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Abstract The present article deals with the approximation properties of certain
Lupas-Kantorovich operators preserving e~*. We obtain uniform convergence
estimates which also include an asymptotic formula in quantitative sense. In the
end, we provide the estimates for another modification of such operators, which
preserve the function e=2*.

Introduction

In the year 1995, Lupas [9] proposed the Lupas operators:

o]

o k
La(fix) = Y0 2 (;) ,

k=0

where (nx)g is the rising factorial given by
nmx)y=nx(nx + Dnx+2)---(mx +k—1), (nx)o=1.

Four years later, Agratini [2] introduced the Kantorovich-type generalization of the
operators L,. After a decade Erencin and Tasdelen [4] considered a generalization
of the operators discussed in [2] based on some parameters and established some
approximation properties. We start here with the Kantorovich variant of Lupas
operators defined by
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with the hypothesis that these operators preserve the function e ~*. Then using

(@)k k_ a
m —z =10-27%1z] <1,
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k=0

we write

o0
27nan(x) (k+1)/n
o — 1 Z (nkan(X))k / ol ds
=0 k12 k/n
o
27 (na, (X)) _y
_ —k/n _ ,—1/n
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=n(l —e VM@ — e~ V/my=nan(x)

which concludes

x +1n (n(l — e_l/"))
nln (2 —e~1/n)

2)

ap(x) =

Therefore the operators defined by (1) take the following alternate form

x+ln(n(1—c_]/n)) —1/n
~ e (x+In(n(l —e7l/m)
Ka(f.0) = Z k'2k e ( In(2—e-1/n) k

(k+1)/n
/ f(t)de.
k/n

These operators preserve constant and the function e™*. The quantitative direct
estimate for a sequence of linear positive operators was discussed and proved in
[8] as the following result:

Theorem A ([8]) If a sequence of linear positive operators L, : C*[0, 00) —
C*[0, 00), (where C*[0, 00) be the subspace of all real-valued continuous functions,
which has finite limit at infinity) satisfy the equalities

[ILn(e0) — 1[[0,00) = @n
[ILa(e™) — e *|lj0,00) = Bu
ILa(e™) = e > lj0,00) = ¥
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then

1Lnf = flli0.00) = 20" (£, v/au + 285+ 1) . f € €70, 00),
where the norm is the uniform norm and the modulus of continuity is defined by

w"(f,8) = sup [f @) = fOl

leX—e71|<8,x,t>0

Very recently Acar et al. [1] used the above theorem and established quantitative
estimates for the modification of well-known Szdsz—Mirakyan operators, which
preserve the function ¢**, a > 0. Actually such a modification may be important
to discuss approximation properties, but if the operators preserve e * or e~ 2, then
such results may provide better approximation in the sense of reducing the error. In
the present paper, we study Kantorovich variant of Lupas operators defined by (1)
with a,(x) as given by (2) preserving e~ *. We calculate a uniform estimate and
establish a quantitative asymptotic result for the modified operators.

Auxiliary Results

In order to prove the main results, the following lemmas are required.

Lemma 1 The following representation holds

A
Kn(eAt x) = w(z _ eA/”)_mln(X)
9 A .

Proof We have

dt

o0
2-1a () (ng (x)) K+
K,,(eAt,x)zn ( l’l( ))k/ eAt
k

i K12k /n

X n—nay(x)
. 2 (nan (x))k [eAt(eA/n _ 1)]

12k
P k12

n(eA/n -1 (2 A/n>—nan(x)
= —e .
A

Lemma2 Ife (t) =t",r € N, then the moments of the operators (1) are given
as follows:

K(ep, x) =1,

1
K, (e1,x) = a,(x) + —,
2n
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0 1
Kn(ea, 2) = (an(0))? + 228 =

n 3n

15(an(x)*  10a,(x) 1
Ku(es, x) = (an(x)’ + ==+ — 5= 4
3 2
Ky (ea, x) = (ay(x))* + 14(a, (x)) n 50(an2(x)) 53an3(x) n % '
n n n Sn

Lemma 3 If i, (x) = K, ((t — x)™, x), then by using Lemma 2, we have

,un,O(x) =1,

() = an () + 3 —

3a,(x) x 1

n 302

14(a, (x))® — 30x (a, (x))? + 18x2a, (x) — 2x3
n

[ 2(X) = (an(x) — x)* +

[, a(x) = (an(x) — x)* +

+50(an(x))2 — 40xay (x) + 2x2 N 53a,(x) — x 1

n? n3 snt’
Furthermore,
. x +1n (n(l —e_l/")) 1
lim n +——x|=x
n—o00 nln (2—6*]/”) 2n
and

nin(2—e-1/m) n?In (2 —e=1/n)

n—oo

_ —1/n 2 _ —1/n
- <x+ln(n(1 e ))_x> 3[x +1n(n(1 —e"V/m)]

X 1
—— 4+ — | =2x.
n+3n2i| *

Main Results

In this section, we present the quantitative estimates.

Theorem 1 For f € C*[0, 00), we have

Knf = fll0,00) < 20% (fo /) »
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where
Yn = 1Kn(e™) — ¢ *|[0,00)
2xe™ 2 (24x2 —48x — 11)e = 1
n 12n n [0.00)

Proof The operators K, preserve the constant and e . Thus o, = B, = 0. We
only have to evaluate y;,. In view of Lemma 1, we have

dt

o

z—nan(X)(nan () (k+1)/n

K,,(e_ZI, xX)=n / e
kgo k12K k/n

_ n(l — e—z/n) (2 B 672/n>_na"(x)
2 9
where a, (x) is given as

x +1n (n(l — e_l/"))
nln (2 —e=1/m)

ap(x) =

Thus using the software Mathematica, we get at once

— x+1n(n(l—g_l/"))
Ky(e ¥, x) = n(l_—eZ/n) (2 _ eZ/n)[_m(”l/n)}
’ 2

— 672x +

2xe” X (24x2 —48x — 11)e ¥ 1
+0(—=).
n 12n2 n3

This completes the proof of the theorem.

Theorem 2 Let f, f” € C*[0, 00). Then the inequality
[n[Ku(f. %) = fO] = x[f'(x) + " (0)]|
= pnOILL |+ 1an OIS 42 (0 +2x + ra ) 0 (17,0 712)
holds for any x € [0, 00), where
Pn(X) = nppy1(x) — x,
1
G (x) = 3 (npn,2(x) — 2x),
Fa@) = n2\ K (e — ) ) i),

and iy 1(x), tn2(x), and py 4(x) are given in Lemma 3.
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Proof By Taylor’s expansion, we have

1
FO=F0+0=0)fx)+ 0= 0?7 (x) + e(t, x)(t — x)?, 3)

where

') = f"(x0)

e(t,x) = 5

and 7 is a number lying between x and ¢. If we apply the operator K, to both sides
of (3), we have

K0 = 0 = i 1000 = 1t 2001 (0)
< |Ku(et, x)(t — x)%, %)),
Applying Lemma 2, we get
[n[Ka(f. %) — )] = x[f @) + £ ()]
< npna ) — x| 1/ 0]+ % |ntn 2(x) = 2x] | f" ()]
+In K, (e(t, x)(t — x)%, x)|.
Put p,(x) 1= npty,1(x) — x and g, (x) := 3[np, 2(x) — 2x]. Thus
[n[Kn(f. %) = f)] = x[f'x) + " (0]
< 1pa LI ]+ 1gn L1 ()] + [n Ky (e(2, )t = x), x)].

In order to complete the proof of the theorem, we must estimate the term
[nK,(e(t, x)(t — x)?, x)|. Using the property

(e—t _ e—X)Z

Lf@) = f)l = <1+ 5

)w*(f, 8),8 >0,

we get

(e—t _ e—X)Z

le(t. )] < (1 +—0

)w*(f”, (S)
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For |e™ — e™!| < 8, one has |e(t, x)| < 20*(f”, ). In case |e™ — e™!| > §, then
—Xx —1y2
le(t. x)| < 2L w* (", 5). Thus

(e—x _ e—t)2

|8(t,x)| < 2(1 + 5—260*(](‘//’8)) .

Obviously using this and Cauchy—Schwarz inequality after choosing § = n~1/2

get

, We

nKy(le(t, )|t — x)%, %) < 20" (f"(x), ™) [npen 2 (x) + rn ()]

= 20" (f"(x), n7 V) [2¢, (x) + 2x + ()],

where 1, (x) = n2[K,((e ™ — e~ )4, )C)./L,,,4()c)]1/2 and
Ku((e™ —e™)x) = =2 " = 1)@ — ¥/

+4_ne—X(e—3/n _ 1)(2 _ e—3/n)—na,1(x)
3

_3ne—2X(e—2/n _ 1)(2 _ e—Z/n)—na,,(x)
+4ne73x(e71/” -DHE2 - e*l/n)fna,,(x) + ef4x'

This completes the proof of the result.

Remark 1 From the Lemma 3, p,(x) — 0,¢g,(x) — 0 asn — oo and using
Mathematica, we get

lim nz,un,4(x) = 12x2.
n— oo
Furthermore
lim n%K, ((e_’ —e )4, x) = 12¢ % x2.
n— oo

Thus in the above Theorem 2, convergence occurs for sufficiently large n.

Corollary 1 Let f, f” € C*[0, 00). Then, the inequality
nlglgon [Kn(f, %) = f)] = x[f'(x) + £ (0)]

holds for any x € [0, 00).
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Remark 2 In case the operators (1) preserve the function e~2, then in that case
using Lemma 1, we have

o2 n(l —26_2/") (2 _ e—z/n)_”“”(x)’

which implies

(d—e?/™)
2 + In (20270

nln(2 —e=2/n) @

ap(x) =

Also, for this preservation corresponding limits of Lemma 3 takes the following
forms:

2x +1In <_"<1—;‘2/">) |
+——x|=2x

lim n
n—00 nln(2 — e=2/n) 2n
and
am 2 om
; 2x +1n (”(1+2/)> +3(2x +In ("(1+2/))> e,
im - I
o nin2 — e=2/n) * n2In(2 — e~2/m) n  3n? *

and we have the following Theorems land 2 and Corollary 1 taking the following
forms:

Theorem 3 For f € C*[0, 00), we have

1Ko f = Fllooor = 20% (£:v/280).
where

Bn = ||Kn(e_t) - e_x||[0,oo)

—xe n (12x2 4+ 24x + 1)e™™ I 1
n 24n2

1 /1110.00)

Theorem 4 Let f, f” € C*[0, 00). Then the inequality
|n[Kn(f, %) = O] = x[2f' () + f/ )]

= BN 1 +1an L 42 (24000 +2x + 7 () o7 (72072
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holds for any x € [0, 00), where

Pn(x) = npp1(x) —x,

R 1
Gn(x) = 3 (nptn,2(x) — 4x),

Fa@) = Ky (e = ) ) itma (o).

and [up,1(X), pn2(x) and p, 4(x) are given in Lemma 3, with values of a,(x), given
by (4).

Corollary 2 Let f, " € C*[0, 00). Then, the inequality

Jim n (K, (f, ) = f(O] = x[2f(x) + f"(x)]

holds for any x € [0, c0).

Remark 3 Several other operators, which are linear and positive, can be applied
to establish analogous results. Also, some other approximation properties for the
operators studied in [3, 5-7, 10] and references therein may be considered for these
operators.
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