
Chapter 5
Solvable Algebras and the Tits Satake
Projection

Quamlibet immani proiectu corporis extet, Lucretius, De Rerum
Natura, 3, 987

5.1 Historical Introduction

In this chapter we are going to develop the details of a theory pertaining to Lie
Algebras which, although it has its roots in mathematical work of the 1960s [1–3],
contributed by two great algebrists, Jacques Tits and Ichiro Satake (see Fig. 5.1), yet
fully revealed its profound significance for Geometry and Physics only much later,
by the end of the XXth century, and within the context of supergravity.

The addressed topics is the Tits–Satake projection, a construction which, accord-
ing to certain rules, from a class of homogeneous manifolds, extracts a single repre-
sentative of the entire class. What is extremely surprising and inspiring is that such
a projection, invented long before the advent of supergravity special geometries, has
very nice properties with respect to special structures. Indeed it maps special Käh-
ler manifolds into special Kähler manifolds, quaternionic Kähler into quaternionic
Kähler and commutes with the c-map discussed in the previous section. Actually it
also commutes with another map, the c�-map, which is relevant for the construction
of supergravity black-hole solutions and will be illustrated in this chapter.

A conceptual procedure specially cheered by theoretical physicists is that of
Universality Classes. Considering complex phenomena like, for instance, phase-
transitions one looks for universal features that are the same for entire classes of
such phenomena. After grouping the multitude of cases into universality classes,
one tries to construct a theoretical model of the behavior shared by all elements of
each class. A mathematical well founded projection is likely to provide a power-
ful weapon to this effect. Indeed one might expect that there are universal features
shared by all cases that have the same projection and that the theoretical model of
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Fig. 5.1 On the left J. Tits (1930 Uccle, Belgium). On the right Ichiro Satake (1927 Yamaguchi
Japan - 2014 Tokyo Japan). Jacques Tits was born in Uccle, on the southern outskirts of Brussels.
He graduated from the Free University of Brussels in 1950 with a dissertation Généralisation des
groupes projectifs basés sur la notion de transitivité. From 1956 to 1962 Tits was an assistant at
the University of Brussels. He became professor there in 1962 and remained in this role for two
years before accepting a professorship at the University of Bonn in 1964. In 1973 he was offered
the Chair of Group Theory at the College de France which he occupied until his retirement in 2000
being naturalised French citizen since 1974. Jacques Tits has given very prominent contributions
to the advancement of Group Theory in many directions and he is especially known for the Theory
of Buildings, which he founded, and for the Tits alternative, a theorem on the structure of finitely
generated groups. After his retirement from the College the France, a special Vallée-Poussin Chair
was created for him at the University of Louvain. Ichiro Satake was born in the Province of Yam-
aguchi in Japan and graduated from the University of Tokyo in 1959. He held various academic
positions in the USA and since 1968 to his retirement in 1983 he was Full Professor of Mathematics
at the University of California, Berkeley. He is specially known for his contributions to the theory of
algebraic groups and for the Satake diagrams that classify the real forms of a complex Lie algebra

this shared behavior is encoded in the algebraic structure of the projection image.
We will see that this is precisely what happens with the Tits–Satake projection that
captures universal geometrical features of supergravity models.

Since the interplay betweenMathematics and Theoretical Physics has been essen-
tial in the development of this newchapter of homogeneous space geometrywebriefly
recall the key facts of this short but intellectually intense history.

(1) In the early 1990s, as we have already reported, B. de Wit, A. Van Proeyen,
F. Vanderseypen studied the classification of homogeneous special manifolds
admitting a solvable transitive group of isometries [4–6]. This work extended
and completed the results obtained several years before by Alekseevsky in
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relation with the classification of quaternionic manifolds also admitting a tran-
sitive solvable group of isometries [7].

(2) In 1996–1998, L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fré and M. Trigiante
explored the general role of solvable Lie algebras in supergravity [8–10], point-
ing out that, since all homogenous scalar manifolds of all supergravity models
are of the non-compact type, they all admit a description in terms of a solvable
group manifold as we explained in Sect. 2.5. The solvable representation of the
scalar geometry was shown to be particularly valuable in connection with the
description of BPS black hole solutions of various supergravity models.

(3) In the years 1999–2005 Thibaut Damour, Marc Henneaux, Hermann Nicolai,
Bernard Julia, F. Englert, P. Spindel and other collaborators, elaborating on old
ideas of V.A. Belinsky, I.M. Khalatnikov, E.M. Lifshitz [11–13], introduced the
conception of rigid cosmic billiards [14–27]. According to this conception the
various dimensions of a higher dimensional gravitational theory are identified
with the generators of the Cartan SubalgebraH of a supergravity motivated Lie
algebra and cosmic evolution takes place in a Weyl chamber ofH . Considering
the Cartan scalar fields as the coordinate of a fictitious ball, during cosmic evo-
lution such a ball scatters on the walls of the Weyl chambers and this pictorial
image of the phenomenon is at the origin of its denomination cosmic billiard. In
this context the distinction between compact and non-compact directions of the
Cartan subalgebra appeared essential and this brought the Tits Satake projection
into the game.

(4) In 2003–2005 F. Gargiulo, K. Rulik, P. Fré, A.S. Sorin and M. Trigiante devel-
oped the conception of soft cosmic billiards [28–30], corresponding to exact,
purely time dependent solutions of supergravity, including not only the Cartan
fields but also those associated with roots which dynamically construct theWeyl
chamber walls advocated by rigid cosmic billiards.

(5) In 2005, Fré, Gargiulo and Rulik constructed explicit examples of soft cosmic
billiards in the case of a non maximally split symmetric manifold. In that context
they analyzed the role of the Tits Satake projection and introduced the new
mathematical concept of Paint Group [31].

(6) In 2007, P. Fré, F.Gargiulo, J. Rosseel,K.Rulik,M.Trigiante andA.VanProeyen
[32] axiomatized the Tits Satake projection for all homogeneous special geome-
tries. They based their formulation of the projection on the intrinsic definition of
the Paint Group as the group of outer automorphisms of the solvable transitive
group of motion of the homogeneous manifold. This is the theory that will be
explained in this chapter. Up to the knowledge of this author, this theory was
never previously developed in the mathematical literature.

(7) In the years 2009–2011 the integration algorithm utilized in the framework of
soft cosmic billiards was extended by P. Fré, A.S. Sorin and M. Trigiante to
the case of spherical symmetric black-holes for manifolds in the image of the
c�-map [33–35].

(8) In 2011, P. Fré, A.S. Sorin and M. Trigiante demonstrated that the classification
of nilpotent orbits for a non maximally split Lie algebra depends only on its

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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Tits–Satake projection and it is a property of the Tits–Satake universality class
(see Chap.6).

Through the above sketched historical course, which unfolded in about a decade, the
theory of the Tits–Satake projection has acquired a quite solid and ramified profile,
intertwined with the c and c� maps that opens new viewpoints and provides new
classification tools in the geometry of homogeneousmanifolds and symmetric spaces.
Although the theory is distinctively algebraic and geometric, yet it is poorly known
in the mathematical community due to its supergravity driven origins. Hopefully the
present exposition will improve its status in the mathematical club.

We turn next to a systematic discussion of the c�-map environment where the
Tits–Satake projection is best understood and most useful.

5.2 Physical-Mathematical Introduction

In the previous chapter we provided the definition of special Kähler geometry and of
quaternionic Kähler geometry. In the context ofN = 2 supergravity, as we stressed
there, the two types of geometries are respectively pertinent to the scalars included in
the vector multiplets and to those pertinent to thehypermultiplets. Thenextmain focus
of attention was the c-map from Special Kähler Manifolds of complex dimension n
to quaternionic Kähler manifolds of real dimension 4n + 4:

c-map : SK n → QM (4n+4) (5.2.1)

What we did not emphasize in the previous chapter is that the c-map follows from the
systematic procedure of dimensional reduction from a D = 4,N = 2 supergravity
theory to a D = 3σ -model endowedwithN = 4 three-dimensional supersymmetry.
We recall this point here since it helps understanding another very similar map that
we are going to consider in this chapter and that we name the c�-map. Naming zi

the scalar fields that fill the special Kähler manifold SK n and gi j� its metric, the
D = 3 σ -model which encodes all the supergravity field equations after dimensional
reductionon a space-like direction admits, as targetmanifold, a quaternionicmanifold
whose 4n + 4 coordinates we name as follows:

{U, a}
︸ ︷︷ ︸

2

⋃

{zi }
︸︷︷︸

2n

⋃

Z = {ZΛ , ZΣ }
︸ ︷︷ ︸

2n+2

(5.2.2)

and whose quaternionic metric has the general form that we discussed at length in
Chap.4.

The c�-map arises in a similar way from dimensional reduction but along a time-
like direction. Let us see in which context this takes place.

http://dx.doi.org/10.1007/978-3-319-74491-9_6
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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5.2.1 Black Holes and the Geometry of Geometries

In the last twenty years a lot of interest was devoted to study black-hole solutions of
pure and matter coupled N -extended supergravity theories, the case N = 2 being
the most widely considered. Generally speaking a black-hole solution of matter
coupled supergravity is an exact solution of the bosonic field equations where all
the items of geometry that we have been so far studying are involved. Let us get an
orientation on this exciting entanglement of several geometries.

The general form of a bosonic supergravity lagrangian in D = 4 is the following
one:

L (4) = √|det g|
[

R[g]
2

− 1

4
∂μφa∂μφbhab(φ) + ImNΛΣ FΛ

μν FΣ |μν

]

+1

2
ReNΛΣ FΛ

μν FΣ
ρσ εμνρσ , (5.2.3)

The fields included in the theory are the metric gμν(x), nv abelian gauge fields AΛ
ν ,

whose field strengths (or curvatures) we have denoted by FΛ
μν ≡ (∂μ AΛ

ν − ∂ν AΛ
μ)/2

and ns scalar fields φa that parameterize a scalar manifold M D=4
scalar that, for super-

symmetryN > 2, is necessarily a coset manifold:

M D=4
scalar = UD=4

Hc
(5.2.4)

UD=4 being a non-compact real form of a semi-simple Lie group, essentially fixed
by supersymmetry and Hc its maximal compact subgroup. ForN = 2 Eq. (5.2.4) is
not obligatory yet it is possible: a well determined class of symmetric homogeneous
manifolds that are special Kähler manifolds fall into the set up of the present general
discussion.

Hence we see that we are dealing with geometries at three levels:

1. We deal with the geometry of space-timeM st
4 , encoded in its metric gμν which is

dynamical, in the sense that we have to determine it through the solution of field
equations, many possibilities being available, among which we have black-hole
geometries with event horizons and all the rest.

2. We deal with connections on a fiber bundle P
(

G ,M st
4

)

, whose base manifold
is the dynamically determined space-timeM st

4 and whose structural group is an
abelian group G of dimension equal to the number nv of involved gauge fields.
These connections are also dynamical in the sense that they have to be determined
as solutions of the coupled field equations.

3. We deal with a fixed Riemannian geometry encoded in the target manifold (5.2.4)
of which the scalar fields φa are local coordinates. Any solution of the coupled
field equations defines a map
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φ : M st
4 → M D=4

scalar (5.2.5)

of space-time into the scalar manifold.

There is still encoded into the lagrangian (5.2.3) another geometrical datum of utmost
relevance. Let us describe it. Considering the nv vector fields AΛ

μ let

F±|Λ
μν ≡ 1

2

[

FΛ
μν ∓ i

√|det g|
2

εμνρσ Fρσ

]

(5.2.6)

denote the self-dual (respectively antiself-dual) parts of the field-strengths. As dis-
played in Eq. (5.2.3) they are non minimally coupled to the scalars via the symmetric
complex matrix

NΛΣ(φ) = i ImNΛΣ + ReNΛΣ (5.2.7)

The key point is that the isometry group UD=4 of the scalar manifold (5.2.4) is pro-
moted to a symmetry of the entire lagrangian through the projective transformations
of NΛΣ under the group action.

Indeed the field strengths F±|Λ
μν plus their magnetic duals:

GΛ|μν ≡ 1
2 ε ρσ

μν

δL (4)

δFΛ
ρσ

(5.2.8)

fill up a 2 nv-dimensional symplectic representation of UD=4 which we call by the
name of W.

We rephrase the above statements by asserting that there is always a symplectic
embedding of the duality group UD=4,

UD=4 �→ Sp(2nv, R) ; nv ≡ # of vector fields (5.2.9)

so that for each element ξ ∈ UD=4 we have its representation by means of a suitable
real symplectic matrix:

ξ �→ Λξ ≡
(

Aξ Bξ

Cξ Dξ

)

(5.2.10)

satisfying the defining relation:

ΛT
ξ

(

0n×n 1n×n

−1n×n 0n×n

)

Λξ =
(

0n×n 1n×n

−1n×n 0n×n

)

(5.2.11)

Under an element of the duality group the field strengths transform as follows:

(

F+
G +

)′
=
(

Aξ Bξ

Cξ Dξ

) (

F+
G +

)

;
(

F−
G −

)′
=
(

Aξ Bξ

Cξ Dξ

) (

F−
G −

)

(5.2.12)
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where, by their own definitions we get:

G + = N F+ ; G − = N F− (5.2.13)

and the complex symmetric matrixN should transform as follows:

N ′ = (Cξ + Dξ N
) (

Aξ + Bξ N
)−1

(5.2.14)

Choose a parametrization of the coset L(φ) ∈ UD=4, which assigns a definite group
element to every coset point identified by the scalar fields. Through the symplectic
embedding (5.2.10) this produces a definite φ-dependent symplectic matrix

(

A(φ) B(φ)

C(φ) D(φ)

)

(5.2.15)

in the W-representation of UD=4. In terms of its blocks the kinetic matrix N (φ)

is explicitly given by a formula that was found at the beginning of the 1980s by
Gaillard-Zumino [36]:

N (φ) = [C(φ) − i D(φ)] [A(φ) − i B(φ)]−1 , (5.2.16)

The matrix N is the same which appears in the definition of special Kähler
geometry and it transforms according to Eq. (5.2.14).

Summarizing the geometrical structure of the bosonic supergravity lagrangian is
essentially encoded in two data. The duality-isometry groupUD=3 and its symplectic
representation W that corresponds to the embedding (5.2.9).

A brilliant discovery occurred in the first two decades of the XXIst century can
be dubbed as the D = 3 approach to supergravity black-holes. Mainly originating
from the contributions included in the following papers [37–43], it consists of the
following.

The radial dependenceof all the relevant functions parameterizing the supergravity
solution can be viewed as the field equations of another one-dimensional σ -model
where the evolution parameter τ is actually amonotonic function of the radial variable
r and where the target manifold is a pseudo-quaternionic manifold Q�

(4n+4) related to
the quaternionic manifoldQ(4n+4) in the following way. The coordinates ofQ�

(4n+4)
are the same as those of Q(4n+4), while the two metrics differ only by a change of
sign. Indeed we have

ds2Q = 1

4

[

dU2 + 2 gi j� dzi d z̄ j� + e−2U (da + ZT
CdZ)2 − 2 e−U dZT M4(z, z̄) dZ

]

⇓ Wick rot. (5.2.17)

ds2Q � = 1

4

[

dU2 + 2 gi j� dzi d z̄ j� + e−2U (da + ZT
CdZ)2 + 2 e−U dZT M4(z, z̄) dZ

]

(5.2.18)



210 5 Solvable Algebras and the Tits Satake Projection

In Eqs. (5.2.17) and (5.2.18), C denotes the (2n + 2) × (2n + 2) antisymmetric
matrix defined over the fibers of the symplectic bundle characterizing special geom-
etry, while the negative definite, (2n + 2) × (2n + 2) matrix M4(z, z̄) is the one
already introduced in Eq. (4.3.3). The pseudo-quaternionic metric is non-Euclidean
and it has the following signature:

sign
(

ds2Q �

) =
⎛

⎝+ , . . . , +
︸ ︷︷ ︸

2n+2

, − , . . . , −
︸ ︷︷ ︸

2n+2

⎞

⎠ (5.2.19)

In thiswaywe arrive at aGeometry of the Geometries. As solutions of the σ -model
defined by the metric (5.2.18), all spherically symmetric black-holes correspond to
geodesics and consequently a geodetic in themanifoldQ� encodes all the geometrical
structures listed below:

(a) A spherical black-hole metric,
(b) a spherical symmetric connection on the fiber bundle P

(

G ,M st
4

)

(c) a spherical symmetric map from M st
4 into the manifold (5.2.4)

The indefinite signature (5.2.19) introduces a clear-cut distinction between non-
extremal and extremal black-holes: the non-extremal ones correspond to time-like
geodesics, while the extremal black-holes are associated with light-like ones. Space-
like geodesics produce supergravity solutions with naked singularities [37].

In those cases where the Special Manifold SK n is a symmetric space UD=4
HD=4

also the quaternionic manifold defined by the metric (5.2.17) is a symmetric coset
manifold:

UD=3

HD=3
(5.2.20)

where HD=3 ⊂ UD=3 is the maximal compact subgroup of the U-duality group, in
three dimensions UD=3. The change of sign in the metric (5.2.19) simply turns the
coset (5.2.20) into a new one:

UD=3

H�
D=3

(5.2.21)

where H�
D=3 ⊂ UD=3 is another non-compact maximal subgroup of the U-duality

group whose Lie algebra H
� happens to be a different real form of the complexifi-

cation of the Lie algebra H of HD=3. That such a different real form always exists
within UD=3 is one of the group theoretical miracles of supergravity.

5.2.2 The Lax Pair Description

Once the problem of black-holes is reformulated in terms of geodesics within
the coset manifold (5.2.21) a rich spectrum of additional mathematical techniques
becomes available for its study and solution.

http://dx.doi.org/10.1007/978-3-319-74491-9_4
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The most relevant of these techniques is the Lax pair representation of the super-
gravity field equations. According to a formalism reviewed in papers [34, 44], the
fundamental evolution equation takes the following form:

d

dτ
L(τ ) + [W (τ ) , L(τ )] = 0 (5.2.22)

where the so named Lax operator L(τ ) and the connection W (τ ) are Lie algebra
elements of U respectively lying in the orthogonal subspace K and in the subalgebra
H

� in relation with the decomposition:

U = H
� ⊕ K (5.2.23)

As it was proven in [29, 33–35], both for the case of the coset (5.2.20) and the
coset (5.2.21), the Lax pair representation (5.2.22) allows the construction of an
explicit integration algorithm which provides the finite form of any supergravity
solution in terms of two initial conditions, the Lax L0 = L(0) and the solvable coset
representative L0 = L(0) at radial infinity τ = 0.

The action of the global symmetry group UD=3 on a geodesic can be described
as follows: By means of a transformation UD=3/H� we can move the “initial point”
at τ = 0 (described by L0) anywhere on the manifold, while for a fixed initial point
we can act by means of H� on the “initial velocity vector”, namely on L0. Since
the action of UD=3/H� is transitive on the manifold, we can always bring the initial
point to coincide with the origin (where all the scalar fields vanish) and classify the
geodesics according to the H�-orbit of the Lax matrix at radial infinity L0. Since the
evolution of the Lax operator occurs via a similarity transformation of L0 by means
of a time evolving element of the subgroup H�, it will unfold within one H�-orbit.

The main goal is then that of classifying all possible solutions by means of H
�-

orbits within K which, in every supergravity based on homogeneous scalar geome-
tries, is a well defined irreducible representation of H

�.

5.2.3 Nilpotent Orbits and Tits Satake Universality Classes

As it was discussed in [44] and in previous literature, regular extremal black-holes are
associated with Lax operators L(τ ) that are nilpotent at all times of their evolution.
Hence the classification of extremal black-holes requires a classification of the orbits
of nilpotent elements of the K space with respect to the stability subgroup H

� ⊂
UD=3. This is a well posed, but difficult, mathematical problem. In [44] it was solved
for the case of the special Käher manifold SU(1,1)

U(1) which, upon time-like dimensional

reduction to D = 3, yields the pseudo quaternionic manifold G(2,2)

SU(1,1)×SU(1,1) . It would
be desirable to extend the classification of suchnilpotent orbits to supergravitymodels
based on all the other special symmetric manifolds. Although these latter fall into
a finite set of series, some of them are infinite and it might seem that we need to
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examine an infinite number of cases. This is not so because of a very important
property of special geometries and of their quaternionic descendants.

This relates to the Tits–Satake (TS) projection of special homogeneous (SH)
manifolds:

SH
Tits–Satake=⇒ SH TS (5.2.24)

which was analysed in detail in [32], together with the allied concept of Paint Group
that had been introduced previously in [31]. What it is meant by this wording is the
following. It turns out that one can define an algorithm, the Tits–Satake projection
πTS, which works on the space of homogeneous manifolds with a solvable transitive
group of motions GM , and with any such manifold associates another one of the same
type. This map has a series of very strong distinctive features:

1. πTS is a projection operator, so that several different manifolds SH i (i =
1, . . . , r ) have the same image πTS (SH i ).

2. πTS preserves the rank of GM namely the dimension of the maximal Abelian
semisimple subalgebra (Cartan subalgebra) of GM .

3. πTS maps special homogeneous into special homogeneous manifolds. Not only.
It preserves the two classes of manifolds discussed above, namely maps special
Kähler into special Kähler and maps Quaternionic into Quaternionic

4. πTS commutes with c-map, so that we obtain the following commutative diagram:

Special Kähler
c-map=⇒ Quaternionic-Kähler

πTS ⇓ πTS ⇓
(Special Kähler)TS

c-map=⇒ (Quaternionic-Kähler)TS

(5.2.25)

The main consequence of the above features is that the whole set of special homoge-
neous manifolds and hence of associated supergravity models is distributed into a set
of universality classes which turns out to be composed of extremely few elements.

If we confine ourselves to homogenous symmetric special geometries, which are
those for which we can implement the integration algorithm based on the Lax pair
representation, then the list of special symmetric manifolds contains only eight items
among which two infinite series. They are displayed in the first column of Table5.1.
The c-map produces just as many quaternionic (Kähler) manifolds, that are displayed
in the second column of the same table. Upon the Tits–Satake projection, this infinite
set of models is organized into just five universality classes that are displayed on the
third column of Table5.1. The key-feature of the projection, relevant to our purposes
is that all of its properties extend also to the pseudo-quaternionic manifolds produced
by a time-like dimensional reduction. We can say that there exists a c�-map defined
by this type of reduction, which associates a pseudo-quaternionic manifold with each
special Kähler manifold. The Tits–Satake projection commutes also with the c�-map
and we have another commutative diagram:



5.2 Physical-Mathematical Introduction 213

Table 5.1 The eight series of homogenous symmetric special Kähler manifolds (infinite and finite),
their quaternionic counterparts and the grouping of the latter into five Tits Satake universality classes

Special Kähler
SK n

Quaternionic
QM 4n+4

Tits Satake projection of quater
QM TS

U(s+1,1)
U(s+1)×U(1)

U(s+2,2)
U(s+2)×U(2)

U(3,2)
U(3)×U(2)

SU(1,1)
U(1)

G(2,2)
SU(2)×SU(2)

G(2,2)
SU(2)×SU(2)

SU(1,1)
U(1) × SU(1,1)

U(1)
SO(3,4)

SO(3)×SO(4)
SO(3,4)

SO(3)×SO(4)

SU(1,1)
U(1) × SO(p+2,2)

SO(p+2)×SO(2)
SO(p+4,4)

SO(p+4)×SO(4)
SO(5,4)

SO(5)×SO(4)

Sp(6)
U(3)

SU(3,3)
SU(3)×SU(3)×U(1)

SO�(12)
SU(6)×U(1)
E(7,−25)

E(6,−78)×U (1)

F(4,4)
Usp(6)×SU(2)

E(6,−2)
SU(6)×SU(2)

E(7,−5)
SO(12)×SU(2)

E(8,−24)
E(7,−133)×SU(2)

F(4,4)
Usp(6)× SU(2)

Special Kähler
c�-map=⇒ Pseudo-Quaternionic-Kähler

πTS ⇓ πTS ⇓
(Special Kähler)TS

c�-map=⇒ (Pseudo-Quaternionic-Kähler)TS

(5.2.26)

By means of this token, we obtain Table5.2, perfectly analogous to Table5.1 where
the Pseudo-Quaternionic manifolds associated which each symmetric special geom-
etry are organized into five distinct Tits Satake universality classes.

Table 5.2 The eight series of homogenous symmetric special Kähler manifolds (infinite e finite),
their Pseudo-Quaternionic counterparts and the grouping of the latter into five Tits Satake univer-
sality classes

Special Kähler
SK n

Pseudo-quaternionic
QM �

4n+4

Tits Satake proj. of pseudo
quater
QM �

TS
U(s+1,1)

U(s+1)×U(1)
U(s+2,2)

U(s+1,1)×U(1,1)
U(3,2)

U(2,1)×U(1,1)

SU(1,1)
U(1)

G(2,2)
SU(1,1)×SU(1,1)

G(2,2)
SU(1,1)×SU(1,1)

SU(1,1)
U(1) × SU(1,1)

U(1)
SO(3,4)

SO(2,1)×SO(2,2)
SO(3,4)

SO(1,2)×SO(2,2)

SU(1,1)
U(1) × SO(p+2,2)

SO(p+2)×SO(2)
SO(p+4,4)

SO(p+2,2)×SO(2,2)
SO(5,4)

SO(3,2)×SO(2,2)

Sp(6)
U(3)

SU(3,3)
SU(3)×SU(3)×U(1)

SO�(12)
SU(6)×U (1)

E(7,−25)
E(6,−78)×U (1)

F(4,4)
Sp(6)×SU(1,1)

E(6,−2)
SU(3,3)×SU(1,1)

E(7,−5)
SO�(12)×SU(1,1)

E(8,−24)
E(7,−25)×SU(1,1)

F(4,4)
Sp(6)×SU(1,1)
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Hence we have the following:

Statement 5.2.1 The number, structure and properties of H� orbits of K nilpotent
elements depend only on the Tits Satake universality class and it is an intrinsic
property of the class.

So it suffices to determine the classification of nilpotent orbits for the five manifolds
appearing in the third column of Table5.2.

In Chap.6 we will work out the details for the simplest case corresponding to the
second line in Table5.2. The details of the algorithm should be clear from such an
illustration. In [45] the following case was studied in detail:

SK O2s+2 ≡ SU(1, 1)

U(1)
× SO(2, 2 + 2s)

SO(2) × SO(2 + 2s)
(5.2.27)

which corresponds to one of the possible couplings of 2 + 2s vector multiplets.
Upon space-like dimensional reduction to D = 3 and dualization of all the vector

fields, a supergravity model of this type becomes a σ -model with the following
quaternionic manifold as target space:

QM (4,4+2s) ≡ UD=3

H
= SO(4, 4 + 2s)

SO(4) × SO(4 + 2s)
. (5.2.28)

as mentioned in Table5.1. If we perform instead a time-like dimensional reduction,
as it is relevant for the construction of black-hole solutions, we obtain an Euclidean
σ -model where, as mentioned in Table5.2 the target space is the following pseudo-
quaternionic manifold:

QM �
(4,4+2s) ≡ UD=3

H�
= SO(4, 4 + 2s)

SO(2, 2) × SO(2, 2 + 2s)
. (5.2.29)

The Tits Satake projection of all such manifolds is:

QM �
TS = UT S

D=3

H�
T S

= SO(4, 5)

SO(2, 3) × SO(2, 2)
. (5.2.30)

We refer the reader to [45] for the explicit construction of nilpotent orbits pertaining
to this example.

5.3 The Tits Satake Projection

The arguments exposed in the previous section should have convinced the reader of
the high relevance of the Tits–Satake projection, both in the context of black-holes
and in the context of other geometrical aspects of supergravity theory, a notable one
being that of gauging. For this reason the remaining part of this chapter is devoted
to the illustration of the rich mathematical theory underlying this projection.

http://dx.doi.org/10.1007/978-3-319-74491-9_6
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In this section we explain the Tits–Satake projection of a metric solvable Lie
algebra and how it is related to the notions of paint group Gpaint and subpaint group
Gsubpaint ⊂ Gpaint. Although the Tits–Satake projection can be defined for general
solvable Lie algebras, ourmain interest is in symmetric spaces and the just mentioned
notions have been extracted precisely from the case of the Tits–Satake projections of
solvable Lie algebras associated with symmetric spaces Solv(G/H). On these latter
we focus.

5.3.1 The TS-Projection for Non Maximally Split Symmetric
Spaces

Following the discussion of Sect. 2.4 let us recall that if the scalar manifold of super-
gravity is a non maximally noncompact manifold G/H the Lie algebra of the numer-
ator group is some appropriate real form GR of a complex Lie algebra G. The Lie
algebraH of the denominator H is themaximal compact subalgebraH ⊂ GR . Denot-
ing, as usual, by K the orthogonal complement of H in GR :

GR = H ⊕ K (5.3.1)

and defining as noncompact rank or rank of the coset G/H the dimension of the non-
compact Cartan subalgebra (see Eq. (2.4.3), we obtain that rnc ≤ rank(G), where the
equality is the statement that the manifold is maximally noncompact (or ‘maximally
split’).

When the equality is strict, the manifold GR/H is still metrically equivalent to a
solvable groupmanifold but the form of the solvable Lie algebra Solv(GR/H), whose
structure constants define the Nomizu connection, is more complicated than in the
maximally non-compact case. It was discussed and explained in Sect. 2.5.1. The
Tits–Satake theory of non-compact cosets and split subalgebras is a classical topic in
Differential Geometry and appears in some textbooks. Within such a mathematical
framework there is a peculiar universal structure of the solvable algebra Solv(GR/H)

that had not been observed before [31] namely that of paint and subpaint groupswhich
extends beyond symmetric spaces as it was demonstrated in [32].

Explicitly we have the following scheme. One can split the Cartan subalgebra into
its compact and non-compact subalgebras as shown in Eq. (2.4.17) and these parts
are orthogonal using the Cartan-Killing metric. Therefore, every vector in the dual
of the full Cartan subalgebra, in particular every root α, can be decomposed into its
transverse and parallel part to H nc as it was done in Eq. (2.4.19).

TheTits–Satake projection consists of two steps. First one sets allα⊥ = 0, project-
ing the original root systemΔG onto a new system of vectorsΔ living in a Euclidean
space of dimension equal to the non-compact rank rnc. The setΔ is called a restricted
root system. It is not an ordinary root system in the sense that roots can occur with
multiplicities different from one and 2α|| can be a root if α|| is one. In the second
step, one deletes the multiplicities of the restricted roots. Thus we have

http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_2
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ΠTS : ΔG �→ ΔTS, ; ΔG

α⊥=0�−→ Δ

deleting

�−→
multiplicities

ΔTS. (5.3.2)

If Δ contains no restricted root that is the double of another one, then ΔTS is a
root system of simple type. We will show later that this root subsystem defines a Lie
algebra GTS, the Tits–Satake subalgebra of GR :

ΔTS = root system of GTS, GTS ⊂ GR . (5.3.3)

The Tits–Satake subalgebra GTS is, as a consequence of its own definition, the
maximally non-compact real section of its own complexification. For this reason,
considering its maximal compact subalgebra HTS ⊂ GTS we have a new smaller
coset GTS/HTS which is maximally split and whose associated solvable algebra
Solv(GTS/HTS) has the standard structure utilized in [29] to prove complete inte-
grability of supergravity compactified to 3 dimensions. This result demonstrates the
relevance of the Tits–Satake projection.

In the case doubled restricted roots are present in Δ, the projection cannot be
expressed in terms of a simple Lie algebra, but the concept remains the same. The
root system is the so-called bcr system, with r = rnc the non-compact rank of the
real form G. It is the root system of a group GTS, which is now non-semi-simple.
The manifold is similarly defined as GTS/HTS, where HTS is the maximal compact
subgroup of GTS.

The next question is: what is the relation between the two solvable Lie alge-
bras Solv(GR/H) and Solv(GTS/HTS)? The answer can be formulated through the
following statements A-E.

[A]

In a projection more than one higher dimensional vector can map to the same lower
dimensional one. Thismeans that in general therewill be several roots ofΔG that have
the same image in ΔTS. The imaginary roots vanish under this projection, according
to the definition of Sect. 2.5. Therefore, apart from these imaginary roots, there are
two types of roots: those that have a distinct image in the projected root system and
those that arrange into multiplets with the same projection. We can split the root
spaces in subsets according to whether there is such a degeneracy or not. Calling Δ+

G

and Δ+
TS the sets of positive roots of the two root systems, we have the following

scheme:

Δ+
G

= Δη
⋃

Δδ
⋃

Δcomp

↓ ΠTS ↓ ΠTS ↓ ΠTS

Δ+
TS = Δ�

TS

⋃

Δs
TS

∀α� ∈ Δ�
TS : dimΠ−1

TS

[

α�
] = 1, ∀αs ∈ Δs

TS : dimΠ−1
TS

[

αs
] = m[αs] > 1.

(5.3.4)

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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The δ part thus contains all the roots that have multiplicities under the Tits–Satake
projectionwhile the roots in the η part have nomultiplicities. These roots of type η are
orthogonal toΔcomp. Indeed, this follows from the fact that for any two root vectors α

and β where there is no root of the form β + mα with m a non-zero integer, the inner
product of β and α vanishes. It also follows from this definition that in maximally
split symmetric spaces, in which case Δcomp = ∅, all root vectors are in Δη or Δ�

(as the Tits–Satake projection is then trivialized).
These subsets moreover satisfy the following properties under addition of root

vectors:
G GTS

Δη + Δη ⊂ Δη Δ�
TS + Δ�

TS ⊂ Δ�
TS

Δη + Δδ ⊂ Δδ Δ�
TS + Δs

TS ⊂ Δs
TS

Δδ + Δδ ⊂ Δη
⋃

Δδ Δs
TS + Δs

TS ⊂ Δ�
TS

⋃

Δs
TS

Δcomp + Δη = ∅
Δcomp + Δδ ⊂ Δδ

(5.3.5)

Because of this structure we can enumerate the generators of the solvable algebra
Solv(GR/H) in the following way:

Solv(GR/H) = {

Hi , Φα�,Ωαs |I
}

Hi ⇒ Cartan generators

Φα� ⇒ η − roots

Ωαs |I ⇒ δ − roots ; (I = 1, . . . , m[αs]). (5.3.6)

The index I enumerating the m-roots of ΔGR that have the same projection in ΔTS

is named the paint index.

[B]

There exists a compact subalgebra Gpaint ⊂ GR which acts as an algebra of
outer automorphisms (i.e. outer derivatives) of the solvable algebra SolvGR ≡
Solv(GR/H) ⊂ GR , namely:

[

Gpaint , SolvGR

] ⊂ SolvGR . (5.3.7)

[C]

The Cartan generators Hi and the generators Φα� are singlets under the action of
Gpaint, i.e. each of them commutes with the whole of Gpaint:

[

Hi , Gpaint
] = [

Φα� , Gpaint
] = 0 (5.3.8)

On the other hand, each of the multiplets of generators Ωαs |I constitutes an orbit
under the adjoint action of the paint group Gpaint, i.e. a linear representation D[αs]
which, for different roots αs can be different:
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∀ X ∈ Gpaint : [

X , Ωαs |I
] = (

D[αs ][X ])J

I Ωαs |J (5.3.9)

[D]

The paint algebra Gpaint contains a subalgebra

G
0
subpaint ⊂ Gpaint (5.3.10)

such that with respect to G
0
subpaint, each m[αs]-dimensional representation D[αs]

branches as follows:

D[αs] G
0
subpaint=⇒ 1

︸︷︷︸

singlet

⊕ J
︸︷︷︸

(m[αs ]−1)−dimensional

(5.3.11)

Accordingly we can split the range of the multiplicity index I as follows:

I = {0, x} , x = 1, . . . , m[αs] − 1. (5.3.12)

The index 0 corresponds to the singlet, while x ranges over the representation J.

[E]

The tensor product J ⊗ J contains both the identity representation 1 and the repre-
sentation J itself. Furthermore, there exists, in the representation

∧3 J a G
0
subpaint-

invariant tensor axyz such that the two solvable Lie algebras SolvGR and SolvGTS can
be written as follows

SolvGR SolvGTS[

Hi , H j
] = 0

[

Hi , H j
] = 0

[

Hi , Φ
α�

] = α�
i Φ

α�

[

Hi , Eα�
]

= α�
i

[

Hi , Ωαs |I
] = αs

i Ωαs |I
[

Hi , Eαs
]

= αs
i Eαs

[

Φ
α� , Φ

β�

]

= N
α�β� Φ

α�+β�

[

Eα�
, Eβ�

]

= N
α�β� Eα�+β�

[

Φ
α� , Ωβs |I

] = N
α�βs Ω

α�+βs |I
[

Eα�
, Eβs

]

= N
α�βs Eα�+βs

If αs + βs ∈ Δ�
TS :

[

Ωαs |I , Ωβs |J
] = δ I J Nαsβs Φαs+βs

[

Eαs
, Eβs

]

= Nαsβs Eαs+βs

If αs + βs ∈ Δs
TS :

⎧

⎪
⎨

⎪
⎩

[

Ωαs |0 , Ωβs |0
] = Nαsβs Ωαs+βs |0

[

Ωαs |0 , Ωβs |x
] = Nαsβs Ωαs+βs |x

[

Ωαs |x , Ωβs |y
] = Nαsβs

(

δxyΩαs+βs |0 + axyz Ωαs+βs |z
)

[

Eαs
, Eβs

]

= Nαsβs Eαs+βs

(5.3.13)

where Nαβ = 0 if α + β /∈ ΔTS.
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5.3.2 Paint and Subpaint Groups in an Example

We now want to illustrate the general structure described in the previous subsection
through the analysis of a specific example of a non maximally split symmetric space.
This will be both educational in order to clarify the notion of Tits–Satake projection
and instrumental to extract a general systematics for the paint and subpaint groups,
which we will later recognize in the entire classification of supergravity relevant
symmetric spaces.

Hence let us consider the following quaternionic Kähler manifold:

GR

H
= E8(−24)

E7(−133) × SU(2)
(5.3.14)

which, according to Table5.1 is the c-map image of the following special Kähler
manifold

E7(−25)

E6(−78) × U(1)
(5.3.15)

The quaternionic nature of the chosen non maximally split symmetric space is sig-
naled by the presence of the SU(2) factor in the denominator group and it is confirmed
by the decomposition of the adjoint representation of the numerator group:

248
E7(−133)×SU(2)=⇒ (133, 1) ⊕ (1, 3) ⊕ (56, 2) (5.3.16)

Indeed the 4 × 28 = 112 coset generators being in the (56, 2) of E7(−133) × SU(2)
are SU(2) doublets and transform symplectically under USp(56) transformations
due to the symplectic embedding of the 56 representation of the compact E7 group.

The quaternionic structure, however, is not relevant to our present discussion that
focuses on the mechanisms of the Tits–Satake projection. By means of this latter we
obtain the following result:

ΠTS : E8(−24)

E7(−133) × SU(2)
−→ F4(4)

USp(6) × SU(2)
(5.3.17)

and we just note that the projected manifold is still quaternionic for similar reasons
to those of (5.3.16). So the maximal non-compact Lie algebra F4(4) is the Tits–Satake
subalgebra of E8(−24). Let us see how this happens, following step by step the scheme
described in the previous section.

The rank of the complex E8 algebra is 8 and, and in its real section E8(−24) we
can distinguish 4 compact and 4 non-compact Cartan generators. In a Euclidean
orthonormal basis the complete E8 root system is composed of the following 240
roots:
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ΔE8 ≡

⎧

⎪
⎪
⎨

⎪
⎪
⎩

±εi ± ε j (i �= j) 112
± 1

2ε1 ± 1
2ε2 ± 1

2ε3 ± 1
2ε4 ± 1

2ε5 ± 1
2ε6 ± 1

2ε7 ± 1
2ε8

︸ ︷︷ ︸

even number of minus signs

128

240

⎫

⎪
⎪
⎬

⎪
⎪
⎭

,

(5.3.18)
and a convenient choice of the simple roots is provided by the following ones:

α1 = {0, 1,−1, 0, 0, 0, 0, 0},
α2 = {0, 0, 1,−1, 0, 0, 0, 0},
α3 = {0, 0, 0, 1,−1, 0, 0, 0},
α4 = {0, 0, 0, 0, 1,−1, 0, 0},
α5 = {0, 0, 0, 0, 0, 1,−1, 0},
α6 = {0, 0, 0, 0, 0, 1, 1, 0},
α7 =

{

−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2

}

,

α8 = {1,−1, 0, 0, 0, 0, 0, 0}. (5.3.19)

The corresponding Dynkin diagram is displayed in Fig. 5.2. where the roots α3, α4,

α5, α6 have been marked in black. This indicates that these simple roots are imagi-
nary, andCartan generators as e.g.αi

3Hi belong toH comp. In thisway these diagrams
define both the real form E8(−24) and the corresponding Tits–Satake projection of the
root system. The non-compact CSA H nc is the orthogonal complement of H comp.
Let us also note that the black roots form the Dynkin diagram of a D4 algebra, i.e in
its compact form the Lie algebra of SO(8). This is the origin of the paint group

Gpaint = SO(8), (5.3.20)

pertaining to this example.We shall identify it in amoment, but let us first perform the
Tits–Satake projection on the root system. This case is particularly simple since the
span of the simple imaginary roots α3,α4,α5,α6 is just given by the Euclidean space
along the orthonormal axes ε4, ε5 ε6, ε7. The Euclidean space along the orthonormal
axes ε1, ε2 ε3, ε8 is the non-compact CSA. Note that this is not the same as the span
of α1,α2,α7,α8. Denoting the components of root vectors in the basis εi by αi , the
splitting (2.4.19) is very simple. We just have:

Fig. 5.2 The Tits–Satake diagram of E8(−24), rank = 8, split rank = 4, GTS = F4(4)

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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α⊥ = {α4 , α5 , α6 , α3
} ; α‖ = {α1 , α2 , α7 , α8

}

, (5.3.21)

and the projection (5.3.2) immediately yields the following restricted root system:

ΔTS =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

±εi ± ε j (i �= j ; i, j = 1, 2, 3, 8) 24
±εi (i = 1, 2, 3, 8) 8

± 1
2ε1 ± 1

2ε2 ± 1
2ε3 ± 1

2ε8 16
48

⎫

⎪
⎪
⎬

⎪
⎪
⎭

, (5.3.22)

which can be recognized to be the root system of the simple complex algebra F4.
With reference to the notations introduced in the previous section let us now

identify the subsets Δη and Δδ in the positive root subsystem of Δ+
E8

and their
corresponding images in the projection, namely Δ�

TS and Δs
TS.

Altogether, performing the projection the following situation is observed:

• There are 24 roots that have null projection on the non-compact space, namely

α‖ = 0 ⇔ α = ±εi ± ε j ; i, j = 4, 5, 6, 7. (5.3.23)

These roots, togetherwith the four compactCartan generators, form the root system
of a D4 algebra, whose dimension is exactly 28. In the chosen real form such a
subalgebra of E8(−24) is the compact algebra SO(8) and its exponential acts as
the paint group, as already mentioned in (5.3.20). All the remaining roots have a
non-vanishing projection on the compact space. In particular:

• There are 12 positive roots of E8 that are exactly projected on the 12 positive long
roots of F4, namely the first line of (5.3.22), which we therefore identify withΔ�

TS.
For these roots we have α⊥ = 0 and they constitute the Δη system mentioned
above:

Δ+
E8

⊃ Δ
η

TS = {εi ± ε j
} = Δ�

TS ; i < j ; i, j = 1, 2, 3, 8 (5.3.24)

• There are 8 different positive roots of E8 that have the same projection on each of
the 12 = 4 ⊕ 8 positive short roots of F4, i.e. the second and third line of (5.3.22).
Namely the remaining 12 × 8 = 96 roots of E8 are all projected on short roots of
F4. The set of F4 positive short roots can be split as follows:

Δs
TS = Δs

vec

⋃

Δs
spin

⋃

Δs
spin

Δs
vec = {εi } i = 1, 2, 3, 8 4

Δs
spin = ± 1

2ε1 ± 1
2ε2 ± 1

2ε3 + 1
2ε8

︸ ︷︷ ︸

even number of minus signs

4

Δs
spin

= ± 1
2ε1 ± 1

2ε2 ± 1
2ε3 + 1

2ε8
︸ ︷︷ ︸

odd number of minus signs

4

12

(5.3.25)
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Correspondingly the subsetΔδ ⊂ ΔE8 defined by its projection propertyΠTS
(

Δδ
)

= Δs
TS is also split in three subsets as follows:

Δδ+ = Δδ
vec
⋃

Δδ
spin

Δδ
vec =

⎧

⎪
⎨

⎪
⎩

εi
︸︷︷︸

α‖

⊕ (±ε j
)

︸ ︷︷ ︸

α⊥

⎫

⎪
⎬

⎪
⎭

,

(

i = 1, 2, 3, 8
j = 4, 5, 6, 7

)

4 × 8 32

Δδ
spin =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(± 1
2 ε1 ± 1

2 ε2 ± 1
2 ε3 + 1

2 ε8
)

︸ ︷︷ ︸

α‖ even # of −signs

⊕ (± 1
2 ε4 ± 1

2 ε5 ± 1
2 ε6 ± 1

2 ε7
)

︸ ︷︷ ︸

α⊥ even # of− signs

⎫

⎪
⎪
⎬

⎪
⎪
⎭

4 × 8 32

Δδ

spin
=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(± 1
2 ε1 ± 1

2 ε2 ± 1
2 ε3 + 1

2 ε8
)

︸ ︷︷ ︸

α‖ odd # of − signs

⊕ (± 1
2 ε4 ± 1

2 ε5 ± 1
2 ε6 ± 1

2 ε7
)

︸ ︷︷ ︸

α⊥ odd # of −

⎫

⎪
⎪
⎬

⎪
⎪
⎭

4 × 8 32

96
(5.3.26)

We can now verify the general statements made in the previous sections about the
paint group representations to which the various roots are assigned. First of all we
see that, as we claimed, the long roots of F4, namely those 12 given in (5.3.24) are
singlets under the paint group Gpaint = SO(8). All other roots fall into multiplets
with the same Tits–Satake projection and each of these latter has always the same
multiplicity, in our case m = 8 (compare with (5.3.9)). So the short roots of F4(4)
fall into 8-dimensional representations of Gpaint = SO(8). But which ones? SO(8)
has three kind of octets 8v, 8s and 8s̄ and, as we stated, not every root αs of the Tits–
Satake algebra GTS falls in the same representation D of the paint group although in
this case all D[αs] have the same dimension. Looking back at our result we easily
find the answer. The 4 positive roots in the subset Δδ

vec have as compact part α⊥ the
weights of the vector representation of SO(8). Hence the roots of Δδ

vec are assigned
to the 8v of the paint group. The 4 positive roots in Δδ

spin have instead as compact
part the weights of the spinor representation of SO(8) and so they are assigned to
the 8s irreducible representation. Finally, with a similar argument, we see that the
4 roots of Δδ

spin
are in the conjugate spinor representation 8s̄. The last part of the

general discussion of Sect. 5.3.1 is now easy to verify in the context of our example,
namely that relevant to the subpaint group G0

subpaint (we will omit sometimes the
‘subpaint’ indication for convenience). According to (5.3.10)–(5.3.11) we have to
find a subgroup G0 ⊂ SO(8) such that under reduction with respect to it, the three
octet representations branch simultaneously as:

8v
G0−→ 1 ⊕ 7,

8s
G0−→ 1 ⊕ 7,

8s̄
G0−→ 1 ⊕ 7. (5.3.27)
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SuchgroupG0 exists and it is uniquely identified as the14dimensionalG2(−14).Hence
the subpaint group is G2(−14). Considering now (5.3.13) we see that the commuta-
tion relations of the solvable Lie algebra Solv

(

E8(−24)/E7(−133) × SU(2)
)

precisely
fall into the general form displayed in the first column of that table with the index
x = 1, . . . , 7 spanning the fundamental 7-dimensional representation of G2(−14) and
the invariant antisymmetric tensor axyz being given by the G2(−14)-invariant octo-
nionic structure constants. Indeed the representation Jmentioned in Sect. 5.3.1 is the
fundamental 7 and we have the decomposition:

7 × 7 = 14 ⊕ 7
︸ ︷︷ ︸

antisymmetric

⊕ 27 ⊕ 1
︸ ︷︷ ︸

symmetric

. (5.3.28)

This shows that, as claimed in point [E] of the general discussion, the tensor product
J × J contains both the singlet and J.

In the example that is extensively discussed in [31], namely

ΠTS : E7(−5)

SO(12) × SU(2)
−→ F4(4)

USp(6) × SU(2)
(5.3.29)

the image of the Tits–Satake projection yields the samemaximally split coset as in the
case presently illustrated, although the original manifold is a different one. The only
difference that distinguishes the two cases resides in the paint group. There we have
Gpaint = SO(3) × SO(3) × SO(3) and the subpaint group is identified as G0

subpaint =
SO(3)diag. Correspondingly the index x = 1, 2, 3 spans the triplet representation of
SO(3) which is the J appropriate to that case and the invariant tensor axyz is given
by the Levi-Civita symbol εxyz .

Let us nowconsider the group theoreticalmeaningof the splitting of F4(4) roots into
the three subsetsΔs

vec,Δ
s
spin,Δ

s
TS,spin

, which are assigned to different representations
of the paint group SO(8). This is easily understood if we recall that there exists a
subalgebra SO(4, 4) ⊂ F4(4) with respect to which we have the following branching
rule of the adjoint representation of F4(4):

52
SO(4,4)→ 28nc ⊕ 8ncv ⊕ 8ncs ⊕ 8ncs̄ (5.3.30)

The superscript nc is introduced just in order to recall that these are representations
of the non-compact real form SO(4, 4) of the D4 Lie algebra. By 28, 8v, 8s and 8s̄

we have already denoted and we continue to denote the homologous representations
in the compact real form SO(8) of the same Lie algebra. The algebra SO(4, 4) is
regularly embedded and therefore its Cartan generators are the same as those of
F4(4). The 12 positive long roots of F4(4) are the only positive roots of SO(4, 4),
while the three sets Δs

vec, Δ
s
spin, Δ

s
spin

just correspond to the positive weights of the
three representations 8ncv , 8ncs and 8ncs̄ , respectively. This is in agreement with the
branching rule (5.3.30). So the conclusion is that the different paint group represen-
tation assignments of the various root subspaces correspond to the decomposition of
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the Tits–Satake algebra F4(4) with respect to what we can call the sub Tits–Satake
algebra GsubTS = SO(4, 4). We can just wonder how the concept of sub Tits–Satake
algebra can be defined. This is very simple and obvious from our example. GsubTS is
the normalizer of the paint group Gpaint within the original group GR. Indeed there
is a maximal subgroup:

SO(4, 4) × SO(8) ⊂ E8(−24), (5.3.31)

with respect to which the adjoint of E8(−24) branches as follows:

248
SO(4,4)×SO(8)−→ (1, 28) ⊕ (28nc, 1) ⊕ (8ncv , 8v) ⊕ (8ncs , 8s) ⊕ (8ncs̄ , 8s̄) (5.3.32)

and the last three terms in this decomposition display the pairing between represen-
tations of the paint group and representations of the sub Tits–Satake group. Alterna-
tively we can view the subpaint group G0

subpaint = G2(−14) as the normalizer of the
Tits–Satake subgroup GTS = F4(4) within the original group GR = E8(−24). Indeed
we have a subgroup

F4(4) × G2(−14) ⊂ E8(−24), (5.3.33)

such that the adjoint of E8(−24) branches as follows:

248
F4(4)×G2(−14)−→ (52, 1) ⊕ (1, 14) ⊕ (26, 7) (5.3.34)

The two decompositions (5.3.32) and (5.3.34) lead to the same decomposition with
respect to the intersection group:

G intsec ≡
(

GTS × G0
subpaint

)
⋂
(

GsubTS × Gpaint
) = GsubTS × G0

subpaint

= (

F4(4) × G2(−14)
)
⋂

(SO(4, 4) × SO(8)) = SO(4, 4) × G2(−14).

(5.3.35)

We find

248 → (1, 14) ⊕ (1, 7) ⊕ (1, 7) ⊕ (8ncv , 7) ⊕ (8ncs , 7) ⊕ (8ncs̄ , 7)

⊕(28nc, 1) ⊕ (8ncv , 1) ⊕ (8ncs , 1) ⊕ (8ncs̄ , 1). (5.3.36)

The adjoint of the Tits–Satake subalgebra GTS = F4(4) is reconstructed by collecting
together all the singlets with respect to the subpaint group G0

subpaint. Alternatively the
adjoint of the paint algebra Gpaint = SO(8) is reconstructed by collecting together
all the singlets with respect to the sub Tits–Satake algebra GsubTS = SO(4, 4).

Finally, we can recognize the sub Tits–Satake algebra as the algebra generated by
the CSA and roots Δ� (and their negatives) in the decomposition (5.3.4).
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5.3.3 TS Projection for the Normed Solvable Algebras of
Homogenous Special Manifolds

After our detailed discussion of the Tits–Satake projection in the above example
of a specific symmetric space we can extract a general scheme that applies to all
normal solvable Lie algebras. Let us discuss how the Tits–Satake projection can
be reformulated relying on the paint and subpaint group structures. In Sect. 5.3.1
our starting point was the geometrical projection of the root system ΔG onto the
non-compact Cartan subalgebra by setting, for each root α ∈ ΔG its compact part
α⊥ to zero. This is the operation that is no longer available in the general case of
a solvable algebra. We now only have the solvable algebra, which corresponds to
the non-compact part α‖. Indeed at the level of the solvable Lie algebra there is no
notion of the compact Cartan generators. However, the structures that still persist and
allow us to define the Tits–Satake projection are those of paint and subpaint groups.
Indeed for all the solvable Lie algebras Solv (M ) considered in the classification of
homogeneous special geometries the following statements A-E are true:

[A1]

There exists a compact algebra Gpaint which acts as an algebra of outer automor-
phisms (i.e. outer derivatives) of the solvable algebra Solv (M ). The algebra Gpaint

is rigorously defined as follows. Given the solvable Lie algebra Solv (M ) the corre-
sponding Riemannian manifold M = exp [Solv (M )] has an algebra of isometries
G

iso
M , which is normally larger than Solv (M ), and for all special homogeneous man-

ifoldsM such algebras were studied and completely classified in [4, 5]. Obviously
Solv (M ) ⊂ G

iso
M . Let us define the subalgebra of automorphisms of the solvable

Lie algebra in the standard way:

G
iso
M ⊃ Aut [Solv (M )] =
{

X ∈ G
iso
M | ∀Ψ ∈ Solv (M ) : [X , Ψ ] ∈ Solv (M )

}

(5.3.37)

By its own definition the algebra Aut [Solv (M )] contains Solv (M ) as an ideal.
Hence we can define the algebra of external automorphisms as the quotient:

AutExt [Solv (M )] ≡ Aut [Solv (M )]

Solv (M )
, (5.3.38)

and we identify Gpaint as the maximal compact subalgebra of AutExt [Solv (M )].
Actually we immediately see that

Gpaint = AutExt [Solv (M )] . (5.3.39)

Indeed, as a consequence of its own definition the algebra AutExt [Solv (M )]
is composed of isometries which belong to the stabilizer subalgebra H ⊂ G

iso
M

of any point of the manifold, since Solv (M ) acts transitively. In virtue of the
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Riemannian structure of M we have H ⊂ so(n) where n = dim (Solv (M )) and
hence also AutExt [Solv (M )] ⊂ so(n) is a compact Lie algebra.

[A2]

We can now reformulate the notion of maximally non-compact or maximally split
algebras in such a way that it applies to the case of all considered solvable alge-
bras, independently whether they come from symmetric spaces or not. The algebra
Solv (M ) is maximally split if the paint algebra is trivial, namely:

Solv (M ) = maximally split ⇔ AutExt [Solv (M )] = ∅. (5.3.40)

For maximally split algebras there is no Tits–Satake projection, namely the Tits–
Satake subalgebra is the full algebra.

[B]

Let us now consider non maximally split algebras such that AutExt [Solv (M )] �= ∅.
Let r be the rank of Solv (M ) , namely the number of its Cartan generators Hi and
n the number of its nilpotent generatorsWα , namely the number of generalized roots
α. The whole set of Cartan generators Hi , plus a subset of p nilpotent generatorsWα�

associated with roots α� that we name long, close a solvable subalgebra SolvsubTS ⊂
Solv (M ) that is made of singlets under the action of the paint Lie algebra Gpaint,
i.e.

SolvsubTS = span {Hi ,Wα�} ,

[SolvsubTS , SolvsubTS] ⊂ SolvsubTS,

∀ X ∈ Gpaint , ∀Ψ ∈ SolvsubTS : [X, Ψ ] = 0. (5.3.41)

We name SolvsubTS the sub Tits–Satake algebra. By definition SolvsubTS has the
same rank as the original solvable algebra Solv (M ). In all possible cases, it is the
solvable Lie algebra of a symmetric maximally split coset GsubTS/HsubTS. In this
way, eventually, we have the notion of a semisimple Lie algebra GsubTS.

[C1]

Considering the orthogonal decomposition of the original solvable Lie algebra with
respect to its sub Tits–Satake algebra:

Solv (M ) = SolvsubTS ⊕ Kshort. (5.3.42)

we find that the orthogonal subspace Kshort necessarily decomposes into a sum of q
subspaces:

Kshort =
q
⊕

℘=1

D
[

P+
℘ ,Q℘

]

, (5.3.43)

where each D
[

P+
℘ ,Q℘

]

is the tensor product:
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D
[

P+
℘ ,Q℘

] = P+
℘ ⊗ Q℘ (5.3.44)

of an irreducible moduleQ℘ (i.e. representation) of the compact paint algebra Gpaint

with an irreducible moduleP+
℘ of the solvable sub Tits–Satake algebra SolvsubTS. As

we already noticed, SolvsubTS is themaximal Borel subalgebra of themaximally split,
semisimple, real Lie algebra GsubTS. Hence an irreducible module P+

℘ of SolvsubTS
necessarily decomposes in the following way:

P+
℘ =

n℘
⊕

s=1

W[α(℘,s)], n℘ = dimP+
℘ , (5.3.45)

where each W[α(℘,s)] is an eigenspace of the CSA of GsubTS, which coincides with
that of SolvsubTS and eventually with the CSA of the original Solv (M ). Explicitly
this means:

∀ Hi ∈ CSA (Solv (M )) , ∀Ψ ∈ W[α(℘,s)] ⊗ Q℘ : [Hi , Ψ ] = α
(℘,s)
i Ψ.

(5.3.46)

Furthermore the r -vectors of eigenvalues, which are roots of Solv (M ), are identified
by (5.3.45) as the non negative weights of some irreducible moduleP℘ of the simple
Lie algebra GsubTS:

P℘ = P+
℘ ⊕ P−

℘ , P−
℘ =

n℘
⊕

s=1

W[−α(℘,s)]. (5.3.47)

Indeed for the solvable Lie algebras Solv(G/H) of maximally split cosets the irre-
ducible modules are easily constructed as half-modules of the full algebraG, namely
by taking the eigenspaces associated with non negative weights.

[C2]

The decomposition of Kshort mentioned in (5.3.43) has actually a general form
depending on the rank. We will discuss this here for the quaternionic-Kähler mani-
folds.

(r = 4) In this case there are just three modules of GsubTS = SO(4, 4) involved in
the sum of (5.3.43) namelyP8v ,P8s ,P8s̄ , where 8v,s,s̄ denotes the vector, spinor
and conjugate spinor representation, respectively. All these three modules are 8
dimensional, which means that for all of them there are 4 positive weights and 4
negative ones. Denoting these half spaces by 4+

v,s,s̄, we can write:

Kshort = (4+
v ,Qv

)⊕ (4+
s ,Qs

)⊕ (4+
s̄ ,Qs̄

)

, (5.3.48)

whereQv,s,s̄ are three different irreduciblemodules ofGpaint that wewill discuss in
later sections. The generic case is that where all three representationsQv,s,s̄ are non
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vanishing. Special cases where two of the three representations Gpaint vanish do
also exist. The limiting case is that where all three representations are deleted and

the full algebra is just Solv
(

SO(4,4)
SO(4)×SO(4)

)

. Note that (5.3.48) is the generalization

of the decomposition (5.3.32) applying to the case analyzed in detail above. There
we have Gpaint = SO(8) and the aforementioned irreducible modules are:

Qv = 8v ; Qs = 8s ; Qs̄ = 8s̄ (5.3.49)

(r = 3) In this case there is only one module of GsubTS = SO(3, 4) involved in the
sum of (5.3.43) namelyP8s where 8s denotes the 8 dimensional spinor represen-
tation of SO(3, 4). With a notation completely analogous to that employed above
let 4+

s denote the space spanned by the eigenspaces pertaining to positive spinor
weights. Then we can write:

Kshort = (4+
s ,Qs

)

, (5.3.50)

(r = 2) In this case, there is one exceptional case, namely SG5, where G R =
GsubTS = G2(2). In all other cases, there are two modules of SO(2, 2) involved
in the sum of (5.3.43) and these are the spinor moduleP4s and the vector module
P4v . Both modules are 4-dimensional and in our adopted notations we can write:

Kshort = (2+
s ,Qs

)⊕ (2+
v ,Qv

)

. (5.3.51)

(r = 1) In this case we have to distinguish between GsubTS = SO(1, 1) or GsubTS =
SU(1, 1). When GsubTS = SU(1, 1) we have:

Kshort = (1+
s ,Qs

)

, (5.3.52)

where 1+
s denotes the positive weight subspace of the spinor representation of

so(1, 2), i.e. the fundamental of su(1, 1), which is two-dimensional. The repre-
sentation Qs will be discussed later. When GsubTS = SO(1, 1) on the other hand,
we have:

Kshort = (1+
s ,Qs

)⊕ (1+
v ,Qv

)

. (5.3.53)

In this case,1+
s denotes a subspaceofweight 1/2with respect toGsubTS = so(1, 1),

while the subspace 1+
v has weight 1.

We can now note a regularity in the decomposition of Kshort. For all values of the
rank we always have the space (S +,Qs) that associates a representation of the paint
group to the half spinor representation of the sub Tits–Satake algebra. In the case of
rank r = 4 in addition to this we also have the representationsQv andQs̄, which we
associate to what we can name the V + and S̄ + half modules. We have established
a notation covering all the cases which enables us to proceed to the next point and
give a general definition of the Tits–Satake projection.
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[D]

The paint algebra Gpaint contains a subalgebra

G
0
subpaint ⊂ Gpaint, (5.3.54)

such that with respect to G
0
subpaint, each of the three irreducible representations Qv,s,s̄

branches as:

Qv,s,s̄
G

0
subpaint=⇒ 1

︸︷︷︸

singlet

⊕ Jv,s,s̄, (5.3.55)

where the representation Jv,s,s̄ is in general reducible.

[E]

The restriction to the singlets of G
0
subpaint defines a Lie subalgebra of SolvM, namely,

if we set:

SolvTS ≡ SolvsubTS ⊕ (

V +, 1
) ⊕ (

S +, 1
) ⊕

(

S
+
, 1
)

, (5.3.56)

we get:
[SolvTS , SolvTS] ⊂ SolvTS. (5.3.57)

Relying on all the above properties and structures described in points [A], [B],
[C], [D] and [E], which turn out to hold true for every Solv (M ) considered in
supergravity, irrespectively whether it is associated with a symmetric space or not,
we can define the Tits–Satake projection at the level of solvable algebras by stating:

ΠTS : Solv (M ) −→ SolvTS ⊂ Solv (M )

Ψ ∈ SolvTS if and only if : ∀X ∈ G
0
subpaint : [X, Ψ ] = 0

(5.3.58)

In other words, we define the Tits–Satake solvable subalgebra SolvTS as spanned by
all the singlets under the subpaint group Gsubpaint. By its very definition the Tits–
Satake subalgebra contains the sub Tits–Satake algebra SolvsubTS ⊂ SolvTS which
is made of singlets with respect to the full paint group Gpaint The subtle points in the
above definition of the Tits–Satake projection is given by point [D] and [E]. Namely it
is a matter of fact, which is not obvious a priori, that the addition of the three modules
(occasionally vanishing) V +,S +,S

+
to the sub Tits–Satake algebra SolvsubTS

always defines a new Lie algebra. Being true this implies that a subalgebra SolvTS
with the structure (5.3.56) exists in SolvQ and Gsubpaint is its stability subalgebra.
Vice versa, the existence of a subpaint algebra such that the decomposition (5.3.55)
is true, implies that the subspace (5.3.56) closes a subalgebra since the kernel of a
subalgebra of automorphisms is necessarily a closed subalgebra.
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5.4 The Systematics of Paint Groups

As we explained in Sect. 5.3.3, the Tits–Satake projection originally defined in terms
of a geometrical projection of the root space, can be generalized to all solvable
algebras of special geometries reformulating it in terms of the paint and subpaint
group structures. The systematic procedure outlined there, started as step A] with the
identification of the paint group. This is what we do now, unveiling a very elegant
pattern of such paint groups.

As we claimed in the introduction, the specially fascinating property of the paint
group is that it is invariant under both the c-map and the c�-map, namely under
dimensional reduction.

5.4.1 The Paint Group for Non-compact Symmetric Spaces

In Sect. 5.3.3, we defined the paint group as the group of external automorphisms
of the solvable algebra associated with a certain homogeneous space (5.3.39). For
non-compact symmetric spaces there exists another, more common, definition of the
paint group. Referring to the presentation in the beginning of Sect. 5.3.1, the paint
group is defined as a subgroup ofH, whose Cartan generators are those inH comp and
the roots are those in Δcomp (and their negatives), i.e. those that have no component
α|| in the decomposition (2.4.19).

As we mentioned already in the example in Sect. 5.3.2, a real form GR of the
Lie algebra G is represented by the so-called Satake diagrams, which are Dynkin
diagrams with the following extra decorations:

• Compact simple roots (those in Δcomp) are denoted by filled circles.
• Simple roots that, upon setting α⊥ = 0, project to the same restricted root are
connected with a two-sided arrow. These are simple roots that necessarily belong
to Δδ .

Given the Satake diagram the paint group can then be read from it in the follow-
ing way. The black dots form a Dynkin diagram of the semi-simple type. The paint
group then contains a factor corresponding to this painted subdiagram. This corre-
sponds to the roots in Δcomp and the elements of H comp for which these roots have
non-vanishing components. Furthermore, for every arrow, there is one additional
SO(2)-factor that commutes with the rest of the paint group. These correspond to
the additional generators inH comp. An example of this is given in Figs. 5.2 and 5.3.
For the symmetric quaternionic spaces of rank 4, the paint groups are summarized
in Table5.3. The case 4 has already been extensively discussed. Here we can briefly
explain the group theory of the case 2. It suffices to note that the E6(2) Lie alge-
bra contains F4(4) as a maximal subalgebra and that the adjoint has the following
branching rule:

78
F4(4)−→ 52 ⊕ 26. (5.4.1)

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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Fig. 5.3 Satake diagram of
E6(2). The paint group can
be seen to be SO(2)2

Table 5.3 Symmetric special Kähler manifolds and their corresponding quaternionic spaces. The
last two columns indicate the paint and subpaint groups respectively. The spaces above the line are
maximally non-compact and do not have any paint group

C(h) Kähler Quaternionic Gpaint G0
subpaint

1 Sp(6)
U(3)

F4(4)
USp(6)×SU(2) – –

2 SU(3,3)
SU(3)×SU(3)×U(1)

E6(2)
SU(2)×SU(6) SO(2)2 1

3 SO∗(12)
SU(6)×U(1)

E7(−5)
SO(12)×SU(2) SO(3)3 SO(3)diag

4 E7(−25)
E6(−78)×U(1)

E8(−24)
E7(−133)×SU(2) SO(8) G2(−14)

This shows that the subpaint group is empty since the normalizer of the Tits–Satake
subalgebra F4(4) is null. On the other hand, recalling the decomposition of the fun-
damental representation of F4(4) with respect to the subalgebra SO(4, 4)

26
SO(4,4)−→ 1 ⊕ 1 ⊕ 8ncv ⊕ 8ncs ⊕ 8ncs̄ , (5.4.2)

together with the branching rule of the adjoint given in (5.3.30), we conclude that
under the subgroup SO(4, 4) × SO(2)2 we have:

78
SO(4,4)×SO(2)2−→ (28nc, 1, 1) ⊕ (

8ncv , 2, 1
)⊕ (

8ncs , 1, 2
)⊕ (8s̄nc , 1, 2)

⊕ (1, 1, 1) ⊕ (1, 1, 1) (5.4.3)

which shows that the paint group is indeed SO(2)2 as claimed.
From (5.4.3) we also read off the representations Qv,s,ŝ defined by (5.3.48) that

pertain to this case:

Qv = (2, 1) ; Qs = (1, 2) ; Qŝ = (1, 2). (5.4.4)

5.5 Classification of the Sugra-Relevant Symmetric Spaces
and Their General Properties

Equipped with the powerful weapon of the Tits Satake projection which allows to
organize them into universality classes, we can now make a complete survey of the
symmetric spaces G/H that are relevant to supergravity theories and in particular to
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the construction of black-hole solutions. Indeed, as the reader cannot fail to appre-
ciate there is a general group-theoretical framework underlying the construction of
supergravity black holes which allows both for

(1) a classification of the relevant symmetric spaces,
(2) a general description of their structures which are relevant to the black hole

solutions.

The presentation of both items in the above list is the goal of the present section. To
achieve such a goal we need to emphasize a few general aspects of the decomposition
(1.7.12) that relate to the underlying root systems and Dynkin diagrams. In the
following we heavily rely on results presented several years ago in [46]. Indeed
from the algebraic view-point a crucial property of the general decomposition in
Eq. (1.7.12) is encoded into the following statements which are true for all the cases1:

1. The A1 root-system associated with the sl(2, R)E algebra in the decomposition
(1.7.12) is made of ±ψ where ψ is the highest root of UD=3.

2. Out of the r simple roots αi of UD=3 there are r − 1 that have grading zero with
respect to ψ and just one αW that has grading 1:

(ψ , αi ) = 0 i �= W

(ψ , αW ) = 1 (5.5.1)

3. The only simple root αW that has non vanishing grading with respectψ is just the
highest weight of the symplectic representation W of UD=4 to which the vector
fields are assigned.

4. The Dynkin diagram of UD=4 is obtained from that of UD=3 by removing the dot
corresponding to the special root αW .

5. Hence we can arrange a basis for the simple roots of the rank r algebra UD=3

such that:
αi = {αi , 0} ; i �= W

αW =
{

wh,
1√
2

}

ψ =
{

0,
√
2
}

(5.5.2)

where αi are (r − 1)-component vectors representing a basis of simple roots for
the Lie algebraUD=4,wh is also an (r − 1)-vector representing the highest weight
of the representation W.

1An apparent exception is given by the case of N = 3 supergravity. The extra complicacy, there,
is that the duality algebra in D = 3, namely UD=3 has rank r + 2, rather than r + 1 with respect
to the rank of the algebra UD=4. Actually in this case there is an extra U(1)Z factor that is active
on the vectors, but not on the scalars and which is responsible for the additional complications. It
happens in this case that there are two vector roots, one for the complex representation to which the
vectors are assigned and one for its conjugate. They have opposite charges under U(1)Z. This case
together with that of N = 5 supergravity and with one of the series of N = 2 theories completes
the list of three exotic models which are anomalous also from the point of view of the Tits Satake
projection (see below).

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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This means that the entire root system and the Cartan subalgebra of the UD=3 Lie
algebra can be organized as follows:

±ψ = ±
(

0 ,
√
2
)

; 2

±α̂ = ±
(

α ,
√
2
)

; 2 × # of roots = 2 nr

± ŵ = ±
(

w ,

√
2
2

)

; 2 × # of weights = 2 × dimW

H i ∈ CSA ⊂ UD=4 ; rankUD=4 = r
H ψ 1

dimUD=4 = 3 + dimUD=3 + 2 × dimW
(5.5.3)

This organization of the Lie algebra is very important, as it was thoroughly discussed
in [46], for the systematics of the Kač Moody extension which occurs when stepping
down from D = 3 to D = 2 dimensions, but it is equally important in the present
context to analyze the structure of the H�-subalgebra and the Tits Satake projection.

5.5.1 Tits Satake Projection

In most cases of lower supersymmetry, neither the algebra UD=4 nor the algebra
UD=3 are maximally split. In short this means that the non-compact rank rnc < r
is less than the rank of U, namely not all the Cartan generators are non-compact.
When this happens it means that the structure of black hole solutions is effectively
determined by the maximally split Tits Satake subalgebra U

T S ⊂ U, whose rank is
equal to rnc. Effectively determined does not mean that solutions of the big system
coincide with those of the smaller system rather it means that the former can be
obtained from the latter by means of rotations of the paint group, Gpaint. As we have
seen the Tits Satake algebra is obtained from the original algebra via a projection of
the root system of U onto the subspace orthogonal to the compact part of the Cartan
subalgebra of U

T S:
Π T S ; ΔU �→ ΔUT S (5.5.4)

In Euclidean geometry ΔUT S is just a collection of vectors in rnc dimensions; a priori
there is no reason why it should be the root system of another Lie algebra. Yet as
we illustrated, in most cases, ΔUT S turns out to be a Lie algebra root system and the
maximal split Lie algebra corresponding to it, UT S , is, the Tits Satake subalgebra of
the original non maximally split Lie algebra: U

T S ⊂ U. Such algebras U are called
non-exotic. The exotic non compact algebras are those for which the system ΔUT S is
not an admissible root system. In such cases there is no Tits Satake subalgebra U

T S .
Exotic algebras are very few and in supergravity they appear only in three instances
that display additional pathologies relevant also for the black hole solutions. For
the non exotic models we have that the decomposition (1.7.12) commutes with the
projection, namely:

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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adj(UD=3) = adj(UD=4) ⊕ adj(sl(2, R)E ) ⊕ W(2,W )

⇓
adj(UT S

D=3) = adj(UT S
D=4) ⊕ adj(sl(2, R)E ) ⊕ W(2,W T S)

(5.5.5)

In other words the projection leaves the A1 Ehlers subalgebra untouched and has a
non trivial effect only on the duality algebra UD=4. Furthermore the image under the
projection of the highest root of U is the highest root of U

T S:

ΠT S : ψ → ψT S (5.5.6)

The reason why the Tits Satake projection is relevant to us was first pointed out in
[45] where the present author and his collaborators advocated that the classification
of nilpotent orbits and hence of extremal black hole solutions depends only on the
Tits Satake subalgebra and therefore is universal for all members of the same Tits
Satake universality class. By this name we mean all algebras who share the same
Tits Satake projection.

Having clarified these points we can proceed to present the classification of homo-
geneous symmetric spaces relevant to supergravity models and to black hole solu-
tions.

5.5.2 Classification of the Sugra-Relevant Symmetric Spaces

The classification of the symmetric coset based supergravitymodels is exhaustive and
it is presented in Tables5.4 and 5.5. There are 16 universality classes of non-exotic
models and 3 exceptional instances of exotic models which appear in the second
table.

In the tables we have also listed the Paint groups and the subpaint groups. These
latter are always compact and their different structures is what distinguishes the dif-
ferent elements belonging to the same class. As it was shown in [32] and extensively
illustrated in the previous sections, these groups are dimensional reduction invariant,
namely they are the same in D = 4 and in D = 3. Hence the representationW, which
in particular contains the electromagnetic charges of the hole, can be decomposed
with respect to the Tits Satake subalgebra and the Paint group revealing a regularity
structure inside each Tits Satake universality class which is at the heart of the clas-
sification of charge orbits. The same decomposition can be given also for the K

�

representation and this is at the heart of the classification of black holes according
to nilpotent orbits.

Focusing on the non-exotic models, we note that the 16 classes have a quite
different type of population. There are six one element classes whose single member
ismaximally split. They are the following ones and all have a distinguished standpoint
within the panorama of supergravity theories:
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1. TheN = 8 supergravity theory, which is the maximal one in D = 4, (model 1).
2. TheN = 2 supergravity theory with a single vector multiplet and non-vanishing

Yukawa coupling(model 2).
3. The N = 4 supergravity theory with 5 vector multiplets (model 11).
4. TheN = 4 supergravity theory with 6 vector multiplets which is obtained com-

pactifying a type II theory on a T6/Z2 orbifold (model 12).
5. The N = 2 theory with two vector multiplets and non vanishing Yukava cou-

plings, usually called the st-model (model 14).
6. The N = 2 theory with three vector multiplets and non vanishing Yukava cou-

plings, usually called the stu-model (model 15).

Next we have two universality classes, each containing an infinite number of ele-
ments. They are

1. The N = 4 supergravity theory with n = 6 + p vector multiplets (p ≥ 1),
(model 13).

2. The N = 2 supergravity theory with n = 3 + p vector multiplets (p ≥ 1) and
non vanishing Yukawa couplings (model 16).

We still have the very interesting 4-element universality class whose maximally split
representative corresponds to themaximally split special Kähler manifold Sp(6,R)

SU(3)×U(1) .
This class contains the models 3, 4, 5, 6 distinguished by quite peculiar Paint groups.
We will thoroughly analyze the structure of this class.

Finally we have the three exotic models whose common feature is that their group
and subgroup all belong to the pseudo-unitary series SU(p, q). The general decom-
position (1.7.12) still holds true, but the Tits Satake projection looses its significance.

5.5.3 Dynkin Diagram Analysis of the Principal Models

Next we analyze the form of the root systems of the UD=3 algebras in relation with
the decomposition (1.7.12).

N = 8

This is the case of maximal supersymmetry and it is illustrated by Fig. 5.4.
In this case all the involved Lie algebras are maximally split and we have

adj E8(8) = adj E7(7) ⊕ adj SL(2, R)E ⊕ (2, 56) (5.5.7)

The highest root of E8(8) is

ψ = 3α1 + 4α2 + 5α3 + 6α4 + 3α5 + 4α6 + 2α7 + 2α8 (5.5.8)

and the unique simple root not orthogonal to ψ is α8 = αW , according to the label-
ing of roots as in Fig. 5.4. This root is the highest weight of the fundamental 56-
representation of E7(7).

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Fig. 5.4 The Dynkin diagram of E8(8). The only simple root which has grading one with respect
to the highest root ψ is α8 (painted with three circles). With respect to the algebra UD=4 = E7(7)
whose Dynkin diagram is obtained by removal of the multiple circle, α8 is the highest weight of
the symplectic representation of the vector fields, namely W = 56

The well adapted basis of simple E8 roots is constructed as follows:

α1 = {1,−1, 0, 0, 0, 0, 0, 0} = {α1, 0}
α2 = {0, 1,−1, 0, 0, 0, 0, 0} = {α2, 0}
α3 = {0, 0, 1,−1, 0, 0, 0, 0} = {α3, 0}
α4 = {0, 0, 0, 1,−1, 0, 0, 0} = {α4, 0}
α5 = {0, 0, 0, 0, 1,−1, 0, 0} = {α5, 0}
α6 = {0, 0, 0, 0, 1, 1, 0, 0} = {α6, 0}
α7 =

{

− 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ,
1√
2
, 0
}

= {α7, 0}
α8 =

{

−1, 0, 0, 0, 0, 0,− 1√
2
, 1√

2

}

=
{

wh,
1√
2

}

(5.5.9)

In this basis we recognize that the seven 7-vectors ᾱi constitute a simple root basis
for the E7 root system, while:

wh =
{

−1, 0, 0, 0, 0, 0,− 1√
2

}

(5.5.10)

is the highest weight of the fundamental 56 dimensional representation. Finally in
this basis the highest root ψ defined by Eq. (5.5.8) takes the expected form:

ψ = {0, 0, 0, 0, 0, 0, 0,√2} (5.5.11)

N = 6

In this case the D = 4 duality algebra is UD=4 = SO�(12), whose maximal compact
subgroup is H = SU(6) × U(1). The scalar manifold (Fig. 5.5):

SK N=6 ≡ SO�(12)

SU(6) × U(1)
(5.5.12)

is an instance of special Kähler manifold which can also be utilized in an N = 2
supergravity context. The D = 3 algebra is UD=3 = E7(−5). The 16 vector fields of
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Fig. 5.5 TheDynkin diagram of E7(−5). The only simple root which has grading onewith respect to
the highest rootψ isα7 (paintedwithmultiple circles).With respect to the algebraUD=4 = SO�(12)
whose Dynkin diagram is obtained by removal of the multiple circle, α7 is the highest weight of
the symplectic representation of the vector fields, namely the W = 32s

D = 4 N = 6 supergravity with their electric and magnetic field strengths fill the
spinor representation 32s of SO�(12), so that the decomposition (1.7.12), in this case
becomes:

adj E7(−5) = adj SO�(12) ⊕ adj SL(2, R)E ⊕ (2, 32s) (5.5.13)

The simple root αW is α7 and the highest root is:

ψ = α1 + 2α2 + 3α3 + 4α4 + 2α5 + 3α6 + 2α7 (5.5.14)

A well adapted basis of simple E7 roots can be written as follows:

α1 = {1,−1, 0, 0, 0, 0, 0} = {α1, 0}
α2 = {0, 1,−1, 0, 0, 0, 0} = {α2, 0}
α3 = {0, 0, 1,−1, 0, 0, 0} = {α3, 0}
α4 = {0, 0, 0, 1,−1, 0, 0} = {α4, 0}
α5 = {0, 0, 0, 0, 1,−1, 0} = {α5, 0}
α6 = {0, 0, 0, 0, 1, 1, 0} = {α6, 0}
α7 =

{

− 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ,
1√
2

}

= {wh,
1√
2
}

(5.5.15)

In this basis we recognize that the six 6-vectors ᾱi (i = 1, . . . , 6) constitute a simple
root basis for the D6 � SO�(12) root system, while:

wh =
{

−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2

}

(5.5.16)

is the highest weight of the spinor 32-dimensional representation of SO�(12). Finally
in this basis the highest root ψ defined by Eq. (5.5.14) takes the expected form:

ψ = {0, 0, 0, 0, 0, 0,√2} (5.5.17)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Fig. 5.6 The Dynkin diagram of F4(4). The only root which is not orthogonal to the highest root
is �V = �1. In the Tits Satake projection ΠT S the highest root ψ of F4(4) is the image of the
highest root of E7(−5) and the root �V = �1 = ΠT S (α7) is the image of the root associated with
the vector fields

In this case, as in most cases of lower supersymmetry, neither the algebra UD=4

nor the algebra UD=3 are maximally split. The Tits Satake projection of E7(−5) is
F4(4) and the explicit form of Eq. (5.5.5) is the following one:

adj(E7(−5)) = adj(SO�(12)) ⊕ adj(SL(2, R)E) ⊕ (2, 32s)

⇓
adj(F4(4)) = adj(Sp(6, R) ⊕ adj(SL(2, R)E) ⊕ (2, 14′)

(5.5.18)

The representation 14′ of Sp(6, R) is that of an antisymmetric symplectic traceless
tensor:

dimSp(6,R)

˜

= 14′ (5.5.19)

The Dynkin diagram of the Tits Satake subalgebra f4(4) is discussed in Fig. 5.6.

N = 5

The case of N = 5 supergravity is described by Fig. 5.7 and it is one of the three
exotic models whose Tits–Satake projection does not produce a Lie algebra root
system.

In theN = 5 theory the scalar manifold is a complex coset of rank r = 1,

MN =5,D=4 = SU(1, 5)

SU(5) × U(1)
(5.5.20)

and there are 10 vector fields whose electric andmagnetic field strengths are assigned
to the 20-dimensional representation of SU(1, 5), which is that of an antisymmetric
three-index tensor

dimSU(1,5) = 20 (5.5.21)

The decomposition (1.7.12) takes the explicit form:

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Fig. 5.7 The Dynkin diagram of E6(−14). The only simple root which has grading one with respect
to the highest root ψ is α4 (painted with multiple circles). With respect to the algebra UD=4 =
SU(5, 1)) whose Dynkin diagram is obtained by removal of the black circle, α4 is the highest
weight of the symplectic representation of the vector fields, namely theW = 20

adj(E6(−14)) = adj(SU(1, 5) ⊕ adj(SL(2, R)E) ⊕ (2, 20) (5.5.22)

and we have that the highest root of E6, namely

ψ = α1 + 2α2 + 3α3 + 2α4 + 2α5 + α6 (5.5.23)

has non vanishing scalar product onlywith the rootα4 in the form depicted in Fig. 5.7.
Writing a well adapted basis of E6 roots is a little bit more laborious but it can be

done. We find:

α1 =
{

0, 0,−
√
3
2 , 1

2
√
5
,

√

6
5 , 0
}

= {α1, 0}
α2 =

{

− 1√
2
, 1√

6
, 2√

3
, 0, 0, 0

}

= {α2, 0}
α3 =

{√
2, 0, 0, 0, 0, 0

}

= {α3, 0}
α4 =

{

− 1√
2
, 1√

6
,− 1√

3
, 1√

5
,−
√

3
10 ,

1√
2

}

=
{

wh,
1√
2

}

α5 =
{

− 1√
2
,−
√

3
2 , 0, 0, 0, 0

}

= {α4, 0}
α6 =

{

0,
√

2
3 ,− 1

2
√
3
,−

√
5
2 , 0, 0

}

= {α5, 0}

(5.5.24)

In this basis we can check that the five 5-vectors ᾱi (i = 1, . . . , 5) constitute a simple
root basis for the A5 � SU(1, 5) root system, namely:

〈ᾱi , ᾱ j 〉 =

⎛

⎜

⎜

⎜

⎜

⎝

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎞

⎟

⎟

⎟

⎟

⎠

= Cartan matrix of A5 (5.5.25)
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while:

wh =
{

− 1√
2
,

1√
6
,− 1√

3
,

1√
5
,−
√

3

10

}

(5.5.26)

is the highest weight of the 20-dimensional representation of SU(1, 5). Finally in
this basis the highest root ψ defined by Eq. (5.5.23) takes the expected form:

ψ = {0, 0, 0, 0, 0, 0,√2} (5.5.27)

N = 4

The case of N = 4 supergravity is the first where the scalar manifold is not com-
pletely fixed, since we can choose the number nm of vector multiplets that we can
couple to the graviton multiplet. In any case, once nm is fixed the scalar manifold is
also fixed and we have:

MN=4,D=4 = SL(2, R)0

O(2)
⊗ SO(6, nm)

SO(6) × SO(nm)
(5.5.28)

The total number of vectors nv = 6 + nm is also fixed and the symplectic represen-
tationW of the duality algebra

UD=4 = SL(2, R)0 × SO(6, nm) (5.5.29)

to which the vectors are assigned and which determines the embedding:

SL(2, R)0 × SO(6) × SO(nm) �→ Sp(12 + 2 nm, R) (5.5.30)

is also fixed, namely W = (20,6+nm), 20 being the fundamental representation of
SL(2, R)0 and 6+nm the fundamental vector representation of SO(6, nm).

The D = 3 algebra is, UD=3 = SO(8, nm + 2). Correspondingly the form taken
by the general decomposition (1.7.12) is the following one:

adj(SO(8, nm + 2)) = adj(SL(2, R)0) ⊕ adj(SO(6, nm)) ⊕ adj(SL(2, R)E)

⊕(2E, 20,6+nm) (5.5.31)

where 2E,0 are the fundamental representations respectively of SL(2,R)E and of
SL(2,R)0.

In order to give a Dynkin Weyl description of these algebras, we are forced to
distinguish the case of an odd and even number of vector multiplets. In the first case
bothUD=3 andUD=4 are non simply laced algebras of the B-type, while in the second
case they are both simply laced algebras of the D-type

nm =
{

2k → UD=4 � Dk+3

2k + 1 → UD=4 � Bk+3
(5.5.32)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Fig. 5.8 The Dynkin diagram of D4+k+1. The algebra D4+k+1 is that of the group SO(8, 2k + 2)
corresponding to the σ -model reduction of N = 4 supergravity coupled to nm = 2k vector mul-
tiplets. The only simple root which has non vanishing grading with respect to the highest one ψ

is α2. Removing it (black circle) we are left with the algebra D4+k−1 ⊕ A1 which is indeed the
duality algebra in D = 4, namely SO(6, 2k) ⊕ SL(2, R)0. The root α2 is the highest weight of the
symplectic representation of the vector fields, namely the W = (20, 6 + 2k)

Just for simplicity and for shortness we choose to discuss only the even case nm = 2k
which is described by Fig. 5.8.

In this case we consider the UD=3 = SO(8, 2k + 2) Lie algebra whose Dynkin
diagram is that of D5+k . Naming εi the unit vectors in an Euclidean �-dimensional
spacewhere � = 5 + k, awell adapted basis of simple roots for the considered algebra
is the following one:

α1 = √
2 ε1

α2 = − 1√
2

ε1 − ε2 + 1√
2

ε�

α3 = ε2 − ε3

α4 = ε3 − ε4

. . . = . . .

α�−1 = ε�−2 − ε�−1

α� = ε�−2 + ε�−1

(5.5.33)

which is quite different from the usual presentation but yields the correct Cartan
matrix. In this basis the highest root of the algebra:

ψ = α1 + 2α2 + 2α3 + · · · + 2α�−2 + α�−1 + α� (5.5.34)

takes the desired form:
ψ = √

2 ε� (5.5.35)

In the same basis the αW = α2 root has also the expect form:
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αW =
(

w,
1√
2

)

(5.5.36)

where:

w = − 1√
2

ε1 − ε2 (5.5.37)

is the weight of the symplectic representation W = (20, 6 + 2k). Indeed − 1√
2
ε1 is

the fundamental weight for the Lie algebra SL(2, R)0, whose root is α1 = √
2 ε1,

while−ε2 is the highest weight for the vector representation of the algebra SO(6, 2k),
whose roots are α3, α4, . . . , α�.

Nextwebriefly comment on theTits Satake projection. The algebraSO(8, nm + 2)
is maximally split only for nm = 5, 6, 7. The case nm = 6, from the superstring view
point, corresponds to the case of Neveu–Schwarz vector multiplets in a toroidal
compactification. For a different number of vectormultiplets, in particular for nm > 7
the study of extremal black holes involves considering the Tits Satake projection,
which just yields the universal algebra

U
T S
N=4,D=3 = so(8, 9) (5.5.38)

5.6 Tits Satake Decompositions of the W Representations

One of the goals that we plan to pursue in Chap.6 is the comparison of the classi-
fication of extremal black holes by means of charge orbits with their classification
by means of H� orbits. Charge orbits means orbits of the UD=4 group in the W-
representation.

For this reason, in the present section we consider the decomposition of the W-
representations with respect to Tits–Satake subalgebras and Paint groups for all
the non-exotic models. The relevant W-representations are listed in Table5.7. In
Table5.8 we listed the W-representations for the exotic models.

Given the paint algebra Gpaint ⊂ U and the Tits Satake subalgebra GTS ⊂ U,
one introduces, as we have seen, the sub Tits Satake and sub paint algebras as the
centralizers of the paint algebra and of the Tits Satake algebra, respectively. In other
words we have:

s ∈ GsubTS ⊂ GTS ⊂ U ⇔ [

s , Gpaint
] = 0 (5.6.1)

and
t ∈ Gsubpaint ⊂ Gpaint ⊂ U ⇔ [t , GTS] = 0 (5.6.2)

As it was stressed repeatedly, a very important property of the paint and subpaint
algebras is that they are conserved in the dimensional reduction, namely they are the
same for UD=4 and UD=3.

http://dx.doi.org/10.1007/978-3-319-74491-9_6
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In the next lines we analyze the decomposition of the W-representations with
respect to these subalgebras for each Tits Satake universality class of non maximally
split models. In the case of maximally split models there is no paint algebra and there
is nothing with respect to which to decompose.

5.6.1 Universality Class sp(6, R) ⇒ f4(4)

In this case the sub Tits Satake Lie algebra is

GsubTS = sl(2, R) ⊕ sl(2, R) ⊕ sl(2, R) ⊂ sp(6, R) = GTS (5.6.3)

and theW-representation of the maximally split model decomposes as follows:

14′ GsubTS=⇒ (2, 1, 1) ⊕ (1, 2, 1) ⊕ (1, 1, 2) ⊕ (2, 2, 2) (5.6.4)

This decomposition combines in the following way with the paint group representa-
tions in the various models belonging to the same universality class.

5.6.1.1 su(3, 3) Model

For this case the paint algebra is

Gpaint = so(2) ⊕ so(2) (5.6.5)

and the W-representation is the 20 dimensional of su(3, 3) corresponding to an
antisymmetric tensor with a reality condition of the form:

t�
αβγ = 1

3! εαβγ δηθ tδηθ (5.6.6)

The decomposition of this representation with respect to the Lie algebra Gpaint ⊕
GsubTS is the following one:

20
Gpaint⊕GsubTS=⇒ (2, q1|2, 1, 1) ⊕ (2, q2|1, 2, 1) ⊕ (2, q3|1, 1, 2) ⊕ (1, 0|2, 2, 2)

(5.6.7)
where (2, q) means a doublet of so(2) ⊕ so(2) with a certain grading q with respect
to the generators, while (1, 0)means the singlet that has 0 gradingwith respect to both
generators. The subpaint algebra in this case is Gsubpaint = 0 and the decomposition
of the same W-representation with respect to Gsubpaint ⊕ GTS is:

20
Gsubpaint⊕GTS=⇒ 6 ⊕ 14 (5.6.8)
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This follows from the decomposition of the 6 of sp(6,R) with respect to the sub Tits
Satake algebra (5.6.3):

6
GsubTS=⇒ (2, 1, 1) ⊕ (1, 2, 1) ⊕ (1, 1, 2) (5.6.9)

5.6.1.2 so�(12) Model

For this case the paint algebra is

Gpaint = so(3) ⊕ so(3) ⊕ so(3) (5.6.10)

and theW-representation is the 32s dimensional spinorial representation of so�(12).
The decomposition of this representation with respect to the Lie algebra Gpaint ⊕
GsubTS is the following one:

32s
Gpaint⊕GsubTS=⇒ (2, 2, 1|2, 1, 1) ⊕ (2, 1, 2|1, 2, 1) ⊕ (1, 1, 2|1, 1, 2) ⊕ (1, 1, 1|2, 2, 2)

(5.6.11)

where 2 means the doublet spinor representation of so(3). The subpaint algebra in
this case is Gpaint = so(3)diag and the decomposition of the sameW-representation
with respect to Gsubpaint ⊕ GTS is:

32s
GTS⊕Gsubpaint=⇒ (6|3) ⊕ (14′|1) (5.6.12)

This follows from the decomposition of the product 2 × 2 of so(3)diag times the Tits
Satake algebra (5.6.3):

2 × 2 = 3 ⊕ 1 (5.6.13)

5.6.1.3 e7(−25) model

For this case the paint algebra is

Gpaint = so(8) (5.6.14)

and theW-representation is the fundamental 56 dimensional representation of e7(−25)

The decomposition of this representation with respect to the Lie algebra Gpaint ⊕
GsubTS is the following one:

56
Gpaint⊕GsubTS=⇒ (8v|2, 1, 1) ⊕ (8s |1, 2, 1) ⊕ (8c|1, 1, 2) ⊕ (1|2, 2, 2) (5.6.15)
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where 8v,s,c are the three inequivalent eight-dimensional representations of so(8),
the vector, the spinor and the conjugate spinor. The subpaint algebra in this case is
Gsubpaint = g2(−14) with respect to which all three 8-dimensional representations of
so(8) branch as follows:

8v,s,c
g2(−14)=⇒ 7 ⊕ 1 (5.6.16)

In view of this the decomposition of the same W-representation with respect to
Gsubpaint ⊕ GTS is:

56
GTS⊕Gsubpaint=⇒ (6|7) ⊕ (14′|1) (5.6.17)

5.6.2 Universality Class sl(2, R) ⊕ so(2, 3) ⇒ so(4, 5)

This case corresponds to one of the possible infinite families ofN = 2 theories with
a symmetric homogeneous specialKählermanifold and a number of vectormultiplets
larger than three (n = 3 + p). The other infinite family corresponds instead to one
of the three exotic models.

The generic element of this infinite class corresponds to the following algebras:

UD=4 = sl(2, R) ⊕ so(2, 2 + p)

UD=3 = so(4, 4 + p) (5.6.18)

In this case the sub Tits Satake algebra is:

GsubTS = sl(2, R) ⊕ sl(2, R) ⊕ sl(2, R)

� sl(2, R) ⊕ so(2, 2) ⊂ sl(2, R) ⊕ so(2, 3) = GTS (5.6.19)

an the paint and subpaint algebras are as follows:

Gpaint = so(p)

Gsubpaint = so(p − 1) (5.6.20)

The symplectic W representation of UD=4 is the tensor product of the fundamental
representation of sl(2) with the fundamental vector representation of so(2, 2 + p),
namely

W = (2|4 + p) ; dimW = 8 + 2p (5.6.21)

The decomposition of this representation with respect to GsubTS ⊕ Gsubpaint is the
following one:

W
GsubTS⊕Gsubpaint=⇒ (2, 2, 2|1) ⊕ (2, 1, 1|1) ⊕ (2, 1, 1|p − 1) (5.6.22)
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where 2, 2, 2 denotes the tensor product of the three fundamental representations
of sl(2, R)3. Similarly 2, 1, 1 denotes the doublet of the first sl(2, R) tensored with
the singlets of the following two sl(2, R) algebras. The representations appearing
in (5.6.22) can be grouped in order to reconstruct full representations either of the
complete Tits Satake or of the complete paint algebras. In this way one obtains:

W
GsubTS⊕Gpaint=⇒ (2, 2, 2|1) ⊕ (2, 1, 1|p + 1)

W
GTS⊕Gsubpaint=⇒ (2, 5|1) ⊕ (2, 1|p − 1) (5.6.23)

5.6.3 Universality Class sl(2, R) ⊕ so(6, 7) ⇒ so(8, 9)

This case, which corresponds to anN = 4 theory with a number of vector multiplets
larger than six (n = 6 + p) presents a very strong similaritywith the previousN = 2
case.

The generic element of this infinite class corresponds to the following algebras:

UD=4 = sl(2, R) ⊕ so(6, 6 + p)

UD=3 = so(8, 8 + p) (5.6.24)

In this case the sub Tits Satake algebra is:

GsubTS = sl(2, R) ⊕ so(6, 6) ⊂ sl(2, R) ⊕ so(6, 7) = GTS (5.6.25)

an the paint and subpaint algebras are the same as in the previous N = 2 case,
namely:

Gpaint = so(p)

Gsubpaint = so(p − 1) (5.6.26)

The symplectic W representation of UD=4 is the tensor product of the fundamental
representation of sl(2) with the fundamental vector representation of so(6, 6 + p),
namely

W = (2|12 + p) ; dimW = 24 + 2p (5.6.27)

The decomposition of this representation with respect to GsubTS ⊕ Gsubpaint is the
following one:

W
GsubTS⊕Gsubpaint=⇒ (2, 12|1) ⊕ (2, 1|1) ⊕ (2, 1|p) (5.6.28)

Just as above the three representations appearing in (5.6.28) can be grouped in order
to obtain either representation of the complete Tits Satake or of the complete paint
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algebras. This yields

W
GsubTS⊕Gpaint=⇒ (2, 12|1) ⊕ (2, 1|p + 1)

W
GTS⊕Gsubpaint=⇒ (2, 13|1) ⊕ (2, 1|p) (5.6.29)

5.6.4 The Universality Classes sl(2, R) ⊕ so(6, n) ⇒ so
(8, n + 2) with n ≤ 5

These classes correspond to the N = 4 theories with a number n = 1, 2, 3, 4, 5 of
vector multiplets. In each case we have the following algebras:

UD=4 = sl(2, R) ⊕ so(6, n)

UD=3 = so(8, n + 2) (5.6.30)

In all these cases the Tits Satake and sub Tits Satake algebras are:

GTS = sl(2, R) ⊕ so(n + 1, n)

GsubTS = sl(2, R) ⊕ so(n, n) (5.6.31)

and the paint and subpaint algebras are:

Gpaint = so(6 − n)

Gsubpaint = so(5 − n) (5.6.32)

The symplecticW representation is the tensor product of the doublet representation
of sl(2) with the fundamental representation of so(6, n), namely

W = (2, 6 + n) (5.6.33)

and its decomposition with respect to the GsubTS ⊕ Gsubpaint algebra is as follows

W
GsubTS⊕Gsubpaint=⇒ (2, 2n|1) ⊕ (2, 1|1) ⊕ (2, 1|5 − n) (5.6.34)

which, with the same procedure as above leads to:

W
GsubTS⊕Gpaint=⇒ (2, 2n|1) ⊕ (2, 1|6 − n)

W
GTS⊕Gsubpaint=⇒ (2, 2n + 1|1) ⊕ (2, 1|5 − n) (5.6.35)
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5.6.5 W-Representations of the Maximally Split Non Exotic
Models

In the previous subsections we have analysed the Tits–Satake decomposition of the
W-representation for all those models that are non maximally split. The remaining
models are the maximally split ones for which there is no paint algebra and the Tits
Satake projection is the identity map. For reader’s convenience we have extracted
the list of such models and presented it in Table5.6. As we see from the table we
have essentially five type of models:

1. The E7(7) model corresponding to N = 8 supergravity where the W-
representation is the fundamental 56.

2. The SU(1, 1) non exotic model where the W-representation is the j = 3
2 of

so(1, 2) ∼ su(1, 1)
3. The Sp(6, R) model where the W-representation is the 14′ (antisymmetric sym-

plectic traceless three-tensor).
4. Themodels sl(2, R) ⊕ so(q, q)where theW-representation is the (2, 2q), namely

the tensor product of the two fundamentals.
5. The models sl(2, R) ⊕ so(q, q + 1) where the W-representation is the

(2, 2q + 1), namely the tensor product of the two fundamentals.

Therefore, for the above maximally split models, the charge classification of black
holes reduces to the classification ofUD=4 orbits in thementionedW-representations.
Actually such orbits are sufficient also for the non maximally split models. Indeed
each of the above 5-models correspond to one Tits Satake universality class and,
within each universality class, the only relevant part of the W-representation is the
subpaint group singletwhich is universal for allmembers of the class. This is precisely
what we verified in the previous subsections.

For instance for all members of the universality class of Sp(6, R), the W-
representation splits as follows with respect to the subalgebra sp(6, R) ⊕ Gsubpaint:

W
sp(6,R)⊕Gsubpaint=⇒ (

6 |Dsubpaint
) + (

14′ | 1subpaint
)

(5.6.36)

where the representation Dsubpaint is the following one for the three non-maximally
split members of the class:

Dsubpaint =
⎧

⎨

⎩

1 of 1 for the su(3, 3) − model
3 of so(3) for the so�(12) − model
7 of g2(−14) for the e7(−25) − model

(5.6.37)

Clearly the condition:
(

6 |Dsubpaint
) = 0 (5.6.38)

imposed on a vector in theW-representation breaks the group UD=4 to its Tits Satake
subgroup. The key point is that eachW-orbit of the big group UD=4 crosses the locus
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(5.6.38) so that the classification of Sp(6, R) orbits in the 14′-representation exhausts
the classification ofW-orbits for all members of the universality class.

In order to prove that the gauge (5.6.38) is always reachable it suffices to show that
the representation

(

6 |Dsubpaint
)

always appears at least once in the decomposition
of the Lie algebra UD=4 with respect to the subalgebra sp(6, R) ⊕ Gsubpaint. The
corresponding parameters of the big group can be used to set to zero the projection
of the W-vector onto

(

6 |Dsubpaint
)

.
The required condition is easily verified since we have:

adj su(3, 3)
︸ ︷︷ ︸

35

sp(6,R)=⇒ adj sp(6, R)
︸ ︷︷ ︸

21

⊕ 6 ⊕ 6 ⊕ 1 ⊕ 1

adj so�(12)
︸ ︷︷ ︸

66

sp(6,R)⊕so(3)=⇒ adj sp(6, R)
︸ ︷︷ ︸

21

⊕ adj so(3)
︸ ︷︷ ︸

3

⊕ (6, 3) ⊕ (6, 3) ⊕ (1, 3) ⊕ (1, 3)

adj e7(−25)
︸ ︷︷ ︸

133

sp(6,R)⊕g2(−14)=⇒ adj sp(6, R)
︸ ︷︷ ︸

21

⊕ adj g2(−14)
︸ ︷︷ ︸

14

⊕ (6, 7) ⊕ (6, 7) ⊕ (1, 7) ⊕ (1, 7)

(5.6.39)

The reader cannot avoid being impressed by the striking similarity of the above
decompositions which encode the very essence of Tits Satake universality. Indeed
the representations of the common Tits Satake subalgebra appearing in the decom-
position of the adjoint are the same for all members of the class. They are simply
uniformly assigned to the fundamental representation of the subpaint algebra which
is different in the three cases. The representation

(

6 |Dsubpaint
)

appears twice in these
decompositions and can be used to reach the gauge (5.6.38) as we claimed above.

For the models of type sl(2, R) ⊕ so(q, q + p) having sl(2, R) ⊕ so(q, q + 1)
as Tits Satake subalgebra and so(p − 1) as subpaint algebra the decomposition of
theW-representation is the following one:

W = (2, 2q + p)
sl(2,R)⊕so(q,q+1)⊕so(p−1)=⇒ (2, 2q + 1|1) ⊕ (2, 1|p − 1)

(5.6.40)
and the question is whether each sl(2, R) ⊕ so(q, q + p) orbit in the (2, 2q + p)

representation intersects the sl(2, R) ⊕ so(q, q + 1) ⊕ so(p − 1)-invariant locus:

(2, 1|p − 1) = 0 (5.6.41)

The answer is yes since we always have enough parameters in the coset

SL(2, R) × SO(q, q + p)

SL(2, R) × SO(q, q + 1) × SO(p − 1)
(5.6.42)

to reach the desired gauge (5.6.41). Indeed let us observe the decomposition:
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adj [sl(2, R) ⊕ so(q, q + p)] = adj [sl(2, R)] ⊕ adj [so(q, q + 1)]

⊕adj [so(p − 1)] ⊕ (1, 2q + 1|p − 1)

(5.6.43)

The 2q + 1 vectors of so(p − 1) appearing in (5.6.43) are certainly sufficient to set
to zero the 2 vectors of so(p − 1) appearing inW.

The conclusion therefore is that the classification of charge-orbits for all super-
gravity models can be performed by restriction to the Tits Satake sub-model. The
same we show, in the next section, to be true at the level of the classification based on
H� orbits of the Lax operators, so that the final comparison of the two classifications
can be performed by restriction to the Tits Satake subalgebras.

5.7 Tits Satake Reduction of the H
� Subalgebra and of Its

Representation K
�

As we show in Chap.6, in the σ -model approach to black hole solutions one arrives
at the new coset manifold (4.3.41). The structure of the enlarged group UD=3 and
of its Lie algebra UD=3 was discussed in Eq. (1.7.12). The subgroups H

� are listed
in Table5.7 for the non exotic models and in Table5.8 for the exotic ones. The
coset generators fall into a representation of H

� that we name K
�. The Lax operator

L0 which determines the spherically symmetric black hole solution up to boundary
conditions of the scalar fields at infinity is just an element of such a representation:

L0 ∈ K
� (5.7.1)

so that the classification of spherical black holes is reduced to the classification of
H

� orbits in the K
� representation. On the other hand, in Chap.6, we demonstrate

how nilpotent orbits can be associated to multicenter solutions.
We focus on non-exotic models that admit a regular Tits Satake projection.
A first general remark concerns the structure of H

� in all those models that cor-
respond to N = 2 supersymmetry. In these cases the H

� subalgebra is isomorphic
to sl(2, R) ⊕ UD=4 so that we have a decomposition of the UD=3 Lie algebra with
respect to H

� completely analogous to that in Eq. (1.7.12), namely:

adj(UD=3) = adj(ÛD=4) ⊕ adj(sl(2, R)h� )
︸ ︷︷ ︸

H�

⊕ (2h� , ̂W)
︸ ︷︷ ︸

K�

(5.7.2)

Hence the representation K
� which contains the Lax operators has a structure analo-

gous to the representation which contains the generators of UD=4 that originate from
the vector fields, namely: (2h� , ̂W). This means that in all these models, by means of
exactly the same argument as utilized above, we can always reach the gauge where

http://dx.doi.org/10.1007/978-3-319-74491-9_6
http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_6
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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Table 5.7 Table of H
� subalgebras of UD=3, K

�-representations and W representations of UD=4
for the supergravity models based on non-exotic scalar symmetric spaces

# UD=3 H
�

K
�

UD=4 Rep.W Hc

1 e8(8) so�(16) 128s e7(7) 56 su(8)

2 g2(2) ̂sl(2,R) ⊕
sl(2,R)h�

(

43/2 , 2h�

)

sl(2,R) 43/2 so(2)

3 f4(4) ̂sp(6,R) ⊕
sl(2,R)h�

(

̂14
′
, 2h�

)

sp(6,R) 14′ u(3)

4 e6(2) ̂su(3, 3) ⊕
sl(2,R)h�

(

̂20 , 2h�

)

su(3, 3) 20 su(3) ⊕
su(3)
⊕u(1)

5 e7(−5) ̂so�(12) ⊕
sl(2,R)h�

(

3̂2spin , 2h�

)

so�(12) 32spin u(6)

6 e8(−24) ê7(−25) ⊕
sl(2,R)h�

(

̂56 , 2h�

)

e7(−25) 56 u(6)

7 so(8, 3) so(6, 2) ⊕ so(2, 1) (8 , 3) so(6, 1) ⊕
sl(2,R)

(7, 2) so(6) ⊕
u(1)

8 so(8, 4) so(6, 2) ⊕ so(2, 2) (8 , 4) so(6, 2) ⊕
sl(2,R)

(8, 2) so(6) ⊕
so(2)
⊕u(1)

9 so(8, 5) so(6, 2) ⊕ so(2, 3) (8 , 5) so(6, 3) ⊕
sl(2,R)

(9, 2) so(6) ⊕
so(3)
⊕u(1)

10 so(8, 6) so(6, 2) ⊕ so(2, 4) (8 , 6) so(6, 4) ⊕
sl(2,R)

(10, 2) so(6) ⊕
so(4)
⊕u(1)

11 so(8, 7) so(6, 2) ⊕ so(2, 5) (8 , 7) so(6, 5) ⊕
sl(2,R)

(11, 2) so(6) ⊕
so(5)
⊕u(1)

12 so(8, 8) so(6, 2) ⊕ so(2, 6) (8 , 8) so(6, 6) ⊕
sl(2,R)

(12, 2) so(6) ⊕
so(6)
⊕u(1)

13 so(8, 8 + p) so(6, 2) ⊕
so(2, 6 + p)

(8 , 8 + p) so(6, 6 +
p) ⊕
sl(2,R)

(12 + p, 2) so(6) ⊕
so(6 +
p)

⊕u(1)

14 so(4, 3) ̂sl(2,R) ⊕ ̂so(2, 1)
⊕sl(2,R)h�

(

̂2 ,̂3 , 2h�

)

sl(2,R) ⊕
so(2, 1)

(2 , 3) so(2) ⊕
u(1)

15 so(4, 4) ̂sl(2,R) ⊕ ̂so(2, 2)
⊕sl(2,R)h�

(

̂2 ,̂4 , 2h�

)

sl(2,R) ⊕
so(2, 2)

(2 , 4) so(2) ⊕
so(2)
⊕u(1)

16 so(4, 4 + p) ̂sl(2,R) ⊕
̂so(2, 2 + p)

⊕sl(2,R)h�

(

̂2 , 4̂ + p , 2h�

)

sl(2,R) ⊕
so(2, 2)

(2 , 4 + p) so(2) ⊕
so(2 +
p)

⊕u(1)
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the K
� representation is localized on the image of the Tits Satake projection K

�
TS.

For instance, for the models in the f4(4) universality class we have:

H
�
TS = sl(2, R)h� ⊕ ̂sp(6,R) (5.7.3)

and:

H
� H

�
TS⊕Gsubpaint=⇒ adj sl(2, R)h� ⊕ adj ̂sp(6,R)

⊕ (

6 |Dsubpaint
) ⊕ (

6 |Dsubpaint
)

⊕ (

1 |Dsubpaint
) ⊕ (

1 |Dsubpaint
)

K
� H

�
TS⊕Gsubpaint=⇒ (

2h� , 14′ | 1subpaint
)⊕ (

2h� , 6 |Dsubpaint
)

(5.7.4)

and the two representations
(

6 |Dsubpaint
)

appearing in the adjoint representation of
H

� can be utilized to get rid of
(

2h� , 6 |Dsubpaint
)

appearing in the decomposition of
K

�.
What is important to stress is that, although isomorphic H

� and sl(2, R) ⊕ UD=4

are different subalgebras of UD=3:

UD=3 ⊃ sl(2, R)h� �= sl(2, R)E ⊂ UD=3 ; UD=3 ⊃ ÛD=4 �= UD=4 ⊂ UD=3

(5.7.5)
Moreover, while the decomposition (1.7.12) is universal and holds true for all super-
gravity models, the structure (5.7.3) of the H

� subalgebra is peculiar to the N = 2
models. In other cases the structure of H

� is different.
The reduction to the Tits Satake projection however is universal and applies to all

non maximally split cases.
Indeed the remaining cases are of the form:

UD=3

H�
= SO(2 + q, q + 2 + p)

SO(q, 2) × SO(2, q + p)
(5.7.6)

leading to

K
� = (q + 2,q + p + 2)

so(q,2)⊕so(2,q+1)⊕so(p−1)=⇒ (q + 2,q + 1, 1) ⊕ (q + 2, 1,p − 1)
(5.7.7)

where:

so(q, 2) ⊕ so(2, q + 1) = H
�
TS (5.7.8)

so(p − 1) = Gsubpaint (5.7.9)

Considering the coset:

H�

H�
TS × Gsubpaint

= SO(2, q + p)

SO(q + 1, 2) × SO(p − 1)
(5.7.10)

http://dx.doi.org/10.1007/978-3-319-74491-9_1
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we see that its (q + 3) × (p − 1) parameters are arranged into the

(q + 3|p − 1) (5.7.11)

representation of so(q + 1, 2) ⊕ so(p − 1) and can be used to put to zero the com-
ponent (q + 2, 1,p − 1) in the decomposition (5.7.7). Note that the N = 4 cases
with more than 6 vector multiplets are covered by the above formulae by setting:

q = 6 ; p > 1 (5.7.12)

Similarly the N = 2 cases with more than 3 vector multiplets are covered by the
above formulae by setting:

q = 2 ; p > 1 (5.7.13)

Finally theN = 4 cases with less than 6 vector multiplets are covered by the above
formulae by setting:

q = n ; p = 6 − n ; n = 1, 2, 3, 4, 5 (5.7.14)

5.8 The General Structure of the H
� ⊕ K

� Decomposition
in the Maximally Split Models

In the previous section we have shown that all H� orbits in the K
� representation

cross the locus defined by:
ΠTS

(

K
�
) = K

� (5.8.1)

where ΠTS is the Tits–Satake projection.
In other words just as for theW-representation of UD=4, it suffices to classify the

orbits H�
TS in the K

�
TS representation. In view of this result, in the present section

we study the general structure of the H
� ⊕ K

� decomposition for maximally split
algebras UD=3.

A key point in our following discussion is provided by the structure of the root
system of UD=3 as described in Sect. 5.5.3. The entire set of positive roots can be
written as follows:

0 < a =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

α = {α, 0}
w =

{

w, 1√
2

}

ψ =
{

0,
√
2
}

(5.8.2)

where α > 0 denotes the set of all positive roots of UD=4, while w denotes the
complete set of weights (positive, negative and null) of the W representation of
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UD=4. The root ψ is the highest root of the UD=3 root system and is also the root
of the Ehlers subalgebra sl(2, R)E . Accordingly, a basis of the Cartan subalgebra of
UD=3 is constructed as follows:

CSA
︸︷︷︸

of UD=3

= span of

⎧

⎪
⎨

⎪
⎩

H1 , H2 , . . . , Hr
︸ ︷︷ ︸

CSA generators of UD=4

, Hψ
︸︷︷︸

CSA generator of sl(2,R)E

⎫

⎪
⎬

⎪
⎭

(5.8.3)

For all maximally split Lie algebras U of rank r + 1, the maximal compact sub-
algebra H ⊂ U is generated by:

T a = Ea − E−a (5.8.4)

while the complementary orthogonal space K is generated by

K a = Ea + E−a (5.8.5)

K I = H I ; I = 1, . . . , r + 1 (5.8.6)

The splitting H
� ⊕ K

� is obtained by means of just one change of sign which, thanks
to the structure (5.8.2) of the root system is consistent, namely still singles out a
subalgebra.

The generators of the H
� subalgebra are as follows:

T α
� = Eα − E−α

T w
� = Ew + E−w

T ψ
� = Eψ − E−ψ (5.8.7)

while the generators of the K
� complementary subspace are as follows:

K α
� = Eα + E−α

Kw
� = Ew − E−w

K ψ
� = Eψ + E−ψ

K I = H I ; I = 1, . . . , r + 1 (5.8.8)

From Eq. (5.8.7) we see that H
� contains the maximal compact subalgebra of the

originalUD=4 and themaximal compact subalgebra so(2) ⊂ sl(2, R)E of the Ehlers
group. Using this structure we can now compare the classification of K

� orbits with
the classification ofW-orbits.



260 5 Solvable Algebras and the Tits Satake Projection

5.9 K
� Orbits Versus W-Orbits

In the σ -model approach the complete black hole spherically symmetric supergravity
solution is obtained from two data,2 namely the Lax operator L0 evaluated at spatial
infinity (see Eq. (5.7.1)) and the coset representative L0 also evaluated at spatial
infinity. In terms of these data one defines the matrix of conserved Noether charges:

QNoether = L0 L0 L
−1
0 = L(τ ) L(τ ) L

−1(τ ) (5.9.1)

from which the electromagnetic charges of the black hole, belonging to the W-
representation of UD=4, can be obtained by means of the following trace:

Qw = Tr
(

QNoether T w) (5.9.2)

where
T w ∝ Ew (5.9.3)

are the generators of the solvable Lie algebra corresponding to theW-representation.
It is important to stress that, because of physical boundary conditions, the coset

representative at spatial infinity L0 belongs to the subgroup UD=4 ⊂ UD=3. Indeed
it simply encodes the boundary values at infinity of the D = 4 scalar fields:

UD=3 ⊃ UD=4 � L0 = exp

[

φα
0 Eα +

r
∑

i=1

φi
0 Hi

]

(5.9.4)

Using this information in Eq. (5.9.2) we obtain

Qw = Tr
(

L0 L
−1
0 (φ)T w

L0(φ)
) = R(φ)ww′ Qw′

(5.9.5)

where:
Qw′ = Tr

(

L0 T
w′)

(5.9.6)

are the electromagnetic charges obtained with no scalar field dressing at infinity and

R(φ)ww′ ∈ UD=4 (5.9.7)

is the matrix representing the group element L0(φ) in theW-representation.
This result has a very significant consequence. The scalar field dressing at infinity

simply rotates the charge vector along the same W-orbit and is therefore irrelevant.
Hence we conclude that for each Lax operator, the W-orbit of charges is com-

pletely determined and unique. The next question is whether the charge-orbit W is

2See papers [34, 44, 45] for detailed explanations.
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the same for all Lax operators belonging to the sameH�-orbit. As already anticipated,
the answer is no and it is quite easy to produce counter examples.

Yet if we impose the condition that the Taub-NUT charge should be zero:

Tr
(

L0 L E
−
) = 0 (5.9.8)

then for all Lax operators in the same H�, satisfying the additional constraint (5.9.8),
the corresponding charges Qw = Tr (L0 T w) fall into the same W-orbit.

We were not able to prove this statement, but we assert it as a conjecture, since we
analyzed many cases and it was always true, no counter example being ever found.

In the case of multicenter non spherically symmetric solutions our conjecture
appears to be true as long as we impose the condition of vanishing of the Taub-NUT
current:

j T N = 0 (5.9.9)

So doing, at every pole of the involved harmonic functions, we obtain a black hole
that always falls into the same W-orbit.

What happens instead when the Taub-NUT current is turned on cannot be pre-
dicted in general terms at the present status of our knowledge and more study is
certainly in order.

The reader will understand the meaning of the last two paragraphs by carefully
reading Chap.6. In the present one we outlined the entire beautiful group-theoretical
machinery that sustains the construction and classification of black-hole geometries
addressed there.
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