
Proposition of a Parallel and Distributed
Algorithm for the Dimensionality Reduction

with Apache Spark

Abdelali Zbakh1(&) , Zoubida Alaoui Mdaghri1,
Mourad El Yadari2, Abdelillah Benyoussef1, and Abdellah El Kenz1

1 Faculty of Sciences, University Mohammed V, Rabat, Morocco
zbakhabdou@gmail.com,zoubidaalaouimdaghri@gmail.com,

benyous.a@gmail.com, akenzele@yahoo.com
2 University Moulay Ismail, Meknes, Morocco

mouradelyadari@gmail.com

Abstract. In recent years, the field of storage and data processing has known a
radical evolution, because of the large mass of data generated every minute. As a
result, traditional tools and algorithms have become incapable of following this
exponential evolution and yielding results within a reasonable time. Among the
solutions that can be adopted to solve this problem, is the use of distributed data
storage and parallel processing. In our work we used the distributed platform
Spark, and a massive data set called hyperspectral image. Indeed, a hyper-
spectral image processing, such as visualization and feature extraction, has to
deal with the large dimensionality of the image. Several dimensions reduction
techniques exist in the literature. In this paper, we proposed a distributed and
parallel version of Principal Component Analysis (PCA).

Keywords: Distributed PCA � BIG DATA � Spark platform � Map-Reduce
Dimension reduction � Hyperspectral data

1 Introduction

The data collected today by the sensors increases rapidly and especially the hyper-
spectral data, which allow to give more physical information on the observed area.

The hyperspectral image is an image that represents the same scene following the
hundreds of contiguous spectral bands in various wavelength ranges. The data of a
hyperspectral image are organized in the form of a cube of three dimensions: Two
dimensions denoted x and y represent the spatial dimensions and a spectral dimension
denoted z (see Fig. 1) [1].

It will be noted that there are multispectral images composed of a dozen bands,
while the hyperspectral image exceeds a hundred bands, which implies a significant
requirement in terms of data processing and storage.

Unlike the classic color image, the hyperspectral image gives more physical
information about each observed object of the scene. Thus the technique of

© Springer International Publishing AG, part of Springer Nature 2018
M. Ben Ahmed and A. A. Boudhir (Eds.): SCAMS 2017, LNNS 37, pp. 490–501, 2018.
https://doi.org/10.1007/978-3-319-74500-8_46

http://orcid.org/0000-0001-9817-6124
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74500-8_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74500-8_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74500-8_46&domain=pdf

hyperspectral imaging is used in several fields, for example: geology, agriculture, town
planning, forestry, in the military field.

To prepare hyperspectral image for visualization or further analysis such as clas-
sification, it is necessary to reduce the dimensions of the image to dimensions that can
be analyzed by humans. Several dimensions reduction techniques exist. We find iter-
ative versions and also parallel ones [2].

In this paper, we will propose a distributed and parallel version of the PCA
dimension reduction algorithm that will be tested on the Spark platform using the
MapReduce paradigm.

The rest of this paper is organized as follows: In Sect. 2, we will make an overview
of the distributed parallel platforms most known in the field of BIG DATA processing.
Thereafter, in Sect. 3, we will see the classic PCA dimension reduction technique and
our proposed parallel distributed PCA. The tests of the proposed algorithm are in
Sect. 4. Finally, we finish this paper with a conclusion and the future work.

2 Parallel and Distributed Platforms

In order to deal with BIG DATA such as our case hyperspectral images, we will use
parallelized and distributed calculations in order to obtain results in a reasonable time.

Platforms that perform parallel distributed processing are multiplying in recent
years. The two most recognized tools are Apache Hadoop and Apache Spark.

2.1 Apache Hadoop

Hadoop is among the most widely used, distributed platforms in the BIG DATA
domain for storing data with his file manager named HDFS, and processing data with
MapReduce on thousands of nodes [3]. (see Fig. 2).

Fig. 1. Acquisition and decomposition of hyperspectral image

Proposition of a Parallel and Distributed Algorithm 491

2.2 Apache Spark

Apache Spark is an open source distributed platform for faster and sophisticated
processing of BIG DATA, developed by AMPLab, from Berkeley University in 2009
and became an open source Apache project in 2010 [4].

Compared to other BIG DATA platforms, Apache Spark has many advantages:

• At storage levels: Spark allows to store the data in memory in the form of Resilient
Distributed Data Set (RDD)

• At processing level: Spark extend Hadoop’s Map-Reduce programming that works
on disk to process RDDs in memory, allowing it to run programs in memory, up to
100 times faster than Hadoop MapReduce and in disk 10 Times faster

• In addition to the operations that exist in Hadoop (MapReduce), Apache Spark
offers the possibility to work with SQL queries, streaming, graph processing,
Learning machine… (see Fig. 3)

Fig. 2. HDFS abstraction of physical storage

Fig. 3. Spark framework libraries

492 A. Zbakh et al.

3 Dimensionality Reduction

Now to understand the information hidden in the hyperspectral image cube from
human, or extract a useful part of the image, we often resort to visualization.

However, narrow human perception cannot visualize more than 3 hyperspectral
bands. So before starting the visualization of our hyperspectral image, we must start by
reducing the spectral bands to 3 without losing the quality of the information.

In the last few years, several techniques of dimensionality reduction have been
made to reduce the hyperspectral data to a space of lower dimension, important
examples include: ISOMAP, LLE, Laplacian eigenmap embedding, Hessian eigenmap
embedding, conformal maps, diffusion maps and Principal Components Analysis
(PCA) [5].

In the following, we will use PCA, the most popular technique in several domains:
reduction of dimensionality, image processing, visualization of data and discovery of
hidden models in the data [6].

3.1 Classic PCA Algorithm

Principal Component Analysis is a technique of reducing dimensions of a matrix of
quantitative data. This method allows the dominant profiles to be extracted from the
matrix [7]. The description of the classical PCA algorithm is as follows:

We assume that our hyperspectral image is a matrix of size (m = LxC, N) where L
is the number of lines in the image, C is the number of columns and N is the number of
bands with m � N.

X
X11 � � � X1N
..
. . .

. ..
.

Xm1 � � � XmN

2
4

3
5

Each line of the matrix X represents the pixel vector. For example the first pixel is
represented by the vector: [X11, X12,…, X1N], with X1j is the value of the pixel 1
taken by the spectrum of number j.

Each column of the matrix X represents the values of all the pixels of the image
taken by a spectrum. For example Xi1 = [X11, X21,…, Xm1] represents the data of
the image taken by the spectrum 1.

To apply the PCA algorithm to the hyperspectral image X, the following steps are
followed:

• Step 1: Calculate the reduced centered matrix of X denoted: XRC

XRCij ¼ Xij� XJ

rj
for each i ¼ 1. . .mand for each j ¼ 1. . .N ð1Þ

WithXJ ¼ 1
m

Xm

i¼1
Xij And rj2 ¼ 1

m

Xm

i¼1
Xij� XJ
� �2

Proposition of a Parallel and Distributed Algorithm 493

In the formula 1, XJ denoted the average of column j and rj denoted the Standard
deviation of column j.

• Step 2: Calculate the correlation matrix of size (N, N) denoted: Xcorr.

Xcorr ¼ 1
m

XRCT:XRC
� � ð2Þ

In the formula 2, XRCT:XRC denoted the matrix product between the transpose of
the matrix XRC and the matrix XRC

• Step 3: Calculate the eigenvalues and eigenvector of the Xcorr matrix denoted:
[k;V]

• Step 4: Sort the eigenvector in descending order of the eigenvalues and take the first
k columns of V ðk\NÞ

• Step 5: Project the matrix X on the vector V: U = X. V
• Step 6: use the new matrix U of size (m, k) for the visualization of the hyperspectral

image

3.2 Distributed and Parallel PCA Algorithm

Related works:
There are currently two popular libraries that provide a parallel distributed

implementation for the PCA algorithm: MLlib [8] on spark and the Mahout based on
MapReduce [9]. In the Mllib library of Spark, we find an implementation for the
parallel distributed PCA, but this implementation is done with the two languages:
Sclala and Java. No implementation is made for the Python language.

In [6], Tarek et al. have shown that these two libraries do not allow a perfect
analysis of a large mass of data and proposed a new PCA implementation, called sPCA.
This proposed algorithm has a better scaling and accuracy than these competitors.

In [2], Zebin et al. proposed a new distributed parallel implementation for the PCA
algorithm. The implementation is done using the Spark platform and the results
obtained are compared with a serial implementation on Matlab and a parallel imple-
mentation on Hadoop. The comparison shows the efficiency of the proposed imple-
mentation in terms of precision and computation time.

In the following, we will propose a new implementaion for the parallel distributed
PCA algorithm based on the Apache Spark platform using the Python programming
language and which uses the distributed Mllib matrices.

Proposed implementation:
Since the hyperspectral image is a representation of the same scene with several

spectral bands, we can decompose the hyperspectral image into several images, each
image for a given spectrum (see Fig. 4).

The classic PCA algorithm requires intensive computation because of large
hyperspectral image. We will present in this part a method of parallel distributed
implementation of the algorithm using the Spark platform.

494 A. Zbakh et al.

First, we began by transforming the X matrix (see Fig. 5a) used to represent the
hyperspectral image in the classic PCA to a vector of images denoted M, where each
column of X is represented by an image in M (see Fig. 5b).

Now, each image t of M denoted Mt is a matrix in our implementation (Represents
an RDD in parallel distributed spark programming):

Fig. 4. Representation of the hyperspectral image by several images

Fig. 5. Representation of hyperspectral image for classic PCA and distributed PCA

Proposition of a Parallel and Distributed Algorithm 495

To make a parallel distributed implementation of PCA we will use the map reduce
paradigm of spark. The proposed algorithm proceeds as follows

• Step 1: Calculate the reduced centered matrix of M:

As has been seen before, the matrix M contains several images and each image Mt

is represented by a matrix (an RDD in Spark notation) of size (L, C) where L is the
number of lines in image and C is the number of columns. Therefore, to calculate the
reduced centered matrix of M denoted MCR, a parallel distributed computation is
carried out of each image Mt (See graphical description of the algorithm in Fig. 6).

– Calculate the reduced matrix of M denoted MC:

MCtij ¼ Mtij �Mt for each i ¼ 1. . .L and for each j ¼ 1. . .C ð3Þ

withMt ¼
XL

i¼1

XC

j¼1
ð 1
LxC

x MtijÞ
In the formula 3, Mt denoted the average of image Mt

– Calculate the reduced centered matrix of M denoted MCR:

MCRtij ¼ MCtij
rt

for each i ¼ 1. . .L and for each j ¼ 1. . .C ð4Þ

Fig. 6. Calculating the average of Mt and rt of MCt with Spark

496 A. Zbakh et al.

withr2
t ¼

1
LxC

XL

i¼1

XC

j¼1
ðMtij�MtÞ2

or r2
t ¼

1
LxC

XL

i¼1

XC

j¼1
ðMCtijÞ2

In the formula 4, rt denoted the standard deviation of image t

• Step 2: Calculate the MCR correlation matrix of size (N, N) denoted: Mcorr

According to step 1, the MCR is an images vector of size N. Each image represents
a reduced centered matrix.

The next step is to calculate the correlation matrix of size (N, N), by making the
matrix product, between the vector MCRT and the vector MCR, using a distributed
parallel computation MapReduce of Spark (See graphical description of the algorithm
in Fig. 7).

Mcorr ¼ 1
LxC

MCRT:MCR
� � ð5Þ

Mcorrt;k ¼ 1
LxC

ðMCRt:MCRkÞ ð6Þ

for each t ¼ 1. . .Nand for each k ¼ 1. . .N

withMCRt:MCRk ¼
XL

i¼1

XC

j¼1
MCRtij:MCRkij

Fig. 7. Calculation of the correlation matrix with Spark

Proposition of a Parallel and Distributed Algorithm 497

To calculate the value of each Mcorrt,k (Formula 6), the image MCRt is multiplied
by the image MCRk pixel by pixel. Then we calculate the mean of result (See graphical
description of the algorithm in Fig. 8).

• Step 3: Calculate the eigenvalues and eigenvector of the Mcorr matrix: [k;V]
• Step 4: Sort the eigenvector in descending order of the eigenvalues and take the first

k columns of V (k \NÞ
• Step 5: Project the matrix X on the vector V: U = X.V
• Step 6: use the new matrix U of size (m, k) for the visualization of the hyperspectral

image

4 Experimental and Computational Details

To test the validity of the proposed algorithm on hyperspectral images using the
Apache Spark platform, we chose a set of open hyperspectral images of different sizes
(see Table 1) and we tested our serial PCA algorithm, serial PCA of the Sklearn library
of Python and parallel distributed PCA proposed on these datasets.

Fig. 8. Multiplication of two images

Table 1. Datasets

Name Spatial dimensions Hyperspectral bands Size

Dataset1 Moffett Field 500 � 500 3 5.3 MB
Dataset2 Moffett Field 500 � 500 10 17.5 MB
Dataset3 Moffett Field 1924 � 753 224 2.3 GB

498 A. Zbakh et al.

The hyperspectral image used in our experiments for the classic PCA algorithm or
the proposed PCA distributed algorithm is the Airborne Visible Infra-Red Imaging
Spectrometer (AVIRIS) Moffett Field image with 224 spectral bands in the 2.5 nm to
400 nm, which was acquired on August 20, 1992 [10].

The three algorithms are implemented in Python 3 and are executed on several
configurations (see Table 2) and the results of the experiments of PCA are given in
Table 3.

The visualization of the hyperspectral image after the application of the classic
PCA algorithm or the proposed PCA distributed algorithm is given in Fig. 9.

Table 2. Configuration parameters

Classic PCA Distributed and parallel PCA

CPU:Intel Core I5, 3.3 GHZ
RAM: 4G
OS:Ubuntu 16.04 LTS

Cluster Spark:
Master Node: 1
Slave Nodes: 4
CPU of each node:Intel Core I5, 3.3 GHZ
RAM of each node : 4G
Network speed : 100 MB/s
OS:Ubuntu 16.04 LTS

Table 3. The three most significant eigenvalues of PCA

Our serial PCA Sklearn serial PCA Proposed distributed PCA

Dataset1 1.9371026343
0.913755533084
0.149141832615

1.9371026343
0.913755533084
0.149141832615

1.9371026343
0.913755533084
0.149141832615

Dataset2 8.12709201824
0.880534232525
0.797956006441

8.12709201825
0.880534232525
0.797956006442

8.12709201825
0.880534232525
0.797956006442

Dataset3 160.638762642
28.0031335174
14.5639033111

160.638762642
28.0031335174
14.5639033111

160.638762642
28.0031335174
14.5639033111

Proposition of a Parallel and Distributed Algorithm 499

Fig. 9. Dataset Visualization,before and after application of classic PCA (our srial PCA or
Sklearn serial PCA) and the proposed Distributed PCA

500 A. Zbakh et al.

5 Conclusions

In this work, we proposed a parallel and distributed algorithm for dimensionality
reduction called PCA. The algorithm is developed in Python 3 and tested on hyper-
spectral images using the Spark platform. The results coincide with the results of
classic PCA and the visualization of the images after the application of our reduction
algorithm confirms the validity of our algorithm.

In the next work we try to validate our algorithm based on the execution time of
each method.

References

1. Mercier, L.: Système d’analyse et de visualisation d’images hyperspectrales appliqué aux
sciences planétaires (2011)

2. Zebin, W., et al.: Parallel and distributed dimensionality reduction of hyperspectral data on
cloud computing architectures. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 9
(6), 2270–2278 (2016)

3. Apache Software Foundation. Official apache hadoop. http://hadoop.apache.org/. Accessed
10 July 2017

4. Apache Spark - Lightning-Fast Cluster Computing. http://spark.apache.org/. Accessed 10
July 2017

5. Van Der Maaten, L., Postma, E., Van den Herik, J.: Dimensionality reduction: a
comparative. J. Mach. Learn. Res. 10, 66–71 (2009)

6. Elgamal, T., et al.: sPCA: scalable principal component analysis for big data on distributed
platforms. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM (2015)

7. Shlens, J.: A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100
(2014)

8. MLlib machine learning library. https://spark.apache.org/mllib/. Accessed 10 July 2017
9. Mahout machine learning library. http://mahout.apache.org/. 10 July 2017
10. AVIRIS - Airborne Visible/Infrared Imaging Spectrometer - Data. http://aviris.jpl.nasa.gov/

data/image_cube.html. 10 July 2017

Proposition of a Parallel and Distributed Algorithm 501

http://hadoop.apache.org/
http://spark.apache.org/
http://arxiv.org/abs/1404.1100
https://spark.apache.org/mllib/
http://mahout.apache.org/
http://aviris.jpl.nasa.gov/data/image_cube.html
http://aviris.jpl.nasa.gov/data/image_cube.html

	 Proposition of a Parallel and Distributed Algorithm for the Dimensionality Reduction with Apache Spark
	Abstract
	1 Introduction
	2 Parallel and Distributed Platforms
	2.1 Apache Hadoop
	2.2 Apache Spark

	3 Dimensionality Reduction
	3.1 Classic PCA Algorithm
	3.2 Distributed and Parallel PCA Algorithm

	4 Experimental and Computational Details
	5 Conclusions
	References

