
A Behavioural Theory for Reflective
Sequential Algorithms

Flavio Ferrarotti(B), Klaus-Dieter Schewe, and Loredana Tec

Software Competence Center Hagenberg, Hagenberg, Austria
flavio.ferrarotti@scch.at, kd.schewe@gmail.com, loredana.tec@gmail.com

Abstract. We develop a behavioural theory of reflective sequential algo-
rithms (RSAs), i.e. algorithms that can modify their own behaviour.
The theory comprises a set of language-independent postulates char-
acterising the class of RSAs, an abstract machine model that prov-
ably satisfies the postulates, and a proof that all RSAs are captured
by this machine model. As in Gurevich’s thesis for sequential algorithms
RSAs are sequential-time, bounded parallel algorithms, where the bound
depends on the algorithm only and not on the input. Different from the
class of sequential algorithms every state of an RSA includes a representa-
tion of the algorithm in that state, thus enabling linguistic reflection. The
model of reflective Abstract State Machines (rASMs) extends sequential
ASMs using extended states that include an updatable representation of
the main ASM rule to be executed by the machine in that state.

1 Introduction

Self-adaptive systems have recently attracted a lot of interest in research, in
particular in connection with systems of (cyber-physical) systems [9]. Adaptiv-
ity refers to the ability of a system to change its own behaviour. In the context of
programming this concept, known under the term linguistic reflection, appears
already in LISP [11], where programs and data are both represented uniformly
as lists, and thus programs represented as data can be executed dynamically by
means of an evaluation operator. Run-time and compile-time linguistic reflec-
tion in programming and database research has been investigated in general by
Stemple, Van den Bussche and others in [12,13].

This raises the questions how the development of adaptive systems can
be supported by state-based rigorous methods such Abstract State Machines
(ASMs) [5]. These methods are coupled with a genericity promise, i.e. they can
be applied universally to a large class of systems supporting rigorous specifica-
tion on any level of abstraction, seamless step-wise refinement from high-levels of
abstraction down to implemented code, validation and tracing of requirements

The research reported in this paper results from the projects Behavioural Theory
and Logics for Distributed Adaptive Systems and Higher-Order Logics and Structure
supported by the Austrian Science Fund (FWF: [P26452-N15] & [I2420-
N31]).

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 117–131, 2018.
https://doi.org/10.1007/978-3-319-74313-4_10



118 F. Ferrarotti et al.

through the refinement process, and verification of specifications against the
requirements on grounds of dedicated logics. However, reflective algorithms are
not yet covered.

Gurevich’s celebrated sequential ASM thesis [8] states that sequential algo-
rithms are captured by sequential ASMs. A key contribution of this thesis is
the language-independent characterisation of a reflective algorithm by a small
set of intuitively understandable postulates, by means of which a definition of a
sequential algorithm on an arbitrary level of abstraction is given. Then it can
be shown that every sequential algorithm as stipulated by the postulates can be
step-by-step simulated by a sequential ASM.

Based on this thesis the notion behavioural theory has been introduced for a
triplet comprising (1) a set of postulates that characterises a class of algorithms or
systems, (2) an abstract machine model together with a plausibility proof that
the abstract machine satisfy the postulates, and (3) a characterisation proof
that all algorithms stipulated by the postulates are captured by the abstract
machine model. That is, the sequential ASM thesis provides the behavioural
theory of sequential algorithms. Other examples cover the behavioural theory
of parallel algorithms developed by Blass and Gurevich [1,2], its simplification
by Ferrarotti et al. [6] using a different set of postulates, the behavioural theory
of concurrent algorithms [4], and the behavioural theory of non-deterministic
database transformations [10].

In this paper we investigate a behavioural theory for reflective, sequential
algorithms, which was conjectured in [7]. In light of the significantly increased
technical difficulties that have to be addressed when unbounded parallelism is
permitted (compare the proofs in [6] with those in the sequential ASM thesis
[8]) we first restrict the emphasis on sequential algorithms, where parallelism is
a priori bound and does not depend on the state.

We first develop a set of postulates characterising reflective sequential algo-
rithms (RSAs). The key issue is that an RSA must have some representation
of itself, but this has to be left completely abstract. We argue that this is pos-
sible, which leads to extended states, where abstract terms that appear in the
description of the algorithm are used as values, which requires a distinction con-
cerning their interpretation in a state. The tricky problem is the generalisation
of bounded exploration, for it is clear that all means of an algorithm to change
itself must appear somehow in the algorithm’s description. We argue that there
is still a bounded exploration witness, i.e. a set of ground terms that determines
the update sets yielded in a state, but the bounded exploration postulate will
nonetheless require some sophisticated differentiation concerning the interpreta-
tion of terms. The postulates for RSAs will be discussed in Sect. 2.

In Sect. 3 we proceed with the definition of reflective sequential ASMs
(rASMs), which will be a straightforward extension of ASMs using a dedicated
location self capturing the (syntax of the) sequential ASM that is to be applied
in this state. This determines the runs of a rASM with the difference that in
each step now a possibly different ASM may have been used to determine the



A Behavioural Theory for Reflective Sequential Algorithms 119

updates that mark the state changes. We also briefly sketch the plausibility
theorem though it commonly addresses the simpler proof direction.

Section 4 addresses the proof of the characterisation theorem, which is again
accomplished by a sequence of lemmata, the key problem being that there is a
theoretically unbounded number of different algorithms that nonetheless have
to be handled uniformly. This section will be the technical key contribution of
this paper. We conclude with a brief summary and outlook in Sect. 5.

2 Reflective Algorithms and Their Axiomatisation

The celebrated sequential ASM thesis needs only three simple, intuitive postu-
lates to define sequential algorithms (for details see the deep discussion in [8]):

Sequential time: Each sequential computation proceeds by means of a tran-
sition function τ : S → S, which maps a state S ∈ S to its successor state
τ(S).

Abstract state: Each state S ∈ S is a Tarski structure defined over a signature
Σ, i.e. a set of function symbols, by means of interpretation in a base set BS .
States, initial states and transitions are closed under isomorphisms.

Bounded exploration: There is a fixed, finite set of ground terms W called
bounded exploration witness such that whenever two states coincide on W ,
the update sets that determine the changes in the transition to the respective
successor states are equal.

The postulates imply that sequential algorithms can only check agreement
between states on a fixed and finite set of ground terms (i.e., the bounded explo-
ration witness in the bounded exploration postulate for sequential algorithms).
Reflective algorithms, however, do not satisfy this principle, as the following
simple Example 1 shows. The RSA in the example does not satisfy the bounded
exploration postulate for sequential algorithms. However, it is NOT the ques-
tion, whether a different, non-reflective algorithm exists that solves the same
problem, but whether such an algorithm would also be behaviourally equivalent.

Example 1. We describe a RSA that takes as input a search term t, a perfect
binary tree T , i.e., a binary tree in which all interior nodes have two children
and all leaves have the same depth, and a function label which maps the set
of nodes to an arbitrary set of labels. It traverses the graph in a breadth first
order starting by its root r. If the term t appears as label of some node in the
input tree, then the algorithm updates result to the lowest level in the tree which
contains a node labeled with t.

We assume that in every initial state level = 0, currentNode = r and
result = undef . Let cond be the following function from the natural numbers to
Boolean terms:



120 F. Ferrarotti et al.

cond(0):: = label(r) = t

cond(1):: = label(leftChild(r)) = t ∨ label(rightChild(r)) = t

cond(2):: = label(leftChild(leftChild(r))) = t ∨ label(rightChild(leftChild(r))) = t ∨
label(leftChild(rightChild(r))) = t ∨ label(rightChild(rightChild(r))) = t

...
...

cond(n):: = label(leftChild(. . . leftChild(r) . . .)) = t ∨ · · ·
︸ ︷︷ ︸

· · · ∨ label(rightChild(. . . rightChild(r) . . .)) = t
︸ ︷︷ ︸

2n

.

The algorithm works as follows:
1: if currentNode �= undef ∧ result = undef then
2: if label(r) = t then
3: result := level
4: else
5: currentNode := leftChild(currentNode)
6: level := level + 1
7: Replace the Boolean term in the if-statement in line 2 by the

interpretation of cond(level+1)
8: endif
9: endif

Notice that during a run or computation of this algorithm not only the state of
the algorithm evolves, but also the algorithm itself. In fact, the Boolean term
in the if-statement in line 2 changes with every state transition until either the
searched term t is found or all the levels of the input tree have been exhausted.

As we consider input trees of arbitrary size, this means that there is no fixed
and finite bounded exploration witness for this algorithm, as we would need
to either include all Boolean terms in the infinite set {cond(0), cond(1), . . .}, or
include a different Boolean term cond(level+1) depending on the interpretation
of level + 1 in the current state. ��

2.1 Reflective Sequential Time Postulate

Clearly, when extending the notion of sequential algorithm to include reflection
we think of pairs (Si, Pj) comprising a state Si (as in the sequential thesis),
and a sequential algorithm Pj . Thus, we can consider transition functions τj :
(Si, Pj) �→ (Si+1, Pj) without changing the sequential algorithm Pj . Likewise we
may consider transition functions σi : (Si, Pj) �→ (Si, Pj+1) changing only the
algorithm. In general, a transition of a RSA can then involve both: updates to
the state and updates to the algorithm.

Postulate 1 (Reflective Sequential Time Postulate). Let SP and IP

denote the set of states and initial states of a sequential algorithm P , respectively
(IP ⊆ SP ). A RSA A consists of the following:



A Behavioural Theory for Reflective Sequential Algorithms 121

– A non-empty set PA of sequential algorithms;
– An initial algorithm P0 ∈ PA;
– A non-empty set SA =

⋃
Pi∈PA SPi

of states;
– A non-empty set IA = IP0 ⊆ SA of initial states;
– A set of extended-states EA = SA × PA;
– A one-step transformation function τA : EA → EA such that τA((S, P )) =

(S′, P ′) only if τP (S) = S′ for the one-step transformation function τP of the
sequential algorithm P .

Then a run or computation of a reflective algorithm corresponds to a sequence
of pairs (S0, P0), (S1, P1), (S2, P2), . . ., where S0 is an initial state in IA, P0 is
the initial algorithm, and (Si+1, Pi+1) = τA((Si, Pi)) holds for every i ≥ 0.

This leads to the following three fundamental questions which we try to
answer in the remaining part of this section:

Q1. How can we finitely represent a sequential algorithm P without having to
adopt a concrete language for the specification of P?

Q2. How can we finitely characterise changes to the representation of the
sequential algorithms in all states?

Q3. How can we define behavioural equivalence of RSAs independently from
the representation of the sequential algorithms in each state?

2.2 Reflective Abstract Extended-State Postulate

Concerning Q1 we observe that according to the sequential ASM thesis it suffices
to represent a sequential algorithm P by a set of pairs (S,Δ(P, S)) comprising a
state S and the update set of P in that state. A consequence of the proof of the
sequential ASM thesis in [8] is that update sets Δ(P, Si) (i = 1, 2) are equal, if
the states S1 and S2 are W -equivalent for a fixed bounded exploration witness
W . We have S1 ∼W S2 iff ES1 = ES2 , where ES is the equivalence relation
on W defined by ES(t1, t2) ≡ valS(t1) = valS(t2)1. It is therefore sufficient
to replace the state S by a condition ϕ[S], which evaluates to true on states
that are W -equivalent to S. As there can only be finitely many W -equivalence
classes, we obtain an abstract finite representation by a finite set of pairs (ϕi,Δi)
(i = 1, . . . , k).

Therefore, we conclude that we can capture the state-algorithm pairs in a
RSA by an extension Σext of the signature Σ using additional function symbols
to represent the sequential algorithm, e.g. capturing in the state the signature of
the algorithm as well as some syntactic description of it. For this, we must further
permit new function symbols to be created, which can be done by exploiting the
concept of “reserve”. We also conclude that the representation of algorithms
in a state requires terms that are used by the algorithms to appear as values.
So we have to allow terms over Σ (including the dormant function symbols in
the reserve) to be at the same time values in an extended base set. In order
1 As usual, valS(t) denotes the interpretation of a ground term t as a value in the base

set of a state S.



122 F. Ferrarotti et al.

to distinguish the interpretation of such terms t as values val (S,P )(t) of the
base set of an extended-state (S, P ) (which in any extended-state evaluate to
themselves) from their interpretation as terms over Σ, we use raise(S,P )(t) to
denote the latter case. We may further assume that raise results in a proper
term over Σ not containing any extra-logical constructs that are needed in the
representation of an algorithm such as keywords.

Postulate 2 (Reflective Abstract Extended-State Postulate). Let A be
RSA. Fix a finite signature Σalgo of function symbols so that every algorithm P ∈
PA can be finitely represented as some first-order structure of signature Σalgo .

– Every P in PA is a first-order structure of signature Σalgo which encodes a
finite representation of a sequential algorithm.

– Every state S in SA is a first-order structure of some signature ΣS such that
ΣS ∩ Σalgo = ∅.

– Every extended-state (S, P ) in EA is a first-order structure of (extended) sig-
nature Σext = ΣS ∪ Σalgo .

– The one-step transformation function τA does not change the base set of any
extended-state of A.

– The sets SA and IA are closed under isomorphisms.
– If (S1, P1), (S2, P2) ∈ EA, S1 and S2 are isomorphic, P1 and P2 are behavioural

equivalent sequential algorithms2, and further τA(S1, P1) = (S′
1, P

′
1) and

τA(S2, P2) = (S′
2, P

′
2), then also S′

1 and S′
2 are isomorphic and P ′

1 and P ′
2

are behavioral equivalent.

Same as in the sequential ASM thesis, we need some minimal background
of computation. Therefore, for every extended state (S, P ), we assume that S
includes a binary function “=” for equality, nullary functions true, false and
undef with true �= false and true �= undef, the usual Boolean functions, the
set of all ordered pairs, and an infinite reserve of elements. As explained before,
we further assume that Pi includes, as values in its base set, the set of all possible
ground terms (including the dormant function symbols in the reserve).

2.3 Reflective Bounded Exploration Postulate

Concerning Q2 the problem is that in general we must expect that each sequen-
tial algorithm Pi represented in an extended-state (Si, Pi) has its own bounded
exploration witness Wi. However, we know from the sequential ASM thesis that
Wi is somehow contained in the finite representation of Pi. For instance, the
sequential ASM rule constructed in the proof of the sequential ASM thesis only
contains subterms of terms in Wi, and this holds analogously for any other rep-
resentation of Pi. This implies that the terms in Wi result by interpretation from
terms that appear in the representation of any sequential algorithm. Thus, there
must exist a finite set of terms W such that its interpretation in an extended
2 Two sequential algorithms P1 and P2 are behavioural equivalent if SP1 = SP2 , IP1 =

IP2 and τP1 = τP2 . Behavioural equivalent sequential algorithms have the same runs.



A Behavioural Theory for Reflective Sequential Algorithms 123

state yields both values and terms, and the latter represent Wi. We will continue
to call W a bounded exploration witness. Consequently, the interpretation of W
and of its interpretation in an extended state suffice to determine the update set
in that state. This leads to our bounded exploration postulate for RSAs.

Definition 1 (Strong Coincidence). Let (S, P ) and (S′, P ′) be extended-
states of a RSA. Let W = Wst ∪ Wwt be a set of ground terms. We say that
(S, P ) and (S′, P ′) strongly coincide over W iff the following holds:

– For every t ∈ Wst, val (S,P )(t) = val (S′,P ′)(t).
– For every t ∈ Wwt,

1. val (S,P )(t) = val (S′,P ′)(t).
2. val (S,P )(raise(S,P )(t)) = val (S′,P ′)(raise(S′,P ′)(t)).

In our third and last postulate we use Δ(A, (S, P )) to denote the set of
updates produced by a RSA A in an extended-state (S, P ).

Postulate 3 (Reflective Bounded Exploration Postulate). For every
RSA A, there is a finite set W = Wst ∪ Wwt of ground terms such that
Δ(A, (S, P )) = Δ(A, (S′, P ′)) whenever extended-states (S, P ) and (S′, P ′) of
A strongly coincide on W .

If a set of ground terms W = Wst ∪ Wwt satisfies the reflective bounded
exploration postulate, we call it a reflective bounded exploration witness (R-
witness for short) for A.

2.4 Reflective Sequential Algorithms and Behavioural Equivalence

Our three postulates give us the following machine independent definition
of RSAs.

Definition 2. A reflective sequential algorithm (RSA) is an algorithm satis-
fying the Reflective Sequential Time, Reflective Abstract State and Reflective
Bounded Exploration Postulates.

Example 2. Let us consider the algorithm in Example 1. The reflective sequen-
tial time and reflective abstract state postulates are clearly satisfied by this
algorithm. Let

Wst = {currentNode, undef, result, level, level + 1, leftChild(currentNode)}

and Wwt = {cond(level)}. It is not difficult to see that if two extended-states
coincide on W = Wst ∪ Wwt, then the algorithm considered in this example
produces the same set of updates in both extended-states. Thus, it also satisfies
the reflective bounded exploration postulate, and consequently our definition
of RSA. ��



124 F. Ferrarotti et al.

Next, we turn our attention to our final fundamental question Q3. The
problem here is that the notion of behavioural equivalence of two sequential
algorithms is bound to these having the same signature, on grounds of which
we can request that the sets of runs must be identical. This cannot be car-
ried over to RSAs in a straightforward way. However, we should be able to
obtain a bijection between runs (S0, P0) → (S1, P1) → (S2, P2) → . . . and
(S′

0, P
′
0) → (S′

1, P
′
1) → (S′

2, P
′
2) → . . . for two RSAs A and A′. Then we should

clearly have that Si = S′
i holds for all i, and that Pi and P ′

i are behaviourally
equivalent as non-reflective, sequential algorithms. This is not yet satisfactory,
as Pi and P ′

i may still operate on different signatures.
We can argue that it is sufficient to consider the restrictions of Pi and P ′

i on
the “standard” part of the signatures, i.e. the functions that do not take terms
as values. This would allow the algorithms Pi and P ′

i to differ in their changes to
themselves, but these differences have de facto no effect, as the updates yielded
by these algorithms produce the same state transition and result in modified,
yet behaviourally equivalent algorithms throughout the complete run. In other
words, the possibly differing changes to the algorithm may extend the signature
by functions or integrate fragments of “code” that are never used and thus have
no effect on the updates.

Definition 3 (Behavioural Equivalent RSAs). Let r1 = (S0, P0), (S1, P1),
(S2, P2), . . . , and r2 = (S′

0, P
′
0), (S′

1, P
′
1), (S′

2, P
′
2), . . . , be runs of RSAs. We

consider that r1 and r2 are essentially equivalent runs if for every i ≥ 0 the
following holds:

1. Si = S′
i.

2. The restrictions Pi|Σ and P ′
i |Σ of, respectively, Pi and P ′

i to the signature
Σ of Si and S′

i, constitute behavioural equivalent non-reflective sequential
algorithms.

Two RSAs A and A′ are behavioural equivalent RSAs iff A and A′ have essen-
tially equivalent classes of essentially equivalent runs. More precisely, iff there
is a bijection ζ between runs of A and A′, respectively, such that r and ζ(r) are
essentially equivalent for all run r.

3 Reflective Abstract State Machines

In this section we define a model of reflective ASMs (rASMs for short) and show
that every rASM is a RSA in the precise sense of Definition 2. Given a signature
Σ, i.e. a set of function symbols, then a sequential ASM-rule over Σ is defined
as follows [5]:

assignments. f(t1, . . . , tarf
) := t0 (with terms ti built over Σ) is a rule.

branching. If r+ and r− are rules and ϕ is a Boolean term, then also if ϕ then
r+ else r− endif is a rule.

bounded parallel composition. If r1, . . . , rn are rules, then also par r1 . . . rn

endpar is a rule.



A Behavioural Theory for Reflective Sequential Algorithms 125

Each rule can be interpreted in a state, and doing so yields an update set. In
general, a location is a pair � = (f, (a1, . . . , ak)) with a function symbol f ∈ Σ
and a k-tuple (k being the arity of f) of values from the fixed base set B, and
an update is a pair (�, a0) with a value a0 ∈ B.

The rules of an rASM are also sequential ASM rules, and the interpretation
of these rules in terms of update sets coincides with those of sequential ASMs as
defined in [5]. The key difference is that rASMs work over extended-states, where
each extended-state includes a finite representation of the rule that determines
the update set produced by the machine in the current extended-state. In this
way, we also allow an rASM to produce updates to its current rule.

Let (S,R) be an extended state of a rASM M. We assume that the sub-
structure S includes the following background of computation:

– An infinite reserve of values and function names.
– All ordered pairs of elements in the base set.
– The usual Boolean functions and usual constants true, false and undef.
– The “program” functions update, par , if .

The “program” functions are static and interpreted as follows:

– update(f(t1, . . . , tn), t0) = (t0, t1, . . . , tn)
– par(t1, t2) = (valS(t1), valS(t2))
– if (t1, t2) = (t1, valS(t2)).

Notice that the following function induces a one-to-one correspondence
between ASM rules and “program” terms, so that every ASM rule can be rep-
resented as a “program” term.

– progToFunction(f(t1, . . . , tn) := t0) = update(f(t1, . . . , tn), t0).
– progToFunction(if ϕ thenR endif) = if (ϕ, progToFunction(R)).
– progToFunction(parR1 R2 endpar) = par(progToFunction(R1), progTo-

Function (R2)).

The sub-structure R of the extended-state (S,R) (i.e., the structure which
contains the encoding of the “current” ASM rule) includes:

– The set of all ground terms.
– A distinguished location self interpreted as a “program” term (the current

ASM rule).
– A finite alphabet A (the alphabet of the ground terms) and all strings in A∗.
– A constant si for each symbol si ∈ A and a constant λ for the empty string.
– The usual string manipulation functions, including the concatenation function

“·”.
– A total injective function TermToString from the set of all terms of vocabulary

Σ to A∗.
– A partial function StringToTerm defined as the inverse of TermToString .
– A function argumentNo(t, n) which returns the n-th argument of the term t.
– A function insertArgument(s, n, t) which returns a copy of t with its n-th

argument replaced by s.



126 F. Ferrarotti et al.

Since in each extended-state (S,R) of a rASM, the sub-structure R represents
a uniquely determined sequential ASM rule, we usually refer to it as a rule rather
than as a structure, meaning the rule corresponding to the “program term” in
the location self .

Definition 4. An rASM M is formed by:

– A non-empty set RM of sequential ASM rules (represented as first-order
structures).

– An initial rule R0 ∈ RM.
– A non-empty set SM of states (i.e., first-order structures) closed under iso-

morphisms.
– A non-empty set IM ⊆ SM of initial states, also closed under isomorphisms.
– A set of extended-states EM = SM × RM.
– A transition function τM over EM such that τM((S,R)) = (S,R) +

Δ(R, (S,R)) for every (S,R) ∈ EM, , where R = valS(self ) is the closed
ASM rule in location self in the extended state (S,R), Δ(R, (S,R)) is the
update set yielded by this rule in S, and (S,R) + Δ(R, (S,R)) denotes the
extended-state obtained by applying to (R, s) the update set Δ(R, (S,R)).

A run or computation of a reflective sequential ASM is a finite or infinite
sequence of extended states (S0, R0), (S1, R1), (S2, R2), . . ., where S0 is a state
in IM, R0 is the initial rule, and (Si+1, Ri+1) = τM((Si, Ri)) holds for every
i ≥ 0.

Notice that for every R ∈ RM, the functions in R allow us to examine and
modify the “program” term stored in self. For instance, assume that the current
value stored in self is the term update(f(t), s) and that we want to change it to
update(f(t), s+1). Assuming the alphabet A includes the symbols “+” and “1”,
the following sequential ASM rule updates self to the desired “program” term:
self := insertArgument(stringToTerm(TermToString(argumentNo(self , 2)) ·+ ·
1), 2, self ).

Of course, it is quite cumbersome to update the rule in self by using the small
set of background functions provided here. Nevertheless, this is enough to show
that our approach works. In practice, we can use more convenient representa-
tions, for instance by means of complex values such as syntax trees, as well as
more sophisticated functions to inspect and modify the ASM rules. Note that
the kind of reflection that the RRM uses is a bit different to the one we propose
in this work. We could call it “partial reflection”, since the sequence of actions
performed in each transition, except for the queries to the relational store, never
changes. We could then think of a different definition of the reflective ASM to
represent partial reflection, where we only add to the sequential ASM a rule
eval t, which takes a “program” term t as its argument, and interpret it as a
sequential ASM rule (other than eval) which is then executed.

The next result shows the plausibility of our reflective ASM thesis.



A Behavioural Theory for Reflective Sequential Algorithms 127

Theorem 1. Every reflective ASM M is a RSA.

Proof (Sketch). We need to show that M satisfies the reflective sequential time,
reflective abstract extended-state and reflective bounded exploration postulates.
The first two postulates are already built into the definition of rASM, and the
preservation of isomorphisms is straightforward.

In order to show that M satisfies also the reflective bounded exploration
postulate, we let Wst = ∅ and Wwt = {self }. We see next that if two extended-
states (S,R) and (S′, R′) of M strongly coincide over Wwt then Δ(R, (S,R)) =
Δ(R′, (S′, R′)). Since the states strongly coincide over Wwt we have that:

1. val (S,R)(self ) = val (S′,R′)(self ).
2. val (S,R)(raise(S,R)(self )) = val (S′,R′)(raise(S′,R′)(self )).

Let Wr = {r} and Wr′ = {r′}, where r and r′ are the tuples of terms that
result from the evaluation of self in (S,R) and (S′, R′), respectively. From our
definition of the “program” functions and the proof of the plausibility theorem
of the sequential ASM thesis, we get that Wr and Wr′ constitute, respectively,
bounded exploration witnesses for the sequential ASM rules R and R′. In turn,
by (1), we further have that Wr = Wr′ . Finally, by (2) we get that (S,R)
and (S′, R′) coincide on Wr = Wr′ . Hence, by Gurevich’s bounded exploration
postulate for sequential algorithms, we get that Δ(R, (S,R)) = Δ(R′, (S′, R′)).
The plausibility theorem for RSA then follows. ��

4 The Reflective Sequential ASM Thesis

We start by analysing an arbitrary RSA A. Let Wst ∪ Wwt be a bounded explo-
ration witness for A and let (S, P ) be a state of A. We define the set of terms
generated by Wwt in (S, P ) as follows: G

(S,P )
Wwt

= {raise(S,P )(t) | t ∈ Wwt}. We

assume that Wst ∪ G
(S,P )
Wwt

is closed under sub-terms and call it the set of critical
terms of (S, P ).

The following lemma can be proven using the same argument as in the proof
of the analogous Lemma 6.2 in the sequential ASM thesis [8].

Lemma 1. If (f, (v1, . . . vn), v0) is an update in Δ(A, (S, P )), then v0, v1, . . . , vn

are values of critical terms of (S, P ).

Lemma 1 implies that every update in Δ(A, (S, P )) can be programmed by
an update rule of the form f(t1, . . . tn) := t0, where the terms t0, t1, . . . , tn are
critical terms of (S, P ). To program the whole Δ(A, (S, P )), we define a sequen-
tial ASM rule r(S,P ) which is the parallel combination (by means of par rules)
of all update rules in the following finite set:

{f(t1, . . . , tn) :=t0 | t0, t1, . . . , tn ∈ Wst ∪ G
(S,P )
Wwt

and

(f, (val (S,P )(t1), . . . , val (S,P )(tn)), val (S,P )(t0)) ∈ Δ(A, (S, P )}.

As Wst ∪ G
(S,P )
Wwt

is finite and the signature of (S, P ) is also finite, r(S,P ) is
well defined.



128 F. Ferrarotti et al.

Corollary 1. For every (S, P ) ∈ SA there is a rule r(S,P ) such that:

1. r(S,P ) uses only critical terms, i.e., terms in Wst ∪ G
(S,P )
Wwt

.
2. Δ(r(S,P ), (S, P )) = Δ(A, (S, P )).

From now on, r(S,P ) is as in the previous corollary.

Lemma 2. If two extended-states (S, P ) and (S′, P ′) of A strongly coincide over
Wst ∪ Wwt, then Δ(r(S,P ), (S′, P ′)) = Δ(A, (S′, P ′)).

Proof. As (S, P ) and (S′, P ′) strongly coincide over Wst ∪ Wwt, we have that
G

(S,P )
Wwt

= G
(S′,P ′)
Wwt

and that, for every t ∈ Wst ∪G
(S,P )
Wwt

, val (S,P )(t) = val (S′,P ′)(t).

As r(S,P ) only involves critical terms of (S, P ), i.e., terms in Wst∪G
(S,P )
Wwt

, we have
that Δ(r(S,P ), (S, P )) = Δ(r(S,P ), (S′, P ′)). By Corollary 1, Δ(r(S,P ), (S, P )) =
Δ(A, (S, P ). Finally, we obtain Δ(A, (S, P )) = Δ(A, (S′, P ′)) by the reflective
bounded exploration postulate. ��

Let (S, P ) and (S′, P ′) be extended-states of A. We say that (S′, P ′) is
relative W [(S, P )]-equivalent to (S, P ) if G

(S′,P ′)
Wwt

= G
(S,P )
Wwt

, and that they
coincide over W [(S, P )] (in the sense of the sequential ASM thesis [8]) if
val(S,P )(t) = val(S′,P ′)(t) for all t ∈ Wst ∪ G

(S,P )
Wwt

(i.e., for all critical terms
of (S, P )).

The following is a straightforward corollary of Lemma2 obtained by restrict-
ing the sets of updates to the locations in the “standard” sub-structure of the
extended-states. Δst denotes the subset of updates with function names which
do not appear in Σalgo.

Corollary 2. If two extended-states (S, P ) and (S′, P ′) are relative W [(S, P )]-
equivalent and coincide over W [(S, P )], then we have Δst(r(S,P ), (S′, P ′)) =
Δst(A, (S′, P ′)).

Consider the class C[(S, P )] of relative W [(S, P )]-equivalent states of A.
Two states (S1, P1) and (S2, P2) of A are W -equivalent relative to C[(S, P )]
iff (S1, P1), (S2, P2) ∈ C[(S, P )] and E(S1,P1) = E(S2,P2), where (for i = 1, 2)
E(Si,Pi)(t1, t2) ≡ val (Si,Pi)(t1) = val (Si,Pi)(t2) is an equivalence relation in the
set of critical terms of (S, P ).

Lemma 3. If two extended-states (S1, P1) and (S2, P2) of A are W -equivalent
relative to C[(S, P )], then Δst(r(S1,P1), (S2, P2)) = Δst(A, (S2, P2)).

Proof (sketch). Note that if we assume Δst(r(S1,P1), (S3, P3)) = Δst(A, (S3, P3))
for a state (S3, A3) ∈ C[(S, P )] with S3 isomorphic to S2, then we get that
Δst(r(S1,P1), (S2, P2)) = Δst(A, (S2, P2)). This fact is analogous to Lemma 6.8
of the sequential ASM thesis [8] and can be proven in the same way. Thus, we
just need to find an extended-state (S3, P3) ∈ C[(S, P )] with S3 isomorphic to
S2 and such that Δst(r(S1,P1), (S3, P3)) = Δst(A, (S3, P3)).

Assume w.l.o.g. that the base sets of S1 and S2 are disjoint. Let S3 be the
structure isomorphic to S2 which is obtained by replacing valS2(t) with valS1(t)



A Behavioural Theory for Reflective Sequential Algorithms 129

for all critical terms t of (S, P ). This is well defined because (S1, P1) and (S2, P2)
are W -equivalent relative to C[(S, P )]. Take P3 = P2, then (S3, P3) ∈ C[(S, P )].
By the reflective abstract state postulate, (S3, P3) is an extended-state of A.
Since (S1, P1) and (S3, P3) coincide over the set of critical terms of (S, P ),
Corollary 2 gives Δst(r(S1,P1), (S3, P3)) = Δst(A, (S3, P3)). ��

Let ϕ(S,P ) be the following Boolean term:

∧

ti,tj∈Wst ∪ G
(S,P )
Wwt

val(S,P )(ti)=val(S,P )(tj)

ti = tj ∧
∧

ti,tj∈Wst ∪ G
(S,P )
Wwt

val(S,P )(ti) �=val(S,P )(tj)

¬(ti = tj).

As the set of critical terms of an extended-state (S, P ) (i.e., Wst ∪ G
(S,P )
Wwt

) is
finite, there is a finite set {(S1, P1), . . . , (Sn, Pn)} of states in C[(S, P )] (the class
of relative W [(S, P )]-equivalent states of A) such that every state in C[(S, P )] is
W -equivalent relative to C[(S, P )] to one of the states (Si, Pi). Construct a rule
par if ϕ(S1,P1) then r(S1,P1) endif . . . if ϕ(Sn,Pn) then r(Sn,Pn) endif endpar
Then the following result clearly follows from the previous lemmata.

Lemma 4. Δst(r[(S,P )], (Si, Pi)) = Δst(A, (Si, Pi)) for every extended-state
(Si, Pi) ∈ C[(S, P )], i.e., for every extended-state that is relative W [(S, P )]-
equivalent to (S, P ).

Thus, for every class C([Si, Pi]) of extended-states of A, we have a corre-
sponding rule r[(Si,Pi)] such that Lemma 4 holds. Now, we need to extend this
result to all extended-states which belong to some run of A, not just for the
extended-states in the class C([Si, Pi]). Here is when the power of reflection
becomes apparent.

Fix an arbitrary initial extended state (S, P ) of A. We define M as the
reflective ASM machine with EM = {(Si, P

′
i ) | (Si, Pi) ∈ EA and P ′

i is the “self”
representation of r[(Si,Pi)]} and IM = {(Si, P

′) | Si ∈ IA and P ′ is the “self”
representation of r[(S,P )]}.

Lemma 5. For every run of A of the form (S0, P0), (S1, P1), . . . and corre-
sponding run of M of the form (S′

0, P
′
0), (S

′
1, P

′
1), . . . with S0 = S′

0, it holds
that Δst(r[(Si,P ′

i )]
, (S′

i, P
′
i )) = Δst(A, (Si, Pi)).

Proof (Sketch). We prove it by induction on an arbitrary run of A. By the
reflective sequential time postulate, we know that every initial extended-state
(S0, P0) of every run of A is relative W [(S, P )]-equivalent to the initial extended-
state (S, P ) used in the construction of M. Thus, we get from Lemma 4 that
Δst(r[(S0,P ′

0)]
, (S0, P0)) = Δst(A, (S0, P0)). Given the restriction to “standard”

updates which do not involve updates to the algorithm, we have

Δst(r[(S0,P ′
0)]

, (S′
0, P

′
0)) = Δst(A, (S0, P0)).



130 F. Ferrarotti et al.

Regarding the inductive step. As Pi is a sequential algorithm, it is captured
by a sequential ASM Mi. Moreover, due to Gurevich’s proof of the sequential
ASM thesis [8], the rule has the form

par if ψ1 then r1 endif . . . if ψk then rk endif endpar,

where each rj is a par block of assignment rules. All ψj and rj involve critical
terms defined by a bounded exploration witness of Pi such as Wst ∪ G

(Si,Pi)
Wwt

.

Due to construction of r[(S′
i,P

′
i )]

, we have that Wst ∪ G
(Si,Pi)
Wwt

is bounded
exploration witness of the “self” representation P ′

i of r[(S′
i,P

′
i )]

. In turn, by con-
struction of M it can be shown that Wst ∪ Wwt is a bounded exploration wit-
ness for M. Thus, the updates in Δst(r[(S′

i,P
′
i )]

, (S′
i, P

′
i )), transform the “self”

representation P ′
i of r[(S′

i,P
′
i )]

into the “self” representation P ′
i+1 of r[(S′

i,P
′
i+1)]

.
Since from the inductive hypothesis it can be shown that S′

i = Si, we get that
Δst(r[(Si+1,P ′

i+1)]
, (S′

i+1, P
′
i+1)) = Δst(A, (Si+1, Pi+1)). ��

Using the previous key lemma, it is not difficult to show that every run of
A of the form (S0, P0), (S1, P1), . . . is essentially equivalent to the corresponding
run of M of the form (S′

0, P
′
0), (S

′
1, P

′
1), . . . with S0 = S′

0, i.e., that Si = S′
i

and that the restriction of Pi and P ′
i to the signature Σ of Si and S′

i results
in non-reflective algorithms which are behavioural equivalent. This implies our
main result.

Theorem 2. For every RSA A there is a behavioural equivalent rASM
machine M.

5 Conclusion

In this paper we investigated a behavioural theory for reflective sequential algo-
rithms (RSAs) following our conjecture in [7]. Grounded in related work con-
cerning behavioural theories for sequential algorithms [8], (synchronous) parallel
algorithms [6], non-deterministic algorithms [10] and concurrent algorithms [4]
we developed a set of abstract postulates characterising RSAs, extended ASMs
to reflective Abstract State Machines (rASMs), and formally sketched the proof
that any RSA as stipulated by the postulates can be step-by-step simulated by
a rASM. The key contributions are the postulates themselves, as they provide a
language-independent definition of RSAs and the characterisation proof.

With this behavioural theory we lay the foundations for rigorous develop-
ment of reflective algorithms and thus self-adaptive systems. However, several
open tasks still have to be addressed before a general behavioural theory of
evolving concurrent systems (ECS) will be reached. It is required to combine
the behavioural theory developed in this paper with those for parallel algo-
rithms thus proving a behavioural theory for reflective parallel algorithms, and
with the theory of concurrency thus proving a behavioural theory for concurrent
reflective systems, i.e. ECS. In view of the similarity of arguments in the separate
behavioural theses this integration appears plausible, but nonetheless constitutes



A Behavioural Theory for Reflective Sequential Algorithms 131

a mathematically challenging problem. Furthermore, for rigorous development
extensions to the refinement method for ASMs [3] and to the logic used for
verification [14] will be necessary. These will be addressed in follow-on research.

References

1. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM
Trans. Comput. Logic 4(4), 578–651 (2003)

2. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms: cor-
rection and extension. ACM Trans. Comp. Logic 9(3), 19 (2008)

3. Börger, E.: The ASM refinement method. Formal Aspects Comput. 15, 237–257
(2003)

4. Börger, E., Schewe, K.D.: Concurrent abstract state machines. Acta Inform. 53(5),
469–492 (2016)

5. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-642-18216-7

6. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A new thesis concerning synchro-
nised parallel computing - simplified parallel ASM thesis. Theor. Comput. Sci.
649, 25–53 (2016)

7. Ferrarotti, F., Tec, L., Torres, J.M.T.: Towards an ASM thesis for reflective sequen-
tial algorithms. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 244–249. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33600-8 16

8. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

9. Riccobene, E., Scandurra, P.: Towards ASM-based formal specification of self-
adaptive systems. In: Ameur, Y.A., Schewe, K.D. (eds.) Abstract State Machines,
Alloy, B, TLA, VDM, and Z. LNCS, vol. 8477, pp. 204–209. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43652-3

10. Schewe, K.D., Wang, Q.: A customised ASM thesis for database transformations.
Acta Cybern. 19(4), 765–805 (2010)

11. Smith, B.C.: Reflection and semantics in LISP. In: Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL
1984, pp. 23–35. ACM (1984)

12. Stemple, D., et al.: Type-safe linguistic reflection: a generator technology. In:
Atkinson, M., Welland, R. (eds.) Fully Integrated Data Environments. Esprit
Basic Research Series, pp. 158–188. Springer, Heidelberg (2000). https://doi.org/
10.1007/978-3-642-59623-0 8

13. Van den Bussche, J., Van Gucht, D., Vossen, G.: Reflective programming in the
relational algebra. J. Comput. Syst. Sci. 52(3), 537–549 (1996)

14. Wang, Q., Ferrarotti, F., Schewe, K.D., Tec, L.: A complete logic for non-
deterministic database transformations. CoRR abs/1602.07486 (2016). http://
arxiv.org/abs/1602.07486

https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-319-33600-8_16
https://doi.org/10.1007/978-3-319-33600-8_16
https://doi.org/10.1007/978-3-662-43652-3
https://doi.org/10.1007/978-3-642-59623-0_8
https://doi.org/10.1007/978-3-642-59623-0_8
http://arxiv.org/abs/1602.07486
http://arxiv.org/abs/1602.07486

	A Behavioural Theory for Reflective Sequential Algorithms
	1 Introduction
	2 Reflective Algorithms and Their Axiomatisation
	2.1 Reflective Sequential Time Postulate
	2.2 Reflective Abstract Extended-State Postulate
	2.3 Reflective Bounded Exploration Postulate
	2.4 Reflective Sequential Algorithms and Behavioural Equivalence

	3 Reflective Abstract State Machines
	4 The Reflective Sequential ASM Thesis
	5 Conclusion
	References




