
Chapter 3
Complex and Quaternionic Geometry

Mathematics, however, is, as it were, its own explanation; this,
although it may seem hard to accept, is nevertheless true, for the
recognition that a fact is so is the cause upon which we base the
proof.

Girolamo Cardano

3.1 Imaginary Units and Geometry

Considering the possible types of numbers we have R, C, H, or O. This is a mes-
sage for geometry. Keeping the fundamental idea that a geometrical space should be
viewed as a manifold, constructed bymeans of an atlas of open charts, the local coor-
dinates could be chosen not only as real numbers but also as complex, quaternionic
or even octonionic numbers. Yet an important lesson is immediately learnt from the
story told in my other book [1], twin of the present one: the possible numbers are,
anyhow, division algebras over the reals, whose classification is due to Frobenius, so
that the real structure remains the basis for everything.

This must be the same also in geometry. Manifolds of complex, quaternionic or
octonionic type, if they exist, are, first of all, real manifolds. Their characterization as
complex, quaternionic or octonionic must reside in some additional richer structure
they are able to support. It is evident that this additional structure are the imaginary
units, the same that provide the extensions of the field R to C, H or O.

Hence the conceptual path we have to follow starts revealing itself. We have to
imagine what the imaginary units might be in the context of differential geometry.
The catch is the relation J2 = − 1. How to reinterpret such a relation? It is rather
natural to consider J as a map, in particular a linear map, and 1 as the identity map
which always exists. We are almost there, the remaining question is on which space
does J act? The answer is obvious since for linear maps we need vector spaces and if
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100 3 Complex and Quaternionic Geometry

we want to do things locally, point by point on the manifold, we need vector bundles.
The universal vector-bundle that it is intrinsically associated with any manifold M
is the tangent bundle TM → M . Hence the imaginary units, that from now on we
will name complex structures, are linear maps operating on sections of the tangent
bundle that square to minus one.

Complex and quaternionic or hyper-complex geometries arise when a manifold
admits one or more complex structures satisfying appropriate algebraic relations.
This mixture of algebra and geometry leads to new classes of very interesting spaces:

(a) Complex Manifolds
(b) Complex Kähler Manifolds
(c) HyperKähler Manifolds
(d) Quaternionic Kähler Manifolds

that is the mission of the present chapter to define and illustrate.
Furthermore when we come to discuss the symmetries of such manifolds, namely

their isometries, which is the main interest of this book, we discover that the pres-
ence of the complex-structures entrains a new very much challenging viewpoint on
continuous symmetries. To the Killing vectors, thanks to the symplectic structures
implied by the complex-structures we are able to associate hamiltonian functions,
named moment maps. These moment maps open a vast playing ground for new
constructions of high relevance both in Physics and Mathematics.

3.1.1 The Precognitions of Supersymmetry

Supersymmetric field-theories and in particular Supergravity have the remarkable
property of an intrinsic precognition of geometric and algebraic structures.All classes
of existing geometries found, in due time, their proper role within the frame of super-
symmetric field theories. For instance Kähler Manifolds describe the most general
coupling of scalar multiplets in N = 1 rigid supersymetry, while HyperKähler
Manifolds do the same for the rigid N = 2 case (see [2] which will be extensively
discussed in Chap. 8). Quaternionic Kähler Manifolds are the obligatory structure
for the coupling of hypermultiplets toN = 2 supergravity [3–5]. In these cases the
precognition resides in algebraic relations that come from supersymmetry and, once
duely interpreted, were shown to imply the mentioned geometry. In other, even more
spectacular cases, the geometric structures required by supersymmetry were not yet
available in the mathematical supermarkets when the corresponding supermultiplets
were studied. They were just discovered by the physicists working in supergravity
and now constitute new chapters of mathematics. These are the Special Geometries
to which Chap.4 is devoted.

Let us now turn to complex structures and their heritage.

http://dx.doi.org/10.1007/978-3-319-74491-9_8
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3.2 Complex Structures on 2n-Dimensional Manifolds

LetM be a 2n-dimensional manifold, TM its tangent space and T ∗M its cotangent
space. Denoting by {φα} (α = 1, . . . , 2n) the 2n coordinates in a patch, a section
t ∈ Γ (TM ,M ) is represented by a linear differential operator:

t = tα∂α (3.2.1)

while a section in T ∗M is a differential 1-form

ω = dφαωα(φ) (3.2.2)

The contraction is an operation that to each vector field t ∈ Γ (TM ,M ) associates
a map

it : T ∗M −→ C∞ (M ) (3.2.3)

of 1-forms into 0-forms locally given by the following expression:

it ω = tα(φ)ωα(φ) (3.2.4)

In particular, if ω = d f we have

it d f = tα∂α f = t f (3.2.5)

The contraction is also canonically extended to higher forms:

∀ t ∈ Γ (TM ,M ) :
{
it : Ω p (M ) −→ Ω p−1 (M )

it ω = tα(φ)ωαβ1...βp−1(φ) dφβ1 ∧ · · · ∧ dφβp−1

(3.2.6)
Now we can consider a linear operator L acting on the tangent bundle TM , or more
precisely acting on Γ (TM , M):

L : Γ (TM ,M ) → Γ (TM ,M )

∀t ∈ Γ (TM ,M ) : Lt ∈ Γ (TM ,M )

∀α, β ∈ C, ∀t1, t2 ∈ Γ (TM ,M ) : L(αt1 + βt2) = αLt1 + βLt2
(3.2.7)

In every local chart L is represented by a mixed tensor Lβ
α(φ) with one covariant

index and one controvariant index such that

Lt = tα(φ)Lβ
α(φ)∂β (3.2.8)

Moreover the action of L is naturally pulled back on the cotangent space:
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L : Γ (TM ∗,M ) → Γ (TM ∗,M ) (3.2.9)

by defining
itLω = iLtω (3.2.10)

which in a local chart yields

Lω = dφαLβ
α(φ)ωβ (3.2.11)

Definition 3.2.1 A 2n-dimensional manifold M is called almost complex if it has
an almost complex structure. An almost complex structure is a linear operator J :
Γ (TM ,M ) → Γ (TM ,M ) which satisfies the following property:

J 2 = − 11 (3.2.12)

In every local chart the operator J is represented by a tensor Jα
β (φ) such that

J β
α (φ)J γ

β (φ) = −δγ
α (3.2.13)

and by a suitable change of basis at every point p ∈ M we can reduce J β
α to the

form (
0 11

−11 0

)

where 11 is the n × n unity matrix. A local frame where J takes the form (3.2.14) is
called a “well-adapted” frame to the almost complex structure. Naming

eα = ∂α = ∂

∂φα

(3.2.14)

the basis of the well-adapted frame we have

Jeα = −eα+n i f α ≤ n

Jeα = eα−n i f α > n (3.2.15)

At this point, introducing the index i with range i = 1, . . . , n we can define the
complex vectors:

Ei = ei − iei+n

Ei∗ = ei + iei+n (3.2.16)

and we obtain the following result:
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JEi = iEi

JEi∗ = −iEi∗

(3.2.17)

The tangent vectors Ei are the partial derivatives along the complex coordinates:

zi = φi + iφi+n (3.2.18)

while Ei∗ are the partial derivatives along the complex conjugate coordinates zi
∗ =

φi − iφi+n:

Ei = ∂ i = ∂

∂zi
Ei∗ = ∂ i∗ = ∂

∂zi∗
(3.2.19)

This construction is the reason why J is called an almost complex structure: the
existence of this latter guarantees that at every point p ∈ M we can replace the 2n
real coordinates by n complex coordinates, corresponding to a well-adapted frame.
Moreover every two well-adapted frames are related to each other by a coordinate
transformation which is a holomorphic function of the corresponding complex coor-
dinates. Indeed let

φα → φα + ζ α(φ) (3.2.20)

be an infinitesimal coordinate transformation connecting two well adapted frames.
By definition this means

∂αζ β J γ

β = J β
α ∂βζ γ (3.2.21)

which is nothing but the Cauchy–Riemann equation for the real and imaginary parts
of a holomorphic function. Hence Eq. (3.2.20) can be replaced by

zi → zi + ζ i (z) (3.2.22)

where ζ i (z) is a holomorphic function of z j . Conversely ifM is a complex analytic
manifold,1 in every local chart {zi } we can set

φα = Rezi (α ≤ n) φα = Imzi (α > n) (3.2.23)

and we can define an almost complex structure J . Now let J act on T ∗(M ). In a
well-adapted frame we have

Jdzi = idzi

Jdzi
∗ = −idzi

∗
(3.2.24)

1Complex analytic manifold means a manifold whose transition functions in the intersection of two
charts are holomorphic functions of the local coordinates.
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Equation (3.2.24) characterize the holomorphic coordinates. More generally let {xα}
be a generic coordinate system (not necessarily well-adapted) and let w(x) be a
complex-valued function on the manifold M : we say that w is holomorphic if it
satisfies the equation:

Jdw = idw (3.2.25)

which in the generic coordinate system {xα} reads as follows:

J β
α ∂βw(x) = i∂αw(x) (3.2.26)

As we have seen, at every point p ∈ M , J can be reduced to the canonical form
(3.2.14) by a suitable coordinate transformation: what is not guaranteed is whether
J can be reduced to this canonical form in a whole open neighbourhood Up. This
amounts to asking the questionwhether Eq. (3.2.26) admits n C-linearly independent
solutions in some open subset U ∈ UX , where UX is the domain of the considered
local chart {xα}. If these solutions wi (x) exist we can consider them as the holomor-
phic coordinates in the neighbourhood U , that is we can set

zi = wi (z) (3.2.27)

In view of what we discussed before, the transition function between any two such
coordinate systems is holomorphic. Hence if Eq. (3.2.25) is integrable, then a holo-
morphic coordinate system exists and any function φ on the manifold can be viewed
as a function of zi and zi

∗
: φ = φ(z, zi

∗
). In this case we have

dφ = ∂iφdz
i + ∂i∗φdz

i∗

Jdφ = i(∂iφdz
i − ∂i∗φdz

i∗) (3.2.28)

By taking the exterior derivative of Eq. (3.2.28) we obtain

d J ∧ dφ = −2i∂i∂i∗φdz
i ∧ dzi

∗
(3.2.29)

and we can verify the equation

(1 − J )d J ∧ dφ = 0 (3.2.30)

which follows from

Jd J ∧dφ = −2i∂i∂ j∗φ Jdzi ∧ Jdz j
∗ = −2i∂i∂ j∗φdz

i ∧dz j
∗ = d J ∧dφ (3.2.31)

Equation (3.2.30) is true in a holomorphic coordinate system and, being an exterior
algebra statement, must be true in every coordinate system. In the real coordinate
system Eq. (3.2.30) reads

T α
βγ ∂αφdxβ ∧ dxγ = 0 (3.2.32)
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where the tensor
T α

βγ = ∂[β Jα
γ ] − Jμ

β J ν
γ ∂[μ Jα

ν] (3.2.33)

is called the “torsion”, or the Nienhuis tensor of the almost complex structure Jα
β .

The vanishing of T α
βγ is a necessary condition for the integrability of Eq. (3.2.26)

and hence for the existence of a complex structure. It can be shown that it is also
sufficient provided T α

βγ is real analytic with respect to some real coordinate system.

3.3 Metric and Connections on Holomorphic Vector
Bundles

In the previous section we considered the structure of complex manifolds. When
both the base space and the standard fibre are complex manifolds we can refine the
notion of fibre bundle by requiring that the transition function be locally holomorphic
functions. In particular a very relevant concept, which plays a major role in our
subsequent developments, is that of holomorphic vector bundle. For convenience we
recall the complete definition that follows from the general definition of fibre-bundle.

Definition 3.3.1 LetM be a complexmanifold and E be another complexmanifold.
A holomorphic vector bundle with total space E and base manifoldM is given by a
projection map:

π : E −→ M (3.3.1)

such that
(a) π is a holomorphic map of E onto M
(b) Let p ∈ M , then the fibre over p

Ep = π−1(p) (3.3.2)

is a complex vector space of dimension r . (The number r is called the rank of the
vector bundle.)

(c) For each p ∈ M there is a neighbourhood U of p and a holomorphic home-
omorphism

h : π−1(U ) −→ U × Cr (3.3.3)

such that
h
(
π−1(p)

) = { p } ×Cr (3.3.4)

(The pair (U, h) is called a local trivialization.)
(d) The transition functions between two local trivializations (Uα, hα) and

(Uβ, hβ):
hα ◦ h−1

β : (Uα ∩ Uβ ) ⊗ Cr −→ (Uα ∩ Uβ ) ⊗ Cr (3.3.5)



106 3 Complex and Quaternionic Geometry

induce holomorphic maps

gαβ : (Uα ∩ Uβ ) −→ GL (r,C) (3.3.6)

Let E −→ M be a holomorphic vector bundle of rank r andU ⊂ M an open subset
of the base manifold. A frame over U is a set of r holomorphic sections {s1, . . . , sr }
such that {s1(z), . . . , sr (z)} is a basis for π−1(z) for any z ∈ U . Let f ≡ {eI (z)} be
a frame of holomorphic sections. Any other holomorphic section ξ is described by

ξ = ξ I (z) eI (3.3.7)

where
∂ ξ I = dz j

�

∂ j� ξ I = 0 (3.3.8)

Given a holomorphic bundle with a frame of sections we can discuss metrics con-
nections and curvatures, as we already did for the general case of bundles.

In general a connection θ is defined by introducing the covariant derivative of any
section ξ

D ξ = d ξ + θ ξ (3.3.9)

where θ = θ I
J , the connection coefficient, is an r × r matrix-valued 1-form. On a

complex manifold this 1-form can be decomposed into its parts of holomorphic type
(1, 0) and (0, 1), respectively:

θ = θ(1,0) + θ(0,1)

θ (1,0) = dzi θi
θ(0,1) = dzi

�

θi� (3.3.10)

Let now a fiber hermitian metric h be defined on the holomorphic vector bundle.
This is a sesquilinear form that yields the scalar product of any two holomorphic
sections ξ and η at each point of the base manifold:

〈 ξ , η 〉h ≡ ξ
I �

(z) ηJ (z) hI � J (z, z) = ξ † h η (3.3.11)

As it is evident from the above formula, the metric h is defined by means of the
point-dependent hermitian matrix hI � J (z, z), which is requested to transform, from
one local trivialization to another, with the inverses of the transition functions gαβ

defined in Eq. (3.3.6). This is so because the scalar product 〈 ξ , η 〉h is by definition
an invariant (namely a scalar function globally defined on the manifold).

Definition 3.3.2 A hermitian metric for a complex manifoldM is a hermitian fibre
metric on the canonical tangent bundle TM . In this case the transition functions gαβ

are given by the jacobians of the coordinate transformations.
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In general h is just a metric on the fibres and the transition functions are different
objects from the Jacobian of the coordinate transformations. In any case, given a fibre
metric on a holomorphic vector bundle we can introduce a canonical connection θ

associated with it. It is defined by requiring that

(A) d 〈 ξ , η 〉h = 〈 D ξ , η 〉h + 〈 ξ , D η 〉h
(B) D(0,1)ξ ≡ [

∂ + θ(0,1)
]

ξ = 0
(3.3.12)

namely by demanding that the scalar product be invariant with respect to the parallel
transport defined by θ and by requiring that the holomorphic sections be transported
into holomorphic sections. Let f be a holomorphic frame. In this frame the canonical
connection is given by

θ( f ) = h( f )−1 ∂ h( f ) (3.3.13)

or, in other words, by
θ I

J = dzi h I J �

∂i hK � J (3.3.14)

In the particular case of a manifold metric (see Definition3.3.2), where h is a fibre
metric on the tangent bundle TM , the general formula (3.3.14) provides the defini-
tion of the Levi-Civita connection:

dzk Γ i
k j = − gil

�

∂ gl� j (3.3.15)

Given a connection we can compute its curvature by means of the standard formula
Θ = dθ + θ ∧ θ . In the case of the above-defined canonical connection we obtain

Θ ( f ) = ∂ θ + ∂ θ + θ ∧ θ = ∂ θ (3.3.16)

This identity follows from ∂ θ + θ ∧ θ = 0, which is identically true for the
canonical connection (3.3.13). Component-wise the curvature 2-form is given by

Θ I
J = ∂ i

(
hI K �

∂ j hK � J
)
dzi ∧ dz j (3.3.17)

For the case of the Levi-Civita connection defined in Eq. (3.3.15) we find

Γ i
j = Γ i

k j dz
k

Γ i
k j = −gi�

∗
(∂ j gk�∗)

Γ i∗
j∗ = Γ i∗

k∗ j∗dz
k∗

Γ i∗
k∗ j∗ = −gi

∗�(∂ j∗gk∗�) (3.3.18)

for the connection coefficients and
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Ri
j = Ri

jk∗�dz
k∗ ∧ dz�

Ri
jk∗� = ∂k∗Γ i

j�

Ri∗
j∗ = Ri∗

j∗k�∗dzk ∧ dz�∗

Ri∗
j∗k�∗ = ∂kΓ

i∗
j∗�∗ (3.3.19)

for the curvature 2-form. The Ricci tensor has a remarkable simple expression:

Rn
m∗ = Ri

m∗n i = ∂m∗Γ i
ni = ∂m∗∂n ln (

√
g) (3.3.20)

where g = det |gαβ | = (det |gi j∗ |)2.

3.4 Characteristic Classes and Elliptic Complexes

The cohomology2 of differential forms on differentiablemanifolds is named deRham
cohomology.3 There aremore general constructions of the same type. They are named
elliptic complexes.

Elliptic complexes are associated with fibre-bundles and their general definition
is provided below. To each elliptic complex we can associate a topological number
that is named its index. On its turn the index of a complex can be calculated as the
integral of certain polynomials in the curvature 2-forms of the connection that can
be introduced on the corresponding principle bundle. These polynomials are named
characteristic classes.

More precisely characteristic classes are maps from the ring I �(G) of invariant
polynomials on the Lie algebra G of the structural group of the bundle to the de
Rham cohomology ring H �(M ) of its base manifold. They provide an intrinsic
way of measuring the twisting, or deviation from triviality, of a fibre bundle. They
are also an essential ingredient of the index theorems that express the difference of
zero modes of an elliptic operator minus its adjoint precisely in terms of integrals
of characteristic classes. Index theorems play a fundamental role in many physical
problems. Characteristic classes are also needed in the definition of special geome-
tries that we later consider. For this reason we devote the present section to their
general discussion.

We begin by recalling the notion of de Rham cohomology groups. The differ-
ential forms of degree r on a k-dimensional manifold M are sections of a vector
bundle, namely of the completely antisymmetrized tensor product Λr (T �M ) of the
cotangent bundle T �M , r times with itself. We name Ωr = Γ (M ,Λr (T �M )) the

2For a pedagogical short introduction to cohomology theory I refer the reader to my book [6], Vol
1, Chap.2.
3The development of de Rham cohomology and of characteristic classes is historically reviewed in
the twin book to this one [1], within the general frame of the evolution of geometry in the XXth
century.

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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space of sections of this bundle, namely the space of r -forms. The exterior derivative
d provides a sequence of maps di :

Ω0(M )
d0−→ Ω1(M )

d1−→ · · · dk−2−→ Ωk−1(M )
dk−1−→ Ωk(M )

dk−→ 0 (3.4.1)

where dr is the exterior derivative acting on r -forms and producing r + 1-forms as
a result. The property of the exterior derivative d2 = 0 implies that

di di+1 = 0 ∀ i = 0 , . . . , k (3.4.2)

What we have just described is named the de Rham complex and provides the first
and most prominent example of an elliptic complex. More generally we have

Definition 3.4.1 An elliptic complex (E�, D) is a sequence of vector bundles
Ei

πi−→ M constructed over the same base manifold and a sequence of Fred-
holm operators Di mapping the sections of the ith bundle into those of the (i+1)th
bundle:

Γ (M , E0)
D0−→ Γ (M , E1)

D1−→ · · · Dk−2−→ Γ (M , Ek−1)
Dk−1−→ Γ (M , Ek)

Dk−→ 0
(3.4.3)

such that
Di Di+1 = 0 ∀ i = 0 , . . . , k (3.4.4)

A Fredholm operator is a differential operator of elliptic type with finite kernel and
cokernel, as we discuss below. To each elliptic complex and to the de Rham complex
in particular we can attach the notion of cohomology groups. The i th cohomology
group is defined as follows:

Hi
(
E� , M

) = ker Di

Im Di−1
(3.4.5)

It is the space of sections of the i th bundle Ei satisfying Di s = 0, modulo those of
the form s = Di−1 s

′
. In the de Rham complex Hr (Ω�(M )) is the space of closed

r -forms modulo exact forms. For any Fredholm operator Di appearing in the elliptic
complex (3.4.3) we denote D†

i its adjoint, which is defined by

D†
i : Γ (M , Ei+1) → Γ (M , Ei )

(s ′, Dis)Ei+1 = (D†
i s

′, s)Ei (3.4.6)

where s ∈ Γ (M , Ei ), s ′ ∈ Γ (M , Ei+1) and ( , )E denotes the fibre metric in the
specified fibre. The laplacian operator is defined by

Δi : Γ (M , Ei ) → Γ (M , Ei )

Δi ≡ Di−1D
†
i−1 + D†

i Di (3.4.7)
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The cohomology group Hi (E∗,M ) is isomorphic to the kernel of the operator Δi ,
so that we have

dimHi (E∗, D) = dimHarmi (E∗, D) (3.4.8)

where by Harmi (E∗, D) we denote the vector space spanned by sections hi ∈
Γ (M , Ei ) which satisfy

Δi hi = 0 . (3.4.9)

Given a section si ∈ Γ (M , Ei ) we can write the Hodge decomposition:

si = Disi−1 + D†
i si+1 + hi (3.4.10)

where si±1 ∈ Γ (M , Ei ).

Definition 3.4.2 Given an elliptic complex (E∗, D) we define the index of this
complex by

ind (E∗, D) =
∑

(−)idim Hi (E∗, D) =
∑

(−)idim kerΔi (3.4.11)

Equation (3.4.11), when specialized to the de Rham complex, gives the Euler char-
acteristic of the base manifold:

ind d =
∑

(−)idimHi (E∗, d) ≡ χ(M ) =
∑

(−)i bi (3.4.12)

where bi is the i th Betti number, equal, by definition, to the number of linearly
independent harmonic i-forms. For a generic Fredholm operator D : Γ (M , E) →
Γ (M , F) we can define the analytical index of D as

indD = dim kerD − dim cokerD (3.4.13)

To show the relation between Eqs. (3.4.11) and (3.4.13), we have to resume our
discussion on Fredholm operators. Let D : Γ (M , E) → Γ (M , F) be an elliptic
operator. The kernel of D is the following set of sections:

kerD = {s ∈ Γ (M , E)|Ds = 0} . (3.4.14)

We define the cokernel of D by

cokerD = Γ (M , F)

ImD
(3.4.15)

We now state without proof the following theorem:

Theorem 3.4.1 Let D : Γ (M , E) → Γ (M , F) be a Fredholm operator. Then

cokerD ∼ kerD† (3.4.16)
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Using Theorem3.4.1 we immediately rewrite Eq. (3.4.11) as

indD = dim ker D − dim ker D† (3.4.17)

Consider now the one-operator complex Γ (M , E)
D→ Γ (M , F), which can also

be written as
0

i→ Γ (M , E)
D→ Γ (M , F)

φ→ 0 (3.4.18)

where i is the inclusion map (defined by i(0) = 0), and φ is a map from a generic
section in Γ (M , F) into 0. Using Eq. (3.4.11) for the complex (3.4.18) we find

dim ker D − [dim Γ (M , F) − dim ImD] = dim ker D − dim coker D (3.4.19)

The above equation shows the simple relation between the analytical index (3.4.13)
and the index of the elliptic complex (3.4.11). Equation (3.4.13) provides an easy
formula that is always recalled in physical literature. Moreover, given an elliptic
complex, it is always possible to construct a Fredholm operator whose analytical
index coincides with the index of the complex (E∗, D). Indeed if we define

E+ = ⊕i E2i , E− = ⊕i E2i+1 (3.4.20)

which are respectively called the even and the odd bundles and we consider the
operators

D ≡ ⊕i (D2i + D†
2i−1) D† ≡ ⊕i (D2i+1 + D†

2i ) (3.4.21)

we easily verify that

D : Γ (M , E+) → Γ (M , E−)

D : Γ (M , E−) → Γ (M , E+) (3.4.22)

Next, if we define

Δ+ ≡ D†D = ⊕iΔ2i Δ− ≡ DD† = ⊕iΔ2i+1 (3.4.23)

then we have

ind(E±, D) = dim kerΔ+ − dim kerΔ− =
∑

(−)idim kerΔi = ind(E∗, D)

(3.4.24)
In general the index of an elliptic complex can be expressed by an integral over M
of suitable characteristic classes. At the beginning of the present section we have
defined characteristic classes as maps from the ring of invariant polynomials on the
Lie algebra of the structural group to the de Rham cohomology group ring of the
base manifold. Let us now go a little deeper on the meaning of this definition. Let
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M (k, C) be the set of complex k×k matrices.We denote by Sr (M (k, C)) the vector
space of symmetric r -linear C-valued functions on M (k, C). A map

P̂ : ⊗rM (k, C) → C (3.4.25)

belongs to Sr (M (k, C)) if it satisfies, in addition to linearity in each entry, the
symmetry

P̂(a1, . . . , ai , . . . , a j , . . . .ar ) = P̂(a1, . . . , a j , . . . , ai , . . . , ar ) ∀i, j ≤ r
(3.4.26)

Consider now the formal sum

S∗(M (k, C)) = ⊕∞
0 Sr (M (k, C)) (3.4.27)

and define a product of P̂ ∈ Sp(M (k, C)) and Q̂ ∈ Sq(M (k, C)) by

P̂ · Q̂(a1, . . . , ap+q) = 1

(p + q)!
∑
P

P̂(aP(1), . . . , aP(p))Q̂(aP(p+1), . . . , aP(p+q))

(3.4.28)
where P denotes the permutation of the set (1, . . . , p + q). S∗(M (k, C)) equipped
with the product (3.4.28) is an algebra. If we now consider a Lie algebra G ∈
M (k, C), and the corresponding simply connected Lie group G = exp [G], in full
analogy with Eqs. (3.4.27) and (3.4.26), we can define the sum S∗(G) = ⊕r≥0Sr (G).
An element P̂(h1, . . . , hr ) ∈ Sr (G) (hi ∈ G) is said to be invariant if, for any g ∈ G,
it satisfies

P̂(g−1h1g, . . . , g
−1hr g) = P̂(h1, . . . , hr ) (3.4.29)

The set of invariant elements of Sr (G) is denoted by I r (G). The product defined in
(3.4.28) induces a natural multiplication

· : I p(G) ⊗ I q(G) → I p+q(G) (3.4.30)

The sum I ∗ = ⊕r≥0 I r (G) equipped with the product (3.4.30) is an algebra. The
diagonal combination P(h) = P(h, . . . , h) containing r -times the element h ∈ G

is a polynomial of degree r , which is said to be an invariant polynomial. Let now
P(M ,G) be a principal bundle that has as structural group a Lie group G with
Lie algebra G. We extend the domain of invariant polynomials from G to G-valued
p-forms onM . We define

P̂(h1ω1, . . . , hrωr ) ≡ ω1 ∧ · · · ∧ ωr P̂(h1, . . . , hr ) (3.4.31)

where hi ∈ G, ωi ∈ Ω pi (M ) (i = 1 . . . r ). The diagonal combination is now given
by

P(hω) = ω ∧ · · · ∧ ω P(h) (3.4.32)
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where the wedge product of ω ∈ Ω p(M ) is repeated r-times in (3.4.32). Consider
now the curvature 2-form Θ associated with a connection in a complex fibre bundle.
In the following we are particularly interested in invariant polynomials of the form
P(Θ). We can state the following theorem (Chern–Weil theorem).

Theorem 3.4.2 Let P(Θ) be an invariant polynomial in the curvature 2-form; then
(i) d P(Θ) = 0
(ii) Let Θ,Θ ′ be curvature 2-forms corresponding to different connections θ, θ ′ on
the fibre bundle. Then the difference P(Θ) − P(Θ ′) is exact.
This theorem proves that an invariant polynomial P(Θ) is closed and in general
non-trivial. We can then associate to P(Θ) a cohomology class of M . Moreover
Theorem3.4.2 ensures that this cohomology class is independent of the chosen con-
nection. The cohomology class defined by P(Θ) is called a characteristic class.
The characteristic class defined by an invariant polynomial P is denoted by χE (P),
where E is the fibre bundle on which curvatures and connections are defined.

Theorem 3.4.3 Let P be an invariant polynomial in I ∗(G) and E be a fibre bundle
over M , whose structural group G has G as Lie algebra. The map

χE : I ∗(G) → H∗(M ) (3.4.33)

defined by P → χE (P) is a homomorphism.

Theorem3.4.3 establishes a homomorphism, called the Chern–Weil homomor-
phism,4 between the ring I ∗(G) and the de Rham cohomology ring H∗(M ), defined
by

H∗(M ) = ⊕r H
r (M ) (3.4.34)

where Hr is the r th cohomolgy group. The Chern–Weil homomorphism is the fun-
damental instrument that allows one to relate the index of an elliptic complex with
the integral of particular characteristic classes, through the so called index theorem
(stated below in Eq. (3.4.56)). Before giving the statement of this theorem, due to
Atiyah and Singer, we list some specific examples of characteristic classes, which
will be useful in the following.

Definition 3.4.3 Given a complex vector bundle E equipped with a connection θ ,
whose fibre isC

r , we can define its total Chern class c(E,Θ) as the following formal
determinant:

c(E,Θ) = det

(
1 + i

2π
Θ

)
(3.4.35)

where Θ is the matrix-valued curvature 2-form.

The determinant is calculated with respect to the matrix indices. As it is well known,
the determinant det (1 + A) is a polynomial in the matrix elements of A and can

4The interesting history of the Chern–Weil homomorphism, independently discovered by the two
great mathematicians in the years of World War II, is reported in the twin book [1].
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be expanded in powers of A. Such an expansion of the total Chern class yields the
definition of the individual Chern classes ck(E,Θ). In particular, if we call x1, . . . xr
the (formal) eigenvaules5 2-forms of the matrix i

2π Θ we easily find

det

(
1 + i

2π
Θ

)
=

r∏
1

(1 + x j ) = 1 + (x1 + · · · + xr ) +

(x1x2 + · · · + xr−1xr ) + · · · + (x1x2 · · · xr ) (3.4.36)

so that, by writing

c(E,Θ) =
r∑

k=0

ck(E,Θ) (3.4.37)

we get

c0 = 1,

c1 = i

2π
tr (Θ) ,

c2 = 1

8π2

[
tr
(
Θ2

) − (trΘ)2
]

...
...

...

cr = det
iΘ

2π
(3.4.38)

where, for a generic form Ω , by Ωn we mean the nth wedge product ∧nΩ . A
remarkable property of the Chern class is the following: given two complex vector

bundles E
π→ M , F

π ′→ M we have

c(E ⊕ F) = c(E) ∧ c(F) (3.4.39)

Definition 3.4.4 Given a rank r vector bundle E
π→ M we define the total Chern

character by

ch(E,Θ) = tr exp

(
iΘ

2π

)
=
∑
l=1

1

l! tr
(
iΘ

2π

) j

(3.4.40)

and the j th Chern character by

5We stress the word “formal eigenvalues” because the correct framework to understand these eigen-
values is the “splitting principle”, which, for convenience, is mentioned after the Eq. (2.7.59).

http://dx.doi.org/10.1007/978-3-319-74491-9_2
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ch j (E,Θ) = 1

j ! tr
(
iΘ

2π

) j

(3.4.41)

From now on, for notational convenience we refer to ch(E,Θ) as ch E or chΘ

indifferently (and similarly for the Chern class c(E,Θ)). In terms of the eigenvectors
x j we get

ch(Θ) =
r∑
j=1

(
1 + x j + 1

2
x2j + · · ·

)
(3.4.42)

so that we can write

ch0(Θ) = r

ch1(Θ) = c1(Θ)

ch2(Θ) = 1

2
[c21(Θ) − 2c2(Θ)] (3.4.43)

Theorem 3.4.4 Let E and F be two vector bundles over a manifold M . The Chern
character of E ⊗ F and E ⊕ F are given by

ch(E ⊗ F) = ch(E) ∧ ch(F)

ch(E ⊕ F) = ch(E) + ch(F) (3.4.44)

Another useful characteristic class associated with a complex vector bundle is the
Todd class defined by

Td(Θ) =
r∏
j=1

x j

1 − e−x j
(3.4.45)

where x j are the eigenvalues of the curvature 2-form i
2π Θ . We obtain

Td(Θ) = 1 + 1

2

∑
j

x j + 1

12
x2j + · · ·

=
∏
j

(
1 + 1

2 x j +
∑
k≥1

(−)k−1 Bk

2k! x
2k
j

)

= 1 + 1

2
c1(Θ) + 1

12
[c21(Θ) + c2(Θ)] + · · · (3.4.46)

where the numbers Bk appearing in Eq. (3.4.46) are the Bernoulli numbers.
Finallywe define theEuler class. The characteristic classes previously introduced

are naturally defined for complex vector bundles. On the other hand the Euler class
can be defined for real vector bundles over an orientable Riemann manifold M . In
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particular it is consistently defined for even rank real bundles, while it is zero for odd
rank bundles. Given a rank k real bundle E it is useful to construct a complex vector
bundle from E by a complexification procedure. The complexification of E is the
bundle over M obtained by replacing the fibres R

k by C
k = (R ⊕ iR)k . We denote

the complexification of E by EC. We can think of EC as the following product

EC = E ⊗ (R ⊕ iR) (3.4.47)

Complex vector bundles can also be complexified by converting them into real vector
bundles and then complexifying the result. If the starting complex bundle has rank
r , its complexification has rank 2r . Notice that, given a complex vector bundle E ,
and denoting by ER the underlying real bundle, we have

EC

R
= ER ⊗ (R + iR) ∼ E ⊕ E (3.4.48)

where E denotes the conjugate complex bundle, defined by applying complex conju-
gation to the coordinates of the fibres C

r of E . Having outlined the complexification
procedure for a real vector bundle, we define the Euler class through another typical
characteristic class defined in real bundles: the Pontrjagin class. Let E be a real vector
bundle of rank r over M , the i th Pontrjagin class is defined as

pi (E) = (−)i c2i (E
C) (3.4.49)

where c2i (EC) is the 2i thChern class of the complexified bundle. The total Pontrjagin
class is defined as

P(E) = 1 + p1(E) + · · · + p[r/2] (3.4.50)

where [r/2] is the largest integer not greater than r . Consider now real vector bundles
E of even rank over an orientable manifold M . The Euler class is defined by

e2(V ) = p[r/2] (3.4.51)

The Euler class of a Whitney sum E ⊕ V is

e(E ⊕ V ) = e(E)e(V ) (3.4.52)

where we denote c(E)c(V ) = c(E) ∧ c(V ). For a complex vector bundle the Pon-
trjagin and the Euler class are the Pontrjagin and the Euler class of the underlying
real bundle. Since the eigenvalues of the curvature 2-form in the conjugate bundle
are given by −xi , we have

c(EC) = c(E ⊕ E) = c(E)c(E) =
r∏

i=1

(1 + xi )(1 − xi ) =
r∏

i=1

(1 − x2i ) (3.4.53)
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so that
cr (E

C) = (−)r x21 · · · x2r (3.4.54)

and (recalling that EC has rank 2r )

pr (E) = x21 · · · x2r
e(E) = x1x2 · · · xr = cr (E) (3.4.55)

We are now able to state the Atiyah–Singer index theorem in its full generality:

Theorem 3.4.5 Given an elliptic complex (E∗, D) over an m-dimensional
(dimRM = m) compact manifold M without a boundary, then

ind(E∗, D) = (−)
m(m+1)

2

∫
M

ch
(⊕ j (−) j E j

) Td(TM C)

e(TM )
(3.4.56)

where TM is the tangent bundle over M .

Let us now consider the application of the index theorem to some particular elliptic
complexes. Consider anm-dimensional compact orientablemanifoldwithout bound-
aries and the elliptic de Rham complex:

· · · d→ Ωr−1(M )C
d→ Ωr (M )C

d→ Ωr+1(M )C
d→ · · · (3.4.57)

withΩr (M )C = Γ (M ,∧r T ∗M C), where we have complexified the forms to apply
the Atiyah–Singer theorem. The analytical index is given by

ind d =
m∑

r=0

(−)rdimCH
r (M , C) =

m∑
r=0

(−)rdim RH
r (M , R) = χ(M ) (3.4.58)

where χ(M ) is the Euler characteristic of M . Suppose M is even dimensional
m = 2l. Equation3.4.56 gives the following result for the de Rham index:

ind d = (−)l(2l+1)
∫
M

ch
(⊕2l

r (−)r ∧r T ∗M C
) TdTM C

e(TM )
(3.4.59)

To compute ch
(⊕m

r (−)r ∧r T ∗M C
)
we employ the splitting principle. The splitting

principle uses the fact that in order to prove an identity for characteristic classes, it is
sufficient to prove it only for bundles which decompose into a sum of line bundles.
Suppose that a fibre bundle F is a Whitney sum of n line bundles Li ; then

∧p F = ⊕1≤i1···i p≤n
(
Li1 ⊗ · · · ⊗ Lip

)
(3.4.60)

This means that
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ch(∧pF) =
∑

1≤i1···i p≤n

ch(Li1)ch(Li2) · · · ch(Lip ) (3.4.61)

Since for any line bundle appearing in the Whitney sum ch(Li ) = exi , we finally get

ch(∧pF) =
∑

1≤i1···i p≤n

exii +···+xi p (3.4.62)

Applying this result to ⊕m
r (−)r ∧r T ∗M C, and using the fact that taking the dual

bundle merely changes the sign of xi we get

ch ⊕m
r (−)r ∧r T ∗M C =

m∏
i=1

(1 − e−xi )(TM C) (3.4.63)

Moreover we can write

Td(TM C) =
m∏
i=1

xi
1 − e−xi

(TM C) (3.4.64)

Then the index of the de Rham complex is given by

ind d = (−)l
∫
M

∏m
i=1 xi (TM

C)

e(TM )
= (−)l

∫
M

cm(TM C)

e(TM )
=
∫
M

e(TM )

(3.4.65)
where we have used

cm(TM C) = (−)m/2e(TM ⊕ TM ) = (−)l x21 · · · x2m = (−)l e2(TM )

By combining the results for the analytical index and for the Atiyah–Singer index
(often referred to as the topological index), we get the Gauss–Bonnet theorem

∫
M

e(TM ) = χ(M ) (3.4.66)

Form odd, the deRham index is zero. Let us consider now the application of the index
theorem to the Dolbeault complex, which we are going to define below. Consider a
complexmanifoldM with dimCM = m. We denote by T (1,0)M the tangent bundle
spanned by the vectors {∂/∂zμ} and by T (0,1)M its complex conjugate. The space
dual to T (1,0)M is spanned by the 1-forms {dzμ}. We denote it by T ∗(1,0)M . The
space Ωr (M )C of complexified r -forms is decomposed as

Ωr (M )C = ⊕p+q=rΩ
p,q(M ) (3.4.67)
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where by Ω p,q(M ) we denote the space of (p, q) forms. The exterior derivative can
be written as

d = dzμ ∧ ∂

∂zμ
+ dzμ ∧ ∂

∂zμ (3.4.68)

It is immediate to verify that ∂ , ∂ satisfy the following relations:

∂∂ − ∂∂ = ∂2 = ∂
2 = 0 (3.4.69)

Moreover ∂ maps (p, q)-forms into (p + 1, q)-forms and ∂ maps (p, q) forms into
(p, q + 1) forms. Let us consider the sequence

· · · ∂→ Ω(0,q)(M )
∂→ Ω(0,q+1)(M )

∂→ · · · (3.4.70)

This sequence is called theDolbeault complex. It can be shown that (3.4.70) defines
an elliptic complex. The index theorem in this case gives

ind ∂ =
∫
M

ch
(⊕r (−)r ∧r T ∗ (0,1)M

) TdTM C

e(TM )
(3.4.71)

The left hand side of the above equation can be computed using the Eq. (3.4.13), so
that

ind ∂ =
n∑

r=0

(−)r h(0,r) (3.4.72)

where

h(0,r) = dimCH
(0,r)(M ) = dimC

ker∂r

im∂r−1
(3.4.73)

is the complex dimension of the cohomology group H (0,r). The application of theo-
rem (3.4.56) to this case is analogous to the one presented for the de Rham complex
and gives

n∑
r=0

(−)r b(0,r) =
∫
M

Td(T (1,0)M ) (3.4.74)

In the Dolbeault complex the spaceΩ(0,r) can be replaced by a tensor product bundle
Ω(0,r) ⊗ V , where V is a holomorphic vector bundle. In this case we define the
following elliptic complex, named the twisted Dolbeault complex:

· · · ∂V→ Ω(0,q)(M ) ⊗ V
∂V→ Ω(0,q+1)(M ) ⊗ V

∂V→ · · · (3.4.75)

The Atiyah–Singer theorem for this particular complex reduces to the Hirzebruch–
Riemann–Roch theorem:
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ind ∂V =
∫
M

Td (T (1,0)M )ch(V ) (3.4.76)

In the case of complex dimension one, namely dimCM = 1, we get

ind ∂V = 1

2
dimV

∫
M

c1(T
(1,0)M ) +

∫
M

c1(M ) (3.4.77)

Since it can be shown that
∫
M

c1(T
(1,0)M ) =

∫
M

e(TM ) = 2(1 − g) (3.4.78)

where g is the genus of the basemanifold, which in complex dimension one is nothing
but a Riemann surface Σg , in this case we get

ind ∂V = dimV (1 − g) +
∫

Σg

iΘ

2π
(3.4.79)

In the general case of a complexmanifoldM of complexdimensionn, the dimensions

h(p,q) def= dimC H (p,q) (M ) (3.4.80)

of the Dolbeault cohomology groups are named Hodge numbers.

3.5 Kähler Metrics

In the previous sections we have discussed the general notion of hermitian fibre
metrics on holomorphic vector bundles and in particular of hermitian manifold met-
rics defined on the tangent bundle. In this section we introduce the more restricted
concept of Kählerian metrics that plays a fundamental role in many applications.6

The definition of the previous section Definition3.3.2 can also be restated in the
following way: a manifold metric g is a symmetric bilinear scalar valued functional
on Γ (TM ,M ) ⊗ Γ (TM ,M )

g : Γ (TM ,M ) ⊗ Γ (TM ,M ) → C∞(M ) (3.5.1)

In every coordinate system it is represented by the familiar symmetric tensor gαβ(x).
Indeed we have

g(u,w) = gαβu
αwβ (3.5.2)

6For Kähler’s life, his relations with Chern and other outstanding mathematicians and for the
conceptual development of Kähler metrics we refer the reader to the twin book [1].
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where uα,wβ are the components of the vector fields u and w, respectively. In this
language the hermiticity of the manifold metric g can be rephrased in the following
way:

Definition 3.5.1 Let M be a 2n-dimensional manifold with an almost complex
structure J . A metric g on M is called hermitian with respect to J if

g(Ju, Jw) = g(u,w) (3.5.3)

Given a metric g and an almost complex structure J let us introduce the following
differential 2-form K :

K (u,w) = 1

2π
g(Ju,w) (3.5.4)

The components Kαβ of K are given by

Kαβ = gγβ J
γ
α (3.5.5)

and by direct computation we can easily verify that:

Theorem 3.5.1 g is hermitian if and only if K is anti-symmetric.

Definition 3.5.2 A hermitian almost complex manifold is an almost complex man-
ifold endowed with a hermitian metric g.

In a well-adapted basis we can write

g(u,w) = gi j u
iw j + gi∗ j∗u

i∗w j∗ + gı j∗u
iw j∗ + gi∗ j u

iw j∗ (3.5.6)

Reality of g(u,w) implies

gi j = (gi∗ j∗)
∗

gi∗ j = (
gi j∗

)�
(3.5.7)

symmetry (g(u,w) = g(w, u)) yields

gi j = g ji

g j∗i = gi j∗ (3.5.8)

while the hermiticity condition gives

gi j = gi∗ j∗ = 0 (3.5.9)

Finally in the well-adapted basis the 2-form K associated to the hermitian metric g
can be written as

K = i

2π
gi j�dz

i ∧ dz j
∗

(3.5.10)
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Definition 3.5.3 A hermitian metric on a complex manifold M is called a Kähler
metric if the associated 2-form K is closed:

dK = 0 (3.5.11)

A hermitian complex manifold endowed with a Kähler metric is called a Kähler
manifold.

Equation (3.5.11) is a differential equation for gi j∗ whose general solution in any
local chart is given by the following expression:

gi j∗ = ∂i∂ j∗K (3.5.12)

whereK = K ∗ = K (z, z∗) is a real function of zi , zi∗ . The function K is called
theKähler potential and it is defined only up to the real part of a holomorphic function
f (z). Indeed one sees that

K ′(z, zi
∗
) = K (z, zi

∗
) + f (z) + f ∗(z∗) (3.5.13)

give rise to the same metric gi j∗ as K . The transformation (3.5.13) is called a
Kähler transformation. The differential geometry of a Kähler manifold is described
by Eqs. (3.3.18) and (3.3.19) with gi j∗ given by (3.5.12). Kähler geometry is that
implied by N = 1 supersymmetry for the scalar multiplets [7].

3.6 Hypergeometry

Next we turn our attention to the geometry that emerges when the manifold admits
three complex structures satisfying the quaternionic algebra first discovered by
Hamilton. To this effect the prerequisite is that the dimension of the manifold should
be a multiple of 4. This is precisely what happens in supersymmetry when we con-
sider the so called N = 2 hypermultiplets. Each of them contains 4 real scalar
fields and, at least locally, they can be regarded as the four components of a quater-
nion. The locality caveat is, in this case, very substantial because global quaternionic
coordinates can be constructed only occasionally even on those manifolds that are
denominated quaternionic in the mathematical literature [2, 3]. Anyhow, what is
important is that, in the hypermultiplet sector, the scalar manifold QM has dimen-
sion multiple of four:

dimR QM = 4m ≡ 4 # of hypermultiplets (3.6.1)

and, in some appropriate sense, it has a quaternionic structure.
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We name Hypergeometry that pertaining to the hypermultiplet sector, irrespec-
tivelywhetherwe dealwith global or localN = 2 theories. Yet there are two kinds of
hypergeometries. Supersymmetry requires the existence of a principal SU(2)-bundle

SU −→ QM (3.6.2)

The bundle SU is flat in the rigid supersymmetry case while its curvature is pro-
portional to the Kähler forms in the local case.

These two versions of hypergeometry were already known in mathematics prior
to their use [2–5, 8–10] in the context of N = 2 supersymmetry and are identified
as:

rigid hypergeometry ≡ HyperKähler geometry.

local hypergeometry ≡ Quaternionic Kähler geometry (3.6.3)

3.6.1 Quaternionic Kähler, Versus HyperKähler Manifolds

Both a Quaternionic Kähler or a HyperKähler manifold QM is a 4m-dimensional
real manifold endowed with a metric h:

ds2 = huv(q)dqu ⊗ dqv ; u, v = 1, . . . , 4m (3.6.4)

and three complex structures

(J x ) : T (QM ) −→ T (QM ) (x = 1, 2, 3) (3.6.5)

that satisfy the quaternionic algebra

J x J y = −δxy 11 + εxyz J z (3.6.6)

and respect to which the metric is hermitian:

∀X,Y ∈ TQM : h
(
J xX, J xY

) = h (X,Y) (x = 1, 2, 3) (3.6.7)

From Eq. (3.6.7) it follows that one can introduce a triplet of 2-forms

K x = K x
uvdq

u ∧ dqv ; K x
uv = huw(J x )wv (3.6.8)

that provides the generalization of the concept of Kähler form occurring in the com-
plex case. The triplet K x is named theHyperKähler form. It is an SU(2) Lie-algebra
valued 2-form in the same way as the Kähler form is a U(1) Lie-algebra valued
2-form. In the complex case the definition of Kähler manifold involves the statement
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that the Kähler 2-form is closed. At the same time in Hodge–Kähler manifolds the
Kähler 2-form can be identified with the curvature of a line-bundle which in the case
of rigid supersymmetry is flat. Similar steps can be taken also here and lead to two
possibilities: either HyperKähler or Quaternionic Kähler manifolds.

Let us introduce a principal SU(2)-bundle SU as defined in Eq. (3.6.2). Let
ωx denote a connection on such a bundle. To obtain either a HyperKähler or a
Quaternionic Kähler manifold we must impose the condition that the HyperKähler
2-form is covariantly closed with respect to the connection ωx :

∇K x ≡ dK x + εxyzωy ∧ K z = 0 (3.6.9)

The only difference between the two kinds of geometries resides in the structure of
theSU -bundle.

Definition 3.6.1 A HyperKähler manifold is a 4m-dimensional manifold with the
structure described above and such that the SU -bundle is flat

Defining theSU -curvature by:

Ω x ≡ dωx + 1

2
εxyzωy ∧ ωz (3.6.10)

in the HyperKähler case we have:

Ω x = 0 (3.6.11)

Viceversa

Definition 3.6.2 A Quaternionic Kähler manifold is a 4m-dimensional manifold
with the structure described above and such that the curvature of theSU -bundle is
proportional to the HyperKähler 2-form

Hence, in the quaternionic case we can write:

Ω x = λ K x (3.6.12)

where λ is a non vanishing real number.
As a consequence of the above structure the manifoldQM has a holonomy group

of the following type:

Hol(QM ) = SU(2) ⊗ H (Quaternionic Kähler)

Hol(QM ) = 11 ⊗ H (HyperKähler)

H ⊂ Sp(2m, R) (3.6.13)

In both cases, introducing flat indices {A, B,C = 1, 2}{α, β, γ = 1, . . . , 2m} that
run, respectively, in the fundamental representation of SU(2) and of Sp(2m, R), we
can find a vielbein 1-form
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U Aα = U Aα
u (q)dqu (3.6.14)

such that
huv = U Aα

u U Bβ
v CαβεAB (3.6.15)

where Cαβ = −Cβα and εAB = −εBA are, respectively, the flat Sp(2m) and Sp(2) ∼
SU(2) invariant metrics. The vielbein U Aα is covariantly closed with respect to
the SU(2)-connection ωz and to some Sp(2m, R)-Lie Algebra valued connection
Δαβ = Δβα:

∇U Aα ≡ dU Aα + i

2
ωx (εσxε

−1)AB ∧ U Bα

+ Δαβ ∧ U Aγ
Cβγ = 0 (3.6.16)

where (σ x ) B
A are the standard Pauli matrices. FurthermoreU Aα satisfies the reality

condition:
UAα ≡ (U Aα)∗ = εABCαβU

Bβ (3.6.17)

Equation (3.6.17) defines the rule to lower the symplectic indices by means of the flat
symplectic metrics εAB and Cαβ . More specifically we can write a stronger version
of Eq. (3.6.15) [7]:

(U Aα
u U Bβ

v + U Aα
v U Bβ

u )Cαβ = huvε
AB

(3.6.18)

We have also the inverse vielbein U u
Aα defined by the equation

U u
AαU

Aα
v = δuv (3.6.19)

Flattening a pair of indices of the Riemann tensor Ruv
ts we obtain

Ruv
tsU

αA
u U βB

v = − i

2
Ω x

tsε
AC(σx )

B
C C

αβ + R
αβ
ts εAB (3.6.20)

where R
αβ
ts is the field strength of the Sp(2m) connection:

dΔαβ + Δαγ ∧ Δδβ
Cγ δ ≡ R

αβ = R
αβ
ts dq

t ∧ dqs (3.6.21)

Equation (3.6.20) is the explicit statement that the Levi Civita connection associated
with the metric h has a holonomy group contained in SU(2) ⊗ Sp(2m). Consider
now Eqs. (3.6.6), (3.6.8) and (3.6.12). We easily deduce the following relation:

hst K x
us K

y
tw = −δxyhuw + εxyz K z

uw (3.6.22)
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that holds true both in the HyperKähler and in the quaternionic case. In the latter
case, using Eqs. (3.6.12), (3.6.22) can be rewritten as follows:

hstΩ x
usΩ

y
tw = −λ2δxyhuw + λεxyzΩ z

uw (3.6.23)

Equation (3.6.23) implies that the intrinsic components of the curvature 2-form Ω x

yield a representation of the quaternion algebra. In the HyperKähler case such a
representation is provided only by the HyperKähler form. In the quaternionic case
we can write:

Ω x
Aα,Bβ ≡ Ω x

uvU
u
AαU

v
Bβ = −iλCαβ(σx )

C
A εCB (3.6.24)

Alternatively Eq. (3.6.24) can be rewritten in an intrinsic form as

Ω x = −i λCαβ(σx )
C

A εCBU
αA ∧ U βB (3.6.25)

whence we also get:
i

2
Ω x (σx )

B
A = λUAα ∧ U Bα (3.6.26)

3.7 Moment Maps

The conception of moment maps has its root in Hamiltonian mechanics where the
time-derivative of any dynamical variable can be represented by the Poisson bracket
of that variable with the hamiltonian. More generally the action of any vector field
t on functions defined over the phase-space M can be represented as the Poisson
bracket of that function with a generalized hamiltonianHt which is associated with
the vector field:

t ≡ t i (p, q)
∂

∂qi
+ ti (p, q)

∂

∂pi
t f(p, q) = {f , Ht} (3.7.1)

The moment map is the map:

μ : Γ [TM ,M ] → C [M ]

μ[t] = Ht (3.7.2)

which to every vector field associates its proper hamiltonian.
In the present geometrical context, conceptually very much different from that

of dynamical systems which are of no concern to us in this book, the focus is on
the moment-maps of Killing vectors, associated with isometries of the manifoldM .
The symplectic structure which allows for the definition of Poisson-like brackets is
provided by the presence of the complex-structure leading to closed or covariantly
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closed 2-forms, theKähler or theHyperKähler ones. Our generalized hamiltonians or
simply moment-maps have another important role to play. On one hand they appear
as constructive items in supergravity lagrangians with gauge-symmetries, on the
other, purely mathematical side, they are the building blocks in a general procedure,
the Kähler or HyperKähler quotient which allows to construct non trivial Kähler or
HyperKähler manifolds starting from simple trivial ones.

In Chap.8 we plan to exemplify such constructions with the derivation of ALE-
manifolds by means of HyperKḧaler quotients. Here we just begin with the general
definitions of holomorphic and tri-holomorphic moment maps.

3.7.1 The Holomorphic Moment Map on Kähler Manifolds

The concept of holomorphic moment map applies to all Kähler manifolds, not nec-
essarily special. Indeed it can be constructed just in terms of the Kähler potential
without advocating any further structure. In this subsection we review its properties
and definition, as usual in order to fix conventions, normalizations and notations.

Let gi j� be the Kähler metric of a Kähler manifoldM and let us assume that gi j�
admits a non trivial group of continuous isometries G generated by Killing vectors kiI
(I = 1, . . . , dim G ) that define the infinitesimal variation of the complex coordinates
zi under the group action:

zi → zi + εIkiI(z) (3.7.3)

Let kiI(z)be abasis of holomorphicKillingvectors for themetric gi j� .Holomorphicity
means the following differential constraint:

∂ j∗k
i
I(z) = 0 ↔ ∂ j k

i∗
I (z) = 0 (3.7.4)

while the generic Killing equation (suppressing the gauge index I):

∇μkν + ∇μkν = 0 (3.7.5)

in holomorphic indices reads as follows:

∇i k j + ∇ j ki = 0 ; ∇i∗k j + ∇ j ki∗ = 0 (3.7.6)

where the covariant components are defined as k j = g ji∗ki
∗
(and similarly for ki∗ ).

The vectors kiI are generators of infinitesimal holomorphic coordinate transfor-
mations δzi = εIkiI(z) which leave the metric invariant. In the same way as the
metric is the derivative of a more fundamental object, the Killing vectors in a Kähler
manifold are the derivatives of suitable prepotentials. Indeed the first of Eq. (3.7.6)
is automatically satisfied by holomorphic vectors and the second equation reduces
to the following one:

http://dx.doi.org/10.1007/978-3-319-74491-9_8
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kiI = igi j
∗
∂ j∗PI, P∗

I = PI (3.7.7)

In other words if we can find a real functionPI such that the expression igi j
∗
∂ j∗P(I)

is holomorphic, then Eq. (3.7.7) defines a Killing vector.
The construction of the Killing prepotential can be stated in a more precise geo-

metrical fashion through the notion of moment map. Let us review this construction.
Consider a Kählerian manifold M of real dimension 2n. Consider an isometry

group G acting on M by means of Killing vector fields
−→
X which are holomorphic

with respect to the complex structure J ofM ; then these vector fields preserve also
the Kähler 2-form

L−→
X g = 0 ↔ ∇(μXν) = 0

L−→
X
J = 0

}
⇒ 0 = L−→

X K = i−→X dK + d(i−→X K ) = d(i−→X K )

(3.7.8)
HereL−→

X and i−→X denote respectively the Lie derivative along the vector field
−→
X and

the contraction (of forms) with it.
If M is simply connected, d(i−→X K ) = 0 implies the existence of a function P−→

X
such that

− 1

2
dP−→

X
= i−→

X
K (3.7.9)

The function P−→
X
is defined up to a constant, which can be arranged so as to make

it equivariant: −→
X P−→

Y = P[−→X ,
−→
Y ] (3.7.10)

P−→
X
constitutes then a moment map. This can be regarded as a map

P : M −→ R ⊗ G
∗ (3.7.11)

where G
∗ denotes the dual of the Lie algebra G of the group G . Indeed let x ∈ G

be the Lie algebra element corresponding to the Killing vector
−→
X ; then, for a given

m ∈ M
μ(m) : x −→ P−→

X
(m) ∈ R (3.7.12)

is a linear functional on G. If we expand
−→
X = aIkI in a basis of Killing vectors kI

such that
[kI, kL] = f K

IL kK (3.7.13)

we have also
P−→

X = aIPI (3.7.14)

In the following we use the shorthand notation LI, iI for the Lie derivative and the
contraction along the chosen basis of Killing vectors kI.
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From a geometrical point of view the prepotential, or moment map, PI is the
Hamiltonian function providing the Poissonian realization of the Lie algebra on the
Kähler manifold. This is just another way of stating the already mentioned equivari-
ance. Indeed the very existence of the closed 2-form K guarantees that every Kähler
space is a symplectic manifold and that we can define a Poisson bracket.

Consider Eq. (3.7.7). To every generator of the abstract Lie algebra G we have
associated a function PI on M ; the Poisson bracket of PI with PJ is defined as
follows:

{PI,PJ} ≡ 4πK (I, J) (3.7.15)

where K (I, J) ≡ K (kI,kJ) is the value of K along the pair of Killing vectors.
In Ref. [4] the following lemma was proved:

Lemma 3.1 The following identity is true:

{PI,PJ} = f L
IJ PL + CIJ (3.7.16)

where CIJ is a constant fulfilling the cocycle condition

f L
IM CLJ + f L

MJCLI + f L
JI CLM = 0 (3.7.17)

If the Lie algebra G has a trivial second cohomology group H 2(G) = 0, then the
cocycle CIJ is a coboundary; namely we have

CIJ = f L
IJ CL (3.7.18)

where CL are suitable constants. Hence, assuming H 2(G) = 0 we can reabsorb CL

in the definition of PI:
PI → PI + CI (3.7.19)

and we obtain the stronger equation

{PI,PJ} = f L
IJ PL (3.7.20)

Note that H 2(G) = 0 is true for all semi-simple Lie algebras. Using Eqs. (3.7.16),
(3.7.20) can be rewritten in components as follows:

i

2
gi j∗(k

i
Ik

j∗
J − kiJk

j∗
I ) = 1

2
f L
IJ PL (3.7.21)

Equation (3.7.21) is identical with the equivariance condition in Eq. (3.7.10).
Finally let us recall the explicit general way of solving Eq. (3.7.9) obtaining the

real valued function PI which satisfies Eq. (3.7.7). In terms of the Kähler potential
K we have:

PI
x = − i

2

(
kiI∂iK − kıI∂ıK

) + Im( fI) , (3.7.22)
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where fI = fI(z) is a holomorphic transformation on the line-bundle, defining a
compensating Kähler transformation:

kiI∂iK + kıI∂ıK = − fI(z) − f I(z) . (3.7.23)

3.7.2 The Triholomorphic Moment Map on Quaternionic
Manifolds

Next, following closely the original derivation of [4, 11] let us turn to a discussion of
the triholomorphic isometries of the manifoldQM associated with hypermultiplets.
In D = 4 supergravity the manifold of hypermultiplet scalarsQM is a Quaternionic
Kählermanifold andwe can gauge only those of its isometries that are triholomorphic
and that either generate an abelian group G or are suitably realized as isometries also
on the special manifold ŜK n . This means that on QM we have Killing vectors:

kI = kuI
∂

∂qu
(3.7.24)

satisfying the same Lie algebra as the corresponding Killing vectors on ŜK n . In
other words

KI = k̂iI∂ i + k̂i
∗
I ∂ i∗ + kuI ∂u (3.7.25)

is a Killing vector of the block diagonal metric:

g =
(
ĝi j� 0
0 huv

)
(3.7.26)

defined on the product manifold7 ŜK ⊗ QM .
Let us first focus on the manifoldQM . Triholomorphicity means that the Killing

vector fields leave the HyperKähler structure invariant up to SU(2) rotations in the
SU(2)-bundle defined by Eq. (3.6.2). Namely:

LIK x = εxyz K yW z
I ; LIω

x = ∇Wx
I (3.7.27)

7SpecialKähler geometrywill be discussed inChap.4, yetwe anticipate here that it is the geometrical
structure imposed by N = 2 supersymmetry on the scalars belonging to vector multiplets (the
scalar partners of the gauge vectors). In our notations the Special Kähler manifold which describes
the interaction of vector multiplets is denoted ŜK and all the Special Geometry Structures are
endowed with a hat in order to distinguish this Special Kähler manifold from the other one which is
incapsulated into the Quaternionic Kähler manifoldQM describing the hypermultiplets when this
latter happens to be in the image of the c-map. For all these concepts we refer the reader to Chap. 4.
They are not necessary to understand the present constructions, yet they were essential part for their
establishment in the original papers mentioned here above.

http://dx.doi.org/10.1007/978-3-319-74491-9_4
http://dx.doi.org/10.1007/978-3-319-74491-9_4
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where Wx
I is an SU(2) compensator associated with the Killing vector kuI . The com-

pensator Wx
I necessarily fulfills the cocycle condition:

LIW
x
J − LJW

x
I + εxyzW y

I W
z
J = f ··L

IJ Wx
L (3.7.28)

In the HyperKähler case the SU(2)-bundle is flat and the compensator can be reab-
sorbed into the definition of the HyperKähler forms. In other words we can always
find a map

QM −→ Lx
y(q) ∈ SO(3) (3.7.29)

that trivializes the SU -bundle globally. Redefining:

K x ′ = Lx
y(q) K y (3.7.30)

the new HyperKähler form obeys the stronger equation:

LIK
x ′ = 0 (3.7.31)

On the other hand, in the quaternionic case, the non-triviality of the SU -bundle
forbids to eliminate theW -compensator completely.Due to the identificationbetween
HyperKähler forms and SU(2) curvatures Eq. (3.7.27) is rewritten as:

LIΩ
x = εxyzΩ yW z

I ; LIω
x = ∇Wx

I (3.7.32)

In both cases, anyhow, and in full analogy with the case of Kähler manifolds, to each
Killing vector we can associate a triplet P x

I (q) of 0-form prepotentials. Indeed we
can set:

iIK x = −∇P x
I ≡ −(dP x

I + εxyzωyP z
I ) (3.7.33)

where ∇ denotes the SU(2) covariant exterior derivative.
As in the Kähler case Eq. (3.7.33) defines a moment map:

P : M −→ R
3 ⊗ G

∗ (3.7.34)

where G
∗ denotes the dual of the Lie algebra G of the group G . Indeed let x ∈ G

be the Lie algebra element corresponding to the Killing vector
−→
X ; then, for a given

m ∈ M
μ(m) : x −→ P−→

X (m) ∈ R
3 (3.7.35)

is a linear functional on G . If we expand
−→
X = aIkI on a basis of Killing vectors kI

such that
[kI, kL] = f K

IL kK (3.7.36)

and we also choose a basis ix (x = 1, 2, 3) for R
3 we get:
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P−→
X

= aIP x
I ix (3.7.37)

Furthermore we need a generalization of the equivariance defined by Eq. (3.7.10)

−→
X ◦ P−→

Y
= P[−→X ,

−→
Y ] (3.7.38)

In the HyperKähler case, the left-hand side of Eq. (3.7.38) is defined as the usual
action of a vector field on a 0-form:

−→
X ◦ P−→

Y = i−→X dP−→
Y = Xu ∂

∂qu
P−→

Y (3.7.39)

The equivariance condition implies that we can introduce a triholomorphic Poisson
bracket defined as follows:

{PI,PJ}x ≡ 2K x (I, J) (3.7.40)

leading to the triholomorphic Poissonian realization of the Lie algebra:

{PI,PJ}x = f KIJ P
x
K (3.7.41)

which in components reads:

K x
uv k

u
I k

v
J = 1

2
f KIJ P

x
K (3.7.42)

In the quaternionic case, instead, the left-hand side of Eq. (3.7.38) is interpreted as
follows: −→

X ◦ P−→
Y = i−→X ∇P−→

Y = Xu ∇u P−→
Y (3.7.43)

where ∇ is the SU(2)-covariant differential. Correspondingly, the triholomorphic
Poisson bracket is defined as follows:

{PI,PJ}x ≡ 2K x(I, J) − λ εxyz P y
I P

z
J (3.7.44)

and leads to the Poissonian realization of the Lie algebra

{PI,PJ}x = f KIJ P
x
K (3.7.45)

which in components reads:

K x
uv k

u
I k

v
J − λ

2
εxyz P y

I P
z
J = 1

2
f KIJ P

x
K (3.7.46)
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Equation (3.7.46), which is the most convenient way of expressing equivariance in a
coordinate basis was originally written in [4] and has played a fundamental role in
the construction of supersymmetric actions for gaugedN = 2 supergravity both in
D = 4 [4, 5] and in D = 5 [12].

3.8 Kähler Surfaces with One Continuous Isometry

As an illustration of the concepts introduced in the previous sections we consider
here a class of very simple manifolds for which a lot of explicit calculations can be
explicitly done, quite non trivial conceptual questions can be addressed and answered.
These are 2-dimensional surfaces endowedwith a one-dimensional continuous group
of isometries Giso. As we advocate below the geometry of such manifolds is com-
pletely encoded in a single positive real function V (φ) of a single real coordinate φ.
We name such a function the potential.8 The main point is that any two-dimensional
Euclidean manifold is actually complex and Kähler. This offers us the possibility of
exemplifying all the structures we have discussed.We have to find the complex struc-
ture, the Kähler form and the Kähler potential. Furthermore since we have a Killing
vector we can construct its moment map. Finally we can calculate the curvature. All
these objects are functions of a single coordinate related with the initial potential
V (φ) and its derivatives. Last but not least we have to decide the topological nature
of the isometry group.

Within this class ofmanifoldswe are able to construct several interesting examples
that hopefully should clarify the non trivial aspects of the geometrical apparatus
developed in previous sections. In particular, sincewe are dealingwith 2-dimensional
surfaces we can visualize them by means of their embedding in three-dimensional
space.

With the above motivations let us consider Riemannian 2-dimensional manifolds
Σ whose metric is the following one:

ds2Σ = p(U ) dU 2 + q(U ) dB2 (3.8.1)

p(U ), q(U ) being two positive definite functions of their argument. The isometry
group of the manifold Σ is generated by the Killing vector k[B] = ∂B .

A fundamental geometrical question is whether k[B] generates a compact rotation
symmetry, or a non compact symmetry either parabolic or hyperbolic. We plan to
discuss this issue in detail in the sequel.

Actually when Σ = Σmax is a constant curvature surface namely the coset
manifold SU(1,1)

U(1) ∼ SL(2,R)

O(2) , there is also a third possibility. In such a situation the
Killing vector k[B] can be the generator of a dilatation, namely it can correspond to

8This name is related with the use of this class of surfaces in supergravity inflationary models as
described in [13–15], yet this is not relevant to us here. In this book our view point is just geometrical.
Most of the material presented in this section was originally worked out in [13–15].
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a non-compact but semi-simple element d =
(
1 0
0 −1

)
of the Lie algebra SL(2, R)

rather then to a nilpotent one t =
(
0 1
0 0

)
.

As all other two-dimensional surfaces, Σ has an underlying complex Kählerian
structure that we can systematically uncover with the methods described in this
chapter. The first step is to determine the complex structure with respect to which
the metric (3.8.1) is hermitian. By definition an almost complex structure is a tensor
Jβ

α which squares to minus the identity:

Jβ
α J

γ

β = − δγ
α (3.8.2)

The almost complex structure Jβ
α becomes a true complex structure if its Nienhuis

tensor vanishes:
N γ

αβ ≡ ∂[α J
γ

β] − Jμ
α Jν

β ∂[μ J
γ

ν] = 0 (3.8.3)

Given a complex structure, a metric gαβ is hermitian with respect to it if the following
identity is true:

gαβ = Jγ
α J

δ
β gγ δ (3.8.4)

Given the metric (3.8.1) there is a unique tensor Jβ
α , which simulatenously satisfies

Eqs. (3.8.2), (3.8.3), (3.8.4) and it is the following:

J =
(

0 JUB
JB
U 0

)
=

⎛
⎝ 0

√
p(U )

q(U )

−
√

q(U )

p(U )
0

⎞
⎠ (3.8.5)

Next, according to theory, the Kähler 2-form is defined by:

K = Kαβ dx
α ∧ dxβ = gαγ J

γ

β dxα ∧ dxβ

= −√
p(U ) q(U ) dU ∧ dB (3.8.6)

and it is clearly closed. Hence the metric (3.8.1) is Kählerian and necessarily admits
a representation in terms of a complex coordinate ζ and a Kähler potentialK (ζ , ζ ).
In terms of the complex coordinate:

ζ = ζ(U, B) (3.8.7)

the Kähler 2-form K in Eq. (3.8.6) should be rewritten as:

K = ∂ ∂ K = ∂ζ ∂ζ K dζ ∧ dζ (3.8.8)

Next one aims at reproducing the Kählerian metric (3.8.1) in terms of a complex
coordinate z = z(U, B) and a Kähler potential K (z , z) = K �(z , z) such that:
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K = i ∂ ∂ K = i∂z ∂z K dz ∧ dz ; ds2Σ = ∂z ∂z K dz ⊗ dz (3.8.9)

The complex coordinate z is necessarily a solution of the complex structure equation:

Jβ
α ∂β z = i∂α z ⇒

√
p(U )

q(U )
∂B z(U, B) = i ∂U z(U, B) (3.8.10)

The general solution of such an equation is easily found. Define the linear combina-
tion9:

w ≡ iC(U ) − B ; C(U ) =
∫ √

p(U )

q(U )
dU (3.8.11)

and consider any holomorphic function f (w). As one can immediately verify, the
position z(U, B) = f (w) solves Eq. (3.8.10). What is the appropriate choice of the
holomorphic function f (w)? Locally (in an open neighborhood) this is an empty
question, since the holomorphic function f (w) simply corresponds to a change of
coordinates and gives rise to the same Kähler metric in a different basis. Globally,
however, there are significant restrictions that concern the range of the variables B
and C(U ), namely the global topology of the manifold Σ . By definition B is the
coordinate that, within Σ , parameterizes points along the GΣ -orbits, having denoted
by GΣ the isometry group. If GΣ is compact, then B is a coordinate on the circle and
it must be defined up to identifications B � B + 2 n π , where n is an integer. On the
other hand if B is non compact its range extends on the full real line R.

Furthermore, it is convenient to choose a canonical variable φ and codify the
geometry of the surface in terms of a single positive potential function V (φ) rewriting
it in the following way:

ds2g = dφ2 +
(
d
√
V (φ)

dφ

)2

︸ ︷︷ ︸
f 2(φ)

dB2 (3.8.12)

Hence we aim at a Kähler potential K (z, z) that in terms of the variables C(U )

and B should actually depend only on C , being constant on the G -orbits. Starting
from the metric (3.8.1) we can always choose a canonical variable φ defined by the
position:

φ = φ(U ) =
∫ √

p(U ) dU ; dφ = √
p(U ) dU (3.8.13)

9As it follows from the present discussion the coordinateC(U ) has an intrinsic geometric character-
ization as that one which solves the differential equation of the complex structure. For the historical
reasons explained in [13–15] we name C the Van Proeyen coordinate, abbreviated VP-coordinate.
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and assuming that φ(U ) can be inverted U = U (φ) we can rewrite (3.8.1) in the
following canonical form:

ds2can = dφ2 + (
P ′(φ)

)2 dB2 ; P ′(φ) = √
q (U (φ)) ; √

p(U (φ))
dU

dφ
= 1

︸ ︷︷ ︸
by construction

(3.8.14)
The reason to call the square root of q (U (φ)) with the nameP ′(φ) is the interpre-
tation of such a function as the derivative with respect to the canonical variable φ of
the moment map of the Killing vector k[B].

By using the canonical variable φ, the coordinate C defined in Eq. (3.8.11)
becomes:

C(φ) = C (U (φ)) =
∫

dφ

P ′(φ)
(3.8.15)

and the metric ds2Σ = ds2can of the Kähler surface Σ can be rewritten as:

ds2Σ = 1
2

d2 J

dC2

(
dC2 + dB2

)
(3.8.16)

where the function J (C) is defined as follows:

J (φ) ≡ 2
∫

P(φ)

P ′(φ)
dφ ; J (C) ≡ J (φ(C)) (3.8.17)

It appears from the above formula that the crucial step in working out the analytic
form of the function J (C) is the ability of inverting the relation between the coor-
dinate C , defined by the integral (3.8.15), and the canonical one φ, a task which,
in the general case, is quite hard in both directions. The indefinite integral (3.8.15)
can be expressed in terms of special functions only in certain cases and even less
frequently one has at his own disposal inverse functions. In any case the problem is
reduced to quadratures and one can proceed further. Having already established in
Eq. (3.8.11) the general solution of the complex structure equations, there are three
possibilities that correspond, in the case of constant curvature manifoldsΣmax , to the
three conjugacy classes of SL(2, R) elements (elliptic, hyperbolic and parabolic). In
the three cases J (C) is identified with the Kähler potential K (z, z), but it remains
to be decided whether the coordinate C is to be identified with the imaginary part
of the complex coordinate, namely C = Im z, with the logarithm of its modulus
C = 1

2 log |z|2, or with a third combination of z and z, namely whether we choose
the first the second or the third of the options listed below:

z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζ ≡ exp [− iw] = exp [C(φ)]︸ ︷︷ ︸
ρ(φ)

exp [iB]

t ≡ w = iC(φ) − B

ζ̂ ≡ i tanh
(
− 1

2 w
)

= i tanh
(
− 1

2 (iC(φ) − B)
)

∣∣∣∣∣∣∣∣∣
C(φ) ≡

∫
1

P ′(φ)
dφ

(3.8.18)
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If we choose the first solution z = ζ , that we name name of theDisk-type, we obtain
that the basic isometry generated by the Killing vector k[B] is a compact rotation
symmetry. Choosing the second solution z = t , that we name of Plane-type, is
appropriate instead to the case of a non compact shift symmetry. The third possibility
mentioned above certainly occurs in the case of constant curvature surfacesΣmax and
leads to the interpretation of the B-shift as an SO(1, 1)-hyperbolic transformation.

In Sect. 3.8.5 we recall that the classification of a one dimensional isometry group
as elliptic, parabolic or hyperbolic exists also for non maximally symmetric man-
ifolds and it can be unambiguously formulated for Hadamard manifolds that are,
by definition, simply connected, smooth Riemannian manifolds with a non positive
definite curvature, i.e. R(x) ≤ 0, ∀ x ∈ Σ , having denoted by R(x) the scalar
curvature at the point x .

In the three cases mentioned in Eq. (3.8.18) the analytic form of the holomorphic
Killing vector k[B] is quite different:

k[B] =

⎧⎪⎨
⎪⎩
iζ ∂ζ ≡ kz∂z ⇒ kz = i z ; Disk-type, compact rotation
∂t ≡ kz∂z ⇒ kz = 1 ; Plane-type, non-compact shift

i
(
1 + ζ̂ 2

)
∂
ζ̂

≡ kz∂z ⇒ kz = i
(
1 + z2

)
; Disk-type, hyperbolic boost

(3.8.19)

Choosing the complex structure amounts to the same as introducing one half of the
missing information on the global structure ofΣ , namely the range of the coordinate
B. The other half is the range of the coordinate U or C .

Actually, bymeans of the constant curvature examples, a criterion able to discrim-
inate the relevant topologies is encoded in the asymptotic behavior of the function
∂2
C J (C) for large and small values of its argument, namely in the center of the bulk
and on the boundary of the surface Σ . The main conclusions that we can reach by
considering the case of constant curvature surfaces are those summarized below and
are also encoded in Table3.1:

(I) The global topology of the group GΣ reflects into a different asymptotic behav-
ior of the function ∂2

C J (C) in the region that we can call the origin of themanifold.
In the compact case the complex coordinate z is charged with respect to U(1) and,
for consistency, this symmetry should exist at all orders in an expansion of the
line element ds2Σ for small coordinates. Hence for z → 0 the line element should
approach the canonical one of a flat complex-manifold:

ds2Σ ∝ dz dz (3.8.20)

Assuming, as it is necessary for the U(1) interpretation of the B-shift symmetry,
that z = ζ = exp [δ(C + i B)], where δ is some real coefficient, Eq. (3.8.20)
can be satisfied if and only if we have:

lim
C → − ∞ exp [− 2 δ C] ∂2

C J (C) = const. (3.8.21)
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or more precisely:

∂2
C J (C)

C → − ∞≈ const × exp [ 2 δ C] + subleading

J (C)
C → − ∞≈ const × exp [ 2 δ C] + subleading (3.8.22)

The above stated is an intrinsic clue to establish the global topology of the Käh-
ler surface Σ . In Sect. 3.8.5 we present some rigorous mathematical results that
justify the above criterion to establish the compact nature of the gauged isom-
etry. Indeed what, in heuristic jargon we call the origin of the manifold is, in
rigorous mathematical language, the fixed point for all Γ ∈ GΣ , located in the
interior of the manifold, whose existence is a necessary defining feature of an
elliptic10isometry group G .

(II) The above properties are general and apply to all surfaces of type (3.8.1)–
(3.8.12). In the particular case of constant curvature Kähler surfaces there are
five ways of writing the line-element (3.8.12), two associated with a flat Kähler
manifold and threewith the unique negative curvature two-dimensional symmetric
space SL(2,R)/O(2).

(III) Global topology amounts, at the end of the day, to giving the precise range of
the coordinates C and B labeling the points of Σ . In the five constant curvature
cases these ranges are as follows. In the elliptic and parabolic caseC is in the range
[−∞, 0], while it is in the range [−∞,+∞] for the flat case and it is periodic
in the hyperbolic case. The cooordinate B instead is periodic in the elliptic case,
while it is unrestricted in the hyperbolic and parabolic cases. The manifold Σ in
the flat case with B periodic is just a strip. It is instead the full plane in the flat
parabolic case.

Our goal is to extend the above results to examples where the curvature of the
Kähler surface Σ is not constant. In such examples we will verify the criterion that
singles out the interpretation of the B-shift isometry as a parabolic shift-symmetry.
In all such cases the range of the C coordinate is [−∞, 0]11 or [−∞,∞]. The limit
C → 0 always correspond to a boundary of the Kähler manifold Σ irrespectively
whether the isometry group GΣ is elliptic or parabolic. If the curvature is negative
we always have:

∂2
C J (C)

C → 0≈ const × 1

C2
+ subleading

J (C)
C → 0≈ const × log [C] + subleading (3.8.23)

10Let us stress that this is true for Hadamard manifolds and possibly for CAT(k) manifolds, in
any case for simple connected manifolds. In the presence of a non trivial fundamental group the
presence of a fixed point is not necessary in order to establish the compact nature of the isometry
group.
11Note that [−∞, 0] as range of the C-coordinate is conventional. Were it to be [∞, 0], we could
just replace C → −C which is always possible since the Kähler metric is given by Eq.3.8.16.
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In case the curvature atC = 0 is zero, the gauge group is necessarily parabolic, since
we cannot organize an exponential behavior of J (C) for C → 0. Such exponential
behavior is instead requested by an elliptic isometry, so the only conclusion is that a
limiting zero curvature at a boundary C = 0 can occur only in parabolic models and
there we have:

∂2
C J (C)

C → 0≈ const + subleading

J (C)
C → 0≈ const × C2 + subleading (3.8.24)

In the case of a parabolic structure of the isometry group GΣ , the locus C = −∞ is
always a boundary and not an interior fixed point which does not exist. Differently
from Eq. (3.8.22) the asymptotic behavior of the metric and of the J -function is
either:

∂2
C J (C)

C → − ∞≈ const × 1

C2
+ subleading

J (C)
C → − ∞≈ 1

R∞
× log [C] + subleading (3.8.25)

or

∂2
C J (C)

C → − ∞≈ const + subleading

J (C)
C → − ∞≈ const × C2 + subleading (3.8.26)

The asymptotic behavior (3.8.25) obtains when the limit of the curvature for
C → −∞ is R∞ < 0. On the other hand, the exceptional asymptotic behavior
(3.8.26) occurs when the limit of the curvature for C → −∞ is R∞ = 0. As we
did for the compact case, also for the parabolic case, in Sect. 3.8.5 we present rigor-
ous mathematical arguments that sustain the heuristic criteria (3.8.25) and (3.8.26).
Hence in the case where we deal with a parabolic isometry group, the Kähler poten-
tial has typically two logarithmic divergences one at C = 0, and one at C = −∞,
the two boundaries of the manifold Σ . One logarithm can be replaced by C2 in case
the limiting curvature on the corresponding boundary is zero. In other regions the
behavior of J is different from logarithmic because of the non constant curvature.

Finally we can wonder what is the criterion to single out a hyperbolic characteri-
zation of the isometry group GΣ . A very simple answer arises from the example in
the second line of Table3.1. The hallmark of such isometries is a periodic coordinate
C or anyhow a C that takes values in a finite range [Cmin , Cmax ]. We will present
an example of a non constant curvature Kähler surface with a hyperbolic isometry
in Sect. 3.8.3.

There is still one subtle case of which we briefly discuss an example in Sect. 3.8.2.
As we know there are two versions of flat manifolds, one where the selected isometry
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is a compact U(1) and one where it is a parabolic translation. In both cases the
curvature is zero but in the former case the J (C) function is:

J (C) ∝ exp [δ C] ; elliptic case (3.8.27)

while in the latter case we have

J (C) ∝ C2 ; parabolic case (3.8.28)

Hence the following question arises. For Σ surfaces with a parabolic isometry
group we foresaw the possibility, realized for instance in the example discussed in
Sect. 3.8.4, that the limiting curvature might be zero on one of the boundaries so that
the asymptotic behavior (3.8.25) is replaced by (3.8.26). In a similar way we might
expect that there are elliptic models where the asymptotic behavior at C → ±∞ is:

J (C)
C→±∞≈ exp

[
δ± C

]
(3.8.29)

one of the limits being interpreted as the symmetric fixed point in the interior of
the manifold, the other being interpreted as the boundary on which the curvature
should be zero. In Sect. 3.8.2 we will briefly sketch a model that realizes the above
forseen situation. The corresponding manifold Σ has the topology of the disk. In the
same section, as a counterexample, we consider a case where the same asymptotic
(8.3.56) is realized in presence of an elliptic symmetry, yet C → −∞ no longer
corresponds to an interior point, rather to a boundary. This is due to the non trivial
homotopy group π1(Σ) of the surface which realizes such an asymptotic behavior.
Being non-simply connected such Kähler surface is not a Hadamard manifold and
presents new pathologies from the mathematical stand-point.

So let us turn to the analysis of the curvature.

3.8.1 The Curvature and the Kähler Potential
of the Surface Σ

The curvature of a two-dimensional Kähler manifold with a one-dimensional isom-
etry group can be written in two different ways in terms of the canonical coordinate
φ or the coordinate C . In terms of the coordinate C we have the following formula:

R = R(C) = − 1
2

J
′′′′
(C) − J

′′′
(C)2

J ′′(C)3

= − 1
2 ∂2

C log
[
∂2
C J (C)

] 1

∂2
C J (C)

(3.8.30)

http://dx.doi.org/10.1007/978-3-319-74491-9_8
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which can be derived from the standard structural equations of the manifold 12:

0 = dE1 + ω ∧ E2

0 = dE2 − ω ∧ E1

R ≡ dω ≡ 2 R E1 ∧ E2 (3.8.31)

by inserting into them the appropriate form of the zweibein:

E1 =
√

J ′′(C)

2
dC ; E2 =

√
J ′′(C)

2
dB ⇒ ds2 = 1

2 J ′′(C)
(
dC2 + dB2

)
(3.8.32)

Alternatively we can write the curvature in terms of the moment mapP(φ) or of the
function V (φ) ∝ P2(φ) if we use the canonical coordinateφ and the corresponding
appropriate zweibein:

E1 = dφ ; E2 = P ′(φ) dB ⇒ ds2 =
(
dφ2 + (

P ′(φ)
)2

dB2
)

(3.8.33)
Upon insertion of Eq. (3.8.33) into (3.8.31) we get:

R(φ) = − 1
2

P ′′′(φ)

P ′(φ)
= − 1

2

(
V ′′′

V ′ − 3
2

V ′′

V
− 3

4

(
V ′

V

)2
)

(3.8.34)

The zero curvature and constant curvature cases can be easily analyzed. The general
solution of the equation:

R(φ) = − 1
2 ν2 ≡ − ν̂2 (3.8.35)

can be presented in terms of the moment map P(φ) and of the canonical variable
φ. We have:

P(φ) = a exp(ν φ) + b exp(− ν φ) + c ; a, b, c ∈ R (3.8.36)

In order to convert this solution in terms of the Jordan function J (C) of the coordinate
C , it is convenient to remark that, up to constant shift redefinitions and sign flips of
the canonical variable φ → ±φ + κ , which leave the dφ2 part of the line-element
invariant there are only three relevant cases:

(A) a �= 0, b �= 0 and a/b > 0. In this case, up to an overall constant, we can just
set:

P(φ) = cosh(ν φ) + γ ⇒ V (φ) ∝ (cosh(ν φ) + γ )2 (3.8.37)

12The factor 2 introduced in this equation is chosen in order to have a normalization of what we
name curvature that agrees with the normalization used in several papers of the physical literature.
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(B) a �= 0, b �= 0 and a/b < 0. In this case we can just set:

P(φ) = sinh(ν φ) + γ ⇒ V (φ) ∝ (sinh(ν φ) + γ )2 (3.8.38)

(C) a �= 0, b = 0. In this case we can just set:

P(φ) = exp(ν φ) + γ ⇒ V (φ) ∝ (exp(ν φ) + γ )2 (3.8.39)

Since our main goal is to understand the topology of the Kähler surface Σ and
possibly to generalize the above three-fold classification of isometries to the non
constant curvature case, it is very useful to recall how, in the above three cases, the
corresponding (Euclidean) metric ds2φ is realized as the pull-back on the hyperboloid
surface

X2
1 + X2

2 − X2
3 = − 1 (3.8.40)

of the flat Lorentz metric in the three-dimensional Minkowski space of coordinates
{X1, X2, X3}. The manifold is always the same but the three different parameteriza-
tions single out different gaussian curves on the same surface. It is indeed an excellent
exercise in differential geometry to see how the same space can be described in appar-
ently verymuch different coordinate systems. Furthermore the gaussian curves being
integral curves of different Killing vectors give visual appreciation of the different
global character of elliptic, parabolic and hyperbolic isometries.

3.8.1.1 Embedding of Case (A)

Let us consider the case of the moment map of Eq. (3.8.37). The corresponding
two-dimensional metric is:

ds2φ = dφ2 + sinh2 (ν φ) dB2 (3.8.41)

It is the pull-back of the (2, 1)-Lorentz metric onto the hyperboloid surface (3.8.40).
Indeed setting:

X1 = sinh(νφ) cos(Bν)

X2 = sinh(νφ) sin(Bν)

X3 = ± cosh(νφ) (3.8.42)

we obtain a parametric covering of the algebraic locus (3.8.40) and we can verify
that:

1

ν2

(
dX2

1 + dX2
2 − dX2

3

) = dφ2 + sinh2 (ν φ) dB2 = ds2φ (3.8.43)
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Fig. 3.1 In this figure we show the hyperboloid ruled by lines of constant φ that are circles and of
constant B that are hyperbolae. In this figure we also show the stereographic projection of points
of the hyperboloid onto points of the unit disk

A picture of the hyperboloid ruled by lines of constant φ and constant B according
to the parametrization (3.8.42) is depicted in Fig. 3.1. In case of non constant curva-
ture with a moment map which gives rise to a consistent U(1) interpretation of the
isometry, the surface Σ is also a revolution surface but of a different curve than the
hyperbola.

Setting:
f (φ) = P ′(φ) (3.8.44)

we consider the parametric surface:

X1 = f (φ) cos B

X2 = f (φ) sin B

X3 = ± g(φ) (3.8.45)

where g(φ) is a function that satisfies the differential equation:

g′(φ) =
√

( f ′(φ))2 − 1 ⇒ g(φ) =
∫

dφ
√

( f ′(φ))2 − 1 (3.8.46)
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The pull back on the parametric surface (3.8.45) of the flat Minkowski metric:

ds2M = dX2
1 + dX2

2 − dX2
3 (3.8.47)

reproduces the metric of the surface Σ under analysis:

ds2Σ = dφ2 + f 2(φ) dB2 (3.8.48)

Hence the revolution surface (3.8.45) is generically an explicit geometrical model of
the Kähler manifolds Σ where the considered isometry is elliptic, namely a compact
U(1). Note that the last integral in Eq. (3.8.46) can be performed and yields a real
function only for those functions f (φ) that satisfy the condition

(
f ′(φ)

)2
> 1. Hence

the condition: (
P ′′(φ)

)2
> 1 (3.8.49)

is a necessary requirement for the U(1) interpretation of the gauged isometry which
has to be true together with the asymptotic expansion criterion (3.8.22).

Applying to the present constant curvature case the general rule given in
Eq. (3.8.15) that defines the coordinate C we get:

C(φ) =
∫

dφ

P ′(φ)
= log

(
tanh

(
νφ

2

))
ν2

⇔ φ =
2Arctanh

(
eCν2

)
ν

(3.8.50)

from which we deduce that the allowed range of the flat variable C , in which the
canonical variable φ is real and goes from 0 to ∞, is the following one:

C ∈ [−∞ , 0] (3.8.51)

The Kähler potential function is easily calculated and we get:

J (C) = 2 (γ + 1)C − 2
log

(
1 − e2Cν2

)
ν2

+ 2
log(2)

ν2
(3.8.52)

In this case the appropriate relation between ζ in the unit circle and the real variables
C, B is the following:

ζ = eν2(iB+C) (3.8.53)

3.8.1.2 Embedding of Case (B)

Consider the case of Eq. (3.8.38). The corresponding two-dimensional metric is:

ds2φ = (
dφ2 + cosh2 (ν φ) dB2

)
(3.8.54)
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which can be shown to be another form of the pull-back of the Lorentz metric onto
a hyperboloid surface. Indeed setting:

X1 = cosh(νφ) sinh(Bν)

X2 = sinh(νφ)

X3 = ± cosh(Bν) cosh(νφ) (3.8.55)

we obtain a parametric covering of the algebraic locus (3.8.40) and we can verify
that:

1

ν2

(
dX2

1 + dX2
2 − dX2

3

) = (
dφ2 + cosh2 (ν φ) dB2

) = ds2φ (3.8.56)

A three-dimensional picture of the hyperboloid ruled by lines of constant φ and
constant B is displayed in Fig. 3.2. For other surfacesΣ (if they exist and are regular)
possessing a hyperbolic isometry we can realize their geometrical model considering
the following parametric surface:

Fig. 3.2 The hyperboloid
surface displayed in the
parametrization (3.8.55). The
lines drawn on the
hyperboloid surface are those
of constant B and constant φ
respectively. Both of them
are hyperbolae, in this case
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X1 = f (φ) sinh B

X2 = g(φ)

X3 = ± f (φ) cosh B (3.8.57)

where:
f (φ) = P ′(φ) (3.8.58)

and where g(φ) is a function that satisfies the following differential equation:

g′(φ) =
√
1 + ( f ′(φ))2 ⇒ g(φ) =

∫
dφ

√
1 + ( f ′(φ))2 (3.8.59)

Once again the pull-back of the flat Minkowski metric (3.8.47) on the parametric
surface (3.8.57) reproduces the looked for metric of the Σ-surface:

ds2Σ = dφ2 + f 2(φ) dB2 (3.8.60)

Which is the appropriate interpretation is dictated by the asymptotic behavior of
the J (C) function and of its second derivative, or alternatively by the equivalent
mathematical criteria discussed in Sect. 3.8.5.

Applying to the present constant curvature case the general rule given in
Eq. (3.8.15) that defines the coordinate C we get:

C(φ) =
∫

dφ

P ′(φ)
= 2Arctan

(
tanh

(
νφ

2

))
ν2

⇔ φ =
2Arctanh

(
tan

(
Cν2

2

))
ν

(3.8.61)
from which we deduce that the allowed range of the flat variable C , in which the
canonical variable φ is real and goes from −∞ to ∞, is the following one:

C ∈
[
− π

2 ν2
,

π

2 ν2

]
(3.8.62)

The Kähler function J (φ) is easily calculated and we obtain:

J (C) = 2 γ C − 2

ν2
log

(
cos

(
Cν2

))
(3.8.63)

In this case the appropriate relation between ζ in the unit circle and the real variables
C, B is different, it is:

ζ = i tanh

(
1

2
(B − iC)ν2

)
(3.8.64)
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3.8.1.3 Embedding of Case (C)

In the case the moment map is given by Eq. (3.8.39) the parameterization of the
hyperboloid is the following one:

X1 = 1

2

(
−eνφB2 + eνφ − e−νφ

ν2

)
ν

X2 = Beνφν

X3 = 1

2

(
eνφB2 + eνφ + e−νφ

ν2

)
ν (3.8.65)

Indeed upon insertion of Eq. (3.8.65) into (3.8.40) we see that for all values of B and
φ the constraint defining the algebraic locus is satisfied. At the same time by means
of an immediate calculation one finds:

1

ν2

(
dX2

1 + dX2
2 − dX2

3

) = dφ2 + e2νφ dB2 = ds2φ (3.8.66)

so that the consideredmetric is the pull-back of the three-dimensional Lorentz metric
on the surface Σ parameterized as in Eq. (3.8.65). The integration of Eq. (3.8.15) is
immediate and the coordinate C(φ) takes the following very simple invertible form:

C(φ) = −e−νφ

ν2
⇔ φ(C) = − log

(−Cν2
)

ν
(3.8.67)

The range of definition of C is:

C ∈ [−∞ , 0] (3.8.68)

A three-dimensional picture of the hyperboloid ruled by lines of constant φ and
constant B, according to Eq. (3.8.65) is displayed in Fig. 3.3.

The integration of Eq. (3.8.17) for the Kähler potential is equally immediate and
using the inverse function φ(C) we obtain:

J (C) = 2 γ C − 2

ν2
log (−C) + const (3.8.69)

From the form of Eq. (3.8.69) we conclude that in this case the appropriate solution
of the complex structure equation is:

z = t = − iC + B (3.8.70)

so that the Kähler metric becomes proportional to the Poincaré metric in the upper
complex plane (note that C is negative definite for the whole range of the canonical
variable φ):
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Fig. 3.3 The hyperboloid
surface displayed in the
parametrization (3.8.65). The
lines drawn on the
hyperboloid surface are those
of constant B and constant φ
respectively. The constant φ
curves are parabolae and
they are the orbits of the
translation group

ds2 = 1
2

d2 J

dC2

(
dC2 + dB2

) = 1

4 ν2

dt dt

(Imt)2
(3.8.71)

As a consequence of Eq. (3.8.70), we see that the B-translation happens to be, in this
case, a non-compact parabolic symmetry.

More generally for any surface Σ where the isometry of the metric:

ds2Σ = dφ2 + f 2(φ) dB2 (3.8.72)

is interpreted as a parabolic shift-symmetry we can construct a geometric model of
Σ in three-dimensional Minkowski space by considering the following parametric
surface:

X1 = 1

2

(− f (φ)B2 + f (φ) + g(φ)
)

X2 = B f (φ)

X3 = 1

2

(
f (φ)B2 + f (φ) − g(φ)

)
(3.8.73)
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where g(φ) is a function that satisfies the differential equation:

f ′(φ) g′(φ) = 1 ⇒ g(φ) =
∫

1

f ′(φ)
dφ (3.8.74)

The pull-back of the flat metric (3.8.47) onto the surface (3.8.73) is indeed the desired
metric (3.8.72).

3.8.2 Asymptotically Flat Kähler Surfaces with an Elliptic
Isometry Group

As announced above in this section we consider the problem of constructing a Kähler
surfaceΣ with an elliptic isometrywhose limiting curvature at the boundary vanishes
R±∞ = 0. In this case we can predict the asymptotic behavior of the function J (C)

for C → ±∞. Indeed we know that for flat Kähler manifolds with an elliptic
isometry, we have J (C) ∝ exp [δ C] for some value of δ ∈ R. Hence we expect that
the function J (C) for surfaces Σ with an elliptic isometry and a vanishing limiting
curvature should behave has follows:

J (C)
C→±∞≈ exp

[
δ± C

] + subleading terms (3.8.75)

There is however a fundamental subtlety that has to be immediately emphasized. If the
topologyof the surfaceΣ is the disk topology andΣ is simply connectedπ1(Σ) = 1,
then one of the two limits C → ∞ has to be interpreted as the interior fixed point,
required by Gromov criteria, for elliptic isometries in Hadamard manifolds (and
possibly in CAT(k) manifolds). The other limit corresponds to the unique boundary
of disk topology. On the other hand if π1(Σ) = Z and the Kähler surface has
the corona topology then there are two boundaries and the limiting curvature can
be zero on both boundaries. We will illustrate this with two examples, respectively
corresponding to the latter and to the former case.

3.8.2.1 The Catenoid Case with π1(Σ) = Z

We begin by considering explicit functions J (C) that have the required asymptotic
behavior and we try to work our way backward towards the canonical coordinate φ

and the moment mapP(φ). In particular we want to make sure that the considered
function J (C) does indeed correspond to a compact isometry. This will certainly be
the case if the corresponding metric is the pull-back of the flat three-dimensional
Euclidean metric on a smooth surface of revolution.

To carry out such a program we consider the following one-parameter family of
J (C) functions:
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J[μ](C) = 1

8

(
μC2 + cosh[2C]) (3.8.76)

which fulfills condition (3.8.75), by construction. Many other examples can be obvi-
ously put forward, but this rather simple one is sufficient to single out the main
subtlety that makes many asymptotically flat elliptic models pathological from the
point of view of Gromov et al. classification of isometries. Using Eqs. (3.8.16) and
(3.8.30) we write the metric and the curvature following from the J (C) function of
Eq. (3.8.76), obtaining

ds2Σ = 1

16
( 2μ + 4 cosh[2C]) (dC2 + dB2

)
(3.8.77)

R(C) = − 4μ cosh(C) + 1

(4μ + cosh[C])3 (3.8.78)

From these formulae we draw an important conclusion. In order forΣ to be a smooth
manifold the curvature should not develop a pole neither in the interior nor on the
boundary. This means that 4μ + cosh[C] > 0 in the whole range of C . This is
guaranteed if and only if μ > − 1

4 . On the other hand, according to our previous
discussions, in the case of an elliptic isometry, there should be, for a finite value of
C , a zero of the metric coefficient. Such a zero is the fixed point that characterizes
elliptic isometries of Hadamard manifolds. Looking at Eq. (3.8.77) we see that such
a zero exists, if and only if μ < − 1

2 . It follows that, at least in this family of models,
there are no smooth manifolds that are asymptotically flat in the elliptic sense and
fulfill the physical condition for U(1)-symmetry which corresponds to the Gromov
et al. identification of elliptic isometries of Hadamard manifolds. At first sight one
should draw the conclusion that, in the case of the J (C) functions of Eq. (3.8.76),
the isometry is not elliptic. Yet this is somehow strange, since at the boundary, where
the curvature goes to zero, the form of J (C) is precisely that which corresponds
to elliptic isometries. Furthermore we will shortly show that for every value of μ

the metric in Eq. (3.8.77) is just the metric of a smooth revolution surface. Actually
for μ = 2 such a revolution surface is the well-known catenoid, constructed by
Bernoulli in 1744 as the first example of a minimal surface. Hence we arrive at a
puzzle with Gromov et al. criteria, whose only resolution can be that the manifolds
associatedwith the J (C) functions of Eq. (3.8.76) are notHadamardmanifolds. From
Eq. (3.8.78) we see that, provided μ > − 1

4 , the curvature is negative definite and
attains its maximal value R = 0 only on the boundary. Hence in relation with the
curvature there is no violation of the properties defining a Hadamard manifold. The
violationmust be in another item of the definition. Considering theDefinition3.8.1 of
Hadamardmanifolds provided in Sect. 3.8.5 we realize that the only way out from the
puzzle is that the surfaces corresponding to the J (C) functions of Eq. (3.8.76) have
to be non simply connected. That this is the case becomes visually obvious when
we consider the plot of the surface in three-dimensional space-time (see Fig. 3.4),
yet it is quite clear also analytically. For constant C the orbits of the isometry group
spanned by B ∈ [0, 2π ] are circles of radius:
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Fig. 3.4 In this picture we present two views of the catenoid, the revolution surface corresponding
to J[2](C) = 1

8

(
2C2 + cosh[2C]). For large positive or negative values of C one is either in

the superior or in inferior plane which is clearly flat with zero curvature. The center of the picture
correspond instead to C → 0 and is a sort of strongly negatively curved wormhole that connects
the two asymptotic planes. Non simple connectedness is visually spotted. The circles on the surface
winding around the throat cannot be contracted to zero and their homotopy class forms the non
trivial element of the first homotopy group π1(Σ) = Z
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r(C) = 1

4

√
2μ + 4 cosh[2C] (3.8.79)

The fact that this radius has a minimum different from zero

rmin = 1

4

√
2μ + 4 > 0 (3.8.80)

is what spoils simple connectedness and prevents the existence of a fixed point for
U(1). In this way the puzzle is resolved mathematically.

Having anticipated this conceptual discussion of their meaning let us work out the
details of the models encoded in Eq. (3.8.76). Comparing Eqs. (3.8.16) and (3.8.14)
we derive the relation between the canonical coordinate φ and C :

φ = √
2
∫ √

J ′′
[μ](C) dC = Φ[μ](C) ≡ −1

2
i
√

μ + 2 E

(
iC

∣∣∣∣ 4

μ + 2

)

(3.8.81)
where E (x |m ) denotes the elliptic integral of its arguments. In the case μ = 2
which turns out to be that of the catenoid, the function Φ[μ](C) simplifies and it can
be easily inverted in terms of elementary functions

Φ[2](C) = sinh(C) ⇒ C(φ) = ArcSinh(C) (3.8.82)

Substituting into the metric (3.8.77) one finds:

μ = 2 : ds2Σ = cosh2(C)

2

(
dC2 + dB2) = 1

2

[
dφ2 + (

φ2 + 1
)
dB2]
(3.8.83)

This implies that the derivative of the moment map is P ′(φ) = √
φ2 + 1 so that

the moment map and the scalar potential are the following ones:

μ = 2 :P(φ) = 1

2

(√
φ2 + 1φ + ArcSinh[φ ]

)
⇒

V (φ) ∝
(√

φ2 + 1φ + ArcSinh[φ ]
)2

(3.8.84)

The metric (3.8.83) can be easily recognized to be the pull-back of the flat three-
dimensional Euclidean metric:

ds2
E3 = dX2

1 + dX2
2 + dX2

3 (3.8.85)

on the following parametric surface:
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X1 = cos(B) cosh(C)√
2

X2 = cosh(C) sin(B)√
2

X3 = C√
2

(3.8.86)

which is the classical catenoid. For other values of μ a similar parametric surface of
revolution can be written in terms of appropriate functions of C . As we have already
anticipated, although the catenoid is a rotation surface and its isometry is elliptic,
its metric does not satisfy Gromov et al. criterion that requires the existence of a
symmetric point. The reason for this pathology is the non trivial fundamental group
π1(Σ).

Finally let us appreciate the nature of the same problem from the point of view of
complex coordinates. If we introduce the complex coordinate:

ζ = exp [C − i B] ; ζ = exp [C + i B] (3.8.87)

and we insert it into the expression of (3.8.76) of the J (C) function we easily obtain
the Kähler potential:

K (ζ, ζ ) = 2 J (C) = 1

16
μ log2(ζ ζ ) + ζ ζ

8
+ 1

8 ζ ζ
(3.8.88)

from which we obtain the metric:

ds2Σ = dζ dζ
(
ζ ζ

(
μ + ζ ζ

) + 1
)

8
(
ζ ζ

)2 μ→ 2=⇒ dζ dζ
(
ζ ζ + 1

)2
8
(
ζ ζ

)2 (3.8.89)

Examining Eq. (3.8.89) we see that the metric diverges at the symmetry restoration
point ζ = 0 which now is the boundary of the manifold rather than its interior.

3.8.2.2 An Asymptotically Flat Kähler Surface with an Elliptic
Isometry and π1(Σ) = 1

Let us consider the following moment map written in terms of the canonical variable
φ:

P(φ) = φ2 − 1

2
ArcTan

(
φ2) (3.8.90)

Using the standard formulae (3.8.15) for the calculation of the coordinate C we
obtain:
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C(φ) = log

(
φ

8
√
2φ4 + 1

)
⇔ φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

± 4
√√

e8C + e16C + e8C

±i
4
√√

e8C + e16C + e8C

± 4
√√

e8C − e16C + e8C

±i
4
√√

e8C − e16C + e8C

(3.8.91)

The eighth-root implies the existence of eight branches of the inverse function, that
have to considered carefully. Indeedwe can accept only those branches whereφ turns
out to be everywhere real. Six branches have to be rejected because of that reason
and the only acceptable ones are the first two which are equivalent under the always
possible sign revers of φ. In conclusion we have:

φ = 4

√√
e8C + e16C + e8C (3.8.92)

Using this branch the infinite interval [−∞ , ∞] of the variable C is mapped into
the semi-infinite interval [0 , ∞] of the variable φ. Indeed we have C(0) = −∞,
C(∞) = ∞. In the canonical coordinate the form of the metric is:

ds2Σ = dφ2 + f 2(φ) dB2 ; f 2(φ) =
(

φ5

φ4 + 1
+ φ

)2

(3.8.93)

and using Eq. (3.8.92) we can easily convert it to the C variable:

ds2Σ = 1
2

d2 J

dC2

(
dC2 + dB2

)

=
√√

e8C + e16C + e8C
(
2
√
e8C + e16C + 2e8C + 1

)2
(√

e8C + e16C + e8C + 1
)2 (

dC2 + dB2
)

(3.8.94)

For C → −∞ the behavior of the metric coefficient is:

1
2

d2 J

dC2

C→ − ∞≈ e2C + 5e6C

2
+ O

(
e10C

) ⇒ J (C)
C→−∞≈ 1

2 e
2C (3.8.95)

while for C → ∞ it is the following:

1
2

d2 J

dC2

C→∞≈ 4
√
2e4C − 3e−4C

√
2

+ O
(
e−12C

) ⇒ J (C)
C→ ∞≈ 1

2
1√
2
e4C

(3.8.96)
From previous considerations we see that C → −∞ corresponds to φ = 0 and
hence to the fixed point in the interior of themanifold, so that the exponential behavior
of J (C) is the expected one for an elliptic isometry. At the same time the exponential
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Fig. 3.5 In this picture we
present the plot of the
curvature for the elliptic
model of Eq. (3.8.90). It is
limited from above and has
three zeros, one at the
interior fixed point φ = 0, a

second one at φ =
(
5
3

)1/4
and one on the boundary at
φ = ∞

behavior on the unique boundary implies that the limiting curvature on the boundary
should be zero. Indeed from the standard formula (3.8.34) for the curvaturewe obtain:

R(φ) = − 2φ2
(
3φ4 − 5

)
(
φ4 + 1

)2 (
2φ4 + 1

) ; R(0) = 0 ; R(∞) = 0 (3.8.97)

whose plot is displayed in Fig. 3.5. The vanishing of the limiting curvature is visually
evident. Finally let us make sure that the isometry of this model is indeed elliptic.
This we verify by showing that the metric (3.8.93) can be retrieved as the pull-back
of the flat Lorentz metric in Minkowsian three-dimensional space (3.8.47) on the
parametric revolution surface (3.8.45) defined by:

f (φ) = φ5

φ4 + 1
+ φ ; g(φ) ≡

∫ φ

0

√√√√σ 4
(
σ 4 + 5

) (
3σ 8 + 9σ 4 + 2

)
(
σ 4 + 1

)4 dσ

(3.8.98)
Two views of this surface are presented in Fig. 3.6. It is evident from the picture that
this surface is simply connected and that there is in the interior of the manifold a
fixed point. It is given by X1 = X2 = X3 = 0 which lies on the surface and where
the radius of the U(1) orbit shrinks to zero.

3.8.3 An Example of a Non Maximally Symmetric Kähler
Surface with an Isometry Group of the Hyperbolic Type

In order to exhibit an example of a surface with non constant curvature that has a
hyperbolic isometry we consider the following moment map and potential:

V (φ) = [P(φ)]2 ; P(φ) = φ + sinh(φ) (3.8.99)
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Fig. 3.6 In this picture we
present two views of the
revolution surface Σ

associated with the elliptic
model of Eq. (3.8.90). It is
clearly regular and smooth
everywhere

which yields:

P ′ (φ) = 1 + cosh(φ) ; ds2Σ = dφ2 + (1 + cosh(φ))2 dB2 (3.8.100)

According to the mathematical classification discussed in Sect. 3.8.5 the metric
(3.8.100) has a hyperbolic type of isometry due to the two fixed points on the bound-
ary of the manifold corresponding to the two singularities φ = ±∞. The curvature
of this manifold is finite but not constant. Indeed, applying Eq. (3.8.34) we obtain:
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Fig. 3.7 In this figure we
present the plot of the
curvature of the surface Σ

defined by Eq. (3.8.100) that
has a hyperbolic isometry.
The first picture displays the
dependence of the curvature
on the canonical coordinate
φ, while the second picture
displays its dependence on
the coordinate C

R(φ) = − cosh(φ)

2(cosh(φ) + 1)
(3.8.101)

whose plot is presented in Fig. 3.7. In this case it is very simple to integrate the
complex structure equation which defines the C-coordinate. We obtain:

C(φ) = tanh

(
φ

2

)
; φ = 2ArcTanh(C) (3.8.102)

and we observe that in line with our general criteria for hyperbolic symmetry, the
range of the C-coordinate is in this case finite:

C ∈ [−1 , 1] (3.8.103)

From the integration of Eq. (3.8.17) that defines the J -function and the Kähler poten-
tial we obtain:

J (φ) = 2φ tanh

(
φ

2

)
= J (C) = 4C ArcTanh(C) (3.8.104)
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Calculating the metric coefficient from (3.8.104) we get:

1
2

d2 J

dC2
= 4(

C2 − 1
)2 ; ds2 = 4(

C2 − 1
)2 (

dC2 + dB2
)

(3.8.105)

displaying a polar singularity at both extrema of the C-range, namely at C = ±1.
In order to present a geometrical model of this Kähler manifold, we resort to the

hyperbolic parametric surface encoded in formulae (3.8.57) and we calculate the
relevant functions f (φ) and g(φ). In this case it is more convenient to express them
in terms of the finite range coordinate C . We have:

f (φ) = cosh(φ) + 1 = 2

1 − C2
(3.8.106)

and inserting the result into Eq. (3.8.59) we get:

g(C) = 1

8

(
2C

(
C2 − 3

)
(
C2 − 1

)2 + log(C − 1) − log(C + 1)

)
(3.8.107)

The plots of these functions is presented in Fig. 3.8. In Fig. 3.9 we display the three
dimensional shape of the parametric surfaceΣ realizing the desiredKählermanifold.

3.8.4 A Non Maximally Symmetric Kähler Manifold with
Parabolic Isometry and Zero Curvature at One
Boundary

As a final example we consider a parabolic model where the curvature at one of the
two boundaries goes to zero so that the asymptotic behavior of the J (C)-function on
that boundary becomes exceptional.

Let the moment map be the following one:

P(φ) = exp [ν φ] + μφ (3.8.108)

The corresponding f (φ)-function is:

f (φ) = P ′(φ) = ν exp [ν φ] + μ (3.8.109)

which has no zeros for finite φ if μ and ν have the same sign. If the two parameters
have opposite signs there is such a zero and this creates a fixed point of the isometry
B → B + c at finite φ which implies that the isometry is elliptic. Yet in case of
opposite signs the curvature has a singularity so that any smooth Kähler manifold
with a moment map of type (3.8.108) has a parabolic isometry group. Indeed using



160 3 Complex and Quaternionic Geometry

Fig. 3.8 In this picture we
present the plots of the
functions f (C), g(C) that
define the realization of the
Kähler manifold Σ

associated with the potential
(3.8.99) as a parametric
surface in flat Minkowski
three-dimensional space. The
geometrical model is that
appropriate to the hyperbolic
character of the isometry
B → B + c. The first two
pictures display the plot of g
and f as functions of the VP
coordinate C . The last plot is
the parametric plot of the
curve in the plane f, g.
Geometrically this is the
curve cut out by the surface
Σ in any plane orthogonal to
the axis X2

Eq. (3.8.34) we can immediately calculate the curvature and we find:

R(φ) = − eνφν3

2
(
μ + eνφν

) (3.8.110)

This shows what we just said. The manifold is smooth and singularity-free if and
only if μ and ν have the same sign so that at no value of φ the denominator can
develop a zero. Without loss of generality we can assume that ν > 0 since the sign of
φ can be flipped without changing its kinetic term.With this understanding it follows
that also μ > 0 for regularity.

Consider next the integral defining the VP coordinate C . We immediately obtain:

C(φ) =
∫

1

P ′(φ)
dφ = φ

μ
− log

(
μ + eνφν

)
μν

(3.8.111)

The range ofC is now easily determined considering the limits of the above function
for φ = ±∞. When μ > 0 , ν > 0 we have:
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Fig. 3.9 In this figure we
present the 3D-plot of the
surface Σ associated with
the potential (3.8.99). The
correct interpretation of the
isometry in this case is that
of a hyperbolic group. Indeed
the hyperbolic embedding
(3.8.57) in three-dimensional
Minkowski space works
beautifully and we have the
smooth surface displayed
here

C(−∞) = −∞ ; C(∞) = − log[ν]
μν

(3.8.112)

Hence C ∈
[
−∞ , − log[ν]

μ ν

]
. The VP coordinate is always negative and it spans a

semininfinite interval. Keeping this range inmindwe can invert the relation (3.8.111)
between φ and C obtaining:

φ = −
log

(
e−Cμν

μ
− ν

μ

)
ν

(3.8.113)

The J -function is easily calculated from Eq. (3.8.17) and we find:

J (φ) =
ν2φ2 + (2 − 2νφ) log

(
eνφν
μ

+ 1
)

− 2Li2
(
− eνφν

μ

)
ν2

(3.8.114)

where Lin(z) is the polylogarithmic function. Introducing in (3.8.114) the relation
between φ and C , we get an explicit analytic expression for the J (C) function,
namely:
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J (C) = 1

ν2

[
log2

(
e−Cμν − ν

μ

)
+ 2

(
log

(
e−Cμν − ν

μ

)
+ 1

)
log

(
1

1 − eCμνν

)

−2Li2

(
1 + 1

eCμνν − 1

)]
(3.8.115)

As for the metric, having the explicit expression (3.8.115), we easily calculate its
second derivative and we find:

ds2 = 1
2

d2 J

dC2

(
dC2 + dB2) = μ2

(
eCμνν − 1

)2 (
dC2 + dB2) (3.8.116)

For C → −∞ the metric coefficient 1
2

d2 J
dC2 tends to a constant:

1
2

d2 J

dC2

C→−∞≈ μ2 ⇒ J (C)
C→− ∞≈ μ2

2
C2 (3.8.117)

This asymptotic behavior differs from the usual logarithmic behavior of J (C) at the
boundary because at C = −∞ and hence at φ = −∞ the curvature goes to zero.

In the other extremum of the C-range, namely for C → − log[ν]
μ ν

the metric
coefficient diverges and we have the standard logarithmic singularity. To see this, set
C = − log[ν]

μ ν
− ξ and substitute it into the expression of the metric coefficient. We

obtain:

1
2

d2 J

dC2
= μ2

(
e
μν

(
−ξ− log(ν)

μν

)
ν − 1

)2

ξ→0≈ 1

ν2ξ 2
+ μ

νξ
+ 5μ2

12
+ 1

12
μ3νξ + O

(
ξ 2
)

(3.8.118)

and we conclude that, naming C0 = − log[ν]
μ ν

, we have:

J (C)
C→C0≈ 2

ν2
log [C0 − C] (3.8.119)

This is the standard logarithmic singularity and the coefficient in front of the logarithm
is indeed the inverse of the limiting curvature: RC0 = 1

2 ν2.
This result confirms once again the relation between the asymptotic behavior of the

J (C) function and the character of the isometry group. For a parabolic isometry the
asymtotic behavior is just that anticipated in Eqs. (3.8.25), (3.8.26). For a vanishing
limiting curvature the correct asymptotic is (3.8.26).

The present example is very paedagical in order to avoid possible misconceptions.
If we looked at the expression (3.8.116) and we forgot the precisely defined range
of the variable C which is determined by the integration of the complex structure
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equation, we might be tempted to consider the same metric also for positive values
of C . We would conclude that when C → ∞ the metric coefficient goes to zero
as exp[−ν C]. Then we would dispute that the last mentioned behavior indicates an
elliptic interpretation of the isometry and advocate that there is a clash with our a
priori knowledge that the isometry is instead parabolic. In fact there is no clash since
the positive range ofC is excluded and it is not to be considered. At the extrema of the
C-interval, the function J (C) displays the expected asymptotic behavior foreseen
for the parabolic case.

3.8.5 On the Topology of Isometries

In this last subsection we provide a mathematically more rigorous illustration of
the criteria discriminating among elliptic, parabolic and hyperbolic isometries of
a two dimensional manifold whose metric is written in the standard form utilized
throughout this section, namely:

ds2 = dφ2 + f (φ)2 dB2, (3.8.120)

In relation with the moment map issue, the function f (φ) is obviously the first
derivative P ′(φ) with respect to the canonical coordinate φ of the moment map
P(φ). Considering the metric (3.8.120) as god-given, it obviously admits the one
dimensional group of isometries B → B + c for any choice of the smooth function
f (φ) parameterizing themetric coefficient and the question is what is the topology of
such a group, is it compact or non-compact, and in the second case is it parabolic or
hyperbolic. When we deal with a constant negative curvature manifold, namely with
the coset SL(2, R)/O(2) these questions have a precise answer within Lie algebra
theory, since the considered one-dimensional group of isometries Giso is necessarily
a subgroup of SL(2, R) and as such its generator g ∈ sl(2, R) can be of three types:

(a) g is compact, which means that, as a matrix, in whatever representation of
the Lie algebra sl(2, R) it is diagonalizable and its eigenvalues are purely imagi-
nary. In this case the one-dimensional subrgroup is topologically a circle S

1 and
isomorphic to U(1). We name elliptic the isometry group Giso generated by
such a g.

(b) g is non-compact and semisimple, which means that, as a matrix, in whatever
representation of the Lie algebra sl(2, R), it is diagonalizable and its eigenvalues
are real and non vanishing. In this case the one-dimensional subgroup is topolog-
ically a line R and it is isomorphic to SO(1, 1). We name hyperbolic the isometry
group Giso generated by such a g.

(c) g is non-compact and nilpotent, which means that, as a matrix, in whatever
representation of the Lie algebra sl(2, R), it is nilpotent and its eigenvalues are
zero. In this case the one-dimensional subrgroup is topologically a line R. We
name parabolic the isometry group Giso generated by such a g.
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The interesting question is whether the characterization of an isometry as ellip-
tic,parabolic or hyperbolic can be reformulated in pure geometrical terms and applied
to caseswhere there is no ambient Lie algebra for the unique one-dimensional contin-
uous isometry Giso. In this respect it is useful to remark that a metric of type (3.8.120)
implies a fibre-bundle structure of the underlying two-dimensional manifold Σ :

Σ = P(R,F ,Giso) → R (3.8.121)

where the base manifold is the real line R spanned by the coordinate φ ∈
[−∞ , +∞], the structural group is the one-dimensional isometry groupGiso and the
standard fibreF is a one dimensional space on which Giso has a transitive action. In
other words the manifold Σ is fibered into orbits of the isometry group. An explicit
geometrical realization of this fibration in the three cases was already provided in
the previous subsections by means of the three types of parametric surfaces encoded
in:

1. Equation (3.8.45) which realize a surface in three-dimensional Minkowski space
which is fibered in circles S1 representating the orbits of an elliptic isometry group
Giso.

2. Equation (3.8.57) which realize a surface in three-dimensional Minkowski space
which is fibered in hyperbolae representating the orbits of a hyperbolic isometry
group Giso.

3. Equation (3.8.73) which realize a surface in three-dimensional Minkowski space
which is fibered in parabolae representating the orbits of a parabolic isometry
group Giso.

As we argued in previous subsections, providing also some counterexamples, the
subtle point is that the explicit geometric construction as a parametric surface fibered
in circles, parabolae or hyperbolae, which a priori seems always possible, should lead
to a smooth manifold having no singularity and being simply connected.

In more abstract terms the question was formulated by mathematicians for a
single isometry Γ , even belonging to a discrete isometry group, not necessarily
continuous and Lie, which can be characterized unambiguously as elliptic, parabolic,
or hyperbolic, for Riemannianmanifolds also of higher dimension than two, provided
they are Hadamard manifolds.

Definition 3.8.1 A Hadamard manifold is a simply connected, geodesically com-
plete Riemannian manifoldH = (M , g) whose scalar curvature R(x) is nonpos-
itive definite and finite, namely −∞ < R(x) ≤ 0, ∀x ∈ M .

The virtue of Hadamard manifolds is that they allow for what is usually not available
in generic Riemannian manifolds, namely the definition of a bilocal distance func-
tion d(x, y) providing the absolute distance between any two points x, y ∈ H .
As we teach our students when introducing (pseudo)-Riemanian geometry and Gen-
eral Relativity, the concept of absolute space-(time) distance is lost in Differential
Geometry and we can only define the length of any curve βμ(t) (t ∈ [0 , 1]), which
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starts at the point xμ = βμ(0) and ends at the point yμ = βμ(1). Given the metric
gμν(x) we introduce the length functional which provides such a length:

�(β) =
∫ 1

0

√
gμν

dβμ

dt

dβν

dt
dt (3.8.122)

The curves corresponding to extrema of the length functional are the geodesics,
but in a generic Riemannian manifold there is no guarantee that for any two-points
x, y ∈ M there is an arc of geodesic connecting them that is an absolute minimum
of the length functional and that suchminimum is unique and non-degenerate. Instead
the hypotheses characterizingHadamardmanifolds guarantee precisely this (see, e.g.
[16] and references therein) and one can define the distance function:

∀ x, y ∈ H : d(x, y) = infimum [�(β)] (3.8.123)

Hence restricting one’s attention to Hadamard manifolds one can introduce a very
useful geometrical concept that allows for a geometrical classification of isome-
tries Γ :

Γ : M → M ; Γ�

[
ds2g

] = ds2g (3.8.124)

where Γ� denotes the pull-back of Γ . The geometrical concept which provides the
clue for such a classification is the displacement function defined below for any
isometry Γ :

dΓ (x) ≡ d(x, Γ x) (3.8.125)

3.8.5.1 Classification of Isometries of Hadamard Manifolds
H = (M , g)

The isometries of a Hadamerd manifold belong to the following types (see, e.g. [16]
and references therein):

(a) elliptic, if dΓ (x) attains an absolute minimum of vanishing displacement
minx∈M dΓ (x) = 0, or, to say it in other words, if and only if Γ has a fixed
point x0 ∈ M in the interior of the manifold for which d (x0, Γ x0) = 0.

(b) hyperbolic, if dΓ (x) attains an absolute minimum larger than zero
minx∈M dΓ (x) > 0, or equivalently if Γ has two distinct fixed points on the
boundary ∂M of M

(c) strictly parabolic, if dΓ (x) never attains its infimum which is zero
inf x∈M dΓ (x) = 0, or equivalently if Γ has just one fixed point on the boundary
∂M of M ;

(d) mixed, if dΓ (x) does not attain its the infimum which is larger than zero:
inf x∈H dΓ (x) > 0.
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The above classification of isometries is a generalisation to a nonconstant curvature
case of the classification of isometries of the very particular constant curvature case,
namely the Poincaré-Lobachevsky plane SL(2,R)

O(2) , where only the isometries (a), (b)
and (c) are realized.

3.8.5.2 Application to the Kähler Surfaces considered in this Section

Not all Kähler surfaces Σ defined by Eq. (3.8.12) are Hadarmard since the curvature
sometimes becomes positive in the interior of the manifold but most of them are such
and moreover the limiting curvature of the boundary is non positive for all models.
Therefore it makes sense to utilize the above geometric classification of isometries
and verify that it just agrees with the criteria based on asymptotic expansions of the
function J (C) utilized in the previous subsections in order to discriminate among
elliptic, parabolic and hyperbolic groups.Negative curvature guarantees the existence
of a distance function, but probably in all considered examples such a distance
function is well defined in spite of the existence of positive curvature domains in the
deep interior of the manifold.

Hence with reference to the metric (3.8.120) let us consider the isometry Γ cor-
responding to B-shifts:

B → Γ B = B + δ , (3.8.126)

where δ is a constant parameter, let us assume that the curvature

R = −
d2

dφ2 f (φ)

f (φ)
, (3.8.127)

fulfills the Hadamard condition: −∞ < R ≤ 0 and let us apply the classification
scheme introduced above.

The first observation is the following. If the function f (φ) has neither a singularity
nor a zero (i.e., if f (φ) �= ±∞ and f (φ) �= 0) both in the range of the coordinates
{φ, B} corresponding to the interior of the manifoldM and for those limiting values
corresponding to the boundary {φ, B} ∈ ∂M then the metric (3.8.120) has no
coordinate singularity and the isometry (3.8.126) admits only one fixed point B =
∞ ∈ ∂M on the boundary of the manifold. In this case the isometry Γ is strictly
parabolic, according to item (c) of the above classification.

On the other hand, if the function f (φ) possesses a coordinate singularity at
some value of φ = φ0 ∈ M in the interior of M , then in order to establish
which is the type of the isometry Γ one has to introduce a new coordinate system
{φ, B} → {φ̃, B̃} such that the metric expressed in terms of the new coordinates
is non-singular in the vicinity of the former coordinate singularity. The existence of
such a coordinate system is guaranteed by the non-singularity of the curvature and
by the smoothness of the manifold. If in the newly constructed coordinate system the
isometry has a fixed point corresponding to the former coordinate singularity then,
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according to item a) of the above classification, it is elliptic. Since this happens for all
elements of the isometry group Giso, this latter is a compact U(1) and the appropriate
complex structure is z = ζ = exp [δ (c − iB)]. Otherwise the isometry is certainly
not elliptic and non-compact.

Summarizing, the necessary condition for the isometry Γ to be elliptic is that the
function f (φ) has a zero or a pole in the interior of M at some φ = φ0 ≡ − a1

a2
,

where a1 and a2 > 0 are arbitrary constant parameters. In case such a singularity is
power-like, we conclude that in a neighborhood Uφ0 of φ0 we have:

f (φ)|φ ∈Uφ0
= (a2 φ + a1)

n (3.8.128)

where n is a positive or negative integer. Comparing Eq. (3.8.127) we see that the
condition of a regular and finite curvature is fulfilled if and only if n = 1. In other
words the function f (φ) has the following behavior at φ = φ0:

f (φ)|φ ∈Uφ0
= a2 φ + a1 + O

[
(φ − φ0)

3
]

(3.8.129)

Correspondingly the curvature is zero at leading order:

R|φ ∈Uφ0
= 0 + O

[
(φ − φ0)

3
]

(3.8.130)

In the new coordinate system {x, y}, {φ, B} → {x, y}, defined by

x =
(

φ + a1
a2

)
cos(a2 B) , y =

(
φ + a1

a2

)
sin(a2 B) , (3.8.131)

the metric (3.8.120) becomes

ds2|φ ∈Uφ0
� dφ2 + (a2 φ + a1)

2 dB2

= dx2 + dy2, (3.8.132)

and the isometry transformations (3.8.126) takes the following form:

{x, y} → {x cos δ + y sin δ , − x sin δ + y cos δ} , (3.8.133)

The original coordinate singularity has disappeared, but in the new coordinates
(3.8.131) the isometry (3.8.133) acquires the fixed point {x0 = 0 , y0 = 0},
{0, 0} → {0, 0}, in the interior of M . Hence if the above situation is verified
according to item a) of the above classification the isometry group is elliptic.

Consider next the behavior of the C-coordinate, defined by Eq. (3.8.15), in the
neighborhood of φ0. To leading order we have
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φ → C � 1

a2
ln (a2 φ + a1) + O

[
(φ − φ0)

−1
] ⇒ φ0 ⇔ C0 = −∞

(3.8.134)
so that the metric (3.8.120) becomes

ds2|C ∈UC0
� e2 a2 C

(
dB2 + dC2) (3.8.135)

in theC0-neighborhoodC ∈ UC0 . Inspection of the latter formula shows that it repro-
duces the criterion to decide that the isometry is elliptic advocated in Eq. (3.8.22).

1
2

d2

dC2
J (C)|C ∈UC0

= e2 a2 C |C ∈UC0
→ 0 (3.8.136)

Let us stress that the fixed point in the interior of the manifold required for an elliptic
interpretation of the isometry group is just the origin of themanifoldwhere theKähler
metric becomes approximately the flat one.

Let us now turn to the case where the singularity of the metric coefficient is of
the exponential type, namely for φ0 = ∞ and for φ ∈ Uφ0 , we have

f (φ)|φ ∈Uφ0
= a1 e

a2 φ , a2 > 0 (3.8.137)

this behavior is also consistent with the regularity of the curvature R (see
Eq. (3.8.127)), which, in this case takes a finite negative value in the leading order
approximation:

R|φ ∈Uφ0
� − a22 + subleading terms (3.8.138)

The metric (3.8.120) reproduces locally the metric of the hyperbolic (Poincaré -
Lobachevsky) plane

ds2|φ ∈Uφ0
≈ dφ2 + a21 e

2a2 φ dB2 (3.8.139)

for which it is well known that the value of φ0 = ∞ corresponds to the boundary
∂M . If the function f (φ) does not have other singularities of the exponential type, but
(3.8.137), then one can immediately conclude that the isometry (3.8.126) is strictly
parabolic according to item c) of the above classification, since it possesses just a
single fixed point B = ∞ on the boundary ∂M .

If besides the singularity (3.8.137) the function f (φ) possesses a second expo-
nential singularity at φ̃0 = −∞ for φ ∈ Uφ̃0

, namely

f (φ)|φ ∈Uφ̃0
= ã1 e

−ã2 φ , ã2 > 0 , (3.8.140)

then by the same token as above we come to the conclusion that the point φ̃0 belongs
to the boundary of another hyperbolic plane locally isomorphic to the neighbor-
hood Uφ̃0

⊂ H and that isometry (3.8.126) possesses a second fixed point on such
a boundary. Hence the isometry is hyperbolic according to item (b) of the above
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classification and since this applies to all elements of the isometry group Giso this
latter is hyperbolic and isomorphic to SO(1, 1).

One can not exclude the existence of more sophisticated types of f (φ) singu-
larities, besides the above described power-like and exponential one, that might be
consistent with the regularity of the curvature R (3.8.127), yet in all examples con-
sidered in previous subsections no other singularities than these two are met.

Relying on these results we can summarize the geometric criteria for the classi-
fication of isometries in two-manifolds with a metric of type (3.8.120) which are of
the Hadamard type

(a) elliptic, if the function f (φ) possesses a first order zero, i.e. f (φ)|φ ∈Uφ0
=

a2 (φ − φ0);
(b) hyperbolic, if the function f (φ) possesses two different leading exponential

singularities at φ(±)
0 = ±∞, i.e. f (φ)|φ ∈U

φ
(±)
0

= a(±)
1 e± a(±)

2 φ and a(±)
2 > 0;

(c) strictly parabolic, if the function f (φ) possesses a single leading exponen-
tial singularity at either φ

(+)
0 = +∞ or φ

(−)
0 = −∞, i.e. f (φ)|φ ∈U

φ
(+)
0

=
a(+)
1 e+ a(+)

2 φ or f (φ)|φ ∈U
φ
(−)
0

= a(−)
1 e− a(−)

2 φ and a(±)
2 > 0.

The above characterization yields exactly the same result as the criteria based on the
asymptotic behavior of J (C) that have been utilized in the previous subsections and
this happens also for such models that do not lead to exactly Hadamard manifolds,
the curvature attaining somewhere also positive values. As an exemplification of the
use of the above concepts we briefly reconsider from this point of view the flatmodels
and the constant curvature models.

3.8.5.3 Flat Models

The flat metric
ds2 = dφ2 + (a2 φ + a1)

2 dB2 (3.8.141)

in case a2 �= 0 possesses a coordinate singularity at

φ = − a1
a2

(3.8.142)

corresponding to a first order zero f (φ) at finite φ. According to the above classifi-
cation this implies that the isometry B → B + δ is elliptic.

In the case a2 = 0 the metric (3.8.141) becomes

ds2 = dφ2 + a21 dB
2 (3.8.143)

and does not possess a coordinate singularity at all. This implies that the isometry
B → B + δ is strictly parabolic.
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3.8.5.4 Constant Negative Curvature Models

Case (A)
ds2 = dφ2 + sinh2 (ν φ) dB2 (3.8.144)

This metric possesses a coordinate singularity at φ = 0. In the neighborhood of
φ = 0 at leading order it behaves as follows

ds2 ≈ dφ2 + ν2 φ2 dB2 (3.8.145)

which modulo an inessential rescaling of the coordinate B and a shifting the coor-
dinate φ reproduces the metric (3.8.141). Hence its isometry (3.8.126) is elliptic in
this case.

Case (B)
ds2 = dφ2 + cosh2 (ν φ) dB2 (3.8.146)

This metric does not possess a coordinate singularity in the finite range of φ, but
it has two exponential singularities of the type (3.8.137) and (3.8.140). Hence the
isometry (3.8.126) is hyperbolic in this case.

Case (C)
ds2 = dφ2 + e2 ν φ dB2 (3.8.147)

This metric does not possess a coordinate singularity in the finite range of φ, but it
possesses a single exponential singularity either of the type (3.8.137) or of the type
(3.8.140). Hence the isometry (3.8.126) is strictly parabolic in this case.
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