
Chapter 4
Special Geometries

La géométrie…est une science née à propos de
l’expérience…nous avons créé l’espace qu’elle etudie, mais en
l’adaptant au monde où nous vivons. Nous avons choisie
l’espace le plus commode…

Henri Poincaré.

4.1 The Evolution of Geometry in the Second Half
of the XXth Century

Relying for a complete historical account on the tale told in the twin book [1], let us
summarize the steps that led, in the 1990’s to Special Geometries.

4.1.1 Complex Geometry Rises to Prominence

On the purely mathematical front in the years from 1953 to 1955, Pierre Dolbeault
introduced a new very important mathematical instrument: the ∂-cohomology of the
differential forms defined on complex analytic manifolds, namely the holomorphic
analogue of de Rham cohomology defined on real manifolds. The essence of Dol-
beault cohomology (described in Sect. 3.3) is the topic of Dolbeault’s thesis, prepared
by him under the direction of Henri Cartan, Élie’s son and one of the closest friends
of André Weil. The thesis was defended in Paris in 1955.

Complex Geometry and, within it Kähler Geometry, arose to high prominence in
the three decades from1950 to 1980. The language of fibre-bundles and characteristic
classes was combined with the notion of holomorphicity and line-bundles, namely
Principal Bundles whose structural group is the group of non vanishing complex
numbers C�, became ubiquitous in the discussion of complex manifolds.

A new innovative conception developed in this context, namely that of character-
izing the geometry of basemanifoldsM bymeans of statements on the characteristic
classes of bundles defined over them.
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Fig. 4.1 On the left Eugenio Calabi (Milano, Italy 1923). On the right Shing–Tung Yau (Shan-
tou, China 1949). Born Italian, Calabi is an American citizen. He graduated in 1946 from MIT
and obtained his Ph.D from Princeton in 1950. He held temporary positions in Minnesota and in
Princeton, then since 1967 to retirement he was Full Professor of Mathematics at the University
of Pennsylvania, successor of Hans Rademacher. He came to the definition of Calabi–Yau n-folds
while exploring the geometry of complex manifolds that support harmonic spinors. Born in China,
Yau studied first at Hong Kong University, then he went to the USA where he got his Ph.D. in
1971 from Berkeley under the supervision of Chern. Post-doctoral fellow in Princeton and in Stony
Brook, he became Professor in Stanford. Since 1987 he is Professor of Mathematics at Harvard
University. Yau’s proof of Calabi 1964 conjecture was published in 1977

The first example, which plays an important role in the sequel, is that of Hodge–
Kähler manifolds that are Kähler manifolds M characterized by the existence of a
line bundleL → M , such that its first Chern Class coincides with the cohomology
class of the Kähler 2-form: c1(L ) = [K ].

Another important example is provided by Calabi–Yau n-folds. These latter were
introduced by Eugenio Calabi (see Fig. 4.1) in 1964 with the definition of complex
n-dimensional algebraic varietiesMn , the first Chern class of whose tangent bundle
vanishes: c1 (TMn) = 0. Later, the American-Chinese mathematician Shin–Tung
Yau (see Fig. 4.1) proved the theorem that for Calabi–Yau n-folds, every (1, 1) Dol-
beault cohomology class contains a representative that can be identified with the
Kähler 2-form of a Ricci flat Kähler metric: the Calabi–Yau metric.

4.1.2 On the Way to Special Geometries

Other notable examples of this way of thinking, applying both to complex and to
real geometry are the manifolds of restricted holonomy. One considers Riemannian
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manifoldsMn in dimension n and their spin bundles, namely the principal bundles on
which their spin connections ωab are defined as Ehresman connections. Generically
such bundles have, as structural group, Spin(n), which is the double covering of
SO(n), yet it may happen that ωab is Lie algebra–valued in a proper subalgebra
G ⊂ so(n). Choosing algebras G for which this might happen and imposing that it
should happen is a strong constraint on the geometry of the manifold Mn .

Research on manifolds of restricted holonomy went on in the 1980s and 1990s in
the mathematical community but, not too surprisingly, it was heavily stimulated by
issues in theoretical physics and particularly in Superstring/Supergravity theory.

It is easy to understand why. The main input in Superstring/Supergravity is Super-
symmetry, a generalization of Lie algebras where spinor representations and vector
representations of groups SO(n) are transformed one into the other by new symmetry
operators Qα , dubbed the supercharges, that are themselves spinors. At the level of
field theories we work with fibre-bundles and the fields we consider are sections of
such bundles. Field theories can be supersymmetric if the supercharges Qα find a
field-theoretic realization which is a symmetry of the action, leaving the door open
for its desired spontaneous breaking. It is quite intuitive that such a realization of the
supercharges requires special restrictions on the bundles and this reflects into heavy
constraints on the geometry of the base manifolds.

The above simple reasoning reveals what, in the opinion of this author, is the main
conceptual contribution of Supergravity theories to the development of geometrical
thought and, eventually, of physical thought, provisionally assuming that geometry
and physics are, once properly interpreted, the same thing. Supersymmetry tackles
with one of the most fundamental and so far unexplained pillars of physics, namely
the separation of the physical world into bosons and fermions and the spin-statistics
theorem. The distinction between vector and spinor representations is at the basis of
all that and it is a distinctive property of the so(n) Lie algebras, unexisting for the
other simple Lie algebras. On the other hand the reduction of the tangent-bundle to
an so(n)-bundle is the same thing as the existence of a metric and can be interpreted
as gravity. Special Geometries arise because of supersymmetry, in order to allow the
mixing of boson and fermions. It is the mathematical investigation of Space from this
newviewpoint the newquality of geometrical studies inspired by supergravity.Before
telling such a story we need to recall another mathematical conception, that was
developed independently from Superstring/Supergravity yet found its most ample
and fertile applications in the supersymmetric context.

4.1.3 The Geometry of Geometries

Let us recall Hermann Weyl’s discussion of the ellipses, used by him to introduce
his conception of mathematical thinking and reported by us in the twin book [1].
The coefficients a, b, c of the quadratic form quoted by Weyl are the first example
of moduli and the portion of R3 where they are allowed to take values is the first
example of a moduli-space. In complex algebraic geometry one considers loci of
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some projective space Pn(C) cut out by some homogeneous polynomial constraint
of degree m:

0 = W (a, X) =
∑

i1 ... im

ai1...im X i1 . . . Xim (4.1.1)

imposed on the n +1 homogeneous coordinates Xi (i = 1, . . . , n +1). The complex
coefficients ai1...im are alsomoduli and fill some complexmanifoldM . If we consider
the following constraint imposed on the metric tensor of some Riemannian manifold
Mn:

Rμν [g] = λ gμν (4.1.2)

where Rμν [g] is the Ricci tensor and λ some constant, we actually write a set of
differential equations for the metric tensor gμν , which, on the manifold Mn , gener-
ically admit a solution depending on a set of parameters {p1, . . . pr }, among which
λ is included. Also these are moduli and they fill a space named the moduli space of
Einstein metrics on Mn .

Several other examples can be made of manifoldsMmod whose points correspond
to the specification of a particular geometry within a class, for instance the moduli
ρi of an instanton parameterize the solution of the self duality constraint1:

FΛ
μν(ρ, x) = 1

2 εμνλσ FΛ
λσ (ρ, x) (4.1.3)

imposed on the field strength of a connection on a principal fibre bundle P(G,M4).
A new mathematical idea that is of outmost relevance both for physics and for

mathematics is encoded in the following almost obvious argument. Being amanifold,
the moduli space Mmod can support such geometrical structures like a metric, like
a complex structure, or a fibration. We call this the geometry of geometries. There
are several mathematical constructions, dictated by the mathematical nature of the
objects of which we consider the moduli, that single out a canonical determination
of the geometry of geometries, yet it is precisely at this level that the interaction
between physics and mathematics becomes most profound and fertile. Indeed the
geometry of geometries is typically what enters the supergravity lagrangians under
the form of sigma-models for scalar fields that on one side are the spin zero members
of supersymmetry multiplets,2 while on the other side they are moduli of some

1Clarification for readers with a mostly mathematical background: in the physical literature instan-
tons play a very important role. They are field configurations that in the Wick-rotated space-time
with Euclidean signature satisfy first-order equations more restrictive than the second order Euler
Lagrangian equations (the latter are implied by the former). In the path integral formulation of
quantum field theory, instanton correspond to the absolute minimal of the action functional and
provide the dominant contribution to quantum correlators. Depending on the type of considered
fields instantons have different definitions. For gauge fields, instantons are the connections on the
underlying principal fibre-bundle whose field strengths are self dual, namely satisfy Eq. (4.1.3).
2Clarification for mathematicians: the wording supermultiplets is universally used in the context
of supersymmetric field theories to denote a finite set of standard fields of various spins that form a
unitary irreducible representation of the supersymmetry algebra extending the Poincaré Lie algebra.
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manifold, for a example a Calabi–Yau threefold, on which the superstring has been
compactified.

This evenience produces a double check on the geometry of geometries. Its use
in supersymmetric lagrangians, imposes strong constraints on the geometry of the
scalar fields that, in many cases, have a recognizable solution in terms of known geo-
metrical categories, in other cases it leads to the definition of new types of restricted
geometries, generically dubbed special geometries. It is particularly rewarding that
the special geometries selected by supersymmetry are just those apt to accomodate
the moduli spaces of such mathematical structures as the complex structures or the
Kähler structures of a compactification manifold like a Calabi–Yau threefold.

Altogether, a really new chapter has been written in the two decades from 1990
to 2010 in the history of geometry, where the distinction between physics and math-
ematics has become somewhat obsolete, ideas from one field compenetrating the
other in an essential way.

4.1.4 The Advent of Special Geometries

The first instance of a special geometry was found by brute force, immediately after
the discovery in 1976 by Sergio Ferrara, Daniel Freedman and Peter van Nieuwen-
huizen of N = 1, d = 4 supergravity (see Fig. 4.2). The next year, considering
the coupling of a scalar multiplet to the newly found gravitational theory, the three
supergravity founders, together with Breitenlohner, Gliozzi and Scherk, constructed
a rather impressive and cumbersome lagrangian, depending on an arbitrary real func-
tion G(A, B) of a scalar A and a pseudoscalar B and on all its derivatives up to the
fourth one [2]. It wasBrunoZumino (see Fig. 4.3)who, in 1979, decoded themeaning
of this monster, showing that G(A, B) is just the Kähler potential of a Kähler metric,
all of the introduced derivatives obtaining their adequate interpretation as metric,
connection and curvature of the Kählerian manifold [3]. In this way the generaliza-
tion to several scalar multiplets was singled out: it suffices to utilize an n-dimensional
Kähler manifold.

Shortly after, the so named holomorphic superpotential introduced by physicists
to describe fermion–scalar interactions and to produce a scalar potential consistent
with supersymmetry, was also interpreted geometrically. The superpotential is just a
holomorphic section of the Hodge line-bundle over the Kähler manifold.

In this way the firstly found special geometry was a known one, namely Hodge-
Kähler geometry. This is not so for the next case.

At the beginning of the 1980’s the next obvious case was the coupling of vector
multiplets toN = 2, d = 4 supergravity. Each multiplet contains a complex scalar
field and the question was what is the geometry of the scalar manifoldMscalar in the
case of several suchmultiplets. CertainlyMscalar had to beKähler, sinceN = 2 is in
particularN = 1. Yet the stronger supersymmetry imposes additional constraints so
thatMscalar had to be a special Kähler manifold. A pioneering work on this problem
was conducted in several different combinations by a group of French, Belgian,
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Fig. 4.2 From left to right the three founders of Supergravity Theory, Daniel Freedman (1939),
Sergio Ferrara (1945), Peter van Nieuwenhuizen (1938). Dan Freedman was born in the USA,
graduated from Wisconsin University. He has been professor at Stony Brook University and he is
currently full-professor at MIT. Sergio Ferrara born in Rome in 1945 graduated from la Sapienza
University under the supervision of Raoul Gatto. Permanent Member of the CERN Theoretical
Division for many years he is also professor of physics at UCLA. Peter van Nieuwenhuizen born
in Holland in 1938, graduated in Utrecht under the supervision of Veltman, held various positions
in the United States and since the middle 1980s he is full-professor of physics at Stony Brook
University. The paper containing the lagrangian and the transformation rules of N = 1, d = 4
supergravity was published by the three founders of the theory in 1976. Since then all the three
have contributed extensively and in various different directions to the development of supergravity.
Sergio Ferrara among the three has largely contributed to the development of special geometries

Fig. 4.3 Bruno Zumino (1923–2014). Born in 1923 in Rome, he graduated from the University
La Sapienza in 1945. He died in 2014 in California, where he was emeritus professor of Berkeley
University. Formany years hewas permanentmember of the Theoretical Division at CERN. Zumino
has givenmany important contributions to Theoretical Physics in several directions: supersymmetry,
anomalies, conformal field theories, quantum groups
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Fig. 4.4 On the left Antoine Van Proeyen (1953 Belgium), on the right Eugene Cremmer (Paris
1942). Antoine Van Proeyen graduated from KU Leuven and worked in several Laboratories and
Universities, among which the École Normale of Paris, CERN Theoretical Division and Torino
University, before becoming full-professor in Leuven. He is currently the Head of the Theoretical
Physics Section at the K.U. Leuven. Since 1979, he has been involved in the construction of various
supergravity theories, the resulting special geometries and their applications to phenomenology
and cosmology. Cremmer is directeur de recherche of the CNRS working at the École Normale
Supérieure of Paris. In 1978, together with Bernard Julia and Joël Scherk, he derived the space-time
formulation of 11 dimensional supergravity theory, regarded today as the low energy limit of the
so far mysterious M-theory. In the following few years, Cremmer, together with Bernard Julia,
constructed the dimensional reductions of d = 11 supergravity, arriving in d = 4 at the maximal
extendedN = 8 theory, whose structure is completely determined by the non-compact coset E7(7)

SU(8)
accomodating the 70 scalars of the gravitational multiplet. Active research is going on at the present
time to demonstrate that N = 8 supergravity is a finite theory

Dutch, Swiss and Italian theoretical physicists in the papers mentioned in [4–6].
Using a special set of complex coordinates, the special Kähler manifolds that can
accomodate the scalar fields of N = 2 vector multiplets were described as those
where the Kähler potential is obtained from a holomorphic prepotential according to
a specific formula.

Once this was established, a natural question arose whether among so defined
special Kähler manifolds there were symmetric spaces G/H. The answer to this
question was given in Paris in 1985 by Eugene Cremmer and Antoine Van Proeyen
(see Fig. 4.4) who, in a beautiful paper absolutely worth of Cartan’s tradition [7],
provided the exhaustive classification shown in the first column of Table4.1. As one
sees, exceptional Lie groupsmake their appearance in such a list through peculiar real
forms. This was no longer a surprise for supergravity researchers since, four years
before, the same Eugene Cremmer, in collaboration with Bernard Julia (see Fig. 4.5),
had shown that the dimensional reduction of maximally extended supergravity from
D = 11 down to D = 10, D = 9, . . . , D = 4, D = 3 produces, as scalar manifolds,
the following maximally split symmetric spaces:

MD = E11−D(11−D)

Hc
(4.1.4)
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Table 4.1 List of special Kähler symmetric spaces with their Quaternionic Kähler c-map images.
The number n denotes the complex dimension of the Special Kähler preimage. On the other hand
4n + 4 is the real dimension of the Quaternionic Kähler c-map image

SK n Special Kähler
manifold

QM 4n+4 Quaternionic Kähler
manifold

dimSK n = n

SU(1,1)
U(1)

G2(2)
SU(2)×SU(2) n = 1

Sp(6,R)
SU(3)×U(1)

F4(4)
USp(6)×SU(2) n = 6

SU(3,3)
SU(3)×SU(3)×U(1)

E6(2)
SU(6)×SU(2) n = 9

SO�(12)
SU(6)×U(1)

E7(−5)
SO(12)×SU(2) n = 15

E7(−25)
E6(−78)×U(1)

E8(−24)
E7(−133)×SU(2) n = 27

SL(2,R)
SO(2) × SO(2,2+p)

SO(2)×SO(2+p)
SO(4,4+p)

SO(4)×SO(4+p) n = 3 + p

SU(p+1,1)
SU(p+1)×U(1)

SU(p+2,2)
SU(p+2)×SU(2) n = p + 1

Fig. 4.5 Bernard Julia (Paris 1952). He graduated from Université de Paris-Sud in 1978, and he is
directeur de recherche of the CNRSworking at theÉcole Normale Supŕieure. In 1978, together with
Eugne Cremmer and Joël Scherk, he constructed 11-dimensional supergravity. Shortly afterwards,
Cremmer and Julia constructed the classical Lagrangian of four-dimensional N = 8 supergravity
by dimensional reduction from the 11-dimensional theory

where:

E5(5) � D5(5) � SO(5, 5)

E4(4) � A4(4) � SL(5,R)

E3(3) � A1(1) × A2(2) � SL(2,R) ⊗ SL(3,R)

E2(2) � A1(1) × A1(1) � SL(2,R) ⊗ SL(2,R) (4.1.5)
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Fig. 4.6 On the left LeonardoCastellani (born 1953 inFreiburg, Switzerland).On the rightRiccardo
D’Auria (born 1940 in Rome). Leonardo Castellani studied physics at the University of Florence
in Italy and obtained his Ph.D from Stony Brook University in the US, with a thesis written under
the supervision of van Nieuwenhuizen. He had post-doctoral positions at Caltech and at CERN,
then he became permanent Researcher in the Torino section of the National Institute of Nuclear
Research (INFN) and in 1993 he was appointed full-professor of Theoretical Physics at the Univer-
sity of Eastern Piedmont, position that he holds at the present time. He is especially known for his
contributions, together with D’Auria and Fré to the rheonomic formulation of supersymmetric the-
ories, for his derivation together with Larry Romans of the list of G/H compactifications of d = 11
supergravity and more recently for developments in quantum group theories and, together with P.A.
Grassi and R. Catenacci for the extension of Hodge theory to supermanifolds. Riccardo D’Auria
studied at the University of Torino and graduated there with a thesis written under the supervision
of Tullio Regge. He was for several years Associate Professor at the University of Torino, in 1987
he was appointed full-professor of Theoretical Physics at the University of Padua. Few years later
he was offered a full professor chair at the Politecnico of Torino where he concluded his academic
career becoming emeritus professor in 2011. D’Auria, together with Fré has been the founder of
the rheonomic formulation of supergravity and also with Fré he introduced the notion of super Free
Differential Algebras, that were singled out as the algebraic basis of all supergravity theories in
dimension higher than four. In particular in 1982, D’Auria and Fré obtained the FDA formulation of
d= 11 supergravity. D’Auria has givenmanymore contributions to supergravity theory in particular
in connection with special geometries, with the classification of black-hole solutions, with duality
rotations, with the various formulations of the d = 6 theories and with several other aspects of the
superworld

So exceptional Lie groups that had been regarded for long time as mathematical
curiosities were brought to prominence by supergravity and in parallel also by super-
string theory.

The fact that all such results were obtained in the École Normale Supérieure de
Paris demonstrates the far reaching influence of Élie Cartan’s tradition.

At the end of the eighties the intrinsic definition of special Kähler geometry, free
from the use of special coordinates, was independently obtained with two different
strategies byAndrew Strominger (see Fig. 4.7) and by Leonardo Castellani, Riccardo
D’Auria and Sergio Ferrara (see Fig. 4.6).

While Strominger derived his definition from the properties of Calabi–Yaumoduli
spaces [8], Castellani, D’Auria and Ferrara [9, 10] (and later D’Auria Ferrara and Fré
[11]) derived their own definition from the constraints imposed by supersymmetry on
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Fig. 4.7 On the left Bernard Quirinus Petrus Joseph de Wit (born 1945 in the Netherlands). On the
rightAndrewEbenStrominger (born 1955 in theUSA). Bernard deWit studied theoretical physics at
Utrecht University, where he got his PhD under the supervision of the Nobel Prize laureateMartinus
Veltman in 1973. He held postdoc positions in Stony Brook, Utrecht and Leiden. He became a staff
member at the National Institute for Nuclear and High Energy Physics (NIKHEF) in 1978, where he
becameheadof the theory group in 1981. In 1984hewas appointed professor of theoretical physics at
Utrecht University where he has stayed for the rest of his career. Bernard deWit has given important
contributions to the development of supergravity theory building, in collaboration mainly with Van
Proeyen, the so named conformal tensor calculus. Together with Herman Nicolai he constructed
the so(8)-gauged version ofN = 8 supergravity that has provided the paradigmatic example for all
supergravity gaugings. Andrew Strominger completed his undergraduate studies at Harvard in 1977
before attending the University of California, Berkeley for his Master diploma. He received his PhD
from MIT in 1982 under the supervision of Roman Jackiw. Prior to joining Harvard as a professor
in 1997, he held a faculty position at the University of California, Santa Barbara. Strominger is
especially known for introducing, together with Cumrun Vafa the string theory explanations of
the microscopic origin of black hole entropy, originally calculated thermodynamically by Stephen
Hawking and Jacob Bekenstein. Strominger, together with Philippe Candelas, Gary Horowitz and
Edward Witten was the first proposer of Calabi–Yau threefolds as compactification manifolds for
superstrings and supergravities in d = 10

the curvature tensor of the Kählerian manifold. With some labour they also showed
the full equivalence of the two definitions.

In the same years, Antoine Van Proeyen and Bernard deWit (see Fig. 4.7), in some
publications together with a younger collaborator, established a full classification of
homogeneous special geometries, namely of special manifolds that admit a solvable
transitive group of isometries [12–14]. They also explored the relation [12, 13]
between special Kähler geometries and quaternionic geometries that can be obtained
from them by means of a very interesting map, originally discovered by Cecotti [15]
and further developed by Ferrara et al. in [16, 17]. So doing they came in touch
with the classification of quaternionic manifolds with a transitive solvable group of
motion that had been performed several years before by Alekseevsky [18, 19].

Themapmentioned above is named the c-map and can be given amodern compact
definition exhibited in [20]. Furthermore the c-map has a non Euclidean analogue,
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the c�-map that plays an important role in the discussion of supergravity based black-
holes, another instance of geometry that will occupy us in later chapters.

4.1.5 A Survey of the Topics in This Chapter

In the sequel the special geometries motivated by supergravity will be thoroughly
discussed and the properties of the c-map will be analyzed in detail. In that we
closely follow the recent paper [20].3 Indeed, coming to these topics our history of
Symmetry and Geometry has reached the front of current research. Here physics and
mathematics are fully entangled.

4.2 Special Kähler Geometry

In this section we present Special Kähler Geometry in a full-fledged rigorous math-
ematical form. Let us begin by summarizing some relevant concepts and definitions
that are propaedeutical to the main definition.

4.2.1 Hodge–Kähler Manifolds

Consider a line bundleL
π−→M over a Kähler manifoldM . By definition this is a

holomorphic vector bundle of rank r = 1. For such bundles the only available Chern
class is the first:

c1(L ) = i

2
∂
(

h−1 ∂ h
) = i

2
∂ ∂ log h (4.2.1)

where the 1-component real function h(z, z) is some hermitian fibremetric onL . Let
ξ(z) be a holomorphic section of the line bundle L : noting that under the action of
the operator ∂ ∂ the term log

(
ξ(z) ξ(z)

)
yields a vanishing contribution, we conclude

that the formula in Eq. (4.2.1) for the first Chern class can be re-expressed as follows:

c1(L ) = i

2
∂ ∂ log ‖ ξ(z) ‖2 (4.2.2)

where ‖ ξ(z) ‖2 = h(z, z) ξ(z) ξ(z) denotes the norm of the holomorphic section
ξ(z).

Equation (4.2.2) is the starting point for the definition ofHodge–Kählermanifolds.
A Kähler manifold M is a Hodge manifold if and only if there exists a line bundle

3An early review of Special Kähler Geometry was written by this author in 1996 in [21].



184 4 Special Geometries

L
π−→M such that its first Chern class equals the cohomology class of the Kähler

two-form K:
c1(L ) = [ K ] (4.2.3)

In local terms this means that there is a holomorphic section ξ(z) such that we
can write

K = i

2
gi j� dzi ∧ dz j� = i

2
∂ ∂ log ‖ ξ(z) ‖2 (4.2.4)

Recalling the local expression of the Kähler metric in terms of the Kähler potential
gi j� = ∂i ∂ j�K (z, z), it follows from Eq. (4.2.4) that if the manifoldM is a Hodge
manifold, then the exponential of the Kähler potential can be interpreted as themetric
h(z, z) = exp (K (z, z)) on an appropriate line bundle L .

4.2.2 Connection on the Line Bundle

On any complex line bundleL there is a canonical hermitian connection defined as:

θ ≡ h−1 ∂ h = 1
h ∂i h dzi ; θ ≡ h−1 ∂ h = 1

h ∂i� h dzi�

(4.2.5)

For the line-bundle advocated by the Hodge-Kähler structure we have

[
∂ θ
] = c1(L ) = [K] (4.2.6)

and since the fibre metric h can be identified with the exponential of the Kähler
potential we obtain:

θ = ∂ K = ∂iK dzi ; θ = ∂ K = ∂i�K dzi�

(4.2.7)

To define special Kähler geometry, in addition to the afore-mentioned line–bundle
L we need a flat holomorphic vector bundle SV −→ M whose sections play
an important role in the construction of the supergravity Lagrangians. For reasons
intrinsic to such constructions the rank of the vector bundleSV must be 2 nV where
nV is the total number of vector fields in the theory. If we have n-vector multiplets
the total number of vectors is nV = n + 1 since, in addition to the vectors of the
vector multiplets, we always have the graviphoton sitting in the graviton multiplet.
On the other hand the total number of scalars is 2n. Suitably paired into n-complex
fields zi , these scalars span the n complex dimensions of the base manifold M to
the rank 2n + 2 bundle SV −→ M .

In the sequel we make extensive use of covariant derivatives with respect to the
canonical connection of the line–bundleL . Let us review its normalization. As it is
well known there exists a correspondence between line–bundles and U(1)–bundles.
If exp[ fαβ(z)] is the transition function between two local trivializations of the line–
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bundleL
π−→M , the transition function in the corresponding principal U(1)–bundle

U −→ M is just exp[iIm fαβ(z)] and the Kähler potentials in two different charts
are related by:Kβ = Kα+ fαβ+ f αβ . At the level of connections this correspondence
is formulated by setting: U(1)–connection ≡ Q = Imθ = − i

2

(
θ − θ

)
. If we apply

this formula to the case of the U(1)–bundle U −→ M associated with the line–
bundle L whose first Chern class equals the Kähler class, we get:

Q = i

2

(
∂iK dzi − ∂i�K dzi�)

(4.2.8)

Let now Φ(z, z) be a section of U p. By definition its covariant derivative is ∇Φ =
(d − i pQ)Φ or, in components,

∇iΦ = (∂i + 1
2 p∂iK )Φ ; ∇i∗Φ = (∂i∗ − 1

2 p∂i∗K )Φ (4.2.9)

A covariantly holomorphic section of U is defined by the equation: ∇i∗Φ = 0. We
can easily map each section Φ(z, z) of U p into a section of the line–bundle L by
setting:

Φ̃ = e−pK /2Φ . (4.2.10)

With this position we obtain:

∇i Φ̃ = (∂i + p∂iK )Φ̃ ; ∇i∗Φ̃ = ∂i∗Φ̃ (4.2.11)

Under the map of Eq. (4.2.10) covariantly holomorphic sections of U flow into
holomorphic sections ofL and viceversa.

4.2.3 Special Kähler Manifolds

We are now ready to give the first of two equivalent definitions of special Kähler
manifolds:

Definition 4.2.1 A Hodge Kähler manifold is Special Kähler (of the local type) if
there exists a completely symmetric holomorphic 3-index section Wi jk of (T �M )3⊗
L 2 (and its antiholomorphic conjugate Wi∗ j∗k∗ ) such that the following identity is
satisfied by the Riemann tensor of the Levi–Civita connection:

∂m∗ Wi jk = 0 ∂m Wi∗ j∗k∗ = 0

∇[m Wi] jk = 0 ∇[m Wi∗] j∗k∗ = 0

Ri∗ j�∗k = g�∗ j gki∗ + g�∗k g ji∗ − e2K Wi∗�∗s∗ Wtk j g
s∗t (4.2.12)
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In the above equations ∇ denotes the covariant derivative with respect to both the
Levi–Civita and the U(1) holomorphic connection of Eq. (4.2.8). In the case of Wi jk ,
the U(1) weight is p = 2.

Out of the Wi jk we can construct covariantly holomorphic sections of weight 2
and - 2 by setting:

Ci jk = Wi jk eK ; Ci� j�k� = Wi� j�k� eK (4.2.13)

The flat bundle mentioned in the previous subsection apparently does not appear in
this definition of special geometry. Yet it is there. It is indeed the essential ingredient
in the second definition whose equivalence to the first we shall shortly provide.

Let L
π−→M denote the complex line bundle whose first Chern class equals

the cohomology class of the Kähler form K of an n-dimensional Hodge–Kähler
manifold M . Let SV −→ M denote a holomorphic flat vector bundle of rank
2n + 2 with structural group Sp(2n + 2,R). Consider tensor bundles of the type
H = SV ⊗ L . A typical holomorphic section of such a bundle will be denoted
by Ω and will have the following structure:

Ω =
(

XΛ

FΣ

)
Λ,Σ = 0, 1, . . . , n

By definition the transition functions between two local trivializations Ui ⊂ M and
U j ⊂ M of the bundle H have the following form:

(
X
F

)

i

= e fi j Mi j

(
X
F

)

j

where fi j are holomorphicmapsUi ∩U j → Cwhile Mi j is a constant Sp(2n + 2,R)

matrix. For a consistent definition of the bundle the transition functions are obvi-
ously subject to the cocycle condition on a triple overlap: e fi j + f jk+ fki = 1 and
Mi j M jk Mki = 1.

Let i〈 | 〉 be the compatible hermitian metric on H

i〈Ω | Ω〉 ≡ −iΩT

(
0 11

−11 0

)
Ω

Definition 4.2.2 We say that a Hodge–Kähler manifold M is special Kähler if
there exists a bundle H of the type described above such that for some section
Ω ∈ Γ (H ,M ) the Kähler two form is given by:

K = i

2
∂∂ log

(
i〈Ω | Ω〉) = i

2
gi j∗ dzi ∧ dz j∗

(4.2.14)

From the point of view of local properties, Eq. (4.2.14) implies that we have an
expression for the Kähler potential in terms of the holomorphic section Ω:
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K = −log
(
i〈Ω | Ω〉) = −log

[
i
(

X
Λ

FΛ − FΣ XΣ
)]

(4.2.15)

The relation between the two definitions of special manifolds is obtained by intro-
ducing a non–holomorphic section of the bundle H according to:

V =
(

LΛ

MΣ

)
≡ eK /2Ω = eK /2

(
XΛ

FΣ

)
(4.2.16)

so that Eq. (4.2.15) becomes:

1 = i〈V | V 〉 = i
(

L
Λ

MΛ − MΣ LΣ
)

(4.2.17)

Since V is related to a holomorphic section by Eq. (4.2.16) it immediately follows
that:

∇i� V =
(

∂i� − 1

2
∂i�K

)
V = 0 (4.2.18)

On the other hand, from Eq. (4.2.16), defining:

Ui = ∇i V =
(

∂i + 1

2
∂iK

)
V ≡

(
f Λ
i

hΣ |i

)

U i� = ∇i� V =
(

∂i� + 1

2
∂i�K

)
V ≡

(
f

Λ

i�

hΣ |i�

)

it follows that:
∇iU j = iCi jk gk��

U �� (4.2.19)

where ∇i denotes the covariant derivative containing both the Levi–Civita connec-
tion on the bundle T M and the canonical connection θ on the line bundle L . In
Eq. (4.2.19) the symbolCi jk denotes a covariantly holomorphic (∇��Ci jk = 0) section
of the bundle T M 3 ⊗ L 2 that is totally symmetric in its indices. This tensor can
be identified with the tensor of Eq. (4.2.13) appearing in Eq. (4.2.12). Alternatively,
the set of differential equations:

∇i V = Ui

∇iU j = iCi jk gk��

U��

∇i�U j = gi� j V

∇i� V = 0 (4.2.20)
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with V satisfying equation (4.2.17) give yet another definition of special geometry.
In particular it is easy to find Eq. (4.2.12) as integrability conditions of (4.2.20).4

4.2.4 The Vector Kinetic MatrixNΛΣ in Special Geometry

In the construction of supergravity actions another essential item is the complex
symmetric matrix NΛΣ whose real and imaginary parts are necessary in order to
write the kinetic terms of the vector fields. From the physicist’s viewpoint the matrix
NΛΣ is an essential item since the Lagrangian cannot be written without it. From the
mathematical viewpoint it is very much significant that the same NΛΣ constitutes
an integral part of the Special Geometry set up. We provide its general definition
in the following lines. Explicitly NΛΣ which, in relation to its interpretation in the
case of Calabi–Yau threefolds, is named the period matrix, is defined by means of
the following relations:

MΛ = NΛΣ L
Σ ; hΣ |i = NΛΣ f Σ

i (4.2.21)

which can be solved introducing the two (n + 1) × (n + 1) vectors

f Λ
I =

(
f Λ
i

L
Λ

)
; hΛ|I =

(
hΛ|i
MΛ

)

and setting:
NΛΣ = hΛ|I ◦ ( f −1)I

Σ
(4.2.22)

Let us now consider the case where the Special Kähler manifold SK n of com-
plex dimension n has some isometry group US K . Compatibility with the Special
Geometry structure requires the existence of a 2n + 2-dimensional symplectic rep-
resentation of such a group that we name the W representation. In other words that
there necessarily exists a symplectic embedding of the isometry group SK n

US K �→ Sp(2n + 2,R) (4.2.23)

such that for each element ξ ∈ US K we have its representation by means of a
suitable real symplectic matrix:

ξ �→ Λξ ≡
(

Aξ Bξ

Cξ Dξ

)
(4.2.24)

4We omit the detailed proof that from Eq. (4.2.20) one obtains Eq. (4.2.12). The essential link
between the two formulations resides in the second of Eq. (4.2.20) which identifies the tensor Ci jk
with the expression of the derivative of Ui in terms of the same objects Uk .
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satisfying the defining relation (in terms of the symplectic antisymmetric metric C):

ΛT
ξ

(
0n×n 1n×n

−1n×n 0n×n

)

︸ ︷︷ ︸
≡C

Λξ =
(

0n×n 1n×n

−1n×n 0n×n

)

︸ ︷︷ ︸
C

(4.2.25)

which implies the following relations on the n × n blocks:

AT
ξ Cξ − CT

ξ Aξ = 0

AT
ξ Dξ − CT

ξ Bξ = 1

BT
ξ Cξ − DT

ξ Aξ = −1

BT
ξ Dξ − DT

ξ Bξ = 0 (4.2.26)

Under an element of the isometry group the symplectic section Ω of Special Geom-
etry transforms as follows:

Ω (ξ · z) = Λξ Ω (z) (4.2.27)

As a consequence of its definition, under the same isometry thematrixN transforms
by means of a generalized linear fractional transformation:

N (ξ · z, ξ · z) = (Cξ + Dξ N (z, z)
) (

Aξ + Bξ N (z, z)
)−1

(4.2.28)

4.3 The Quaternionic Kähler Geometry in the Image
of the c-Map

The main object of study in the present section are those Quaternionic Kähler man-
ifolds that are in the image of the c-map.5 This latter

c-map : SK n =⇒ QM 4n+4 (4.3.1)

is a universal construction that starting from an arbitrary Special Kähler manifold
SK n of complex dimension n, irrespectively whether it is homogeneous or not,
leads to a unique Quaternionic Kähler manifoldQM 4n+4 of real dimension 4n + 4
which containsSK n as a submanifold. The precise modern definition of the c-map,
originally introduced in [16, 17], is provided below.

5Not all non-compact, homogeneous Quaternionic Kähler manifolds which are relevant to super-
gravity (which are normal, i.e. exhibiting a solvable group of isometries having a free and transitive
action on it) are in the image of the c-map, the only exception being the quaternionic projective
spaces [14, 15].
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Definition 4.3.1 Let SK n be a special Kähler manifold whose complex coordi-
nates we denote by zi and whose Kähler metric we denote by gi j� . Let moreover
NΛΣ(z, z) be the symmetric period matrix defined by Eq. (4.2.22), introduce the
following set of 4n + 4 coordinates:

{
qu
} ≡ {U, a}︸ ︷︷ ︸

2 real

⋃
{zi }︸︷︷︸

n complex
︸ ︷︷ ︸
2n real

⋃
Z = {ZΛ , ZΣ }︸ ︷︷ ︸

(2n+2) real

(4.3.2)

Let us further introduce the following (2n + 2) × (2n + 2) matrixM−1
4 :

M−1
4 =

(
ImN + ReN ImN −1 ReN −ReN ImN −1

− ImN −1 ReN ImN −1

)
(4.3.3)

which depends only on the coordinate of the Special Kähler manifold. The c-map
image ofSK n is the unique Quaternionic Kähler manifoldQM 4n+4 whose coor-
dinates are the qu defined in (4.3.2) and whose metric is given by the following
universal formula

ds2QM = 1

4

(
dU2 + 4gi j� dz j dz j� + e−2U (da + ZT

CdZ)2 − 2 e−U dZT M−1
4 dZ

)

(4.3.4)

The metric (4.3.4) has the following positive definite signature

sign
[
ds2QM

] =
⎛

⎝+, · · · ,+︸ ︷︷ ︸
4+4n

⎞

⎠ (4.3.5)

since the matrixM−1
4 is negative definite.

In the case the Special Kähler pre-image is a symmetric space US K /HS K , the
manifoldQM turns out to be symmetric spaces, UQ/HQ . We will come back to the
issue of symmetric homogeneous Quaternionic Kähler manifolds in Sect. 4.3.4

4.3.1 The HyperKähler Two-Forms
and the su(2)-Connection

The reason why we state that QM 4n+4 is Quaternionic Kähler is that, by utilizing
only the identities of Special Kähler Geometry we can construct the three complex
structures J x |v

u satisfying the quaternionic algebra (3.6.6) the corresponding Hyper-

http://dx.doi.org/10.1007/978-3-319-74491-9_3


4.3 The Quaternionic Kähler Geometry in the Image of the c-Map 191

Kähler two-forms K x and the su(2) connection ωx with respect to which they are
covariantly constant.

The construction is extremely beautiful, it was found in [20] and it is the following
one.

Consider the Kähler connection Q defined by Eq. (4.2.8) and furthermore intro-
duce the following differential form:

Φ = da + ZT
C dZ (4.3.6)

Next define the two dimensional representation of both the su(2) connection and of
the HyperKähler 2-forms as it follows:

ω = i√
2

3∑

x=1

ωx γx (4.3.7)

K = i√
2

3∑

x=1

K x σx (4.3.8)

where γx denotes a basis of 2 × 2 Euclidean γ -matrices for which we utilize the
following basis which is convenient in the explicit calculations we perform in later
chapters6:

γ1 =
(

1√
2
0

0 − 1√
2

)

γ2 =
(
0 − i√

2
i√
2
0

)

γ3 =
(
0 1√

2
1√
2
0

)
(4.3.9)

These γ -matrices satisfy the following Clifford algebra:

{
γx , γy

} = δxy 12×2 (4.3.10)

and i
2 γx provide a basis of generators of the su(2) algebra.

Having fixed these conventions the expression of the quaternionic su(2)-
connection in terms of Special Geometry structures is encoded in the following
expression for the 2 × 2-matrix valued 1-form ω. Explicitly we have:

6The chosen γ -matrices are a permutation of the standard pauli matrices divided by
√
2 and multi-

plied by i
2 can be used as a basis of anti-hermitian generators for the su(2) algebra in the fundamental

defining representation.
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ω =
(− i

2 Q − i
4 e−U Φ e− U

2 V T
C dZ

− e− U
2 V

T
C dZ i

2 Q + i
4 e−U Φ

)
(4.3.11)

where V and V denote the covariantly holomorphic sections of Special geometry
defined in Eq. (4.2.16). The curvature of this connection is obtained from a straight-
forward calculation:

K ≡ dω + ω ∧ ω

=
(

u v
− v − u

)
(4.3.12)

the independent 2-form matrix elements being given by the following explicit for-
mulae:

u = −i
1

2
K − 1

8
d S ∧ d S − e−U V T

C dZ ∧ V
T
C dZ − 1

4
e−U dZT ∧ C dZ

v = e− U
2

(
DV T ∧ C dZ − 1

2
d S ∧ V T

C dZ
)

v = e− U
2

(
DV

T ∧ C dZ − 1

2
d S ∧ V

T
C dZ

)
(4.3.13)

where

K = i

2
gi j� dzi ∧ dz j�

(4.3.14)

is the Kähler 2-form of the Special Kähler submanifold and where we have used the
following short hand notations:

d S = dU + i e−U
(
da + ZT

C dZ
)

(4.3.15)

d S = dU − i e−U
(
da + ZT

C dZ
)

(4.3.16)

DV = dzi ∇i V (4.3.17)

DV = dzi� ∇i� V (4.3.18)

The three HyperKähler forms7 K x are easily extracted from Eqs. (4.3.12)–(4.3.13)
by collecting the coefficients of the γ -matrix expansion andwe need not to write their
form which is immediately deduced. The relevant thing is that the components of
K x with an index raised through multiplication with the inverse of the quaternionic
metric huv exactly satisfy the algebra of quaternionic complex structures (3.6.6).
Explicitly we have:

7See Sect. 3.6 for notations.

http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
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K x = − i 4
√
2 Tr

(
γ x K

) ≡ K x
uv dqu ∧ dqv

J x |s
u = K x

uv hvs

J x |s
u J y|v

s = −δxy δv
u + εxyz J z|v

u (4.3.19)

The above formulae are not only the general proof that the Riemanniann manifold
QM defined by the metric (4.3.4) is indeed a Quaternionic Kähler manifold, but,
what is most relevant, they also provide an algorithm to write in terms of Special
Geometry structures the tri-holomorphic moment map of the principal isometries
possessed by QM .

4.3.2 The Holomorphic Moment Map in Special Kähler
Manifolds

In any Kähler manifold

PI
x = − i

2

(
ki

I∂iK − kı
I∂ıK

)+ Im( fI) , (4.3.20)

where fI = fI(z) is a holomorphic transformation on the line-bundle, defining a
compensating Kähler transformation:

ki
I∂iK + kı

I∂ıK = − fI(z) − f I(z) . (4.3.21)

We also have:

TI · Ω = TI · Ω + fI Ω , (4.3.22)

TI · V + i Im( fI) V = ki
I∂i V + kı

I∂ı V , (4.3.23)

where TI · Ω denotes the symplectic action of the isometry on the section V . If TI

is represented by the symplectic matrix (TI)α
β = −(TI)

β
α , α, β = 1, . . . , 2n + 2:

TT
I C + CTI = 0 (4.3.24)

we have (TI · V )α = −TI β
α V β = Tα

I β V β . From (4.3.23) and (3.7.22) we derive
the following useful symplectic-invariant expression for the moment maps:

PI
x = −V

α
TI α

β
Cβγ V γ . (4.3.25)

Equations (3.7.22), (3.7.23), (4.3.23) generalize the corresponding formulae given in
Sects. 7.1 and 7.2 of [22], where the condition fI = 0 was imposed, to gaugings of
non-compact isometries which are associated with non-trivial compensating Kähler

http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
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transformations and/or to gauged (non-compact) isometries whose symplectic action
is not diagonal.

4.3.3 Isometries ofQM in the Image of the c-Map
and Their Tri-Holomorphic Moment Maps

Let us now consider the isometries of the metric (4.3.4). There are three type of
isometries:

(a) The isometries of the (2n + 3)–dimensional Heisenberg algebra Heis which
is always present and is universal for any (4n + 4)–dimensional Quaternionic
Kähler manifold in the image of the c-map. We describe it below.

(b) All the isometries of the pre-image Special Kähler manifold SK n that are
promoted to isometries of the image manifold in a way described below.

(c) The additional 2n + 4 isometries that occur only when SK n is a symmetric
space and such, as a consequence, is also the c-map image QM 4n+4. We will
discuss these isometries in Sect. 4.3.4.

For the first two types of isometries (a) and (b)we are able towrite general expressions
for the tri-holomorphic moment maps that utilize only the structures of Special
Geometry. In the case that the additional isometries (c) do exist we have another
universal formulawhich can be used for all generators of the isometry algebraUQ and
which relies on the identification of the generators of the su(2) ⊂ H subalgebra with
the three complex structures. We will illustrate the details of such an identification
while discussing the example of the S3-model.

First of all let us fix the notation writing the general form of a Killing vector. This
a tangent vector:

k = ku(q) ∂u

= k� ∂

∂U
+ ki ∂

∂zi
+ ki� ∂

∂zi� + k• ∂

∂a
+ kα ∂

∂Zα

≡ k� ∂� + ki ∂i + ki�

∂i� + k• ∂• + kα ∂α (4.3.26)

with respect to which the Lie derivative of the metric element (4.3.4) vanishes:

�k ds2QM = 0 (4.3.27)

4.3.3.1 Tri-Holomorphic Moment Maps for the Heisenberg Algebra
Translations

First let us consider the isometries associated with the Heisenberg algebra. The
transformation:
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Zα �→ Zα + Λα ; a �→ a − ΛT
CZ (4.3.28)

whereΛα is an arbitrary set of 2n +2 real infinitesimal parameters is an infinitesimal
isometry for the metric ds2QM in (4.3.4). It corresponds to the following Killing
vector:

−→
k [Λ] = Λα −→

k α

= Λα ∂α − ΛT
CZ ∂• (4.3.29)

whose components are immediately deduced by comparison of Eq. (4.3.29) with
Eq. (4.3.26).

We are interested in determining the expression of the tri-holomorphic moment
map P[Λ] which satisfies the defining equation:

i[Λ] K ≡
(

i[Λ] u i[Λ] v
− i[Λ] v − i[Λ] u

)
= dP[Λ] + [

ω , P[Λ]
]

(4.3.30)

The general solution to this problem is

P[Λ] =
(

− i
4 e−U ΛT

CZ 1
2 e− U

2 ΛT C V

− 1
2 e− U

2 ΛT C V i
4 e−U ΛT

CZ

)

(4.3.31)

4.3.3.2 Tri-Holomorphic Moment Map for the Heisenberg Algebra
Central Charge

Consider next the isometry associated with the Heisenberg algebra central charge.
The transformation:

a �→ a + ε (4.3.32)

where ε is an arbitrary real small parameter is an infinitesimal isometry for the metric
ds2QM in (4.3.4). It corresponds to the following Killing vector:

ε
−→
k [•] = ε ∂• (4.3.33)

whose components are immediately deduced by comparison of Eq. (4.3.33) with
Eq. (4.3.26).

We are interested in determining the expression of the tri-holomorphic moment
map P[•] which satisfies the defining equation analogous to Eq. (4.3.30):

i[•] K = dP[•] + [
ω , P[•]

]
(4.3.34)
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The solution of this problem is even simpler than in the previous case. Explicitly we
obtain:

P[•] =
(

− i
8 e−U 0

0 i
8 e−U

)
(4.3.35)

The explicit expression of the moment maps and Killing vectors associated with
the Heisenberg isometries was used in the gauging of abelian subalgebras of the
Heisenberg algebra, which is relevant to the description of compactifications of Type
II superstring on a generalized Calabi–Yau manifold.

4.3.3.3 Tri-Holomorphic Moment Map for the Extension of SK n

Holomorphic Isometries

Next we consider the question how to write the moment map associated with those
isometries that where already present in the original Special Kähler manifoldSK n

which we c-mapped to a Quaternionic Kähler manifold.
Suppose thatSK n has a certain number of holomorphicKilling vectors ki

I(z) sat-
isfying equations (3.7.6), (3.7.7), (8.4.85) necessarily closing someLie algebra gS K

among themselves.8 Their holomorphic momentum-map is provided by Eq. (3.7.22).
Necessarily every isometry of a special Kähler manifold has a linear symplectic
(2n + 2)-dimensional realization on the holomorphic section Ω(z) up to an overall
holomorphic factor. This means that for each holomorphic Killing vector we have
(see Eq. (4.3.22)):

ki
I(z) ∂i Ω(z) = exp [ fI(z)] TI Ω(z) . (4.3.36)

where fI(z) the holomorphic Kähler compensator. Then it can be easily checked that
the transformation:

zi �→ zi + ki
I(z) ; Z �→ Z + TI Z (4.3.37)

is an infinitesimal isometry of the metric (4.3.4) corresponding to the Killing vector:

kI = ki
I(z) ∂i + ki�

I (z) ∂i� + (TI)
α
β Zβ ∂α (4.3.38)

Also in this case we are interested in determining the expression of the tri-
holomorphic moment map P[I] satisfying the defining equation:

ikI K = dP[I] + [
ω , P[I]

]
(4.3.39)

8Clarification for mathematicians: in the jargon ubiquitously utilized in the physical literature one
says that a set of operators closes a Lie algebra when any of the commutators thereof belongs to the
linear span of the same operators.

http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
http://dx.doi.org/10.1007/978-3-319-74491-9_3
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The solution is given by the expression below:

P[I] =
(

i
4

(
PI + 1

2 e−U ZT
CTI Z

) − 1
2 e−U/2 V T

CTI Z
1
2 e−U/2 V

T
CTI Z − i

4

(
PI + 1

2 e−U ZT
CTI Z

)

)

(4.3.40)

where PI is the moment map of the same Killing vector in pure Special Geometry.

4.3.4 Homogeneous Symmetric Special Quaternionic Kähler
Manifolds

When the Special Kähler manifold SK n is a symmetric coset space, it turns out
that the metric (4.3.4) is actually the symmetric metric on an enlarged symmetric
coset manifold

QM 4n+4 = UQ

HQ
⊃ US K

HS K
(4.3.41)

Naming Λ[g] the W-representation of any finite element of the g ∈ US K group,
we have that the matrix M4(z, z) transforms as follows:

M4 (g · z, g · z) = Λ[g]M4 (z, z)] ΛT [g] (4.3.42)

where g · z denotes the non linear action of US K on the scalar fields. Since the space
US K

HS K
is homogeneous, choosing any reference point z0 all the others can be reached

by a suitable group element gz such that gz · z0 = z and we can write:

M−1
4 (z, z) = ΛT [g−1

z ]M−1
4 (z0, z0)] Λ[g−1

z ] (4.3.43)

This allows to introduce a set of 4n + 4 vielbein defined in the following way:

E I
QM = 1

2

⎧
⎪⎨

⎪⎩
dU , ei (z)︸︷︷︸

2 n

, e−U
(
da + ZT

CdZ
)

, e− U
2 Λ[g−1

z ] dZ
︸ ︷︷ ︸

2n+2

⎫
⎪⎬

⎪⎭
(4.3.44)

and rewrite the metric (4.3.4) as it follows:

ds2QM = E I
QM qI J E J

QM (4.3.45)
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where the quadratic symmetric constant tensor qI J has the following form:

qI J =

⎛

⎜⎜⎝

1 0 0 0
0 δi j 0 0
0 0 1 0
0 0 0 − 2M−1

4 (z0, z0)

⎞

⎟⎟⎠ (4.3.46)

The above defined vielbein are endowed with a very special property namely they
identically satisfy a set of Maurer Cartan equations:

d E I
QM − 1

2
f I

J K E J
QM ∧ E K

QM = 0 (4.3.47)

where f I
J K are the structure constants of a solvable Lie algebra A which can be

identified as follows:

A = Solv

(
UQ

HQ

)
(4.3.48)

In the above equation Solv
(
UQ

HQ

)
denotes the Lie algebra of the solvable group

manifold metrically equivalent to the non-comapact coset manifold UQ

HQ
according to

what we explained in Sect. 2.5. In the case US K is a maximally split real form of a
complex Lie algebra, then also UQ is maximally split and we have:

Solv

(
UQ

HQ

)
= Bor (UQ ) (4.3.49)

where Bor (UQ ) denotes the Borel subalgebra of the semi-simple Lie algebra G,
generated by its Cartan generators and by the step operators associated with all
positive roots.

According to themathematical theory summarized in Sect. 2.5 above, the very fact
that the vielbein (4.3.44) satisfies the Maurer Cartan equations of the Lie algebra

Solv
(
UQ

HQ

)
implies that the metric (4.3.45) is the symmetric metric on the coset

manifold UQ

HQ
which therefore admits continuous isometries associated with all the

generators of the Lie algebra UQ . For reader’s convenience the list of Symmetric
Special manifolds and of their Quaternionic Kähler counterparts in the image of the
c-map is recalled in Table4.1 which reproduces the results of [7], according to which
there is a short list of Symmetric Homogeneous Special manifolds comprising five
discrete cases and two infinite series.

Inspecting Eq. (1.7.19) we immediately realize that the Lie Algebra UQ contains
two universal Heisenberg subalgebras of dimension (2n + 3), namely:

http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_2
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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UQ ⊃ Heis1 = span
R

{
W1α , Z1

} ; Z1 = L+ ≡ L1 + L2

[
W1α , W1β

] = − 1

2
C

αβ
Z1 ; [

Z1 , W1β
] = 0

(4.3.50)

UQ ⊃ Heis2 = span
R

{
W2α , Z2

} ; Z2 = L− ≡ L1 − L2

[
W2α , W2β

] = − 1

2
C

αβ
Z2 ; [

Z2 , W2β
] = 0

(4.3.51)

The first of these Heisenberg subalgebras of isometries is the universal one that
exists for all Quaternionic Kähler manifolds QM 4n+4 lying in the image of the
c-map, irrespectively whether the pre-image Special Kähler manifold SK n is a
symmetric space or not. The tri-holomorphic moment map of these isometries was
presented in Eqs. (4.3.31) and (4.3.35). The second Heisenberg algebra exists only
in the case when the Quaternionic Kähler manifoldQM 4n+4 is a symmetric space.

From this discussion we also realize that the central charge Z1 is just the L+
generator of a universal sl(2,R)E Lie algebra that exists only in the symmetric space
case and which was named the Ehlers algebra in Sect. 1.7 where we presented the
golden splitting (1.7.12). When sl(2,R)E does exist we can introduce the universal
compact generator:

S ≡ L+ − L− = 2 λ2 (4.3.52)

which rotates the two sets of Heisenberg translations one into the other:

[
S , Wiα

] = εi j W jα (4.3.53)

The gauging of this generator is a rather essential ingredient in the inclusion of one-
field cosmological models into gauged N = 2 supergravity as it was explained in
[20].

4.3.4.1 The Tri-Holomorphic Moment Map in Homogeneous
Symmetric Quaternionic Kähler Manifolds

In the case the Quaternionic Kähler manifoldQM 4n+4 is a homogeneous symmetric
space UQ

HQ
, the tri-holomorphicmomentmap associatedwith anygenerator of t ∈ UQ

of the isometry Lie algebra can be easily constructed by means of the formula:

P x
t = Tr[fun]

(
J x

L
−1
Solv tLSolv

)
(4.3.54)

where:

(a) J x are the three generators of the su(2) factor in the isotropy subalgebra
H = su(2) ⊕ H

′, satisfying the quaternionic algebra (4.3.19). They should

http://dx.doi.org/10.1007/978-3-319-74491-9_1
http://dx.doi.org/10.1007/978-3-319-74491-9_1
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be normalized in such a way as to realize the following condition. Naming:

Ξ = L
−1
Solv(q) dLSolv(q) (4.3.55)

the Maurer Cartan differential one-form, its projection on J x should precisely
yield the su(2) one-form defined in Eq. (4.3.11):

ω = − i√
2N f

3∑

x=1

Tr[fun]
(
J x Ξ

)
γx =

⎛

⎝− i
2 Q − i

4 e−U Φ e− U
2 V T

C dZ

− e− U
2 V

T
C dZ i

2 Q + i
4 e−U Φ

⎞

⎠

(4.3.56)

In the above equation, which provides the precise link between the c-map
description and the coset manifold description of the same geometry, N f =
dim fun denotes the dimension of the fundamental representation of UQ .

(b) The solvable coset representative LSolv(q) is obtained by exponentiation of the
Solvable Lie algebra:

LSolv(q) � exp

[
q · Solv

(
UQ

HQ

)]
(4.3.57)

but the detailed exponentiation rule has to be determined in such a way that
projecting the same Maurer Cartan form (4.3.55) along an appropriate basis of

generators TI |Solv of the solvable Lie algebra Solv
(

UQ

HQ

)
we precisely obtain

the vielbein E I
QM defined in Eq. (4.3.44). This is summarized in the following

general equations:

E I
QM = Tr[fun]

(
T I

Solv Ξ
)

δ I
J = Tr[fun]

(
T I

Solv TI |Solv
)

Ξ = E I
QM TI |Solv (4.3.58)

In Eq. (4.3.58) by T I
Solv we have denoted the conjugate (with respect to the trace) of

the solvable Lie algebra generators.
A general comment is in order. The precise calibration of the basis of the solvable

generators T I
Solv and of their exponentiation outlined in Eq. (4.3.57) which allows the

identification (4.3.58) is a necessary and quite laborious task in order to establish
the bridge between the general c-map description of the quaternionic geometry and
its actual realization in each symmetric coset model. This is also an unavoidable
step in order to give a precise meaning to the very handy formula (4.3.54) for the
tri-holomorphic map. It should also be noted that although (4.3.54) covers all the
cases, the result of such a purely algebraic calculation is difficult to be guessed a
priori. Hence educated guesses on the choice of generators whose gauging produces
a priori determined features are difficult to be inferred from (4.3.54). The analytic
structure of the tri-holomorphic moment map instead is much clearer in the c-map
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framework of formulae (4.3.31), (4.3.35), (4.3.40). The use of both languages and
the construction of the precise bridge between them in each model is therefore an
essential ingredient to understand the nature and the properties of candidate gaugings
in whatever physical application.
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