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Chapter 8
EV, Microvesicles/MicroRNAs and Stem 
Cells in Cancer

Jacob A. Tickner, Derek J. Richard, and Kenneth J. O’Byrne

Abstract The role of extracellular vesicles (EV) in carcinogenesis has become the 
focus of much research. These microscopic messengers have been found to regulate 
immune system function, particularly in tumorigenesis, as well as conditioning 
future metastatic sites for the attachment and growth of tumor tissue. Through an 
interaction with a range of host tissues, EVs are able to generate a pro-tumor envi-
ronment that is essential for tumorigenesis. These small nanovesicles are an ideal 
candidate for a non-invasive indicator of pathogenesis and/or disease progression as 
they can display individualized nucleic acid, protein, and lipid expression profiles 
that are often reflective of disease state, and can be easily detected in bodily fluids, 
even after extended cryo-storage. Furthermore, the ability of EVs to securely trans-
port signaling molecules and localize to distant tissues suggests these particles may 
greatly improve the delivery of therapeutic treatments, particularly in cancer. In this 
chapter, we discuss the role of EV in the identification of new diagnostic and prog-
nostic cancer biomarkers, as well as the development of novel EV-based cancer 
therapies.
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8.1  EV as Novel Cancer Biomarkers

The need for novel cancer biomarkers is fundamental in improving patient out-
comes. This search has resulted in the emergence of EV as new predictive, diag-
nostic, and prognostic factors in cancer. EV can be obtained from virtually any 
body fluid or tissue, by safe and minimally invasive or non-invasive methods. 
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Additionally, the intrinsic nature of EV protects the internalized (and external, to a 
degree) contents from host and environmental degradation, allowing easier EV 
isolation and storage. As EV are often released in higher concentration from tumor 
tissue, and the expression profile often mimics/reflects host cell expression pro-
files, they can be used as a liquid biopsy of the cancer tissue, even tissue that is 
unreachable via conventional methods [1–4]. EV may also be used as a future 
indicator of disease in healthy populations, leading to improved health planning 
and patient outcomes. This aids in determining the most effective treatment 
options, resulting in decreased economic burden and fewer unwanted side effects 
in patients.

Two major challenges exist in the development of EV diagnostics and prognos-
tics in cancer. The first challenge is our limited understanding of the spectrum of 
signaling options that are available due to the complexity of EV surface expression. 
The sometimes-low concentrations of certain EVs, as well as the diversity and het-
erogeneity of EV type and expression profile also hamper development [5–7]. This 
will be improved with biobanking of both healthy and diseased tissue for adequate 
comparative analyses [7]. This problem is common in emerging diagnostics/prog-
nostics and requires substantial resources and investment to generate a reliable and 
affordable repository. The second challenge is the development of economical 
methods of isolating and analyzing EV from samples. Though the liquid biopsy is a 
safe and effective method, high-sensitivity methods of isolating and characterizing 
EV are only beginning to be established [7, 8].

EV contain a varied assortment of factors, that present significant diagnostic and 
prognostic potential in cancer treatment. For these purposes, EV are most often 
obtained from patient serum, though plasma and urine are also easily utilized [9, 
10]. Factors isolated from EV not only discern healthy from diseased patients but 
can also be effective in staging disease. Many studies have identified EV nucleic 
acid, particularly miRNA, as an effective cancer biomarker [11–17]. These studies 
identified many indicative miRNA species in a vast array of cancers, often using 
quantitative PCR and/or sequencing for RNA detection [18, 19]. Undoubtedly 
many studies utilizing serum miRNA as diagnostic and prognostic disease markers 
have accidentally harvested exosomal miRNA. In fact, exosomal miRNA may rep-
resent a significant fraction of commonly isolated miRNA in some studies. Other 
nucleic acids that have been identified as demonstrating biomarker potential are 
mRNA, DNA (containing oncogenic mutations), short non-coding RNA, and circu-
lar RNA [20–25]. Much like EV miRNA, many studies have utilized mass spec-
trometry techniques to identify an array of proteins that are highly indicative of 
disease state [10, 26–28]. Protein markers have thus far demonstrated significant 
potential, with a recent study identifying a marker that displayed unprecedented 
accuracy in diagnosing and staging disease state in pancreatic cancer patients [29]. 
Analysis of the lipid composition of EV has shown lipid expression profiles may 
also be a potential cancer biomarker [30].
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8.2  EV Biomarker Technology in Cancer

The future of EV as diagnostic and prognostic markers in cancer relies on the 
development of systems that rapidly capture and identify markers of disease. 
Common methods for isolating EV for biomarker analyses include standard isola-
tion techniques based on filtration combined with ultracentrifugation, and immuno-
affinity capture methods [6, 7]. Though effective, the cost of these technologies is 
currently prohibitive for large scale implementation [31]. Thus, new technologies 
are being developed to utilize the vast content of EV for therapeutic purposes. 
Recent developments in the modification of existing technologies used in liquid 
biopsy analysis have already provided new diagnostic methods [8, 31]. These 
include several effective immunoaffinity capture methods, including the ExoChip, 
ExoScreen and ExoSearch technologies, that allow rapid identification of specific 
EV markers associated with oncogenesis [32–34]. Fortunately, EV factors can be 
identified using a range of methods including PCR, mass spectrometry, nuclear 
magnetic resonance, and immunofluorescence [26, 35–41]. Two diagnostic EV 
technologies are currently available that identify RNA signatures in the urine of 
prostate cancer patients and the serum of lung cancer patients (www.exosomedx.
com) [42, 43]. These markers help diagnose disease and determine treatment 
options. Although only two methods are currently available, many clinical trials 
utilizing EV-based technologies in cancer diagnostics are under investigation.

8.3  Novel Role of EV in Cancer Therapy

The burgeoning area of EV function in cellular communication derives from their 
ability to protect and transport a range of cargoes to a wide array of tissues [3, 19, 
44–48]. This ability is being utilized in the development of novel therapies in the 
treatment of many diseases, particularly cancer [8, 49–51]. Most EV-based thera-
pies utilized natively-derived (obtained from patients) or semi-synthetic/bioengi-
neered EV (mimetics) that deliver compounds which either activate/enhance 
antitumoral immune responses (cancer vaccines) or deliver antiproliferative agents 
directly to the tumor tissue (therapy delivery) [52–69]. Apart from the aforemen-
tioned vaccination and therapy delivery, the removal of EV or inhibition of EV 
production to reduce cancer growth and/or pre-metastatic niche formation is also 
evaluated [70–74]. This has been investigated via the reduction of Rab27a protein 
expression, as well as the removal of circulating EV via filtration or immunoaffinity 
capture [6, 31, 75–78].

EV make excellent delivery vehicles due to their bioavailability and lack of 
unwanted immunogenicity. When compared with the delivery of soluble factors 
alone, EV-internalized or associated factors often display increased efficacy with 
minimal off-target/side effects [56, 79–81]. The complexity and hence similarity of 
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exosomal surface expression to host cells both increases the effectiveness of EV as 
delivery systems, as opposed to synthetic vehicles, and reduces unwanted immune 
responses due to their syngeneic nature [8, 80, 82]. This can result in increased 
uptake of exosomal contents by host cells compared to synthetic particles, such as 
liposomes [49, 50]. This is advantageous in the delivery of certain compounds, such 
as chemotherapeutics, where tumor uptake is enhanced (increased tumor cytotoxic-
ity) while unwanted drug deposition is reduced (reduced side effects). This com-
plexity also permits the encapsulation of multiple compounds that could target 
several cell types or targets.

However, there are also disadvantages to using biological EVs as therapeutic 
vehicles [8, 51]. Sometimes generalized increased uptake is not required, but more 
limited and specific uptake in certain sites or tissues. Although synthetic EV can 
have unwanted toxicity and immunogenicity, enhanced immunogenicity may be 
required to maximize antitumor effects. These issues require a modified delivery 
system that does not necessarily prevent uptake of the nanovesicle, but prevents 
content release unless the desired inter/intracellular conditions are met. With cur-
rent technology, synthetic particles have been advantageous in this respect, as the 
regulation of surface expression is far easier, and the particle structure can be easily 
modified to prevent release at unwanted sites, such as low or neutral pH [83–86]. 
Thus, the two main advantages of synthetic and semi-synthetic EV delivery systems 
are that the manufacturing process limits unwanted variability/heterogeneity (an 
issue when utilizing current biological systems for EV generation), and that syn-
thetic EV can be generated on large scale, suitable for drug delivery or vaccination. 
Future therapies will most likely rely on a combination of these methods, as well as 
the generation of EV mimetics, a type of EV of biological origin, generated via non- 
biological mechanisms [67, 68, 87, 88].

8.4  Generation and Modulation of EV for Cancer Therapy

As of 2016, there were no commercial EV-based therapies available for the treat-
ment of cancer. Although synthetic nanovesicle delivery systems have been estab-
lished in the treatment of array of diseases, the potential of EV to deliver therapeutic 
compounds is beginning to be elicited [8, 51]. The generation of EV to be used in 
cancer treatment relies, fundamentally, on two methods; the isolation of EV from 
the patient, tissue, or cell culture, followed by modification (drug, protein, nucleic 
acid, lipid) and reintroduction to the patient as treatment; or the large-scale isola-
tion/fabrication of EV from cell culture, bioreactor or animal body fluid, again, 
followed by modification and introduction to the patient. Ex vivo modification of 
EV is often required to regulate antigen presentation or surface expression in order 
to modulate immunostimulatory potential and enhance selective uptake and deliv-
ery of EV contents [80, 85, 89, 90]. These contents can be internalized utilizing a 
range of methods. The cells used to generate the EV can be treated with factors that 
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regulate EV expression of protein and nucleic acid, and to produce exosomes that 
contain said factor [60, 85]. EV themselves can also be treated to incorporate spe-
cific contents. Simple incubation can facilitate uptake of certain compounds, while 
more complex methods, such as electroporation or enzymatic poration can also be 
used [49, 51, 62].

Though EV can be isolated from nearly all cell types and bodily fluids, exosome 
production for cancer therapy is limited. This includes primarily dendritic cells, 
cancer cells, and stem cells, each having distinct advantages and disadvantages. The 
first study to demonstrate the effectiveness of EVs as a mechanism for delivery 
showed that EV could deliver siRNA while effectively crossing the blood blain bar-
rier [19, 57]. Though not a cancer treatment, the use of the host’s EV for therapy 
propogated widespread interest in this method. In this study, dendritic cells were 
harvested and modified before reintroduction into the host, but these are not the only 
cell types that can be used in the production of therapeutic EV [19]. Regardless of 
the method utilized, substantial data indicates the necessity for diligent selection of 
the cell type to be used due to unwanted side-effects. These effects are intrinsic due 
to the heterogeneity in surface expression of EV.

Besides the significant changes in yield between and within these methods, the 
most important consideration is the surface expressed factors that dictate uptake, as 
complex EV expression profiles can obscure other functions [91]. The use of EVs 
as therapy requires the utmost stringency in the selection, isolation, and preserva-
tion to ensure patient safety. Exosomes derived from cancer cells tend to express 
higher levels (sometimes only) of MHC class I and a diverse array of growth factors, 
while EV from dendritic cells tends to express higher levels of MHC class II and 
lower amounts of growth mediators [8, 81, 92–97]. EV from mesenchymal stem 
cells (MSC) have been shown to be anti-inflammatory but can both enhance and 
inhibit tumor growth in different contexts [98]. Depending on whether the chosen 
method is to engage the immune system or directly kill tumor tissue, certain com-
plications are inherent to EV-producing cell types and may have both positive and 
negative effects for the development of novel treatments. For example; aiming to 
generate an immune response that engages and destroys tumor tissue may have 
indirect proliferative effects on tumor tissue, while directly targeting tissue with EV 
cytotoxic drugs may compromise anti-tumor immune responses. Thus, modification 
of surface expressed factors is often required to elicit effectiveness, by improving 
immunogenicity or cytotoxicity.

Of the cell types discussed, MSC have shown the most potential, due to their low 
immunogenicity and ability to generate substantial quantities of EV [99, 100]. They 
are also relatively easy to obtain from patients allowing for personalized treatment. 
Recently, the use of bioreactors to culture adipose-derived MSC was shown to 
increase EV yield approximately 100-fold compared to conventional culturing 
methods [101]. Other methods for the large-scale purification of EV include har-
vesting from bovine milk, or the generation of EV mimetics, generated via serial 
extrusion [67, 68, 87, 88, 102]. This process generates nanovesicles of identical 
biological composition to EV, opening their potential for use in therapy.
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8.5  Therapeutic Contents of EV in Cancer Therapy

Therapeutic contents of EV utilized in the treatment of cancer consist primarily of 
RNA or chemotherapeutics. Several studies have investigated the delivery of com-
pounds via modified EV derived primarily from MSC. MSC-derived EV containing 
miRNA and anti-miRNA could increase sensitivity or re-sensitize tumor tissue to 
chemotherapeutics, and inhibit tumor growth [53, 64–66] . The efficacy of these 
methods can be improved my modifying the expression profile of the EV, resulting 
in greater uptake by target cells. The use of therapeutic siRNA is also being investi-
gated, where preliminary studies have shown significant increases in mRNA deple-
tion, leading to substantial decreases in cancer cell proliferation and viability [54, 56, 
103]. EV, particularly from MSC, have also been used to enhance the effect of che-
motherapeutics [58, 59, 61]. MSC treated with chemotherapeutics release large 
quantities of drug-containing EV. These EV can be more effectively used to deliver 
compounds to target cells [60]. Off-target effects can be further minimized by deliv-
ering modified EV that contain enzymes which activate prodrugs in tumor tissue 
[54]. Prodrug accumulation in other tissues is insignificant as the negligible levels of 
EV uptake by non-cancerous cells minimize drug activation. Currently, only two tri-
als have investigated EV as method for drug delivery in cancer treatment, both utiliz-
ing plant-derived EV to either enhance the delivery of chemotherapeutics to tumor 
tissue (NCT01294072) or minimize side-effects of standard therapy (NCT01668849).

EV can also be utilized to deliver cargo that activates or enhances anti-tumor 
immune responses, producing a retroactive cancer vaccine [80, 95, 97, 104–106]. 
EV from tumor cells, and particularly dendritic cells, can contain be induced/modi-
fied to express/contain increased levels of MHC complexes for antigen presentation, 
as well as immunostimulatory components, such as heat shock proteins, interferon, 
and granulocyte macrophage colony stimulating factor [8, 81, 92–97]. These EV 
serve to enhance cytotoxic T-cell and Natural Killer cell responses against tumor 
tissue. Thus far, trials have investigated EV as an anti-cancer vaccine in lung 
(NCT01159288) and colorectal cancer, as well as malignant glioma (NCT01550523, 
NCT02507583). Studies investigating malignant glioma utilized a novel method for 
EV delivery. Rather than systemic delivery of EV, modified glioma cells captured 
within diffusion chambers were surgically inserted in the patient. As the glioma 
cells undergo apoptosis due to prior ex vivo modification, they release a range of 
vesicles, in particular EV, that serve to stimulate glioma-specific anti-tumor immune 
responses [107]. Although showing great promise, EV-based therapies for cancer 
have yet to make it to market.

8.6  Summary

EV are intriguing and present a new paradigm in our understanding of the dynamics 
of cancer pathology and treatment. Though the function of exocytosis in oncogen-
esis is not fully understood, many studies have demonstrated the capabilities of EV 
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in many aspects of cancer diagnostics and treatment. Though EV-based cancer 
treatments are still in clinical trials, EV-based biomarkers have recently become 
available for cancer diagnosis. With an increased understanding of the complex 
signaling potential of EV, combined with rapid and sensitive analysis methods, 
these nano- sized particles will undoubtedly provide a range of new options in can-
cer treatment.
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