maximal energy that can be released upon recombination with the ion is
therefore given by EC ≈ 3.17Up + Ip with the ionization potential Ip. This finding
is robust and independent of the form of the potential and it explains the sharp cutoff
observed in the harmonic spectrum.11

Fig. 4.32 Energy
distribution of electrons at
the first encounter with the
ion in the case of helium and
with I = 5 × 1014Wcm−2,
λ = 800nm [41]

10A more involved quantum mechanical reasoning, based on the strong-field approximation, leads
to similar results [70].
11Without the initial tunnel ionization, as we saw in Chap. 3, the maximal kinetic energy that can
be gained in the field is 2Up, and the cutoff for scattering initial conditions has to be adjusted
accordingly.
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4.5.3 Odd Harmonics Rule

To explain the peaks of the HHG spectrum at odd harmonics, we have to invoke some
quantum mechanical reasoning. In the case of a periodically driven quantum system
the Floquet theorem of Sect. 2.2.8 (in a.u.)

Ψn(x, t) = exp {−iεnt}ψn(x, t) (4.97)

ψn(x, t) = ψn(x, t + T ) (4.98)

holds. In the case of a symmetric potential, due to symmetry under the generalized
parity transformation

P : x → −x, t → t + T/2 , (4.99)

reviewed in Appendix 3.A, one can conclude that the Floquet functions have to obey
the additional condition

ψn(−x, t + T/2) = ±ψn(x, t) . (4.100)

Using this fact and by considering the Fourier transformation of the dipole matrix
element 〈ψn|x̂ |ψn〉, it can be shown by solving Exercise 4.6 (neglecting the boundary
terms in (4.96)) that the HHG spectrum contains only odd harmonics. An alternative,
semiclassical explanation will be given in Sect. 4.5.5.

4.6. Show that the dipole expectation value between Floquet states has only odd
Fourier components.

In the previous as well as the following numerical results, the theorem of odd
harmonics is not fulfilled exactly, however. This is due to the fact that a pulsed
driving laser is used and therefore, Floquet theory cannot be applied strictly.

Furthermore, the odd harmonics rule can be violated in molecules also due to the
breakdown of the Born-Oppenheimer approximation, as has been shown in [71]. The
Born-Oppenheimer approximation will be discussed in detail in Chap. 5.

4.5.4 Semiclassical Explanation of the Plateau

Understanding the plateau formation in HHG is a formidable task and has been
undertaken by Gerd van de Sand during his PhD thesis work [19, 72]. The main
working horses used in these studies are the semiclassical Herman-Kluk propagator
and a comparison with full quantum as well as purely classical calculations.

In order to perform all three types of calculation the Hamiltonian

H = p2

2
+ Vsc + VL (4.101)
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158 4 Atoms in Strong Laser Fields

with the 1D soft-core Coulomb potential (4.18) and the laser potential in length
gauge

VL = f (t)E0x cos(ωt) (4.102)

has been used in [19]. The parameters appearing in theHamiltonian have been chosen
as follows:

• Soft-core parameter a = 2a.u. leading to an ionization potential of Ip = 0.5a.u.
equal to that of 3D hydrogen

• E0 = 0.1a.u. and ω = 0.0378a.u., where f (t) has been chosen such that the laser
pulse lasts for 3.5 cycles of the oscillation

The initial wavefunction was assumed to be a Gaussian wavepacket

Ψγ(x, 0) =
(γ

π

)1/4
exp

{
−γ

2
(x − q0)

2
}

(4.103)

with γ = 0.05a.u. and q0 = 70a.u., corresponding to an almost free initial electron
being scattered as soon as it reaches the ion under the influence of the laser. This
initial state has been chosen due to the fact that the initial tunneling step cannot be
described semiclassically, and as we will see below it leads to a cutoff energy that is
slightly reduced compared to that of the case of a bound initial state.

The dipole acceleration as well as the corresponding spectra are compared in
Figs. 4.33, 4.34 and 4.35. The first figure shows the results of a full quantum me-
chanical calculation, the second those of a classical Monte-Carlo calculation [73]
and the third plot shows semiclassical Herman-Kluk results. In all three cases the
dipole acceleration has maxima whenever the electron is close to the nucleus. Due to
the broadening of the wavepacket in the course of time the maxima get smeared out.
In the quantum, as well as in the semiclassical result, at longer times, fast oscillations
of a(t) occur, which are not present in the classical result.

The HHG spectra extracted from the time-domain results are displayed in the
lower panels of the respective plots. The full quantum spectrum displays the plateau
and a cutoff at 105 times the fundamental frequency. The energy corresponding to
this frequency is close to EC = 2Up+ Ip, which is the predicted cutoff for a scattering
initial condition, differing slightly from the one for a bound state initial condition.
The “cutoff” is well represented in the classical, as well as the semiclassical result.
The plateau, however, can only be observed in the semiclassical case! The plateau
formation therefore seems to be an interference effect.

In order to further investigate the nature of the interference effect, underlying
the formation of the plateau, several different classes of classical trajectories have
been identified. Apart from “almost free” trajectories, also stranded and trapped
trajectories exist, as can be seen in Fig. 4.36. All trajectories in this figure start at the
same initial position but with different initial momenta.

Successively neglecting the trapped and stranded trajectories in the semiclassical
calculation, the behavior in Fig. 4.37 can be observed: the plateau is vanishing. It is
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Fig. 4.33 Full quantum
mechanical dipole
acceleration (upper panel)
and logarithmic plot of the
corresponding spectrum
(lower panel), adapted from
[19]
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surprising that neglecting only around 8% of the trajectories is enough to completely
suppress the formation of the plateau. These observations led the authors of [72] to
conclude that the interference of stranded and trapped trajectories with the free ones
is responsible for the plateau formation.

4.5.5 Cutoff and Odd Harmonics Revisited

Apart from the explanation of the plateau, also the odd harmonics rule and the cutoff
can be understood semiclassically. This is another application of the stationary phase
approximation of Sect. 2.2.2 and shall be dealt with below.

Motivated by the fact that the HHG can be explained as an interference effect of
two classes of trajectories (almost free and trapped or stranded), the total wavefunc-
tion shall be composed of two parts [19]:
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Fig. 4.34 Classical dipole
acceleration (upper panel)
and logarithmic plot of the
corresponding spectrum
(lower panel), adapted from
[19]
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• An “ionization wavefunction”, for the free electron in the laser potential VL with
f (t) = 1, which is given by the Volkov solution (3.25)

• A “ground state wavefunction”, of the electron in the soft-core Coulomb potential
without the laser. The phase that this wavefunction acquires in the course of time
is determined by the ionization potential via

Φ(t) ≈ Ipt. (4.104)

It has been shown in [19] that a small admixture of the ground state wavefunction to
the Volkov wavepacket leads to a close qualitative agreement with the exact results
for the expectation value of the dipole acceleration.
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Fig. 4.35 Semiclassical
dipole acceleration (upper
panel) and logarithmic plot
of the corresponding
spectrum (lower panel),
adapted from [19]
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Fig. 4.36 “Almost free”
(solid line), “trapped”
(dotted line) and “stranded”
(dashed line) trajectories,
adapted from [19]
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Fig. 4.37 Spectrum without
trapped (upper panel) and
without trapped and stranded
trajectories (lower panel),
adapted from [19]
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In order to perform the SPA, the phase in the Fourier integral for the calculation of
the HHG spectrum has to be known. This can be extracted from the superposition12

of the two wavefunctions leading to an expression of the form

σ(Ω) =
∫

dt e−iΩt

∣∣∣∣exp
{
i

[
Up

2ω
sin(2ωt) −Upt

]}
+ exp

{
iIpt

}∣∣∣∣
2

(4.105)

for the spectrum. Calculating the Fourier integral in the stationary phase approxima-
tion leads to the condition

d

dt

[
Ωt ±

(
Up

2ω
sin(2ωt) −Upt − Ipt

)]
= 0 (4.106)

12For reasons of simplicity, we take a superposition with equal weights in the following.

This copy belongs to 'veltien'



4.5 High-Order Harmonic Generation 163

and therefore, for the interference term, the main contributions to the integral are at
the (positive) frequencies

Ω = Up[1 − cos(2ωt)] + Ip. (4.107)

The maximal value of the expression above follows immediately to be

Ωmax = 2Up + Ip. (4.108)

Like in the discussion of the three-step model this frequency is generated by an
electron that acquires the maximal kinetic energy in the laser field and transforms it
(together with Ip) into a single photon in an inverse photo-electric effect.

Also the fact that only odd harmonics are emitted can be derived by using the
stationary phase approximation. Again, the interference term

∫
dt exp

{
−i

[(
Ω −Up − Ip

)
t + Up

2ω
sin(2ωt)

]}
(4.109)

has to be studied to this end. If the exponent of the sine function is expanded in terms
of Bessel functions, using the Jacobi-Anger formula,

exp[iα sin(x)] =
∞∑

n=−∞
Jn(α) exp(inx), (4.110)

in the exponent of (4.109), this leads to the replacement of the sine by its argument,
according to

∑
n

Jn

(
Up

2ω

)∫
dt exp

{−i
(
Ω −Up − Ip + 2nω

)
t
}
. (4.111)

Along the lines of the SPA, the maxima of this expression occur at

Ωn = Up + Ip − 2nω (4.112)

and are separated by an even number of fundamental frequencies 2ω. The fundamen-
tal is contained in the spectrum and therefore all the maxima are at odd harmonics.

The cutoff can once more be derived by looking at the asymptotic form

|n| � 1 : Jn(x) → (−1)n√
2π|n|

(
ex

2|n|
)|n|

(4.113)

of the Bessel function (here e ≈ 2.72 is Euler’s number). For |n| > e
2Up/(2ω) ≈

Up/(2ω), the Bessel function goes to zero, leading to an upper boundΩmax = 2Up+
Ip, if for n the minimal value −Up/(2ω) is inserted in (4.112).
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4.5.6 Dominant Interaction Hamiltonian for HHG

Another possibility to deepen the understanding of the generation of high-oder har-
monics is the use of the dominant interaction Hamiltonian (DIH) concept, which has
first been applied in the present context in [74].

To understand the basic idea, we split the 1D soft-core Hamiltonian

Ĥ(t) = Ĥi + VL(t) = T̂k + Vsc + VL(t) = Ĥ f (t) + Vsc (4.114)

analogous to (4.40) and observe that close to the nucleus, the Hamiltonian Ĥi plays
the dominant role, while far away, that role is taken by the field Hamiltonian Ĥ f .
In an approach based on classical trajectories, the dynamics can be restricted to
evolve under the dominant part of the Hamiltonian only, and using the Herman-
Kluk propagator, it has been shown in [74, 75] that this leads to dipole accelerations
and spectra that are almost indistinguishable from the full semiclassical and/or full
quantumones. In order to achieve this agreement, a switching criterion for an electron
trajectory had been worked out that assumes that the electron is slow and close to
the nucleus right before the transition.

In the case of a soft-core parameter a = 2 and for the field parametersE0 = 0.1a.u.
and ω = 0.0378a.u., used before, a switch from the laser to the soft-core potential
occurs, whenever pc = 0 and |qc| ≤ xc = 3.0083 are fulfilled and immediately
before the switching, the momentum is pointing inwards. For |q| ≤ xc, the laser
potential will never become stronger than the soft-core potential.

It is instructive to investigate the initial conditions of the trajectories which switch
and get trapped. It was found that they form bands in the initial phase space. To see
that, we use the solution of the equations of motion (3.26) and (3.27) of an electron
in a laser field with initial conditions p(0) = p0 and q(0) = q0, which are repeated
here in atomic units

p(t) = p0 − E0
ω

sin (ωt) , (4.115)

q(t) = q0 + p0t + E0
ω2

[cos (ωt) − 1] . (4.116)

From the condition p(tc) = 0 one finds tc ≈ nπ/ω with n = 1, 2, . . . . Then, the
conditions for a switch from VL to VC are

qc =q0 + nπ

ω
p0 + E0

ω2
[cos (nπ) − 1]

=q0 + nπ

ω
p0 − 1 − (−1)n

2

2E0
ω2

. (4.117)

For even n, qc lies in the interval [−xc, 0], whereas for odd n, qc lies in the interval
[0, xc]. This implies that the initial phase space points are given by lines p(n)

0 (q0)
with a width Δp(n)

0 = ω/(nπ)xc, as illustrated in Fig. 4.38. The explicit expression
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follows from rearranging (4.117), leading to

p(n)
0 (q0) = − ω

nπ

(
q0 − qc − [

1 − (−1)n
] E0

ω2

)
. (4.118)

For the dynamics under the full Hamiltonian, it turns out that the initial conditions for
the trajectories which get trapped are located on the same phase space stripes. This
has led to the conclusion that the DIH switching condition describes the dynamics
relevant for HHG quite well. A comparison of the very similar initial dynamics of
two different trajectories (full Hamiltonian versus DIH) in phase space is shown in
Fig. 4.39.

A decisive numerical advantage of the DIH approach is that the classical dynam-
ics under the dominant interactions is regular, in contrast to the chaotic dynamics
under the complete, nonlinear, driven Hamiltonian. Therefore, the semiclassical
DIH calculations could be converged with two orders of magnitude less trajecto-
ries as compared to the complete case [76]. In addition, an analytical determination

Fig. 4.38 Initial conditions
for laser driven trajectories in
a soft-core potential with
a = 2: switched trajectories
(diamonds), trapped or
stranded trajectories in the
full potential case (filled
circles) and analytical
conditions (blue lines in the
inset), see (4.118). The field
parameters are E0 = 0.1a.u.
and ω = 0.0378a.u. [74] -0.8
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Fig. 4.39 Phase space plot
of a DIH trajectory (dashed
red line) and a stranded
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in the inset [75]
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of the relative weights in the wavefunction mixture that was discussed in detail in
Sect. 4.5.5 has been given, using the idea of dominant interaction Hamiltonians [75].
In this publication it was furthermore shown that a linearized semiclassical (truncat-
ed Wigner) study of the dipole acceleration does not lead to a plateau formation in
the harmonic yield, in line with the classical results presented in [72].

4.6 Notes and Further Reading

Supplementary Books and Basics

The study of the interaction of light fields with atoms has a long history. Classic
references are the books “Photon-Atom Interactions” by Weissbluth [77] and “In-
troduction to the Theory of Laser-Atom Interactions” by Mittleman [78]. The main
focus in the first book is on the interaction of atoms with moderately strong field-
s. Multi-photon and nonlinear processes are treated in the last chapter. The second
book has a focus on scattering phenomena in the presence of laser fields and in its
second edition also contains multi-photon effects. More recently, the theory of atoms
(and also molecules), including their interaction with external (laser) fields, has been
covered in the textbook by Bransden and Joachain [27], as well as in the works by
Hill and Lee [79], by Joachain, Kylstra and Potvliege [80] and by van der Straten
and Metcalf [81].

A book, covering the fundamentals of theoretical atomic physics, which also in-
cludes an introductory chapter on quantum theory (with the solution of the Coulomb
problem) and a nice collection of exercises with solutions is the one by Friedrich [3].
The book by Feagin contains a lot of material on the hydrogen atom with more infor-
mation on the properties of spherical harmonics (including a 3D cut-away spherical
polar plot) that appear in the solution of the corresponding TISE [82]. The book by
Bransden and Joachain [27] contains a chapter on the interaction with strong fields,
which covers some topics that we have omitted. These are, e.g., the cooling of atoms
with lasers and non-dipole and relativistic effects. Furthermore, we have not con-
sidered linear and nonlinear optical spectroscopy in this chapter. Some aspects of
nonlinear spectroscopy are dealt with in Chap. 5 and in the textbooks by Weissbluth
[77] andMukamel [83]. More theoretical and experimental information on the topics
treated here can be found in the book by Fedorov [84]. Furthermore, chaos in atomic
(Rydberg) systems, which can be induced by external laser fields, is covered in the
books by Blümel and Reinhard [9], by Reichl [85], and by Bayfield [86].

The AC Stark shift, i.e., the shift of the atomic levels due to time-dependent
electric fields is discussed using perturbation theory, e.g., in [27], as well as in [78]
and [84]. It is intimately related to the (instantaneous) ponderomotive energy and
its dependence on the gauge used is discussed in the supplemental material to [87].
Therein, also a critical discussion of the effect of dynamic interference of photoelec-
trons in high-frequency laser fields [88] can be found.
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Helium

The discussion of the unperturbed helium atom and its semiclassical solution was
rather brief. More details on the Pauli principle and the theory of electron spin can be
found in standard texts on quantum theory, as well as in the books by Bransden and
Joachain [27], Friedrich [3], and van der Straten and Metcalf [81]. Reviews of the
early unsuccessful, as well as the successful semiclassical treatment of (collinear)
helium [89] can be found in the books by Blümel and Reinhardt [9] and Friedrich
[3], and in the article by Tanner, Richter and Rost [90].

Differences between singlet and triplet initial state ionization dynamics in Heli-
um have been investigated in [91]. Corresponding differences between singlet and
triplet initial states in the scattering of two electrons have been described semiclassi-
cally by using the Herman-Kluk propagator in [92], without invocing artificial Pauli
potentials.

The dominant interaction Hamiltonian idea presented in Sect. 4.5.6 has also been
used in a study of planar electron-atom scattering in a three-body two-electron
system [93].

Photoionization and HHG

Over the years, several authors in addition to the ones alreadymentioned haveworked
on the ionization of atoms by (intense) fields in the quasi static regime. This interest
started in the heyday of quantum theory [94, 95] and still continues, as demonstrated
by recent experimental work on the ionization of Kr atoms by sub-femtosecond laser
pulses together with adiabatic tunneling ionization calculations [96].

Photoelectron holography that may reveal structural information of the investi-
gated atomic system is discussed in [97]. Furthermore, recent experimental progress
has led to intensive theoretical studies of the photoionization time-delays in atomic
systems. In an “attosecond streaking” pump-probe type experiment (see also Chap.
5) a single attosecond XUV pulse ionizes an atom and an infrared laser pulse serves
as a clock to measure the delays [98]. In this tutorial introduction and in the more
recent review [99] also other related types of experiments are discussed.

The question of howATI andHHGare related has been answered in [100]. There it
is shown that HHG can be understood as ATI followed by electron propagation in the
continuum and subsequent stimulated recombination.More information about exper-
imental (and historical) aspects of ATI can be found in Chap.15 of [27]. Furthermore,
recombination and thus creation of high-order harmonics in atoms is suppressed if
circularly polarized driving fields are used instead of the linearly polarized ones con-
sidered in our 1D studies [101].

Miscellaneous Topics

A Floquet theoretical study of the interaction of atoms with an intense laser pulse
is given in [102] and Chap.4 of [80] is devoted to the same topic. A striking “di-
chotomy”, i.e., a separation into two parts of the quantum wavefunction (in the
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Kramers-Henneberger frame) of the hydrogen atom in superintense high-frequency
fields has been unveiled in the Floquet picture in [103].

If generated electromagnetically, due to the properties of the solution ofMaxwell’s
equations in free space, the “half-cycle pulse” (used in the ionization studies of
hydrogen in Sect. 4.3.6) should be replaced by an asymmetric mono-cycle pulse.
This fact and its consequences are discussed in [104].

Control of quantum dynamics will be discussed at length in the Chap. 5, dealing
with molecules in external fields. Also for atoms, however, the concept of control
has been discussed, e.g., in the case of high-order harmonic generation, where one
is looking for driving fields that enhance the harmonic yield [105].

4.A More on Atomic Units

There is a close connection between atomic units and some expectation values of
the hydrogen atom. The Bohr radius, e.g., is related to the expectation value of the
position operator in the ground state which is given by

〈r̂〉 = 3

2
a0 , (4.119)

and in addition the maximum of the probability density for finding the particle in the
ground state with a radial separation r from the nucleus is at a0 [1]. Furthermore,
the energy constructed from the atomic base units is twice the absolute value of the
ground state energy E1 = − 1

2 a.u.≈ −13.6eV. One could also measure energy in
terms of the ionization potential

Ip = −E1 (4.120)

of hydrogen, however. The corresponding units are so-called Rydberg units (1a.u.
= 2Rydberg), in contrast to the atomic or Hartree units.

The atomic unit for velocity follows most easily by considering the quantum
mechanical virial theorem [1], which for the hydrogen atom can be stated as

〈T̂k〉 = −1

2
〈V̂C〉, (4.121)

where the brackets denote expectation values. For the ground state, we find with its
help that

〈T̂k〉 = −E1 (4.122)
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and with the definition

〈T̂k〉 =: mev
2
0

2
, (4.123)

the atomic velocity unit v0 = √
2|E1|/me ≈ c

√
27.212 eV/0.511MeV is related

to the vacuum speed of light via v0 = cα = 1a.u., with the fine structure constant
α ≈ 1/137. Using v0 and a0, the atomic unit of time is formed via t0 = a0/v0 ≈
24.2as. The oscillation period of the electron on the Bohr orbit is therefore given by
Te = 2π a.u. ≈ 152as.

Themost important unit for this book is the one for the electric field which is given
by Eat ≈ 5.1427 ·1011 Vm−1. This is the value of the electric field, due to the proton,
experienced by the electron at the Bohr radius. The intensity that corresponds to that

field is Iat = cε0E2
at

2 ≈ 3.5101 · 1016Wcm−2. An overview of the units mentioned
can be found in Table4.3. As an example, we use this table to convert frequency into
wavelength. For frequencies given in a.u. (ω = X a.u.), the wavelength (in SI units)
is

λ = 2πc

ω
≈ 2π 137.036

X
a.u. ≈ 45.5636

X
nm .

Table 4.3 Definition of atomic units and some important quantities in atomic and SI units

SI (m, kg, s, A) a.u. (a0, me, h- , e)

Definitions:

� ≈ 1.0546 · 10−34 J s := 1 h-

e ≈ 1.6022 · 10−19 A s := 1 e

me ≈ 9.1094 · 10−31 kg := 1 me

a0 ≈ 5.2918 · 10−11 m := 1 a0
Further quantities:

4πε0 = 10 7

c2
A m (V s)−1 ≈ 1.1126 · 10−10 A s (V m)−1 = 1 a0 me e2

h- 2
v0 ≈ 1

137.036 c ≈ 2.1877 · 10 6 ms−1 = 1 h-
a0 me

2|E1| = mee4

16π2ε20�2 ≈ 27.212 eV = 1 h- 2
a 2
0 me

Eat = e er
4πε0a 2

0
≈ 5.1427 · 10 11 Vm−1 er = 1 h- 2

a0 3 me e
er

Iat = cε0E 2
at

2 ≈ 3.5101 · 10 20 Wm−2 ≈ 5.4556 h- 3
a 6
0 m2

e

t0 = a0
v0

≈ 2.4189 · 10−17s = 1me a02

h-
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Chapter 5
Molecules in Strong Laser Fields

Molecules, compared to atoms, have additional degrees of freedom. Not only do the
electrons move around the nuclei, but also the nuclei move relative to each other.
This allows for a multitude of new phenomena, already without the action of external
fields.

By coupling an external electric field to the molecular dynamics, such diverse
topics as femtosecond spectroscopy, control of molecular dynamics, and the real-
ization of quantum logic operations emerge. Before entering that wide field, some
basics of molecular theory will be repeated by discussing the simplest molecule,
the hydrogen molecular ion. The concept of electronic potential energy surfaces, on
which the nuclear dynamics occurs, will thereby be introduced and the analytical
Morse potential curve will be reviewed in some detail. The hydrogen molecular ion
then serves as an example for the increasing numerical effort that has been taken in
the course of time, starting with frozen nuclei and then taking the nuclear dynamics
into account.

After the discussion of the Born-Oppenheimer approximation, dynamics on a sin-
gle as well as on laser-coupled potential energy surfaces will be reviewed. From the
field of pump-probe femtosecond spectroscopy three examples, 2D infrared spec-
troscopy, photoelectron spectroscopy and fluorescence spectroscopy will be dealt
with in some detail. The remaining part of this chapter is then devoted to the concept
of control of the molecular dynamics by suitably chosen laser fields.

5.1 The Molecular Ion H+
2

In order to understand laser driven molecular dynamics, we first review the basics
of molecular theory. The time-independent Schrödinger equation of the hydrogen
molecular ion is approximately as well as exactly [1] solvable. In order to keep the
discussion simple, we first review the approximate treatment of H+

2 in the stationary
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Fig. 5.1 H+
2 molecular ion

consisting of two protons
labeled by a and b, with
distance R, and a single
electron with the distances ra
and rb from the protons

b

R

ra rb

a

case, leading to the notion of electronic potential energy surfaces, which will be
central for the understanding of almost all the material presented in this chapter.

5.1.1 Electronic Potential Energy Surfaces

The hydrogen molecular ion consists of two protons, apart by a distance of R, and
a single electron with the distances ra and rb to proton a, respectively proton b. A
schematic representation of the molecule is given in Fig. 5.1.

In the following, we try to understand how the energy of the electron is changing
as a function of the internuclear distance. It will turn out that there are several possible
solutions to this problem, and the outcome has a very intuitive meaning. To make
progress, the electron shall first be close to either nucleus a, or nucleus b, while
keeping the two nuclei very far apart, i.e., R → ∞. These two limiting cases are
simple hydrogen atoms, undisturbed by the other proton, for which the exact solution
of the respective time-independent Schrödinger equation

Ĥaψa = Eaψa, (5.1)

Ĥbψb = Ebψb (5.2)

is given in Sect. 4.1.1 Furthermore, the two hydrogen atoms are completely equiva-
lent, and therefore the energies are degenerate Ea = Eb.

The full electronic eigenvalue problem, i.e., the time-independent Schrödinger
equation for H+

2 with a fixed (finite) distance R is given in atomic units by

{
−1

2
� − 1

ra
− 1

rb

}
ψe(ra, rb, R) = E(R)ψe(ra, rb, R) , (5.3)

where the Laplace operator can be expressed either by∇2
ra
or by∇2

rb
. The internuclear

repulsion leads to an R-dependent shift of the energy scale and shall be neglected for
the time being. Due to the fact that we know the solution of the problem for R → ∞,
let us calculate the energy E(R) and the corresponding eigenfunction ψe(ra, rb, R),
both depending parametrically on R, as a linear combination of atomic orbitals
(LCAO) of the two hydrogen atoms. In the simplest case, we can use just a single
hydrogen 1s ground state function from Sect. 4.1
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ψa,b = 1√
π
exp{−ra,b} (5.4)

per proton. The LCAO Ansatz is then given by

ψe = c1ψa + c2ψb . (5.5)

Inserting it into the time-independent Schrödinger equation yields

(
Ĥa − 1

rb

)
c1ψa +

(
Ĥb − 1

ra

)
c2ψb = E(R)(c1ψa + c2ψb). (5.6)

The application of the Hamiltonian to the ground state leads to a multiplication of
the wavefunction by the ground state energy Eg , and therefore the equation above
can be rewritten as

(
Eg − E(R) − 1

rb

)
c1ψa +

(
Eg − E(R) − 1

ra

)
c2ψb = 0 . (5.7)

This equation can be transformed into a linear system of equations in the usual way
by multiplying it from the left with the real eigenfunctions ψa,b and integration over
electronic coordinates. The following definitions are appropriate:

1. overlap integral:

∫
dV ψaψb =: S(R) = (1 + R + R2/3) exp{−R} (5.8)

2. Coulomb integral:

−
∫

dV ψa
1

rb
ψa =: C(R) = −(1 − (1 + R) exp{−2R})/R (5.9)

3. exchange integral (having no classical analog):

−
∫

dV ψa
1

ra
ψb =: D(R) = −(1 + R) exp{−R} (5.10)

4. energy difference:

�E(R) := Eg − E(R) (5.11)

5.1. Calculate the integrals needed for the LCAO solution procedure for the elec-
tronic eigenvalue problem of H+

2 with the help of the hydrogen 1s functions. Use
prolate spheroidal coordinates (i.e. elliptic coordinates rotated around the focal
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line) μ = (ra + rb)/R, ν = (ra − rb)/R,ϕ, for which the volume element is given by
dV = 1

8 R3(μ2 − ν2)dμdνdϕ, and where 1 ≤ μ ≤ ∞,−1 ≤ ν ≤ 1, 0 ≤ ϕ ≤ 2π.

The coefficients then fulfill the linear system of equations

[�E(R) + C(R)] c1 + [�E(R)S(R) + D(R)] c2 = 0, (5.12)

[�E(R)S(R) + D(R)] c1 + [�E(R) + C(R)] c2 = 0. (5.13)

The eigenvalue problem defined above is a generalized one, due to the fact that
the eigenvalues E(R) are also appearing in the off-diagonals because of the non-
vanishing overlap integral. The condition for solubility leads to the symmetric so-
called 1σg solution, where

c1 = c2 =
(

1

2(1 + S(R))

)1/2

, (5.14)

and the antisymmetric 1σu solution, where

c1 = −c2 =
(

1

2(1 − S(R))

)1/2

, (5.15)

with the corresponding energies (Eg = 0)

E±(R) = C(R) ± D(R)

1 ± S(R)
. (5.16)

The eigenfunctions displayed in Fig. 5.2 have decisively distinct character. Whereas
in the symmetric superposition a sizable part of the wavefunction is located between
the twonuclei, the antisymmetric solution 1σu with theminus sign has a node between
the nuclei!

For the energies it is important to note thatC(R) as well as D(R) are negative, and
therefore the energy is reduced in the symmetric case as compared to two infinitely
separated nuclei. To discuss the binding character of the solutions, we have to include
the nuclear repulsion in our discussion, however, by considering the quantity

Fig. 5.2 (Left panel)
Symmetric (binding) and
(right panel) antisymmetric
(anti-binding) LCAO
solution for nuclei located at
±1a.u. as a function of
cylindrical coordinates
(ρ, z), with the z-axis along
the nuclear axis

−2

0

2

ρ

−4 −2 0 2 4
z

−2
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z

This copy belongs to 'veltien'



5.1 The Molecular Ion H+
2 177

E tot
± (R) = C(R) ± D(R)

1 ± S(R)
+ 1

R
. (5.17)

For R → 0 the nuclear repulsion dominates due to the fact that both C and D are
finite in that limit, see Fig. 5.3. Furthermore, as it should be, for R → ∞ both curves
have the H + p case with energy Eg = 0 as the limiting case. At an intermediate
value of Re, the symmetric solution displays a minimum in the energy curve, with
a binding energy (dissociation threshold) of De, whereas the antisymmetric one is a
continuously decreasing function of R as can be seen in Fig. 5.3. A comparison of
experimental and theoretical values for the two parameters of the binding potential
can be found in Table5.1.

We have reviewed an “electronic structure calculation” for a molecule with only
a single electron and furthermore, we have used the smallest possible set of basis

0.0

0.2

0.4

E
to

t
±

0 1 2 3 4 5

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3 4 5

R(a.u.)

Fig. 5.3 Upper panel: LCAO binding (solid black line) and anti-binding (dashed blue line) elec-
tronic potential energy curve of H+

2 (in atomic units) according to (5.17) as a function of internuclear
distance in atomic units; note that at the minimum of the binding curve (around 2.5a.u.), the binding
effect is much smaller than the anti-binding effect. The zero of energy is indicated by a dotted red
line and corresponds to the H+ p case. Lower panel: Coulomb (solid black line), exchange (dashed
blue), and overlap integral (dotted red)

Table 5.1 Comparison of experimental and theoretical LCAO results for the equilibrium distance,
Re, and the dissociation threshold, De, of H

+
2

Experiment Theory (LCAO) Theory (vLCAO)

Re 106pm 130pm 106pm

De 2.79eV 1.75eV 2.35eV
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Fig. 5.4 LCAO binding
(solid black line) electronic
potential energy curve of H+

2
according to (5.17) together
with the variational LCAO
(dashed blue line) and the
exact result (dotted red line) 0.0

0.2

0.4

0 1 2 3 4 5

E
to

t
+

R(a.u.)

functions for this system. Nevertheless, the results are quite reasonable as could be
seen by comparing them to experimental results. In general, many electron systems
have to be considered, however. A prototypical diatomic example is the hydrogen
molecule with two electrons. The methods that are typically used to obtain the elec-
tronic wavefunction of that molecule are the molecular orbital method or the Heitler-
London method. A discussion of both approaches can be found in [2]. Going beyond
the treatment of simple, small systems is done in the field of quantum chemistry,
which is dealing with the calculation of the electronic energy curves as a function of
internuclear distances in the general case [3].

For our present case, a method to dramatically improve the results by using a
slightly modified basis set shall be mentioned. Finkelstein and Horowitz [4] have
shown that the variation of the 1s basis functions according to

ψa,b ∼ exp{−α(R)ra,b}, (5.18)

where α(R) is allowed to vary between the helium value of 2 at R = 0 and the
hydrogenvalue of 1 at R = ∞does improve the results tremendously to Re = 106pm
and De = 2.35eV (see also Table5.1). This is another application of the Rayleigh-
Ritz variational principle (see also Exercise4.1), the variational LCAO method. An
alternative would be to use many more basis function in the standard LCAOmethod.
The convergence of this approach to the experimental value is rather slow, however.
In Fig. 5.4 the variationally improved total energy curve is shown together with the
exact one [5]. As expected, the variational curve is much better than standard LCAO
but still lies above the exact curve.

5.2. Prove that the ground state energy of H+
2 , calculated with the variational molec-

ular orbital [(2π/α3)(1 + S)]−1/2(exp{−αra} + exp{−αrb}), is given by

E+ = α2F1(w) + αF2(w),

where the abbreviations w = αR and
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F1(w) = 1 + e−w(1 + w − w2/3)

2 + 2e−w(1 + w + w2/3)
,

F2(w) = −1 + 2e−w(1 + w) − 1/w − (1/w + 1)e−2w

1 + e−w(1 + w + w2/3)

have been used.
Now minimize the energy with respect to α at constant R, and plot α as a function
of R.

5.1.2 The Morse Potential

Another, arguablymore crude, possibility to construct an analytical binding potential
energy curve for a diatomic molecule (the two nuclei shall have the masses Ma and
Mb) is to use the prototypical Morse potential [6]

VM(R) ≡ De[1 − exp{−α(R − Re)}]2, (5.19)

displayed in Fig. 5.5, and determine the free parameters from experimental values.
To do this, we use that the kinetic energy of the relative motion is given by

TR = Mr

2
Ṙ2, (5.20)

with the reduced mass Mr = Ma Mb/(Ma + Mb). Parameters that are available
experimentally are, e. g.,

• D0: dissociation energy (from vibrational ground state)
• ωe: angular frequency of harmonic oscillations around the minimum

From these, the Morse potential parameters can be extracted according to

• De ≈ D0 + ωe/2: dissociation threshold (from minimum of potential curve)
• α = ωe

√
Mr/(2De): range parameter (not to be confusedwithα(R) in the previous

section),

where theα parameter follows from the harmonic approximation to theMorse poten-
tial.

The solution of the time-independent Schrödinger equation for theMorse potential
can be given analytically, although it should be noted that it is only approximate in
character [7]. Defining the anharmonicity constant by xe = ωe/(4De) the eigenvalues
can be calculated according to

En = ωe(n + 1/2) − xeωe(n + 1/2)2, n = 0, 1, . . . . (5.21)
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Table 5.2 Comparison of the exact vibrational eigenvalues of H+
2 [9] in the electronic ground state

and different Morse oscillator eigenvalues in atomic units

n exact result xe = 1/37 rel. error (%) xe = 1/39.2 rel. error (%)

0 0.005495 0.005179 5.747984 0.005183 5.675522

1 0.015479 0.015111 2.376164 0.015147 2.144661

2 0.024884 0.024476 1.638591 0.024576 1.238571

3 0.033729 0.033274 1.348567 0.033469 0.770120

4 0.042029 0.041503 1.249677 0.041826 0.482308

5 0.049798 0.049166 1.269455 0.049647 0.301979

6 0.057046 0.056260 1.378290 0.056933 0.198723

7 0.063782 0.062787 1.560210 0.063683 0.155630

8 0.070010 0.068747 1.804148 0.069897 0.160519

9 0.075730 0.074139 2.101915 0.075576 0.203891

10 0.080942 0.078963 2.445402 0.080719 0.276061

11 0.085640 0.083220 2.826596 0.085326 0.367125

12 0.089816 0.086909 3.236319 0.089397 0.465597

13 0.093454 0.090030 3.663607 0.092933 0.557668

14 0.096538 0.092584 4.095619 0.095933 0.626968

15 0.099044 0.094571 4.516326 0.098397 0.653021

16 0.100942 0.095990 4.906204 0.100326 0.610653

17 0.102200 0.096841 5.243057 0.101719 0.470501

18 0.102798 0.097125 5.518222 0.102576 0.215673

19 0.102902 0.096841 5.890226 0.102897 0.004935

The above definition of the anharmonicity is assuming the exact Morse form of
the potential. One could, however, also use the experimental value for xe which is
typically slightly different from the one that is obtained by inserting the experimental
values for ωe and De. In the case of H+

2 , the frequency and the dissociation energy
are given by ωe ≈ 0.0105a.u. and De ≈ 0.103a.u. leading to an anharmonicity of
xe ≈ 1/39.2a.u., whereas the direct experimental value as of 1950 is xe ≈ 1/37.0a.u.
[8] (the value given in the revised 1979 version of [8] is slightly larger). Choosing
xe ≈ 1/39.2a.u. leads to a better agreement of the energies in (5.21) with the exact
vibrational eigenvalues of H+

2 [9], gained without resorting to the Morse potential,
as can be seen in Table5.2. Finally, also the range parameter can be calculated from
the anharmonicity according to α = √

2Mrωexe. Again α differs slightly if the direct
experimental anharmonicity or the one derived from the Morse potential is used!

The bound eigenvalues of the Morse oscillator are depicted in Fig. 5.5 together
with the two lowest eigenfunctions according to [7]. Because of the anharmonicity,
the distance between the levels decreases with increasing energy (for the parameters
of H+

2 this is barely visible at low quantum numbers). In contrast to the case of the
hydrogen atom, where infinitely many levels below the ionization threshold exist,
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Fig. 5.5 Morse potential in atomic units (solid line) with De = 0.103a.u. and Re = 2.00a.u.
and α = 0.72a.u., corresponding to the experimental values of H+

2 [8], together with the bound
eigenvalues and the (unnormalized) two lowest eigenfunctions

however, only a finite number of levels lies below the threshold of dissociation. The
maximal bound state index in the Morse potential can be determined from (5.21) by
setting Emax ≤ De and is given by

nmax = Int(1/(2xe) − 1/2). (5.22)

For the direct experimental anharmonicity parameter of H+
2 this number is 18, corre-

sponding to 19 bound states (the last entry in the third column of Table5.2 is already
larger than De = ωe/(4xe)), whereas the exact numerical solution displays 20 bound
states.

5.2 H+
2 in a Laser Field

The hydrogenmolecular ion is the simplestmolecule and therefore it has been the first
molecule that has been studied in detail numerically under the influence of an external
laser field. Restricting the electronic dynamics to two coupled potential surfaces is
allowing the treatment of dissociation via the laser field [10]. Ionization cannot
be studied in this framework. We want to focus on both ionization and dissociation
phenomena, however. Historically, first the numerical solution of the electron’s time-
dependent Schrödinger equation with fixed nuclei [11], allowing the investigation
of ionization probabilities, has been given. Only after a further increase of computer
power, the fully coupled molecular dynamics has been studied [12].
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5.2.1 Frozen Nuclei

To study the dynamics of a small molecule under the influence of an external electric
field, usually several well-founded assumptions are made:

• First, one neglects the translational motion of the center of mass and rotations of
the molecule.

• Secondly, the z-axis, along which the nuclei are assumed to be aligned, shall also
be the polarization direction of the incident radiation.

The effect of molecular alignment [13] is at the heart of the last assumption.
Fortunately, the problem then has a cylindrical symmetry and the time-dependent
Schrödinger equation with fixed nuclei in atomic units is given by

iΨ̇ (ρ, z, t) =
[
−1

2

∂2

∂z2
+ T̂ρ + VCC(ρ, z) + zE(t)

]
Ψ (ρ, z, t), (5.23)

where ρ and z are cylindrical coordinates, and the Hamiltonian does not depend on
the azimuthal angle ϕ. Furthermore,

T̂ρ = −1

2

∂2

∂ρ2
− 1

2ρ

∂

∂ρ
(5.24)

stands for the radial part of the kinetic energy and

VCC(ρ, z) = −[ρ2 + (z − R/2)2]−1/2 − [ρ2 + (z + R/2)2]−1/2 (5.25)

is the Coulomb potential of the electron bi-nuclear interaction.
The singularity of T̂ρ at ρ = 0 as well as of the Coulomb potential at the position

of the nuclei can be treated very elegantly, because of the cylindrical symmetry, by
expansion in a so-called Fourier-Bessel series [11], see also p. 126 in [14]. If L is
the largest distance from the z-axis that is to be described (the wavefunction shall be
zero for ρ ≥ L), then a complete orthonormal system of functions for the expansion
of the ρ-dependence of the wavefunction is given by

vn(ρ) =
√
2

L J1(xn)
J0(xnρ/L), (5.26)

where

Jν(x) ≡
( x

2

)ν
∞∑
j=0

(−1) j

j !Γ ( j + ν + 1)

( x

2

)2 j
(5.27)
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are Bessel functions of νth order and the xn are the zeros of the Bessel function of
zeroth order. The basis functions are orthonormal, according to1

∫ L

0
dρ ρ vn(ρ)vm(ρ) = δnm . (5.28)

Application of the radial part of the kinetic energy operator to the basis functions
yields

T̂ρvn(ρ) = 1

2
(xn/L)2vn(ρ), (5.29)

i.e., the vn are eigenfunctions of that operator. This fact can be proven explicitly by
using the definition in (5.27).

5.3. Using the definition of the Bessel function of 0th order, show that vn is an
eigenfunction of the radial part of the kinetic energy.

One now expands the wavefunction according to

Ψ (ρ, z, t) =
M∑

n=1

vn(ρ)χn(z, t). (5.30)

After multiplication of the time-dependent Schrödinger equation from the left with
vk and integration over ρ, the system of coupled partial differential equations

iχ̇(z, t) =
[
−1

2

∂2

∂z2
+ A(z) + zE(t)

]
χ(z, t) (5.31)

is found for the vector of coefficients χ(z, t) = (χ1(z, t), . . . ,χn(z, t)) and the
non-singular matrix A (ρVCC is finite at the position of the nuclei) with the elements

Akn(z) = 1

2
(xn/L)2δkn +

∫ L

0
dρ ρ vk(ρ)VCC(ρ, z)vn(ρ) (5.32)

has been defined.
The time-dependent Schrödinger equation can be solved by again using the split-

operator FFT method from Sect. 2.3.2. This leads to the propagated wavefunction
vector

χ(z, t + �t) = exp(−iT̂z�t/2) exp[−iE(t ′)z�t] exp[−iA(z)�t] exp(−iT̂z�t/2)

χ(z, t), (5.33)

where

1The Jacobian determinant, ρ, is essential for the following.
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T̂z = −1

2

∂2

∂z2
(5.34)

is the operator of the kinetic energy in z direction and t ′ = t + �t/2. The only
difference to what we have already encountered is the fact that the wavefunction is
not a scalar but a vector and correspondingly the non-diagonal matrixA(z) appears in
the exponent. In order to copewith this exponentiatedmatrix, prior to the propagation,
it is diagonalized using a matrix U(z) for every z and one finally gets

exp[−iA(z)�t] = U(z) exp[−iAD(z)�t]UT(z). (5.35)

The matrix is typically of a dimensionality, such that the solution of the eigenvalue
problem cannot be done analytically but has to be performed numerically.

5.2.1.1 Numerical Details and Results

It is worthwhile to note some numerical details of the benchmark calculations of the
Bandrauk group [11]. First of all, the numerical grid for the remaining z direction
was restricted to |z| < 128a.u. Furthermore, it turned out that L = 8 and M = 16 for
the number of Bessel functions was adequate for moderate field intensities around
1014Wcm−2. The laser was assumed to be turned on over five cycles of the field
with a frequency of ω = 0.2a.u., corresponding to a wavelength of 228nm. Finally,
the initial state was taken as the electronic ground state 1σg . It can be approximated
to a good degree by the variational LCAO of the previous section. Alternatively, the
LCAO-Ansatz may serve as an initial condition for propagation in imaginary time
(see Sect. 2.1.3), distilling the true ground state.

In [11] a measure for ionization was defined with a certain degree of arbitrariness,
by introducing

PV (t) = 2π
∫ zI

−zI

dz
∫ L

0
dρ ρ|Ψ (z, ρ, t)|2, (5.36)

with zI = 16a.u. as the non-ionized part of the probability. Together with the prob-
ability to be in the initial state, i.e., the survival probability

P0(t) = |〈Ψ (0)|Ψ (t)〉|2, (5.37)

this quantity is plotted in Fig. 5.6 for two different internuclear distances. In the case
R = 3a.u., Rabi oscillations appear for the parameters chosen, which correspond to
a one-photon transition between the 1σg and 1σu state, whereas for R = 2a.u., two
photons would be needed for the same transition. Although we have plotted only the
LCAO result for the surfaces in Fig. 5.3, the drastic decrease of the distance between
the two surfaces as a function of R can be observed also there.
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Fig. 5.6 Different
probabilities (defined in the
text) for different fixed
inter-nuclear distances of H+

2
as a function of time: upper
panel: R = 2a.u., lower
panel: R = 3a.u. [11]

5.2.1.2 Charge Resonance Enhanced Ionization

From the quantities defined above, one can extract an ionization rate by using an
exponential fit to PV (t). These rates as a function of intensity can then be compared
to the case of the hydrogen atom. In some early work, see, e.g., Fig. 5.7, it turned
out that the molecular results tend towards the atomic case for increasing excitation,
i.e., increasing R from 2 to 3a.u. [11].

For even larger distances, however, dramatic rate enhancement far beyond the
atom limit was found in [15] for a 1064nm laser with a five cycle rise. For a fixed
intensity this is shown in Fig. 5.8. The explanation of this effect is that a pair of charge
resonant states (here the almost degenerate 1σg and 1σu states, which have a similar
charge distribution at large R) are strongly coupled to the field at large R, when the
dipole moment between them (see also Sect. 5.3) diverges linearly. The effect was
therefore termed charge resonance enhanced ionization (CREI).

5.4. Show that the matrix element of z between the 1σg and 1σu states of H+
2 diverges

linearly with the interatomic distance R.

The success of the static tunneling picture in the atomic case of Sect. 4.3.1 led the
authors of [15] to consider the tunneling out of the statically distorted double-well
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Fig. 5.7 Ionization rate for
H+
2 compared to the atom

case (asterisks) for a
wavelength of 228nm as a
function of laser intensity.
Nuclei fixed at the
equilibrium distance
R = 2a.u. (squares) and
nuclei fixed at R = 3a.u.
(circles) [11]

Fig. 5.8 Ionization rate for H+
2 as a function of internuclear distance for fixed laser intensity of

1014Wcm−2 and wavelength of 1,064nm; hydrogen atom result indicated by a filled square [15]

potential that the electron experiences in a H+
2 molecule with a field induced potential

of E0z. The results for the energies evolving out of the two lowest, unperturbed
electronic eigenstates are displayed in Fig. 5.9. For the distance R = 10a.u., at
which a maximum in the ionization rate can be observed, the width of the upper level
has a maximum, because it lies just above the inner barrier and the left outer barrier
is rather narrow as compared to the R = 6a.u. case. In addition, due to the rapid
turn on of the field, the population of the upper level is almost equal to the one of the
lower level after the amplitude is constant [15] and therefore the system ionizes to a
substantial degree.

5.2.2 Nuclei in Motion

Nuclear dynamics in H+
2 can nowadays be treated on the same level as the elec-

tronic dynamics by the solution of the full time-dependent Schrödinger equation.

This copy belongs to 'veltien'



5.2 H+
2 in a Laser Field 187

Fig. 5.9 Lowest two static field induced levels and their line widths for H+
2 for three different

internuclear distances: a R = 6a.u., b R = 10a.u., c R = 14a.u. [15]

The wavefunction then depends on the additional degree of freedom R, describing
the relative motion of the nuclei. The coupling to the field shall again be given in the
length gauge. In this case, the motion of the center of mass motion can be separated
away by introducing a center of mass and the relative coordinate between the two
nuclei as well as an electron coordinate which is measured with respect to the center
of mass of the nuclei. This is a lengthy calculation, however, which is reviewed in
Appendix5.A.

As the final result, it turns out that the Hamiltonian of (5.23) has to be augmented
by the kinetic and the potential energy of the nuclei

T̂R + VR = − 1

2Mr

∂2

∂R2
+ 1

R
, (5.38)

where Mr = Mp/2 ≈ 918 is the reduced nuclear mass in atomic units. Furthermore,
as can be seen in Appendix5.A, the electron mass (which is unity in atomic units)
has to be modified slightly to read mi = 2Mp/(2Mp + 1) and the term with the laser
field is to be multiplied by the factor [1 + 1/(2Mp + 1)]. Both modifications are
marginal due to the large mass ratio. We stress, however, that for the relative motion
of H+

2 , the laser does only couple to the electronic motion and not directly to the
nuclei.

The total wavefunctionΨ (R, ρ, z, t) now also depends on R, and distance depen-
dent quantities like
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f1(R, t) = 2π
∫ L

0
dρρ

∫ zI

−zI

dz|Ψ (R, ρ, z, t)|2 (5.39)

can be studied. This is the probability density to find the protons a distance R apart
and the electron within a cylinder of height 2zI, such that H+

2 is not fully ionized.
zI is later on chosen to be 32a.u. From the R-dependent quantity just defined some
integrated quantities can be calculated. These are the dissociation probability without
ionization, i.e., the probability for the “reaction” H+

2 → H + H+2

PD(t) =
∫ Rmax

RD

dR f1(R, t), (5.40)

where again somewhat arbitrarily RD = 9.5a.u. can be chosen as the onset of dis-
sociation and Rmax is the nuclear grid boundary. Furthermore, the probability of
ionization

PI(t) = 1 −
∫ Rmax

0
dR f1(R, t) (5.41)

is given by the probability to find the electron outside of a cylinder with |z| ≤ zI.

5.2.2.1 Molecular Stabilization

Numerical results for the case of a molecule initially in the electronic 1σg ground
state and in an excited vibrational state with quantum number n = 6, according to

Ψ (R, z, ρ, 0) = φ1σg (z, ρ, R)χ6(R) (5.42)

are depicted in Fig. 5.10. Apart from the probabilities defined above, also the prob-
ability P6 to stay in the 6th vibrational state is displayed there. For relatively low
intensities (I= 3.5× 1013W/cm2) a stabilization of the initial state, i.e., after a short
initial decay, an increase of P6 is observed. It can be understood due to stimulated
emission (Rabi oscillation) from the dissociative 1σu state [12]. For higher intensi-
ties (I= 1014Wcm−2) this effect vanishes, however, because the system is already
ionized to a substantial degree. This is in contrast to the prediction of two-state calcu-
lations, which are also displayed in Fig. 5.10 and which show the stabilization effect
for both intensities. Furthermore, it is worthwhile to note that the fine oscillations
in P6, well visible for low intensities, occur at twice the laser frequency and are
due to the counter-rotating term, which is neglected in the RWA (but not in the full
numerical calculations reviewed here).

Further light can be shed on the stabilization (or bond hardening) effect by look-
ing at the nuclear wavefunction at a fixed time. For different field intensities these

2We note that there may be an asymmetry as to which proton the electron “belongs to” [16].
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Fig. 5.10 Different probabilities for H+
2 in a laser field (λ = 212nm) as a function of time for two

different intensities: a I= 3.5 × 1013Wcm−2, b I= 1014Wcm−2 [12]

results are displayed in Fig. 5.11. Sharp peaks near R = 3 and R = 3.6a.u. can
be observed. In a two state picture the adiabatic potentials (gained by diagonaliza-
tion of the Hamilton matrix) corresponding to the 1σg and 1σu − 1ω surfaces form
an avoided crossing3 [17, 18] and the peaks are at the turning points of the bound
motion in the upper adiabatic potential well (dotted red line in Fig. 5.12). For the
lower intensity, the shape of the peaks does not vary much as a function of time,
whereas for the higher intensity, the peaks decrease considerably due to ionization.

3See also Appendix3.A for avoided crossings of Floquet states.
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Fig. 5.11 Time evolved nuclear wavefunction of H+
2 in a laser field of different intensity: a I =

3.5 × 1013Wcm−2, b I = 1014Wcm−2 [12]. In these plots also two-surface calculations, which
do not account for ionization are displayed

Fig. 5.12 Schematic picture
of the formation of an
avoided crossing of dressed
states emerging from the 1σg
(black line) and 1σu − 1ω
(dashed blue line) surface
interacting via a dipole
matrix element
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Fig. 5.13 Comparison of the
two fragmentation channels,
defined in the text, as a
function of initial vibrational
excitation for a 25 fs laser
pulse with an intensity of
0.2PWcm−2 and 800nm
central wavelength. Black
squares show the overlaps
|〈H+

2 , n|H2, n = 0〉|2 [19]

5.2.2.2 Coulomb Explosion Versus Dissociation

In the results that we have discussed so far, the initial vibrational state was fixed to
be the n = 6 state. What happens for different initial vibrational quantum numbers?

As already discussed, the fragmentation of the molecular ion under the external
field can occur via different channels. One channel, in which the electron stays with
one (or each) of the two nuclei, is the dissociation channel (without ionization)

H+
2 → p + H.

The alternative is complete fragmentation, which is our ionization case, given by

H+
2 → p + p + e−.

This last channel is also referred to as the Coulomb explosion channel.
The outcome of numerical calculations using a modified 1D soft-core poten-

tial, where the softening parameter depends on the internuclear distance [19], and
the Crank-Nicolson method has been used for the propagation is displayed in
Fig. 5.13. It can be observed that for vibrational levels n ≥ 2 for the field parameters
chosen, the Coulomb explosion channel dominates the dissociation channel. Quan-
titatively different but qualitatively similar results with up to 60% dissociation
probability have been reported for the case of a full 3D hard-core Coulomb
interaction [20].

5.3 Adiabatic and Nonadiabatic Nuclear Dynamics

The neutral hydrogen molecule H2 has an additional electron compared to the hydro-
gen molecular ion of the previous section. Its dynamics under laser fields has been
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treated fully quantummechanically only recently [21]. In order to dealwith evenmore
complex systems numerically, approximations and/or restrictions of the dynamics
to some relevant degrees of freedom have to be made. An important, if not the most
important approximation of molecular theory is the Born-Oppenheimer approxima-
tion, to be discussed in the following.

This approximation is closely related to what we have already done for the case
of H+

2 in Sect. 5.1. There the binding potential energy surface 1σg was taken as a sum
of the repulsive potential between the nuclei and the attraction due to the electron
in-between the two nuclei. If no other (external) force is acting, then the nuclear
motion would be attracted by the minimum of the potential. The motion has to be
described quantum mechanically, however, and thus a probability distribution with
its maximum at the minimum of the potential curve will result. In the following we
will realize that the notion above is approximate in nature. Even in the case without
an external field the dynamics can, in general, not be restricted to a single electronic
surface.

5.3.1 Born-Oppenheimer Approximation

In (5.3) we have neglected the kinetic aswell as the potential energy of the nuclei. The
total Hamiltonian for a general molecule with M nuclei and N electrons, however,
is given by

Ĥmol = T̂N + Ĥe = T̂N + T̂e + V (x, X), (5.43)

with the kinetic energies (switching back to SI units for this section)

T̂N =
M∑

i=1

− �
2

2Mi
�i , (5.44)

T̂e =
N∑

j=1

− �
2

2me
� j . (5.45)

The potential energy V = Vee+VeN+VNN contains the electron-electron interaction

Vee(x) = e2

4πε0

1

2

N∑
i �= j

1

|r i − r j | , (5.46)

as well as the electron-nucleus (nuclear charge Zi e)

VeN(x, X) = − e2

4πε0

N∑
j=1

M∑
i=1

Zi

|r j − Ri | (5.47)
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and the internuclear interaction

VNN(X) = e2

4πε0

1

2

M∑
i �= j

Zi Z j

|Ri − R j | . (5.48)

All nuclear coordinates are contained in the symbol

X = (R1, . . . , RM),

whereas the electronic coordinates including spin are denoted by

x = (r1, s1; . . . ; rN , sN ).

As usual, the nuclear coordinates are distinguished from the electronic ones by using
capital letters for the former and lower case letters for the latter.

The electronic part of the Hamiltonian commutes with the nuclear coordinates,
i.e. [Ĥe, X] = 0. The nuclear coordinates therefore are “good quantum numbers”
for the electronic operator and can be viewed as parameters. One now first solves the
electronic eigenvalue problem (the time-independent Schrödinger equation of the
electrons), which is the generalized analog of (5.3),

Ĥeφν =
⎡
⎣−

∑
j

�
2

2me
� j + V (x, X)

⎤
⎦φν(x, X) = Eν(X)φν(x, X), (5.49)

where the electronic energy, as well as the corresponding wavefunction depend para-
metrically4 on the nuclear coordinates and ν is a suitable set of quantum numbers of
the electronic system. For the electronic functions, orthonormality and completeness
relations are assumed to hold,5 according to

∫
d4N x φ∗

ν(x, X)φμ(x, X) = δμν, (5.50)
∑

ν

|φν〉〈φν | = 1̂. (5.51)

The total wavefunction can thus be expanded by using the electronic states as basis
states, according to the Born-Huang expansion

ψ(x, X) =
∑

ν

φν(x, X)χν(X), (5.52)

4Some authors use the notation φν(x|X) or φν(x; X) to express this fact, see also Sect. 2.2.7.
5This can, e.g., be achieved by putting the molecule in a large box.
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with the nuclear functions χν(X). Inserting this Ansatz into the time-independent
Schrödinger equation

⎡
⎣−

∑
i

�
2

2Mi
�i −

∑
j

�
2

2me
� j + V (x, X)

⎤
⎦ψ(x, X) = εψ(x, X), (5.53)

one can now use the electronic Schrödinger equation to replace the electronic Hamil-
tonian by its eigenvalue and arrives at (written suggestively)

∑
ν

φν(x, X)

[
−
∑

i

�
2

2Mi
�i + Eν(X)

]
χν(X) =

∑
ν

φν(x, X)εχν(X)

+
∑

ν

∑
i

�
2

2Mi
[2∇iχν(X) · ∇iφν(x, X) + χν(X)�iφν(x, X)]. (5.54)

The second line in the equation above follows from the application of the product
rule of differentiation and is due to the change of the electronic states induced by the
nuclear motion.

If we neglect this second line and multiply the equation from the left by φ∗
μ(x, X),

after integration over the electronic coordinates, we get

[
−
∑

i

�
2

2Mi
�i + Eμ(X)

]
χμ(X) ≈ εχμ(X). (5.55)

This is the time-independent Schrödinger equation for the nuclear degrees of freedom
in an (adiabatic) potential that is given by the μth eigensolution of the electrons.
From the minimum of the ground state energy of the electrons, one can determine
the binding energy of the molecule, by comparing that minimum to the sum of the
ground state energies of all isolated atoms. We have used this notion already in
Sect. 5.1. As we can appreciate now, an approximation has been made along the way,
however. The equation above and also its time-dependent analog, which leads to a
dynamics on a single potential energy surface, are based on the Born-Oppenheimer
approximation that amounts to the complete neglect of the second line in (5.54).

5.5. Using the Rayleigh-Ritz variational principle, show that the Born-Oppen-
heimer ground state energy is a lower bound to the exact ground state energy of
the full molecular problem. Employ the original Born-Oppenheimer factorization
Ansatz ψBO(x, X) = φ(x, X)χ(X) to this end.

The approximation that has been made still needs to be justified. That is we have
to argue why the terms in the second line of (5.54) might by small compared to the
terms in the first line of that equation. Let us just consider the terms

�
2

2Mi
�iφν(x, X),
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Fig. 5.14 Change of the LCAO electronic ground state of H+
2 from (5.5) by changing the internu-

clear distance slightly from R = 2 a.u. (solid line) to R = 2.1 a.u. (dashed line). Shown is a cut
through the 3D wavefunction (integrated over the azimuthal angle) at ρ = 0

containing the second derivative with respect to nuclear variables. The electronic
wavefunction depends on X in a similar fashion as it depends on x (dependingmainly
on the differences Ri − r j ). Therefore the respective derivatives are of the same order
ofmagnitude. The corresponding prefactors in (5.53), however, are smaller by almost
3 orders ofmagnitude due to the largemass ratio Mi/me. A similar reasoning is possi-
ble for the terms containing the first derivative, see Sect. 11.1.2 of [22]. Furthermore,
in many cases there is only a weak dependence of the electronic wavefunction on the
nuclear distance. That is why the Born-Oppenheimer approximation is so successful.
As an explicit example, in Fig. 5.14, a cut through the electronic ground state in the
case of H+

2 is displayed and the slow variation of this state with the nuclear distance
is shown (shown is the LCAO result; full numerical calculations lead to the same
conclusion, however).

In general, however, one has to multiply also the second line in (5.54) from the
left with φ∗

μ(x, X) and has to integrate over the electronic coordinates. The terms
that emerge then lead to transitions between the different electronic surfaces, the so-
called nonadiabatic or non Born-Oppenheimer transitions. For reasons of simplicity,
we transform into a coordinate system that moves with the center of mass (see
below), and give the corresponding TDSE in the case of a diatom and just two
(excited) electronic surfaces that we denote by V a

1 (R) and V a
2 (R) and that depend

on the inter-atomic separation R. This leads to

i�

(
χ̇1(R, t)
χ̇2(R, t)

)
=
[(

T̂N + U11 Q12
∂

∂R + U12

Q21
∂

∂R + U21 T̂N + U22

)
+
(

V a
1 (R) 0
0 V a

2 (R)

)]
(

χ1(R, t)
χ2(R, t)

)
, (5.56)

where T̂N = − �
2

2Mr

∂2

∂R2 and
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V a
2 ≈ V d

11

V a
1 ≈ V d

11

V a
2 ≈ V d

22

V a
1 ≈ V d

22

Fig. 5.15 Schematic dependence on internuclear distance of adiabatic (solid lines, superscript a)
and diabatic (dotted lines, superscript d) electronic levels in the vicinity of an avoided crossing
of the adiabatic levels (where the physical character of the states can change dramatically). In the
diabatic picture, the nonadiabatic transitions are due to non-diagonal coupling matrix elements (not
displayed). Realistic adiabatic and diabatic surfaces for the LiH2 system are displayed in Fig. 12.1
of [24]

Qμν = − �
2

Mr

〈
φμ

∣∣∣∣ ∂

∂R

∣∣∣∣φν

〉
, (5.57)

Uμν = − �
2

2Mr

〈
φμ

∣∣∣∣ ∂2

∂R2

∣∣∣∣φν

〉
, (5.58)

where we used Dirac notation for the electronic integration. The transitions between
the adiabatic surfaces that occur close to avoided crossings of those surfaces, where
the character of the states may change dramatically, are due to the off-diagonal
electronic matrix elements of the derivative terms of the second line of (5.54). The
first term in the second line of (5.54) has vanishing diagonal elements (which can
be proven by assuming that the electronic wavefunctions are real and normalized at
all R). Small diagonal contributions stem only from the second term on the second
line and are not leading to electronic transitions. The off-diagonal ones are (mainly)
coming from the first term (see Exercise5.6) and still contain a nuclear momentum
operator, after performing the integration over electronic coordinates.

The nonadiabatic matrix elements (5.57) and (5.58) are usually quite hard to cal-
culate [23]. Alternatively, nonadiabatic transitions are therefore frequently described
in another, so-called diabatic basis, leading to a coupled TDSE of the form

i�

(
χ̇1(R, t)
χ̇2(R, t)

)
=
[(

T̂N 0
0 T̂N

)
+
(

V d
11(R) V d

12(R)

V d
21(R) V d

22(R)

)](
χ1(R, t)
χ2(R, t)

)
. (5.59)

A schematic plot of adiabatic and diabatic levels is given in Fig. 5.15. The diabatic
levels can cross and their coupling is given by non-diagonal potential terms and not
by derivative terms, which might be advantageous computationally. However, the
construction of diabatic surfaces is not unique [23].

Before leaving this section, let us come back to themixed quantum classical meth-
ods that we have discussed in Chap.2. In the framework of the Born-Oppenheimer
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description the classical dynamics is restricted to a single surface, most frequently,
the ground state. For frozen nuclear coordinates the electronic quantum problem is
solved for the ground state and the forces which govern the nuclear motion are deter-
mined. After a short time step of the nuclear motion the same procedure is repeated.
In this way, the forces are calculated “on the fly” and the procedure can also be
generalized to the treatment of nonadiabatic dynamics. In the following, however,
we assume that the potential and/or forces are at our disposal, either analytically, or
numerically on a grid, as the outcome of a quantum chemical calculation.

5.6. Let R denote a parameter that describes a displacement of the nuclei, such that
the electronic Hamiltonian, as well as its (orthonormalized) eigensolution depend
on it

Ĥe(q)φν(R) = Eν(R)φν(R).

(a) Proof that the force due to the displacement is given by the Hellmann-Feynman
theorem

−F(R) = dEν(R)

dR
=
〈
φν(R)

∣∣∣∣∣
dĤe(R)

dR

∣∣∣∣∣φν(R)

〉
.

(b) Show that the derivative coupling term Qμν increases, when the two electronic
surfaces come close in energy.

5.3.1.1 Relative and Center of Mass Coordinates

Similar to the case of H+
2 (see Appendix5.A), the treatment of themolecular problem

is preferably done in center of mass and relative coordinates. Furthermore, only for
the “internal motion”, the assumption of normalizable electronic wavefunctions is
reasonable [25].

The center of mass is moving freely due to the fact that the potential does not
depend on the corresponding coordinate.We therefore concentrate on the description
of the relative motion.6 The relevant masses then are reduced masses. In the diatomic
case, this has already been used in Sect. 5.2. For more atoms, matters become com-
plicated rather quickly. Already in the case of collinear motion of three nuclei, cross
terms do appear in the kinetic energy.

5.7. For three collinear masses M1, M2, M3, give relative and center of mass coordi-
nates and write the kinetic energy with the help of the canonically conjugate relative
momenta.

A transition to center of mass and relative coordinates for the complete molecular
Hamiltonian (including the electrons) in two steps is given in the supplementary

6We will not consider rotational dynamics with the exception of Sect. 5.5.
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material to [26]. There, first the transition into the center of mass system of the
nuclei is performed and secondly the transition from the nuclear center of mass
system to that of the complete system is performed. In this way, the kinetic energies
do not include terms mixing electronic and nuclear derivatives.

5.3.1.2 Coupling to a Laser Field

In order to couple a laser field to a molecular system, we will use the length gauge.
Generalizing the discussion in Sect. 3.1.2 to the many particle case, this leads us to
consider the dipole operator

d(x, X) =
∑

i

Zi eRi −
∑

j

er j . (5.60)

After having solved the electronic problem, the dipole matrix element (or (transition)
dipole moment)

μba(X) =
∫

d4N x φ∗
b(x, X)d(x, X)φa(x, X) (5.61)

has to be calculated. This is a generalization of the dipole matrix element of
Sect. 3.2.1, due to the fact that it still may depend on the internuclear distance.

If we consider different electronic levels, i.e., if b �= a, then due to the orthogo-
nality of the corresponding states only the parts proportional to

∑
j er j of the dipole

operator survive. If a corresponding transition is not forbidden, then even if one
neglects the nonadiabatic terms in the spirit of the Born-Oppenheimer approxima-
tion, still a coupled surface time-dependent Schrödinger equation has to be solved
due to the presence of the laser.

5.3.2 Dissociation in a Morse Potential

Before treating the problem of coupled surfaces, the influence of a laser on the
wavepacket dynamics in the electronic ground state shall be studied. Frequently used
systems for theoretical calculations are “diatomics” like HF and CH- or OH-groups
of larger molecules.Heteronuclear systems are chosen due to the fact that symmetric
homonuclear molecules as, e.g., H2 do not have a permanent electric dipole moment
in the electronic ground state. If the parameters of a typical infrared laser are chosen
appropriately, the diatomic can be driven into dissociation. In contrast to the studies
of dissociation of the hydrogen molecular ion of Sect. 5.2, in the following only the
nuclear part of the Schrödinger equation will be considered.
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Fig. 5.16 Mecke form for the dipole function (solid line) of an X-H diatomic and its linear approx-
imation (dashed line) around the minimum of the corresponding Morse potential; parameters used
are the ones for the OH stretch in H2O: Re = 1.821, R∗ = 1.134 in atomic units [31]

5.8. Show explicitely that, for the relative motion, the permanent electronic dipole
moment of H+

2 in the electronic ground state (approximated by 1σg of Sect.5.1) is
zero.

After the separation of the center of mass motion, the Hamiltonian for the relative
motion of the two nuclei in a Morse potential modeling the electronic ground state
is given by

Ĥ = − 1

2Mr

∂2

∂R2
+ VM(R) + μ(R)E0 f (t) cos(ω(t)t) . (5.62)

The potential parameters for HF are De = 0.225, Re = 1.7329,α = 1.1741 in
atomic units [27]. In general, one allows for a chirp, see also Sect. 1.3.3, in the laser
frequency.

The R-dependent dipole matrix element (or dipole moment) in principle has to be
determined by quantum chemical methods and we assume it to be given analytically
in the form studied in detail by Mecke [28]

μ(R) = μ0R e−R/R∗
. (5.63)

Alternatively, other powers of R than the first may appear in the exponential function.
For HF the power of 4 is frequently used [29]. As can be seen from Fig. 5.16, around
the minimum Re of the Morse potential the dipole function in (5.63) can (up to an
irrelevant constant) be approximated by a linear function

μ(R) ≈ −μ′(R − Re). (5.64)

The slope of this linear function is referred to as the dipole gradient or effective
charge. For HF this quantity is given by μ′ = 0.297 in atomic units [30].

What is the reason for allowing a chirp in the laser frequency? As we have seen in
Chap.3, complete population transfer between two levels is only possible in the case
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Fig. 5.17 a Chirped pulse
frequency ω(t) and envelope
function f (t), b several
probabilities in a driven
Morse oscillator, all as a
function of time in cycles of
the external field; adapted
from [30]

(a)

(b)

of resonance. So if the oscillator is to be excited resonantly on the ladder of energy
levels, in the case of the Morse energies (5.21), the frequency has to decrease as a
function of time. Furthermore, the excitation “pulse” has to be a π-pulse. Following
these arguments, for theHFmolecule, the authors of [30] have constructed an analytic
form of a pulse that leads to a large final dissociation probability. The envelope of
that pulse and its time varying central frequency are depicted in Fig. 5.17 and we
stress that the chirp appears in the simple form cos[ω(t)t] in the Hamiltonian (not
integrated over time like in (1.26)). The frequency decreases from an initial value
of ω01,7 equal to the energy difference of the lowest two levels. In the figure also
the probabilities for dissociation and the occupation of different vibrational levels of
the HF molecule are displayed. The results have been gained by numerically solving
the TDSE with the vibrational ground state as the initial state. Apart from the slight
generalization of the chirp, this study is completely analogous to the investigation of
multi-photon ionization in the Gauss potential of Sect. 4.3.2.

Analogous results have been foundby applying a classicalmechanics optimization
procedure [32] and are reproduced in Fig. 5.18. It is not surprising that also the
classical result displays a down chirp of the frequency. Also in classical mechanics,
a softening of the bond occurs for higher energies.

The material just presented is already a glimpse of what we will discuss in detail
in Sect. 5.5 on the control of quantum systems. There we will, e.g., review the use of
optimal control methods to steer a Morse oscillator into a desired excited vibrational
state [33].

7The corresponding vibrational period of HF is 8.4 fs.

This copy belongs to 'veltien'

http://dx.doi.org/10.1007/978-3-319-74542-8_1
http://dx.doi.org/10.1007/978-3-319-74542-8_4


5.3 Adiabatic and Nonadiabatic Nuclear Dynamics 201

Fig. 5.18 a Optimal field
and b quantum mechanical
expectation value of position
(solid line) and classical
trajectory (dashed line) for
the dissociation of a Morse
oscillator [32]

(a)

(b)

5.3.3 Coupled Potential Energy Surfaces

Now we are ready to deal with the problem of nonadiabatic dynamics on coupled
potential energy surfaces. The wavefunction that describes the system in this case is
a vector and each component evolves on a specific surface. Due to the fact that the
equations are coupled the problem is also referred to as a coupled channel problem.
In Sect. 5.2, we have encountered such a situation at least formally already. However,
the different channels there were the different basis functions in the Fourier-Bessel
series expansion.

In this section, we will show how the formalism for the solution of the time-
dependent Schrödinger equation has to be augmented to cope with the new situation.
First this will be done fully quantum mechanically and then we will deal in some
detail with the semiclassical approximation to coupled surface quantum dynamics.

5.3.3.1 Quantum Mechanical Approach

As a simple example, let us start with the case of a homonuclear diatomic molecule
and consider two diagonal (diabatic) potential matrix elements Vnn(R), n = 1, 2.
Their coupling shall be given by arbitrary non-diagonal matrix elements V12(R, t) =
V21(R, t), which may depend on time.

The corresponding two surface time-dependent Schrödinger equation is given by8

8Note that we are using the symbol for the time-independent nuclear wavefunction also for the
time-dependent one.
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iχ̇1(R, t) =
[
− 1

2Mr

∂2

∂R2
+ V11(R)

]
χ1(R, t) + V12(R, t)χ2(R, t), (5.65)

iχ̇2(R, t) =
[
− 1

2Mr

∂2

∂R2
+ V22(R)

]
χ2(R, t) + V12(R, t)χ1(R, t) . (5.66)

Its solution can be gained by an extension of the split-operator FFT method of
Sect. 2.3. A generalization of the known procedure is necessary due to the fact that
the potential is a 2× 2 matrix

V(R, t) =
(

V11(R) V12(R, t)
V12(R, t) V22(R)

)
(5.67)

now, in complete analogy to the matrix A of Sect. 5.2. In order to exponentiate it,
one first has to diagonalize it, as in the previous section. In contrast to the previous
section, in the case of two levels the diagonalization can be done exactly analytically,
however, leading to [34]

exp{−i�tV} = exp

{
−i�t

(
V11 + V22

2

)}(
A B
B A∗

)
. (5.68)

Here A and B are complex numbers given by

A = cosφ − i�tλ
sin φ

φ
, B = −i�tV12

sin φ

φ
, (5.69)

with the phase

φ(R, t) = �t
√

V 2
12(R, t) + λ2(R), (5.70)

and half the potential energy difference

λ(R) = V11(R) − V22(R)

2
. (5.71)

The presented approach is still exact if maximally two surfaces are taking part in the
dynamics.

5.9. Prove the explicit formula for the exponentiated two by two matrix exp{−i�tV}.
The formalism shall now be applied to the case of coupling between two adiabatic

surfaces due to a laser pulse in length gauge using the RWA. The non-diagonal
coupling is then given by

V12(R, t) = μ(R) f (t)E0 cos(ωt), (5.72)
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Fig. 5.19 Upper panel:
Excited electronic surface
V22 (dashed blue). Lower
panel: the coupling to a field
in the resonance case and for
non-resonance leads to
differently modified excited
states Ṽ22 (dashed blue:
resonance, dashed-dotted
green: nonresonance). In
both panels also the ground
state wavefunction (dotted
red) and the ground state
potential surface V11 (solid
black) are depicted
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with the dipole moment μ. To apply the rotating wave approximation of Sect. 3.2.3,
the second component of the wavefunction vector is transformed according to

χ̃2 = exp{iωt}χ2. (5.73)

Inserting the transformed wavefunction into the time-dependent Schrödinger equa-
tion and neglecting the counter-rotating term, proportional to exp{−2iωt}, the only
time-dependence that remains is the one due to the envelope. Furthermore, because
of the product rule to be used for the time-derivative, the second surface is shifted
by−ω as displayed in Fig. 5.19. The transformed coupled surface equations in RWA
thus contain the modified potential matrix elements

Ṽ22(R) = V22(R) − ω, (5.74)

Ṽ12(R, t) = μ(R) f (t)E0/2. (5.75)

In addition, the Condon approximation can be made. The dipole moment then does
not depend on R. Before presenting an application of this formalism, we first discuss
a semiclassical approach to the coupled surface problem.
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5.3.3.2 Semiclassical Approach: Mapping Hamiltonian

The classical and semiclassical description of the motion on coupled potential sur-
faces seems to be problematic. A way must be found to let trajectories switch from
the motion on one to motion on another surface. A method that is ad hoc in nature,
but is rather successful numerically, is the surface hopping technique developed by
Tully [35].

Modern semiclassical methods can be derived from the underlying quantum
mechanics, however, as we will see in the following. These methods have a his-
torical precursor in the so-called “classical electron analog model” by Meier and
Miller [36]. We will now review the method by Stock and Thoss, which is based on
Schwinger’s “mapping formalism” [37]. The N discrete electronic levels that shall
be taking part in the dynamics are mapped onto N continuous, harmonic degrees of
freedom in this approach.

The analogy between uncoupled harmonic oscillators and a spin system shall be
dealt with in the following for the simple case of N = 2. In this case an oscillator of
plus type and an oscillator of minus type are defined with the respective annihilation
and creation operators

â+, â†
+, â−, â†

−, (5.76)

where operators of the same type are fulfilling the standard commutation relations
(2.164) and any operators of different type are commuting with each other. Further-
more, occupation number operators

N̂+ = â†
+â+, N̂− = â†

−â− (5.77)

can be defined. Simultaneous eigenkets of N̂+ and N̂− fulfill the eigenvalue equations

N̂+|n+, n−〉 = n+|n+, n−〉, N̂−|n+, n−〉 = n−|n+, n−〉, (5.78)

with the eigenvalues n±, and an arbitrary state can be created from the vacuum state
by the application of â†

+ and â†
−, using (2.165), according to

|n+, n−〉 = (â†
+)n+(â†

−)n−√
n+!n−! |0, 0〉. (5.79)

One can now define the products

Ĵ+ ≡ â†
+â−, Ĵ− ≡ â†

−â+, Ĵz = 1

2
(â†

+â+ − â†
−â−), (5.80)

where Ĵz = 1
2 (N̂+ − N̂−). It can be shown that these operators fulfill the angular

momentum commutation relations [38]
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Fig. 5.20 Mapping analogy
and occupation number
representation

+

−

−

+
|1, 0〉

|0, 1〉

Ĵ−

[ Ĵz, Ĵ±] = ± Ĵ± (5.81)

and

[ Ĵ+, Ĵ−] = 2 Ĵz . (5.82)

Furthermore,

Ĵ
2 = Ĵ 2

z + 1

2
( Ĵ+ Ĵ− + Ĵ− Ĵ+) = N̂

2

(
N̂

2
+ 1

)
, (5.83)

with the total occupation number operator N̂ ≡ N̂+ + N̂−holds.
For our purposes the restriction to the subspace n+ + n− = 1 is appropriate.

This is due to the fact that a spin 1/2 particle can be mapped onto two uncoupled
oscillators. In case the eigenvalues of the plus and minus oscillator are n+ = 1
and n− = 0, respectively, the particle is in the spin up state. Application of the
operator Ĵ− leads to n+ = 0 and n− = 1 and the particle is in the spin-down state.
The equivalent description of such a system in terms of harmonic oscillators and by
using the occupation number representation is depicted in Fig. 5.20.

Now we return to the problem of a Hamilton operator for the coupled dynamics
on N surfaces

Ĥ =
∑
n,m

hnm |φn〉〈φm |. (5.84)

Rewriting this Hamiltonian with the help of continuous bosonic variables, one intro-
duces N harmonic degrees of freedom by using the mapping procedure
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|φn〉〈φm | → â†
n âm, (5.85)

|φn〉 → |01, . . . 1n, . . . , 0N 〉, (5.86)

discussed above. This leads to the Hamiltonian

Ĥ =
∑
n,m

hnmâ†
n âm . (5.87)

A classical analog of the mapped quantum dynamics can be defined by replacing
the position and momentum operators appearing in the creation and annihilation
operator

â†
n = (ŷn − ∂/∂yn)/

√
2, (5.88)

ân = (ŷn + ∂/∂yn)/
√
2 (5.89)

by the respective classical variables yn, pn . The lower case variables ( y, p) =
{yn, pn} with n = 1, . . . N are thus the coordinates and momenta of the auxiliary
harmonic oscillators and (R, P) are the phase space variables of the relative nuclear
motion with the reduced mass Mr. The classical “mapping” Hamiltonian of an N
level system is then given by

H( y, p, R, P) = P2

2Mr
+ He, (5.90)

with the “electronic” Hamiltonian

He =
N∑

n=1

Vnn(R)
1

2
(p2

n + y2n − 1) +
N∑

n<m=1

Vnm(R)(yn ym + pn pm). (5.91)

A semiclassical implementation of the coupled time-dependent Schrödinger equa-
tion (5.65) and (5.66) can now be done by using theHerman-Kluk propagator of Sect.
2.3.4. Each of the vectors {x, pi , q i } in the multi-dimensional formulation of the
semiclassical propagator (2.229) contains the nuclear as well as the harmonic degrees
of freedom. The initial state is a direct product of, e.g., a Gaussian wavepacket in the
nuclear coordinate times the ground state eigenfunction of the initially unoccupied
harmonic mode and the first excited state in the occupied harmonic mode [37]. The
overlap with the coherent state in (2.229) can again be determined analytically.

5.3.3.3 Application to a Model System

In the following, full quantum as well as semiclassical results of the solution of
the coupled surface time-dependent Schrödinger equation (5.65) and (5.66) will be
reviewed for a model that has been used in order to study the breakdown of the

This copy belongs to 'veltien'

http://dx.doi.org/10.1007/978-3-319-74542-8_2
http://dx.doi.org/10.1007/978-3-319-74542-8_2
http://dx.doi.org/10.1007/978-3-319-74542-8_2


5.3 Adiabatic and Nonadiabatic Nuclear Dynamics 207

Rosen-Zener “approximation” [39]. The dimensionless variables

Q ≡ R/Rc and τ ≡ t/tc (5.92)

are the same as used there, with

Rc =
√

�/(
√
2Mrωe) and tc = √

2/ωe . (5.93)

Here ωe is the frequency of the harmonic ground electronic surface and the model
potentials are given by

V11(Q) = Q2/2, (5.94)

Ṽ22(Q) = −AQ + B, (5.95)

whereas the off-diagonal potential, proportional to the envelope of the external field
with dimensionless pulse length parameter Tp, is given by

Ṽ12(τ ) = D sech

[
τ − τ0

Tp

]
. (5.96)

For an inverse hyperbolic cosine pulse as above, a driven two-level system can be
treated analytically and its Rosen-Zener solution has been reviewed in Sect. 3.2.4.
The only difference to the case we study here is the absence of the kinetic energy
in the Rosen-Zener model. Therefore, although the problem without kinetic energy
is solvable exactly analytically, now this solution is an approximation! With these
remarks, it is clear that the Rosen-Zener (RZ) approximation is the exact analytical
solution of the approximate coupled time-dependent Schrödinger equation

iχ̇RZ
1 (τ ) = λ(Q)χRZ

1 (τ ) + Ṽ12(τ )χ̃RZ
2 (τ ), (5.97)

i ˙̃χRZ
2 (τ ) = Ṽ12(τ )χRZ

1 (τ ) − λ(Q)χ̃RZ
2 (τ ), (5.98)

with

λ(Q) = Ṽ22(Q) − V11(Q)

2
. (5.99)

In the spirit of the so-called Franck-Condon approximation [40, 41], electronic tran-
sitions take place at fixed nuclear positions Q. We can therefore use the solution of
Rosen and Zener

|χRZ
1 (λ, τ )|2 =

∣∣∣∣F
[

DTp,−DTp; 1
2

− iλTp; z(τ )

]∣∣∣∣
2

, (5.100)

with the hypergeometric function F [42] and
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Fig. 5.21 Real part of the
auto-correlation function (a)
and the population of level 1
(b) and level 2 (c) as a
function of time for model I;
solid line: semiclassical
result, dotted line: full
quantum result; adapted
from [43]
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z(τ ) = 1

2
[tanh(τ/Tp) + 1]. (5.101)

|χRZ
1 |2 depends on Q via λ and provides the probability to be in the ground state at a

given Q. The total probability to be in the ground state can be gained by multiplying
the Rosen-Zener solution with the initial probability density and integrating over
position. For the probability to be in the excited state

PRZ
2 (τ ) = 1 −

∫
dQ|χ1(Q,−∞)|2|χRZ

1 (2λ = �V (Q), τ )|2 (5.102)

then follows.
In Table5.3, the model parameters for the results to be presented are gathered.

In both cases, the initial nuclear wavepacket is the ground state wavefunction of
the harmonic surface. The Gaussian part of the 3D wavefunction in the semiclassical
case is thus centered around the origin and has the width parameters (γ11, γ22, γ33) =
(2−1/2, 1, 1). Quantities of interest are the auto-correlation function

c(τ ) = 〈χ1(τ )|χ1(0)〉 + 〈χ2(τ )|χ2(0)〉 , (5.103)

as well as the occupation probabilities

P1,2(τ ) = 〈χ1,2(τ )|χ1,2(τ )〉 (5.104)

of the different levels.
For model I, a considerable number of Rabi oscillations occurs as can be seen

in Fig. 5.21. The quality of the semiclassical results is good. This is so, although
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Table 5.3 Dimensionless model parameters for the problem of two coupled surfaces

A B D τ0 Tp

Model I 50 10 300 0.1 0.01

Model II 0.1 0.01 2.5 2 0.4

Fig. 5.22 Absolute value of
the wavefunction in level 1
(a) and level 2 (b) at time
τ = 0.135 for model I; solid
line: semiclassical result,
dotted line: full quantum
result [43]
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the parameters chosen for model I lead to a substantial nonlinearity of the classical
equations of motion.9 Also the semiclassical wavefunctions at time τ = 0.135 in
the different levels in Fig. 5.22 give a good account of the quantum wavefunction.
Especially the double humped structure of the wavefunction in the ground state is
correctly reproduced.

For model I, the Rosen-Zener approximation (which is not shown) would be
very well founded due to the shortness of the pulse and there would be almost no
difference compared to the full quantum results. Let us consider a case, where the
neglect of the kinetic energy, sometimes referred to as the short time approximation,
breaks down, however. This is the case of model II that uses the same wavepacket
parameters asmodel I. In Fig. 5.23 a comparison of three different results is displayed.
The semiclassical as well as the full quantum and the approximate Rosen-Zener
quantum results for the probability to be in the second level are shown. As in case I
above, the semiclassical results are representing the full quantum results quite well.
In the Rosen-Zener approximation for longer times, a deviation from the quantum
result can be observed, however, which is due to the neglect of the kinetic energy in
(5.97) and (5.98).

9Both potentials, if uncoupled, would show no nonlinearity in the classical dynamics and would be
solvable exactly analytically; when coupled, however, the mapping Hamiltonian is highly anhar-
monic!

This copy belongs to 'veltien'



210 5 Molecules in Strong Laser Fields

Fig. 5.23 Comparison of the
semiclassical (solid), the
quantum (long-dashed) and
the Rosen-Zener result (short
dashed) for the population of
level 2 as a function of time
for model II [43]
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5.4 Femtosecond Pump-Probe Spectroscopy

The study of ultra-fastmolecular processes is a rapidly growing research field that has
gained considerable attention due to the 1999 Nobel prize in Chemistry for Zewail.
Before we concentrate on some theoretical aspects of that field, let us get acquainted
with orders of magnitude of time scales in molecular dynamics.

To this end we will convert times into energy (and vice versa) using the formula

E/h = 1/T . (5.105)

In different units this reads

E(eV) = 4.134

T (fs)
, E(cm−1) = 33, 368

T (fs)
. (5.106)

Frommolecular spectra [22] the following ranges for times (periods) inwhich typical
phenomena occur can be extracted10:

• Rotation: from 1–100ps (ν̄J=0→J=1 from 20 to 0.25cm−1)
• Normal vibrations: from 10–300 fs (ν̄n=0→n=1 from 4,000 to 100cm−1)
• Vibrational relaxation: 100 fs–100ps
• Direct photodissociation: up to 100 fs [23]

In order to investigate molecular phenomena on a femtosecond scale, time-
resolved measurements, which are frequently referred to as “pump-probe” exper-
iments, are performed. In such experiments a sample is excited by a first, so-called
pump pulse. After a variable time delay Td a second, so-called probe pulse is imping-
ing on the excited system and a signal

S(Td) = S(with pump) − S(without pump) (5.107)

10ν̄ = ν/c is the wavenumber.
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Fig. 5.24 a Morse potential
with dipole-allowed
transitions and b absorptive
2D IR spectrum of an
anharmonic molecular
vibration (dashed line:
positive, and solid line:
negative signal) [44]

is measured. This may, e.g., be the absorption of the system, the fluorescence of the
systemor the probability to emit an electronwith a certain energy. The time resolution
of the experiment is given by the full width at half maximum of the pulses, which
shall be used in the following to characterize their shortness.

5.4.1 2D IR Spectroscopy

In 2D infrared (IR) spectroscopy, one is interested in describing the coupling between
vibrational modes. They manifest themselves in the so-called cross peaks in the 2D
spectrum. In this section, we concentrate on 2D IR spectroscopy in the frequency
domain and follow closely the excellent presentation of the subject by Hamm and
Zanni [44]. We start by looking at a single vibrational mode first and then move on
to the case of two coupled vibrational modes.

5.4.1.1 Single anharmonic vibrational mode

A single Morse oscillator model for a carbonyl stretch in an acetone molecule will
be used as the underlying physical system in the following. A 2D IR spectrum in the
frequency domain is displayed in Fig. 5.24 together with the Morse potential, whose
energy spectrum is given in (5.21). The anharmonic character of the Morse potential
and the corresponding feature of its spectrum is decisive for a nontrivial signal in 2D
IR spectroscopy.

One scans the pump frequency ωpump and the probe frequency ωprobe and uses
them as y axis and x axis, respectively. What is then displayed as a contour plot is
the difference spectrum, i.e., the absorption with the pump pulse switched on, minus
the absorption with the pump pulse switched off. Because the pump pulse depletes
the ground state, there is less absorption from the ground state (an effect which is
called bleach) and in addition due to the stimulated emission from the excited state
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the absorption is further decreased. These two effects lead to a negative sign in the
2D spectrum, which is depicted by solid contour lines. In contrast, the absorption
from the excited state can only occur of the pump pulse was switched on and is
therefore positive (broken contour lines). The negative and positive contribution can
be distinguished because the transition from the first to the second excited level
occurs at

ω12 = ωe − 4ωexe, (5.108)

which is red-shifted from

ω01 = ωe − 2ωexe. (5.109)

In the case of the harmonic oscillator xe = 0 and the positive and negative con-
tributions would occur around the same central frequency and cancel out, because,
although there are two signals contributing to the on-diagonal peak, the intensity of
the excited state absorption is twice as strong as the 0–1 transition. This is due to the
fact that the squared transition dipoles scale as μ2

12 = 2μ2
01.

5.10. Show that the transition dipoles for the harmonic oscillator fulfill the scaling
relation μ2

12 = 2μ2
01.

If the anharmonic shift is larger than the bandwidth of the transition, the anhar-
monicity constant can be read off directly from the 2D IR spectrum.

5.4.1.2 Two coupled anharmonic vibrational modes

The more prominent reason for the study of 2D IR spectroscopy is the possibility
to monitor interactions between coupled modes. We first consider two coupled local
modes in an exciton model Hamiltonian (ignoring zero point energy)

Ĥh = ω1â
+
1 â1 + ω2â+

2 â2 + β12(â
+
1 â2 + â+

2 â1), (5.110)

with the creation and annihilation operators of the local oscillators introduced in
Sect. 2.3.1. The non-rotating wave terms â1â2 and â+

1 â+
2 that originate from a bilinear

coupling term in the mode coordinates have been neglected already. The coupling
term can be modeled by a transition dipole coupling of the form

β12 = μ1 · μ2

r312
− 3

(r12 · μ1)(r12 · μ2)

r512
, (5.111)

with the transition dipolesμi of the local modes and the distance vector r12 connect-
ing the two sites.

The corresponding Hamilton matrix in a product basis of number states (up to
double excitations)
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{|00〉, |10〉, |01〉, |20〉, |02〉, |11〉} (5.112)

is given by

Hh =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 ω1 β12 0 0 0
0 β12 ω2 0 0 0
0 0 0 2ω1 0

√
2β12

0 0 0 0 2ω2

√
2β12

0 0 0
√
2β12

√
2β12 ω1 + ω2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.113)

which separates into the zero-, the one- and the two-exciton block. So far this is still
a harmonic Hamiltonian and therefore the 2D IR signal is zero.

To see a signal, we need to include terms in the Hamiltonian that are higher than
second order. Including fourth order terms that account for an anharmonic shift of
the energies, similar to a Morse potential, the Hamiltonian reads

Ĥq = Ĥh − Δ

2
â+
1 â+

1 â1â1 − Δ

2
â+
2 â+

2 â2â2, (5.114)

with the local mode anharmonic shift Δ. The corresponding Hamilton matrix is

Hq =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 ω1 β12 0 0 0
0 β12 ω2 0 0 0
0 0 0 2ω1 − Δ 0

√
2β12

0 0 0 0 2ω2 − Δ
√
2β12

0 0 0
√
2β12

√
2β12 ω1 + ω2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.115)

where only the two-exciton part of the matrix is modified due to the presence of the
quartic terms in the Hamiltonian.

The model presented so far is only good for near resonant vibrational states [44].
We focus on the extreme limiting case ofω1 = ω2. If the Hamiltonian is diagonalized
block-wise, we then get (with β = β12)

Hq =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 ω − β 0 0 0 0
0 0 ω + β 0 0 0
0 0 0 2ω − 1

2Δ − η 0 0
0 0 0 0 2ω − 1

2Δ + η 0
0 0 0 0 0 2ω1 − Δ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.116)

with η = 1
2

√
Δ2 + 16β2. In Fig. 5.25, the energy levels in the more general case of

two slightly different frequencies are depicted.
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Fig. 5.25 Level scheme of
two coupled oscillators
emerging from the
uncoupled number states
with slightly different
frequency of the single
oscillators [44]

Simplifying the mathematics by looking at the case of equal frequencies again,
the frequency of the absorption from the ground state labeled by the number 8 is
the same as that of the stimulated emission labeled by the number 4 and is given by
ωprobe = ω + β. The absorption from the singly excited state emerging from |01〉
labeled by the number three is given by ωprobe = ω − 1

2Δ + 1
2

√
Δ2 + 16β2 − β,

which for β � Δ is ωprobe = ω + β − 1
2Δ, being smaller than the frequencies of the

transitions 4 and 8! This is exactly the same observation that leads to the separation
of the diagonal peaks in the case of a single anharmonic molecule.

The other diagonal transitions are the ones labeled by 2 and 6 (bleach and stimu-
lated emission) with ωprobe = ω − β and 5 (excited state absorption, this time from
the state emerging from |10〉), with ωprobe = ω − β − 1

2Δ, They are again separated
in probe frequency by 1

2Δ.
In addition there are off-diagonal peaks appearing now. The peaks labeled by 1

and 2 correspond to a pumping of the excited state level emerging from |01〉 and are
due to the bleach of the absorption to the level emerging from |10〉 and the excited
state absorption from the level emerging from |01〉. They are separated by Δ. The
corresponding 2D IR spectrum is shown in Fig. 5.26.

The distance in pump frequency between the upper and the lower row in the 2D
spectrum is given by 2β and is therefore a measure of the interaction between the
anharmonic vibrational modes.

5.4.2 Pump-Probe Photoelectron Spectroscopy of Na2

As a first example of a pump-probe experiment involving electron dynamics, we
consider the excitation of the (2)1Σ+

u -state of the sodium dimer by a 40 fs laser
pulse of the central wavelength 340nm (pump-pulse) and subsequent ionization by a
probe-pulse ofwavelength 530nm, arriving after a variable time delay Td. The energy
of the emitted electrons can then be measured as a function of Td [45]. Theoretical
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Fig. 5.26 2D IR spectrum of
two coupled oscillators with
slightly different frequency
[44]

investigations of the same system have been performed by Christoph Meier in his
PhD thesis [46], which we will follow closely.

Before the action of the pump pulse, the molecule is described by the vibrational
ground state wavepacket in the electronic ground state X1Σ+

g , depicted in the left
panel of Fig. 5.27. The perturbation of the system by the pump pulse

VL = μ10 f (t)
E0
2

(eiωP t + e−iωP t ) (5.117)

leads to excitation of the wavefunction onto an excited electronic surface. Using
the Condon approximation, the dipole moment is assumed to be independent of
position. Furthermore, for the following investigation, perturbation theory is ade-
quate to describe the laser molecule interaction. In a form applicable to a vector-
type time-dependent Schrödinger equation as in (5.65) and (5.66) it is reviewed in
Appendix5.B.

In first order in the perturbation and in rotating wave approximation (neglecting
the counter-rotating term ∼ eiωP t of the perturbation)

χ1(R, t) = 1

i

∫ t

0
dt ′e−iĤ1(t−t ′)μ10 f (t ′)

E0
2
e−iωP t ′

e−iE0t ′
χ0(R, 0) (5.118)

for the wavefunction on the excited state surface is found.
For a numerical implementation the integral above has to be discretized according

to

χ1(R, t) = �t

i

n∑
j=0

e−iĤ1(n− j)�tμ10 f ( j�t)
E0
2
e−i(E0+ωP) j�tχ0(R, 0). (5.119)

The vibrational ground state with the energy E = E0 is propagated on the shifted
ground state surface until an intermediate time j�t is reached. The resulting state
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Fig. 5.27 Left panel: potential surfaces of the sodium dimer together with the action of the pump
pulse onto the initial wavepacket in the electronic ground state; right panel: emergence of the
wavepacket on the excited state surface, due to the action of the pulse (dotted line); adapted from
[46]

then ismultiplied by the perturbation, is lifted on the excited surface and is propagated
with Hamiltonian Ĥ1 until the final time n�t is reached. It is not known, at what time
the photon is being absorbed, however, and therefore all the intermediate times have
to be integrated over. This procedure can be also formulated iteratively according
to [47]

χ1(R, tn + �t) = e−iĤ1�tχ1(R, tn)

+ �t

i
μ10 f (tn + �t)

E0
2
e−i(E0+ωP)(tn+�t)χ0(R, 0). (5.120)

The first term can be calculated with the split-operator method, whereas the second
term is given analytically. At each time step, a further part of the wavefunction is
lifted on the excited electronic surface. The result of such a calculation is depicted in
the right panel of Fig. 5.27, which shows a vibrationally excited wavepacket on the
excited electronic surface that moves almost dispersion-less to larger internuclear
distances.
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Fig. 5.28 Potential surfaces
of the sodium dimer with the
action of the probe pulse on
the wavepacket in the excited
state [46]

5.11. Rewrite the sum in the discretised representation of first order perturbation
theory for n = 1, 2, 3 and verify the iterative prescription

χ1(R, tn + �t) = Û1(�t)χ1(R, tn)

+ �t

i
μ10E(tn + �t)U0(tn + �t)χ0(R, 0)

with Û1(t) = e−iĤ1t , U0(t) = e−i(E0+ωP)t and E(t) = f (t)E0/2 for the propagation
of the component of the wavefunction on the excited surface.

The probe pulse, delayed by a time Td and centered around the frequency ωT,
now allows the detection of the nuclear wavepacket motion on the excited potential
energy surface via the measurement of the energy of the emitted photo electrons
after ionization, as can be seen in Fig. 5.28. The key to the understanding of this
measurement is the reflection principle. The use of that principle in the theory of
photodissociation is reviewed in Appendix5.C.

In order to invoke the reflection principle, the wavefunction in the ionization
continuum has to be considered. The basis of bound states φe, j (r, R) is extended by
the continuum states φE,V I

0
(free electron with energy E , ionic core in the ground

state with potential V I
0 ). In the Born-Oppenheimer approximation the nuclei would

then fulfill the uncoupled equations

iχ̇ j (R, t) = {T̂R + Vj (R)}χ j (R, t), (5.121)

iχ̇E (R, t) = {T̂R + V I
0 (R) + E}χE (R, t). (5.122)
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Coupling to a laser field (that starts to interact with the system at time Td) in length
gauge and using again the RWA, we get in first order perturbation theory

χE (R, t) = 1

i

∫ t

Td

dt ′e−i(Ĥ I
0+E−ωT)(t−t ′)μE1 f (t ′ − Td)

ε0

2
χ1(R, t ′) (5.123)

for the wavefunction in the ionized state. From this, the spectrum of the emitted
electron can be extracted according to

P I(E, Td) = lim
t→∞

∫
dR|χE (R, t)|2 . (5.124)

Further progress towards an understanding of the process is made by using the short-
time approximation, that we have already encountered in Sect. 5.3.3. In this approx-
imation the kinetic energy of the nuclei is neglected, which means for (5.123):

• Replace Ĥ I
0 by V I

0• Replace χ1(R, t ′) by e−iV1(t ′−Td)χ1(R, Td)

Equation (5.123) thus becomes the Fourier transformation of the pulse envelope.
Using the definition11

F(x) =
∫

dt eixt f (t) (5.125)

and the short-time approximation, we get in close analogy to (5.102)

P I(E, Td) ∼
∫

dR|μE1χ1(R, Td)|2|F(D(R) + E − ωT)|2 . (5.126)

Here the definition of the difference potential,

D(R) ≡ V I
0 (R) − V1(R), (5.127)

has been used. The largest contributions to the expression for the electron emission
probability come from regions of vanishing argument of the Fourier transform. This
is yet another application of the SPA from Sect. 2.2.1. The SPA condition leads to
the definition of so-called transient Franck-Condon regions [48]

D(Rtr) ≈ ωT − E . (5.128)

In case of a monotonous function D(R) only a single stationary phase point exists
and the remaining integral can be approximated by

11Note that the integration boundaries can be shifted to infinity due to the envelope, and the terms
eiV1Td and e−iV I

0 t drop out by taking the absolute square.
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Fig. 5.29 Dynamical reflection principle for two different pulse delays [46]

P I(E, Td) ∼ |μE1χ1(Rtr(E), Td)|2 . (5.129)

This is the mathematical formulation of the dynamical reflection principle, saying
that the electron spectrum is proportional to the absolute square of the wavefunction
at time Td. The structure of its argument tells us that the squared wavefunction is
reflected at the difference potential [46]. If it is steep then P I is broad in energy.
If it has a small slope, however, a sharp peak of P I emerges. Both situations are
depicted graphically in Fig. 5.29. In this figure two different probe pulse delays,
T1 = 0.2ps and T2 = 1ps are compared with each other. Due to the motion of
the wavepacket on surface V1, a dramatic change of the electron spectrum occurs.
For the longer delay, first it is shifted to smaller energies, and second, it becomes
much narrower. By knowing the potential surfaces, one can monitor the motion of
the nuclear wavepacket by means of the measured photoelectron spectrum.

The validity of the dynamical reflection principle hinges on the applicability of the
short-time approximation. This can be judged by looking at the full time-evolution
operators appearing in (5.123)

eiĤ
I
0 t ′
e−iĤ1t ′ = eΛ̂ . (5.130)

Using the Baker-Campbell-Haussdorff formula from Sect. 2.3.2 in the form

e ÂeB̂ ≈ e Â+B̂+1/2[ Â,B̂] (5.131)
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one finds with (5.127) that

Λ̂ = iD(R)t ′ − [T̂R, D(R)]t ′2 (5.132)

holds. Retaining only the first term in this expression leads to the short-time approx-
imation. The term proportional to t ′2 with the prefactor

− [T̂R, D(R)] = 1

2Mr
(D′′(R) + 2D′(R)∂R) ≈ i

Mr
D′ p (5.133)

should be small. D′′ usually is very small and if one interprets (p/Mr)t ′ classically
as the change of the internuclear distance during the pulse, then the condition for the
applicability of the short time approximation is

D′ p

Mr
t ′ � D(R), (5.134)

i.e., the difference potential should not change much over the range that the wave-
packet crosses during the pulse.

5.4.3 Fluorescence Spectroscopy of ICN

Instead of detecting the motion of the wavepacket on the excited surface via the
measurement of the energy of emitted electrons as in the previous case, also the
fluorescence after excitation into a second excited state can bemonitored.An example
that has been studied experimentally as well as theoretically is the ICN molecule.
Theoretically it suffices to consider only the dynamics of the C-I stretch coordinate.
The corresponding dynamics on the 3 coupled potential surfaces

• Electronic ground state,
• I+CN(X2Σ+) excited (dissociative) state,
• I+CN(B2Σ+) excited (dissociative) state

two of which can be seen in Fig. 5.30, has been investigated in [49].
The coupled surface time-dependent Schrödinger equation for the laser driven

system is given by

i∂t

⎛
⎝χ0

χ1

χ2

⎞
⎠ =

⎛
⎝ Ĥ0 Ĥ01 0

Ĥ10 Ĥ1 Ĥ12

0 Ĥ21 Ĥ2

⎞
⎠
⎛
⎝χ0

χ1

χ2

⎞
⎠ , (5.135)

where in the rotating wave approximation the coupling by the pump, respectively
the probe pulse is given by
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Fig. 5.30 Dissociative
potential surfaces and
different probe frequencies
for ICN; adapted from [49]

Ĥ01 = μ01 A1(t)e
−iωPt , (5.136)

Ĥ12 = μ12 A2(t − Td)e
−iωTt . (5.137)

The occupation of the second excited state is proportional to the measured fluores-
cence signal and is therefore to be calculated theoretically. In first order perturbation
theory we get for the wavefunctions in the different electronic states (if E0 = 0)

|χ0(t)〉 = e−iE0t |χ0(0)〉 = |χ0(0)〉, (5.138)

|χ1(t)〉 ∼
∫ t

−∞
dt ′μ01A1(t

′)e−iĤ ′
1(t−t ′)|χ0(0)〉, (5.139)

|χ2(t)〉 ∼
∫ t

−∞
dt ′μ12 A2(t

′ − Td)e
−iĤ ′

2(t−t ′)|χ1(t)〉, (5.140)

with Ĥ ′
1 = Ĥ1 −ωP and Ĥ ′

2 = Ĥ2 −ωT, due to the fact that the potentials are shifted
in RWA by ωP, respectively ωT.12 The transfer of probability density to an excited
surface can only be large if the crossing with the shifted level is at the maximum of
the wavepacket. This so-called resonance case was depicted together with the off-
resonance case in Fig. 5.19. Only in the case of resonance a total population transfer
is possible by a so-called π-pulse (see Sect. 3.2.3).

In the following the results of a simulation [49] of an experiment of the Zewail
group [50] will be reviewed. The considered parameters are:

12The lower time-integration boundary has been shifted to −∞ to treat pulses that are nonzero at
negative times.
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Fig. 5.31 Time evolution on
the first excited potential
energy surface [49]

Fig. 5.32 Occupation
probability of the first
excited surface [49]

• Pump- and probe pulse have a FWHM of 125 fs
• The pump wavelength is fixed at the off-resonant value of 306nm
• Four different (only three in the experiment) probe wavelengths have been applied

In Fig. 5.31, the time evolution of the wavepacket on the first excited state surface
is displayed, with the pump pulse being centered around t = 0. The wavepacket
dissociates and spreads simultaneously. In Fig. 5.32, the population of the first excited
state is depicted. That this population is of the order of a few times 10−4 reflects the
fact that an off-resonant pump frequency is used in the experiment.
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Fig. 5.33 First excited
surface and second surface
shifted by different amounts,
corresponding to different
probe frequencies [49]

The probe part of the experiment has been performed with three different probe
frequencies, leading to resonance at different internuclear displacements as depicted
in Fig. 5.33. The additional probe wavelength of 433nm is not depicted in this plot.
For the long wavelengths the resonance condition is more or less well localized in
space and therefore as a function of the probe pulse delay, a peaked structure is to
be expected. This is exactly what can be observed in Fig. 5.34! For the additional
theoretical wavelength the signal is barely visible but peaked. The peak tends to
become a plateau for the shorter wavelengths. In these cases the resonance condition
is fulfilled for a long interval of internuclear distances as can be seen in Fig. 5.33.
The plateau is perfectly developed in the case of 388.9nm. The experimental results
are very well reproduced by the calculations as can be seen by comparing the two
panels in Fig. 5.34.

5.5 Control of Molecular Dynamics

Up to now we have encountered a multitude of partly counter-intuitive phenomena,
appearing in atomic or molecular systems exposed to a laser field. Quite naturally
one might ask if a suitable field can be found that drives a system into a desired
quantum state or steers a chemical reaction into a desired channel.

Let us start to find an answer to that question for a system that exhibits one of the
most fundamental quantum phenomena: a symmetric double-well potential allowing
for coherent tunneling between its twominima. This system has been studied in detail
under the influence of an external periodic laser field. In the following we will then
refrain from the restriction to periodic fields and will consider pulsed fields with
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2

2

2

2

Fig. 5.34 Comparison of calculated (left panel) and experimental (right panel) fluorescence spectra
of ICN for 4 (theory), respectively 3 (experiment) values of the probe wavelength, from [49, 50]

arbitrary pulse shapes that, e.g., allow for the control of chemical reactions or for the
selective excitation of vibrational modes.

5.5.1 Control of Tunneling

Tunneling in a stationary double well is a phenomenon, which is discussed in almost
every textbook on quantum mechanics. In the heyday of quantum theory it has been
used to explain the vibrational spectrum of pyramidal molecules, like NH3, by F.
Hund [51]. The influence of a periodic external force (mediated, e.g., by a cw-laser)
on coherent tunneling has been investigated in my PhD thesis and the results have
been published in [52]. The basis for the understanding of those results is Floquet
theory as will be seen in the following.

5.5.1.1 The Model System

A model potential for a particle of mass Mr moving in a symmetric quartic double
well is given by

VDW(R) ≡ − Mrω
2
e

4
R2 + M2

r ω
4
e

64EB
R4. (5.141)

The frequency of small oscillations around the minima
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Rr,l = ±
√

8EB

Mrω2
e

(5.142)

of this potential is ωe, and EB denotes the height of the barrier between the two wells.
The dynamics of a wavepacket that can be written as a superposition of the ground
and the first excited state of that single surface, is the well-known coherent tunneling
dynamics, reviewed in Appendix5.D.

A realization of the potential of (5.141) is given by the pyramidal NH3 molecule.
The relevant coordinate R refers to the umbrella mode (see Fig. 1.4 of Chap.1)
and measures the distance between the nitrogen atom and the hydrogen plane. The
reduced mass is Mr = MNM3H/(MN + M3H) (see footnote on p. 566 of [2]). In this
system an external periodic force can be generated by a monochromatic laser field
of amplitude E0, coupling to the dipole moment

μ(R) = μ′ R (5.143)

of the molecule with the dipole gradient μ′. The amplitude of the external force is
then given by

F0 = μ′E0. (5.144)

In this subsection, we measure energies in units of �ωe, such that D = EB/�ωe.
Time is measured in units of 1/ωe, x = √

(Mrωe)/�R, and the dimensionless ampli-
tude is given by S = F0/

√
�Mrω3

e . The dimensionless Hamiltonian is then given
by

Ĥ(x, t) = −1

2
∂2

x − 1

4
x2 + 1

64D
x4 + x S sin(wt), (5.145)

where w = ω/ωe is the dimensionless ratio of driving frequency and harmonic well
frequency.

5.5.1.2 Coherent Destruction of Tunneling

One of the most counter-intuitive effects that external forcing can have is the sup-
pression of the tunneling dynamics in a double well. For frequencies in the middle
of the interval

Δ

2
≤ w ≤ wres, (5.146)

withΔ = E2 − E1 andwres = E3 − E1 (En being the unperturbed eigenvalues of the
double well) this suppression is found along a one-dimensional curve in the (w, S)
parameter space [53].
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Fig. 5.35 Exact crossing of two quasi-energies of the driven double well (D = 2, w = 0.01) a
0 < S < 0.01; b zoomed region around S ≈ 3 × 10−3 [53]

The reason for this behavior is an exact crossing of the quasi-energies emerg-
ing from the lowest two unperturbed energies as a function of the amplitude. The
quasi-energies can be determined by diagonalizing the Floquet matrix of Sect. 2.2.8.
For D = 2 (which is close to the NH3 value of 2.18) and an external frequency
of w = 0.01, near the geometric mean of the unperturbed tunneling frequency
Δ = 1.895 × 10−4 and the first resonance frequency wres = 0.876, the behavior
shown in Fig. 5.35, is found. In panel (a) of this figure, the quasi-energies cross at
two different values of the external force. These crossings are exact (see panel (b)),
due to the fact that the quasi-eigenfunctions have different symmetry under the gen-
eralized parity transformation defined in (3.80). The non-crossing rule does therefore
not hold, and as a function of a parameter the quasi-energiesmay approach each other
arbitrarily closely.

Furthermore, the time-evolution of a Gaussian wavepacket, χGW
l (x), initially cen-

tered in the left well,13 has been investigated for the parameters at the first exact
crossing. Quantities of interest are the probability to stay (survival probability) in the
initial state, i.e., the absolute square of the auto-correlation function of that wave-
function

P(t) := |〈χGW
l (t)|χGW

l (0)〉|2 (5.147)

and the probability to be to the left of the barrier

ρl(t) :=
∫ 0

−∞
dx |χGW

l (x, t)|2. (5.148)

These quantities are displayed in Fig. 5.36.
The unperturbed tunneling period for the parameters chosen here (D = 2, w =

0.01) is at around 50 periods, T , of the external field. In Fig. 5.36, panels (a−b), we
can see, however, that in the presence of driving the particle is almost completely

13Note that this initial state is slightly different from the one studied in Appendix5.D.
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Fig. 5.36 Staying
probability and probability to
be to the left of the barrier
(D = 2) for the exact
crossing parameters
S = 3.171×10−3, w = 0.01:
(a–b) Stroboscopic time
evolution over 210 periods
2π
w
; (c–d) time evolution

inside the first period,
adapted from [53]
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localized at the initial position even after 210T . This is due to the fact that the initial
wavefunction consists mainly of two Floquet functions, whose quasi-energies cross
exactly. Small deviations of the staying probability from unity are due to the finite
overlap of the initial state with other Floquet functions, whose energies are not cross-
ing exactly. The dynamics has been considered only stroboscopically, so far. Time-
evolution during a period of the external field is shown in panels (c−d) of Fig. 5.36.
It can be observed that the periodic time-dependence of the quasi-eigenfunctions
does not destroy the tunneling suppression for the present parameters.

In order to illustrate the localization effect in position space, in Fig. 5.37, the
absolute square of the initial state χGW

l (x, 0) and the time-evolved state with the
lowest overlap (occurring at t = 458 T ) during the first 1,024 periods is depicted.
Apart from a small shift of the center of the wavepacket to the right, there is almost
no dynamics observable. This picture also explains, why the probability to stay left to
the barrier deviates less from unity than the staying probability. In calculating ρl, one
has to integrate over the whole range −∞ < x ≤ 0, and motion of the wavefunction
in the left well will not show up directly in the dynamics of ρl. The probability to
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Fig. 5.37 Absolute square
of wavefunctions at t = 0
(solid line) and at t = 458T
(dashed line), and
unperturbed potential (dotted
line) with D = 2, adapted
from [53]

stay left thus deviates only by maximally 2% from unity, whereas P(n) maximally
looses around 8% of its initial value.

5.5.1.3 Crossing Manifold and Two-Level System

As already mentioned, the localization phenomenon occurs along a 1D manifold in
the (w, S) parameter space, alongwhich two relevant quasi-energies, having different
parity, cross. This manifold has been determined in [53] and is shown in Fig. 5.38.
The crossing of the two quasi-energies is a necessary but not a sufficient condition
for the localization phenomenon, however. This is studied in great detail in [53],
where it is shown how the old unperturbed tunneling behavior is recovered for small
driving frequencies w ≈ Δ and what happens at resonance w ≈ wres, where the
third level comes into play.

Fig. 5.38 Double
logarithmic plot of the one
dimensional manifold in
(w, S) parameter space,
along which the relevant
quasi-energies cross for the
first time. Driven double well
(D = 2): crosses; driven
two-level system: solid line.
The vertical line crosses the
manifold atw = 0.01, S =
3.171 × 10−3 [53]
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A deeper understanding of the linear part of the manifold, along which real local-
ization is observed, can be gained by studying the two-level system describing just
the lowest two levels of the double-well problem [54]. The corresponding time-
dependent Schrödinger equation is given by

iċ1(t) = E1c1(t) + 〈χ1|x |χ2〉S sin(wt)c2(t), (5.149)

iċ2(t) = E2c2(t) + 〈χ1|x |χ2〉S sin(wt)c1(t), (5.150)

with c1,2(t) ≡ 〈χ1,2|χ(t)〉. The unperturbed Hamiltonian is now a 2× 2 matrix and
the quasi-energies can again be determined according to the scheme reviewed in
Sect. 2.2.8. The location in parameter space of the exact crossing of the two quasi-
energies, emerging out of the two lowest unperturbed states, is plotted in Fig. 5.38
as a solid line. For frequencies w � wres it is very close to the manifold of the full
problem and it stays a perfect straight line also for frequencies w > wres due to the
non-existence of a third unperturbed level.

The slope of the manifold in the linear range can be determined analytically for
a two-level system. In the case of w � Δ (defining the linear region), it has been
shown by Shirley that the first crossing is approximately given by the first zero of
the Bessel function J0

(
2b
w

)
[55]. Here b denotes the field strength multiplied by the

dipole matrix element

b ≡ 〈χ1|x |χ2〉S
D=2≈ 3.791 S . (5.151)

Using the simple form of the argument of the Bessel function and its first zero [56]
the straight line

S = 2.40482 . . .

2〈χ1|x |χ2〉 w
D=2≈ 0.3172w (5.152)

in (w, S) parameter space is found. Higher zeroes of the Bessel function give straight
lines along which the quasi-energies cross each other exactly again (see Fig. 5.35a).
Tuning the parameters to an exact crossing, localization is also found in the time-
dependent two-level Schrödinger equation (5.149) and (5.150) with the initial con-
ditions c1(0) = −c2(0) = 1/

√
2.

Furthermore, it is worthwhile to note that in the strong field limit, the suppression
phenomenon can also be understood in the transfer matrix formalism [57].

5.5.1.4 The Asymmetric Double-Well Potential

What is the effect of a finite asymmetry on the localization phenomenon? In order
to study this question, a potential of the form

Vσ(x, t) = −1

4
x2 + 1

64D
x4 + σx + x S sin(wt), (5.153)

This copy belongs to 'veltien'

http://dx.doi.org/10.1007/978-3-319-74542-8_2


230 5 Molecules in Strong Laser Fields

Fig. 5.39 Quasi-energies as
a function of S for D = 2
and w = 0.01 in the
asymmetric (σ = 10−6)
double well [53]
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with a static asymmetry, σ > 0, can be used. In this case no symmetry under the
generalized parity transformation (3.80) does exist any more. This leads to the fact
that all Floquet energies, due to the non-crossing rule, do not cross exactly (except
maybe at singular points). Therefore no 1Dmanifold alongwhich two quasi-energies
cross does exist.

What happens to the allowed crossings that we have observed in the symmetric
case? In order to answer this question a relatively small asymmetry with parameter σ
can be applied. In Fig. 5.39, the same field and potential parameters have been used
as in Fig. 5.35b, except for the asymmetry.We can see that the allowed exact crossing
becomes an avoided crossing in the presence of asymmetry. Localization therefore
goes away gradually. The splitting of the levels is rather small and the wavepacket
would still be localized for relatively long times. It would not be localized forever
any more as in the symmetric case, however. For strong asymmetry two effects have
to be considered. First the avoided crossing becomes broader but secondly a partial
localization does result from the fact that the lowest eigenstate becomes similar to
the coherent state in the lower well.

5.5.1.5 More Driven Double-Well Systems

The realization of driven double-well systems is possible in many different branches
of physics. Recently, driven double wells have, e.g., been realized in optical fiber
systems. In such a system a light beam propagating through a periodically curved
waveguide is coupled to a parallel fiber. In this setup the first experimental realization
of the effect of coherent destruction of tunneling has been performed [58]!

Another physical system whose dynamics can be described with the help of a
multistable potential is the rf-SQUID. There the macroscopic flux through the ring
is the tunneling degree of freedom. An external perturbation may be given by a
magnetic field. This is an example from the realm of solid state physics, however,
and shall not be dealt with here. Very recently, the direct observation of suppression
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of single particle tunneling of atoms in light shift double-well potentials has been
reported [59].

Let us finally come back to molecular physics. Apart from the NH3-molecule
where the nitrogen atom experiences a double-well potential, also the electron in the
H+

2 - (resp. D
+
2 -) molecule sees a double-well potential, due to the electron-nuclear

interaction. Recently it has been shown both theoretically as well as experimentally
that the dissociation of the electron can be steered by the carrier envelope phase such
that the electron is localized preferentially at a specific proton (deuteron) [16, 60].

5.5.2 Control of Population Transfer

The transfer of population into a desired state is one of the central challenges of
control theory. Before we discuss a direct approach to that field using optimal control
theory, a counter-intuitive method to control population transfer shall be reviewed.

In molecular systems, this is the stimulated Raman adiabatic passage or short
STIRAP method. In this scheme a three level system, displayed in Fig. 5.40, is cou-
pled via two different laser pulses. A direct coupling of level |1〉, which might by a
rotational level in the vibrational ground state and the highly excited vibrational state
|3〉 shall be dipole forbidden. The methodology is used experimentally to selectively
excite vibrational states [61].

The pump-pulse couples levels 1 and 2, while the Stokes pulse couples levels 2
and 3. The total Hamilton matrix H = H0 + W is given by

H =
⎛
⎝ E1 −μ12EP cos(ωPt) 0

−μ21EP cos(ωPt) E2 −μ23ES cos(ωSt)
0 −μ32ES cos(ωSt) E3

⎞
⎠ . (5.154)

Transformation into the interaction picture (see Sect. 2.2.4) with the help of the
unperturbed Hamiltonian

Fig. 5.40 A three level system (so-called Λ-system) coupled via pump and Stokes pulse with the
respective detunings ΔP and ΔS [61]
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H0 =
⎛
⎝ E1 0 0

0 E2 0
0 0 E3

⎞
⎠ , (5.155)

and invoking the rotating wave approximation leads to the STIRAP matrix

WI = U†
0WU0 = −1

2

⎛
⎝ 0 ΩPe−iΔP t 0

ΩPeiΔPt 0 ΩSeiΔSt

0 ΩSe−iΔSt 0

⎞
⎠ (5.156)

for the Hamiltonian in the interaction representation. Here the abbreviationsΩP(t) =
μ21EP(t), ΩS(t) = μ32ES(t) for the Rabi frequencies without detuning and ΔP =
(ω2 − ω1) − ωP, ΔS = (ω2 − ω3) − ωS for the detunings that are plotted in Fig. 5.40
have been used.

In the case of vanishing detunings, the time-dependent eigenvalues and eigenstates
(dressed states) of the STIRAP matrix are given by

ω0,±(t) = 0,±Ω(t)

2
, (5.157)

|g0〉(t) = cos[Θ(t)]|1〉 − sin[Θ(t)]|3〉, (5.158)

|g±〉(t) = 1√
2

(sin[Θ(t)]|1〉 + cos[Θ(t)]|3〉 ∓ |2〉) , (5.159)

with Ω(t) = √ΩP(t)2 + ΩS(t)2 and the definition of the mixing angle

Θ(t) ≡ arctan

(
ΩP(t)

ΩS(t)

)
. (5.160)

Cosines and sines of this angle can be resolved byusing the relations given inFootnote
6 of Chap.3.

5.12. Calculate the eigenvalues and eigenvectors of the STIRAP matrix in the case
of vanishing detunings.

With the help of the dressed states and of the quantum mechanical adiabatic
theorem of Appendix5.E, the pulse sequence can be understood. Starting from state
|1〉, only the dressed state |g0〉 is occupied initially if ΩS � ΩP. This amounts to the
counter-intuitive pulse sequence depicted in panel (a) of Fig. 5.41, where the Stokes
pulse precedes the pump pulse! If the field changes adiabatically,14 then according to
the adiabatic theorem the system stays in the dressed state |g0〉 of the instantaneous
Hamiltonian. For large positive timesΩP � ΩS holds, however, and thus the system
finally is in state |3〉, without having occupied the “dark state” |2〉 in the meantime.
This dynamics is depicted in Fig. 5.41, where also the mixing angle and the dressed
eigenvalues are displayed.

14Exercise 15.11 in [24] sheds more light on what “adiabatically” means in this context.
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Fig. 5.41 STIRAP
dynamics: a Pump- and
Stokes-pulse, b angle Θ , c
dressed eigenvalues, d
occupation probabilities [61]

The ordering of the pulses is counter-intuitive. They have to have a non-vanishing
overlap, however, for population transfer to be achieved (see also Fig. 5.41). This
can be seen by doing Exercise 15.8 in [24], the reference we are following closely
throughout this subsection. Furthermore, an alternative perspective on STIRAP can
be gained by demanding constant probability to be in the second (dark) state. For
this, the time derivative

d|a2|2
dt

= 2Re[a∗
2 ȧ2] = −[ΩP(t)Im(a∗

2a1) + ΩS(t)Im(a∗
2a3)] (5.161)

must vanish and again, we have assumed resonanceΔS = ΔP = 0. This requirement
leads to the conditions

ΩP = −Ω0(t)Im[a∗
3(t)a2(t)], (5.162)

ΩS = Ω0(t)Im[a∗
1(t)a2(t)]. (5.163)

The two terms on the RHS of (5.161) then cancel each other. The counter-intuitive
ordering of the pulses follows from the fact that a1 is initially large and therefore
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also ΩS is large compared to ΩP. When the system is in state |3〉, the pump pulse
takes over.

5.5.3 Optimal Control Theory

Optimal control theory deals with the search for external fields that steer a system
into a desired state. This can be a certain vibrational excitation, which was also
the goal of STIRAP, just discussed. One of the most demanding goals that can be
reached with lasers is the control of a chemical reaction, however. One can, e.g., try
to design laser pulses in such a way that chemically bound species dissociate in a
predetermined way. In a triatomic system several different reaction channels exist.
Two of them are

ABC → A + BC channel 1

and

ABC → AB + C channel 2

and a laser field that discriminates channel 1 in favor of channel 2 might for example
be looked for.

In the following, we will discuss two important scenarios in the field of chemical
reactions, starting with the “precursor” of the optimal control schemes, the so-called
“pump-dump”-scheme and then reviewing in detail the Krotov method, which gives
a mathematical prescription to find the optimal field. Finally, we will come back to
the question of steering a system into a desired quantum state.

5.5.3.1 Pump-Dump Control

The so-called pump-dump method is a very intuitive way to approach the field of
optimal control [62]. One tries to steer the breaking of a specific bond by first lifting
the system onto an electronically excited state and then using themotion of the nuclei
in that state in such a way that the system is deexcited exactly at a time when the
subsequent motion in the electronic ground state leads to dissociation in the desired
channel.

In order to understand the physics behind the pump-dump method we first look
at a typical potential landscape of a collinear ABC system, shown in Fig. 5.42. The
potentials are drawn as functions of two degrees of freedom corresponding to the
two interatomic distances. The lower surface has a local minimum and two channels
which are separated from theminimum via saddle points. The upper surface is almost
harmonic. The basic idea of how to steer the reaction into a desired channel becomes
clear, if we consider the classical Lissajous motion on the electronically excited
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Fig. 5.42 Electronic potential curves of a collinear ABC system with pictorial representation of
the pump and the dump pulse [63]

Fig. 5.43 Classical mechanical understanding of the pump-dump scenario in the ABC system: a
Lissajous motion on upper surface, b classical trajectory exiting in channel 1, c classical trajectory
exiting in channel 2 [24]

surface after excitation with the pump pulse. This motion is depicted in the leftmost
panel in Fig. 5.43. Now the dump-pulse arriveswith a specific time delay. TheHusimi
transform of a typical pump-dump pulse sequence has been displayed in Fig. 1.10 of
Chap.1 already. Choosing the time delay accordingly, the Lissajous motion can be
intercepted at any desired point. If it is intercepted at t1, such that the motion on the
electronic ground state continues in channel 1, then the dissociation has been steered
to proceed in this channel, as depicted in the middle panel of Fig. 5.43.

Quantum mechanically, the dynamics of wavefunctions and not of a single clas-
sical trajectory has to be considered. It turns out, however, that due to the harmonic
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Fig. 5.44 Quantum mechanical pump-dump scenario in the HHD system for a time delay of
810a.u.: a wave function in the electronic ground state at the initial time t = 0a.u., b wave function
in the electronic ground state at the time t = 1, 000a.u., c wave function in the electronic ground
state at the time t = 1, 200a.u. [24]

nature of the excited electronic state, the physical picture of the pump-dump method
stays intact [64]. The wavepacket evolves almost dispersionless on the upper sur-
face and the description in terms of classical trajectories is sufficient. After action
of a dump pulse with a time delay of 810a.u., the wavepacket exits in channel 2
on the electronic ground state, as depicted in Fig. 5.44. This case corresponds to the
rightmost panel of Fig. 5.43.

5.5.3.2 Krotov Method

The pump-dump method that we have just discussed is the precursor of modern
control methods that try to achieve higher yields, i.e., to achieve the desired goal to
a higher degree.

The goal can by formulated mathematically by using a projection operator P̂α,
projecting the wavefunction on the desired channel and trying to maximize

JP = 〈χ(Tt)|P̂α|χ(Tt)〉. (5.164)

Here Tt is the total time allowed for the control process.
In order that the energy content of the field does not grow indefinitely, the func-

tional above is usually augmented by a term

JE = λ

∫ Tt

0
dt |E(t)|2, (5.165)

proportional to a Lagrange multiplier λ. Furthermore, the time-dependent Schrödinger
equation is introduced again via a Lagrange multiplier 〈ξ(t)| into the functional by
the real term
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JH = 2Re
∫ Tt

0
dt〈ξ(t)|

(
−∂t + Ĥ

i

)
|χ(t)〉, (5.166)

which deconstrains E and χ to first order in the field [24]. The functional to be
extremized is finally given by

J̃ ≡ JP + JH − JE . (5.167)

To be specific, the case of a two component wavefunction χ = (χg,χe) and a
corresponding 2 × 2 Hamilton matrix operator (see also Appendix5.B)

Ĥ =
(

Ĥg μE∗(t)
μE(t) Ĥe

)
(5.168)

is considered in the following. After integration by parts of the JH term,

J̃ = JP − 2Re〈ξ|χ〉|Tt
0 + 2Re

∫ Tt

0
dt

{
〈ξ(t)| Ĥ

i
|χ(t)〉 + 〈ξ̇|χ〉

}
− Jε (5.169)

is found. The variation of this expression can now be performed according to the
rules that are gathered in Appendix2.B. Extremalizing with respect to χ, i.e., the
condition

δ J̃

δ|χ(t)〉 = 0 (5.170)

leads to the equation

− i〈ξ̇| = 〈ξ|Ĥ, (5.171)

which is a backward Schrödinger equation for the Lagrange parameter. Its final
condition is found by doing the variation

δ J̃

δ|χ(Tt)〉 = 0, (5.172)

leading to

〈ξ(Tt)| = 〈χ(Tt)|P̂α. (5.173)

In addition to this equation, also the initial value equation

i|χ̇〉 = Ĥ|χ〉, (5.174)

|χ(0)〉 = |χ0〉 (5.175)
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has to hold.
Extremalizing with respect to E∗, i.e., the condition

δ J̃

δE∗(t)
= 0 (5.176)

leads to

E(t) = −i

λ
[〈ξg|μ|χe〉 − 〈χg|μ|ξe〉] (5.177)

for the field [63].

5.13. Show that setting the variation of JH − JE with respect to E∗ equal to zero
leads to the expression (5.177) for the field.

The five equations. (5.171), (5.173), (5.174), (5.175) and (5.177) contain a dou-
ble sided boundary value problem. The easiest solution procedure is given by the
following steps:

1. Propagate χ(t) from t = 0 to t = Tt forward in time
2. Apply P̂α to χ(Tt) yielding ξ(Tt)

3. Propagate ξ from t = Tt to t = 0 backward in time

The field has to be guessed, however, and does not necessarily fulfill the equation
coming out of the variation procedure! Therefore the scheme above has to be aug-
mented by an iterative procedure, due to Krotov [65]:

1. Choose an initial field E0(t)
2. Propagate χ(t) under E0(t) forward in time
3. Projection of χ(Tt) gives ξ(Tt)

4. Propagate ξ backward in time
5. Commonly propagate ξ(t) (with the old field) and χ(t) with the new instanta-

neously calculated field

E1(t) = −i

λ
[〈ξ0g |μ|χ1

e〉 − 〈χ1
g|μ|ξ0e 〉] (5.178)

forward in time
6. Project χ(Tt) and continue the procedure until convergence is achieved.

The propagation of ξ(t) forward in time seems to be superfluous, because the result
is already known. Keeping the wavefunction in computer memory would be barely
possible for most cases of interest, however, and therefore it is cheaper to calculate
ξ(t) once more. In general the propagated wavefunction has amplitude in both the
desired and the undesired channel, see, e.g., Fig. 2f in [63]. The above procedure
iterates the field in such way that the undesired portion of the wavefunction is min-
imized. Whether this minimum is an absolute or a local one is a question that goes
far beyond the scope of this book. The method just laid out goes back to Krotov.
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Fig. 5.45 Steering the breakup of the ABC system into the second channel: a optimal field, b
Husimi transform of the field, c norm of the wavefunction in the ground and excited state, d final
wavefunction, from [24]

Other methods to solve for the optimal field have been devised, however, see [24, 66]
and the references therein. Whereas in the simple pump-dump scheme, low yields
of 10−2 and selectivity ratios of 3:2 have been reported, in the optimally controlled
case, typical yields increase to more than 10% and selectivity ratios can be as high
as 13:3 [63].

As an example, let us review results that were obtained for an ABC system. As
the initial guess for the electric field in the iterative process a pump-dump pulse
as depicted in Fig. 1.10 has been used. One can try to steer the reaction either into
channel 1 or into channel 2. In the first case the resulting optimal field is still rather
similar to the original pump-dump pulse [24], whereas in the second case the field
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displayed in Fig. 5.45 is resulting. Around 50 iterations are typically necessary to
converge the results.

5.5.3.3 Optimally Controlled Excitation of Quantum States

Optimal control schemes do not only work for the breakup reaction just considered.
They have been shown to be applicable also for the case of vibrational excitation.

In [33] optimal control theory has been applied with the objective to steer aMorse
oscillator, representing a CH-stretch, with Morse parameters De = 0.199, Re = 1.5,
and α = 0.9386, all in atomic units, into a specific excited target state |nT〉. The
projection operator therefore is given by

P̂T = |nT〉〈nT|. (5.179)

The dipole moment was assumed to be of Mecke form with the parameters μ0 =
1.76a.u. and R∗ = 1a.u.. The result of the optimization starting from the vibrational
ground state and fixing the final time to be Tt = 0.1ps are shown in Fig. 5.46.

Optimal control theory has been applied in a lot of other physical systems. One
out of many other examples is the control of cis-trans isomerization [67].

5.5.4 Genetic Algorithms

The theory of optimal control of the last section rests on the availability of analytically
(or numerically) given potential energy surfaces and on the validity of the underlying
Born-Oppenheimer approximation. Both requirements may be violated, however,
and even theHamiltonianmight not be known. Therefore, alternative control schemes
are sought for.

A recent development in the field of control therefore is the application of genetic
algorithms. Their application is based on an experimental “analog computer”. The
system to be controlled is exposed to a laser whose temporal shape can be varied. By
a feedback mechanism, a digital computer using a genetic (evolutionary) algorithm
can vary the field iteratively in such a way that the desired goal is reached. The
principal setup is displayed in Fig. 5.47.

The first theoretical study that showed the feasibility of such an approach is due
to Judson and Rabitz [69]. These authors have shown that it is based on the following
three paradigms:

• “Survival of the fittest”
• Crossover
• Mutation

As an example, the transition from the n = j = 0 ground vibrational state to the
rotationally excited vibrational ground state n = 0, j ′ = 3 of the KCl molecule
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Fig. 5.46 Steering a Morse oscillator into selected excited states via optimal control theory, left
panels show probabilities as a function of time and quantum number, right panels show the corre-
sponding electric fields [33]

was investigated. An “individuum” of the genetic algorithm is a specific laser pulse
sequence. Its initial gene consists of Ngene = 128 entries of random numbers, uni-
formly distributed between zero and one, and was then scaled to a maximum field
strength of 5kVcm−1. The total number of individuals was chosen as Npop = 50.
The first paradigm can be tested by introducing the “cost-function”

∑
j

(δ j j ′ − ρ j )
2,

whereρ j is the occupation probability of state j . It is zero if the desired statewith label
j ′ is fully populated. Individuals can then be ranked according to their fitness. The
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Fig. 5.47 Principal setup of an “analog computer” for feedback control. The control pulse excites
the system and the probe pulse measures the outcome (the measurement could, e.g., also be per-
formed by a mass spectrometer), which is fed into the evolutionary algorithm; a good initial guess
helps to achieve convergence quickly [68]

highest ranked ones were taken over to the next generation without change, whereas
the other ones had to undergo crossover and a small probability of mutation. In the
upper panel of Fig. 5.48 the decay of the cost function as a function of generation is
displayed for the average population, aswell as for the best individuum. Furthermore,
in the lower panel of that figure, the spectrum corresponding to the best gene is
shown. It displays maxima at the resonant transitions between the rotational states
j = 0, 1, 2, 3. It is important to stress that the spectral information was not input
into the generation of the optimal field but was found by the learning loop.

An experimental realization of control based on evolutionary algorithms was
performed by the Gerber group [70]. The goal of the experiment was to steer the
photo-fragmentation of CpFe(CO)2Cl into a desired channel. A pulse shaper that
allows to split the laser light into 128 spectral components and vary them separately
has been used. Selectivity ratios of about 5 have been achieved.

5.5.5 Towards Quantum Computing with Molecules

A recent new development in the field of laser-molecule interaction is the realization
of quantum logic operations with the help of molecular vibrational states. We will
not deal with that exciting new field in much detail but will discuss the realization of
the basic ingredient of every setup used for computing: the flipping of a bit. As we
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Fig. 5.48 Upper panel: Cost
function of the average
population and the best gene;
lower panel: Spectrum of the
optimal pulse (arrows
indicate positions of resonant
transitions between
rotational sublevels of the
vibrational ground state of
the KCl molecule), from [69]

will see, anharmonic vibrational modes have to be used to this end. Using the OH
diatomic, this has been shown by Babikov [71] and by Cheng and Brown [72].

The flipping of a bit is based on the realization of the NOT-Operation. In a two-
level system this corresponds to the complete transfer of population from level 0 to
level 1 or vice versa

NOT|0〉 = |1〉, (5.180)

NOT|1〉 = |0〉. (5.181)

Each deviation from the complete population transfer reduces the so-called fidelity,
defined as the occupation probability of the initially unpopulated level. Unfortu-
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nately, a harmonic oscillator cannot be controlled to switch completely to a desired
state, because of the equidistance of its levels. One has to choose two levels of an
anharmonic system, as e.g., the Morse potential of Sect. 5.1.2 in order to realize the
NOT operation.

5.14. Derive the maximal probability to populate the n-th excited state of a harmonic
oscillator by using an external field in length gauge and starting from the (vibrational)
ground state χ0.

(a) Calculate the time-dependent wavefunction χ0(x, t) under the influence of the
external field.

(b) Determine the overlap

an0(t) = 〈χn|χ0(t)〉,

by using
∫
dx exp[−(x − y)2]Hn(x) = π1/2(2y)n with the Hermite polynomial

Hn(x).
(c) Show that the maximum of the absolute value |an0(t)|2 is given by nne−n/n!

As a specific example, the driven OH stretch with the Morse parameters De =
0.1994, Re = 1.821, and α = 1.189 in atomic units and the Mecke parameters
μ0 = 1.634a.u. and R∗ = 1.134a.u. (see also caption of Fig. 5.16) has been used.
Although the anharmonicity constant of that molecule is fixed in nature at approxi-
mately 90cm−1, it can be viewed as a parameter in theoretical considerations [72].
These authors have looked at the fidelity

P10(Tt) = |〈1|0(Tt)〉|2, (5.182)

with Tt = 750 fs as a function of anharmonicity, and found the results reproduced in
Fig. 5.49. Two different results are shown there. Firstly, the system has been exposed
to an optimal control pulse, in close analogy to the work of Shi and Rabitz [33], and
secondly to a simple π-pulse, we know already from Sect. 3.2.3. For large anhar-
monicity it can be seen that the π-pulse is superior to the “optimal” pulse! Further-
more, the statement that the harmonic oscillator cannot be controlled to 100% can
be read off from the results at small anharmonicity.

The anharmonic properties of suitable candidates for molecular quantum com-
puting and the realization of additional gates are discussed in [73].

5.6 Notes and Further Reading

Hydrogen molecular ion
The authoritative reference on the hydrogen molecular ion is the classic book by
Slater [1]. More general material on molecular spectra and molecular structure can
be found in the textbook by Bransden and Joachain [2]. In our presentation of the
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Fig. 5.49 Fidelity of the
NOT gate as a function of
the anharmonicity ωexe for
an optimal pulse (squares)
and for the π-pulse (circles);
adapted from [72]

LCAO solution of the electronic Schrödinger equation for H+
2 , we closely followed

the book by Haken and Wolf [22]. Spectroscopic constants that can be used for the
generation of analytic Morse potentials for diatomic molecules are contained in [8].
Further information on diatomic molecules is available in the references given in
[74]. A modern exposition of quantum chemistry, which is the main theoretical tool
for the calculation of electronic potential energy surfaces, is given in the book by
Szabo and Ostlund [3].

Reviews covering both theoretical as well as experimental facts on the dynamics
of H+

2 in intense laser fields are given in [10, 75]. More information on molecules
in laser fields can also be found in the book edited by Bandrauk [76]. The review
by Posthumus [75] contains a very insightful discussion of field dressed states (for
strong fields these are Floquet states) of H+

2 and their use to explain phenomena like
molecular stabilization (bond hardening) and bond softening.

Computational aspects of the Morse potential and its eigenfunctions and eigen-
values are discussed in Chap.13 of [77].

Born-Oppenheimer approximation
The original work of Born and Oppenheimer [78] is very hard to read, involving
an expansion of the energy in terms of the fourth root of the mass ratio. A later
version of the theory along the lines of Appendix VIII of [79] is much simpler to
understand. Additional historical remarks can be found at the end of Chap.12 in
[24] and in [80]. The Born-Huang approximation (or adiabatic approximation) [79]
goes beyond the Born-Oppenheimer approximation by taking into account diagonal
electronic matrix elements of the nuclear Laplace operator.15 Frequently, also the
Born-Oppenheimer approximation of the main text is termed adiabatic. While the
Born-Oppenheimer approximation of the text gives a lower bound of the ground state
energy (see Exercise5.5), the Born-Huang approximation leads to an upper bound,

15The diagonal matrix elements of the nabla operator vanish exactly, see, e.g., the discussion in
Sect. 12.2.1 of [24].
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however. Explicit calculations of the diagonal corrections to the Born-Oppenheimer
potential energy surfaces for H3 are given in [81].

Furthermore, in the derivation in the main text, we have suppressed the discussion
of the mathematical subtleties that arise due to the existence of continuous parts in
the spectrum of the electronic Hamiltonian [82–84]. For an earlier review of these
issues see also [80]. The superiority of atomic over nuclear masses in the study of
nuclear dynamics is hinted at in [80] and discussed in [85]. A mathematical treatise
on the time-dependent Born-Oppenheimer approximation is given in [86].

The transformation from adiabatic to diabatic states and the non-uniqueness of
that transformation are discussed in Sect. 15.2 of [23]. In this reference, the spe-
cific example of a triatomic collinear molecule is discussed explicitly. Additional
material on the adiabtic/diabatic transformation can be found in Sect. 12.2 of [24].
Furthermore, a strictly diabatic treatment of polyatomic molecules is shown to be
impossible in [87]. Nonadiabatic molecular dynamics can be tackled in many differ-
ent ways [88]. Further information on that topic with additional references can be
found for the case without an external laser in [89] and with an external laser in [90].
The semiclassical initial value method applied to the problem of coupled surfaces is
reviewed in [91].

An interesting twist is the treatment of the excited states of two electron atoms
by Feagin and Briggs [92]. These authors have studied atoms like H− in a manner
similar in spirit to the Born-Oppenheimer approximation for H+

2 . More recently,
an old idea of Hunter [93], who pioneered the exact factorization of the molecular
wavefunction in terms of a single product Ansatz, has come in the focus of intense
investigations [94, 95].

Pump-Probe spectroscopy
For the presentation of 2D IR spectroscopy in the frequency domain, we closely
followed the book by Hamm and Zanni [44]. A time-domain approach to 2D IR
spectroscopy is also possible. It consists of the application of two pump pulses and
after a waiting time, a probe pulse hits the molecule. This is explained in greater
detail in [96] as well as in Chap.4 of [44]. The authoritative reference for the general
field of nonlinear spectroscopy is the book by Mukamel [97].

Coherent Control
Driven quantum tunneling is reviewed in depth in [98] and STIRAP is discussed in
greater detail than here in the books by Rice and Zhao [66] and by Tannor [24]. Some
experimental aspects of STIRAP can be found in the overview article byBergmann et
al. [61]. The formulation ofmost of the section onoptimal control is basedonChap.16
of [24]. Tannor’s book as well as [66, 99] contain a wealth of additional material
on the coherent control of quantum dynamics. Also in Tannor’s book (Chap.15.6 of
[24]) an intuitive local control scheme for the heating of an electronic ground state
wavepacket without substantial excitation of higher electronic states is reviewed.

Miscellaneous Topics
Reviews of early experimental and theoretical approaches to femtosecond chem-

istry are collected in [100].More recently, a similar collection of articles has appeared
in [101].
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A natural extension of the scope of this chapter would be to study clusters in
intense laser fields. A recent review of that field is given in [102]. Furthermore, the
phenomenon of HHG in molecules (and solids) has become a hot topic which is
not covered here. A tutorial review of that field, including the concept of molecular
orbital tomography is contained in [103].

5.A Relative and Center of Mass Coordinates for H+
2

In order to derive the Hamiltonian for H+
2 in a laser field, we follow Hiskes’s gen-

eral treatment of diatomic molecules [104]. Specializing to the single electron case,
the Hamiltonian in length gauge and atomic units is first expressed by using the
coordinates of the nuclei Ra , Rb and of the electron, re, according to

Ĥmol = −1

2

{
�a/Mp + �b/Mp + �e

}+ V1 − E(t)[Za + Zb − ze], (5.183)

with the proton mass Mp, where V1 = VCC + 1/R, with VCC from (5.25), contains
all Coulomb interaction terms and the laser is polarized in z-direction.

Now center of mass and relative coordinates

RS = MpRa + MpRb + re
MS

, (5.184)

R = Ra − Rb, (5.185)

r i = re − Ra + Rb

2
(5.186)

are introduced. MS = 2Mp + 1 is the total mass of the system (in a.u.) and the
coordinate of the electron is measured relative to the center of mass of the nuclei.

In matrix form the old and the new coordinates are related by

⎛
⎝ RS

R
r i

⎞
⎠ =

⎛
⎝

Mp

MS

Mp

MS

1
MS

1 −1 0
−1/2 −1/2 1

⎞
⎠
⎛
⎝ Ra

Rb

re

⎞
⎠ . (5.187)

With the help of the inverse matrix, the back transformation can be derived, which
amounts to

⎛
⎝ Ra

Rb

re

⎞
⎠ =

⎛
⎜⎝
1 1/2 − 1

MS

1 −1/2 − 1
MS

1 0 2Mp

MS

⎞
⎟⎠
⎛
⎝ RS

R
r i

⎞
⎠ . (5.188)

Finally, not only the old coordinates, but also their time derivatives in the classical
form of the Hamiltonian are expressed in terms of the new coordinates. It turns out
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that the center of mass with charge e moves “freely” in the electrical field [104]. The
relative motion, however, is governed by the Hamiltonian

Ĥrel = −1

2
{�R/Mr + �i/mi } + V1 + E(t) [1 + 1/MS] zi , (5.189)

where the reduced masses Mr = Mp/2 and mi = 2Mp

MS
have been introduced and the

Coulomb interaction is expressed in terms of the relative coordinates.
In the case of H+

2 , no kinetic couplings between the different degrees of freedom
are present, nor does the field couple directly to the relative coordinate of the nuclei,
which is not true in the general case [104].

5.B Perturbation Theory for Two Coupled Surfaces

In the case of a laser driven two level system with a 2 × 2 (matrix-) Hamilton
operator

Ĥ = Ĥ0 + Ŵ(t), (5.190)

perturbation theory is best performed in the interaction picture of Sect. 2.2.4. In first
order and after back transformation to the Schrödinger picture, analogous to (2.104),

|χ(t)〉 = e−iĤ0t |χ(0)〉 + 1

i

∫ t

0
dt ′e−iĤ0(t−t ′)Ŵ(t ′)e−iĤ0t ′ |χ(0)〉 (5.191)

can be written for the vector valued wavefunction in atomic units.
Invoking the Born-Oppenheimer approximation, we assume that the unperturbed

Hamiltonian Ĥ0 has only diagonal elements Ĥg, Ĥe. Furthermore, the initial wave-
function shall be restricted to the electronic ground state

|χ(0)〉 =
( |χg(0)〉

0

)
. (5.192)

Under the influence of the perturbation (having only off diagonal elements), the
component of the wavefunction

|χ(t)〉 =
( |χg(t)〉

|χe(t)〉
)

(5.193)

in the excited electronic state as a function of time is the desired quantity. Under
the assumptions mentioned above, for this quantity the golden rule expression in
position representation
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χe(R, t) = 1

i

∫ t

0
dt ′e−iĤe(t−t ′)Ŵe.g.(R, t ′)e−iĤgt ′

χg(R, 0) (5.194)

is found. Here the definitions

Ŵe.g.(R, t) = 〈e(R)|Ŵ (t)|g(R)〉 Ĥ j = 〈 j (R)|Ĥ0| j (R)〉 (5.195)

of the matrix elements of the (electronic plus nuclear) Hamiltonian16 have been
introduced, and j can either be e(xited) or g(round).

The physical interpretation of this final result is straightforward. Thewavefunction
propagates for a time t ′ on the lower surface is then multiplied by the perturbation
and propagates on the upper surface until the final time t . All the possibilities to split
the time interval [0, t] have to be integrated over.

5.C Reflection Principle of Photodissociation

The dynamical reflection principle plays a major role for the interpretation of the
photoelectron spectrum in a pump-probe experiment. It has an analog in the field of
photodissociation. In [23] it is shown that the absorption spectrum of photodissocia-
tion is given by the Fourier transform of the auto-correlation function of the ground
state wavepacket,

χg(R) =
(
2αR

π

)1/4

e−αR(R−Re)
2
, (5.196)

approximated by a Gaussian centered around Re and with inverse width parameter
αR , that is instantaneously lifted to the excited state, where it is evolving in time.

In order to perform analytic calculations, this antibinding surface is approximated
by a straight line

V (R) ≈ Ve − VR(R − Re). (5.197)

Using the short-time approximation (i.e., neglecting the kinetic energy) the wave-
function on the antibinding surface is given by

χe(R, t) ∼ e−i[Ve−VR(R−Re)]te−αR(R−Re)
2
. (5.198)

The Fourier transformation of the auto-correlation c(t) = 〈χe(0)|χe(t)〉 can be done
analytically, yielding the absorption spectrum

16Note that the matrix elements are still operators (as indicated by the hat), due to the fact that the
integrations in (5.195) are only over electronic coordinates.

This copy belongs to 'veltien'



250 5 Molecules in Strong Laser Fields

Fig. 5.50 Reflection
principle of
photodissociation [23]. �E
is the FWHM of the
absorption spectrum,
whereas �R is the FWHM
of the absolute square of the
initial wavepacket

σ(E) ∼ e−2β(E−Ve)
2

VR
(5.199)

with β = (V 2
R/αR)−1. The same result can also be obtained by a purely classical

calculation [23]. The maximum of the spectrum is at E = Ve and its FWHM �E =
VR�R is proportional to the negative slope of the antibinding surface and the FWHM
of the squared initial wavepacket. In Fig. 5.50 it is shown that the reflection of the
squared initial wavepacket at the antibinding surface yields the spectrum.

5.D The Undriven Double-Well Problem

Figure5.51 shows the unperturbed double-well potential,

VDW(x) ≡ −1

4
x2 + 1

64D
x4, (5.200)

in the units introduced in Sect. 5.5.1 for D = 2, including the five energy eigenvalues
which lay below the barrier.

The coherent tunneling of a particle in the double-well potential emerges by
considering an initial state that is a superposition of the two lowest (real-valued)
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Table 5.4 Numerical and semiclassical (index s) results for the tunneling splitting as a function of
the barrier height [53]

D Δ Δs
Δs−Δ

Δ
(%)

1 2.392 × 10−2 3.082 × 10−2 28.8

1.5 2.262 × 10−3 2.623 × 10−3 15.9

2 1.895 × 10−4 2.104 × 10−4 11.0

2.5 1.507 × 10−5 1.635 × 10−5 8.5

3 1.164 × 10−6 1.244 × 10−6 6.8

eigenfunctions, χ1(x),χ2(x), depicted in Fig. 5.52, with the energies E1, E2.17 At
time t = 0 this leads to a state that is localized in the left well

χl(x, 0) = 1√
2
[χ1(x) − χ2(x)] . (5.201)

In the case D → ∞ it is identical to the ground state of the harmonic approximation
to the left well. Its absolute value has the time evolution

|χl(x, t)|2 = 1

2

{|χ1(x)|2 + |χ2(x)|2 − 2χ1(x)χ2(x) cos[(E2 − E1)t]
}
. (5.202)

Defining the tunneling splitting as

Δ = E2 − E1, (5.203)

the corresponding tunneling time

Ttu = 2π

Δ
(5.204)

follows. The eigenvalues of the time-independent Schrödinger equationwith a quartic
potential and thus also the tunneling splitting are not available exactly analytically.
Using a semiclassical approximation, Δ can be determined, however. The result of
such a calculation is [105]

Δs = 8

√
2D

π
exp

(
−16D

3

)
, (5.205)

depending exponentially on the dimensionsless barrier height. In Table5.4 some
values of Δ for different barrier heights can be found.

17Please note that in this appendix χ j (x) denotes the j-th eigenfunction in the same electronic state
(the double well).
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Fig. 5.51 Symmetric
double-well potential with
five energy eigenvalues for
D = 2

Fig. 5.52 Eigenfunctions of
the lowest two eigenvalues
for D = 2. Solid line: χ1(x),
dashed line: χ2(x)

5.E The Quantum Mechanical Adiabatic Theorem

To derive the adiabatic theorem in quantum theory, let us consider a system with
discrete levels, whose state vector is given by

|Ψ (t)〉 =
⎛
⎜⎝

|ψ1(t)〉
|ψ2(t)〉

...

⎞
⎟⎠ . (5.206)

In case of a time-dependent perturbation, the Hamilton matrix is given by

H(t) =
⎛
⎜⎝

E1 V12(t) · · ·
V21(t) E2 · · ·

...
...

. . .

⎞
⎟⎠ . (5.207)
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Clearly, an eigenstate stays an eigenstate without the external perturbation. Even
in the presence of a slowly changing perturbation an analogous statement holds,
however.

To show this, one first defines a unitary transformation, diagonalizing the instan-
taneous Hamiltonian

U−1(t)H(t)U(t) = D(t) . (5.208)

The transformed state vector is given by

|Ψ ′(t)〉 = U−1|Ψ (t)〉 . (5.209)

It fulfills the time-dependent Schrödinger equation

i|Ψ̇ ′
(t)〉 = D|Ψ ′(t)〉 − iU−1U̇|Ψ ′(t)〉 . (5.210)

If the Hamilton matrix H is slowly time-dependent, then alsoU depends only weakly
on time and the second term on the right hand side of the equation above can be
neglected. An eigenfunction of the original Hamiltonian thus stays an eigenfunction
of the instantaneous Hamiltonian. In [106] it has been shown that for periodically
driven systems the adiabatic theorem has to be modified.

Finally, it is worthwhile tomention that by choosing the perturbation in such away
that the Hamiltonian switches from a simple to a complex one, the eigenstates of the
complex Hamiltonian can be gained numerically [107]. In addition, an application
to two-level systems has been given in [108].
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Chapter 6
Solutions to Problems

In this chapter, detailed solutions to the numbered problems given inChaps. 1 through
5 are gathered. Where appropriate, references to related, additional material in the
literature are given.

6.1 Solutions to Problems in Chap. 1

1.1. The rate equations in the stationary case for three levels are

0 = −Γ N1 + γ12N2 + γ13N3, (6.1)

0 = −γ12N2 + γ23N3, (6.2)

0 = Γ N1 − (γ13 + γ23)N3. (6.3)

Eliminating N2 from (6.1) using (6.2) and from (6.2) using N = N1 + N2 + N3 leads
to

0 = −Γ N1 + (γ13 + γ23)N3, (6.4)

0 = −γ12N + γ12N1 + (γ12 + γ23)N3. (6.5)

Resolving the last equation for N3 and using it in (6.4) resolved for N1, leads to the
intermediate result

N1 = (γ13 + γ23)γ12

(γ12 + γ23)Γ
(N − N1), (6.6)

which finally gives
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N1 = (γ13 + γ23)γ12

(γ13 + γ23)γ12 + (γ12 + γ23)Γ
N . (6.7)

Analogously

N2 = γ23Γ

(γ13 + γ23)γ12 + (γ12 + γ23)Γ
N (6.8)

is found. For N2 to be larger than N1, the condition

Γ > γ12

(
1 + γ13

γ23

)
(6.9)

therefore has to hold! To achieve population inversion with moderate pumping, γ12
has to be small and γ23 has to be large compared to γ13 [1].

1.2. The electric field is given by

E(t) =
p∑

n=−p

En cos[(ω + nΩ)t], (6.10)

with Ω = 2πδν. For En = E0 and using the exponential function and the geometric
series

E(t) = Re[E0eiωt
p∑

n=−p

einΩt ]

n′=n+p= Re[E0eiωt−ipΩt
2p∑
n′=0

ein
′Ωt ]

= Re

[
E0eiωt−ipΩt 1 − ei(2p+1)Ωt

1 − eiΩt

]

= Re

[
E0eiωt sin[(2p + 1)Ωt/2]

sin(Ωt/2)

]

= E0 cos(ωt) sin[(2p + 1)Ωt/2]
sin(Ωt/2)

(6.11)

follows and from this the corresponding intensity (1.25).

1.3. For the spectrogram, we calculate the integral

I (τ,Ω) =
∫

dt exp
{

− (t − τ)2

2σ 2
− iΩ(t − τ) − (t − t0)2

2σ 2

+ iω0(t − t0) ± i
λ

2
(t − t0)

2
}

, (6.12)
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with an exponential of the form exp{−a(t − t0)2 + b(t − t0) + c}, where

a = 1

σ 2
∓ i

λ

2
, (6.13)

b = i(ω0 − Ω) − 1

σ 2
(t0 − τ), (6.14)

c = − 1

2σ 2
(t0 − τ)2. (6.15)

Using the Gaussian integral (1.32), we calculate b2

4a + c and get

F(τ,Ω) ∼ |I (τ,Ω)|2
∼ e−[A(Ω−ω0)

2+B(Ω−ω0)(τ−t0)+C(τ−t0)2] , (6.16)

with

A = 8

σ 2κ
, (6.17)

B = ∓ 8λ

σ 2κ
, (6.18)

C = 8

σ 6κ
+ 4λ2

σ 2κ
, (6.19)

where κ = (4/σ 2)2 + 4λ2. Spectrograms for an unchirped, an up-chirped and a
down-chirped pulse are shown in Fig. 6.1.
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Ω
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τ

0
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3

Ω
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3

Ω

0 1 2 3 4 5 6
τ

Fig. 6.1 Spectrograms for an unchirped pulse λ = 0 (left panel), an up-chirped pulse (plus sign)
with λ = 0.5 (middle panel) and a down-chirped pulse (minus sign) with λ = 0.5 (right panel); in
all cases σ = 1.5

This copy belongs to 'veltien'

http://dx.doi.org/10.1007/978-3-319-74542-8_1


262 6 Solutions to Problems

6.2 Solutions to Problems in Chap. 2

2.1. If j falls to zero faster than 1/r2, then Gauss’s theorem applied to the equation
of continuity integrated over all space gives

∂

∂t

∫
d3r ρ +

∮
d f · j = ∂

∂t

∫
d3r ρ = 0 , (6.20)

showing that if the wavefunction was normalized at t = 0 it remains normalized at
all times.

2.2. The time-evolution operator

Û (t, t0) =
[
1̂ − i

�
Ĥ(tN−1)�t

] [
1̂ − i

�
Ĥ(tN−2)�t

]
. . .

[
1̂ − i

�
Ĥ(t0)�t

]
(6.21)

• up to zeroth order in �t is

Û (t, t0) = 1̂ , (6.22)

• up to first order in �t is

Û (t, t0) = 1̂ − i

�

N−1∑
ν=0

Ĥ(tν)�t
N→∞ �t→0
N�t=t−t0→ 1̂ − i

�

∫ t

t0

dt ′ Ĥ(t ′) (6.23)

• and up to second order in �t is

Û (t, t0) = 1̂ − i

�

N−1∑
ν=0

Ĥ(tν)�t

+
(

− i

�

)2 N−1∑
ν=1

ν−1∑
ν ′=0

Ĥ(tν)Ĥ(tν ′)�t2

N→∞ �t→0
N�t=t−t0→ 1̂ − i

�

∫ t

t0

dt ′ Ĥ(t ′)

+
(

− i

�

)2 ∫ t

t0

dt ′′
∫ t ′′

t0

dt ′ Ĥ(t ′′)Ĥ(t ′) . (6.24)

For the Hermitian conjugate of the time-evolution operator, in case of a Hermitian
Hamiltonian, we get
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Û †(t, t0) =
([

1̂ − i

�
Ĥ(tN−1)�t

] [
1̂ − i

�
Ĥ(tN−2)�t

]
. . .

[
1̂ − i

�
Ĥ(t0)�t

])†

=
[
1̂ + i

�
Ĥ(t0)�t

] [
1̂ + i

�
Ĥ(t1)�t

]
. . .

[
1̂ + i

�
Ĥ(tN−1)�t

]
. (6.25)

For �t → 0 we consider only terms up to order �t , finding that

Û †(t, t0)Û (t, t0) =
[
1̂ + i

�
Ĥ(t0)�t

] [
1̂ + i

�
Ĥ(t1)�t

]
. . .

[
1̂ + i

�
Ĥ(tN−1)�t

]
[
1̂ − i

�
Ĥ(tN−1)�t

] [
1̂ − i

�
Ĥ(tN−2)�t

]
. . .

[
1̂ − i

�
Ĥ(t0)�t

]

= 1̂ + i

�

N−1∑
ν=0

[Ĥ(tν) − Ĥ(tν)]�t

= 1̂ (6.26)

holds and unitarity is shown.

2.3. We verify the closed form expression of the time-evolution operator (as well
as of its time derivative) using the time-ordering operator.

(a) Taylor expansion of the exponential function allows to write

d

dt
exp{B̂(t)} =

∞∑
n=0

1

n!
d

dt
B̂n(t). (6.27)

The derivative of the n-th power is the sum of n terms (product rule!)

d

dt
B̂n(t) =

n−1∑
k=0

B̂k d

dt
B̂(t)B̂n−k−1, (6.28)

which cannot be simplified in general, due to the non-commutativity of the
operator B̂ and its derivative [2].

(b) For B̂(t) ≡ − i
�
Ĥ0t , we have

d

dt
B̂(t) = − i

�
Ĥ0, (6.29)

which is commuting with B̂(t) and therefore

d

dt
B̂n(t) = n

d

dt
B̂(t)B̂n−1(t), (6.30)

leading to the TDSE for the time-evolution operator
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d

dt
Û (t) = − i

�
Ĥ0Û (t) . (6.31)

(c) For B̂(t) ≡ − i
�

∫ t
0 dt

′ Ĥ(t ′), however,

d

dt
B̂(t) = − i

�
Ĥ(t) (6.32)

does not necessarily commute with B̂(t) and we do not find a TDSE of the form
(6.31).

(d) In order to prove the given relation, we first differentiate the operator

Ĥn(t) ≡ T̂

(∫ t

0
dt ′ Ĥ(t ′)

)n

= T̂

[∫ t

0
dtn Ĥ(tn)

∫ t

0
dtn−1 Ĥ(tn−1) . . .

∫ t

0
dt1 Ĥ(t1)

]
, (6.33)

leading to

d

dt
Ĥn(t) = nĤ(t)T̂

(∫ t

0
dt ′ Ĥ(t ′)

)n−1

= nĤ(t)Ĥn−1(t), (6.34)

due to the fact that the time-ordering operator moves all occurrences of Ĥ(t) all
the way to the left. This is a recurrence-differential equation and the expression

Ĥn(t) = n!
[∫ t

0
dtn Ĥ(tn)

∫ tn

0
dtn−1 Ĥ(tn−1) . . .

∫ t2

0
dt1 Ĥ(t1)

]
(6.35)

fulfills the same recurrence-differential equation and has the same initial condi-
tions Ĥ1(t) and Ĥn(0). The given relation is thus proven.
By comparison with (2.31), we see that the construction Û (t) = T̂ exp[B̂(t)]
therefore is a closed form expression for the time-evolution operator, and fur-
thermore it fulfills the TDSE

d

dt
Û (t) = − i

�
ĤÛ (t). (6.36)

We have closely followed the presentation of Appendix B in [2].

2.4. Taking the trace of the time-evolution operator of the harmonic oscillator, we
get
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TrÛ (t, 0) =
∫

dx K (x, t; x, 0)

=
√

mωe

2π i� sin(ωet)

∫
dx exp

{
imωe

� sin(ωet)
x2 [cos(ωet) − 1]

}

(1.29)= 1√
2 [cos(ωet) − 1]

= 1

eiωet/2 − e−iωet/2

=
∞∑
n=0

e−i(n+1/2)ωet , (6.37)

where the geometric series
∑∞

n=0 x
n = 1

1−x with x = e−iωet was used (on the border
of the radius of convergence). Therefore the eigenvalue spectrum is given by En =(
n + 1

2

)
�ωe, n = 0, 1, 2, . . . .

2.5. The GWD allows for an exact analytical solution of the TDSE for maximally
quadratic potentials.

(a) The probability density and probability flux density for the Gaussian wavepacket
(2.48) are given by

ρ = Ψ ∗Ψ =
(
2α0

π

)1/2

exp

{
−2Reαt (x − qt )

2 − 2Imδt

�

}
, (6.38)

j = �

m
Im[Ψ ∗∂xΨ ] = �

m

{ pt
�

− 2Imαt (x − qt )
}

ρ. (6.39)

From (2.60) and (2.61) we get

Imδ̇t = −�
2

m
Imαt , (6.40)

Reα̇t = 4�

m
Reαt Imαt . (6.41)

Using this together with Hamilton’s equations, the continuity equation in 1D

ρ̇ = −∂x j (6.42)

can be shown to hold by comparing coefficients in front of equal powers of
(x − qt ).

(b) For the free particle, V (x) = 0, the solutions of Hamilton’s equations are

qt = q0 + p0
m

t, (6.43)

pt = p0. (6.44)
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The Riccati equation (2.61) can be integrated by separation of variables

∫ αt

α0

dα

α2
= −2i�

m

∫ t

0
dt ′ , (6.45)

leading to

αt = α0

1 + 2i�
m α0t

(6.46)

and

δt = p20
2m

t + i�

2
ln

{
1 + 2i�

m
α0t

}
. (6.47)

(c) For the harmonic oscillator, V (x) = 1
2mω2

e x
2, the solutions of Hamilton’s equa-

tions are

qt = q0 cos(ωet) + p0
mωe

sin(ωet), (6.48)

pt = p0 cos(ωet) − mωeq0 sin(ωet). (6.49)

The Riccati equation (2.61) is

α̇t = −2i�

m
α2
t + i

2�
mω2

e . (6.50)

It can again be integrated using separation of variables, leading to (see also [3])

αt = a
α0 cos(ωet) + ia sin(ωet)

a cos(ωet) + iα0 sin(ωet)
, (6.51)

with a = mωe/(2�). In the special case α0 = a, the inverse width parameter
stays constant and the wavepacket is a coherent state of the harmonic oscillator
(see also below).
The phase factor is given by

δt = ptqt − p0q0
2

+ i�

2
ln

{
iα0 sin(ωet) + a cos(ωet)

a

}
, (6.52)

which in the special case α0 = a leads to

δt = ptqt − p0q0
2

− �ωet

2
. (6.53)

(d) Using the Gaussian integral (1.29), from normalization we get
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〈1̂〉 =
∫

dx Ψ ∗(x, t)Ψ (x, t)

=
(
2α0

π

)1/2 ∫
dx exp{−2Reαt (x − qt )

2 − 2Imδt/�}

=
(

α0

Reαt

)1/2

exp{−2Imδt/�} ≡ 1 . (6.54)

Note that norm conservation does not have to be postulated here. Normalization
can also be shown to hold using (6.40) and (6.41).
The expectation value and the (square root of the) variance for position can
be calculated using the identity x = (x − qt ) + qt together with the Gaussian
integrals (1.29) and (1.30, 1.31)

〈x̂〉 =
∫

dx Ψ ∗(x, t)xΨ (x, t)

=
(
2α0

π

)1/2 ∫
dx x exp{−2Reαt (x − qt )

2 − 2Imδt/�}

=
(

α0

Reαt

)1/2

exp{−2Imδt/�}qt
(6.54)= qt , (6.55)

〈x̂2〉 =
∫

dx Ψ ∗(x, t)x2Ψ (x, t)

=
(
2α0

π

)1/2 ∫
dx x2 exp{−2Reαt (x − qt )

2 − 2Imδt/�}

= q2
t + 1

4Reαt
, (6.56)

�x(t) =
√

〈x̂2〉 − 〈x̂〉2 =
√

1

4Reαt
. (6.57)

Similarly, for the momentum we get

�p(t) =
√

〈 p̂2〉 − 〈 p̂〉2 = �|αt |√
Reαt

, (6.58)

leading to the uncertainty product
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�x(t)�p(t) = �

2

|αt |
Reαt

≥ �

2
. (6.59)

In the free particle case

Reαt = α0

1 + 4�2α2
0 t

2/m2
(6.60)

and the square root of the position variance increases (asymptotically linearly)
in time as depicted in Fig. 6.2.
Furthermore, the momentum variance, due to

|αt | = α0

(1 + 4�2α2
0 t

2/m2)1/2
, (6.61)

stays constant in time. The uncertainty product

�x(t)�p(t) = �

2

√
1 + 4�2α2

0 t
2/m2 (6.62)

increases with time.
In the harmonic oscillator case we find

Reαt = a
aα0

a cos2(ωet) + α2
0 sin

2(ωet)
(6.63)

and thus

�x2(t) = 1

4Reαt
= �

2mωe

[(
a

α0
− α0

a

)
cos2(ωet) + α0

a

]
. (6.64)

This result corroborates that for α0 = a, in accord with (6.51), also αt = α0 =
a. In this special case both variances as well as the uncertainty product are
independent of time (coherent state). In the more general case of a squeezed
state the variances as well as the uncertainty product are functions of time, see
Fig. 6.3. A pictorial representation in phase space of the dynamics of a squeezed
state is given in the appendix of [4].

2.6. We use the eigenstates (2.62) and energies (2.63) of the box potential to find
the probabilities and the time-evolution of a special initial state.

(a) The overlap is given by
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Fig. 6.2 Sketch of �x(t) (in
red) for the free particle,
together with its straight line
asymptotes

t

Δx(t)

Fig. 6.3 Variances of
position (solid black line)
momentum (dashed blue
line) and uncertainty product
(dotted red line) for a
harmonic oscillator with
initial inverse width
parameter α0 = ae−2 as a
function of Θ = 2ωet (we
have set m = � = ωe = 1)
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Θ

〈ψ ′
m |ψn〉 =

√
2

L

∫ L

0
dx sin

(mπx

2L

)
sin
(nπx

L

)

=
√
2

π

∫ π

0
dz sin

(m
2
z
)
sin (nz)

= 1√
2π

{
sin
(
m
2 − n

)
π

m
2 − n

− sin
(
m
2 + n

)
π

m
2 + n

}
. (6.65)

The sought for probability is given by Pm = |〈ψ ′
m |ψn〉|2. We can distinguish two

cases:

(i) even m = 2n leads to Pm = 0, for m = 2n, see (b)
(ii) for odd m = 2k + 1, we find that

sin
(m
2

− n
)

π = sin
(m
2

+ n
)

π = ±1 (6.66)
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Fig. 6.4 Ground state of the
small box potential (left
panel); time-evolved state at
tmin/2 (right panel)

0 2L

0 2L

and Pm = 2n2

π2
[
m
2
2−n2

]2

(b) From the second line of (6.65), we find directly that Pm =
∣∣∣√2

π
π
2

∣∣∣ = 1
2 .

(c) The n = 1 eigenfunction in the small well is a superposition of eigenfunctions
of the large well. For the large well, the fundamental frequency, defined in (2.65)
is

ω′ = ω

4
(6.67)

and the corresponding time tmin = 2π
ω′ = 8π

ω
. At this time all phases are integer

multiples of 2π and the initial wavepacket has completely revived.
(d) Except for m = 2 only odd states of the large well contribute to the n = 1 state

of the original well according to

Ψ (x, t) =
∑
m

am sin
(mπx

2L

)
e−im2ω′t . (6.68)

At tmin/2 all the odd functions have acquired a minus sign, whereas the m = 2
function remains unchanged. The cancellation of the wavefunction at t = 0 in
the right half of the well has thus turned into a cancellation in the left half as can
be seen in Fig. 6.4 (see also [5]).

2.7. We set up the short-time propagator and use it to derive the time-dependent
Schrödinger equation.

(a) Using (2.32) for the time-evolution operator, the infinitesimal short-time
propagator is

〈xi+1|Û (�t)|xi 〉 = 〈xi+1|e− i
�
Ĥ�t |xi 〉

≈ 〈xi+1|xi 〉 − i

�
�t〈xi+1|Ĥ |xi 〉

= δ(xi+1 − xi ) − i

�
�t
∫

dp

2π�
e

i
�
p(xi+1−xi )

[
p2

2m
+ V (xi )

]

≈
∫

dp

2π�
e

i
� [p(xi+1−xi )−�t H(p,xi )] , (6.69)
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where in the second line, Taylor expansion of the exponential function has
been used and in the third line, unity has been inserted in terms of momen-
tum eigenstates. In the last line, the Fourier representation of the δ-function and
re-exponentiation have been used. Alternatively, one could have used the Trotter
product splitting of the time-evolution operator, which is also exact up to first
order in �t .
The p-integral is a Gaussian integral and can be done by using (1.32), leading
to

〈xi+1|Û (�t)|xi 〉 =
√

m

2π i��t
e

i�t
�

[
m
2

(
xi+1−xi

�t

)2−V (xi )

]
(6.70)

and we have also derived the prefactor.
Applying this result in a concatenation of short-time propagators, one can derive
the Riemannian form (2.75) of the path integral.

(b) Using the infinitesimal short-time propagator to propagate a wavefunction leads
to

Ψ (x, t + �t) =
∫

dyA−1e
i�t
�

[
m(x−y)2

2�t2
−V (y)

]
Ψ (y, t) , (6.71)

where we have left the prefactor unspecified. Due to the smallness of �t only
y-values close to x contribute significantly to the integral (this is yet another
stationary phase approximation type argument) and we substitute y = x + η

leading to

Ψ (x, t + �t) =
∫

dηA−1e
imη2

2��t − i
�

�tV (x+η)Ψ (x + η, t) . (6.72)

Expanding to first order in �t and to second order in η leads to

Ψ (x, t) + �t ∂Ψ
∂t =∫

dηA−1e
imη2

2��t
[
1 − i�t

�
V (x)

] [
Ψ (x, t) + η ∂Ψ

∂x + η2

2
∂2Ψ
∂x2

]
. (6.73)

Using the Gaussian integrals (1.29), (1.30), (1.31) and comparing coefficients
in front of equal powers of �t leads again to the prefactor

A−1 =
√

m

2π i��t
. (6.74)

Furthermore, from the coefficients of the first order terms

∂Ψ (x, t)

∂t
= − i

�
V (x)Ψ (x, t) − �

2im

∂2Ψ (x, t)

∂x2
(6.75)
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follows, i.e., the TDSE is shown to hold. We closely followed the lines of Feyn-
man and Hibbs [6]. Furthermore, we note that this procedure to derive the TDSE
can easily be extended to the case of time-dependent potentials!

2.8. Taking the time derivative of ÛI = Û †
0 (t)Û (t)with the help of (6.31) and (6.36),

as well as of ( Â B̂)† = B̂† Â† leads to

i� ˙̂UI(t) = i� ˙̂U †
0 (t)Û (t) + i�Û †

0 (t) ˙̂U (t)

= −(Ĥ0Û0)
†(t)Û (t) + Û †

0 (t)ĤÛ (t)

= −Û †
0 (t)Ĥ0Û (t) + Û †

0 (t)Ĥ0Û (t) + Û †
0 (t)ŴÛ (t)

= Û †
0 (t)ŴÛ (t) = Û †

0 (t)ŴÛ0(t)Û
†
0 (t)Û (t)

= ŴIÛI(t), (6.76)

which is the expected TDSE of the time-evolution operator in the interaction picture.

2.9. From the time-evolution operator in the interaction picture (2.102), we can
identify λ = − i

�
and

A1 →
∫ t

0
dt1ŴI(t1), (6.77)

A2 →
∫ t

0
dt2

∫ t2

0
dt1ŴI(t2)ŴI(t1)

=
∫ t

0
dt2

∫ t

0
dt1Θ(t2 − t1)ŴI(t2)ŴI(t1). (6.78)

Therefore

A2 − 1

2
A2
1 = −1

2

∫ t

0
dt2

∫ t

0
dt1
[
ŴI(t2)ŴI(t1)

− 2Θ(t2 − t1)ŴI(t2)ŴI(t1)
]
. (6.79)

If t2 ≥ t1, the integrand is

ŴI(t2)ŴI(t1) − 2ŴI(t2)ŴI(t1) = −ŴI(t2)ŴI(t1). (6.80)

For t2 ≤ t1 the integral can be rewritten as

∫ t

0
dt2

∫ t

t2

dt1ŴI(t2)ŴI(t1) =
∫ t

0
dt1

∫ t1

0
dt2ŴI(t2)ŴI(t1)

=
∫ t

0
dt2

∫ t2

0
dt1ŴI(t1)ŴI(t2), (6.81)
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Fig. 6.5 Two-dimensional
integration area: whether the
integrals are performed in
the order

∫ t
0 dt1

∫ t1
0 dt2 . . .

(indicated by the vertical
lines) or in the order∫ t
0 dt2

∫ t
t2
dt1 . . . (horizontal

lines) does not matter

t1

t2

t

t

where we have renamed time variables in the last step such that again t2 ≥ t1. The
correctness of the first step can be seen by looking at Fig. 6.5. This procedure then
leads to

Ĥ2 = 2[A2 − 1

2
A2
1] =

∫ t

0
dt2

∫ t2

0
dt1[ŴI(t2), ŴI(t1)] (6.82)

for the second order Magnus term. The same result could have been obtained by
comparing terms proportional to (i/�)2 in (2.102) and (2.109).

2.10. In this exercise, we study the Ehrenfest method.

(a) Inserting the expansion (2.133) into the TDSE for the light particle yields

i�
∑
k

[
ċk(t)φk + ck(t)φ̇k(x |X (t))

] =
∑
k

ck(t)Ĥ
0(x |X (t))φk . (6.83)

Using the eigenvalue equation of the light particle (2.125) and multiplying with∫
dxφ j (x |X (t)) from the left leads to

i�ċ j (t) = ε0j c j − i�
∑
k

ck

∫
dxφ j (x |X (t))φ̇k(x |X (t)) . (6.84)

Using the chain rule φ̇ = ∂X
∂t

∂φ

∂X , we find

i�ċ j (t) = ε0j c j − i�Ẋ
∑
k

ck

∫
dxφ j (x |X (t))

∂φk

∂X
. (6.85)
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(b) First we note that d jk = ∫ dxφ j
∂φk

∂X = −dkj follows from partial integration. The
effective force is given by

Feff = − ∂

∂X

{
V +

∫
dxΦ∗ Ĥ 0Φ

}

= − ∂

∂X

⎧⎨
⎩V +

∑
j

|c j |2ε0j (X)

⎫⎬
⎭

= −∂V

∂X
−
∑
j

|c j |2
∂ε0j

∂X
− 1

Ẋ

∑
j

ε0j
∂|c j |2

∂t
. (6.86)

Using the result from (a), the last term in the equation above can be written as

− 1

Ẋ

∑
j

ε0j
∂|c j |2

∂t
=
∑
jk

[c∗
j ck + c∗

k c j ]ε0j d jk

=
∑
j,k< j

[c∗
j ck + c∗

k c j ][ε0j − ε0k ]d jk , (6.87)

where for the last line d jk = −dkj has been used.

2.11. Using the extended Hamiltonian, the Floquet Schrödinger equation and its
adjunct read

Ĥ|ψα〉 = εα|ψα〉, (6.88)

〈ψβ |Ĥ† = ε∗
β〈ψβ |. (6.89)

Multiplying the first equation from the left with 〈ψβ |, integrating over one period
1
T

∫
dt . . . , and using an analogous procedure for the second equation leads to

〈〈ψβĤ|ψα〉〉 = εα〈〈ψβ |ψα〉〉, (6.90)

〈〈ψβ |Ĥ†|ψα〉〉 = ε∗
β〈〈ψβ |ψα〉〉. (6.91)

The claim is that if Ĥ is Hermitian then also Ĥ is Hermitian. For the time-
differentiation part of Ĥ hermiticity can be shown by an integration by parts and
using the periodicity of the Floquet functions, leading to the cancellation of the
boundary term.

Subtracting the second from the first equation above then yields

0 = (εα − ε∗
β)〈〈ψβ |ψα〉〉 , (6.92)

which for α = β leads to εα = ε∗
α .
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2.12. With ŷ ≡ −iV̂�t/� and x̂ ≡ −iT̂k�t/�, “the symmetric” Strang splitting
can be written as

e ŷ/2+x̂+ŷ/2 = e ŷ/2ex̂+ŷ/2e− 1
2 [ŷ/2,x̂]eO(�t3)

≈ e ŷ/2ex̂e ŷ/2e− 1
2 [x̂,ŷ/2]eO(�t3)e− 1

2 [ŷ/2,x̂]

≈ e ŷ/2ex̂e ŷ/2e− 1
2 ([x̂,ŷ/2]+[ŷ/2,x̂])+O(�t4)

≈ e ŷ/2ex̂e ŷ/2 , (6.93)

where the Zassenhaus formula has been used in the first two lines and the Baker-
Campbell-Haussdorff formula has been used in the third line. In the second and third
line, terms of order�t3 and in the fourth line terms of order�t4 have been neglected.

The Strang splitting is therefore second order accurate in �t . This result could
have also been proven by usingTaylor expansion of the exponential functions (strictly
keeping track of the operator ordering), see also the solution to Exercise 2.14.

2.13. The SOD propagation and its adjunct can be written as

|Ψ (t + �t)〉 = |Ψ (t − �t)〉 − 2i�t

�
Ĥ |Ψ (t)〉, (6.94)

〈Ψ (t + �t)| = 〈Ψ (t − �t)| + 2i�t

�
〈Ψ (t)|Ĥ †. (6.95)

(a) Using hermiticity of the Hamiltonian and multiplying the first equation above
by 〈Ψ (t)| from the left and the second one by |Ψ (t)〉 from the right gives

〈Ψ (t)|Ψ (t + �t)〉 = 〈Ψ (t)|Ψ (t − �t)〉 − 2i�t

�
〈Ψ (t)|Ĥ |Ψ (t)〉, (6.96)

〈Ψ (t + �t)|Ψ (t)〉 = 〈Ψ (t − �t)|Ψ (t)〉 + 2i�t

�
〈Ψ (t)|Ĥ |Ψ (t)〉. (6.97)

Adding both equations above leads to Re〈Ψ (t − �t)|Ψ (t)〉 = Re〈Ψ (t)|Ψ (t +
�t)〉 = const.

(b) Analogously, multiplying the first equation above by 〈Ψ (t)|Ĥ from the left and
the second one by Ĥ |Ψ (t)〉 from the right leads to Re〈Ψ (t − �t)|Ĥ |Ψ (t)〉 =
Re〈Ψ (t)|Ĥ |Ψ (t + �t)〉 = const.

(c) In the limit of small �t → 0, cum grano salis, we write the result from (a) as
〈Ψ (t − �t/2)|Ψ (t + �t/2)〉 = 〈Ψ (t + �t/2)|Ψ (t + �t/2)〉, which is norm
conservation, whereas (b) is energy conservation (if Ĥ is time-independent),
although for finite �t energy and norm conservation are not exact [7].

(d) An eigenstate evolves according to

|Ψ (t + �t)〉 = e−iEapp�t/�|Ψ (t)〉, (6.98)

with some approximate eigenvalue Eapp, due to the fact that (6.94) is invariant
under discrete time translations t → t ± n�t . Also from (6.94), we have
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|Ψ (t + �t)〉 = |Ψ (t)〉eiEapp�t/� − 2iE�t/�|Ψ (t)〉 . (6.99)

Equating the LHSs of (6.98), (6.99) and eliminating |Ψ (t)〉 leads to

sin(Eapp�t/�) = E�t/� , (6.100)

from which it is clear that |E�t | < � has to hold for stability, in accord with the
statement in Chap. 2.

2.14. The expansion of the LHS of e−�t Ĥ = e−�t T̂k e−�t V̂ gives

e−�t Ĥ = 1 − �t Ĥ + �t2

2
Ĥ 2 + . . . (6.101)

whereas on the RHS we have

e−�t T̂k = 1 − �t T̂k + �t2

2
T̂ 2
k + . . . , (6.102)

e−�t V̂ = 1 − �t V̂ + �t2

2
V̂ 2 + . . . . (6.103)

Multiplying out the RHS gives up to second order

e−�t T̂k e−�t V̂ ≈ 1 − �t (T̂k + V̂ ) + �t2

2
(T̂ 2

k + V̂ 2 + 2T̂k V̂ ), (6.104)

whereas the LHS is

e−�t Ĥ ≈ 1 − �t (T̂k + V̂ ) + �t2

2
(T̂k + V̂ )2. (6.105)

Now

(T̂k + V̂ )2 = T̂ 2
k + V̂ 2 + T̂k V̂ + V̂ T̂k . (6.106)

For the last term we employ the Jacobi identity {A, {B,C}} + {B, {C, A}} + {C,

{A, B}} = 0 and find (for a single DOF)

V̂ T̂kη = {V, {Tk, η}} = −{η, {V, Tk}} − {Tk, {η, V }}
= {{V, Tk}, η} + {Tk, {V, η}}
=
{

∂V

∂q

p

m
, η

}
+ T̂k V̂η (6.107)

and thus the difference between the LHS and the RHS in order �t2 is
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�t2

2

̂
(

∂V

∂q

p

m

)
, (6.108)

where the hat again denotes the Poisson bracket operation.

2.15. Starting from (2.222) for N = 1 and using

(
â†
)n |0〉 = √

n!|n〉 (6.109)

leads to

|z〉 = e−1/2|z|2
∞∑
n=0

zn√
n! |n〉 . (6.110)

The completeness integral (2.226) is

∫
d2z

π
|z〉〈z| =

∞∑
n=0

∞∑
m=0

|n〉〈m|
π

√
n!m!

∫
d2z e−|z|2(z∗)mzn . (6.111)

Using the polar representation z = reiϕ leads to [8]

∫
d2z

π
|z〉〈z| =

∞∑
n=0

∞∑
m=0

|n〉〈m|
π

√
n!m!

∫ ∞

0
dr re−r2rn+m

∫ 2π

0
dϕ ei(n−m)ϕ

=
∞∑
n=0

|n〉〈n|
πn!

∫ ∞

0
dξ e−ξ ξ n

=
∞∑
n=0

|n〉〈n| = 1̂ , (6.112)

where we have used

∫ 2π

0
dϕei(n−m)ϕ = 2πδnm (6.113)

and the substitution ξ = r2 and

∫ ∞

0
dξe−ξ ξ n = n!, (6.114)

as well the completeness of the harmonic oscillator eigenfunctions in the very last
step.

2.16. Here we show that the stability matrix elements can be combined in such way
that the result fulfills a Riccati equation.
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(a) The time-dependent inverse width parameter

γt = γ
m11 + 1

iγ �
m12

m22 + iγ �m21
(6.115)

of the TGWD can be differentiated leading to

γ̇t = γ
[(
ṁ11 + 1

iγ �
ṁ12
)
(m22 + iγ �m21)

−(m11 + 1

iγ0�
m12
)
(ṁ22 + iγ0�ṁ21)

]
(m22 + iγ0�m21)

−2 . (6.116)

Writing out the equations of motion for the elements of the stability matrix
(2.263) gives

ṁ1 j = −V ′′m2 j , (6.117)

ṁ2 j = 1

m
m1 j , (6.118)

with j = 1, 2. Inserting them above leads to

γ̇t = [−V ′′(γm21 + 1

i�
m22
)
(m22 + iγ �m21)

− γ

m

(
m11 + 1

iγ �
m12
)
(m12 + iγ �m11)

]
(m22 + iγ �m21)

−2

= − 1

i�
V ′′ − i�

m
γ 2
t , (6.119)

where the definition (6.115) has beenused.This is the sought forRiccati equation,
analogous to the one given in (2.61) for α = γ /2.

(b) With the definition Q = m22 + i�γm21 the inverse width parameter (6.115) can
be rewritten in log-derivative form as

γt = m

i�

Q̇

Q
, (6.120)

which in turn can be solved for Q by

Q = exp

{∫ t

0
dt ′

i�

m
γt ′

}
. (6.121)
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The 1D version of the complex conjugate HK-prefactor (2.231) can thus be
expressed entirely in terms of γt via

R∗ =
√
1

2
(1 + γt/γ ) exp

{
1

2

∫ t

0
dt ′

i�

m
γt

}

=
√
1

2
(Q + m

i�
Q̇)

=
√
1

2

(
m11 + m22 + i�γm21 + 1

i�γ
m12

)
. (6.122)

With slight generalizations, these calculations can be taken over to the case of many
degrees of freedom, involving the block matrices mi j defined in App. 2.C [9]. The
advantage of the reformulation of the prefactor is that it may allow for favorable
approximations [10].

6.3 Solutions to Problems in Chap. 3

3.1. This exercise is devoted to the study of classical minimal coupling.

(a) The Euler-Lagrange (vector) equation for the Lagrangian

L(ṙ, r, t) = m

2
ṙ2 − qΦ(r, t) + q ṙ · A(r, t) (6.123)

reads

d

dt

∂L

∂ ṙ
= ∂L

∂ r
. (6.124)

With the total time-derivative

d

dt
· · · = ∂

∂t
· · · + (ṙ · ∂

∂ r
) . . . , (6.125)

we get

m r̈ + q
∂A
∂t

+ q(ṙ · ∂

∂ r
)A = −q

∂Φ

∂ r
+ q

∂

∂ r
(ṙ · A) . (6.126)

Using the vector algebraic rule a × (b × c) = b(a · c) − c(a · b) this leads to

m r̈ = −q

(
∂Φ

∂ r
+ ∂A

∂t

)
+ q ṙ ×

(
∂

∂ r
× A

)

= q(E + ṙ × B) , (6.127)
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where in the last line use has been made of the expressions (3.10) and (3.11) for
the fields. This is Newton’s equation of motion with the Lorentz force!

(b) The canonical momentum is defined by

p = ∂L

∂ ṙ
= m ṙ + qA, (6.128)

whereas the mechanical (or kinetic) momentum is given by

pm = m ṙ = p − qA. (6.129)

(c) To calculate the Hamiltonian we have to replace ṙ by ( p − qA)/m in the Leg-
endre transform according to

H( p, r, t) = ṙ · p − L(ṙ, r, t)

= p − qA
m

· p − m

2

[
p − qA

m

]2
+ qΦ − q

p − qA
m

· A

= 1

2m
( p − qA(r, t))2 + qΦ(r, t), (6.130)

where the last line follows by first combining the first with the fourth term of
the previous line and subtracting the second term from the result.

3.2. In the case of the minimally coupled Hamiltonian in the TDSE (3.7), for the
time-derivative of the probability density we find

∂ρ

∂t
= ∂Ψ ∗

∂t
Ψ + Ψ ∗ ∂Ψ

∂t

= i

�
{Ψ (ĤΨ )∗ − Ψ ∗(ĤΨ )}

= i

�

{
�
2

2m
[Ψ ∗�Ψ − Ψ �Ψ ∗]

+ �q

mi
[Ψ ∗Ψ (∇ · A) + Ψ ∗A · ∇Ψ + Ψ A · ∇Ψ ∗]

}

= − ∂

∂ r
·
{

1

2m

[
Ψ ∗ �

i
∇Ψ − Ψ

�

i
∇Ψ ∗

]
− q

m
AΨ ∗Ψ

}

= −∇ · j , (6.131)

from which we can conclude that

j = 1

m
Re
{
Ψ ∗ p̂mΨ

}
(6.132)

with the kinetic momentum from (6.129). A local gauge transformation (3.1) applied
to the probability current density according to
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j ′ = 1

m
Re
{
Ψ ′∗( p̂ − qA′)Ψ ′}

= 1

m
Re
{
e−i q

�
χ(r,t)Ψ ∗ei

q
�

χ(r,t)( p̂ − qA − q(∇χ) + q(∇χ))Ψ
}

= 1

m
Re
{
Ψ ∗( p̂ − qA)Ψ

}
= j (6.133)

leaves it unchanged.

3.3. In this exercise, we follow [11] on the search for a gauge invariant energy
operator.

(a) For the expectation value to be gauge invariant

〈Ψ |Θ̂(A, Φ)|Ψ 〉 = 〈Ψ ′|Θ̂(A′, Φ ′)|Ψ ′〉 (6.134)

has to hold. In addition, we find by inserting unity twice on the LHS

〈Ψ |Θ̂(A, Φ)|Ψ 〉 = 〈Ψ ′|ei q� χΘ̂(A, Φ)e−i q
�

χ |Ψ ′〉 (6.135)

and by comparison of the RHSs

Θ̂(A′, Φ ′) = ei
q
�

χΘ̂(A, Φ)e−i q
�

χ (6.136)

(b) From

Ĥ(A, Φ) = 1

2m
( p̂ − qA)2 + V + qΦ, (6.137)

we find that

Ĥ(A′, Φ ′) = 1

2m
( p̂ − qA′)2 + V + qΦ ′, (6.138)

whereas

ei
q
�

χ Ĥ(A, Φ)e−i q
�

χ = 1

2m
( p̂ − qA′)2 + V + qΦ, (6.139)

because only A is modified (the exponential factors around Φ cancel). An alter-
native, gauge invariant operator would be given by

Ĥ(A, 0) = Ĥ(A, Φ) − qΦ = 1

2m
( p̂ − qA)2 + V . (6.140)

3.4. We follow an idea laid out in the PhD thesis ofMaria Göppert-Mayer, published
in [12], to derive the length-gauge Lagrangian.
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(a) Adding a total time derivative d
dt f (r, t) to the Lagrangian leads to

L ′ = L + d

dt
f (r, t) (6.141)

with

d

dt
f (r, t) = ṙ · ∂ f

∂ r
+ ∂ f

∂t
. (6.142)

The Euler-Lagrange equations

d

dt

∂L ′

∂ ṙ
− ∂L ′

∂ r
= d

dt

∂L

∂ ṙ
+ d

dt

∂

∂ ṙ

(
ṙ · ∂ f

∂ r
+ ∂ f

∂t

)
− ∂L

∂ r
− ∂

∂ r
d f

dt

= d

dt

∂L

∂ ṙ
+ d

dt

∂ f

∂ r
− ∂L

∂ r
− ∂

∂ r
d f

dt

= d

dt

∂L

∂ ṙ
− ∂L

∂ r
= 0 (6.143)

are unaffected by the additional term.
This fact can be explained alternatively by observing that the total time derivative
only adds boundary terms to the action S, which are not varied in the derivation
of the Euler-Lagrange equations.

(b) For the (velocity-gauge) Lagrangian of (6.123) in dipole approximation and
Coulomb gauge, adding −q d

dt (r · A) leads to

L l = m

2
ṙ2 + q ṙ · A(t) − q

d

dt
(r · A(t))

= m

2
ṙ2 − q r · d

dt
A(t)

= m

2
ṙ2 + q r · E(t), (6.144)

where

d

dt
A(t) = ∂

∂t
A(t) = −E(t) (6.145)

has been used.

3.5. With the twounitary transformations (3.19), (3.20) and indipole approximation,
we get

i� ˙̂U−1
1 = q2

2m
A2(t)Û−1

1 , (6.146)

i� ˙̂U−1
2 = i�q

m
A(t) · ∇Û−1

2 . (6.147)
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Under the assumptions in the main text, the TDSE for the velocity gauge wavefunc-
tion Ψv = Û−1

1 Û−1
2 Ψa is

i�Ψ̇v = i�[ ˙̂U−1
1 Û−1

2 Ψa + Û−1
1

˙̂U−1
2 Ψa + Û−1

1 Û−1
2 Ψ̇a]

= q2

2m
A2(t)Û−1

1 Û−1
2 Ψa + i�q

m
A(t) · ∇Û−1

1 Û−1
2 Ψa + i�Û−1

1 Û−1
2 Ψ̇a

=
[
− �

2

2m
� + i�q

m
A · ∇ + q2

2m
A2 + V

]
Û−1

1 Û−1
2 Ψa. (6.148)

The terms containing the vector potential in the last line are canceled by the first and
second term in the line above. After multiplication from the left with Û2Û1 this is
leading to

i�Ψ̇a(r, t) =
[
− �

2

2m
� + Û2V (r)Û−1

2

]
Ψa(r, t). (6.149)

With the help of the Baker-Haussdorff lemma, and the abbreviation α(t), given in
(3.22), the unitary transformation of the potential is

Û2V (r)Û−1
2 =

∞∑
n=0

1

n! [α · ∇, V (r)]n

=
∞∑
n=0

1

n! (α · ∇)nV (r) = V (r + α), (6.150)

where the last step is due to the fact that the series is a Taylor expansion.

3.6. We study the “free” electron in 1D under the influence of a laser field in length
gauge.

(a) Hamilton’s equations are

q̇t = pt/me, (6.151)

ṗt = −eE0 cos(ωt). (6.152)

Under the given initial conditions they lead to the solutions

qt = q0 + eE0
meω2

[cos(ωt) − 1], (6.153)

pt = −eE0
ω

sin(ωt), (6.154)
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which are special cases of (3.26) and (3.27).
The classical kinetic energy1 is

Tk = p2t
2me

= e2E2
0

2meω2
sin2(ωt) = 2Up sin

2(ωt), (6.155)

with the ponderomotive energy from (3.28). Averaging over one period of the
external field yields

1

T

∫ T

0
dt

p2t
2me

= e2E2
0

2meω2T

∫ T

0
dt sin2(ωt) = Up . (6.156)

The derivative of the kinetic energy is

d

dt

p2t
2me

= pt ṗt
me

= pt F

me
, (6.157)

with the force F (the RHS of (6.152)). The average over one period of this
quantity vanishes (due to symmetry reasons), as can be seen by inserting (6.154)
and (6.152). This is another confirmation of the fact that the kinetic energy
oscillates between 0 and 2Up (see Fig. 6.6).

(b) Because V ′′ = 0, we can use (6.46), leading to

αt = α0/(1 + 2i�α0t/me) (6.158)

for the inverse width parameter.
(c) The classical action is

∫ t

0
dt ′L =

∫ t

0
dt ′(T − V )

Taylor=
∫ t

0
dt ′
[

p2t ′
2me

− V ′qt ′
]

=
∫ t

0
dt ′
[

p2t ′
2me

+ ṗt ′qt ′
]

= −
∫ t

0
dt ′

p2t ′
2me

+ pt ′qt ′ |t0 . (6.159)

In the last step, integration by parts has been used. Using the initial conditions,
the phase therefore is given by

δt = −
∫ t

0
dt ′

p2t ′
2me

+ ptqt + i�

2
ln{1 + 2i�

me
α0t}. (6.160)

Inserting everything in the GWD expression (2.48)

1Note that the quantum expectation value 〈Ψ (t)| p̂2

2me
|Ψ (t)〉 has an additional contribution to the

kinetic energy, due to the time-dependent width factor, which is unaffected by the external field.
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Fig. 6.6 Classical kinetic
energy in units of the
ponderomotive energy as a
function of time
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Ψ (x, t) =
(
2α0

π

)1/4

exp

{
−αt (x − qt )

2 + i

�
pt (x − qt ) + i

�
δt

}
(6.161)

and using (6.155) together with the integral

∫
dx sin2(ax) = 1

2
x − 1

4a
sin(2ax), (6.162)

after replacing 2α0 by γ , leads to

Ψ (x, t) =
(γ

π

)1/4√ 1

1 + iγ �t/me
exp

{
i

�

[
Up

2ω
sin(2ωt) −Upt + xp(t)

]}

exp

{
− γ

2(1 + iγ �t/me)
[x − q(t)]2

}
, (6.163)

given in (3.25). This is an exact solution of the time-dependent Schrödinger
equation due to the fact that the potential is linear!

3.7. In the first part of the exercise, the RWA is motivated by an averaging proce-
dure. In the second part, the constants in the solution of the simplified equations are
determined from the initial conditions.

(a) Integrating the differential equations (3.62) and (3.63)

iḋ1 = d2
μ12 · E0

2�
{exp[i(ω − ω21)t] + exp[−i(ω + ω21)t]} , (6.164)

iḋ2 = d1
μ21 · E0

2�
{exp[−i(ω − ω21)t] + exp[i(ω + ω21)t]} (6.165)

over a time �t that fulfills
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1/Δd � �t � 1/(ω + ω21), (6.166)

with Δd = ω − ω21 and assuming that the coefficients d1 and d2 can be taken
out of the integral (because they oscillate slowly, see next exercise), the second
exponential term averages to zero. This argument does not hold for the first
exponential term, which therefore survives, leading to

i

�t

∫ �t

0
dt ḋ1 = d2

μ12 · E0

2�
exp[iΔdt] 1

�t

∫ �t

0
dt, (6.167)

i

�t

∫ �t

0
dt ḋ2 = d1

μ21 · E0

2�
exp[−iΔdt] 1

�t

∫ �t

0
dt, (6.168)

where we also took out the slowly oscillating exponent from the integration. The
left hand sides can be evaluated as a finite difference, which in turn is written as
a differentiation, leading to (3.65) and (3.66), i.e., (6.164) and (6.164) without
the counter-rotating terms.

(b) For the given initial conditions, the constants in (3.67) and (3.68) are D = −C =
μE0/(2�ΩR) yielding

d1(t) = exp[iΔdt/2]
[
cos(ΩRt/2) − i

Δd

ΩR
sin(ΩRt/2)

]
, (6.169)

d2(t) = −i exp[−iΔdt/2] μE0
�ΩR

sin(ΩRt/2) (6.170)

and thus

|d2(t)|2 =
(

μE0
�ΩR

)2

sin2(ΩRt/2), (6.171)

having the same analytical form as in the constant perturbation case, (3.53), and
leading to the same behavior as in Fig. 3.2, just with a slightly different definition
of the Rabi frequency (a factor of two is missing).

3.8. A dipole selection rule is established and the conditions for applicability of the
RWA are checked for a specific example.

(a) The parity operator P̂ replaces x by −x and is a unitary and Hermitian operator
[13] and therefore has real eigenvalues λ. Due to P̂2 = 1̂, for the square of the
eigenvalues we get λ2 = 1with the solutions λ = ±1. For a symmetric potential,
V (x) = V (−x), the Hamiltonian and the parity operator commute and the two
operators have a common system of eigenfunctions, i.e., the eigenfunctions ψn

of the Hamiltonian are either symmetric or antisymmetric. As the lowest eigen-
function is node-less and indexed by n = 0, the even states have even parity and
the odd states have odd parity.
For a symmetric potential, a diagonal element of the dipole operator is given by
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Table 6.1 (Resonant) Rabi frequencies for different values of the electric field

E0(V/m) 1 106 1010

ΩR(1/s) 0.21×106 0.21×1012 0.21×1016

μnn = e
∫

dx |ψn|2x (6.172)

and, due to the antisymmetric nature of the integrand, is always zero. In general,
in order for the dipole matrix element not to vanish, for a symmetric potential,
the participating eigenfunctions have to have different parity.

(b) The eigenfunctions of the harmonic oscillator are given in (2.157) and the sought
for matrix element is (using (1.31))

μ01 = 〈ψ0|ex̂ |ψ1〉 = eσ
√
2/π

∫
dxx2 exp{−σ 2x2} = e

√
�

2meω
, (6.173)

leading to a Rabi frequency of

ΩR = μ01E0/� = E0
√

e2

2�meω
. (6.174)

Restricting the discussion to the two lowest levels is an artificial oversimplifica-
tion because in the harmonic oscillator all level separations are equal (see also
Exercise 5.14 on the control of the harmonic oscillator in Chap. 5).
For the different field strengths, different values of ΩR are gathered in Table6.1,
whereω = π1015s−1 has been used. In the last columnΩR ≈ ω and the assump-
tion that one can take out d1,2 of the integral in (6.167) and (6.168), which was
necessary for the derivation of the RWA, is not fulfilled.

3.9. We study the analytic solution of the Rosen-Zener model, which is defined by

ε = Δ/2, ν(t) = ν0sech(t/Tp) (6.175)

for the diagonal and off-diagonal elements of the two by two Hamiltonian (3.45).

(a) The coefficients fulfill

iċ1 = εc1 + νc2, (6.176)

iċ2 = νc1 − εc2, (6.177)

which after taking the time derivative of the second equation and elimination of
ċ1, using the first equation and elimination of c1, using the second, leads to
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ic̈2 = −ε̇c2 − εċ2 + ν̇c1 + νċ1

= −ε̇c2 − ε
(ν

i
c1 − ε

i
c2
)

+ ν̇c1 + ν
(ε

i
c1 + ν

i
c2
)

= [−ε̇ − i(ε2 + ν2)
]
c2 + ν̇c1

=
[
−ε̇ − i

(
ε2 + ν2 + ε

ν̇

ν

)]
c2 + i

ν̇

ν
ċ2. (6.178)

After multiplication with −i, we get

c̈2 − ν̇

ν
ċ2 +

(
ε2 + ν2 − iε̇ + iε

ν̇

ν

)
c2 = 0. (6.179)

(b) With the transformation from t to z, we find

ċ2 = dc2
dz

dz

dt
c̈2 = d2c2

dz2

(
dz

dt

)2

+ dc2
dz

d2z

dt2
, (6.180)

with

dz

dt
= 2z(1 − z)

Tp
, (6.181)

d2z

dt2
= − 1

T 2
p

(2z − 1)4z(1 − z), (6.182)

and in addition

ν̇

ν
= − 1

Tp
(2z − 1). (6.183)

Finally the equation for c2(z) is

2z(1 − z)
d2c2
dz2

− (2z − 1)
dc2
dz

+ (εTp)2 + (ν0Tp)24z(1 − z) − iε̇T 2
p − iεTp(2z − 1)

2z(1 − z)
c2 = 0. (6.184)

(c) For ε = 0, the equation above is a hypergeometric differential equation (see
9.151 in [14]). Its solution is

c2(z) = AF(a, b; c; z) + Bz1−cF(a − c + 1, b − c + 1; 2 − c; z), (6.185)

with a = −b = Tpν0 and c = 1/2. The initial conditions for t = −∞, i.e. z = 0
are:

(i) c2(z = 0) = 0,
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(ii) c1(z = 0) = 1.

Because F(. . . , . . . , . . . , 0) = 1, we get from (i) A = 0 and from (ii) using
(6.177) and (6.181), we get B = 2ν0Tp

i . The solution at t = ∞, i.e., z = 1 then
is

c2(z = 1) = 2ν0Tp
i

F(a + 1/2, b + 1/2; 3/2; 1)

= 2ν0Tp
i

Γ (3/2)Γ (3/2)

Γ (1 − a)Γ (1 − b)
. (6.186)

Taking the absolute square, due to π/ sin(x) = Γ (1 − x)Γ (1 + x)/x , leads to
the resonance limit

|c2(∞)|2 = sin2(πν0Tp) (6.187)

of the solution (3.77).

6.4 Solutions to Problems in Chap. 4

4.1. As a first application of the Rayleigh-Ritz variational principle, formulated at
the end of Sect. 2.1.1, we use the given trial function with the variational parameter
α. The expectation value of the energy is then given by (atomic units used)

Evar ≡ 〈ψvar|Ĥ |ψvar〉
= 〈ψvar| p̂

2

2
− 1

r
|ψvar〉

=
(
2α

π

)3/2 ∫ ∞

0
dr
∫ π

0
dϑ
∫ 2π

0
dϕ

r2 sin ϑ exp(−2αr2)

(
3α − 2α2r2 − 1

r

)
. (6.188)

The angular integration yields a factor of 4π and by using the integrals [14]

∫ ∞

0
dx x2ne−px2 = (2n − 1)!!

2(2p)n
√

π p, (6.189)
∫ ∞

0
dx x2n+1e−px2 = n!

2pn+1
, (6.190)

we arrive at

Evar(α) = 2

[
3α

4
−
(
2α

π

)1/2
]

. (6.191)
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Setting the derivative of this result with respect to α equal to zero, we get
αex = 8/(9π), which leads to the upper bound

Evar(αex) = − 4

3π
≈ −0.4244 (6.192)

for the ground state energy of hydrogen (whose exact value is −0.5).

4.2. The tunneling length r f is determined by setting the laser induced potential at
the exit point equal to the ground state energy Eg, i.e.,

− r f E0 = Eg ⇒ r f = − Eg

E0 . (6.193)

The Gamov factor reads

Γ ∼ exp

{
−23/2

∫ r f

0
dr
√
V (r) − Eg

}
. (6.194)

The integral in the exponent yields

∫ r f

0
dr
√−rE0 − Eg = −2

3

(−rE0 − Eg)
3/2

E0

∣∣∣∣
r f

0

= 2

3

(−Eg)
3/2

E0 , (6.195)

leading to

Γ ∼ exp

{
−2

3

(−2Eg)
3/2

E0

}
, (6.196)

which in the case of hydrogen (Eg = −1/2) gives the same exponential factor as in
(4.30).

4.3. We define

I1(t) =
∫ t

−∞
dt ′〈Φ f (t

′)|VC|Ψ +
i (t ′)〉 (6.197)

for the integral appearing in the post form of the transition probability amplitude.
Applying a time derivative leads to (parameter integral!)

İ1 = 〈Φ f (t)|VC|Ψ +
i (t)〉. (6.198)

Now we apply the time-derivative to

f (t) = 〈Φ f (t)|Ψ +
i (t)〉. (6.199)
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Multiplying by i and using the product rule together with the appropriate TDSE, this
leads to

i∂t 〈Φ f (t)|Ψ +
i (t)〉 = i

[〈Φ̇ f (t)|Ψ +
i (t)〉 + 〈Φ f (t)|Ψ̇ +

i (t)〉]
= 〈Φ f (t)|(−Ĥ f )|Ψ +

i (t)〉 + 〈Φ f (t)|Ĥ |Ψ +
i (t)〉

= 〈Φ f (t)|VC|Ψ +
i (t)〉, (6.200)

showing that, up to a factor of i, the two time derivatives are identical.
A similar calculation can be performed for the prior form of the amplitude.

The equivalence of the time-derivatives together with the same initial conditions
then proves the identity of the integrated form and the integration-less form of the
amplitudes.

4.4. In first orderMagnus approximation, the solution of the TDSE for the hydrogen
atom under a single half cycle pulse is given by

|Ψ (t)〉 = exp

[
−i

(∫ t

0
dt ′E(t ′)

)
· r̂
]
exp[−iĤ0t]|Ψ (0)〉

= exp
[−iq · r̂] exp[−iĤ0t]|Ψ (0)〉. (6.201)

We will determine the probability of excitation of the 2s and the 2p states, starting
from the ground state (see Sect. 4.1 for the eigenstates of the 3D Coulomb problem)

〈r|Ψ (0)〉 = ψ100(r) = 1√
π
e−r (6.202)

of the hydrogen atom.
First the transition amplitude 〈ψ210|Ψ (t)〉 to the 2p0-state (see Sect. 4.1.1)

ψ210(r) = 1√
32π

re−r/2 cosϑ (6.203)

will be looked for.2 With the wavefunction from (6.201), and using spherical coor-
dinates with the z-axis along the laser polarization, we find

〈ψ210|Ψ (t)〉 = 〈ψ210| exp
[−iq · r̂] exp[−iĤ0t]|ψ100〉

= e−iE0t 〈ψ210| exp [−iqr cos(ϑ)] |ψ100〉
=
√

1

32π2
e−iE0t

∫
d3r r e−3r/2 cosϑ e−iqr cosϑ

= 1√
8
e−iE0t

∫ ∞

0
dr r3 e−3r/2

∫ 1

−1
dζ ζe−iqrζ , (6.204)

2The transition amplitudes to the 2p±1 states are zero (why?).
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where we have used the substitution ζ = cosϑ . Now [14]

∫
dx xeax = eax (x/a − 1/a2) (6.205)

and thus

〈ψ210|Ψ (t)〉 = i√
2
e−iE0t

∫ ∞

0
dr

[
r2

q
cos(qr) − r

q2
sin(qr)

]
e−3r/2. (6.206)

We again consult [14], this time for the definite integrals

∫ ∞

0
dx xne−βx cos(bx) = (−1)n

∂n

∂βn

(
β

b2 + β2

)
, (6.207)

∫ ∞

0
dx xne−βx sin(bx) = (−1)n

∂n

∂βn

(
b

b2 + β2

)
, (6.208)

leading to

〈ψ210|Ψ (t)〉 = −i 3
√
8e−iE0t

q[
q2 + (3/2)2

]3 (6.209)

for the amplitude. The corresponding probability is

|〈ψ210|Ψ (t)〉|2 = 72 q2

[
q2 + (3/2)2

]6 . (6.210)

An analogous calculation for the probability to excite the 2s state

ψ200(r) = 1√
4π

1

23/2
(2 − r)e−r/2 (6.211)

gives

|〈ψ200|Ψ (t)〉|2 = 32 q4

[
q2 + (3/2)2

]6 , (6.212)

which is much smaller than (6.210) for q � 1.

4.5. This exercise follows closely the work in [15], where additional information
can be found.

(a) Analogous to the interaction picture in Sect. 2.2.5, we find in second order Mag-
nus expansion in the Schrödinger picture (in atomic units)
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Û (2)(Tp, 0) = exp

{
−i
∫ Tp

0
dt ′ Ĥ(t ′) + 1

2

∫ Tp

0
dt ′′
∫ t ′′

0
dt ′[Ĥ(t ′), Ĥ(t ′′)]

}

(6.213)

for the time-evolution operator. The Hamiltonian in velocity gauge is

Ĥv(t) = [ p̂ + A(t)]2
2

+ V (r) = Ĥ0 + p̂ · A(t) + 1

2
A2(t) (6.214)

and thus

[Ĥv(t
′), Ĥv(t

′′)] = [Ĥ0, p̂ · A(t ′′)] + [ p̂ · A(t ′), Ĥ0]
= [V, p̂ · A(t ′′)] + [ p̂ · A(t ′), V ]
= i∇V · A(t ′′) − i∇V · A(t ′). (6.215)

For an integral over a triangular region, we find

∫ Tp

0
dt ′′
∫ t ′′

0
dt ′ . . . =

∫ Tp

0
dt ′′
∫ Tp

0
dt ′ · · · −

∫ Tp

0
dt ′′
∫ Tp

t ′′
dt ′ . . .

=
∫ Tp

0
dt ′′
∫ Tp

0
dt ′ · · · −

∫ Tp

0
dt ′
∫ t ′

0
dt ′′ . . . (6.216)

and with the definitions

α(Tp) =
∫ Tp

0
dt ′A(t ′), (6.217)

ᾱ(Tp) = 1

Tp

∫ Tp

0
dt ′′
∫ t ′′

0
dt ′A(t ′), (6.218)

Φ(Tp) = 1

2

∫ Tp

0
dt ′A2(t ′), (6.219)

where the first one is (3.22) in atomic units, we can write

Û (2)
v (Tp, 0) = exp

{
−iĤ0Tp − i p̂ · α − iΦ

+i∇VTp · (α/2 − ᾱ)
}
. (6.220)

α and ᾱ are of second order and Φ is of third order in the pulse length Tp [15].
The final result is correct up to third order in Tp. We now use the Zassenhaus
formula

ex̂+ŷ = ex̂e ŷe−1/2[x̂,ŷ] . . . (6.221)
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to disentangle the exponents and get in the velocity gauge

Û (2)
v (Tp, 0) = exp {−iΦ} exp {−i p̂ · α

}
exp

{−i∇VTp · ᾱ
}
exp

{
−iĤ0Tp

}
, (6.222)

again up to third order in Tp (the α/2 term cancels due to the commutator
[Ĥ0, p̂ · α]).

(b) In first order Magnus approximation

Û (1)(Tp, 0) = exp

{
−i
∫ Tp

0
dt ′ Ĥ(t ′)

}
(6.223)

and with the Kramers-Henneberger frame Hamiltonian

Ĥa = p̂2

2
+ V [r + α(t)] (6.224)

after expansion of the potential up to second order in Tp

V [r + α(t)] = V (r(t)) + ∇V · α + O(T 3
p ), (6.225)

we get

Û (1)
a (Tp, 0) = exp

{
−iĤ0Tp − i∇VTp · ᾱ

}
(6.226)

up to third order in Tp. Using the Zassenhaus formula, we get

Û (1)
a (Tp, 0) = exp

{−i∇VTp · ᾱ
}
exp

{
−iĤ0Tp

}
, (6.227)

again up to third order in the pulse length.
(c) The difference between the velocity gauge and Kramers-Henneberger frame

evolution operators is compensated by the two unitary transformations in (3.18)

Û1 = exp{iΦ}, (6.228)

Û2 = exp{i p̂ · α}, (6.229)

such that

|Ψ (1)
a (Tp)〉 = Û2Û1|Ψ (2)

v (Tp)〉 = Û2Û1Û
(2)
v |Ψ (0)〉 = Û (1)

a |Ψ (0)〉 (6.230)

to the same (3rd) order in the pulse length.
For the excitation probability from the (hydrogen) ground state, a similar
reasoning leads to
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P(Tp) = |〈Ψv(Tp)|Û (2)
v (Tp)|ψ100〉|2

= |〈Ψv(Tp)| exp {−iΦ} exp {−i p̂ · α
}

exp
{−i∇VTp · ᾱ

}
exp

{
−iĤ0Tp

}
|ψ100〉|2

= |〈Ψa(Tp)| exp
{−i∇VTp · ᾱ

}
exp

{
−iĤ0Tp

}
|ψ100〉|2

= |〈Ψa(Tp)|Û (1)
a (Tp)|ψ100〉|2. (6.231)

The Kramers-Henneberger frame is the natural frame to describe the driven
system in the Magnus approximation [15].

4.6. The dipole matrix element

d(t) = 〈ψn(t)|x̂ |ψn(t)〉 (6.232)

is a periodic function of time (due to the periodic nature of the Floquet functions).
Its Fourier components can be written as

dm = 1

T

∫ T

0
dt eimωt d(t)

= 1

T

[∫ T/2

0
dt eimωt d(t) +

∫ T/2

0
dt eimω(t+T/2)d(t + T/2)

]

= 1

T

∫ T/2

0
dt eimωt [d(t) ± d(t + T/2)] , (6.233)

where the plus sign holds for even m and the minus sign holds for odd values of
m. Now due to invariance under the generalized parity transformation, discussed in
Appendix 3.A,

d(t + T/2) = 〈ψn(t + T/2)|x̂ |ψn(t + T/2)〉
=

∫
dx ψ∗

n (x, t + T/2)xψn(x, t + T/2)

=
∫ ∞

−∞
dx ψ∗

n (−x, t)xψn(−x, t)

x̃=−x=
∫ −∞

∞
dx̃ ψ∗

n (x̃, t)x̃ψn(x̃, t)

= −
∫ ∞

−∞
dx ψ∗

n (x, t)xψn(x, t)

= −d(t) (6.234)

holds. Inserting this result into (6.233) reveals that for evenm the Fourier components
dovanishwhile for oddm in general they donot. Performing a second time-derivative,
this statement can be taken over to the dipole acceleration.
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6.5 Solutions to Problems in Chap. 5

5.1. The overlap integral is given by

S(R) = 1

π

∫
dV e−(ra+rb)

= 1

π

∫
dV e−μR, (6.235)

which, with the volume element dV = 1
8 R

3(μ2 − ν2)dμdνdϕ and due to the inde-
pendence on the angular variable ϕ gives

S(R) = R3

4

∫ 1

−1
dν
∫ ∞

1
dμ(μ2 − ν2)e−μR

= R3

4

(∫ 1

−1
dν
∫ ∞

1
dμμ2e−μR −

∫ 1

−1
dν ν2

∫ ∞

1
dμ e−μR

)
. (6.236)

We now use the general formula (2-11) in [16]

∫
dxxne−ax = −n!e−ax

an+1

[
1 + ax + 1

2! (ax)
2 + · · · + 1

n! (ax)
n

]
, (6.237)

leading to the final result (5.8)

S(R) = e−R(1 + R + R2/3), (6.238)

repeated here for convenience.
The Coulomb integral is given by

C(R) = − 1

π

∫
dV e−2ra1/rb

= − 1

π

∫
dV e−(μ+ν)R 2/[R(μ − ν)]. (6.239)

Again inserting the volume element, using u2 − v2 = (u + v)(u − v) to cancel (u −
v) in the denominator, and integrating over ϕ leads to
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C(R) = − R2

2

∫ 1

−1
dν
∫ ∞

1
dμ(μ + ν)e−(μ+ν)R

= − R2

2

(∫ 1

−1
dν e−νR

∫ ∞

1
dμμe−μR

+
∫ 1

−1
dν νe−νR

∫ ∞

1
dμ e−μR

)
. (6.240)

Using the general formula (6.237) (for both, the integral over μ, as well as that over
ν) and gathering terms leads to

C(R) = − [1 − (1 + R)e−2R
]
/R. (6.241)

This result could have also been gained more easily by using spherical polar coordi-
nates [16].

The exchange integral is finally given by

D(R) = − 1

π

∫
dV e−(ra+rb)1/ra

= − 1

π

∫
dV e−μR2/[R(μ + ν)]

= − R2

2

∫ 1

−1
dν
∫ ∞

1
dμ (μ − ν)e−μR

= − R2

2

(∫ 1

−1
dν
∫ ∞

1
dμμe−μR −

∫ 1

−1
dν ν

∫ ∞

1
dμ e−μR

)

= −(1 + R)e−R . (6.242)

Here the second integral in the next to last line vanishes due to symmetry reasons
and we have again used u2 − v2 = (u + v)(u − v) as well as (6.237).

5.2. To improve the LCAO energy, we use the variational principle of Rayleigh and
Ritz (see Sect. 2.1.1). First, we take the expectation value of the Hamiltonian on the
LHS of (5.3) with the variational wavefunction. From

�e−αra =
(

∂2

∂r2a
+ 2

ra

∂

∂ra

)
e−αra =

(
α2 − 2α

ra

)
e−αra (6.243)

and using integrations analogous to the ones in the previous exercise (some of which
can be more easily done in spherical coordinates [16]), one finds for the expectation
value of the kinetic energy

∫
dVψe

(
−1

2
�

)
ψe = α2F1(αR), (6.244)
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Fig. 6.7 The variational
parameter α as a function of
the internuclear distance R
interpolates between the
helium (R = 0) and the
hydrogen (R = ∞) limit

0 2.5 5
R(a.u.)

1

1.5

2

α

and for the expectation value of the potential energy

∫
dVψe

(
− 1

ra
− 1

rb

)
ψe = αF2(αR), (6.245)

with

F1(w) = 1 + e−w(1 + w − w2/3)

2 + 2e−w(1 + w + w2/3)
, (6.246)

F2(w) = −1 + 2e−w(1 + w) − 1/w − (1/w + 1)e−2w

1 + e−w(1 + w + w2/3)
, (6.247)

wherew = αR. Minimizing the total energy expression with respect to α at constant
R leads to

0 = 2αF1 + α2R
dF1

dw
+ F2 + αR

dF2

dw

= α

(
2F1 + w

dF1

dw

)
+
(
F2 + w

dF2

dw

)
, (6.248)

which can be resolved for α, yielding

α = − F2 + w dF2
dw

2F1 + w dF1
dw

. (6.249)

Calculating α as a function of w and then using R = w/α, the variational parameter
can be plotted a function of R, see Fig. 6.7 and [16].

5.3. We have to apply the radial part of the kinetic energy (5.24) to the function vn
of (5.26). Looking at the series expansion for the Bessel function (5.27) of zeroth
order (using Γ ( j + 1) = j !)
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J0(x) =
∞∑
j=0

(−1) j

j ! j !
( x
2

)2 j
, (6.250)

we have to calculate the following derivatives (for j ≥ 1)

∂

∂ρ

( xn
2L

ρ
)2 j = j

xn
L

( xn
2L

ρ
)2 j−1

, (6.251)

∂2

∂ρ2

( xn
2L

ρ
)2 j = j

2 j − 1

2

( xn
L

)2 ( xn
2L

ρ
)2 j−2

, (6.252)

leading to

T̂ρ

( xn
2L

ρ
)2 j =

(
−1

2

∂2

∂ρ2
− 1

2ρ

∂

∂ρ

)( xn
2L

ρ
)2 j

= −1

2
j2
( xn
L

)2 ( xn
2L

ρ
)2 j−2

. (6.253)

In J0, the factor j ! appears twice in the denominator and cancellation of the j2 term
from (6.253) leads to the double appearance of ( j − 1)! in the denominator, if T̂ρ is
applied to the function

vn(ρ) =
√
2

L J1(xn)
J0(xnρ/L). (6.254)

T̂ρ thus reproduces the full series representation of the Bessel function (6.250),
starting from j = 0, and (5.29) holds.

5.4. Using the LCAO solution from (5.14) and (5.15) for large R, we find with the
normalized 1s functions |ψa,b〉 = |1sa,b〉

|1σg〉 ≈ 1√
2
(|1sa〉 + |1sb〉) |1σu〉 ≈ 1√

2
(|1sa〉 − |1sb〉) , (6.255)

due to the fact that the overlap integral S ≈ 0, see (5.8).
The dipole matrix element then is

〈1σg|z|1σu〉 = 〈1σg|z + R/2 − R/2|1σu〉
≈ 1

2
〈(1sa + 1sb)|z + R/2 − R/2|(1sa − 1sb)〉, (6.256)

where we have inserted a “nutritious zero” to make use of the fact that 1sa is localized
around z = −R/2 and 1sb around z = R/2. In this way, we find
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〈1σg|z|1σu〉 ≈ 1

2
〈1sa|z + R/2|1sa〉

−1

2
〈1sb|z − R/2|1sb〉

+1

2
〈1sa| − R/2|1sa〉

−1

2
〈1sb|R/2|1sb〉

= 1

2
(−R/2 − R/2) = −1

2
R . (6.257)

Here, we have again neglected the overlap, and the first two terms are zero due to
symmetry. Furthermore, in the last two terms, we have used the normalization of the
1s functions at the same location.

5.5. The full molecular problem satisfies the TISE

Ĥmolψ(x, X) = [T̂e + T̂N + V (x, X)]Eψ(x, X), (6.258)

whereas for the factorized BO solution

ψBO(x, X) = φ(x, X)χ(X), (6.259)

the equations

[
T̂e + V (x, X)

]
φ = E(X)φ, (6.260)[

T̂N + E(X)
]
χ = εχ (6.261)

do hold.
The exact energy is

E〈ψ |ψ〉x,X = 〈ψ |Ĥ |ψ〉x,X , (6.262)

where the subscripts indicate the integration over both sets of variables and summa-
tion over spin in the scalar product. Now for fixed X , the exact wavefunction is only
an approximate one for the Hamiltonian without the nuclear kinetic energy, and we
get

〈ψ |T̂e + V (x, X)|ψ〉x ≥ E(X)〈ψ |ψ〉x, (6.263)

due to the Rayleigh-Ritz variational principle for the electronic Schrödinger equation
(6.260). Adding the nuclear kinetic energy and using (6.262), we get after integration
over the nuclear variables
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E〈ψ |ψ〉x,X ≥ 〈ψ |T̂N + E(X)|ψ〉x,X . (6.264)

For fixed electronic coordinates, by analogous reasoning, we find

〈ψ |T̂N + E(X)|ψ〉X ≥ ε〈ψ |ψ〉X (6.265)

and after integration over those electronic coordinates and comparing with the equa-
tion above, we find

E ≥ ε. (6.266)

This proof has been given by Epstein [17], commenting on previous work by Brattsev
[18].

5.6. The Hellman-Feynman theorem and the derivative coupling term are studied
in this exercise.

(a) For the derivative of the energy eigenvalue, we find with the product rule

dEν(R)

dR
=
〈
dφν(R)

dR

∣∣∣∣Ĥe(R)

∣∣∣∣φν(R)

〉
+
〈
φν(R)

∣∣∣∣Ĥe(R)

∣∣∣∣dφν(R)

dR

〉

+
〈
φν(R)

∣∣∣∣dĤe(R)

dR

∣∣∣∣φν(R)

〉
. (6.267)

Using the electronic eigenvalue equation twice and the product rule in reverse
order yields

dEν(R)

dR
= Eν(R)

〈
dφν(R)

dR

∣∣∣∣φν(R)

〉
+ Eν(R)

〈
φν(R)

∣∣∣∣dφν(R)

dR

〉

+
〈
φν(R)

∣∣∣∣dĤe(R)

dR

∣∣∣∣φν(R)

〉

= Eν(R)
d

dR
〈φν(R)|φν(R)〉 +

〈
φν(R)

∣∣∣∣dĤe(R)

dR

∣∣∣∣φν(R)

〉

=
〈
φν(R)

∣∣∣∣dĤe(R)

dR

∣∣∣∣φν(R)

〉
, (6.268)

where the normalization condition

〈φν(R)|φν(R)〉 = 1 (6.269)

has been used in the last step.
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(b) Now we use that

〈φμ(R)|Ĥe(R)|φν(R)〉 = 0 if μ = ν (6.270)

and take the derivative to get

0 =
〈
φμ(R)

∣∣∣∣∣
dĤe(R)

dR

∣∣∣∣∣φν(R)

〉

+
〈
dφμ(R)

dR

∣∣∣∣Ĥe(R)

∣∣∣∣φν(R)

〉
+
〈
φμ(R)

∣∣∣∣Ĥe(R)

∣∣∣∣dφν(R)

dR

〉

=
〈
φμ(R)

∣∣∣∣∣
dĤe(R)

dR

∣∣∣∣∣φν(R)

〉

+ Eν

〈
dφμ(R)

dR

∣∣∣∣φν(R)

〉
+ Eμ

〈
φμ(R)

∣∣∣∣dφν(R)

dR

〉
. (6.271)

This can be expressed with the help of the derivative coupling matrix element
from (5.57), yielding

0 =
〈
φμ(R)

∣∣∣∣∣
dĤe(R)

dR

∣∣∣∣∣φν(R)

〉
+ Mr

�2
(Eν − Eμ)Qμν, (6.272)

where we have used anti-hermiticity, Qμν = −Q∗
νμ, and have chosen the elec-

tronic eigenfunctions to be real-valued. Finally, we get

Qμν = �
2

Mr

〈
φμ(R)

∣∣∣ dĤe(R)

dR

∣∣∣φν(R)
〉

Eν − Eμ

, (6.273)

increasing if Eμ and Eν approach each other. We note that for an exact crossing
(conical intersection) of two adiabatic surfaces, at least two parameters have to
be varied.

5.7. In the case of three atoms on a line, we can define one center of mass and two
relative (one dimensional) coordinates according to

XS = M1X1 + M2X2 + M3X3

MS
, (6.274)

XR1 = X2 − X1, (6.275)

XR2 = X3 − X2, (6.276)

with the total mass MS = M1 + M2 + M3. The inverse transformation is
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X1 = XS − M2 + M3

MS
XR1 − M3

MS
XR2 , (6.277)

X2 = XS + M1

MS
XR1 − M3

MS
XR2 , (6.278)

X3 = XS + M1

MS
XR1 + M1 + M2

MS
XR2 . (6.279)

The (classical) kinetic energy of the nuclei therefore can be written as

TN = M1

2
Ẋ2
1 + M2

2
Ẋ2
2 + M3

2
Ẋ2
3,

= MS

2
Ẋ2

S + P2
R1

2MR1

− PR1 PR2

M2
+ P2

R2

2MR2

, (6.280)

with the canonically conjugate relative momenta

PR1 = ∂L

∂ Ẋ R1

= M1(M2 + M3)

MS
ẊR1 + M1M2

MS
ẊR2 , (6.281)

PR2 = ∂L

∂ Ẋ R2

= M1M3

MS
ẊR1 + (M1 + M2)M3

MS
ẊR2 , (6.282)

and the corresponding reduced masses

MR1 = M1M2

M1 + M2
, (6.283)

MR2 = M2M3

M2 + M3
. (6.284)

5.8. From (5.14) and (5.15), we find with the normalized 1s functions |ψa,b〉 =
|1sa,b〉

|1σg〉 ≈ 1√
2(1 + S(R))

(|1sa〉 + |1sb〉) . (6.285)

The dipole matrix element in the electronic ground state is

μgg = 〈1σg|Ra + Rb − r|1σg〉
= 1

2(1 + S(R))
〈(1sa + 1sb)|Ra + Rb − r|(1sa + 1sb)〉. (6.286)

The two terms with the nuclear coordinates, due to the homonuclear nature of H+
2 ,

are proportional to the center of mass of the two nuclei and can be neglected, because
we are interested only in the coupling of a laser field to the relative motion.
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The remaining term is

μgg = 1

2(1 + S(R))
〈(1sa + 1sb)| − r|(1sa + 1sb)〉

= 0, (6.287)

where the last step follows from the fact that the electronic ground state is of even
parity.

5.9. We wish to calculate the exponentiated matrix

exp{−i�tV} = exp

{
−i�t

(
V11 V12

V12 V22

)}
. (6.288)

This task shall be performed by diagonalization, using

exp{−i�tV} = S−1 exp{−i�tSVS−1}S, (6.289)

with the orthogonal matrix S−1 = ST.
The eigenvalues of the potential matrix are

χ1,2 = V11 + V22

2
± φ

�t
, (6.290)

with

φ = �t
√
V 2
12 + λ2, (6.291)

and half the potential energy difference

λ = V11 − V22

2
. (6.292)

The eigenvectors are given by

ξ 1 =
(
cos(Θ)

sin(Θ)

)
ξ 2 =

(− sin(Θ)

cos(Θ)

)
, (6.293)

with

cos(Θ) =
(
V 2
12 +

(
λ − φ

�t

)2
)−1/2

V12, (6.294)

sin(Θ) =
(
V 2
12 +

(
λ − φ

�t

)2
)−1/2 (

λ − φ

�t

)
. (6.295)
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They constitute the orthogonal matrix via

S =
(
cos(Θ) − sin(Θ)

sin(Θ) cos(Θ)

)
. (6.296)

Using the eigenvalues, we find that

exp{−i�tSVS−1} = exp

{
−i�t

(
V11 + V22

2

)}(
e−iφ 0
0 eiφ

)
. (6.297)

Orthogonal transformation of this intermediate result with the matrix S, after some
algebra, leads to

exp{−i�tV} = exp

{
−i�t

(
V11 + V22

2

)}(
A B
B A∗

)
, (6.298)

with the expressions

A = cosφ − i�tλ
sin φ

φ
, (6.299)

B = −i�tV12
sin φ

φ
, (6.300)

given in (5.69).

5.10. The transition dipole μ01 in case of the harmonic oscillator was calculated
already in Exercise 3.8, and we have found (generalizing to arbitrary mass m and
charge q in atomic units)

μ01 = q

√
1

2mω
= q

σ
√
2
, (6.301)

with σ = √
mω.

For the transition dipole from state one to two, we get (using the eigenfunctions
(2.157) and the Gaussian integration formula (1.31))

μ12 = q

√
σ 2

2!22π1!2!
∫

dxH1(σ x)H2(σ x)x exp{−σ 2x2}

= q
σ

4
√

π

∫
dx 2σ x[4(σ x)2 − 2]x exp{−σ 2x2}

= q

4σ
√

π

(
8 · 3√π

4
− 4 · √

π

2

)

= q

σ
. (6.302)
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This leads to the scaling relation μ2
12 = 2μ2

01.

5.11. The discretized solution (5.119) can be written explicitly for n = 1 as

χ1(R,�t) = 1

i
�tÛ1(�t)μ10E(0)Û0(0)χ0(R, 0)

+ 1

i
�tμ10E(�t)Û0(�t)χ0(R, 0), (6.303)

where the first line is zero, due to the vanishing of the electric field. For n = 2 we
find

χ1(R, 2�t) = 1

i
�tÛ1(2�t)μ10E(0)Û0(0)χ0(R, 0)

+ 1

i
�tÛ1(�t)μ10E(�t)Û0(�t)χ0(R, 0)

+ 1

i
�tμ10E(2�t)Û0(2�t)χ0(R, 0)

= Û1(�t)χ1(�t) + 1

i
�tμ10E(2�t)Û0(2�t)χ0(R, 0). (6.304)

Here Û1(2�t) = Û1(�t)Û1(�t) and the result forχ1(R,�t) have been used. Finally
for n = 3

χ1(R, 3�t) = 1

i
�tÛ1(3�t)μ10E(0)Û0(0)χ0(R, 0)

+ 1

i
�tÛ1(2�t)μ10E(�t)Û0(�t)χ0(R, 0)

+ 1

i
�tÛ1(�t)μ10E(2�t)Û0(2�t)χ0(R, 0)

+ 1

i
�tμ10E(3�t)Û0(3�t)χ0(R, 0)

= Û1(�t)χ1(2�t) + 1

i
�tμ10E(3�t)Û0(3�t)χ0(R, 0) (6.305)

is found, where again the previous result has been used and which is a special case
of the given iteration formula.

The proof of the iteration prescription for arbitrary n can be performed with the
help of mathematical induction.

5.12. The characteristic polynomial of the STIRAP matrix is

∣∣∣∣∣∣
−ω − 1

2ΩP 0
− 1

2ΩP −ω − 1
2ΩS

0 − 1
2ΩS −ω

∣∣∣∣∣∣ = ω

(
−ω2 + 1

4
(Ω2

S + Ω2
P)

)
= 0, (6.306)

with the solutions
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ω0,±(t) = 0,±Ω(t)

2
, (6.307)

given in (5.157) and where

Ω(t) =
√

Ω2
S(t) + Ω2

P(t). (6.308)

The eigenvector corresponding to the zero eigenvalue is obtained from the solution
of

⎛
⎝ 0 − 1

2ΩP 0
− 1

2ΩP 0 − 1
2ΩS

0 − 1
2ΩS 0

⎞
⎠
⎛
⎝ f 01

f 02
f 03

⎞
⎠ =

⎛
⎝0
0
0

⎞
⎠ . (6.309)

It follows that f 02 = 0 and the remaining two entries of the eigenvector are obtained
as in the two-level case (compare to the calculations in Sect. 3.2.2) from a (mixing)
angle Θ , via f 01 = cosΘ , f 03 = − sinΘ , leading to

1

2
(ΩP cosΘ − ΩS sinΘ) = 0 (6.310)

and thus

Θ(t) ≡ arctan

(
ΩP(t)

ΩS(t)

)
. (6.311)

Exemplarily, the eigenvector corresponding to the positive eigenvalue is obtained
from the solution of

⎛
⎜⎜⎜⎝

√
Ω2

P + Ω2
S ΩP 0

ΩP

√
Ω2

P + Ω2
S ΩS

0 ΩS

√
Ω2

P + Ω2
S

⎞
⎟⎟⎟⎠
⎛
⎝ f +

1
f +
2
f +
3

⎞
⎠ =

⎛
⎝0
0
0

⎞
⎠ . (6.312)

The second equation can be solved by again using the same mixing angle as above,
via the Ansatz f +

1 = sinΘ , f +
2 = −1, f +

3 = cosΘ , leading to

ΩP sinΘ −
√

Ω2
S + Ω2

P + ΩS cosΘ = 0. (6.313)

A proof of this equation is possible with the relations

arctan(x) = arccos(1/
√
1 + x2) = arcsin(x/

√
1 + x2). (6.314)

In Dirac notation, the normalized eigenvector is thus given by
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|g+〉(t) = 1√
2

(sin[Θ(t)]|1〉 − |2〉 + cos[Θ(t)]|3〉) . (6.315)

It is orthogonal to the eigenvector of the zero eigenvalue.
The eigenvector corresponding to the negative eigenvalue is almost identical to the

one in (6.315), but has a plus sign in front of |2〉, and can be shown to be orthogonal
to the other two eigenvectors.

5.13. The variation of JE given in (5.165) yields

δ JE
δE∗ = λE(t), (6.316)

whereas the E∗-dependent part of JH can be read off from

JH =
∫ Tt

0
dt

[
〈ξ(t)| Ĥ

i
|χ(t)〉 + 〈χ(t)| Ĥ−i

|ξ(t)〉
]

+ . . .

=
∫ Tt

0
dt

E∗

i

[〈ξg|μ|χe〉 − 〈χg|μ|ξe〉
]+ . . . . (6.317)

The variation yields

δ JH
δE∗ =

[
1

i
〈ξg|μ|χe〉 − 〈χg|μ|ξe〉

]
. (6.318)

Setting − δ JE
δE∗ + δ JH

δE∗ = 0 leads to the expression (5.177) for the field.

5.14. To study the controllability of the population of harmonic oscillator eigen-
states, we need the solution of the TDSE in the externally forced case.

(a) The solution of the TDSE of the driven harmonic oscillator

Ĥ = p̂2

2
+ 1

2
x2 − E(t)x (6.319)

can either be gained by using the appropriate propagator [6] or by using the
explicit expression given by Husimi [19]

χm(x, t) = ψm(x − ξ(t))

exp

{
i

[∫ t

0
dτ L + ξ̇ (x − ξ) − Emt

]}
, (6.320)

with ψm(x) being an eigenfunction of the undriven oscillator, see, e. g., (2.157)
and with the Lagrangian

L = 1

2
ξ̇ 2 − 1

2
ξ 2 + E(t)ξ. (6.321)
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This Lagrangian leads to the Newton equation

ξ̈ + ξ − E(t) = 0, (6.322)

which is fulfilled by the special solution

ξ(t) =
∫ t

0
dτE(τ ) sin(t − τ). (6.323)

You may want to check the solution given in (6.320) by inserting it into the
TDSE!

(b) We now specialize to the casem = 0 for the initial state, and calculate the overlap
with the time-independent final state χn(x) = ψn(x) with quantum number n,
using

∫
dx e−(x−y)2Hn(x) = π1/2(2y)n [14]. As a result we get

an0(t) =
∫

dxψ∗
n (x)ψ0(x − ξ(t)) exp

{
i

[∫ t

0
dτ L + ξ̇ (x − ξ) − E0t

]}

= 1√
n!2nπ

∫
dxHn(x) exp

{
− x2

2
− (x − ξ)2

2

+ i

[∫ t

0
dτ L + ξ̇ (x − ξ) − E0t

]}

= 1√
n!
[

1√
2
(ξ + iξ̇ )

]n
exp

{
−
(

ξ 2

4
+ ξ̇ 2

4

)

+ i

(∫ t

0
dτ L − ξ̇ ξ

2
− E0t

)}
. (6.324)

(c) For the probability, we find

|an0(t)|2 = 1

n!
[
1

2
(ξ 2 + ξ̇ 2)

]n
exp

{
−1

2
(ξ 2 + ξ̇ 2)

}
. (6.325)

This result is depending on the “parameter” y = 1
2 (ξ

2 + ξ̇ 2) and in order to
determine the maximum of |an0(t)|2, one has to differentiate

d

dy
yne−y |y0 = nyn−1e−y − yne−y |y0 != 0, (6.326)

leading to y0 = n, implying the condition

[∫ t

0
dτE(τ ) sin(t − τ)

]2
+
[∫ t

0
dτE(τ ) cos(t − τ)

]2
= 2n (6.327)
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310 6 Solutions to Problems

for the field. The maximal probability is then given by

Max
(|an0|2) = nne−n

n! . (6.328)

For n = 1 this leads to around 37%. The simplest field that can achieve the
optimum in this case is the impulsive field E(t) = √

2δ(t), as can be seen by
inserting it into (6.327) [20].
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Index

Symbols
π -pulse, 103, 200, 221, 244
2D IR spectroscopy, 211

A
Abelian group, 52
absorption, 4
acceleration gauge, 93
action angle variables, 107
adiabatic

approximation, 245
dynamics, 51, 191–210
theorem, 252

ADK, see Ammosov, Delone and Krainov
Ammosov, Delone and Krainov, 123, 149
anharmonicity constant, 179, 244
annihilation operator, 55
anti-bunching, 8
area theorem, 103, 104, 137
ATI, see ionization, above threshold
ATI rings, 144, 145
atomic units, 116, 168–169, 187
attosecond, 116, 139, 155

streaking, 167
auto-correlation function, 14, 28, 73, 208,

226, 249
avoided crossing, 189, 230

B
Baker-Campbell-Haussdorff formula, 59,

219, 275
Baker-Hausdorff lemma, 93, 283
BCH, see Baker-Campbell-Haussdorff for-

mula
Bessel function, 183, 229, 298

Bloch sphere, 109
Bohmian mechanics, 41, 75
Bohr

postulate, 5
radius, 114

Boltzmann factor, 4
bond hardening, see molecular stabilization
bond softening, 245
Born approximation, first-order, 129
Born-Huang

approximation, 245
expansion, 193

Born-Oppenheimer approximation, 49, 157,
192–198, 240, 248

boundary value problem, see root search
problem

bra-ket notation, see Dirac notation
Brillouin zone, 53

C
carrier envelope phase, 12–13, 231
cavity, 10
cayley approximation, 65
CCS, see coupled coherent states
center of mass, 182, 187, 197, 247, 303

coordinates, 302
CEP, see carrier envelope phase
CH stretch

Mecke parameters, 240
Morse parameters, 240

Chebyshev polynomial, 65
chirp, 14, 199
closure relation, 27
coherence, 109
coherent states, 68, 266, 268

coupled, see coupled coherent states
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312 Index

commutation relation, 55, 204
completeness relation, 193
Condon approximation, 203, 215
confluent hypergeometric functions, 115
continuity, equation of, 89
continuous wave, 10, 94, 224
continuum threshold, 117
coordinates

cylindrical, 182
prolate spheroidal, 175
relative and center ofmass, 197, 247–248
spherical, 114, 297

correspondence principle, 41, 88
Coulomb

explosion, 191
gauge, 89, 92, 282
integral, 175, 177, 296

Coulomb potential
bare, 1D, 117, 130, 139
bare, 3D, 114–116
electron bi-nuclear, 182
restricted to half space, 117, 139
soft-core, 118, 130, 134, 158, 160

modified, 191
counter-rotating term, 101, 126, 188, 203,

215
coupled coherent states, 75, 152
Crank-Nicolson method, 64–65, 191
creation operator, 55, 68
crossing

allowed, 107
avoided, 107

crossover, 240
cutoff, 154, 156, 158–163
cw, see continuous wave
cw-laser, 51, 147
cycle expansion, 122
cylindrical coordinates, 148, 182

D
dark state, 232
Demkov-Kunike model, 106
derivative coupling, 197, 301
detuning, 101
diabatic basis, 196
dichotomy, 167
differential equation(s)

coupled, 50, 56, 98, 103, 183
for quiver motion, 135
in RWA, 101
ordinary, 95
partial, 20

periodic coefficients, 52
Riccati, 31, 73, 74, 266, 278
second order, 102, 103

DIH, see dominant interaction Hamiltonian
dipole

acceleration, 153, 158, 160, 295
approximation, 90, 97, 282
gradient, 199, 225
matrix element, 97–98, 198, 229, 295,
299, 303

moment, 203, 225
Condon approximation, 203
Mecke form, 199, 240

operator, 98, 198, 286
Dirac notation, 22, 68, 196, 307
direct product, 206
discrete variable representation, 59, 137
dissociation

by pump-dump control, 234
channel, 191
probability, 188

Morse oscillator, 198–201
threshold, 177, 179, 181

dominant interaction Hamiltonian, 164–166
double-well potential, 8, 186

unperturbed, 250
dressed states, 232
drift step, 67
DVR, see discrete variable representation
Dyson series, 25

E
effective force, 50
effective potential, 48, 49
Ehrenfest

method, 50, 273
theorem, 154
time, 31

eigenfunctions, 21, 56, 253
Coulomb potential, 1D, 117
from time-series, 28
harmonic oscillator, 55, 277, 308
hydrogen atom, 114–116
LCAO of H+

2 , 176
of light particle, 50
of radial part of kinetic energy, 183
square well, 32
STIRAP, 232
symmetric double well, 252

eigenstates, two-level system, 98
eigenvalue problem, 57

electronic, 174, 193
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generalized, 176
of extended Hamiltonian, 58

eigenvalues, 21, 50, 56
Coulomb potential, 1D, 117
from time-series, 28
Gauß potential, 124
harmonic oscillator, 29, 264
hydrogen atom, 114–116
LCAO of H+

2 , 176
Morse oscillator, 179
of propagation matrix, 63
square well, 32
STIRAP, 232
symmetric double well, 250
two-level system, 98

Einstein
coefficients, 3–5, 10, 111
derivation of radiation law, 3
peak, 132

emission
induced, 4
spontaneous, 4

energy density, 4, 111
equation of continuity, 20
Euler method, 63

symplectic, 67
Euler-Lagrange equation, 279, 282
exchange integral, 175, 177, 297
expectation value, 44

of position operator, 168
time-evolution, 154

explicit method, 63
extended scalar product, 58

F
factorization, 47
femtosecond laser, 12
femtosecond spectroscopy, 210–223
feynman-Kac formula, 27
FFT, see Fourier transformation, fast
fidelity, 243, 244
field, quasi-static, 122
fields, electromagnetic, 89
fine structure constant, 169
Floquet

matrix, 57–59, 107, 226
theorem, 157
theory, 51–54, 224

fluorescence, 220
Fourier

expansion, 57, 129
integral, 162

transformation, 14, 27–29, 95, 218
fast, 59–62
fastest in the West, 62
of dipole, 154, 157
of dipole acceleration, 154

Fourier-Bessel series, 182, 201
Franck-Condon

approximation, 207
region, transient, 218

free electron laser, 10
free particle, 31, 265
frequency resolved optical gating, 14
full width at half maximum, 11, 222, 250
functional integral, 36
FWHM, see full width at half maximum

G
Gamov factor, 124, 290
gas laser, 10
gauge

acceleration, see Kramers-Henneberger
frame, see acceleration gauge

Coulomb, see Coulomb gauge
length, see length gauge
transformation, 89, 91, 280
velocity, see velocity gauge

Gauss potential, 124
Gaussian envelope, 14
Gaussian integral, 16–17, 38, 77
Gaussian wavepacket, 68–74, 81, 125, 158,

206, 226
dynamics, 29–31, 94, 284

frozen, 73
thawed, 31, 72

genetic algorithm, 240
golden rule, 248
green’s function

energy-dependent, 28
time-dependent, 26

H
H+
2 , 173–181, 231, 244
in a laser field, 181–191
Morse parameters, 181

half-cycle pulse, 92, 136–142
Hamilton equations, 30, 66, 70, 265–266

free electron in laser field, 283
linearized, 70

Hamilton matrix
STIRAP, 231
two-level system, 98

Hamilton operator, 20
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314 Index

Hamilton’s principal function, 36
Hamilton’s principle, 40, 78
Hamilton-Jacobi equation, 41
Hamiltonian

dominant interaction, 164–166
effective, 66
extended, 51, 57
for H+

2 in relative coordinates, 248
harmonic oscillator, 55
Hermitian, 23, 53
interaction picture, 44
light heavy, 49
mapping, 206
minimally coupled, 280
Morse oscillator, 199
periodically time-dependent, 51
soft-core, 119, 134, 150, 164
symmetric double well, 225
total, for molecule, 192
Weyl transformed, 76

harmonic inversion, 28
harmonic oscillator, 31, 68, 266, 287, 308
HCP, see half-cycle pulse
Heisenberg picture, 44
Heitler-London method, 178
helium atom, 118–121, 167

ATI rings, 145
double ionization, 149–152

Hellmann-Feynman theorem, 197
Herman-Kluk

prefactor, 70, 71, 142
propagator, see propagator, Herman-
Kluk

Hermite polynomials, 55
Hessian, 80
HF Morse parameters, 199
HHG, see high-order harmonic generation
high-order harmonic generation, 92, 152–

166, 168
in molecules, 247

Husimi transformation, 14, 107, 155, 235
hydrogen atom, 113–118, 130, 168, 174,

180, 184, 186
ATI, 130–134
ATI rings, 144
ionization by HCP, 136–139
ionization potential, 128
ionization rate, 123

hydrogen molecular ion, see H+
2

hypergeometric function, 208

I
ICN, 220–223

imaginary time
path integral, 39
propagation, 29, 184

implicit method, 64
incoherent field, 110
initial value problem, 43, 65
initial value representation, 65–74
interaction picture, 43–45, 101, 231, 248
interference effect, 43, 159
inversion, 6
ionization

above threshold, 130–134
charge resonance enhanced, 184–186
double, 149–152
field-induced, 122–142
multi-photon, 123–128
over the barrier, 122
potential, 128, 156, 158, 160

hydrogen, 168
probability, 125, 188
rate, 123, 184
threshold, 124, 141, 180
tunneling, 122–124, 128

J
Jacobi identity, 67, 276
Jacobi-Anger formula, 163
Jaynes-Cummings model, 106

K
Keldysh parameter, 122, 128–131, 143, 146
Keldysh-Faisal-Reiss approximation, 129,

134
Kepler period, 139
KFR, see Keldysh-Faisal-Reiss approxima-

tion
Kick step, 67
knee in double ionization of Helium, 149
Kramers-Henneberger frame, 92–93, 96,

134, 168, 294, 295
Krotov method, 236–240

L
Lagrangian, 30, 36, 37, 279, 282

driven harmonic oscillator, 308
for Lorentz force, 88
in length gauge, 91

Laguerre polynomials, 115
Lanczos method, 65
Landau-Zener formula, 105
Laplace operator, 20, 116, 174, 245
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LCAO, see linear combination of atomic
orbitals

variational, 184
Leap frog method, 67
Legendre functions, 114
Legendre transform, 280
length gauge, 90–92, 97, 106, 136, 154, 158,

186, 198, 202, 218
LES, see low-energy structure
linear combination of atomic orbitals, 174–

178, 299
Liouville’s theorem, 66, 80
Lissajous motion, 234
localization, 141
low-energy structure, 146–148

M
Magnus

expansion, 46–47, 136, 137, 292
first order approximation, 136

mapping Hamiltonian, 206
Maslov index, 42
Maslov phase, 42, 71
MCTDH, see multi-configuration time-

dependent Hartree
mean field, 48
Mecke

dipole moment, 199, 240
parameters

CH stretch, 240
OH stretch, 244

minimal coupling, 88–90
mode locking, 10
molecular alignment, 182
molecular orbital method, 178
molecular stabilization, 188–189
momentum

canonical, 89, 280, 303
kinetic, 89
mechanical, 280

monodromy matrix, see stability matrix
Monte-Carlo calculation, 158
Morse parameters

CH stretch, 240
H+
2 , 181

HF, 199
OH stretch, 244

Morse potential, 73, 179–181, 199, 211, 213,
244, 245

MPI, see ionization, multi-photon
multi-configuration time-dependent

Hartree, 48, 75

mutation, 240

N
Na2, 215–220
nabla operator, 21
negative imaginary absorbing potential, 62–

63
Newton’s equation, 78, 88, 134
NH3, 225
non-crossing rule, 107, 226, 230
nonadiabatic

dynamics, 51, 191–210
transitions, 195

O
occupation number operator, 205
odd harmonics rule, 157
OH stretch, 199

Mecke parameters, 244
Morse parameters, 244

optimal control, 234–240, 244
orthonormality relation, 193
over-determination problem, 69
overlap integral, 175, 177, 296

P
parity, 117, 228, 287

operator, 286
transformation

generalized, 106–108, 157, 226, 230,
295

Pauli
principle, 119–121
spin matrices, 98, 107, 120

periodic orbit, 122
perturbation theory, 215
photo-electric effect, 132, 163
photodissociation, 249–250
Planck radiation law, 3, 111
plateau formation in HHG, 157–162
Poincaré

invariants, 66
section, 140

poisson bracket, 66
polar plot, see spherical harmonics
ponderomotive energy, 94–96, 128, 131,

132, 156, 166, 284
population, 109
population inversion, 8
population transfer, 231–234, 240
position representation, 20, 248
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potential surfaces
coupled, 201–223

probability
current density, 20, 89
density, 20

projection operator, 236
propagator, 26, 35–43

0–0, 40
harmonic oscillator, 29
Herman-Kluk, 69–74, 79, 81, 126, 132,
142, 157, 164, 206

short-time, 37, 76, 270
spectral representation, 27
van Vleck Ansatz, 41
van Vleck-Gutzwiller, 42, 65, 71, 81

prefactor, 81
pulse envelope, 103
pulse shaper, 13, 242
pump-dump control, 234–236
pump-dump pulse, 14
pump-probe experiment, 167, 210–223

Q
quality factor, 10
quantum carpets, 32
quantum chemistry, 178, 197, 245
quantum computing, 242–244
quantum-classical methods, 48–51
quasi-eigenfunctions, 53, 57, 107

driven double well, 226–228
superposition of, 53

quasi-energies, 52, 57
driven double well, 226–228

quiver
amplitude, 94, 135
motion, 93, 150
velocity, 92

R
Rabi

frequency, 99, 102, 232, 286, 287
oscillations, 99, 126, 184, 209

rate equations, 6
Rayleigh-Jeans radiation law, 5
Rayleigh-Ritz, see variational principle
reaction channel, 234
recollision, 143, 145–147, 150
reduced mass, 114, 179, 187, 225, 303
reflection principle, 217

dynamical, 219
relative

coordinates, 186, 197, 247

motion, 173, 179, 186, 199, 206
resummation, 46
Riccati, see differential equation(s), Riccati
root search problem, 41, 43, 65
Rosen-Zener model, 104, 207, 287–289
rotating wave approximation, 101–103, 188,

203, 212, 215, 220, 232, 285–287
ruby laser, 9
Runge-Kutta method, 56
RWA, see rotating wave approximation
Rydberg state, 139

S
S-matrix theory, 152
scaling transformations, 140
SCHD, see semiclassical hybrid dynamcis
Schrödinger equation

Floquet type, 52, 57, 274
time-dependent, see time-dependent
Schrödinger equation

time-independent, see time-independent
Schrödinger equation

Schrödinger picture, 43, 137, 248
second order differencing, 63
selection rule, 286
semiclassical approximation

for propagator, 39–43
of coherent state matrix element, 70

semiclassical hybrid dynamics, 75
semigroup property, 27, 36
separation of variables, 21, 96
shake-off, 152
short-time approximation, 209, 218–220,

249
side bands, 10
sign problem, 39
single active electron, 145, 149
skew symmetric matrix, 80
soft-core, see Coulomb potential, soft-core

or Hamiltonian, soft-core
SPA, see stationary phase approximation
spectrogram, 14
spectrum, local, 28
spherical

coordinates, 114
harmonics, 114

polar plot, 115, 166
spin state

singlet, 120
triplet, 120

split-operator method, 59–63, 66, 73, 126,
183, 202, 216
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spontaneous emission, 6
square well, 32–35
stability matrix, 70, 79–81, 278
stabilization

against dissociation, 188
against ionization, 141
strong field, 134–136

Stark effect, 8
Stark shift, AC, 132, 166
stationary phase approximation, 38–43, 70,

71, 78, 159–163, 218, 271
stimulated Raman adiabatic passage, 231
STIRAP, see stimulated Raman adiabatic

passage
Stokes pulse, 231
Strang splitting, 60, 67, 275
stroboscopic dynamics, 139, 227
strong-field approximation, 129, 130, 134,

146, 156
surface hopping, 51, 204
survival of the fittest, 240
survival probability, 141, 184, 226
symplectic

integration, 66–68
matrix, 80

T
Taylor expansion, 37, 46, 65, 263, 283

of exponent, 38
of Hamilton equations, 79
of potential, 30

TDSE, see time-dependent Schrödinger
equation

three-step model, 143–146, 156, 163
for HHG, 153–156
for nonsequential double ionization, 151

Ti:sapphire laser, 12, 106
time-dependent density functional theory,

152
time-dependent Hartree method, 47–48
time-dependent perturbation theory, 43–45

two levels, 248
time-dependent Schrödinger equation, 19–

35
as integral equation, 24
Floquet solution, 52
for expansion coefficients, 56
from infinitesimal propagator, 37
Hartree Ansatz, 47
in Kramers-Henneberger frame, 93
in length gauge, 91
in velocity gauge, 95

interaction picture, 44, 109
minimally coupled, 89
numerical solution, 54–74
Rosen-Zener, 207
solution for driven harmonic oscillator,
308

two levels, 100, 229
two surfaces, 201

time-evolution operator, 23–27, 43, 46, 51,
59, 65, 69, 99, 263

harmonic oscillator, 29, 264
infinitesimal, 25, 37, 62
interaction picture, 44, 272
Magnus expansion, 46
mixed matrix element of, 71
over one period, 52
short-time, 64

time-independent Schrödinger equation, 21,
49, 52, 114

for H+
2 , 174

in Born-Oppenheimer approximation,
194

time-ordering operator, 25, 47, 137, 263, 264
time-slicing, 25, 36, 76
TISE, see time-independent Schrödinger

equation
Trotter product, 60, 271
tunneling, 100

coherent destruction of, 225–230
collective, 152
frequency, 226
ionization, see ionization, tunneling
length, 290
period, 226
splitting, 251

U
umbrella mode, 8, 225
unitary

operator, 24, 286
propagation, 47
transformation, 88–93, 101, 253

units
Hartree, 168
Rydberg, 168

V
van Vleck determinant, 42
variational LCAO method, 178, 297–298
variational principle

Rayleigh-Ritz, 23, 116, 178, 194, 289,
297, 300
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velocity gauge, 91, 96, 283, 293
vibrogram, 14
virial theorem, 168
Volkov state, 96, 128
Volkov wavepacket, 94–96, 160, 283–285
VVGpropagator, see propagator, vanVleck-

Gutzwiller

W
wavefunction

singlet, 149
wavelength, 5, 12, 74, 90, 106, 122, 128,

144–146, 149, 150, 156, 184, 186,
191, 215, 222, 223

Weyl transformation, 37, 76
Wien radiation law, 5
WKB quantization, 125

Z
Zassenhaus formula, 59, 275, 293
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