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What Are Plant-Released Biogenic  
Volatiles and How They Participate 
in Landscape- to Global-Level Processes?

Ülo Niinemets

1  Introduction What Are Plant Volatiles?

Plant-released organic volatiles constitute a vast spectrum of compounds, more than 
30,000 different compounds with a certain capacity to escape into the gas phase 
from a liquid or solid (Niinemets et al. 2004). In common with the compounds char-
acteristically called volatiles is that they have normal pressure boiling points 
between ca. 30 and 250 °C and, thus, support a relatively high vapor partial pressure 
at ambient temperatures (between ca. 101 and 105 Pa at 25 °C) (Fuentes et al. 2000; 
Copolovici and Niinemets 2005; Kosina et al. 2013). In addition, studies on plant 
volatiles also often consider semivolatiles that support a much lower vapor pressure 
(partial pressure ca. 10−6 and 100 at 25 °C) (Helmig et al. 2003; Widegren and Bruno 
2010; Kosina et al. 2013). Semivolatiles have a large capacity for partitioning into 
liquid and solid phases and, once released from plants, play a major role in atmo-
spheric particle formation (Ehn et al. 2014).

All plants emit a plethora of volatiles that are synthesized in different subcellular 
compartments involving multiple biochemical pathways (Fig. 1), and the emissions 
can be further tissue- and organ-specific. The volatiles emitted can be intermediates 
of normal plant metabolic activity and are released from plant tissues because the 
metabolic pathways are “leaky.” Emissions of such compounds can be enhanced 
under certain periods of plant life. For instance, plants emit methanol as the result 
of demethylation of cell wall pectins (Nemecek-Marshall et  al. 1995; Fall and 
Benson 1996). Methanol emissions occur at low level from all physiologically 
active plant tissues, but the emissions are strongly enhanced in growing tissues due 
to relaxation and rigidification of cell walls during tissue expansion growth (Harley 
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et al. 2007; Hüve et al. 2007). Analogously, root zone hypoxia during flooding leads 
to ethanol formation in the roots and its transportation to the leaves with the transpi-
ration stream (Bracho Nunez et  al. 2009; Kreuzwieser and Rennenberg 2013). 
Ethanol that reaches the leaves can be further enzymatically oxidized to acetic acid 
via acetaldehyde, and enter into the primary metabolism, but some ethanol and acet-
aldehyde escape leaves due to limited alcohol and aldehyde dehydrogenase activi-
ties (Kreuzwieser et  al. 2000, 2001; Rottenberger et  al. 2008; Kreuzwieser and 
Rennenberg 2013).

These examples demonstrate how normal physiological processes in plant life, 
and the ecosystem services they provide, can be associated with major leakage of 
organic compounds due to relatively high vapor pressure of these compounds. Apart 
from metabolic intermediates, a large number of organic compounds are specifi-
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Fig. 1 Main volatiles emitted by plants are formed in different subcellular compartments and their 
synthesis involves a variety of biochemical pathways. Methanol and lipoxygenase (LOX) pathway 
volatiles (also called green leaf volatiles, dominated by various C6 aldehydes and alcohols) are 
ubiquitous volatiles that can be released from all plant tissues as the result of constitutive activity 
of key enzymes of their synthesis pathways, while volatile isoprenoids (hemiterpenes like iso-
prene, monoterpenes, and sesquiterpenes) and phenylpropanoids and benzenoids are specialized 
volatiles and are emitted as the result of induction of expression of genes coding for specific rate- 
limiting synthases, although in several species, certain specialized volatiles can be emitted consti-
tutively. Methanol is released as the result of demethylation of pectins in cell walls in growing 
tissues or upon different biotic and abiotic stresses, whereas green leaf volatiles are formed from 
free polyunsaturated fatty acids released from membrane lipids upon membrane damage charac-
teristic to exposure to severe stresses (Liavonchanka and Feussner 2006; Andreou and Feussner 
2009). Emissions of phenolic compounds typically originate from cytosol, but isoprenoid emis-
sions can originate from plastids or cytosol, depending on the compound emitted (Niinemets et al. 
2013; Rosenkranz and Schnitzler 2013; Pazouki and Niinemets 2016). There is evidence that some 
terpenoids can be potentially also released from mitochondria (not shown in the figure, see Tholl 
and Lee 2011; Dong et al. 2016), but the possible mitochondrial release of volatiles is much less 
studied
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cally made to be volatile, including several volatile benzenoids and  phenylpropanoids 
and volatile isoprenoids such as the hemiterpene isoprene (C5), monoterpenes 
(C10), and sesquiterpenes (C15) (Fig. 1, Peñuelas and Llusià 2004; Fineschi et al. 
2013; Guenther 2013a; Portillo-Estrada et  al. 2015). These specialized volatiles 
constitute the plant “talk,” fulfilling a plethora of biological and ecological func-
tions from communication among plant organs, other plants, and other organisms to 
altering the plant stress resistance. Furthermore, all volatiles participate in multiple 
landscape- to global-scale processes, altering ambient air oxidative status, atmo-
spheric particle condensation, and cloud cover (Peñuelas and Staudt 2010; Kulmala 
et al. 2013). Both the specific biological and broad-scale atmospheric roles of vola-
tiles result in a number of key ecosystem services beneficial to humans. As dis-
cussed in this chapter, these services can be local to regional scale services such as 
preservation of ecosystem integrity under biotic and abiotic stresses and, thus, the 
preservation of the capacity to provide the “standard,” well-perceived, ecosystem 
services to humans, e.g., wood production of forest stands. These services also 
include regional to global-scale services such as environmental cooling and damp-
ening the global climate change.

In the current chapter, I first provide a short overview of key types of biological 
volatile emission and of the environmental controls on volatile emission and modi-
fication of emissions by abiotic and biotic stresses. Then I focus on the biological 
roles of volatiles, on the roles of volatiles in large-scale biosphere-atmosphere pro-
cesses, and on ecological services provided by plant volatiles. I demonstrate that the 
trace gas release is a key vegetation characteristic that contributes a number of 
unique ecosystem services that alter the performance of ecosystems in current and 
future climates with major implications for human life. Quantitative significance of 
plant volatiles in Earth system processes is still poorly understood, and the role of 
plant volatiles in climate has been largely neglected in the last report of the 
Intergovernmental Panel on Climate Change (IPCC, Field et al. 2014; Stocker et al. 
2014). In this chapter, I show that the evidence is accumulating that plant trace gas 
exchange participates in multiple feedback loops that can potentially play major 
roles in Earth system processes and argue that biosphere-atmosphere interactions 
mediated by plant volatiles need to be included in Earth system models intending to 
predict future climate.

2  Plant Volatile Diversity, Environmental Controls 
on Emission and Emission Capacities

2.1  Sites of Volatile Synthesis and Diversity

Synthesis of volatile phenolics typically occurs in cytosol, while volatile isopren-
oids can be synthesized in plastids or cytosol, depending on the compound emitted 
(Niinemets et al. 2013; Pazouki and Niinemets 2016). Hemiterpene and monoter-
pene synthesis is considered to occur in the plastids where corresponding C5 and 
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C10 terminal enzymes responsible for terpene synthesis, terpene synthases, are 
located, while sesquiterpene synthases are located in the cytosol (Fig. 1, Chen et al. 
2011). However, there is also recent evidence of mixed substrate specificity of some 
terpene synthases (Pazouki and Niinemets 2016), suggesting that product profiles 
can potentially vary depending on substrate availability in different subcellular 
compartments. Furthermore, there is evidence that some mono- and sesquiterpenes 
can be synthesized in mitochondria (Tholl and Lee 2011; Dong et al. 2016), further 
complicating the picture.

The diversity of emitted volatiles varies for different volatile compound classes. 
In the case of hemiterpenes, in addition to isoprene, plants also emit the oxygenated 
hemiterpene 2-methyl-3-buten-2-ol (Gray et  al. 2006, 2011), but mono- and 
sesquiterpene- emitters typically release a wide spectrum of compounds. Often more 
than 20 different terpenoids are observed in the emissions from a single species 
(e.g., Niinemets et al. 2002a; Winters et al. 2009). Such a high diversity reflects the 
presence of multiple terpene synthases in the given emitting species (e.g., Falara 
et al. 2011; Jiang et al. 2016a) but also the specific reaction mechanism of terpene 
synthesis. In particular, terpene synthesis involves formation of a highly reactive 
carbocation intermediate, and depending on the extent to which the carbocation can 
be stabilized, the product specificity of terpene synthases strongly varies (e.g., 
Christianson 2008). In fact, most terpene synthases catalyze formation of multiple 
products, and only some terpene synthases form single terpenes, explaining the 
huge chemical diversity of emitted volatile terpenoids.

2.2  Constitutive and Stress-Induced Volatile Emissions

2.2.1  Constitutive Emissions of Specialized Volatiles

While all plant species can emit metabolic intermediates, only some species emit 
specialized volatiles, in particular, volatile isoprenoids under typical non-stressed 
physiological conditions, being, thus, constitutive emitters (Peñuelas and Llusià 
2004; Fineschi et al. 2013). The capacity for constitutive emission of certain vola-
tiles requires that the specific synthesis pathways are constitutively active, although 
the degree of activation can vary with environmental conditions, sometimes several- 
fold (e.g., Niinemets et al. 2010b). The constitutive emissions can result from emis-
sion of compounds stored in specialized storage structures such as oil glands in 
Citrus species, resin ducts in conifers, and glandular trichomes in species from 
Labiatae or Solanaceae. Typically, volatiles stored in these structures are mono- and 
sesquiterpenes, but sometimes benzenoids are also stored (Loreto et al. 2000; Jiang 
et  al. 2016a). Filling up the storage structures takes typically multiple days to 
months, and thus, the release of the volatiles from the storage is uncoupled from the 
synthesis of these compounds. Thus, the rate of constitutive emissions from storage 
structures depends on the rate of compound evaporation and diffusion and therefore 
scales exponentially with temperature (Niinemets et al. 2010b; Grote et al. 2013).
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The hemiterpenes, isoprene and 2-methyl-3-buten-2-ol, cannot be stored due to 
high volatility. In addition, several constitutive monoterpene emitters such as the 
Mediterranean evergreen oaks Quercus ilex and Q. suber and the broad-leaved decid-
uous temperate tree Fagus sylvatica lack specialized storage structures (Staudt et al. 
2004; Dindorf et al. 2006). In hemiterpene and non-storage monoterpene emitters, the 
volatile emissions result from de novo compound synthesis, and the emissions respond 
to environmental drivers similarly to photosynthesis, increasing asymptotically with 
light intensity and scaling positively with temperature up to an optimum temperature 
and decreasing thereafter (Niinemets et al. 2010b; Monson et al. 2012). Emissions of 
de novo synthesized volatiles also respond to immediate changes in ambient CO2 
concentration. In particular, isoprene emissions decrease with increasing CO2 concen-
tration (e.g., Wilkinson et al. 2009), but the CO2 response is less clear for monoterpene 
emissions (Sun et al. 2012 for a discussion). However, the CO2 sensitivity of isoprene 
is gradually lost at higher temperatures (Rasulov et al. 2010; Li and Sharkey 2013), 
and the emission response to longer-term changes in ambient CO2 concentration can 
be different from the immediate response due to acclimation of isoprene synthesis 
pathway to long-term ambient CO2 concentration (Sun et al. 2012).

2.2.2  Induction of Volatiles Upon Abiotic and Biotic Stresses

In field environments, plants are often exposed to various abiotic and biotic stresses. 
Although only some plant species can emit volatiles constitutively, all species can 
be triggered to release volatiles upon biotic and abiotic stresses (Fig. 2). Among the 
volatiles triggered are ubiquitous stress compounds such as lipoxygenase (LOX) 

Fig. 2 Induction of monoterpene emissions in broad-leaved temperate deciduous tree Alnus 
incana upon feeding by larvae of the moth Cabera pusaria (a), and correlation of the degree of 
elicitation of emissions with the amount of leaf area consumed on the fourth day since the start of 
feeding (b). Alnus incana does not significantly emit volatiles in non-stressed conditions and is 
therefore considered a non-emitter species, but exposure to different stresses results in significant 
emissions of green leaf volatiles, mono-, sesqui-, and homoterpenes (Modified from Copolovici 
et al. 2011)
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pathway volatiles (also called green leaf volatiles). Green leaf volatiles, typically 
dominated by various C6 aldehydes and alcohols, are rapidly formed when free 
polyunsaturated fatty acids are released from membrane lipids (Beauchamp et al. 
2005; Copolovici et al. 2011). This typically occurs upon membrane-level damage 
characteristic to exposure to severe stresses such as mechanic wounding during 
biotic stresses but also upon exposure to severe heat, frost, and ozone stress 
(Beauchamp et al. 2005; Copolovici et al. 2011). Methanol, which can be released 
from non-stressed tissues constitutively, also serves as another ubiquitous stress 
volatile; major rapid methanol bursts are associated with both severe biotic and 
abiotic stresses (Beauchamp et al. 2005; von Dahl et al. 2006).

Apart from the ubiquitous compounds emitted from virtually all plant species, 
induction of synthesis of specialized compounds requires the presence of given 
stress-elicited synthase genes in plant genomes. For instance, glucosinolate path-
way volatiles (short-chained S- and/or N-containing volatiles resulting from 
breakdown of glucosylated amino acids and their derivatives) are only released 
upon stress from the species in the order Brassicales (Kask et al. 2016). On the 
other hand, all plants do include terpene synthase genes in their genomes, and 
expression of these genes is typically activated upon stress. Studies have demon-
strated elicitation of emissions of mono- and sesquiterpenes upon biotic stresses 
such as herbivory (Fig.  2, Blande et  al. 2007; Copolovici et  al. 2014a, 2011; 
Farré-Armengol et  al. 2015); pathogen infections such as powdery mildew 
(Fig. 3), leaf rust (Fig. 4), and canker fungus (Achotegui-Castells et  al. 2015) 
infections; and upon abiotic stresses such as ozone stress (Beauchamp et  al. 
2005) and heat stress (Copolovici et al. 2012; Kask et al. 2016). However, the 
number of terpenoid synthase genes strongly varies among species from as few 
as only one synthase gene to more than 80 genes (Rajabi Memari et al. 2013), 
implying that the diversity of induced terpenoid emission responses can also be 
variable. Furthermore, different stresses can trigger emissions of different vola-
tiles (Dicke et al. 2009; Zhang et al. 2009), but so far, understanding of the over-
all stress-dependent emission diversity and variation of emission profiles under 
different stresses is very limited.

Differently from LOX volatiles and methanol, emissions of which are trig-
gered rapidly due to the presence of a certain constitutive activity of lipoxygen-
ases (Liavonchanka and Feussner 2006) and pectin methylesterases (Micheli 
2001), elicitation of terpenoid emissions is more time-consuming because it 
requires gene expression and protein synthesis to reach a certain terpene synthase 
activity. Typically, emissions of terpenoids can be detected hours after the stress 
impact and the emissions peak 24–48 h after the impact (Fig. 2, Pazouki et al. 
2016). On the other hand, when the stress is relieved, the emissions gradually 
decrease, reaching the initial non-induced level in a few days after the stress relief 
(Fig. 2a). This reduction is a characteristic feature to induced emissions and con-
trasts to constitutive emissions. Although the rate of constitutive emissions can 
also be affected by stress, typically negatively the level of constitutive emissions 
almost never reaches zero.
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2.3  Relationships Among Constitutive and Stress-Induced 
Emissions

As noted above, constitutive emissions are present only in several plant species, 
while induced emissions can be elicited in all species, including the constitutive 
emitters. Typically, the composition of induced emissions is different from con-
stitutive emissions. For instance, in constitutively isoprene-emitting deciduous 
oak Quercus robur, infection by oak powdery mildew (Erysiphe alphitoides) 
results in emissions of mono- and sesquiterpenes (Fig. 3). Analogously, infec-
tion of the constitutively isoprene-emitting poplar (Populus spp.) with the rust 
fungus Melampsora larici-populina, results in mono- and sesquiterpene emis-
sions (Fig. 4).

In the case of constitutive monoterpene emitters, an environmental or a biotic 
stress often results in elicitation of emissions of monoterpenes different from con-
stitutively emitted monoterpenes. In particular, typical stress-elicited monoterpenes 
are ocimenes, linalool, and 1,8-cineole, while constitutive emissions are character-
istically dominated by limonene and pinenes (Staudt and Bertin 1998; Niinemets 
et al. 2002b). Importantly, in constitutive storage emitters, stress-induced monoter-
pene emissions reflect de novo synthesis of volatiles and scale similarly with light 
and temperature as the emissions in non-storage emitters (Niinemets et al. 2010a, 
b). In addition to monoterpenes, stress often results in elicitation of emissions of 
sesquiterpenes and homoterpenes 4,8-dimethylnona-1,3,7-triene (DMNT) and 
4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) that are not observed in constitu-
tive emissions (e.g., Niinemets et  al. 2010b; Staudt and Lhoutellier 2011; Tholl 
et al. 2011).

In both of the biotic stress case studies highlighted here, the constitutive isoprene 
emissions decreased in pathogen-infected leaves (Figs.  3 and 4), and analogous 
negative relationships between induced and constitutive emissions have been dem-
onstrated in the case of other stresses as well (e.g., Kleist et al. 2012 for heat stress). 
Overall, positive stress dose vs. induced emission relationships have been observed 
for several abiotic stresses such as frost and heat stress (Copolovici et al. 2012) and 
ozone stress (Beauchamp et al. 2005). Although biotic impacts have been consid-
ered to be hard to quantify (Niinemets et  al. 2013), quantitative stress dose vs. 
induced emission responses have been observed for several biotic stresses such as 
herbivory (Fig. 2) and fungal pathogen infections (Figs. 3 and 4). The key issue with 
the biotic stresses seems to be how to quantify the severity of biotic stress (Copolovici 
and Niinemets 2016), but once the biotic stress severity has been properly character-
ized, it becomes clear that the rate of emission of volatile organic compounds scales 
with stress severity similarly to abiotic stresses (Niinemets et al. 2013; Copolovici 
and Niinemets 2016).
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Fig. 3 Oak powdery mildew (Erysiphe alphitoides) is a major pathogen infesting pedunculate oak 
(Quercus robur) all over Europe. The visual damage symptoms can be detected through the grow-
ing season in young oak trees (a), and in late summer and autumn in old plants (b). Erysiphe 
alphitoides infections are associated with reduction of constitutive emissions of isoprene (c) and 
elicitation of emissions of monoterpenes (d), sesqui- and homoterpenes (data not shown) and 
green leaf volatiles (e) ((c–e) Modified from Copolovici et al. 2014b). Open symbols denote non- 
infected leaves
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Fig. 4 Poplar (Populus spp.) is the telial host for the widespread rust fungus Melampsora larici- 
populina, infections of which are initially associated with diffusely spread yellow spots (a), fol-
lowed by extensive leaf yellowing and necrosis and premature leaf senescence encompassing large 
parts of the canopy (encircled area in b). Melampsora larici-populina infection reduces constitu-
tive emissions of isoprene (c) and induces emissions of monoterpenes (d), sesqui- and homoter-
penes (data not shown) and green leaf volatiles (e) in an infection-dependent manner (Jiang et al. 
2016b). Open symbols refer to emissions from leaves without visible signs of infection. Pictures 
(a) and (b) are for P. laurifolia and data (c–e) for P. balsamifera var. suaveolens
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3  Ecosystem Services and Impacts of Plant Volatiles

3.1  Biological Role of Plant Volatiles in Ecological Processes

The biological role of constitutive emissions of isoprene and monoterpenes is not 
yet fully clear, but there is increasing evidence that these compounds have antioxi-
dative and/or membrane-stabilizing properties (Sharkey et al. 2001; Loreto et al. 
2004; Vickers et al. 2009; Peñuelas and Staudt 2010), and it has been postulated that 
they play an important role in enhancing the abiotic stress resistance in species 
emitting them (Vickers et al. 2009; Possell and Loreto 2013). Furthermore, volatiles 
released from constitutively emitting species can be taken up from the ambient air 
by neighboring non-emitting species (Copolovici et  al. 2005; Noe et  al. 2008; 
Himanen et al. 2010). This can enhance the stress resistance of non-emitters, result-
ing in an overall increase in ecosystem stress resistance. Such an increase of ecosys-
tem stress resistance is the key ecological service which allows for maintenance of 
all other well-recognized ecosystem services provided by healthy ecosystems.

While the constitutive emissions can provide certain protection against chronic 
mild abiotic stresses that do not lead to induction of stress volatiles, once induced, 
chemically similar induced volatiles can also directly participate in stress protection 
during short-term severe stresses that trigger their emission. However, more impor-
tantly, stress-elicited volatiles play various functions in communication among 
plants and plants and other organisms (Dicke and Baldwin 2010; Holopainen et al. 
2013; Blande et al. 2014). In plants, stress-induced volatiles serve as infochemicals 
eliciting stress response pathways, leading to plant acclimation to the altered envi-
ronmental conditions and priming defenses against herbivore and pathogen attacks 
in leaves and neighboring not yet stressed plants (Dicke and Baldwin 2010; Peng 
et al. 2011). Such a defense priming can again augment the whole ecosystem resis-
tance to both abiotic and biotic stresses. Furthermore, herbivory-induced volatiles 
serve as infochemicals for the enemies of herbivores, and thus, the release of attrac-
tants to predatory and parasitic insects can importantly reduce the spread of herbi-
vores (D’Alessandro et al. 2006; Dicke and Baldwin 2010) and, thus, provides a 
further important means for enhancing the resilience of ecosystems.

3.2  Plant Volatiles in Broad-Scale Ecological Processes

Apart from the biological role of plant-emitted volatiles, plant-generated volatiles 
play important roles in large-scale regional and global processes. The global amount 
of emitted biogenic volatiles has been estimated to be roughly 1.1 Pg yr−1 (equiva-
lent to ca. 0.84 Pg C yr−1) (Guenther et al. 2012). Thus, the biogenic release of trace 
gases exceeds the anthropogenic release by more than a factor of ten (Guenther 
et  al. 2012). Despite only certain species are capable of constitutive isoprenoid 
emissions, many of these species are widely distributed, often being the dominating 
plant species in given ecosystems. In fact, global plant emissions are currently 
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derived using species-specific emission potentials obtained by extensive screening 
studies (e.g., Karlik and Winer 2001; Simon et al. 2006; Keenan et al. 2009; Llusià 
et al. 2010, 2014). The emphasis in these screening studies has been on constitutive 
emissions, and thus, global emission estimates are mainly based on constitutive 
emitters (Guenther et al. 2012).

Indeed, constitutively emitted isoprene is the most important plant-generated 
volatile compound with the global source strength predicted to be ca. 550 Tg yr−1 by 
different models (Arneth et al. 2008; Guenther et al. 2012; Guenther 2013b). While 
different global emission models based on profoundly different emission algorithms 
converge to a similar value of global isoprene emission, due to uncertainties in the 
share of storage vs. de novo emissions and constitutive vs. stress-induced emissions, 
the model estimates are more variable for mono- and sesquiterpenes than for iso-
prene (Arneth et al. 2008). Based on empirical model approaches, total emissions of 
ca. 160 Tg yr−1 for mono- and ca. 30 Tg yr−1 for sesquiterpenes have been estimated 
(Guenther et al. 2012). The rest of global BVOC emission source strength of ca. 0.4 
Pg yr−1 is mainly made up of oxygenated compounds, dominated by methanol, etha-
nol, acetone, and acetaldehyde (Guenther et al. 2012).

The largest uncertainty in the global volatile emission estimates seems to be the 
lack of proper consideration of stress-induced emissions. As shown above, exposure 
to stress conditions can turn a constitutively non-emitter or moderate emitter species 
into a strong emitter of mono- and sesquiterpenes. This might mean that the overall 
capacity of vegetation to emit volatiles has been strongly underestimated. Of course, 
the stress-elicited emissions occur only when there is a stress and emissions return 
to background levels when the stress is relieved (e.g., Fig. 2), but it is relevant to 
consider that these relatively short-termed emission peaks might not only impor-
tantly contribute to the total emission amount, but alter the timing of peak atmo-
spheric concentrations of volatiles with major consequences for large-scale 
physiological and atmospheric processes.

3.2.1  Role of Volatiles in Altering Atmospheric Reactivity

Due to the large emissions, biogenic volatiles play major roles in biosphere- 
atmosphere processes. The chemical reactivity of non-oxygenated non-saturated 
compounds, in particular, non-oxygenated isoprenoids, is much larger than the reac-
tivity of oxygenated volatiles, and thus, the role of different compound classes, 
oxygenated vs. non-oxygenated non-saturated compounds, in large-scale processes 
is different. Highly reactive compounds play a major role in ozone formation and 
quenching reactions in the troposphere. In particular, in a human-polluted air 
enriched with NOx (sum of NO and NO2), plant-generated volatiles contribute to 
photochemical ozone production and, in fact, control the rate of ozone formation in 
the atmosphere (Chameides et al. 1992; Fehsenfeld et al. 1992; Fuentes et al. 2000). 
In contrast, in non-polluted air with low NOx, reactive hydrocarbons contribute to a 
reduction of ozone concentrations (Lerdau and Slobodkin 2002; Atkinson and Arey 
2003; Loreto and Fares 2007).
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The influence of elevated ozone concentration on photosynthetic productivity 
and volatile emissions can be different over the short- and the long-term. Increases 
in ozone concentration can strongly reduce plant photosynthetic productivity, but 
constitutive volatile emission itself can initially increase under moderately elevated 
atmospheric ozone concentration (Calfapietra et al. 2013 for a review). This might 
have global consequences as a reduction in photosynthetic CO2 fixation can speed 
up elevation of atmospheric CO2 concentration, and this in turn can increase the rate 
of temperature increase (Sitch et al. 2007). Due to the positive effect of temperature 
on volatile emissions, this is further expected to enhance volatile release and ozone 
formation and reduce carbon gain even more (Lerdau 2007; Sitch et  al. 2007). 
Furthermore, the concentration of ozone, significantly driven by the concentration 
of reactive volatiles, is itself an important greenhouse gas that can contribute to 
global warming (Shindell et al. 2006), amplifying these patterns.

A severe ozone stress results in a reduction of constitutive volatile emissions as 
well (Calfapietra et al. 2013 for a review), but it also leads to elicitation of induced 
emissions in both constitutive emitters and non-emitters (Beauchamp et al. 2005; 
Hartikainen et al. 2009). Among the induced volatiles, mono- and sesquiterpenes 
are typically more reactive in ozone formation reactions than isoprene (Calogirou 
et al. 1996) and, thus, could temporarily even speed up ozone formation, especially 
because these emissions are induced in all species in vegetation. So far, the under-
standing of ozone-dependent modifications in constitutive and induced emissions is 
only rudimentary, limiting quantitative assessment of species physiological 
responses in ozone formation potential of vegetation. Nevertheless, the available 
evidence suggests that the use of static emission factors estimated from screening 
studies that have considered only constitutive emitters and omission of physiologi-
cal modifications in volatile emissions driven by ozone can lead to major uncertain-
ties in predicting tropospheric ozone formation and quenching.

3.2.2  Volatiles in Altering Solar Radiation Scattering and Penetration 
and Ambient Temperature

Upon oxidation, the volatility of isoprenoids dramatically decreases, implying that 
they partition much more strongly to the liquid and solid phases than to the gas 
phase, creating secondary organic aerosols (SOA)(Kulmala et al. 2004a; Chen and 
Hopke 2009; Mentel et al. 2009; Kirkby et al. 2016). The presence of SOA decreases 
atmospheric clearness, thereby potentially reducing solar radiation penetration, but 
also increasing light scattering and, thus, the diffuse to total solar radiation ratio 
(Fig. 5, Malm et al. 1994; Farquhar and Roderick 2003; Misson et al. 2005). Because 
diffuse radiation penetrates deeper into the plant canopies and results in a more 
uniform distribution of solar radiation (Cescatti and Niinemets 2004), increases in 
diffuse to total solar radiation ratio enhance vegetation productivity (Gu et al. 2002, 
2003; Mercado et al. 2009). Due to strong light effects on constitutive de novo vola-
tile emissions, greater canopy light interception is expected to directly enhance 
these emissions (Fig. 5). In fact, the emissions are expected to increase even more 
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Fig. 5 Regional and global feedback relationships between constitutive biogenic volatile organic 
compound (BVOC) emissions and climatic drivers. The rates of BVOC emission are controlled by 
environmental drivers, whereas environmental drivers, in turn, are modified by BVOC emission 
generating feedback loops. There are two main types of BVOC emitters, the storage emitters and 
the de novo emitters (Grote et al. 2013; Copolovici and Niinemets 2016). In the storage emitters, 
BVOC is released from large storage pools, and the emissions depend only on temperature, 
increasing exponentially with increasing temperature (Niinemets et al. 2010b; Grote et al. 2013). 
In the case of de novo emitters, the emissions rely on immediately synthesized BVOCs and depend 
both on light intensity and temperature. These emissions increase asymptotically with increasing 
light intensity and increase exponentially with temperature up to an optimum temperature and 
decline thereafter (Niinemets et al. 2010b; Grote et al. 2013). For simplicity, the figure shows only 
the environmental controls on BVOC emission for de novo emitters. In the case of light, light 
interception by plant canopies depends on total solar radiation flux and the distribution of solar 
radiation between diffuse and direct components. Diffuse light drives canopy photosynthesis more 
efficiently because of its penetration to deeper canopy layers and resulting greater uniformity of 
radiation field and total light interception (Gu et al. 2003). Atmospheric volatiles enhance concen-
tration of secondary organic aerosols (SOA) that increase the radiation scattering, but SOA also 
moderately reduce total radiation penetration through atmosphere (Spracklen et al. 2008; Chen and 
Hopke 2009; Kulmala et al. 2013). Increasing concentrations of SOA, in turn, enhance the concen-
tration of cloud condensation nuclei (CCN) thereby contributing to enhanced cloudiness and thus, 
increasing radiation scattering too, but CNN more strongly reduce total solar radiation flux pene-
trating through the atmosphere to the vegetation (Roderick et al. 2001; Huff Hartz et al. 2005; 
Spracklen et  al. 2008; Kulmala et  al. 2013). The other key environmental driver, temperature, 
depends on total solar radiation flux, but can also directly depend on CCN as the result of reduced 
thermal radiation losses to the space, but this effect is more relevant at night and is therefore not 
shown in the figure. In addition to the feedbacks shown, more complex feedbacks can operate 
through modifications in atmospheric CO2 and water vapor concentrations (e.g., Kulmala et al. 
2013) as well as through induction of BVOC emissions upon abiotic and biotic stresses, severity 
of which depends on environmental drivers (section “Constitutive and Stress-Induced Volatile 
Emissions”)
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than the rate of photosynthesis, because de novo volatile emissions are more light- 
limited than photosynthetic carbon fixation, typically saturating at higher light 
intensities than photosynthesis (Niinemets et al. 1999, 2015). Although the connec-
tion between photosynthesis and storage emissions is less straightforward, enhanced 
carbon availability can also enhance the emissions in the storage emitters by increas-
ing the size of the storage pools (Blanch et al. 2007, 2009, 2011).

Once formed in the atmosphere, the size of SOA particles increases in time due 
to condensation of atmospheric organics on particle surface (Kulmala et al. 2004a; 
Kirkby et al. 2016). These bigger particles can also serve as cloud condensation 
nuclei (CCN), especially if their hygroscopicity also increases as the result of fur-
ther compound oxidations on particle surface or as more hydrophilic compounds 
condense onto the particle surface (Engelhart et  al. 2008; Kulmala et  al. 2013). 
Greater CCN concentrations imply a greater condensation sink and potentially 
higher cloudiness that can dramatically increase the diffuse to total solar radiation 
ratio but also strongly reduce the total solar radiation penetration (Spracklen et al. 
2008; Still et al. 2009; Kulmala et al. 2013). Thus, although radiation penetration 
into deeper canopy layers is increased by enhanced cloudiness, the reduction in total 
radiation intensity reaching to the top of the vegetation is the dominating factor, 
ultimately reducing the vegetation productivity and the rate of volatile emission 
(Fig.  5). Furthermore, cooling due to increased cloudiness also directly reduces 
both de novo and storage volatile emissions (Fig. 5).

As the result of volatile effects on SOA and CCN concentrations, multiple feed-
back loops operate between solar radiation, temperature, volatile emission, and pro-
ductivity at regional and global scales, and the overall effect of volatiles on climate 
depends on the relative significance of these loops (Fig. 5, Kulmala et al. 2013). In 
particular, both rising SOA concentrations and greater cloudiness can reduce the 
surface temperature, and this can directly reduce volatile formation due to the physi-
ological controls on the emission rates, and this, in turn, is expected to inhibit fur-
ther SOA and CCN formation (Fig. 5, Kulmala et  al. 2013). On the other hand, 
enhanced SOA concentrations increase the fraction of diffuse radiation, thereby 
increasing the rate of volatile release and further enhancing SOA and CCN forma-
tion (Fig.  5, Kulmala et  al. 2013). In contrast, dramatic reductions in total solar 
radiation by enhanced cloudiness are expected to lead to decreased volatile forma-
tion, thereby feedback-inhibiting SOA and CCN formation. Testing the quantitative 
significance of these feedback loops requires a combination of long-term data with 
regional- and global-scale modeling. The first such modeling exercise based on 
15 years of measurements of vegetation carbon fixation fluxes and 6 years of mea-
surements of emission fluxes of volatile organic compounds in a boreal forest eco-
system suggests that such feedback loops do indeed operate in nature (Kulmala 
et al. 2013). Due to both physiological and acclimation responses of volatile emis-
sions to changes in environmental drivers, quantitative prediction of the feedback 
responses is complex, and clearly, more such case studies are needed to scale up to 
other regions and the globe and to quantitatively evaluate the role of volatile emis-
sions on solar radiation penetration and surface temperature.
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3.2.3  Volatiles as Modifiers of the Lifetime of Greenhouse Gases

As demonstrated above, reactive plant volatiles in polluted atmospheres can exacer-
bate the plant abiotic stress due to enhancing the key atmospheric pollutant, ozone, 
concentrations, while reactive volatiles in non-polluted atmospheres can reduce 
ozone concentrations. Thus reactive plant hydrocarbons can alter the rate of global 
warming by changes in vegetation CO2 fixation capacity and, thus, by long-term 
modifications in atmospheric CO2 concentration. Furthermore, ozone itself is a 
strong greenhouse gas (section “Constitutive Emissions of Specialized Volatiles”, 
Shindell et al. 2006). In addition, alteration in solar radiation intensity, diffuse to 
total solar radiation ratio, and ambient temperature due to modifications in SOA and 
CCN concentrations directly affect the vegetation carbon fixation capacity and, 
thus, can strongly alter atmospheric CO2 concentration as well, creating further 
major feedback loops (Kulmala et al. 2004b, 2013).

Apart from the highly reactive compounds, less reactive oxygenated hydrophilic 
compounds such as aldehydes, alcohols, and ketones, including, for instance, lipox-
ygenase pathway volatiles, but also saturated oxygenated volatiles, can also parti-
tion to particle phase and participate in SOA and CCN formation (Mentel et  al. 
2009). In addition, several of these volatiles can react with atmospheric OH radi-
cals, reducing atmospheric OH radical concentration (Fall 2003; Sinha et al. 2010; 
Nölscher et al. 2012). Given that the reaction with OH radicals is the primary pro-
cess reducing the atmospheric concentrations of the key greenhouse gas methane, a 
reduction of OH concentration due to biogenic volatiles increases the methane life-
time in the atmosphere (Jacob et al. 2005; Ashworth et al. 2013; Voulgarakis et al. 
2013), thereby significantly contributing to global warming. In particular, plant- 
generated emissions of methanol, the oxygenated volatile with the greatest global 
source strength (Stavrakou et al. 2011; Guenther et al. 2012), can potentially con-
tribute to the greatest degree to the increases in methane lifetime.

3.3  Trace-Gas-Driven Ecosystem Services

The vegetation capacity to emit volatiles has not generally been considered as an 
ecosystem service, and overall, the atmosphere is often not considered as part of 
ecosystem services (Cooter et al. 2013). In fact, due to the contribution of volatiles 
to ozone formation in NOx-polluted atmospheres, volatile emission has even been 
considered an ecosystem “disservice” (Russo et al. 2016). However, from a biologi-
cal perspective, plants can provide several key ecosystem services due to their trace 
gas emission. Although these ecosystem services are little-recognized in the com-
munity, they can have profound impacts on ecosystem performance. Among these 
biological services are:

• Direct enhancement of plant abiotic stress resistance by directly quenching reac-
tive oxidative species generated in plant membranes upon abiotic stress (Vickers 
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et al. 2009) or more specifically, improving heat stress tolerance by increasing 
membrane stability (Velikova et al. 2012; Sun et al. 2013)

• Increases in ecosystem resilience through communication among plants and with 
other organisms (e.g., plants and herbivore enemies), thereby ameliorating the 
biotic and abiotic stress impacts

• Enhancement of ecosystem capacity to uphold diversity, in particular, to main-
tain the integrity of multitrophic interactions

Although often “hidden,” these services are crucial for stability and performance 
of ecosystems, and impairing some of these services can result in drastic deteriora-
tion of other ecosystem services. For instance, the carbon gain of chemically less 
diverse ecosystems such as monospecific tree plantations or crop fields can be much 
more vulnerable to deleterious pest attacks than that of more diverse ecosystems 
(Lerdau and Slobodkin 2002; Altieri and Nicholls 2004; Tooker and Frank 2012). 
This is highly relevant from the perspective of the “traditionally” perceived ecosys-
tem services as pulpwood production of tree plantations or yield of crop fields, both 
of which are directly dependent on vegetation carbon gain.

From the perspective of atmospheric chemistry and large-scale biosphere- 
atmosphere processes, the balance between ecosystem service and “disservice” of 
volatile emissions importantly depends on the relative extent to which different 
atmospheric processes are affected by volatiles. The balance between different pro-
cesses strongly varies regionally and depends on human effects on atmosphere. 
While in urban NOx-polluted atmospheres, volatiles emitted by vegetation contrib-
ute to elevated ozone concentration and photochemical smog, in remote non- 
polluted atmospheres with low NOx levels, plant-generated volatiles are expected to 
reduce atmospheric oxidant concentrations, including ozone concentrations (Lerdau 
and Slobodkin 2002). Analogously, reduction in atmospheric clearness and altera-
tion of ambient air particle concentration by volatile contribution to SOA formation 
could be considered a disservice in urban habitats (Cooter et al. 2013), although it 
might also contribute to cooling of urban environments (Arneth et al. 2009).

From a global perspective, plant volatiles can provide three key ecosystem 
services:

• Improvement of ecosystem capacity to fix carbon by altering diffuse/direct radia-
tion due to SOA formation

• Cooling of environment through production of SOA and CCN
• Reduction of the rate of global climate change through improved carbon gain 

and reduced transmission of solar radiation

The ultimate significance of these services depends on the relative magnitude of 
different environmental changes and volatile emissions as connected through mul-
tiple feedback loops (Fig. 5). It is, furthermore, highly likely that globally changing 
environmental drivers and CO2 concentration alter the quantitative significance of 
the feedback loops due to the modifications in plant stress status, carbon fixation, 
and trace gas release as discussed in the next section.
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3.4  Plant Stress, Volatile Emissions, and Trace-Gas-Dependent 
Ecosystem Services in Changing Climates

Climate change is expected to result in more severe heat stress worldwide (Kirtman 
et al. 2013; Field et al. 2014). In addition, climate change alters the distribution of 
precipitation with some areas predicted to become drier and some areas wetter 
(Kirtman et  al. 2013; Field et  al. 2014). Thus, the overall abiotic stress level is 
expected to increase in the future, but prediction of how enhanced stress level modi-
fies volatile emission and ecosystem services is complicated. Increases in tempera-
ture can initially result in enhanced emissions of constitutive de novo emissions 
until the physiological optimum is exceeded (Loreto et al. 1998; Staudt and Bertin 
1998; Rasulov et al. 2015). Beyond the physiological optimum, the rate of constitu-
tive emissions decreases, but the stress volatile emissions are induced (Staudt and 
Bertin 1998; Kleist et  al. 2012). These emissions under heat stress have been 
detected at the ecosystem scale (Karl et  al. 2008), demonstrating that the stress 
emissions do contribute to large-scale atmospheric processes. Given that the stress 
emissions are induced in all plant species, more frequent heat waves in future cli-
mates can strongly enhance the overall release of volatiles. However, the quantita-
tive information on the kinetics of elicitation of emissions under heat stress and 
interspecific variability of the capacity for heat-dependent release of stress volatiles 
is currently very limited, hindering scaling up from case studies to whole ecosys-
tems, regions, and globe.

Global changes in environmental drivers have to be tempered in light of simulta-
neous modifications of ambient CO2 concentrations. Elevation of atmospheric CO2 
concentration itself can improve plant carbon gain in drier climates due to reduction 
of the diffusion limitations on the CO2 pathway from the ambient air through sto-
mata and mesophyll to the chloroplasts where photosynthesis takes place (Niinemets 
et al. 2011; Flexas et al. 2016). In addition, elevated CO2 can protect leaves from the 
heat stress, possibly by increasing leaf sugar concentrations that enhance the heat 
stability of cell and chloroplast membranes (Darbah et al. 2010; Sun et al. 2013). In 
the case of constitutive isoprene emissions, however, several studies have demon-
strated that the capacity for isoprene emission decreases with a long-term increase 
in ambient CO2 concentration similarly to the response of isoprene emissions to 
rapid changes in CO2 concentration (Niinemets et  al. 2010a; Possell and Hewitt 
2011). Such an acclimatory response would mean that the elevation of CO2 concen-
tration impairs the heat stress protection by isoprene. However, in other studies, 
plants grown under elevated CO2 had greater isoprene emission potential and 
improved heat stress resistance (Peñuelas and Staudt 2010; Sun et al. 2012, 2013). 
These controversial responses are evident when comparing model projections of 
emissions, which diverge greatly between models under future climate change 
(Keenan et al. 2009). This implies that prediction of constitutive emissions in future 
atmospheres is subject to large uncertainties and calls for more work on acclimation 
responses of constitutive emissions.
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Apart from abiotic stresses, global environmental change is predicted to result in 
increasingly more frequent and severe pest and pathogen attacks (DeLucia et  al. 
2008; Chakraborty 2013). Such a greater biotic stress pressure can result from a 
reduction of constitutive defenses of vegetation due to reduced photosynthetic car-
bon availability under more severe abiotic stresses, shorter life cycles of current 
pests, and pathogens in hotter climates as well as invasion of new pests and patho-
gens facilitated by global trade and travel (Fig.  6, Vanhanen 2008; Huang et  al. 
2010; Gutierrez and Ponti 2014). Although biotic stress itself typically elicits vola-
tile emissions for a relatively short period of time (Fig. 2), as the result of greater 
biotic stress pressure, the frequency of multiple sequential and simultaneous biotic 
attacks is likely to increase (Fig. 6). Thus, in the future climates, the emissions from 
biotic stresses are expected to continue longer and contribute to a larger extent to the 
overall emission of plant-produced volatiles.

The available evidence collectively suggests that global change enhances emis-
sions induced by both abiotic and biotic stresses and might reduce constitutive 
emissions. Given that induced emissions occur in all plant species, vegetation trace 

Fig. 6 Illustration of single and multiple biotic infections of A. incana leaves in the field. Mass 
infestations by the alder leaf beetle (Agelastica alni, a) and alder rust (Melampsoridium hiratsuka-
num, b, c) are frequently observed in European alder stands, and one might often also encounter 
combined infestations by both A. alni and M. hiratsukanum (d). In particular, the eastern Asian rust 
M. hiratsukanum that was first observed to lead to mass alder infestation in the mid-1990s in north-
ern Europe (Põldmaa 1997; Hantula et al. 2009) has spread over much of the Europe by now, and 
infestations involving all alder trees in a given stand are common. Typically, the signs of infesta-
tions, orange urediniospores on the lower leaf surface, are observed in late summer and ultimately 
result in premature leaf senescence, extensive necrosis, and the leaf drying out with characteristic 
inward rolling of leaf margins (c)
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gas emissions are expected to increase. However, due to stochastic nature of stress 
events, the emission kinetics of induced emissions is inherently much less predict-
able than the kinetics of constitutive emissions (Arneth and Niinemets 2010). Such 
stochasticity poses a challenge for model approaches trying to evaluate the influ-
ence of climate change on the feedback loops between constitutive and stress- 
induced volatile emissions, SOA, CCN, plant photosynthetic production, diffuse/
direct radiation ratio, and warming and elevated CO2 (Fig. 5). Future experimental 
work should fill the gaps in quantitative understanding of how stress-elicited vola-
tile emissions scale with the severity of different abiotic and biotic stresses, how 
stress and altered atmospheric CO2 modify constitutive emissions, and what is the 
biological variability in these responses. Armed with this knowledge, the  community 
can start targeting the key research questions on the extent to which plant trace gas 
release can reduce the effects of climate change on vegetation and the extent to 
which it can reduce the rate of climate change.

4  Concluding Perspectives

Several widespread plant species are strong constitutive emitters of volatile isopren-
oids such as isoprene and monoterpenes, and all plants can be induced to release 
volatiles upon abiotic and biotic stresses. These emissions play a variety of biologi-
cal and biogeochemical roles, overall improving directly or/and indirectly the stress 
resistance of vegetation and altering the ambient environment at local, regional, and 
global scales. From a local perspective, release of volatiles can be considered both 
ecosystem service or ecosystem disservice depending on the human impact on 
atmospheric composition. In atmospheres polluted with nitrogen mono-oxides, 
plant volatiles contribute to ozone formation in the atmosphere, and thus, volatile 
release adversely affects the environment. In clean atmospheres, however, plant 
volatiles reduce atmospheric ozone levels and thus contribute to atmospheric cleans-
ing. Furthermore, by enhancing vegetation stress resistance, the volatiles contribute 
to the maintenance of ecosystem integrity and, thus, contribute to all the well- 
perceived ecosystem services such as the capacity of forest ecosystems to provide 
wood and agroecosystems to provide agricultural products. In addition to control-
ling atmospheric ozone levels, plant volatiles provide a number of other key regulat-
ing services of local to global importance. In particular, plant volatiles alter 
atmospheric clearness due to the effects of volatiles on atmospheric particle concen-
trations and cloudiness. Modifications in atmospheric clearness in turn alter the 
ratio of diffuse to total solar radiation and atmospheric temperature with ultimate 
impacts on global vegetation productivity, rate of change in atmospheric CO2 con-
centration, and rate of global change. In future hotter more stressful environments, 
stress-induced volatile emissions can be particularly relevant in driving the global 
feedbacks between volatile production, modifications in atmospheric oxidative sta-
tus, clearness, and global change. Given that the role of volatiles in global coupled 
vegetation-climate models is still largely unaccounted, I argue that the plant/
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atmosphere interface should be a high priority research target in future climate 
change studies.
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