
More Efficient Filtration Method for Big Data
Order-Preserving Matching

Wenchao Jiang(✉), Dexi Lin, Sui Lin, Chuanjie Li, and Aobing Sun

School of Computer Science and Technology, Guangdong University of Technology,
Guangzhou 510006, China

jiangwenchao@gdut.edu.cn

Abstract. Data matching and retrieval aims at finding out similar substrings with
the pattern P in the given data set T. This problem has wide applications in big
data analysis. A liberalized verification rule is proposed first, and then a similarity
computing based order preserving matching method is presented. Theory analysis
indicates our method runs in linear. Furthermore, the experimental results show
that our method can improve effectively the precision ratio and the recall ratio.
More qualified matching results can be detected compared with the state of the
art of this problem.

Keywords: Pattern recognition · Order-preserving matching ·
Similarity retrieval

1 Introduction

Fast and accurate data matching and retrieval is one of the key problems in big data
applications such as video retrieval, stock analysis and prediction. Based on the context
and application scenarios, the data objections can be abstracted into a series of vectors
with different properties. Furthermore, the different properties can be integrated into a
number through reduction or conversion. Consequently, data matching problem will be
transformed into string or number matching problem which is one kind of well known
problems in pattern recognition. Given a set of numbers T of length n and a pattern P of
length m, both being numbers or strings over a finite alphabet

∑
, the task of string

matching is to find all the substrings u in T which have the same relative order as P, and
|u| = |P|. For example, let P = (10, 22, 15, 30, 20, 18, 27) and T = (22, 85, 79, 24, 42,
27, 62, 40, 32, 47, 69, 55, 25), then the relative order of P matches the substring u = (24,
42, 27, 62, 40, 32, 47) of T [1].

Several online [3–7] and one offline solution [2] have been proposed for the string
matching problem. Kim et al. [3] and Kubica et al. [4] presented solutions based on the
Knuth-Morris-Pratt algorithm (KMP) [8], the KMP algorithm is mutated such that is
determines if the text contains substring with the same relative order as that of the pattern
using the order-borders table. Kim et al. [3] utilized the prefix representation method to
find the rank of each number in the prefix, and this method was further optimized using
the nearest neighbor representation to overcome the overhead involved in computing

© Springer International Publishing AG 2018
Q. Zu and B. Hu (Eds.): HCC 2017, LNCS 10745, pp. 85–94, 2018.
https://doi.org/10.1007/978-3-319-74521-3_10

the rank function. Later, Cho et al. [5, 6] gave a sublinear solution based on the bad
character heuristic of the Boyer-Moore algorithm [9]. Almost at the same time,
Belazzougui et al. [7] derived an optimal sublinear solution. The state of the art for this
problem is the filtration method [1] which is presented by Chhabra et al. All the verifi‐
cation rules in previous researching demanded the values and the positions of the
numbers in both T and P must be coherent strictly. So, some actual matching results
may be discarded. Moreover, almost all the earlier researching were focused on the time
complexity analysis while ignored the precision ratio analysis and recall ratio analysis.
They didn’t research whether some actual matching results were missing despite the
algorithm became more and more fast.

In view of the above problem, a similarity computing based string or number order
preserving matching method is presented. Based on the preprocessing, i.e. binary trans‐
forming and filtration, our method proposes a novel verification rule which can guarantee
more candidate results can be found out. Then, a similarity computing based sorting
method is presented which can ensure all the matching results are listed according to
the similarities with the pattern P. Theory analysis indicates our method is sublinear.
The experimental results show that our method can improve effectively the precision
ratio and the recall ratio compared with the newest method at present.

This paper is organized as follows. Section 2 presents our solution. Section 2.4
analyses our approach. The experimental results are given and discussed in Sect. 3.
Section 4 concludes this paper.

2 Our Solution

2.1 Problem Description and Motivation

The state of the art for order-preserving matching is the filtration method [1] which was
presented by Chhabra et al. We call the filtration method as MT.C in this paper. The
MT.C transform the original data T and the pattern P into binary string T’ and P’
according to formulation (1). Then searching for the substring with the same relative
order with P in T can be transformed into searching P’ in the analogously T’. In the
above example, P’ = 101001 and T’ = 100101001100. Each occurrence is a match
candidate which is verified following the numerical order of the positions in the original
pattern P.

ti =

{
1, ti−1 < ti

0, ti ≤ ti+1
, ti ∈ T ; pi =

{
1, pi−1 < pi

0, pi ≤ pi+1
, pi ∈P (1)

The MT.C method made the matching process simpler and more efficient than the
earlier solutions. However, some deficiencies could be found because of the too harsh
filtration and verification rules. The MT.C method required the order of the numbers is
strictly coherent according to the values and the corresponding positions in P and T. For
example, as shown in Fig. 1(a), the MT.C method can’t find the differences between T
and P if the max-number increases or the mini-number decreases immensely in T.
Moreover, as shown in Fig. 1(b), the MT.C method can’t find the differences either if

86 W. Jiang et al.

certain subsection data in T jumps suddenly while the variation trend maintains as a
whole. Furthermore, to find out the matching substrings from the candidate strings which
were produced through filtration algorithm, the numbers of P must be sorted, and the
verification processing demands the positions and the size relations between T and P
must be coherent strictly. This rule would result in the looseness of some actual matching
substrings. As shown in Fig. 1(c), according to the MT.C method, the gray node x in T
can only change between dashed line a and dashed line b which represent the right
neighbor y and the left neighbor z respectively in the sorting of T. Once the gray node
x changes above the dashed line a or down the dashed line b, the MT.C method will
regard that T is not matching with P. Then the corresponding substring will be discarded
consequently. Actually, we can find that this is not the case especially when |y-z| is small
enough. For example, when x changes to x’ which is slightly larger than y or changes
to x” which is slightly smaller than z, the MT.C method will discard the substring. But
we think the substring is still similar with P in most actual applications such as data
retrieval.

Fig. 1. Problem description

2.2 Our Solution

Problem definition of string or number matching in [1] is described as following: Two
strings u = u1u2…um and v = v1v2…vm of the same length over

∑
 are called order-

isomorphic, written u ≈ v, if formulation (2) holds.

ui ≤ uj ⇔ vi ≤ vj for 1≤ i, j≤m. (2)

This rule demands all numbers in u and v are strictly coherent with both the sizes
and their positions. So, some actual matching results would be discarded as shown in
Fig. 1(c). To overcome this deficiency, a different rule is presented as following. Two
strings u = u1u2…um and v = v1v2…vm of the same length over

∑
. The numbers of

v = v1v2…vm are sorted firstly and the result is a sequential table r as formulation (3).

r = {vr[i]
|vr[i]

≤ vr[j]
, 1≤ i < j≤m} (3)

More Efficient Filtration Method for Big Data 87

|
|ur[i] − ur[i]−1

|
|≤

|
|ur[i]+1 − ur[i]−1

|
|

2
or

|
|ur[i]+1 − ur[i]

|
|≤

|
|ur[i]+1 − ur[i]−1

|
|

2
for vr[i]−1 ≤ vr[i] ≤ vr[i]+1 , 1≤ i≤m.

(4)

Two strings u and v are called order-isomorphic, written u ≈ v, if formulation (4)
holds. Apparently, multiple matching results would be found out according to formu‐
lation (4) once the pattern is given. But, the similar extent of the multiple matching
results are different. To distinguish the similar level of multiple candidate results, a
similarity computing method should be given based on the optimized verification
method. Considering the possible concussion range of some numbers in T which have
the same positions with relevant numbers in P. The similarity function f, as shown in
Fig. 2, between the candidate substring u and the pattern P is defined as formulation (5).

f (u, P) =
∑

|g(ui) − g(pi)|, 1≤ i≤m. (5)

Fig. 2. Data reduction

Where, ui and pi are the relevant numbers which have the same position order in the
candidate substring u and the pattern P. m is the length of u and P. g is the reduction
function, shown in formulation (6), which can reduce all the numbers in u and p into the
same zone [0,1]. Min(u) and Min (P) are separately the Min-values in u and P. Max(u)
and Max(P) are separately the Max-values in u and P.

ui − Min(u)∕Max(u) − Min(u) or pi − Min(P)∕Max(P) − Min(P) (6)

As shown in Fig. 2, the similarity between the candidate substring u and the pattern
P can be computed easily as the sum of all the differences, represented by Diff.i
(1 ≤ i ≤ n), between the relevant nodes of u and P according to formulation (5).

2.3 The Proposed Algorithm

As described above, our solution includes four steps: binary transformation, filtration,
verification and similarity computing. The binary transformation can be processed
according to [1], and the filtration can be conducted using any exact string matching
algorithm. Supposing the binary transformation and filtration have been finished, the

88 W. Jiang et al.

pseudo-code of our solution based on the optimization and the similarity computing can
be described as Algorithm 1 and Algorithm 2.

Algorithm 1: Computing the similarity

1) Xt=AnticipationBinary (Tr);

2) Xp=AnticipationBinary (P);

3) For i=0 to length;

4) Sum+=Abs(Xt[i] - Xp[i]);

5) Return Sum.

Algorithm 2: AnticipationBinary is reduction function

1) intput A;

2) Max=A.Max;

3) Min=A.Min;

4) For i=0 to length

5) If (Max==Min);

6) B[i]=0;

7) else

8) B[i]=(A[i]-Min)/(Max-Min);

9) Return B.

More Efficient Filtration Method for Big Data 89

2.4 Algorithm Analysis

Our solution, represented as MS, include four steps: Binary Transformation (BT), filtra‐
tion, verification and Similarity Computing (SC). So, the time complexity of our solution
O(MS) can be represented as following.

O(MS) = O(BT) + O(filtration) + O(verification) + O(SC)

Compared with [1], the main differences of our solution are the verification and
similarity computing. Furthermore, the main modification in verification is a liberalized
verification rule is implemented and more matching results can be detected. So, the time
complexity of verification doesn’t be changed and only the O(SC) need be analyzed.

Supposing the numbers in P and T are integers and they are statistically independent
of each other and the distribution of numbers is discrete uniform. Supposing LT = n,
LP = m. In the worst case, the similarity computing process requires O(m(n-m)) simi‐
larity computing operations. In most cases, LT is usually very large while LP is usually
a constant small enough. So, O(m(n-m)) ≈ O(nm) on average which is equal with MT.C
method. So, we can conclude O(MS) = O(MT.C) which are all sublinear.

3 Experimental Results

Our experiments used linear string matching algorithm KMP [8] as the filtration method.
The tests were run on single node of Tianhe-2 super computer with configuration CPU
E5-2692 v2 12*2 2.20 GHz. All the algorithms were implemented in C# in the 64-bit
mode.

3.1 Effectiveness

To explain the superiority of our method, two special data sets are generated based on
one basic data set. The basic data set was given as T = (10, 14, 12, 15, 13, 28, 36, 32,
24, 38, 26) and P = (10, 14, 12, 15, 13, 19, 21, 20, 17, 22, 18). The first special data set
shown in Fig. 3(a) was generated by multiplying n (1 < n < 100) to the last six numbers
in T. The second special data set shown in Fig. 3(b) was generated by multiplying n
(1 < n < 100) to only the 10th number in T.

90 W. Jiang et al.

Fig. 3. Data set samples

From Fig. 3(a) and (b), we can find that the data T and the pattern P become more
and more dissimilar with the increasing of n. But, the MT.C method couldn’t find the
differences among them. Through computing the similarities between T and P according
to the technologies presented in Sect. 2, the variation trend of the similarity between T
and P with the increasing of n was shown in Fig. 4. According to the definition of
similarity shown as formulation (5), the more bigger the value of the similarity is, the
more dissimilar the substring is compared with P. We can find that the similarity
increases with the increasing of n and becomes converging with the infinite increasing
of n. The point of inflection means that the data set T couldn’t be considered similar
with P according to our method. At the same time, we can find that the points of inflection
are different with different data sets. So there is no stable point of inflection for different
data sets in our method. The appearance of the point of inflection depend on the data set
itself.

Fig. 4. Similarity convergence

More Efficient Filtration Method for Big Data 91

Imitating the data generation method in [1], we generated two special data set and
one random data set. The random data set contains 100000000 random integers between
0 and 230. The lengths of patterns (LP) were picked as 10, 15 and 30. The experimental
results showed that our method can find more matching substrings than the MT.C
method. For example, when the pattern length was picked as 10, the MT.C method can
only find 15 results. However, our method can find 135 results which were sorted
according to the similarities. The first 10 most similar results were shown in Figs. 5, 6
and 7 separately when the length of pattern were picked as 10, 15 and 30. The red line
represents the pattern, and the blue lines represent the missing results using MT.C
method while are detected using our solution. The black lines represent the matching
results which can be detected using both MT.C method and our solution.

Fig. 5. The most similar 10 results (LP = 10)

Fig. 6. The most similar 10 results (LP = 15)

92 W. Jiang et al.

Fig. 7. The most similar 10 results (LP = 30)

3.2 Time Consuming

Furthermore, to compare the time consuming between our method and the MT.C
method. We enlarged the length of T from 10000000 to 49000000 gradually with an
increment of 1000000. Ten experiments were conducted and the average time
consuming was computed with the different lengths of patterns such as 5, 30 and 50.
The statistical results were shown in Fig. 8. Because our method could find more results
than the MT.C method, and more similarity computing operations were needed. So the
overall executing time appear a small amount of growth on equal conditions. But, the
executing time growth decreased quickly with the increasing of the length of the pattern.
Because the number of matching results decreased quickly with the increasing of the
length of the pattern.

Fig. 8. Comparison of average time consuming

More Efficient Filtration Method for Big Data 93

4 Conclusion

Fast and accurate data matching and retrieval is a key problem in big data applications
such as video retrieval, stock analysis and bioinformatics etc. A similarity computing
based string or number order preserving matching method is presented. Theory analysis
indicates our method is sublinear. Furthermore, the experimental results show that our
method can improve effectively the precision ratio and the recall ratio compared with
the newest method at present under the same conditions. Compared with former research
works for order-preserving matching problem, our solution liberalized the verification
rules on certain extent and so more qualified matching results can be detected and found
out.

Acknowledgements. This work is supported by Guangdong Province Natural Science
Foundation (2016A030313703) and Guangdong Province science and technology program
(2015B010109001, 2015B010131001, 2016B030305002, 2016YFB10005000, 2017B09090
1005, 2017A070712016).

References

1. Chhabra, T., Tarhio, J.: A filtration method for order-preserving matching. Inf. Process. Lett.
116(2), 71–74 (2016)

2. Chhabra, T., Külekci, M.O., Tarhio, J.: Alternative algorithms for order-preserving matching.
In: Prague Stringology Conference (2015)

3. Chhabra, T., Giaquinta, E., Tarhio, J.: Filtration algorithms for approximate order-preserving
matching. In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp.
177–187. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5_18

4. Cantone, D., Faro, S., Külekci, M.O.: An efficient skip-search approach to the order-
preserving pattern matching problem. In: Prague Stringology Conference (2015)

5. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput.
6(2), 323–350 (1977)

6. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis, Solon P.,
Radoszewski, J., Rytter, W., Waleń, T.: Order-preserving incomplete suffix trees and order-
preserving indexes. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS,
vol. 8214, pp. 84–95. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02432-5_13

7. Kim, J., Eades, P., Fleischer, R., et al.: Order-preserving matching. Theoret. Comput. Sci.
525(4), 68–79 (2013)

8. Boyer, R.S.: A fast string searching algorithm. Commun. ACM 20(10), 762–772 (1977)
9. Cho, S., Na, J.C., Park, K., Sim, J.S.: Fast order-preserving pattern matching. In: Widmayer,

P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 295–305. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-03780-6_26

10. Cho, S., Na, J.C., Park, K., et al.: A fast algorithm for order-preserving pattern matching. Inf.
Process. Lett. 115(2), 397–402 (2015)

11. Belazzougui, D., Pierrot, A., Raffinot, M., Vialette, S.: Single and multiple consecutive
permutation motif search. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS,
vol. 8283, pp. 66–77. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-45030-3_7

94 W. Jiang et al.

http://dx.doi.org/10.1007/978-3-319-23826-5_18
http://dx.doi.org/10.1007/978-3-319-02432-5_13
http://dx.doi.org/10.1007/978-3-319-03780-6_26
http://dx.doi.org/10.1007/978-3-642-45030-3_7
http://dx.doi.org/10.1007/978-3-642-45030-3_7

	More Efficient Filtration Method for Big Data Order-Preserving Matching
	Abstract
	1 Introduction
	2 Our Solution
	2.1 Problem Description and Motivation
	2.2 Our Solution
	2.3 The Proposed Algorithm
	2.4 Algorithm Analysis

	3 Experimental Results
	3.1 Effectiveness
	3.2 Time Consuming

	4 Conclusion
	Acknowledgements
	References

