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Abstract This paper offers a compact presentation of the solid involvement of
Discrete Mathematics in various fields of Statistics and Probability Theory. As far
as the discrete methodologies in Statistics are concerned, our interest is focused
on the foundations and applications of the Experimental Design Theory. The set-
theoretic approach of the foundations of Probability Theory is also presented, while
the notions of concepts and fuzzy logic are formulated and discussed.

Introduction

The aim of this paper is to provide a Discrete Mathematics point of view of some
statistical applications. Two are our main lines of thought: Design Theory and
statistical distances. The Design Theory attracts interest from the group theory and
projective geometry. Design Theory is discussed, while some emphasis is given to
the Latin squares. We also recall the theory of ideals and provide some aspects from
the probability theory that, we believe, deserves more attention.

The notion of distance is fundamental in Statistics. In mathematical analysis,
especially in metric spaces, the distance serves as a criterion to check the conver-
gence of a sequence, while a sequence in Statistics (with typical example being
the Robbins-Monro iterative scheme) is asked to converge in distribution, which is
usually the normal distribution; see [13] for details.

The reason is that such sequences can provide maximum likelihood estimators
(MLE), being within the classical statistical framework, while other methods might
not.

The notion of “concept” associated with the “objects” and “attributes” is intro-
duced, from which the idea of a set-theoretic distance, in a Discrete Mathematics
sense, is emerged.
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Geometric methods, and therefore distance metrics methods, are adopted in
various problems in Statistics. In optimal Experimental Design Theory for the
continuous case, geometric methodologies are considered on the induced design
space and the relative geometrical aspects have been discussed by Kitsos et al. [20].
For the discrete case, the geometrical approach is tackled in a compact form in this
paper.

In principle, the usual (geometrical) distance metric in Statistics is considered
to be the Euclidean distance, based on the �2 norm, but this is not the case
for Discrete Mathematics; see section “Finite Geometry and Design Theory.”
In section “Discrete Mathematics and Statistics,” the relation between Discrete
Mathematics and Statistics is developed. The Experimental Design Theory is also
discussed, especially the Latin squares. Moreover, a finite geometry approach is also
developed in a compact form. In section “Discrete Mathematics and Probability,”
the applications of Discrete Mathematics to Probability is presented, while in
section “Discrete Distance Measures,” certain distance measures are discussed.

Discrete Mathematics and Statistics

Introduction

Discrete Mathematics offers a strong background to statistical problems, especially
to the Design Theory. We shall trace some of these applications, bringing practice
with theory. Consider the practical problem where a manufacturer is developing a
new product. Let us assume that he/she wishes to evaluate v varieties (of the product)
and asks a number of consumers to test them. However, it seems impossible in
practice to ask each consumer to test all the varieties. Therefore, two lines of thought
might be adopted:

1. Each consumer tests the same number of varieties, say k < v.
2. Each variety should be tested by r consumers.

The above problem gives rise to the following generalization: Let X be any set
of size v, i.e., v := |X|. We say that a set B of k-subsets of X is a design, denoted
by D(v, k, r) with parameters v, k, r ∈ N∗ := N \ {0}, when each member x ∈ X

belongs to exactly r ≤ v sets of B. In Design Theory, a subset B ∈ B is called a
block of the design under investigation.

Suppose now that C denotes any set of k-subsets of X with v := |X|. In general,
we say that the marks (i.e., the readings of an experiment) are members of the set

C := {(x, C)}x∈C. (1)

What in Statistics is known as a replication of a value x is the row total r(x) :=
#
({C : x occurs in C}). The column total is k in all the cases by the definition
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Table 1 The table of
Example 1 with k = 3,
|C| = 4

x C1 C2 C3 C4 r(x)

1 � � � 3

2 � � 3

3 � 1

4 � � � 3

5 � 1

6 � � 2

k 3 3 3 3 12

of C. Therefore, it is easy to see that
∑

x∈X

r(x) = k|C|. (2)

Example 1 The above discussion can be visualized with Table 1 where X :=
{1, 2, . . . , 6}. Notice that

∑
r(x) = 12.

In principle, when we are working on a statistical design D(v, k, r) then
r(x) := r and as we are working with blocks B, b := |B|, relation (2) is then
reduced to vr = bk, and hence

b = vr

k
≤

(
v
k

)
. (3)

In general, it can be proved that there is a design D(v, k, r) if and only if (iff) k
∣∣ vr ,

vr

k
≤

(
v
k

)
.

The condition that each object (i.e., element of X) belongs to the same number
of blocks can be strengthened. In particular, it can be required that a pair of objects
or, even more, that t objects are taken at a time: this is known as t-design, t ∈ Z+.

Let X be a set with v := |X|. Then a set B of k-subsets of X is said to be
a t-design, denoted with D(v, k, rt ), iff for each t-subset T of X, the number of
blocks which contain T is constant rt . It is interesting to notice that

i. If B is a t-design, it is also an s-design, 1 ≤ s ≤ t − 1, s ∈ Z+.
ii. If B is a D(v, k, rt ) t-design, it is then also a D(v, k, rs) s-design, with

rs = rt
(v − s)(v − s − 1) · · · (v − t + 1)

(k − s)(k − s − 1) · · · (k − t + 1)
. (4)

iii. For 0 ≤ s ≤ t − 1, it is required that

(k − s)(k − s − 1) · · · (k − t + 1)
∣
∣ rt (v − s)(v − s − 1) · · · (v − t + 1).

iv. A recursive formula holds:
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Table 2 A 4 × 4 Latin
square L1

A B C D

B A D C

C D A B

D C B A

rt−1 = rt
v − t + 1

k − t + 1
, t ∈ N.

v. If b = |B|, then

b = r0 = r1
v

k
.

Usually a 2-design with k = 3 and r2 = 1 is called as Steiner Triple System (STS).
Such a system can be seen by considering two words, say u1 and u2, both of length n

in the alphabet {0, 1}. Let u1+u2 denote the word obtained adding the corresponding
digits of u1 and u2. Then, if we consider X to be the set of all such words with the
exception of 00 . . . 0, the set of all three subsets of X, formed by {u1, u2, u1 + u2},
is a 2-design such as D(2n−1, 3, 1) which is an STS design with 2n − 1 varieties.

Latin Squares

In Statistics, and especially in Experimental Design Theory, the Latin squares (LS),
as proposed by Fisher in [5], play an important role; see [2, 23, 24] and [3] among
others. The traditional example is the following: Suppose we have to plan an
agriculture experiment in which four new kinds of fertilizers, say A, B, C, and D,
are to be tested in a square field. The “scheme” has to be as in Table 2 in order to
describe an LS.

In principle, an LS of order n is an n × n array in which each of the n elements
occurs once in each row and once in each column. The statistical term LS comes
from the fact that R.A. Fisher used “Latin letters” to cover the “square” field in
his agricultural experiments.

We shall denote with L(i, j) the (i, j) entry of an LS L, while the labels for the
rows and columns of L as well as for all its (i, j) elements shall be considered as
Zm-valued, with Zm being the set of nonnegative integers modulo m.

Given two Latin squares of the same order n, say L1 and L2, the relation for the
orthogonality between L1 and L2 can be defined. Indeed, L1 ⊥ L2 iff for every
k, l ∈ Zm there are just two i, j ∈ Zm for which

L1(i, j) = k, and L2(i, j) = l.
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Following this terminology, Euler in 1786 was the first who suggests constructing
an orthogonal pair of arrays of a six-order LS. He was unable to solve this problem.
It is now known that no such pair exists. Actually, the problem that Euler suggested
was

Given 36 officers of 6 different ranks from 6 different regiments, can they be arranged in a
square in such a way that each row and each column contains one officer of each rank and
one officer from each regiment?

What to admire? The physical problem itself or the underlined mathematical insight
which tries to tackle the problem? We shall come to this problem later.

Despite Euler’s problem that has no solution, there is a way of constructing
orthogonal LS. Theorem 2 below offers a method of constructing orthogonal LS
(OLS) based on properties of Zp with p being a prime.

Theorem 1 For each v ≥ 2, the v × v array defined by L(i, j) = i + j , i, j ∈ Zv

is an LS.

See Appendix for the proof.

Theorem 2 Let p be a prime and 0 �= a ∈ Zp given. Then, the rule

La(i, j) = ai + j, i, j ∈ Zp, (5)

defines an LS. Furthermore, for given b �= a, b ∈ Zp, it holds that

Lb ⊥ La. (6)

See Appendix for the proof.

Example 2 The LS, say L2, of Table 3 below is orthogonal to LS L1 of Table 2,
as the 16 pairs (A,A), (A,B) . . . , (D,D) occur in one of the 16 positions, i.e.,
L2 ⊥ L1 by the LS orthogonality definition.

Based on Theorem 2, we say that we can obtain a set of p−1 mutually orthogonal
LS (MOLS) of order p (MOLSp) for each prime p.

Example 3 For p = 3 we get two MOLS3, i.e.,

L1 :
0 1 2
1 2 0
2 0 1

and L2 :
0 1 2
2 0 1
1 2 0

Table 3 A 4 × 4 Latin
square L2

A B C D

C D A B

D C B A

B A D C
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So far, we discussed that for a prime p, using the properties of the field Zp, it is
possible to construct a set of p − 1 MOLSp. The same result holds if we replace p

with a prime power q := pr , r ∈ Z+. Indeed:

Theorem 3 For q being a prime r-power of p, it is possible to construct q − 1
mutually orthogonal Latin squares of order q (MOLSq ).

Proof Apply Theorem 2 where a ∈ Zp is now replaced by a ∈ Fq , with q − 1
nonzero and Fq being a finite field in place of Zp.

In practice, given any field with n elements, we would like to construct n − 1
MOLS. Due to Theorem 3 the arisen question is:

Question Is it possible to construct n−1 mutually orthogonal Latin squares of order
n (MOLSn) when n is not a prime power?

Answer In Discrete Mathematics and Statistics, this is one of the most well-known
unsolved problems. For the case of n = 6, it is known already that there is not a set
of 5 MOLS6 (recall Euler’s problem mentioned earlier which is unsolved).

Another approach to Design Theory, under the context of Discrete Mathematics,
is through geometry and particular through finite geometry on projective planes.
Recall that there are two main approaches of finite plane geometry: affine and
projective. In an affine plane, the normal sense of parallel lines is valid. In a
projective plane, by contrast, any two lines intersect at a unique point, so parallel
lines do not exist. The finite affine plane geometry and finite projective plane
geometry can be described by simple axioms. An affine plane geometry is a
nonempty set X (whose elements are called “points”), along with a nonempty
collection L of subsets of X (whose elements are called “lines”), such that:

(a) For every two distinct points, there is exactly one line that contains both points.
(b) Given a line � and a point p outside �, there exists exactly one line �′ containing

p such that � ∩ �′ = ∅ (Playfair’s axiom).
(c) There exists a set of four points, no three of which belong to the same line.

The last axiom ensures that the geometry is not trivial (either empty or too simple
to be of interest, such as a single line with an arbitrary number of points on it),
while the first two specify the nature of the geometry. Note that the simplest affine
plane contains only four points; it is called the affine plane of order 2, where the
order of an affine plane is the number of points on any line. Since no three are
collinear, any pair of points determines a unique line, and so this plane (of four
points) contains six lines. It corresponds to a tetrahedron where nonintersecting
edges are considered “parallel” or a square where not only opposite sides but also
diagonals are considered “parallel”; see Fig. 1.

In optimal Experimental Design Theory, a geometry is constructed via the
induced design space; see [12, 27] and [18] among others. In this paper, the
geometric approach is realized in the following through the finite field Fq .
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Fig. 1 A finite affine plane
of order 2. The two diagonal
lines do not intersect

Finite Geometry and Design Theory

Let x, y ∈ Fq , where Fq being a finite field. Then, the “coordinate” or analytic plane
geometry for (x, y) ∈ R2 is still valid for the elements of Fq . As all the algebraic
“manipulations” hold in R2, the sense of “line” and “plane” for a finite number of
“points” x, y ∈ Fq is also parent in Fq . In particular, the lines in a 2-design are
the blocks on the set points; see Theorem 4 below. Thus, a line satisfies the analytic
expression ax + by + c = 0 where x, y, a, b, c ∈ Fq with a2 + b2 �= 0.

Theorem 4 Consider a finite field Fq equipped with lines and planes as above.
Then, the lines of Fq are the blocks of a 2-design D(v, k, r2) of the set of points
of Fq . In particular, the design is D

(
q2, q, 1

)
.

See Appendix for the proof.
The D

(
q2, q, 1

)
design, described in Theorem 4, is usually known as the affine

plane over Fq (see also the proof in Appendix). Recall the point (iv) in sub-
Section 2.1. For the 2-design above, i.e., for t := 2, it is

r1 = r2
v − 2 + 1

k − 2 + 1
= r2

v − 1

k − 1
= 1 × q2 − 1

q − 1
= q + 1. (7)

According to property (v), as in Section 3.2, it is

b = r0 = r1
v

k
= (q + 1)

q2

q
= q(q + 1). (8)

Example 4 Let q = 3, i.e., F3 ≡ Z3 is under consideration. There are v = q2 = 9
points and k = q = 3. Those nine points, say Pi , i = 1, 2, . . . , 9, are

P1 = (0, 0), P2 = (0, 1), P3 = (0, 2),

P4 = (1, 0), P5 = (1, 1), P6 = (1, 2),

P7 = (2, 0), P8 = (2, 1), P9 = (2, 2).

The b = r0 = q(q + 1) = 12 lines, say �i , i = 1, 2, . . . , 12, are presented in
Table 4:
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Table 4 Lines of Example 4 Line Equation Points

�1 x = 0 P1, P2, P3

�2 x = 1 P4, P5, P6

�3 x = 2 P7, P8, P9

�4 y = 0 P1, P4, P7

�5 y = 1 P2, P5, P8

�6 y = 2 P3, P6, P9

�7 x + y = 0 P1, P6, P8

�8 x + y = 1 P2, P4, P9

�9 x + y = 2 P3, P5, P7

�10 2x + y = 0 P1, P5, P9

�11 2x + y = 1 P2, P6, P7

�12 2x + y = 2 P3, P4, P8

Notice that there are four classes with three lines as

{
(�1, �2, �3), (�4, �5, �6), (�7, �8, �9), (�10, �11, �12)

}
.

Each class of parallel lines has no intersection (common point) between them,
while when there is an intersection, one common point exists (as in the Euclidean
case of R2). However, if we adopt the projective geometry’s approach, i.e., assume
that every two lines have always one common point, we are in a finite version
of projective geometry [4], and its relation with the Design Theory. Considering
a prime power, Theorem 5 holds where the projective plane property over Fq is
demonstrated in comparison with the affine plane over Fq , according to Theorem 4.

Theorem 5 For any prime power q, there is a 2-design D(v, k, r2) = D
(
q2 + q +

1, q + 1, 1
)
. This particular design has the additional property that any two blocks

have just one member in common.

See Appendix for the proof.
Calculating r1 and r0 = b, due to the relations (iv) and (v) in Section 3.2, it holds

r1 = v − 1

k − 1
r2 =

(
q2 + q + 1

) − 1

(q + 1) − 1
− 1 = q + 1, (9a)

b = r0 =
(v

k

)
r1 = q2 + q + 1. (9b)

See the similarity between (7)–(9b) and (9a)–(9b). Moreover, we can notice that:

• There are q2 + q + 1 points and q2 + q + 1 lines.
• Each line contains q + 1 points and each point belongs to q + 1 lines.
• any two points belong to one common line and any two lines have one common

point.
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Example 5 Consider the affine plane over F3, as in Example 4. We need the parallel
lines of F3 to meet, so we add to each line a new (arbitrary) point, which corresponds
to the projective geometry’s point at infinity or infinity point. In particular,

�′
i := �i ∪ {X1}, i = 1, 2, 3,

�′
i := �i ∪ {X2}, i = 4, 5, 6,

�′
i := �i ∪ {X3}, i = 7, 8, 9,

�′
i := �i ∪ {X4}, i = 10, 11, 12.

A new line �∞ ⊇ {X1, X2, X3, X4}, containing the newly introduced points Xi ,
i = 1, 2, 3, 4, is then introduced and called as the line at infinity or infinity-line.
Therefore, the projective plane over F3 has in total 13 lines, i.e., �′

i , i = 1, 2, . . . , 12,
and �∞, and 13 points, i.e., the given Pi , i = 1, 2, . . . , 9, and Xj , j = 1, 2, 3, 4.
Each line contains four points, i.e., each block contains four elements, and each pair
of points belongs exactly to one line. Hence, the 2-design D(13, 4, 1) is obtained.

Applications of Experimental Design

In practice, a complete randomized block design (CRBD) is analyzed as a two-way
ANalysis Of VAriance (ANOVA); see the pioneering work of [26]. The incomplete
balanced needs a special ANOVA to analyze the collected data while an incomplete
general block design is analyzed through regression analysis; see [8] among others.
A (complete) Latin square is analyzed through a three-way ANOVA in industry.
That is, ANOVA and regression analysis are adopted to analyze real data with the
assistance of an appropriate software; see [15] among others.

The theoretical insight of experimental design provides food for thought for
different branches of mathematics. We tried to present some of them in a compact
form. The experimenter faces often the need of a strong mathematical background
when analyzing a 2n factorial experiment, defined as in [30], and especially for a
portion of it. When we are talking about a confounded experiment, one may consider
the number-theoretic Kempthorne method [11]; see [9] among others, for a number-
theoretic development. A “traditional” example is the following:

Example 6 Construct two blocks in a 23 factorial experiment, so that the term ABC
is confounded. We then have the linear combination L = X1 + X2 + X3 with the
value of L is evaluated as follows:

(1) = A0B0C0, L = 0 + 0 + 0 = 0,

a = A1B0C0, L = 1 + 0 + 0 = 1,

b = A1B1C0, L = 1,

ab = A1B1C0, L = 2 = 0 (mod2),
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c = A0B0C1, L = 1,

ac = A1B0C1, L = 2 = 0 (mod2),

bc = A0B1C1, L = 2 = 0 (mod2),

abc = A1B1C1, L = 3 = 1 (mod2).

So, for

L = 0 the block is (1), ab, ac, bc,

L = 1 the block is (1), a, b, c, abc.

Therefore, if we decide to apply a 1
2 23 = 23−1 experiment, i.e., a half 23 factorial

experiment, we have to choose one of the two blocks as above.

Different rules have been proposed to overpass confounding. For Fisher’s
multiple confounding rule, see [23]. The violation of the structure of a 2n factorial
design, by adding center points, dominates EVolutionary OPeration (EVOP), [1].
Then we moved to a new “model” by adding more points, i.e., 2n+ center + “star”,
to study response surface exploration; see [25] among others.

The nonlinear (optimal) experimental design, as it was studied by Kitsos [12], has
no relation with the elegant mathematical approach of Fisher. The nonlinear Design
Theory suffers from parameter dependence [12], and the practical solution is to
adopt sequential design; see [6]. The induced design space offers the possibility of a
geometrical consideration, [18, 20]. The compromise of a quasi-sequential approach
[14] was also proposed, while some technics based on polynomial root-finding, for
nonlinear problems, were studied in [28].

This section offers a quick attempt to complete the development of the experi-
mental design topic, the backbone of Statistics.

Discrete Mathematics and Probability

As we already discussed in section “Discrete Mathematics and Statistics,” discrete
mathematical ideas appear to have an aesthetic appeal in Statistics. Especially
during the Fisher’s and Kolmogorov’s era, there was an attempt to develop a
theoretical discrete framework to shed a new light in statistical problems. In this
section, we show influence of Discrete Mathematics in other research areas related
to Statistics. The measure-theoretic approach of Kolmogorov had a competitor
from algebra, i.e., probability algebra, which was never successfully formulated.
The measure theory context of probability was accepted completely. But, still, the
algebraic definition of probability space deserves some further attention, especially
when the foundation needs some discrete treatment.

Probability algebra (PA), as introduced in [10], is defined to be the pair (α, P),
with α �= ∅ where its set elements A,B,C, . . . ∈ α are called events. P is a real
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function on α and is called probability. The binary operations A∨B and A∧B and
the unitary operation Ac (not in A) equip α with the algebraic structure of a Boolean
algebra. For the probability P we assume that:

i. P is positive definite, i.e.,

P(A) ≥ 0 for every A ∈ α, and P(A) = 0 ⇐⇒ A = ∅ ∈ α.

ii. P is normed i.e.,

P(E) = 1 where E ∈ α is the unitary element.

iii. P is additive, i.e.,

P(A ∨ B) = P(A) + P(B) when A ∧ B = ∅.

Let β be a Boolean sub-algebra of α. Then the restriction of the function P to β is
probability on β. If α := {∅, E} with P(E) = 1, P(∅) = 0, the probability algebra
(α, P) is called improper.

The terms probability space and Borel probability field, introduced by
Kolmogorov in his pioneering work [22], are also constructed through the algebraic
approach, while the distribution function was also well defined; see [10, Theorem
5.4].

For given probability algebras (α1, P1) and (α2, P2) with αi , i = 1, 2, Boolean
algebras, consider the isomorphism

ϕ : α1 −→ α2, where A �−→ ϕ(A).

Then, we say that the two probability algebras are isometric iff

P1(A) = P2
(
ϕ(A)

)
, A ∈ α1.

Example 7 Let A := {
α1, α2, . . . , αn

}
, n ≥ 2. We define αn to be the class of all

subsets of A forming a Boolean algebra. Let Pi , i = 1, 2, . . . , n, 0 < Pi < 1 with∑
i Pi = 1 be associated with αi , i = 1, 2, . . . , n. For every subset of A of the form{

α�1 , α�2 , . . . , α�k

}
, we define the probability P as follows:

P
({

α�1, α�2 , . . . , α�n

}) := P�1 + P�2 + · · · + P�k
.

Then (αn, P) is a probability algebra with 2n elements, provided that P(∅) = 0.

With the above, we tried to provide some elements of the algebraic foundations
of probability. Problems such us convergence in stochastic spaces, expectations
of random variables, moments, etc. can be defined appropriately this algebraic
approach to probability, [10]. The multivariate problem, the sequential line of
thought, and other statistical fields have not been tackled yet.
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Algebraic Approach to Concept

We introduce now the term concept through lattice theory. Recall that a lattice is
an abstract order structure. It consists of a partially ordered set in which every
two elements have a unique supremum (also called a least upper bound or join)
and a unique infimum (also called a greatest lower bound or meet). An example is
given by the natural numbers, partially ordered by divisibility, for which the unique
supremum is the least common multiple and the unique infimum is the greatest
common divisor.

The main question, from a statistical point of view, and not only, might be: why
lattice? When the study of hierarchies is one of the target of the research, the hier-
archy of concept can be proved dominant, using subconcepts and superconcepts. A
typical example of a subconcept is “human with a disease” where the superconcept
is “healthy human being” which is a subconcept of the superconcept “being.” The
concept has to be determined from all the objects belonging to the concept under
consideration as well as from all attributes necessarily valid for the defined objects.
Usually it is not expected the experimenter to consider all objects and attributes
describing the given concept, i.e., a certain amount of sets of objects and attributes
is initially fixed.

A concept is every set function φ of a set O, called the objects, to another set A,
called the attributes. We shall use the notation (O,A).

The above definition of concept provides the mathematical insight of the expres-
sion: the “object” O has “attributes” A. Let now all the objects under consideration
form the set O, which has a finite number of elements. Similarly, all the attributes
form the set A which also has a finite number of elements. We emphasize that φ(O)

does not define a unique set A while, equivalently, φ−1(A) does not define a unique
set O. Based on the collected data, A, O and ϕ can be defined appropriately.

The data we examine (e.g., any qualitative attributes, “yes” or “no” to a given
disease, to human or animals, or the level of quality of an industrial product) act as
a generator φ of concepts:

φ : O �−→ A, ϕ(O) = A. (10)

From the above discussion, the set O represents a set of “humans” or “animals,” and
O can represent “humans with a disease” and ϕ(O) = A = {0, 1} with 0 := “no”
and 1 := “yes”.

When we are interested to create a new concept, we must consider the simple
laws of set theory.

The concept union •⋃ of two concepts is a new concept of the form
(O1, A1) •⋃ (O2, A2) := (O1 ∪ O2, A1 ∩ A2), (O1, A1), (O2, A2) ∈ C. The
concept intersection •

⋂
is defined, respectively, as (O1, A1) •

⋂
(O2, A2) :=

(O1 ∩ O2, A1 ∪ A2), (O1, A1), (O2, A2) ∈ C; see [17].
It is easy to verify that the concept (∅, A) is the neutral (zero) element for the

union in the sense that (O,A) •⋃ (∅,A) = (O,A).
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The definition of the union between two concepts is not only mathematically
valid but also practical, as you can assign to the empty set any attribute. The neutral
element for the intersection •

⋂
is the element (O,∅). It can be proved that the

set of all concepts with operation either •⋃ or •
⋂

is a commutative Abelian
semigroup with the appropriate neutral element. The set of all concepts C it can
be proved, as far as the union and intersection of concepts are concerned, to be
commutative and associative and, therefore, a lattice.

Two concepts (O1, A1) and (O2, A2) belonging to C are equivalent if and only

if A1 = A2. We shall write (O1, A1) ∼= (O2, A2)
def.⇐⇒ A1 = A2.

Proposition 1 The equivalence between two concepts is a genuine equivalence
relation among concepts. Therefore, we can create a partition of the concepts
(equivalent with each other) coming from the collected data (C/ ∼=).

See Appendix for the proof.
Therefore, all the concepts of the form (Oi, A) are equivalent to (Oi ∪ Oj,A),

Oi,Oj ∈ C under the relation “∼=,” and the whole class of equivalence is formed
by taking the “concept union” •⋃ . Consequently, from the objects Oi ∈ O, we
create the new object elements Oi •⋃ Oj of the power set P(O). This is a way to
classify concepts depending on attributes.

To classify concepts depending on concepts themselves, we define another
equivalence relation of the form (O1, A1) ≡ (O2, A2) ⇐⇒ O1 = O2.

Relation “≡” is an equivalence relation as it can be proved similarly to
Proposition 1.

We call the set O as the extension of a concept, while set A shall be called as the
intension of it.

Now, from the definition of the concept union •⋃ , we realize that by taking the
union of two concepts, we find common attributes (similarities) of another “greater”
object. Correspondingly, thinking about the concept intersection, we find that “less
extension implies greater intension.” Lattice means order, as we mentioned already;
so for every two elements of it, there exists another “upper” or “preceding” element
and another “lower” or “following” element. It is not a hierarchy (a tree), but it is a
network as in Figs. 2 and 3.

We now define the order relations “�” of the lattice for the already existing
operations •⋃ and •

⋂
. Indeed:

The concept (O1, A1) follows concept (O2, A2) or, equivalently, the concept
(O2, A2) precedes concept (O1, A1), if and only if O1 ⊆ O2 and A1 ⊇ A2, i.e.,

(O1, A1) � (O2, A2)
def.⇐⇒ O1 ⊆ O2 and A1 ⊇ A2.

Moreover a ring structure can be proved for the set C of concepts. The
complement (O,A)c of the concept (O,A) ∈ C is the concept consisted by the
usual set-theoretic complements of O ∈ O and A ∈ A, i.e., (O,A)c := (

Oc, Ac
)
;

see [17].
The complement of a concept as above is well defined because:

(a) Oc ⊆ O and Ac ⊆ A imply that
(
Oc, Ac

) ∈ C.
(b) There is only one complement Oc of O and only Ac of A; hence, there is only

one complement of the concept (O,A) ∈ C.
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Fig. 2 From fourth level to super-ordinated

Fig. 3 The construction of concept
(
O1,

⋃3
i=1 Ai

)
from (O1,∅)
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The symmetric difference or disjunctive union (O1, A1) � (O2, A2) between
two concepts (O1, A1) and (O2, A2) belonging to C is the concept

(
O1 �O2, (A1 �

A2)
c
) ∈ C where O1 � O2 := (O1 ∪ O2) \ (O1 ∩ O2) and A1 � A2 := (A1 ∪ A2) \

(A1∩A2) are the usual set-theoretic symmetric differences (or disjunctive unions) of
O1,O2 ∈ O and A1, A2 ∈ A, respectively. The following can be proved; see [17].

Theorem 6 The set C enriched with the operation � is a group.

Moreover, the set C enriched with the operations � and •
⋂

is a ring, where
� plays the role of “addition” and •

⋂
of “multiplication.” It is commutative (due

to the commutative property of the operation •
⋂

) with unit (because of the neutral
element (O,∅) of the operation •

⋂
) and distributive from both sides.

Since “∼=” is an equivalence relation, we can define equivalence classes of
concepts, through this similarity relation in which classes are disjoint. Therefore,
one can define the “orbit” in the geometrical sense, and not only, as we are moving
from one class to another class; see [7] for a general affine geometric point of view
of Statistics and [16] for an affine geometric approach for the logit problem. As we
know, the classes are disjoint sets and their union makes the set of reference, C in
this paper. So, in this case, we have a partitioning of C according to the defined
equivalence relation.

Discrete Distance Measures

It is known that the number of coefficients in which vectors X and Y differ is a
distance d(X, Y ), known as Hamming distance. If we let X := (0, 0, 1, 1, 1) and
Y := (1, 1, 0, 0, 0) with X, Y ∈ F

(5)
2 , then d(X, Y ) = 5. Such a definition is used

in binary codes where the minimum distance is always desired. In particular, if we
define the weight w := w(a) of a word a, to be the number of ones in a, then
w(a) = d(a, 0) and d(a, y) := w(a − y) with y being another word.

The above discussion provides us food for thought to work on the introduction
of a discrete distance measure between two given concepts.

The object distance d(O1,O2), i.e., the distance between two finite objects
O1,O2 ∈ O, is defined to be the nonnegative integer expressing the number of
elements of their symmetric difference O1 � O2, i.e.,

d(O1,O2) := |O1 � O2|. (11)

Proposition 2 The defined object distance d(O1,O2) as above is a genuine
distance metric, i.e., it satisfies the three properties of a metric: positive definiteness,
symmetricity, and triangularity.
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Proof Trivial.

Recall the symmetric difference between two concepts, i.e., C1 � C2 = (
O1 �

O2, (A1 �A2)
c
)
. The distance d between objects, as in (11), is not that informative,

since it is a quantitative but not a qualitative one: two sets of objects may have many
different elements, coming from the same (we assume homogenous) population, but
we are not measuring the data differences qualitatively but quantitatively. Besides,
we are not working with objects or attributes, but with both of them, i.e., with
concepts.

The symmetric difference O1 � O2 between two objects acts between attributes
to create a new one of the form (A1 � A2). Thus, if we want a qualitative distance
between O1,O2 ∈ O, we must check (A1 �A2). In such a case, we can then define

d(A1, A2) := |A1 � A2| = |A| − ∣∣(A1 � A2)
c
∣∣, A1, A2 ∈ A. (12)

Note that if the distance between two attributes is increasing, i.e., there are many
noncommon attributes, then (12) yields that the number of elements of (A1 � A2)

c

is decreasing.
Suppose now we have two objects, O1 and O2. As a measure of “comparison,”

we introduce the normalized distance

dn(O1,O2) := |O1 � O2|
|O1| + |O2| , O1,O2 ∈ O. (13)

For a discussion and a number of calculations for different cases of objects, see
the Proof of Claim in Appendix.

Claim The normalized distance between objects is a function depending on the
number of different elements between them, ranging from value 0 (no differences)
to 1 (everything is different).

See Appendix for the proof.

Fuzzy Logic Approach

The fuzzy logic extends the classical binary response: a sentence is either true or
false (not true), and hence it belongs to the {0, 1} binary set. This binary set can
be extended to the [0, 1] interval. In strictly mathematical terms, the characteristic
function of a given set Q ∈ �, i.e.,

IQ : Q −→ {0, 1}, with Q � x �−→ IQ(x) ∈ {0, 1},
is now considered as the membership function of a fuzzy set Q ⊆ �, i.e.,

MQ : Q −→ [0, 1], with Q � x �−→ MQ(x) ∈ [0, 1].
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The value of MQ(x) declares the degree of participation of the element x ∈ Q

which belongs/participates to the fuzzy set Q ∈ �. In particular,

MQ(x):=

⎧
⎪⎪⎨

⎪⎪⎩

1, declares that x belongs to Q,

0, declares that x does not belongs to Q,

q ∈ (0, 1), declares that x belongs “partially” (in some degree) to Q.

The above introductory elements are useful to realize the extensions succeeded
by fuzzy logic, i.e., adopting an interval of values rather than a single binary value
to describe a phenomenon.

The interval mathematics, as described in [29], offers another approach to
develop intervals, different than the fuzzy logic one; see [21] and [31] for the
corresponding applications.

Recall that, under the fuzzy logic approach, the subset-hood between two sets A

and B, subsets of the “universe” set �, is

S(A,B) = k(A ∩ B)

k(A)
,

where k(A) := card(A) = |A| is the generalized cardinal number and represents
the degree to which B is a subset of A. If A ⊆ B then S(A,B) = 1. Based on this,
the fuzzy entropy of a set A, denoted with EF(A), can be defined as

EF(A) := k(A ∩ Ac)

k(A ∪ Ac)
.

The fuzzy entropy of A measures “how much” underlap A∪Ac and overlap A∩Ac

violate the existent laws A ∩ Ac = ∅, A ∪ Ac = �. That is, the fuzzy entropy
measures eventually “how much” of A ∪ Ac is included to A ∩ Ac.

The following theorem rules the fuzzy entropy theory:

Theorem 7 (of Fuzzy Entropy) It holds that

EF(A) = S
(
A ∪ Ac, A ∩ Ac).

Proof From the definition (14), it holds that

S
(
A ∪ Ac, A ∩ Ac) =

k
((

A ∪ Ac
) ∩ (

A ∩ Ac
))

k(A ∪ Ac)
= k(A ∩ Ac)

k(A ∪ Ac)
= EF(A).

Example 8 It holds

EF(�) = S
(
� ∪ �c,� ∩ �c) = S

(
� ∪ ∅,� ∩ ∅

) = S(�,∅) = 0.
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Therefore, the universe set � has fuzzy entropy 0, while for the middle point M , it
holds

EF(M) = S
(
M ∪ Mc,M ∩ Mc) = 1.

Based on the above discussion, we can define the fuzzy entropy deviance, i.e.,

δ(O1,O2) := EF(O1) − EF(O2) = k
(
O1 ∩ Oc

1

)

k
(
O1 ∪ Oc

1

) − k
(
O2 ∩ Oc

2

)

k
(
O2 ∪ Oc

2

) .

It is always a problem to define a distance measure when information divergences
are under consideration; see [19] for the continuous case of the Kullback–Leibler
divergence.

We would like to emphasize that fuzziness and randomness are different ideas.
They seem similar, but they are not identical. The randomness concerns problems
where the event is well defined but it is uncertain if it will take place or not.
The fuzziness concerns situations which are not well defined and can only be
described in a sufficient way when it is known how we shall move between different
classes. That is, we are moving under a fuzzy event to the “probability of a fuzzy
event,” which is still (even to such a probability oriented procedure) closer to a
measure-theoretic approach than to an algebraic approach (via probability algebras).
Moreover, in fuzzy logic, the additivity due to a “measure” is not existing, so it is
not a defined probability measure, while the term “possibility” replaces the term
“probability.”

Discussion

This paper studied the general influence of the Discrete Mathematics line of thought
to Statistics and probability. In particular, the Experimental Design Theory employs
many discrete statistical concepts, which offer a solid framework, although the
real data analysis is mainly performed by the ANOVA approach. Furthermore,
geometry plays an important role in all the mathematical scenarios—so does in the
Experimental Design Theory in its finite formulation.

The foundations of probability theory are mainly based on measure-theoretic
concepts. But still, there is also a set-theoretic approach. Lattice theory is applied in
concepts and Boolean algebra supports the fuzzy logic extension. Distance measures
offer criteria to decide “how close” two estimates or two sets or two concepts are.
A brief discussion to the subject was also offered in this paper.
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Appendix

Proof (of Proposition 1) We shall prove that the introduced relation ∼= is reflective,
symmetric, and transitive. Indeed:

i. Reflexivity of relation “∼=”. Indeed, (O,A) ∼= (O,A) ⇔ A = A, which is true
due to the reflexivity of the equality relation “=” for sets.

ii. Symmetricity of relation “∼=”. Indeed, (O1, A1) ∼= (O2, A2) ⇔ A1 = A2 ⇔
A2 = A1 (symmetricity of the equality relation “=” for sets) ⇔ (O2, A2) =
(O1, A1).

iii. Transitivity of relation “∼=”. Indeed, it holds that

(O1, A1) ∼= (O2, A2) ⇔ A1 = A2 and (14a)

(O2, A2) ∼= (O3, A3) ⇔ A2 = A3, (14b)

which are both equivalent to A1 = A3, due to the transitivity of the equality
relation “=” for sets, and hence (O1, A1) ∼= (O3, A3).

Proof (of Theorem 1) Let us consider (i, j) and (i.j ′) be the same symbols for the
position. Then,

L(i, j) = L(i, j ′) �⇒ i + j = i + j ′.

As i, j, j ′ ∈ ZV , then −i exists and thus

(−i) + i + j = (−i) + i + j ′ �⇒ j = j ′.

This means each symbol occurs once in row i. Since there are v symbols and v

positions, each symbol occurs exactly once. The same line of thought is followed
for the columns. Therefore, L(i, j) is an LS.

Proof (of Theorem 2) Following the same line of thought of Theorem 1, we prove
that La = La(i, j) is an LS. Indeed, for La(i, j) = La(i, j

′), it holds ai + j =
ai + j ′. Since a, i, j ∈ Zp, then a−1,−j ∈ Zp, and hence j = j ′. Similarly,
La(i, j) = La(i, j

′) yields j ′ = j . Consider now the position, say (i1, j1) of La ,
and a different position, say (i2, j2) of Lb. Moreover, let k1, k2 be the symbols for
both positions. Then, for

La(i1, j1) = k1, Lb(i1, j1) = k2, it is

ai1 + j1 = k1, bi1 + j1 = k2,
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and for

La(i2, j2) = k1, Lb(i2, j2) = k2, it is

ai2 + j2 = k1, bi2 + j2 = k2.

Thus,

a(i1 − i2) = j2 − j1 and b(i1 − i2) = j2 − j1.

Assuming that i1 �= i2 then (i1 − i2)
−1 ∈ Zp and

a = b = (i1 − i2)
−1(j2 − j1).

However, we assumed that a �= b; thus, k1 and k2 are equal in only one position.
Therefore, La ⊥ Lb.

Proof (of Theorem 4) Since x, y are elements of Fq , they can take q different values.
So, there are v = q2 points. As far as the block is concerned, we must prove that
every line has exactly q points and that any two points of Fq belong to exactly one
line. Indeed:

Consider the line ax + by + c = 0, b �= 0. Then,

y = −b−1(c + ax),

such that (x, y) is on the line, and hence the line has q points. If b = 0, a �= 0, it
holds

x = −a−1c.

In such a case, there are q possible values of y in Fq and q points of the form( − a−1c, y
)

lie on the line.
Now, suppose that (x1, y1) and (x2, y2) are two given distinct points, and hence

x2 − x1 and y1 − y2 are not both zero. The equation of the line “passing” (actually
“containing”) the two points is

� : (y1 − y2)x + (x2 − x1) = x2y1 − x1y2,

is the equation of a line. Moreover, it contains the two given points. If another line
is containing the two given points and described by the analytic form

ax + by + c = 0,

then it holds

ax1 + by1 + c = 0 and ax2 + by2 + c = 0, i.e.,

a(x2 − x1) = b(y1 − y2).
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The value (x2 − x1)
−1 exists in Fq , provided x1 �= x2, and hence

a = b(x2 − x1)
−1(y1 − y2) = λ(y1 − y2).

So we have

b = λ(x2 − x1) and

c = −ax1 − by1 = −ax1 − λ(x2 − x1)y1 = −λ(y1 − y2)x1 − λ(x2 − x1)y1

= λ(x1y2 − x2y1).

Thus, the line is the same with the above defined since lines � and λ� coincide, in
finite geometry. Therefore, only one line exists and “contains” the two points.

Proof (of Theorem 5) In the affine plane over Fq , the lines

ax + by + c = 0 and a′x + b′y + c′ = 0,

are said to be parallel if ab′ = a′b in Fq . There are q + 1 equivalence classes of
parallel lines of the form

x + λy = 0, λ ∈ Fq,

and the y = 0 line. Any point of the affine plane belongs to just one line in each
class.

We introduce now q + 1 points Xλ, λ ∈ Fq , and X∞, all belonging to a new line
�∞; see also Example 5 for the discussion on �∞ line. The Xλ points lie to each line
parallel to line x + λy = 0, while X∞ to each line parallel to y = 0. We have to
prove that the lines are blocks of a design with parameters stated above. There are
q2 + q + 1 points and each line contains q + 1 points. Thus, we proved that any two
distinct points, say H and I , belong to just one line. Then, the following cases can
be true:

1. The points H and I are both parts of the initial affine plane; let us called them
“old” points. So, H and I belong to a unique line of this plane, which corresponds
uniquely to a line on the extended plane (with infinity point).

2. If H is an “old point” and I is a “newly added” point, i.e., I := Xλ, then H

belongs already to precisely one “old” line in the parallel class represented by
X∞, and, therefore, the corresponding new line in the unique line �′ contains
points H and I . The same is certainly true if X := X∞.

3. If H and I are both “new” points, then they belong to �∞ by definition.
Therefore, any two points belong to just one line (i.e., to one block). Now, from
the above construction, any two lines have just one common point.
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Proof (of Claim) We distinguish the following cases:

• Case O1 ∩ O2 = ∅ (disjointed objects). In general, it holds

O1 � O2 = (O1 \ O2) ∪ (O2 \ O1) = O1 ∩ O2, O1,O2 ∈ O, (15)

and, hence, in this case. we obtain

|O1 � O2| = |O1 ∪ O2| = |O1| + |O2| − |O1 ∩ O2| = |O1| + |O2|, (16)

which is—in principle—the maximum possible number of elements of the
symmetric difference between two objects. Thus, the normalized distance dn
between O1,O2 ∈ O equals 1. Indeed, via (15),

|O1 � O2| = ∣∣(O1 \ O2) ∪ (O2 \ O1)
∣∣

= ‖(O1 \ O2| + |O2 \ O1| − ∣
∣(O1 \ O2) ∩ (O2 \ O1)

∣
∣)

= |O1 \ O2| + |O2 \ O1| − |O1 ∩ O2|
≤ |O1 \ O2| + |O2 \ O1| ≤ |O1| + |O2|, (17)

where the equality holds iff O1\O2 = O1 and O2\O1 = O2, which is equivalent
to O1 ∩ O2 = ∅. Furthermore, the normalized distance between O1 and O2 is
confirmed to be 1 since

dn(O1,O2) := |O1 � O2

|O1| + |O2| = |O1| + |O2|
|O1| + |O2| = 1. (18)

• Case O1 ⊆ O2 (included objects). If O1 is a subset of O2, then

|O1 � O2| = |O1 \ O2| + |O2 \ O1| − ∣
∣(O1 \ O2) ∩ (O2 \ O1)

∣
∣

= |∅| + |O2 \ O1| − ∣∣∅ ∩ (O2 \ O1)
∣∣

= |O2 \ O1| − |∅| ≤ |O2|, (19)

where the equality holds iff O1 = ∅. In principle, the normalized distance dn
between objects is less than or equal to 1. Indeed, for O1,O2 ∈ O,

dn(O1,O2) = |O1 \ O2| + |O2 \ O1| − ∣∣(O1 \ O2) ∩ (O2 \ O1)
∣∣

|O1| + |O2|
≤ |O1 \ O2| + |O2 \ O1|

|O1| + |O2| ≤ |O1| + |O2|
|O1| + |O2| = 1. (20)

The above is also confirmed, via (19), for the specific case of O1 ⊆ O2, as

dn(O1,O2) := |O1 � O2

|O1| + |O2| = |O2 \ O1|
|O1| + |O2| ≤ |O2|

|O1| + |O2| ≤ 1, (21)

where, again, the equality holds iff O1 = ∅.
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• Case O2 ⊆ O1 (included objects). If O2 is a subset of O1, then we obtain dually
that

dn(O1,O2) := |O1 � O2|
|O1| + |O2| = |O1 \ O2|

|O1| + |O2| ≤ |O1|
|O1| + |O2| ≤ 1, (22)

where the equality holds iff O2 = ∅.
• Case O1 = O2 (equated objects). If object O1 coincides with object O2, then

dn(O1,O2) = |O1 \ O2 + |O2 \ O1| − ∣∣(O1 \ O2) ∩ (O2 \ O1)
∣∣

|O1| + |O2|
= |∅| + |∅| − |∅ ∩ ∅|

|O1| + |O2| = 0. (23)
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