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Abstract The present paper is a brief introduction to logical fuzzy implication
operators, the basic properties of a fuzzy implication function, and ways to construct
new fuzzy implication functions. It is also argued that logical implication functions
are defined in a rather rationalistic manner. Thus a new, empiristic approach is
proposed, defining implication relations that are derived from data observation and
with no regard to any preexisting constrains. A number of axioms are introduced
to define a fuzzy empiristic implication relation, and a method of computing such
a relation is proposed. It is argued that the proposed method is easy and with
small time requirement even for very large data sets. Finally an application of the
empiristic fuzzy implication relation is presented, the choice of a suitable logical
fuzzy implication function to describe an “If. . . then. . . ” fuzzy rule, when observed
data exists. An empiristic fuzzy implication relation is computed according to the
data, and through schemas of approximate reasoning, the difference of it to any
logical fuzzy implication function is measured. The fuzzy implication function that
is closer to the empiristic best resembles the observed “If. . . then. . . ” fuzzy rule.

Keywords Fuzzy implication · Approximate reasoning

Introduction

The theory of fuzzy logic that has been presented by Zadeh [12] has developed
rapidly both in theoretical and application basis. The main characteristic of this
development is the abandonment of the binary classical logic of zero and one. In that
sense a logical proposition can be true with any degree of truth from one, meaning
it is absolutely true, to zero, meaning it is absolutely false. It also defines fuzzy sets,
to which any element can belong with any value from zero to one. Special interest

K. Mattas (�) · B. K. Papadopoulos
Democritus University of Thrace, Department of Civil Engineering, Xanthi, Greece
e-mail: kmattas@civil.duth.gr; papadob@civil.duth.gr

© Springer International Publishing AG, part of Springer Nature 2018
N. J. Daras, Th. M. Rassias (eds.), Modern Discrete Mathematics and Analysis,
Springer Optimization and Its Applications 131,
https://doi.org/10.1007/978-3-319-74325-7_16

317

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74325-7_16&domain=pdf
mailto:kmattas@civil.duth.gr
mailto:papadob@civil.duth.gr
https://doi.org/10.1007/978-3-319-74325-7_16


318 K. Mattas and B. K. Papadopoulos

is the generalization of operations between fuzzy propositions and fuzzy sets with
the generalization of the classical implication to fuzzy logic which is significant.

The present paper describes the basic properties of fuzzy implication functions.
Also a new type of fuzzy implication relationship constructed entirely from
observation, which is called empiricist fuzzy implication relationship, is proposed.
It is theoretically founded with proposed axioms, and a method of evaluating the
relationship has been developed. Also a method of choosing a logical implication
function is proposed in order to be suitable to observed data, using the empiristic
fuzzy implication relationship.

Preliminaries

Classical Implication

In classical logic there are propositions, e.g., “The number three is odd” or “the
number four is odd,” which may be true or false, respectively. These propositions
can be combined using logical operations as “and,” “or,” etc. A very important
operation between the two proposals is the implication. For two logical propositions
p and q, it is denoted that p implies q (p ⇒ q) if any time p is true, q must be also
true. In the above case, proposition p is called cause or antecedent, and proposition
p is called consequent. It represents an “If. . . Then. . . ” rule [3].

Abiding classical logic, any proposition can be valid or not valid, so it is evalu-
ated with one or zero, respectively. Thus the implication between two propositions,
being a proposition itself, can be valid or not valid. Furthermore any implication
(p ⇒ q) is equivalent to the proposition “negation of q or p.” In the following
Table 1, the Boolean table of the classical implication operation is presented.

Classical implication operation is directly applied on logical reasoning schemas
as modus ponens, modus tollens, and hypothetical reasoning [1]. Modus ponens
from the Latin modus ponendo ponens is proof inductive reasoning and has the
following format: IF p ⇒ q is true AND p is true, THEN q is true. A modus tollens
schema (from Latin modus tollendo tollens) or rebuttal process follows these steps:
IF p ⇒ q is true and n(q) is true, THEN n(p) is true, where n(p) is the negation of
p, i.e., the proposal p is false. Finally, an example of hypothetical reasoning is this:
IF p ⇒ q is true and q ⇒ r is true, THEN p ⇒ r is true.

Table 1 Boolean table of
classical implication

p q p ⇒ q

0 0 1

0 1 1

1 0 0

1 1 1
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Fuzzy Implication

Fuzzy logic is based on the idea that a proposition may be true to some degree of
truth. It is immediately apparent that a generalization of the classical implication is
required, such that firstly it is possible to evaluate the implication between fuzzy
propositions, and secondly it is possible for an implication to be valid to a degree of
truth. Thus, fuzzy implication can be defined as a function I (Eq. (1)):

I : [0, 1] × [0, 1] → [0, 1] (1)

For the definition of a fuzzy logic implication operation, a set of axioms have been
proposed in literature that any function has to fulfill in order to be considered as a
fuzzy implication function. A fuzzy implication function is a function I : [0, 1] ×
[0, 1] → [0, 1] which satisfies the maximum of the following axioms [3]:

1. if a ≤ b, then I (a, x) ≥ I (b, x) (left antitonicity)
2. if a ≤ b then I (x, a) ≤ I (x, b) (right isotonicity)
3. I (0, a) = 1
4. I (1, a) = a

5. I (a, a) = 1
6. I (a, I (b, x)) = I (b, I (a, x))

7. I (a, b) ⇔ a ≤ b

8. I (a, b) = I (n(b), n(a))

9. A fuzzy implication function must be continuous on its domain

Construction of Fuzzy Implication Functions

In the literature there are many functions that have been proposed as fuzzy
implication functions, satisfying some or all of the aforementioned axioms. In
addition there are several ways to create implication functions based on logical
rules of classical logic and using t-norms, t-conorms, or even other implications.
Furthermore it is possible to create functions that satisfy the axiomatic restrictions
on an algebraic basis. Some ways to construct a fuzzy implication function are as
follows:

S-N Implications

As mentioned, the proposition p implies q in classical logic is identical with the
proposition negation of p or q as in (Eq. (2)):

p ⇒ q ≡ n(p) ∨ q (2)
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Thus, a fuzzy implication may be produced by a fuzzy negation N and a t-
conormS by the aforementioned tautology as follows [1] (Eq. (3)):

I (x, y) = S(N(x), y) (3)

Reciprocal Implications

When for a given pair of fuzzy implication and negation operations, the rule of
contraposition is not satisfied, it is possible for a new fuzzy implication function
to be constructed with the following formula. The new fuzzy implication function
paired with the negation utilized satisfies the rule of contraposition [1] (Eq. (4)).

IN(x, y) = I (N(x),N(y)) (4)

R Implications

The following formula of set theory, where A and B are subsets of a universal set X,
obtained from the isomorphism of the classical set theory with the binary Boolean
logic, can be used to construct new fuzzy implication functions (Eq. (5)).

A′ ∪ B = (A \ B)′ = ∪{C ⊆ X|A ∩ C ⊆ B} (5)

Fuzzy implications created as a generalization of this rule in fuzzy logic are
widely used in the intuitionistic fuzzy logic and are often found in the literature
as R implications. For this purpose a t-normT is needed, and the implications are
calculated as follows (Eq. (6)):

I (x, y) = sup{t ∈ [0, 1]|T (x, t) < y} (6)

QL Implications

In quantum theory, a new tautology has prevailed to describe the implication
operation. It is shown in the following equation (Eq. (7)), and it yields the same
results with the rest known ways to describe the operation in classical logic.

p ⇒ q ≡ n(p) ∨ (p ∧ q) (7)

From the generalization (Eq. (7)) to fuzzy set theory arises a new class of impli-
cations that are found in literature as QL implications (quantum logic implications).
These implication functions are created as in (Eq. (8)), when a fuzzy negation N , a
fuzzy t-conormS, and a fuzzy t-normT are applied.

I (x, y) = S(N(x)T (x, y)) (8)
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f and g Implications

For a function to be appropriate to be a fuzzy implication, it has to satisfy a set of
axioms that have been mentioned above in the definition of fuzzy implication. So
it is possible to create algebraic implication production techniques designed based
on the restrictions, without any further association with logical rules as the other
ways that have been reported [1]. Suppose a function f : [0, 1] → [0,∞] that is
strictly decreasing and continuous and that satisfies f (1) = 0. A fuzzy implication
If : [0, 1]2 → [0, 1] is defined as follows (Eq. (9)):

If (x, y) = f −1(xf (y)) (9)

The function f is called f -generator and the implication f -generated.
Respectively, g-generator generator functions and g-generated generated

implications can be defined where function g : [0, 1] → [0,∞] is strictly increasing
and continuous with g(0) = 0. The implication Ig : [0, 1]2 → [0, 1] is computed as
follows (Eq. (10)):

Ig(x, y) = g(−1)

(
1

x
g(y)

)
(10)

where the function g(−1) pseudo-inverse of g, given by (Eq. (11)):

g(−1)(x) =
{

g−1(x) if x ∈ [0, g(1)]
1 if x ∈ [g(1),∞] (11)

Convex Combinations

Another very usual way to produce a new fuzzy implication is from a convex
combination of two old ones. Two fuzzy implication functions I and J and any
real number λ from the closed interval [0, 1] can be combined in order to produce a
new implication Iλ as follows (Eq. (12)):

Iλ(x, y) = λI (x, y) + (1 − λ)J (x, y) (12)

It turns out that since I and J implications satisfy the axioms of fuzzy implication
definition, the same is true for the produced Iλ [7].

Symmetric Implication Functions

It is noteworthy that apart from the classical implication functions, symmetric
implication functions are widely used and have been proposed in the literature [3].
Such examples are Mamdani and Larson implications that use t-norms to evaluate
the degree of truth of the implication [8].
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These functions are very useful for fuzzy control systems, particularly in some
implemented to engineering problems. It is common for these problems to involve
correlated variables, where it is not always clear to distinct the antecedent from
the consequent. Furthermore in such a system, a decrease in the degree of truth of the
antecedent should be followed by a decrease in the degree of truth of the consequent.
Hence this kind of fuzzy implications, although cannot satisfy the established
axioms, has significant advantages when modeling engineering problems. Hence
they can be found in the literature as engineering implications (Eqs. (13)–(14)):

IM(x, y) = min(x, y) (13)

IL(x, y) = xy (14)

Approximate Reasoning

In nature, as in engineering applications, a need emerges to make decisions when
accurate data are not available. This can be due to failure of accurate forecasting
(e.g., seismic actions on structures, road traffic volume), difficulty or cost of
measurements (e.g., accurate traffic volume data), and even in some cases when
there are no models to explain a phenomenon sufficiently (e.g., the seismic behavior
of reinforced concrete frame structures with infill masonry). These inconsistencies
make it necessary to develop approximate reasoning to judge the data and make
decisions in a scientific and responsible manner.

Approximate reasoning is used to relate fuzzy propositions. The fuzzy inference
schemas that have been used are an extension of the classical inference schemas. So
generalized modus ponens (GMP), generalized modus tollens (GMT), and hypo-
thetical reasoning can be used. For calculating these schemas, fuzzy implications
are as significant as the classical implication is to classical inference.

The schemas are generalized as follows. Assume two variables x and y set in X

and Y sets, respectively. Furthermore assume a relation R between x and y. Assume
now that it is known that x ∈ A. Then we can reasonably assume that y ∈ B where
B = {y ∈ Y |〈x, y〉 ∈ R, x ∈ A} This also applies when the sets A,B are fuzzy and
R is a fuzzy relation with membership functions xA, xB, xR , respectively, and the
formula transformed as follows [6] (Eq. (15)):

xB(y) = supx∈Xmin[xA(x), xR(x, y)] (15)

This formula is known as compositional rule of inference [13] when R(x, y) is a
fuzzy implication relation I (A(x), B(y)).

Generalized modus ponens or any other approximate reason scheme can be
calculated with the use of the compositional rule of inference. Assume for x and
y that A implies B and that it is known that in a given instance x ∈ A′. Then y ∈ B ′
and B ′ can be computed using the rule, as follows. It is apparent that if all involved
sets are crisp, the formula is equivalent to classical modus ponens (Eq. (16)).

B ′(y) = supx∈Xmin[A′(x), R(x, y)] (16)
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Choosing Fuzzy Implication Function

In the process of approximate reasoning, the selection of fuzzy operations can
cause large variations in the results. Especially when constructing a fuzzy inference
system for which an “IF. . . Then. . . ” fuzzy rule base is the cornerstone, the rules
are essentially fuzzy implication operators. The choice has to be from a large set
of alternative functions. There are some well-known functions that can be found in
most handbooks [6], and there are many methods to construct new functions. Some
of the most significant have been noted.

Although there is no unique and exact way of selecting the implication, several
attempts have been made. It should be made clear that the fuzzy implication
functions can be divided into groups. Thus, the literature is possible to give guidance
regarding the selection of the initial implication group that matches according to
theory in an optimal way. Thus the selection of the group may be based on the type
of propositional reasoning schema that is utilized [6]. Additionally the implication
function can be chosen from the t-norm, t-conorm, or negation utilized, or it could
be chosen to fit optimal the observed data [9].

Special mention needs to be made to the fuzzy implication selection method
based on data that was applied to describe the relationship of a country’s economic
status to the number of air transport movements in this country, after the creation
of appropriate linguistic variables [4]. Recall that an implication function can be
described as a relationship between two sets, the domain set of the antecedent and
the consequent. Thus, each pair of observations can be considered as an element
that certainly belongs to the relationship, as it is verified by the data.

Empiristic Fuzzy Implications

Empiricism and Fuzzy Implication

Fuzzy implication is perceived as a generalization of classical implication operator.
Therefore any function utilized as a fuzzy implication relation between two
linguistic variables should follow the axioms that have been determined as an
extension of the rules of classical Boolean logic to fuzzy logic a priori. Those rules
do not arise from observation, data collection, and professional experience but from
philosophical reasoning. Thus it can be argued that those implication operators have
been founded in a rationalistic manner. Rationalism in philosophy is the view that
regards reason as the chief source and test of knowledge [2].

In the history of philosophy, starting from the controversy of Plato and Aris-
totle, there was a controversy between the two movements of rationalism and
empiricism. Empiricism is the view that all concepts originate in experience [5].
Knowledge originates in what one can sense and there is no a priori knowledge.
In this view human is described by John Locke as a blank table (tabula rasa), a
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phrase inspired by the works of Aristotle. From this scope, since a fuzzy implication
function resembles knowledge about a correlation between two variables, it is
possible the implication to be defined empiristicly.

Establishing a fuzzy implication relation between two fuzzy sets with the
empiristic method requires data collection. The properties of this relationship must
be constructed from the data, without a priori knowledge and constraints. Thus any
implication function that abides to the aforementioned axioms cannot be considered
as empiristic, but only rationalistic as the axioms effect the function significantly.
Observed data can only come second, calibrating the function or distinguishing the
most efficient from the available choices. Therefore any implication that is defined
with the empiristic method will not satisfy the axioms, and so it will not be a logical
implication function in the classical way of thinking.

Defining Empiristic Fuzzy Implication

Assume two variables x ∈ X and y ∈ Y and two linguistic variables A : X → [0, 1]
and B : Y → [0, 1], with their corresponding membership functions. Suppose even
that the variables x and y have some degree of correlation and there are n observed
pairs of values, (xi, yi). It is possible to study the implication x = A ⇒ y = B

with the empiristic method, based on the data. If, for example, it is observed that for
a, b, c, d ∈ [0, 1] any time that the membership value of A(x) resides in the closed
interval [a, b], A(x) ∈ [a, b], then B(y) ∈ [c, d], it is reasonable to assume that the
fuzzy implication A ⇒ B for [a, b] ⇒ [c, d] is true with a degree of truth one, as it
happens every time. Accordingly if there is no observation where A(x) ∈ [a, b] and
B(y) ∈ [c, d], then the implication [a, b] ⇒ [c, d] does not hold, i.e., it is true with
degree zero. Furthermore if for a, b, c, d, e, f ∈ [0, 1], when A(x) ∈ [a, b], there
are more observations for B(y) ∈ [c, d] than for B(y) ∈ [e, f ], then the degree of
truth for [a, b] ⇒ [c, d] is greater than the degree of truth for [a, b] ⇒ [e, f ].
Definition 1 Let two variables x ∈ X and y ∈ Y , two linguistic variables A : X →
[0, 1] and B : Y → [0, 1], and there is n number of data pairs (xi, yi). Define
EAB the empiricist implication of linguistic variables based on the sample, a fuzzy
relation between two sets of intervals that are inside the interval [0, 1] such that:

α) If for A′ and B ′ intervals inside [0, 1]
EAB(A′, B ′) = 1 ⇔ ∀xi : A(xi) ∈ A′ ⇒ B(yi) ∈ B ′

β) If for A′ and B ′ intervals inside [0, 1]
EAB(A′, B ′) = 0 ⇔ ∀xi : A(xi) ∈ A′ ⇒ B(yi) /∈ B ′

γ ) If for A′, B ′, and C′ intervals inside [0, 1]
EAB(A′, B ′) < EAB(A′, C′)

⇔ |{xi : A(xi) ∈ A′ and B(yi) ∈ B ′}| < |{xi : A(xi) ∈ A′ and B(yi) ∈ C′}|
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The first two of the axioms are based on classical logic, which must be verified
by the fuzzy empiricist implication relation. Specifically, the first axiom means
that two propositions p(A(xi) ∈ A′) and q(B(yi) ∈ B ′) if it is true that whenever
p is true, q is also true, then based on the data, the implication p ⇒ q is true. In
contrast if whenever p is true, q is not true, the implication p ⇒ q is not true,
and it stands for the second of the axioms. The third axiom includes three logical
propositions p(A(xi) ∈ A′), q(B(yi) ∈ B ′), and r(B(yi) ∈ C′). If based on
observations, when p is true, it is more likely r to be true than q to be true, then
the implication p ⇒ r is valid with a greater degree of truth than the implication
p ⇒ q.

Computation of Fuzzy Empiristic Implication Relation

A method to calculate the membership function of a fuzzy empiristic implication
relation derived from data observation is proposed. The computation is easy to
comprehend and use and can be evaluated in short time when using a computer,
even for large amounts of data.

Assume two variables x ∈ X and y ∈ Y and two linguistic variables A :
X → [0, 1] and B : Y → [0, 1]. Also there are pairs of observations (xi, yi) for
i = 1, 2 . . . n. In order to evaluate the implication relation A ⇒ B, the observation
pairs should be transformed to pairs of membership values (A(xi), B(yi)). The
characteristic functions A(x), B(y) are considered known.

The process can be done even if the original data are not in the form (xi, yi),
but they are already in the form (A(xi), B(yi)). The reason is that the implication
does not examine directly the correlation between the variables x and y, but the
correlation between the linguistic variables that arises. Furthermore, an empiristic
implication relation can be calculated for linguistic variables that are based on
qualitative rather than quantitative data, e.g., bad weather implies a desire for hot
beverage. In such cases it is possible to find a connection directly to the fuzzy data
that can be collected, for example, from questionnaires, without the study of the
relationship of the linguistic variable “bad weather” to quantitative data such as
temperature, sunshine, humidity, etc. So from qualitative data, it is possible to obtain
useful conclusions.

Initially the pairs of membership values (A(xi), B(yi)) are calculated if they are
not available, from the observation pairs (xi, yi). Afterward the pairs of membership
values (A(xi), B(yi)) are divided into k and l in incompatible intervals shaping
rectangular areas of the [0, 1] × [0, 1] The numbers of intervals k and l can be
equal or not, and the determination of k and l can be made with binning techniques.
The division is shown in Fig. 1, where the dots resemble pairs of membership
values of observations and the lines form a possible division. So for A(x) there
has been a fragmentation in A1, A2 . . . Ak intervals inside [0, 1], and for B(y)

there has been a fragmentation in B1, B2 . . . Bl intervals inside [0, 1]. The intervals
are proposed to be of the same diameter, but it is not necessary, so if there is a
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Fig. 1 Membership values of observation pairs and division

Table 2 Fuzzy empiristic
implication relation matrix

B1 B2 . . . Bl

A1 I (A1, B1) I (A1, B2) I (A1, Bl)

A2 I (A2, B1) I (A2, B2) I (A2, Bl)

. . .

Ak I (Ak, B1) I (Ak, B2) I (Ak, Bl)

practical purpose, it can be uneven. Afterward for every possible pair of Ai, Bj , i =
1, 2 . . . k, j = 1, 2 . . . l, the degree of truth of the implication EAB(Ai, Bj ) is
computed as shown in (Eq. (17)). The formula chosen is quite similar to the law of
conditional probability (Eq. (18)). The implications that are created this way satisfy
the proposed axioms of the definition of empiristic implication relation.

N((x, y) : A(x) ∈ Ai) ∩ B(y) ∈ Bj is the number of pairs of observations
for which A(x) ∈ Ai and B(y) ∈ Bj , while N(x : A(x) ∈ Ai) is the number of
pairs of observations for which A(x) ∈ Ai . Thus the empiristic implication can be
evaluated, and the matrix of the fuzzy relation is shown in Table 2.

EAB(Ai, Bj ) = N((x, y) : (A(x) ∈ Ai) ∩ (B(y) ∈ Bj ))

N(x : A(x) ∈ Ai)
(17)

P(A/B) = P(A ∩ B)

P (A)
(18)

To carry out the required calculations, first it is necessary to create another
matrix, counting the number of the instances for any possible pair of Ai, Bj . The
divided data matrix is shown in Table 3 where N(Ai, Bj ) is the number of instances
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Table 3 Divided data matrix B1 B2 . . . Bl

A1 N(A1, B1) N(A1, B2) N(A1, Bl)

A2 N(A2, B1) N(A2, B2) N(A2, Bl)

. . .

Ak N(Ak, B1) N(Ak, B2) N(Ak, Bl)

where A(x) ∈ Ai and B(y) ∈ Bj . Subsequently every element of the matrix is
divided by the sum of the column, and thus the empiristic implication operator is
calculated.

The separation in intervals as mentioned is another important step for calculating
an implication that adequately describes the relationship between cause and effect.
It is natural that in every case, the ideal number of intervals, and perhaps their
diameters, when we have unequal intervals, cannot be determined a priori. This
is because the ideal division depends on the number of the observations and
on the relation between antecedent and consequent. If the division is done to a
small number of intervals, the implication constructed becomes too biased and
cannot provide much information. On the other hand, if the division is done to
a larger number of intervals, the constructed implication may have significant
variance, making any resulting model over-fitted, and thus unable to generalize and
interpolate.

An efficient way to make the choice is with the sample split into two groups
randomly and calculating the relation for both groups separately. Starting from
small k and l numbers, the two matrices that describe the same phenomenon should
have few differences. In large numbers of k and l, the two matrices should be
very different from one another indicating that the created relation is over-fitted.
By successively increasing the numbers k and l, calculating the relations and their
differences, it is possible to find the ideal division for the data.

If the sample is limited, the use of rule of Sturges is proposed to calculate the
appropriate number of intervals based on (Eqs. (19)–(20)), where n is the sample
size [10, 11]. In such problems it is also suggested for k and l to be equal and for
the intervals to be of equal diameter. In this case, when separating the [0, 1] interval
into same length intervals, the diameter d of each interval is given by (Eq. (21)):

k = 1 + log2n (19)

or

k = 1 + 3.32logn (20)

d = 1

k
(21)

Finally, it should be clear that the results of such a process cannot be considered
absolutely safe in every case because the sample used has an important role in the
outcome. So the quality of the sample firstly and the quality of the fuzzification
secondly impact the quality of the resulting implication relation. Of course, most
methods that have to do with data are vulnerable to biased or incorrect data.
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Application

Selection of Logical Fuzzy Implication Through the Empiricist

As it has been noted, the empiristic fuzzy implication relation that has been
defined does not satisfy the established logical fuzzy implication axioms, and
therefore it cannot resemble a logical fuzzy implication operator. Furthermore the
empiristic implication is a relation between intervals and not a relation between
numbers as the logical fuzzy implication functions are. So there can be no direct
comparison between the two. However the two can be compared in the procedures
of approximate reasoning.

Assume that there are two variables x ∈ X, y ∈ Y and two linguistic variables
A(x) : X → [0, 1], B(y) : Y → [0, 1]. Also there is a relation R(x, y) =
I (A(x), B(y)), where I (A(x), B(y)) is a logical fuzzy implication function. Then
using the generalized modus ponens scheme, approximate reasoning has provided
the compositional rule of inference, so if x ∈ A′, where A′ is a fuzzy set, y belongs
to a fuzzy set B ′ computed by (Eq. (22)).

B ′(y) = supx∈Xmin[A′(x), R(x, y)] (22)

Assume that for the aforementioned variables x, y and for the linguistic variables
A(x), B(y) there is a data set of pairs of observations. In this case it is possible
to calculate an empiristic fuzzy implication relation. Utilizing the empiristic
implication, it is possible to argue that when ∀x : A(x) ∈ A′, y is such that
B(y) ∈ B1 with a degree of truth EAB(A′, B1), B(y) ∈ B2 with a degree of truth
EAB(A′, B2), etc. While the values calculated by the compositional rule of inference
are results of a rationalistic manner of reasoning, the corresponding values of the
empiristic implication, when the data set is proper, are results of observation. Thus
the empiristic implication better resembles reality. So it is possible to measure the
difference between the logical and the empiristic implication, for any Ai and Bj pair
of the empiristic relation.

It is plausible that this process can be a criterion for choice of logical fuzzy
implication functions. So to make such a choice between some logical fuzzy impli-
cation functions in a particular problem, for which observation data is available, the
difference of each of the logical implication functions to the empiristic implication
can be measured, and the one that is closer to the empiristic implication should
be the appropriate logical implication function. Such a calculation can be made
with results of the compositional rule of inference and any approximate reasoning
scheme as modus ponens, modus tollens, hypothetical reasoning, etc. Assuming that
the implication to be chosen will be used on a real-life problem, it is preferable to
use the reasoning scheme that is useful for the specific problem.

This implication selection process is of a great theoretical and practical interest.
The logical implication decided by this process results is something of a compro-
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mise between rationalistic and empiricist logic, since it is a relationship structured
with all the constraints dictated by the logical reasoning, but selected for good
behavior with respect to the data observed in the physical world.

Algorithm

First step of the process is to calculate the empiristic fuzzy implication relationship
based on the data as discussed in the previous subchapter. Result of the process is
the relationship matrix of the implication.

Second step is to calculate a corresponding table for each of the logical
implication functions in order to be compared. The calculation will be done using
the compositional rule of inference, for a reasoning scheme as generalized modus
ponens. The table has to have the same dimensions as the empiricist implication
relation.

Third step is to count the difference between the matrices using some metric
and chose the optimal implication function.

In the relation matrix of the empiristic fuzzy implication, the element that resides
in the ith row and the j th column is the degree of truth in implying that E(Ai, Bj ).
So when x is such that A(x) ∈ Ai , it implies that y is such that B(y) ∈ Bj , with
a degree of truth E(Ai, Bj ). It is noted that any Ai, Bj set for i = 1, 2 . . . k, j =
1, 2 . . . l is a classical, crisp set. When A(x)]inAi , from the CRI (Eq. (23)) is:

B ′(y) = supx∈Xmin[A′
i , I (A(x) ∈ Ai, B(y))] (23)

This formula, for crisp sets Ai , becomes (Eq. (24)):

B ′(y) = supx∈X[I (A(x), B(y))] (24)

Note that for the compositional rule of inference formula, any t-norm is
applicable. Since sets Ai are crisp and for any t-norm T (0, a) = a, the selection of
t-norm is of no consequence.

Most logical implication functions meet the first two axioms (1 and 2), so they
are decreasing for the first variable and increasing for the second. The algorithm is
developed for implication functions for who this is valid. Otherwise the complexity
of operations is increased, although not very much. Thus, because any Ai interval
is bounded, with an infimum (assume ai) on the left boarder, (Eq. (24)) becomes
(Eq. (25)):

B ′(y) = I (ai, B(y)) (25)

So when x ∈ A′
i , B

′(y) is calculated according to the formula above. But
to describe the implication relation matrix corresponding to each element of the
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empiricist implication relation matrix the question: “When x ∈ A′
i , with what degree

of truth is it implied that y ∈ B ′
j ?”. So the degree of truth I (Ai, Bj ) is calculated

as follows (Eq. (26)):

I (Ai, Bj ) = ∪B(y)∈Bj
I (ai, B(y)) (26)

As t-conorm can be used the maximum. This maximum is very easy to find for
logical implication functions for which the second axiom is satisfied, i.e., increasing
the second variable. Then, since B(y) belongs in a bounded interval with supremum
being the right boarder (assume bj ), (Eq. (26)) becomes:

I (Ai, Bj ) = I (ai, bj ) (27)

Thus, the appropriate matrix is calculated for each logical implication function from
(Eq. (27)), so that the element located at the ith row and j th column has the value
I (ai, bj ).

Finally the deviation of any logical implication function from the empiristic has
to be calculated. It is proposed that the norm of the difference of the two matrices is
calculated. The implication function with the smallest deviation from the empiristic
is selected to be the one that represents more accurately the relationship between
linguistic variables according to the given data set.

Conclusions and Further Research

The fuzzy implication functions that can be used are numerous, and their properties
have important influence on the quality of the models and the understanding of
the phenomena described. A new class of fuzzy implication relations is founded,
named empiristic fuzzy implication relations. These relations are inspired by the
philosophical movement of empiricism, constructed only from observed data, with
no a priori restrictions and conditions. An easy and clear way of calculating an
empiristic fuzzy implication relation is described that can be functional even for
huge volumes of data.

Finally fuzzy implication function selection problem was analyzed. The problem
has been studied by many researchers in the world, and there is no unanimous solu-
tion to address it. A fuzzy implication function selection method is recommended,
based on empiristic implication relations. For comparison, observational data is
needed based on which the empiricist implication relations are calculated, and the
logical implication relationship with the less deviation from the empiristic is chosen
to be the one that accurately represents the data.

In the future the construction of fuzzy inference systems will be studied, using
only the fuzzy empiristic implication relation. These systems will consist of a base
of fuzzy rules “If . . . then . . . ,” each one of which will be an empiristic implication,
computed from data observations.
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