
Chapter 6
Black Holes and Nilpotent Orbits

Deep into that darkness peering, long I stood there,
wondering, fearing, doubting,
dreaming dreams no mortal
ever dared to dream before.

Edgar Allan Poe

6.1 Historical Introduction

When on September 14th 2015 the gravitational wave signal emitted 1.5 billion year
ago by two coalescing black stars was detected at LIGO I and LIGO II, we not only
obtained a new spectacular confirmation of General Relativity but we actually saw
the dynamical process of formation of the most intriguing objects populating the
Universe, namely black holes (Fig. 6.1).

Black Holes are on one side physical objects capable of interacting with the
emission of enormous quantities of energy, on the other side they are just pure
geometries. Indeed a classical black-hole is nothing else but a solution of Einstein
equations which are just geometrical statements on the curvature tensor.

6.1.1 Black Holes in Supergravity and Superstrings

A new season of research in Black Hole theory started in the middle nineties of
the XXth century with the contributions of Sergio Ferrara, Renata Kallosh, Andrew
Strominger and Cumrun Vafa, that are described in the following short summary:

1. In 1995 R. Kallosh, S. Ferrara and A. Strominger considered black holes in the
context of N = 2 supergravity and introduced the notion of attractors [1, 2].

2. In 1996 S. Ferrara (see Fig. 4.2) and R. Kallosh (see Fig. 6.2) formalized the
attractor mechanism for supergravity black holes [1, 2].
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266 6 Black Holes and Nilpotent Orbits

Fig. 6.1 The gravitationalwave signal emitted in the coalescence of two black holeswhich occurred
1.5 billion of years agowas simultaneously detectedSeptember 14th 2015 by the two interferometers
LIGO I and LIGO II

3. In 1996 A. Strominger (see Fig. 4.7) and C. Vafa (see Fig. 6.3) showed that an
extremal BPS black hole in d = 5 has a horizon area that exactly counts the
number of string microstates it corresponds to [3].1

4. In the years 1997–2000 the horizon area of BPS supergravity black holes was
interpreted in terms of a symplectic invariant constructed with the black hole
electromagnetic charges (for a review containing also an extensive bibliography
see [11]).

5. In the years 2006–2009 new insights extended the attractor mechanism to non
BPS black-holes [12–25].

6. Since 2010 new exact integration techniques for Sugra Black Holes were found
by A. Sorin, P. Fré, M. Trigiante and their younger collaborators [26–33].

6.1.2 Black Holes in This Chapter

The intriguing relation between Geometry and Physics arises at several levels, the
most profound and challenging being provided by the identification of the horizon
areawith the statistical entropy of themysterious dynamical systemwhich is encoded
in a classical black solution.

1There followed a vast literature some items of which are are quoted in [4–10].

http://dx.doi.org/10.1007/978-3-319-74491-9_4
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Fig. 6.2 Renata Kallosh (on the left) born in Moscow in 1943 completed her Bachelor’s from
Moscow State University in 1966 and obtained her Ph.D. from Lebedev Physical Institute, Moscow
in1968. She thenheld aposition, as professor, at the same institute, beforemoving toCERNfor a year
in 1989. Kallosh joined StanfordUniversity in 1990 and continues towork there. She ismarriedwith
the famous cosmologist Andrei Linde. Renata Kallosh is renowned for her pioneering contributions
with Ferrara to the attractor mechanism in supergravity black holes, for her studies in supergravity
cosmology and for her early work with A. Van Proeyen on the AdS/CFT correspondence. Indeed
Kallosh and Van Proeyen were the first to propose the interpretation of the anti de Sitter group
as the conformal group on a brane boundary. Anna Ceresole (on the right), born 1961 in Torino,
graduated from Torino University in 1984 with a thesis on Kaluza Klein supergravity written under
the supervision of HermannNicolai and the author of this book. In 1989 she obtained her Ph.D. from
Stony Brook University under the supervision of Peter van Nieuwenhuizen. Post doctoral fellow at
Caltech for two years shewasAssistant Professor at the Politecnico di Torino for several years. Then
she became Senior Research Scientist of INFN and joined the TorinoUniversity String Group. Anna
Ceresole has given many important contributions to the development of supergravity, in particular
in relation with special Kähler Geometry and black hole charges, duality transformations, gaugings
and inflaton potentials. She has worked both with younger students and post-doc and, in different
combinations, with all the main actors in the development of supergravity theory

We are not going to touch upon the physics of black holes and on the exciting
question of their interpretation in terms ofmicrostates, yetwe cannot avoid discussing
their several nested geometrical aspects, glimpses of which were already provided
in Chap.5.

We emphasized there that in the context of supergravity a black hole solution of
Einstein equations comes equipped with other associated geometrical data, namely
those encoded in a set of electromagnetic fields that are connections on suitable
bundles and those encoded in scalar fields that describe a map from 4-dimensional
space-timeM4 to special manifoldsSK n . We also stressed the remarkable picture
of a black-hole solution as a map from a three-dimensional Euclidean manifoldM3

to a Lorentzian pseudo-quaternionic manifoldQr lying in the image of the c�-map.

http://dx.doi.org/10.1007/978-3-319-74491-9_5
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Fig. 6.3 Cumrun Vafa (on the left) was born in Tehran, Iran in 1960. He graduated from Alborz
High School and went to the US in 1977. He got his undergraduate degree from the Massachusetts
Institute of Technology with a double major in physics and mathematics. He received his Ph.D.
from Princeton University in 1985 under the supervision of Edward Witten. He then became a
junior fellow at Harvard, where he later got a junior faculty position. In 1989 he was offered a
senior faculty position, and he has been there ever since. Currently, he is the Donner Professor of
Science at Harvard University. Vafa’s most relevant achievement is, together with Strominger, the
first example of interpretation of the Bekenstein Hawking black hole entropy in terms of superstring
microstates. He has also given pioneering contributions to topological strings, F-theory and to the
general vision named geometric engineering of quantum field theories, which is a programme aimed
at decoding quantum field theories in terms of algebraic geometry constructions. Dieter Luest (on
the right) born 1956 in Chicago, graduated from the Ludvig Maximillian University in Muenchen
in 1985. He was postdoctoral fellow in Caltech, Pasadena, in the Max Planck Institute in Muenchen
and at CERN in Geneva. From 1993 to 2004 he was full professor of Quantum Field Theory at the
von Humboldt University in Berlin. Since 2004 he made return to Muenchen where he is both full
professor at the Ludwig Maximilan University and Research Director at the Max Planck Institute.
Dieter Luest has given very important contributions in a large variety of topics connectedwith String
Theory and Supergravity, in particular in relation with Black Hole solutions, D-brane engineering,
Calabi Yau compactifications, double geometries, flux compactifications and string cosmology

This last viewpoint corresponds to the σ -model approach to black-hole solutions
and it was developed in the last two decades.

If the special manifold SK n = UD=4
HD=4

is a symmetric coset manifold, then

also the pseudo-quaternionic manifold Qr = UD=3
HD=3

is such and the classification
of possible extremal black-hole solutions is turned into an algebraic problem that
is the contemporary frontier of research in Lie algebra theory: the classification of
nilpotent orbits.

In this chapterwe analyze in detail the newvery rich geometric lorewhich emerges
from the issue of black–hole constructions within the σ -model approach. Here all
the issues discussed in previous chapters enter the game in an essential way:

1. Special Kähler Geometry,
2. Lie Algebra invariants,
3. c� map,
4. Tits Satake projection and its universality classes,
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5. Weyl Group and its extensions,
6. Classification of nilpotent orbits.

In view of the deep relation between quantum physics and geometry encapsulated
into black-holes it is to be expected that all the intriguing geometrical relations listed
above are the tip of an iceberg of theoretical knowledge yet to be uncovered.

Hence let us resume the σ -model approach to black-holes.

6.2 The σ -Model Approach to Black-Hole Resumed

We start from Eq. (5.2.21) and from the golden splitting (1.7.12) which we rewrite
as follows:

adj(UD=3) = adj(UD=4) ⊕ adj(sl(2, R)E ) ⊕ W(2,W) (6.2.1)

whereW is the symplectic representation ofUD=4 towhich the electric andmagnetic
field strengths are assigned.

Next we consider a gravity coupled three-dimensional Euclidean σ -model, whose
fields

Φ A(x) ≡ {U (x), a(x), φ(x), Z(x)}

describe mappings:
Φ : M3 → Q (6.2.2)

from a three-dimensional manifold M3, whose metric we denote by γi j (x), to the
target space Q. The action of this σ -model is the following:

A [3] =
∫ √

detγ R[γ ] d3x +
∫ √

detγ L (3) d3x (6.2.3)

L (3) = (
∂iU ∂ jU + hrs ∂iφ

r ∂ jφ
s

+e−2U
(
∂i a + ZT

C∂iZ
) (

∂ j a + ZT
C∂ jZ

)
+ 2 e−U ∂iZ

T M4 ∂ jZ
)

γ i j (6.2.4)

where R[γ ] denotes the scalar curvature of the metric γi j .
The field equations of the σ -model are obtained by varying the action both in the

metric γi j and in the fields Φ A(x). The Einstein equation reads as usual:

Ri j − 1
2γi j R = Ti j (6.2.5)

where:

Ti j = δL (3)

δγ i j
− γi j L

(3) (6.2.6)

is the stress energy tensor, while the matter field equations assume the standard form:

http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_1


270 6 Black Holes and Nilpotent Orbits

1√
detγ

γ i j ∂i

[√
detγ

δL (3)

δ ∂ jΦ A

]
− δL (3)

δΦ A
= 0 (6.2.7)

As it is well known, in D = 3 there is no propagating graviton and the Riemann
tensor is completely determined by the Ricci tensor, namely, via Einstein equations,
by the stress-energy tensor of the matter fields.2

Extremal solutions of the σ -model are those for which the three-dimensional
metric can be consistently chosen flat:

γi j = δi j (6.2.8)

corresponding to a vanishing stress-energy tensor:

∂iU ∂ jU + hrs ∂iφ
r ∂ jφ

s + e−2U
(
∂i a + ZT

C∂iZ
) (

∂ j a + ZT
C∂ jZ

)
+ 2 e−U ∂iZT M4 ∂ jZ = 0

(6.2.9)

We will see in the sequel how the nilpotent orbits of the group H� in the K
� represen-

tation can be systematically associated with general extremal solutions of the field
equations.

6.2.1 Oxidation Rules for Extremal Multicenter Black Holes

Let us now describe the oxidation rules, namely the procedure by means of which
to every configuration of the three-dimensional fields Φ(x) = {U (x), a(x), φ(x),
Z(x)}, satisfying the field equations (6.2.7) and also the extremality condition (6.2.9),
we can associate awell defined configuration of the four-dimensional fields satisfying
the field equations of supergravity that follow from the lagrangian (5.2.3). We might
write such oxidation rules for general solutions of the σ -model, also non extremal,
yet given our present goal we confine ourselves to spell out such rule in the extremal
case, which is somewhat simpler since it avoids the extra complications related with
the three-dimensional metric γi j .

In order to write the D = 4 fields, the first necessary item we have to determine is
the Kaluza–Klein vector fieldA[KK ] = A[KK ]

i dxi . This latter is worked out through
the following dualization procedure:

2Clarification for mathematicians: General Relativity in D = 3 = 1 ⊕ 2 dimensions is a rather
empty field theory. Einstein equations do not describe the propagation of any particle since there
are no solutions of the wave-type and the only degree of freedom is the analogue of the Newton
potential. Mathematically this follows from the fact that the Riemann tensor is fully determined by
the Ricci tensor and the latter is identified by Einstein equations with the stress-energy tensor of
matter fields.

http://dx.doi.org/10.1007/978-3-319-74491-9_5
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F[KK ] = dA[KK ]

F[KK ] = −εi jk dx
i ∧ dx j

[
exp[−2U ] (∂ka + Z C ∂k Z

)]
(6.2.10)

Given the Kaluza–Klein vector we can write the four-dimensional metric which is
the following:

ds2 = − exp[U ] (dt + A[KK ])2 + exp[−U ] dxi ⊗ dx j δi j (6.2.11)

The vielbein description of the same metric is immediate. We just write:

ds2 = −E0 ⊗ E0 + Ei ⊗ Ei

E0 = exp[U2 ] (dt + A[KK ])
Ei = exp[−U

2 ] dxi (6.2.12)

Next we can present the form of the electromagnetic field strengths:

FΛ = C
ΛM∂i ZM dxi ∧ (dt + A[KK ])

+ εi jkdx
i ∧ dx j

[
exp[−U ] (ImN −1

)ΛΣ (
∂k ZΣ + ReNΣΓ ∂k ZΓ

)]

(6.2.13)

Next we define the electromagnetic charges and the Taub-NUT charges for multicen-
ter solutions. Considering the metric (6.2.11) the black hole centers are defined by
the zeros of the warp-factor exp[U (x)]. In a composite m-black hole solution there
are m three-vectors rα (α = 1, . . . ,m), such that:

lim
x→rα

exp[U (x)] = 0 (6.2.14)

Each of these zeros defines a non trivial homology two-cycle S
2
α of the 4-dimensional

space-time which surrounds the singularity rα . The electromagnetic charges of the
individual holes are obtained by integrating the field strengths and their duals on
such homology cycles.

(
pΛ

qΣ

)
α

= 1

4π
√
2

( ∫
S2α

FΛ∫
S2α

GΣ

)
≡ 1

4π

∫
S2α

j EM (6.2.15)

Utilizing the form of the field strengths we obtain the explicit formula:

Qα ≡
(
pΛ

qΣ

)
α

= 1

4π
√
2

∫
S2α

εi jkdx
i ∧ dx j

[
exp[−U ]M4 ∂k Z

+ exp[−2U ] (∂ka + Z C ∂k Z
)

C Z
]

(6.2.16)
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which providesm-sets of electromagnetic charges associated with the solution. Sim-
ilarly we have m Taub-NUT charges defined by:

nα = − 1

4π

∫
S2α

εi jkdx
i ∧ dx j exp[−2U ] (∂ka + Z C ∂k Z

) ≡ 1

4π

∫
S2α

j T N

(6.2.17)

6.2.1.1 Reduction to the Spherical Case

The spherical symmetric one-center solutions are retrieved from the general case by
assuming that all the three-dimensional fields depend only on one radial coordinate:

τ = − 1

r
; r =

√
x21 + x22 + x23 (6.2.18)

On functions only of τ we have the identity:

∂i f (τ ) = −xi τ 3 d

dτ
f (τ ) (6.2.19)

and introducing polar coordinates:

x1 = 1

τ
cos θ

x2 = 1

τ
sin θ sin ϕ

x3 = 1

τ
sin θ cosϕ (6.2.20)

we obtain:
τ 3εi jk x

i dx j ∧ dxk = − 2 sin θ dθ ∧ dϕ (6.2.21)

By using these identities and restricting one’s attention to the extremal case, the
action of the σ -model (6.2.3) reduces to:

A =
∫

dτ L

L = U̇ 2 + hrs ϕ̇r ϕ̇s + e−2U (ȧ + ZT
CŻ)2 + 2 e−U ŻT M4 Ż (6.2.22)

where the dot denotes derivatives with respect to the τ variable. The σ -model field
equations take the standard form of the Euler Lagrangian equations:
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d

dτ

dL

dΦ̇
= dL

dΦ
(6.2.23)

and the extremality conditions (6.2.9) reduces to:

L = U̇ 2 + hrs ϕ̇r ϕ̇s + e−2U (ȧ + ZT
CŻ)2 + 2 e−U ŻT M4 Ż = 0 (6.2.24)

It appears from this that spherical extremal black holes are in one-to-one correspon-
dence with light-like geodesics of the manifold Q.

The Reduced Oxidation Rules

In the spherical case the above discussed oxidation rules reduce as follows. For the
metric we have

ds2(4) = − eU (τ ) (dt + 2 n cos θ dϕ)2 + e−U (τ )

[
1

τ4
dτ2 + 1

τ2

(
dθ2 + sin2 θ dφ2

)]

(6.2.25)

where n denotes the Taub-NUT charge obtained from the form of the Kaluza–Klein
field strength:

FKK = −2 n sin θ dθ ∧ dϕ

n = (ȧ + Z C Ż
)

(6.2.26)

The electromagnetic field-strengths are instead the following ones:

FΛ = 2 pΛ sin θ dθ ∧ dϕ + ŻΛdτ ∧ (dt + 2n cos θ dϕ) (6.2.27)

where the magnetic charges pΛ are extracted from the reduction of the general
formula (6.2.16), namely:

QM =
(
pΛ

qΣ

)
= √

2
[
e−U M4 Ż − nC Z

]M
(6.2.28)

6.3 The g2(2) Lie Algebra and the S3 Model

In Sect. 1.6 we discussed the structure of the smallest exceptional Lie algebra g2 and
we anticipated that it plays an important role in relation with the simplest example of
special Kähler geometry and of its quaternionic images under the c and the c� maps.
Indeed the simplest example of special Kähler geometry occurs when we have only

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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one complex scalar coordinate z which parameterizes the complex lower half-plane
endowed with the standard Poincaré metric. In other words3:

gzz̄dz dz̄ = 3

4

1

(Imz)2
dz dz̄ (6.3.1)

From the point of view of geometry the lower half-plane is the symmetric coset
manifold SL(2,R)

SO(2) ∼ SU(1,1)
U(1) .

According to the presented theory and to Table5.2 the c-map and c�-map images
of this special Kähler manifold are:

c

[
SU(1, 1)

U(1)

]
= G2(2)

SU(2) × SU(2)

c�

[
SU(1, 1)

U(1)

]
= G2(2)

SU(1, 1) × SU(1, 1)
(6.3.2)

and the architecture of the (pseudo)-quaternionic manifold is algebraically governed
by the golden splitting (1.7.21) and analytically determined by the explicit form of
theN -matrix of special geometry appearing in Eqs. (5.2.17) and (5.2.18).

In our discussion of supergravity black-holes from the point of view of the D = 3
σ -model and of nilpotent orbits, the master model we will constantly utilize is the
simplest one based on the abovementioned one dimensional special Kähler manifold
traditionally dubbed the S3 model. Hence we are interested in the explicit derivation
of its special geometry items.

The manifold SU(1,1)
U(1) admits a standard solvable parametrization constructed as it

follows. Let:

L0 = 1
2

(
1 0
0 −1

)
; L+ = 1

2

(
0 1
0 0

)
; L− = 1

2

(
0 0
1 0

)
(6.3.3)

be the standard three generators of the sl(2, R) Lie algebra satisfying the commu-
tation relations

[
L0, L±

] = ±L± and
[
L+, L−

] = 2L0. The coset manifold SU(1,1)
U(1)

is metrically equivalent with the solvable group manifold generated by L0 and L+.
Correspondingly we can introduce the coset representative:

L4(φ, y) = exp[y L1] exp[ϕ L0] =
(
eϕ/2 e−ϕ/2y
0 e−ϕ/2

)
(6.3.4)

Generic group elements of SL(2, R) are just 2 × 2 real matrices with determinant
one:

SL(2, R) 	 A =
(
a b
c d

)
; ad − bc = 1 (6.3.5)

3The special overall normalization of the Poincaré metric is chosen in order to match the general
definitions of special geometry applied to the present case.

http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_5
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and their action on the lower half-plane is defined by usual fractional linear transfor-
mations:

A : z → a z + b

c z + d
(6.3.6)

The correspondence between the lower complex half-plane C− and the solvable
-parameterized coset (6.3.4) is easily established observing that the entire set of
Imz < 0 complex numbers is just the orbit of the number i under the action of
L(φ, y):

L4(φ, y) : i → −eϕ/2 i + e−ϕ/2 y

e−ϕ/2
= y − ieϕ (6.3.7)

This simple argument shows that we can rewrite the coset representative L(φ, y) in
terms of the complex scalar field z as follows:

L4(z) =
⎛
⎝

√|Imz | Rez√
|Imz |

0 1√
|Imz |

⎞
⎠ (6.3.8)

The issue of special Kähler geometry becomes clear at this stage. If we did not con-
sider the symplectic vector bundle, the choice of the coset metric would be sufficient
and nothing more would have to be said. The point is that we still have to define
theN –matrix associated with the flat symplectic bundle which enters the definition
of special Kähler geometry. On the same base manifold SL(2, R)/SO(2) we have
different special structures which lead to different physical models and to different
duality groups UD=3 upon reduction to D = 3. The special structure is determined
by the choice of the symplectic embedding SL(2, R) → Sp(4, R). The symplectic
embedding that defines our master model and which eventually leads to the duality
group UD=3 = G2(2) is cubic and it was already described in Sect. 1.7.1.1. It is
explicitly given by Eq. (1.7.28).

The 2 × 2 blocks A, B,C, D of the 4 × 4 symplectic matrix Λ(A) are easily
readable from Eq. (1.7.28) so that, assuming that the matrix A(z) is the coset repre-
sentative of the manifold SU(1, 1)/U(1), we can apply the Gaillard-Zumino formula
(5.2.16) and obtain the explicit form of the kinetic matrix NΛΣ :

N =
(− 2ac−ibc+iad+2bd

a2+b2 −
√
3(c+id)(ac+bd)

(a−ib)(a+ib)2

−
√
3(c+id)(ac+bd)

(a−ib)(a+ib)2 − (c+id)2(2ac+ibc−iad+2bd)

(a−ib)(a+ib)3

)
(6.3.9)

Inserting the specific values of the entries a, b, c, d corresponding to the coset rep-
resentative (6.3.8), we get the explicit dependence of theN -matrix on the complex
coordinate z:

N ΛΣ(z) =
(− 3z+z̄

2zz̄ −
√
3(z+z̄)
2zz̄2

−
√
3(z+z̄)
2zz̄2 − z+3z̄

2zz̄3

)
(6.3.10)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_5
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This might conclude the determination of the quaternionic or pseudo-quaternionic
metric of our master example, yet we have not yet seen the special Kähler structure
induced by the cubic embedding. Let us present it.

The key point is the construction of the required holomorphic symplectic section
Ω(z). As usual the transformation properties of a geometrical object indicate the
way to build it explicitly. For consistency we should have that:

Ω

(
a z + b

c z + d

)
= f (z)Λ(A)Ω(z) (6.3.11)

where Λ(A) is the symplectic representation (1.7.28) of the considered SL(2, R)

matrix

(
a b
c d

)
and f (z) is the associated transition function for that line-bundle

whose Chern-class is the Kähler class of the base-manifold. The identification of the
symplectic fibres with the cubic symmetric representation provide the construction

mechanismofΩ . Consider a vector

(
v1
v2

)
that transforms in the fundamental doublet

representation of SL(2, R). On one hand we can identify the complex coordinate z
on the lower half-plane as z = v1/v2, on the other we can construct a symmetric
three-index tensor taking the tensor products of three vi , namely: ti jk = vi v j vk .
Dividing the resulting tensor by v32 we obtain a four vector:

Ω̂(z) = 1

v32

⎛
⎜⎜⎝

v31
v21 v2
v1 v22
v32

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
z3

z2

z
1

⎞
⎟⎟⎠ (6.3.12)

Next, recalling the change of basis (1.7.25), (1.7.26) required to put the cubic repre-
sentation into a standard symplectic form we set:

Ω(z) = S Ω̂(z) =

⎛
⎜⎜⎝

−√
3z2

z3√
3z

1

⎞
⎟⎟⎠ (6.3.13)

and we can easily verify that this object transforms in the appropriate way. Indeed
we obtain:

Ω

(
a z + b

c z + d

)
= (c z + d)−3 Λ(A)Ω(z) (6.3.14)

The pre-factor (c z + d)−3 is the correct one for the prescribed line-bundle. To see
this let us first calculate the Kähler potential and the Kähler form. Inserting (6.3.13)
into Eq. (4.2.15) we get:

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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K = −log
(
i〈Ω | Ω̄〉) = − log

(−i(z − z̄)3
)

K = i

2π
∂ ∂̄ K = i

2π

3

(Imz)2
dz ∧ dz̄ (6.3.15)

This shows that the constructed symplectic bundle leads indeed to the standard
Poincaré metric and the exponential of the Kähler potential transforms with the
prefactor (c z + d)3 whose inverse appears in Eq. (6.3.14).

To conclude let us show that the special geometry definition of the period matrix
N agrees with the Gaillard-Zumino definition holding true for all symplectically
embedded cosets. To this effect we calculate the necessary ingredients:

∇zV (z) = exp

[
K

2

]
(∂zΩ(z) + ∂zK Ω(z)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3z(z+2z̄)

(z−z̄)
√−i(z−z̄)3

− 3z2 z̄
(z−z̄)

√−i(z−z̄)3

−
√
3(2z+z̄)

(z−z̄)
√−i(z−z̄)3

− 3
(z−z̄)

√−i(z−z̄)3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡
(

f Λ
z

hΣz

)

(6.3.16)
Then according to Eq. (4.2.21) we obtain:

f Λ
I =

⎛
⎝

√
3z(z+2z̄)

(z−z̄)
√

−i(z−z̄)3
− 2

√
6z̄2

(−i(z−z̄))3/2

− 3z2 z̄

(z−z̄)
√

−i(z−z̄)3
2
√
2z̄3

(−i(z−z̄))3/2

⎞
⎠

hΛ|I =
⎛
⎝−

√
3(2z+z̄)

(z−z̄)
√

−i(z−z̄)3
2
√
6z̄

(−i(z−z̄))3/2

− 3

(z−z̄)
√

−i(z−z̄)3
2
√
2

(−i(z−z̄))3/2

⎞
⎠ (6.3.17)

and applying definition (4.2.21) we exactly retrieve the same form ofNΛΣ as given
in Eq. (6.3.10).

For completeness and also for later usewe calculate the remaining items pertaining
to special geometry, in particular the symmetricC-tensor. From the general definition
(4.2.18) applied to the present one-dimensional case we get:

∇z Uz = iCzzz h
zz�

Ūz� ⇒ Czzz = − 6i

(z − z�)3
(6.3.18)

As for the standard Levi-Civita connection we have:

Γ z
zz = 2

z − z�
; Γ z�

z�z� = − 2

z − z�
; all other components vanish (6.3.19)

This concludes our illustration of the cubic special Kähler structure on SL(2,R)

SO(2) .

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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6.3.1 The Quartic Invariant

In the cubic spin j = 3
2 representation of SL(2, R) there is a quartic invariant which

plays an important role in the discussion of black-holes. As it happens for all the
other supergravity models, the quartic invariant of the symplectic vector of magnetic
and electric charges:

Q =
(
pΛ

qΣ

)
(6.3.20)

is related to the entropy of the extremal black-holes, the latter being its square root.
The origin of the quartic invariant is easily understood in terms of the symmetric
tensor ti jk . Using the SL(2, R)-invariant antisymmetric symbol εi j we can construct
an invariant order four polynomial in the tensor ti jk by writing:

I4 ∝ εai εbj ε pl εqm εkr εcn tabc ti jk tpqr tlmn (6.3.21)

If we use the standard basis t111, t112, t122, t222, we rotate it with the matrix (1.7.25)
andwe identify the components of the resultant vector with those of the charge vector
Q the explicit form of the invariant quartic polynomial is the following one:

I4 = 1

3
√
3
q2 p

3
1 + 1

12
q2
1 p

2
1 − 1

2
p2q1q2 p1 − 1

3
√
3
p2q

3
1 − 1

4
p22q

2
2 (6.3.22)

where we have also chosen a specific overall normalization which turns out to be
convenient in the sequel.

6.4 Attractor Mechanism, the Entropy and Other Special
Geometry Invariants

One of themost important features of supergravity black-holes is the attractormecha-
nism discovered in the nineties by Ferrara and Kallosh for the case of BPS solutions4

[1, 2] and in recent time extended to non-BPS cases [12–14, 21–25]. According
to this mechanism, if we focus on spherical symmetric configurations, the evolving

4Clarification for mathematicians: the acronym BPS stands for Bogomolny, Prasad and Sommer-
feld. It is a notion occuring in the theory of monopoles where one always derives a bound according
to which the energy (or mass) of a quasi-particle corresponding to a localized solution of non
linear propagation equations is always larger or equal than some kind of charge carried by the
quasi-particle. BPS states are those that saturate the bound and typically correspond to shortened
representations of the space-time group. In the case of supergravity black–holes the BPS bound
relates the mass of the hole with the modulus of the central charge of the supersymmetry algebra.
Because of the scope of this book we omit the original definition of the central charge in terms of
superalgebras and we confine to give its expression in terms of special Kähler geometrical items
(see Eq. (6.4.4)).

http://dx.doi.org/10.1007/978-3-319-74491-9_1


6.4 Attractor Mechanism, the Entropy and Other Special Geometry Invariants 279

scalar fields zi (τ ) flow to fixed values at the horizon of the black-hole (τ = −∞),
which do not depend from their initial values at infinite radius (τ = 0) but only on
the electromagnetic charges p, q.

In order to establish the relation of the quartic invariant I4 defined in Eq. (6.3.22)
with the black-hole entropy and review the attractor mechanism, we must briefly
recall the essential items of black hole field equations in the geodesic potential
approach [10]. In this framework we do not consider all the fields listed in Eq.
(5.2.2). We introduce only the warp factor U (τ ) and the original scalar fields of
D = 4 supergravity. The information about vector gauge fields is encoded solely in
the set of electric and magnetic chargesQ defined by Eq. (6.3.20) which is retrieved
in Eq. (6.2.28). Under these conditions the correct field equations for an N = 2
black-hole are derived from the geodesic one dimensional field-theory described by
the following lagrangian:

Sef f ≡
∫

Le f f (τ ) dτ ; τ = −1

r

Le f f (τ ) = 1
4

(
dU

dτ

)2

+ gi j�
dzi

dτ

dz j
�

dτ
+ eU VBH (z, z̄,Q) (6.4.1)

where, by definition, the geodesic potential V (z, z̄,Q) is given by the following
formula in terms of the matrix M4 introduced in Eq. (4.3.4):

VBH (z, z̄,Q) = 1
4 Q

t M−1
4 (N ) Q (6.4.2)

The effective lagrangian (6.4.1) is derived from the σ -model lagrangian (6.2.24)
upon substitution of the first integrals ofmotion corresponding to the electromagnetic
charges (6.2.28) under the condition that the Taub-NUT charge, defined in (6.2.17),
vanishes5 (n = 0). Indeed, when the Taub-NUT charge n vanishes, which will be
our systematic choice, we can invert the above mentioned relations, expressing the
derivatives of the ZM fields in terms of the charge vector QM and the inverse of
the matrix M4. Upon substitution in the D = 3 sigma model lagrangian (4.3.4) we
obtain the effective lagrangian for the D = 4 scalar fields zi and the warping factor
U given by Eqs. (6.4.1)–(6.4.3).

The important thing is that, thanks to various identities of special geometry, the
effective geodesic potential admits the following alternative representation:

VBH (z, z̄,Q) = − 1
2

(|Z |2 + |Zi |2
) ≡ − 1

2

(
Z Z̄ + Zi g

i j� Z̄ j�
)

(6.4.3)

5As we are going to see later, each orbit of Lax operators always contains representatives such that
the Taub-NUT charge is zero. Alternatively from a dynamical system point of view the Taub-NUT
charge can be annihilated by setting a constraint which is consistent with the hamiltonian and which
reduces the dimension of the system by one unit. The problem of black hole physics is therefore
equivalent to the sigma model based on an appropriate codimension one hypersurface in the coset
manifold G/H�.

http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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where the symbol Z denotes the complex scalar field valued central charge of the
supersymmetry algebra:

Z ≡ V T
CQ = MΣ pΣ − LΛ qΛ (6.4.4)

and Zi denote its covariant derivatives:

Zi = ∇i Z = Ui CQ ; Z j� = g j�i Zi

Z̄ j� = ∇ j� Z = Ū j� CQ ; Z̄ i = gi j
�

Z̄ j� (6.4.5)

Equation (6.4.3) is a result in special geometry whose proof can be found in several
articles and reviews of the late nineties.6

6.4.1 Critical Points of the Geodesic Potential and Attractors

The structure of the geodesic potential illustrated above allows for a detailed discus-
sion of its critical points, which are relevant for the asymptotic behavior of the scalar
fields.

By definition, critical points correspond to those values of zi for which the first
derivative of the potential vanishes: ∂i VBH = 0. Utilizing the fundamental identities
of special geometry andEq. (6.4.3), the vanishing derivative condition of the potential
can be reformulated as follows:

0 = 2 Zi Z̄ + iCi jk Z̄
j Z̄ k (6.4.6)

From this equation it follows that there are three possible types of critical points:

Zi = 0 ; Z �= 0 ; BPS attractor
Zi �= 0 ; Z = 0 ; iCi jk Z̄ j Z̄ k = 0 non BPS attractor I
Zi �= 0 ; Z �= 0 ; iCi jk Z̄ j Z̄ k = − 2 Zi Z̄ non BPS attractor II

(6.4.7)

It should be noted that in the case of one-dimensional special geometries, like the
S3-model, only BPS attractors and non BPS attractors of type II are possible. Indeed
non BPS attractors of type I are forbidden unless Czzz vanishes identically.

In order to characterize the various type of attractors, the authors of [20] and
[34] introduced a certain number of special geometry invariants that obey different
and characterizing relations at attractor points of different type. They are defined as
follows. Let us introduce the symbols:

N3 ≡ Ci jk Z̄
i Z̄ j Z̄ k ; N̄3 ≡ Ci� j�k� Zi� Z j� Zk�

(6.4.8)

6See for instance the lecture notes [11].
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and let us set:

i1 = Z Z̄ ; i2 = Zi Z̄ j� gi j
�

i3 = 1
6

(
Z N3 + Z̄ N̄3

) ; i4 = i 1
6

(
Z N3 − Z̄ N̄3

)
i5 = Ci jk C�̄m̄n̄ Z̄

j Z̄ k Z m̄ Z n̄ gi �̄ ;
(6.4.9)

An important identity satisfied by the above invariants, that depend both on the scalar
fields zi and the charges (p, q), is the following one:

I4(p, q) = 1
4 (i1 − i2)

2 + i4 − 1
4 i5 (6.4.10)

where I4(p, q) is the quartic symplectic invariant that depends only on the charges
(see Eq. (6.3.22)). This means that in the above combination the dependence on the
fields zi cancels identically.

In the case of the one-dimensional S3 model there are two additional identities
[34] that read as follows:

i22 = 3
4 i5 ; i23 + i24 = 4i1

(
i2
3

)3

; for the S3 model (6.4.11)

In [20] it was proposed that the three types of critical points can be characterized by
the following relations among the above invariants holding at the attractor point:

At BPS Attractor Points

we have:
i1 �= 0 ; i2 = i3 = i4 = i5 = 0 ; (6.4.12)

At Non BPS Attractor Points of Type I

we have:
i2 �= 0 ; i1 = i3 = i4 = i5 = 0 (6.4.13)

At Non BPS Attractor Points of Type II

we have:

i2 = 3i1 ; i3 = 0 ; i4 = −2 i21 ; i5 = 12 i21 (6.4.14)

These relations follow from the definition of the critical point with the use of standard
special geometry manipulations. Their values resides in that they inform us in a
simple way about the nature of the black-hole solution we are considering. Indeed
they provide a partial classification of solution orbits since, given a configuration of
charges (p, q), whose structure depends, as we are going to see, from the choice
of an H� orbit for the Lax operator, we can calculate the possible critical points of
the corresponding geodesic potential and find out to which type they belong. We
might expect several different critical points for each (p, q)-choice, yet it turns out
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that there is only one and it always belongs to the same type for all elements of the
same H� orbit. This fact, whose a priori proof has still to be given, implies that a
classification of attractor points is also a partial classification of Lax operator orbits.
We shall come back on this crucial issue later on. Yet it is appropriate to emphasize
the word partial classification. Although the type of fixed point is the same for each
element of the same orbit we should by nomeans assume that fixed point types select
orbits. Indeed there are Lax operators belonging to different H� orbits that have the
same electromagnetic charges and therefore define the same fixed point. Furthermore
the fact that a Lax operator defines certain charges and hence an associated fixed point
does not imply that the solution generated by such Lax will necessarily reach that
fixed point. The solution can break up at a finite value of τ , stopping before the fixed
point is attained. Hence the classification of fixed points is not a classification of H�

orbits although the two classifications have partial relations to each other.

6.4.2 Fixed Scalars at BPS Attractor Points

In the case of BPS attractors we can find the explicit expression in terms of the
(p,q)-charges for the scalar field fixed values at the critical point.

By means of standard special geometry manipulations the BPS critical point
equation

∇ j Z = 0 ; ∇ j� Z̄ = 0 (6.4.15)

can be rewritten in the following celebrated formwhich, in the late nineties, appeared
in numerous research and review papers (see for instance [11]):

pΛ = i
(
Z f ix L̄

Λ
f i x − Z̄ f i x L

Λ
f i x

)
(6.4.16)

qΣ = i
(
Z f ix M̄

f i x
Σ − Z̄ f i x M

f ix
Σ

)
(6.4.17)

Using the explicit form of the symplectic section Ω(z) given in Eq. (6.3.13), we can
easily solve Eq. (6.4.17) for the S3 model and obtain the following fixed scalars:

z f i xed = − p1q1 + 3p2q2 + i 6
√
I4(p, q)

2
(
q2
1 + √

3p1q2
) (6.4.18)

where I4(p, q) is the quartic invariant defined in Eq. (6.3.22). In fact, one can give
the BPS solution in a closed form by replacing in the expression (6.4.18) z f i xed the
quantized charges with harmonic functions

qΛ → HΛ ≡ hΛ − √
2 qΛ τ ; pΛ → HΛ ≡ hΛ − √

2 pΛ τ (6.4.19)

The same substitution allows to describe the radial evolution of the warp factor:
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e−U = 1

2

√
I4(HΛ, HΛ) (6.4.20)

The constants hΛ, hΛ in the harmonic functions are subject to two conditions: one
originates from the requirement of asymptotic flatness (limτ→0− eU = 1), while the
other reads hΛqΛ − hΛ pΛ = 0. The remaining two free parameters are fixed by the
choice of the value of z at radial infinity.

By replacing the fixed values (6.4.18) into the expression (6.4.3) for the potential
we find:

VBH
(
z f i xed , z̄ f i xed , Q

) = −√I4(p, q) (6.4.21)

The above result implies that the horizon area in the case of an extremal BPS black-
hole is proportional to the square root of I4(p, q) and, as such, depends only on the
charges7 The argument goes as follows.

Consider the behavior of the warp factor exp[−U ] in the vicinity of the horizon,
when τ → −∞. For regular black-holes the near horizon metric must factorize as
follows:

ds2near hor. ≈ − 1

r2H τ 2
dt2 + r2H

(
dτ

τ

)2

︸ ︷︷ ︸
AdS2 metric

+ r2H
(
dθ2 sin2 θ dφ2

)
︸ ︷︷ ︸

S2 metric

(6.4.22)

where rH is the Schwarzschild radius defining the horizon. This implies that the
asymptotic behavior of the warp factor, for τ → −∞ is the following one:

exp[−U ] ∼ r2H τ 2 (6.4.23)

In the same limit the scalar fields go to their fixed values and their derivatives become
essentially zero. Hence near the horizon we have:

(
U̇
)2 ≈ 4

τ 2
; gi j�

dzi

dτ

dz j
�

dτ
≈ 0

eU VBH (z, z̄,Q) ≈ 1

r2H τ 2
V
(
z f i xed , z̄ f i xed , Q

)
(6.4.24)

Since for extremal black-holes the sum of the above three terms vanishes (see
Eq. (6.2.3)), we conclude that:

r2H = − VBH
(
z f i xed , z̄ f i xed , Q

)
(6.4.25)

which yields
AreaH = 4π r2H = 4π

√
I4(p, q) (6.4.26)

7Clarification for mathematicians: for a short but comprehensive introduction to the theory of Black
Holes we refer the interested reader to Chaps. 2 and 3 of Volume II of [35] by the present author.
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6.5 A Counter Example: The Extremal Kerr Metric

In this section, in order to better clarify the notion of extremality provided by con-
ditions (6.2.8)–(6.2.9) we consider the physically relevant counter-example of the
extremal Kerr metric. Such static solution of Einstein equations is certainly encoded
in the σ -model approach yet it is not extremal in the sense of Eqs. (6.2.8)–(6.2.9) and
therefore it is not related to any nilpotent orbit. Indeed the extremal Kerr metric is a
solution of pure gravity and as such its σ -model representation lies in the Euclidean
submanifold:

SL(2, R)

O(2)
(6.5.1)

for which the coset tangent space K contains no nilpotent elements.
Instead the so named BPS Kerr–Newman metric, which is not extremal in the

sense of General Relativity and actually displays a naked singularity, is extremal in
the sense of Eqs. (6.2.8)–(6.2.9) and can be retrieved in one of the nilpotent orbits of
the S3-model. We will show that explicitly in Sect. 6.11.4.

As a preparation to such discussions let us recall the general form of the Kerr–
Newman metric which we represent in polar coordinates as it follows:

ds2K N = −V 0 ⊗ V 0 +
3∑

i=1

V i ⊗ V i (6.5.2)

V 0 = δ(r)

σ (r, θ)

(
dt − α sin2 θ dφ

)
(6.5.3)

V 1 = σ(r, θ)

δ(r)
dr (6.5.4)

V 2 = σ(r, θ) dθ (6.5.5)

V 3 = sin(θ)

σ (r, θ)

((
r2 + α2

)
dφ − α dt

)
(6.5.6)

δ(r) =
√
q2 + r2 + α2 − 2mr (6.5.7)

σ(r, θ) =
√
r2 + α2 cos2(θ) (6.5.8)

Parameters of the Kerr–Newman solution are the mass m, the electric charge q and
the angular momentum J = m α of the Black Hole. The two particular cases we
shall consider in this paper correspond to:

(a) The extremal Kerr solution: q = 0 and m = α.
(b) The BPS Kerr–Newman solution q = m, arbitrary α.

Let us then focus now on the extremal Kerr solution. With the choice m = α, q = 0,
the metric (6.5.2) can be rewritten in the following form:

ds2EK = − exp[U ] (dt + A[KK ])2 + exp[−U ] γi j dy
i ⊗ dy j (6.5.9)
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where yi = {r, θ, φ} are the polar coordinates, the three dimensional metric γi j is
the following one:

γi j =
⎛
⎝

2r2−α2+α2 cos(2θ)

2r2 0 0
0 r2 − α2

2 + 1
2α

2 cos(2θ) 0
0 0 r2 sin2(θ)

⎞
⎠ (6.5.10)

the warp factor is:

U = log

[
r2 − α2 sin2(θ)

(r + α)2 + α2 cos2(θ)

]
(6.5.11)

and the Kaluza Klein vector has the following appearance:

A[KK ] = 2α2(r + α) sin2(θ)

r2 − α2 sin2(θ)
dφ (6.5.12)

In presence of the metric γi j the duality relation between the Kaluza Klein vector
field and the σ -model scalar field a reads as follows:

F[KK ]
i j ≡ ∂[iA[KK ]

j] = exp[−2U ]√det γ εi jk γ k� ∂� a (6.5.13)

and it is solved by:

a = − 2α2 cos(θ)

2r2 + 4αr + 3α2 + α2 cos(2θ)
(6.5.14)

In this way, by means of inverse engineering we have showed how the extremal Kerr
metric is retrieved in the σ -model approach. The crucial point is that the metric γi j
is not flat and hence such a configuration of theU, a fields does not correspond to an
extremal solution of the σ -model field equations. Indeed calculating the curvature
two-form of the three-dimensional metric (6.5.10) we find

R12 = 4α2
(
2r2 + α2 − α2 cos(2θ)

)
(
2r2 − α2 + α2 cos(2θ)

)3 e1 ∧ e2 (6.5.15)

R13 = 4α2

(
2r2 − α2 + α2 cos(2θ)

)2 e1 ∧ e3 (6.5.16)

R23 = − 4α2

(
2r2 − α2 + α2 cos(2θ)

)2 e2 ∧ e3 (6.5.17)
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where

e1 =
dr
√

cos(2θ)α2

r2 − α2

r2 + 2
√
2

(6.5.18)

e2 = dθ

√
r2 − α2

2
+ 1

2
α2 cos(2θ) (6.5.19)

e3 = dφ r sin(θ) (6.5.20)

is the dreibein corresponding to (6.5.10).
Hopefully this explicit calculation should have convinced the reader that the

extremal Kerr solution and, by the same token, also the extremal Kerr–Newman
solution are not extremal in the σ -model sense and are retrieved in regular rather
than in nilpotent orbits8 of U/H�.

6.6 The Standard Triple Classification of Nilpotent Orbits

The construction and classification of nilpotent orbits in semi-simple Lie algebras is
a relatively new field of mathematics which has already generated a vast literature.
Notwithstanding this, a well established set of results ready to use by physicists is
not yet available mainly because existing classifications are concerned with orbits
with respect to the full complex group GC or of one of its real forms GR [36],
which is not exactly what the problem of supergravity black-holes requires (i.e. the
classification of the nilpotent H�-orbits in K). Furthermore the complexity of the
existing mathematical papers and books is rather formidable and their reading not
too easy. Yet themainmathematical idea underlying all classification schemes is very
simple and intuitive and can be rephrased in a language very familiar to physicists,
namely that of angular momentum. Such rephrasing allows for what we named a
practitioner’s approach to the method of triples. In other words after decoding this
method in terms of angular momentumwe can derive case by case the needed results
by using a relatively elementary algorithm supplemented with some hints borrowed
from the mathematical literature.

8Clarification for mathematicians: Extremal in the GR sense means something different than
extremal in the σ -model sense. As we mentioned above the extremal Kerr solution, according
to General Relativity is the solution where m = α. In the σ -model sense any extremal solution
corresponds to a light-like geodesic of the of the U/H� manifold. Light-like geodesics, on their turn
are associated with H� orbits of nilpotent U Lie algebra elements. As shown above the extremal
Kerr solution is obtained from a U/H� geodesic that is not light-like so it is not extremal in the
σ -model sense.
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6.6.1 Presentation of the Method

In this section we shall denote the isometry group UD=3 by GR to emphasize that it
is a real form of some complex semisimple Lie group.

We will present the practitioner’s argument in the form of an ordered list.

1. The basic theorem proved by mathematicians (the Jacobson–Morozov theorem
[36]) is that any nilpotent element of a Lie algebra X ∈ g can be regarded as
belonging (X = x) to a triple of elements {x, y, h} that satisfy the standard
commutation relations of the sl(2) Lie algebra, namely:

[h , x] = x ; [h , y] = − y ; [x , y] = 2 h (6.6.1)

Hence the classification of nilpotent orbits is just the classification of embeddings
of an sl(2) Lie algebra in the ambient one, modulo conjugation by the full group
GR or by one of its subgroups. In our case the relevant subgroup is H� ⊂ GR.

2. The second relevant point in our decoding is that embeddings of subalgebras
h ⊂ g are characterized by the branching law of any representation of g into
irreducible representations of h. Clearly two embeddings might be conjugate
only if their branching laws are identical. Embeddings with different branching
laws necessarily belong to different orbits. In the case of the sl(2) ∼ so(1, 2) Lie
algebra, irreducible representations are uniquely identified by their spin j , so that
the branching law is expressed by listing the angular momenta { j1, j2, . . . jn} of
the irreducible blocks into which any representation of the original algebra, for
instance the fundamental, decomposes with respect to the embedded subalgebra.
The dimensions of each irreducible module is 2 j+1 so that an a priori constraint
on the labels { j1, j2, . . . jn} characterizing an orbit is the summation rule:

n∑
i=1

(2 ji + 1) = N = dimension of the fundamental representation (6.6.2)

Taking into account that ji are integer or half integer numbers, the sum rule (6.6.2)
is actually a partition of N into integers and this explains why mathematicians
classify nilpotent orbits starting from partitions of N and use Young tableaux in
the process.

3. The next observation is that the central element h of any triple is by definition
a diagonalizable (semisimple) non-compact element of the Lie algebra and as
such it can always be rotated into the Cartan subalgebra by means of a GR

transformation. In the case of interest to us, the Cartan subalgebra C can be
chosen, as we will do, inside the subalgebra H

� and consequently we can argue
that for any standard triple {x, y, h} the central element is inside that subalgebra:

h ∈ H
� (6.6.3)
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Sincewe shall workwith real representations ofGR, we choose a basis inwhich h
is a symmetric matrix. Indeed there are two possibilities: either x ∈ H

� or x ∈ K.
In the first casewe have y ∈ H

�, while in the secondwe have y ∈ K. This follows
from matrix transposition. Given x , the element y is just its transposed y = xT

and transposition maps H
� into H

� and K into K. Since it is already in H
�, in

order to rotate the central element h into the Cartan subalgebra it suffices an H�

transformation. Therefore to classify H� orbits of nilpotent K elements we can
start by considering central elements h belonging to the Cartan subalgebra C
chosen inside H

�.
4. The central element h of the standard triple, chosen inside the Cartan subalgebra,

is identified by its eigenvalues and by their ordering with respect to a standard
basis. Since h is the third component of the angular momentum, i.e. the operator
J3, its eigenvalues in a representation of spin j are − j,− j + 1, . . . , j − 1, j .
Hence if we choose a branching law { j1, j2, . . . jn}, we also decide the eigen-
values of h and consequently its components along a standard basis of simple
roots. The only indeterminacy which remains to be resolved is the order of the
available eigenvalues.

5. The question which remains to be answered is how much we can order the
eigenvalues of Cartan elements by means of H� group rotations. The answer is
given in terms of the generalized Weyl group GW and the Weyl group W .

6. The generalized Weyl group is the discrete group generated by all matrices of
the form:

Oα = exp
[
θα

(
Eα − E−α

)]
(6.6.4)

where E±α are the step operators associated with the roots ±α and the angle θα

is chosen in such a way that it realizes the α-reflection on a Cartan subalgebra
element β · H associated with a vector β:

Oα β · H O−1
α = σα(β) · H

σα(β) ≡ β − 2
(α , β)

(α , α)
α (6.6.5)

The generalized Weyl group has the property that for each of its elements γ ∈
GW and for each element h ∈ C of the Cartan subalgebra C , we have:

γ h γ −1 = h′ ∈ C (6.6.6)

7. The generalized Weyl group contains a normal subgroup H W ⊂ GW , named
the Weyl stability group and defined by the property that for each element ξ ∈
H W and for each Cartan subalgebra element h ∈ H W we have:

γ h γ −1 = h (6.6.7)
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8. The proper Weyl group is defined as the quotient of the generalized Weyl group
with respect to the Weyl stability subgroup:

W ≡ GW

H W
(6.6.8)

9. The above definition of the Weyl group shows that we can distinguish among
its elements those that can be realized by H� transformations, namely those
whose corresponding generalized Weyl group elements satisfy the condition
OTηO = η and those that are outside of H�.

10. If we were to consider nilpotent orbits with respect to the whole group G we
would just have to mod out all Weyl transformations. In the case of H� orbits
this is too much since the entire Weyl group is not contained in H� as we just
said. The rotations that have to be modded out are those of the intersection of
the generalized Weyl group GW H with H�, namely:

GW H ≡ GW
⋂

H� (6.6.9)

It should be noted that the Weyl stability subgroup is always contained in H� so
that, by definition, it is also a subgroup of GW H :

H W ⊂ GW H (6.6.10)

which happens to be normal. Hence we can define the ratio

WH ≡ GW H

H W
(6.6.11)

which is a subgroup of the Weyl group.
11. There is a simple method to find directly WH . The Weyl group is the symmetry

group of the root system Δ. When we choose the Cartan subalgebra inside H�

the root system splits into two disjoint subsets:

Δ = ΔH

⊕
ΔK (6.6.12)

respectively containing the roots represented in H
� and those represented in K.

Clearly the looked for subgroupWH ⊂ W is composed by those Weyl elements
which do not mix ΔH with ΔK and thus respect the splitting (6.6.12). Accord-
ing to this viewpoint, given a Cartan element h corresponding to a partition
{ j1, j2, . . . jn}, we consider its Weyl orbit and we split this Weyl orbit into m
suborbits corresponding to the m cosets:

W

WH
; m ≡ |W |

|WH | (6.6.13)
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Each Weyl suborbit corresponds to an H�-orbit of the neutral elements h in the
standard triples. We just have to separate those triples whose x and y elements
lie in K from those whose x and y elements lie in H

�. By construction if the x
and y elements of one triple lie in K, the same is true for all the other triples
in the same WH orbit. Weyl transformations outside WH mix instead K-triples
with H

� ones.
12. The construction described in the above points fixes completely the choice of

the central element h in a standard triple providing a standard representative of
an H� orbit. The work would be finished if the choice of h uniquely fixed also x
and y = xT that are our main target. This is not so. Given h one can impose the
commutation relations:

[h , x] = x (6.6.14)[
x , xT

] = 2 h (6.6.15)

as a set of algebraic equations for x . Typically these equations admit more than
one solution.9 The next task is that of arranging such solutions in orbits with
respect to the stability subgroupSh ⊂ H� of the central element. Typically such
a group is the product, direct or semidirect, of the discrete group H W , which
stabilizes any Cartan Lie algebra element, with a continuous subgroup of H�

which stabilizes only the considered central element h. The presence of such a
continuous part of the stabilizerSh manifests itself in the presence of continuous
parameters in the solution of the second equation (6.6.15) at fixed h.

13. When there are no continuous parameters in the solution of Eq. (6.6.15) what
we have to do is quite simple. We just need to verify which solutions are related
to which by means of H W transformations and we immediately construct the
H W -orbits. EachH W orbit of x solutions corresponds to an independent H�

orbit of nilpotent operators.
14. When continuous parameters are left over in the solutions space, signaling the

existence of a continuous part in theSh stabilizer, the direct construction ofSh

orbits is more involved and time consuming. An alternative method, however, is
available to distribute the obtained solutions into distinct orbits which is based
on invariants. Let us define the non-compact operator:

Xc ≡ i
(
x − xT

)
(6.6.16)

and consider its adjoint action on the maximal compact subalgebra H ⊂ U

which, by construction, has the same dimension as H
�. We name β-labels the

spectrum of eigenvalues of that adjoint matrix10:

9Such solutions actually correspond to different GR-orbits [36].
10In the literature, see [36], β-labels are defined as the value of the simple roots β i of the complex-
ification HC of H

� on the non-compact element Xc, viewed as a Cartan element of HC in the Weyl
chamber of (β i ). We find it more practical to work with the equivalent characterization (6.6.17).
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β − label = Spectrum
[
adj

H (Xc)
]

(6.6.17)

Since the spectrum is an invariant property with respect to conjugation,
x-solutions that have different β-labels belong to different H� orbits necessarily.
Actually they even belong to different orbits with respect to the full group U.
In fact there exists a one-to-one correspondence between nilpotent U orbits in
U and β-labels, which directly follows from the celebrated Kostant-Sekiguchi
theorem [36]. So we arrange the different solutions of Eq. (6.6.15) into orbits by
grouping them according to their β-labels.

15. The set of possible β-labels at fixed choice of the partition { j1, j2, . . . jn} is
predetermined since it corresponds to the set of γ -labels [37]. Let us define
these latter. Given the central element h of the triple, we consider its adjoint
action on the subalgebra H

� and we set:

γ − label = Spectrum
[
adj

H� (h)
]

(6.6.18)

Obviously all h-operators in the same WH -orbit have the same γ -label. Hence
the set of possible γ -labels corresponding to the same partition { j1, j2, . . . jn}
contains at most as many elements as the order of lateral classes W

W H
. The actual

number can be less when some WH -orbits of h-elements coincide.11 Given the
set of γ -labels pertaining to one { j1, j2, . . . jn}-partition the set of possible β-
labels pertaining to the same partition is the same. We know a priori that the
solutions to Eq. (6.6.15) will distribute in groups corresponding to the available
β-labels. Typically all availableβ-labels will be populated, yet for some partition
{ j1, j2, . . . jn} and for some chosen γ -label one ormoreβ-labelsmight be empty.

16. The above discussion shows that by naming α-label the partition { j1, j2, . . . jn}
(branching rule of the fundamental representation ofUwith respect to the embed-
ded sl(2)) the orbits can be classified and named with a triple of indices:

Oα
γβ (6.6.19)

the set of γβ-labels available for each α-label being determined by means of the
action of the Weyl group as we have thoroughly explained.

Whatwe have described in the above list is a concrete algorithm to single out standard
triple representatives of nilpotent H� orbits of K operators. In the next section we
apply it to the example of the g(2,2) model in order to show how it works.

11Note that the action of certain Weyl group elements g ∈ W on specific h.s can be the identity:
g · h = h. When such stabilizing group elements g are insideWH the number of different h.s inside
each lateral classes is accordingly reduced. If there are stabilizing elements g that are not inside
WH than two or more WH orbits coincide.
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6.7 The Nilpotent Orbits of the g(2,2) Model

In the present section we consider the classification of nilpotent H�-orbits in g(2,2)

by using the algorithm described in the previous section.

6.7.1 The Weyl and the Generalized Weyl Groups for g(2,2)

According to our general discussion the most important tools for the orbit classifi-
cation are the generalized Weyl groups and its subgroups.

We begin with the structure of the Weyl group for the g(2,2) root system Δg2. By
definition this is the group of rotations in a two-dimensional plane generated by the
reflections along all the roots contained in Δg2. Abstractly the structure of the group
is given by the semidirect product of the permutation group of three object S3 with
a Z2 factor:

W = S3 � Z2 (6.7.1)

Correspondingly the order of the group is:

|W | = 12 (6.7.2)

An explicit realization by means of 2 × 2 orthogonal matrices is the following one:

Id =
(
1 0
0 1

)
; α1 =

(−1 0
0 1

)
; α2 =

(
− 1

2

√
3
2√

3
2

1
2

)

α3 =
(

1
2

√
3
2√

3
2 − 1

2

)
; α4 =

(
1
2 −

√
3
2

−
√
3
2 − 1

2

)
; α5 =

(
− 1

2 −
√
3
2

−
√
3
2

1
2

)

α6 =
(
1 0
0 −1

)
; ξ1 =

(−1 0
0 −1

)
; ξ2 =

(
− 1

2 −
√
3
2√

3
2 − 1

2

)

ξ3 =
(

− 1
2

√
3
2

−
√
3
2 − 1

2

)
; ξ4 =

(
1
2 −

√
3
2√

3
2

1
2

)
; ξ5 =

(
1
2

√
3
2

−
√
3
2

1
2

)

(6.7.3)

where I d is the identity element, αi (i = 1, . . . , 6) denote the reflections along the
corresponding roots and ξi (i = 1, . . . , 5) are the additional elements created by
products of reflections. The multiplication table of this group is displayed below:
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0 Id α1 α2 α3 α4 α5 α6 ξ1 ξ2 ξ3 ξ4 ξ5
Id Id α1 α2 α3 α4 α5 α6 ξ1 ξ2 ξ3 ξ4 ξ5
α1 α1 Id ξ4 ξ2 ξ3 ξ5 ξ1 α6 α3 α4 α2 α5

α2 α2 ξ5 Id ξ4 ξ1 ξ3 ξ2 α4 α6 α5 α3 α1

α3 α3 ξ3 ξ5 Id ξ2 ξ1 ξ4 α5 α4 α1 α6 α2

α4 α4 ξ2 ξ1 ξ3 Id ξ4 ξ5 α2 α1 α3 α5 α6

α5 α5 ξ4 ξ2 ξ1 ξ5 Id ξ3 α3 α2 α6 α1 α4

α6 α6 ξ1 ξ3 ξ5 ξ4 ξ2 Id α1 α5 α2 α4 α3

ξ1 ξ1 α6 α4 α5 α2 α3 α1 Id ξ5 ξ4 ξ3 ξ2
ξ2 ξ2 α4 α5 α1 α3 α6 α2 ξ5 ξ3 Id ξ1 ξ4
ξ3 ξ3 α3 α6 α4 α1 α2 α5 ξ4 Id ξ2 ξ5 ξ1
ξ4 ξ4 α5 α1 α2 α6 α4 α3 ξ3 ξ1 ξ5 ξ2 Id
ξ5 ξ5 α2 α3 α6 α5 α1 α4 ξ2 ξ4 ξ1 Id ξ3

(6.7.4)

Next let us discuss the structure of the generalized Weyl group. In this case GW is
composed by 48 elements and its stability subgroup H W ∼ Z2 × Z2 is made by
the following four 7 × 7 matrices belonging to the G(2,2) group:

hw1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; hw2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −1
0 0 0 0 0 −1 0
0 0 0 0 −1 0 0
0 0 0 −1 0 0 0
0 0 −1 0 0 0 0
0 −1 0 0 0 0 0
−1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

hw3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1
0 0 0 0 0 −1 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; Id =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.7.5)

In order to complete the description of the generalizedWeyl group it is now sufficient
to write one representative for each equivalence class of the quotient:

GW

H W
� W (6.7.6)

We have:
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α1 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 −1
0 1 0 0 0 0 0
0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; α2 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2 0 0 − 1√

2
0 0 1

2

0 1
2 − 1

2 0 − 1
2 − 1

2 0
0 − 1

2 − 1
2 0 1

2 − 1
2 0

− 1√
2
0 0 0 0 0 − 1√

2
0 − 1

2
1
2 0 − 1

2 − 1
2 0

0 − 1
2 − 1

2 0 − 1
2

1
2 0

1
2 0 0 − 1√

2
0 0 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

α3 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2 − 1

2 0 0 0 − 1
2 − 1

2
1
2 − 1

2 0 0 0 1
2 − 1

2
0 0 1

2
1√
2

1
2 0 0

0 0 − 1√
2
0 1√

2
0 0

0 0 1
2 − 1√

2
1
2 0 0

1
2

1
2 0 0 0 − 1

2 − 1
2− 1

2
1
2 0 0 0 1

2 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; α4 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2 0 0 − 1√

2
0 0 1

2

0 − 1
2

1
2 0 1

2
1
2 0

0 1
2

1
2 0 − 1

2
1
2 0

− 1√
2
0 0 0 0 0 − 1√

2
0 1

2 − 1
2 0 1

2
1
2 0

0 1
2

1
2 0 1

2 − 1
2 0

1
2 0 0 − 1√

2
0 0 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

α5 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2 − 1

2 0 0 0 − 1
2 − 1

2− 1
2

1
2 0 0 0 − 1

2
1
2

0 0 − 1
2 − 1√

2
− 1

2 0 0

0 0 − 1√
2
0 1√

2
0 0

0 0 − 1
2

1√
2

− 1
2 0 0

− 1
2 − 1

2 0 0 0 1
2

1
2− 1

2
1
2 0 0 0 1

2 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; α6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0 0
0 0 0 0 0 −1 0
−1 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 1
0 −1 0 0 0 0 0
0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.7.7)
and

ξ1 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; ξ2 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1
2 − 1√

2
− 1

2 0 0
1
2

1
2 0 0 0 − 1

2 − 1
2− 1

2 − 1
2 0 0 0 − 1

2 − 1
2

0 0 1√
2

0 − 1√
2
0 0

1
2 − 1

2 0 0 0 − 1
2

1
2

1
2 − 1

2 0 0 0 1
2 − 1

2
0 0 1

2 − 1√
2

1
2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ3 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2 − 1

2 0 1
2 − 1

2 0
0 1

2
1
2 0 1

2 − 1
2 0

− 1
2 0 0 − 1√

2
0 0 1

2
1√
2

0 0 0 0 0 1√
2

− 1
2 0 0 1√

2
0 0 1

2

0 − 1
2

1
2 0 1

2
1
2 0

0 1
2 − 1

2 0 1
2

1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; ξ4 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2 − 1

2 0 1
2 − 1

2 0
0 − 1

2 − 1
2 0 − 1

2
1
2 0

1
2 0 0 1√

2
0 0 − 1

2
1√
2
0 0 0 0 0 1√

2
1
2 0 0 − 1√

2
0 0 − 1

2

0 1
2 − 1

2 0 − 1
2 − 1

2 0
0 1

2 − 1
2 0 1

2
1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ5 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1
2 − 1√

2
− 1

2 0 0

− 1
2 − 1

2 0 0 0 1
2

1
2

1
2

1
2 0 0 0 1

2
1
2

0 0 1√
2

0 − 1√
2
0 0

− 1
2

1
2 0 0 0 1

2 − 1
2− 1

2
1
2 0 0 0 − 1

2
1
2

0 0 1
2 − 1√

2
1
2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

(6.7.8)
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We can explicitly verify that all the elements of theH W subgroup are in H� =
su(1, 1) × su(1, 1) since they satisfy the condition:

hwT
i η hwi = η (6.7.9)

where

η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.7.10)

is the invariant metric which defines the H� subgroup. Note that here we use all the
conventions and the definitions introduced in [32].

The next required ingredient of our construction is the subgroup WH . As it was
shown in [32], when we diagonalize the adjoint action of a Cartan Subalgebra con-
tained in the H

� subalgebra, the root system of the g2 Lie algebra (see Fig. 6.4),
decomposes in two subsystems ΔH and ΔK such that the step operators correspond-
ing to roots in ΔH belong to H

� while the step operators corresponding to roots in
ΔK belong to K. The subsystem ΔH is composed by the roots ±α3,±α5, while ΔK

is made by the remaining ones. The subgroup WH ⊂ W can be easily derived. It
is made by all those elements of the Weyl group which map ΔH into itself and ΔK

into itself, as well. Referring to the previously introduced notation, we easily see that
(Fig. 6.5):

WH = {Id, α3, α5, ξ1} (6.7.11)

Fig. 6.4 The g2 root system
Δg2 is made of six positive
roots and of their negatives
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Fig. 6.5 The root system
Δg2 splits in two subsystems,
the system ΔH on the left,
the system ΔK on the right

Abstractly the structure of WH is the following:

WH ∼ Z2 × Z2 (6.7.12)

since all of its elements square to the identity.
There are three lateral classes inW /WH , respectively associated with the identity

element and with the reflection along the two simple roots.

[Id] = {Id, α3, α5, ξ1} (6.7.13)

[α1] = {α1, α6, ξ3, ξ4} (6.7.14)

[α2] = {α2, α4, ξ2, ξ5} (6.7.15)
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It follows that for each partition { j1, j2, . . . jn} (α-label) there are three possible
γ -labels and three possible β-labels. It remains to be seen for which combinations of
these γ and β-labels there exist an x-operator purely contained inKwhich completes
the standard triple.

6.7.2 The Table of G(2,2)
SU(1,1)×SU(1,1) Nilpotent Orbits

In order to derive the desired table of nilpotent orbits we begin from the first step
namely from partitions or, said differently, from α-labels.

6.7.2.1 α-Labels

Taking into account the restriction (see [36]) that every half-integer spin j should
appear an even number of times we easily conclude that the possible branching laws
of the 7-dimensional fundamental representation of g(2,2) into irreducible represen-
tations of sl(2) are the following ones:

α1 − label = [j=3] (6.7.16)

α2 − label = [j=1] × 2[ j = 1/2] (6.7.17)

α3 − label = 2[j=1] × [ j = 0] (6.7.18)

α4 − label = 2[j=1/2] × 3[ j = 0] (6.7.19)

6.7.2.2 γ -Labels

Analyzing the two Eqs. (6.6.14), (6.6.15) for the x-triple element at fixed h we find
the following result:

α1 In this sector there are x operators inK only for the second lateral class (6.7.14).
This means that there is only one γ -label which has the following form:

γ1 = {±8,±4, 0, 0} ≡ {81, 41, 01} (6.7.20)

The notation introduced in Eq. (6.7.20) is based on the following observation.
The dimension of H or H

� is six and every eigenvalue appears together with its
negative. Hence it suffices to mention the non-negative eigenvalues (including the
zero) with their multiplicity (all zeros appear in pairs as well). It follows that the
β-label is also unique so that in this sector there is only one nilpotent orbit.

α2 For this partition theWH orbits (6.7.13) and (6.7.14) coincide: within them we
find x operators in K. In the third WH orbit there are no solutions for x in K. So
we have only one γ -label:
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Table 6.1 Classification of nilpotent orbits of G(2,2)
SU(1,1)×SU(1,1)

N dn α − label γβ − labels Orbits WH − classes

1 7 [j=3] γβ1 = {814101} O1
1 (×, γ1,×)

2 3 [j=1] × 2[ j = 1/2] γβ1 = {311101} O2
1 (γ1, γ1,×)

7 3 2[j=1] × [ j = 0] γβ1 = {4102}
γβ2 = {2201}

β1 β2

γ1 O3
1,1 O3

1,2

γ2 O3
2,1 O3

2,2

(γ1, γ2, γ2)

4 2 2[j=1/2]× 3[ j = 0] γβ1 = {1201} O4
1 (0, γ1, γ1)

γ1 = {31, 11, 01} (6.7.21)

and consequently only one nilpotent orbit.
α3 For this partition theWH orbits (6.7.14) and (6.7.15) coincide while the first is

distinct. We find solutions for x in K both for the first WH -orbit (6.7.13) and for
the coinciding subsequent two. That means that we have two γ -labels

γ1 = {41, 02} (6.7.22)

γ2 = {22, 01} (6.7.23)

Considering the solutions for x both in the case of γ1 and γ2 they group in two
non empty classes corresponding to β-labels β1 and β2. This means that we have
a total of 4 nilpotent orbits from this sector.

α4 For this partition the situation is similar to that of partition one and two. There
are no K solutions for x in the firstWH orbit while there are such solutions in the
second and third WH -orbits, which coincide. Hence there is only one γ -label:

γ1 = {12, 01} (6.7.24)

and one nilpotent orbit.

In Table6.1 the results we have described are summarized.

6.8 Construction of Multicenter Solutions Associated with
Nilpotent Orbits

In this section we summarize in purely mathematical terms the algorithm that asso-
ciates extremal black hole solutions of supergravity to nilpotent orbits of the Lie
algebra U. As the reader will appreciate the algorithm is completely sequential and
constructive so that it can be easily implemented by means of computer codes.
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For spherically symmetric black holes the construction of solutions is associated
with nilpotent orbits in the following way. A representative of the H� orbit is a
standard triple {h, X,Y } and hence an embedding of an sl(2, R) Lie algebra:

[h, X ] = 2 X ; [h,Y ] = − 2 Y ; [X,Y ] = 2 h (6.8.1)

into UD=3 in such a way that h ∈ H
� and X,Y ∈ K

�. The nilpotent operator X is
identified with the Lax operator L0 at Euclidean time τ = 0 and the corresponding
solution depending on τ is constructed by using the algorithm described in [27, 29,
32].

In themulticenter approach of [15–19, 38] one utilizes the standard triple to single
out a nilpotent subalgebra N, as follows. One diagonalizes the adjoint action of the
central element h of the triple on the Lie Algebra UD=3:

[
h , Cμ

] = μCμ (6.8.2)

The set of all eigen-operators Cμ corresponding to positive gradings μ > 0 spans a
subalgebra N ⊂ UD=3 which is necessarily nilpotent

N = span [C2 , C3 , . . . , Cmax ] (6.8.3)

Such a nilpotent subalgebra has an intersection N
⋂

K
� with the space K

� which is
not empty since at least the operator C2 = X is present by definition of a standard
triple. The next steps of the construction are as follows.

6.8.1 The Coset Representative in the Symmetric Gauge

Given a basis Ai of the space NK ≡ N
⋂

K
�, whose dimension we denote:

� ≡ dimNK (6.8.4)

and a basis Bα of the subalgebra NH ≡ N
⋂

H
�, whose dimension we denote

m ≡ dimNH (6.8.5)

we can construct a map:
H : R

3 → NK (6.8.6)

by writing:

NK 	 H(x) =
�∑

i=1

hi (x) Ai (6.8.7)
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By construction, the point dependentLie algebra elementH(x) is nilpotent of a certain
maximal degree dn, so that its exponential map to the nilpotent group N ⊂ UD=3

truncates to a finite sum:

Y (x) = exp [H(x)] = 1 +
dn∑
a=1

1

a! H
a(x) (6.8.8)

The above constructed object realizes an explicit x-dependent coset representative
from which we can construct the Maurer Cartan left-invariant one form:

Σ = Y −1∂iY dxi (6.8.9)

Next let us decomposeΣ along theK
� subspace and theH

� subalgebra, respectively.
This is done by setting:

P = Tr(Σ K A)KA ; Ω = Tr(Σ Hm)Hm (6.8.10)

where KA and Hm denote a basis of generators for the two considered subspaces,
K A and Hm being their duals:

Tr(K A KB) = δA
B ; Tr(Hm Hn) = δmn ; Tr(K A Hn) = 0 (6.8.11)

Denoting:
�P ≡ 1

2 εi jk δim Pm dx j ∧ dxk (6.8.12)

the Hodge-dual of the coset vielbein

P = Pm dxm (6.8.13)

the field equations of the three dimensional σ -model reduce to the following one:

d�P = Ω ∧ �P − �P ∧ Ω (6.8.14)

Actually, since N ⊂ UD=3 forms a nilpotent subalgebra the constructed object Y
realizes a map from the three-dimensional space to the much smaller coset manifold:

Y : R
3 → N

NH
(6.8.15)

and due to the polynomial form of the coset representative the final equations of
motion obtain a triangular solvable form that we describe here below. Since the
algebra N is nilpotent, its derivative series terminates, namely we have:

N ⊃ DN ⊃ . . . ⊃ Dn
N ⊃ Dn+1

N = 0 (6.8.16)
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where at each stepD i
N is a proper subspace ofD i−1

N. Correspondingly let us define:

D i
NK = D i

N

⋂
K

� (6.8.17)

the intersections of the derivative subalgebras with the K
� subspace and let us intro-

duce the complementary orthogonal subspaces:

D i
NK = N

(i)
K ⊕ D i+1

NK (6.8.18)

This yields an orthogonal graded decomposition of the space NK of the following
form:

NK =
n⊕

a=0

N
(a)

K
(6.8.19)

The space N
(0)
K

contains those generators that cannot be produced by any commu-
tator within the algebra, N

(1)
K

contains those generators that are produced in simple
commutators, N

(2)
K

contains those that are produced in double commutators and so
on. Let us name

�a = dimN
(a)

K
;

n∑
a

�a = � (6.8.20)

Correspondinglywe can arrange the � functionshi (x) according to the graded decom-
position (6.8.19), by writing:

H(x) =
n∑

α=0

�α∑
i=1

h
(α)
i (x) Ai

α

︸ ︷︷ ︸
∈N

(α)

K

(6.8.21)

and Eq. (6.8.14) take the following triangular form:

∇2h
(0)
i = 0

∇2h
(1)
i = F

(1)
i

(
h(0),∇h(0)

)
∇2h

(2)
i = F

(2)
i

(
h(0),∇h(0), h(1),∇h(1))

. . . = . . .

∇2h
(n)
i = F

(n)
i

(
h(0),∇h(0), h(1),∇h(1), . . . , h(n−1),∇h(n−1)

)
, (6.8.22)

where ∇2 denotes the three-dimensional Laplacian and at each level α, by F(α)
i (. . . )

we denote an so(3) invariant polynomial of all the functions hβ up to level α −1 and
of their derivatives.
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Therefore the first �0 functions h
(0)
i are just harmonic functions, while the higher

ones satisfy Laplace equation with a source that is provided by the previously deter-
mined functions.

6.8.2 Transformation to the Solvable Gauge

Given the symmetric coset representative Y (x), parameterized by functions h(α)
i (x)

which satisfy the field equations (6.8.22), in order to retrieve the corresponding
supergravity fields satisfying supergravity field equations, we need to solve a tech-
nical, yet quite crucial problem. We need to construct a new upper triangular coset
representative:

L(Y ) =

⎛
⎜⎜⎜⎜⎜⎝

L1,1(Y ) L1,2(Y ) · · · L1,n−1(Y ) L1,n(Y )

0 L2,2(Y ) · · · L2,n−1(Y ) L2,n(Y )

0 0 L3,3(Y ) · · · L3,n(Y )
... . . . 0 · · · ...

0 0 · · · 0 L3,n(Y )

⎞
⎟⎟⎟⎟⎟⎠

(6.8.23)

which depends algebraically on the matrix entries of Y and satisfies the following
equivalence condition

L(Y )Q(Y ) = Y ; Q(Y ) ∈ H� (6.8.24)

where, as specified above,Q(Y ) is a suitable element of the subgroup H�. It should
be stressed that in the existing literature, this transition from the symmetric to the
solvable gauge, which is compulsory in order to make the construction of the black
hole solutions explicit, has been advocated, yet it has been left to ad hoc procedures
to be invented case by case.

Actually a universal and very elegant solution of such a problem exists and was
found, from a different perspective, by the author of the present book in collaboration
with A. Sorin. It was presented in [27–30, 32]. Defining the following determinants:

Di (Y ) := Det

⎛
⎜⎝
Y1,1 . . . Y1,i

...
...

...

Yi,1 . . . Yi,i

⎞
⎟⎠ , D0(Y ) := 1 (6.8.25)

the matrix elements of the inverse of the upper triangular coset representative satis-
fying both Eqs. (6.8.23) and (6.8.24) are given by the following expressions:
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(
L(Y )−1

)
i j ≡ 1√

Di (Y )Di−1(Y )
Det

⎛
⎜⎝
Y1,1 . . . Y1,i−1 Y1, j

...
...

...
...

Yi,1 . . . Yi,i−1 Yi, j

⎞
⎟⎠

(6.8.26)

Equation (6.8.26) provides a universal non-trivial and very elegant solution to the
gauge-change problem and makes the entire construction based on harmonic func-
tions truly algorithmic from the start to the very end.

6.8.3 Extraction of the Three Dimensional Scalar Fields

The result of the procedure described in the previous section is a triangular coset
representative L(h

(α)
i ) whose entries are polynomial and square root of polynomials

in the functions h(α)
i (x). The extraction of the scalar fields {U (x), a(x), Z(x), φ(x)}

can now be performed according to the rules already presented in [32], which we
recall here in full.

The general form of the solvable coset representative in terms of the fields is the
following one:

L(Φ) = exp
[−a LE

+
]
exp
[√

2 ZM WM

]
L4(φ) exp

[
U LE

0

]
(6.8.27)

where LE
0 , LE± are the generators of the Ehlers group and W M ≡ W 1M are the

generators in the W -representation, according to the general structure (1.7.13) of
the UD=3 Lie algebra; furthermore L4(φ) is the coset representative of the D = 4
scalar coset manifold immersed in the UD=3 group. From this structure, identifying
L(Φ) = L(h

(α)
i ) we deduce the following iterative procedure for the extraction of

the relevant fields:
First of all we can determine the warp factorU by means of the following simple

formula:
U (h) = log

[
1
2 Tr

(
L(h) LE

+ L
−1(h) LE

−
)]

(6.8.28)

Secondly we obtain the fields φi as follows. Defining the functionals

Ξi (h) = Tr
(
L

−1(h) Ti L(τ )
)

(6.8.29)

from the form of the coset representative (6.8.27) it follows that Ξi depend only on
the D = 4 scalar fields and, according to the explicit form of the D = 4 coset, one
can work out the scalar fields φi .

The knowledge of U, φi allows to define:

Ω(h) = L(h) exp
[−U LE

0

]
L4(φ)−1 (6.8.30)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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from which we extract the ZM fields by means of the following formula:

ZM(h) = 1

2
√
2
Tr
[
Ω(h)W T

M

]
(6.8.31)

where T means transposed. Finally the knowledge of ZM(h) allows to extract the a
field by means of the following trace:

a(h) = − 1
2Tr
[
Ω(h) exp

[
−√

2 ZM(h)WM

]
LE

+
]

(6.8.32)

6.9 General Properties of the Black Hole Solutions
and Structure of Their Poles

Having discussed the structure of supergravity solutions in terms of black-boxes
that are a set of harmonic functions and of their descendants generated through the
solution of the hierarchical equations (6.8.22), it is appropriate to study the general
form of the geometries one obtains in this way and the properties of the available
harmonic functions.

First of all, naming:
W = exp[U (x)] (6.9.1)

the warp factor that defines the 4-dimensional metric (6.2.11), we would like to
investigate the general properties of the corresponding geometries. For the casewhere
the Kaluza–Klein monopole is zeroA[KK ] = 0 we can write the general form of the
curvature two-form of such spaces and therefore the intrinsic form of the Riemann
tensor. Using the vielbein formalism introduced in Eq. (6.2.12) we obtain:

R0i = −W∇ i∇kW E0 ∧ Ek − 2∇ iW∇kW E0 ∧ Ek

Ri j = − 2W∇[i∇kW E j] ∧ Ek + (∇W · ∇W) ∇kW Ei ∧ E j (6.9.2)

where the derivatives used in the above equations are defined as follows. Let the flat
metric in three dimension be described by a Euclidean dreibein ei such that:

ds2f lat =
3∑

i=1

ei ⊗ ei

Ei = 1

W
ei (6.9.3)

then the total differential of the warp factor expanded along ei yields the derivatives
∇kW, namely:

dW = ∇kW ek (6.9.4)
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Next let us consider the general form of harmonic functions. These latter form a
linear space since any linear combination of harmonic functions is still harmonic.
There are three types of building blocks that we can use:

a Real center pole:

Hα(x) = 1

|x − xα| (6.9.5)

b Real part of an imaginary center pole:

Rα(x) = Re

[
1

|x − i xα|
]

(6.9.6)

c Imaginary part of an imaginary center pole:

Jα(x) = Im

[
1

|x − i xα|
]

(6.9.7)

Hence the most general harmonic function can be written as the following sum:

Harm(x) = h∞ +
∑
α

pα

|x − xα | +
∑
β

qβ Re

[
1

|x − i xβ |
]

+
∑
γ

kγ Im

[
1

|x − i xγ |
]

(6.9.8)

where the constant h∞ is the boundary value of the harmonic function at infinity far
from all the poles. In order to study the behavior of Harm(x) in the vicinity of a real
pole (|x − xα| << 1) it is convenient to adopt local polar coordinates:

x1 − x1α = r cos θ

x2 − x2α = r sin θ sin φ

x3 − x3α = r sin θ cos φ

(6.9.9)

In this coordinates the harmonic function is approximated by:

Harm(x) � hα + pα

r
(6.9.10)

where the effective constant hα encodes the finite part of the function contributed
by all the other poles. In polar coordinates the Laplacian operator on functions of r
becomes:

Δ = d2

dr2
+ 2

r

d

dr
(6.9.11)

The general outcome of the construction procedure outlined in the previous section is
that the warp factor is the square root of a rational function of n harmonic functions,
where n = dimNK
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W(x) =

√√√√√ P

(
Ĥarm1(x), . . . , Ĥarmn(x)

)

Q

(
Ĥarm1(x), . . . , Ĥarmn(x)

) (6.9.12)

whereP andQ are twopolynomials.By Ĥarm1(x)wedenote both harmonic functions
and their descendants generated by the hierarchical system (6.8.22). For a given
multicenter solution it is convenient to enumerate all the poles displayed by one or
the other of the harmonic functions and in the vicinity of each of those poles we will
have:

Ĥarmi (x) � pi
rmi

(6.9.13)

where pi �= 0 if the considered pole belongs to the considered function and it is
zero otherwise. Furthermore if Harmi (x) is one of the level one harmonic function
the exponent mi = 1. Otherwise it is bigger, but in any case mi ≥ 1. Taking this
into account the effective behavior of the warp factor will always be of the following
form:

W(x) � r �α
√
cα (6.9.14)

where � is some integer or half integer power (positive or negative) and cα is a
constant. In order for the pole to be a regular point of the solution, two conditions
have to be satisfied:

1. The constant cα > 0 must be positive so that the warp factor is real.
2. The power �α ≥ 1 so that the Riemann tensor does not diverge at the pole.

The second condition follows from the form (6.9.2) of the Riemann tensor which
implies that all of its components behave as:

Rab
cd � r2�α−2 × const (6.9.15)

Near the pole the metric behaves as follows:

ds2 � −√
cα r

�αdt2 + 1√
cα

1

r �α

[
dr2 + r2

(
dθ2 + sin2 θ dφ2)] (6.9.16)

In order for the pole to be an event horizon of finite or of vanishing area, wemust have
2 − �α > 0, so that the volume of the two-sphere described by

(
dθ2 + sin2 θ dφ2

)
does not diverge. Hence for regular black holes we have only three possibilities:

�α = 2︸ ︷︷ ︸
Large Black Holes

; �α = 3
2︸ ︷︷ ︸

Small Black Holes

; �α = 1︸ ︷︷ ︸
Very Small Black Holes

(6.9.17)

When we are in the case of Large Black Holes, the near horizon geometry is approx-
imated by that:

AdS2 × S
2 (6.9.18)
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The case of the harmonic functions with an imaginary center requires a differ-
ent treatment. Their near singularity behavior is best analyzed by using spheroidal
coordinates.

These are easily introduced by setting:

x1 =
√
r2 + α2 sin θ sin φ

x2 =
√
r2 + α2 sin θ cosφ

x3 = r cos θ (6.9.19)

where r, θ, φ are the new coordinates and α is a deformation parameter which rep-
resents the position of the center in the complex plane. In terms of these coordinates
the flat Euclidean three-dimensional metric takes the following form:

ds2
E3 = dΩ2

spheroidal ≡
(
r2 + α2 cos2 θ

)
dr2

r2 + α2
+ (r2 + α2

)
sin2 θ dφ2

+ (r2 + α2 cos2 θ
)
dθ2 (6.9.20)

and the two harmonic functions that correspond to the real and imaginary part of a
complex harmonic function with center on the imaginary z-axis at α-distance from
zero are:

Pα(r, θ) = r

r2 + α2 cos2 θ
(6.9.21)

Rα(r, θ) = α cos θ

r2 + α2 cos2 θ
(6.9.22)

and the Hodge duals of their gradients, in spheroidal coordinates have the following
form:

� ∇Pα = sin θ(
r2 + α2 cos2 θ

)2
[
2α2 r cos θ sin θ dr ∧ dφ

+ (r2 + α2) (r2 − α2 cos2 θ
)
dθ ∧ dφ

]
(6.9.23)

�∇Rα = α sin θ(
r2 + α2 cos2 θ

)2
[(

α2 cos2 θ − r2
)
sin θdr ∧ dφ

+2r
(
r2 + α2

)
cos θdθ ∧ dφ

]
(6.9.24)

These are the building blockswe can use to construct Kerr–Newman like solutions
and we shall outline a pair of examples in the sequel.
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6.10 The Example of the S3 Model: Classification
of the Nilpotent Orbits

As an illustration of the general procedure we explore the case of the S3 model,
leading to the G2,2 group in D = 3. The detailed classification of the nilpotent orbits
pertaining to this case was derived in Sect. 6.7. According to it, for the case of the
coset manifold12:

UD=3

H�
= G(2,2)

̂SL(2, R) × SL(2, R)h�

(6.10.1)

there just seven distinct nilpotent orbits of theH� = ̂SL(2, R)×SL(2, R)h� subgroup
in the K

� representation
(
2, 3

2

)
, which are enumerated by the three set of labels αβγ

and are denotedOα
βγ as described in Table6.1. An explicit choice of a representative

for each of the seven orbits is provided below.

O1
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3
2

√
5
2

2

√
3
2

√
5
2 0

√
5
2

2 0√
5
2

2

√
6 −

√
5
2

2 −√
3 −

√
5
2

2 0
√

5
2

2

−
√

3
2

√
5
2

2 −
√

3
2

√
5
2 0

√
5
2

2 0

−
√
5
2

√
3

√
5
2 0

√
5
2 −√

3 −
√
5
2

0
√

5
2

2 0
√
5
2

√
3
2

√
5
2

2

√
3
2√

5
2

2 0 −
√

5
2

2

√
3 −

√
5
2

2 −√
6

√
5
2

2

0
√

5
2

2 0
√
5
2 −

√
3
2

√
5
2

2 −
√

3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.2)

O4
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0 1

2 0 0
0 0 0 0 0 0 0
0 0 1

2 0 0 0 1
2

0 0 0 0 0 0 0
− 1

2 0 0 0 − 1
2 0 0

0 0 0 0 0 0 0
0 0 − 1

2 0 0 0 − 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.3)

O2
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 − 1

2 0 0 0 0
0 1 0 1√

2
0 0 0

1
2 0 − 1

2 0 0 0 0
0 − 1√

2
0 0 0 1√

2
0

0 0 0 0 1
2 0 − 1

2
0 0 0 − 1√

2
0 −1 0

0 0 0 0 1
2 0 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.4)

12For the rationale of our notation we refer the reader to previous Sect. 5.8.

http://dx.doi.org/10.1007/978-3-319-74491-9_5
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O3
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 − 1√
2
0 0 0

0 1 − 1
2 0 1

2 0 0
0 1

2 0 0 0 − 1
2 0

1√
2
0 0 0 0 0 1√

2
0 − 1

2 0 0 0 1
2 0

0 0 1
2 0 − 1

2 −1 0
0 0 0 − 1√

2
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.5)

O3
22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1√
2
0 0 0

0 1 − 1
2 0 − 1

2 0 0
0 1

2 0 0 0 1
2 0

− 1√
2
0 0 0 0 0 − 1√

2
0 1

2 0 0 0 1
2 0

0 0 − 1
2 0 − 1

2 −1 0
0 0 0 1√

2
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.6)

O3
21 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1√
2
0 0 0

0 0 − 1
2 0 − 1

2 0 0
0 1

2 −1 0 0 1
2 0

− 1√
2
0 0 0 0 0 − 1√

2
0 1

2 0 0 1 1
2 0

0 0 − 1
2 0 − 1

2 0 0
0 0 0 1√

2
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.7)

O3
12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 − 1√
2
0 0 0

0 0 − 1
2 0 1

2 0 0
0 1

2 −1 0 0 − 1
2 0

1√
2
0 0 0 0 0 1√

2
0 − 1

2 0 0 1 1
2 0

0 0 1
2 0 − 1

2 0 0
0 0 0 − 1√

2
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.10.8)

Each orbit representative Oα
βγ identifies a standard triple {h, X,Y } and hence an

embedding of an sl(2, R) Lie algebra:

[h, X ] = 2 X ; [h,Y ] = − 2 Y ; [X,Y ] = 2 h (6.10.9)
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into g(2,2) in such a way that h ∈ H
� and X,Y ∈ K

�. The triple is obtained by setting:

Xα|βγ ≡ Oα
βγ ; Yα|βγ ≡ XT

α|βγ ; hα|βγ ≡ [
Xα|βγ ,Yα|βγ

]
(6.10.10)

The relevant item in the construction of solutions based on the integration of equations
in the symmetric gauge is provided by the central element of the triple hα|βγ which
defines the gradings. In the present example of the S3 model, it turns out the orbits
having the same α and γ labels but different β-labels have the same central element,
namely:

hα|βγ = hα|β ′γ (6.10.11)

so that the solutions pertaining both to orbitOα
βγ and to orbitOα

β ′γ are obtained from
the same construction and are distinguished only by different choices in the space of
the available harmonic functions parameterizing the general solution.

The explicit form of the central elements are the following ones:

Large Orbit O1
11: Central Element

h1|11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 5 0 0
0 0 0

√
2 0 0 0

−1 0 0 0 0 0 5
0

√
2 0 0 0

√
2 0

5 0 0 0 0 0 −1
0 0 0

√
2 0 0 0

0 0 5 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Eigenvalues
[
1
2 h1|11

] = {−3, 3,−2, 2,−1, 1, 0} (6.10.12)

Very Small Orbit O4
11: Central Element

h4|11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Eigenvalues
[
1
2 h4|11

] =
{
−1

2
,−1

2
,
1

2
,
1

2
, 0, 0, 0

}
(6.10.13)
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Small Orbit O2
11: Central Element

h2|11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0
0 0 0 −√

2 0 0 0
1 0 0 0 0 0 0
0 −√

2 0 0 0 −√
2 0

0 0 0 0 0 0 1
0 0 0 −√

2 0 0 0
0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Eigenvalues
[
1
2 h2|11

] =
{
−1, 1,−1

2
,−1

2
,
1

2
,
1

2
, 0

}
(6.10.14)

Large BPS Orbit O3
11: Central Element

h3|11 = h3|21 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
√
2 0 0 0

0 0 1 0 −1 0 0
0 1 0 0 0 1 0√
2 0 0 0 0 0 −√

2
0 −1 0 0 0 −1 0
0 0 1 0 −1 0 0
0 0 0 −√

2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Eigenvalues
[
1
2 h3|11

] = {−1,−1, 1, 1, 0, 0, 0} (6.10.15)

Large Non BPS Orbit O3
22: Central Element

h3|12 = h3|22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −√
2 0 0 0

0 0 1 0 1 0 0
0 1 0 0 0 −1 0
−√

2 0 0 0 0 0
√
2

0 1 0 0 0 −1 0
0 0 −1 0 −1 0 0
0 0 0

√
2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Eigenvalues
[
1
2 h3|22

] = {−1,−1, 1, 1, 0, 0, 0} (6.10.16)

6.11 Explicit Construction of the Multicenter Black Holes
Solutions of the S3 Model

Having enumerated the central elements for the independent orbits we proceed to
the construction and discussion of the corresponding black hole solutions, whose
properties are summarized in Table6.2.
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Table 6.2 Properties of the g(2,2) orbits in the S3 model. The structure of the electromagnetic
charge vector is that obtained for solutions with vanishing Taub-NUT current. The symbol � is
meant to denote semidirect product. SW denotes the subgroup of the D = 4 duality group which
leaves the charge vector invariant, whileSH� denotes the subgroup of the H� isotropy group of the
D = 3 sigma-model which leaves invariant the X element of the standard triple. This latter is the
Lax operator in the one-dimensional spherical symmetric approach

Name pq Quart. Inv. W −
stab. group

H� −
stab. group

dim dim

of orbit charges I4 SW ⊂
sl(2, R)

SH� ⊂
̂sl(2, R) ⊕
sl(2, R)h�

N N
⋂

K
�

O4
11

⎛
⎜⎜⎜⎝

0

0

0

q

⎞
⎟⎟⎟⎠ 0

(
1 0

c 1

)
ISO(1, 1)︸ ︷︷ ︸
3 gen.

3 3

O2
11

⎛
⎜⎜⎜⎝

√
3 p

0

0

0

⎞
⎟⎟⎟⎠ 0 1 SO(1, 1) � R︸ ︷︷ ︸

2 gen.

4 3

O3
11

⎛
⎜⎜⎜⎝

0

p

−√
3q

0

⎞
⎟⎟⎟⎠ 9 p q3 > 0 Z3 R︸︷︷︸

1 gen.

A2 = 0 5 4

O3
22

⎛
⎜⎜⎜⎝

0

p√
3q

0

⎞
⎟⎟⎟⎠ −9 p q3 < 0 1 R︸︷︷︸

1 gen.

A3 = 0 3 3

O1
11

⎛
⎜⎜⎜⎜⎝

1
2

√
3
2 p

0
7
6 p√
2q

⎞
⎟⎟⎟⎟⎠

1
128 p

3×
(49p + 72q)

1 1 6 4

6.11.1 The Very Small Black Holes of O4
11

We begin with the smallest orbits which, in a sense that will become clear further on,
represent the elementary blocks in terms of which bigger black holes are constructed.

Focusing on any orbit Oα
βγ and considering the nilpotent element of the corre-

sponding triple Xα|βγ ∈ K
� as a Lax operator L0, we easily workout the electro-

magnetic charges by calculating the traces displayed below (see Sect. 5.9, for more
explanations)

Qw = Tr(Xα|βγT
w) (6.11.1)

http://dx.doi.org/10.1007/978-3-319-74491-9_5
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W-Representation

In the case of the orbit O4
11 we obtain:

Qw
4|11 = (0, 0, 0, 1) (6.11.2)

Substituting such a result in the expression for the quartic symplectic invariant (see
[32]):

I4 = 1

4

(
4
√
3Q4Q

3
1 + 3Q2

3Q
2
1 − 18Q2Q3Q4Q1 − Q2

(
4
√
3Q3

3 + 9Q2Q
2
4

))
(6.11.3)

of the W representation which happens to be the spin 3
2 of sl(2, R) we find:

I4 = 0 (6.11.4)

The result ismeaningful since, by calculating the traceTr(X4|11LE+) = 0,we can also
check that the Taub-NUT charge vanishes. We can also address the question whether
there are subgroups of the original duality group in four-dimensions SL(2,R) that
leave the charge vector (6.11.2) invariant. Using the explicit form of the j = 3

2
representation displayed in Eq. (3.13) of [32], we realize that indeed such group
exists and it is the parabolic subgroup described below:

∀ c ∈ R :
(
1 0
c 1

)
∈ S4|11 ⊂ SL(2, R) (6.11.5)

This stability subgroup together with the vanishing of the quartic invariant are the
intrinsic definition of the W-orbit pertaining to very small black holes.

H�-Stability Subgroup

In a parallel way we can pose the question what is the stability subgroup of the
nilpotent element X4|11 in H� = ̂sl(2, R) ⊕ sl(2, R)h� (For further explanations on
H� and its structure see Sect. 5.8). The answer is the following:

S4|11 = ISO(1, 1) (6.11.6)

A generic element of the corresponding Lie algebra is a linear combination of three
generators J, T1, T2, satisfying the commutation relations:

[J , T1] = 1√
2
T1 + 3

2
√
6
T2

[J , T2] = 3

2
√
2
T1 ; [T1 , T2] = 0

(6.11.7)

It is explicitly given by the following matrix:

http://dx.doi.org/10.1007/978-3-319-74491-9_5
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ω J + x T1 + y T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − x
2
√
2

ω

2
√
2

− x
2 0 − 1

2

√
3
2 y 0

x
2
√
2

0 − 1
2

√
3
2 y −ω

2
x

2
√
2

0 − 1
2

√
3
2 y

ω

2
√
2

− 1
2

√
3
2 y 0 − x

2 0 − x
2
√
2

0

− x
2 −ω

2
x
2 0 − x

2 −ω
2

x
2

0 x
2
√
2

0 x
2 0 1

2

√
3
2 y

ω

2
√
2

1
2

√
3
2 y 0 − x

2
√
2

−ω
2

1
2

√
3
2 y 0 − x

2
√
2

0 1
2

√
3
2 y 0 x

2
ω

2
√
2

x
2
√
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.8)
Nilpotent Algebra N4|11

Considering next the adjoint action of the central element h4|11 on the subspace K
�

we find that its eigenvalues are the following ones:

EigenvaluesK
�

4|11 = {−2, 2,−1,−1, 1, 1, 0, 0} (6.11.9)

Therefore the three eigenoperators A1, A2, A3 corresponding to the positive eigen-
values 2, 1, 1, respectively, form the restriction to K

� of a nilpotent algebra N4|11. In
this case Ai commute among themselves so thatN4|11 = N4|11

⋂
K

� and it is abelian.
This structure of the nilpotent algebra implies that for the orbit O4

11 we have only
three functions h0i which will be harmonic and independent.

Explicitly we set:

H(h1, h2, h3) =
3∑

i=1

hi Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−h1 h3 0 −√
2h3 −h1 −h2 0

h3 0 −h2 0 h3 0 −h2
0 h2 −h1

√
2h3 0 −h3 −h1√

2h3 0
√
2h3 0

√
2h3 0

√
2h3

h1 −h3 0
√
2h3 h1 h2 0

−h2 0 h3 0 −h2 0 h3
0 −h2 h1 −√

2h3 0 h3 h1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.10)

Considering H(h1, h2, h3) as a Lax operator and calculating its Taub-NUT charge
and electromagnetic charges we find:

nT N = −2 h2 ; Q =
(
0 , 2h2 , −2

√
3h3 , −2h1

)
(6.11.11)

This implies that constructing the multi-centre solution with harmonic functions the
condition h2 = 0 should be sufficient to annihilate the Taub-NUT current.

For later convenience let us change the normalization in the basis of harmonic
functions as follows:

h
(0)
1 = 1√

2
H1 ; h

(0)
2 = 1

2 (1 − H2) ; h
(0)
3 = 1√

2
H3 (6.11.12)
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Implementing the symmetric coset construction with:

Y (H1,H2,H3) ≡ exp
[
H
(

1√
2
H1,

1
2 (1 − H2) , 1√

2
H3

)]
(6.11.13)

and calculating the upper triangular coset representative L(Y ) according to
Eq. (6.8.26) we find a relatively simple expression which, however, is still too large
to be displayed. Yet the extraction of the σ -model scalar fields produces a quite
compact answer which we list below:

exp [−U ] =
√
H 2

2 − 3H 2
3 + H1 (6.11.14)

Im z =
√
H 2

2 − 3H 2
3 + H1

H 2
2 − H 2

3 + H1
(6.11.15)

Re z = −
√
2H3

H 2
2 − H 2

3 + H1
(6.11.16)

ZM =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
6H 2

3

H 2
2 −3H 2

3 +H 1

(H 2−2H 3)(H 2+H 3)
2+H 1H 2√

(H 2
2 −3H 2

3 +H 1)
2

−
√
3H 3

H 2
2 −3H 2

3 +H 1
H 2

2 −3H 2
3 +H 1−1√

2(H 2
2 −3H 2

3 +H 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.11.17)

a = H 3
2 + (−3H 2

3 + H1 + 1
)
H2 − 2H 3

3√
2
(
H 2

2 − 3H 2
3 + H1

) (6.11.18)

The Taub-NUT Current

Given this explicit result we can turn to the explicit oxidation formulae described in
Sect. 6.2.1 and calculate the Taub-NUT current which is the integrand of Eq. (6.2.17).
We find:

j T N = √
2 �∇ H2 (6.11.19)

Hence the vanishing of the Taub-NUT current is guaranteed by the very simple
condition:

H2 = α ; ∇H2 = 0 (6.11.20)

where α is just a constant. This confirms the preliminary analysis obtained from the
Lax operator which requires a vanishing component of the Lax along the second
generator A2 of the nilpotent algebra.
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General Form of the Solution

Imposing this condition we arrive at the following form of the solution depending
on two harmonic functions H1,H3:

exp[−U ] =
√

α2 − 3H 2
3 + H1 (6.11.21)

z = i
1√

α2 − 3H 2
3 + H1

−
√
2H3

α2 − 3H 2
3 + H1

(6.11.22)

j T N = 0 (6.11.23)

j EM = �∇

⎛
⎜⎜⎝

0
0√
3H3

− 1√
2
H1

⎞
⎟⎟⎠ (6.11.24)

Obviously the physical range of the solution is determined by the condition (α2 −
3H 2

3 +H1) > 0 which can always be arranged, by tuning the parameters contained
in the harmonic functions.

To this effect let us discuss the nature of the black holes encompassed by this solu-
tion, that, by definition, are located at the poles of the harmonic functions H1,H3.

According to the argument developed in Sect. 6.9, in the vicinity of each pole
|x− xI | = r < ε we can choose polar coordinates centered at xα and the behavior
of the harmonic functions, for ε → 0 is the following one:

H1 ∼ a1 + b1
r

(6.11.25)

H3 ∼ a3 + b3
r

(6.11.26)

which corresponds to the following behavior of the warp factor:

exp[−U ] ∼
√

α2 − 3a23 − 3b23
r2

+ a1 + b1
r

− 6a3b3
r

(6.11.27)

In order for the warp factor to be real for all values of r → 0 we necessarily find

b3 = 0

b1 > 0

α2 − 3a23 + a1 > 0 (6.11.28)

Since conditions (6.11.28) hold true for each available pole, it means the harmonic
functionH3 has actually no pole and is therefore equal to some constant. The bound-
ary condition of asymptotic flatness fixes the value of such a constant:
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lim
r→∞ exp[−U ] = 1 ⇔ H3 =

√
α2 + H1(∞) − 1√

3
(6.11.29)

Under such conditions in the vicinity of eachpolexα , thewarp factor has the following
behavior:

|x − xα|2 exp[−U ] x→xα∼ √
b1 |x − xα|3/2 + O

(|x − xα|5/2) (6.11.30)

leading to a vanishing horizon area:

Area Hα
= lim

x→xα

|x − xα|2 exp[−U ] = 0 (6.11.31)

At the same time using the form of the electromagnetic current in Eq. (6.11.24) and
the behavior of the harmonic function in the vicinity of the poles we obtain the charge
vector of each black hole encompassed by the solution:

Qα =
∫
S2α

j EM =

⎛
⎜⎜⎝

0
0
0

− 1√
2
qα

⎞
⎟⎟⎠ ; where qα = b1 for pole xα (6.11.32)

Summarizing

For the regular multicenter solutions associated with the orbit 4|11 all blacks holes
localized at each pole are of the same type, namely they are very small black holes
with vanishing horizon area and a charge vector Q belonging to W-orbit which is
characterized by both a vanishing quartic invariant and the existence of a continuous
parabolic stability subgroup of SL(2, R). Every black hole is a repetition in a different
place of the spherical symmetric black hole which gives its name to the orbit.

6.11.2 The Small Black Holes of O2
11

Next let us consider the orbit O2
11.

W-Representation

Applying the same strategy as in the previous case, from the general formula we
obtain

Qw
2|11 = Tr(X2|11T w) =

(√
3, 0, 0, 0

)
(6.11.33)

Substituting such a result in the expression for the quartic symplectic invariant (see
Eq. (6.11.3) we find:

I4 = 0 (6.11.34)
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Just as before we stress that this result is meaningful since, by calculating the trace
Tr(X2|11LE+) = 0, we can also check that the Taub-NUT charge vanishes. Address-
ing the question whether there are subgroups of the original duality group in four-
dimensions SL(2,R) that leave the charge vector (6.11.33) invariant we realize that
such a group contains only the identity

SL(2, R) ⊃ S2|11 = 1 (6.11.35)

Hencewe clearly establish the intrinsic difference between the two type of small black
holes at the level of theW-representation. Both have vanishing quartic invariant, yet
only the orbit 4|11 has a residual symmetry.

H�-Stability Subgroup

Considering next the stability subgroup of the nilpotent element X2|11 in H� =
̂sl(2, R) ⊕ sl(2, R)h� we obtain:

S2|11 = SO(1, 1) � R (6.11.36)

A generic element of the corresponding Lie algebra is a linear combination of two
generators J, T , satisfying the commutation relations:

[J , T ] = 3

2
√
6
T

(6.11.37)

We do not give its explicit form which we do not use in the sequel.

Nilpotent Algebra N4|11

Considering next the adjoint action of the central element h2|11 on the subspace K
�

we find that its eigenvalues are the following ones:

EigenvaluesK
�

4|11 = {−3, 3,−2, 2,−1, 1, 0, 0} (6.11.38)

Therefore the three eigenoperators A3, A2, A1 corresponding to the positive eigen-
values 3, 2, 1, respectively, form the restriction to K

� of a nilpotent algebra N2|11.
In this case Ai do not all commute among themselves so that, differently from the
previous case we have N4|11 �= N4|11

⋂
K

�. In particular we find a new generator:

B ∈ H
� (6.11.39)

which completes a four-dimensional algebra with the following commutation rela-
tions:
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0 = [A3 , A2] = [A1 , A3] (6.11.40)

B = [A2 , A1]

0 = [B , A1]

0 = [B , A2]

0 = [B , A3] (6.11.41)

As in the previous case, the structure of the nilpotent algebra implies that for the
orbit O2

11 we have only three functions h
0
i which will be harmonic and independent.

This is so because D2
N2|11 = 0 and DN2|11

⋂
K

� = 0.
Explicitly we set:

H(h1, h2, h3) = ∑3
i=1 hi Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−h2 h1 − h3 h2 −√
2h1 − √

2h3 0 −3h1 − h3 0
h1 − h3 −2h2 h3 − 3h1 −√

2h2 h1 + h3 0 −3h1 − h3
−h2 3h1 − h3 h2

√
2h1 − √

2h3 0 −h1 − h3 0√
2h1 + √

2h3
√
2h2

√
2h1 − √

2h3 0
√
2h1 − √

2h3 −√
2h2

√
2h1 + √

2h3
0 −h1 − h3 0

√
2h1 − √

2h3 −h2 3h1 − h3 h2
−3h1 − h3 0 h1 + h3

√
2h2 h3 − 3h1 2h2 h1 − h3

0 −3h1 − h3 0 −√
2h1 − √

2h3 −h2 h1 − h3 h2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.42)

ConsideringH(h1, h2, h3) as a Lax operator and calculating its Taub-NUT charge
and electromagnetic charges we find:

nT N = −2 (3h1 + h3) ; Q =
{
−2

√
3h2, 6h1 − 2h3,−2

√
3 (h1 + h3) , 0

}
(6.11.43)

This implies that constructing the multi-centre solution with harmonic functions the
condition h3 = − 3 h1 might be sufficient to annihilate the Taub-NUT current. We
shall demonstrate that in this case the condition is slightly more complicated.

For later convenience let us change the normalization in the basis of harmonic
functions as follows:

h
(0)
1 = 1

4H3 ; h
(0)
2 = 1

2 (1 − H2) ; h
(0)
3 = 1

4H1 (6.11.44)

Implementing the symmetric coset construction with:

Y (H3,H2,H1) ≡ exp
[
H
(
1
4H3,

1
2 (1 − H2) , 1

4H1
)]

(6.11.45)

calculating the upper triangular coset representative L(Y ) according to equations
(6.8.26) and extracting the σ -model scalar fields we obtain the answer which we list
below:
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exp [−U ] = 1

2

√
−H 2

3 + (4H 3
1 + 6H2H1

)
H3 + H 2

2

(
3H 2

1 + 4H2
)

(6.11.46)

Im z =
√

−H 2
3 + (4H 3

1 + 6H2H1
)
H3 + H 2

2

(
3H 2

1 + 4H2
)

2
(
H 2

1 + H2
)

(6.11.47)

Re z = H3 − H2H1

2
(
H 2

1 + H2
) (6.11.48)

ZM =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
3
2 (H

2
3 −2H 1(2H 2

1 +3H 2−1)H 3+H 2(−4H 2
2 +(4−3H 2

1 )H 2+2H 2
1 ))

H 2
3 −2(2H 3

1 +3H 2H 1)H 3−H 2
2 (3H 2

1 +4H 2)√
2(2H 3

1 +3H 2H 1−H 3)
−H 2

3 +(4H 3
1 +6H 2H 1)H 3+H 2

2 (3H 2
1 +4H 2)√

6(H 1H
2
2 +H 3(2H 2

1 +H 2))
H 2

3 −2(2H 3
1 +3H 2H 1)H 3−H 2

2 (3H 2
1 +4H 2)

4H 3H
3
1 +3H 2

2 H 2
1 +H 2

3√
2(−H 2

3 +(4H 3
1 +6H 2H 1)H 3+H 2

2 (3H 2
1 +4H 2))

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.11.49)

a = H3
(−6H 2

1 − 3H2 + 1
)− H1

(
3H 2

2 + 3H2 + 2H 2
1

)
H 2

3 − 2
(
2H 3

1 + 3H2H1
)
H3 − H 2

2

(
3H 2

1 + 4H2
) (6.11.50)

The Taub-NUT Current

Given this explicit result we can turn to the explicit oxidation formulae described in
Sect. 6.2.1 and calculate the Taub-NUT current which is the integrand of Eq. (6.2.17).
We find:

j T N = 1
2

(
�∇H3 + 3

(
H2

�∇H1 − H1
�∇H2

))
(6.11.51)

Analyzing Eq. (6.11.51) we see that there are just two possible solutions to the con-
dition j T N = 0:

(case a) H3 = β = const ; H1 = 0. With this condition we obtain:

exp[−U ] = 1

2

√
4H 3

2 − β2 (6.11.52)

z =
β + i

√
4H 3

2 − β2

2H2
(6.11.53)

j EM = �∇

⎛
⎜⎜⎜⎝

−
√

3
2H2

0
0
0

⎞
⎟⎟⎟⎠ (6.11.54)

(case b) H3 = β = const ; H2 = 0
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exp[−U ] = 1

2

√
β
(
4H 3

1 − β
)

(6.11.55)

z =
β + i

√
β
(
4H 3

1 − β
)

2H 2
3

(6.11.56)

j EM =

⎛
⎜⎜⎜⎝

0
0

−
√

3
2H1

0

⎞
⎟⎟⎟⎠ (6.11.57)

It might seem that these two solutions correspond to different types of black holes
but this is not the case, as we now show. From the asymptotic flatness boundary
condition we find that the value of β is fixed in terms of the value at infinity of the
corresponding harmonic function H1,2, which of course must satisfy the necessary
condition for reality of the solution H1,2(∞) ≥ 1:

{
β = 2

√
[H2(∞)]3 − 1 case a

β = 2
(
[H1(∞)]3 +

√
[H1(∞)]6 − 1

)
case b

(6.11.58)

In the vicinity of a pole by means of the usual argument we obtain the following
behavior of the warp factor:

|x − xα|2 exp[−U ] x→xα∼
⎧⎨
⎩
√
b32

√|x − xα| + O
(|x − xα|3/2) : case a√

β b31
√|x − xα| + O

(|x − xα|3/2) : case b
(6.11.59)

Hence in both cases the horizon area vanishes at all poles xα and the reality conditions
are satisfied choosing the appropriate sign of b1,2. The charge vector has the same
structure for all black holes encompassed in the first or in the second solution, namely:

Qα =
⎧⎨
⎩
{
−
√

3
2 pα , 0 , 0 , 0

}
: pα = b2 for pole α{

0 , 0 , −
√

3
2 qα , 0

}
: qα = b1 for pole α

(6.11.60)

In both cases the quartic invariant I4 is zero for all black holes in the solutions, yet
one might still doubt whether the W-orbit for the two cases might be different. It is
not so, since a direct calculation shows that the image in the j = 3

2 representation
Λ[A]13 of the following SL(2, R) element:

A =
(
0 p

q

− q
p 0

)
(6.11.61)

13See [32] for details, in particular Eq. (3.13) of that reference for the explicit form of the spin 3
2

matrices.
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maps the charge vector Q[q] = {0 , 0 , − q , 0}, into the charge vector Q[p] =
{p , 0 , 0 , 0}, namely we have Λ[A]Q[q] = Q[p]. Hence the two solutions we
have here discussed simply give different representatives of the same W-orbit.

Summary

Just as in the previous case for a multicenter solution associated with the O2
11 orbit

all the black holes included in one solution are of the same type, namely small black
holes with the same identical properties.

6.11.3 The Large BPS Black Holes of O3
11

Next let us consider the orbit O3
11, which in the spherical symmetric case leads to

BPS Black holes with a finite horizon area.

W-Representation

In order to better appreciate the structure of these solutions, let us slightly generalize
our orbit representative, writing the following nilpotent matrix that depends on two
parameters (p, q) to be interpreted later as the magnetic and the electric charge of
the hole:

X3|11(p, q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q 0 0 − q√
2
0 0 0

0 p+q
2 − p

2 0 q
2 0 0

0 p
2

q−p
2 0 0 − q

2 0
q√
2
0 0 0 0 0 q√

2
0 − q

2 0 0 p−q
2

p
2 0

0 0 q
2 0 − p

2
1
2 (−p − q) 0

0 0 0 − q√
2
0 0 −q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.62)

The standard triple representative mentioned in Eq. (6.10.5) is just the particular case
X3|11(1, 1). Applying the same strategy as in the previous case, from the general
formula we obtain

Qw
3|11 = Tr(X3|11(p, q)T w) =

(
0, p,−√

3q, 0
)

(6.11.63)

Substituting such a result in the expression for the quartic symplectic invariant (see
Eq. (6.11.3)) we find:

I4 = 9 p q3 > 0 if p and q have the same sign (6.11.64)

Just as before we stress that this result is meaningful since, by calculating the trace
Tr(X3|11LE+) = 0, we can also check that the Taub-NUT charge vanishes. Further-
more we note that the condition that p and q have the same sign was singled out
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in [32] as the defining condition of the orbit O3
11 which, in the spherical symmetry

approach leads to regular BPS solutions. The choice of opposite signs was proved in
[32] to correspond to a different H� orbit, the non diagonal O3

21 which instead con-
tains only singular solutions. Here we will show another important and intrinsically
four dimensional reason to separate the two cases.

Addressing the question whether there are subgroups of the original duality group
in four-dimensions SL(2,R) that leave the charge vector (6.11.63) invariant we
realize that such a subgroup exists and is the finite cyclic group of order three:

SL(2, R) ⊃ S3|11 = Z3 (6.11.65)

S3|11 is made by the following three elements:

1 =
(
1 0
0 1

)
(6.11.66)

B =
⎛
⎝− 1

2 −
√
3
2

√
p
q√

3
2

√
q
p − 1

2

⎞
⎠ (6.11.67)

B2 =
⎛
⎝− 1

2

√
3
2

√
p
q

−
√
3
2

√
q
p − 1

2

⎞
⎠ ; B3 = 1 (6.11.68)

It is evident that such aZ3 subgroup exists if and only if the two charges p, q have the
same sign. Otherwise the corresponding matrices develop imaginary elements and
migrate to SL(2, C). The existence of this isotropy group Z3 can be considered the
very definition of theW-orbit corresponding to BPS black holes. Indeed let us name

λ =
√

p
q and consider the algebraic condition imposed on a generic charge vector:

Q = {Q1, Q2, Q3, Q4} by the request that it should admit the above described Z3

stability group:

Λ[B]Q = Q ⇔ Q =
(√

3λ2Q4,−λ2Q3√
3

, Q3, Q4

)
(6.11.69)

It is evident from the above explicit result that the charge vectors having this sym-
metry depend only on three parameters (λ2, Q3, Q4). The very relevant fact is that
substituting this restricted charge vector in the general formula (6.11.3) for the quartic
invariant we obtain:

J4 = λ2
(
Q2

3 + 3λ2Q2
4

)2
> 0 (6.11.70)

Hence the Z3 guarantees that the quartic invariant is a perfect square and hence
positive. It is an intrinsic restriction characterizing the W-orbit.
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H�-Stability Subgroup

Considering next the stability subgroup of the nilpotent element X3|11(1, 1) in H� =
̂sl(2, R) ⊕ sl(2, R)h� we obtain:

S3|11 = R (6.11.71)

the group being generated by a matrix A3|11 of nilpotency degree 2:

A
2
3|11 = 0 (6.11.72)

We do not give its explicit form which we do not use in the sequel.

Nilpotent Algebra N3|11

Considering next the adjoint action of the central element h3|11 on the subspace K
�

we find that its eigenvalues are the following ones:

EigenvaluesK
�

3|11 = {−2,−2,−2,−2, 2, 2, 2, 2} (6.11.73)

Therefore the four eigenoperators A1, A2, A3, A4 corresponding to the four positive
eigenvalues 2, respectively, form the restriction to K

� of a nilpotent algebra N3|11.
Also in this case the Ai do not all commute among themselves so that, we have
N3|11 �= N3|11

⋂
K

�. In particular we find a new generator:

B ∈ H
� (6.11.74)

which completes a five-dimensional algebra with the following commutation rela-
tions:

[
Ai , A j

] = Ωi j B

[B , Ai ] = 0

B =

⎛
⎜⎜⎝
0 0 −1 1
0 0 −1 −1
1 1 0 0
−1 1 0 0

⎞
⎟⎟⎠ (6.11.75)

The structure of the nilpotent algebra implies that for the orbitO3
11 we have only four

functions h0i which will be harmonic and independent. This is so becauseD2
N3|11 =

0 and DN3|11
⋂

K
� = 0.

Explicitly we set:

H(h1, h2, h3, h4) = ∑4
i=1 hi Ai =
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2h3 h1 − 2h2 2h1 − h2 −√
2h3 −3h2 −3h1 0

h1 − 2h2 h3 − h4 h4
√
2h2 − 2

√
2h1 h3 0 −3h1

h2 − 2h1 −h4 h3 + h4
√
2h1 − 2

√
2h2 0 −h3 −3h2√

2h3 2
√
2h1 − √

2h2
√
2h1 − 2

√
2h2 0

√
2h1 − 2

√
2h2

√
2h2 − 2

√
2h1

√
2h3

3h2 −h3 0
√
2h1 − 2

√
2h2 −h3 − h4 −h4 2h1 − h2

−3h1 0 h3 2
√
2h1 − √

2h2 h4 h4 − h3 h1 − 2h2
0 −3h1 3h2 −√

2h3 h2 − 2h1 h1 − 2h2 −2h3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.76)

Considering H(h1, h2, h3, h4) as a Lax operator and calculating its Taub-NUT
charge and electromagnetic charges we find:

nT N = −6h1 ; Q =
{
2
√
3 (h2 − 2h1) ,−2h4,−2

√
3h3,−6h2

}
(6.11.77)

This implies that constructing the multi-centre solution with harmonic functions the
condition h1 = 0 might be sufficient to annihilate the Taub-NUT current. We shall
demonstrate that also in this case the condition is slightly more complicated. This
emphasizes the difference between the Lax operator one-dimensional approach and
the multicenter construction based on harmonic functions.

For later convenience let us change the normalization in the basis of harmonic
functions as follows:

h
(0)
1 = 1√

12
H1 ; h

(0)
2 = 1√

12
H2 ; h

(0)
3 = 1

2 (H3 − 1) ; h
(0)
4 = 1

2 (H4 + 1)

(6.11.78)
Implementing the symmetric coset construction with:

Y (H1,H2,H3,H4) ≡ exp
[
H
(

1√
12
H1,

1√
12
H2,

1
2 (H3 − 1) , 1

2 (H4 + 1)
)]

(6.11.79)

calculating the upper triangular coset representative L(Y ) according to Eq. (6.8.26)
and extracting the σ -model scalar fieldswe obtain an explicit but rathermessy answer
which we omit. In particular we obtain the Taub-NUT current in the following form:

j T N =
4∑

i=1

Ri (H ) ∇Hi (6.11.80)

where Ri (H ) are rational functions of the four harmonic functions, the maximal
degree of involved polynomials being 16. A priori, imposing the vanishing of the
Taub-NUT current is a problem without guaranteed solutions. In the 4-dimensional
linear space of the harmonic functions we can introduce r -linear relations of the
form:

0 = V i
α Hi ; α = 1, . . . , r (6.11.81)
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Let Ui
a be a set of 4 − r linear independent 4-vectors orthogonal to the vectors V i

α .
Then itmust happen that on the locus defined byEqs. (6.11.81), the following rational
functions should also vanish

0 = Pa(H ) ≡ Ui
a Ri (H ) ; (a = 1, . . . , r − 4) (6.11.82)

For generic rational functions this will never happen, yet we know that for our
system such solutions should exist and in want of a clear cut algorithm it is a matter
of ingenuity to find them. We do not find any solution with r = 1 but we find two
nice solutions with r = 2. They are the following ones:

(a) H1 = H2 = 0. The complete form of the supergravity solution correspond-
ing to this choice is:

exp[ −U ] =
√

−H 3
3 H4 (6.11.83)

z = i

√
−H 3

3 H4

H 2
3

(6.11.84)

j T N = 0 (6.11.85)

j EM = �∇

⎛
⎜⎜⎜⎝

0
H 4√
2√
3
2H3

0

⎞
⎟⎟⎟⎠ (6.11.86)

(b) H1 = 0, H3 = −H4. The complete form of the supergravity solution
corresponding to this choice is:

exp[ −U ] =
√

−H 4
2

3
− 2H 2

4 H
2
2 + H 4

4 (6.11.87)

z =
2H2H4 − i

√
−H 4

2 − 6H 2
4 H

2
2 + 3H 4

4√
3
(
H 2

2 − H 2
4

) (6.11.88)

j T N = 0 (6.11.89)

j EM = �∇

⎛
⎜⎜⎜⎜⎜⎝

−H 2√
2

H 4√
2

−
√

3
2H4√

3
2H2

⎞
⎟⎟⎟⎟⎟⎠

(6.11.90)

We can nowmake some comments about the two solutions. First of all both in case a)
and in case b) we have to fix the asymptotic value of the harmonic functions at spatial
infinity r = ∞, in such a way as to obtain asymptotic flatness. This is quite easy
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and we do not dwell on it. Secondly we have to fix the parameters of the harmonic
functions in such a way that the warp factor is always real on the whole physical
range. These conditions are also easily spelled out:

a) −H3H4 > 0

b) −H 4
2
3 − 2H 2

4 H
2
2 + H 4

4 > 0
(6.11.91)

and in a multicenter solution can be easily arranged adjusting the coefficients of each
pole. Thirdly we can comment about the structure of the charge vector that we obtain
at each pole:

Hi ∼ ai + Qi

|x − xα| (6.11.92)

In case (a) and (b) we respectively obtain:

Qα =

⎛
⎜⎜⎜⎝

0
Q4√
2√
3
2Q3

0

⎞
⎟⎟⎟⎠ (6.11.93)

Qα =

⎛
⎜⎜⎜⎜⎜⎝

− Q2√
2

Q4√
2

−
√

3
2Q4√

3
2Q2

⎞
⎟⎟⎟⎟⎟⎠

(6.11.94)

Comparing with Eqs. (6.11.69), (6.11.70) we see that in both cases the structure of
these charges is that imposed by the Z3 invariance which characterizes BPS black
holes. The necessary choice of signs in the case (a)

Q4

Q3
< 0 (6.11.95)

is the same which is required by the reality of the warp factor. Hence in case (b) all
the black holes encompassed by the solution at each pole are finite area BPS black
holes. In case (a) the same is true for all the poles common to the harmonic function
H3 and H4: they are finite area BPS black holes. Yet we can envisage the situation
where some poles ofH3 are not shared byH4 and viceversa. In this case the pole of
H4 defines a very small black hole, while the pole ofH3 defines a small black hole.
This is confirmed by the fact that a charge vector of type {0, p, 0, 0} is mapped into

{0, 0, 0, p} by Λ

[(
0 −1
1 0

)]
and as such admits a parabolic subgroup of stability

Λ

[(
1 b
0 1

)]
.
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Summary

For a multicenter solution associated with the O3
11 orbit there are two possibilities

either all the black holes included in one solution are regular, finite area, BPS black
holes, either we have amixture of very small and small black holes. A finite area BPS
black hole emerges when the center of a very small black hole coincides with the
center of a small one. This provides the challenging suggestion that a BPS black hole
can be considered quantum mechanically as a composite object where the “quarks”
are small and very small black holes.

6.11.4 BPS Kerr–Newman Solution

Next we want to show how this orbit encompasses also the BPS Kerr–Newman
solution that was found by Luest et al. in [39].

To this effect we go back to the general formulae for the scalar fields in this
orbit and we make the following reduction from four to two independent harmonic
functions:

H2 = 0 ; H4 = − 1
3 H3 (6.11.96)

With such a choice the expressions for all the scalar fields dramatically simplify and
we obtain:

W =
√
3

H 2
1 + H 2

3

(6.11.97)

z = i
1√
3

(6.11.98)

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 3H 1√
2(H 2

1 +H 2
3 )

H 2
1 +(H 3−3)H 3√
2(H 2

1 +H 2
3 )

−
√

3
2 (H

2
1 +(H 3−1)H 3)
H 2

1 +H 2
3

− H 1√
6(H 2

1 +H 2
3 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.99)

a = 5H1√
3
(
H 2

1 + H 2
3

) (6.11.100)

Utilizing the above expressions in the final oxidation formulae we obtain the follow-
ing result for the Taub-Nut current and for the electromagnetic currents:

j T N = 2 (�∇H1H3 − �∇H3H1)√
3

(6.11.101)
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j EM =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 �∇H 3H 1(H 2
1 +(H 3−2)H 3)− �∇H 1((2H 3+1)H 2

1 +H 2
3 (2H 3−3))√

2(H 2
1 +H 2

3 )
�∇H 3(3H 2

1 −H 2
3 )−4 �∇H 1H 1H 3

3
√
2(H 2

1 +H 2
3 )√

3
2 (4 �∇H 1H 1H 3+ �∇H 3(H 2

3 −3H 2
1 ))

H 2
1 +H 2

3
2 �∇H 3H 1(H 2

1 +(H 3−6)H 3)− �∇H 1((2H 3+3)H 2
1 +H 2

3 (2H 3−9))√
6(H 2

1 +H 2
3 )

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.11.102)

Next identifying the two harmonic functions with those introduced in Eqs. (6.9.21)–
(6.9.24), according to:

H1 = 3
1
4 (1 + mP) ; H3 = 3

1
4 mR (6.11.103)

we obtain the following result for the warp-factor:

exp[U ] = (m + r)2 + α2 cos2(θ)

r2 + α2 cos2(θ)
(6.11.104)

and for the Kaluza–Klein vector:

A[KK ] = ω ≡ m(m + 2r)α sin2(θ)

r2 + α2 cos2(θ)
dφ (6.11.105)

Indeed one can easily check that, in the spheroidal coordinates (6.9.19) with flat
metric Eq. (6.9.20) we have:

2m (�∇PR − P � ∇R) = dω (6.11.106)

where �∇ denotes the Hodge dual of the exterior derivative d. Writing the corre-
sponding final form of the metric:

ds2BPSK N = − exp[U ] (dt + ω)2 + exp[−U ] dΩ2
spheroidal (6.11.107)

we can easily check that it is just the Kerr–Newman metric (6.5.2) with q = m.
The only necessary step, in order to verify such an identity is a redefinition of the
coordinate r . If in the metric (6.5.2) one replaces r → r + m, then (6.5.2) becomes
identical to (6.11.107).

It is interesting to consider the expressions for the vector field strengths that solve
the Maxwell-Einstein system together with the BPS Kerr–Newman metric. For the
first two field strengths (magnetic), from Eq. (6.11.102) we find:
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F1 = − 1√
2
(
r2 + α2 cos2 θ

)2 (
(m + r)2 + α2 cos2 θ

)
(

4√3mα sin θ (((−3

+2 4√3
)

α4 cos4 θ

+m
(
2 4√3m + m + 2

(
1 + 4√3

)
r
)

α2 cos2 θ

−r(m + r)2
(
2 4√3m +

(
−3 + 2 4√3

)
r
))

sin θdr ∧ dφ

+2
(
r2 + α2

)
cos θ

(((
−2 + 4√3

)
m

+
(
−3 + 2 4√3

)
r
)

α2 cos2 θ + (m + r)
(

4√3m2

+
(
−1 + 3 4√3

)
rm +

(
−3 + 2 4√3

)
r2
))

dθ ∧ dφ
))

(6.11.108)

F2 = 1√
233/4

(
r2 + α2 cos2 θ

)2 (
(m + r)2 + α2 cos2 θ

)
(
m sin θ

(
α2
(
−2 cos θ sin θr3

+m2 sin 2θr − 2(2m + r)α2 cos3 θ sin θ
)
dr ∧ dφ

−1

8

(
r2 + α2

) (
8r4 + 16mr3 + 8m2r2 + α4

−8α2
(
−3m2 − 6rm + α2

)
cos2 θ − α4 cos(4θ)

)
dθ ∧ dφ

))
(6.11.109)

while for the second two we get:

G3 = 1√
2
(
r2 + α2 cos2 θ

)2 (
(m + r)2 + α2 cos2 θ

) (33/4m sin θ
((
sin 2θr3

−2m2 cos θ sin θr

+2(2m + r)α2 cos3 θ sin θ
)
dr ∧ dφα2

+1

8

(
r2 + α2

) (
8r4 + 16mr3 + 8m2r2 + α4

−8α2
(−3m2 − 6rm + α2

)
cos2 θ − α4 cos(4θ)

)
dθ ∧ dφ

))
(6.11.110)

G4 = − 1√
2
(
r2 + α2 cos2 θ

)2 (
(m + r)2 + α2 cos2 θ

) (mα sin θ ((

− (−2 + 333/4
)
α4 cos4 θ

+m
((
2 + 33/4

)
m + 2

(
1 + 33/4

)
r
)
α2 cos2 θ

+r(m + r)2
((−2 + 333/4

)
r − 2m

))
sin θdr ∧ dφ

−2
(
r2 + α2

)
cos θ

(−m3 + (−4 + 33/4
)
rm2 + (−5 + 433/4

)
r2m

+ (−2 + 333/4
)
r3

+ ((−1 + 233/4
)
m + (−2 + 333/4

)
r
)
α2 cos2 θ

)
dθ ∧ dφ

))
(6.11.111)



6.11 Explicit Construction of the Multicenter Black Holes Solutions of the S3 Model 331

The above expressions are rather formidable, yet considering them in some limit
their meaning can be decoded. First of all we recall that in the limit α → 0 the
metric (6.11.107) becomes the Reissner–Nordstrom metric. Correspondingly in the
same limit the above four-vector of field strengths degenerates into:

⎛
⎜⎜⎝

F1

F2

G3

G4

⎞
⎟⎟⎠ α→0=⇒

⎛
⎜⎜⎜⎝

0
−m sin(θ)dθ∧dφ√

233/4
33/4m sin(θ)dθ∧dφ√

2
0

⎞
⎟⎟⎟⎠ (6.11.112)

showing that the black hole charges
(
0,− m√

2 31/4
, m 31/4√

2
, 0
)
have the correct form for

a BPS black hole and are endowed with the characteristic Z3 symmetry.
Also in the α �= 0 we can easily determine the black hole charges by integrating

the field strengths on a two-sphere of very large radius r → ∞. For this purpose
it is important to evaluate the asymptotic expansion of the field strengths for large
radius. We find:

⎛
⎜⎜⎝

F1

F2

G3

G4

⎞
⎟⎟⎠ r→∞�

⎛
⎜⎜⎜⎜⎜⎝

−
√
2 4√3

(
−3+2 4√3

)
mα cos θ sin θdθ∧dφ

r + O
(
1
r2
)

−m sin θdθ∧dφ√
233/4

+ O
(
1
r2
)

33/4m sin θdθ∧dφ√
2

+ O
(
1
r2
)

√
2(−2+333/4)mα cos θ sin θdθ∧dφ

r + O
(
1
r2
)

⎞
⎟⎟⎟⎟⎟⎠

(6.11.113)

and the integration on the angular variables produces the same result as for the
corresponding Reissner–Nordstrom black hole:

QBPSK N =
(
0,− m√

2 31/4
,
m 31/4√

2
, 0

)
(6.11.114)

In conclusion the BPS Kerr–Newman solution is a deformation of the Reissner–
Nordstrom BPS black hole. It is extremal in the σ -model sense and for this reason
could be retrieved from the nilpotent orbit construction. However it is not extremal
in the sense of General Relativity since the mass is less than

√
q2 + α2 being equal

to m. For this reason we are below the limit of the cosmic censorship, there is no
horizon and we have instead a naked singularity.

The important message is that, notwithstanding the deformation and the presence
of a Kaluza–Klein vector, the structure of the charges is that pertaining to the orbit
where the solution has been constructed, namely the BPS orbit O3

11.
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6.11.5 The Large Non BPS Black Holes of O3
22

Next let us consider the orbit O3
22, which in the spherical symmetric case leads to

non BPS Black holes with a finite horizon area.

W-Representation

As in the previous case, in order to better appreciate the structure of these solutions,
let us slightly generalize our orbit representative, writing the following nilpotent
matrix that depends on two parameters (p, q)

X3|22(p, q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q 0 0 q√
2
0 0 0

0 p+q
2 − p

2 0 − q
2 0 0

0 p
2

q−p
2 0 0 q

2 0
− q√

2
0 0 0 0 0 − q√

2
0 q

2 0 0 p−q
2

p
2 0

0 0 − q
2 0 − p

2
1
2 (−p − q) 0

0 0 0 q√
2
0 0 −q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.115)

The standard triple representative mentioned in Eq. (6.10.6) is just the particular case
X3|22(1, 1). Applying the usual strategy from the general formula we obtain

Qw
3|22 = Tr(X3|22(p, q)T w) =

(
0, p,

√
3q, 0

)
(6.11.116)

Substituting such a result in the expression for the quartic symplectic invariant (see
Eq. (6.11.3) we find:

I4 = − 9 p q3 < 0 if p and q have the same sign (6.11.117)

This result is meaningful since, by calculating the trace Tr(X3|22LE+) = 0, we find
that the Taub-NUT charge vanishes. Furthermore we note that the condition that p
and q have the same sign was singled out in [32] as the defining condition of the orbit
O3

22 which, in the spherical symmetry approach leads to regular non BPS solutions.
The choice of opposite signs was proved in [32] to correspond to a different H� orbit,
the non diagonal O3

12 which instead contains only singular solutions.
Addressing the question of stability subgroups of the original duality group in four-

dimensions SL(2,R), we realize that for the charge vector (6.11.116) this subgroup
is just trivial:

SL(2, R) ⊃ S3|22 = 1 (6.11.118)

H�-Stability Subgroup

Considering next the stability subgroup of the nilpotent element X3|22(1, 1) in H� =
̂sl(2, R) ⊕ sl(2, R)h� we obtain:

S3|22 = R (6.11.119)
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the group being generated by a matrix A3|22 of nilpotency degree 2:

A
3
3|22 = 0 (6.11.120)

We do not give its explicit form which we do not use in the sequel.

Nilpotent Algebra N3|22

Considering next the adjoint action of the central element h3|22 on the subspace K
�

we find that its eigenvalues are the following ones:

EigenvaluesK
�

3|22 = {−4, 4,−2,−2, 2, 2, 0, 0} (6.11.121)

Therefore the three eigenoperators A1, A2, A3 corresponding to the three positive
eigenvalues 4, 2, 2, respectively, form the restriction to K

� of a nilpotent algebra
N3|22. In this case the Ai do all commute among themselves so that we have N3|22 =
N3|22

⋂
K

� and it is abelian. The abelian structure of the nilpotent algebra implies
that for the orbit O3

22 we have only three functions h0i which will be harmonic and
independent. This is so because DN3|22 = 0

Explicitly we set:

H(h1, h2, h3) = ∑3
i=1 hi Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2h3 h1 − 2h2 2h1 − h2 −√
2h3 −3h2 −3h1 0

h1 − 2h2 h3 0
√
2h2 − 2

√
2h1 h3 0 −3h1

h2 − 2h1 0 h3
√
2h1 − 2

√
2h2 0 −h3 −3h2√

2h3 2
√
2h1 − √

2h2
√
2h1 − 2

√
2h2 0

√
2h1 − 2

√
2h2

√
2h2 − 2

√
2h1

√
2h3

3h2 −h3 0
√
2h1 − 2

√
2h2 −h3 0 2h1 − h2

−3h1 0 h3 2
√
2h1 − √

2h2 0 −h3 h1 − 2h2
0 −3h1 3h2 −√

2h3 h2 − 2h1 h1 − 2h2 −2h3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.122)

ConsideringH(h1, h2, h3) as a Lax operator and calculating its Taub-NUT charge
and electromagnetic charges we find:

nT N = −6h1 ; Q =
{
2
√
3 (h2 − 2h1) , 0,−2

√
3h3,−6h2

}
(6.11.123)

This implies that constructing the multi-centre solution with harmonic functions the
condition h1 = 0 might be sufficient to annihilate the Taub-NUT current. In this
case we will be lucky and such a condition suffices.

For later convenience let us change the normalization in the basis of harmonic
functions as follows:

h
(0)
1 = H1 ; h

(0)
2 = 1

2 (1 − H2) ; h
(0)
3 = 1

2 (1 − H3) (6.11.124)
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Implementing the symmetric coset construction with:

Y (H1,H2,H3) ≡ exp
[
H
(
H1,

1
2 (1 − H2) , 1

2 (1 − H3)
)]

(6.11.125)

calculating the upper triangular coset representative L(Y ) according to Eq. (6.8.26)
and extracting the σ -model scalar fields we obtain an explicit expression which is
sufficiently simple to be displayed:

exp [−U ] =
√
H2H

3
3 − 4H 2

1 (6.11.126)

Im z =
√
H2H

3
3 − 4H 2

1

H 2
3

(6.11.127)

Re z = −2H1

H 2
3

(6.11.128)

ZM =

⎛
⎜⎜⎜⎜⎜⎜⎝

−
√
6H 1H 3

4H 2
1 −H 2H

3
3

4H 2
1 −(H 2−1)H 3

3√
2(4H 2

1 −H 2H
3
3 )√

3
2 (4H

2
1 −H 2(H 3−1)H 2

3 )
4H 2

1 −H 2H
3
3√

2H 1H 2

4H 2
1 −H 2H

3
3

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.11.129)

a = −H1 (H2 + 3H3 − 2)

4H 2
1 − H2H

3
3

(6.11.130)

Using these results we easily obtain the Taub-NUT current in the following form:

j T N = 2 � ∇H1 (6.11.131)

In this case the predicted condition H1 = 0 is sufficient to annihilate the Taub-
NUT current and we obtain an extremely simple result.14 The complete form of the
supergravity solution corresponding to this choice is:

exp[ −U ] =
√
H 3

3 H2 (6.11.132)

z = i

√
H 3

3 H2

H 2
3

(6.11.133)

j T N = 0 (6.11.134)

14Actually even the condition H1 = const suffices to annihilate the Taub-NUT charge allowing
for a non trivial real part of the z-field. However in this section we analyze the caseH1 = 0 for its
remarkable simplicity.
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j EM = �∇

⎛
⎜⎜⎜⎝

0
− H 2√

2

−
√

3
2H3

0

⎞
⎟⎟⎟⎠ (6.11.135)

Comparing with the case of the large BPS orbit we see that the only difference is
the relative sign of the harmonic functions in the electromagnetic current. What we
said for the BPS black holes extends to the non BPS ones in the same way.

Summary

For a multicenter solution associated with the O3
22 orbit we have a mixture of very

small and small black holes as in the case of the orbitO3
22. Also here a finite area non

BPS black hole emerges when the center of a very small black comes to coincides
with the center of a small one. The only difference is the relative sign of the two
charges. With equal signs we construct a non BPS state, while with opposite charges
we construct a BPS one. This reinforces the conjecture that at the quantum level
finite black holes can be interpreted as composite states.

This conjecture is also supported by an angular momentum analysis. Looking at
the representations in Table6.1, we see that the representation 2( j = 1) + ( j = 0)
that corresponds to BPS and non BPS large black holes can be obtained by summing
the representation ( j = 1) + 2( j = 1

2 ) that corresponds to small black holes with
the representation 3( j = 0) + 2( j = 1

2 ) that corresponds to very small black holes.
Consider the following table:

1 1
2

1
2 0 −1

2 −1
2 −1

0 1
2 −1

2 0
1
2 −1

2 0
1 1 0 0 0 −1 −1

the numbers in the first line are the eigenvalues of the central element h in the triplet
(h, X,Y ) characterizing the orbit O4

11. The second line contains the eigenvalues
for the central element of the triplet of the orbit O4

11. In the last line we have the
eigenvalues for the h in the triplet characterizing the orbit O3

i, j . We realize that the
coincidence of centres correspond to the identification of a new SL(2,R) subgroup
which is the direct sum of the original two associated with the two small black holes.

6.11.6 The Largest Orbit O1
11

Next let us consider the orbit O1
11, which in the spherical symmetric case leads only

to singular solutions.
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W-Representation

Applying the usual strategy from the general formula we obtain a charge vector

Qw
1|11 = Tr(X1|11(p, q)T w) (6.11.136)

which has no invariance:
SL(2, R) ⊃ S1|11 = 1 (6.11.137)

and yields a quartic invariant generically different from zero:

I4 �= 0 (6.11.138)

Because of our simplified choice of the representative the Taub-NUT charge is not
zero and only later we will enforce the vanishing of the Taub-NUT current on the
harmonic function parameterized solution.

H�-Stability Subgroup

Considering next the stability subgroup of the nilpotent element X1|11 in H� =
̂sl(2, R) ⊕ sl(2, R)h� we obtain that it is trivial:

S1|11 = 1 (6.11.139)

Nilpotent Algebra N1|11

Considering next the adjoint action of the central element h1|11 on the subspace K
�

we find that its eigenvalues are the following ones:

EigenvaluesK
�

3|22 = {−5, 5,−3, 3,−1,−1, 1, 1} (6.11.140)

Therefore the four eigenoperators A1, A2, A3, A4 corresponding to the four positive
eigenvalues 5, 3, 1, 1, respectively, form the restriction to K

� of a nilpotent algebra
N1|11. In this case the Ai do not all commute among themselves so that we have
N1|11 �= N1|11

⋂
K

�. The full algebra involves also two operators B1, B2 ∈ H
� and

the full set of commutation relations is the following one:

0 = [A1 , A2] = [A1 , A3] = [A1 , A4]

0 = [A2 , A3]

0 = [B1 , B2] = [B1 , A1] = [B1 , A2]

0 = [B1 , A4] = [B2 , A1] = [B2 , A3]

B1 = [A2 , A4]

B2 = [A3 , A4]

−16 A1 = [B1 , A3]

−16 A1 = [B2 , A1]
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24 A2 = [B2 , A4] (6.11.141)

By inspection of Eq. (6.11.141) we easily see that:

DN1|11 = span {B1, B2, A1, A2} ; DN1|11
⋂

K
� = span {A1, A2}

(6.11.142)

D2
N1|11 = span {A1} = D2

N1|11
⋂

K
� (6.11.143)

This structure of the nilpotent algebra implies that for the orbit O1
11 we have only

two functions h03, h
0
4 which are harmonic and independent. The other two functions

h21, h
1
2, obey instead equations in which the previous two play the role of sources. Not

surprisingly h21, h
1
2 correspond to the higher gradings 5 and 3, while h

0
3, h

0
4 correspond

to the gradings 1, 1.More precisely h12 receives source contributions only from h03, h
0
4,

while h21 receives source contributions from h12, h
0
3, h

0
4

Explicitly we set:

H(h1, . . . , h4) = ∑4
i=1 hi Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 + h4
h2
3 − h3 h4

√
2h2
3 − √

2h3 −h1 −h2 − h3 0
h2
3 − h3 2h4 h2 + h3 −√

2h4 h3 − h2
3 0 −h2 − h3

−h4 −h2 − h3 h1 − h4

√
2h2
3 − √

2h3 0 h2
3 − h3 −h1√

2h3 −
√
2h2
3

√
2h4

√
2h2
3 − √

2h3 0
√
2h2
3 − √

2h3 −√
2h4

√
2h3 −

√
2h2
3

h1
h2
3 − h3 0

√
2h2
3 − √

2h3 h4 − h1 −h2 − h3 h4

−h2 − h3 0 h3 − h2
3

√
2h4 h2 + h3 −2h4

h2
3 − h3

0 −h2 − h3 h1

√
2h2
3 − √

2h3 −h4
h2
3 − h3 −h1 − h4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11.144)

ConsideringH(h1, . . . , h4) as a Lax operator and calculating its Taub-NUT charge
and electromagnetic charges we find:

nT N = −2(h2 + h3) ; Q =
{
−2

√
3h4,−2 (h2 + h3) ,

2 (h2 − 3h3)√
3

,−2h1

}

(6.11.145)
This implies that constructing the multi-centre solution with harmonic functions the
condition h2 = − h3 might be sufficient to annihilate the Taub-NUT current.

Implementing the symmetric coset construction with:

Y (h1, . . . , h4) ≡ exp [H (h1, . . . , h4)] (6.11.146)

and imposing the field equations (6.8.14) we obtain the following conditions:
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0 = 224

5
∇h3 ◦ ∇h3 h

3
4 − 16

5
h3Δ h3 h

3
4 − 416

5
∇ h3 ◦ ∇h4 h3 h

2
4 + 16

5
h23Δ h4 h

2
4

+192

5
∇ h4 ◦ ∇h4 h

2
3 h4 + 32

3
∇h2 ◦ ∇h3 h4 − 8

3
h3Δh2 h4 − 8

3
h2Δ h3 h4

−16

3
∇ h3 ◦ ∇h4 h2 − 16

3
∇h2 ◦ ∇h4 h3 + Δ h1 + 16

3
h2 h3Δh4

0 = 4Δh3 h
2
4 − 8∇ h3 ◦ ∇h4 h4 − 4 h3Δh4 h4 + 8∇h4 ◦ ∇h4 h3 + Δh2

0 = Δh3

0 = Δh4 (6.11.147)

Solutions of the above system can be quite complicated and can encompass many
different types of behaviors, yet what is generically true is that the contributions from
the source term introduces in h1 and h2 poles 1/r p stronger than p = 1, while h3 and
h4 have only simple poles. Hence if the structure of the polynomials in the functions
h1,2,3,4 is such that at simple poles the divergence of the inverse warp factor is already
too strong or the coefficient already becomes imaginary, introducing stronger poles
can only make the situation worse. For this reason we confine ourselves to analyze
solutions encompassed in this orbit in which the source terms vanish identically upon
the implementation of some identifications.

There are few different reductions with such a property and we choose just one
that has also the additional feature of annihilating the Taub-NUT current. It is the
following one:

h3 = h4 = − h2 ≡ h (6.11.148)

The reader can easily check that with the choice (6.11.148) the system of equations
(6.11.147) reduces to:

Δh = Δh1 = 0 (6.11.149)

For later convenience let us change the normalization in the basis of harmonic func-
tions as follows:

h4 = 1
4 H ; h3 = 1

4 H ; h2 = − 1
4 H ; h1 = − 1

4 + W (6.11.150)

calculating the upper triangular coset representative L(Y ) according to Eq. (6.8.26)
and extracting the σ -model scalar fields we obtain explicit expressions which are
sufficiently simple to be displayed:

exp [U ] = 8
√
15√

−(H + 2)3
(
H 5 + 10H 4 + 40H 3 + 80H 2 − 60(4W + 1)

) (6.11.151)

Im z = 3
√
15(H + 2)√

− H +2
H 2(H (H (H +10)+40)+80)−60(4W +1)

(
(H (H (H + 10) + 20) − 40)H 2 + 90(4W + 1)

)

(6.11.152)

Re z = 15H (H + 2)(H + 4)

H 5 + 10H 4 + 20H 3 − 40H 2 + 360W + 90
(6.11.153)
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We skip the form of the Z fields and of a but we mention their consequences,
namely the Taub-NUT current

j T N = 0 (6.11.154)

and the electromagnetic currents

j EM = �∇
{
1

2

√
3

2
H , 0,

7H

6
,
√
2W

}
(6.11.155)

This shows that a black hole belonging to this orbit has a charge vector Q ={
1
2

√
3
2 p, 0,

7p
6 ,

√
2q
}
, whose quartic invariant is:

I4 = 1

128
p3(49p + 72q) (6.11.156)

This latter can be positive or negative depending on the choices for p and q. The
problem, however, is that this solution is always singular around all poles of H .
Indeed setting:

H ∼ p

r
; W ∼ q

r
(6.11.157)

we find that for r → 0 the inverse warp factor behaves as follows:

exp[−U ] ∼
√−p8

8
√
15r4

+
√−p8√
15pr3

+
√

3
5

√−p8

p2r2
+ 4

√−p8√
15p3r

+
√

3
5 p

3(p + 5q)√−p8
+ O (r)

(6.11.158)

The coefficient
√−p8 indicates that approaching the pole the warp factor becomes

imaginary at a finite distance from it and the would be horizon r = 0 is never
reached. If it were reached, the divergence 1

r4 would imply an infinite area of the
horizon. As we know from our general discussion the Riemann tensor diverges if the
warp factor goes to zero faster than r2 so that the would be horizon would actually be
a singularity. Yet since the warp factor becomes imaginary at a finite distance from
the pole it remains open the question if solutions of this type can be prolonged by
suitably changing the coordinate system. In that case they might acquire a physical
meaning. So far such a question has not been tackled but it deserves to be.

6.12 Conclusions on the Episteme Contained in This
Chapter

In this very long chapter we have tackled quite advanced issues of current or of quite
recent research. Although all the inspiring motivations come from Supergravity, the
material here presented is of genuine algebraic and geometrical character; indeed it
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might be understood and treated within the scope of pure Mathematics. As usual, the
role of supersymmetry was just that of directing our choices, leading us to focus on
special manifolds endowed with special geometries.

Actually the methods and the constructions considered in this chapter are general
and might be dealt with no knowledge of supermultiplets and supercharges. Addi-
tional inspiration coming from Supergravity is encoded in the strategic attention paid
to the Tits–Satake projection and to Tits–Satake universality classes, which, however,
are purely mathematical phenomena, self-contained in Lie algebra theory.

Even the very final physical motivation of constructing extremal black-hole solu-
tionsmight be forgotten once, in the spirit of the geometry of geometries, a physical–
geometrical problem has been mapped into another purely geometrical one.

Thus let us summarize into a list of points the mathematical logic of what we have
been discussing in the present chapter.

(A) The problem of constructing extremal black-hole solutions is reduced to the
construction and classification of mappings:

Φ : R
3 =⇒ Ms (6.12.1)

where (Ms, g) is a pseudo-Riemmannian manifold and the map Φ satisfies both
the σ -model equations of motion and the stress-tensor vanishing condition:

∂i

(
∂Φμ

∂xi
∇μΦν

)
= 0 ; gμν(Φ) ∂iΦ

μ ∂ jΦ
ν = 0 (6.12.2)

(B) The geometrical problem posed in (A) can be considered for any Lorentzian-
manifoldMs but, instructed by supersymmetry,we localize it on the homogeneous
manifolds:

Ms = UD=3

H�
(6.12.3)

listed in Table5.4 that are in the image of the c�-map and have a structure fitting
the golden splitting (1.7.12)

(C) For the reasons discussed at length in previous sections and chapters we are
actually interested only in those maps of the type (6.12.1) where:

Φ
[
R

3
] ⊂ UTS

D=3

H�
TS

⊂ UD=3

H�
(6.12.4)

namely where the image of the three-dimensional space R
3 lies entirely inside

the Tits-Satake submanifold.
(D) TheseH�–orbits of solutions can be classified and explicitly constructed thanks

to an algorithm, thoroughly explained in Sect. 6.8, that associates such solutions
to each H�–orbit of nilpotent operators X ∈ K, where K is the orthogonal com-
plement of the subalgebra H

� ⊂ U. The classification of U-nilpotent orbits is a
frontier topic in Mathematics and, further specialized to H� ⊂ U orbits, involves

http://dx.doi.org/10.1007/978-3-319-74491-9_5
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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items and techniques generically not yet available in the mathematical supermar-
ket, like the generalized Weyl group GW and the H-Weyl subgroup WH.

(E) Within the class of manifolds in the image of the c�-map, the problem of H�

nilpotent orbits acquires very special features because of the special nature of
the subgroup H�. These special features are ultimately related with the golden
splitting structure (1.7.12) which is on its turn a land-mark of special geometries.
The complicated mechanisms here at work relate the classification of H�–orbits
with the classification of UD=4–orbits in theW-representation.

(F) The association of the considered mathematical problem with extremal black-
holes provides the features pointed out in (E) with physical interpretations in
terms of electromagnetic charges, horizon areas and fixed scalars. Yet we might
complete ignore such interpretations and ask ourself the question of what is the
abstract, purely mathematical meaning of such relations as that between UD=4–
orbits in the W-representation and H� nilpotent orbits. Such a study has not yet
been performed but might be the source of new precious insights.

Generally speaking the problem considered in this chapter unveils new very profound
aspects of Special Geometries pertaining both to the scope of Geometry and of Lie
Algebra Theory.Aswe tried to emphasize in point (F) of the above list amathematical
reformulation of all themechanisms spotted in this contextmight be of greatmoment.
We might find clues to some generalization of the golden splitting that goes beyond
both supersymmetry and even homogeneous spaces and opens some new direction
in differential and algebraic geometry. Inspiring clues come probably from a careful
analysis of Weyl subgroups and the characterization among them of those that can
be regarded as H-subgroups.

In this context an inspiring observation appears to be the one highlighted in pre-
vious pages that regular finite horizon black-holes can be regarded as bound-states
of small or very small black-holes. An in depth investigation of the proper mathe-
matics lurking behind this feature is potentially capable of revealing new exciting
perspectives both in geometry and physics.
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