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Abstract. Mappings verification is a laborious task. Our research aims
at providing a framework for manual verification of mappings using
crowdsourcing approach. For this purpose we plan on implementing a
quiz like game. For this purpose the mappings have to be evaluated in
terms of difficulty to better present texts in respect of game levels. In
this paper we present an algorithm for assessing word difficulty. Three
approaches are presented and experimental results are shown. Plans for
future works are also provided.

1 Introduction

During our research, mainly during the Colabmap1 project we created a set of
mappings between English Wikipedia articles and WordNet synsets [1–4]. Each
mapping consists of a WordNet synset, definition of the synset and the title of
Wikipedia article with special characters encoded using RFC 3986. Such map-
pings, when proved to be correct, will allow formalization of Wikipedia structure.
The obtained set of mappings contained algorithmically created 54475 connec-
tions. We aim at creating 100% correct mappings corpora so the set required
manual verification.

In 2006 Luis von Ahn proposed usage of computer games as something more
than pure entertainment and thus creating the idea of so called GWAP (Game
With A Purpose) [5]. GWAPs are typical games that provide standard enter-
tainment value that users expect but are designed in a way that allows gen-
eration of added value by solving a problem requiring intellectual activity. It
is worth noticing that GWAPs does not allow financial gratification for the
work. The will to continue playing should be treated as the only way of grat-
ifying users [6]. Tempted by the results obtained during the Samsung’s survey
we decided on implementing a GWAP for validation of those connections [7]
following the Human Based Computation model [8].

The originally obtained mappings were extended with three additional “next
best” mappings with the idea of presenting the user a question (definition of a
synset) with 4 possible answers (Wikipedia article titles). At the beginning the
3 other answers were randomly selected from the set of Wikipedia’s pages but
1 http://kask.eti.pg.gda.pl/colabmap.
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such approach quickly proved to be incorrect as the “next best” mappings were
not related at all to the question. Instead we used Wikipedia search functionality
to select alternative answers (according to Wikipedia). For the purpose of veri-
fication we implemented a 2D platform game called TGame2 (“Tagger Game”)
as a 2D platform game following the output-agreement model [9].

In the next step of mappings verification we decided to implement a quiz like
game similar to “Who wants to be a Millionaire” (with a small difference that
instead of real questions we will mostly ask about words or phrases, composed
of two or more words). One of the major problems here is how to order the
questions asked? It is obvious that when the player starts the game, he or she
shouldn’t immediately get a difficult question – otherwise the player would leave
the game quickly and would be discouraged. The difficulty should start at a
relatively low level and increase while the player answers next questions. For
this we need to somehow order the words from the least to the most difficult. In
this paper we present a method of validating word difficulty for such ordering.

The structure of the paper is as follows. Section 2 defines what is a word
difficulty and presents some of the approaches. Section 3 presents the proposed
approach. In Sect. 4 evaluation of the proposed algorithm is given and finally
Sect. 5 presents final conclusions and proposes some works that can be done in
the future to further enhance the proposed solution.

2 Defining Word Difficulty and Related Work

To assess word difficulty we need an algorithmic way of classifying words having
only that word, i.e. a set of tokens (letters in this case). Such sets are not really
meaningful to a computer program in a way they are meaningful to an average
person.

There are many approaches to this problem. Most of them however focus on
assessing the whole text [10,11] and often utilize complex techniques like Coh-
Metrix [12]. In our case single word, rather than the whole text, characterization
is needed. One can also find plenty of games and puzzles that are related to
words and they use various scoring systems and classification strategies. For
example, Scrabble uses different score per letter depending on their frequency in
specified language, promoting letters that are “rare” with higher score. In this
case a difficult word might be a word that consist of rare letters. In this case
the meaning or complexity of the word does not matter, only the score of letters
it is composed of. On the other hand, a game in which the player’s task is to
type words on a standard QWERTY keyboard as fast as possible might not find
these rules relevant – instead, a difficult word would be a one that is difficult to
write, meaning for example its letters lay in some distance between each other
or involving various fingers to type it. Therefore in order to correctly classify
words, we need to define what words we want to consider difficult.

2 https://play.google.com/store/apps/details?id=pl.gda.eti.kask.tgame,
http://kask.eti.pg.gda.pl/tgame/.
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There are many ways for people to tell if they consider a word difficult or
not. It can be assumed that an average person knows an average set of words, so
most of people will classify word’s difficulties more or less similarly. Of course,
it will be extremely unlikely that a group of people, asked to order the words by
their difficulty, would end up with exactly same lineup. It’s rather about asking
them to assign some labels to the words, for example “how difficult, on a scale
1–5, is that word to you?”. We can consider that a difficult word for an average
person is a word that the person does not see often and, when they see that word,
its construction gives them only a little, if any, idea about its origin or possible
meaning. It is clear that a set of common, everyday words exists and have a large
common part among average people. It is also clear, that an average person that
is not in any way related to some specific domain might consider words coming
from that domain as difficult, because those are not everyday words for them.
In our case we thus define word difficulty as a score from 1 to 5 stating how
probable it is that the person knows the meaning of the word.

Research show that frequency of a word might be correlated to its diffi-
culty [13]. The observation that the words that occurs in texts less often can
be considered more difficult is one of the best and most widely used methods
of estimating word’s difficulty. Such observations lead to creation of statistical
word assessment defining difficulty as a measure how often the word occurs in
the given domain or in everyday life meaning how easy it is to be seen. If the
word is often seen in text than it is treated as easy for most of the population
and vice versa [13,14]. Such approach led also to many modern text assessment
service implementations like Twinword API [15].

3 Our Approach

In our solution we asses difficulty of words connected with Wikipedia articles.
As such we decided to use Wikipedia as the corpora for text occurrence analysis.
In all cases we evaluated a subset of the mappings against over 5 000 000 pages
from English Wikipedia in each case building upon the previous solution.

3.1 Naive Approach

The first algorithm (Algorithm 1) was based directly on the observations given
in the Sect. 2.

The result of the algorithm is a set of words W sorted from the easiest to
the most difficult one. This approach have some limitations:

– a short, simple word that is very rare even among various types of texts can
be mistakenly classified as a difficult word, for example a word “moo”, which
is clearly known even to very young children.

– a lot of words get the same score.
– the corpora used must have an average distribution of the words, otherwise

it can yield incorrect results, this is difficult to verify with Wikipedia.
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Algorithm 1. Naive approach
1: read text corpus T
2: read set of words to classify W
3: for all word w in set W do
4: count number of times w occurs in text T
5: assign the result r with w
6: end for
7: Sort words in W by number of occurrences r ascending

3.2 Adding Word Length

In this approach we decided to include into the algorithm the length of the
analyzed word to reduce the impact of the first two limitations given in the
previous section. In this approach we can consider difficult words as the ones
that are both rare and long. Short words, as well as the frequent ones, will be
more likely to be classified as easy.

During the implementation we also found out that it’s very hard to correctly
adjust the weight coefficients (length and number of occurrences) depending on
the size of text corpora and input words, therefore we decided to use the relative
values. The algorithm goes as shown in Algorithm 2.

Algorithm 2. The second approach
1: read text corpus T
2: read set of words to classify W
3: select the longest word in W and store its length as lMax
4: find the word from set W that occurs most times among text T and store the

number of occurrences as oMax
5: for all word w in set W do
6: c = number of times w occurs in text T
7: lw = length of w
8: s = ( lw

lMAX
) ∗ ( c

oMAX
)

9: assign the score s with w
10: end for
11: Sort words in W by the score s descending

Once again the resulting set of words W is sorted from the easiest to the most
difficult word. The score is calculated as a multiplication of length of the word
and the number of occurrences in the text. In this approach the most difficult
word (the lowest score) is a combination of being long and occur least times. If
two words have similar frequency score, the longer one will now become more
difficult. In all cases the score is calculated as relative within the available text.

3.3 The Final Approach

In this approach we tried to deal with the third issue. Imagine that our text set con-
sist of ten texts, similar in length: five of them are academic papers on distributed
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computations and five of them are cake recipes. If it happens that only one cake
requires bananas, word “banana” might appear less times than the word “matrix”
which would mean that the former will be classified as more difficult while one
might expect that for an average person it would be vice versa. To eliminate this
problem, we might take into consideration whether the word originates from an
easy or a difficult text and apply proper weight to the resulting score. For deter-
mining whether a text is difficult or not (in English) we can use one of the existing
methods. In our solution we chosen Flesch-Kincaid readability ease test [16]. This
test, invented by Rudolf Flesch and J. Peter Kincaid for U.S. Navy in 1975, takes
a text and applies formula 1 following to it.

fkScore = 206.835 − 1.015 ∗ (
totalwords

totalsentences
) − 84.6 ∗ (

totalsyllables

totalwords
) (1)

The result (fkScore) is a score with most values between 0 and 100 (although
scores below and above are possible to achieve). This score tells how difficult is
the text to read – the lower the score, the more difficult the text. As a curiosity,
one of the easiest sentences with score 116 is “The cat sat on the mat”, whereas
the chemical name of titin (a protein) which is 189,819 characters long and
consists of 72443 syllables, scores a −6128472. The rated texts can be divided
into groups show in Table 1.

Incorporation of Flesch-Kincaid score requires further changes to the algo-
rithm. The final algorithm is shown in Algorithm 3.

As in previous approaches the resulting set of words W is sorted from the eas-
iest to the most difficult word. Similar as in previous approach the final score is
a multiplication of length and occurrence scores. In this case the length score of
a word takes value from range <1, 2> so not to zero the whole score. In the case
where classification of a multi-word phrase is needed the phrase should be split
into separate words for which the score should be computed. The phrase score
should be than computed as an average score of all words that it consists of.

Table 1. Groups of text difficulty

Score Notes

90.0 and above Very easy to read, easily understood by an 11-year old

80.0–90.0 Easy to read, conversational English for average people

70.0–80.0 Fairly easy to read

60.0–70.0 Plain English, easily understood by 13- to 15-year-old students

50.0–60.0 Fairly difficult to read

30.0–50.0 Difficult to read

30.0 and below Very difficult to read
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Algorithm 3. The third approach with Flesch-Kincaid score
1: read a set of texts T
2: read set of words to classify W
3: for i = 0 to i = size(T) do

4: fkScore[i] = 206.835 − 1.015 ∗ ( totalwords(T [i])
totalsentences(T [i])

) − 84.6 ∗ ( totalsyllables(T [i])
totalwords(T [i])

)
5: end for
6: for i = 0 to i = size(T) do

7: fkScore[i] = fkScore[i]
max(fkScore)

8: end for
9: select the longest word in W and store its length as lMax

10: for i = 0 to i = size(W) do
11: for j = 0 to j = size(T) do
12: let occurrences[i][j] be the number of occurrences of word W[i] in text T[j]
13: let partialFrequencyScore[i][j] be occurrences[i][j]*fkScore[j]
14: end for

15: frequencyScore[i] =
∑size(T )−1

n=0 partialFrequencyScore[i][n]

size(T )

16: lengthScore[i] = (2 − length(W [i])
lMax

)
17: s[i] = frequencyScore[i] ∗ lengthScore[i]
18: end for
19: Sort words in W by the score s descending

4 Evaluation

For evaluation purposes we created a set of 20 words generated using Random
Word Generator tool3. Those words were presented to a group of 90 people. Each
time the words were randomly shuffled not to introduce any suggestions to the
order of difficulty. Each person was asked to order the words from the easiest
one to the most difficult. The results were than accumulated and merged using
the following steps:

1. For each person participated, get a list of their result
2. For every list, attach scores with every word, so that the first word (the

easiest, according to the participant) gets 1 point and the last (the most
difficult) gets 20 points

3. For every word then calculate average score from all the lists.
4. Sort words by calculated average score ascending.

In the results we got an ordered list of words (from the easiest to the most
difficult) presented in Table 2.

Just like we assumed, the common, well-known and short words occupy the
beginning of the table. Some results might be considered unexpected (like “whis-
tle”), but in those cases there might be other factors influencing their difficulty
except for the ones that were considered in the formula (e.g. difference between
how a word is written and pronounced – something that is common for English
language).
3 https://randomwordgenerator.com/.

https://randomwordgenerator.com/
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After the survey the same set of words were classified using all three versions
of the proposed solution. As text corpora, English Wikipedia was used (consisting
of 4 838 000 pages).

We divided the results into four groups with equal number of words. We
assume that words in one groups are close in terms of difficulty. The words
in italics are the words that were assigned by the algorithm to other difficulty
level than according to the survey. The results, compared with the survey, are
presented in Table 3.

As we can see the naive version correctly assigned 9 words, first modification
10 words and the final version 11 words. The average difference of score (calcu-
lated in the number of levels the word was shifted) is 1.45 in the first case, 1.4

Table 2. Evaluation set of words ordered by humans

Word Order Word Order Word Order Word Order

start 1 dirt 6 parcel 11 panoramic 16

cup 2 unit 7 jazzy 12 whistle 17

hard 3 rabbits 8 disagree 13 substantial 18

false 4 haircut 9 horrible 14 wobble 19

cute 5 drip 10 observation 15 tedious 20

Table 3. Comparison of words evaluation



Assessing Word Difficulty for Quiz-Like Game 77

in the second case and 0.9 for the final algorithm. The final solution, in most
cases, switch the words between the neighboring groups.

The results obtained using the third approach suits our purposes very well.
We needed to obtain an ordered list of words difficulty for the need of a quiz
game. This list can be later corrected by the players themselves during the actual
playing of the game. Moving words on level up or down in terms of difficulty is
perfectly fine in this situation. For the purpose of the game we plan on classifying
56 000 words and assign them to 10 classes. Small differences with resulting
positions are thus less likely to cause level mismatches.

The experiments performed during the evaluation revealed some unsolved
problems. It was very hard to create an absolute scoring system within the
algorithm. This is because the average frequency of a word in all texts depends
on the number of text we use, while the average length of a word is independent
of that and stabilizes at some level. This attempted to be fixed by introducing
the weight coefficients for both the frequency and length parts, but it was very
difficult to adjust them properly, especially when the text corpora contained
millions of texts.

Flesch-Kincaid score works well for regular English texts, but sometimes
within the corpora there are texts resulting in very low, negative scores, breaking
the results. Such situation occurred in one of the tests. Some Wikipedia pages
consists mostly of Chinese people names, which scored −2971. Such a text was
not useful in our computations and introduced noise in the results. After some
further tests we decided to exclude any text with a score lower than 0, since this
indicated that either the text is not in English (at least partially) or we deal
with something unusual, like a protein name.

The final approach is also very memory intensive. Counting occurrences of
56 000 unique words in over 4 800 000 texts takes a lot of time and uses a
lot of memory. The earliest plan was to count occurrences of all of the unique
words in all of the texts, but this led to exponential growth of the database. We
thus decided to limit calculations only to the words we are actually interested
in which allowed to keep the memory constraints in check.

5 Conclusion and Future Work

The scoring of word difficulty is a difficult task, mainly due the lack of one,
standard definition what it means for a word to be difficult. Observation shows
however, that the approach presented here is consistent with observation of the
human behavior – if we stumble upon a word very often it is more probable that
it is easier for us.

The presented approach allows us to order the set o phrases needed verifica-
tion in a manner that will not be discouraging to players. Also it is worth noting
that the main purpose of this algorithm is to give a preliminary classification
that later might be corrected by players playing the game or manually adjusted
by moderators.
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In the future it could be feasible to extend the algorithm further. We should
take into consideration also the pronunciation of the word. The greater the dif-
ference between spelling and pronunciation, the more difficult the word can be
considered. Taking into account Scrabble-like letter ranking like promoting rare
letter groups (pairs or triplets) or calculate the ratio of unique letters to the
word length (more unique letters, the more difficult the word) might allow bet-
ter classification independent from the domain of the word.
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