
An Approach to the Validation of XML
Documents Based on the Model Driven

Architecture and the Object
Constraint Language

Denis A. Nikiforov(B), Dmitriy V. Korj, and Ruslan L. Sivakov

Center of Information Technologies LLC, Ekaterinburg, Russia
{Denis.Nikiforov,Dmitriy.Korj,Ruslan.Sivakov}@centre-it.com

Abstract. It is possible to develop data processing applications using
a variety of different data representation formats (EDI, CSV, XML,
JSON), domain-specific languages, and general-purpose programming
languages (XSLT, SQL, Java, C#). On the one hand, such a variety
allows one to choose the most optimal data format or language based
on the specific requirements being applied, while on the other one, con-
temporary information systems or complexes of integrated information
systems have become similar to the Tower of Babel, being so cumber-
some to build and maintain. A possible solution to this issue could be
found in developing platform-independent specifications to be used for
generating the source code for each required platform.

This article describes an approach to the XML document valida-
tors’ generation based on UML models with Object Constraint Lan-
guage (OCL) rules. The authors give a brief account of similar tools and
propose a generalized schema for generating the validators based on a
model-driven approach. The core component of this schema is the trans-
formation of OCL constraints to XPath assertions. The first ones could
come from one of the supported platform-independent models (Eurasian
Economic Union Data Model or ISO 20022), while the later could be
embedded into XML Schema 1.1, XSLT or Java code.

The transformation is implemented at the model level in the Query/
View/Transformation language. The article does not go into details of con-
verting OCL into XPath, because such a description takes up a lot of space
and has already been given in similar articles. The authors describe only
the key features of their approach: development of metamodels for XPath,
XSD 1.1, and XSLT, support of a variety of platform-independent and
platform-specific models, determination of elements subject to validation,
external data sources, kinds of validation messages, preconditions.

Keywords: XML validation · Semantic validation
Unified Modeling Language · Object Constraint Language
XPath · XML Schema · XSLT · Model Driven Architecture
Platform-independent model · Metamodel · Model transformation
Query/View/Transformation · Eclipse Modeling Framework
ISO 20022

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 291–305, 2018.
https://doi.org/10.1007/978-3-319-74313-4_21

292 D. A. Nikiforov et al.

1 Introduction

Consider the following example. Let us say you are designing a website where
users can post their resumes (Fig. 1). Among other things, users are to specify an
employment period for each job they had, however they only specify a starting
date for their currently held job. You could introduce the following constraint to
ensure consistency of each job’s dates: if an end date is specified, then it must not
be earlier than the starting date. Such a restriction can be easily implemented
in JavaScript.

Fig. 1. Example of a data-entry form for resume details

Subsequently, you decide to make it easier for users to add their resumes to
your site, and implement an option allowing them to upload the resumes in an
XML format:

<CurriculumVitae>
<!-- ... -->
<WorkExperience><!-- Past Employment -->

<StartDate>2015-01-01</StartDate>
<EndDate>2017-03-31</EndDate>
<Organization>Company A Inc.</Organization>

</WorkExperience>
<WorkExperience><!-- Current Employment -->

<StartDate>2017-04-01</StartDate>
<Organization>Company B Inc.</Organization>

</WorkExperience>
</CurriculumVitae>

You can use an existing JavaScript code to validate the XML documents
if the server-side logic is implemented on Node.js, however this is not always
the case, and you may need to do a repeat implementation of the constraints
by means of XSD 1.1, XSLT, or a general-purpose programming language, such
as Java.

An Approach to the XML Validation Based on MDA and OCL 293

Let us assume that despite the implemented constraints your application’s
database still receives inconsistent data. In order to ensure the data’s integrity,
you define the constraints in a third language – SQL. This duplication may
result in a disagreement of implementations and an increase in the application’s
development and maintenance costs.

The Object Management Group (OMG) proposes to use the Model Driven
Architecture (MDA) to solve this problem [15]. Towards this end, you would
define the data schema and constraints in a Platform-Independent Model (PIM),
e.g. in UML [28] and OCL [19,26] languages, correspondingly. The constraint
under consideration could be defined in OCL in the following manner:

WorkExperience->forAll(x |
x.EndDate->notEmpty() implies x.StartDate <= x.EndDate)

You transform the PIM into various Platform-Specific Models (PSM) when-
ever the need to implement constraints for a particular platform arises, those
PSMs being used as a basis for generating the required source code [1,5,16].

This article discusses only the transformations from PIM to PSM, used to
generate validators for XML documents. Implementation of constraints for web
forms or relational databases lies outside this article’s scope.

The paper is organized as follows. In Sect. 2, we define and compare the
existing XML document validation tools using OCL constraints. In Sect. 3, we
propose a generalized framework for generating validators based on the MDA. In
Sect. 4, we define some special aspects of our approach that distinguish it from
its analogues. In Sect. 5, we list areas to focus on in the future.

2 Overview of Analogues

There are two approaches to validating XML documents using OCL rules: (1)
transforming the rules into expressions in a language that can be run on a certain
technology platform (Schematron [10], XPath, Java, etc.) or (2) interpreting the
rules within the context of an XML document’s object model [25].

In the first case, the OCL rules get adapted to run on a desired technology
platform (Fig. 2), while in the second case it is the data that gets adapted from its
platform-specific representation to a suitable platform-independent form (Fig. 3).

The first approach is preferred in situations where the environment, in which
the XML documents are to be validated, has to comply with stringent require-
ments. However, if the part played by overhead costs associated with generating
an object model of the XML document is insignificant, and there are no restric-
tions on the choice of technologies, it is more appropriate to use the second
approach. This is due to the fact that generating an object model for data is
much simpler than mapping all the operations defined in the OCL Standard
Library.

Table 1 describes the existing tools for XML documents validation using OCL
rules. The OCL specification’s support provided by tools based on the OCL
interpreter is more complete. However, the most recent versions of OCLE and

294 D. A. Nikiforov et al.

Platform-Specific Level

Platform-Independent Level

Transformation

Execution engine

Validator

Validation resultsXML document

UML model

OCL rules

conforms to

Fig. 2. Flowchart of transformation of OCL constraints

Platform-Specific Level

Platform-Independent Level

Validation results

UML model

OCL rules

OCL interpreterObject model

XML document

Adapter

conforms to

Fig. 3. Flowchart of interpretation of OCL constraints

Dresden OCL date back, respectively, to years 2005 and 2015, meaning that
they implement older versions of the specification. Unlike other Schematron-
generating tools, eXolutio supports relatively complex “iterate” and “closure”
operations, however it is not clear if “substring” is supported [13].

eXolutio and OCLE support plain UML class diagrams as a PIM.
ShapeChange and NIEM transformation support UML models as per ISO 19109
and NIEM specification, respectively. For Eclipse OCL, either a simple UML
class diagram or an Ecore model adapted for the Pivot Meta-Model can be used
as a PIM. Dresden OCL additionally provides adapters for Java classes and XML
schemas.

Some tools allow to extend the OCL Standard Library by using custom UML
classes with OCL operations. The latter are either interpreted, or transformed
to XSLT, XQuery or Java functions.

External data sources are fully supported only by OCLE. All data sources
are defined in a single logical model, and can be referenced from the OCL rules.

An Approach to the XML Validation Based on MDA and OCL 295

For eXolutio, an OCL syntax extension to reference external XML documents
is proposed in [13].

Most tools are implemented in Java or other general-purpose programming
languages. The only exclusion to this is the NIEM PIM to Schematron trans-
formation, having been implemented in QVTo [30], however even in its case the
XPath expressions are generated directly as text, bypassing PSM.

Table 1. Comparison of analogues

Tool Validation

mechanism

OCL

support

Source PIM OCL

extension

mechanism

Support of

external

sources

Imple-

mentation

Shape-Changea Schematron Extremely

limited

ISO 19109 Absent Absent Java

NIEM [27] Schematron Limited NIEM Absent Absent QVTo

eXolutio [11,14] Schematron Average UML class

diagram

Present Proposed Unknown

Dresden OCL [3] Interpretation,

Java

Potentially

complete

Adapted

model

Present Absent Java, EMF

Eclipse OCL [31] Interpretation Complete Adapted

model

Present Absent Java, EMF

OCLE [2] Interpretation,

Java

Potentially

complete

UML class

diagram

Present Present Unknown

ahttp://shapechange.net/targets/xsd/extensions/ocl/.

3 Proposed Generalized Validator Generation Scheme

Most of the above-discussed tools are solid applications written in general-
purpose programming languages. This significantly complicates understanding
of how exactly the UML models and OCL rules are transformed in those tools,
and makes it difficult to adjust transformations to support other PIM or to
better support the OCL Standard Library.

MDA offers an alternative approach to developing applications, where all
source, intermediate and target artifacts are considered to be models within
a certain modeling space [4]. A development process can be represented as a
sequence of model transformations [15]. Each model must conform to a certain
metamodel, and each metamodel should be developed in accordance with a cer-
tain meta-metamodel. Each meta-metamodel forms its own modeling space [4].

OMG has developed a number of specifications describing metamodels (UML,
OCL), meta-metamodels (MOF), model transformation languages (QVTo), text
representation of models (XMI). Eclipse Modeling Project (EMP) [6] implements
some of these specifications. There are various specifications and tools for model-
based development, however, OMG is the main standardizing organization in this
field and offers the most complete set of specifications, while the most complete
implementation of the specifications is provided by the EMP.

Figure 4 shows our proposed and implemented generalized scheme of valida-
tor generation based on UML models with OCL constraints. Metamodels and
transformations developed by us at [21–23] are marked in gray in the figure. All

http://shapechange.net/targets/xsd/extensions/ocl/

296 D. A. Nikiforov et al.

text artifacts belong to the EBNF modeling space. UML models, XSLT models,
OCL Abstract Syntax Trees (AST), XPath AST belong to the Ecore [31] model-
ing space (Ecore is an analog of MOF in EMP). The figure depicts the sequence
of transformations for a single pair of PIM and PSM. It is possible to use not
only XSLT, but also XSD 1.1 or Java as a PSM.

Fig. 4. Proposed generalized validator generation scheme

The transformation is done in three stages. First, the UML model with OCL
constraints is translated from a text representation in an EBNF modeling space
to an Ecore modeling space [4]. Subsequently, the Ecore modeling space is used
to transform PIM to PSM, with the transformation being defined in QVTo.
Finally, the PSMs are converted to text and sent back to the EBNF modeling
space. Let us review each step in more detail.

3.1 Transformation of PIM from Textual to Ecore Representation

The source UML model is represented in the XMI format [29]. The XMI file
contains OCL rules. We use Eclipse UML and Eclipse OCL to parse them [6].
The result is an UML model conforming to an UML metamodel and a set of
OCL models (abstract syntax trees) conforming to an OCL metamodel. Both
metamodels are based on the Ecore meta-metamodel, so their subsequent trans-
formations can be described in the QVTo language.

3.2 Transformation of PIM to PSM

Currently, two kinds of source PIMs (data model of the Eurasian Economic
Union (EAEU)1 and ISO 20022 [9,12,24]) and three kinds of target PSMs (XML

1 https://eomi.eaeunion.org.

https://eomi.eaeunion.org

An Approach to the XML Validation Based on MDA and OCL 297

Schema, XSLT, and Java) are supported by the transformation. A separate
QVTo transformation is implemented for each of the six PIM and PSM combi-
nations, while the main part – which is the transformation of OCL to XPath –
is reused. In order to implement these transformations via Eclipse QVTo it is
necessary to define metamodels based on the Ecore meta-metamodel for each
source and target model. For UML and OCL the metamodels are implemented
within the EMP.

Moreover, this project includes an implementation of the XSD 1.0 meta-
model. We cannot use it in our generator, because it is impossible to embed
XPath assertions in XSD 1.0. An XSD 1.1 metamodel is required. The later itself
is an XML-based language, it is defined in the corresponding XML schema. We
imported this schema with the wizard provided by the Eclipse Modeling Frame-
work (EMF) [17,31], and created an Ecore-based metamodel for XSD 1.1 [21].
Similarly, we have generated on the basis of the XML schema an Ecore-based
metamodel for XSLT 2.0 [21].

In addition to XSD and XSLT, our transformation also generates Java code
and XPath expressions that are not XML-based languages and that has not
XML schemas. Their syntax is defined in EBNF, making it necessary to use
other tools to develop Ecore-based metamodels. One of such tools is EMFText [8,
18]. It allows to define a textual representation in an EBNF-like language for
Ecore-based metamodels. For Java, an Ecore-based metamodel has already been
implemented in the JaMoPP project [7]. For XPath 2.0, we have implemented
our own metamodel and described its syntax [22]. General principles of design of
Ecore-based metamodels based on EBNF grammars were described by us in [20]
using the example of SQL.

3.3 Transformation of PSM from an Ecore Representation
to a Textual One

Serialization of Ecore models for XML-based languages (XSD, XSLT) is a trivial
task. When importing an Ecore-based metamodel from an XML schema the
former is complemented by extended metadata that allow to (de-)serialize Ecore
models not just in XMI format, but also in the form of XML documents that
conform to the original XML schema. It is possible to generate parsers and
printers automatically for languages implemented by means of EMFText. For
Java, they are available in the JaMoPP project, for XPath 2.0 – in [22].

3.4 Summary

In a general case scenario, in order to transform n PIMs to m PSMs it is necessary
to develop n×m transformations. In this case, such transformations number
2 × 3 = 6. This nonlinear relationship complicates the development of validator
generators. The difference between our approach and the approaches described
in Sect. 2 is that we have decomposed the transformations as much as possible.

298 D. A. Nikiforov et al.

Transformations from a text representation (Sect. 3.1) or into a text represen-
tation (Sect. 3.3) are generalized and reusable. Their number is linearly depen-
dent on the number of PIMs and PSMs to be supported by the generator of val-
idators. Some of these transformations had already been implemented (Eclipse
XMI parser), other ones we implemented on our own (XPath 2.0 printer) [22].

The transformation from OCL to XPath 2.0 is also generic and does not
depend on the PIM and PSM combination. This is described in further details
in Sects. 4.1 and 4.2.

It is these transformations that are the most difficult to implement, whereas
transformations that are specific to each pair of PIM and PSM are more numer-
ous, but easier to implement.

4 Features Distinguishing Our Approach from Its
Analogues

As seen in the case of tools discussed in Sect. 2, the rules of OCL transformation
to XPath generally coincide. Therefore, we will not describe them in detail in this
paper, especially since the OCL Standard Library defines around two hundred
operations. The description of the rules is quite voluminous. Hence, we will
describe only those features of our approach that distinguish it from its peers in
a fundamental way.

4.1 Different Source PIMs

Each of the analogues described in Sect. 2 can generate validators only for certain
kinds of PIM. If you used a different PIM, you would not be able to use any of
these tools, or you would have to adapt your PIM somehow. Our generator of
validators supports two kinds of PIM (EAEU data model and ISO 20022) and
can be easily enhanced to support additional kinds of models.

This is achieved as follows. A significant part of OCL expressions is converted
to XPath expressions without regard to which data model they are used in. For
example, the trivial “2 + 2 <> 5” expression of OCL is always converted to a
“2 + 2 ne 5” XPath expression, regardless of the applicable PIM.

The specifics of various types of PIMs appear only when converting expres-
sions that include calls to object properties (PropertyCallExp). Different PIMs
use different UML stereotypes for data elements, data types, attributes, and
external data sources. Moreover, their modeling can be done using different UML
elements. For example, the data model of EAEU models reusable data elements
as classes, while ISO 20022 allows only local elements that are modeled as prop-
erties of classes. In order to put aside these differences, the following abstract
operations are declared in our transformation: “isDataType”, “isDataElement”,
“isAttribute”, “isExternalSource”. These operations have to be implemented to
add support for a new PIM.

Moreover, each PIM requires “getQName” and “getUnprefixedQName” oper-
ations, that return the model object’s name with and without the namespace

An Approach to the XML Validation Based on MDA and OCL 299

prefix, correspondingly, to be implemented. Finally, it is necessary to imple-
ment the following operations that allow to abstract the OCL transforma-
tion to XPath from primitive type systems which tend to vary from one PIM
to another: “isNumericType”, “isStringType”, “isBooleanType”, “isDateType”,
“isDateTimeType”, “isTimeType”, “isDurationType”.

The tools discussed in the Sect. 2 have their own private OCL to XPath
transformations. Our experience shows that it is possible to develop a generalized
transformation treated separately from the original PIM. It is also possible to
develop a generalized system of primitive types that unifies the type systems of
different PIMs.

4.2 Different Target XPath Host Languages

OCL expressions are meaningful only for some UML or Ecore (MOF) models.
Similarly, XPath expression cannot be interpreted by themselves, they are to
be embedded into some host language. Our tool supports three host languages:
XSD 1.1, XSLT, and Java.

In contrast to the source PIM, the target PSM (host language) does not affect
the OCL transformation rules to XPath. Only the upper levels of ASTs of OCL
expressions have different ways of transformation. If they contain any “forAll”
or “implies” operations, those get transformed to host language expressions, not
to XPath expressions. Further details can be found in Sects. 4.4, 4.5, and 4.6.

Table 2 lists the features of XPath host languages that our generator of valida-
tors supports. XSD, unlike XSLT and Java, serves for basic structural validation
of XML documents. It is much more difficult to check the sequence of XML
elements or to make sure there are no unexpected elements through XSLT or
Java. Therefore, it is necessary to combine validators based on such technologies
with XML schema-based checks.

XML schema 1.1, as opposed to its version 1.0, may be supplemented with
XPath assertions that implement relatively complex validation rules. However,
in XML schemas the rules are defined for data types, while in the case of using
XSLT or Java the XPath processor usually will not be datatype-aware. Hence,
if an XML document reuses the same data type for several data elements, one
has to duplicate constraints for each element. This is not always a problem, in
business applications it is often the elements that are semantically constrained,
not the data types, so it is easier to implement the rules using XSLT or Java
than XSD.

Many information systems already use XML schemas for validation of XML
documents. If XPath assertions generated from the OCL constraints comple-
ment these, no further changes to the validator are necessary. Using XSLT or,
especially, Java can require significant changes in the execution environment.

However, when using the XML schema, you have almost no influence on the
way validation results are presented. XSLT and Java allow to generate different
types of messages in the required representation. See more details in Sect. 4.6.

Finally, XML schemas do not allow to validate XML documents using exter-
nal data source or remote services. For example, they cannot check a code against

300 D. A. Nikiforov et al.

Table 2. Outline of host languages

Feature XSD 1.1 XSLT Java

Basic structural validation Yes No No

Rules are specified for Data types Data elements and
data typesa

Data elements

Execution environment
requirements

Low Moderate High

Customization of validation
results representation

No Yes Yes

External data sources and
complex constraints

No Maybe (via
extensibility)

Yes

aOnly for schema-aware XSLT processors.

a code list stored in the database. XSLT (via extensibility) and Java do have the
capability to use external data sources.

4.3 External Data Sources

Sometimes you need to check the data contained in an XML document using
remote services or external data sources. For example, code values might need
to be checked against code lists stored in relational databases. The currently
existing tools offer only a very limited support for such data validation rules.
Our tool supports two kinds of checks – one with remote and another with local
execution of expressions. The first kind corresponds to OCL expressions that
include the “allInstances” operation. For example, in the following constraint
the database is checked for any resumes with the same telephone number but a
different email address:

not CurriculumVitae.allInstances()->exists(x |
x.Email <> self.Email and x.Phone = self.Phone)

The body of “exists” iteration is transformed to an XPath expression for its
remote execution:

fn:not(ext:exists("CurriculumVitae", fn:concat(
"Email != ", Email, " and Phone = ", Phone)))

For simplicity reasons, we do not consider the quoting of parameter values.
Many databases support such XPath queries over XML documents.

For the second kind of rules there should be an external data source or service
defined in the UML model, e.g. “ExternalService1”:

ExternalService1::isValidPhone(Address/Country, Phone)

An Approach to the XML Validation Based on MDA and OCL 301

A procedure is defined for the service that validates phone numbers against
the country indicated in the address. In this case all XPath expressions are
computed locally, and only the results are passed to the remote service:

ext:call("ExternalService1", "isValidPhone",
Address/Country, Phone)

Validation of a code against a code list can be implemented in either way. In
the first case the UML model should define the code list’s structure, while in the
second it is the interface to access it that has to be defined. Note that XPath and
OCL are not intended to describe operations with complex logic. In principle,
some constraints can be implemented in these languages, but if such constraints
are too complicated, it is advisable to implement them through external services.

4.4 Determination of XML Elements Subject to Validation

OCL constraints are always tied to a specific UML classifier. When checking an
OCL constraint, instances of this classifier are considered to be valid or invalid.
Accordingly, when converting an OCL constraint to an XPath assertion, frag-
ments of XML documents containing data on the instance are considered valid
or invalid.

The validation rules are often specified for the entire message, not for indi-
vidual data elements. An example of such a rule is the OCL constraint specified
in Sect. 1. The following XPath expression would be generated for it:

every $x in WorkExperience satisfies
fn:not($x/EndData) or $x/StartDate <= $x/EndDate

If there is at least one entry in the work experience with the starting date
falling later than the end date, an error will be issued for the entire resume.
XPath, as well as OCL, is an expression language, and it lacks the statements to
display error messages. In order to display error messages job-by-job one must
expand the “forAll” iteration in the following way:

<xsl:for-each select="WorkExperience">
<xsl:choose>

<xsl:when test="fn:not(EndData) or StartDate <= EndDate">
<!-- Success --></xsl:when>

<xsl:otherwise><!-- Error --></xsl:otherwise>
</xsl:choose>

</xsl:for-each>

The current context item is the current validation element. For Java or
another host language, the “forAll” iteration is expanded in a similar way.

Surely, this will give us more informative validation results, however the area
of validation can be narrowed even further. To do this you must find in the OCL
rule all sub-expressions that returns values of some data elements. In our case

302 D. A. Nikiforov et al.

OperationCallExp
(owningClass.isBooleanType() and
referredOperation.name = ‘implies’)

OperationCallExp
(owningClass.isCollectionType() and

referredOperation.name = ‘notEmpty’)

OperationCallExp
(referredOperation.name = ‘<=’)

PropertyCallExp

VariableExp

Variable
(name = ‘x’ and type = WorkExperience)

Property
(name = ‘EndDate’)

Property
(name = ‘StartDate’)

PropertyCallExp PropertyCallExp

VariableExp VariableExp

arguments

source arguments

variable

property

source

source

source

source source

Fig. 5. Example of an abstract syntax tree of an OCL expression

those are the sub-expressions marked gray on Fig. 5: “StartDate” and “End-
Date”. In general, it can be not only “PropertyCallExp”, but “IteratorExp”, as
well.

4.5 Preconditions

In our example the current job (with a missing “EndDate”) would result in a
message declaring that the validation was successful, which is not quite proper,
because “StartDate” and “EndDate” were not compared with each other. Often
it is practical to distinguish between the following situations: 1) the precondition
was met and the test completed successfully; and 2) the precondition was not
met and the test was not completed. In such a case, OCL expressions containing
the “implies” operation can be expanded as follows:

<xsl:choose>
<xsl:when test="EndData">

<xsl:choose>
<xsl:when test="StartDate <= EndDate">

<!-- Success --></xsl:when>
<xsl:otherwise><!-- Error --></xsl:otherwise>

</xsl:choose>
</xsl:when>
<xsl:otherwise><!-- Not checked --></xsl:otherwise>

</xsl:choose>

4.6 Kinds of Validation Messages

Usually XML document validation tools allow to specify for each rule the error
message that the user sees in case of a data element failing the check. We have

An Approach to the XML Validation Based on MDA and OCL 303

implemented five kinds of messages in our tool: success, error, not checked (see
Sect. 4.5), not found (see Sect. 4.4), not supported (see Sect. 4.3).

<xsl:variable name="__items" as="item()*">
<xsl:for-each select="WorkExperience">

<xsl:choose>
<xsl:when test="EndData">

<xsl:choose>
<xsl:when test="StartDate <= EndDate">

<!-- Success --></xsl:when>
<xsl:otherwise><!-- Error --></xsl:otherwise>

</xsl:choose>
</xsl:when>
<xsl:otherwise><!-- Not checked --></xsl:otherwise>

</xsl:choose>
<xsl:for-each>

</xsl:variable>
<xsl:copy-of select="$__items" />
<xsl:if test="fn:empty($__items)"><!-- Not found --></xsl:if>

Messages may contain embedded OCL expressions:

{{StartDate}} must not be greater than {{EndDate}}

In general, the embedded expressions can be more sophisticated. Their
abstract syntax tree can be analyzed as described in Sect. 4.4, and data elements
that served as basis for the computed value can be determined.

5 Conclusion

In Sect. 1 we gave an example of a platform-independent formalization of a con-
straint in OCL. Section 4.6 presents a fragment of an XSLT code that can be
generated based on this constraint using our approach and tools [21–23].

Generating XML document validators based on UML models with OCL con-
straints cannot be reduced to the transformation of OCL rules into XPath asser-
tions. We have shown in this article that by analyzing the abstract syntax trees
of OCL expressions it is possible to generate various subprograms in different
host languages (XSLT, Java, etc.) that would test the preconditions, determine
elements subject to validation, and output different kinds of validation messages.

Currently, our generator of validators supports only one-third of the OCL
Standard Library. This is sufficient for its use in commercial projects. For exam-
ple, the “closure” iteration that is not supported for the time being, in effect sees
very little use in semantic business rules. Subsequently, we plan to implement a
full support for the OCL and describe in detail its transformation to XPath.

Our experience shows that OCL allows to specify constraints that are syn-
tactically correct, but make no sense from a business point of view. For example,
the rules should be free of preconditions that always return false values or always

304 D. A. Nikiforov et al.

true values, they should not contain checks for presence of required elements in
a document, etc. A number of similar semantic checks of OCL expressions must
be performed by the generator. We plan to describe them in more detail.

Further, a formal proof of the validity of OCL to XPath transformation is
an important task. None of the existing generators guarantee that the resulting
XPath assertions are semantically equivalent to the original OCL constraints.

Finally, another problem pertaining to the development of generators is the
lack of a truly platform-independent system of primitive data types. For example,
primitive types of ISO 20022 effectively duplicate the XSD data types. That is
why the data types are mapped one to one when converting OCL constraints to
XPath assertions. On other platforms (SQL, Java, etc.) data types may differ
significantly from XSD or ISO 20022, making it difficult to generate code for
these platforms. In fact, ISO 20022 is tied to a single platform – XML.

References

1. Cabot, J., Teniente, E.: Constraint support in MDA tools: a survey. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 256–267. Springer,
Heidelberg (2006). https://doi.org/10.1007/11787044 20

2. Chiorean, D., Bortes, M., Corutiu, D.: Object constraint language environment,
a tool supporting teaching and learning UML and OCL, the understanding and
using of metamodeling, abstraction and design by contract. In: Eight Workshop on
Pedagogies and Tools for Teaching and Learning Object Oriented Concepts (2000)

3. Demuth, B., Hussmann, H., Loecher, S.: OCL as a specification language for busi-
ness rules in database applications. In: Gogolla, M., Kobryn, C. (eds.) UML 2001.
LNCS, vol. 2185, pp. 104–117. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45441-1 9

4. Djurić, D., Gaševic, D., Devedžic, V.: The tao of modeling spaces. J. Object Tech-
nol. 5, 125–147 (2006)

5. Gaafar, A., Sakr, S.: Towards a framework for mapping between UML/OCL and
XML/XQuery. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML
2004. LNCS, vol. 3273, pp. 241–259. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30187-5 18

6. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley Professional, Boston (2009)

7. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Construct to reconstruct -
reverse engineering Java code with JaMoPP. In: Reverse Engineering Models from
Software Artifacts - REM 2009 (2009)

8. Henriksson, J., Heidenreich, F., Johannes, J., Zschaler, S., Abmann, U.: Extending
grammars and metamodels for reuse: the Reuseware approach. IET Softw. 2(3),
165–184 (2008)

9. ISO: Financial services - Universal financial industry message scheme - Part 1:
Metamodel. ISO 20022–1, International Organization for Standardization (2003)

10. ISO: Information technology - Document Schema Definition Languages (DSDL) -
Part 3: Rule-based validation - Schematron. ISO/IEC 19757–3:2016, International
Organization for Standardization (2016)

11. Klmek, J., Malý, J., Necaský, M., Holubová, I.: eXolutio: methodology for design
and evolution of XML schemas using conceptual modeling. Inform. Lith. Acad.
Sci. 26, 453–472 (2015)

https://doi.org/10.1007/11787044_20
https://doi.org/10.1007/3-540-45441-1_9
https://doi.org/10.1007/3-540-45441-1_9
https://doi.org/10.1007/978-3-540-30187-5_18
https://doi.org/10.1007/978-3-540-30187-5_18

An Approach to the XML Validation Based on MDA and OCL 305

12. Korchagin, A.B., Lisikh, I.G., Nikiforov, D.A., Sivakov, R.L.: Data models for
information exchange. Int. J. Open Inf. Technol. 5(3), 49–55 (2017)

13. Malý, J.: XML Document Adaptation and Integrity Constraints in XML. Ph.D.
thesis, Charles University in Prague (2013)

14. Malý, J., Nečaský, M.: Evaluation of OCL expressions over XML data model. J.
Univ. Comput. Sci. 20, 329–365 (2014)

15. Miller, J., Mukerji, J.: MDA guide version 1.0.1 (2003). http://www.omg.org/cgi-
bin/doc?omg/03-06-01

16. Moskal, J., Kokar, M., Morgan, J.: Semantic validation of T&E XML data. In:
International Telemetering Conference Proceedings, International Foundation for
Telemetering, October 2015

17. Nikiforov, D.A.: Development of metamodels using the Eclipse Modeling Frame-
work, September 2015. https://habrahabr.ru/company/cit/blog/266433/

18. Nikiforov, D.A.: An introduction to the development of DSLs using EMFText,
November 2015. https://habrahabr.ru/company/cit/blog/270483/

19. Nikiforov, D.A.: The Object Constraint Language, August 2015. https://
habrahabr.ru/company/cit/blog/264963/

20. Nikiforov, D.A.: Development of the parser, printer, and editor for SQL using
EMFText, December 2016. https://habrahabr.ru/company/cit/blog/271945/

21. Nikiforov, D.A.: Ecore-based metamodels of XML Schema 1.1 and XSLT 2.0,
February 2017. https://doi.org/10.5281/zenodo.291483

22. Nikiforov, D.A.: The EMFText-based metamodel, parser, and printer of XPath
2.0, February 2017. https://doi.org/10.5281/zenodo.291481

23. Nikiforov, D.A.: UML to XML Schema 1.1 transformation, version 1.1, February
2017. https://doi.org/10.5281/zenodo.291482

24. Nikiforov, D.A., Korchagin, A.B., Sivakov, R.L.: An ontology-driven approach
to electronic document structure design. In: Ignatov, D.I., Khachay, M.Y.,
Labunets, V.G., Loukachevitch, N., Nikolenko, S.I., Panchenko, A., Savchenko,
A.V., Vorontsov, K. (eds.) AIST 2016. CCIS, vol. 661, pp. 3–16. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-52920-2 1

25. Nikiforov, D.A., Korj, D.V., Sivakov, R.L.: A survey of tools for XML validation
based on the object constraint language (OCL). Inf. Technol. 23(5), 342–351 (2017)

26. OMG: Object Constraint Language (OCL), version 2.4. Specification, Object
Management Group (2014)

27. OMG: UML Profile for National Information Exchange Model (NIEM), version
3.0. Specification, Object Management Group (2015)

28. OMG: Unified Modeling Language (UML), version 2.5. Specification, Object Man-
agement Group (2015)

29. OMG: XML Metadata Interchange (XMI), version 2.5.1. Specification, Object
Management Group (2015)

30. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation, version 1.3.
Specification, Object Management Group (2016)

31. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Reading (2009)

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
https://habrahabr.ru/company/cit/blog/266433/
https://habrahabr.ru/company/cit/blog/270483/
https://habrahabr.ru/company/cit/blog/264963/
https://habrahabr.ru/company/cit/blog/264963/
https://habrahabr.ru/company/cit/blog/271945/
https://doi.org/10.5281/zenodo.291483
https://doi.org/10.5281/zenodo.291481
https://doi.org/10.5281/zenodo.291482
https://doi.org/10.1007/978-3-319-52920-2_1

	An Approach to the Validation of XML Documents Based on the Model Driven Architecture and the Object Constraint Language
	1 Introduction
	2 Overview of Analogues
	3 Proposed Generalized Validator Generation Scheme
	3.1 Transformation of PIM from Textual to Ecore Representation
	3.2 Transformation of PIM to PSM
	3.3 Transformation of PSM from an Ecore Representation to a Textual One
	3.4 Summary

	4 Features Distinguishing Our Approach from Its Analogues
	4.1 Different Source PIMs
	4.2 Different Target XPath Host Languages
	4.3 External Data Sources
	4.4 Determination of XML Elements Subject to Validation
	4.5 Preconditions
	4.6 Kinds of Validation Messages

	5 Conclusion
	References

