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Abstract. The plagiarism detection problem involves finding patterns in
unstructured text documents. Similarity of documents in this approach
means that the documents contain some identical phrases with defined
minimal length. The typical methods used to find similar documents in dig-
ital libraries are not suitable for this task (plagiarism detection) because
found documents may contain similar content and we have not any war-
ranty that they contain any of identical phrases. The article describes
an example method of searching for similar documents contains iden-
tical phrases in big documents repositories, and presents a problem of
selecting storage and computing platform suitable for presented method
using in plagiarism detection systems. In the article we present compari-
son of the mentioned above method implementations using two comput-
ing platforms: KASKADA and Hadoop with different configurations in
order to test and compare their performance and scalability. The method
using the default tools available on the Hadoop platform i.e. HDFS and
Apache Spark offers worse performance than the method implemented on
the KASKADA platform using the NFS (Network File System) and the
processing model Master/Slave. The advantage of the Hadoop platform
increases with the use of additional data structures (hash-map) and tools
offered on this platform, i.e. HBase (NoSQL). The tools integrated with the
Hadoop platform provide a possibility of creating efficient and a scalable
method for finding similar documents in big repositories. The KASKADA
platform offers efficient tools for analysing data in real-time processes i.e.
when there is no need to compare the input data to a large collection of
information (patterns) and to use the advanced data structures. The Con-
tribution of this article is the comparison of the two computing and storage
platforms in order to achieve better performance of the method used in the
plagiarism detection system to find similar documents containing identi-
cal phrases.
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1 Introduction

Along with the prevalent computerization, the number of processes in which
digital documents replaced their traditional paper counterparts has largely
increased. The effectiveness of using the digital documents by employees in an
organization depends most on the available tools, such as the digital repositories
of documents, methods used to search for the documents that comply with the
defined requirements, and programs that provide the possibility of analysing the
information stored in the documents. One of the obvious trends in the develop-
ment of tools, used for handling the digital documents, is the increase of interest
in the efficient methods of searching for similar documents. Methods of searching
for similar documents may be used in different areas, according to the type of
document content, e.g.

— health records with a description of treatment methods in a medical reposi-
tory [1];

— court rulings in judgment document repository [2,3];

— the results of scientific research, articles and books in scientific institutes
repositories [4,5];

— theses in the universities repositories [6];

— different unstructured, text documents in the plagiarism detection sys-
tems [7,8].

Areas of application for the methods of searching for similar documents are
defined by the function used to calculate the degree of similarity between the
two documents. We could divide these areas into two classes in which one:

— user expect documents with similar content based on e.g., keywords or a
bibliography;

— user expect documents contain patterns defined by him in the request like
e.g., set of text phrases;

To the first class, we could assign solutions to use in digital libraries in order
to find books based on the meta-data or keywords specified by the user. In this
class user generally, does not specify his requirements concern to the phrases
uses in sought books. The second of a mentioned-above class includes solutions
that offer for user possibility to define requirements concerning the patterns that
he expects to find in sought documents. An example of such solution belong to
the second class is the plagiarism detection system, where the method searches
for text fragments (phrases) from published documents, which were used in a
new, unpublished document, omitting the information that relates them to the
sources of the borrowed fragments. One of the obstacles in common use of the
methods of searching for similar documents in the plagiarism detection systems
is the number of documents stored in the digital repositories.

One of the proposed approach used to increase the performance of these
methods is to perform calculations in parallel-way in the cloud [9] using the spe-
cial platforms for storing documents and management of the parallel execution
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of tasks in the cloud computing environment. The aim of the article is to present
a comparison of the storage and computing platform suitable for the problem
of finding patterns in unstructured, text documents that each one is smaller
than 1 MB. In the article, we have compared two platforms: KASKADA [10]
(actual used) and Hadoop [11]. The analysis of these platforms was conducted
using the existed plagiarism detection system SowiDocs'. SowiDocs is an anti-
plagiarism system that uses the KASKADA platform in order to have the pos-
sibility to perform parallel computations on the data streams in real time, using
the services working in the Master/Slave model. KASKADA serves the tools for
creating user defined functions UDF in C++ language and publishes the created
UDFs as services. This system has been developed at the Technical University of
Gdansk and is used since 2010 in the University to detect plagiarism in student
works. The article presents the comparison of the different method implemen-
tations for retrieving similar documents containing defined patterns, using the
KASKADA and Hadoop platforms.

The Contribution of this article is the comparison results which presents
advantages and disadvantages of two computing and storage platforms and their
capabilities to achieve better performance of algorithms used in the plagiarism
detection system to finding similar documents containing identical phrases.

2 State of Art

Algorithms for solving one of the following problems: Longest Common Sub-
string (LCSg) [12] or Longest Common Subsequence (LCSe) [13-16] are most
commonly used to detect plagiarism in the text documents. A drawback of these
algorithms is their high computational complexity, which prevents the develop-
ment of an efficient method for scanning the document repository in order to
operate in a time acceptable to the user. One of the methods used to increase
the performance of the plagiarism detection process is the pre-selection of similar
documents that contain patterns defined in the analysed document. The purpose
of the pre-selection is to reduce the set of input documents for algorithms that
solve the problems of LCSg and LCSe. Methods used for pre-selection do not
compare the original document content instead they use some kind of repre-
sentation that is called a document profile. An example of methods used for
pre-selection of documents based on the document profiles, are:

— inverted index [17-20],

— n-grams [21-23],

— semantic similarity [24-26],

— natural language processing [27,28],
— hashing document content [29-34].

Regardless of the methods used to pre-select the similar documents, their
performance often depends on their implementation, the number of documents

! https://sowi.pg.gda.pl/.
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stored in the repository and the computing platform used. The number of doc-
uments in the repositories is growing steadily, so the presented methods must
be implemented in a computing platform that provides high performance and
scalabilities like KASKADA or Hadoop.

The advantage of the KASKADA platform is mediating in the access to
resources provided by cloud computing and automatic management of the run-
ning tasks. The second of the mentioned platforms is Hadoop, which is now one
of the most popular solutions to create scalable and high-performance computing
platforms. The reason for its popularity is the portability of solutions created
using Hadoop platform tools, ease of installation and maintenance, as well as
a set of additional components of the Hadoop ecosystem like HBase — a dis-
tributed, scalable, big data store (Big Table implementation [35]), YARN (Yet
Another Resource Negotiator) and Apache Spark [36] — a fast and general engine
for large-scale data processing.

3 Details of Our System

The SowiDocs system comprises of several processing stages, designed to analyse
similarities between documents with increasing accuracy. The tasks are running
in the cloud computing environment, according to the process described in the
selected web service scenario. The scenario describes the process of the docu-
ments similarity computation in the SowiDocs system, using the services divided
into the following stages:

— Converting — converting a received document to the text format without
formatting and images,

— Mapping — computing the document profile based on the content generated
by the preceding service (Converting) and use the following algorithms: Rabin
fingerprinting [37], BSW [38] (Basic Sliding Window) and TTTD [39] (Two
Thresholds Two Divisors),

— Searching — finding the similar documents by counting identical numerical
values, occurring in the compared documents profiles,

— Filtering — filtering the found documents by calculating the similarity between
two documents based on similarity of their contents.

An accuracy of the plagiarism detection process mostly depends on the algo-
rithms used in the filter stage where documents are analyzed in order to find
all longest common substrings. While the performance of this process mostly
depends on the algorithms used in the searching stage where we try to find only
this documents that contain some patterns and omit the documents that not
comply with this requirement.

To achieve that in the SowiDocs we use document profiles that represent orig-
inal text documents by fingerprint values. Each fingerprint is calculated based
on the content of the sliding window. The first fingerprint value for a document
is calculated based on Eq. (1) [34] and for every other position of the sliding
window a single fingerprint value is calculated based on Eq. (2).

Fy = (t;-p™! +t2~p”‘_2+--~+tnt)mod21 (1)



60 A. Sobecki and M. Kepa

Fii1=(F; -p+tn,—i—ti p")mod2” (2)
where:
— F; — single i-th fingerprint value,
— p — a prime number,
— t; — j-th char from the document,
— ng — a length of the sliding window,
— x — exponent, e.g. 30 or 31.

4 Problem Statement

In order to achieve satisfying performance, and accuracy of the plagiarism detec-
tion process, we should find in the third stage of this process only these doc-
uments that contain patterns defined by the user. Moreover, the method used
in the third stage can not omit any of the document contains that patterns.
Because of that, the method using for searching for documents in the third
stage was chosen to test the profitability of migrating the system from existing
platform KASKADA to the Apache Hadoop Platform. The problem of a selec-
tion the platform to perform the computation arises from the number of files and
its size. In one repository we have about 500.000 documents with each is smaller
than 1 MB. In the one analysis process, we could use few different repositories
depending on the content of the analysed document and user requirements.

Originally, the third stage of the analysis process was developed as a Mas-
ter/Slave algorithm on the KASKADA platform. The analysed documents were
saved in the repository as files in a NFS [40]. The task of analysing a single
document was divided by the master between the slave nodes. Each slave had
to compare the document with a subsection of the repository. This was done by
iterating over the document profiles from the subsection and comparing them to
the test document. First, every profile form the subsection was loaded into the
memory as a key-value hash-map (with the fingerprints as the keys), after that,
every fingerprint in the test document profile was searched for in the hash-map.
A simplified scheme of processing the documents using the KASKADA platform
can be seen in Fig. 1.

As the repository grew bigger, the time needed to process a single document
grew linearly relative to its size. What’s more important, limitations of the NFS,
combined with the complexity of iterating over every file in the repository to
create its hash-map, made the entire process long, even for small files.

5 Proposed Solutions

Three possible approaches were designed and tested. All three approaches were
in fact MapReduce algorithms written in the Apache Spark environment:

— a naive approach, using a HDFS file repository — further called the HDFS
approach,

— a complex approach, using a hash-map and a HDF'S file repository — further
called the HDFS map approach,

— a Hbase based approach — further called the Hbase approach.
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Fig.1. KASKADA schema

5.1 HDFS Approaches

Both the first and the second approach work on a HDF'S file-based repository of
documents. It is important to note, that unlike in the KASKADA approach, the
file system here is distributed among the compute nodes using HDFS (with data
blocks replicated between nodes). A simplified scheme of documents processing
in such Hadoop ecosystem can be seen in Fig. 2.

The first approach works by comparing every line of the profiles repository
(saved as files in HDFS) to every line in the tested document — this means
that for a document containing n fingerprints and a repository containing m
fingerprints the solution does n - m comparison operations.

The HDFS map approach is an improved version of the first approach.
Instead of doing n - m comparison operations, the tested document is converted
into a key-value hash-map (with the fingerprint as the key). Because of that the
search operation is simplified to m searches in the hash-map - provided there is
enough system memory the computational complexity is reduced from O(n - m)
to O(m). This means that the analysis time is largely independent from the size
of the tested document.

5.2 HBase Approach

The third and final approach uses, a Hbase implementation of a reversed index.
The database was created on top of the existing data nodes of the Hadoop
cluster. On each data node a Hbase Region server was installed. A Hbase master
server was also installed on one of the master nodes. A simplified scheme of the
Hadoop platform in the HBase setup can be seen in Fig. 3.

The schema of the database was designed as a reversed index:

— every row is indexed by a value of a fingerprint,
— every row contains a number of columns (part of a single column family) -
each named after a single document containing this fingerprint,
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Fig. 3. Hadoop and HBase schema

— each column contains a single integer value, representing the number of occur-
rences of this fingerprint in the related document.

This in summary means, that the computational complexity is further
reduced to be O(n - f(m)). — where f(m) is the number of operations required
to retrieve a row from HBase. As m > n and f(m) < m this solution should be
the fastest one of the three.

6 Experiments

In order to sufficiently evaluate the proposed solutions we planned a series of
experiments, which was designed to test such features, as time performance and
scalability in relation to the size of a repository and the size of the analysed



Methodology of Selecting the Hadoop Ecosystem Configuration 63

document. Later, we run those tests in our testing environment on a supercom-
puter TRYTON?. Mentioned tests were done on a prepared dataset, created
from real-world diplomas that had been writing by students at the Gdansk Uni-
versity of Technology. The minimal similarity between selected documents was
about 2% and it resulted from the similarity of title pages, statements and uni-
versity affiliations.

6.1 Planned Tests

As mentioned before, we planned a series of tests in order to evaluate our
approaches and their viability to process a constantly growing database of text
documents. Details of these tests were as follows:

— the time needed to search our repository depending on its size — in total of
17 000 real and unique (excluding cases of plagiarism) documents of varying
size.

— the time needed to insert a new document into the repository — as it is almost
equally important to the search time (since the standard use-case consists of
both similar documents search and repository inserts). As before, this time
was measured for different sizes of the repository, in order to evaluate the
scalability of this operation.

— the scalability of each solution — depending on the size of the tested document.

— the scalability of the KASKADA and the Hadoop ecosystem — depending on
the number of concurrent requests and the number of available processors.

Each test was conducted on a random batch of n documents from the dataset,
and all the results were averaged over this batch. Results of those tests can be
seen in Subsect. 6.4.

6.2 Dataset

Our dataset consisted of around 17 000 text documents (stripped of formatting
and images), varying in size from few kilobytes to one megabyte. Each document
was a real and unique diploma — the repository consists of works from students of
the Gdansk University of Technology. For every document there are two files in
the repository — one containing its text and another, containing it’s profile. Every
profile contains a few hundreds to several hundred thousands of fingerprints.

6.3 Test Environment

All Hadoop tests were run in a cluster environment, comprising of eight nodes in
an openstack environment — three master/manager nodes and five HDFS data
nodes with HBase Region Servers. Each data node was equipped with 8 CPU
cores and 32 GB of memory. Tests were run with Apache Spark, each YARN
task was limited to 6 cores per data node, giving a total of 30 processors.

2 Specification at TOP500 website: http://www.top500.org/system/178552.


http://www.top500.org/system/178552

64 A. Sobecki and M. Kepa

All KASKADA tests were run in a cluster environment comprising of 8
nodes — 5 management nodes and 3 compute nodes. Each compute node was
equipped with 12 CPU cores and 32 GB of memory.

6.4 Results

The first test we run was the experiment measuring the search operation time
per 10 000 fingers, depending on the number of documents in the repository. The
results of this test can be seen in Fig. 4. The naive iterative HDF'S approach is a
few orders of magnitude slower than the other three. The reason of that probably
depends on the number of files in the repository. In this approach, we did not
compact small files into larger buckets. Furthermore, the KASKADA map and
the HDFS map approaches achieved similar results — the HDFS map approach
is only two times faster. The HBase based approach is the fastest — achieving
performance better by an order of magnitude from the original KASKADA app-
roach. Also the HBase approach scales much better (close to logarithmically)
than the HDFS, HDFS map and the KASKADA map approaches, which all
scale close to linearly. Results for the every approach achieved the same level of
accuracy.

Next, we run the import operation time test — in order to check whether
the operation of importing new files into HBase doesn’t impact the performance
gain negatively. The results of this test can be seen in Fig. 5. The time of import
a new document is almost independent of the repository size. Furthermore, this
time is almost negligible compared to the search operation times.

The third test we run was aimed at measuring the scalability of all three
solutions in relation to the processed document size. The results of this test can
be seen in Fig.6. The HBase and HDFS solutions scale close to linearly. The
KASKADA map solution time grows very slowly depending on the size of the
analysed document, the HDFS map solution time was almost constant.
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Fig. 4. Search operation time per 10 000 fingers
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Search operation time depending on filesize
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The fourth experiment we conducted was aimed to test the scalability of
both platforms and the three fastest solutions, depending on the number of
processors used in computations. The result of this test can be seen in Fig. 7.
All three solutions scale fairly well in a close to linear manner.

The final experiment was run in order to test how both of the platforms
handle many concurrent requests. All three platforms were limited to the same
number of processors and memory. The result of this test can be seen in Fig. 8.
The time of processing grows linearly with tasks load on the KASKADA plat-
form. The KASKADA platform rejects new tasks, when there are no available
resources — the number of rejected requests is represented as bars on the chart.
The Hadoop ecosystem handles heavy load much better, no tasks were rejected
and the processing times grow at a smaller pace (most likely, thanks to the
advanced caching and load distribution algorithms of the platform). The sudden
jump in processing time between 4 and 5 HBase approaches is caused by mem-
ory limitations of the system — the fifth task had to wait for free memory in
order to start).
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7 Conclusion

Conducted experiments confirm the benefits of migrating the selected algorithm
to the Hadoop platform from the KASKADA platform. The naive, iterative
method, using the distributed file system HDFS and the integrated comput-
ing cluster YARN did not prove to be as effective as the original algorithm
on the KASKADA platform. However the improved version, using a in-memory
map, was measured to be several times faster than the original KASKADA algo-
rithm and just as scalable. The difference is most visible when using the HBase
database to store and analyse the documents profiles. Searching for similar doc-
uments using HBase is around 25x faster than the search method running on
the KASKADA platform. This is caused by the lack of a dedicated, distributed
file system for the KASKADA platform (which is using a standard disk matrix),
as well as by the better scaling of the HBase algorithm. Results of experiments
depends on the size of files stored in the repositories. For the plagiarism detection
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system where the size of files is smaller than 1 MB the most suitable computing
platform configuration is HBase using reversed index as described above.

In summary, our tests proved, that the HBase solution is much faster and

scales much better, in relation to the profiles repository size. Apart from that, the
results quality was exactly the same as for the original KASKADA algorithm.
The KASKADA platform allows for fast and efficient analysis of multimedia
data streams, exploiting the compute power of a supercomputer or a compute
cluster. The Hadoop platform is much better suited to support an anti-plagiarism
system, since it provides efficient tools for big-data processing.
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