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Plug-in Electric Vehicle Charging
Optimization Using Bio-Inspired
Computational Intelligence Methods
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9.1 Introduction

Transports which gain most of their energy from the power grid (which includes
all-electric vehicles and plug-in hybrid vehicles) have attained noteworthy market
diffusion over the past few years [1, 2]. Such transports, commonly mentioned as
plug-in electric vehicles (PEVs), lessen the fossil fuel consumption and hence decrease
the emissions which includes greenhouse gases [3]. As the number of PEVs are
increasing, power system operation will turn out to be more complex [4]. For instance,
if a large number of electric vehicles start charging after most people complete their
evening commute, a new demand peak could result conceivably demanding ample new
power generation capacity as well as ramping capability [5].

The influence of PEVs on the power system has been studied in a few works [6, 7].
Scheduling PEVs charging/discharging profiles is one of the solutions to mitigate the
impact of PEVs on the power grid. This can be performed by combining numerous sets
of PEVs for charging or discharging with different durations and start times such that
grid constraints are properly maintained. Nevertheless, the aggregation of PEVs varies
from the aggregation of more conventional power sources [7]. In particular, the tem-
poral availability of PEVs with their precise location information is a significant
constraint to study while aggregating PEVs for probable grid congestion management
and planning. Therefore, finding suitable charging and discharging times of PEVs that
do not disrupt grid constraints while preserving tolerable degrees of customer satis-
faction is a challenging optimization problem.
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The earlier generations of electric vehicles are projected to be linked to the
power grid only for battery charging. Nevertheless, as the innovative technology
develops, the idea of V2G (vehicle-to-grid) will become practically applicable.
V2G refers to the technique of injecting power to the grid while being connected to
it from vehicle on-board battery. By the help of this system, next-generation PEVs
will act as both generators and electric loads, i.e., PEVs will function as energy
storage apparatus [8].

During the past few years, several works have been comprehended on
bio-inspired optimization techniques. In most of the circumstances, optimum
solutions are found by the help of hybrid techniques, particularly on actual-world
problems. Earlier, cooperation was mostly comprehended between numerous CI
methods. However, currently, gradual cooperation structures between general CI
methods with exact tactics are suggested. Hybrid methods typically produce sat-
isfactory results as they are capable of exploiting simultaneous advantages of both
kinds of single techniques [9].

It is noteworthy to mention that some of the CI techniques have had their origins
in pure science and engineering fields. However, there is a good prospective to
explore various hybrid CI methods for solving power system problems as well as
their associated theories for future enhancement [4]. Optimization techniques are
usually studied as resolving scheduling problems related to PEV, power grid and
consumer constraints. Nevertheless, there are other optimization issues like inte-
gration of PEV, sizing and placement of charging stations.

The remaining segments are organized as per the following way: Sect. 9.2
discusses the charging of plug-in electric vehicle (PEV), Sect. 9.3 highlights the
PEV charging optimization issues, Sect. 9.4 describes the bio-inspired computa-
tional intelligence (CI) techniques, Sect. 9.5 discusses the applications of
bio-inspired CI for PEV charging optimization, and finally, Sect. 9.6 concludes the
chapter with future research directions.

9.2 Charging of Plug-in Electric Vehicle (PEV)

The PEV charging can be categorized into three different ways depending on the
charging voltage level and locations. Figure 9.1 provides the schematic diagrams of
different PEV charging alternatives.

The classifications of PEV based on the charging level are briefed below.

9.2.1 Level 1 Charging

Household-type socket-outlet is used for AC Level 1 slow charging. The best public
choice for PEV charging is Level 1 type because of the usage of conventional
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industrial/house socket. Level 1 type of charging is presently regarded as the key
mode for small-sized PEVs like two wheelers [10].

9.2.2 Level 2 Charging

Slow charging from a household-type socket with an in-cable protection device is
used for AC Level 2 charging which also permits the usage of conventional
industrial/house socket [10]. Nonetheless, this type of charging delivers extra shield
by adding an in-cable control box with a control pilot conductor amid the PEVs and
control box or the plug.

9.2.3 Level 3 Charging (DC Fast Charging)

DC fast charging is used as an external charger. There are 2 sub-mode types of
operation measured for the mode, specifically, the DC Level 1 (current <80 A,
voltage <500 V, power = 40 kW) and the DC Level 2 (current <200 A, voltage
<500 V, power = 100 kW) [10].

It is noteworthy to indicate that in Level 1 type, there is no physical commu-
nication between the charging point through the connector and PEVs. In Level 2
type, a pilot communication system can be added by permitting charging rate
control. Meanwhile, Level 3 type is mostly utilized for fast charging purposes
which is DC. A communication system is involved in Level 3 type of charging
which allows the management of appropriate battery charging. Furthermore, in
Level 2 and Level 3 types of charging, wireless communication networks can be
utilized to interconnect with PEVs as well as to control the charging and dis-
charging progression.

Level-1 Charging Level-2 Charging
Level-3 Charging

(DC Fast Charging)

PEV Charging

Fig. 9.1 Different types of PEV charging [10]
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9.3 PEV Charging Optimization Issues

Scientists are now putting efforts to minimize certain parameters like life-cycle
costs for the operation and installation of charging infrastructure, extra loads on
charging station as well as to maximize the overall revenues, integration of
renewable energy sources (RESs) and average state of charge (SoC) [11]. Fur-
thermore, expert systems based on real-time simulation, enhanced charging
schemes and optimal power allocation for PEVs have drawn ample consideration
among the researchers.

Kulshrestha et al. in [12] proposed concurrent smart energy management of
PHEVs for optimum usage of available power, charging duration and grid stability.
Furthermore, consumer approval, loads conditions, SoC and storage capability are
included. The benefits of using electric vehicles as energy storage for demand-side
management are addressed by Pang et al. [13]. Herrera et al. developed
hardware-in-loop simulation platform [14] for continuous (power systems and
power electronics) as well as discrete (communication systems) constraints. Sizing
optimization of the local energy storage (LES) for PEV charging was created within
an overall cost-minimization agenda by the authors in [15]. The control mechanism
of PHEV charging stations with LES facility was established. The results showed
the superiority of proposed systems with optimized parameters during both the
islanding and grid-connected modes as well as the transitional period with mini-
mized voltage. Lu et al. [16] studied large-scale behavior of vehicle charging,
deployment of charging infrastructure and driving pattern for PHEVs. Extensive
analysis was performed considering PHEV charging and driving dataset and
responded specific research questions on PHEV’s interaction to traditional power
grid network. Lastly, the researchers recommended the need of real-time driving
data with global optimization techniques.

Tulpule et al. [17] formulated improved equivalent consumption minimization
strategy (ECMS) for electric vehicle control by considering total energy con-
sumption factor together with the constant SoC maintenance of vehicle battery. As a
result, the SoC is dictated by ECMS at a persistent position with low consumption
of fuel. Tehrani et al. [18] characterized the fast charging infrastructures’ operation
equipped with energy storage and RESs in order to optimize the charging pattern
and retailing power to the existing grid by following the price variations to max-
imize the fitness function for the benefit of contributing to the electricity market. In
[19], the fitness function was to reduce the total cost. In [20], the fitness function
was to maximize the utilization of renewable energy and to minimize the charging
cost. The optimization constraints are the size and charging rate of the battery. In
[21], the objective was to guarantee fast charging duration of battery without the
overheating. Moreover, in [22], the objective was profit maximization of PEVs. The
authors provided different optimization objectives and certain system constraints
with the simulated data. Conferring to the type of the optimization problems
addressed, the authors suggested the estimation of distribution algorithm (EDA) to
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appropriately control numerous batteries charging/discharging from a bunch of
electric vehicles.

The capability of PEVs to facilitate the renewable energy integration to the
existing power system networks is possibly the most significant influence on power
grid [23]. Placement of all-encompassing photovoltaic (PV) charging arrangement
in an EV parking area was described by Neumann et al. [24]. Charging in PV
parking lot and diverse business models considering solar energy were discussed by
Rizzo et al. [25]. Environmental and socioeconomic influences of PV-based office
charging infrastructure were addressed in [26]. The study specified the technical
feasibility of establishing a PV-integrated office parking facility considering profits
for the car owner as compared to the household facilities of charging. Authors
stated that the consumer will receive the return of establishment and maintenance
cost as well as profit within the lifespan of the PV panels. Birnie [27] introduced a
solar collector integrated parking shade by encouraging the widespread installation
of solar system module and concluded that the system will allow much more rapid
payback period. In [28], Zhang et al. explained optimal control approaches to
integrate both the PEVs and PV considering the existing power grid.

9.4 Bio-Inspired Computational Intelligence (CI)

Nature is certainly an enormous and potential source of motivation for solving
complex problems in the domain of computer science as it shows very dynamic,
diverse, complex and robust phenomenon [29]. It regularly finds the optimal
solution to solve its problem keeping balance between exploration and exploitation.
This is the thrust behind bio-inspired computational intelligence (CI). Bio-inspired
CI techniques have the advantages as follows:

i. The stochastic and population-based nature of bio-inspired CI can significantly
increase its search space and hence lessen the chance of trapping into local
optima compared to the classical local optimization methods such as
hill-climbing and gradient-based techniques which are employed on deter-
ministic rules.

ii. Bio-inspired CI is focused toward better regions of a search space compared to
the ineffective random search technique because it accurately uses fitness
functions rather than function derivatives.

Bio-inspired CI techniques are very diverse and can be put into 3 categories:
evolution based, swarm based and ecology based. It is important to mention that
such categorization is not rigorous. Nonetheless, it is primarily done for the ease of
discussions in the chapter. A brief taxonomy of bio-inspired CI techniques is shown
in Fig. 9.2.

Črepinšek et al. [30] offered some basic guidelines to conduct any replications
and comparisons of evolutionary computation-based algorithms for optimization.
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Moreover, the comparisons conducted should be based on suitable performance
measures and able to show statistical significance of one approach over others. If
the simulation study is not carried out with adequate caution, any statistical methods
and performance measures cannot get rid of the problems adapted by inaccurate
simulation replication. Defining suitable performance measures are the basis for
algorithm comparisons. Hence, performance measures must be carefully defined
and described. Exact replication cannot always be attained. All deviations must be
stated. Any changes to the original experiment should be openly discussed along
with a description of the inspiration for the changes, as well as any threats to the
validities of the conclusions [31].

9.5 Applications of Bio-Inspired CI for PEV Charging
Optimization

In this section, the bio-inspired CI techniques often used in the charging opti-
mization are presented.

9.5.1 Charge Scheduling Optimization

By the appropriate establishment of intelligent scheduling techniques, smooth
integration of PEVs onto the power grid can be attained. Smart scheduling tech-
niques will assist to avoid cycling of bulky combustion plants, using costly fossil
fuel peaking plant by introducing PEVs in power system networks.

Fig. 9.2 Taxonomy of bio-inspired CI techniques

140 I. Rahman and J. Mohamad-Saleh



Bio-inspired CI techniques are alternative optimization tools to deal with the
non-smooth and complex power grid scheduling particularly with the latest de-
ployment of electric vehicles with dubiety and well-regulated charging loads [32].
Moreover, the bio-inspired CI techniques uphold stochastic types of solutions as
well as guide them toward optimal solutions through heuristic approaches. These
methods are typically not certain toward global optimum achievement, but are
generally resistant to high-dimensional, non-convex and nonlinear systems because
of this process. Therefore, the mentioned techniques are widespread selections for
elucidating the constraints and fitness functions which are not endlessly differen-
tiable like binary charging/discharging scenarios considering an enormous PEV.

Authors used ant colony optimization (ACO) for transformer side charging
scheduling of PEVs [33]. They concluded that the computation burden of ACO is
relatively low and thus suitable for large-scale application. The simulation results
relate and compare the load charging curve of PEV with the effect of load fluctu-
ation. The authors also proposed an intelligent charging algorithm for electric
vehicle charging services in reaction to TOU price. The aim was to improve the
stress in power grid under peak demand and to meet the demand response
requirements in regulated market. Authors in another work introduced a centralized
scheduling policy for PEV charging using genetic algorithm (GA) to facilitate the
size and complexity of the optimization [34]. The load curve shape remained
relatively consistent. Thus, the algorithm attained statistically similar results from
run to run. This validated the formulated optimization approach and algorithm for
PEV charge scheduling.

In Soares et al., 3 variants of PSO techniques were formulated for comparison
[35]. The authors concluded that, with the rise of decision variables, the overall
computational complexity prolonged exponentially. From the results analysis,
authors concluded that EPSO obtained better solution quality with reasonable
execution time for the problem context (day ahead). Moreover, ant colony opti-
mization (ACO) was utilized to improve the binary PSO for the optimization of unit
commitment (UC)-related problem due the PEV load suggested by the authors in
[36]. The scheduling was handled by binary PSO based on logical operators, and
economic dispatch was solved through an improved ACO. The best cost per pro-
duced unit (CPU) procedure was implemented in the suggested technique to
decrease the maximum required iteration in BPSO.

Roy and Govardhan examined the economic cost of UC with the generation of
wind energy, emergency demand response, PEV charging and discharging using
teaching-learning-based optimization (TLBO) algorithm [37]. The study indicated
that the operational cost reduction is possible by the expansion of PEV battery
capacity. Nonetheless, additional cost on transmission congesting and battery
depletion exists among the challenges of PEV operation in power grid networks.

Proper charging scheduling is needed for upcoming PEV penetration in the
vehicular network. There exists ‘range anxiety’ among the owners of PEVs. They
are worried about the electric vehicle mileage because the on-board storage needs to
be charged when the state of charge reaches a certain limit [38]. Uncoordinated
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fashioned PEV charging is the source of disturbances to the power grid, i.e., lines
and transformers overload and voltage drops [39].

Hybrid optimization techniques perform a noticeable role in enhancing any
search techniques. Hybrid techniques are used to combine the benefits of two or
more algorithms, while concurrently trying to curtail any considerable drawbacks
[40]. Overall, the effect of hybrid techniques can typically make some develop-
ments considering solution accuracy and computational complexity [41].

9.5.2 Optimal Charging Strategy

One of the most recent charging strategies of PEVs is smart charging [42]. The
awareness behind this smart charging is based on PEV charging during the most
advantageous scenarios when the electricity demand and price is the lowest with
surplus capacity [43].

Authors in [44] used artificial immune system (AIS) and tangent vector
(TV) technique for PEV recharging policy of IEEE 34-bus distribution system. The
results of the TV-based optimization method demonstrated loss reduction with a
lesser computational complexity by the help of random search process. Neverthe-
less, the authors suggested simulation for larger distribution systems as a future
research.

Authors in [38] did a trade-off between power management strategy of stochastic
optimal PEV and electrochemistry-based model of anode-side resistive film for-
mation in lithium-ion batteries using a non-dominated sorting genetic algorithm
(NSGA) in the formation of a Pareto front. Authors applied NSGA-II to the plug-in
EV model in order to find its optimum charging patterns. After comparing various
solutions from the Pareto front, the authors suggested that consumer should
preferably charge a plug-in EV rapidly during off-peak hours and just before the
onset of traveling to efficiently reduce energy costs and battery degradation.

Different PSO variants were utilized to optimize other PEV charging-related
parameters. In [39], the fitness function was to maximize the average SoC in terms
of the battery capacity, energy cost and remaining PEV charging time which is very
nonlinear in nature and tough to resolve by traditional optimization techniques. The
authors proposed adaptive weight PSO-based algorithm and compared with interior
point method (IPM) and GA techniques. The suggested technique outperforms both
IPM and GA considering exploitation capability. This demonstrates the superiority
of bio-inspired algorithm.

Poursistani et al. [45] used an optimization technique founded on binary type of
gravitational search algorithm (BGSA) in order to plan the optimal charging of
PEVs. The results showed positive effect of smart charging using BGSA technique
for the peak shaving of load.

Rahman et al. employed accelerated particle swarm optimization (APSO) [46]
and hybrid particle swarm optimization and GSA (PSO-GSA) [47] for SoC max-
imization of PEVs, hence optimizing the overall smart charging. The hybrid
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PSO-GSA uses the benefits of both GSA and PSO techniques and thus obtains
optimum fitness values. Nevertheless, PSO-GSA technique shows much higher
computational time compared to single techniques because of complex algorithm
formulation. Normally, hybrid bio-inspired methods produce good results for best
fitness value. However, the computational time is longer compared to single method
[48] because more parameters initialization is needed due to two different methods
working in parallel in the hybrid algorithm.

Moreover, Awasthi et al. hybridized GA with an enhanced variant of the particle
swarm optimization (GAIPSO) in order to find best location for suggested charging
strategy in the Allahabad power distribution company, India [49]. Simulation
analysis on a real-time Allahabad city power system clearly shows the superior
capability of the stated method compared to PSO and GA to optimize the fitness
function considering voltage profile improvement and solution quality.

Table 9.1 summarizes a number of very recent bio-inspired CI techniques
applied for the discussed applications of PEV charging optimization.

9.6 Summary and Conclusion

Scientists from multi-disciplinary research backgrounds should try to apply the
theoretical knowledge to solve real-time PEV charging problems. Researchers from
various backgrounds such as architecture, civil engineering, mechanical engineer-
ing and electrical engineering should put painstaking effort together in order to
realize successful PEV charging optimization in smart grid. The application of
bio-inspired CI techniques for PEV charging optimization is an emerging research

Table 9.1 A summary of different bio-inspired CI techniques for PEV charging optimization

Authors and references Applications Bio-inspired CI
technique

Year

Xu et al. [33] Charge scheduling
optimization

ACO 2013
Crow [34] GA 2014
Soares et al. [35] PSO 2013
Ghanbarzadeh et al.
[36]

ACO, HPSO 2011

Govardhan and Roy
[37]

TLBO 2015

Rorigues et al. [44] Optimal charging strategy AIS 2013
Bashash et al. [38] NSGA 2011
Su and Chow [39] PSO 2012
Poursistani et al. [45] BGSA 2015
Rahman et al. [46] APSO 2016
Vasant et al. [47] PSO-GSA 2016
Awasthi et al. [49] GA-PSO 2017
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field eliciting considerable research attention. The discussions in Sect. 9.5
demonstrate that the overall performances of various bio-inspired CI techniques
(specially, PSO, GA) in this domain are very noteworthy as they will inspire other
researchers to formulate latest bio-inspired CI techniques to optimize PEV charg-
ing. Judging from the trend, interesting variants in this area are hybrid bio-inspired
CI such as GA-PSO [47] and PSO-GSA [49] as the results have been found to be
highly competitive compared to single CI techniques.

In the future, it is suggested that some well-performed bio-inspired CI tech-
niques like cuckoo search algorithm (CSA), artificial bee colony (ABC) and arti-
ficial fish swarm algorithm (AFSA) should be applied to solve issues related to PEV
charging. As CSA [50] is constructed on the brood parasitism behavior of cuckoo
species and because it uses levy flights, the method can be used for solving PEV
complex problems. Levy flight is able to give better result than simple random
walk. Moreover, artificial bee colony (ABC) technique is lately presented
swarm-based optimization methods which mimics the clever honeybee swarm
foraging behavior [51]. It is encouraged that future studies for solving smart
charging problem of PEV involve the ABC optimization technique. Furthermore,
integrating new or modified hunting behavioral strategies adapted from other
bio-inspired algorithms into the swarming behavior stage of AFSA should be able
to enhance its convergence rates and optimal solutions of PEV charging [52].
Although various bio-inspired CI techniques have been presented to perform better
optimization than that of the standalone versions, the ‘No Free Lunch (NFL)’ theory
[53] is a fundamental barrier toward the overstated claims of the efficiency and
robustness of any particular optimization techniques. Particularly, in practice, there
is no single optimization technique that can perform best for all types of power
system optimization problems. Hence, one potential approach to handle the unde-
sirable implication of the NFL theory is to formulate algorithms based on the
synthesis of existing ones as well as limit the applications of a given algorithm to
only a specific type of PEV charging optimization problems.
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