
Alexander K. Petrenko
Andrei Voronkov (Eds.)

 123

LN
CS

 1
07

42

11th International Andrei P. Ershov Informatics Conference, PSI 2017
Moscow, Russia, June 27–29, 2017
Revised Selected Papers

Perspectives of
System Informatics

Lecture Notes in Computer Science 10742

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Alexander K. Petrenko • Andrei Voronkov (Eds.)

Perspectives of
System Informatics
11th International Andrei P. Ershov Informatics Conference, PSI 2017
Moscow, Russia, June 27–29, 2017
Revised Selected Papers

123

Editors
Alexander K. Petrenko
Ivannikov Institute for System
Programming of RAS

Moscow
Russia

Andrei Voronkov
The University of Manchester
Manchester
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-74312-7 ISBN 978-3-319-74313-4 (eBook)
https://doi.org/10.1007/978-3-319-74313-4

Library of Congress Control Number: 2017964216

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-7411-3831

Preface

The Ershov Informatics Conference Perspectives of System Informatics (in the PSI
Conference Series) is the premier international forum in Russia for research and
applications in computer, software, and information sciences. The conference brings
together academic and industrial researchers, developers, and users to discuss the most
recent topics in the field. PSI provides an ideal venue for setting up research collab-
orations between the rapidly growing Russian informatics community and its inter-
national counterparts, as well as between established scientists and younger
researchers.

The 11th edition of the conference was held during June 27–29, 2017, in Moscow
(Russian Federation). Over 150 researchers and students participated in the event.

This volume contains the papers presented at PSI 2017. There were 57 submissions.
Each submission was reviewed by at least two, and on average three, Program Com-
mittee members. The committee decided to accept 31 papers.

Dines Bjørner DTU (Denmark) spoke at the opening of the conference about the
contribution of academician Victor Ivannikov to computer science, one of the orga-
nizers of this conference, who died at the end of 2016.

Famous scientists in the field of computer science presented invited talks:

– Sriram Rajamani (Microsoft Research, India) — “Trusted Cloud: How to Make the
Cloud More Secure”

– Andrei Sabelfeld (Chalmers University of Technology in Gothenburg, Sweden and
Gothenburg University, Sweden) — “Taint Tracking Without Tracking Taints”

– Michael Gerard Hinchey (Irish Software Engineering Research Centre, Lero) —
“Building Resilient Space Exploration Systems”

We wish to thank all those involved in the support and organization of this con-
ference as well as the Program Committee members and the anonymous reviewers.
Without them and all their hard work, the realization of such an ambitious project
would not have been possible.

December 2017 Andrei Voronkov
Alexander K. Petrenko

Organization

Program Committee

David Aspinall The University of Edinburgh, UK
Sergey Avdoshin National Research University Higher School of

Economics, Russia
Marcello M. Bersani Politecnico di Milano, Italy
Eike Best Universität Oldenburg, Germany
Nikolaj Bjorner Microsoft Research, USA
Andrea Calì University of London, Birkbeck College, UK
Mauro Caporuscio Linnaeus University, Sweden
Gabriel Ciobanu Romanian Academy, Institute of Computer Science, Iasi,

Romania
Volker Diekert University of Stuttgart, Germany
Salvatore Distefano University of Messina, Italy
Nicola Dragoni Technical University of Denmark, Denmark
Schahram Dustdar Vienna University of Technology, Austria
Carlo A. Furia Chalmers University of Technology, Sweden
Vladimir Galaktionov KIAM RAS, Russia
Carlo Ghezzi Politecnico di Milano, Italy
Sergei Gorlatch University of Münster, Germany
Arie Gurfinkel University of Waterloo, Canada
Cliff Jones Newcastle University, UK
Joost-Pieter Katoen RWTH Aachen University, Germany
Konstantin Korovin The University of Manchester, UK
Maciej Koutny Newcastle University, UK
Laura Kovacs Vienna University of Technology, Austria
Gregory Kucherov CNRS/LIGM, France
Anthony Widjaja Lin University of Oxford, UK
Zhiming Liu Southwest University, China
Rupak Majumdar MPI-SWS, Germany
Manuel Mazzara Innopolis University, Russia
Klaus Meer TU Cottbus, Germany
Hernan Melgratti Universidad de Buenos Aires, Argentina
Bertrand Meyer ETH Zurich, Switzerland
Torben Mogensen DIKU, Denmark
Peter Mosses Swansea University, UK
Martin Nordio ETH Zurich, Switzerland
Jose R. Parama Universidade da Coruña, Spain
Wojciech Penczek ICS PAS and Siedlce University, Poland
Peter Pepper Technische Universität Berlin, Germany

Alexander K. Petrenko ISP RAS, Russia
Qiang Qu Shenzhen Institutes of Advanced Technology, China
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Andrey Rybalchenko Microsoft Research, UK
Davide Sangiorgi University of Bologna, Italy
Klaus-Dieter Schewe Software Competence Center Hagenberg, Germany
Vitaly Semenov ISP RAS, Russia
Natalia Sidorova Technische Universiteit Eindhoven, The Netherlands
Mark Trakhtenbrot Holon Institute of Technology, Israel
Irina Virbitskaite A. P. Ershov Institute of Informatics Systems, of the

SB RAS, Russia
Andrei Voronkov The University of Manchester, Chalmers University of

Technology, and EasyChair, UK/Sweeden
Domagoj Vrgoc Pontificia Universidad Católica de Chile, Chile
Sergey Zykov National Research University Higher School of

Economics, Russia

Additional Reviewers

Aman, Bogdan
Brown, Joseph Alexander
Chen, Wei
D’Angelo, Mirko
Dan, Li
Erofeev, Evgeny
Giallorenzo, Saverio
Gonzalez, Senen
Hagedorn, Bastian
Haidl, Michael
Hallett, Joseph
Hujsa, Thomas

Humernbrum, Tim
Höger, Christoph
Junges, Sebastian
Kotelnikov, Evgenii
Lange, Tim
Li, Xiaoshan
Ma, Hui
Mikulski, Lukasz
Naumchev, Alexandr
Navas, Jorge A.
Oancea, Cosmin
Rasch, Ari

Robillard, Simon
Safina, Larisa
Schlachter, Uli
Silva, Alexandra
Spina, Cinzia Incoronata
Szreter, Maciej
Tyszberowicz, Shmuel
Wang, Qing
Wang, Shuling
Wimmel, Harro
Ziegler, Martin

VIII Organization

Contents

An Architecture for Non-invasive Software Measurement. 1
Vasilii Artemev, Vladimir Ivanov, Manuel Mazzara, Alan Rogers,
Alberto Sillitti, Giancarlo Succi, and Eugene Zouev

A Human-in-the-Loop Perspective for Safety Assessment
in Robotic Applications . 12

Mehrnoosh Askarpour, Dino Mandrioli, Matteo Rossi,
and Federico Vicentini

Multi-level Static Analysis for Finding Error Patterns and Defects
in Source Code . 28

Andrey Belevantsev and Arutyun Avetisyan

Pipelined Bottom-Up Evaluation of Datalog Programs: The Push Method . . . 43
Stefan Brass and Heike Stephan

A Platform for Security Monitoring of Multi-cloud Applications 59
Pamela Carvallo, Ana R. Cavalli, and Wissam Mallouli

The Hybrid Multidimensional-Ontological Data Model Based on
Metagraph Approach . 72

Valeriy M. Chernenkiy, Yuriy E. Gapanyuk, Anatoly N. Nardid,
Anton V. Gushcha, and Yuriy S. Fedorenko

PosDB: A Distributed Column-Store Engine. 88
George Chernishev, Viacheslav Galaktionov, Valentin Grigorev,
Evgeniy Klyuchikov, and Kirill Smirnov

Microservices: How To Make Your Application Scale 95
Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen,
Manuel Mazzara, Ruslan Mustafin, and Larisa Safina

Static Binary Code Instrumentation for ARM Architecture 105
Mikhail Ermakov

A Behavioural Theory for Reflective Sequential Algorithms 117
Flavio Ferrarotti, Klaus-Dieter Schewe, and Loredana Tec

Lightweight Non-intrusive Virtual Machine Introspection 132
Natalia Fursova, Pavel Dovgalyuk, Ivan Vasiliev,
and Vladimir Makarov

A Distributed Approach to Coreference Resolution in Multiagent Text
Analysis for Ontology Population . 147

Natalia Garanina, Elena Sidorova, and Irina Kononenko

A Framework for Dynamical Construction of Software Components 163
Efim Grinkrug

A Transformation-Based Approach to Developing High-Performance
GPU Programs . 179

Bastian Hagedorn, Michel Steuwer, and Sergei Gorlatch

Domain Engineering the Magnolia Way. 196
Magne Haveraaen

Approximating Event System Abstractions by Covering Their States
and Transitions . 211

Jacques Julliand, Olga Kouchnarenko, Pierre-Alain Masson,
and Guillaume Voiron

Implementing the Symbolic Method of Verification in the C-Light Project . . . 227
Dmitry Kondratyev

Highlights of the Rice-Shapiro Theorem in Computable Topology 241
Margarita Korovina and Oleg Kudinov

A Memory Model for Deductively Verifying Linux Kernel Modules 256
Mikhail Mandrykin and Alexey Khoroshilov

Indexing of Hierarchically Organized Spatial-Temporal Data Using
Dynamic Regular Octrees. 276

Sergey Morozov, Vitaly Semenov, Oleg Tarlapan, and Vladislav Zolotov

An Approach to the Validation of XML Documents Based on the Model
Driven Architecture and the Object Constraint Language 291

Denis A. Nikiforov, Dmitriy V. Korj, and Ruslan L. Sivakov

Compositional Relational Programming with Name Projection
and Compositional Synthesis . 306

Görkem Paçacı, Steve McKeever, and Andreas Hamfelt

WhaleProver: First-Order Intuitionistic Theorem Prover Based
on the Inverse Method . 322

Vladimir Pavlov and Vadim Pak

Distributed In Situ Processing of Big Raster Data in the Cloud. 337
Ramon Antonio Rodriges Zalipynis

X Contents

Statistical Approach to Increase Source Code Completion Accuracy 352
Valeriy Savchenko and Alexander Volkov

Using the Subject Area Ontology for Automating Learning Processes
and Scientific Investigation. 364

Dmitry Shachnev and Dmitry Karpenko

Runtime Specialization of PostgreSQL Query Executor 375
Eugene Sharygin, Ruben Buchatskiy, Roman Zhuykov, and Arseny Sher

MicroTESK: A Tool for Constrained Random Test Program Generation
for Microprocessors. 387

Alexander Kamkin and Andrei Tatarnikov

Enriching Textual Xtext-DSLs with a Graphical GEF-Based Editor 394
Marcel Toussaint and Thomas Baar

Towards Automated Static Verification of GNU C Programs 402
Evgeny Novikov and Ilja Zakharov

Domain Specific Semantic Validation of Schema.org Annotations 417
Umutcan Şimşek, Elias Kärle, Omar Holzknecht, and Dieter Fensel

Author Index . 431

Contents XI

An Architecture for Non-invasive
Software Measurement

Vasilii Artemev, Vladimir Ivanov(B), Manuel Mazzara, Alan Rogers,
Alberto Sillitti, Giancarlo Succi, and Eugene Zouev

Innopolis University, Innopolis, Russian Federation
vasart@gmail.com,

{v.ivanov,m.mazzara,a.rogers,a.sillitti,g.succi,e.zuev}@innopolis.ru

Abstract. Analysis of data related to software development helps to
increase quality, control and predictability of software development pro-
cesses and products. However, collecting such data is a complex task. A
non-invasive collection of software metrics is one of the most promising
approaches to solve the task. In this paper we present an approach which
consists of four parts: collect the data, store all collected data, unify the
stored data and analyze the data to provide insights to the user about
software product or process. We employ the approach to the develop-
ment of an architecture for non-invasive software measurement system
and explain its advantages and limitations.

Keywords: Software metrics collection
Non-invasive software measurement · Software architecture

1 Introduction

Analysis of data related to software development helps to increase quality, con-
trol and predictability of both a development process and a resulting software
product [34]. Collecting such data gives an opportunity to reconstruct software
development process and produce insights on how to improve it. However, col-
lecting the data is a complex task [16,25]. An option is always collect the data
ex-post trough questionnaires and qualitative (some times with a level of sub-
jectivity) [33]. However, a non-invasive collection of software metrics is one of
the most promising approaches to solve the task [8,26,35].

There are systems which are targeting the area, but new available technolo-
gies, frameworks, libraries and tools enable a novel architecture for non-invasive
measurement and analysis of software. Existing systems for non-invasive data
collection typically use two types of metrics: software product metrics and soft-
ware process metrics [6]. The data about software products and software devel-
opment processes could be collected from developers’ machines, smartphones,
smart things, product repositories, task and defect tracking tools. The variety
of sources and possible tools for data collection as well as many possible sce-
narios for data analysis make an issue of architectural design for developers of
non-invasive software measurement systems.
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 1–11, 2018.
https://doi.org/10.1007/978-3-319-74313-4_1

2 V. Artemev et al.

The main goal of this preliminary study is to establish basic approach and
principles of system architecture for non-invasive software measurement systems.
The contribution of the work is focused on three aspects: (i) an approach that
guides design decisions; (ii) a set of core elements for such systems and (iii) an
analysis of architectural decisions.

In Sect. 2 we present the system architecture for non-invasive software metrics
collection. In Sect. 3 we discuss the architectural decisions made; and in Sect. 4
we demonstrate a use case of the system. Sections 5 and 6 are devoted to related
works and conclusions.

2 An Architecture for Non-invasive Metrics Collection

In this section, we present the approach to collect and analyse data as well as the
system architecture and the underlying technologies in use. Although systems
for non-invasive data collection have been presented before (see Sect. 5 for a
comprehensive account), the approach presented in this paper is peculiar of this
specific work, and represents one the major contribution of the study.

Collect-Store-Unify-Analyze (CSUA) approach. This approach consists
of four parts: first of all we collect the data, such as metrics and events, from
numerous distributed heterogeneous data sources. Second, we store all collected
data in raw format suitable for future use. The third part consists of data unifiers,
which can extract different relational data representations from non-relational
stored data. Finally, we analyze the data providing insights to the user about
observed product or process.

The CSUA approach guides the design of the architecture of a system for non-
invasive software metrics collection. The architecture developed according to the
CSUA approach presented in Fig. 1. Basic purposes for such architectural design
are collection, storage and analysis of metrics as well as flexible representation
of data in dashboards. The core elements of the architecture are:

– agents for collecting data;
– databases: document-oriented and relational;
– data unifiers and data exporters;
– dashboards and applications for data analysis.

The following subsections describe these components and major data flows
in the system.
Agents. A system for non-invasive software metrics collection gathers data
about software products and software development processes. The data sources
usually include developers’ machines, smartphones and other devices; product
repositories, task and defect tracking tools used in collaborative development.
Data collection can be performed by multiple software agents of various types
and kinds. The main purpose of an agent is data collection about a product
and/or a process. There are multiple levels for agents to operate and collect
data (e.g. OS-level agents, browser-level agents, IDE-level agents, etc.).

An Architecture for Non-invasive Software Measurement 3

Fig. 1. Data flow in the system

OS agents are background operating system services for Windows, Linux, and
Mac OS. Browser agents are extensions for Chrome, Firefox, and Safari. IDE
agents are collecting data from Visual Studio, IntelliJ IDEA, Eclipse, XCode.
The system is not limited only to these types, we are planning to add agents for
bug tracking systems, version control systems, etc. Agents are in an early devel-
opment phase at the moment1. Moreover, data could be normalized in many
different ways, but we do not want to force one common data schema to every
agent, we will make this decision later (according to Lean Development princi-
ples [20] in the “Data Unifier” component.
Document-oriented database. To store data collected by agents we use
document-oriented database – MongoDB. The reasons why we chose this
database is that it provides easy sharding of data, horizontal scaling and it
uses JSON documents to store data.

A connector between an agent and a document-oriented database works in
the following manner. An agent pushes data to a common document-oriented
database over HTTP channel using RESTful API and JSON documents as data
representation. We only impose a common high-level structure of JSON docu-
ments. A listing with example of a JSON document is provided below.
1 User interface for one of prototype agents is shown in Fig. 2.

4 V. Artemev et al.

1 {
2 "timestamp": "2016-11-15T13:25:43.511Z",
3 "agent": {
4 "code_name": "MacOS developer’s agent",
5 "full_name": "Developer’s activity collector",
6 "secret_key": "6a81d622-5e24-4d9e-adc0-e3f7f2d93ac7",
7 "install_guid": "2187b011-6b9d-4d86-8083-dd09a0d73019"
8 },
9 "metrics": {

10 "event_id": "4a8acf6e7fbadc242de5b4f3",
11 "event_type": "web-browsing",
12 "event_duration": 1800,
13 "user": {
14 "username": "student",
15 "company": "Innopolis University"
16 },
17 "host": {
18 "host_name": "lab5_pc1",
19 "ip_address": "10.90.121.49",
20 "mac_address": "FF-FF-FF-FF-FF-FF",
21 "os_version": "macOS 10 Sierra Version 10.12.1",
22 "sw_version": "Safari Version 10.0.2 (12602.3.12.0.1)",
23 },
24 "sample_metric_data" : [
25 "stackoverflow.com", "google.com", "youtube.com"
26]
27 }
28 }

The document consists of three parts:

1. Timestamp
2. Agent information
3. Collected metrics

In the example, the top-level fields “timestamp” and “agent” describe the
metadata, while the “metrics” part stores the actual data. The schema of the
collected data may depend on an agent, but metadata fields stay the same across
different agents. A sample user interface of an agent collecting process data is
represented in Fig. 3. (Sect. 4).
Data unifiers. Data unifiers are processes which transform a set of JSON doc-
uments into rows and tables of a relational database. Resulting schema in each
data unifier could be different depending on type of analysis that a customer
may want to perform. Data unifiers pull data from MongoDB over HTTP chan-
nel using the same RESTful API as agents do.
Relational database. There could be multiple relational databases which our
system may need to connect to. Hence, each data unifier serves as an adapter
that write data to its own database.
Data exporters. The architecture provides data exporter component, so users
of the system could do their own analysis. Basically, data exporters convert data
to several well-recognized formats, like csv-file, arff-file, etc.
Dashboarding applications. Dashboard is an application which supports deci-
sion making by simplifying the data and representing it in a visual form. Backend
part of a dashboarding application connects to a relational database. Frontend

An Architecture for Non-invasive Software Measurement 5

is rich with graphs, charts, and data visualization. A developer of dashboard-
ing applications may want more details later, so our system should be ready
to adapt to these changes. That’s why modifiability of the system is highly
demanded feature.

3 Discussion of Architectural Decisions

In this section we discuss significant architectural decisions, what options we
considered and why we chose the structures that have been presented above.
These architectural decisions affect attributes of the system, therefore we discuss
them together in Table 1.

Attributes such as extensibility, modifiability and consistency would benefit
from a migration into the microservice paradigm [5]. Recent projects of our
team demonstrated an effective use and deploy of the paradigm in the field of
ambient intelligence and smart buildings [22,23], in particular when associated
with programming languages specifically designed with this purpose [1,2], and
with adequate programming abstractions [21,32].

Table 1. Architectural decisions and motivation behind them

Attribute name Arguments

Extensibility Proposed architecture allows to add new agents and new
analysis tools without downtime or reconfiguration

Security and Privacy The system could be deployed in multiple organizations So
we need to provide reasonable authorization, roles and
access restriction settings

Performance We need high-performance on write. There could be
thousands of agents trying to write their data into
document-oriented database at the same time

Consistency We do not require strong consistency, eventual consistency
should be fine

Modifiability We require high modifiability of database schema
Scalability We need horizontal scalability in terms of volume of data

4 Use Case: A MacOS Agent Prototype

In this section, we show a common use case of the CSUA approach. We demon-
strate such approach by the MacOS collector prototype. At the moment, only
a prototype client-side application has been developed; it collects and transfers
data for storage into the server (Figs. 2 and 3).
Step 1: Collecting data. A MacOS agent collects data in background and
can be stopped at any time (see Fig. 2). At any time, the user may review
the collected data, apply a filter to collected records and submit them. This

6 V. Artemev et al.

possibility to manually stop, review and filter data before a submission makes
the application friendly to users (especially to those users, who may consider it
a spyware).

Fig. 2. User interface of a MacOS agent collecting data about user activity.

Fig. 3. User interface of a MacOS agent that represents collected data and transfers
data to the server.

Step 2: Store, filter and transfer data. The interface for data transfer has
several useful functions for accessing a collected dataset. A user may switch
between newly collected (and not yet submitted) records and historical (submit-
ted) records. In addition, there are three types of filters: a keyword filter, a filter
by application and date/time filter (Fig. 3).

An Architecture for Non-invasive Software Measurement 7

5 Related Works on Architectures for Non-invasive
Measurement Systems

Over the past ten years several non-invasive measurement systems have been
developed. In this section we review the following systems with emphasis on
architecture:

– PRO Metrics (PROM);
– ElectroCodeoGram (ECG);
– Empirical Project Monitor (EPM);
– Hackystat.

5.1 PRO Metrics

PRO Metrics [10,27,28,30] is a distributed architecture for collecting software
metrics and Personal Software Process (PSP) data [14]. PROM is based on
Service-Oriented Programming development technique [31]. A client application
stores collected information in XML file and does not deal with data transfer.
This decision makes client-side components simpler. A transfer tool is separate
client-application that transfers collected data and provides user authentication.
Server-side components need to be installed and maintained only on one machine,
therefore the overall complexity of the system is low. But in case of installation
client components on many machines with different environment it becomes not
a trivial task for a system administrator.

5.2 ElectroCodeoGram

ElectroCodeoGram is a modular framework [24] aimed at micro-process research
and discovering patterns in the sequence of events which describe the same pro-
gramming behavior. For instance (i) copy and paste some piece of code with
desired functionality and (ii) refactor code and make a function with needed
parameters, represent two different patterns (or episodes) solving the same task.
ECG supports micro-process research. It automatically records micro-process
data using ECG Sensors; sends data to the central collection and analysis sys-
tem. Data is transported over network sockets or SOAP.

5.3 Empirical Project Monitor

Empirical Project Monitor [18,19] is a system that automatically collects data
(by “pulling”) from three different repositories:

– Configuration management systems;
– Mailing list managers (e.g. Mailman, Majordomo);
– Issue tracking systems (e.g. Bugzilla).

8 V. Artemev et al.

The EPM system consist of three components:

– Automatic data collection. EPM automatically collects data from repositories.
– Format translation and data store. EPM converts collected data to XML

format. Converted data is stored in the PostgreSQL database.
– Analysis and visualization. EPM gets data for analysis from the database for

visualization.

5.4 Hackystat

Hackystat [11–13] is a system for automatic collecting development metrics from
sensors (attached to development tools). Hackystat sends data to the server
where this data is analyzed. Its sensors are able to collect:

– activity data (e.g. which file is under modification of developer);
– size data (e.g. lines of code);
– defect data (e.g. number of pass/fail status of unit tests).

A developer should install one or more sensors to begin using Hackystat and
then register with its server. In later versions of Hackystat its architecture has
been criticized for growing complexity; developers made a decision to review
the architecture and reimplement Hackystat in a service-oriented architecture
(SOA). The main challenges for this revision were almost complete reimple-
mentation of the system and the need for system developers to move to new
architectural concept and libraries.

6 Conclusion and Future Work

Non-invasive collection of software metrics demonstrated to be effective in the
field of software measurement [3,7], including also non traditional situations [9].
Several systems for non-invasive data collection have been presented in the past,
also for mobile contexts [4,29]. However, the approach presented in this paper
is innovative in its own nature: for the peculiarity of the data flow and for
the specific architecture adopted, as well as for the underlying architectural
decisions. The architecture is designed to provide an high level of Scalability
and Modifiability, as well as a direct way to extend the system with new types
of agents, and, when possible, uses open source components [15]. Forthcoming
steps include development of agents for operating systems (Windows and Linux),
specific IDEs, popular browsers, version tracking systems, task tracking systems,
and defect tracking systems.

Recent trends and development in the field of software architecture has shown
an increasing attention towards the microservice architecture, which promises to
help managing scalability, elasticity and robustness [5]. It is under consideration
the possibility to migrate from the current design to this new approach. At the
moment, there is no concrete work in this direction in the field of non-invasive
collection, therefore it would represent an innovative trait of the system.

An Architecture for Non-invasive Software Measurement 9

Social networks have also seen an emerging interest in data collection, for
example for real-time trust measurement [17]. In this context, the possibil-
ity to aggregate data from the network and local users data (for example, on
machine or web usage) may represent and effective synergy that requires further
investigation.

References

1. Bandura, A., Kurilenko, N., Mazzara, M., Rivera, V., Safina, L., Tchitchigin,
A.: Jolie community on the rise. In: 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA), pp. 40–43 (2016)

2. Guidi, C., Lanese, I., Mazzara, M., Montesi, F.: Microservices: a language-based
approach. In: Mazzara, M., Meyer, B. (eds.) Present and Ulterior Software Engi-
neering, pp. 217–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67425-4_13

3. Coman, I.D., Sillitti, A., Succi, G.: Investigating the usefulness of pair-
programming in a mature agile team. In: Abrahamsson, P., Baskerville, R., Conboy,
K., Fitzgerald, B., Morgan, L., Wang, X. (eds.) XP 2008. LNBIP, vol. 9, pp. 127–
136. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68255-4_13

4. Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.: Evolution of mobile
software development from platform-specific to web-based multiplatform paradigm.
In: Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pp. 181–183. ACM (2011)

5. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin,
R., Safina, L.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M.,
Meyer, M. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67425-4_12

6. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach,
2nd edn. PWS Publishing Co., Boston (1998)

7. Fronza, I., Sillitti, A., Succi, G.: An interpretation of the results of the analysis
of pair programming during novices integration in a team. In: Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering and Mea-
surement, pp. 225–235. IEEE Computer Society (2009)

8. Janes, A., Scotto, M., Sillitti, A., Succi, G.: A perspective on non invasive soft-
ware management. In: Instrumentation and Measurement Technology Conference
(IMTC) (2006)

9. Janes, A.A., Succi, G.: The dark side of agile software development. In: Proceed-
ings of the ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, pp. 215–228. ACM (2012)

10. Jermakovics, A., Sillitti, A., Succi, G.: Mining and visualizing developer networks
from version control systems. In: Proceedings of the 4th International Workshop on
Cooperative and Human Aspects of Software Engineering, pp. 24–31. ACM (2011)

11. Johnson, P.M.: Requirement and design trade-offs in hackystat: an in-process soft-
ware engineering measurement and analysis system. In: ESEM, vol. 7, pp. 81–90
(2007)

12. Johnson, P.M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., Zhen, S.,
Doane, W.E.J.: Beyond the personal software process: metrics collection and anal-
ysis for the differently disciplined. In: Proceedings of the 25th International Con-
ference on Software Engineering, pp. 641–646. IEEE Computer Society (2003)

https://doi.org/10.1007/978-3-319-67425-4_13
https://doi.org/10.1007/978-3-319-67425-4_13
https://doi.org/10.1007/978-3-540-68255-4_13
https://doi.org/10.1007/978-3-319-67425-4_12

10 V. Artemev et al.

13. Johnson, P.M., Kou, H., Agustin, J.M., Zhang, Q., Kagawa, A., Yamashita, T.:
Practical automated process and product metric collection and analysis in a class-
room setting: lessons learned from hackystat-uh. In: Proceedings of the 2004 Inter-
national Symposium on Empirical Software Engineering, ISESE 2004, pp. 136–144.
IEEE (2004)

14. Kivi, J., Haydon, D., Hayes, J., Schneider, R., Succi, G.: Extreme programming:
a university team design experience. In: 2000 Canadian Conference on Electrical
and Computer Engineering, vol. 2, pp. 816–820. IEEE (2000)

15. Kovács, G.L., Drozdik, S., Succi, G., Zuliani, P.: Open source software for the public
administration. In: Proceedings of the 6th International Workshop on Computer
Science and Information Technologies (2004)

16. Maurer, F., Succi, G., Holz, H., Kötting, B., Goldmann, S., Dellen, B.: Software
process support over the internet. In: Proceedings of the 21st International Con-
ference on Software Engineering, ICSE 1999, pp. 642–645. ACM, May 1999

17. Mazzara, M., Biselli, L., Greco, P.P., Dragoni, N., Marraffa, A., Qamar, N., de
Nicola, S.: Social networks and collective intelligence: a return to the Agora. IGI
Global (2013)

18. Ohira, M., Yokomori, R., Sakai, M., Matsumoto, K., Inoue, K., Barker, M.,
Torii, K.: Empirical project monitor: a system for managing software develop-
ment projects in real time. In: International Symposium on Empirical Software
Engineering, Redondo Beach, USA (2004)

19. Ohira, M., Yokomori, R., Sakai, M., Matsumoto, K., Inoue, K., Torii, K.: Empir-
ical project monitor: a tool for mining multiple project data. In: International
Workshop on Mining Software Repositories (MSR 2004), pp. 42–46. IET (2004)

20. Poppendieck, M., Poppendieck, T.D., Poppendieck, T.: Lean Software Develop-
ment: An Agile Toolkit. The Agile Software Development Series. Addison-Wesley,
Boston (2003)

21. Safina, L., Mazzara, M., Montesi, F., Rivera, V.: Data-driven workflows for
microservices (genericity in Jolie). In: IEEE International Conference on Advanced
Information Networking and Applications (2016)

22. Salikhov, D., Khanda, K., Gusmanov, K., Mazzara, M., Mavridis, N.: Jolie good
buildings: Internet of Things for smart building infrastructure supporting concur-
rent apps utilizing distributed microservices. In: Proceedings of the 1st Interna-
tional Conference on Convergent Cognitive Information Technologies, pp. 48–53
(2016)

23. Salikhov, D., Khanda, K., Gusmanov, K., Mazzara, M., Mavridis, N.: Microservice-
based IoT for smart buildings. In: Proceedings of the 31st International Confer-
ence on Advanced Information Networking and Applications Workshops (WAINA)
(2017)

24. Schlesinger, F., Jekutsch, S.: Electrocodeogram: an environment for studying pro-
gramming. In: Workshop on Ethnographies of Code, Infolab21, pp. 30–31. Lan-
caster University, UK (2006)

25. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: Dealing with software metrics
collection and analysis: a relational approach. Stud. Inf. Univ. 3(3), 343–366 (2004)

26. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: Non-invasive product metrics col-
lection: an architecture. In: Proceedings of the 2004 Workshop on Quantitative
Techniques for Software Agile Process, QUTE-SWAP 2004, pp. 76–78. ACM, New
York (2004)

27. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A non-invasive approach to product
metrics collection. J. Syst. Archit. 52(11), 668–675 (2006)

An Architecture for Non-invasive Software Measurement 11

28. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, integrating and analyzing
software metrics and personal software process data. In: EUROMICRO, vol. 3, p.
336 (2003)

29. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an archi-
tecture. J. Syst. Archit. 50(7), 393–405 (2004)

30. Sillitti, A., Succi, G., De Panfilis, S.: Managing non-invasive measurement tools.
J. Syst. Archit. 52(11), 676–683 (2006)

31. Sillitti, A., Vernazza, T., Succi, G.: Service oriented programming: a new paradigm
of software reuse. In: Gacek, C. (ed.) ICSR-7. LNCS, vol. 2319, pp. 269–280.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46020-9_19

32. Tchitchigin, A., Safina, L., Mazzara, M., Elwakil, M., Montesi, F., Rivera, V.:
Refinement types in Jolie. In: Spring/Summer Young Researchers Colloquium on
Software Engineering, SYRCoSE (2016)

33. Tumyrkin, R., Mazzara, M., Kassab, M., Succi, G., Lee, J.Y.: Quality attributes
in practice: contemporary data. In: Jezic, G., Chen-Burger, Y.-H.J., Howlett, R.J.,
Jain, L.C. (eds.) Agent and Multi-Agent Systems: Technology and Applications.
SIST, vol. 58, pp. 281–290. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39883-9_23

34. Vera-Baquero, A., Colomo-Palacios, R., Molloy, O.: Business process analytics
using a big data approach. IT Prof. 15(6), 29–35 (2013)

35. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining
metrics for software components. In: 5th World Multi-Conference on Systemics,
Cybernetics and Informatics, Florida, vol. 11, pp. 16–23 (2000)

https://doi.org/10.1007/3-540-46020-9_19
https://doi.org/10.1007/978-3-319-39883-9_23
https://doi.org/10.1007/978-3-319-39883-9_23

A Human-in-the-Loop Perspective for Safety
Assessment in Robotic Applications

Mehrnoosh Askarpour1(B), Dino Mandrioli1, Matteo Rossi1,
and Federico Vicentini2

1 DEIB, Politecnico di Milano, Milan, Italy
{mehrnoosh.askarpour,dino.mandrioli,matteo.rossi}@polimi.it

2 CNR, ITIA, Milan, Italy
federico.vicentini@cnr.itia.it

Abstract. Human-Robot Collaborative (HRC) applications pose new
challenges in the assessment of their safety, due to the close interaction
between robots and human operators. This entails that a human-in-the-
loop perspective must be taken, at both the design and the operation
level, when assessing the safety of these applications. In this paper we
present an extension of a tool-supported methodology compatible with
current ISO 10218-2 standard, called SAFER-HRC, which: (i) takes into
account the possible behaviors of human operators—such as mistakes
and misuses while working with the robot (operational level)—and (ii)
exploits the expertise of safety engineers in order to incrementally update
and adjust the model of the system (design level). The methodology is
supported by a tool that allows designers to formally verify the modeled
HRC applications in search of safety violations in an iterative manner.

Keywords: Safety analysis · Formal verification · Safety rules
Human-Robot Collaboration · Human in the loop

1 Introduction

In Human-Robot Collaborative (HRC) applications, workers and machines coop-
erate in close proximity in a common work-cell, sometimes with direct physical
contacts, either voluntary or accidental. As such, the design of an application
may lead to hazardous situations for the operator working in the work-cell, either
due to operations (e.g., tools, motions, etc.) or to the behavior of the operator,
which is inherently non-deterministic; for example, the possibility of operator’s
deviations from the execution instructions cannot entirely be ruled out. Further,
in collaborative applications, the operator has alternatives in performing the
application (i.e., human flexibility), potentially leading to unforeseeable com-
binations of tasks by humans and robots that can generate hazards that were
not initially foreseen by designers of the system. The unforeseen (e.g., errors)
and unwanted (e.g., intentional misuses) behaviors by the operator make it more
difficult to guarantee human safety in HRC applications than in those executed
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 12–27, 2018.
https://doi.org/10.1007/978-3-319-74313-4_2

A Human-in-the-Loop Perspective for Safety Assessment 13

Definition of task
Hazard

Identification
Risk Estimation

Risk Evaluation (required,
recommended, not required)

Is risk
tolerable ?No

Risk Reduction
Measures

Yes Stop
List of known hazards and predicted

errors of the human operator

Update the list of human errors

Fig. 1. The refinement of traditional risk assessment technique with a list of hazards
categorized in ISO 10218 and reasonably foreseen human errors.

within fenced areas or segregated robotic cells; this highlights the need for a
human-centric approach to the risk analysis of such applications. We aim to
obtain a reliable analysis by defining a methodology that adopts a human-in-
the-loop perspective at both the operational and the design level, in which the
behavior and predictable errors of a human operator are captured in a suitably
formalized module. This module will be a part of a larger formal model of the
collaborative system, which describes activities and decisions of the operator at
operation time, and hence takes them into account when verifying the safety
of the system. The methodology should be able to identify hazards in an auto-
mated manner so no hazardous situation is left unconsidered, and yet rely on the
expertise and judgment of robotic safety engineers and enable them to (i) mon-
itor the results of the analysis, (ii) study multiple suggestions provided by the
methodology to remedy each risky situation, and (iii) choose the most suitable
safety measure for the analyzed system.

The classical risk assessment approach, depicted in Fig. 1, consists of four
phases repeated iteratively:

– Hazard identification, where presence of hazards is determined.
– Risk Estimation, where the consequences of identified hazards (e.g., severity

of injuries) are estimated and a quantized risk value is computed.
– Risk Evaluation, where the risk value is compared with a target level (e.g.,

negligible or acceptably low).
– Introduction of Risk Reduction Measures (RRM), where proper design

or control strategies are set in place for avoiding or mitigating consequences
of non-negligible hazards.

In an earlier work [2], we introduced a methodology behind the framework we
are building called SAFER-HRC (Safety Analysis through Formal vERification
in Human-Robot Collaboration). It uses concepts of temporal logic and satis-
fiability checking to automate as much as possible the classic risk assessment
approach highlighted above. It is rooted in the idea of building a formal model
of a collaborative system using temporal logics—adopting a discrete notion of
time with temporal domain N—and then formally verifying desired safety prop-
erties specified according to standard ISO 10218-2 [14]. The model focuses on

14 M. Askarpour et al.

time

a1

a2

a3

a4be
ha

vi
or

 1

time

a1

a2

a3

a2be
ha

vi
or

 2

Fig. 2. Example of two possible behaviors of the model regarding the sequence of
actions. a2 can start its execution only when a1 is complete. a4 also needs to wait
for the completion of a2, whereas a3 can execute in parallel with any other action.
Depending on when any of the actions are ready to execute, their overall order over
time may change.

two main aspects. The first one concerns capturing the tasks that should be exe-
cuted within the application as a set of smallest possible functional units—i.e.,
elementary actions—and the identification of the safety requirements of each of
them. The second concerns highlighting the role of the operator behavior (e.g.,
mistakes and decisions about execution) in creating hazardous situations.

Our proposed environment provides pre-defined packages of formulae and
application-specific information (e.g., specification of the physical environment),
that makes it easier for safety analyzers to model and verify HRC applications.

To define the formal model of the system we use a decidable fragment of the
TRIO metric temporal logic [10]; the verification phase is supported by the Zot
tool [1], an efficient bounded satisfiability checker for logic formulae [3], which
exhaustively explores the state-space of traces of the model within a bounded
time interval, to identify possible hazardous situations that designers have left
out or forgot to consider in the design. The model is then incrementally updated
to cover the identified situations and it is iteratively verified against desired
safety properties until all of them are satisfied.

In this work, we extend the SAFER-HRC modeling approach to include:
(i) activities that are executed concurrently by the operator and the robot; (ii)
the nondeterminism of the operator behavior; and (iii) risk estimation in the
form of methods consistent with international standards in the domain of safety
of machinery [15]. The verification mechanism at the heart of SAFER-HRC
exhaustively searches all different possible execution traces of the model, and in
particular all alternative orderings of execution of the actions within a task that
achieve the goal. For example, assume that both traces shown in Fig. 2 achieve
the same goal, but starting a4 before completing a3 causes a hazard that does not
occur otherwise (e.g., a change in positioning of the operator w.r.t the robot).
SAFER-HRC explores both traces, detects this hazard and computes its risk. If
the resulting risk is non-negligible, the analyzer can try different modifications,
compare their residual risks, choose the most efficient one and permanently add
it to the model.

A Human-in-the-Loop Perspective for Safety Assessment 15

1.1 Related Work

Safety analysis techniques can be grouped in three categories: informal (e.g.,
[13,17]), semi-formal (e.g., [11,12,18–20]) and formal. Formal techniques are
fully mathematical solutions which lend themselves to analysis through auto-
mated verification tools. FMEA [4], FTA [21] and Markov techniques [23], are
traditional examples of formal solutions [7], which are however not well-suited
for HRC applications, as they cannot deal with unpredictable human interac-
tions with robots. Model-based formal verification recently became popular in
robotics, although to the best of our knowledge it has never been used directly for
safety analysis of HRC applications. For example, [22] focuses on trustworthiness
of robots and neglects the impact of human behavior on safety and performance.
[26,27] model a service robotic system (an assistant robot for disabled people)
by the Brahms language [24] and verify it against safety requirements. [8,25]
also employ formal verification to analyze the safety of assistant robots.

Nevertheless, these works do not consider situations raised by cooperation
of human and robot, neither they encompass the verification of systems against
significant mechanical hazards which may hurt the human body. They mostly
focus on assistant rather than collaborative industrial robots, so during the veri-
fication and hazard identification process they do not study human activities and
interactions with robots. Thus, there is no reference to international standard
ISO/TS 15066 [16]—complementing the widely adopted ISO 10218-2.

Further, the approaches described in [5,6,9] have a stronger focus on human-
device interaction through interfaces—without physical involvement—thanks to
their use of cognitive architectures. However, they usually require large manual
customizations and have little reference to human fallibility and plausible errors.

Conversely, this paper extends our formal approach SAFER-HRC by taking
into account the operator behavior as a relevant factor in the system model. In
this approach interaction with safety analyzers—who usually have a mechanical
engineering background—is central, as their operational perspective helps to
foresee operators’ errors and misuses during interaction with robots.

The rest of this paper is organized as follows: Sect. 2 explains how SAFER-
HRC helps safety analyzers to create formal models and presents their semantics;
Sect. 3 describes the encapsulation of the classic risk assessment approach within
SAFER-HRC; Sect. 4 illustrates the application of SAFER-HRC to a real HRC
application and Sect. 5 concludes.

2 Semantic Model

The SAFER-HRC approach depicted in Fig. 3 comprises four modules, of which
the first one is explained in [2] and the other three are presented in this paper as
extensions to the approach. They formalize the main aspects of an HRC applica-
tion through the TRIO language. The ORL-module contains formal descriptions
for operator O, robot R and layout L. The descriptions of O and R are generic
and there can be multiple instances of each of them, according to the case study.

16 M. Askarpour et al.

For example if there are two operators required in a system, then the safety
analyzer provides this information as input to SAFER-HRC and two instances
of O are created. It also includes a set of rules (T) concerning the definition of
tasks, which are application-independent and can be tailored for different cases.
Some information is specific to each task and to the physical layout, hence the
safety analyzer should provide it as input.

Fig. 3. Overview of SAFER-HRC methodology. The layout description, task to be
performed and number of operator and robot instances are provided as input; the
Hazards Module contains known significant hazards according to ISO10218 and also
foreseen human errors; the Risk Estimation Module is compatible with ISO 14121.

A second module formalizes all the significant hazards that have been non-
exhaustively defined and categorized in standards like [14], encapsulating estab-
lished experience. It includes reasonably foreseeable errors that an operator can
make, which can lead to hazardous situations. Hazard sources clearly need to be
updated as soon as new situations and harms are experienced.

The Risk estimation module contains the information regarding the compu-
tation of a risk value for each detected hazard according to the hybrid method
approach reported in ISO 14121 [15].

Finally, the RRM module defines all the risk reduction measures which are
triggered by detection of non-negligible risk values.

In practice, these modules are instantiated for each specific HRC application
by a joint team of mechanical engineers with experience in HRC applications
and computer scientists with proficiency in formal verification activities. The
rest of this section illustrates the contents of each module with more detail.

2.1 ORL-Module Formalizing Operator, Robot and Layout

This section elaborates on the details of three sets of TRIO formulae defined in
the ORL-module. Set L defines relevant regions in the work-cell based on the
workspace and the kinematics of the robot, and contains formulae to define adja-
cency or separation of these regions. This information is application-dependent
and is provided by a safety analyzer in the form of inputs about geometry, kine-
matics and materials, for example through a questionnaire that gathers infor-
mation as structured texts that can be converted into SAFER-HRC models.

A Human-in-the-Loop Perspective for Safety Assessment 17

Set O abstracts the new specification of ISO15066, in which experimental
data is used to identify thresholds for acceptable pressure or force for different
parts of the human body. The set models the human body with eleven most
relevant parts and their limit values; it includes constraints to avoid unrealistic
body shapes in the analysis (e.g., Alw(phead = parms ∨ adj(phead, parms)) states
that arms and head can not be at opposite ends of the work-cell and can only
be in the same or adjacent layout regions at the same time).

Set R defines multiple variables to capture the position of the various parts of
the robot in the layout, such as for example the position of robot links and end-
effector. As for set O, set R also includes constraints on the structure of the robot.
For example, let us consider the structure of a KUKA lightweight manipulator
robot (www.kuka-robotics.com), which is available in our experimental setup,
and which includes two links (R1, R2), three main joints and an end-effector
(EE). The following formula indicates that R1, which describes the position of
the arm link, and R2, which captures the forearm link, are always in the same
or adjacent layout region(s): Alw

(
pR1

= pR2
∨ adj(pR1

, pR2
)
)
.

2.2 Formalization of Tasks

The ORL-module includes also a set of formulae, called T , which describes tasks
by breaking them down into elementary actions with defined execution chains
to complete the task. In the following we present a new version of the set T of
formulae, which has been deeply revised w.r.t the one initially introduced in [2].

Actions. The formal definition of an action ai comprises three groups of for-
mulae: Pre-Conditions (preCi), Safety-Constraints (sftCi) and Post-Conditions
(posCi).

preCi (resp., posCi) hold right before the start (resp., right after the termi-
nation) of the execution of ai. ai starts to execute only if all its pre-conditions
are true, and when it terminates all of its post-conditions hold. For example,
one of the pre-conditions for the action “Robot screwdrives the prepared fix-
tures on the work-piece” is that the robot should be positioned in the right
spot for screwdriving. Thus, screwdriving will not start until the robot is in
the right position. A post-condition for the same action is “the work-piece is
completely fixed on position y”, so this action terminates only when this condi-
tion is true. Each ai is also associated with some formulae sftCi, which should
be true while it is executing, otherwise the execution is paused until all sftCi

hold again. A safety constraint in the previous example is “the operator should
keep holding the workpiece until the robot finishes screwdriving and fixing it”
which should be true while the execution of the action is ongoing. Formulae
preC and sftC of actions are consistent with any specific order of execution
of actions which is required in order to terminate the task. For example, if ay

should strictly execute before ax, then it is stated as a pre-condition for ay that
ax is terminated. However, other actions can be executed in between these two,
and they do not necessarily execute after one another. Additionally, the model

http://www.kuka-robotics.com/en/products/industrial_robots/sensitiv/start.htm

18 M. Askarpour et al.

of each action ai includes: constant exeTi ∈ N, which captures its execution
time; pmri ∈ {ro, op}, which declares if it should be performed by the robot or
by the operator; stsi ∈ {ns,wt, exe,ps,dn}, which captures its the state, and
whose value changes over time according to the following rules i-v (note that all
formulae below are implicitly quantified over time through operator Alw).

(i) An action remains not started (ns) until all of its pre-conditions hold.
(ii) When all the pre-conditions of an action hold, it becomes waiting (wt).

stsi=wt ∧ Past(stsi=ns, 1) ⇒ Past(preCi, 1)

The action remains so until its safety constraints start holding and thus
becomes executing (exe). If pre-conditions stop holding before the satisfac-
tion of safety constraints, the action becomes ns.

(iii) Safety constraints must hold during the execution: stsi=exe ⇒ sftCi.
(iv) An executing action becomes paused (ps) as its safety constraints are vio-

lated, and remains so until the violations are resolved.

stsi=exe ∧ Futr(¬sftCi, 1) ⇒ Futr(stsi=ps ∧ Untilw(stsi=ps, sftCi), 1)

(v) An Action becomes done when its post-conditions are satisfied and will
remain so for the rest of the execution of the task.

stsi=exe ∧ Futr(posCi, 1) ⇒ Futr(stsi=dn ∧ AlwF(stsi=dn) , 1)

(vi) If a task requires to repeat action ak (e.g., within a loop iterated a fixed
number n of times), multiple separate actions which are instances of ak

are defined, one for each repetition (e.g., a1
k, ..., a

n
k). For each iteration, the

actions of previous iterations must be complete (∀i : stsk
(i−1) = dn ∈

preCi
k).

Modeling the Execution of Actions. Actions are divided into two groups
according to their performer. The actions done by the robot are considered
fully deterministic, meaning that the following rules hold for them:

(i) Unlike operator actions which need human’s act (as explained below),
robot’s actions start execution deterministically at the instant immediately
following the one when the state is waiting and the safety constraints are
satisfied.
pmri=ro ∧ stsi=wt ∧ sftCi ⇒ Futr(stsi=exe, 1).

(ii) The execution order of actions is implicit in their pre/post-conditions and
safety constraints. For example, screwdriving (az) should execute after
robot moves to the right place (ax) and the operator brings a workpiece to
the screwdriving spot (ay); hence, the termination of the two latter actions
is part of the pre-conditions of screwdriving: preCz ⇒ stsx=dn∧stsy =dn.

(iii) Multiple actions execute concurrently only when it is explicitly mentioned
within their definitions. For example, when robot grabs a workpiece and
carries it to another position in the work-cell, then gripping (ag) and moving
to target position (am) must concurrently execute: sftCm ⇒ stsg =exe.

A Human-in-the-Loop Perspective for Safety Assessment 19

However, actions done by the operator are non-deterministic. Pre-condi-
tions of an action may hold, but the operator may not execute it (e.g., if he is
absent-minded or distracted). Still, we assume that the operator starts executing
the action within a finite time Δ, so that task termination is guaranteed:

(i) An operator’s waiting action becomes either exe or ns within Δ time units.

pmri=op ∧ stsi=wt ⇒ WithinF(stsi=exe ∨ stsi=ns,Δ)

(ii) The operator can not execute more than two actions at the same time. If
several operator actions are waiting, nondeterministically, and not necessar-
ily simultaneously, at most two of them will start executing within Δ time
units.

¬∃i, j, k(i < j < k ∧
∧

z∈{i,j,k}
stsz =exe ∧ pmrz =op)

If a robot and an operator action have to execute concurrently, then this should
be stated within their definition. For example, screwdriving can execute only
when the operator is holding the workpiece, otherwise it might fall off, interrupt-
ing the action. So, it is mentioned in the pre-conditions and safety constraints of
screwdriving that workpiece must be held. Notice that this does not mean that
these two actions start simultaneously: holding by the operator (au) can start
earlier than screwdriving, but the key requirement is that it has to be executing
along screwdriving: sftCz ⇒ stsu=exe.

2.3 Hazard Definition Module

This module contains the formal definition of hazards. For example the following
formula defines a hazardous situation in which the end-effector of the robot—
with a screwdriver mounted on it—is moving and close to the operator’s head.
This situation, called hzdx, could cause facial injury (e.g., loss of an eye):

hzdx ⇔ phead = pEE ∧ ¬(moderobot = idle) ∧ EEtype = screwdriver

This module is updated if, during the iterative analysis, safety violations are
detected which do not correspond to any defined hazard. It means that some
hazardous situations have been overlooked in the initial model.

2.4 Risk Estimator Module

For each detected hazard a quantitative risk value is computed, to be later used
as a criterion for selection of a suitable RRM.

ISO14121 indicates three possible values for the risk associated with each
hazard: ∀hzdi : riski ∈ {1, 2, 3}. For example, if riski = 2 holds, then a strong
RRM such as requiring the full stop of robot is necessary; if riski = 1, then a
weaker RRM like pausing the robot for α time instants and then continue could
be enough and its application is only recommended and not necessary. Trivially,
if riski = 0 holds, then no RRM is required.

20 M. Askarpour et al.

Table 1. Hybrid risk estimation technique according to ISO 14121.

To compute the risk value according to ISO 14121, four main parameters are
required: the severity Se of the possible injury caused by the hazard, and the
avoidability Av, frequency Fr and probability Pr of each hazard (notice that,
in this context, probability is described through a rank from 1 to 5, going from
“negligible” to “very highly probable”).

The value of Se depends on the involved part of the human body, on the type
of hazard (e.g., hit, entrapment), and on the robots’ force and speed; however, in
the current formalization we only take into account body part and type of hazard,
since the model does not include information about the physical dynamics of the
robot. The other three parameters are initialized by empirical information and
are statically embedded in the model. A class identifier CI, which is computed
by Fr + Pr + Av, is combined with Se and is mapped to one of the possible
values for risk according to a table such as Table 1. For example, with respect
to this classification the severity of the hazard illustrated in Sect. 2.3 is equal
to four (Sex = 4), and its risk value is computed trough a formula such as
hzdx ∧ (14 ≤ CIx ≤ 15) → riskx = 2.

2.5 RRMs Module

For each hazard defined in the hazard module, one or more corresponding RRM
is defined in the RRMs module. When a hazard occurs in an execution trace of
the system model, then SAFER-HRC reports the hazard’s presence, its related
risk value and associated RRMs to the safety analyzer.

Each RRM can result in several changes in the system, hence also in the
model. For example, an RRM might consist in modifying the precedence between
actions, so as to avoid orderings in the execution of actions that are hazardous
with a high risk; this would correspond to a change in the definitions of involved
actions, such as adding constraints to their pre-conditions or safety constraints.
RRMs can impact the conditions under which actions are executed, for example
by reducing the speed of movement in action “robot moving to the bin”, or
by pausing an action when certain conditions are not met; the introduction of
such RRMs would result in a modification of the safety constraints of impacted
actions, for example by adding suitable constraints. Another example of RRM

A Human-in-the-Loop Perspective for Safety Assessment 21

is a change in the layout design, such as covering sharp edges with pads, or
leaving warning labels on equipments. Such physical modifications can impact
the model in different ways; for example, covering sharp edges could result in
a reduction of the risk value of a pinching hazard; the effect of a warning sign
could be that the foreseeable behavior of the operator is modified, as one can
assume that he will avoid certain situations. For example, an RRMx for hzdx in
Sect. 2.3 is “stop any movement of the robot” and corresponds to the following
definition:

RRMx ⇔ pR1
= futr(pR1

, 1) ∧ pR2
= futr(pR2

, 1) ∧ pEE = futr(pEE, 1)

The RRM must remain true until the hazard is resolved, which is captured by
the following formula: hzdx ⇒ Untilw(RRMx,¬hzdx).

3 Overview of Iterative Risk Assessment

After the formal model of the target application is defined, it is verified against
the following properties:

1. Whether any hazard is detected, and if it is, whether an effective RRM is
triggered.

2. Whether there are hazardous situations which have yet to be identified in the
hazard module, or combinations of known hazards that current RRMs do not
mitigate.

3. Given the incremental nature of the methodology, whether the hazardous
situations in the previous iterations are eliminated or remedied by the RRMs.

To address the first issue, the formal model of the application is evaluated against
the property Alw(∀hzdx(riskx = 0)). If the property holds, no hazard with non-
negligible risk value occurs in the application. Otherwise, the verification tool
returns a system trace which highlights, thanks to the definitions introduced in
Sect. 2.3, the occurrences of hazards that need to be mitigated.

The second issue is addressed by checking whether there are possible system
executions in which an action is paused (due to a violation of its safety con-
straints), but no corresponding hazard is defined in the hazard list. This means
that some potential hazard and a suitable RRM for it have yet to be identified.

Som (∃i (stsi=ps ∧ (∀x(¬hzdx) ∨ ∃x(hzdx ∧ ¬RRMx))))

A hazard may go unnoticed for several reasons (e.g., the complexity of the appli-
cation which may exhibit more possible interactions than expected, or overlooked
human errors). The hazards module and RRM module are iteratively updated
with new recognized hazards and their appropriate RRMs.

The third issue is addressed simply by comparing the verification output
before and after the introduction of the RRMs, to see if the residual risk value
is negligible or not.

If and when the RRMs introduced are enough, the risk value remains negli-
gible throughout the execution of the application and the iterative process ends.

22 M. Askarpour et al.

4 SAFER-HRC for a Case-Study

In this section the application of SAFER-HRC on a real use case is illustrated.
The chosen scenario is a part of the application for preparing a machining pallet.
Usually done by skilled operators, the task, depicted in Fig. 5, includes the assem-
bly of workpieces to be machined into fixtures attached to a so-called tombstone.
A small collaborative robot carrying a screwdriver end-effector is installed on a
cart close to both the pallet and the operator for assisting in fixing the fixtures.
The work-cell is equipped with cameras and sensors that detect the position of
robot and operator. In the task, the operator is supposed to set a workpiece
(wp) in place from a bin into the tombstone fixtures, and command the robot
to move in from its homing position and fix the wp. The operator is supposed
to hold the wp until it is fully attached to the tombstone and screwdriving is
complete, in order to inspect and assess the task execution.

In this example the layout is divided into eleven regions, defined by the safety
analyzer, according to the expected motion directions of robot links and the pres-
ence of potential/actual obstacles. Region L1 is where more risky actions such as
screwdriving are executing, and the operator is in very close proximity to a sharp
end-effector and constraining objects; thus, there are chances of entrapment and
stronger safety constraints are needed. Region L6 is the robot homing position,
where after screwing each wp, the robot goes back and remains idle until it
receives some activation signal from the operator. The user-provided description
of the task is broken into 15 different types of actions, as shown in Fig. 4. Action
types 8–13 can be repeated in a loop, one iteration for each jig. Thus, if there is
only one jig to prepare, the task model has 15 actions, whereas if there are two
the task has 21 actions, as there are two instances of action types 8–13.

Fig. 4. List of actions in the case study. Action
types identified by {∼ +i}, belong in a loop. i is
the loop iteration and cannot exceed the number
of jigs.

Fig. 5. Layout of the case
study.

A Human-in-the-Loop Perspective for Safety Assessment 23

Iterative Risk Assessment. All the reported experiments have been carried
out on a 2,6 GHz Intel® core™ i5 machine. The maximum length of analyzed
traces was set to 100 time instants, which is enough to complete all actions; no
experiment took more than 153 seconds. The formal model and experiments can
be found at github.com/Askarpour.

The verification helps analyzers and designers to figure out safety flaws of the
design before the deployment. For example the necessity of requirements “robot
must go back to homing (L6) after screwdriving each single wp”, and “robot
must remain in homing until it receives a new signal from the operator” was
highlighted after multiple iterations of the verification. Thus, when operator is
moving around in the layout (e.g., to pick a wp from the bin), the robot is idle
in the home position and no harm is threatening her.

Another contribution of the verification is to discover the errors made by the
operator, which are neglected in the initial design and may raise dangerous situ-
ations. For instance, in this scenario we initially forgot to consider the following
possible errors and misuses:

1. the operator mistakenly sends the activation signal to the robot before settling
the part on the fixtures;

2. the operator bends down and brings her head close to the tomb while wp is
being screwdriven (e.g., to better monitor the procedure), just as screwdriving
is about to finish and EE is about to move backwards from the tomb;

3. the operator stays on the right side of the tomb while holding the wp to be
screwdriven, which can lead to the operator getting entangled between the
tombstone and a robot link or to getting hit by a sweeping robot arm.

Each of these cases was highlighted by the violation of a safety constraint at some
iteration. For instance, the first item was discovered when the model was unable
to satisfy a safety constraint of a3 “operator brings the wp to the tomb”. This
constraint requires the robot to be idle in homing,1 but if the operator mistakenly
sends the activation signal before she goes to the tomb, then operator and robot
are both moving in L1∨L2∨L4, which might lead to the operator being hit by
the robot forearm link. As an RRM to avoid this, preC3 is updated with formula
phands = L1 ∧ signal, meaning that a3 starts to execute when operator is in L1

(her hands are on tomb to hold the wp) and she sends the activation signal.
After further verification iterations, the second case was highlighted by the

violation of constraint sftC11, which was that only the hands of operator are
allowed to be close to the tombstone, but not other body parts. This can happen
due to operator’s lack of awareness, experience or familiarity with the instruc-
tions. To address this situation, a new RRM (i.e., a set of constraints) is added
stating that if sftC11 is violated during the execution of action a11, the latter

1 A safety constraint is achieved by a safety function in charge of reliably accomplishing
the risk reduction objective. The reliability level is defined according to analysis and
methods of functional safety, as for ISO 13849, for instance. In this case the safety
function is to monitor the position of motors so as to prevent unwanted motion from
the desired resting position.

https://github.com/Askarpour

24 M. Askarpour et al.

Table 2. Severity value according to the involving robot and human parts.

Hazard type Robot part Body part

Head & shoulders Waist Hands, arms and fingers

Hit EE 4 2 3

R1 3 1 2

R2 3 1 2

Entrapment R1 2 1 1

R2 2 0 1

must pause, EE must go back to its starting position on the tomb surface, and
the robot must stay idle until the operator sends a resumption signal.

A third case was also detected during the verification, due to similar reasons
as the previous case. If operator’s position somehow blocks the way of KUKA’s
links, the robot should stop its motion and remain idle until receiving a resump-
tion signal. Thus, an RRM for emergency stop is defined, which in this case has
a structure similar to an action: a pre-condition (violation of sftC7), a safety
constraint (remaining idle), and a post-condition (safety violation is removed
and resumption signal is received).

In the rest of this section, we illustrate the formalization of a fragment of the
case study, focusing on two types of hazards: (i) a transient impact (i.e., contact
with possibility of recoiling) between the operator and KUKA parts (R1, R2 and
EE); and (ii) operator getting entrapped between one of KUKA’s links and some
physical obstacle such as tomb or sidewalls of the wp bin. Any hazard of the two
types has different severity depending on the impacted body parts (head and
shoulder area, arms and hands area, waist area), the parts of KUKA and the
layout shapes that are involved. Table 2 shows how severity is assigned to any
detected hazard; the table groups the parts of operator’s body into three areas
to ease the presentation; in addition, for simplicity we assume that the severity
level of a hazard is the same in all regions of the layout.

The following formula represents an example of hit hazard and defines that
hazard “head hit by R1” (h1) occurs when the human head area is close to at
least one robot part within L3a , L3b , or L3c .

hzdh1 ⇔ pR1
=(phead|pneck|pshoulders) ∧ pR1

=(L3a |L3b |L3c)

For this kind of hazards, an RRM is defined such that the involving KUKA part
moves away from the operator (while the robot is idle, i.e., it is not executing any
action) until the hazard is removed. This is formalized by the following formula,
which provides the definition of RRM for h1 hazards:

hzdh1 ⇒ Untilw
(
adj(futr(pR1

, 1), pR1
) ∧ ¬∃i(stsi=exe ∧ pmri=ro),¬hzdh1

)

Similar formulae exist for combinations of R2, EE, and other body areas.
An example of entrapment hazard is “head entrapped by R1”, e1, which can

happen when the human head area is close to a KUKA part, in a section of the

A Human-in-the-Loop Perspective for Safety Assessment 25

layout where there are physical obstacles, and there is little room for movement
due to the presence of the wp bin and of the tombstone—i.e., L1, L5a and L5b .

hzde1 ⇔ pR1
= (phead|pneck|pshoulders) ∧ pR1

= (L5a |L5b |L1)

This hazard is treated by the RRM formalized by the following formula, which
makes the robot part stop any movement when close proximity is detected.

hzde1 ⇒ Untilw
(
futr(pR1

, 1) = pR1
∧ ¬∃i(stsi=exe ∧ pmri=ro),¬hzde1

)

Similar formulae are defined for hazard and RRM concerning R2. Given the
defined severity value, the risk estimator module associates a risk value with
each detected hazard. If the outcome of the risk estimation analysis is that an
RRM is required due to the presence of the hazard, then an appropriate RRM
should be chosen by the safety analyzer, from among the different possibilities
in case more than one RRM is available. If the outcome is that an RRM is only
recommended, she can decide whether to introduce one or not.

5 Conclusion

In this paper we enriched SAFER-HRC, which is a methodology for risk assess-
ment of collaborative robotic applications. It relies on automated formal verifi-
cation techniques for uncovering potential hazards in applications under design.
It is a semi-automated solution because it automatically identifies hazards and
estimates their risk, yet it relies on a human analyzer to provide input informa-
tion about the application and the physical layout, and to modify or update the
list of hazards. In addition, it is the analyzer who decides whether to introduce or
not RRMs to counter non-negligible risks, or which RRM(s) to introduce when
more than one is available.

Currently we have prepared a prototype tool that transforms UML diagrams
to the formal model, which relieves the safety expert willing to use SAFER-
HRC from touching the formal model and formulae. We have also conducted
experiments on a few more case-studies, for example a different assembly task
by a KUKA arm presented in Euroc project (www.euroc-project.eu).

Future work will focus on introducing probabilities in the O module which
replicates erroneous human behavior and frequent mistake phenotypes.

References

1. Zot: a bounded satisfiability checker. github.com/fm-polimi/zot
2. Askarpour, M., Mandrioli, D., Rossi, M., Vicentini, F.: SAFER-HRC: safety anal-

ysis through formal vERification in human-robot collaboration. In: Skavhaug, A.,
Guiochet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 283–295.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45477-1 22

3. Baresi, L., Pourhashem Kallehbasti, M.M., Rossi, M.: Efficient scalable verification
of LTL specifications. In: Proceedings of Software Engineering (2015)

http://www.euroc-project.eu/index.php?id=piros
http://github.com/fm-polimi/zot
https://doi.org/10.1007/978-3-319-45477-1_22

26 M. Askarpour et al.

4. Bouti, A., Kadi, D.A.: A state-of-the-art review of FMEA/FMECA. Int. J. Reliab.
Qual. Saf. Eng. 1, 515 (1994)

5. Bredereke, J., Lankenau, A.: Safety-relevant mode confusions modelling and reduc-
ing them. Reliab. Eng. Syst. Saf. 88(3), 229–245 (2005)

6. Butterworth, R., Blandford, A., Duke, D.J.: Demonstrating the cognitive plausibil-
ity of interactive system specifications. Formal Asp. Comput. 12, 237–259 (2000)

7. Dhillon, B.S., Fashandi, A.R.M.: Safety and reliability assessment techniques in
robotics. Robotica 15, 701–708 (1997)

8. Dixon, C., Webster, M., Saunders, J., Fisher, M., Dautenhahn, K.: “The Fridge
Door is Open”–temporal verification of a robotic assistant’s behaviours. In: Mistry,
M., Leonardis, A., Witkowski, M., Melhuish, C. (eds.) TAROS 2014. LNCS (LNAI),
vol. 8717, pp. 97–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10401-0 9

9. Fu, J., Topcu, U.: Synthesis of shared autonomy policies with temporal logic spec-
ifications. IEEE Trans. Autom. Sci. Eng. 13(1), 7–17 (2016)

10. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Comput-
ing. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg (2012)

11. Guiochet, J.: Hazard analysis of human-robot interactions with HAZOP-UML. Saf.
Sci. 225–237 (2016). abs/1602.03139

12. Guiochet, J., Do Hoang, Q.A., Kaaniche, M., Powell, D.: Model-based safety anal-
ysis of human-robot interactions: the MIRAS walking assistance robot. In: Pro-
ceedings of ICORR (2013)

13. International Electrotechnical Commission: IEC 61882, Hazard and operability
studies (HAZOP studies)-Application guide (2001)

14. International Standard Organisation: ISO10218-2:2011, Robots and robotic devices
- Safety requirements for industrial robots - Part 2: Robot Systems and Integration

15. International Standard Organisation: ISO14121-2:2007, Safety of machinery - Risk
assessment - Part 2

16. International Standard Organisation: ISO15066:2016, Robots and robotic devices
- Collaborative robots

17. Leveson, N.: Engineering a Safer World: Systems Thinking Applied to Safety. MIT
Press, Cambridge (2011)

18. Machin, M., Dufossé, F., Blanquart, J.-P., Guiochet, J., Powell, D., Waeselynck, H.:
Specifying safety monitors for autonomous systems using model-checking. In: Bon-
davalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp.
262–277. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2 18

19. Machin, M., Dufossé, F., Guiochet, J., Powell, D., Roy, M., Waeselynck, H.: Model-
checking and game theory for synthesis of safety rules. In: Proceedings of HASE
(2015)

20. Martin-Guillerez, D., Guiochet, J., Powell, D., Zanon, C.: A UML-based method
for risk analysis of human-robot interactions. In: Proceedings of SERENE. ACM
(2010)

21. Pouliezos, A., Stavrakakis, G.S.: Fast fault diagnosis for industrial processes applied
to the reliable operation of robotic systems. Int. J. Syst. Sci. 20, 1233–1257 (1989)

22. Salem, M., Lakatos, G., Amirabdollahian, F., Dautenhahn, K.: Would you trust a
(faulty) robot?: effects of error, task type and personality on human-robot coop-
eration and trust. In: Proceedings of ACM/IEEE Human-Robot Interaction, HRI
(2015)

23. Sharma, T.C., Bazovsky, I.: Reliability analysis of large system by Markov tech-
niques. In: Proceedings of the Symposium on Reliability and Maintainability (1993)

https://doi.org/10.1007/978-3-319-10401-0_9
https://doi.org/10.1007/978-3-319-10401-0_9
https://arxiv.org/abs/1602.03139
https://doi.org/10.1007/978-3-319-10506-2_18

A Human-in-the-Loop Perspective for Safety Assessment 27

24. Sierhuis, M., Clancey, W.J., Hoof, R.J.V.: Brahms: a multi-agent modelling envi-
ronment for simulating work processes and practices. Int. J. Simul. Process Model.
3, 134–152 (2007)

25. Stocker, R., Dennis, L., Dixon, C., Fisher, M.: Verifying brahms human-robot
teamwork models. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012.
LNCS (LNAI), vol. 7519, pp. 385–397. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33353-8 30

26. Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K., Daut-
enhahn, K.: Formal verification of an autonomous personal robotic assistant. In:
Formal Verification and Modeling in Human-Machine Systems (2014)

27. Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K.L., Daut-
enhahn, K., Saez-Pons, J.: Toward reliable autonomous robotic assistants through
formal verification: a case study. IEEE Trans. Hum. Mach. Syst. 46, 186–196 (2016)

https://doi.org/10.1007/978-3-642-33353-8_30
https://doi.org/10.1007/978-3-642-33353-8_30

Multi-level Static Analysis for Finding Error
Patterns and Defects in Source Code

Andrey Belevantsev1,2(&) and Arutyun Avetisyan1,2,3,4

1 Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

{abel,arut}@ispras.ru
2 Moscow State University, Moscow, Russia

3 Moscow Institute of Physics and Technology (National University),
Moscow, Russia

4 National Research University Higher School of Economics, Moscow, Russia

Abstract. This paper presents the formalism for multiple level static analysis for
defect detection in source code. The first level has the program andmemorymodel
that are suitable for AST-level checks. The following levels address detection of
critical errors: on the second level interprocedural partially context-sensitive
analysis is performed via dataflow analysis and symbolic execution with state
merging, whereas the third level adds path-sensitivity via predicate tracking for the
dataflow information computed on the second. The analysis designer can freely
choose the appropriate analysis level or their combination to check the desired
program property. The presented methods are implemented in the Svace static
analysis toolset. The first analysis levels for C/C++ and Java are implemented as
extensions of corresponding production compilers (Clang and javac) and Find-
Bugs tool plugins, while the second and third levels make the core of Svace
analyzer together with 100+ implemented checkers for critical defects. The
evaluation on extra large codebases of millions lines of code such as full-blown
Android and Tizen OSes has shown the approach scalability and the acceptable
false positives ratio (less than 40%).

Keywords: Static analysis � Symbolic execution � Defect detection

1 Introduction

Static analysis tools have become essential for improving program security with their
application in the secure development lifecycle. While there are many flavors of static
analyses, this use case has produced very concrete requirements for the analysis tools.
The key requirements are fully automatic analysis, scalable to very large codebases yet
maintaining a tolerable level of false positives, finding most well-known defect types
and customizable by a power user.

When designing an analyzer adhering to these requirements, a number of important
observations can be made. First, the classification of defect types shows that they
demand various analysis levels. Many security related defects and coding rules need
the abstract syntax tree (AST) analysis level possibly with control flow and minimal

© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 28–42, 2018.
https://doi.org/10.1007/978-3-319-74313-4_3

intraprocedural data flow analysis. Common critical defects typically require inter-
procedural context-sensitive and path-sensitive analysis for good true positive ratio, but
it is also happens that interprocedural dataflow analysis based on function summaries is
enough and path sensitivity is not needed. Second, making the abovementioned
path-sensitive analysis for critical defects (that is needed for true positives) scalable to
millions of LOCs usually means having an unsound analysis, that is, missing some of
real errors. Finally, there are many analyzer components behind the core algorithms
that are crucial for the success of the tools. Some of them include building the analysis
intermediate representation for the supported languages/compilers transparently to the
user, organizing parallel launch of the many analysis levels, providing results review
APIs etc. These are of the more technical nature and will not be covered in this paper.

The research body known to us doesn’t address the described issues well. Most of
papers devoted to deep static analysis concentrate on variants of symbolic execution,
abstract interpretation, or dataflow approaches [1–3] that explore well the possibilities
of building a static analyzer with good true positives ratio, often for concrete defect
types, but do not have the goal of being scalable for very large programs. Papers
exploring lightweight static analyses contribute to the task of creating specialized query
languages for writing checkers, of interactive analysis, or of creating checkers for
specific code patterns. In addition to those issues, the question of implementing an
analyzer that covers all needed defect types or of integrating existing light/heavyweight
analyzers together is not addressed.

In this paper, we suggest a unified approach for building a collection of static
analyzers operating on multiple levels. The first analysis level is designed for defects
that require only AST level analysis with possible control flow and intraprocedural
dataflow information. We suggest the memory model for C/C++ similar to the one in
[5, Chap. 2.3] and [4] that allows for arbitrary pointer operations with field and array
elements sensitivity. Other languages are handled here with separate analyzers, how-
ever, the approach of building a unified AST for the most popular languages (C/C++/
Java/C#) [6, 7] is also possible with the same low-level memory model. This level is
described in Sect. 2.

The main analysis levels deal with critical defects that require interprocedural
analysis. We introduce context-sensitive interprocedural analysis with function sum-
maries for the second level. The analysis happens on a lower level intermediate rep-
resentation common to the supported languages inspired by [8, 9]. The second level
analysis tracks possible values and points-to sets for variables, unifying the variables
with the same values into equivalence classes (similar to a compiler value numbering,
also in [8, 10]). The abstract interpretation of the function is performed with some
assumptions breaking analysis soundness (non-aliasing of function arguments, loop
unrolling for the fixed number of iterations). For interprocedural analysis, a function
summary is created as an abstract state in the return instruction keeping up all recorded
information about escaped variables’ equivalence classes and values. The summary is
then applied at the call instructions with substituting formal parameters with their actual
values from the call context, giving reasonable level of context sensitivity. The second
analysis level is described in Sect. 3.

The third analysis level introduces path-sensitivity with tracking program features
as logic formulae over the variable equivalence classes and constants. Conjunction,

Multi-level Static Analysis for Finding Error Patterns and Defects in Source Code 29

disjunction and limited negation are supported as logical operations. The values for
variables are treated symbolically. The resulting formulae are saved in the function
summaries for the interprocedural analysis as well. In the interesting program points,
the additional predicate for the error condition is added, and the feasibility of the final
formula is established via an SMT solver. The error is reported together with the part of
the trace provided by the solver. The level is described in Sect. 4.

In Sect. 5 we briefly describe the implementation of the proposed mechanisms and
experimental results. The multi-level static analysis is implemented in the Svace col-
lection of analyzers. The first-level analysis is implemented on top of Clang Static
Analyzer for C/C++ and on top of FindBugs and OpenJDK JavaC compiler for Java.
A number of popular coding rules and simpler security related rules are implemented.
The other levels are implemented jointly for C/C++ and Java in the Svace analysis core
engine. LLVM bitcode representation and Java class files are converted into the Svace
internal representation and are analyzed according to Sects. 3 and 4 with more than 100
checkers for critical defects. We have verified the implementation against source codes
of Android OS versions 5, 6, and 7, and Tizen OS versions 2.2 and 2.3. The results
showed the scalability of our approach (4–5 h for the full analysis of mentioned OSes)
and good enough true positives level (>60%). As a result, the Svace tool collection has
been deployed for use in Samsung Electronics since 2015, and the feedback provided
by the company engineers has confirmed our own findings.

Section 6 concludes the paper and outlines our future plans.

2 Lightweight Analysis Level

The first analysis level is intended for the coding rules checking (e.g. MISRA or CERT
Secure Coding standards [11, 12]), code exploiting undefined or implementation-
defined behavior (e.g. potential integer overflow, division by zero, code that depends
on function arguments evaluation order), various API usage checks (including security
related [13], like avoiding multiple binds to the same port (CWE-615), using hash
without a salt (CWE-759), etc.). The criterion for including an error type for checking
on this level is the sufficiency of AST level and/or intraprocedural control and data flow
analysis.

The program model used for analysis is the pair <S, F>, where S is the per-module
global symbol information (defined types and global variables) and F is the set of
functions or class methods, where for each function f 2 F we have the pair <A, G>,
where A is the function AST and G is its control flow graph with nodes coming from
the statements contained in A. While the basic blocks are formed from the lower level
statements, the links from these statements to the parent higher-level source constructs
maintained in the AST allow also having some structural information about conditions,
loops, switches, and exceptional flow.

The model is described for the C/C++ language, but similarly e.g. for the Java
language the global information S will be class static variables and defined internal
types, whereas F will describe class methods (after class flattening). Also, it is possible
to reason about the model suitable for popular general purpose languages (like C/C++,
Java, C#) with the formalism unifying possible global information variants,

30 A. Belevantsev and A. Avetisyan

types/classes declaration, and the unified AST having possible language operations and
other structure elements as nodes [6, 7]), but for the simplicity reasons we will con-
centrate on the C language with the memory model that is low level enough to support
the other mentioned languages.

We model the memory rather straightforward with hierarchical memory locations
(MLs) that belong to memory regions (MRs). Memory regions come from the C/C++
memory classes, but for our purpose it is enough to differentiate between a global
memory, a stack memory (for local variables, VLAs, and allocas), and a heap
memory (malloc/new). A memory location M is defined as <R, B, S, O, P>, where
R is the memory region, B is the base address for this location (either a virtual stack
pointer, a global pointer, or a base pointer for a dynamically allocated memory chunk),
S and O are the size and offset (starting from B) for this location, respectively, and P is
the parent memory location (an array for an element access, or a structure for a field
access). We build the model for the intraprocedural analysis assuming type memory
layout has happened, so the virtual stack pointers we use will be unique for every
function and allow for disambiguating stack memory accesses with known offsets.

New memory locations are generated with the following rules:

• The local/global variable access lazily creates the memory location in the corre-
sponding region with the size and offset known from memory layout. The excep-
tions for size are variable-length arrays, alloca() calls, and extern variables; the
offset exceptions are e.g. most of array accesses with indexes known at runtime.
Their size/offset values can be modeled with varying precision as described below.

• The malloc calls create the memory location with dynamic memory region, the
unique B element, and with P = B. For the size element unknown at runtime, the
above note for modeling applies.

• The array and field access lazily creates the child memory location with the P ele-
ment set to the parent compound and the B element set to the one of the parent. The
size and offset is always known for field accesses, for arrays the above note for
modeling applies.

For discussing the evaluation rules for memory accesses we need to introduce the
abstract values we deal with when simulating expressions. The most interesting is
modeling integer evaluations and points-to sets. We suggest two choices that have a
varying precision degree. The first option is to model integer expressions with the
integer interval abstract domain [1] and to model points-to sets as the set of memory
locations that a pointer can possibly point to. For the lightweight analysis, at most two
loop iterations are considered before widening to top values or to loop upper bounds in
case they are known to be constant. The second, more precise option is to utilize
symbolic execution techniques, that is, to use symbolic integers adding proper guarding
branch conditions at join points, and also to guard possible memory locations for
pointers with branch conditions instead of doing merges on joins. This technique is
possible when achieving certain intraprocedural path sensitivity is desired [4], however,
the total number of traversed paths should be limited in order to avoid slowdowns that
can be often observed when carelessly using path-sensitive CSA checkers.

We associate an abstract value with each memory location, and we assume that we
have a Join function that can unify the abstract values of handled expressions or

Multi-level Static Analysis for Finding Error Patterns and Defects in Source Code 31

points-to sets (either through appropriate integer range operations or through building a
disjunction of possible variants with added guard predicates). The Join function is used
on the join points in the control flow (i.e. at the entries of basic blocks with more than
one predecessor) to unify values and points-to sets stored for memory locations on
different paths.

Let us discuss evaluating address and dereference operators with the above mod-
eling options in mind. The address operator &expr provides the memory location for
expr, while the dereference operator *expr provides the abstract value equal to the
Join over the values for memory locations of the points-to set available for expr. In
other words, memory locations are used to evaluate expr as an l-value while their
abstract values are used to evaluate expr as an r-value.

Consider the example code on Fig. 1. Assuming 32-bit integers and pointers, we’ll
have memory locations for x, a, b, and p with base pointer as a virtual stack pointer for
foo, sizes equal to 32, and offsets equal to 0, 32, 64, and 128, respectively. Initially,
the x parameter has an unknown value, the p pointer has an uninitialized points-to set.
After evaluating the assignments to literals on line 2, we lazily initialize memory
locations and values for a and b. With joining points-to sets after processing lines 4
and 6 (at the beginning of line 7), we have that PTðpÞ ¼ fML ðaÞ; ML ðbÞ g, where PT
is the points-to set and ML is the memory location. Then the dereference operator at
line 7 gives us the return value as Join ðVal ðML ðaÞÞ;Val ðML ðbÞÞÞ ¼ ½7; 10� for the
integer range abstraction. In case of guarded predicates abstraction we’ll have pð Þ ¼
x[4ð Þ ?ML að Þ : MLðbÞ and correspondingly the return value as x[4ð Þ ?
Val MLðaÞð Þ : Val ML bð Þð Þ ¼ x[4ð Þ ? 7 : 10.

The overall analysis algorithm on the lightweight level is organized in two stages
for each function. The first stage performs the AST traversal for the checkers that are
only interested in AST properties. Checkers can register their interest in certain types of
AST nodes (functions, loops, calls etc.) and then the traversal will notify the checker
upon reaching the desired node, and when in the callback, the checker is free to move
along AST by itself, too. The second stage is for the checkers that require control flow
or data flow information. The control flow graph for the function is built, and then it is
traversed to build the described memory model with creating memory locations lazily
(upon the first use) and evaluating abstract values with the selected precision. When the
model is constructed, the checker can traverse the control flow graph as desired and
consult the computed values and memory locations.

Fig. 1. Memory locations example.

32 A. Belevantsev and A. Avetisyan

To finalize the description, we would like to note that in general the performed
intraprocedural analysis for calculating the memory model is sound. The unknown/top
values for integer ranges are set and handled conservatively as well as the coarsening of
the predicates. The unsoundness kicks in on the higher analysis levels.

3 Interprocedural Analysis Level

Further analysis levels are designed for interprocedural context-sensitive analyses and
critical defects such as buffer overflows, null pointer dereferences, and resource leaks.
Unlike the previous level, the analysis is presented with the set of functions and global
information (variables, classes). The top-level analysis algorithm looks like follows:

1. Build the global program call graph. The function bodies are scanned in order to
pick up the call instructions. Function pointer calls are initially considered as calls
to unknown functions. Optionally, the very quick analysis is performed in order to
support simple cases of single-target function pointer calls. During the function
body scan, only the expressions taking function address, pointer assignments, and
function pointer calls are considered. Likewise, the global variables of function
pointer types are considered. In case of the function pointer call, if the pointer
always equals to the single function address, the call is resolved to this address and
the call graph is updated;

2. Break any cycles found in the call graph by removing an arbitrary edge that are in
the cycle. Our experience shows that the precision loss arising from this decision is
minimal. The alternative solution is to analyze such cycles twice in order to take
into account the recursion effects;

3. Perform the intraprocedural analysis from bottom to top (in reverse topological order)
according to the approach outlined in Sect. 3.1. Every function is analyzed once and
the analysis effect is captured in the function summary (resume). The rules for creating
callee summaries and applying them within the caller are outlined in Sect. 3.2.

The analysis operates on the lower-level 3-address intermediate representation
suitable for the general purpose languages (C/C++/Java) similar to the LLVM IR with
the attached information about high-level language types and other constructs as
needed (for example, functions pointer calls in the IR that have originated from virtual
calls are marked as such with on the side information). Local variables that do not have
their address taken are lowered to pseudoregisters – temporaries that never alias with
each other and are also used for evaluating complex expressions.

3.1 Intraprocedural Analysis

The goal of intraprocedural analysis is to track abstract values and to compute the
memory model for the single function. The memory is modeled with the memory
location abstraction outlined in Sect. 2 for the lightweight analysis, that is, the analysis
computes the mapping Mem : Vars ! MLs for each program point, where Vars are
program variables and MLs are memory locations. Pseudoregisters get their memory
locations with the special register memory region and just their size initialized.

Multi-level Static Analysis for Finding Error Patterns and Defects in Source Code 33

The values that are stored in memory locations are tracked with the concept of value
classes (VCs). It has been noticed (by us and the other researchers as well [8, 10]) that
tracking value equivalences between variables plays the important role in achieving the
good analysis quality. Thus, we associate a value class with each memory location
(calculating the function Val : MLs ! Vals) that acts as an abstract value and is
assigned using the rules similar to assigning value numbers in the hash-based value
numbering techniques [14]. The attributes of interest are then calculated as being the
property of value classes, not memory locations.

Consider the code example on Fig. 2. Let the memory location for x have the value
class vc1 (i.e. Val ML xð Þð Þ ¼ vc1), then we can determine that Val ML að Þð Þ ¼ vc2 on
line 2 and Val ML bð Þð Þ ¼ Val ML cð Þð Þ ¼ vc3 on lines 3 and 7, respectively. As the
points-to set of Val ML pð Þð Þ on line 10 equals to fML bð Þ;ML cð Þg, we can determine
that the return location always has the value class vc3. In case of attaching the value
tracking attributes to memory locations (e.g. integer ranges), we can only find that both
b and c, and correspondingly the return value will have the same integer range, but not
that they will be exactly equal.

The VC propagation happens as follows. For assignment operations, the VC for the
left side memory location is set to the VC of the right side. For usual arithmetic and
logical operations, VCs of operands are retrieved and the operand order for commu-
nicative operations is canonicalized so that the operand with the lower numbered VC
goes first. Then, if the VC for this operation with these given VCs as operands has been
already assigned, the same VC is returned, otherwise the new VC is created. At control
flow join points the VC is assigned via JoinVC vc1; vc2ð Þ function: if the memory
location has the same VC along both incoming edges, then this VC is retained,
otherwise the new VC is returned.

Fig. 2. Value classes example.

34 A. Belevantsev and A. Avetisyan

The analysis allows to calculate interesting attributes attaching them to value
classes1. When simulating an instruction, the analysis updates the resulting VC and
then proceeds with updating all attributes attached to the VCs of operands. The attri-
butes that are always calculated are integer value tracking and points-to sets. Checkers
typically work by defining their specific attributes and their propagation rules so that
the generic VC propagation algorithm will also update these attributes.

The default integer value tracking is with the integer range abstraction as discussed
in Sect. 2. The points-to tracking also follows the intraprocedural analysis described
there: the address operator results in returning the memory location of its operand,
control flow joins result in joining the points-to set attached to VCs of the memory
location that come from different execution flows. The dereference operator retrieves
the points-to set attached to the VC of its memory location. When doing a load, if the
points-to set has only one element, its VC is returned, otherwise the VCs are joined
pairwise with JoinVC together with their specific attributes (when the checker supplies
the join function). When doing a store, having a single element in the points-to
set allows making a strong update, otherwise for each ML from the points-to set we
update its VC as JoinVCðvcold; vcnewÞ.

Loops are handled with prior natural loop detection and then simulating the loop for
a fixed amount of iterations (typically three times). After all iterations have been
simulated, the resulting VCs are obtained as a join over the values for all iterations, and
their attributes would typically take into account loop exit conditions as well as the
results of induction variable analysis. Checkers may supply specific propagation
functions for the loop exit edges in order to be able to apply the widening operators [1]
to their attributes as they deem necessary.

The interprocedural analysis is designed as unsound for scalability, and the main
unsoundness sources are the abovementioned loop handling with analyzing limited
amount of iterations and the assumption of non-aliased function arguments that works
well for real life projects.

3.2 Creating and Applying Function Summaries

The interprocedural analysis in scalable static analyzers is commonly built around the
function summary concept, the idea of capturing the necessary information for the
analyzed function and then reusing it when processing calls to the function without
having a need to touch its body again. We also utilize this idea. We build the function
summary as the part of our Mem and Val mappings (with the attributes attached to
VCs) computed as joins over the function return points. The part interesting to us is the
one describing the function changes to its “external” memory (global variables,
arguments, return values) and other memory locations that escape via the external
memory links. The maximum link depth that the location should have in order to be

1 Checkers that are more concerned with memory properties (like memory leaks) get benefit from
attaching attributes directly to memory locations instead of value classes [8], but we do not discuss it
in more details in this paper.

Multi-level Static Analysis for Finding Error Patterns and Defects in Source Code 35

added to the summary may be limited, and this brings another source of the analysis
unsoundness on the interprocedural level. The summary is built using the following
algorithm:

1. Add MLs for function parameters, global variables, and return values to the sum-
mary; set k ¼ 0.

2. For all MLs from the summary, do:
a. Retain the VCs of the MLs in the summary together with its attributes.
b. If the ML corresponds to the pointer type and has the points-to set attached to its

VC, add all MLs from this points-to set to the summary.
3. Set k ¼ kþ 1: If k has reached the maximum depth level, stop, else go to step 2.

When applying the function summary to the caller’s context, we need to build the
correspondence between formal and actual parameters for the function in order to be
able to replace the memory locations that are stored in the summary with the locations
of the caller function. We start with replacing MLs of the formal parameters that are
stored in the summary with the MLs of the actual parameters, and then we update any
summary MLs that have the replaced MLs as parents (their P fields). We can meet
conflicts in the initial replacement when the actual parameters happen to have the same
MLs (i.e. they alias each other), in which case we need to unify their VCs with JoinVC
as well as the attached attributes. Except of this case, the value classes that are stored in
the resume can be safely transferred to the caller context.

However, for other attributes attached to VCs it is desirable to redo all computa-
tions that resulted in the final attribute value based on the attributes of the actual
parameters in order to gain the context sensitivity. The reason for that is when starting
the simulation with unknown formal parameter values in the callee, we are likely to
lose information when joining any other nontrivial attribute value with the unknown
one. In order to perform such repeated computation, it is enough to remember the
history of VC changes (from joins or other simulations) that are originate from function
parameters’ VCs. This is because attributes clarify some properties of the value class
and cannot change without changing the underlying VC (as by definition the same VCs
have the same runtime value and thus cannot have different properties).

We call the initial unknown VCs of the function parameters and global variables
initial VCs. When doing any VC update that has an initial VC as one of the parameters,
we remember the source VCs and the exact operation that was performed. This
information is stored alongside the resulting VC with its attributes and is therefore the
part of the summary. When the MLs of the summary are replaced with the actual caller
MLs, we take their initial VCs, set their (unknown) attributes as equal to the attributes
of the caller’s VC, and start redoing the computation on their attributes along the saved
history of changes to receive the updated attribute values for all VCs.

Consider the code presented on Fig. 3. When analyzing function baz, we create
MLs for p and *p, the initial VC for MLð� pÞ as vc1, and with corresponding different
VCs for MLð� pÞ at lines 3 and 5 (vc2 and vc3, respectively), reflecting that the value
has been changed. However, when using the integer range abstraction, the simulation
of additions on those lines and the following merge at the join point at line 6 (vc4) does

36 A. Belevantsev and A. Avetisyan

not add anything to the initial unknown integer range. Later, when applying the
summary for baz at line 3 of function faz, we replace the ML of *p from the summary
with the ML of k from faz. Then, we proceed to find out that the range for initial vc1 is
[7, 7], for vc2 it is [9, 9], and for vc3 and vc4 it is [10, 10] and [9, 10], respectively2.
This final VC value is set as the VC forMLðkÞ as the result of the summary application.

4 Path-Sensitive Analysis Level

The interprocedural level described in Sect. 3 already works well enough for a variety
of checkers. Some notable examples include, first, null pointer dereference checkers
that catch situations when the pointer has been explicitly compared with or assigned
NULL value, and it is dereferenced unconditionally or under the same condition as the
comparison. The latter constitutes the immediate runtime error, while the former can
indicate either the forgotten NULL check or the excessive defensive checking. Second,
tracking tainted values and sanitization code surprisingly does not always require path
sensitivity, as the forgotten sanitization usually happens on all paths. Finally, specific
checkers like correct usage of proper new[]/delete[] operators or leaving unini-
tialized fields in constructors require interprocedural analysis but not path sensitivity.

However, for most of buffer overflows, complex null pointer dereferences, use after
free access, resource leaks, and uninitialized variables having path sensitive data is
crucial. The framework described in Sect. 3 can be adapted to serve for this with the
even higher precision analysis level.

Let us consider how the analysis components should be changed to achieve path
sensitivity. The memory model of memory locations stays intact. The value classes
become the symbolic variables that are assigned the same way through usual opera-
tions, but these operations are also stored to track the integer values of VCs. For the
case of joining the VCs from different flow edges, the JoinVC function, when gener-
ating the new VC in case its input VCs turn to be unequal, stores the conditions on

Fig. 3. Applying summaries.

2 In case we have nontrivial VC for glob variable, we can further improve the precision if e.g. the
conditional operator will never be executed and we don’t have to consider the instruction at line 5.

Multi-level Static Analysis for Finding Error Patterns and Defects in Source Code 37

which the new VC equals to its first or second input VC. The conditions are expressed
as simple comparisons with constants or similar boolean operations. The points-to sets
are also merged with recording conditions on which the memory location with this VC
points to one or the other location. When processing the dereference operator, the
points-to sets conditions are tested on satisfiability with the help of SMT solver in order
to remove the unfeasible variants.

Checkers can attach the attributes to VCs that are expressed in terms of logical
formulas over VCs or constants. Independently, the analysis tracks the path predicate
that shows the condition necessary to reach the current instruction starting from the
function entry. When joining the attributes from different control flow edges e1 and e2,
their formulas are augmented with the path predicate for the corresponding edges, so
that the resulting formula is Pathðe1ÞVFormðe1ÞWPathðe2ÞVFormðe2Þ, where Path is
the path predicate and Form is the formula for the edge. When the checker is interested
in verifying the attribute value and issuing a warning, it builds the formula out of the
attribute formulas, the path predicate, and the error condition and feeds it to the SMT
solver. In the case the formula is satisfiable, the warning is issued. The checker can also
build an execution trace through the function to explain the warning by conjuncting the
error condition formula with the control flow split conditions and giving hints at the
possible execution flow.

Creating and applying function summaries for the interprocedural analysis is
similar to Sect. 3.2 with respect to memory locations and value classes. The compu-
tations that are redone with initial VCs substitute the VCs for actual parameters into the
attribute formulas and their conditions as well. The resulting formulas that are passed to
the caller context are simplified in order to reduce their size.

Consider again the code on Fig. 3. When analyzing function baz, we track that
vc2’s value is actually vc1 þ 2, vc3’s value is vc2 þ 1, and vc4 is glob[4 ? vc2 þ 1 :
vc1 þ 2. When applying the summary for baz at line 3 of function faz, we update the
final VC value as glob[4 ? 10 : 9.

5 Svace Analyzer Collection

Over the course of years we have implemented the above multilevel static analysis
model within the Svace analyzer, effectively turning it into the collection of analyzers,
serving all three of described analysis levels for C, C++, Java [15–17], and C# [18].
The overall architecture of our implementation is depicted on Fig. 4. The first analysis
phase is source code parsing and the intermediate representation construction for the
further phases. This process should be transparent to the user, so it is implemented as
an OS-dependent build monitoring component capturing the compilation, assembly,
linkage, and other events of the original build process and then passing it to the Python
library. The library organizes running our own compilers for each supported languages
and/or running the 1st level static analyzers. For C/C++, the compiler/analyzer is based
on the heavily patched Clang/CSA [20] 3.8 (more than 2000 patches for C/C++ dialects

38 A. Belevantsev and A. Avetisyan

compatibility and the lightweight checkers3). For Java, we use the OpenJDK 8-based
javac compiler with extra patches for better compatibility with earlier Java versions
and for syntactic-based checkers. Most of the other 1st level static checkers are
implemented in the FindBugs tool infrastructure [19]. Also, we additionally capture
and save all JAR libraries used in the original compilation. The C# checkers for all
levels are based on Roslyn and implemented separately from the main engine [18].

The second, main analyzer phase is parsing available language-dependent IR
(LLVM IR or Java bytecode classes) into the Svace IR and then proceeding, separately
for each language, with the top-level analysis algorithm sketched in Sect. 3. It is
implemented in Java. For C/C++ analysis, we additionally capture linker invocations in
order to be able to resolve external function calls reliably; when this information is not
available, own heuristics are used (includes information, source file paths). The
interprocedural analysis starts with analyzing functions that have specifications – short
codes capturing the essence of what the function does and is interesting for the analysis.
Specifications are needed to provide the knowledge about the standard libraries placed
in the program environment, which we don’t expect to have the source code for. They
are written on the program’s language (C/C++ or Java) using special Svace API calls
(e.g. to tell the analyzer that this function argument is a buffer and that one is its length)
and compiled to the Svace IR just like any other function. For Java, after specifications
we also analyze the captured JAR libraries.

The analysis core is responsible for calculating the memory model (memory
locations and their value classes) on two analysis levels simultaneously (with integer

Fig. 4. Svace analyzer collection architecture.

3 We do not use the CSA path-sensitive infrastructure, as its scope is limited by the compilation unit,
but move the heavy checkers to our own analyzer engine.

Multi-level Static Analysis for Finding Error Patterns and Defects in Source Code 39

range/points-to sets tracking and merging data or additionally remembering predicates
at the join points). Checkers are responsible on creating their own attributes and
attaching them to value classes. The APIs are provided for querying the formula
satisfiability via Z3 solver [21] and for issuing warnings. We have implemented more
than 150 checkers for more than 20 critical defect types.

The intraprocedural analyses are run in parallel with the configurable number of
threads. Any functions that don’t have a path in the call graph connecting them can be
analyzed in parallel. The thread pool manager tries to interleave reading the function
bodies with the analysis and to avoid storing lots of function summaries in memory –

once all function callers have been analyzed, its summary is no longer needed. The
analyzer can serialize summaries to disk upon hitting the user-configurable memory
consumption limit or can turn off the serialization completely to speed up the analysis
in the conditions of large memory space available.

Upon the analysis completion warnings from all analysis levels are stored in the
database in the unified format (warning type, message, locations, source/sink and
extended explanatory execution trace, if available). The database also stores the tok-
enized program source code in order to be able to present the analysis results to the user
in the web-based GUI. The user review results (whether the warning is a false positive,
a true positive, or intentionally written, together with the user comments) are also
stored. All this data constitutes the single analysis run, and the GUI provides the ability
of comparing different analysis runs so that the user can check only newly appeared
warnings also not seeing again the warnings that were once classified as false positives.
This functionality is crucial for the production deployment of the analyzer. The other
important supported use case is so-called fast analysis – the possibility to reanalyze the
changed source files while using the function summaries from the previous full analysis
fun for the unchanged code4, but its design and implementation are out of scope of this
paper.

We have evaluated the Svace analyzer collection on a variety of open source
projects, ranging from thousands to millions of LOCs. The analysis time for large
projects we tried is under 5 h for a machine with 32 threads and up to 90 Gb memory
occupied [8] (Android 5 with 8.4MLOC – 4 h 55 min, Tizen 2.3 with 6.5 MLOC –

under 3 h, Linux kernel version 3.17 – about an hour; the Java analysis usually is faster
and for Android 5 Java takes little more than an hour). The analysis quality is evaluated
with own testsuite of more than 2000 self-contained tests and by constantly reviewing
the analysis results for the large projects and providing markup for the warnings found.
For Android 5, our evaluation shows 70-80% true positives for null dereference
warnings, *60% true positives for buffer overflow warnings [23], *50% for memory
leaks and *60% for resource leaks [8].

Since 2015, Svace has been deployed in Samsung Electronics development process
and for now analyzes most of company’s source code [22]. The analysis quality results
gathered by us have been independently confirmed by the company’s engineers.

4 One example is the Android app fast analysis that takes into account the calculated analysis data for
the full Android OS.

40 A. Belevantsev and A. Avetisyan

6 Conclusions

We have presented a design for the multilevel static analysis, including a memory
model, a value model for basic intraprocedural, an interprocedural analysis, and a
path-sensitive analysis. The multilevel static analysis allows implementing the checkers
for all of the defects required in production by utilizing the appropriate analysis levels,
or even combining the results of simple yet high true positive rate checker capturing
“easy” widespread error patterns with the more complex checker dealing with
path-sensitive situations. The lower level IR used for the core analysis level and the
flexible memory model allows supporting different general purpose languages in the
analyzer. Putting the most important data about pointers and integer values into the
analysis core also allows for scalability and extensibility (adding new checkers does not
influence significantly the total analysis time).

Except the usual process of constantly refining the analysis engine and checkers
implementation, we are directed now towards the better reflection of the high-level
properties of object-oriented languages in the analyzer, improving the fast analysis
capabilities in order to be able to easily integrate the analysis into continuous inte-
gration systems, and improving the data structures representing the logic formulas and
their simplification approaches for the path-sensitive analysis level5. We are also
experimenting with completely orthogonal approaches such as utilizing machine
learning techniques for separating true positive warnings out of false positive ones in
the analysis results presentation for the user.

References

1. Cousot, P., Cousot, R., Feret, J., et al.: Why does Astrée scale up? Form Methods Syst. Des.
35, 229 (2009). https://doi.org/10.1007/s10703-009-0089-6

2. Xie, Y., Aiken, A.: Saturn: a scalable framework for error detection using Boolean
satisfiability. ACM Trans. Program. Lang. Syst. 29(3), 1–43 (2007). Article 16

3. Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis using symbolic ranges. In:
Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 366–383. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2_23

4. Xu, Z., Kremenek, T., Zhang, J.: A memory model for static analysis of C programs. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415, pp. 535–548. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-0_44

5. Ignatiev, V.: Using static analysis for customizable checks of C/C++ semantic constraints.
Ph.D. thesis, Moscow (2015)

6. Strein, D., Kratz, H., Lowe, W.: Cross-language program analysis and refactoring. In:
Proceedings of the Sixth IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM 2006), Washington, DC, USA, pp. 207–216. IEEE Computer Society
(2006)

7. Zubov, M.V., Pustygin, A.N., Startsev, E.V.: Use of the intermediate software represen-
tations for static analysis of source code. Doklady TUSUR 27, 64–68 (2013). (in Russian)

5 The predicate representation has to be regularly reviewed as the path-sensitive analysis portion in the
analyzer grows over time.

Multi-level Static Analysis for Finding Error Patterns and Defects in Source Code 41

http://dx.doi.org/10.1007/s10703-009-0089-6
http://dx.doi.org/10.1007/978-3-540-74061-2_23
http://dx.doi.org/10.1007/978-3-642-16558-0_44

8. Borodin, A.: Interprocedural context-sensitive static analysis for finding defects in C/C++
program source code. Ph.D. thesis, Moscow (2016)

9. LLVM Language Reference Manual. http://llvm.org/docs/LangRef.html
10. Tucker Taft. The use of value numbers in static analysis. http://www.adacore.com/

knowledge/technical-papers/the-use-of-value-numbers-in-static-analysis/
11. MISRA C 2012 Guidelines. https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/

196/Default.aspx
12. CERT C Coding Standard. https://www.securecoding.cert.org/confluence/display/c/SEI

+CERT+C+Coding+Standard
13. CWE, Common Weakness Enumeration Database. https://cwe.mitre.org/
14. Briggs, P., Cooper, K.D., Taylor Simpson, L.: Value numbering. Softw. Pract. Exper. 27(6),

701–724 (1997). https://doi.org/10.1002/zaac.201500219
15. Borodin, A., Belevantsev, A.: A static analysis tool Svace as a collection of analyzers with

various complexity levels. Trudy ISP RAN/Proc. ISP RAS 27(6), 111–134 (2015). (in
Russian)

16. Ivannikov, V.P., Belevantsev, A.A., Borodin, A.E., Ignat’ev, V.N., Zhurikhin, D.M.,
Avetisjan, A.I., Leonov, M.I.: Staticheskij analizator Svace dlja poiska defektov v
iskhodnom kode programm [Svace: static analyzer for detecting of defects in program
source code]. Trudy ISP RAN [The Proceedings of ISP RAS] 26(1), 231–250 (2011). https://
doi.org/10.15514/ispras-2014-26(1)-7. (in Russian)

17. Avetisjan, A.I., Belevantsev, A.A., Borodin, A.E., Nesov, V.S.: Ispol’zovanie staticheskogo
analiza dlja poiska ujazvimostej i kriticheskikh oshibok v iskhodnom kode program [Using
static analysis for searching vulnerabilities and critical errors in the source code of
programs]. Trudy ISP RAN [The Proceedings of ISP RAS] 21, 23–38 (2011). (in Russian)

18. Koshelev, V.K., Ignatyev, V.N., Borzilov, A.I.: C# static analysis framework. Trudy ISP
RAN/Proc. ISP RAS 28(1), 21–40 (2016). (in Russian)

19. FindBugs tool. http://findbugs.sourceforge.net/
20. Clang Static Analyzer. http://clang-analyzer.llvm.org/
21. Z3 Theorem Prover. https://github.com/Z3Prover/z3
22. Svace tool deployed in Samsung. Vedomosti news. http://www.vedomosti.ru/technology/

articles/2016/11/17/665253-russkie-programmisti-samsung
23. Dudina, I.: Inter-procedural buffer overflows detection in C/C++ source code via static

analysis. Trudy ISP RAN/Proc. ISP RAS 28(5), 119–134 (2016). https://doi.org/10.15514/
ispras-2016-28(5)-7. (in Russian)

42 A. Belevantsev and A. Avetisyan

http://llvm.org/docs/LangRef.html
http://www.adacore.com/knowledge/technical-papers/the-use-of-value-numbers-in-static-analysis/
http://www.adacore.com/knowledge/technical-papers/the-use-of-value-numbers-in-static-analysis/
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
https://www.securecoding.cert.org/confluence/display/c/SEI%2bCERT%2bC%2bCoding%2bStandard
https://www.securecoding.cert.org/confluence/display/c/SEI%2bCERT%2bC%2bCoding%2bStandard
https://cwe.mitre.org/
http://dx.doi.org/10.1002/zaac.201500219
http://dx.doi.org/10.15514/ispras-2014-26(1)-7
http://dx.doi.org/10.15514/ispras-2014-26(1)-7
http://findbugs.sourceforge.net/
http://clang-analyzer.llvm.org/
https://github.com/Z3Prover/z3
http://www.vedomosti.ru/technology/articles/2016/11/17/665253-russkie-programmisti-samsung
http://www.vedomosti.ru/technology/articles/2016/11/17/665253-russkie-programmisti-samsung
http://dx.doi.org/10.15514/ispras-2016-28(5)-7
http://dx.doi.org/10.15514/ispras-2016-28(5)-7

Pipelined Bottom-Up Evaluation of Datalog
Programs: The Push Method

Stefan Brass(B) and Heike Stephan

Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg,
Von-Seckendorff-Platz 1, 06099 Halle(Saale), Germany

{brass,stephan}@informatik.uni-halle.de

Abstract. In this paper, we present a method for bottom-up evalua-
tion of Datalog programs in deductive databases that “pushes” derived
facts immediately to other rules where they are used for deriving more
facts. In this way, the materialization of derived relations is avoided as
far as possible. Derived facts are represented by values in variables and
a location in the program, and not as explicitly constructed tuples. This
helps to avoid copying operations and to keep the actively used mem-
ory small to make better use of modern processors. The method can be
quite easily explained by translating Datalog to functions in a standard
programming language like C++ and then using optimizations of the C++

compiler like inlining. First performance tests with benchmarks from the
OpenRuleBench collection give good results. This is interesting because
systems based on SLD-resolution with tabling such as XSB have beaten
older deductive database implementations based on bottom-up evalua-
tion. Now it seems that bottom-up evaluation can be done in a very
competitive way.

1 Introduction

Database application programs usually consist of queries, written in a declar-
ative language (typically SQL), and surrounding program code, written in a
procedural language (like PHP or Java). The goal of deductive databases is to
write a larger part of the application, ideally the entire program, in a declarative
language based on Prolog/Datalog.

This has many aspects, e.g. the invention of new language constructs for
declarative output [4]. However, the classic task of improving the speed of query
evaluation is still important. The amount of data to be processed is ever growing.
We might also be able to make better use of new processor architectures. For our
approach, which is implemented by translating Datalog to C++, also the compiler
technology is very important. The optimization in a compiler has become more
powerful, so approaches that were too slow earlier can be very competitive now.

In this paper, we further develop the “Push Method” for bottom-up evalua-
tion introduced in [3,6]. It applies the rules from body to head (right to left) as
any form of bottom-up evaluation, but it immediately “pushes” a derived fact to

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 43–58, 2018.
https://doi.org/10.1007/978-3-319-74313-4_4

44 S. Brass and H. Stephan

other rules with matching body literals. In contrast, the classic approach would
first apply a rule completely before using the derived facts (which also requires
intermediate storage of these tuples). Our method has the following advantages:

– We try to avoid the materialization and storage of facts as far as possible,
and on a lower level the copying of values. For instance, consider the rule

p(X,Z) ← q(X,Y) ∧ r(Y,Z).

Suppose that we have derived a new fact q(a, b) and let r be a database rela-
tion (defined by facts). Now if there are many facts r(b, Z), there is no reason
to copy the value a of X for each such fact. Actually, standard implemen-
tations of SLD-resolution/Prolog would also not touch the value of X while
they backtrack over different solutions for the second body literal, whereas
standard implementations of bottom-up evaluation do this.

– By immediately using a derived fact, we can keep the data values near to
the CPU (in registers or the cache), and thereby speed up the computation.
Furthermore, memory is used for a shorter time and can be recycled earlier.

– Another feature of our method is that it does partial evaluation and rule
specialization at “compile time”. The method translates a given Datalog pro-
gram to C++ (which is then compiled by a standard compiler). We assume
that the rules defining derived predicates are known in this step, whereas the
facts for the database predicates (including user input) are known only at
runtime. Time invested in the compilation phase can later be redeemed over
many executions of the resulting program (with different database states).
Actually, it might pay off even in a single execution, because often there are
many more database facts than rules.

– Finally, if there is large number of mutually recursive rules, classic bottom-up
evaluation would iteratively apply all these rules until none produces a new
fact. If only a small number of these rules can actually fire in an iteration
(because only they have new matches for body literals), this is obviously
inefficient. Our “Push Method” does not look at rules unless there really is a
new matching fact for a body literal.

The main contribution of the current paper, compared with our older papers, is
that we now generate a set of recursive procedures and rely on the optimizations
of the compiler (in particular, inlining and copy propagation). Instead, the ver-
sion of [6] used C++ only as a portable assembler and generated a single large
procedure with a big switch. This implementation managed its own stack, but
only for recursive rules. We thought that the procedure call overhead would be
too large. However, because the compiler unfolds procedure calls (“inlining”),
this is not necessarily the case. We did compare the runtime on a number of
benchmarks from the OpenRuleBench collection [11], and the runtime was about
the same, sometimes even slightly faster. One reason for improved runtime might
be that the older version produced code for each specialized version of a pred-
icate only once, while a compiler that does aggressive inlining is stopped only
by recursions—it may inline several calls to the same procedure if the body is

Pipelined Bottom-Up Evaluation of Datalog Programs 45

not large. This saves jumps and stack usage. The new version of the method is
also much simpler to understand than the old one.

2 Query Language

We consider basic Datalog, i.e. pure Prolog without negation and function sym-
bols. Thus, a logic program is a finite set of rules of the form A ← B1 ∧ · · · ∧ Bn

with atomic formulas A (the head literal of the rule) and B1, . . . , Bn (the body
literals of the rule). The atomic formulas have the form p(t1, . . . , tm) with a
predicate p and argument terms ti, which are variables or constants. As usual in
Prolog, ← is written “:-”, ∧ is written “,”, and variables start with an uppercase
letter to distinguish them from constants. As an example, consider

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).
grandparent(X, Z) :- parent(X, Y), parent(Y, Z).
answer(Z) :- grandparent(sam, Z).

This logic program computes the grandparents of sam, given database rela-
tions mother and father. We assume that there is a “main” predicate answer,
for which we want to compute the derivable instances. All other predicates are
views or names for subexpressions of the query.

We require range-restriction (allowedness), i.e. all variables in the head of the
rule must also appear in a body literal. This ensures that when rules are applied
bottom-up (from right to left), only variable-free atomic formulas (facts) are
derived. As usual in deductive databases, the predicates are classified into

– EDB-predicates (“extensional database”), which are defined only by facts
(usually a large set of facts stored in a database or specially formatted files).
In the above example, mother and father are EDB predicates.

– IDB-predicates (“intensional database”), which are defined by rules. In the
above example, parent, grandparent and answer are IDB predicates.

We also say “EDB body literal” for a body literal with EDB-predicate, and “IDB
body literal” for one with IDB-predicate.

Since we use a compiler-based approach, one would probably not want to
compile the constant “sam” into the program, but to execute the compilation
result many times for computing the grandparents of different people. This can
easily be achieved by replacing the last rule by

answer(Z) :- input(X), grandparent(X, Z).

Here, input is a new EDB-predicate which is set before each execution, and
contains e.g. the single fact input(sam). The result of the compilation depends
only on the rules (and possibly facts) for the IDB-predicates. The database state,
i.e. the extensions of the EDB-predicates, can be arbitrarily updated.

46 S. Brass and H. Stephan

3 Goal-Directed Query Evaluation with SLDMagic

Pure bottom-up evaluation is not goal-directed, i.e. it computes all derivable
facts without looking at the given query. It is standard to do the magic sets
program transformation [1] first, which reduces the applicability of rules such
that only facts relevant to the given query can be derived. The output of this
transformation is again a Datalog program, which is then used as input for
bottom-up evaluation.

In our case, we use an improved “Magic Set” method, SLDMagic [2,5]. This
is interesting because it simulates SLD-resolution (the algorithm underlying Pro-
log) more precisely than Magic Sets (furthermore, the output is mostly linear
Datalog, which is good for the Push method, see below). Basically, the rules
resulting from the SLDMagic transformation compute the nodes of the SLD-tree.

Example 1. The result of the SLDMagic prototype1 for the above program is
(with slight renamings of variables):

p0(X) :- input(X).
p4(Y) :- p0(X), mother(X,Y).
p4(Y) :- p0(X), father(X,Y).
p7(Z) :- p4(Y), mother(Y,Z).
p7(Z) :- p4(Y), father(Y,Z).
answer(Z) :- p7(Z).

A fact of the form p0(X) corresponds to the goal grandparent(X,Z) in the
SLD-tree, where Z is the result variable (i.e. the variable appearing in the original
query). Since SLDMagic must produce range-restricted rules, only variables that
are bound to a constant appear as arguments in the generated predicates like p0.
A fact of the form p4(Y) corresponds to the goal parent(Y,Z) in the SLD-tree,
still with Z as result variable. I.e. if one finds a Z with parent(Y,Z), this Z is an
answer to the original query.

SLD-Resolution does several steps in between, which have been removed by
the “copy rule elimination” phase of the SLDMagic prototype (this explains
why there are holes in the predicate numbers). Finally, p7(Z) corresponds to
the empty goal in the SLD-tree, i.e. the query is proven, and Z is a result value.

4 The Push Method with Procedure Calls

Whereas Magic Sets and SLDMagic are translations from Datalog to Datalog,
the Push method is implemented here by a translation from Datalog to C++. The
resulting program is then compiled to machine code by a standard optimizing
compiler. In our tests, we have used g++. Because the C++ compiler performs
powerful optimizations, such as inlining and copy propagation, the code we gen-
erate from a Datalog program can be simple.

1 Available at http://users.informatik.uni-halle.de/∼brass/sldmagic/.

http://users.informatik.uni-halle.de/~brass/sldmagic/

Pipelined Bottom-Up Evaluation of Datalog Programs 47

4.1 Basic Code Structure, Requirements

Because we want to “push” derived facts through rules (from a body literal to
the head), rules with a single IDB body literal (where derived facts can match)
are especially simple:

Definition 1 (Rule Classification). Rules in the given Datalog program are
classified into

– Start rules: Rules with only EDB-body literals,
– Simple (or “linear”) rules: Rules with exactly one IDB body literal,
– Complex rules: Rules with more than one IDB body literal.

A Datalog program without complex rules is a linear Datalog program. Our
SLDMagic transformation produces programs that are mostly linear (only for
rules that are recursive, but not tail recursive, complex rules are generated).

The C++ program that is generated from a given set of rules basically contains
for each IDB-predicate p of arity n a corresponding procedure p with n arguments
that is called (at least) once for each derivable fact p(c1, . . . , cn). If one looks at
the procedure calls ordered by the time when they occur, one gets the following
notion of a computation sequence:

Definition 2 (Computation Sequence). Let a Datalog program P with rules
defining IDB-predicates and a database D with facts for EDB-predicates be given.
Let M be the minimal Herbrand model of P∪D (i.e. the set of all derivable facts).
A computation-sequence is a sequence S of facts for IDB-predicates.

– The computation is correct iff all facts in S appear in M.
– It is complete iff all facts for IDB-predicates in M appear in S.

Any algorithm for bottom-up evaluation of a Datalog program computes the
facts of the minimal model in some such sequence. The specific order of the facts
can be very different, though, which also influences how long intermediate facts
must be stored. However, any reasonable computation sequence must have the
following property: All facts in the sequence must be derivable from previously
derived facts or given database facts. We call such computation sequences causal.

Definition 3 (Causal Computation Sequence). A computation sequence
S = F1, F2, . . . is causal iff for every fact Fi, i = 1, 2, . . . there is a rule A ←
B1 ∧ · · · ∧ Bn in P and a ground substitution θ for this rule such that

– Aθ = Fi and
– {B1θ, . . . , Bnθ} ⊆ D ∪ {F1, . . . , Fi−1}.
Lemma 1. Every causal computation sequence is correct.

The translation result of the “Push” method contains a procedure “start()”
which is basically the main program. It ensures that the start rules are applied
which then lead to further procedure calls. Start rules are easy to execute
because they contain only EDB body literals. The extensions of these predi-
cates (database relations) are given, so the query corresponding to the rule body
can be executed and the calls for the head literal can be done.

48 S. Brass and H. Stephan

Definition 4 (Requirements for the start() procedure). Let a pro-
gram P and database D be given. The procedure start() ensures that for every
start rule A ← B1 ∧ · · · ∧ Bn in P and every ground substitution θ for this rule
such that Biθ ∈ D for i = 1, . . . , n the procedure call corresponding to Aθ is
executed, i.e. the computation sequence contains this fact (under the assumption
that the sequence is finite).

Besides the start() procedure, the translation result contains one procedure
per predicate. It must ensure that when a fact p(c1, . . . , cn) is derived, all appli-
cable rule instances are fired that contain p(c1, . . . , cn) in the body. For simple
(linear) rules this is easy, because they contain only one IDB body literal, so
the true instances of the other body literals can be looked up in the database.
For instances of complex rules (containing more than one IDB body literal), we
must look at the global computation sequence: We can only require that the rule
instance is applied if the needed instances of the other IDB body literals have
already been derived earlier in the sequence. So in the case of complex rules, we
need temporary storage for previously derived instances of IDB body literals.

Definition 5 (Requirements for procedures implementing predicates).
Let a program P and database D be given. For every IDB-predicate p of arity n
there is a procedure p with n arguments that ensures the following condition for
the computation sequence S = F1, F2, . . .:

For each i = 1, 2 . . ., if Fi is the first occurrence of the fact (i.e. there is no
Fj with j < i and Fj = Fi), the following holds:

– For each rule A ← B1 ∧ · · · ∧Bm and each ground substitution θ for that rule
such that there is a k ∈ {1, . . . , m} with Bkθ = Fi and

{B1θ, . . . , Bmθ} ⊆ {F1, . . . , Fi} ∪ D,

Aθ appears somewhere in the sequence, i.e. this fact also occurs in S (under
the assumption that the sequence is finite).

It is not required that the position of the fact is after i (e.g., if it was already
derivable with another rule instance).

This simply means that all rule instances that are applicable when Fi is
derived for the first time, are eventually applied. If we can ensure this condition,
the completeness easily follows:

Theorem 1 (Completeness). Let a program P and database D be given. If
a computation sequence S satisfies the conditions of Definitions 4 and 5, and
if it is finite, it is complete, i.e. contains all IDB-facts in the minimal model
of P ∪ D.

After clarifying the general approach and the requirements for each proce-
dure, let us look a bit closer at the code that is generated. The overall code
structure can be visualized by means of a rule application graph:

Pipelined Bottom-Up Evaluation of Datalog Programs 49

Definition 6 (Rule Application Graph). Let a Datalog program P be given
and let IDB(P) be the set of IDB-predicates of this program, i.e. the predicates
appearing in rule heads. The rule application graph for P is a bipartite directed
graph (V, E) with

– V := V1 ∪ V2, where
• V1 := IDB(P) are “predicate nodes”, and
• V2 :=

{
(A ← B1 ∧ · · · ∧ Bm, i)

∣
∣ A ← B1 ∧ · · · ∧ Bm ∈ P,
and Bi is a literal with IDB-predicate

}

are “rule activation nodes”.
(The “active literal” Bi will be shown underlined.)

– E := E1 ∪ E2 with
• E1 :=

{(
p, (A ← B1 ∧ · · · ∧ Bm, i)

) ∣
∣ p is the predicate of Bi

}
,

• E2 :=
{(

(A ← B1 ∧ · · · ∧ Bm, i), p
) ∣

∣ p is the predicate of A
}
.

Fig. 1. Rule application graph for Example 1

The rule application graph for Example 1 is shown in Fig. 1. Each predicate
node p corresponds to a procedure that contains a code block for each rule
activation node that has an incoming edge from the predicate node. This code
block ensures that the given fact for p is inserted for the active literal in that rule
activation and the corresponding calls for the predicate in the head (to which

50 S. Brass and H. Stephan

the outgoing edge leads) are done. Rule activation nodes without incoming edges
correspond to start rules. They are executed in the procedure start() and
initialize the stream of facts which is pushed along the edges through the nodes.
In each rule activation node, an incoming fact can lead to multiple outgoing
facts, but it can also be stopped if the actual data values do not match the
active literal or if it does not find a join partner for the other body literals.

4.2 Example, Data Structures for Query Evaluation

The generated code for Example 1 is shown in Fig. 2. Loops over tuples returned
from relation data structures are shown in pseudocode, one would use a cur-
sor/iterator here.

Fig. 2. Result of the push transformation for the program from Example 1

The data structures for the relations (EDB predicates) are as follows:

– input f is a list of input values (probably only one). The suffix f is a binding
pattern, it indicates that the relation is accessed with a free variable for the
only column, i.e. the argument is an output argument. Our current imple-
mentation first loads all data to main memory, so a vector/list data structure
is used in such cases, when only a full table scan is needed.

– mother bf and father bf support an access with a given (“bound”) first
argument, where the second (“free”) argument is required. A map/multimap
data structure is used in such cases.

Pipelined Bottom-Up Evaluation of Datalog Programs 51

When the data is loaded, we construct for each EDB body literal a relation data
structure which just fits its use. I.e. if the literal contains constants or the same
variable more than once, these selections are already evaluated while the data
is loaded, and only matching tuples are stored. Variables which are bound when
the literal is accessed form the search key of the index, i.e. we do an index join.
Values for the other (“free”) variables are found with the index lookup. It might
seem that we need a lot of memory for this, but benchmarks so far have shown
that memory consumption is low compared to other systems and loading time
is quick. Of course, one can construct examples where using such an optimal
index for each body literal leads to a blowup. One should introduce a limit. It
is always possible to simply load all data for an EDB predicate into a list, and
then do the selection at runtime (which corresponds to a nested loop join).

For string data, we use a radix tree similar to the one in [9] to map each string
to a unique, sequential integer. In this way, later comparisons can be done in
one machine instruction, and index structures for relations are simpler and more
efficient. It is usual also in Prolog systems to have a hash table for atoms (which
are one type of strings). Therefore, the arguments and variables are shown with
type int in the code. However, this is not essential for the Push method and will
probably be relaxed in future versions of our implementation. Basically, one has
to define the types for all columns of the database relations (EDB-predicates)
and can then derive types of the IDB-predicate arguments.

4.3 Duplicate Elimination, Termination

We need to make sure that query evaluation terminates. Since there are only
finitely many constants in the program and the database, the only reason for
non-termination can be duplicates. In every recursive cycle, we must check for
duplicate facts at least once. Even for non-recursive predicates, if many dupli-
cates are generated for the predicate, it might greatly improve performance if
these are detected early and further computations with them are avoided.

Of course, there is also a price to pay in form of a hash table or similar
“set” data structure in which tuples must be inserted. Since the push method
intends to avoid materialization of tuples, this is not nice. Note, however, that
a data structure only for the purpose of duplicate elimination is still smaller
than storing a general relation with arbitrary access. Of course, if we should
know that tuples arrive in a sort order, duplicate elimination would be much
cheaper. Since the variables which make up a tuple are assigned to at different
frequencies (e.g., one in an outer loop, and one in an inner loop), we also intend
to experiment with nested hash tables.

The user of our system can select for which predicates duplicate elimination
is done (of course, recursive cycles must be broken). This is similar to switching
tabling on for a predicate in a logic programming system that uses tabling.

If duplicate elimination is selected for a predicate p, the first thing the proce-
dure for p does is to insert the argument tuple into a “set” data structure (e.g.,
a hash table). If this fails (because the tuple is already contained in the set), the
procedure immediately returns.

52 S. Brass and H. Stephan

4.4 Temporary Relations for Complex Rules

The Push method tries to use each fact immediately when it is derived. This
works nicely with simple rules which have only a single IDB body literal, and
therefore all other facts needed to apply the rule are available in the database.

For complex rules (with more than one IDB body literal) it is unavoidable
to keep derived facts matching a body literal until we have the matching facts
(join partners) for the other IDB body literals. A rule instance is applied as soon
as the last IDB fact used in this instance is derived (which is again the earliest
possible time).

Thus, for complex rules, we create temporary relations for each IDB body
literal. These relations contain all facts matching the respective body literal
which have previously been derived. The code ensures the following condition: All
ground instances of the rule where the instance of each body literal is contained in
its temporary relation have already been applied, or are currently being applied
(somewhere above in the recursion). Now, if for one of the body literals a new
instance is derived, only this new instance is joined with all facts in the temporary
relations for the other body literals. This new instance is also inserted into the
temporary relation for its own body literal.

This also works if the same fact is used for two body literals: It is tried first
for one of them, and then for the other. When it is tried for the first, the join
partner is still missing, but it is inserted into its temporary relation. When it is
matched with the second body literal, it is already stored in the relation for the
first one, so it finds its join partner, and the rule instance is applied. Basically,
this is seminäıve evaluation, where the “delta” consists of a single fact.

Note again that complex rules are an exceptional case in the output of the
SLDMagic transformation. If the program was not generated by SLDMagic,
one might eliminate some complex rules by unfolding. Furthermore, the above
description works already in the most general case, where all IDB body literals
are potentially recursive. In other cases, when we know that facts are first pro-
duced for one body literal, and then for the other one, we might eliminate some
temporary relations. See Subsect. 4.6.

Example 2. As an example of a complex and recursive rule, consider this version
of the transitive closure:

tc(X, Y) :- edge(X, Y).
tc(X, Z) :- tc(X, Y), tc(Y, Z).

The corresponding code is shown in Fig. 3. Note that when a foreach-loop
starts, the set of values over which it iterates must be fixed (insertions into
the temporary relation have no effect on already active iterators).

Pipelined Bottom-Up Evaluation of Datalog Programs 53

Fig. 3. Result of the push transformation for the program from Example 2

4.5 Code Block for a Rule Activation

Now we are ready to look at the code block for a rule activation

A ← B1 ∧ · · · ∧ Bi ∧ · · · ∧ Bm

in a bit more detail. It is structured as follows:

– It first has to check whether the given fact p(c1, . . . , cn) really matches the
IDB body literal Bi = p(t1, . . . , tn), i.e. for j = 1, . . . , n

• if tj is a constant, then tj = cj must hold,
• if tj is a variable that appeared first in tk, k < j, then cj = ck must be

satisfied (otherwise, the following code block is skipped).
Note that if the procedure call contains constants as arguments, or the same
variable in different arguments, the compiler might be able to evaluate the
condition, and possibly remove the code block.

– If the rule is a complex rule, (c1, . . . , cn) is inserted into the temporary relation
for Bi. (One can improve this by storing only values of variables that are later
needed.)

– Then one executes the query B1 ∧ · · · ∧ Bi−1 ∧ Bi+1 ∧ · · · ∧ Bm with the
given values for the variables among the t1, . . . , tn. For simple rules, all these
literals are EDB literals, so there is a given database relation for them. For
complex rules, we created temporary relations for each IDB body literal in
them, which are used here. So in both cases, relations are given for all Bj ,
j �= i, and it is a standard task to evaluate this query.

– The query result contains bindings for the remaining variables of the query.
So we now have a ground substitution θ for the rule such that (B1∧· · ·∧Bm)θ
is true. With these variable values, the corresponding instance of the head
literal A can be determined. Then the corresponding procedure call is done.

54 S. Brass and H. Stephan

4.6 An Optimization for Complex Rules

Consider a rule with two IDB body literals, e.g. p(X) and q(X). When a start
rule is executed, only a subset of the nodes in the rule application graph are
reachable from this start rule, i.e. only for some predicates facts are derived. If
the first start rule yields only p-facts, but no q-facts, it is clear that the temporary
relation for the second body literal is still empty. So the derived p-facts will be
stored in the temporary relation for the first body literal, but cannot be pushed
further. The corresponding code can be removed.

If for a later start rule p-facts are derived when q-facts have been derived
in the meantime, this code is needed. Thus two different versions of the proce-
dure are needed, which are used in the derivation for different start rules (also
predicate-procedures between the start rule and this rule must be duplicated).

Another interesting special case is when all start rules that yield p-facts are
executed before the first start rule with yields q-facts. In this case, the temporary
relation for the body literal q(X) is not needed, and its facts can be simply
pushed through the rule as if p were an EDB-predicate.

So in general, we have a sequence of components of the program, one for each
start rule. For this optimization of the complex rules evaluation, it is be useful
to distinguish three possible status values of a predicate p in component i:

– The predicate extension is empty, i.e. the predicate node for p is not reachable
from any start rule ≤ i.

– The predicate extension is partial, i.e. p is reachable in a component ≤ i and
p is also reachable in a component ≥ i.

– The predicate extension is complete, i.e. p is not reachable in components ≥ i.

4.7 Remarks About Inlining

Of course, unfolding procedure calls through inlining often leads to an increased
code size, which might have negative effects on cache utilization and thus run-
time. Currently, we leave the decision which procedure calls are inlined to the
compiler (it does a cost-benefit estimation). With an analysis of the rules, we
might be able to do better in future and use attribute ((always inline))
or forceinline on selected procedures.

5 Benchmark Results

We implemented our transformation and a supporting C++ library and checked
several benchmarks from the OpenRuleBench benchmark suite [11]. The cur-
rent version of our method can handle only basic Datalog without negation and
structured terms. So we could try only such benchmark problems. However, for
these we get encouraging results, often significantly faster than systems which are
well established in the community. We tried systems that were considered also
in the original OpenRuleBench test, namely XSB [15], YAP [8], and DLV [10].
Note that XSB is called a deductive database in [15], and clearly beats older,

Pipelined Bottom-Up Evaluation of Datalog Programs 55

well-known deductive database prototypes like CORAL [14]. The DLV system
is strong in answer set programming, but it only uses system modules necessary
for a given problem [10]. So it is not unfair to use it in a comparison for sim-
pler problems. Recently, the Soufflé system has been developed [16]. It is not
advertised as a deductive database, but as a system for doing static program
analysis using Datalog. Nevertheless, it can be used to execute the benchmarks,
and does a compilation to C++ as we do, although the code structure is different
(it is based on relations and relational algebra). The performance results on the
benchmarks we tried are comparable to our system (we restricted Soufflé to one
core, because our prototype cannot do parallel evaluation yet). The significantly
lower memory consumption of Soufflé in the compiler version is probably due to
the use of a Trie data structure for relations (something we should try, too).

Of course, the above systems (except Soufflé) have been developed for more
than a decade, and offer many features which are needed for the practical devel-
opment of large projects. In contrast, our implementation is just a first prototype
in order to check the potential of our evaluation method.

For space reasons, we show here only the results of two benchmarks [11]:
The standard tail-recursive transitive closure program (with a cyclic graph with
1000 nodes and 50 000 edges), and a join of five relations with 10 000 rows each.

System Load Execution Total time Factor Memory

Push (Proc.) 0.005 s 1.039 s 1.044 s 1.0 31.246 MB

Push (Switch) 0.005 s 1.030 s 1.033 s 1.0 23.303 MB

Seminäıve 0.005 s 1.670 s 1.672 s 1.6 31.210 MB

XSB 0.247 s 4.740 s 5.090 s 4.9 135.925 MB

YAP 0.240 s 10.549 s 10.833 s 10.4 147.601 MB

DLV (0.373 s) — 52.300 s 50.1 513.753 MB

Soufflé (SQlite) (0.113 s) — 11.237 s 10.8 43.083 MB

Soufflé (compiled) (0.030 s) — 0.790 s 0.8 3.810 MB

Transitive Closure Benchmark with query tc(,) [11]

System Load Execution Total Time Factor Memory

Push (Proc.) 0.004 s 1.043 s 1.043 s 1.0 16.863 MB

Push (Switch) 0.004 s 1.031 s 1.032 s 1.0 9.010 MB

XSB 0.128 s 6.056 s 6.460 s 6.2 127.259 MB

YAP 0.207 s 3.572 s 3.840 s 3.7 135.921 MB

DLV (0.253 s) — 80.237 s 76.9 603.141 MB

Soufflé (SQlite) (0.100 s) — 12.680 s 12.2 38.548 MB

Soufflé (compiled) (0.040 s) — 1.450 s 1.4 4.264 MB

Join1 Benchmark with query a(X,Y) [11]

56 S. Brass and H. Stephan

We compile to machine code, whereas XSB, YAP and DLV emulate an
abstract machine. This explains a factor of about 3, see, e.g. [7]. In case of Soufflé,
the compiled version uses an own implementation, whereas the interpreted ver-
sion uses SQLite. Thus, the factor of 10 is not only caused by compilation.

Our transformation and the compilation together take about 0.5 s, which are
not included in the above numbers (because they are done only once).

The additional memory in the procedure version of the Push method is
required because the query result needs to be stored, whereas the original version
could offer an iterator interface without having to store answer tuples.

6 Related Work

The general idea of immediately using derived facts to derive more facts is not
new. For instance, variants of semi-naive evaluation have been studied which
work in this way [17,18]. Heribert Schütz proposed in his 1993 PhD thesis already
a version of bottom-up evaluation that used procedures for each predicate called
when a new fact was derived. In contrast to our approach, the rules were first
normalized, and EDB predicates were not treated specially. There are differences
also in the data structures and the structure of the generated code (our goal is
doing partial evaluation). Furthermore, there was only a prototypical implemen-
tation in Lisp (as part of the LOLA system), and benchmark comparisons with
established systems were not done or did not give the desired results.

The method is also related to the propagation of updates to materialized
views. In [12], compiling Datalog rules to program code was studied based on
incremental computation of the derived facts.

“Pushing” tuples through relational algebra expressions has also become an
attractive technique for standard databases [13].

7 Conclusion

In this paper, we have explained a new version of the Push method for bottom-up
evaluation in deductive databases. The main improvement is that the method is
much simpler to understand, and the program code resulting from the Datalog-
to-C++ transformation is much better structured. Current C++ compilers are
able to do many optimizations automatically that were explicitly built into the
old transformation. Our performance measurements on some benchmarks of the
OpenRuleBench collection are encouraging. It seems that we are able to be faster
than some well-established systems in the area. The current state of the project
is reported on the following web page:

http://users.informatik.uni-halle.de/∼brass/push/

http://users.informatik.uni-halle.de/~brass/push/

Pipelined Bottom-Up Evaluation of Datalog Programs 57

References

1. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange
ways to implement logic programs. In: Proceedings of the 5th ACM Symposium
on Principles of Database Systems (PODS 1986), pp. 1–15. ACM Press (1986)

2. Brass, S.: SLDMagic—the real magic (with applications to web queries). In: Lloyd,
J., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi, C., Pereira, L.M.,
Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 1063–1077.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44957-4 71

3. Brass, S.: Implementation alternatives for bottom-up evaluation. In: Hermenegildo,
M., Schaub, T. (eds.) Technical Communications of the 26th International Con-
ference on Logic Programming (ICLP 2010), Leibniz International Proceedings
in Informatics (LIPIcs), vol. 7, pp. 44–53. Schloss Dagstuhl (2010). http://drops.
dagstuhl.de/opus/volltexte/2010/2582

4. Brass, S.: Order in Datalog with applications to declarative output. In: Barceló,
P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp. 56–67. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32925-8 7

5. Brass, S.: A framework for goal-directed query evaluation with negation. In: Cal-
imeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol.
9345, pp. 151–157. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23264-5 14

6. Brass, S., Stephan, H.: Bottom-up evaluation of Datalog: preliminary report. In:
Schwarz, S., Hölldobler, S. (eds.) 29th Workshop on (Constraint) Logic Program-
ming (WLP 2015), pp. 21–35. HTWK Leipzig (2015). http://www.imn.htwk-
leipzig.de/WLP2015/

7. Costa, V.S.: Optimising bytecode emulation for Prolog. In: Nadathur, G. (ed.)
PPDP 1999. LNCS, vol. 1702, pp. 261–277. Springer, Heidelberg (1999). https://
doi.org/10.1007/10704567 16

8. Costa, V.S., Rocha, R., Damas, L.: The YAP Prolog system. Theory Pract. Logic
Programm. 12(1–2), 5–34 (2012). https://www.dcc.fc.up.pt/∼ricroc/homepage/
publications/2012-TPLP.pdf

9. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ARTful indexing for
main-memory databases. In: Proceedings of the 2013 IEEE International Confer-
ence on Data Engineering (ICDE 2013), pp. 38–49. IEEE Computer Society (1997).
http://www3.informatik.tu-muenchen.de/∼leis/papers/ART.pdf

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Logic 7(3), 499–562 (2006). https://arxiv.org/pdf/cs/0211004

11. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: an analysis of the per-
formance of rule engines. In: Proceedings of the 18th International Conference
on World Wide Web (WWW 2009), pp. 601–610. ACM (2009). http://rulebench.
projects.semwebcentral.org/

12. Liu, Y.A., Stoller, S.D.: From Datalog rules to efficient programs with time and
space guarantees. In: Proceedings of the 5th ACM SIGPLAN International Con-
ference on Principles and Practice of Declarative Programming (PPDP 2003),
pp. 172–183. ACM (2003). http://www3.cs.stonybrook.edu/∼liu/papers/Rules-
PPDP03.pdf

13. Neumann, T.: Efficiently compiling efficient query plans for
modern hardware. Proc. VLDB Endow. 4(9), 539–550 (2011).
http://www.vldb.org/pvldb/vol4/p539-neumann.pdf

https://doi.org/10.1007/3-540-44957-4_71
http://drops.dagstuhl.de/opus/volltexte/2010/2582
http://drops.dagstuhl.de/opus/volltexte/2010/2582
https://doi.org/10.1007/978-3-642-32925-8_7
https://doi.org/10.1007/978-3-319-23264-5_14
https://doi.org/10.1007/978-3-319-23264-5_14
http://www.imn.htwk-leipzig.de/WLP2015/
http://www.imn.htwk-leipzig.de/WLP2015/
https://doi.org/10.1007/10704567_16
https://doi.org/10.1007/10704567_16
https://www.dcc.fc.up.pt/~ricroc/homepage/publications/2012-TPLP.pdf
https://www.dcc.fc.up.pt/~ricroc/homepage/publications/2012-TPLP.pdf
http://www3.informatik.tu-muenchen.de/~leis/papers/ART.pdf
https://arxiv.org/pdf/cs/0211004
http://rulebench.projects.semwebcentral.org/
http://rulebench.projects.semwebcentral.org/
http://www3.cs.stonybrook.edu/~liu/papers/Rules-PPDP03.pdf
http://www3.cs.stonybrook.edu/~liu/papers/Rules-PPDP03.pdf
http://www.vldb.org/pvldb/vol4/p539-neumann.pdf

58 S. Brass and H. Stephan

14. Ramakrishnan, R., Srivastava, D., Sudarshan, S., Seshadri, P.: The CORAL deduc-
tive system. VLDB J. 3, 161–210 (1994)

15. Sagonas, K., Swift, T., Warren, D.S.: XSB as an efficient deductive database engine.
In: Snodgrass, R.T., Winslett, M. (eds.) Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data (SIGMOD 1994), pp. 442–453
(1994). http://user.it.uu.se/∼kostis/Papers/xsbddb.html

16. Scholz, B., Jordan, H., Subotić, P., Westmann, T.: On fast large-scale program
analysis in Datalog. In: Proceedings of the 25th International Conference on Com-
piler Construction (CC 2016), pp. 196–206. ACM (2016)

17. Schütz, H.: Tupelweise Bottom-up-Auswertung von Logikprogrammen (Tuple-wise
bottom-up evaluation of logic programs). Ph.D. thesis, TU München (1993)

18. Smith, D.A., Utting, M.: Pseudo-naive evaluation. In: Australasian Database
Conference, pp. 211–223 (1999). http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.177.5047

http://user.it.uu.se/~kostis/Papers/xsbddb.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.5047
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.5047

A Platform for Security Monitoring
of Multi-cloud Applications

Pamela Carvallo1,2(B), Ana R. Cavalli1,2, and Wissam Mallouli2

1 SAMOVAR, Télécom SudParis, CNRS,
Université Paris-Saclay, Évry, France

2 Montimage, Paris, France
{pamela.carvallo,ana.cavalli,wissam.mallouli}@montimage.com

Abstract. This paper presents a security assurance platform to moni-
tor and control the security in the context of multi-cloud applications.
Indeed, this property is a crucial issue in multi cloud-based environments
where many aspects need to be faced, including risk management, data
privacy and isolation, security-by-design applications, and vulnerability
scans. Moreover, it also becomes necessary to have an efficient system
that interrelates and operates all security controls that are configured
and executed independently on each component of the system.

In addition, as new attacks emerge every day, threat detection sys-
tems play a fundamental role in security monitoring schemes, identifying
possible attacks. These systems handle an enormous volume of data, as
they detect unknown malware by monitoring different activities from
different points of observation, as well as adapting to new attack strate-
gies and considering techniques to detect malicious behaviors and react
accordingly.

In this paper, we describe a monitoring platform for securing multi-
cloud applications, from a Service Level Agreement perspective. More-
over, we present a case study depicting the multi-cloud monitoring of
a smart-city transport application for the citizens of Tampere, Fin-
land. Considering the nature of the application under study, the ser-
vice requires continuous execution and availability functionalities, as end-
users may utilize the service at any time.

Keywords: Cloud computing · Security monitoring
Service Level Agreement · Threat detection · Reaction

1 Introduction

Monitoring is a solution that is required to control the correct operation of the
whole system running in a multi-cloud environment. According to the taxonomy
proposed by [13,14], the term multi-cloud denotes situations where a consumer
(human or service) uses multiple, independent clouds, unlike to Cloud Federa-
tions that are achieved when a set of cloud providers voluntarily interconnect
their infrastructures to allow sharing of resources among them. According to
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 59–71, 2018.
https://doi.org/10.1007/978-3-319-74313-4_5

60 P. Carvallo et al.

the state of the art, few concrete multi-cloud solutions exist, topics addressed
in research projects like MUSA, OPTIMIS, mOSAIC, MODAClouds, PaaSAge
and Cloud4SOA [6,12]. It is out of the scope of this paper to offer a complete
survey of such activities. We suggest the interested reader the following works:
[5,14,20].

Malfunctioning or even minor problems in a Virtual Machine (VM) could
introduce vulnerabilities and stability issues to other VMs, as well as threaten
the integrity of the host machine. In this paper, the monitoring function is needed
to be able to precisely understand what is happening at network, system and
application levels, pursuing a twofold objective. First, a proper monitoring sys-
tem that improves the security in the communications and services offered by
the multi-cloud virtual environments. Second, from the administration and man-
agement’s point of view, a system that helps to ensure the environment’s health,
guarantee that the system works as expected and respects its Security Service
Level Agreements (SecSLAs) [8].

In this context, we present a platform for monitoring multi-cloud based appli-
cations where each application component can be deployed in a different Cloud
Service Provider (CSP). The proposed platform architecture raises several chal-
lenges when fulfilling an end-to-end security monitoring of the application exe-
cution and communication at runtime. These efforts are due to the complexity
of cloud platforms that may consist of multiple layers and service paradigms
(SaaS, PaaS, IaaS) and therefore need a flexible monitoring management in a
distributed scheme.

To the best of our knowledge, no security monitoring solution has been
designed for such multi-cloud distributed systems. Consequently, the main con-
tribution of this paper is the design and deployment of a security assurance
platform that gives an answer to these challenges along with preliminary results
of a smart-city case study that provides efficient and optimal transportation to
the half-a-million citizens of Tampere, Finland. This paper extends our work in
progress paper [7], by presenting results of the performed experiments.

The paper is organized as follows. In Sect. 2, we present an overview of
the multi-cloud security assurance platform and describe each of its modules.
Section 3 presents the workflow for an use-case in this platform. Section 4 presents
the related work on monitoring tools and threat detection systems. Section 5
gives some elements for discussion of the exposed work and presents the conclu-
sion and future work.

2 The MUSA Security Assurance Platform SaaS

The MUSA Security Assurance Platform (MSAP) is part of the MUSA project
framework, and is offered following the Software-as-a-Service (SaaS) model to
the Cloud Service Client (CSC). The MSAP ensures the security of the whole
application distributed across heterogeneous cloud providers. This platform inte-
grates and offers the MUSA monitoring service, the MUSA enforcement support
service and the MUSA notification service, all of them working together with

A Platform for Security Monitoring of Multi-cloud Applications 61

embedded security libraries. The monitoring service aims at evaluating the secu-
rity and functional measures gathered by the use of multiple mechanisms such
as standard APIs offered by the cloud provider or the security libraries. Further-
more, the monitoring service is able to trigger security alerts based on the event
rules defined by the Application DevOps team (Fig. 1) following a SLA perspec-
tive. The notification service is in charge of sending the alerts to the CSC when
relevant security incidents have been detected, so the Application DevOps team
can react and adapt the application or the provisioned cloud resources if needed.
At the same time, the enforcement support service collaborates with the MUSA
security libraries to enforce the security protection of multi-cloud application
components.

2.1 The MUSA Framework

The MUSA Framework relies on the MUSA H2020 project [1]. The main goal
of this framework is to support the security-intelligent life-cycle management of
distributed applications over heterogeneous cloud resources, through a security
framework that includes: (a) security-by-design mechanisms to allow applica-
tion self-protection at runtime, and (b) a reactive security approach, monitoring
application at runtime to mitigate security incidents, so multi-cloud application
providers can be informed and react to them without losing end-user trust in
the multi-cloud application.

Fig. 1. MUSA Framework workflow

The MUSA framework workflow is depicted in Fig. 1. in three phases, where
each element of the global architecture of the system is presented. The workflow
begins when a CSC’s Application DevOps team uses the IDE module to specify

62 P. Carvallo et al.

and design the multi-cloud application based on modeling techniques, taking
into account (a) security requirements such as security embedded libraries for
security at runtime, as well as (b) functional and business needs by delivering
a composition of SLAs [8,9] with respect to each cloud component. The second
phase is provided by the Decision support tool regarding cloud resource modeling
through a continuous discovery and categorization of cloud services from different
CSPs. Moreover, this module assists the Application DevOps team by selecting
the set of combinations of cloud resources that best matches with the multi-cloud
application functional and security needs. The third phase is the monitoring and
operational stage, provided by the MSAP.

2.2 The MSAP Inputs

As mentioned previously, the MSAP fits the operation phase of the MUSA frame-
work and considers two main inputs from the previous modules, in order to work
properly:

– The Security SLA of the application to monitor: The MSAP recuperates the
single application components SLAs or the multi-cloud composite application
SLA. From single SLAs, the MSAP can monitor the security of single compo-
nents, and from composite SLAs it can check the end-to-end security of the
multi-cloud application taking the communication exchanges between remote
components into account.

– The application deployment plan: From this plan, the MSAP recuperates the
list of monitoring agents deployed with each application component as well
as their IP addresses. This information is vital to link the monitoring agent
with the application component to monitor the right security metrics that
are specified in the application component security SLA.

The MUSA workflow is composed, as demonstrated in Fig. 2, of four main
steps that come after gathering and preprocessing data from different monitoring
agents. More details about these steps are provided in the next subsections.

2.3 Monitoring Agents

Network Monitoring Agent. Monitors a set of combined functionalities pre-
sented in the following list: (a) Data capture, filtering and storage (b) Events
extraction and statistics collection, and (c) Traffic analysis and reporting pro-
viding, network, application, flow and user-level visibility.

This agent facilitates network performance monitoring and operation trou-
bleshooting through its real-time and historical data gathering. With its
advanced rules engine, the monitoring agent can correlate network events to
detect performance, operational, and security incidents.

A Platform for Security Monitoring of Multi-cloud Applications 63

System Monitoring Agent. Monitors operating system resources which may
be the cause of server performance degradation, and spots performance bottle-
necks early on. The agent relies on Linux “top” command, which is frequently
used by many system administrators to monitor Linux performance, being avail-
able in many Linux/Unix-like operating systems. The top command is used to
display all the running and active real-time processes in an ordered list updating
it regularly. It displays CPU usage, Memory usage, Swap Memory, Cache Size,
Buffer Size, Process PID, User, among others.

Application Monitoring Agent. Monitors information about the internal
state of the target system, i.e., multi-cloud application component to the MSAP
during its operation. It notifies the MSAP about measurements of execution
details and other internal conditions of the application component. The appli-
cation monitoring agent is a Java library composed by two parts. The first is
an aspect to be weaved into the application code via pointcuts in order to send
application-internal tracing information to the MSAP for analysis. It is com-
posed of a set of functions that can be weaved in strategic application points
to capture relevant internal data. The second part connects the aspect with the
notification tool via a connector library, providing a simple interface for sending
log data to the MSAP in a secure way. In other words, the application monitor-
ing agent is responsible for extracting the information from the system, and the
connector is in charge of transferring it.

2.4 Preprocessing Module

This module has a particular challenge, which is extracting the right information
from the collected data events provided by different monitoring agents and from
different CSPs, in order to build the correct usage profiles. Additionally, in real
cloud environments, periodic reports may be subject to loss or high latency,
due to the applications elasticity or VM-related features (e.g., restarting a VM,
rolling back). Therefore, this unit is meant to be dynamic, where features are
analyzed regarding time-based contextual information. This has the advantage
of decreasing the usage of resources for the analysis of large amounts of data,
therefore increasing the performance of the framework and reasoning detection.
Also following this direction, it is relevant at the moment of keeping a non-
redundant knowledge and behavior dataset.

2.5 Metrics and Threat Analyzer

The detection module consists of two sub-modules: a Rule-based inspector and
a Behavior profiler, as shown in Fig. 2.

The first relies on an engine that receives information events from the pre-
possessing module, regarding user’s access to non-authorized data, which are
checked against these permission rules. Additionally to this policy control, some

64 P. Carvallo et al.

Fig. 2. A MSAP as a service instance general workflow

of the attributes obtained from the agents are inspected for specific pattern-
matching detection.

The second module also receives the preprocessed data and comprehends two
functions: the online learning and anomalies detection.

A Platform for Security Monitoring of Multi-cloud Applications 65

Most of the literature related to anomaly detection establishes a separated
two-stages process, where systems are trained with normal data for second-stage
comparison with new incoming information. This idea lacks dynamism, as cloud
behavior may vary in mid-long term, and is highly dependent upon the nature
of the training data. Therefore, the proposed self-learning module is capable
of feeding and updating itself dynamically from new incoming data flows. This
system will discriminate if it is appropriate to feed itself or not, lowering the
possibility of training the engine with malicious activity as normal.

The model uses a semi-unsupervised learning, given the fact that new input
data has not been labeled yet and it needs to be classified on the basis of their
statistical properties only. The supervised component comprehends a smaller
labeled dataset created in a lab environment, which learns from known attacks.

2.6 Service Level Objectives (SLO) Manager

The SLO Manager is able to check measured metrics to assert which objectives
are useful in defining an anomalous behavior or a disrespected rule. The latter
is already paved since it consists of rules that are continuously checked, but the
challenge is designing criteria for stating SLO’s for abnormal activity.

2.7 Alert Manager and Countermeasures Manager

The agents implement a prevention and mitigation methodology through a set
of defenses, practices, and configurations prior to any attack, with the aim of
reducing the impact of such attack. These issues may be addressed by network
security, data protection, virtualization or isolation of resources.

The Incident handler responds to a policy-based alert and countermeasures
mechanisms, given the severity of the incident diagnosed. This corresponds to
the Alert Manager and Countermeasure Manager components from Fig. 2. The
last module is intended to advise the CSPs and may consist in notifying the
administrator to roll back the composite application, replicating a database,
upgrading passwords complexity, disabling a specific user, among others.

The latter presents a crucial challenge because sometimes CSPs are unaware
precisely of the countermeasures to consider because there are no established
relationships between cloud components and their dependencies. This can be
solved by clarifying these relationships.

3 Case Study: Service Availability in Smart-City
Application

We studied the MSAP in the context of a multi-cloud platform for a smart city
application, as depicted in Fig. 3. The TSM application (which stands for Tam-
pere Smart Mobility) with the exception of the mobile application, has an archi-
tecture which is distributed in nature. Thus, each of the TSM components are

66 P. Carvallo et al.

decoupled and developed independently. This application utilizes resources, ser-
vices and information from the FMI (Finnish Meteorological Institute), Google
directions and the Tampere Intelligent Transport System and Services (ITS)
platform. The general schema is composed of:

1. TSM Engine (TSMe): It is an orchestrator which receives requests from dif-
ferent TSM components, analyses the requests according to several map-
pings, determines the appropriate TSM component required for processing
the request and forwards the request to it.

2. Component Journey Planner (MJP): It provides multi-modal and optimal
journey options based on the specified departure and destination points. Jour-
ney options are provided for buses, cars, cycling and walking.

3. Component Consumption Estimation Calculator (CEC): It calculates the
energy needed to complete every journey option specified in the TSM appli-
cation via a mobile application. It provides this information in a user-friendly
way such as: the amount chocolate bars that would be burnt if the user chooses
to walk to his/her destination.

4. Component IDM: It handles user authentication and authorization, as the
security pillar of the entire TSM application. It authorizes the requests made
over the resources and services that each TSM component exposes.

Fig. 3. Topology for multi-cloud case study

Given the real-time requirement for this platform, we decided to study the
service availability metric, defined as a non-functional requirement, specified in
terms of the percentage of time a system or a service is accessible [16]. To monitor
service availability, we deployed dockers for each of the mentioned components
and implemented the topology in OpenStack. We collected events from the sys-
tem, network and application agents, and checked that the application processes
are operative. Additionally, this metric uses the active monitoring module of the
MSAP, in favor of checking the service availability from an end-user perspective.
This observation is helpful given the fact that the agent events may show the
service is running when it may not be visible from outside the cloud.

A Platform for Security Monitoring of Multi-cloud Applications 67

Continuing the MSAP flow, we parse the SLA and extract the SLO metric
for service availability, as described in Fig. 4. This SLO is an individual example
which is instantiated for each component.

<musa:SLO SLO_ID="1">

<musa:Metric>Service availability</musa:Metric>

<musa:SLOexpression>

<musa:oneOpExpression operator="ge (>=)" operand="99.9"/>

</musa:SLOexpression>

<musa:importance_weight>HIGH</musa:importance_weight>

</musa:SLO>

Fig. 4. SLO XML for service availability metric in TSM application

To assess the functionality of the MSAP, our testbed consisted in actively
shutting down a component of the system and checking visualization results, alert
notifications and countermeasures activations, through the dashboard front-end.
Figure 5a. and b. correspond to the metrics presented in dashboard of the MSAP,
and contain all the monitored historical data regarding the service availability
metric. Detailed in Fig. 5a., the first white part of the time slot in the graph
accurately presents the unavailability of service for several seconds (also depicted
as the orange portion of the pie chart). Additionally, Fig. 5b. illustrates the
numerous notifications for all the period of evaluation.

The Countermeasure Manager module of the MSAP is in charge of using a
High Availability (HA) framework1 as a way of reacting to a possible alert or
violation of this metric. This HA framework, one of the security enforcement
mechanisms of the MUSA framework, is based on an open-source software built
around the Corosync/Pacemaker stack, patched and configured to work together
to bring clustering mechanisms to multi-cloud-based services. This framework
encapsulates each of the TSM application components (e.g., TSMe, CEC, IDM
and MJP) and handles the task of their deployment in a redundant way managing
thus different availability failures and proposing a fault tolerant system that
guarantees the availability of different TSM components.

4 Related Work

From the monitoring perspective, current solutions to assess security can still
be used in virtualized network environments [2,4]. Nevertheless, they need to
be adapted and correctly controlled since they were meant mostly for physical
and not virtual systems, and they do not allow fine-grained analysis tailored
to the needs of CSCs and virtualized networks. The lack of visibility, controls
on internal virtual networks and the heterogeneity of devices used, make many
performance assessment applications ineffective. On one hand, the impact of vir-
tualization on these technologies needs to be assessed. On the other hand, these
1 https://dspace.cc.tut.fi/dpub/handle/123456789/24492?locale-attribute=en.

https://dspace.cc.tut.fi/dpub/handle/123456789/24492?locale-attribute=en

68 P. Carvallo et al.

Fig. 5. MSAP dashboard

technologies need to cope with ever-changing contexts and trade-offs between
the monitoring costs and benefits involved. Here, virtualization of application
components facilitates changes, making it necessary for monitoring applications
to keep up with this dynamic behavior.

Solutions such as Ceilometer [2], a monitoring solution for OpenStack, pro-
vide efficient collection of metering data regarding CPU and network costs. How-
ever, it is focused on creating a unique contact point for billing systems to acquire
all of the measurements they need, and it is not oriented to perform any action to
improve the metrics that it monitors. Furthermore, security issues are not part
of the monitored features. StackTach [4] is another example oriented to monitor
performance for billing purposes by auditing the OpenStack’s Nova component.
Similarly, but not specifically oriented to billing, Collected [10] gathers system
performance statistics and provides mechanisms to store the collected values.
A recent project from OPNFV named Doctor [3], focuses on the creation of a

A Platform for Security Monitoring of Multi-cloud Applications 69

fault management and maintenance framework for high availability of network
services on top of virtualized infrastructures.

In terms of security, OpenStack provides a security guide [15] with best prac-
tices determined by cloud operators when deploying their solutions. Some tools
go deeper to guarantee certain security aspects in OpenStack, for instance: Ban-
dit [18] provides a framework for performing security analysis of Python source
code; Consul [11] is a monitoring tool oriented to service discovery that also
performs health checking to prevent routing requests to unhealthy hosts.

Also, threat detection systems in cloud-based environments usually enhance
security mechanisms by monitoring system’s health. They correspond to a
hardware device or software application that monitors activity (e.g., from net-
work, VM host, user) for malicious policy violations. Zbakh et al. evaluated in
[19] several Intrusions Detection Systems (IDS) architectures through proposed
multi-criteria decision technique, according to the above-introduced requirement
together with few others such as: Performance, availability, scalability, secure
and encrypted communication channels, transparency with respect to end-users,
information security policies as input to the architecture, accuracy including the
number of false positives (FP) and false negatives (FN) and detection methods
used, among others.

According to such literature, IDS architectures may vary if they are dis-
tributed, centralized, agent-based or collaborative [19]. Patel et al. [17] provided
an extended systematic-based study of intrusion detection systems, present-
ing a classification with regards to response time, alarm management, detec-
tion method, data collection type, among others. In general, these systems are
designed with the following modules: data capturing (Sect. 2.3) and prepara-
tion (Sect. 2.4), which function as an input for the data analysis and detection
(Sect. 2.5). The latter functionality corresponds to the algorithms implemented
to detect suspicious activities and known attack patterns.

5 Conclusion and Future Work

The MUSA Security Assurance Platform is proposed as a service that needs
to be deployed in the suitable CSP (or CSPs since we can divide the platform
into multiple components or micro-services). It offers a set security controls and
requirements according to the application needs. Moreover, the MSAP is able
to enforce the security of multi-cloud applications by executing the necessary
countermeasures to security requirements or to mitigate undesired issues. Its
real-time data collection and analysis, together with its virtualized (cloud-based)
nature, makes the MSAP a powerful tool to provide multi-cloud applications with
end-to-end assurance capabilities.

In detail, this platform presents several advantages, as includes techniques
to perform the monitoring of applications that are deployed over heterogeneous
cloud resources. It is also based in the concept of monitoring security metrics
from SLAs to detect potential deviations and trigger countermeasures to pro-
tect applications against attacks and anomalies. This service is available follow-
ing this link http://assurance-platform.musa-project.eu/ and a demonstration

http://assurance-platform.musa-project.eu/

70 P. Carvallo et al.

of the tool for the presented use-case is available on You-Tube following this
link: https://www.youtube.com/watch?v=zc6p-0H9yFo.

As future work, we consider experimenting with an automatic deployment of
reactive countermeasures. Additionally, we plan on extending the set of security
metrics available for monitoring, by enhancing our monitoring agents and by
developing new techniques for detection in the Metrics and Threat Analyzer
module. This last section will focus further on the detection of unknown threats
with anomaly-behavior detection techniques.

Acknowledgement. The work presented in this paper has been developed in the
context of the MUSA EU Horizon 2020 project [1] under grant agreement No 644429.

References

1. Musa project. http://www.musa-project.eu/. Accessed Jan 2017
2. Openstack ceilometer. http://docs.openstack.org/developer/ceilometer/. Accessed

Jan 2017
3. Opnfv doctor. http://wiki.opnfv.org/doctor. Accessed Jan 2017
4. Stacktach. http://stacktach.readthedocs.org/en/latest/index.html. Accessed Jan

2017
5. Lifecycle management of service-based applications on multi-clouds: a research

roadmap (2013)
6. Multi-Cloud: expectations and current approaches (2013)
7. Carvallo, P., Cavalli, A.R., Mallouli, W., Rios, E.: Multi-cloud applications security

monitoring. In: Au, M.H.A., Castiglione, A., Choo, K.-K.R., Palmieri, F., Li, K.-C.
(eds.) GPC 2017. LNCS, vol. 10232, pp. 748–758. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57186-7 54

8. Casola, V., Benedictis, A.D., Modic, J., Rak, M., Villano, U.: Per-service security
sla: A new model for security management in clouds. In: 2016 IEEE 25th Inter-
national Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), pp. 83–88, June 2016

9. Casola, V., Benedictis, A.D., Rak, M., Rios, E.: Security-by-design in clouds:
a security-sla driven methodology to build secure cloud applications. Procedia
Comput. Sci. 97, 53–62 (2016). http://www.sciencedirect.com/science/article/
pii/S1877050916320968. 2nd International Conference on Cloud Forward: From
Distributed to Complete Computing

10. Collectd. http://collectd.org/. Accessed Jan 2017
11. Consul. https://www.consul.io/. Accessed Jan 2017
12. Ferry, N., Rossini, A., Chauvel, F., Morin, B.: Towards model-driven provisioning,

deployment, monitoring, and adaptation of multi-cloud systems. In: 2013 IEEE
Sixth International Conference on Cloud Computing (2013)

13. Global Inter-cloud Technology Forum: Use Cases and Functional Requirements for
Inter-Cloud Computing. Technical report (2010)

14. Grozev, N., Buyya, R.: Inter-Cloud architectures and application brokering: tax-
onomy and survey. Softw. Pract. Exp. 44(3), 369–390 (2012)

15. OpenStack Security Guide. http://docs.openstack.org/sec/. Accessed Jan 2017
16. Nabi, M., Toeroe, M., Khendek, F.: Availability in the cloud: state of the art. J.

Netw. Comput. Appl. 60, 54–67 (2016)

https://www.youtube.com/watch?v=zc6p-0H9yFo
http://www.musa-project.eu/
http://docs.openstack.org/developer/ceilometer/
http://wiki.opnfv.org/doctor
http://stacktach.readthedocs.org/en/latest/index.html
https://doi.org/10.1007/978-3-319-57186-7_54
https://doi.org/10.1007/978-3-319-57186-7_54
http://www.sciencedirect.com/science/article/pii/S1877050916320968
http://www.sciencedirect.com/science/article/pii/S1877050916320968
http://collectd.org/
https://www.consul.io/
http://docs.openstack.org/sec/

A Platform for Security Monitoring of Multi-cloud Applications 71

17. Patel, A., Taghavi, M., Bakhtiyari, K., Celestino Júnior, J.: An intrusion detection
and prevention system in cloud computing: a systematic review. J. Netw. Comput.
Appl. 36(1), 25–41 (2013)

18. Bandit Project. http://wiki.openstack.org/wiki/Security/Projects/Bandit.
Accessed Jan 2017

19. Zbakh, M., Elmahdi, K., Cherkaoui, R., Enniari, S.: A multi-criteria analysis of
intrusion detection architectures in cloud environments. In: 2015 International Con-
ference on Cloud Technologies and Applications (CloudTech), pp. 1–9. IEEE (2015)

20. Zeginis, C., Kritikos, K., Garefalakis, P., Konsolaki, K., Magoutis, K., Plexousakis,
D.: Towards cross-layer monitoring of multi-cloud service-based applications. In:
Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp.
188–195. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40651-
5 16

http://wiki.openstack.org/wiki/Security/Projects/Bandit
https://doi.org/10.1007/978-3-642-40651-5_16
https://doi.org/10.1007/978-3-642-40651-5_16

The Hybrid Multidimensional-Ontological
Data Model Based on Metagraph Approach

Valeriy M. Chernenkiy, Yuriy E. Gapanyuk(&), Anatoly N. Nardid,
Anton V. Gushcha, and Yuriy S. Fedorenko

Informatics and Control Systems Department, Bauman Moscow State
Technical University, Baumanskaya 2-ya, 5, 105005 Moscow, Russia
{chernen,gapyu}@bmstu.ru, nazgull09@gmail.com,

ncrashed@gmail.com, fedyura1992@yandex.ru

Abstract. This paper is aimed to overcome the limitation of the traditional
multidimensional model in order to allow usage of numerical, textual and
object-oriented information as multidimensional model measures. The ontolog-
ical approach is reviewed. The formal definition of multidimensional approach is
given. The idea of multidimensional and ontological approaches hybridization is
discussed. The hybrid multidimensional-ontological data model requirements are
proposed. The formal definitions of the metagraph data model and metagraph
agent model are given. The examples of data metagraph and metagraph rule agent
are discussed. The representation of object-oriented data structures in form of
metagraph is given. The hybrid multidimensional-ontological data model based
on metagraph approach is proposed. Predicate representation of metagraph model
considered as a physical data model for metagraph approach implementation is
given.

Keywords: Ontology � Multidimensional data model � Dimension
Measure � Metagraph � Metagraph agent

1 Introduction

Traditionally, ontologies are used to describe complex knowledge domains, and
multidimensional data model to build analytical systems based on numerical measures.

The multidimensional data model allows declaring the numerical measures that
reside at the intersection of independent dimensions. But information became more and
more complex and multidimensional data model numerical measures limitation became
appreciable.

The graph-based analytical systems are developed for complex information anal-
ysis. There are a number of graph databases used as the basis for analytical systems
such as Neo4j, ArangoDB, and OrientDB.

Nowadays it may be noted the tendency for complicating and hybridizing graph
database data models [1, 2]. The example of this tendency is the HypergraphDB data-
base that is the component of OpenCog AI project. As the name implies HypergraphDB
uses complex hypergraph model as a data model. There is a GRAKN.AI project also

© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 72–87, 2018.
https://doi.org/10.1007/978-3-319-74313-4_6

aimed for AI purpose that explicitly combines graph-based and ontology-based
approach for data analysis.

Thus, the graph-based analytics explicitly or implicitly uses ontological approach
advantages. But the advantages of multidimensional approach are lost in this case.

The purpose of this paper is to propose a hybrid model that combines advantages of
multidimensional and ontological (graph-based) approaches. To achieve this purpose,
we first consider ontological and multidimensional approaches separately and then
hybridizing them using metagraph approach.

2 Ontological Approach

The classical Gruber ontology definition is “an explicit specification of a conceptual-
ization” [3].

We will use ontology formalization proposed by Gavrilova and Chernigovskava [4]:

O ¼ T ;<;Uh i; T ¼ termif g;< ¼ relj
� �

;

where O – formal ontology; T – set of concepts (terms) termi of ontology; < – set of
semantic relations relj between concepts; Ф – set of interpretation functions defined on
the sets of concepts and relations of ontology.

If < ¼ is af g;U ¼ £; then the ontology is a taxonomy of concepts. If < ¼
part off g;U ¼ £; then the ontology is a meronomy or partonomy of concepts. If

< ¼ is a; part off g;U ¼ £, then the ontology is a metasystem of concepts.
There is a frequently used variation of the ontology definition which does not

contain Ф component the so-called lightweight ontology (OL):

OL ¼ T ;<h i ð1Þ

Today one of the most developed technologies for working with ontologies is the
semantic web technology. In this case, Resource Description Framework (RDF) is used
as a data model, SPARQL is used as a query language. RDFS and OWL (OWL2) are
used as ontology definition languages on the base of RDF. Using RDFS and OWL it is
possible to express various relationships between ontology elements (class, subclass,
equivalent class, etc.) [5]. For RDF persisting and SPARQL processing special RDF
storage systems are used e.g. Apache Jena, AllegroGraph.

Semantic web technologies are brought to the level of industrial technologies and
are used in a number of information systems. But this approach has several limitations.
The first limitation is that the RDF data model consists of very small data item –

“subject-predicate-object” triples. As a result, an average sized relational database may
correspond to a triple store containing billions of triples. The second limitation is the
N-ary relation limitation [6]. This limitation is that the RDF model does not allow
simple ways to describe N-ary relations between vertices of the semantic graph, which
complicates the description of complex situations in the semantic graph.

The Hybrid Multidimensional-Ontological Data Model 73

3 Multidimensional Approach

Multidimensional data model, proposed by Codd et al., allows working with numerical
data (measures) binding them to the hierarchical taxonomies (dimensions) [7]. The
multidimensional data model is a core for OLAP (online analytical processing)
information systems.

Many variants of formalization of such a model were proposed, for example [8]. In
this section, we use our own simplified version of the formalization, which will help to
describe the proposed hybrid model. A multidimensional hypercube may be described
as follows:

HC ¼ HCD;MSR;HCF;HCRh i;
HCD ¼ hcdif g;MSR ¼ msrif g;HCF ¼ hcfj

� �
;HCR ¼ hcrkf g; ð2Þ

where HC – hypercube; HCD – set of hypercube dimensions (hcdi – dimension);MSR –

set of hypercube measures (msri – measure); HCF – set of hypercube facts (hcfi – fact);
HCR – set of hypercube aggregation rules (hcri – rule).

Hypercube dimension:

hcdi ¼ hcdki
� �

;�� �
;

where hcdki – hypercube dimension element; � – a partial order on the set of hypercube
dimension elements.

In most cases, hypercube dimension element is organized in a tree structure, in case
of time dimension e.g. year ! month ! week ! day. But partial order organization is
correct than tree structure organization because partial order organization allows
describing ragged hierarchies, in case of time dimension e.g. the month! week! day
and month ! decade ! day hierarchies are allowed to exist simultaneously in one
dimension.

Using partially ordered set for dimension definition corresponds to the traditional
approach. But if we care about semantic relations between dimension elements it is
more convenient to represent the dimension in the form of lightweight ontology:

hcdi � OL ð3Þ

In this case, dimension elements correspond to the concepts of the ontology. But
instead of non-semantical partial order on the set of dimension elements, there is a set
of semantical relations is used allowing representing various semantical relations
between dimension elements. Using semantical relations either tree structure organi-
zation or partial order organization may be successfully emulated.

Hypercube fact:

hcfj ¼ hcdrefi

n o
; msrnf g

D E
; ð4Þ

where hcdrefi – reference to the dimension element; msrn – measure.

74 V. M. Chernenkiy et al.

In case of low-level hypercube fact, the set hcdrefi

n o
contains references to

low-level elements of all hypercube dimensions.

In case of aggregated hypercube fact hcdrefi

n o
2 PðHCDÞ, the set hcdrefi

n o

belongs to the powerset of all hypercube dimensions because aggregation rules may
exclude dimensions during the aggregation process. Simultaneously, during aggrega-
tion, elements hcdrefi roll up upon their hierarchies, providing data aggregation on
higher levels of hierarchies.

Hypercube aggregation rule:

hcrk : hcfOUTf g ¼ agf hcfINf g;HCDagð Þ;HCDag � HCD; ð5Þ

where hcfOUT – output (aggregated) facts; agf – aggregation function; hcfIN – input
(non-aggregated) facts; HCDag

– subset of hypercube dimensions used in aggregation.
Aggregation rules allow calculating aggregated facts on the base of non-aggregated

or low-level aggregated facts and hypercube dimensions. The typical aggregation
functions are count, sum, min, max and other numerical functions.

Depending on multidimensional system realization aggregation rules may be bound
to the particular dimensions or to the whole hypercube.

Today multidimensional model is used in a great number of information systems.
The advantages of the multidimensional model are worldwide recognized. But the
multidimensional model is oriented for numerical measures usage. Textual or
object-oriented information are not considered for use as measures. This may be noted
as a limitation of the multidimensional model.

4 The Idea of Multidimensional and Ontological Approaches
Hybridization

Let us consider some of the considerations that are significant to the multidimensional
and ontological data models hybridization.

Usually, in the multidimensional data model, the most hypercube dimensions are
ontologies-meronomies. In the given example of time dimension “year ! month !
week ! day” the relation “!” actually means part_of relation. It gives the idea that
ontology is well suited for separate dimension description but doesn’t fit well for the
description of the entire hypercube.

The significant idea of the multidimensional data model is that it allows declaring
the data that reside at the intersection of independent dimensions. If we want to extend
the scope of the information system, we add new dimensions to our model, which leads

to adding new dimension references element to the set hcdrefi

n o
of hypercube facts

definition. This makes multidimensional data model well suitable for extendable
information systems definition. But the limitation of the multidimensional model is its
orientation for numerical measures. Thus, the traditional multidimensional model is not
suitable for textual or object-oriented measures.

The Hybrid Multidimensional-Ontological Data Model 75

The “Semantic OLAP” project [9] is a variant of hybridization of multidimensional
and ontological approaches. Semantic Mediawiki system is an example of this
approach implementation. In this case, RDF storage is used as a data source. Hyper-
cube dimensions and hypercube facts are stored as RDF triples. SPARQL query lan-
guage is used for data retrieval and aggregation. This approach should be noted as an
innovative. The idea of a homogeneous storage model for dimensions and facts in form
of RDF triples is very interesting. But this approach does not overcome the main
limitation of traditional multidimensional data model because measures in this
approach are only numerical.

In view of the above considerations let us formulate the “hybrid multidimensional-
ontological data model requirements”:

1. The hybrid model allows describing hypercube dimensions in form of ontology.
2. Numerical, textual information and object-oriented data structures are considered

for use as measures.
3. Proposed model should provide aggregation capabilities comparable to the aggre-

gation function in the traditional multidimensional model.

To meet these requirements, we need the approach that allows describing onto-
logical and multidimensional models and provides aggregation capabilities. We pro-
pose to use a metagraph approach for these purposes.

5 The Metagraph Model Definition

Metagraph is a kind of complex network model, proposed by Basu and Blanning in
their book [10] and then adapted for information systems description in our paper [11].
According to [11]:

MG ¼ V ;MV ;Eh i; ð6Þ

where MG – metagraph; V – set of metagraph vertices; MV – set of metagraph
metavertices; E – set of metagraph edges.

Metagraph vertex is described by a set of attributes:

vi ¼ atrkf g; vi 2 V ; ð7Þ

where vi – metagraph vertex; atrk – attribute.
Metagraph edge is described by a set of attributes, the source and destination

vertices and edge direction flag:

ei ¼ vS; vE; eo; atrkf gh i; ei 2 E; eo ¼ true j false; ð8Þ

where ei – metagraph edge; vS – source vertex (metavertex) of the edge; vE – desti-
nation vertex (metavertex) of the edge; eo – edge direction flag (eo = true – directed
edge, eo = false – undirected edge); atrk – attribute.

76 V. M. Chernenkiy et al.

The metagraph fragment:

MGi ¼ evj
� �

; evj 2 ðV [E[MVÞ; ð9Þ

where MGi – metagraph fragment; evj – an element that belongs to the union of
vertices, edges, and metavertices.

The metagraph metavertex:

mvi ¼ atrkf g;MGj
� �

;mvi 2 MV ; ð10Þ

where mvi – metagraph metavertex belongs to set of metagraph metavertices MV; atrk –
attribute, MGj – metagraph fragment.

Thus, metavertex in addition to the attributes includes a fragment of the metagraph.
The presence of private attributes and connections for metavertex is distinguishing
feature of metagraph. It makes the definition of metagraph holonic – metavertex may
include a number of lower level elements and in turn, may be included in a number of
higher level elements.

The example of data metagraph (shown at Fig. 1) contains three metavertices: mv1,
mv2 and mv3 (emphasized with gray background). Metavertex mv1 contains vertices
v1, v2, v3 and connecting them edges e1, e2, e3. Metavertex mv2 contains vertices v4, v5
and connecting them edge e6. Edges e4, e5 are examples of edges connecting vertices
v2–v4 and v3–v5 are contained in different metavertices mv1 and mv2. Edge e7 is an
example of the edge connecting metavertices mv1 and mv2. Edge e8 is an example of
the edge connecting vertex v2 and metavertex mv2. Metavertex mv3 contains
metavertex mv2, vertices v2, v3 and edge e2 from metavertex mv1 and also edges e4, e5,
e8 showing holonic nature of the metagraph structure.

Fig. 1. Example of data metagraph

The Hybrid Multidimensional-Ontological Data Model 77

6 The Metagraph Agent Definition

The metagraph model is aimed for complex data description. But it is not aimed for
data transformation. To solve this issue the metagraph agent (agMG) aimed for data
transformation is proposed. There are two kinds of metagraph agents: the metagraph
function agent (agF) and the metagraph rule agent (agR). Thus agMG = agF | agR.

The metagraph function agent serves as a function with input and output parameter
in form of metagraph:

agF ¼ MGIN ;MGOUT ;ASTh i; ð11Þ

where agF – metagraph function agent; MGIN – input parameter metagraph; MGOUT –

output parameter metagraph; AST – abstract syntax tree of metagraph function agent in
form of metagraph.

The metagraph rule agent is rule-based:

agR ¼ MG;R;AGST
� �

;R ¼ rif g; ri : MGj ! OPMG; ð12Þ

where agR – metagraph rule agent; MG – working metagraph, a metagraph on the basis
of which the rules of agent are performed; R – set of rules ri; AG

ST
– start condition

(metagraph fragment for start rule check or start rule); MGj – a metagraph fragment on
the basis of which the rule is performed; OPMG

– set of actions performed on
metagraph.

The antecedent of the rule is a condition over metagraph fragment, the consequent
of the rule is a set of actions performed on metagraph. Rules can be divided into open
and closed.

The consequent of the open rule is not permitted to change metagraph fragment
occurring in rule antecedent. In this case, the input and output metagraph fragments
may be separated. The open rule is similar to the template that generates the output
metagraph based on the input metagraph.

The consequent of the closed rule is permitted to change metagraph fragment
occurring in rule antecedent. The metagraph fragment changing in rule consequent
cause to trigger the antecedents of other rules bound to the same metagraph fragment.
But incorrectly designed closed rules system can cause to an infinite loop of metagraph
rule agent.

Thus, metagraph rule agent can generate the output metagraph based on the input
metagraph (using open rules) or can modify the single metagraph (using closed rules).

The example of metagraph rule agent is shown in Fig. 2. The metagraph rule agent
“metagraph rule agent 1” is represented as metagraph metavertex. According to the
definition it is bound to the working metagraph MG1 – a metagraph on the basis of
which the rules of the agent are performed. This binding is shown with edge e4.

78 V. M. Chernenkiy et al.

The metagraph rule agent description contains inner metavertices corresponds to
agent rules (rule 1… rule N). Each rule metavertex contains antecedent and consequent
inner vertices. In given example mv2 metavertex bound with antecedent which is
shown with edge e2 and mv3 metavertex bound with consequent which is shown with
edge e3. Antecedent conditions and consequent actions are defined in form of attributes
bound to antecedent and consequent corresponding vertices.

The start condition is given in form of attribute “start = true”. If the start condition
is defined as a start metagraph fragment then the edge bound start metagraph fragment
to agent metavertex (edge e1 in given example) is annotated with attribute “start =
true”. If the start condition is defined as a start rule than the rule metavertex is annotated
with attribute “start = true” (rule 1 in given example). Figure 2 shows both cases
corresponding to the start metagraph fragment and to the start rule.

The distinguishing feature of the metagraph agent is its homoiconicity which means
that it can be a data structure for itself. This is due to the fact that according to
definition metagraph agent may be represented as a set of metagraph fragments and this
set can be combined in a single metagraph. Thus, the metagraph agent can change the
structure of other metagraph agents.

Fig. 2. Example of metagraph rule agent

The Hybrid Multidimensional-Ontological Data Model 79

7 The Representation of Object-Oriented Data Structures
in Form of Metagraph

In this section, we consider the basics of the object-oriented data structures represen-
tation using metagraph approach. We review only data structures containing data fields
in form name:type:value where type may be atomic type, complex type or list (col-
lection) type. We suggest that this structure is enough complicated for representing
basic analytical data. The representation of more complicated data structures (e.g.
containing methods) requires a separate study and is out of the scope of this paper.

The data structure is defined as follows:

DS ¼ dsT ;DSFh i; dsT 2 TP;DSF ¼ fldi
� �

; ð13Þ

where DS – data structure; dsT – data structure type belongs to set of types TP; DSF –

set of data structure fields fldi.

fldi ¼ fldN ; fldT ; fldVh i; fldT 2 TP; ð14Þ

where fldN – field name; fldT – field type belongs to set of types TP, fldV – field value of
type fldT.

ð8tp 2 TPÞtp ¼ TPAjTPC ¼ fldTf gjTPL ¼ ½TP� ð15Þ

Every type tp belongs to set of types TP must be either atomic type TPA or complex
type TPC or list (collection) type TPL. The atomic type TPA corresponds to the only
value. The complex type TPC contains set of corresponding field types fldT. The list
type TPL is a collection of elements of any type.

The example showing one of the possible cases of metagraph representation of
object-oriented data structure is given in Fig. 3. This example is structured in such a
way to cover all possible cases represented by formulas (13–15).

Data structure DS and its corresponding type are represented as a metavertices
bound with edge dsT. The set of data structure fields DSF (also represented as a
metavertex) consists of three fields fld1, fld2 and fld3.

Field fld1 with name “field1” corresponds to the atomic type “int” with value “1”.
Field fld1 is represented as a metavertex, field name fld1N and value fld1V are represented
as inner vertices. The field type is represented as edge fld1T bound field metavertex with
atomic type TPA vertex.

Field fld2 with name “field2” corresponds to the complex type consists of fields
“field2_1” of type “int” with value “2” and “field2_2” of type “string” with value
“string2”. Field fld2 is represented as a metavertex, field name fld2N is represented as
inner vertex and value fld2V is represented as inner metavertex containing metavertices
fld2_1 and fld2_2 corresponding to subfields “field2_1” and “field2_2” with their values.
Field fld2 type is represented as edge fld2T bound field metavertex with complex type
TPC metavertex. The TPC metavertex contains inner vertices corresponding to subfields

80 V. M. Chernenkiy et al.

fld2_1 and fld2_2 types. The edges fld2 1
T and fld2 2

T bound subfields fld2_1 and fld2_2

metavertices with corresponding subtypes vertices.
Field fld3 with name “field3” corresponds to the list (collection) type “list of int”

with value “1, 2, 3”. Field fld3 is represented as a metavertex, field name fld3N is
represented as inner vertex and value fld3V is represented as inner metavertex corre-
sponding to the list containing vertices corresponding to the list items. The field type is
represented as edge fld3T bound field metavertex with list (collection) type TPL

metavertex. The TPL metavertex contains inner vertex corresponds to the list item type.
List items bound with list item type with fld3 item

T edge (shown only for list item “3” in
order not to clutter the figure).

According to formula (9), the metagraph fragment is a set of elements each of
which is vertex, edge or metavertex. Thus, Fig. 3 represents metagraph fragment.

Given example shows that object-oriented data structure may be represented using
metagraph approach without losing detailed information. Thus metagraph agent
transformation mechanism is available for metagraph representation of object-oriented

Fig. 3. Metagraph representation of object-oriented data structure

The Hybrid Multidimensional-Ontological Data Model 81

data. And this makes possible to use object-oriented data as a measure in the hybrid
multidimensional-ontological data model.

8 The Hybrid Multidimensional-Ontological Data Model

Having considered the metagraph approach we can now propose the data model
meeting the “hybrid multidimensional-ontological data model requirements”.

To meet the requirement 1, we can now define the lightweight ontology in form of
metagraph. According to the definition the lightweight ontology corresponds to the
annotated flat graph that can be easily represented as a special case of metagraph. The
concepts of ontology correspond to the metagraph vertices. Semantic relation corre-
sponds to the metagraph edges. According to metagraph model definition, it is possible
to annotate concepts vertices and relations edges with any required attributes, in par-
ticular, to annotate relations edges with relation type attribute: relation_type = {is_a,
part_of, …}. The whole lightweight ontology corresponds to metavertex containing
sets of concepts vertices and relations edges. According to formula (3), hypercube
dimension may be represented in the form of lightweight ontology. Thus, in terms of
the metagraph approach according to formulas (1, 3, 6 and 10):

hcdi � OL ¼ T;<h i; hcdi � OL � mvi; T � V ;< � E; ð16Þ

where hcdi – hypercube dimension; OL – lightweight ontology; T – set of lightweight
ontology concepts; < – set of lightweight ontology semantic relations; mvi – metagraph
metavertex; V – set of annotated metagraph vertices; E – set of annotated metagraph
edges.

To meet the requirement 2, we can define measure as a metagraph fragment.
Numerical and textual information may be represented in form of metagraph vertex
which is kind of metagraph fragment. The representation of object-oriented data
structures in form of metagraph fragment is discussed in the previous section.

According to formula (16) reference to the dimension element corresponds to
metagraph vertex because T � V . Thus, in terms of the metagraph approach according
to formulas (4 and 9):

hcfj ¼ hcdrefi

n o
; msrnf g

D E
; hcdrefi � vk;msrn � MGi; ð17Þ

where hcfj – hypercube fact; hcdrefi – reference to the dimension element; msrn –

measure; vk – metagraph vertex; MGi – metagraph fragment.
The hypercube aggregation rule in the hybrid model corresponds to formula (5).

But instead of aggregation function, the metagraph agent is used for aggregation:

hcrk : hcfOUTf g ¼ agMG hcfINf g;HCDagð Þ;HCDag � HCD; ð18Þ

82 V. M. Chernenkiy et al.

where hcfOUT – output (aggregated) facts; agMG
– metagraph agent used for aggre-

gation; hcfIN – input (non-aggregated) facts; HCDag
– subset of hypercube dimensions

used in aggregation.
If metagraph agent is used in form of function agent according to formula (11) then

the combination of input (non-aggregated) facts (in form of metagraph fragment
according to formula (17)) and hypercube dimensions (in form of metagraph
metavertex according to formula (16)) corresponds to the input parameter metagraph
MGIN. The output (aggregated) facts in form of metagraph fragment are generated
according to a function defined by abstract syntax tree AST.

If metagraph agent is used in form of rule agent according to formula (12) then the
combination of input (non-aggregated) facts (in form of metagraph fragment according
to formula (17)) and hypercube dimensions (in form of metagraph metavertex
according to formula (16)) corresponds to the working metagraph parameter MG. Open
rules are used for generating output (aggregated) facts in form of metagraph fragment.

In case of rule agent, the closed rules may be used for updating dimensions, facts,
and measures which are an extension of the traditional multidimensional model.

Summing up it can be noted that formalization of traditional ontological and mul-
tidimensional models with formulas (1–5) also valid for the proposed hybrid model. But
the formulas (16–18) represent the detailed elements of the multidimensional model
(using the ontological model as supporting) in terms of metagraph approach. Thus, the
proposed hybrid model makes numerical, textual and object-oriented information pos-
sible for using as multidimensional model measures.

9 Predicate Representation of Metagraph Model

In previous sections, the formal definition and graphical examples of the metagraph
model were defined. But to successfully operate with the metagraph model we also
need textual representation. As such representation, we use predicate model close to
logical programming languages e.g. Prolog.

The classical Prolog uses following form of predicate:

predicateðatom1; atom2; . . .; atomNÞ

We used an extended form of predicate where along with atoms predicate can also
include key-value pairs and nested predicates:

predicateðatom; . . .; key ¼ value; . . .; predicateð. . .Þ; . . .Þ

The mapping of metagraph model fragments into predicate representation is shown
in Table 1.

The Hybrid Multidimensional-Ontological Data Model 83

Case 1 shows the example of metavertex mv1 which contains three nested disjoint
vertices v1, v2, and v3. The predicate corresponds to metavertex, nested vertices are
isomorphic to atoms that are parameters of the predicate. As the name of the predicate,
“Metavertex” is used as the corresponding element of the metagraph model. Key-value
parameter “Name” is used to set the name of metavertex. This case is simplest since
nested vertices are disjoint.

Case 2 shows metagraph edge which may be represented as a special case of
metavertex containing source and destination vertices. The metagraph edge is repre-
sented as a predicate with the name “Edge”. The source and destination vertices are
represented as predicate atom parameters.

Table 1. Predicate representation of metagraph model

84 V. M. Chernenkiy et al.

Case 3 also shows metagraph edge which fully complies with the formal definition
of an undirected edge according to formula (8) including direction flag parameter
(eo = false).

The Hybrid Multidimensional-Ontological Data Model 85

Case 4 shows an example of directed edge. Direction flag parameter is also used.
The source and destination vertices may be represented as predicate atom parameters
(case 4.1) or as predicate key-value parameters (case 4.2).

Case 5 shows an example of metavertex mv1 which contains three nested vertices
v1, v2 and v3 joined with undirected edges e1, e2, and e3. Edges are represented with
separate predicates that are nested to the metavertex predicate. Case 6 is similar to case
5 unless edges e1, e2, and e3 are directed.

The attribute may be represented as a special case of metavertex containing name
and value. Case 7 shows simple numeric attribute representation. Case 8 shows an
example of vertex v1 containing numeric attribute and reference attribute that refers to
the metavertex mv2. The attribute is represented as a predicate with the name
“Attribute”.

Case 9 shows an example of metagraph rule agent “metagraph rule agent 1” rep-
resentation (the predicate with the name “RuleAgent” is used). As a work metagraph,
mg1 is used (parameter “WorkMetagraph”). The “Rules” predicate contains rules
definition (nested predicate “Rule” is used). As a start rule “rule 1” is used which is
defined by “start = true” parameter. Predicate “Condition” corresponds to the rule
condition. Parameter “WorkMetagraph” of predicate “Condition” contains a reference
to the tested metavertex mv1. The condition tests that metavertex mv1 contains vertices
v1 and v2 with attribute k. Founded values of k attribute of vertices v1 and v2 are
assigned to the $k1 and $k2 variables. Vertices v1 and v2 should be joined with edge
containing attribute “flag = main”. If the condition is true and the metagraph fragment
is found then the action is performed (action is defined by predicate “Action”).
Parameter “WorkMetagraph” of predicate “Action” contains a reference to the result
metavertex mv2. The example action contains adding the new element (that is defined
by predicate “Add”). The vertex “Sum” is added containing attribute “k = $k1 + $k2”.
Predicate “Eval” is used to define the calculated expression.

Thus, we have defined a predicate description of all the main elements of the
metagraph data model.

It should be noted that proposed predicate model is homoiconic. Since predicate
approach is used as for metagraph data model definition and for metagraph agents
definition then high-level metagraph agents may change the structure of low-level
metagraph agents by modifying their predicate definition.

Proposed predicate model may be considered as a physical data model for meta-
graph approach implementation.

10 Conclusions

Today multidimensional model is used in a great number of information systems. The
advantages of the multidimensional model are worldwide recognized. But the tradi-
tional multidimensional model is oriented for numerical measures usage.

The ontological model may be considered as a convenient supporting model for
describing parts of multidimensional model e.g. dimensions.

86 V. M. Chernenkiy et al.

Metagraph approach allows describing complex graph models. Using metagraph
agents it is possible either to generate the output metagraph based on the input
metagraph (using open rules) or to modify the metagraph (using closed rules).

Using metagraph approach it is possible to describe different kinds of information
such as object-oriented information in form of complex graph.

The hybrid multidimensional-ontological data model is proposed on the base of
metagraph approach. Using this approach, it is possible to use numerical, textual and
object-oriented information as multidimensional model measures. The aggregation of
such measures is performed using metagraph agents.

References

1. Blondé, W., Antezana, E., Mironov, V., Schulz, S., Kuiper, M., De Baets, B.: Using the
relation ontology Metarel for modelling Linked Data as multi-digraphs. Semant. Web 5(2),
115–126 (2014)

2. Qu, Q., Qiu, J., Sun, C., Wang, Y.: Graph-based knowledge representation model and
pattern retrieval. In: FSKD, vol. 5, pp. 541–545 (2008)

3. Gruber, T.: A translation approach to portable ontology specifications. Knowl. Acquisition
5(2), 199–220 (1993)

4. Gavrilova, T., Chernigovskava, T.: Cognitive aspects of visual knowledge base design. In:
Proceedings of the International Conference PEG. Intelligent Computer and Communica-
tions Technology (Teaching & Learning for the 21-st Century), Great Britain, pp. 174–181
(1999)

5. Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modelling
in RDFS and OWL, 2nd edn. Elsevier, New York (2011)

6. Defining N-ary Relations on the Semantic Web. W3C Working Group Note, 12 April 2006.
http://www.w3.org/TR/swbp-n-aryRelations

7. Codd, E., Codd, S., Salley, C.: Providing OLAP (On-Line Analytical Processing) to
User-Analysts: An IT Mandate. http://www.minet.uni-jena.de/dbis/lehre/ss2005/sem_dwh/
lit/Cod93.pdf

8. Mansmann, S., Scholl, M.: Extending the multidimensional data model to handle complex
data. J. Comput. Sci. Eng. 2(1), 125–160 (2007)

9. Semantic OLAP: Semantic Mediawiki Extension. https://www.mediawiki.org/wiki/
Extension:Semantic_OLAP

10. Basu, A., Blanning, R.: Metagraphs and Their Applications. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-0-387-37234-1

11. Samohvalov, E., Revunkov, G., Gapanyuk, Y.: Metagraphs for information systems
semantics and pragmatics definition. In: Herald of Bauman Moscow State Technical
University, vol. 1, no. 100, pp. 83–99 (2015)

The Hybrid Multidimensional-Ontological Data Model 87

http://www.w3.org/TR/swbp-n-aryRelations
http://www.minet.uni-jena.de/dbis/lehre/ss2005/sem_dwh/lit/Cod93.pdf
http://www.minet.uni-jena.de/dbis/lehre/ss2005/sem_dwh/lit/Cod93.pdf
https://www.mediawiki.org/wiki/Extension:Semantic_OLAP
https://www.mediawiki.org/wiki/Extension:Semantic_OLAP
http://dx.doi.org/10.1007/978-0-387-37234-1

PosDB: A Distributed Column-Store Engine

George Chernishev1,2(B), Viacheslav Galaktionov1, Valentin Grigorev1,
Evgeniy Klyuchikov1, and Kirill Smirnov1

1 Saint-Petersburg University, Saint-Petersburg, Russia
chernishev@gmail.com, viacheslav.galaktionov@gmail.com,

valentin.d.grigorev@gmail.com, evgeniy.klyuchikov@gmail.com,

kirill.k.smirnov@math.spbu.ru
2 JetBrains Research, Saint-Petersburg, Russia
http://www.math.spbu.ru/user/chernishev/

Abstract. In this paper we present a novel disk-based distributed
column-store, describe its architecture and discuss a number of technical
solutions. Our system is essentially a query engine which was written
completely from scratch. It is aimed for shared-nothing environments
and supports different forms of parallel query processing.

Query processing in PosDB is organized according to the classic Vol-
cano pull-based model which is adapted for the column-store case. Cur-
rently, we support late materialization only, and therefore employ a join
index data structure to represent positional information. In our system
query plan can consist of both positional and value operators. PosDB has
about a dozen of core operators among which several variants of selec-
tions and joins, aggregation. We also have several operators that ensure
intra-query parallelism and operators for network interoperability. In its
current state the system is fully capable of processing the Star Schema
Benchmark in a local and distributed environment.

1 Introduction

A column-store DBMS is a system which stores each attribute in a separate file.
Approximately ten years ago, this approach experienced a sharp rise in popu-
larity in both academic and industrial communities [3,4,6]. There were multiple
reasons for the newly found interest in column-stores. Firstly, column-stores were
able to excel in query processing in OLAP environments, which became popular
several years earlier. Next, column-stores were able to utilize the changes that
had accumulated in hardware design over the years. Consequently, these systems
were able to use contemporary hardware more efficiently than classic row-stores.
This interest led to a surge of studies and produced a number of research pro-
totypes. In turn, this resulted in creation of a number of commercial systems.
Currently, a lot of major DBMS vendors offer their own column-oriented prod-
ucts. However, column-stores still continue to be an active research field.

During the boom of the 2000s various studies involved different aspects of
column-oriented DBMSes: column-specific operators, query processing schemes,
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 88–94, 2018.
https://doi.org/10.1007/978-3-319-74313-4_7

PosDB: A Distributed Column-Store Engine 89

column-specific (adaptive) indexing, compression, data reorganization, early and
late materialization, hardware efficiency and many more. However, some topics
received less attention, among them were query optimization, physical design,
and adaptivity in a broader sense — adaptivity of plans, data and operators.
Moreover, the issues related to distributed column-stores were left completely
untouched.

The reason for the lack of studies is the absence of a research prototype with
distributed capabilities. Both prominent earlier prototypes — C-Store [13] and
MonetDB [11] — are centralized, as are the majority of contemporary research
systems. There are two exceptions — ScaMMDB [15] and DCODE [12], which
are essentially attempts to distribute MonetDB by implementing a network layer
on top of it. However, these systems have two significant drawbacks. Firstly, the
underlying DBMS is an in-memory system. Despite the rise of interest in the
in-memory solutions, disk-based systems are still relevant. Thus, to the best of
our knowledge there are no distributed disk-based column-stores which would
allow to conduct research related to distributed query processing. Secondly, the
distribution obtained in such a way cannot be considered a “true” distribution,
because it may be restricted by the architecture of the existing DBMS. For exam-
ple, the set of admissible query plans may exclude good ones due to architectural
restrictions.

In our previous papers [7,8], we described possible benefits of a distributed
column-store and sketched its design. In this paper, we continue our work and
describe the first version of our system. It is essentially a column-store query
engine, designed for research purposes such as the study of distributed query
processing and adaptivity of data, operators, query plans.

2 Column-Store Basics

The core idea of the column-store approach is to store the relations in columnar
form. This means that each attribute is stored apart from all other attributes of
the same table and kept in a separate file. The data is not only stored but also
processed (at least partially) in this form.

This differs greatly from the classic DBMS mode of operation and requires a
different approach. However, row-stores have been around for more than 40 years,
and over this time, a lot of experience has been accumulated in the form of
approaches, technical solutions, and principles. It is highly desirable to make use
of this experience when designing column-store systems. Nevertheless, a number
of column-stores properties should be taken into account:

– Column-store operators usually work with single attributes instead of tables.
Moreover, they can exchange not only values but also ordinal positions of
these values in the corresponding tables.

– Consequently, there are not only value-oriented operators but also position-
oriented or mixed ones. For example, consider a query that extracts all IDs
of rows which satisfy two predicates on two different attributes. A possible

90 G. Chernishev et al.

query plan is to filter both attributes, obtain lists of positions, and invoke the
positional AND operator.

– Some of the operators may have to access the corresponding attribute values
if given position lists as input.

– Tuple reconstruction has to be performed at some point of the query plan.
This reconstruction is needed to prepare a tuple for returning to the user. This
preparation is essentially transformation of data from internal representation.
Note that unlike row-stores, this step is mandatory in column-stores.

– Another problem is the so-called materialization. There are two basic options:
early and late materialization. The former is similar to row-stores, where the
value is used from the start of processing. The latter implies that a position
would be substituted with a value at a later point in time. The choice of the
point of materialization is an optimization problem.

These differences define the architecture of a column-store DBMS. Back in the
early 2000s there were several column-store research projects which successfully
designed such systems. We can summarize their findings as follows:

– A new algebra of operations and novel cost models.
– Materialization strategy selection problem: two primary approaches and many

more advanced techniques.
– More complex query plans — in some architectures it is necessary to represent

query plan as a directed acyclic graph instead of a tree.
– Novel approaches to operator design. New operators appear and new imple-

mentations for the old ones are possible.
– Compression is ubiquitous in this class of systems — data is not only stored,

but also processed in compressed form.

See studies [3,4,6] for more detailed introduction into column-store systems.

3 Motivation and Aims

To the best of our knowledge, there is no distributed disk-based column-store
suitable for the research purposes. Our goal is to develop such a system and use it
to study advanced query processing and adaptivity in a distributed environment.

4 Existing Column-Store Systems

There are several major research prototypes and a large number of commercial
implementations [3,6,11]. Let us describe the research ones briefly [8]:

– C-Store is a disk-oriented column-store database. It supports late materi-
alization, special join operators, different compression methods, as well as
operating on compressed data.

PosDB: A Distributed Column-Store Engine 91

– MonetDB is an in-memory column-store database. Its goal is efficient hard-
ware usage: minimization of CPU cache misses and exploitation of hardware
parallelism, e.g. SIMD instructions. MonetDB features a special algebra oper-
ating on BATs (columns), and operators designed for efficient hardware usage.
Another interesting result is the adaptive indexing techniques, where index is
an additional result of query execution.

– Supersonic [2] is an open-source columnar query engine which is oriented
towards efficient data processing. It is an in-memory query engine which
focuses on cache consciousness, vectorized execution, instruction pipelining,
and the usage of SIMD instructions.

– Peloton [5] is a new open-source in-memory DBMS. It is aimed for efficient
hybrid transaction-analytical processing.

All of these are centralized database column-stores. However, there are both
commercial and academic distributed systems based on some of them. The lat-
ter [12,15] were discussed in the introduction.

It is important to mention that there are a lot of open-source NoSQL systems
which are considered column-stores: HBase, Cassandra, Druid and many others.
However, non-relational systems are a very different field of study, they rely on
different principles and use different mechanisms for data processing, so they do
not suit our purposes.

5 Architecture

We have developed a disk-oriented column-store engine aimed for shared-nothing
environments. In our system query execution is based on the pull-based Vol-
cano model [10] with block-oriented processing. This means that a query plan
is represented by a tree of operators where each operator supports the following
interface:

open(): initialize operator processing,
next(): the processing itself — construct the next result block, possibly request-

ing the data (values or positions) from children nodes,
close(): terminate operator processing, free resources.

We have also added a special rewind() method to restart an operator without
full resource deallocation.

Right now, our system supports only the late materialization strategy. A join
index data structure [14] is used to describe the correspondence between records
of different tables which arises after successful join.

PosDB is able to operate in both centralized and distributed modes. In the
distributed mode all nodes behave in the same way. Each host can process a
query plan supplied either by user or by another host. As of now, only the part
before materialization can be transferred. That includes joins, cross-products,
filtering, and positional operators.

A special attention has been given to handling network-related errors. If
a server node disconnects in the middle of interaction, the client node tries

92 G. Chernishev et al.

Sort

To user

Aggregate ...

Join Read(d datekey)Read(lo orderdate)

DataSource(d datekey)JoinRead(s suppkey) Read(lo suppkey)

DataSourceP(s region) JoinRead(lo partkey) Read(p partkey)

DataSource(lo partkey) DataSourceP(p category)

Operator

Reader

local access

remote access

select sum(lo revenue), d year, p brand1
from lineorder, date, part, supplier
where lo orderdate = d datekey

and lo partkey = p partkey
and lo suppkey = s suppkey
and p category = ’MFGR#12’
and s region = ’AMERICA’

group by d year, p brand1
order by d year, p brand1;

Fig. 1. Example plan: Star schema benchmark, Query 2

to reconnect with a certain delay until it succeeds. Once the connection has
been reestablished, the interaction will proceed from where it was interrupted,
if possible. If not, the query plan will be sent again and a required amount of
data will be skipped.

To illustrate PosDB architecture we present the plan of query 2 from the Star
Schema Benchmark in Fig. 1. This query plan consists of operators and readers.
A reader is a special entity which is always coupled with some operator and is
used to acquire data. The plans of our system need readers due to the reliance
on the late materialization approach. Here, you can also see relational operators,
a sorting operator, and a data source operator. A data source operator is a leaf
operator which performs data filtering and returns a list of positions.

6 Implementation Details

PosDB is implemented in the C++ programming language and adheres to the
C++11 standard. We have a set of tests (about 140) built using the Google Test
framework. Currently, our system is quite light-weight — there is about 900 KB
of our source code.

PosDB: A Distributed Column-Store Engine 93

7 Current State: Present and Missing Features

Present Features. Let us describe the current features of our system:

– Our system is distributed; with all nodes equally capable to process any allow-
able query. Currently, the distribution allows to perform any part of query plan
before the materialization point on some other host.

– There is plan-level parallelism in our system: we have implemented an n-ary
node which processes its subtrees in separate threads and merges their results
into one stream in arbitrary order.

– Our system supports late materialization, which allows our plans to operate
on positions until values are requested by operators or tuple reconstruction.

– Our system possesses a broad range of operators, both value-oriented and
position-oriented. Among value-oriented ones are three classic implementa-
tions of equi-join operator (hash, sort-merge, nested loop), several variants of
aggregation, and cross-product. We implemented all of the operators which
were required to run the Star Schema Benchmark [1].

– PosDB in its current state is capable of processing SSB in either a central-
ized or distributed manner. Results of preliminary performance evaluation for
centralized and distributed environments are reported in paper [9].

Missing Features. We do not support data-modifying queries and, conse-
quently, transactions. SSB also does not support them because it is aimed for
OLAP applications. Since this is the initial version of our system, some features
are missing:

– subqueries and other more advanced parts of SQL,
– a parser and an optimizer,
– a buffer manager,
– capability to process or operate directly on compressed data,
– any vectorized or column-specific operators, e.g. invisible join,
– early materialization.

Since our system cannot take text queries as input, query plans have to be
specified in the source code. Not supporting early materialization is a consider-
able drawback for a column-store, but late materialization alone already allows
(limited) experimentation with distributed query plans.

The first goal of our project was to implement the backbone for processing
of all SSB queries — SPJs with aggregation and sorting, and we have achieved
it. We will continue with our work and implement some of the missing features,
with our primary objective being the improvement of distributed processing.

8 Conclusion

In this paper we have presented our column-oriented query engine for experi-
mental study of query processing and adaptivity in a distributed environment.
First, we described a niche for such a system and justified its relevance and

94 G. Chernishev et al.

usefulness for the community. Then we outlined its architecture, features, and
described some of the technical solutions used.

Currently, our system is capable of processing the Star Schema Benchmark,
a standard benchmark for evaluation of column-stores, both locally and in a
distributed fashion.

References

1. O’Neil, P.E., O’Neil, E.J., Chen, X.: The Star Schema Benchmark (SSB) (2009).
http://www.cs.umb.edu/∼poneil/StarSchemaB.PDF. Accessed 20 July 2012

2. Google Supersonic Library (2017). https://code.google.com/archive/p/supersonic/.
Accessed 12 February 2017

3. Abadi, D., Boncz, P., Harizopoulos, S.: The Design and Implementation of Modern
Column-Oriented Database Systems. Now Publishers Inc., Hanover, massachusetts
(2013)

4. Abadi, D.J., Boncz, P.A., Harizopoulos, S.: Column-oriented database systems.
Proc. VLDB Endow. 2(2), 1664–1665 (2009)

5. Arulraj, J., Pavlo, A., Menon, P.: Bridging the Archipelago between row-stores
and column-stores for hybrid workloads. In: Proceedings of the 2016 International
Conference on Management of Data, SIGMOD 2016, pp. 583–598 (2016)

6. Chernishev, G.: Physical design approaches for column-stores. SPIIRAS Proceed-
ings 30, 204–222 (2013)

7. Chernishev, G.: Towards self-management in a distributed column-store system.
In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. CCIS, vol. 539, pp.
97–107. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23201-0 12

8. Chernishev, G.: The design of an adaptive column-store system. J. Big Data 4(1),
21 (2017)

9. Chernishev, G., Galaktionov, V., Grigorev, V., Klyuchikov, E., Smirnov, K.: A
study of PosDB performance in a distributed environment. In: Proceedings of the
2017 Software Engineering and Information Management, SEIM 2017 (2017)

10. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv.
25(2), 73–169 (1993)

11. Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, K.S., Kersten, M.L.:
MonetDB: Two decades of research in column-oriented database architectures.
IEEE Data Eng. Bull. 35(1), 40–45 (2012)

12. Liu, Y., et al.: DCODE: A distributed column-oriented database engine for big
data analytics. In: Khalil, I., Neuhold, E., Tjoa, A.M., Da Xu, L., You, I. (eds.)
CONFENIS/ICT-EurAsia -2015. LNCS, vol. 9357, pp. 289–299. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24315-3 30

13. Stonebraker, M., et al.: C-Store: A column-oriented DBMS. In: Proceedings of the
31st International Conference on Very Large Data Bases, VLDB 2005, pp. 553–564.
VLDB Endowment (2005)

14. Valduriez, P.: Join indices. ACM Trans. Database Syst. 12(2), 218–246 (1987)
15. Zhang, Y., Xiao, Y., Wang, Z., Ji, X., Huang, Y., Wang, S.: ScaMMDB: Fac-

ing challenge of mass data processing with MMDB. In: Chen, L., et al. (eds.)
APWeb/WAIM -2009. LNCS, vol. 5731, pp. 1–12. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03996-6 1

http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
https://code.google.com/archive/p/supersonic/
https://doi.org/10.1007/978-3-319-23201-0_12
https://doi.org/10.1007/978-3-319-24315-3_30
https://doi.org/10.1007/978-3-642-03996-6_1

Microservices: How To Make Your
Application Scale

Nicola Dragoni1,5, Ivan Lanese2, Stephan Thordal Larsen1,
Manuel Mazzara3(B), Ruslan Mustafin3, and Larisa Safina3,4

1 Technical University of Denmark, Kongens Lyngby, Denmark
ndra@dtu.dk, stephan@thordal.io

2 University of Bologna/INRIA, Bologna, Italy
ivan.lanese@gmail.com

3 Innopolis University, Innopolis, Russian Federation
{m.mazzara,r.mustafin,l.safina}@innopolis.ru

4 University of Southern Denmark, Odense, Denmark
5 Örebro University, Örebro, Sweden

Abstract. The microservice architecture is a style inspired by service-
oriented computing that has recently started gaining popularity and that
promises to change the way in which software is perceived, conceived and
designed. In this paper, we describe the main features of microservices
and highlight how these features improve scalability.

1 Introduction

History of programming languages and paradigms has been characterized in the
last few decades by a progressive shift towards distribution, modularization and
loose coupling, with the purpose of increasing code reuse and robustness [5]. This
necessity has been dictated by the need of increasing software quality, not only in
safety and financial-critical applications, but also in more common off-the-shelf
software packages.

Service oriented architectures (SOAs) can be seen as a step in this direction,
where the need for code reuse and robustness was coupled with the need for
interoperability between heterogeneous information systems, possibly belong-
ing to different companies. This brought up the idea of a service as a software
entity interacting with other software entities via message passing communica-
tions using standard data formats and protocols (e.g., XML, SOAP and HTTP)
and well-defined interfaces.

Microservices are a further step along this road, emphasizing the use of small
services, called indeed microservices, and moving the service oriented techniques
from system integration to system design, development and deployment.

The microservice architecture [9] is built on a few basic principles:

– Bounded Context. First introduced in [11], bounded context means that
related functionalities are combined into a single business capability, and each
microservice implements one such capability. In this way there is a perfect

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 95–104, 2018.
https://doi.org/10.1007/978-3-319-74313-4_8

96 N. Dragoni et al.

alignment between business capabilities and system structure, making it easy,
e.g., to know where a functionality is, in order to update or fix it.

– Size. The focus on small size is a crucial novelty of microservices w.r.t. the
previous SOAs. Idiomatic use of microservice architectures suggests that if
a service is too large, it should be refined into two or more services, thus
preserving granularity and maintaining focus on providing a single business
capability only. The small size brings major benefits in terms of service main-
tainability and extendability: a small service can be easily modified, and if
needed rebuilt from scratch with limited resources and in limited time.

– Independency. This concept encourages loose coupling by stating that each
microservice in microservice architectures is operationally independent from
others, and the only form of communication between services is through their
published interfaces. This is fundamental since this allows one to change,
fix or upgrade a microservice without compromising the system correctness,
provided that the interfaces are preserved. High cohesion is also encouraged,
since related functionalities should be provided by a unique microservice, so
that any update related to those functionalities only affects the corresponding
microservice.

The shift towards microservices is a sensitive matter these days. Several com-
panies are involved in a major refactoring of their back-end systems to accommo-
date the advantages of the new paradigm [7]. Other companies just start their
business model developing software following the microservice paradigm since
day one. We are in the middle of a major change in the view in which software
is intended, and in the way in which capabilities are organized into components,
and industrial systems are conceived. In the next section we highlight another
advantage of microservices: scalability, for performance, fault tolerance or avail-
ability reasons.

2 Scalability

Scalability is one of the key features provided by the microservice paradigm. In
this section, we aim at giving an overview on how microservice characteristics
naturally contribute to system scalability. We emphasize that while frequently
scalability is needed for performance reasons, to cope with high load, scalability
can also be used to ensure availability and fault tolerance. According to the
reason why scalability is needed, slightly different approaches need to be used,
as we will emphasize below.

Distribution. Distribution is not an original feature of microservices, since, e.g.,
SOAs are distributed as well. However, thanks to their small size, microservices
take this characteristics to an extreme: each business capability, including their
functionalities and the related data, is realized by an independent service, which
can be deployed on a host possibly different from the one of other microservices
of the same application. As first result, this causes a natural distribution of the

Microservices: How To Make Your Application Scale 97

workload that can make the system significantly more efficient than a monolith
[2]. Distribution also makes microservice architectures highly available, since the
failure of a single microservice does not necessarily result in the failure of other
microservices. Distribution can also utilize locality and locate services closer to
the clients they serve, resulting in better geographical scalability [2,18].

Non-uniform Scaling. Typically, when monolithic architectures are exposed
to growing load, it is difficult to locate which components of the system are
actually affected, since the system runs within a single process. This means
that, although only a single component may be experiencing load, the whole
monolith will need to scale, e.g. by replication or vertical scaling. Even if it is
known which is the component that is experiencing load, it is difficult to scale it
in isolation. The same reasoning may apply to SOAs: services in SOAs may be
large, frequently hiding a whole monolithic application behind a service-oriented
interface, hence they may only scale at a large granularity. The same applies when
scalability is needed to implement high availability: if only some components of
a monolith or of a large service are required to be highly available, the whole
monolith/large service will have to be highly available.

Since microservices are implemented and deployed independently of each
other, i.e. they run within independent processes, they can be monitored and
scaled independently, as shown by the example below.
Example. A simplified illustration showcasing the benefits of scaling a microser-
vice architecture, compared to a monolithic architecture, is given in Fig. 1. Both
the systems implement componentization of software, the monolith utilizing reg-
ular software components, such as libraries, and the microservice architecture
utilizing microservices, i.e. Component x corresponds to Service x. In this sce-
nario Component/Service 1 is experiencing a load that requires to replicate it
to 3 instances. Since the monolith is deployed as a single process, one needs to
replicate the whole system, including all 3 components, across three hosts. In a
microservice architecture one can simply replicate the single service experienc-
ing load, resulting in allocation of much fewer hosts. The load balancers are in
place in both systems to split the load across replicas. However, in the monolith
the balancer splits only external requests, while in the case of the microservice
architecture it splits both external requests and internal requests between the
different microservices, thus allowing for a more uniform load balancing. This
happens in particular when external requests may trigger computations which
are heavy in a possibly non-uniform way: only balancing external requests may
not be enough.

The reliance on Domain-Driven Design [11] and the strive towards high cohe-
sion means that growing load will typically be delimited to a subset of associated
microservices [19]. The specific microservices actually experiencing the growing
load can then be scaled, e.g., by relocating them to the more performant hosts
or by replicating them across a cluster or on the cloud.

A similar argument applies to the technology adopted for implementing each
microservice: the technology used to build a microservice can be chosen in order

98 N. Dragoni et al.

Fig. 1. Scaling in microservices vs monolithic architecture

for it to perform at best. For instance, a computation-intensive microservice
might be implemented in C++, while a microservice requiring to handle complex
types could be implemented in a language with a sophisticated type system, like
Haskell. This is not possible in a monolithic architecture which is typically bound
to a single platform and language.

Portability. Microservices are typically packaged in containers, as provided,
e.g., by Docker [15] or similar technologies. A container includes the microservice
and all its environment (libraries, databases, . . .) in a unique entity which can
be easily deployed on any platform supporting the chosen container technology,
ensuring uniform behavior over heterogeneous platforms (hosts, data-centers and

Microservices: How To Make Your Application Scale 99

cloud providers) and isolation w.r.t. other containers (e.g., different microservices
can use different versions of the same library without conflicts). The portability
ensured by containers enables effortless relocation or replication of a microservice
across heterogeneous platforms. Microservice architectures are therefore ideal for
scaling a system horizontally, since the microservices can easily be relocated to
newly provisioned hosts.

Elasticity. The ability to easily replicate individual microservices, coupled with
the ability to locate both a single and multiple microservices on a single host,
also enables microservice architectures to be elastic, that is to dynamically scale
according to the load. Because of this multiple-service-per-host model, deploy-
ing a microservice architecture to a dynamically-sized cluster, and in particular
on the Cloud, allows it to utilize available resources very efficiently. When the
load is high, the system can easily be expanded by exploiting additional hosts
dynamically allocated to it in the cluster or new virtual machines on the cloud,
and when resources become redundant because of lower load then those hosts
can be de-provisioned and removed from the cluster/cloud again. In the same
way, the number of service replicas can be increased or shrunk when needed.
This feature makes microservices a natural technology for the cloud, and sug-
gests that microservice popularity will continue to grow as far as more and more
applications are moved to the cloud.

Availability. We have already highlighted some of the ways in which microser-
vices can help availability, but here we summarize the main aspects related to
the topic. In general, high availability is achieved by microservices’ ability to be
replicated and spread across data-centers and geographical distances, allowing
them to spread load and cope with failing and congested hardware. Another
relevant aspect concerns system update and evolution: while updating a mono-
lithic application requires to stop it and re-deploy it, thus causing a possibly
long downtime, replicability and independence allow microservices to solve the
problem. First, updating a microservice architecture normally involves just one
or a few microservices related to the business capability that needs to be fixed
or improved, hence reducing the deployment time. Furthermore, the old and
the new version of the same microservice can run side by side, e.g., the old one
completing running requests and the new one taking care of new requests. The
old one can then be removed when its job is ended. Note that containerization
avoids interferences between the two versions of the service, e.g., allowing them
to rely on different versions of the same library. This naturally leads to smaller
but more frequent updates, in the direction of continuous deployment.

Robustness. As for availability, also robustness benefits from using a microser-
vice approach. Indeed, one may replicate microservices as described above
to ensure fault tolerance. Fault tolerance however is also naturally improved
because of the usage of containerization and independent processes. Indeed, a

100 N. Dragoni et al.

single microservice is completely isolated from other microservices and can only
be affected by them through its defined interfaces or through the resources it
relies on. This means that even though some microservices might fail, isolation
ensures that other microservices and their environments are not affected. Of
course, this requires microservices to implement some fault-tolerant mechanisms
that can detect possible failures in microservices they depend on in order to
prevent cascading failures.

One should however pay attention that low level interferences may still hap-
pen, in particular when multiple microservices are deployed on the same host.
Indeed, although their logical environments might be isolated, their physical one
is not. If a single microservice consumes all the resources of a host shared with
other microservices, those microservices will be affected. Therefore one should
be careful when placing microservices together on the same host and take the
possible load of each of the microservices into account both before and during
operation, ensuring that resources are not exhausted by a single microservice.

No Silver Bullet. The description above should clarify how microservices pro-
vide a natural way to reach scalability, including availability and fault tolerance.
However, this does not come for free: having multiple independent entities intro-
duce some extra administrative overhead, in particular for deployment, admin-
istration, monitoring, and security. While there are approaches to mitigate these
problems (but still far from satisfactory, at least concerning security), this means
that sometimes microservices are not the solution. The description above should
help to understand the advantages of microservices, and deciding whether they
are a good technique for the problem at hand. We discuss below some concrete
cases to further clarify the issue.

3 The Language Choice

While microservice architectures can be built using a wide range of technologies,
possibly combined into the same system, we think that the use of a dedicated lan-
guage can simplify the development of microservice systems. Our experience is
based on the language Jolie, the only language we are aware of natively support-
ing microservice architectures. While we refer to [17] for a detailed description of
the Jolie language, we recall here its features that come handy for our discussion,
and in particular the ones related to the characteristics of microservices above.

In Jolie each program is a microservice, and its description is composed by
a behaviour, and some deployment information, concerning how it can commu-
nicate with other microservices. In this sense, distribution is inherent in the
language, since each microservice makes its functionalities available at a specific
URL, and can be invoked by other microservices. Non-uniform scalability can
be easily obtained: new microservice instances can be run, and one can eas-
ily redirect requests from a single microservice to a load balancer: targets of
microservice invocations are a first-class object in Jolie, hence they can be eas-
ily and dynamically changed. Primitives for architectural composition such as

Microservices: How To Make Your Application Scale 101

redirection or aggregation also help in this direction. The support that Jolie pro-
vides to these basic aspects, and the fact that it fully supports the microservice
paradigm, ensure that also the other relevant properties hold. Indeed, Jolie has
no specific language support for containerization or elasticity, and indeed how
such a language support can be provided and whether it would be beneficial
for the language or not is an active topic of discussion in the Jolie community.
However, Jolie microservices can be easily deployed in Docker [15] containers
or on the cloud, hence what said above in this respect holds for Jolie microser-
vices as well. We close this section with a note on robustness: Jolie provides
advanced mechanisms for fault notification between different microservices [12].
These mechanisms allow detailed control on whether faults are propagated from
one microservice to the ones interacting with it. Indeed, non propagating them
allows one to avoid cascading errors, but careful propagation allows one to restore
a correct distributed state for the whole system, while preserving the indepen-
dence of the single microservices. Indeed, each microservice is responsible for
restoring its own state, but distributed coordination allows one to ensure global
consistency.

4 Applications

Microservice architecture has an ideal application where scalability, minimality
and cohesiveness are required. Several companies nowadays are moving their
monolithic architectures to microservices to reap benefits of scalability. Netflix
is one such example - they were one of the pioneers who moved from monolith
to microservices [10]. Now Netflix underlying microservice architecture enables
them to scale effectively and serve millions of users everyday. Portability was
used by Netflix not only to make deployment and relocation easier, but also
to automatise the deployment: a deployment tool that knew how to deploy a
container, could deploy it no matter what was inside it. Microservice architecture
also allowed Netflix to improve robustness and availability by launching a service
called Chaos monkey [3] to continuously test for faults within the system. Chaos
monkey, as the name suggests, causes chaos inside the system by shutting down
various services randomly and observing how the system would adapt to these
failures. Despite the fact that Chaos Monkey produces faults on the running
system, the system still operates within the limited period of time when engineers
are able to respond to the possible crash.

Our research group has investigated another application of the architectural
style exploiting the flexibility of the Jolie programming language: the emerging
area of smart buildings, with an outlook on IoT and smart cities. Rooms of a
building have been equipped with a number of devices and sensors in order to
capture the fundamental parameters determining well-being, comfort and liv-
ability of humans, such as temperature, humidity, and illumination [22,23]. The
purpose is to monitor and optimize working conditions, and the software infras-
tructure, tightly connected to the hardware, makes use of Jolie and microservices.

102 N. Dragoni et al.

The system is designed separating the logic into small components. Each
service is responsible for managing one sensor or one specific function. Some ser-
vices are written in Java for a simpler interaction with devices, and Jolie works
as an orchestrator for the entire set of services. There are several advantages in
this approach. First of all, reusability. The system supports different kinds of
sensors, but the central logic of data extraction is unchanged even when sen-
sors are added, removed or substituted. Second, code readability, since services
are simple components with a simple logic and a clear naming convention. The
combination of readability and reusability also leads to reduced bugs. Scalabil-
ity, minimality and cohesiveness are necessary due to the need of connecting
sensors and actuators, removing them, adding new ones, managing faults and
monitoring the dynamic nature of the infrastructure, especially when mobile
devices and “things” are part of the system. The elasticity of the context has to
be managed partially automatically, partially through human intervention from
a central control panel, therefore demanding the need for service orchestration
and workflow management.

5 Microservices and Beyond

The microservice architecture does not build on vacuum and relates to well-
established paradigms such as OO and SOA. In [9] a comprehensive survey on
recent developments of microservice architecture is presented focusing on the
evolutionary aspects more than the revolutionary ones. The presentation there
is intended to help the reader in understanding microservices, their origin and
their possible future.

Microservices can be built using a wide range of technologies combined into
the same system. However, we support the idea that a language-based approach
can simplify development [4]. Jolie is the only language we are aware of that is
natively supporting the paradigm. Workflow engines have been around for long
[13], and workflow languages capable of describing service orchestration have
been released and used in the past, for example WS-BPEL [20]. WS-BPEL pro-
vides indeed many of the features necessary to describe workflows of services,
plus communication aspects (ports, interfaces). Dynamic workflow reconfigura-
tion can be expressed too [14]. However, WS-BPEL has been designed for high-
level orchestration, while programming the internal logic of a single microservice
requires fine-grained procedural constructs.

Our research team has been deeply involved in the microservice community
and actively contributed to its broader adoption. As an open source project,
Jolie has already built a community of developers worldwide - both in industry
and in academia - taking care of the development, continuously improving its
usability, and therefore broadening the adoption. Recent developments and con-
tributions from our team are: extension of the type system [21], development of
static type checking [24], addition of more iterative control structures to support
programming, and inline automatic documentation [1]. These works geared up
the development environment, and started the process of transforming it into a

Microservices: How To Make Your Application Scale 103

full suite that makes the entire concept attractive to developers and marketable
to companies.

The future is certainly not challenge-free. Security of the paradigm is an
issue almost fully untouched [9]. Commercial-level quality packages for develop-
ment are still far to come, despite the acceleration in the interest regarding the
matter. Fully-verified software is an open problem the same way it is for more
traditional development models. A main open problem is how microservices may
integrate with the two main emerging platforms, which will likely dominate the
near future: the cloud and the Internet of Things. While microservices seem ideal
to run on the cloud, thanks to their properties of portability and elasticity, run-
ning on the Internet of Things still present some difficulties. In particular, many
things have low computational capabilities and present higher risks from a secu-
rity point of view, since they are easier to compromise [8]. As an example of this
second point just consider that botnets such as Mirai [16] are composed by things
(routers, IP cameras, digital video recorders, . . .) which normally have very low
protection (e.g., passwords fixed by the manufacturer and never changed) [6].
Hence integration of microservices and the Internet of Things would make the
need for specific security solutions even more urgent.

References

1. Bandura, A., Kurilenko, N., Mazzara, M., Rivera, V., Safina, L., Tchitchigin,
A.: Jolie community on the rise. In: 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA), pp. 40–43 (2016)

2. Bondi, A.B.: Characteristics of scalability and their impact on performance. In:
WOSP, pp. 195–203 (2000)

3. Tseitlin, A., Bennett, C.: Chaos Monkey Released Into The Wild (2012). http://
techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html

4. Guidi, C., Lanese, I., Mazzara, M., Montesi, F.: Microservices: a language-based
approach. Present and Ulterior Software Engineering, pp. 217–225. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67425-4 13

5. de Almeida, E.S., Alvaro, A., Lucrédio, D., Garcia, V.C., de Lemos Meira, S.R.:
Rise project: towards a robust framework for software reuse. In: IRI, pp. 48–53
(2004)

6. De Donno, M., Dragoni, N., Giaretta, A., Mazzara, M.: AntibIoTic: protecting IoT
devices against DDoS attacks. In: Proceedings of 5th International Conference in
Software Engineering for Defence Applications (2017)

7. Dragoni, N., Dustdar, S., Larse, S.T., Mazzara, M.: Microservices: Migration of a
mission critical system (2017). https://arxiv.org/abs/1704.04173

8. Dragoni, N., Giaretta, A., Mazzara, M.: The internet of hackable things. In: Pro-
ceedings of 5th International Conference in Software Engineering for Defence Appli-
cations (2017)

9. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin,
R., Safina, L.: Microservices: yesterday, today, and tomorrow. Present and Ulterior
Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-67425-4 12

10. McGarr, M., Bukoski, E., Moyles, B.: HowWe Build Code at Netflix (2016). http://
techblog.netflix.com/2016/03/how-we-build-code-at-netflix.html

http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
https://doi.org/10.1007/978-3-319-67425-4_13
https://arxiv.org/abs/1704.04173
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
http://techblog.netflix.com/2016/03/how-we-build-code-at-netflix.html
http://techblog.netflix.com/2016/03/how-we-build-code-at-netflix.html

104 N. Dragoni et al.

11. Evans, E.: Domain-driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Boston (2004)

12. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service
oriented applications. Fundam. Inform. 95(1), 73–102 (2009)

13. Maurer, F., Succi, G., Holz, H., Kötting, B., Goldmann, S., Dellen, B.: Software
process support over the internet. In: Proceedings of the 21st international confer-
ence on Software engineering, pp. 642–645. ACM (1999)

14. Mazzara, M., Abouzaid, F., Dragoni, N., Bhattacharyya, A.: Design, modelling
and analysis of a workflow reconfiguration. In: International Workshop on Petri
Nets and Software Engineering, pp. 10–24 (2011)

15. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)

16. Mirai Botnet - wikipedia. https://en.wikipedia.org/wiki/Mirai (malware)
17. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with Jolie.

Web Services Foundations, pp. 81–107. Springer, New York (2014)
18. Neuman, B.C.: Scale in distributed systems. In: Readings in Distributed Comput-

ing Systems, pp. 463–489. IEEE Computer Society Press (1994)
19. Newman, S.: Building Microservices. O’Reilly Media Inc., Sebastopol (2015)
20. OASIS. Web Services Business Process Execution Language Version 2.0 (2007).

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
21. Safina, L., Mazzara, M., Montesi, F., Rivera, V.: Data-driven workflows for

microservices (genericity in Jolie). In AINA (2016)
22. Salikhov, D., Khanda, K., Gusmanov, K., Mazzara, M., Mavridis, N.: Jolie good

buildings: Internet of things for smart building infrastructure supporting concur-
rent apps utilizing distributed microservices. In: CCIT, pp. 48–53 (2016)

23. Salikhov, D., Khanda, K., Gusmanov, K., Mazzara, M., Mavridis, N.: Microservice-
based IOT for smart buildings. In: WAINA (2017)

24. Tchitchigin, A., Safina, L., Mazzara, M., Elwakil, M., Montesi, F., Rivera, V.:
Refinement types in Jolie. In: Spring/Summer Young Researchers Colloquium on
Software Engineering, SYRCoSE (2016)

https://en.wikipedia.org/wiki/Mirai_(malware)
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

Static Binary Code Instrumentation
for ARM Architecture

Mikhail Ermakov(B)

Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow 109004, Russian Federation

mermakov@ispras.ru

http://www.ispras.ru/en/groups/sp/

Abstract. Binary code analysis is becoming a prominent technique in
software development, covering tasks related to quality assurance and
security. In this paper, we present an approach to static binary code
instrumentation—persistent modification and extension of executable
files—that we believe to be effective when used as a basis of implemen-
tation of various dynamic analysis techniques. We have developed an
instrumentation framework targeting ARM ELF binary code that allows
transforming files based on user-defined specifications. Specification lan-
guage provides means to perform aspect-oriented programming targeting
low-level groups of points in binary code to insert extra instrumentation
code that can be supplied in C/C++ language. We have applied our
framework to Avalanche—an automatic input generation tool based on
dynamic symbolic execution—and achieved up to 10x increase in path
traversal speed within a limited time frame compared to Valgrind-based
dynamic binary instrumentation.

Keywords: Binary instrumentation · Dynamic analysis
ARM architecture

1 Introduction

Program static and dynamic analysis tools have long become an important part
of the software development process. Development teams employ powerful clus-
ters and processing networks to automatically work on as many tasks as possible.
The two main groups of analysis methods—static code analysis and dynamic pro-
gram analysis—typically focus on software source and binary code respectively.
Static analysis tools are generally incorporated in the actual development process
(through IDE integration, nightly runs, etc.) and identify problematic sections
of code that must be fixed as soon as possible. Dynamic analysis methods are
designed to follow program execution. Excluding quality control through simple
test execution, dynamic analysis might be performed as an independent stage
of software development prior to important release dates. Such analysis sessions
are designed to emulate user experience with the software product in order to
identify critical issues to fix.
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 105–116, 2018.
https://doi.org/10.1007/978-3-319-74313-4_9

106 M. Ermakov

Dynamic analysis methods employ a broad range of approaches and tech-
niques in order to emulate user experience and control program execution. These
include system-wide monitoring and tracing, emulation and virtualization, and
finally code instrumentation. In this paper we will focus on code instrumentation
methods.

Code instrumentation implies the process of modifying program code to
change the existing functionality and include additional functionality. Dynamic
analysis methods typically favor only the latter approach to ensure reasonable
and useful results. The additional code inserted in the target program is designed
to produce traces or link with monitoring or debugging tools during execution.
Generated information about program execution is processed in an intelligent
way dependent on analysis goals.

It is possible to perform code instrumentation while working with various
program representations.

– source code instrumentation allows incorporating new functionality while
working with high-level semantic constructs. This approach does not require
additional work with code generation—everything is performed by the exist-
ing build system. The approach requires the access to the source code and
the build system, and thus cannot cover external and dynamically-generated
code;

– compiler-level instrumentation [1] provides a powerful balance between
high- and medium-level program code structure. This approach makes it eas-
ier to match target instrumentation points, control code modification and
allows direct integration with optimization subsystems. As source code instru-
mentation, this approach can only be used to process available code; addi-
tionally, it imposes limitations on the build system;

– dynamic binary instrumentation provides means to process program exe-
cution thoroughly, modifying its code on the fly. As the process of instrumen-
tation is directly tied to the program state and resource pool, it can be easily
reconfigured, reversed or extended for certain portions of code. The drawbacks
of dynamic instrumentation include increased influence on the execution state
and the need to perform code parsing and modification for every program run.

– static binary instrumentation offers a range of analysis possibilities sim-
ilar to source code and compiler-level instrumentation, but is applicable in
cases where only binary files are available. It is less flexible than dynamic
instrumentation in terms of code coverage and configuration, but offers bet-
ter performance and ease-of-use prospects when used in large-scale analysis
involving various user-end configurations and multiple program runs.

Currently, one of the large-scale analysis applications—automatic test gen-
eration for defect detection using program path traversal and symbolic execu-
tion techniques—features heavily in academic research and commercial use. It
involves heavy processing of application code and requires significant amount of
resources to obtain acceptable results. Thus, any practical improvement in code
processing efficiency is highly desirable.

Static Binary Code Instrumentation for ARM Architecture 107

To this end, we have developed and implemented an approach to static instru-
mentation of binary code. We believe that persistent code modification and ease
of deployment will provide practical benefits—decreasing execution overhead
and making it easier to incorporate rapidly developing code analysis techniques.
We choose to focus on binary code (and ARM architecture in particular) as it
seems to be the primary focus of defect and vulnerability analysis and other
applications in the field of software security.

The approach to code instrumentation and instrumentation frameworks were
previously presented in [2,3]. This paper extends the publications with a descrip-
tion of code processing and modification algorithms. In Sect. 2 we give a brief
overview of the instrumentation stages and identify the key features of instru-
mentation specifications, target binary code parsing and instrumentation code
generation. Section 3 provides an overview of ELF section restructuring per-
formed during instrumentation. Section 4 contains in-depth description of code
transformation and optimization techniques. In Sect. 5 we showcase and discuss
the results of practical experiments. The concluding section provides a brief
evaluation of the presented work and outlines prominent future work directions.

2 Instrumentation Framework Overview

The work on a standalone static binary instrumentation framework for ARM
architecture on Linux platforms was prompted by two main reasons. Firstly,
existing instrumentation frameworks either do not target ARM architecture
[4,11], provide support only in dynamic mode [5,6,8,13] or are distributed on
a commercial basis [10]. Our focus in program analysis is strongly targeted at
mobile platforms and Android and Tizen systems in particular. As both of these
platforms are Linux-based we chose to process ELF executable format. This for-
mat describes a relatively formal yet extensible structure that is easy to process
and includes a set of elements related to code organization and supported by the
majority of compiler infrastructures and dynamic linkers.

Additionally, while existing instrumentation frameworks feature extensive
API for code processing, they nevertheless require a certain amount of effort to
design analysis tools. Our focus in program analysis targeting low-level instruc-
tion and basic block processing favored a more straightforward approach in cre-
ating code modification tool specifications—a simple aspect-oriented language
that allows to extract necessary information from processed code to form exe-
cution traces.

Implementation-wise our framework is similar to PEBIL [4]—the main differ-
ences arise in the code generation process and the structure of instrumentation
code. ARM instruction set is easier to work with due to reduced variation of
instruction size compared to x86/x64 instruction sets and we are thus able to
avoid main difficulties with instruction padding that the authors of PEBIL had
to work with.

108 M. Ermakov

2.1 Input Specifications

The general instrumentation scheme follows input specification considerations
described before. Our specification language allows to describe a set of instru-
mentation targets in the form of quadruples 〈T,C, F,D〉, where:

– T identifies the instrumentation target type—instruction semantic group (i.e.
arithmetic operation, memory access operation, etc.) or positional group (i.e.
function entry point, basic block entry point, etc.)

– C identifies instrumentation code—extra code that needs to be inserted in
binary files. Instrumentation code is specified as a single block of C/C++
code, which might include calls to external libraries and a set of macro defi-
nitions that are processed by the instrumentation engine and serve as basic
API.

– F identifies source code filters that allow to limit code modification to spe-
cific functions (derived from source code through debugging information and
symbol tables) present in binary files.

– D identifies a set of external dependencies that allow to define, which external
libraries need to be made accessible to binary files in order to satisfy the
limitations imposed by the dynamic linker.

Within a specification file every instrumentation target is designed to cover
specific individual instructions in binary code, which match the conditions lim-
ited by target type. Every target-instruction match will spawn a block of code
by expanding macro definitions in the corresponding instrumentation code block
using relevant instruction characteristics. Binary file instrumentation is limited
to incorporating these blocks of code and modifying the original code control
flow in such a way as to tie instruction execution with instrumentation code
execution.

2.2 Instrumentation Code Generation

Instrumentation code generation is performed in a straightforward fashion and is
directly tied to the binary code disassembly process based on linear algorithms.
For every disassembled instruction we extract a set of properties that are later
used to expand macro definitions in instrumentation code, identifying necessary
padding size for register state save/restore operations and necessary instruction
transformations. The latter two groups of properties are required to preserve
original program functionality while inserting additional code.

We perform code disassembly and processing on a per-function basis. For
this end in our current implementation we are dependent on the presence of sev-
eral ELF sections not directly related to program execution—such as the sym-
bol table—to identify blocks of instructions composing different functions, non-
executable raw data blocks and instruction set transitions (ARM base instruction
set to Thumb-2 set and vice versa).

After a function in binary file is fully disassembled every instruction is
matched against each instrumentation target provided in specifications. For

Static Binary Code Instrumentation for ARM Architecture 109

every successful match instrumentation code is parametrized and added as a
standalone function with a unique name in a source code file. Based on target
type and instruction characteristics the actual block of instrumentation code is
padded with inline assembly blocks. These blocks are later transformed into state
preservation and restoration instructions, which guarantee that instrumentation
code will not invalidate the execution state.

Figure 1 depicts an example instrumentation specification and the resulting
instrumentation code generated for a matching instruction.

Fig. 1. Instrumentation code generation

Instrumentation code blocks corresponding to the same instructions or adja-
cent instructions in the original binary file are marked as “linked”. Linked blocks
are later processing a specific way to optimize the number of control transfer
instructions. The resulting source code file containing multiple instrumentation
code functions is compiled into an object file by standard means. This file con-
tains ELF-defined relocation information, which allows to identify individual
instrumentation code blocks and references to external libraries. This informa-
tion is typically used by linker tools; we employ the same data structures to
incorporate instrumentation object files into fully formed binary files.

For basic instrumentation code specifications the generated object file can
be easily appended to target binary files, which is enough to achieve the desired
results (after control flow modifications described in Sect. 4 are performed)—
a modified set of executable files that run additional code. However, if the

110 M. Ermakov

instrumentation code is dependent on external libraries for global variables or
functions, more extensive modification must be performed in order to satisfy the
dynamic linker contract. This modification is targeted at blocks of control data
included in binary files during linking and compilation. Fortunately, with ELF
format this data is stored in such a way that allows to perform necessary actions
in a relatively straightforward way.

3 Working with ELF Files

The ELF format defines executable code files as a set of sections, which contain
either raw data with its own semantics or a set of elements of specific nature.
Sections have a set of attributes including their size, access flags and relative posi-
tions. Based on these attributes ELF sections are grouped in segments, which
are loaded in virtual memory by the dynamic linker as solid blocks of data. Indi-
vidual sections may incorporate information about other sections, which imposes
certain limitations on how they can be modified (extended, moved within seg-
ments or moved to other segments). We have based our implementation on the
analysis of common dynamic linkers used in Android and Tizen systems, as well
as commonly used ELF section characteristics. We have constructed a list of
ELF sections that might be freely modified or modified in a controllable fashion
and a list of sections that were deemed too complex to process in a significant
capacity. The second list includes executable and raw data sections, while the
first list includes accessory sections.

The sections supporting the work of the dynamic linker (from the first list)
include the following:

– .dynamic—section containing the most important data for the dynamic
linker. Every external library used by the instrumentation code must be added
as a reference item to this section, which causes its size to be increased;

– .dynsym, .dynstr—sections containing external symbol information (base
properties and raw text specifying names);

– .rel.plt, .rel.dyn—sections containing information used to correct exter-
nal references during executable code file initialization in virtual memory;

– .got, .plt—sections including active offsets and short blocks of code that
are executed to perform control transfer to external libraries. As .plt section
is heavily used by original code section of target file, it must be moved in a
way to preserve relative offsets to the code section;

– .gnu version, .gnu version r—sections containing versioning information
for external libraries and symbols exported by them.

When instrumentation object file is generated, every reference to an external
function will form a block of instructions that does not function properly (leads
to an infinite loop or performs a possible illegal memory access). Appending
instrumentation code to target executable file therefore requires a set of modi-
fications that will correct these blocks of instructions. These modifications are
directly tied to the sections mentioned in the list above. Every global variable

Static Binary Code Instrumentation for ARM Architecture 111

(function) referenced in the instrumentation code must have a corresponding
entry in .dynsym, .dynstr, .rel.dyn, .got and .gnu version sections (and
.plt). These entries might already be present if the corresponding external sym-
bols are used in the original code sections. If these entries are absent, they must
be formed and inserted in all the sections; however, this causes an increase of
section sizes. In turn, this disrupts the existing relative section placement within
segments because of the data overlap. In order to fix the resulting code file, the
segment map must be rebuilt. During the segment map rebuild sections from the
second list containing raw data and executable code must keep their placement
in regards to sections from the first list (particularly .plt and .got).

Given instrumentation specifications and information in target binary files
we perform preliminary calculation of all necessary changes to section sizes. The
resulting section placement is identified by checking every possible permutation
of a section set and selecting the one that has the minimum overall size. The seg-
ment map is rebuild following the chosen permutation and the resulting binary
file is processed in order to introduce basic changes to entries in the sections that
were moved (.rel.plt in particular). These changes ensure that the modified
sections hold entries relevant to the new segment map.

Figure 2 depicts an example of section configuration (commonly produced by
Android/Tizen compiler toolchains; several sections irrelevant to the process are
omitted) and modifications that are applied to it during instrumentation.

Fig. 2. ARM ELF section manipulation

112 M. Ermakov

4 Inserting Instrumentation Code

Altering control flow in the target binary code file is performed in a straightfor-
ward fashion. An instruction or a block of instructions at instrumentation point
is replaced with an unconditional jump instruction to the corresponding block
of instrumentation code. The replaced instructions are appended to the end of
instrumentation code in order to preserve the original functionality. Finally, an
unconditional jump instruction to return to the spot after the instrumentation
point is appended after the replaced instructions.

For the majority of ARM and Thumb-2 instructions such modifications are
safe in regards to their functionality. However, instructions that depend on the
value of instruction pointer register or form a specific block with adjacent instruc-
tions require additional processing. We have introduced a set of rules to cover
three groups of instructions that are relevant to this problem:

– relative branch instructions explicitly use the value of the instruction pointer
register to calculate the target of the control flow jump; relocating these
instructions to the instrumentation code is performed along with relative
offset modification;

– arithmetic and memory instructions that explicitly use the value of the
instruction pointer register are transformed into blocks of instructions that
account for the difference between the instrumentation point and the start of
instrumentation code block;

– conditional execution blocks from the Thumb-2 instruction set (IT blocks)
must be relocated as a combined structure and duplicated over several instru-
mentation code blocks as the Thumb-2 reference imposes a set of rules over the
composition of every IT block; the duplication is necessary to avoid in-depth
processing of instruction semantics (in particular, flag register modification
rules).

Inserting two jump instructions for every instrumentation point results in
a notable overhead during program execution. While modifying program con-
trol flow is unavoidable during instrumentation unless the additional code is
inserted directly into the original code sections (such modifications are complex
and require a high level of disassembly and code analysis not present in existing
static binary instrumentation frameworks), we nevertheless aim to decrease the
number of control switches whenever possible. To this end we have implemented
two optimization mechanisms:

– instrumentation code block “linking” allows us to insert jump instructions to
reach the beginning of the next instrumentation code block after the end of the
previous one in case these blocks correspond to two adjacent instrumentation
points; in this scenario there is no need to perform two consecutive control
flow switches without any meaningful instructions in between;

– instrumentation point extension allows us to relocate a linear sequence of
instructions starting at instrumentation point and ending at the next instru-
mentation point to the end of instrumentation block; the functionality is not

Static Binary Code Instrumentation for ARM Architecture 113

changed (since moved instructions are processed according to the rules above)
and we are able to use “linking” to remove redundant jump instructions; this
optimization is only available for actual linear sequences within a single basic
block.

4.1 Code Linkage

During final code instrumentation stages we also perform actions that are nor-
mally carried out by a linker within a compiler infrastructure. We use relocation
and other supplementary information stored in the instrumentation object file
to perform the following modifications in the instrumentation code appended to
the target binary file:

– correcting offsets from instrumentation code section to instrumentation data
section based on their relative placement in the target file;

– correcting offsets from instrumentation code to the .plt and .got sections
in order to correctly call functions and use global variables from external
libraries; these offsets might either point to existing entries in these sections
(already defined in the original version of the binary file) or to the new entries
added during the stage described in Sect. 3.

5 Practical Evaluation

We have implemented our instrumentation framework on top of the open source
package binutils [12] (for ARM ELF processing and modification) and gcc [7] for
automatic code generation.

We have conducted several sets of experiments with the framework in order
to identify the limitations of its use and overhead considerations. Our main focus
of research was connected with iterative dynamic analysis and dynamic symbolic
execution where we attempted to use the advantages of static instrumentation to
decrease the overhead over multiple runs of application under analysis. To test
the viability of static binary instrumentation we have chosen Avalanche [9]—
an analysis framework for generating input data and program path traversal.
The original version of Avalanche employed dynamic binary instrumentation
to perform two different operations—light-weight basic block coverage analysis
for program path prioritization, and heavy-weight data flow tracking and path
predicate generation.

We have designed our own versions of instrumentation tools for these tasks
using the implemented instrumentation framework. Our basic block coverage
checker uses small code snippets in conjunction with a simple hash library. In
addition the code snippets include blocks of self-modifying code that is designed
to revert control flow modifications performed during instrumentation—after
a basic block entry point is added to the set during program execution the
original instructions at the instrumentation point are restored. Every consecutive
execution of this basic block is performed with zero overhead. This optimization

114 M. Ermakov

is comparable to the original Avalanche implementation that used the Valgrind
framework.

Our data flow tracker and path predicate generation tool is designed as
an external library and optimized for the ARM architecture instructions. It is
mostly identical to the original Avalanche implementation that used the Valgrind
framework.

Applying our instrumentation plugins to a set of applications allowed us to
achieve a significant increase in analysis efficiency without losing its precision in
a given time frame (see Table 1). The decreased time of instrumented program
runs allowed to process more execution paths and uncover additional critical
defects (invalid memory accesses causing segmentation faults) for two programs
from the set.

Table 1. Static instrumentation vs. dynamic instrumentation for Avalanche

Target program TGT
(dynamic)

TGT
(static)

CCT
(dynamic)

CCT
(static)

I/D
(dynamic)

I/D
(static)

cjpeg 4.12 0.33 1.24 0.32 4009/1 4163/1

djpeg 3.49 0.16 1.38 0.09 3455/0 36443/0

mpeg2dec 3.73 0.21 1.28 0.09 4051/1 13459/1

mpeg3dump 10.23 0.6 1.58 0.1 2637/2 37528/2

swfdump 4.61 0.48 1.14 0.33 3528/1 14759/4

qtdump 6.01 0.35 2.75 0.11 1592/2 35402/3

TGT—average trace generation time (seconds).
CCT—average coverage check time (seconds).
I/D—inputs checked/defects detected in the 2 h frame.

For a single executable (cjpeg) the use of static binary instrumentation caused
a significant shift in the distribution of plugin work time, bringing the solver
component (used to generate new input data from path constraints) to the fore-
front. Due to minor differences in basic block calculation Avalanche under static
instrumentation hit a seemingly prominent execution path subtree far from the
entry point. In turn, this resulted in larger path constraints being generated—
thus, the solver component took more time to process the constraints and was
able to generate fewer new inputs.

6 Conclusion

In this paper we have presented an approach to perform static binary instru-
mentation for executable code files in ARM ELF format. We have implemented
an instrumentation framework that allows to design low-level code modification
tools with an easy-to-use aspect-like specification language.

While we believe our framework to be useful for various research and practi-
cal applications, there are multiple directions for future work. Firstly, we want to

Static Binary Code Instrumentation for ARM Architecture 115

increase the level of analysis performed during disassembly and code generation
in order to obtain more information. This information can be used to optimize
state preservation and restoration blocks that we include in the instrumentation
code (in particular, flag and register liveness analysis). Secondly, while binu-
tils disassembly algorithms are fairly reliable, they lose precision when targeted
at obfuscated code or code stripped of any information that is not related to
its execution. Therefore, integrating the instrumentation framework with more
complex and powerful disassembly tool appears to be a relevant and desirable
improvement. Finally, we wish to improve the instrumentation framework API
and instruction set coverage (ARMv8 support, ARMv7 vector and floating point
instruction support).

References

1. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: a fast
address sanity checker. In: USENIX Annual Technical Conference (2012)

2. Ermakov, M.K., Vartanov, S.P.: Dynamic analysis of ARM ELF shared libraries
using static binary instrumentation. Trudy ISP RAN/Proc. ISP RAS 27(1), 5–24
(2015)

3. Ermakov, M.K.: Dynamic analysis of ARM ELF executable code using static binary
instrumentation. SPbSPU J. Comput. Sci. Telecommun. Control Syst. 1(236), 108–
117 (2016)

4. Laurenzano, M., Tikir, M., Carrington, L., Snavely, A.: PEBIL: efficient static
binary instrumentation for Linux. In: ISPASS, pp. 175–183. IEEE Computer
Society (2010)

5. Bernat, A.R., Miller, B.P.: Anywhere, any-time binary instrumentation. In: Pro-
ceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools (PASTE 2011), pp. 9–16. ACM, New York (2011)

6. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2005), pp. 190–200.
ACM, New York (2005)

7. GCC project home page. https://gcc.gnu.org/
8. Bruening, D.L.: Efficient, Transparent, and Comprehensive Runtime Code Manip-

ulation. Ph.D. Dissertation. Massachusetts Institute of Technology, Cambridge,
MA, USA. AAI0807735 (2004)

9. Isaev, I.K., Sidorov, D.V.: The use of dynamic analysis for generation of input data
that demonstrates critical bugs and vulnerabilities in programs. Program. Comput.
Softw. 36(4), 225–236 (2010)

10. Anand, K., Smithson, M., Elwazeer, K., Kotha, A., Gruen, J., Giles, N., Barua,
R.: A compiler-level intermediate representation based binary analysis and rewrit-
ing system. In: Proceedings of the 8th ACM European Conference on Computer
Systems (EuroSys 2013), pp. 295–308. ACM, New York (2013)

11. Zhang, M., Qiao, R., Hasabnis, N., Sekar, R.: A platform for secure static binary
instrumentation. In: Proceedings of the 10th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (VEE 2014), pp. 129–140.
ACM, New York (2014)

https://gcc.gnu.org/

116 M. Ermakov

12. Binutils project home page. https://www.gnu.org/software/binutils/
13. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary

instrumentation. In: Proceedings of the 28th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2007), pp. 89–100. ACM,
New York (2007)

https://www.gnu.org/software/binutils/

A Behavioural Theory for Reflective
Sequential Algorithms

Flavio Ferrarotti(B), Klaus-Dieter Schewe, and Loredana Tec

Software Competence Center Hagenberg, Hagenberg, Austria
flavio.ferrarotti@scch.at, kd.schewe@gmail.com, loredana.tec@gmail.com

Abstract. We develop a behavioural theory of reflective sequential algo-
rithms (RSAs), i.e. algorithms that can modify their own behaviour.
The theory comprises a set of language-independent postulates char-
acterising the class of RSAs, an abstract machine model that prov-
ably satisfies the postulates, and a proof that all RSAs are captured
by this machine model. As in Gurevich’s thesis for sequential algorithms
RSAs are sequential-time, bounded parallel algorithms, where the bound
depends on the algorithm only and not on the input. Different from the
class of sequential algorithms every state of an RSA includes a representa-
tion of the algorithm in that state, thus enabling linguistic reflection. The
model of reflective Abstract State Machines (rASMs) extends sequential
ASMs using extended states that include an updatable representation of
the main ASM rule to be executed by the machine in that state.

1 Introduction

Self-adaptive systems have recently attracted a lot of interest in research, in
particular in connection with systems of (cyber-physical) systems [9]. Adaptiv-
ity refers to the ability of a system to change its own behaviour. In the context of
programming this concept, known under the term linguistic reflection, appears
already in LISP [11], where programs and data are both represented uniformly
as lists, and thus programs represented as data can be executed dynamically by
means of an evaluation operator. Run-time and compile-time linguistic reflec-
tion in programming and database research has been investigated in general by
Stemple, Van den Bussche and others in [12,13].

This raises the questions how the development of adaptive systems can
be supported by state-based rigorous methods such Abstract State Machines
(ASMs) [5]. These methods are coupled with a genericity promise, i.e. they can
be applied universally to a large class of systems supporting rigorous specifica-
tion on any level of abstraction, seamless step-wise refinement from high-levels of
abstraction down to implemented code, validation and tracing of requirements

The research reported in this paper results from the projects Behavioural Theory
and Logics for Distributed Adaptive Systems and Higher-Order Logics and Structure
supported by the Austrian Science Fund (FWF: [P26452-N15] & [I2420-
N31]).

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 117–131, 2018.
https://doi.org/10.1007/978-3-319-74313-4_10

118 F. Ferrarotti et al.

through the refinement process, and verification of specifications against the
requirements on grounds of dedicated logics. However, reflective algorithms are
not yet covered.

Gurevich’s celebrated sequential ASM thesis [8] states that sequential algo-
rithms are captured by sequential ASMs. A key contribution of this thesis is
the language-independent characterisation of a reflective algorithm by a small
set of intuitively understandable postulates, by means of which a definition of a
sequential algorithm on an arbitrary level of abstraction is given. Then it can
be shown that every sequential algorithm as stipulated by the postulates can be
step-by-step simulated by a sequential ASM.

Based on this thesis the notion behavioural theory has been introduced for a
triplet comprising (1) a set of postulates that characterises a class of algorithms or
systems, (2) an abstract machine model together with a plausibility proof that
the abstract machine satisfy the postulates, and (3) a characterisation proof
that all algorithms stipulated by the postulates are captured by the abstract
machine model. That is, the sequential ASM thesis provides the behavioural
theory of sequential algorithms. Other examples cover the behavioural theory
of parallel algorithms developed by Blass and Gurevich [1,2], its simplification
by Ferrarotti et al. [6] using a different set of postulates, the behavioural theory
of concurrent algorithms [4], and the behavioural theory of non-deterministic
database transformations [10].

In this paper we investigate a behavioural theory for reflective, sequential
algorithms, which was conjectured in [7]. In light of the significantly increased
technical difficulties that have to be addressed when unbounded parallelism is
permitted (compare the proofs in [6] with those in the sequential ASM thesis
[8]) we first restrict the emphasis on sequential algorithms, where parallelism is
a priori bound and does not depend on the state.

We first develop a set of postulates characterising reflective sequential algo-
rithms (RSAs). The key issue is that an RSA must have some representation
of itself, but this has to be left completely abstract. We argue that this is pos-
sible, which leads to extended states, where abstract terms that appear in the
description of the algorithm are used as values, which requires a distinction con-
cerning their interpretation in a state. The tricky problem is the generalisation
of bounded exploration, for it is clear that all means of an algorithm to change
itself must appear somehow in the algorithm’s description. We argue that there
is still a bounded exploration witness, i.e. a set of ground terms that determines
the update sets yielded in a state, but the bounded exploration postulate will
nonetheless require some sophisticated differentiation concerning the interpreta-
tion of terms. The postulates for RSAs will be discussed in Sect. 2.

In Sect. 3 we proceed with the definition of reflective sequential ASMs
(rASMs), which will be a straightforward extension of ASMs using a dedicated
location self capturing the (syntax of the) sequential ASM that is to be applied
in this state. This determines the runs of a rASM with the difference that in
each step now a possibly different ASM may have been used to determine the

A Behavioural Theory for Reflective Sequential Algorithms 119

updates that mark the state changes. We also briefly sketch the plausibility
theorem though it commonly addresses the simpler proof direction.

Section 4 addresses the proof of the characterisation theorem, which is again
accomplished by a sequence of lemmata, the key problem being that there is a
theoretically unbounded number of different algorithms that nonetheless have
to be handled uniformly. This section will be the technical key contribution of
this paper. We conclude with a brief summary and outlook in Sect. 5.

2 Reflective Algorithms and Their Axiomatisation

The celebrated sequential ASM thesis needs only three simple, intuitive postu-
lates to define sequential algorithms (for details see the deep discussion in [8]):

Sequential time: Each sequential computation proceeds by means of a tran-
sition function τ : S → S, which maps a state S ∈ S to its successor state
τ(S).

Abstract state: Each state S ∈ S is a Tarski structure defined over a signature
Σ, i.e. a set of function symbols, by means of interpretation in a base set BS .
States, initial states and transitions are closed under isomorphisms.

Bounded exploration: There is a fixed, finite set of ground terms W called
bounded exploration witness such that whenever two states coincide on W ,
the update sets that determine the changes in the transition to the respective
successor states are equal.

The postulates imply that sequential algorithms can only check agreement
between states on a fixed and finite set of ground terms (i.e., the bounded explo-
ration witness in the bounded exploration postulate for sequential algorithms).
Reflective algorithms, however, do not satisfy this principle, as the following
simple Example 1 shows. The RSA in the example does not satisfy the bounded
exploration postulate for sequential algorithms. However, it is NOT the ques-
tion, whether a different, non-reflective algorithm exists that solves the same
problem, but whether such an algorithm would also be behaviourally equivalent.

Example 1. We describe a RSA that takes as input a search term t, a perfect
binary tree T , i.e., a binary tree in which all interior nodes have two children
and all leaves have the same depth, and a function label which maps the set
of nodes to an arbitrary set of labels. It traverses the graph in a breadth first
order starting by its root r. If the term t appears as label of some node in the
input tree, then the algorithm updates result to the lowest level in the tree which
contains a node labeled with t.

We assume that in every initial state level = 0, currentNode = r and
result = undef . Let cond be the following function from the natural numbers to
Boolean terms:

120 F. Ferrarotti et al.

cond(0):: = label(r) = t

cond(1):: = label(leftChild(r)) = t ∨ label(rightChild(r)) = t

cond(2):: = label(leftChild(leftChild(r))) = t ∨ label(rightChild(leftChild(r))) = t ∨
label(leftChild(rightChild(r))) = t ∨ label(rightChild(rightChild(r))) = t

...
...

cond(n):: = label(leftChild(. . . leftChild(r) . . .)) = t ∨ · · ·
︸ ︷︷ ︸

· · · ∨ label(rightChild(. . . rightChild(r) . . .)) = t
︸ ︷︷ ︸

2n

.

The algorithm works as follows:
1: if currentNode �= undef ∧ result = undef then
2: if label(r) = t then
3: result := level
4: else
5: currentNode := leftChild(currentNode)
6: level := level + 1
7: Replace the Boolean term in the if-statement in line 2 by the

interpretation of cond(level+1)
8: endif
9: endif

Notice that during a run or computation of this algorithm not only the state of
the algorithm evolves, but also the algorithm itself. In fact, the Boolean term
in the if-statement in line 2 changes with every state transition until either the
searched term t is found or all the levels of the input tree have been exhausted.

As we consider input trees of arbitrary size, this means that there is no fixed
and finite bounded exploration witness for this algorithm, as we would need
to either include all Boolean terms in the infinite set {cond(0), cond(1), . . .}, or
include a different Boolean term cond(level+1) depending on the interpretation
of level + 1 in the current state. ��

2.1 Reflective Sequential Time Postulate

Clearly, when extending the notion of sequential algorithm to include reflection
we think of pairs (Si, Pj) comprising a state Si (as in the sequential thesis),
and a sequential algorithm Pj . Thus, we can consider transition functions τj :
(Si, Pj) �→ (Si+1, Pj) without changing the sequential algorithm Pj . Likewise we
may consider transition functions σi : (Si, Pj) �→ (Si, Pj+1) changing only the
algorithm. In general, a transition of a RSA can then involve both: updates to
the state and updates to the algorithm.

Postulate 1 (Reflective Sequential Time Postulate). Let SP and IP

denote the set of states and initial states of a sequential algorithm P , respectively
(IP ⊆ SP). A RSA A consists of the following:

A Behavioural Theory for Reflective Sequential Algorithms 121

– A non-empty set PA of sequential algorithms;
– An initial algorithm P0 ∈ PA;
– A non-empty set SA =

⋃
Pi∈PA SPi

of states;
– A non-empty set IA = IP0 ⊆ SA of initial states;
– A set of extended-states EA = SA × PA;
– A one-step transformation function τA : EA → EA such that τA((S, P)) =

(S′, P ′) only if τP (S) = S′ for the one-step transformation function τP of the
sequential algorithm P .

Then a run or computation of a reflective algorithm corresponds to a sequence
of pairs (S0, P0), (S1, P1), (S2, P2), . . ., where S0 is an initial state in IA, P0 is
the initial algorithm, and (Si+1, Pi+1) = τA((Si, Pi)) holds for every i ≥ 0.

This leads to the following three fundamental questions which we try to
answer in the remaining part of this section:

Q1. How can we finitely represent a sequential algorithm P without having to
adopt a concrete language for the specification of P?

Q2. How can we finitely characterise changes to the representation of the
sequential algorithms in all states?

Q3. How can we define behavioural equivalence of RSAs independently from
the representation of the sequential algorithms in each state?

2.2 Reflective Abstract Extended-State Postulate

Concerning Q1 we observe that according to the sequential ASM thesis it suffices
to represent a sequential algorithm P by a set of pairs (S,Δ(P, S)) comprising a
state S and the update set of P in that state. A consequence of the proof of the
sequential ASM thesis in [8] is that update sets Δ(P, Si) (i = 1, 2) are equal, if
the states S1 and S2 are W -equivalent for a fixed bounded exploration witness
W . We have S1 ∼W S2 iff ES1 = ES2 , where ES is the equivalence relation
on W defined by ES(t1, t2) ≡ valS(t1) = valS(t2)1. It is therefore sufficient
to replace the state S by a condition ϕ[S], which evaluates to true on states
that are W -equivalent to S. As there can only be finitely many W -equivalence
classes, we obtain an abstract finite representation by a finite set of pairs (ϕi,Δi)
(i = 1, . . . , k).

Therefore, we conclude that we can capture the state-algorithm pairs in a
RSA by an extension Σext of the signature Σ using additional function symbols
to represent the sequential algorithm, e.g. capturing in the state the signature of
the algorithm as well as some syntactic description of it. For this, we must further
permit new function symbols to be created, which can be done by exploiting the
concept of “reserve”. We also conclude that the representation of algorithms
in a state requires terms that are used by the algorithms to appear as values.
So we have to allow terms over Σ (including the dormant function symbols in
the reserve) to be at the same time values in an extended base set. In order
1 As usual, valS(t) denotes the interpretation of a ground term t as a value in the base

set of a state S.

122 F. Ferrarotti et al.

to distinguish the interpretation of such terms t as values val (S,P)(t) of the
base set of an extended-state (S, P) (which in any extended-state evaluate to
themselves) from their interpretation as terms over Σ, we use raise(S,P)(t) to
denote the latter case. We may further assume that raise results in a proper
term over Σ not containing any extra-logical constructs that are needed in the
representation of an algorithm such as keywords.

Postulate 2 (Reflective Abstract Extended-State Postulate). Let A be
RSA. Fix a finite signature Σalgo of function symbols so that every algorithm P ∈
PA can be finitely represented as some first-order structure of signature Σalgo .

– Every P in PA is a first-order structure of signature Σalgo which encodes a
finite representation of a sequential algorithm.

– Every state S in SA is a first-order structure of some signature ΣS such that
ΣS ∩ Σalgo = ∅.

– Every extended-state (S, P) in EA is a first-order structure of (extended) sig-
nature Σext = ΣS ∪ Σalgo .

– The one-step transformation function τA does not change the base set of any
extended-state of A.

– The sets SA and IA are closed under isomorphisms.
– If (S1, P1), (S2, P2) ∈ EA, S1 and S2 are isomorphic, P1 and P2 are behavioural

equivalent sequential algorithms2, and further τA(S1, P1) = (S′
1, P

′
1) and

τA(S2, P2) = (S′
2, P

′
2), then also S′

1 and S′
2 are isomorphic and P ′

1 and P ′
2

are behavioral equivalent.

Same as in the sequential ASM thesis, we need some minimal background
of computation. Therefore, for every extended state (S, P), we assume that S
includes a binary function “=” for equality, nullary functions true, false and
undef with true �= false and true �= undef, the usual Boolean functions, the
set of all ordered pairs, and an infinite reserve of elements. As explained before,
we further assume that Pi includes, as values in its base set, the set of all possible
ground terms (including the dormant function symbols in the reserve).

2.3 Reflective Bounded Exploration Postulate

Concerning Q2 the problem is that in general we must expect that each sequen-
tial algorithm Pi represented in an extended-state (Si, Pi) has its own bounded
exploration witness Wi. However, we know from the sequential ASM thesis that
Wi is somehow contained in the finite representation of Pi. For instance, the
sequential ASM rule constructed in the proof of the sequential ASM thesis only
contains subterms of terms in Wi, and this holds analogously for any other rep-
resentation of Pi. This implies that the terms in Wi result by interpretation from
terms that appear in the representation of any sequential algorithm. Thus, there
must exist a finite set of terms W such that its interpretation in an extended
2 Two sequential algorithms P1 and P2 are behavioural equivalent if SP1 = SP2 , IP1 =

IP2 and τP1 = τP2 . Behavioural equivalent sequential algorithms have the same runs.

A Behavioural Theory for Reflective Sequential Algorithms 123

state yields both values and terms, and the latter represent Wi. We will continue
to call W a bounded exploration witness. Consequently, the interpretation of W
and of its interpretation in an extended state suffice to determine the update set
in that state. This leads to our bounded exploration postulate for RSAs.

Definition 1 (Strong Coincidence). Let (S, P) and (S′, P ′) be extended-
states of a RSA. Let W = Wst ∪ Wwt be a set of ground terms. We say that
(S, P) and (S′, P ′) strongly coincide over W iff the following holds:

– For every t ∈ Wst, val (S,P)(t) = val (S′,P ′)(t).
– For every t ∈ Wwt,

1. val (S,P)(t) = val (S′,P ′)(t).
2. val (S,P)(raise(S,P)(t)) = val (S′,P ′)(raise(S′,P ′)(t)).

In our third and last postulate we use Δ(A, (S, P)) to denote the set of
updates produced by a RSA A in an extended-state (S, P).

Postulate 3 (Reflective Bounded Exploration Postulate). For every
RSA A, there is a finite set W = Wst ∪ Wwt of ground terms such that
Δ(A, (S, P)) = Δ(A, (S′, P ′)) whenever extended-states (S, P) and (S′, P ′) of
A strongly coincide on W .

If a set of ground terms W = Wst ∪ Wwt satisfies the reflective bounded
exploration postulate, we call it a reflective bounded exploration witness (R-
witness for short) for A.

2.4 Reflective Sequential Algorithms and Behavioural Equivalence

Our three postulates give us the following machine independent definition
of RSAs.

Definition 2. A reflective sequential algorithm (RSA) is an algorithm satis-
fying the Reflective Sequential Time, Reflective Abstract State and Reflective
Bounded Exploration Postulates.

Example 2. Let us consider the algorithm in Example 1. The reflective sequen-
tial time and reflective abstract state postulates are clearly satisfied by this
algorithm. Let

Wst = {currentNode, undef, result, level, level + 1, leftChild(currentNode)}

and Wwt = {cond(level)}. It is not difficult to see that if two extended-states
coincide on W = Wst ∪ Wwt, then the algorithm considered in this example
produces the same set of updates in both extended-states. Thus, it also satisfies
the reflective bounded exploration postulate, and consequently our definition
of RSA. ��

124 F. Ferrarotti et al.

Next, we turn our attention to our final fundamental question Q3. The
problem here is that the notion of behavioural equivalence of two sequential
algorithms is bound to these having the same signature, on grounds of which
we can request that the sets of runs must be identical. This cannot be car-
ried over to RSAs in a straightforward way. However, we should be able to
obtain a bijection between runs (S0, P0) → (S1, P1) → (S2, P2) → . . . and
(S′

0, P
′
0) → (S′

1, P
′
1) → (S′

2, P
′
2) → . . . for two RSAs A and A′. Then we should

clearly have that Si = S′
i holds for all i, and that Pi and P ′

i are behaviourally
equivalent as non-reflective, sequential algorithms. This is not yet satisfactory,
as Pi and P ′

i may still operate on different signatures.
We can argue that it is sufficient to consider the restrictions of Pi and P ′

i on
the “standard” part of the signatures, i.e. the functions that do not take terms
as values. This would allow the algorithms Pi and P ′

i to differ in their changes to
themselves, but these differences have de facto no effect, as the updates yielded
by these algorithms produce the same state transition and result in modified,
yet behaviourally equivalent algorithms throughout the complete run. In other
words, the possibly differing changes to the algorithm may extend the signature
by functions or integrate fragments of “code” that are never used and thus have
no effect on the updates.

Definition 3 (Behavioural Equivalent RSAs). Let r1 = (S0, P0), (S1, P1),
(S2, P2), . . . , and r2 = (S′

0, P
′
0), (S′

1, P
′
1), (S′

2, P
′
2), . . . , be runs of RSAs. We

consider that r1 and r2 are essentially equivalent runs if for every i ≥ 0 the
following holds:

1. Si = S′
i.

2. The restrictions Pi|Σ and P ′
i |Σ of, respectively, Pi and P ′

i to the signature
Σ of Si and S′

i, constitute behavioural equivalent non-reflective sequential
algorithms.

Two RSAs A and A′ are behavioural equivalent RSAs iff A and A′ have essen-
tially equivalent classes of essentially equivalent runs. More precisely, iff there
is a bijection ζ between runs of A and A′, respectively, such that r and ζ(r) are
essentially equivalent for all run r.

3 Reflective Abstract State Machines

In this section we define a model of reflective ASMs (rASMs for short) and show
that every rASM is a RSA in the precise sense of Definition 2. Given a signature
Σ, i.e. a set of function symbols, then a sequential ASM-rule over Σ is defined
as follows [5]:

assignments. f(t1, . . . , tarf
) := t0 (with terms ti built over Σ) is a rule.

branching. If r+ and r− are rules and ϕ is a Boolean term, then also if ϕ then
r+ else r− endif is a rule.

bounded parallel composition. If r1, . . . , rn are rules, then also par r1 . . . rn

endpar is a rule.

A Behavioural Theory for Reflective Sequential Algorithms 125

Each rule can be interpreted in a state, and doing so yields an update set. In
general, a location is a pair � = (f, (a1, . . . , ak)) with a function symbol f ∈ Σ
and a k-tuple (k being the arity of f) of values from the fixed base set B, and
an update is a pair (�, a0) with a value a0 ∈ B.

The rules of an rASM are also sequential ASM rules, and the interpretation
of these rules in terms of update sets coincides with those of sequential ASMs as
defined in [5]. The key difference is that rASMs work over extended-states, where
each extended-state includes a finite representation of the rule that determines
the update set produced by the machine in the current extended-state. In this
way, we also allow an rASM to produce updates to its current rule.

Let (S,R) be an extended state of a rASM M. We assume that the sub-
structure S includes the following background of computation:

– An infinite reserve of values and function names.
– All ordered pairs of elements in the base set.
– The usual Boolean functions and usual constants true, false and undef.
– The “program” functions update, par , if .

The “program” functions are static and interpreted as follows:

– update(f(t1, . . . , tn), t0) = (t0, t1, . . . , tn)
– par(t1, t2) = (valS(t1), valS(t2))
– if (t1, t2) = (t1, valS(t2)).

Notice that the following function induces a one-to-one correspondence
between ASM rules and “program” terms, so that every ASM rule can be rep-
resented as a “program” term.

– progToFunction(f(t1, . . . , tn) := t0) = update(f(t1, . . . , tn), t0).
– progToFunction(if ϕ thenR endif) = if (ϕ, progToFunction(R)).
– progToFunction(parR1 R2 endpar) = par(progToFunction(R1), progTo-

Function (R2)).

The sub-structure R of the extended-state (S,R) (i.e., the structure which
contains the encoding of the “current” ASM rule) includes:

– The set of all ground terms.
– A distinguished location self interpreted as a “program” term (the current

ASM rule).
– A finite alphabet A (the alphabet of the ground terms) and all strings in A∗.
– A constant si for each symbol si ∈ A and a constant λ for the empty string.
– The usual string manipulation functions, including the concatenation function

“·”.
– A total injective function TermToString from the set of all terms of vocabulary

Σ to A∗.
– A partial function StringToTerm defined as the inverse of TermToString .
– A function argumentNo(t, n) which returns the n-th argument of the term t.
– A function insertArgument(s, n, t) which returns a copy of t with its n-th

argument replaced by s.

126 F. Ferrarotti et al.

Since in each extended-state (S,R) of a rASM, the sub-structure R represents
a uniquely determined sequential ASM rule, we usually refer to it as a rule rather
than as a structure, meaning the rule corresponding to the “program term” in
the location self .

Definition 4. An rASM M is formed by:

– A non-empty set RM of sequential ASM rules (represented as first-order
structures).

– An initial rule R0 ∈ RM.
– A non-empty set SM of states (i.e., first-order structures) closed under iso-

morphisms.
– A non-empty set IM ⊆ SM of initial states, also closed under isomorphisms.
– A set of extended-states EM = SM × RM.
– A transition function τM over EM such that τM((S,R)) = (S,R) +

Δ(R, (S,R)) for every (S,R) ∈ EM, , where R = valS(self) is the closed
ASM rule in location self in the extended state (S,R), Δ(R, (S,R)) is the
update set yielded by this rule in S, and (S,R) + Δ(R, (S,R)) denotes the
extended-state obtained by applying to (R, s) the update set Δ(R, (S,R)).

A run or computation of a reflective sequential ASM is a finite or infinite
sequence of extended states (S0, R0), (S1, R1), (S2, R2), . . ., where S0 is a state
in IM, R0 is the initial rule, and (Si+1, Ri+1) = τM((Si, Ri)) holds for every
i ≥ 0.

Notice that for every R ∈ RM, the functions in R allow us to examine and
modify the “program” term stored in self. For instance, assume that the current
value stored in self is the term update(f(t), s) and that we want to change it to
update(f(t), s+1). Assuming the alphabet A includes the symbols “+” and “1”,
the following sequential ASM rule updates self to the desired “program” term:
self := insertArgument(stringToTerm(TermToString(argumentNo(self , 2)) ·+ ·
1), 2, self).

Of course, it is quite cumbersome to update the rule in self by using the small
set of background functions provided here. Nevertheless, this is enough to show
that our approach works. In practice, we can use more convenient representa-
tions, for instance by means of complex values such as syntax trees, as well as
more sophisticated functions to inspect and modify the ASM rules. Note that
the kind of reflection that the RRM uses is a bit different to the one we propose
in this work. We could call it “partial reflection”, since the sequence of actions
performed in each transition, except for the queries to the relational store, never
changes. We could then think of a different definition of the reflective ASM to
represent partial reflection, where we only add to the sequential ASM a rule
eval t, which takes a “program” term t as its argument, and interpret it as a
sequential ASM rule (other than eval) which is then executed.

The next result shows the plausibility of our reflective ASM thesis.

A Behavioural Theory for Reflective Sequential Algorithms 127

Theorem 1. Every reflective ASM M is a RSA.

Proof (Sketch). We need to show that M satisfies the reflective sequential time,
reflective abstract extended-state and reflective bounded exploration postulates.
The first two postulates are already built into the definition of rASM, and the
preservation of isomorphisms is straightforward.

In order to show that M satisfies also the reflective bounded exploration
postulate, we let Wst = ∅ and Wwt = {self }. We see next that if two extended-
states (S,R) and (S′, R′) of M strongly coincide over Wwt then Δ(R, (S,R)) =
Δ(R′, (S′, R′)). Since the states strongly coincide over Wwt we have that:

1. val (S,R)(self) = val (S′,R′)(self).
2. val (S,R)(raise(S,R)(self)) = val (S′,R′)(raise(S′,R′)(self)).

Let Wr = {r} and Wr′ = {r′}, where r and r′ are the tuples of terms that
result from the evaluation of self in (S,R) and (S′, R′), respectively. From our
definition of the “program” functions and the proof of the plausibility theorem
of the sequential ASM thesis, we get that Wr and Wr′ constitute, respectively,
bounded exploration witnesses for the sequential ASM rules R and R′. In turn,
by (1), we further have that Wr = Wr′ . Finally, by (2) we get that (S,R)
and (S′, R′) coincide on Wr = Wr′ . Hence, by Gurevich’s bounded exploration
postulate for sequential algorithms, we get that Δ(R, (S,R)) = Δ(R′, (S′, R′)).
The plausibility theorem for RSA then follows. ��

4 The Reflective Sequential ASM Thesis

We start by analysing an arbitrary RSA A. Let Wst ∪ Wwt be a bounded explo-
ration witness for A and let (S, P) be a state of A. We define the set of terms
generated by Wwt in (S, P) as follows: G

(S,P)
Wwt

= {raise(S,P)(t) | t ∈ Wwt}. We

assume that Wst ∪ G
(S,P)
Wwt

is closed under sub-terms and call it the set of critical
terms of (S, P).

The following lemma can be proven using the same argument as in the proof
of the analogous Lemma 6.2 in the sequential ASM thesis [8].

Lemma 1. If (f, (v1, . . . vn), v0) is an update in Δ(A, (S, P)), then v0, v1, . . . , vn

are values of critical terms of (S, P).

Lemma 1 implies that every update in Δ(A, (S, P)) can be programmed by
an update rule of the form f(t1, . . . tn) := t0, where the terms t0, t1, . . . , tn are
critical terms of (S, P). To program the whole Δ(A, (S, P)), we define a sequen-
tial ASM rule r(S,P) which is the parallel combination (by means of par rules)
of all update rules in the following finite set:

{f(t1, . . . , tn) :=t0 | t0, t1, . . . , tn ∈ Wst ∪ G
(S,P)
Wwt

and

(f, (val (S,P)(t1), . . . , val (S,P)(tn)), val (S,P)(t0)) ∈ Δ(A, (S, P)}.

As Wst ∪ G
(S,P)
Wwt

is finite and the signature of (S, P) is also finite, r(S,P) is
well defined.

128 F. Ferrarotti et al.

Corollary 1. For every (S, P) ∈ SA there is a rule r(S,P) such that:

1. r(S,P) uses only critical terms, i.e., terms in Wst ∪ G
(S,P)
Wwt

.
2. Δ(r(S,P), (S, P)) = Δ(A, (S, P)).

From now on, r(S,P) is as in the previous corollary.

Lemma 2. If two extended-states (S, P) and (S′, P ′) of A strongly coincide over
Wst ∪ Wwt, then Δ(r(S,P), (S′, P ′)) = Δ(A, (S′, P ′)).

Proof. As (S, P) and (S′, P ′) strongly coincide over Wst ∪ Wwt, we have that
G

(S,P)
Wwt

= G
(S′,P ′)
Wwt

and that, for every t ∈ Wst ∪G
(S,P)
Wwt

, val (S,P)(t) = val (S′,P ′)(t).

As r(S,P) only involves critical terms of (S, P), i.e., terms in Wst∪G
(S,P)
Wwt

, we have
that Δ(r(S,P), (S, P)) = Δ(r(S,P), (S′, P ′)). By Corollary 1, Δ(r(S,P), (S, P)) =
Δ(A, (S, P). Finally, we obtain Δ(A, (S, P)) = Δ(A, (S′, P ′)) by the reflective
bounded exploration postulate. ��

Let (S, P) and (S′, P ′) be extended-states of A. We say that (S′, P ′) is
relative W [(S, P)]-equivalent to (S, P) if G

(S′,P ′)
Wwt

= G
(S,P)
Wwt

, and that they
coincide over W [(S, P)] (in the sense of the sequential ASM thesis [8]) if
val(S,P)(t) = val(S′,P ′)(t) for all t ∈ Wst ∪ G

(S,P)
Wwt

(i.e., for all critical terms
of (S, P)).

The following is a straightforward corollary of Lemma2 obtained by restrict-
ing the sets of updates to the locations in the “standard” sub-structure of the
extended-states. Δst denotes the subset of updates with function names which
do not appear in Σalgo.

Corollary 2. If two extended-states (S, P) and (S′, P ′) are relative W [(S, P)]-
equivalent and coincide over W [(S, P)], then we have Δst(r(S,P), (S′, P ′)) =
Δst(A, (S′, P ′)).

Consider the class C[(S, P)] of relative W [(S, P)]-equivalent states of A.
Two states (S1, P1) and (S2, P2) of A are W -equivalent relative to C[(S, P)]
iff (S1, P1), (S2, P2) ∈ C[(S, P)] and E(S1,P1) = E(S2,P2), where (for i = 1, 2)
E(Si,Pi)(t1, t2) ≡ val (Si,Pi)(t1) = val (Si,Pi)(t2) is an equivalence relation in the
set of critical terms of (S, P).

Lemma 3. If two extended-states (S1, P1) and (S2, P2) of A are W -equivalent
relative to C[(S, P)], then Δst(r(S1,P1), (S2, P2)) = Δst(A, (S2, P2)).

Proof (sketch). Note that if we assume Δst(r(S1,P1), (S3, P3)) = Δst(A, (S3, P3))
for a state (S3, A3) ∈ C[(S, P)] with S3 isomorphic to S2, then we get that
Δst(r(S1,P1), (S2, P2)) = Δst(A, (S2, P2)). This fact is analogous to Lemma 6.8
of the sequential ASM thesis [8] and can be proven in the same way. Thus, we
just need to find an extended-state (S3, P3) ∈ C[(S, P)] with S3 isomorphic to
S2 and such that Δst(r(S1,P1), (S3, P3)) = Δst(A, (S3, P3)).

Assume w.l.o.g. that the base sets of S1 and S2 are disjoint. Let S3 be the
structure isomorphic to S2 which is obtained by replacing valS2(t) with valS1(t)

A Behavioural Theory for Reflective Sequential Algorithms 129

for all critical terms t of (S, P). This is well defined because (S1, P1) and (S2, P2)
are W -equivalent relative to C[(S, P)]. Take P3 = P2, then (S3, P3) ∈ C[(S, P)].
By the reflective abstract state postulate, (S3, P3) is an extended-state of A.
Since (S1, P1) and (S3, P3) coincide over the set of critical terms of (S, P),
Corollary 2 gives Δst(r(S1,P1), (S3, P3)) = Δst(A, (S3, P3)). ��

Let ϕ(S,P) be the following Boolean term:

∧

ti,tj∈Wst ∪ G
(S,P)
Wwt

val(S,P)(ti)=val(S,P)(tj)

ti = tj ∧
∧

ti,tj∈Wst ∪ G
(S,P)
Wwt

val(S,P)(ti) �=val(S,P)(tj)

¬(ti = tj).

As the set of critical terms of an extended-state (S, P) (i.e., Wst ∪ G
(S,P)
Wwt

) is
finite, there is a finite set {(S1, P1), . . . , (Sn, Pn)} of states in C[(S, P)] (the class
of relative W [(S, P)]-equivalent states of A) such that every state in C[(S, P)] is
W -equivalent relative to C[(S, P)] to one of the states (Si, Pi). Construct a rule
par if ϕ(S1,P1) then r(S1,P1) endif . . . if ϕ(Sn,Pn) then r(Sn,Pn) endif endpar
Then the following result clearly follows from the previous lemmata.

Lemma 4. Δst(r[(S,P)], (Si, Pi)) = Δst(A, (Si, Pi)) for every extended-state
(Si, Pi) ∈ C[(S, P)], i.e., for every extended-state that is relative W [(S, P)]-
equivalent to (S, P).

Thus, for every class C([Si, Pi]) of extended-states of A, we have a corre-
sponding rule r[(Si,Pi)] such that Lemma 4 holds. Now, we need to extend this
result to all extended-states which belong to some run of A, not just for the
extended-states in the class C([Si, Pi]). Here is when the power of reflection
becomes apparent.

Fix an arbitrary initial extended state (S, P) of A. We define M as the
reflective ASM machine with EM = {(Si, P

′
i) | (Si, Pi) ∈ EA and P ′

i is the “self”
representation of r[(Si,Pi)]} and IM = {(Si, P

′) | Si ∈ IA and P ′ is the “self”
representation of r[(S,P)]}.

Lemma 5. For every run of A of the form (S0, P0), (S1, P1), . . . and corre-
sponding run of M of the form (S′

0, P
′
0), (S

′
1, P

′
1), . . . with S0 = S′

0, it holds
that Δst(r[(Si,P ′

i)]
, (S′

i, P
′
i)) = Δst(A, (Si, Pi)).

Proof (Sketch). We prove it by induction on an arbitrary run of A. By the
reflective sequential time postulate, we know that every initial extended-state
(S0, P0) of every run of A is relative W [(S, P)]-equivalent to the initial extended-
state (S, P) used in the construction of M. Thus, we get from Lemma 4 that
Δst(r[(S0,P ′

0)]
, (S0, P0)) = Δst(A, (S0, P0)). Given the restriction to “standard”

updates which do not involve updates to the algorithm, we have

Δst(r[(S0,P ′
0)]

, (S′
0, P

′
0)) = Δst(A, (S0, P0)).

130 F. Ferrarotti et al.

Regarding the inductive step. As Pi is a sequential algorithm, it is captured
by a sequential ASM Mi. Moreover, due to Gurevich’s proof of the sequential
ASM thesis [8], the rule has the form

par if ψ1 then r1 endif . . . if ψk then rk endif endpar,

where each rj is a par block of assignment rules. All ψj and rj involve critical
terms defined by a bounded exploration witness of Pi such as Wst ∪ G

(Si,Pi)
Wwt

.

Due to construction of r[(S′
i,P

′
i)]

, we have that Wst ∪ G
(Si,Pi)
Wwt

is bounded
exploration witness of the “self” representation P ′

i of r[(S′
i,P

′
i)]

. In turn, by con-
struction of M it can be shown that Wst ∪ Wwt is a bounded exploration wit-
ness for M. Thus, the updates in Δst(r[(S′

i,P
′
i)]

, (S′
i, P

′
i)), transform the “self”

representation P ′
i of r[(S′

i,P
′
i)]

into the “self” representation P ′
i+1 of r[(S′

i,P
′
i+1)]

.
Since from the inductive hypothesis it can be shown that S′

i = Si, we get that
Δst(r[(Si+1,P ′

i+1)]
, (S′

i+1, P
′
i+1)) = Δst(A, (Si+1, Pi+1)). ��

Using the previous key lemma, it is not difficult to show that every run of
A of the form (S0, P0), (S1, P1), . . . is essentially equivalent to the corresponding
run of M of the form (S′

0, P
′
0), (S

′
1, P

′
1), . . . with S0 = S′

0, i.e., that Si = S′
i

and that the restriction of Pi and P ′
i to the signature Σ of Si and S′

i results
in non-reflective algorithms which are behavioural equivalent. This implies our
main result.

Theorem 2. For every RSA A there is a behavioural equivalent rASM
machine M.

5 Conclusion

In this paper we investigated a behavioural theory for reflective sequential algo-
rithms (RSAs) following our conjecture in [7]. Grounded in related work con-
cerning behavioural theories for sequential algorithms [8], (synchronous) parallel
algorithms [6], non-deterministic algorithms [10] and concurrent algorithms [4]
we developed a set of abstract postulates characterising RSAs, extended ASMs
to reflective Abstract State Machines (rASMs), and formally sketched the proof
that any RSA as stipulated by the postulates can be step-by-step simulated by
a rASM. The key contributions are the postulates themselves, as they provide a
language-independent definition of RSAs and the characterisation proof.

With this behavioural theory we lay the foundations for rigorous develop-
ment of reflective algorithms and thus self-adaptive systems. However, several
open tasks still have to be addressed before a general behavioural theory of
evolving concurrent systems (ECS) will be reached. It is required to combine
the behavioural theory developed in this paper with those for parallel algo-
rithms thus proving a behavioural theory for reflective parallel algorithms, and
with the theory of concurrency thus proving a behavioural theory for concurrent
reflective systems, i.e. ECS. In view of the similarity of arguments in the separate
behavioural theses this integration appears plausible, but nonetheless constitutes

A Behavioural Theory for Reflective Sequential Algorithms 131

a mathematically challenging problem. Furthermore, for rigorous development
extensions to the refinement method for ASMs [3] and to the logic used for
verification [14] will be necessary. These will be addressed in follow-on research.

References

1. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM
Trans. Comput. Logic 4(4), 578–651 (2003)

2. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms: cor-
rection and extension. ACM Trans. Comp. Logic 9(3), 19 (2008)

3. Börger, E.: The ASM refinement method. Formal Aspects Comput. 15, 237–257
(2003)

4. Börger, E., Schewe, K.D.: Concurrent abstract state machines. Acta Inform. 53(5),
469–492 (2016)

5. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-642-18216-7

6. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A new thesis concerning synchro-
nised parallel computing - simplified parallel ASM thesis. Theor. Comput. Sci.
649, 25–53 (2016)

7. Ferrarotti, F., Tec, L., Torres, J.M.T.: Towards an ASM thesis for reflective sequen-
tial algorithms. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 244–249. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33600-8 16

8. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

9. Riccobene, E., Scandurra, P.: Towards ASM-based formal specification of self-
adaptive systems. In: Ameur, Y.A., Schewe, K.D. (eds.) Abstract State Machines,
Alloy, B, TLA, VDM, and Z. LNCS, vol. 8477, pp. 204–209. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43652-3

10. Schewe, K.D., Wang, Q.: A customised ASM thesis for database transformations.
Acta Cybern. 19(4), 765–805 (2010)

11. Smith, B.C.: Reflection and semantics in LISP. In: Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL
1984, pp. 23–35. ACM (1984)

12. Stemple, D., et al.: Type-safe linguistic reflection: a generator technology. In:
Atkinson, M., Welland, R. (eds.) Fully Integrated Data Environments. Esprit
Basic Research Series, pp. 158–188. Springer, Heidelberg (2000). https://doi.org/
10.1007/978-3-642-59623-0 8

13. Van den Bussche, J., Van Gucht, D., Vossen, G.: Reflective programming in the
relational algebra. J. Comput. Syst. Sci. 52(3), 537–549 (1996)

14. Wang, Q., Ferrarotti, F., Schewe, K.D., Tec, L.: A complete logic for non-
deterministic database transformations. CoRR abs/1602.07486 (2016). http://
arxiv.org/abs/1602.07486

https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-319-33600-8_16
https://doi.org/10.1007/978-3-319-33600-8_16
https://doi.org/10.1007/978-3-662-43652-3
https://doi.org/10.1007/978-3-642-59623-0_8
https://doi.org/10.1007/978-3-642-59623-0_8
http://arxiv.org/abs/1602.07486
http://arxiv.org/abs/1602.07486

Lightweight Non-intrusive Virtual Machine
Introspection

Natalia Fursova1,2, Pavel Dovgalyuk1,2(B), Ivan Vasiliev1,2,
and Vladimir Makarov1,2

1 Novgorod State University, Velikiy Novgorod, Russia
2 Institute for System Programming of the Russian Academy of Sciences,

Moscow, Russia
{natalia.fursova,pavel.dovgaluk,ivan.vasiliev,

vladimir.makarov}@ispras.ru

Abstract. Dynamic analysis is an important technology for different
phases of the software life cycle. Dynamic analysis is used for profiling,
malware analysis, intrusion detection, protocol reverse engineering, soft-
ware testing, and many other activities. This paper presents a lightweight
approach for monitoring of systems using virtual machines. Our approach
is based on non-intrusive virtual machine introspection, which provides
system-wide analysis capabilities. We reuse ABI of the platform to be
analyzed for creating introspection tools. We show how to recover the
part of kernel-level information related to the system calls executed on
the guest machine. The paper describes how to use this approach to cre-
ate plugin-based analysis framework for simulator QEMU and evaluates
performance overhead for these plugins.

1 Introduction

Non-intrusive dynamic analysis is an important technology for different phases of
the software life cycle. Dynamic analysis is used for profiling, malware analysis,
intrusion detection, protocol reverse engineering, software testing, and many
other activities [1,6,12,14,20].

System-wide analysis has several advantages. First, it provides full system
view. One can perform analysis of kernel and user code, including drivers and all
executed processes. Second, analysis of the code executed in simulator is non-
intrusive. One can run code in simulated environment without exposing analysis
software to this code. Analyzer can also inspect BIOS and startup code of the
guest OS. Non-intrusive analysis may be also used when it is not possible to
load any new code into the guest system, e.g., when execution of the system is
replayed [9,10].

Full-system live analysis is usually performed by analysis of the binary code
and requires recovering of guest kernel- and user-level data structures. Semantic
gap between binary representation and high-level data structures hampers the
analysis [4]. Virtual machine introspection is the most used approach to bridge

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 132–146, 2018.
https://doi.org/10.1007/978-3-319-74313-4_11

Lightweight Non-intrusive Virtual Machine Introspection 133

the semantic gap between binary and source representations of data structures
while examining the whole system execution [20]. Introspection tool examines
the executed guest machine and recovers significant information about executed
processes.

There are several approaches to virtual machine introspection (VMI). State-
of-the-art approaches reuse source code of kernels [14,15] or binary code of user-
level agent, installed into the guest system [16,22]. First approach makes anal-
ysis tightly coupled with internal OS structure, and second one is intrusive and
changes the behavior of the system.

We present an introspection approach which reuses application binary inter-
face (ABI). As well as reusing sources, reusing ABI exploits the knowledge about
kernels, but in our case the number of entities to be analyzed is significantly
smaller. We also track CPU-level events like TLB miss or interrupt requests
to recover execution context switching and parse executables to monitor API
function calls.

Our work is based on the open source multi-platform simulator QEMU [2].
QEMU is capable of running virtual machines based on commodity platforms
(e.g., i386, ARM, MIPS, PowerPC). We added new plugin subsystem and subsys-
tem for dynamic instrumentation into QEMU. We also created several plugins for
monitoring system calls, file operations, API functions, and process operations.

In summary, this paper makes the following contributions:
1. An approach to virtual machine introspection. We reuse platform ABI to

extract kernel- and process-level information, as described in Sect. 2. Reusing
ABI reduces maintainance efforts required to support the analysis plugins
and apply them to other versions of guest operating systems.

2. Non-intrusive approach to system-wide system call monitoring, which is
described in Sect. 2.1. We instrument guest code executed in QEMU to insert
monitoring functions. Non-intrusive monitoring may be used with execution
replay, when guest agent could not be loaded into the virtual machine. Non-
intrusive approach is also suitable for firmwares that cannot be modified
directly.

3. Layered model of plugins framework. Introspection and analysis plugins in
our model may be divided into logical layers that simplify their communica-
tions between them, as described in Sect. 3. Plugins raise abstraction level of
recovered VM information for reconstructing OS-level and application-level
data structures.

4. Instrumentation layer and plugin support for open source simulator QEMU.
Plugins use instrumentation to insert callbacks into the translated guest code.
We created thin instrumentation layer which allows easy migration of the
plugins to newer QEMU versions.

5. Plugins for monitoring file and process operations for Linux and Windows
guest OSes. We created several plugins that analyse system calls in platform-
dependent way. These plugins transform platform-dependent system call
information into platform-independent format. Higher-level plugins reuse this
platform-independent information to perform monitoring or other activities.
We evaluate the performance of our approach in Sect. 4.

134 N. Fursova et al.

2 Reusing ABI for Virtual Machine Introspection

One can monitor target application activities with standalone analysis applica-
tions running on the same system. However, using virtual machine for monitoring
and analysis has several advantages over single process monitoring:

– Analysis of kernel and drivers’ code. Introspection of virtual machine can
trace data paths through whole virtual machine including kernel code.

– Simultaneous analysis of all executed processes. One can analyze interactions
between processes or monitor any of the newly started processes without
reconfiguring the analyzer.

– Non-intrusive analysis. Software executed in virtual machine cannot notice
that it is analyzed when analysis code is executed outside the virtual machine.
Analysis also does not affect timings (in case of using virtual guest clock) and
lies outside the guest memory.

– OS-independence. As we show in Sect. 3, introspection engine may be designed
as OS-independent component. One can execute any operating system and
gain analysis possibilities for them. Of course, this OS should use the same
ABI we designed introspection for.

– Platform-independence for high-level analysis algorithms. One can design
analysis algorithm in platform-independent way. Analysis code can use our
platform-dependent plugins that provide data, recovered from hardware and
OS level, in platform-independent format. Details of this mechanism is
described in Sect. 3.

On the other hand, whole virtual machine introspection incurs additional
overhead, compared to native execution, because of virtualization. Introspection
overhead may depend on executed applications. We evaluate performance of our
method and compare it with single-process tracer in Sect. 4.

Guest machine will not detect this overhead when virtual time is calculated
as a number of executed guest instructions multiplied by some constant. In this
case overhead may be noticed only by observing virtual machine’s environment
(e.g., sending network packet and checking the response time).

Whole virtual machine monitoring also have to duplicate several services
that application-level analysis program may reuse from operating system. One
of these is monitoring execution context switching, because analysis algorithm
needs to know which program currently executes on virtual machine.

There are two main introspection approaches. The first one is reusing sources.
It is based on knowledge about data structures and recovering them from the
guest memory [14,15]. This approach requires adjusting analysis algorithms for
every new build of the target operating system. E.g., there are many different
builds of Linux kernel that differ by core patches, compiler versions, and compi-
lation directives. Analysis module has to adjust offsets of the data structures in
memory to recover them from the memory dump.

Another approach is executing guest monitoring applications to obtain
requested data. With this approach guest agent can be installed into the guest

Lightweight Non-intrusive Virtual Machine Introspection 135

system to monitor its OS and applications [16,22]. This method is intrusive—it
can change the behavior of the guest system.

We propose a new introspection approach, which is driven by two main
requirements: no modification of guest OS and applications, and making an
OS-specific part of the system as small as possible. The first requirement is sat-
isfied by using the virtual machine and inspecting its CPU and memory state.
The second requirement is satisfied by using small ABI-specific part of the code
to transform kernel data structures into platform-independent representation.
All analysis and monitoring algorithms can work with this abstract representa-
tion only.

Application binary interface includes the list of system calls, functions calling
convention, data alignment, execution files format, stack format, and registers
usage pattern. ABIs are designed for the hardware or software platforms and
remains mostly unchanged with platforms evolution for the sake of backward
compatibility.

One of the significant parts of ABI is system call interface. System call func-
tions in Linux are identified by integer passed as a parameter in one of the reg-
isters. These identifiers never change. Therefore maintainance efforts for Linux
introspection modules in our approach will include only adding new system calls
(if needed) and supporting arguments passing agreement for the new platforms
added to the analysis scope.

Due to its (almost) static nature we can reuse ABI to perform introspection
for a wide range of platforms. E.g., parameters of kernel data structures (fields,
offsets, alignment) have greater volatility than ABI, because kernel structures
binary representation depends on used compiler, build options, and kernel code
version. Complete information about kernel structures may be unavailable (e.g.,
in case of Windows), in contrast to system call identifiers and parameters.

Our technique does not depend on internal kernel data structures, because
we build OS-agnostic representation of system internals. Analyzed code should
work on a machine with a trusted kernel, because we rely on correctness of the
system calls.

2.1 System Call Monitoring

The key to recovering information about executed processes in our approach is a
system call monitoring. We hook system calls to capture OS-specific information
from the virtual machine.

System call monitoring approach is based on reusing platform ABI. It allows
hooking file, thread and process, memory mapping operations, and many other.
System call interface is well documented and does not change with every version
of the operating system. We hook system calls and parse their parameters and
return values instead of monitoring guest memory to find kernel data structures.

There are few possibilities for calling system functions for each platform.
System call is usually performed by specific instruction: syscall, sysenter,
int 0x80, int 0x2e for x86/64, svc #0 for ARM, syscall for MIPS, sc
for PowerPC. These instructions jump to the kernel code which executes the

136 N. Fursova et al.

requested function. Concrete instruction used for system call may be OS-
dependent. E.g., Windows NT uses int 0x2e, and Windows XP uses sysenter.

2.2 Execution Context

To match system-call and system-return instructions we save execution context
when call is about to execute. When execution reaches return instruction, we find
the context, recover system call parameters for it, and query function’s return
value from the guest memory or registers.

In our case execution context is the current process id and stack pointer. We
identify processes by page directory address (e.g., CR3 for x86 or CP15.c2 for
ARM) [14]. Context information is updated every time this register is reloaded.

3 Introspection Plugins for QEMU

With multi-platform support one can make analysis tools that can be executed
on many platforms. Therefore we chose simulator QEMU for implementation
of our monitoring method. QEMU is a multi-target simulator supporting com-
modity hardware platforms like x86, x86-64, ARM, MIPS, and PowerPC [2]. It
translates guest binary code into host binary code and then executes it. Due to
binary translation and caching of the translated code, QEMU works faster than
interpreters, e.g., Bosch [17].

QEMU does not provide instrumentation interface for researchers and devel-
opers. Adding any instrumentation extension becomes a challenge for the devel-
oper, because QEMU internals are poor documented. Therefore, providing inter-
face for creating plugins reduces development overhead for instrumentation
functions.

We implemented virtual machine introspection as a set of plugins for the
simulator. Several plugins depend on ABI or hardware and contain platform-
dependent code which recovers system-level events and data. Other plugins use
these events and structures to maintain abstract representation of kernel objects.
Abstract kernel objects are OS-agnostic and can be used within any platform.

We divided all projected analysis tasks between plugins. Altogether they
form analysis framework for recovering and logging data structures and system
events.

Plugins in our framework can be divided between several layers of abstrac-
tion, as shown in Fig. 1. These layers represent information that plugins recover
from the execution of the binary code. Plugin layers do not represent structure
of an operating system. Layers correspond to the order of recovering OS-level
and user-level information from the executed binary code.

Plugins on different layers interact by exchanging messages. Messages corre-
spond to particular events that denote simulator’s external communications or
changes in virtual machine state.

Lightweight Non-intrusive Virtual Machine Introspection 137

3.1 Simulator Events for Plugins

Hardware layer includes events and data generated by the simulator. The fol-
lowing list describes the events tracked by the simulator. Simulator notifies the
plugins when one of these events happens.

1. Translation events. Before QEMU executes any instruction, it has to trans-
late guest code to host binary code through the target-independent internal
representation [2].

2. Execution events. These events denote block or instruction execution.
3. Memory events. These events allow creating memory monitoring tools.

TLB misses may also be used for detection of creating new execution con-
text [14].

4. Hardware events. Notifications for virtual hardware events may be used
to monitor specific virtual hardware operations. One can debug new virtual
devices or software drivers for the existing devices using these notifications.

5. Input events. Notifications of input events may be used for user operations
monitoring.

6. System events. This set of events include events related to the whole system,
e.g., machine reset.

Plugins process hardware-level events and recover operating system internals
step-by-step, raising the level of abstraction. When the required abstractions are
recovered, higher-level plugins can monitor their state and behavior.

Next to hardware layer is the layer for monitoring files, threads, processes,
and other OS objects. Files accesses are monitored by hooking corresponding
system calls that were recovered in the previous layer. Process creation opera-
tions are monitored in the same manner.

Application layer includes plugins that recover modules, applications, and
other user-level objects. Plugins at source layer extract symbolic and debug-
ging information from the executables to provide user-friendly information about
debugged or analyzed application.

3.2 Guest Code Instrumentation

QEMU uses dynamic translation to execute the guest code. Every guest instruc-
tion is transformed into a sequence of host instructions that simulate behavior
of the guest one. QEMU joins translated instructions into blocks. Translation
block is a continuous sequence of instructions. It means that execution of the
block always starts at the first instruction and ends at the last one.

To invoke our own code on system call execution we embed callbacks into
translated code, as shown in Fig. 2. These callbacks recover arguments of the
system calls and their return values. Parameters are recovered on system call
entry and return values on system call exit instruction.

When system call code is translated, system call plugin embeds two call-
backs into the generated code. The first callback is required to check that called

138 N. Fursova et al.

Source layer Debug
info reader

Symbol
reader

API monitor

Application layer Module
monitor

Application
monitor

Top OS layer Process
monitor File monitor

Bottom OS layer Context
detector

System call
detector

File system
parser

Hardware layer QEMU Disk images

Fig. 1. Plugins for virtual machine introspection. Dashed modules are not imple-
mented yet.

function is related to tracked operations. This callback also queries system call
arguments from the guest memory. The second callback is invoked when exe-
cution of the system call is finished. This callback is embedded before return
instruction execution. It reads return value from the CPU state and sends a
message with description of the file operation to all listeners.

3.3 File Monitoring

In this section we describe implementation of file monitoring plugins. Different
operating systems have different sets of system functions. Therefore, we had to
create one system call detection plugin for every of the OS families. We also cre-
ated file monitor plugin. This plugin is independent from executing guest OS and
guest hardware architecture. It operates with system call and file abstractions.

Main system calls for handling file operations are NtCreateFile,
NtOpenFile, NtReadFile, NtWriteFile, NtClose in Windows, and creat, open,
read, write, close in Linux.

However, hooking system calls is not enough for complete file monitoring,
because of hard- and soft-links in the file system. Named file even may not
be written on disk at all. We will need disk image analysis to monitor such
situations. As a first step to full-stack disk state analysis we implemented file
monitoring plugin, which hooks file operation system calls.

File monitoring plugin maintains the list of the open files to match close
system calls with the files, because close operations may be used to free other
system resources (NtClose is used to close all handles in Windows).

Lightweight Non-intrusive Virtual Machine Introspection 139

Translation block to be executed

0xb7707010: mov %ebx,%edx
0xb7707012: mov 0x8(%esp),%ecx
0xb7707016: mov 0x4(%esp),%ebx
0xb770701a: mov $0x21,%eax
0xb770701f: int $0x80

Intermediate representation of the translation block

ld_i32 tmp11,env,$0xfffffffffffffff8
movi_i32 tmp12,$0x0
brcond_i32 tmp11,tmp12,ne,$L0
---- b7707010 00000000
mov_i32 tmp0,ebx
mov_i32 edx,tmp0
---- b7707012 00000000
movi_i32 tmp11,$0x8
add_i32 tmp2,esp,tmp11
qemu_ld_i32 tmp0,tmp2,leul,1
mov_i32 ecx,tmp0
---- b7707016 00000000
movi_i32 tmp11,$0x4
add_i32 tmp2,esp,tmp11
qemu_ld_i32 tmp0,tmp2,leul,1
mov_i32 ebx,tmp0
---- b770701a 00000000
movi_i32 tmp0,$0x21
mov_i32 eax,tmp0
---- b770701f 00000000

+ movi_i64 tmp13,$0xb7707020
+ movi_i64 tmp14,$0x7fef9a788670
+ call start_system_call,$0x0,$0,tmp13,tmp14
movi_i32 tmp3,$0xffffffffb770701f
st_i32 tmp3,env,$0x20
movi_i32 tmp11,$0x2
movi_i32 tmp12,$0x80
call raise_interrupt,$0x0,$0,env,tmp12,tmp11
set_label $L0
exit_tb $0x7fef8e6dca13

Fig. 2. Translation block with int 0x80 instrumentation callback. Instructions marked
with ‘+’ are inserted by instrumentation.

File monitoring is performed by starting one of the platform-specific system
call detectors and file monitor plugin. System call plugin watches the executed
system functions and filters calls related to the file operations. Information about
file operations are passed to the file monitoring plugin, which matches open and
close operations and logs file accesses.

3.4 Mapping Files to the Memory

Mapping of the files to the memory (or IO mapping) is a widely used technique in
the commodity operating systems. With IO mapping files are not read through
read or write functions.

Files are mapped with mmap function in Linux and with pair of
NtCreateSection and NtMapViewOfSection functions in Windows. We hook
them to detect whether specific file was mapped to the memory or not.

140 N. Fursova et al.

Operating systems uses memory-mapped files to load executables and
dynamic libraries. Benefits of mapping executables are lazy loading, when
non-accessed parts of a file are not read from the disk, and sharing between
processes—OS may load a file once and map it to the virtual address space of
multiple processes.

We hook mapping/unmapping operations in file monitoring plugin. This
information is used to detect executable image loading and parse those images
to extract API functions addresses.

3.5 API Monitoring

Monitoring of API calls may be useful in itself (e.g., for detecting malware), and
also for recovering more system information, than from the system calls.

First of all, we implemented monitoring of API functions for Win-
dows, because we needed information returned by CreateProcess function of
kernel32.dll dynamic library to recover the list of the executed processes in
process monitoring plugin.

Dynamically linked modules basically have one of the two image formats:
ELF or PE. Formats of the executable images are well documented. Therefore
we may use them to extract information of the API functions offsets.

How do we detect which module is executed? We monitor mapping function
calls, as described in Sect. 3.4. In Windows files with system dynamic libraries
are open once and then mapped with NtOpenSection and NtMapViewOfSection
functions.

We instrument the entry points of the API functions located in the loaded
library. When the code at that addresses is about to translate, we insert moni-
toring function call, which reports to the user that API function is called, and
reads function’s parameters from the memory to pass it to the other introspec-
tion plugins, if it is needed.

3.6 Process Monitoring

Process monitoring plugin provides the list of the currently executed guest pro-
cesses to the user. To do this it monitors process creation and destruction events.
For each discovered process it stores the following tuple:

– Execution context. We use page directory base register (e.g., CR3 register
for x86) to identify the execution context. Every process in modern operating
systems has its own virtual address space. Physical page mapping is described
with page directory, which is unique for every process.

– Process id assigned by operating system. Process id is not needed for further
behavior analysis, but it is required for user’s convenience. E.g., user can
compare output of ps utility with information gathered with introspection
plugins, when it is possible.

– Name of the executable image. This name is recovered from the file open
system call, when executable is about to be mapped or loaded to the memory.

Lightweight Non-intrusive Virtual Machine Introspection 141

There are many differences between system calls parameters and execu-
tion sequence in different operating systems. E.g., Linux uses fork and clone
functions for creation of the processes, and execve for running the programs.
Windows uses NtCreateProcess for creating process without any threads and
NtCreateThread for adding new threads. We use parameters and return values
of these functions to reconstruct the list of the running processes.

Technique for capturing process creation and destruction system calls is the
same as for file monitoring. We instrument system call and system call return
instructions and analyze called function and its parameters.

However, NtCreateProcess does not expose enough information. We cannot
directly retrieve id of the created process. Therefore we also hook CreateProcess
API function. It returns process id after creating new process. With this function
we match execution context and image file with process id. This information is
used to output the list of the currently executed processes.

4 Evaluation

After implementing and testing file monitoring plugins with Windows and Linux
guests we measured its performance overhead. We executed QEMU on a machine
with Intel Core i7 CPU with 8 cores at 3.40 GHz, 8 GB RAM, 500 GB HDD, and
64-bit Ubuntu 14.04. Virtual machine on i386 platform had 128 MB of memory.
We used Windows XP and Arch Linux as guest OSes.

We ran several tests: booting Windows XP, booting Linux, downloading
255Mb file under Linux, packing downloaded file with gzip, and unpacking the
created archive. At first, we measured system call instrumentation overhead by
enabling instrumentation of system calls and filtering the file operations without
issuing any notifications. Second group of tests included measuring the file oper-
ations logging overhead by enabling file monitoring plugin. File logging plugin
writes information about all file operations in the system. It also prints contents
of read and write buffers to the log. All measurement results are presented in
Table 1.

Table 1. Instrumentation and introspection performance

Simulation Instrumentation File logging

Time, sec Time, sec Overhead, % Time, sec Overhead, %

Loading Windows 63 65 3.2 69 9.5

Loading Arch Linux 32 33 3.1 35 9.3

Downloading 255MB file 30 32 6.7 101 237

Packing 255MB file 106 113 6.6 284 168

Unpacking archive 18 19 5.6 28 56

In most cases instrumentation of system calls incurs very low overhead (5.1%
on average). Such a small overhead allows using our approach for online mon-
itoring and offline analysis. Logging of download/pack/unpack incurs greater

142 N. Fursova et al.

overhead, than booting OS, because file log includes contents of buffers for all
read/write operations.

We also compared performance overhead of our system-wide instrumenta-
tion with application-level strace system call monitor utility. We ran latter two
tests (packing and unpacking) with enabled system call tracing. Overhead of
strace is presented in Table 2. We do not take virtualization overhead of our
method into account, because our approach and strace have different appli-
cation scopes. When non-intrusive introspection is a requirement, using virtual
machines is one of the best options. If strace will be used under virtual machine,
it will show similar relative overhead. Therefore our instrumentation of all exe-
cuting processes looks competetive with instrumentation of a single process with
strace.

Table 2. strace execution overhead

Execution Tracing

Time, sec Time, sec Overhead, %

Packing 255 MB file 6.0 8.0 33

Unpacking archive 1.6 5.0 213

Paper with description of DECAF dynamic analysis and instrumentation
framework presents measurements of the overhead for OS booting [14]. Accord-
ing to this paper, DECAF VMI incurs 22% overhead for booting Windows XP on
x86. TCG plugins framework provided only simple plugins for instruction count-
ing, therefore it cannot be directly compared with our approach. TCG plugins
framework incurs 3%–3000% overhead for this tracing task, depending on per-
formed actions and printed debug data [13]. E.g., simplest instruction counting
plugin incurs 3% overhead, calling empty function in every translation block—
25%. QTrace instrumentation framework incurs 90% overhead for instruction
counting plugin [21]. According to this data, our tool is competetive with other
system-wide instrumentation and monitoring frameworks.

5 Related Work

In this section we give a revision of previous studies carried out by other
researchers.

RTKDSM system leverages the rich OS analysis capabilities of Volatility, an
open source computer forensics framework, to significantly simplify and auto-
mate analysis of VM execution states [15]. RTKDSM system performs real-time
monitoring of the operating system state in the virtual machine. Volatility is
intended to analyze memory dumps. RTKDSM system provides guest memory
directly from virtual machine instead of memory dump. This approach is pretty
straightforward. But dump-targeted Volatility architecture is not effective in

Lightweight Non-intrusive Virtual Machine Introspection 143

monitoring mode, because it has to analyse the whole dump every time when
information is needed. Therefore, RTKDSM system uses Volatility only for locat-
ing the OS-specific data structures. RTKDSM system uses its own monitoring
agent to keep track of the changes in these structures. The main limitation of
RTKDSM system is targeting to x86 platform, because of using Xen hypervisor
for the virtual machine.

PinOS is the framework for whole-system dynamic instrumentation [3]. It is
an extension of Pin—application-level dynamic instrumentation framework [19].
PinOS is built on top of Xen virtual machine monitor. PinOS uses the same
dynamic translation technique as Pin. Therefore, PinOS can use the plugins
already developed for Pin. PinOS is limited by Xen and Pin, therefore it can
only boot Linux on x86 virtual machine. PinOS incurs significant execution
slowdown (up to 120x) even without any instrumentation. Its source code was
not published. That’s why we couldn’t download and evaluate it.

QTrace is an instrumentation extension API developed on top of QEMU [21].
It is targeted to full-system analysis and analysis of unmonified applications sup-
plied in binary form. The paper presents validation of QTrace instrumentation—
performance profiling results for SPEC2006 are compared with Pin [19] and
BOSCH [17]. QTrace incurs 90% overhead for instruction counting plugin. Proof-
of-concept version is available on github1, but it does not provide any features
except register and memory access tracing.

DECAF is a platform-neutral whole-system binary dynamic analysis frame-
work [14]. DECAF is built upon QEMU and provides event-driven programming
interface for custom analysis plugins. It reconstructs OS-level semantic view with
virtual machine introspection engine. DECAF addresses the question “when to
reconstruct” by monitoring hardware-level events. Events can be monitored for
specific process or kernel module. DECAF supports Windows and Linux operat-
ing systems, ARM and x86 hardware platforms. The main drawbacks of DECAF
is 15% performance overhead without any instrumentation and using old version
of QEMU.

Dolan-Gavitt et al. describes technique of mining memory accesses for intro-
spection [5–7]. They created a prototype system, Tappan Zee Bridge (TZB),
which is focused on recovering user-level information. TZB observes mem-
ory accesses in runtime to find points in the program that access security-
relevant information. This system cannot work online, because it incurs sig-
nificant overhead.

They also created dynamic analysis framework named PANDA, which allows
creating instrumenting tools. There is a bunch of instrospection plugins for
PANDA: system call monitoring in an emulated x86 or ARM guest, and call-
stack monitoring. However, these introspection plugins do not extract higher-
level information than just system call sequence.

Virtuoso analyses dynamic traces of small in-guest introspection programs to
produce similar programs that work on a host machine [8]. But execution traces
may be incomplete, making generated introspection programs behave incorrectly.

1 https://github.com/x-y-z/QTRACE.

https://github.com/x-y-z/QTRACE

144 N. Fursova et al.

VMST tool demonstrates process out-grafting [11]. It analyzes data flow of
the program in the trusted system and redirects data memory accesses from
trusted system to the untrusted one. However, VMST supports limited subset
of system calls, because it redirects guest memory accesses only. E.g., system
calls for file operations cannot be redirected. VMST cannot be used for online
monitoring, because of its slowdown of 9.3X on average.

Lefebvre et al. presents an approach to execution mining [18]. This approach
is targeted to understanding operating systems behavior. Tralfamadore system
described in that paper records detailed CPU-level traces of virtual machine exe-
cution. Execution traces may be analyzed with a library of different operators
allowing to create new dynamic analyses. Operators include trace parsing, con-
text identification (threads, interrupts), functions invocations detection, memory
allocations detection, memory accesses tracer, and heap objects tracer. However,
Tralfamadore cannot work online. It analyses only previously recorded traces.

6 Conclusion

In this work we described a promising approach for virtual machine introspection
through monitoring of the system calls and virtual hardware events. Narrowing
the semantic gap with virtual machine introspection will allow creating analysis,
monitoring, and debugging tools. System call detector plugin for virtual machine
is the basis of our framework. It analyses the executed instructions and filters
system calls from the control flow. We showed that this approach is practical by
creating the plugins for API functions, file and process operations monitoring.
These plugins may be used for non-intrusive logging of Windows- and Linux-
based guest systems. One can use it for debugging of user or kernel code, malware
analysis, and other runtime validation tasks. These plugins are the proof-of-
concept and a basis of modular dynamic analysis framework. Full framework will
provide introspection plugins for dynamic analysis of kernels and applications.

Acknowledgment. The work was partially supported by the Ministry of Education
and Science of Russia, research project No. 2.6146.2017/8.9.

References

1. Azmandian, F., Moffie, M., Alshawabkeh, M., Dy, J., Aslam, J., Kaeli, D.: Virtual
machine monitor-based lightweight intrusion detection. SIGOPS Oper. Syst. Rev.
45(2), 38–53 (2011). http://doi.acm.org/10.1145/2007183.2007189

2. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of
the Annual Conference on USENIX Annual Technical Conference, ATEC 2005,
p. 41. USENIX Association, Berkeley (2005). http://dl.acm.org/citation.cfm?
id=1247360.1247401

3. Bungale, P.P., Luk, C.K.: Pinos: a programmable framework for whole-system
dynamic instrumentation. In: Proceedings of the 3rd International Conference on
Virtual Execution Environments, VEE 2007, pp. 137–147. ACM, New York (2007).
http://doi.acm.org/10.1145/1254810.1254830

http://doi.acm.org/10.1145/2007183.2007189
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://doi.acm.org/10.1145/1254810.1254830

Lightweight Non-intrusive Virtual Machine Introspection 145

4. Chen, P., Noble, B.: When virtual is better than real [operating system relocation
to virtual machines]. In: Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems, 2001, pp. 133–138, May 2001

5. Dolan-Gavitt, B., Hodosh, J., Hulin, P., Leek, T., Whelan, R.: Repeatable reverse
engineering for the greater good with panda, October 2014

6. Dolan-Gavitt, B., Hodosh, J., Hulin, P., Leek, T., Whelan, R.: Repeatable reverse
engineering with panda. In: Proceedings of the 5th Program Protection and Reverse
Engineering Workshop, PPREW-5, pp. 4:1–4:11. ACM, New York (2015). http://
doi.acm.org/10.1145/2843859.2843867

7. Dolan-Gavitt, B., Leek, T., Hodosh, J., Lee, W.: Tappan zee (north) bridge: mining
memory accesses for introspection. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & #38; Communications Security, CCS 2013, pp. 839–
850. ACM, New York (2013). http://doi.acm.org/10.1145/2508859.2516697

8. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: narrowing
the semantic gap in virtual machine introspection. In: Proceedings of the 2011
IEEE Symposium on Security and Privacy, SP 2011, pp. 297–312. IEEE Computer
Society, Washington, DC (2011). https://doi.org/10.1109/SP.2011.11

9. Dovgalyuk, P.: Deterministic replay of system’s execution with multi-target qemu
simulator for dynamic analysis and reverse debugging. In: Proceedings of the 2012
16th European Conference on Software Maintenance and Reengineering, CSMR
2012, pp. 553–556. IEEE Computer Society, Washington, DC (2012)

10. Dovgalyuk, P., Dmitriev, D., Makarov, V.: Don’t panic: reverse debugging of kernel
drivers. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pp. 938–941. ACM, New York (2015). http://doi.
acm.org/10.1145/2786805.2803179

11. Fu, Y., Lin, Z.: Space traveling across vm: automatically bridging the semantic gap
in virtual machine introspection via online kernel data redirection. In: 2012 IEEE
Symposium on Security and Privacy (SP), pp. 586–600, May 2012

12. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings of the Network and Distributed Systems
Security Symposium, pp. 191–206 (2003)

13. Guillon, C.: Program instrumentation with qemu. In: 1st International QEMU
Users Forum, vol. 1, pp. 15–18 (2011)

14. Henderson, A., Prakash, A., Yan, L.K., Hu, X., Wang, X., Zhou, R., Yin, H.:
Make it work, make it right, make it fast: Building a platform-neutral whole-
system dynamic binary analysis platform. In: Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014, pp. 248–258. ACM,
New York (2014). http://doi.acm.org/10.1145/2610384.2610407

15. Hizver, J., Chiueh, T.c.: Real-time deep virtual machine introspection and its appli-
cations. In: Proceedings of the 10th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE 2014, pp. 3–14. ACM, New York
(2014). http://doi.acm.org/10.1145/2576195.2576196

16. Julino, J.: Lightweight introspection for full system simulations. Diploma thesis,
System Architecture Group, Karlsruhe Institute of Technology (KIT), Germany, 1
March 2014. http://os.itec.kit.edu/

17. Lawton, K.P.: Bochs: A portable pc emulator for unix/x. Linux J. 1996(29es)
(1996). http://dl.acm.org/citation.cfm?id=326350.326357

18. Lefebvre, G., Cully, B., Head, C., Spear, M., Hutchinson, N., Feeley, M.,
Warfield, A.: Execution mining. SIGPLAN Not. 47(7), 145–158 (2012).
http://doi.acm.org/10.1145/2365864.2151044

http://doi.acm.org/10.1145/2843859.2843867
http://doi.acm.org/10.1145/2843859.2843867
http://doi.acm.org/10.1145/2508859.2516697
https://doi.org/10.1109/SP.2011.11
http://doi.acm.org/10.1145/2786805.2803179
http://doi.acm.org/10.1145/2786805.2803179
http://doi.acm.org/10.1145/2610384.2610407
http://doi.acm.org/10.1145/2576195.2576196
http://os.itec.kit.edu/
http://dl.acm.org/citation.cfm?id=326350.326357
http://doi.acm.org/10.1145/2365864.2151044

146 N. Fursova et al.

19. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2005, pp. 190–200.
ACM, New York (2005). http://doi.acm.org/10.1145/1065010.1065034

20. More, A., Tapaswi, S.: Virtual machine introspection: towards bridging the seman-
tic gap. J. Cloud Comput. 3(1), 1–14 (2014). https://doi.org/10.1186/s13677-014-
0016-2

21. Tong, X., Moshovos, A.: Qtrace: a framework for customizable full system instru-
mentation. In: 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 245–255, March 2015

22. Yan, L.K., Yin, H.: Droidscope: seamlessly reconstructing the os and dalvik seman-
tic views for dynamic android malware analysis. In: Proceedings of the 21st
USENIX Conference on Security Symposium, Security 2012, p. 29. USENIX Asso-
ciation, Berkeley (2012). http://dl.acm.org/citation.cfm?id=2362793.2362822

http://doi.acm.org/10.1145/1065010.1065034
https://doi.org/10.1186/s13677-014-0016-2
https://doi.org/10.1186/s13677-014-0016-2
http://dl.acm.org/citation.cfm?id=2362793.2362822

A Distributed Approach to Coreference
Resolution in Multiagent Text Analysis

for Ontology Population

Natalia Garanina(B), Elena Sidorova, and Irina Kononenko

A.P. Ershov Institute of Informatics Systems,
Lavrent’ev av., 6, Novosibirsk 630090, Russia

{garanina,lsidorova}@iis.nsk.su, irina k@cn.ru

Abstract. In the paper we describe a multi-agent ontology-based app-
roach to coreference resolution and information extraction from input
data. We define special class agents which correspond to ontology
classes. They analyze current information in the corresponding retrieved
instances. Results of this analysis are used for evaluation of instances’
attributes, for detection of instances duplicates and equivalents, for fix-
ing coreferential relations, and for assignment of worth of information
connections used in disambiguation. The class agents act in the frame-
work of our multi-agent approach to semantic text analysis for ontology
population.

1 Introduction

The process of ontology population is considered as adding new instances of
concepts to the ontology. This process is a part of ontology acquisition problem
widely discussed, see e.g. [18]. A significant amount of the work concentrates on
the task of knowledge acquisition from domain-specific content, which is mostly
represented in natural language texts. In this context, the solution for the ontol-
ogy population task is interrelated with the elaboration of natural language pro-
cessing (NLP) techniques applied in the process of information extraction (IE).
IE accomplishment implies several tasks, in particular, coreference resolution
which is one of the most challenging NLP tasks.

In linguistics, reference is a relation of a text expression with some non-
linguistic object or circumstances in the real or abstract world. Traditional lin-
guistics considers two main classes of referential expressions: lexically full forms
(names, nominal phrases, etc.) and reduced forms (e.g. pronouns). The coref-
erence resolution problem is to identify a particular text mention of some non-
linguistic entity with its other mentions in this text. The coreference resolution

The research has been supported by Russian Foundation for Basic Research (grant
15-07-04144, grant 17-07-01600) and Siberian Branch of Russian Academy of Science
(Integration Grant n.15/10 “Mathematical and Methodological Aspects of Intellec-
tual Information Systems”).

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 147–162, 2018.
https://doi.org/10.1007/978-3-319-74313-4_12

148 N. Garanina et al.

has been a core research topic in computational linguistics since the 1960s, but
the problem is far from being solved. Traditionally, the process of coreference
resolution consists of two main stages: (1) detection of entity mentions that are
probable candidates for coreference and (2) candidate mentions pairwise com-
parison to make the decision on candidate admissibility (whether the pair is valid
or not). There are several basic approaches covered in the literature. The most
important trends in the field have been found in the comprehensive surveys by
R. Mitkov [16,17], and in [5,19]. These trends can be categorized into rule-based
and learning approaches.

Early coreference resolution systems (dating back to 1970s and 1980s) are
called “rule-based” (R. Mitkov) as they rely on hand-coded heuristics that spec-
ify whether two expressions can or cannot corefer [2,3,12,23]. The better term
for this trend is “linguistic approach” [5] as it incorporates a lot of domain and
linguistic knowledge: syntactic constraints, semantic features and preferences,
discourse-oriented theories, such as Centering model [10], which can predict
the focus of attention and choice of referring expression of a sentence. The-
oretical models consider integrated knowledge sources and reveal factors that
help to remove unlikely candidates until the minimal set of plausible candidates
is obtained, and then make use of the center or focus, or other preferences.
Modern theories investigating multiplicity of factors involved in the coreference
phenomenon (such as the notion of Referent activation based on a discourse
structure, antecedent syntactic or semantic role, animacy, etc. proposed in [13])
can be used directly or indirectly in work [14]. The mid-to-late 90’s gave rise to
“corpus-based” (machine learning) approaches which were helped by the emer-
gence of more powerful automatic parsers and taggers, and corpora annotated
with coreference information to be used as a training data [11,22]. Paper [5] gives
a survey of machine learning based techniques with respect to the coreference
resolution task starting from a simple statistical naive Bayes-based model to
methods using decision trees and conditional random fields and others. Unfortu-
nately, in limited subject domains (for example, particular science and industrial
domains) representative training text corpora do not exist usually. In this cases,
it is reasonable to use classical rule-based methods.

There exist several attempts to apply distributed or agent-based techniques
to the coreference resolution task: [20,24]. The known systems differ with respect
to agent types and their functions. Thus, in [20] coreference resolution fac-
tors (recency, number agreement, gender agreement, animacy, disjoint refer-
ence, semantic consistency, global focus, cataphora and logical accessibility) are
grouped in sets as constraint sources corresponding to the known partial theo-
ries of coreference. In [24] a common constraint agent allows for morphological
agreement and semantic consistency and different coreference types (where an
anaphor can be a name alias, appositional noun phrase, nominal predicate, def-
inite noun phrase, demonstrative noun phrase, bare noun phrase) are charged
to special agents. In both papers, agents corresponds to coreference resolution
factors. Detection of coreference candidates is sequential. In [20] the agents pro-
cess the decision about admissibility of the particular candidate in parallel, and
in [24] the agents compose the system of sequential decision filters.

A Distributed Approach to Coreference Resolution 149

The proposed coreference resolution algorithm is used in our approach to
text analysis and information extraction for population of a subject domain
ontology. Our approach includes the following processes subsequently performed
by the program modules: (1) the module of lexical analysis executes preliminary
extraction of subject domain terms from a given text [15]; (2) the segmentator
performs segmentation of the text into formal and genre fragments (sentences,
sections, headlines, etc.) [21]; (3) the main analysis module constructs objects,
corresponding to instances of a subject domain ontology, from the terms [7] and
resolves coreference (this paper); (4) the disambiguation module resolves lexical
and syntactic ambiguity [9]; (5) the population module updates the ontology with
the processed objects (in plans). Our approach exploits the distributed multi-
agent architecture of text processing [1,4,6] as opposed to the generally accepted
sequential NLP procedure. This multi-agent approach to NLP is both motivated
from the semantic point of view and computationally effective and robust: the
agents speed up processing since they act in parallel, and they efficiently use data
resource exactly when and where this is needed. Our agents are associated with
vocabulary terms, ontology classes, ontology instances, and rules of ontology
population. Sequential data analysis is less efficient, since it suggests sorting
rules to information extraction. The agent-based approach allows one to get rid
of sorting rules.

In our framework the coreference resolution problem is to detect if some
group of retrieved objects refer to the particular ontology instances. Our app-
roach to the coreference resolution is rule-based because we deal with limited
subject domains. The proposed algorithm is ontology-driven as it strongly relies
on the structure of the underlying predefined domain ontology. We focus on
full lexical items (nominals and names), as they bear more semantic clues than
pronominals for making comparisons with ontology classes and instances. Ambi-
guities occurring at the linguistic level are resolved at the ontology level. We use
a similarity measure to compare potential coreferent objects within the group.
The evaluation of the measure integrates textual factors (such as a text dis-
tance and context dependence) with factors based on ontological properties of
instances’ attributes (class hierarchy, composition, transitivity, etc.). This way
of using the ontology structure allows one to resolve coreference more precisely
even for complex objects such as descriptions of events and situations presented
as ontology polyadic relations. To the best of our knowledge, coreferencing such
complex objects is non-trivial and investigated deficiently. Another advantage of
our approach is that coreference relations between the candidate objects are fixed
during information extraction. The corresponding candidate agents update their
information using these relations. This update let us recognize ontology instances
and relations faster and more completely than in the traditional approaches. The
class agents detect and resolve the coreference candidates using the similarity
measure. They act in parallel mode which speeds up the process in comparison
with the sequential and multi-agent approaches mentioned above.

The rest of the paper is organized as follows. In Sect. 2, we give background
definitions and formally state the problem of coreference resolution. Section 3

150 N. Garanina et al.

outlines the process of multi-agent text analysis, and gives the detailed descrip-
tion of the class agents and their protocols for coreference resolution. In the
concluding Sect. 4, directions of future research are discussed.

2 Problem Statement and Base Definitions

Let us consider an ontology of a subject domain, the ontology population rules,
the semantic and syntactic models for the language of the subject domain, the
term vocabulary, and input data as a finite natural language text with informa-
tion for population of the ontology. We assume that an ontology O of a subject
domain includes the following elements: (1) the finite nonempty set CO of classes
for concepts of the subject domain, (2) the finite set DO of data domains, and
(3) the finite set of attributes with names in DatO ∪ RelO, each of which has
values in some data domain from DO (data attributes in DatO) or has values
as instances of some classes (relation attributes in RelO, which model relations).
Every class c ∈ CO is defined by the tuple of attributes: c = (Datc, Relc), where
every data attribute α ∈ Datc ⊆ DatO has the domain dc

α ∈ DO with values
in Vdc

α
and every relation attribute ρ ∈ Relc ⊆ RelO has values from classes

cρ ⊆ CO. The set of all class attributes is Atrc = Datc ∪Relc. For an attribute γ
of a class c, let cγ = c and Dγ be the set of its values. The set of class attributes
includes the nonempty set of key attributes AtrK

c . The key attributes can be
the data as well as the relation attributes. We say that a is an instance of the
class ca = (Datca

, Relca
) (a ∈ ca) iff a = (ca,Data, Rela), where every data

attribute in Data has a name αa ∈ Datca
with the values Vαa

from Vdca
αa

and
every relation attribute in Rela has a name ρa ∈ Relca

with the values Vρa
as

instances of the classes from cρ. The data key attributes are always one-valued,
i.e. every of key attribute of every ontology instance can have only single value.
The relation key attributes correspond to bijective relations. We consider an
ontology without data and class synonyms, i.e. ∀α1, α2 ∈ DatO : dα1 �= dα2 and
∀c1, c2 ∈ CO : Atrc1 �= Atrc2 . An information content ICO of the ontology O is
a set of instances of the classes from O. The ontology population problem is to
compute an information content for a given ontology from given input data.

Let us define a set A of informational objects (i-objects) retrieved from input
data and corresponding to ontology instances. Every informational object a ∈ A
has the form (ca,Data, Rela, Ga, Pa), where

– the class ca ∈ CO;
– Data is the set of data attribute αa = (α, V alαa

), where
– the name α ∈ Datca

, and
– V alαa

is the set of information values v̄ = (vv̄, sv̄) with
– the data value vv̄ ∈ dca

α , the set of values of αa is Vαa
= {vv̄|v̄ ∈

V alαa
},

– sv̄ is structural information (a position in input data),
– Rela is the set of relation attribute ρa = (ρ, Vρa

), where
– the name ρ ∈ Relca

, and
– Vρa

is the set of i-objects of a class cō from cρa
;

A Distributed Approach to Coreference Resolution 151

– Ga is grammar information (morphological and syntactic features);
– Pa is structural information (a set of positions in input data).

Atra = Data ∪ Rela is the set of all attributes. Note, that features of nat-
ural language processing could cause assigning one-valued (key, in particular)
attributes of i-objects with many values. These ambiguities is resolved after the
coreference resolution. Every i-object corresponds to some ontology instance in
a natural way. Let a = (ca,Data, Rela, Ga, Pa) be an i-object, then its corre-
sponding ontology instance is a′ = (ca,Data′ , Rela′), and every α ∈ Data′ has
value(s) in Vαa

and every ρ ∈ Rela′ has values in Vρa
.

For the description of the process of the coreference resolution, we introduce
the following collative relations on i-objects a, b ∈ A.

– Duplication: a and b are duplicates (a = b) iff AtrK
a = AtrK

b , and Pa = Pb.
– Ontological equivalence: a and b are ontological equivalents (a ≡ b) iff AtrK

a =
AtrK

b , and Pa �= Pb.
– Coreference: a and b are coreferents (a ≈ b) iff AtrK

a ⊆ AtrK
b ∨AtrK

b ⊆ AtrK
a ,

where AtrK
a ⊆ AtrK

b iff ∀γa ∈ AtrK
a : Vγa

�= ∅ → (∃δb ∈ AtrK
b : γa ⊆ δb),

where γa ⊆ δb iff (γa, δb ∈ DatO ∧Vγa
⊆ Vδb

)
∨

(γa, δb ∈ RelO ∧Vγa
⊆r Vδb

),
where ⊆r is defined in the next paragraph.

The following definitions concern the coreference. Let a, b, c ∈ A, X,Y ⊆ A.

– The coreferential group of the i-object a (co-group) is coR(a) = {x ∈
A | x ≈ a}.

– The co-group of the set X is coR(X) =
⋃

x∈X coR(x).
– Coreferential membership: a ∈r X iff a ∈ coR(X).
– Coreferential inclusion: X ⊆r Y iff ∀x ∈ X : x ∈r Y .
– Coreferential intersection: X ∩r Y = coR(X) ∩ coR(Y).
– Coreferential conflict : i-objects a and b are in the coreferential conflict with

respect to i-object c (a c� b) iff a ≈ c ∧ b ≈ c ∧ a /∈ coR(b). The coreferential
conflict means that some i-object is coreferent to two non-coreferential i-
objects.

The coreference resolution problem is to detect if given i-objects (corefer-
ents or candidates for coreference) correspond to the same ontology instance.
Our algorithm for coreference resolution constructs conflict-free co-groups. This
construction uses coreference similarity of i-objects for resolving coreferential
conflicts. The measure of the coreference similarity consists of semantic, con-
text, position and grammar measures.

We formulate some properties of the ontology elements which are used in
the processes of detection and resolution of coreferences. All properties except a
refinement relation are known in the ontology and description logics framework.

– The class inheritance relation. A class c2 inherits a class c1 (c1 < c2) iff
∀a ∈ c2 : a ∈ c1.

– The sub-attribute relation. An attribute γ2 is a sub-attribute of an attribute
γ1 (γ2 � γ1) iff ∀a ∈ cγ2 : v ∈ Vγ2a

→ v ∈ Dγ1 .
For relation attributes:

152 N. Garanina et al.

– The ternary composition relation. An attribute ρ is a composition of attributes
ρ1 and ρ2 (ρ = ρ1 ◦ ρ2) iff ∀a ∈ cρ : a′ ∈ Vρ1a

∧ a′′ ∈ Vρ2a′ → a′′ ∈ Vρa
.

– The refinement relation. An attribute ρ refines an attribute ρ′ (ρ � ρ′) iff
∀a ∈ cρ, a′ ∈ cρ′

: Vρa
∩ Vρ′

a′ �= ∅ → a′ ∈ Vρa
.

– The transitivity. An attribute ρ is transitive (ρ ∈ ReltO) iff ∀a1, a2, a3 ∈ cρ :
a2 ∈ Vρa1

∧ a3 ∈ Vρa2
→ a3 ∈ Vρa1

.

First, we define the semantic measure of the coreference similarity. This
measure takes into account the attribute similarity of i-objects. For the data
attributes, the power of this similarity is defined by the number of equal values
of the attributes (item 1). For the relation attributes, we consider four types
of similarity. The power of the standard relation similarity is also defined by
the number of equal values of the attributes according to coreferences of the
values (item 2). The power of the composition similarity is defined by the num-
ber of equal values of the attributes which are in a composition relation with
some of the values according to coreferences of the values (item 3). The power
of the refinement similarity is defined by the number of pairs of values of the
attributes which are in a refinement relation with some of the values according
to coreferences of the values (item 4). The power of the transitive similarity is
defined by the number of pairs of values of attributes which are in a transitive
relation according to coreferences of the values (item 5). The semantic similarity
is defined by the normalized sum of all above powers of similarity. The formal
definitions follow.

Let a, b ∈ A, a ≈ b, and αa ∈ Data, βb ∈ Datb, ρa ∈ Rela, ξb ∈ Relb.

(1) αa is data similar to βb (αa ∼d βb) iff S = Vαa
∩ Vβb

�= ∅;
The power of d-similarity is sim(αa, βb) = |S|

2 (1
|Vαa | + 1

|Vβb
|).

(2) ρa is relation similar to ξb (ρa ∼rl ξb) iff S = Vρa
∩r Vξb

�= ∅;
The power of rl-similarity is sim(ρa, ξb) = |S|

2 (1
|coR(Vρa)| + 1

|coR(Vξb
)|).

(3) ρa is composition similar to ξb (ρa ∼c ξb) iff ∃π ∈ RelO : ξ = ρ ◦ π and
Sc = {o|o ∈ cπ and o ∈r Vρa

∧ Vξb
∩r Vπo

�= ∅} �= ∅.
The power of c-similarity is sim(ρa, ξb) = |Sc|

|coR(Vρa)| .
(4) ρa is refinement similar to ξb (ρa ∼r ξb) iff ∃π ∈ RelO : ρ � π and

Sr = {(o, p)|o ∈r Vρa
, p ∈ Vξb

∩r Vπo
} �= ∅.

The power of r-similarity is sim(ρa, ξb) = |Sr|
|coR(Vρa)|·|coR(Vξb

)| ;
(5) ρa is transitive similar to ξb (ρa ∼t ξb) iff ρ = ξ ∧ ρ ∈ ReltO and

St = {(o, p)|o ∈r Vρa
, p ∈r Vξb

and p ∈r Vρo
∨ o ∈r Vρp

} �= ∅.

The power of t-similarity is sim(ρa, ξb) = |St|
|coR(Vρa)|·|coR(Vξb

)| ;

The power of semantic similarity : S(a, b) = 1
|Simb

a|
∑

(γa,δb)∈Simb
a
sim(γa, δb),

where Simb
a = {(γa, δb)|γa ∈ Atra, δb ∈ Atrb and sim(γa, δb) �= 0} is the set

of similar attributes.

The following proposition states the necessary conditions for the semantic
similarities of i-objects. The proof immediately follows from the definitions of

A Distributed Approach to Coreference Resolution 153

the ontology elements properties. In the proposition, hierarchical intersection ∩i

for sets of classes C1 and C2 is C1 ∩i C2 = {c | c ∈ Cj ∧∃c′ ∈ Ck : c ≤ c′ ∨ c ≥ c′,
j, k ∈ {1, 2} ∧ j �= k}, and hierarchical inclusion ⊆i is defined as C1 ⊆i C2 iff
∀c ∈ C1∃c′ ∈ C2 : c ≤ c′ ∨ c ≥ c′.

Proposition 1. Let a, b ∈ A, αa ∈ Data, βb ∈ Datb, ρa ∈ Rela, and ξb ∈ Relb.

(1) Coreference: a ≈ b ⇒ ca = cb ∨ ca < cb ∨ ca > cb.
(2) d-similarity: αa ∼d βb ⇒ α = β ∨ α � β ∨ α � β.
(3) rl-similarity: ρa ∼rl ξb ⇒ ρ = ξ ∨ ρ � ξ ∨ ρ � ξ ∨ cρ ∩i cξ �= ∅.
(4) c-similarity: ρa ∼c ξb and ξ = ρ ◦ π ⇒ cξ ∩i cρ �= ∅ ∧ {cπ} ⊆i cρ ∧ cξ ⊆i cπ.
(5) r-similarity: ρa ∼r ξb with ρ � π ⇒ {cξ} ⊆i cρ ∧ {cπ} ⊆i cξ ∧ cπ ⊆i cρ.
(6) t-similarity: ρa ∼t ξb with ρ ∈ ReltO ⇒ {cρ} ⊆i cρ.

Second, we define the context measure. This measure takes into account infor-
mation connectivity of i-objects in a given text. The process of constructing i-
objects generates directed information connections between the i-objects when
the attribute values of one i-object is used for evaluation of the attributes of
another i-object. If an i-object x uses information from an i-object y (may be
through other i-objects) then x is an information descendant of y: x ∈ Des(y).
Let after finish of the construction process coreferent i-objects a and b have com-
mon descendants and CD(a, b) =

∑
x∈Des(a)∩Des(b) cw(x)+1, where cw(x) is the

context weight of the i-object x. One could use the adopted Finding Relatives
algorithm from [9] to compute CD(a, b). The power of common descendants is
D(a, b) = 1 − 1

CD(a,b) . The other component of the context measure is a context
weight of attributes from a given coreferent. In the process of the construction
an i-object can borrow values of attributes from its coreferents. The power of
this borrowing depends on the number of descendants which use these attribute
values. The context weight cw(γ) for the borrowed attribute γ ∈ Atra could
be computed by the adopted Weight Computing algorithm from [9]. The overall
context weight of borrowed attributes is CW (a, b) =

∑
γ∈Br(a,b) cw(γ)+1, where

Br(a, b) are attributes which values are borrowed by a from b. Note that this
measure is asymmetric: CW (a, b) �= CW (b, a) because Br(a, b) �= Br(b, a). The
power of borrowed attributes is B(a, b) = 1 − 1

CW (a,b)+CW (b,a) . Now, the power
of context similarity of i-objects a and b is C(a, b) = 1

2 (D(a, b) + B(a, b)).
Third, we define the position measure. This measure takes into account vari-

ous forms of closeness of i-objects in an input text. Components of the position
measure are the segment measure TS(a, b), the ambiguous coreferent measure
CO(a, b), and the lexeme measure L(a, b). Segments are named text position
ranges predefined by the segmentator. A segment can be a sentence, a para-
graph, a title, a section, a list, etc. Let a segment F be the text scope of coref-
erent searching. This segment is composed of n segments si which are used
for measuring the distance between i-objects’ positions: F = s1 s2 . . . sn. For
example, F could be a paragraph and si could be embedded sentences. Let the
position Pa of the i-object a be in si and the position Pb of the i-object b be
in sj . Then TS(a, b) = 1 − |i−j|

n . The ambiguous coreferent measure takes into

154 N. Garanina et al.

account the number of i-objects which are in the coreferential conflict with b
with respect to a. Let Pb < Pa and acb(a, b) = {c | c

a� b ∧ Pb < Pc < Pa}.
Then AC(a, b) = 1

|acb(a,b)|+1 . The lexeme measure is simply the number of text
lexemes between the positions of a and b. Let lob(a, b) = {l | Pb < Pl < Pa}.
Then L(a, b) = 1

|lob(a,b)|+1 . Now the power of position similarity of i-objects a

and b is P (a, b) = 1
3 (TS(a, b) + AC(a, b) + L(a, b)).

Fourth, we define the grammar measure based on the standard linguistic
features such as gender, number, person, tense, etc. We do not go into details in
this paper. Let the power of grammar similarity be G(a, b) ≤ 1.

Now we define the measure of similarity of coreferential i-objects a and b
as w(a, b) = 1

4 (S(a, b) + C(a, b) + P (a, b) + G(a, b)). In future work, we plan to
estimate the contribution of each component to this measure by experiments
and to use the corresponding coefficients in this formula. If a

c� b we consider
that the coreferential conflict is resolved to a iff w(a, c) > w(b, c).

3 The Coreference Resolution in the Multiagent
Information Extraction

The outline of our approach to text semantic analysis and information extrac-
tion for ontology population follows. The preliminary stage of text processing is
executed by the module of lexical analysis based on the vocabulary of the sub-
ject domain. This module constructs the terminological cover consisting of lexi-
cal objects which are tagged terms found in the text. The segmentator-module
produces the segment cover which represents text decomposition into formal
and genre subunits. The terminological cover is a basis for creating and updat-
ing i-objects. The lexical objects are used for evaluating attributes of i-objects.
The analysis rules implement language processing rules and ontology popula-
tion rules. They are formulated by experts taking into account the ontology
and sublanguage of subject domain. The main analysis module implements the
following processes of constructing i-objects. The analysis rules generate new
information based on information (attribute values) taken from i-objects and
lexical objects. The rules use this information to define new attribute values of
existing i-objects and to generate new i-objects. Every rule can take information
only from its corresponding sets of i-objects which must be linguistically and
ontologically compatible. Using information by some rule from one i-object for
other i-object sets the information connection between these i-objects labeled
by this information. These connections keep the history of an i-object. They are
used for evaluation of integration of an i-object into a text. These constructing
processes terminate when the analysis rules cannot generate new information.

In the process the following problems arise: (1) the coreference, i.e. associat-
ing different i-objects to the same ontology object; (2) lexical ambiguity, when
different i-objects correspond to the same text fragment; (3) syntactic ambiguity,
which means incorrect evaluation of attributes as a result of variety of syntac-
tic interpretations. Our method of lexical and syntactic disambiguation is based
on computing and comparing the context cardinalities and evidence powers of

A Distributed Approach to Coreference Resolution 155

i-objects [9]. For this method to be correct, the coreference resolution must be
performed before the disambiguation. The coreference resolution is the construc-
tion of the conflict-free co-groups of i-objects. The algorithm of constructing the
co-groups is performed by the main analysis module in parallel with construct-
ing i-objects. The coreferential conflict resolution in the co-groups is based on
the similarity of i-objects. This resolution is performed by the main analysis
module after termination of constructing i-objects. If it has found that i-objects
under consideration are coreferent then their attribute values and information
connections have to be joined.

We associate every i-object, every analysis rule, and every ontology class with
different agents which perform different tasks of text analysis for ontology pop-
ulation: (1) creating and updating i-objects, (2) coreference resolution, and (3)
ambiguity resolution. The corresponding i-agents, rule agents, and class agents
communicate and interchange data for executing the tasks. There is also an aux-
iliary agent: the agent-master detects termination and coordinates agents in the
disambiguation process. For the details of the first and the last tasks, see [7,9].
The result of agent interactions is the maximally determined system of i-objects
without the coreference, lexical, and syntactical ambiguities. All agents execute
their protocols in parallel until it happens that none of the agents can pro-
ceed. These termination events are determined by the master agent. We use our
original algorithm for termination detection which is based on activity counting
[8]. The system is dynamic because the rule agents can create new information
agents, the class agents can kill the i-agents by joining duplicates and ontolog-
ical equivalents, and the master agent can kill the i-agents whose i-objects are
weakly integrated in a given text. The agents are connected by duplex channels.
The master agent is connected with all agents, the i-agents are connected with
their rule agents, class agents, and successors/predecessors by information con-
nections. Messages are transmitted instantly via a reliable medium and stored
in channels until being read. In this paper we describe protocols for the class
agents and some adaptations for the protocols of the i-agents and rule-agents
from [7] which we use to resolve the coreference problem. We give semiformal
definitions of the class agent and its protocols for performing this task.

Every i-agent from the set IA corresponds to some i-object from A. For an
i-agent I, the class cI , set AtrI , and position PJ are the class, attributes, and
position of its i-object aI . We omit other data of i-agents unnecessary for the
topic of the paper. We describe the class agents in detail. Each class agent C is
the tuple C = (cC , PC , SgC , SC , RC), where

– cC is the class of the agent;
– RltC = {PC} ∪ ChC are the relatives of the agent, where

– PC is the predecessor class agent C ′ (cC′ > cC);
– ChC = {C ′ | cC′ < cC} is the set of successor class agents;

– SgC is the segment condition for coreference scopes and distances;
– SC is the set of scope segments s ∈ SC with i-agents in: s = (Ps, As), where

– Ps is the range of the text position of the segment and
– As is the set of i-agents of the class cC inside Ps;

156 N. Garanina et al.

– RC is the set of co-groups of i-agents, where every rI ∈ RC has the form
rI = (I, CRI , NCRI ,WI), where

– I is the i-agent,
– CRI ⊆ IA is the set of coreferents,
– NCRI ⊆ IA is the set of rejected coreferents, and
– WI is the set of similarity measures w(I, J) for J ∈ CRI .

First adaptation for the i-agent protocol is that every i-agent I has to send its
id to the corresponding class agent with cC = cI immediately after its activation.
Second adaptation is that every i-agent sends the special signal to its class agent
immediately after update its attribute values. The main novelty of the adaptation
is that i-agents can use the attribute values of their coreferents as their own
attribute values in their communication with the rule agents. The i-agents and
rule agents attach the history of attribute’s origin to every sending attribute
values. The brief descriptions of protocols for the class agents constructing the
conflict-free co-groups follow.

(1) The interface protocol for the class agents. This protocol specifies
agent’s reactions for incoming messages. These messages include information
which actions should be performed by the agent:

(1) (Start): to start, sent by the master agent;
(2) (Create,I): to create the co-group for the new i-agent I by the protocol

Create(I), sent by the i-agent I;
(3) (Update,I): to update the co-group for the existing i-agent I by the protocol

Update(I), sent by the i-agent I;
(4) (Replace,I, J): to replace the i-agent J by the i-agent I in the class co-

groups by the protocol Replace(I, J), sent by the parent or child class agent
(the protocol is trivial and not described in the paper);

(5) (ResConf): to compute the similarity measures by the protocol Sim() and to
resolve coreferential conflicts by the protocol Resolve(), sent by the master;

(6) (UpdFin,R): to update its co-groups with conflict-free co-group R by the
protocol UpdFin(R), sent by the child class agent.

Until an input message causes the agent to react the agent stays in a wait mode.
Messages for the agent are stored in its input channel.

In the protocols, the procedure join(I, J) (1) returns one i-agent made of
two i-agents by making one i-object of the lower class from two corresponding
i-objects via joining their attribute values, grammar and position information,
and combining other data of the i-agents; (2) joins co-groups of the agents in
the co-group of the returning agent; (3) tries to expand the co-group of the
new agent by the procedure ExpandRef described below. We use the notation
SgI

C for the coreference scope of the agent I with respect to the class C. In the
following, X.add(Y) and X.rem(Y) denote adding/removing the elements and
sets Y to/from the set X, respectively. If attribute values are received by i-agent
from some rule agent we call them the own attribute values. In other case, if
attribute values are borrowed by i-agent from some another i-agent we call them
the borrowed attribute values.

A Distributed Approach to Coreference Resolution 157

(2) Creating co-groups
First, the class agent C checks if the coreference scope of I is equal to some

existing coreference scope. Depending on the result it adds I to the existing scope
(line 1) or creates a new scope and fills it with the i-agents which positions are
in this scope (line 2). The new co-group for the agent I is created in line 3. The
class agent does not perform the pairwise collative testing for the pairs of low
class i-agents (line 5), because it is performed by some low class agent and the
result is stored by the corresponding agent. The agent C tests the i-agent I and
agents from the scope segment for duplication, equivalence, and coreference. In
this testing the agent use only the own attribute values of i-agent. If they are
duplicates or equivalents then they are joined, and C returns to wait mode (line
6). If I meets a coreferent then the class agent adds the coreferent to the co-
group of I (line 7). At line 8 the class agent tries to find equivalents for I among
all i-agents having co-groups stored by this class agent, because the search of
equivalents is not restricted by a special segment. Then the co-group of I is
expanded by coreferents which are not from its scope, but in the scope of its
coreferents (line 9). In line 10 every co-group of coreferents is also expanded by
coreferents which are not from their scope, but in the scope of their coreferent
I. After that, the co-group of I is added to the set of co-groups RC . Finally, the
class agent C sends the i-agent I to its parent class agent because there could
be coreferents for I at the next level of the ontology hierarchy (line 12).
Create(I) ::

1. if ∃s′ ∈ SC : SgI
C = Ps′ then As′.add(I); s = s′;

2. else s = (SgI
C , {I});

forall rJ ∈ RC if PJ ∈ Ps then As.add(J);
sC.add(s);

3. rI = (I, {I}, ∅, ∅);
4. forall J ∈ As

5. if cI �= cC ∧ cJ �= cC then continue;
6. if I = J ∨ I ≡ J then J = join(J,I); kill(I); return;
7. if I ≈ J then CRI.add(J);
8. forall rJ ∈ RC \ CRI

if cI �= cC ∧ cJ �= cC then continue;
if I ≡ J then J = join(J,I); kill(I); return;

9. forall J ∈ CRI ExpandRef(I, J);
10. forall J ∈ CRI ExpandRef(J, I);
11. RC.add(rI);
12. send I to PC;

The following procedure can expand the coreference relation of the i-object of
the i-agent I to i-objects from other scope segments of the agents from co-group
of the i-agent J . The coreferent i-agents include each other into their co-groups
(line 4), and exchange by the own attribute values labeled by 0 (lines 5–7). If an
i-agent receives some attribute value from its coreference I then this attribute
value is labeled by I. For describing this, we use the notation: Atr(X/Y) is the
set of attribute values in which the label X is changed for Y .

158 N. Garanina et al.

ExpandRef(I, J) ::
1. forall M ∈ CRJ

2. if M ∈ CRI ∨ (cI �= cC ∧ cM �= cC) then continue;
3. if I ≈ M then
4. CRI.add(M); CRM.add(I);
5. forall J ∈ CRI send(AtrM (0/IM)) to J;
6. send(AtrM (0/JM)) to I;
7. send(AtrI(0/IJ)) to M;

(3) Updating co-groups
If the key attribute values of the i-agent I is updated by some rule agent then

it is necessary to test the agent I and its coreferents for the collative relations
again. This checking for the low class i-agents is performed by these low class
agents (line 4). If the i-agent I becomes to duplicate or equivalent to some
coreferent, the class agent joins them and other relative class agents replaces the
coreferent by I (line 5). Update of key attribute values can causes the co-group
reduction (line 6). Again, equivalence to other i-agents outside the coreference
scope of I is checked (lines 7–9). The new values should be sent to all coreferents
(line 10).
Update(I) ::

1. send I to PC;
2. if upd key(AtrI) then
3. forall J ∈ CRI

4. if cI �= cC ∧ cJ �= cC then continue;
5. if I = J ∨ I ≡ J then

I = join(I,J); send (Replace, I, J) to RltC; kill(J);
6. if ¬(I ≈ J) then CRI.rem(J); CRJ.rem(I);
7. forall rJ ∈ RC \ CRI

8. if cI �= cC ∧ cJ �= cC then continue;
9. if I ≡ J then

I = join(I,J); send (Replace, I, J) to RltC; kill(J);
10. forall J ∈ CRI send(AtrI(0/I)) to J;

(4) Computing the similarity measure
The class agent C computes the similarity measure for a pair of i-agents if one

of them is in the class cC . The computation for low class i-agents is performed by
these low class agents. The function computeW uses the formula of the similarity
measure from the previous section. The computed measures are stored in the
corresponding co-groups.
Sim() ::

w real;
1. forall r ∈ RC

2. I = Ir;
3. forall J ∈ CRI

4. if cI �= cC ∧ cJ �= cC then continue;
5. if w(I, J) ∈ WI then continue;
6. w = computeW(I,J);
7. WI.add((w,J)); WJ.add((w,I));

A Distributed Approach to Coreference Resolution 159

(5) Resolving coreferential conflicts
The coreferential conflict resolution uses the computed similarity measures

and the resolution results from the low class agents. Hence the class agent C waits
finish of coreference resolution by all its child classes (line 1). Further the agent
resolves the conflicts by comparing similarities (line 5). The class agent removes
the more distant coreference from the corresponding co-groups and records non-
coreferents (lines 6, 7). If non-coreferential i-agents have been exchanged with
attribute values then these values should be removed from the corresponding
i-objects and their descendants (lines 8, 9). For every agent from the obtained
conflict-free co-group CRI of the agent I, its conflict-free co-group is exactly
equal to CRI due to the expansion by the procedure ExpandRef and our way of
the conflict resolution. Hence it is reasonable to remove these co-groups without
processing (line 10). At the end, the class agent sends to its parent class agent
the result of coreference resolution as its set of conflict-free co-groups.

Resolve() ::
1. wait (finish Resolve);
2. forall r ∈ RC

3. I = Ir;
4. forall J1, J2 ∈ CRI : J1 /∈ CRJ2

5. if w(I, J1) < w(I, J2) then J = J1; else J = J2;
6. CRI.rem(J); NCRI.add(J);
7. CRJ.rem(I); NCRJ.add(I);
8. forall γJ ∈ AtrI remove(γJ);
9. forall γI ∈ AtrJ remove(γI);
10. forall J ∈ CRI RC.rem(rJ);
11. send (UpdFin, RC) to PC;

When the class agent C receives the coreference results from its child agent
C ′, it removes all non-coreferents from the corresponding co-groups.
UpdateFin(RC′) ::

1. forall rI′ ∈ RC′

2. for rI ∈ RC with I = I ′

3. CRI.rem(NCRI′); NCRI.add(NCRI′);
When the class agents finish the coreferential conflict resolution, the conflict-

free groups of coreferent i-objects are constructed. Further the process of lexical
and syntactical disambiguation takes into account the attribute values from the
coreferents and the similarity measures of the coreferents for estimation of inte-
gration of the i-objects into a given text. We use the similarity measures as
the weight of the information connections in formulas of the context weight of
i-objects (see [9]).

4 Conclusion

In this paper we suggest the approach to coreference resolution in the frame-
work of multi-agent text analysis for ontology population. This approach takes
into account semantic, textual and grammatical similarity of coreferent objects.

160 N. Garanina et al.

These similarities are integrated into the single estimation of coreferential simi-
larity. One of the novelty of the approach is that semantic similarity is based on
properties of ontology classes and relations such as hierarchy, composition, refine-
ment, and transitivity which give more precise and complete coreference identifi-
cation. The multi-agent aspect of the approach is that the special agents-classes
create coreferential groups of objects corresponding to the ontology instances
because the necessary criterion of coreference is (hierarchical) equality of ontol-
ogy classes of the objects. Besides, our approach allows one to resolve reference
of (n-ary) ontology relations represented as special ontology classes. The agents-
classes form and update coreferential groups, which change in the process of
construction of objects due to generation of new objects and attribute values.
After this construction terminates, the agents-classes resolve coreferential con-
flicts by computing and comparing coreferential similarities. The values of coref-
erential similarities are used further in the processes of lexical and syntactical
disambiguation for evaluation of integration of i-objects into a text.

In the nearest future we plan to adopt our approach for reduced forms of
anaphora (pronouns, ellipsis) and for other types of coreferential relations such
as “set-element”, “part-whole” etc. It will also be useful to extend the definition
of semantic similarity to other properties of ontology relations such as inter-
section, join, closure, inversion and symmetry. Other research direction is the
study of dependence of coreferential similarity on text genres such as technical
documentation, news, scientific texts, etc. Up to now our approach to semantic
text analysis do not take into account homogenous groups in a text. We plan
to adopt the approach to consider the case. Now we implement the modules of
disambiguation and coreference resolution as the part of our multi-agent system
of information extraction for ontology population.

References

1. Aref, M.M.: A multi-agent system for natural language understanding. In: Confer-
ence on Integration of Knowledge Intensive Multi-Agent Systems, p. 36 (2003)

2. Brennan, S.E., Friedman, M.W., Pollard, C.J.: A centering approach to pronouns.
In: Proceedings of the 25th Annual Meeting on Association for Computational
Linguistics, pp. 155–162. Association for Computational Linguistics, Morristown
(1987)

3. Carbonell, J.G., Brown, R.D.: Anaphora resolution: a multi-strategy approach’.
In: Proceedings of the 12 International Conference on Computational Linguistics
(COLING 1988) (Budapest), pp. 96–101 (1988)

4. Carvalho, A.M.B.R., de Paiva, D.S., Sichman, J.S., da Silva, J.L.T., Wazlawick,
R.S., de Lima, V.L.S.: Multi-agent systems for natural language processing. In:
Garijo, F.J., Lemaitre, C. (eds.) Multi Agent Systems Models Architecture and
Appications, Proceedings of the II Iberoamerican Workshop on D.A.I. and M.A.S,
Toledo, Spain, 1–2 October 1998, pp. 61–69 (1998)

5. Elango, P.: Coreference resolution: a survey. Technical report, UW-Madison,
2006, available at: https://ccc.inaoep.mx/villasen/index archivos/cursoTATII/
EntidadesNombradas/Elango-SurveyCoreferenceResolution.pdf

https://ccc.inaoep.mx/villasen/index_archivos/cursoTATII/EntidadesNombradas/Elango-SurveyCoreferenceResolution.pdf
https://ccc.inaoep.mx/villasen/index_archivos/cursoTATII/EntidadesNombradas/Elango-SurveyCoreferenceResolution.pdf

A Distributed Approach to Coreference Resolution 161

6. Fum, D., Guida, G., Tasso, C.: A distributed multi-agent architecture for natural
language processing. In: Proceedings of the 12th conference on Computational
linguistics (COLING 1988), vol. 2, pp. 812–814 (1988)

7. Garanina, N., Sidorova, E., Bodin, E.: A multi-agent text analysis based on ontol-
ogy of subject domain. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS,
vol. 8974, pp. 102–110. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46823-4 9

8. Garanina, N.O., Bodin, E.V.: Distributed termination detection by counting agent.
In: Proceedings of the 23nd International Workshop on Concurrency, Specification
and Programming (CS&P 2014), Chemnitz, Germany, 29 September–01 Oktober
2014. Humboldt-Universitat zu Berlin, pp. 69–79 (2014)

9. Garanina, N., Sidorova, E.: Context-dependent lexical and syntactic disambigua-
tion in ontology population. In: Proceedings of the 25th International Workshop
on CS&P, pp. 101–112. Humboldt-Universitat zu Berlin (2016)

10. Grosz, B.J., Weinstein, S., Joshi, A.K.: Centering: a framework for modeling the
local coherence of discourse. Comput. Linguist. 21(2), 203–225 (1995)

11. Harabagiu, S.M., Bunescu, R.C., Maiorano, S.J.: Text and knowledge mining for
coreference resolution. In: Proceedings of the Second Meeting of the North Amer-
ican Chapter of the Association for Computational Linguistics on Language Tech-
nologies, pp. 1–8. Association for Computational Linguistics (2001)

12. Hobbs, J.: Resolving pronoun references. In: Grosz, B.J., Sparck Jones, K., Web-
ber, B.L. (eds.) Readings in Natural Language Processing, pp. 339–352. Morgan
Kaufmann Publishers Inc., Los Altos (1986)

13. Kibrik, A.A.: Anaphora in Russian narrative discourse: a cognitive calculative
account. In: Fox, B. (ed.) Studies in Anaphora, pp. 255–304. John Benjamins,
Amsterdam (1996)

14. Kibrik, A.A., Dobrov, G.B., Khudyakova, M.V., Loukachevitch, N.V., Pechenyj,
A.: A corpus-based study of referential choice: multiplicity of factors and machine
learning techniques. In: Text Processing and Cognitive Technologies, Cognitive
Modeling in Linguistics: Proceedings of the 13th International Conference, Corfu,
pp. 118–126 (2013)

15. Kononenko, I.S., Sidorova, E.A.: Language resources in ontology-driven informa-
tion systems. In: First Russia and Pacific Conference on Computer Technology and
Applications, 6–9 September 2010, Vladivostok, Russia, pp. 18–23 (2010)

16. Mitkov, R.: Anaphora resolution: the state of the art (1999). https://pdfs.
semanticscholar.org/e782/00b1e3ba2a72de1ca9b9b2c5efa775151bfa.pdf

17. Mitkov, R.: Anaphora resolution. In: Mitkov, R. (ed.) The Oxford Handbook of
Computational Linguistics, pp. 266–283. Oxford University Press, Oxford (2003)

18. Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., Zavitsanos, E.: Ontology
population and enrichment: state of the art. In: Paliouras, G., Spyropoulos, C.D.,
Tsatsaronis, G. (eds.) Knowledge-Driven Multimedia Information Extraction and
Ontology Evolution. LNCS (LNAI), vol. 6050, pp. 134–166. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20795-2 6

19. Prokofyev, R., Tonon, A., Luggen, M., Vouilloz, L., Difallah, D.E., Cudré-Mauroux,
P.: SANAPHOR: ontology-based coreference resolution. In: Arenas, M., et al. (eds.)
ISWC 2015. LNCS, vol. 9366, pp. 458–473. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25007-6 27

20. Rich, E., LuperFoy, S.: An architecture for anaphora resolution. In: Proceedings of
the Second Conference on Applied Natural Language Processing (ANLP-2), Texas,
USA, pp. 18–24 (1988)

https://doi.org/10.1007/978-3-662-46823-4_9
https://doi.org/10.1007/978-3-662-46823-4_9
https://pdfs.semanticscholar.org/e782/00b1e3ba2a72de1ca9b9b2c5efa775151bfa.pdf
https://pdfs.semanticscholar.org/e782/00b1e3ba2a72de1ca9b9b2c5efa775151bfa.pdf
https://doi.org/10.1007/978-3-642-20795-2_6
https://doi.org/10.1007/978-3-319-25007-6_27
https://doi.org/10.1007/978-3-319-25007-6_27

162 N. Garanina et al.

21. Sidorova, E.A., Kononenko, I.S.: Representation and use of the jenre structure of
documentation in text processin. In: Proceedings of the Science-Intensive Software
(SIS-09) - PSI 2009 Satellite Workshop, Novosibirsk, Russia, June 2009, pp. 248–
254. Siberian Science Publisher, Novosibirsk (2009). In Russian

22. Soon, W.M., Ng, H.T., Lim, D.C.Y.: A machine learning approach to coreference
resolution of noun phrases. Comput. Linguist. 27(4), 521–544 (2001)

23. Wilks, Y.: Preference semantics. In: Keenan, E. (ed.) The Formal Semantics of
Natural Language. Cambridge University Press, Cambridge (1975)

24. Zhou, G.D., Su, J.: A high-performance coreference resolution system using
a constraint-based multi-agent strategy. In: COLING 2004. www.aclweb.org/
anthology/C/C04/C04-1075.pdf

www.aclweb.org/anthology/C/C04/C04-1075.pdf
www.aclweb.org/anthology/C/C04/C04-1075.pdf

A Framework for Dynamical Construction
of Software Components

Efim Grinkrug1,2(&)

1 National Research University Higher School of Economics, Moscow, Russia
egrinkrug@hse.ru

2 Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

grinkrug@ispras.ru

Abstract. A component model enabling to construct new software components
from existing ones dynamically, at runtime, without their bytecodes generation is
presented with supporting it software framework. The framework is implemented
using JavaBeans component model, but is aimed to eliminate its drawback – the
inability to create user-defined components without bytecodes generation. To
construct user-defined component dynamically, a composed prototype object is
built using predefined (hardcoded and/or composed) component instances; that
prototype object can provide functionality required and can be transformed at
runtime into a new component (instantiable type) whose instances are able to
provide the same functionality, but more efficiently. The prototype object is
composed using meta-components – the framework provided components to
produce user-defined components dynamically.

Keywords: Component model � Prototype � Type � JavaBeans
Components � Properties � Interface � Implementation

1 Introduction

Any computer program (from the lowest, hardware point of view) is a composite object
consisting of its composing elements (machine instructions). In that sense, computer
programming is always component-based [1, 2], at least at the lowest level. Complexity
of software development depends on a components set available and on the rules to use
them for their composition. A component model is of high importance [3]: it is a set of
rules that define what the components are and how they can be reused and/or combined
together. Any software architecture is defined in terms of components [4], and any
software development technology is inherently component-based and component-
oriented: it uses and is aimed to produce components, depending on component model
and its implementation framework. That component-based approach is common for
many engineering areas including hardware and software development (that similarity
was pointed to far in 1968, when notions of component-oriented programming and
software engineering were first introduced [5]).

In many component-oriented technologies, components themselves are implemented
by means that are very different from those used for utilizing the components later.

© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 163–178, 2018.
https://doi.org/10.1007/978-3-319-74313-4_13

For instance, hardware chips are produced using highest technologies while the chips can
be combined together on a board manually by soldering.

When a component implementation technology is used also to combine compo-
nents together (since a component itself is usually a composite entity built using its
elementary components), we deal with a higher degree of composition - with inte-
gration, that the technology must support. In hardware area it may be illustrated by
System on Chip integration (based on correspondent degree of integration available). In
software it usually is supported by compiler that can integrate various program con-
structs during compilation. It means that components integration is performed stati-
cally, prior the runtime. There may be more or less dynamic approaches to components
integration depending on the goals and components in use (e.g., [6, 7] - to list a few).

Components implementation and components integration technologies may or may
not be of the same nature. And they can provide different dynamic abilities and
efficiency.

This work is concerned with Java platform, as the most popular one [8], while
similar considerations may be applicable for others. We propose a component model
and its implementation framework enhancing well known JavaBeans component model
[9] to facilitate dynamical components composition – with an ability to build new
components at runtime. Initially, JavaBeans component model was positioned by Sun
as “the only component model for the Java machine”; since that time many others, like
e.g. OSGi component model [7], etc., were introduced, but they expect some set of
predefined Java interfaces to be implemented by components, thus putting more static
requirements on them. And they usually help to compose dynamically end-user
applications, but not their components themselves.

The approach to the component composition was initially described in [10] and
reflected the first implementation. In this paper the current state of the framework
implementation is presented with more details. This work is focusing rather on
dynamical construction of composite components than on other aspects of their life-
cycle. We are focusing mainly on the issue: how to use existing components (defined
types) instances to create a compound prototype-object that can be transformed
dynamically, at runtime, into a new composed component (user-defined type) whose
instances provide the same functionality as the source prototype. While discussing that
issue, we concentrate on the declarative view on our components (what our compo-
nents are composed from), rather than on the behavioral view on our components
instances.

After this introduction, we describe a motivation for this work and the whole
approach of it in Sect. 2; Sect. 3 provides our components definitions and Sect. 4
describes our hardcoded components implementation. In Sect. 5 hardcoded
meta-components for prototyping are introduced, and Sect. 6 explains composed
component instantiation. After short references to the related works in Sect. 7 we
conclude with Sect. 8.

164 E. Grinkrug

2 Motivation

Java-platform is based on object-oriented class-based programming paradigm sup-
ported by Java language and Java Virtual Machine (JVM) representing static and
dynamic parts of the platform. Java-platform provides support for component oriented
programming from the very beginning; the JavaBeans component model was intro-
duced in the first JDK, and still remains popular and widely used.

The JavaBeans Specification [9] describes that component model and defines a
JavaBeans component as a serializable Java class having public default (no arguments)
constructor. JavaBeans components are expected to be manipulated manually (i.e.
dynamically and interactively) in a builder tool, and there are some naming conven-
tions (JavaBeans design patterns) defined for discovering a component features
(properties, events, etc.) dynamically, at runtime, using corresponding class intro-
spection (that is based on Java reflection mechanism). A reference implementation of
the JavaBeans component framework was provided as JavaBeans Development Kit
(BDK) with interactive BeanBox tool to manipulate with the components.

The JavaBeans component, by definition, is a class (possibly along with its sup-
porting classes and other resources), i.e. it is a type (of its’ dynamically created
instances). It should not be mixed with the component instance (an instance of the
type), as it often happens; the difference is valuable for our discussion.

As a class, JavaBeans component can be used as an ordinary (library) class by
compiler that can combine classes statically to produce other classes (and components),
as it is defined in supplied sources. Compiler generated classes, compliant with
JavaBeans component model, provide new, statically composed, JavaBeans compo-
nents. In that case we use the same technology (static compilation) for both the
composing components production and the resulting composition from them1. And we
need to have sources defining how to produce that composition.

In contrast, interactive (dynamic) composition approach supported in BeanBox tool
deals with components instances. JavaBeans components (types) are loaded into the
tool, where they can be manually instantiated. Components instances can be combined
together using their properties assignments and/or linked by events passed between
them. All that components instances composition is performed in the predefined
BeanBox container instance and results in its’ composite content. That composite
object can work inside the tool and can be dynamically built/edited/customized in
parallel with its functioning – provided that components themselves are able to support
it and their runtime environment allows for it (as BeanBox does).

But, how can we use that composite object obtained as the result of components
instances composition? We can only explore its functionality in that environment and
serialize that container instance content (that’s why all JavaBeans components must be
serializable) for future use in a similar (JavaBeans specification compliant) environ-
ment. That serialization/deserialization can be done using various formats

1 Components used as elements of a composition are composing components; a component having
been built from composing components is composed component.

A Framework for Dynamical Construction of Software Components 165

(binary, XML, JSON…). And that is how majority of the component-oriented tools
work like; especially various GUI-builders, XUL-editors, Scene Builders, etc.

Sometimes, static and dynamic approaches are used together: a component-oriented
environment (tool) provides dynamic, interactive means to build/edit/customize a set of
interrelated component instances inside its container instance, but uses that process to
create the source file under the hood, that then gets compiled (producing a new
component statically). That approach, e.g., was used by BeanComposer tool from IBM
Visual Age for Java IDE long ago. Some tools put limitations on components instances
functionality inside its container, restricting their dynamic abilities to their views usage
only (MS Visual Studio Windows Forms Editor works that way).

The two component building scenarios, mentioned above and expected by Java-
Beans component model, have disadvantages: they are either static (use compiler as
components integration tool) or they are not logically consistent (in our point of view)
when deal with dynamics. Indeed, we start with a set of predefined components, i.e.
with classes implementing components (types) - we’ll call them as base or hardcoded
components. Hardcoded components are produced using class-based object-oriented
programming paradigm [11] (and by supporting that paradigm tools and environment
of Java-platform). But, having been loaded into a builder tool, predefined components
are not expected to produce there a new composed component dynamically: the
components can only produce a content of (the tool predefined) container instance,
consisting of the used components instances combined together. We can consider that
composite instance as a prototype object with functionality we have expected; but, the
only way to use it – is copying it through serialization/deserialization (in some form).
Thus, having started from class-based object-oriented paradigm we have resulted in
prototype-based paradigm usage - that looks like a contradiction (in our point of view),
or a kind of ideological downshifting.

Some analogies may be found in other engineering areas. There may be two
approaches to create an electronic device. First is – to develop its principal scheme (i.e.
a type) based on experience in that area and using some hardware definition language
(HDL), e.g., as in [12], then – to produce the device instance(s) according the scheme.
Another is – to build a prototype of the device (step by step), extract the scheme from
that working prototype and then use that scheme in production. The latter case reminds
casting molds usage: first, a prototype is created from some flexible and tunable
material; and then the prototype features are extracted and fixed into the immutable
mold (type), used in mass production (of the type instances).

A prototype of a type should have more “degrees of freedom” than an instance of
the type that is created from the prototype. Instances of components produced with
context independent assumptions should be tunable according their concrete usage
context requirements. It is desirable for a prototype object that is built from the
components instances, to be customizable by means of its elements properties setting,
and to have then some of the properties marked as immutable, having their values
defined during the prototype elements customization for concrete usage context(s).

For example, some Lego components are produced without knowledge about their
future use in specific constructions, and their connection pins remain visible when they
will not be used for connection in a given special case. It reduces the final quality of the
construction which does not need that extra degree of freedom.

166 E. Grinkrug

Below we discuss the component model and its implementation framework that
support dynamical components composition by means of prototype instance con-
struction from component instances and dynamic prototype to type transformation, as
illustrated at Fig. 1.

3 Component Interface and Implementation

Our goal is to build new components (composed types) dynamically, i.e. without
bytecode generation (by compiler or by other means). In Java-platform it is impossible
to have new types (classes) defined dynamically without having their bytecodes loaded
by a ClassLoader2. In order to have our components (types) definable at runtime
without having their bytecodes generated, we need to have some extended type system,
built using Java-platform (i.e. above it) and extending it to support dynamical type
definitions. We call that superstructure BeanVM, since we try to extend the type system
of the JavaVM and do it using JavaBeans components.

Our component is a type instantiable without arguments passing and represented by
a triplet: type = {name, interface, implementation}. The name uniquely identifies the
type, interface represents the type for its users, and implementation part defines how the
type is implemented. Our components (types) can be implemented in two forms:
hardcoded (having them loaded by JavaVM ClassLoader from their bytecodes), and
composed (having them defined dynamically without having their classes generated).
Both hardcoded and composed types (components) are registered in BeanVM type

Fig. 1. Creating composed component using its prototype to type transformation

2 Java platform can deal with specific “synthetic” classes defined dynamically by JVM itself for
specific purposes.

A Framework for Dynamical Construction of Software Components 167

system, using their names and BeanVM TypeLoader hierarchy support. Hardcoded
components represent base (predefined) components, while composed components
represent user-defined components in our component model.

We expect to operate with components instances in a manner that is independent on
their types implementation – using the interface of their type and the means in it, that
are equally applicable both for hardcoded and composed components. To support that,
we state that the only way to interact with our component instances is their properties
access that we support with correspondent Java API (named as BeanAPI). Hence,
interface of any type is defined by its set of the property types, with the property type
defined as follows:

propertyType ¼ fname; valueType; access; valueg; where:

• name is the name of the property in the interface;
• valueType is a type of the property value in BeanVM type system;
• access is a list of operations that are allowed for the property (all supported access

rights include Write (W), Read (R), Bind (B) and – for indexed properties only –

indexed Write (w) and indexed Read (r));
• value is the property default value a component instance has upon instantiation.

Functionality and behavior of component instances are defined in their type defi-
nitions as reactions on their property value changes. Detailed description of the
mechanisms involved in reactive component instances behavior is beyond the scope of
this paper, focusing mainly on declarative aspects of the component model.

Our hardcoded components are specific JavaBeans components (by construction).
That allows for manipulations with them in existing JavaBeans compliant tools, and
demonstrates our component model as an extension of the JavaBeans component
model. But our hardcoded components are implemented in Java as (direct or indirect)
subclasses of their common Bean superclass that provides support for Java classes to
BeanVM types mapping (dynamically) and BeanAPI implementation. To have an
arbitrary JavaBeans component importable in our environment we provide our hard-
coded component – BeanAdapter, whose instances wrap JavaBeans component
instances and export our BeanVM type interface from them.

BeanAPI provides methods to set a property value having write access permitted
for it, to get a property value having its read access permitted, and to bind a property
value change listener with a property having that bind access permitted. As for Java-
Beans components, we distinguish scalar and indexed property types supporting
indexed accessors (and their usage permissions) as well.

We expect to create and use new types at runtime, including their use as property
value types for types to be generated in the future, etc., and we do not expect to perform
code generation for our composed types (at least for now3). We expect to have the same

3 We can use bytecode generation as a kind of just in time compilation, similar to JIT support in JVM
[13], as an optimization technique. In that case, component production technology will be the same
as component composition technology, producing components with “higher degree of integration”
on the fly. But, first, we need to have “source information”.

168 E. Grinkrug

mechanism to access property values for both hardcoded and composed component
instances. When implementing BeanAPI and hardcoded components instances with
their properties, we represent property values as objects (of java.lang.Object
class), and control property assignment dynamically, at runtime.

Implementation part of hardcoded component is represented by its implementation
class. Its internal structure is not visible from BeanVM point of view (it looks as atomic
entity from BeanVM perspective). Implementation part of composed component (type)
consists of the composing types, describing how component types should be used to
implement the composed type instances. Next sections describe how hardcoded and
composed types are created, instantiated and used at runtime.

4 Hardcoded Component Implementation

To define a hardcoded component we have to compile its implementation class having
it defined and compiled using our component model implementation framework. The
name of the implementation class will be the name of the hardcoded BeanVM type
implemented by that class. Our hardcoded components are JavaBeans components
inherited from the framework supplied base class Bean (i.e. they are our framework
specific JavaBeans). Hardcoded component properties should be declared according
JavaBeans design pattern for property declaration, but their accessor methods must be
encoded using our BeanAPI. Below we describe the ideas behind that.

Any instance of our component (for hardcoded components – a JavaBean instance
in JavaVM perspective) is a wrapper of its own internal implementation provided by
the instance of the BeanVM type (in BeanVM perspective). For hardcoded components
that correspondence is established dynamically in context of the constructor of the
Bean superclass (that gets inevitably executed during hardcoded component instan-
tiation). In case of the very first instantiation of hardcoded component its’ BeanVM
type is first created and registered. That class to type mapping is accomplished using
the static method Type.forClass(Class c) of the framework supplied abstract
class Type returning the type object created from the given loaded class. In fact, the
factory returns the type object as an instance of the concrete subclass of the
Type.class, - so the following invariant always holds true:

type:getType ðÞ ¼¼ Type:forClass Type:classð Þ:

BeanVM type of the Type.class is the type of all BeanVM types, like
Class.class in JavaVM is the class of all JavaVM classes. If c is our hardcoded
component implementation class, then the following is true:

c:newInstance ðÞ :getType ðÞ ¼¼ Type:forClass cð Þ:

Hardcoded component (BeanVM type) is a wrapper of its implementation class,
while that implementation class instance (an object of the class) is a wrapper of an
instance of that BeanVM type.

A Framework for Dynamical Construction of Software Components 169

The primitive Type.forClass(Class c) provides a hardcoded type for any
Java class and uses java class introspection mechanism to extract property descriptors,
as defined by JavaBeans specification [9]. BeanVM type system distinguishes hard-
coded types created for our hardcoded components (i.e. from classes inherited from our
Bean class), for java arrays classes, for other JavaBeans classes, and for all other Java
classes (that kinds of hardcoded types are implemented by corresponding subclasses of
the abstract Type.class). For a given class, all types for all its superclasses are
created recursively, and all types for all classes that are used in the given class property
descriptors (as its property value type classes) are created as well. The property
descriptors and property value types (that are created from property value classes) are
used to create property types that define the hardcoded type interface in BeanVM.
Additionally, for hardcoded components only, during the type creation procedure, their
initial instance is created and initialized providing default values for its property types.
For java array classes, type creation procedure performs class to type mapping for the
array element class as well. For JavaBeans classes that are not our components their
adapter types are created.

The Bean superclass provides BeanAPI - a set of methods to operate with prop-
erties of an instance according property access permitted and defined in the property
type (with dynamic access control). All values for property setting in BeanAPI are
passed as objects, but are checked dynamically against the property value type. To
implement property accessors defined in a component class according JavaBeans
design pattern, hardcoded component author delegates them to the instance (of
BeanVM type) implementation using BeanAPI; when using BeanAPI getters in Java
explicit cast to the property value class may be needed. Behavior for a specific hard-
coded component is implemented using protected overrides of methods reacting on
property value changes.

One of the important issues of any component-based technology is connecting a
composed component external interface with the component internal implementation.
We define an interface of a (hardcoded and/or composed) component as a set of
property types. We need to describe how properties of an interface of a composed
component are defined without source code compiling (dynamically), how they are
implemented later in composed component instances and how they are connected with
properties of the components instances in internal implementation. Next section
describes how it is done in component-oriented manner in our framework and how it is
related with hardcoded component implementation details – depending on the com-
ponent instance usage context.

5 Prototype Construction

To define new composed component dynamically, we need to define its type name,
interface and implementation.

Type names in BeanVM are similar to class names in JavaVM, and used by
TypeLoaders that participate in type creation, loading and registration at runtime. The
primitive Type.forName(String typeName) can load already defined types
from class (using Type.forClass(Class.forName(String typeName)) or

170 E. Grinkrug

from other component description source by its name (using a corresponding
loader/parser), depending on what will be met first.

To define interface and implementation for new composed component dynamically
we use a two-step procedure (as was illustrated at Fig. 1): first, we create a prototype
object, and, second, we transform that prototype into the new type using primitive
Type.fromPrototype(Prototype p). The prototype object here is a composite
object that is to be built dynamically using special hardcoded components instances
(among others) that are provided specifically for the prototype composition and pro-
totype to type transformation (i.e., using meta-components to define components).

5.1 Prototype Interface Construction

The Prototype meta-component (hardcoded type) has three interface properties:
“name”, “interface” and “implementation” having corresponding value types String,
PrototypeInterface and PrototypeImplementation4.

When the prototype instance will be dynamically transformed into the new
BeanVM type, the value of the prototype property “name” will become the name of
that type.

The property “interface” of the prototype instance should contain a PrototypeInter-
face instance that is used to define the prototype properties dynamically. To support that,
PrototypeInterface meta-component has two indexed property types with names “vari-
ables” and “properties”. The value type of the property “variables” is the array type of
typed variables (TypedVariable[]), with all possible access rights (i.e., permitting
all possible operations on indexed property: Write, Read, indexed Write, indexed Read,
and Bind to register property change event listeners) provided by design. The value type
of the property “properties” is the array type of Property-objects (Property[]) without
Write and indexed Write access from outside. It means that values for the property
“properties” are set internally by PrototypeInterface meta-component behavior - as the
reactions on the property “variables” values changes. When a set of typed variables is
changed, the new set of properties, that are produced based on that variables, is generated
and made available as an indexed property “properties” value.

Typed variables are our components as well. In contrast with hardcoded compo-
nents inherited from our Bean class (and having a set of properties), they all have the
only property named “value” with the value type defined at typed variable type cre-
ation. It means that the type to be instantiated in order to create a typed variable
instance is defined in BeanVM “synthetically”: type of all typed variable instances
having the given value type is derived from that value type and registered in BeanVM
type system. We provide both scalar and indexed typed variable types. All typed
variables are writable, readable and bindable (i.e., can be bound using their value
change listeners), with indexed variables additionally supporting indexed read and
write access. TypedVariable and IndexedTypedVariable types, as our components, are
instantiable without arguments and can create their instances to store values of types
compatible with value types they were derived from. The value type of the typed

4 We omit package names from type names for short.

A Framework for Dynamical Construction of Software Components 171

variable is used for dynamic type control during assignments. The BeanVM type
system maintain the (extendable) register of types that are not components, but can be
used as value types having specific (not null) defaults; that default values are used for
typed variable instances initialization. The default value for all typed variables having
our component as their value type is null.

Typed variable instances form a typed “sensitive” (i.e., potentially listenable)
memory of our component instances for implementing properties in prototypes. They
represent “pins” to connect different component interface properties together when
constructing a composite prototype object.

Property objects are not our component instances, but they are (a kind of) contexts
of typed variable component instances. Properties cannot be created in context-less
manner, in contrast with components, but they represent usage contexts of typed
variable instances. That is how PrototypeInterface component instance works: it creates
and exports these contexts for a given set of typed variable instances. Note that typed
variable components instances (typed variables) can be used (shared) by many con-
texts. That sharing is used to define how an interface of a composed component is
connected with its implementation components (when the prototype has been trans-
formed into the corresponding type).

Our framework provides contexts for any our component instance; contexts are
used in BeanVM component instances addressing mechanism. That context objects
connect the component instance with its users that operate with the component instance
via its contexts (or get notified about the component instance property change).
Property object – as a special case of typed variable instance context – has its own
property “access” to set access rights restriction (this context specific) for the typed
variable it refers to. Any access restriction defines access rights that are less or equal
comparing with that of referenced typed variable instance. When a property is created
in PrototypeInterface instance (as a context of some typed variable), it is implemented
(by the TypedVariable contexts factory) as a PrototypeProperty object, having addi-
tionally its property “name” - to assign the property with user defined name instead of a
name generated by default (property names are checked to be unique in the given
PrototypeInterface meta-component instance).

5.2 Prototype Implementation Construction

If some specific functionality (beyond storing a set of typed values in prototype
properties) is expected, a content of PrototypeImplementation hardcoded
meta-component instance should be constructed from available component instances,
and some of them should interact with the prototype interface elements. These com-
posing component instances in a prototype implementation will be transformed into
composing types – elements of the resulting composed type definition produced from
the prototype.

Hardcoded PrototypeImplementation meta-component has indexed property
“components”, where an array of our component instances can be set and/or modified.
All components are instantiated without arguments passing, then their property values
can be assigned and edited using their value assignments, thus forming a directed graph
of referred component instances (since various component instances can refer to the

172 E. Grinkrug

same instance having it as their properties value). To have that directed graph tra-
versable without falling into an infinite loop, we state that the graph must be an
Directed Acyclic Graph (DAG); the correspondent property value assignment control is
performed preventing from cyclic references. That graph defines declarative aspect of
its container content; behavioral aspect of component instances container is defined by
events propagation graph that defines how property change events generated in com-
ponent instances are used to set new property values in others (i.e. event routes graph).
Property change events are used in event routes to get newly generated source property
value from an event received from one component instance and to set that value into a
destination property of another component instance (provided the properties are value
type compatible).

In principle, it is possible to implement interaction between a prototype interface
properties with properties of some implementation component instances using event
routes. It might be the only way in case we cannot influence on component instances
implementation (i.e., considering them as “black boxes”). That way is based on passing
information by value. In our component model we can influence on our component
instances implementations having them inherited from their common Bean superclass.
We can consider that component instances as “grey boxes” at prototyping stage, when
defining a prototype implementation.

As it was mentioned in Sect. 2, we expect a prototype object to be more flexible
and tunable than any instance of the type the prototype is the source for. That’s why we
distinguish two variants of an instance implementation for our components in their
Bean superclass: prototype-based implementation and type-based implementation.
The prototype-based component instance implementation is used when the instance is
being created for prototyping purposes and needs to be tunable according its usage
context under construction. The type-based component instance implementation is used
when the type of the instance being created is fully defined and refined for its specific
usage context. It is used when we instantiate components participating in the composed
type definition (to create its composite instance). That context dependent instance
construction is illustrated by the code snippet below:

Any component instance, implemented as a subclass of our Bean superclass, at the
instance creation time gets its own internal implementation produced by BeanVM
factory called by Bean class default constructor. That factory knows what the instance
under creation is being created for (it knows the instantiation context). By default, all
instances get their prototype-based implementation for tuning them as needed.

In prototype-based implementation an instance of component (i.e. an instance of
already existing type) is implemented as a set of variables (with each variable

A Framework for Dynamical Construction of Software Components 173

corresponding to a property type that is defined in the existing type interface) and these
variables contexts are child contexts of the root context provided by that
prototype-based instance implementation object.

These variables contexts are implemented as InstanceProperty objects, that are
similar with PrototypeProperty objects (Sect. 5.1), but, in contrast with Proto-
typeProperty, they have their property types already defined. That defined property
types already contain property names, and are used when performing dynamic value
type control (against the value type from the property type). Instance properties cannot
be renamed, but can support context related access restriction (providing no more
access rights than in property type). Both PrototypeProperty and InstanceProperty are
implemented as subclasses of an abstract Property class (that, in its turn, is a kind of
variable context).

Having properties in prototype-based instance implementation defined as a set of
contexts for variables, we can make that property set supporting the variables sharing.
That sharing can be performed by our special hardcoded meta-component – Com-
posingPrototypeInterface (its name was intendent to highlight its goal as a tool that uses
a created component instance as a prototype for composing type when prototype
interface connection is needed).

The ComposingPrototypeInterface instance is reusable. It gets a component
instance in its property “bean” and exports that component instance properties through
its own indexed property “properties” having value type Property[]. When a new
property value then is assigned to the “properties” element at a given index, then the
variable of the given property is extracted and its new context as a given component
instance property is created (provided all relevant validation checks are successfully
performed). If we want to use (by sharing) the prototype interface property variable as
the existing component instance property variable, we perform the following scenario:

• create a PrototypeInterface instance with its PrototypeProperty objects, and extract
its property to be linked with an implementation component instance property;

• create a component instance with a property to be linked with the interface property
extracted above, any property index can be extracted from the component interface
using getPropertyIndex(String name)- method;

• create an instance of ComposingPrototypeInterface and assign its property “bean”
with a component instance as its value; the component instance properties become
visible as “properties” value;

• use indexed setter for the property “properties” to assign the extracted interface
property as a value using the index of a property found above; the variable of the
prototype property will be reused (shared) as a variable of component instance
property using its’ newly created context (instance property).

That scenario is successful only when all relevant dynamic checks, including value
type and cyclic references control, succeeded; otherwise exception occurs.

ComposingPrototypeInterface component is a tool that makes the given component
instance connectable by reference (by property variable sharing). It enables reuse of a
property variable after having made the given component instance observable as a
“gray box”, instead of looking like a “black box” otherwise.

174 E. Grinkrug

5.3 Protoinstance Functionality

The PrototypeInterface, PrototypeImplementation and ComposingPrototypeInterface
hardcoded meta-components provide builder interfaces that enable to construct a
prototype object dynamically from component instances - as composing elements of
the container provided by the instance of the Prototype meta-component. That Proto-
type container instance can demonstrate its functionality and behavior “in parallel” with
its creation process - by making a prototype object immediately workable while it is
being built. It means that the object being prototyped can be accessible not only by its
builder interfaces, but used through its functionality interface as well.

To communicate with a prototype object using its functionality interface Protoin-
stance meta-component is used. Note that Prototype meta-component has three prop-
erties only (properties “name”, “interface” and “implementation”, as defined in
Sect. 5). Protoinstance component provides “an orthogonal” view on the same proto-
type object that is created using a Prototype component; its instance provides the
functionality of the container object being built as a prototype, and it has as many
properties as it had been defined so far (dynamically) for that prototype object.

Hardcoded meta-components - Prototype and Protoinstance – are both the two sides
of the same coin, where the instance of the first is used to build a compound prototype
object, while the instance of the second is aimed to use that prototype object as
expected. For any Prototype instance BeanVM can return corresponding Protoinstance
object, and vice versa.

The protoinstance-object is implemented internally by the corresponding prototype
object internal instance representation - by the context tree of the component instances
graph (DAG) in the prototype container. When Protoinstance component is instanti-
ated, its instance gets the root context of its corresponding instance of the Prototype as
its internal implementation.

For any instance of hardcoded component that is a component container (i.e.,
inherited from abstract ComponentContainer class) the framework creates and
maintains the internal context tree. The root node of the container instance context tree
refers to that container instance itself and has no parent context reference. When a
component instance is assigned as a value of a property in a node of the component
instances graph, the graph is changed, and its’ corresponding context tree is updated.
Any change in the graph is reflected in its context tree (that actually represents the
graph inside BeanVM). Each component instance context refers to (and listens events
from) the component instance it was created for. If the type of the component instance
defines property types with value types that are components, then the type is respon-
sible for performing the context creation procedure recursively – in depth, so that the
context it returns is a parent context of the contexts created for components found in the
component instance properties. That context tree maintaining mechanism5 is used for
many purposes:

5 The context tree is different from, e.g. java.awt.Container/Component tree that does not support reuse
(sharing) of the component instances.

A Framework for Dynamical Construction of Software Components 175

• It helps to control the component graph without its traversing by providing different
context-objects for the same (reused) component instances;

• It simplifies DAG validation when properties of a reference types are assigned
(context tree helps to check for cyclic references presence);

• It helps for reactivity support since the context tree represents an instance of a
container and gets updated according the component graph behavior.

Since our typed variables, used in the prototype interface, are components and the
prototype interface properties are represented by their contexts, we can use the root of
the prototype container context tree as the internal implementation of the protoinstance
object having these properties. That approach enables dynamical prototyping and
functioning of the object being prototyped – at the same time.

6 Composed Type Instance Implementation

Composed type created from a Prototype instance has its interface and implementation.
Interface is created from prototype interface and is defined in terms of property types.
Implementation of the composed type is defined in terms of its composing types that
are context dependent refinements of the components used in the prototype.

The composing type is represented by a reference to the component (context-less
type) used to create a prototype element the given composing type is transformed from
during prototype to type transformation, and, additionally, its property types refine-
ments, that can redefine property values and property access rights reflecting these
values of the source prototype element at prototype to type transformation time. The
composing type represents context dependent usage of the concrete component
instance in the prototype of the composed type. And it provides the context dependent
information for the type-based component instance implementation.

During composed type instantiation, instances of the composing types are created
as instances of the corresponding components, implemented in type-based manner that
is more effective, but less flexible, than prototype-based implementation. Specifically,
immutable property values are stored (and shared by all instances) in property type
refinements of the corresponding composing types, while mutable property values are
stored just in the instance property values array – without typed variables usage; the
property value type and access control is delegated to the known property type and its
refinement, correspondingly.

A composed component instance is a container object having type-based imple-
mented instances of refined components; it provides the same functionality as a pro-
toinstance of the prototype, but benefits from its type-based optimization.

7 Related Works

Component-based software engineering is the base of software engineering in general;
both terms were introduced at the same time [5]. Since that time a variety of the
component definitions and component models they comply with were proposed and

176 E. Grinkrug

investigated (e.g., [14–16]) for different application areas. This work is focused on
dynamic abilities of a component model and its implementation framework applicable
for the most popular software development environment – Java platform, in one point
of view, and for expected application areas, in other point of view. Detailed overview
of the Java related component models is far beyond the scope of this paper. As a related
work, the Ptolemy project [17, 18] should be mentioned. In that project declaratively
defined composite types are supported with MOML language [18], but their instances
are implemented rather by cloning. A sample of another work with related goals is
Evolve project [19], aimed to support software evolution. In that project bytecode
generation is used to produce new composite components.

Initially, this work was inspired by an attempt to implement VRML and/or X3D
standards [20–23] in Java. These standards are inherently component based and pro-
vide language constructs for user-defined component descriptions. Despite of the old
publications [21, 22] on having that definitions supported in object-oriented style, all
known implementations either perform prototype cloning instead of type instantiation
or just use the composite descriptions as parameterized macro definitions. The reasons
of it were mentioned in Sect. 3, and these standards still remain actual [24].

8 Conclusion

The proposed component model and its implementation framework provide a way for
dynamical user defined component definitions. Bytecode generation (compiling) is not
needed: new components (composite types) can be produced dynamically from
working prototype. When components are used in known contexts having been pro-
totyped first, time and space optimizations are available for instances implementation.

Bytecode generation still remains possible; in BeanVM point of view it can play the
role similar to that of JIT-compiler for JavaVM. Components defined dynamically can
provide the source information for it.

The framework proposed is implemented based on well-known JavaBeans com-
ponent model, and interactive component manipulating environment (enhancing BDK)
is to be developed. That tool will be able support dynamic component programming
without violating initial object-oriented class-based programming paradigm.

As an immediate application of the framework the object-oriented enhancements of
the X3D prototyping with corresponding tool support are expected, while the frame-
work can be used for a variety of other component-oriented applications.

References

1. Sommerville, I.: Software Engineering, 10th edn. Pearson, New York (2015)
2. Wang, A.J.A., Qian, K.: Component-Oriented Programming. Wiley, New York (2005)
3. Lau, K.-K., Wang, Z.: A Survey of Software Component Models (second edition), School of

Computer Science, The University of Manchester, Preprint Series, CSPP-38 (2006)

A Framework for Dynamical Construction of Software Components 177

4. Paul, C., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Stafford, R.N.J.:
Documenting Software Architectures: Views and Beyond, 2nd edn. Addison-Wesley,
Boston (2010)

5. McIlroy, D.: Mass-produced “software components. In: Naur, P. Randell, B.: Software
Engineering, Report on a conference sponsored by the NATO Science Committee,
Garmisch, Germany, 7th to 11th October 1968”. Scientific Affairs Division, NATO, Brussels

6. Spring Framework. https://spring.io/projects
7. OSGi Technology. https://www.osgi.org/developer/architecture/
8. Tiobe index. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
9. JavaBeans API Specification. http://www.oracle.com/technetwork/java/javase/documentation/

spec-136004.html
10. Grinkrug, E.: Dynamic component composition. Int. J. Softw. Eng. Appl. 5(4), 84–101

(2014)
11. Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Science. Springer,

New York (1996). https://doi.org/10.1007/978-1-4419-8598-9
12. Nusan, N., Schoken, S.: The Elements of Computing Systems: Building a Modern Computer

From First Principles. The MIT Press, Cambridge (2005)
13. Oaks, S.: Java Performance: The Definitive Guide. O’Reilly Media, Sebastopol (2014)
14. Meyer, B.: The grand challenge of trusted components. In: Proceedings of ICSE 2003,

pp. 660–667. IEEE (2003)
15. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented

Programming, 2nd edn. Addison-Wesley, Boston (2002)
16. Heineman, G., Councill, W. (eds.): Component-Based Software Engineering: Putting the

Pieces Together, 2nd edn. Addison-Wesley, Boston (2001)
17. The Ptolemy Project. http://ptolemy.eecs.berkeley.edu/index.html
18. Lee, E.A., Neuendorffer, S.: Technical Memorandum UCB/ERL M00/12, Dept. EECS.

http://ptolemy.eecs.berkeley.edu/publications/papers/00/moml/
19. McVeigh, A.: Creating, Reusing and Executing Components in Evolve. http://www.

intrinsarc.com/evolve
20. The Virtual Reality Modeling Language. ISO/IEC 14772. www.web3d.org
21. Beeson, C.: An object-oriented approach to VRML development. In: Proceedings of the

Second Symposium on Virtual reality Modeling Language, VRML 1997, pp. 17–24 (1997)
22. Diehl, S.: VRML ++: A language for object-oriented virtual reality models. In: Proceedings

of the 24th International Conference on Technology of Object-Oriented Languages and
Systems, TOOLS, Beijing, pp. 141–150 (1997)

23. Brutzman, D., Daly, L.: X3D: Extensible 3D Graphics for Web Authors. Elsevier,
Amsterdam (2007)

24. The Instant Reality Framework. http://www.instantreality.org/

178 E. Grinkrug

https://spring.io/projects
https://www.osgi.org/developer/architecture/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://dx.doi.org/10.1007/978-1-4419-8598-9
http://ptolemy.eecs.berkeley.edu/index.html
http://ptolemy.eecs.berkeley.edu/publications/papers/00/moml/
http://www.intrinsarc.com/evolve
http://www.intrinsarc.com/evolve
http://www.web3d.org
http://www.instantreality.org/

A Transformation-Based Approach
to Developing High-Performance GPU Programs

Bastian Hagedorn1(B), Michel Steuwer2, and Sergei Gorlatch1

1 University of Münster, Münster, Germany
{b.hagedorn,gorlatch}@wwu.de

2 University of Glasgow, Glasgow, UK
michel.steuwer@glasgow.ac.uk

Abstract. We advocate the use of formal patterns and transforma-
tions for programming modern many-core processors like Graphics Pro-
cessing Units (GPU), as an alternative to the currently used low-level,
ad hoc programming approaches like CUDA or OpenCL. Our new contri-
bution is introducing an intermediate level of low-level patterns in order
to bridge the abstraction gap between popular high-level patterns (map,
fold/reduce, zip, etc.) and imperative, executable code for many-cores.
We define our low-level patterns based on the OpenCL programming
model which is portable across parallel architectures of different vendors,
and we introduce semantics-preserving rewrite rules that transform pro-
grams with high-level patterns into programs with low-level patterns,
from which executable OpenCL programs are automatically generated.
We show that program design decisions and optimizations, which are
usually applied ad-hoc by experts, are systematically expressed in our
approach as provably-correct transformations for high- and low-level pat-
terns. We evaluate our approach by systematically deriving several dif-
ferently optimized OpenCL implementations of parallel reduction that
achieve performance competitive with OpenCL programs which are man-
ually written and highly tuned by performance experts.

Keywords: Parallel programming · Rewrite rules
Algorithmic patterns · GPU · OpenCL · Code generation
Skeletons · Transformations

1 Motivation and Related Work

Although systems with many-core accelerators, like Graphics Processing Units
(GPUs) and Intel Xeon Phi are an inherent part of modern high-performance
computing, achieving high application performance on these systems remains a
challenging task even for experienced programmers. Usually, an initial, intu-
itively correct version of an application is iteratively improved by applying
ad-hoc optimizations using experience-motivated “rules of thumb”. Writing high-
performance code for many-core architectures requires explicit management of

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 179–195, 2018.
https://doi.org/10.1007/978-3-319-74313-4_14

180 B. Hagedorn et al.

available resources which nowadays comprise of: (1) a hierarchy of several hun-
dreds or even thousands of processing units (cores) able to execute multiple
concurrent threads which are additionally organized in groups, warps, etc., and
(2) a memory hierarchy consisting of multiple cache levels, software-managed
local memory for groups of threads, and global memory. Therefore, high-
performance code is usually written by experts using low-level programming
approaches like OpenCL [10] or CUDA [8] which require the programmer to
explicitly manage both thread and memory hierarchies.

The challenges of the state-of-the-art GPU programming are demonstrated
in the recent GPU programming guide [8], where performance experts of Nvidia
Corp. consider an allegedly very simple application – the reduction of an array
(e. g., the summation of array elements). In order to achieve high performance on
GPUs, they develop seven differently optimized implementations for this simple
example. The eventually achieved speedup is up to 30 times compared to the
initial version, which on the one hand emphasizes the importance of program
optimizations for GPUs, and on the other hand demonstrates how difficult and
hardware-specific the optimization process is, even for simple applications.

In this paper, we propose a systematic approach to program development
for systems with GPUs. A program is expressed using high-level algorithmic
patterns and then systematically transformed into a program with novel low-level
patterns, from which high-performance GPU code is automatically generated.

Our approach is inspired by early work on transformational programming
[3–5]. We improve the state of the art by formally introducing low-level, OpenCL-
specific patterns and formalizing the device- and application-specific transforma-
tions for parallel GPU programs, which before were only informally described in
optimization guides of hardware vendors like [8]. The Lift framework [13,16]
provides a prototype implementation of our low-level patterns and rewrite rules,
and it demonstrates that they work well for a broad class of real-world applica-
tions. There exist libraries based on the concept of algorithmic patterns (skele-
tons [7]): SkelCL [15], MUESLI [11] or FastFlow [1]. While they rely on hard-
coded and hardware-specific implementations with a fixed set of optimizations
and are therefore inherently not performance-portable, our approach allows to
systematically derive optimizations by rewrite rules which enable applying differ-
ent optimizations for different devices. Functional approaches like Accelerate [6],
Harlan [9] and Obsidian [17] rely either on predefined implementations or on
time-consuming code analysis. In contrast, our approach expresses hardware-
relevant paradigms of OpenCL in functional code which allows us to express
low-level optimizations using rewrite rules.

In this paper, we make the following main contributions: in Sects. 2 and 3, we
introduce a novel transformation process to systematically develop programs for
parallel systems using high-level patterns, and in Sect. 4, we formalize low-level
optimizations as rewrite rules allowing the systematic derivation of optimized
programs from a high-level program. In Sect. 5, we experimentally evaluate pro-
grams generated by our approach: and we demonstrate their performance in
comparison to high-performance libraries like Nvidia cuBLAS [12].

A Transformation-Based Approach to Developing GPU Programs 181

2 Our Approach: Patterns and Transformations

We use well-known high-level patterns like map and reduce, also known as
algorithmic skeletons [7], to express applications as computations on (multi-
dimensional) arrays. Although these patterns themselves are simple, they can
specify many real-world applications like N-body-simulations [16] or medical
imaging [14]. In our approach, the transformation process systematically rewrites
a high-level pattern-based program describing what to compute into a low-level
pattern-based program describing how the computation is organized within the
OpenCL programming model. The resulting low-level program is used to gen-
erate executable OpenCL code. We use OpenCL as our low-level programming
model since it is portable on a broad variety of architectures including GPUs,
multicore CPUs, Intel Xeon Phi, and FPGAs.

Fig. 1. Transformation approach: a high-level, pattern-based program is systemati-
cally transformed into a low-level program in two phases: 1. Algorithmic Rewriting:
the high-level program is decomposed in sub-parts that can be executed in parallel.
2. OpenCL-specific Rewriting: the decomposed program is transformed and optimized
using OpenCL-specific patterns, from which OpenCL code is generated.

Figure 1 shows how a high-level program is transformed to high-performance
OpenCL code in a two-phase transformation process:

1. Algorithmic Rewriting. In the first phase, we rewrite the algorithmic structure
of a high-level program: we decompose it into parts which can be executed in
parallel. For example, instead of reducing an array in one step, we derive a
program that expresses the reduction as a tree-based reduction (processing parts
in parallel) followed by a final reduction as suggested by the Nvidia experts in [8].

2. OpenCL-Specific Rewriting. In the second phase, we transform the decom-
posed high-level program to a program with low-level, OpenCL-specific patterns
by means of rewrite rules that map high-level patterns to the OpenCL’s thread
hierarchy and data to the OpenCL’s memory hierarchy. Efficient OpenCL code
can be automatically generated from the resulting low-level program.

3 Algorithmic Patterns and Rewriting

Our high-level patterns are similar to those used in functional programming
approaches [3,4], which allows us to reuse already proved rewrite rules. Com-
pared to existing languages and formalisms, we use only few selected patterns

182 B. Hagedorn et al.

for which we can generate high-performance parallel code. This allows us to
limit the variety of required rewrite rules while providing an expressive enough
language to develop a broad class of high-performance applications.

3.1 High-Level Algorithmic Patterns

All our patterns are defined as (higher-order) functions on arrays. An array xs of
length n containing elements xi is denoted as [x0, . . . , xn−1]. Higher-dimensional
data structures like matrices or cubes are represented as nested multidimen-
sional arrays. Instead of using recursive cons-lists, as used for example in the
BMF, we define our patterns on arrays because we target the generation of high-
performance OpenCL codes which work on plain C-arrays. We use a notation
similar to the BMF and denote function application by a whitespace: f x. We
use the ◦ operator to denote function composition which associates to the right,
e. g., (f ◦ g) x = f (g x), and has a lower precedence than function application
which associates to the left, e. g., f x ◦ g y is read as (f x) ◦ (g y).

Definition 1 (High-Level Algorithmic Patterns).

map f [x0, . . . , xn−1] = [f x0, . . . , f xn−1] (1)
reduce (⊕) [x0, . . . , xn−1] = [x0 ⊕ · · · ⊕ xn−1] (2)
zip [x0, . . . , xn−1] [y0, . . . , yn−1] = [〈x0, y0〉, . . . , 〈xn−1, yn−1〉] (3)
split m [x0, . . . , xn−1] = [[x0, . . . , xm−1], . . . , [xn−m−1, . . . , xn−1]] (4)
join [[x0, . . . , xm−1], . . . , [xn−m−1, . . . , xn−1]] (5)
= [x0, . . . , xm−1, . . . , xn−m−1, . . . , xn−1]

The map pattern applies a unary function to all elements of an array. reduce com-
bines all elements of an array using an associative binary operator and returns
a singleton array. Returning a singleton array instead of a scalar value simplifies
the formulation of some rewrite rules. The zip pattern combines two arrays of
the same length element-wise to an array of pairs. The split pattern splits its
input into chunks of the specified size m, i. e., it adds another array dimension.
The join pattern, also known as concat, reduces the dimension of a given array
by flattening its two outermost dimensions into one.

3.2 Algorithmic Rewrite Rules

In order to systematically transform high-level programs in a semantics-
preserving way, we define a set of rewrite rules, also known as algebraic identities,
which we denote as A = B. In an arbitrary program, the left-hand side expres-
sion (A) of a rule can be replaced with the right-hand side expression (B) and
vice versa.

For example, the map-distribution rule [4] states that map distributes over
function composition:

map f ◦ map g = map (f ◦ g) (6)

A Transformation-Based Approach to Developing GPU Programs 183

Fig. 2. Tree reduction rule: a reduction of m elements (left) is the same as first reducing
m/k elements and then reducing the temporary results (right).

The map-promotion rule [4]:

map f ◦ join = join ◦ map (map f) (7)

describes handling of two-dimensional arrays: instead of applying f to the flat-
tened array (produced by join) it is also possible to apply (map f) on each outer
array and join the resulting arrays afterwards. A variation of this rule allows to
explicitly introduce an additional array dimension using split :

map f = join ◦ map (map f) ◦ split m (8)

Adding additional dimensions using this rule will become useful when we map
computations to the hierarchically structured OpenCL programming model.

Rules can also define relations between more complex compositions of pat-
terns as the following tree-reduction rule, provided that k divides m:

join ◦ map (reduce (⊕)) ◦ split m = join ◦ map (reduce (⊕)) ◦ split k ◦
join ◦ map (reduce (⊕)) ◦ split m

k

(9)

Figure 2 visualizes the tree-reduction rule. The left-hand side shows a single
reduction step that consists of: (1) dividing the input into disjoint chunks using
split; (2) reducing all chunks independently using map (reduce (⊕)); (3) com-
bining the results using join.

The right-hand side shows two reduction steps, where the first step reduces
the array from n elements to an array of n

m/k , before the second step reduces the
array to n/m elements, which corresponds to the right-hand side (9). Applying
the tree-reduction rule recursively leads to multiple steps that reduce the input

184 B. Hagedorn et al.

array in a tree-like fashion. Computing reductions as tree-based reductions is
one of the optimizations suggested by the Nvidia experts in [8].

A list containing more rewrite rules is given in Appendix A.

Correctness of Rewrite Rules. All of the rules in this paper are provably correct
with respect to a standard functional denotational semantics of our patterns
as defined in [13]. Applying semantics-preserving rewrite rules to pattern-based
programs allows us to guarantee the correctness of the derivation process, thus,
a derived program always computes the same result as the original.

An example of proving (25) using equational reasoning is given in
Appendix B.

3.3 Transformation Using Algorithmic Rewrite Rules

Let us consider an example of how the summation of the elements of an array
is systematically transformed using rewrite rules starting from the high-level
program (HLP): reduce (+). We deliberately choose this concise example (which
is nevertheless non-trivial for implementing on GPUs as shown in [8]) to discuss
our formal approach in depth.

In the following, we use a superscript to denote the composition of the same
function, e.g. (f ◦ f ◦ f) = f3. Starting from the high-level program, we system-
atically perform the following transformations:

A Transformation-Based Approach to Developing GPU Programs 185

Interestingly enough, our transformed program (TP) follows the algorithmic
structure of the first version of the parallel reduction described by the Nvidia
experts in [8]. The parameter m is an arbitrary value (as long as it divides the
size of the input) used to split the input into chunks of size m, e. g., m = 128
as suggested in the Nvidia example. The input is divided by split into distinct
chunks; then each chunk is iteratively reduced into a single temporary result
by pairwise combining and reducing neighboring elements; finally, all temporary
results, i.e., the sums of all chunks, are summed up by the leftmost reduce.

We continue with the obtained transformed program (TP) for the par-
allel reduction in the next section and further transform it into a program
with OpenCL-specific patterns. The fully optimized low-level program and the
OpenCL code generated from it are presented and evaluated at the end of the
paper.

4 OpenCL-Specific Patterns and Rewriting

In this section, we introduce OpenCL-specific patterns to specify how programs
are mapped onto OpenCL, i. e., how computations are assigned to OpenCL’s
thread hierarchy, and how data are stored in OpenCL’s memory hierarchy. Fur-
thermore, we introduce rewrite rules that transform high-level programs into
programs using low-level patterns, which are ultimately transformed to OpenCL.

4.1 Exploiting the Thread Hierarchy Using Low-Level Map
Patterns

OpenCL [10] is currently a de-facto standard for portable programming of sys-
tems with multi- and many-core processors. The OpenCL model differentiates
between a host, in our case a CPU, and a device, e. g., a GPU. The parallel execu-
tion of a program, called kernel, is performed on the device by multiple threads
in the OpenCL’s thread hierarchy: threads, called work-items, are organized in
work-groups. Computations within a work-item are performed sequentially. Each
work-item has two IDs: a unique global-id and a local-id which is unique within
the work-item’s work-group; work-groups have unique IDs themselves. The IDs
allow to exploit the thread hierarchy using either only global IDs and therefore
work-items directly, or using work-groups and local IDs within them.

Nvidia GPUs add a third level to the thread hierarchy: work-groups are fur-
ther divided into so-called warps, i. e., groups of 32 work-items that are called
lanes and are executed together in a lock-step manner, i. e., all lanes execute the
same instruction at the same time. Although warps and lanes are not captured
by the OpenCL 1.2 standard, it is performance-critical to optimize the warp
execution for Nvidia GPUs: in particular, since work-items of the same warp
are implicitly synchronized, the costly barrier synchronization can be avoided.
The current practice of GPU programming requires that low-level, device-specific
optimizations are carefully applied by experts with knowledge of the target archi-
tecture. We propose low-level, OpenCL-specific patterns and rewrite rules that
introduce such optimizations systematically.

186 B. Hagedorn et al.

Fig. 3. Visualization of the mapGlobal pattern: The input is divided among available
work-items which apply the given function to their assigned elements

We start by introducing several low-level variants of the high-level map pat-
tern. Each of these low-level patterns represents a possible realization of the
high-level map semantics (1) using the different levels of the OpenCL’s thread
hierarchy. Our first pattern – mapGlobal – specifies how m work-items, identified
by their global IDs, apply function f to all n elements of an array in parallel:

mapGlobalm f [x0, . . . , xn−1] = [y0, . . . , yn−1], where yi = f(i mod m) xi (10)

Here, we annotate function f with a subscript indicating which work-item com-
putes which element: e. g., f0 x0 denotes that the work-item with the global ID =
0 applies function f to element x0. Definition (10) specializes the definition (1)
of the high-level map by prescribing which work-items perform computations.
We omit in mapGlobal the subscript m that specifies the number of work-items,
when all available work-items take part in the computation.

Figure 3 shows two possible situations of using the mapGlobal pattern. In
the simplest case on the left-hand side, the number of work-items equals the size
of the input (m = n), such that each work-item applies f to the input element
whose index in the array equals the work-item’s global ID. If there are fewer
work-items than input elements (m < n), as on the right-hand side of Fig. 3,
then all work-items start applying f to the m leftmost elements in the array and
then proceed to the next m elements, until f is applied to all input elements.

Figure 4 shows the OpenCL pseudo-code which implements mapGlobal: a
for-loop iterates over the global IDs and applies function f to all input elements.

Fig. 4. OpenCL pseudo-code implementing definition (10) of mapGlobal

Our next patterns – mapWorkgroup and mapLocal – are used to exploit the
two-level thread hierarchy of work-groups and work-items in OpenCL. These pat-
terns are defined similarly to mapGlobal, with the difference that the subscript

A Transformation-Based Approach to Developing GPU Programs 187

Fig. 5. Valid nestings of low-level maps expressing the OpenCL thread hierarchy.

of f corresponds to the work-group ID and local work-item ID within the work-
group, correspondingly. The subscript m defines the number of work-items in a
work-group for mapLocal and the number of work-groups for mapWorkgroup.
To respect the OpenCL thread hierarchy, the mapLocal pattern can only occur
nested in the mapWorkgroup pattern. The OpenCL implementation pseudo-
code for mapLocal and mapWorkgroup is almost identical with the code of
mapGlobal in Fig. 4. The only difference is that the call to get global id is
replaced with a corresponding call to obtain the local or work-group ID.

For Nvidia GPUs, we utilize the additional, third level of the thread hierar-
chy by introducing two patterns, mapWarp and mapLane, defined similar to
the mapGlobal pattern. For mapWarp, the subscript of f corresponds to the
warp ID which is calculated as �local id/32�. In case of mapLane, the subscript
of f corresponds to the ID of a lane which is calculated as (localid mod 32);
furthermore, mapLane always has to be nested in a mapWarp.

Finally, the mapSeq pattern expresses map computed sequentially.
Figure 5 provides an overview of the introduced low-level map variants and

visualizes the nestings of them which respect the OpenCL thread hierarchy. To
enforce this nesting structure, we introduce a set of rewrite rules to transform
nestings of the high-level map pattern into equivalent low-level expressions:

map → mapGlobal (11)
map (map f) → mapWorkgroup (mapLocal f) (12)

| mapGlobal (mapSeq f)
map (map (map f)) → mapWorkgroup (mapWarp (mapLane f))

(13)

| mapWorkgroup (mapLocal (mapSeq f))
map (map (map (map f))) → mapWorkgroup (mapWarp ((14)

mapLane (mapSeq f)))

188 B. Hagedorn et al.

4.2 Exploiting the Memory Hierarchy Using Low-Level Patterns

In the following, we introduce a collection of low-level patterns to utilize
OpenCL’s memory hierarchy consisting of four disjoint memory spaces: global,
local, private, and constant memory. The global and constant memory are avail-
able to all work-items executing a kernel and correspond to the GPU’s main
memory. The local memory is shared by all work-items of a work-group and
corresponds to the fast on-chip memory of a GPU. The private memory is owned
by a single work-item and corresponds to the registers of a GPU. Accessing the
small private and local memory is several hundred times faster than accessing
the larger global memory. Therefore, efficient utilization of the GPU’s memory
hierarchy is mandatory in order to achieve high performance.

To make the different memory spaces explicit in our low-level programs, we
extend the array type with a memory space notation: e. g., [A]globaln denotes the
type of an array with n elements of type A residing in global memory. The global
memory is the default memory space for arrays in OpenCL and input arrays are
always allocated in global memory.

We introduce low-level patterns to allow the programmer to change the mem-
ory space. In particular, they allow work-items of a work-group to copy data
from the global memory to the fast local memory, which is a well-known opti-
mization in OpenCL that can significantly speed up the execution of a kernel.
The toLocal pattern is defined as follows for an arbitrary memory space M :
toLocal : [A]Mn → [A]localn . Intuitively, this pattern takes an array located in an
arbitrary memory space and returns the same array stored in the local memory.
The toLocal pattern is, therefore, a hint to our code generator to copy the array
into the GPU’s local memory space. The toGlobal and toPrivate patterns are
defined analogously, allowing the utilization of the corresponding memory spaces.
There is no toConstant pattern, because the constant memory is read-only.

For example, consider an array xs of type [[A]4]global2 . The following program
applies f to all elements using two work-groups with four work-items per group,
utilizing local memory and writing the result into the global memory:

ys = mapWorkgroup2 (
toGlobal ◦ // copy to global memory

mapLocal4 f ◦ // apply f in local memory
toLocal // copy to local memory

) xs

The following rewrite rules specify how the low-level memory patterns can
be used together with the previously introduced low-level map patterns:

A Transformation-Based Approach to Developing GPU Programs 189

mapWorkgroup f → mapWorkgroup (toGlobal ◦ f) (15)
| mapWorkgroup (f ◦ toLocal)

mapLocal f → toGlobal ◦ mapLocal f (16)
| mapLocal f ◦ toPrivate

mapGlobal f → toGlobal ◦ mapGlobal f (17)
| mapGlobal f ◦ toPrivate

mapLane f → toGlobal ◦ mapLane f (18)
| mapLane f ◦ toPrivate

These rules allow individual work-items to use their private memory, and (15)
describes the possibility to use the local memory for computations in a work-
group (the use of local memory outside a workgroup is forbidden in OpenCL). To
generate a valid OpenCL kernel, the final result of a kernel has to reside in the
global memory to be accessible from the host, therefore, a toLocal or toPrivate
has to be followed by a toGlobal in a correct low-level program.

As our final low-level pattern we introduce reorderStride which enforces a
special reordering of arrays in global memory, for m = s × n, as follows:

reorderStride s [x0, . . . , xn−1] = [y0, . . . , yn−1], where
yi = x((i−1) div n+s×((i−1) mod n)) (19)

Fig. 6. The reorderStride pattern: input elements are reordered using a given stride

Figure 6 visualizes the reordering of an array xs with 8 elements using a
stride of 4. Reordering the elements of an array following (19) ensures that
when all work-items access their elements, consecutive work-items access con-
secutive memory elements at the same time. This access pattern corresponds to
so-called coalesced memory accesses, which are beneficial on GPUs as multiple
memory accesses of work-items can be fused to a single memory access. Here,

190 B. Hagedorn et al.

x2 is reordered to position y4, because 4 = (2 − 1) div 2 + 4 × ((2 − 1) mod 2).
In the generated OpenCL code, reordering will not be performed by copying the
array, but rather by reading the array elements in a different order.

The following rewrite rule introduces reorderStride in reductions:

reduce (⊕) → reduce (⊕) ◦ reorderStride n (20)

We only apply reorderStride if the reordered array is reduced afterwards. There-
fore, we only change the order in which the elements are combined using ⊕; this
requires that ⊕ is associative and commutative.

4.3 Using Low-Level Patterns to Implement High-Level Reduction

Using the rewrite rules for thread and memory hierarchies, we further derive the
parallel program for reduction systematically, by introducing OpenCL-specific
low-level patterns. We start with the transformed program (TP) obtained in
Sect. 3.3:

The obtained low-level program LLP1 closely resembles the first opti-
mized OpenCL kernel for parallel reduction as informally described in [8]. In
Appendix C we show two more low-level programs, LLP2 and LLP3, also simi-
lar to versions from [8]. Like the program LLP1, these are derived from the same
high-level program HLP by varying the choice of rewrite rules applied.

4.4 Code Generation

Starting with a high-level program consisting of the high-level pattern reduce, we
systematically derived optimized low-level versions LLP1–LLP3 of the parallel
reduction. In this section, we briefly explain how to transform such low-level
programs into imperative OpenCL code using our code generator.

A Transformation-Based Approach to Developing GPU Programs 191

Listing 1 shows the OpenCL program OCL1 generated by our code gener-
ator [16] from the low-level program LLP1. The generator does not apply any
optimizations, but rather transforms low-level patterns into imperative OpenCL

code as indicated in Fig. 4 for the low-level map patterns. Multidimensional
arrays have a flat representation in our imperative OpenCL code: therefore, no
code is emitted when visiting patterns that change the data layout, like split,
join, or reorderStride; these patterns rather influence the generation of how
data is accessed by subsequent patterns.

5 Evaluation

In this section, we experimentally evaluate the OpenCL kernels generated from
the three low-level programs LLP1-LLP3 (the latter two shown in Appendix C)
which have been systematically derived from our initial high-level program
reduce (+). Interestingly, the low-level program LLP1 describes the computa-
tion as implemented in the first version by Nvidia [8], the code for LLP2 is very
similar to the fourth implementation, and the code for LLP3 corresponds to the
fully optimized, seventh Nvidia’s version in the same paper.

We use an Nvidia GeForce GTX 480 GPU to conduct our experiments using
the OpenCL runtime from Nvidia’s CUDA-SDK 5.5 and driver version 310.44.
To measure kernel run times, we use the OpenCL profiling API and we exclude

192 B. Hagedorn et al.

data transfer times to focus on the quality of the generated OpenCL kernels.
Each experiment is repeated 100 times, we report the median run time.

Figure 7 shows the performance of our OpenCL kernels (OCL1, OCL2, OCL3)
obtained by means of formal transformations and automatic code generation as
compared to the hand-written and manually tuned kernels provided by Nvidia
in [8] (reduce1, reduce4, reduce7). We also compare our programs to the kernels
from two libraries which implement manually optimized versions of the parallel
reduction for GPUs: cuBLAS [12] and Thrust [2].

Hardware Bandwidth Limit (Peak Performance)

50

100

150

200

reduce1
OCL1

reduce4
OCL2

reduce7
OCL3

Thrust
cuBLAS

B
an

dw
id

th
 (

G
B

/s
)

Nvidia Generated Library

Fig. 7. Performance comparison for generated code against hand-tuned OpenCL code

In order to compare our performance to the peak performance of the GPU,
we report our results as achieved bandwidth in GB/s by dividing the input
data size in gigabytes by the elapsed run time in seconds. We observe in Fig. 7
that in all cases the performance of our code is on par with the performance of
the corresponding manually-tuned codes from [8]. Our most optimized version
OCL3 generated from LLP3 slightly outperforms the reduce7 code from [8] and
the Thrust code, and we almost exactly match the performance of the cuBLAS

library, which is the currently best known parallel implementation of reduction.

6 Conclusion

In this paper we present a transformation-based approach to developing high-
performance GPU programs using patterns and rewrite rules. We introduce
novel, OpenCL-specific low-level patterns to map our computations to the thread
and memory hierarchy of the GPU hardware, explicitly describing implemen-
tation choices. We formalized well-known optimizations in order to systemati-
cally transform high-level programs to provably-correct, optimized low-level pro-
grams, rather than apply ad-hoc optimizations following the informal optimiza-
tion guides from GPU vendors. We choose the OpenCL model because it allows
to target a wide range of parallel accelerators. However, our transformational

A Transformation-Based Approach to Developing GPU Programs 193

programming approach is not limited to OpenCL: we may also use other models
like CUDA or OpenMP.

While this paper focuses on formalizing low-level OpenCL-related patterns
and rewrite rules, the order in which to apply these rules remains an open
research question. Since multiple rewrite rules might be applicable at the same
time and some rules can be applied infinitely often, the space of possible low-
level expressions needs to be efficiently searched. An automatic randomized
search strategy in [13] already leads to well performing programs. One possibil-
ity to prune the search space is to package often occurring combinations of rules
in so-called macro-rules to encode specific optimizations like tiling. Analytical
cost models or heuristics based on machine learning can guide the optimization
process.

Experiments show that our transformation-based approach achieves perfor-
mance which is competitive or even better than hand-tuned code written by
performance experts and used in the modern vendor libraries for accelerators.

Acknowledgments. This work was supported by the German Research Council
(DFG) within the Cluster of Excellence CiM (University of Münster), by the German
Ministry of Education and Research (BMBF) within the project HPC2SE, and by a
EuroLab-4-HPC collaboration. We thank Nvidia for their generous hardware donation
used in our experiments.

Appendix

A Additional Rewrite Rules

f = map id ◦ f = f ◦ map id (21)
f = λ x. f x (22)
id = join ◦ split n (23)
reduce (⊕) ◦ join = reduce (⊕) ◦ join ◦ map (reduce (⊕)) (24)
reduce (⊕) = reduce (⊕) ◦ join ◦ map (reduce (⊕)) ◦ split m (25)

B Proof of a Rewrite Rule

Rewrite rules are proved using equational reasoning. As an example we prove rule
(25) which introduces layers in the computation hierarchy of a reduction: first a
partial reduction is computed, followed by a reduction combining all temporary
results.

194 B. Hagedorn et al.

Proof (Reduce-Promotion Variant). Let n be a number divisible by m.

(reduce (⊕) ◦ join ◦ map (reduce (⊕)) ◦ split m) [x1, . . . , xn]

{ Def. split (4) }
= (reduce (⊕) ◦ join ◦ map (reduce (⊕))) [[x1, . . . , xm], . . . , [xn−m, . . . , xn]]

{ Def. map (1) }
= (reduce (⊕) ◦ join) [reduce (⊕) [x1, . . . , xm], . . . , reduce (⊕) [xn−m, . . . , xn]]

{ Def. reduce (2) }
= (reduce (⊕) ◦ join) [[x1 ⊕ · · · ⊕ xm], . . . , [xn−m ⊕ · · · ⊕ xn]]

{ Def. join (5) }
= reduce (⊕) [x1 ⊕ · · · ⊕ xm, . . . , xn−m ⊕ · · · ⊕ xn]

{ Def. reduce (2), associativity of ⊕ }
= [x1 ⊕ · · · ⊕ xm ⊕ · · · ⊕ xn−m ⊕ · · · ⊕ xn]

{ Def. reduce (2) }
= reduce (⊕) [x1, . . . , xn] ��

C Derived Low-Level Reduction Programs

Fig. 8. Two more low-level programs implementing parallel reduction. They are
equivalent to the fourth and the (seventh) most optimized version described in [8],
correspondingly

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level
and efficient streaming on multi-core. In: Programming Multi-core and Many-core
Computing Systems. Wiley-Blackwell, Hoboken (2011)

2. AMD: Bolt C++ Template Library
3. Backus, J.: Can programming be liberated from the von Neumann style? A func-

tional style and its algebra of programs. Commun. ACM 21(8), 613–641 (1978)
4. Bird, R.S.: Algebraic identities for program calculation. Comput. J. 32(2), 122–126

(1989)

A Transformation-Based Approach to Developing GPU Programs 195

5. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. J. ACM 24(1), 44–67 (1977)

6. Chakravarty, M., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating
Haskell array codes with multicore GPUs. In: DAMP, pp. 3–14. ACM (2011)

7. Gorlatch, S., Cole, M.: Parallel skeletons. In: Padua, D. (ed.) Encyclopedia of
Parallel Computing, pp. 1417–1422. Springer, Boston (2011). https://doi.org/10.
1007/978-0-387-09766-4

8. Harris, M., et al.: Optimizing parallel reduction in CUDA. NVIDIA Developer
Technol. 2(4), 1–39 (2007)

9. Holk, E., Byrd, W.E., Mahajan, N., Willcock, J., Chauhan, A., Lumsdaine, A.:
Declarative parallel programming for GPUs. In: PARCO, pp. 297–304 (2011)

10. Khronos OpenCL Working Group: The OpenCL Specification
11. Kuchen, H.: A skeleton library. In: Monien, B., Feldmann, R. (eds.) Euro-Par

2002. LNCS, vol. 2400, pp. 620–629. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45706-2 86

12. Nvidia: CUDA Basic Linear Algebra Subroutines (cuBLAS). Version 6.5
13. Steuwer, M., Fensch, C., Lindley, S., Dubach, C.: Generating performance portable

code using rewrite rules: from high-level functional expressions to high-performance
openCL code. In: ICFP, pp. 205–217. ACM (2015)

14. Steuwer, M., Gorlatch, S.: High-level programming for medical imaging on multi-
GPU systems using the skelCL library. In: Procedia Computer Science, ICCS, vol.
18, pp. 749–758. Elsevier (2013)

15. Steuwer, M., Kegel, P., Gorlatch, S.: SkelCL: a portable skeleton library for high-
level GPU programming. In: HIPS @ IPDPS, pp. 1176–1182. IEEE (2011)

16. Steuwer, M., Remmelg, T., Dubach, C.: Lift: a functional data-parallel IR for high-
performance GPU code generation. In: CGO, pp. 74–85. ACM (2017)

17. Svensson, J., Sheeran, M., Claessen, K.: Obsidian: a domain specific embedded
language for parallel programming of graphics processors. In: Scholz, S.-B., Chitil,
O. (eds.) IFL 2008. LNCS, vol. 5836, pp. 156–173. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24452-0 9

https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/978-0-387-09766-4
https://doi.org/10.1007/3-540-45706-2_86
https://doi.org/10.1007/3-540-45706-2_86
https://doi.org/10.1007/978-3-642-24452-0_9

Domain Engineering the Magnolia Way

Magne Haveraaen(B)

Bergen Language Design Laboratory, Department of Computer Science,
University of Bergen, Bergen, Norway

Magne.Haveraaen@ii.uib.no

https://bldl.ii.uib.no/

Abstract. Domain engineering can be seen as the process of identifying
a domain API, providing its semantics, and structuring it. The domain
API is a natural framework for software product line requirements and
development. Magnolia is an integrated programming and algebraic spec-
ification language. As such it gives a strong focus on API design. The
Magnolia way to domain engineering can be scaled from a lightweight to
a formalistic heavyweight approach. Defined APIs can easily be extended
as more of the domain is investigated. This paper summarises the Mag-
nolia domain engineering process.

1 Introduction

When developing a suite of software products, Software product line (SPL) engi-
neering has over the past few decades been affirmed as an order of magnitude
more efficient than conventional single product engineering [16,17]. If done well,
SPL delivers reduced cost, shorter time to market, and better quality. Central
to SPL are the core assets, which includes the software resources being reused
across the product line.

Domain engineering (DE) is the process of discovering such core assets. DE
is especially effective when approaching a domain for a fresh perspective, rather
than trying to reengineer existing software. The purpose of domain engineering
is to identify, model, construct, catalog, and disseminate artefacts that represent
the commonalities and differences within a domain1.

Dines Bjørner has been prominent in promoting domain engineering as a
discipline since the 1970s [5], and has formulated the slogan [6]: before hardware
and software systems can be designed and coded we must have a reasonable grasp
of “its” requirements; before requirements can be prescribed we must have a rea-
sonable grasp of “the underlying” domain. In a different context Bjørner has
claimed that grasping a domain is characterised by the ability to formalise it.

In a software context, domain engineering is defining artefacts that can be
represented on a computer. Computer artefacts are ultimately data structures
and algorithms, which are abstracted as types and operations, respectively. A
1 Taken from http://www.domainengineering.org spring 2012. This URL is now under

control of an internet domain warehouse and has totally irrelevant content.

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 196–210, 2018.
https://doi.org/10.1007/978-3-319-74313-4_15

Domain Engineering the Magnolia Way 197

collection of types and operations with semantic exegesis form an application
programmer interface (API), called a concept in Magnolia. The API of a domain
represents a domain specific language (DSL), the notation we need for expressing
problems and solutions within the domain. A well designed API may speed
up software productivity by more than a magnitude and vastly increase the
flexibility of the software products: essentially giving the developer an edge in
the software and consultancy market for the domain.

The paper’s contribution is a lightweight approach to domain engineering,
the Magnolia way.

This presentation is based on Magnolia, an integrated algebraic specifica-
tion and programming language being developed at Bergen Language Design
Laboratory (BLDL). The Magnolia design follows the principles of Goguen-
Burstal institutions [10]. Any domain analysis the Magnolia way will thus satisfy
Bjørner’s criterion of being a formal concept analysis [6], just as we achieved
when analysing the numerical domain of partial differential equations [11]. We
will not provide an introduction to Magnolia here. The paper contains excerpts
of Magnolia specifications and code, explained in the surrounding text. The
Magnolia notation follows the widely used expression and procedural statement
sequence pattern, remniscent of Pascal and C/C++/Java. The domain engineer-
ing approach itself is not tied to any particular language. Most programming
languages with features for API declaration and property assertion are suitable.

This paper is organised as follows. Next we discuss the notion of domain
expertise. Section 3 introduces our running example. Then we present the Mag-
nolia domain engineering steps. Finally we conclude.

2 Domain Expertise

Domain engineering starts with examining the body of knowledge of the domain
in question. In a scientifically well researched area, there will be a significant
amount of literature (in print and available online) explaining aspects of the
domain. This is in many ways a definitive body of knowledge.

Given a less developed, more user oriented domain, the classical tools from
requirements engineering are good for analysing a domain. This includes devel-
oping ontologies, scenario descriptions, user stories, use cases, work flow descrip-
tions, stakeholder surveys, etc.

Another example is when the domain analyst is also domain expert and
stakeholder. Many startups are created like this. The entrepreneurs are familiar
with a domain and the business idea is to provide software based on this insight.
Internal domain expertise may result in an incomplete analysis as perceived
shortcuts are taken rather than doing a deeper investigation of the domain.

The input from the domain expertise should not be taken literally when
investigating the domain [12,14]. The difficulty is taking what is asked as a
reflection of what is actually needed, and then formulating the latter.

198 M. Haveraaen

3 Running Example: 101 Companies

To show some of the technologies for domain engineering we will use the 101
Companies project [7]. Problem descriptions and other resources are available
online2. Our example domain engineering is based on the reader’s general prob-
lem domain insight from the following excerpt.

The 101 system (or just “the system”) is an imaginary Human resource
management system (HRMS) which serves as the “running example” in
the 101 project. That is, “contributions” to the project are meant to imple-
ment or model or otherwise exercise the system for a conceived company
as a client.
The system is supposed to model the company structure in terms of
employees and possibly the hierarchical structure of departments. Employ-
ees are modelled in terms of their names, addresses, salaries, and possibly
additional properties. The system is supposed to meet certain functional
requirements such as totalling all salaries in the company.

From the above description, it is possible to identify that the HRMS systems
has notions like company, person, employee, name (both for person and for
company), address (both for person and for company), and salary. Each of these
can be considered data types being used in the system. It seems natural to include
national identity number3 (NIN) for identifying people (like fødselsnummer in
Norway). The notion unique identifiers, like NIN, is somewhat tricky. They can
never be universally unique, but are always unique relative to some register.

Further elaborating the HRMS domain: Since a company has employees, it
must be able to hire (and fire) people. We probably want to be able to ask if a
specific person is employed, e.g., using the NIN, and if so, retrieve the employee’s
person data and salary.

4 Steps in a Domain Engineering Process

The steps presented here represent an approach for domain engineering. They
are a guide, not a straight jacket, for the domain engineering process. Each step
is associated with a probe into the domain.

1. Determine the signature of the domain.
What are the types and operations of the domain?

2. Expand the signature to a formal API specification.
What are the properties of the types and operations, and how should we
modularise them?

3. Refine the domain concepts using specification theory insight.
What are the implications of the domain’s properties—do they relate to well
known specifications?

2 http://101companies.org/wiki/@system.
3 https://en.wikipedia.org/wiki/National identification number.

http://101companies.org/wiki/@system
https://en.wikipedia.org/wiki/National_identification_number

Domain Engineering the Magnolia Way 199

4. Develop a generic support library and its architecture for the domain API.
How to organise the domain software for generic reuse?

5. Develop applications for the domain.
How to configure the domain library to build useful applications?

In every step the rigour and completeness of the domain engineering work can be
adapted to the resources available (e.g., person months, competence, deadline).

A sketchy signature with a light level of formalisation and cursory architec-
ture analysis, brings the process fast forward towards application development.
If the appropriate parts of the domain API are provided as library components,
then the process may move ahead to a deliverable application without much
difficulty. Additional applications can be developed by iteratively improving the
size and maturity of the API and library artefacts. This is the ideal combination
of lean business with software product lines [16]. However, if the chosen API
is not the epitome, the iteration for a next application may yield a materially
different architecture, significantly reducing the value of the accelerated process.

A more thorough process ensures a deeper understanding of the domain, its
API and architecture, and thus heightens the reusability of the defined artefacts.
The more resources that can be spent in the earlier steps, the better payback
in the later steps. Getting the implementation architecture right is the clue.
Implementing the architecture can be done piecemeal, according to the needs of
the actual applications.

The architecture design should be based on a broad understanding of the
domain. This can be achieved rather informally after identifying the domain’s
signatures. Documentation comments for the types and operations go a long way
in communicating their intention. Gradually providing more formal descriptions
for the API ensures that the domain is well comprehended.

The formal API specifications from the earlier steps take on the rôle of high
quality parameterised test oracles in the implementation steps [1]. Such test
oracles can be used to manage the library and application development along
the lines of test driven development (TDD) [2].

4.1 Step 1: Finding the Signature

A signature is a collection of type and operation declarations, the abstractions
of data structures and algorithms. Identifying the signature for a domain starts
by asking the simple questions:

– What are the types in the domain?
– What are the operations?
– What information is needed and produced by each operation?

These questions build a signature—a vocabulary—for the domain concepts. Once
a vocabulary is starting to emerge, it should be tried: use it to describe important
problems and sketch solutions in the domain (steps 4&5). This check ensures
the signature is useful for dealing with the domain’s problem space. Often such

200 M. Haveraaen

checks reveal the need to enlarge the vocabulary in order to easily express the
problems and their solutions.

Choosing good names for the types and operations helps with the intuition
of the vocabulary. It is important to nail the intuition down by expeditiously
providing natural language definition of these entities. Such a description may
take the form of a documentation comment attached to each declaration. Given
our rudimentary analysis of 101 companies in Sect. 3, we can write the follow-
ing Pascal style declarations of the Person type and access operations. The
Java notation for documentation comments /∗∗ .. ∗/ is being used. The get-
ters access properties that we assume a person must posses.
1 /∗∗ Information about a person: name, address, unique NIN, etc. ∗/
2 type Person;

3 /∗∗ Name of a person, no further structure indicated. ∗/
4 type PersonName;

5 /∗∗ Address for a person, no further structure indicated. ∗/
6 type Address;

7 /∗∗ National identity number, a unique identification number
8 ∗ according to a national registry of residents and citizens . ∗/
9 type NIN;

10
11 /∗∗∗ Getters for the components of a Person. ∗/
12 function getName (p:Person) : PersonName ;

13 function getAddress (p:Person) : Address ;

14 function getNIN (p:Person) : NIN ;

15 /∗∗∗ Setters for the components of a Person, but not for the NIN. ∗/
16 function setName (p:Person, n:PersonName) : Person ;

17 function setAddress (p:Person, a:Address) : Person ;

Here we do not provide a setter for the NIN. We assume the NIN is immutable,
even if the person moves or decides to change his/her name. This signature is
open-ended. The lack of a getter for gender or birthdate does not prevent us from
adding these later. We can consciously decide to not include these in our first
signature analysis due to limited resources, e.g., inadequate time for in depth
analysis (or page constraint for a scientific paper).

Existing concepts, such as numbers or strings, should be used wherever rele-
vant for the domain. However, it is normally better to leave a type abstract unless
there are compelling reasons otherwise. For instance, names and addresses may
be represented as strings, and (in Norway at least) NINs by a sufficiently large
integer type. Leaving these types abstract allow us to investigate them in more
depth at a later stage. We may later find that, e.g., addresses have a country
dependent structure, such as street name and house number, postal code etc.
By not fixing the information content of these types now, we create a software
architecture that allows us to adapt the forthcoming applications worldwide.

We should also provide operations on the company type (below), the salary
type (Sect. 4.2), and other types that appear during this analysis.
1 /∗∗ Information on a company: who works there, salary expenses, etc. ∗/
2 type Company;

Domain Engineering the Magnolia Way 201

3 type CompanyName;

4 type Salary;

5 function getCompanyName (c:Company) : CompanyName ;

6 function getCompanyAddress (c:Company) : Address ;

7 /∗∗ Is a person hired by the company (check by NIN). ∗/
8 predicate isHired (c:Company, n:NIN);

9 /∗∗∗ Get person data, salary etc of an employee, lookup by NIN. ∗/
10 function findEmployee (c:Company, n:NIN) : Person

11 guard isHired(c,n);

12 function findSalary (c:Company, n:NIN) : Salary

13 guard isHired(c,n);

14 /∗∗ Hire a new person. The NIN is part of the Person data. ∗/
15 function hire (c:Company, p:Person, s:Salary) : Company

16 guard ! isHired(c, getNIN(p));

17 /∗∗ Fire an employee. ∗/
18 function fire (c:Company, n:NIN) : Company guard isHired(c,n);

The predicate isHired checks if the NIN belongs to a registered employee.
This boolean function is used as preconditions (guards) for the other operations.
We also introduced a new type for the name of a company, just in case com-
pany names have a different structure from person names. On the other hand
we assume company addresses have the same format as those for people. Just
declaring this signature forces us to be aware of small but important design
decisions. Here we decided that a salary is part of the work agreement between
employer and company, rather than a personality trait. Thus the hiring function
must have person and salary as separate arguments, and we retrieve these with
separate NIN-indexed find operations. Maybe we should have introduced a type
Contract , of which Salary was a component, and then used Contract instead
of Salary in the hire and find salary/contract operations. For now, such anal-
ysis may be too heavyweight. Besides, introducing Contract would not change
the structure of the operations for Company .

A signature contains just declarations and document comments. Hence the
cost of modifying it will be low. Useful and needed modifications to the signature
are often discovered during the later domain engineering steps. For instance,
when formalising the API (steps 2&3), or checking the API’s applicability for
expressing domain problems and applications (steps 4&5). Then the signature
analysis should be reiterated in order to declare more types and operations. A
difficult issue to discover is when two or more distinct operations subconsciously
get the same name. For instance, the word hire can coincidentally be used for
both rent and employ, possibly causing confusion if the company was in the
business of subletting apartments. The separate rôles often blocks our intuition
from discovering the naming collision. Writing the documentation comment may
give a hint: it becomes difficult to formulate since it has to capture confusing
behaviour. Yet, even if the issue is overlooked during the signature analysis, the
next step of formalising the API will often expose such conflicts.

202 M. Haveraaen

4.2 Step 2: Formalising the Specification

In the previous step we identified the types and operations and the operations’
information flow. This gives a surprising amount of insight and spawns many high
level design desicions. In the second step we try to formalise our understanding
of the domain’s API.

– How do we organise the types and operations as a collection of cohesive
concepts?

– How do the operations relate to each other, i.e., what are the axioms?

Such APIs are called concepts, a name introduced by Stepanov [15].
Grouping of the declarations as concepts is important to keep the size of each

concept manageable. Simple concepts hold one or a few types and their most
important operations. Operations that relate several types are often placed in
concepts separate from the operations on a single type. Different aspects of a
type can be explored in separate concepts. The same goes for axioms.

In Magnolia an axiom has a predicate style declaration, but the body is
a sequence of procedural style statements with (a high proportion of) assert
statements. The assertions are to hold for every combination of data values
for the axiom’s argument types. Values violating guards for the axiom or the
operations in the assert expressions are ignored. Normally an assert expression
is a boolean expression as in a programming language. This is deliberate. It
provides software developers with a familiar notation with familiar semantics for
the assertions. The axiom language can extend beyond this, e.g., encompassing
full first order logic.

In our 101 companies example, we will group the operations on Person in
one concept, those on Company in another, and so forth.

1 concept SimplePerson = {

2 /∗∗ Information on a person: name, address, unique (per country) NIN. ∗/
3 type Person;

4 type PersonName;

5 type Address;

6 type NIN;

7 /∗∗∗ Getters for the components of a Person. ∗/
8 function getName (p:Person) : PersonName ;

9 function getAddress (p:Person) : Address ;

10 function getNIN (p:Person) : NIN ;

11 /∗∗∗ Setters for the components of a Person. ∗/
12 function setName (p:Person, n:PersonName) : Person ;

13 function setAddress (p:Person, a:Address) : Person ;

14
15 axiom getSetNameAxiom (p:Person, n:PersonName) {

16 assert getName(setName(p,n)) == n;

17 assert getAddress(setName(p,n)) == getAddress(p);

18 assert getNIN(setName(p,n)) == getNIN(p);

19 };

20 axiom getSetAddressAxiom (p:Person, a:Address) {

Domain Engineering the Magnolia Way 203

21 assert getName(setAddress(p,a)) == getName(p);

22 assert getAddress(setAddress(p,a)) == a;

23 assert getNIN(setAddress(p,a)) == getNIN(p);

24 };

25 };

The axioms here state that a setter only modifies one component of the person’s
data with respect to the declared getters. Elaborations of the person name,
address and NIN types belong in separate concepts, one for each of these types.
The simple company concept below does not include all the company opera-
tions declared above. The remaining operations and axioms are placed in other
concepts.
1 concept SimpleCompany = {

2 type Person; type NIN; function getNIN (p:Person) : NIN ;

3
4 type Company;

5 type CompanyName;

6 type Address;

7 type Salary;

8 function getCompanyName (c:Company) : CompanyName ;

9 function getCompanyAddress (c:Company) : Address ;

10 predicate isHired (c:Company, n:NIN);

11 /∗∗∗ Find person data, salary etc of an employee, lookup by NIN. ∗/
12 function findEmployee (c:Company, n:NIN) : Person

13 guard isHired(c,n);

14 function findSalary (c:Company, n:NIN) : Salary

15 guard isHired(c,n);

16 function hire (c:Company, p:Person, s:Salary) : Company

17 guard ! isHired(c, getNIN(p));

18 axiom getHireAxiom (c:Company, p:Person, s:Salary)

19 guard ! isHired(c,getNIN(p)) {

20 var cprime = hire(c,p,s);

21 assert getCompanyName(cprime) == getCompanyName(c);

22 assert getCompanyAddress(cprime) == getCompanyAddress(c);

23 assert isHired(cprime,getNIN(p));

24 assert findEmployee(cprime,getNIN(p)) == p;

25 assert findSalary(cprime,getNIN(p)) == s;

26 };

27 };

Here getHireAxiom groups many individual assertions. This can be convenient
if they have the same arguments and are otherwise closely related.

We can combine concepts and declarations when defining a new concept. Here
we are also using a renaming mechanism to replace the name (in the context of
this concept) of the salary type to Contract . The renaming is a list of name
substitutions in square brackets.
1 concept SimpleCP = {

2 use SimplePerson;

3 use SimpleCompany[Salary => Contract];

4 function fire (c:Company, n:NIN) : Company guard isHired(c,n);

204 M. Haveraaen

5 /∗∗ What happens when someone is fired after a hiring has taken place. ∗/
6 axiom fireHireAxiom (c:Company, p:Person, k:Contract, nin:NIN)

7 guard ! isHired(c, getNIN(p)) {

8 if getNIN(p) == nin then
9 /∗ Firing the recent hiree has no net effect on the company. ∗/

10 assert fire(hire(c,p,k), nin) == c;

11 else
12 /∗ Interchangeability of firing someone and hiring somebody else. ∗/
13 assert fire(hire(c,p,k), nin) == hire(fire(c,nin), p, k);

14 end;
15 };

16 };

The use statement does a straight forward inclusion of content of the named
concept. The union of the included declarations, and any local declarations, is
then formed. Thus two instances of the same declaration, e.g., the Person type
declaration, is merged into one instance, and the union of all person related
operations and axioms, from any declaration in scope, become operations and
axioms on the merged type. The new fireHireAxiom relates firing an employee
to the hiring of a person.

When declaring concepts, we may find that formulating the specifications
become unduly complicated.

– If we find ourselves copying the same axioms many times with only modify-
ing type and operation names, we probably have embodied the same ideas
in several types and operations. This can be handled by extracting a more
abstract concept, and including it, with appropriate renamings.

– If we become bewildered about how to formalise properties of an operation,
or we find we are starting to write a list of case distinctions based on an
operation’s arguments, this may indicate that one operation has taken several
conflicting rôles. Declaring a new operation for each rôle may clarify and
simplify the axioms.

– If we find that we have to use very expressive logics, like full first order, rather
than, e.g., plain equations, this may indicate that it will be a good idea to
introduce additional operations (and possibly additional types) enabling the
use of a less expressive logic. There are hard theoretical results about adding
helper (often called hidden) types and operations to a specification, in order
to get away with a less expressiveness logic [3]. Less expressive logics typically
have better tool support and are generally easier to reason about.

– Each assertion should be short, and should not need an extensive setup in
the axiom. If the assertion becomes large, this indicates that the API should
be refactored to include more, and more appropriate, operations and types.

The aim of this step is to get a concise, but useful, collection of concepts that reels
in the essentials of a domain. This will often capture insight that the domain
description did not make clear, or that the domain expertise never formulate
consciously. The dialogue when organising concept and writing axioms may thus
inspire the domain expert with new insights and reflections. This may yield an

Domain Engineering the Magnolia Way 205

even more cutting edge description of the domain—and ideas for unanticipated
applications.

Thinking about the salary notion from this perspective, we may decide that
it should be possible to add salaries (for summing monthly payments to an
annual salary), and that it should be possible to adjust the salary by a factor
(for relative salary increases). These operations are not part of the description
in Sect. 3, but seem intrinsic to the domain.
1 concept Salary = {

2 type Salary;

3 type Factor;

4 function plus (s1:Salary, s2:Salary) : Salary;

5 function increase (f:Factor, s:Salary) : Salary;

6 axiom increaseAddAxiom (f:Factor, s1:Salary, s2:Salary) {

7 assert increase(f, plus(s1,s2))

8 == plus(increase(f,s1), increase(f,s2));

9 };

10 };

4.3 Step 3: Refining the Domain Concepts

After getting a grip on the APIs involved in a domain, we can start investi-
gating the formalised concepts and their logical implications. This will benefit
from insight into generic concepts, such as common mathematical abstractions.
Looking at the salary concept, we may consider addition to be an abelian group
(addition is associative and commutative, with zero and subtraction), factor to
be an abelian monoid (associative and commutative multiplication of factors
with a neutral constant one), and factor to be a monoid action on the salary
type (increase salary by a factor).
1 concept FactorActionSalary = {

2 use Salary;

3 use Group[T => Salary];

4 use AbelianMonoid[T => Factor];

5 use MonoidAction[T => Factor, action => increase];

6 };

Reusing well investigated properties allow us to think about whether the impli-
cations that follow also hold in the domain. This strengthens our confidence
that the domain is well understood. Further we may use this to simplify our
domain description, e.g., by noting that some of our domain axioms or concepts
are redundant, or can be derived from simpler concepts that were overlooked in
the analysis so far. A well founded simplification of the domain description may
give significant savings in the implementation steps.

4.4 Step 4: Library Development and Architecture Design

The costs of an implementation can be significantly reduced by establishing the
right software architecture, an architecture that encourages reusing implementa-
tions and flexibly combining them into varied applications. Generic programming

206 M. Haveraaen

is key to modern reuse practices. Generic code has a requires part (an input
API), and provides an (output) API build on the requirements.

Consider an implementation for the Company concept. It must obviously con-
tain the personnel and the salaries of each hiree. Each must be easily accessible
by the NIN. A dictionary type provides lookup of data by a key (the NIN). The
company data structure must also have fields for company name and address.
We probably want to provide the company with a managing director (CEO in
US terminology), though this is not explicitly required by the specification so
far.
1 implementation simpleCompany = {

2 /∗∗ Require person operations and rudimentary salary and NIN types. ∗/
3 require SimplePerson;

4 /∗∗ Require atomic type for company name. ∗/
5 require type CompanyName;

6 /∗∗ Require useful operations on a NIN-indexed dictionary of personnel. ∗/
7 require Dictionary

8 [Key => NIN, Data => Person, Dictionary => Personnel]

9 [createDictionary => createPersonnel];

10 /∗∗ Require useful operations on a NIN-indexed dictionary of contracts. ∗/
11 require Dictionary

12 [Key => NIN, Data => Contract, Dictionary => Contracts]

13 [createDictionary => createContracts];

14
15 /∗∗ Define the company attributes: induces getters , setters , ... ∗/
16 type Company =

17 struct{
18 var companyName:CompanyName; var companyAddress:Address;

19 var md:NIN;

20 var personnel:Personnel; var contracts:Contracts; };

21 /∗∗ Creating the company using the declaration’s attribute constructor. ∗/
22 function createCompany

23 (cn:CompanyName, ca:Address, md:Person, k:Contract) : Company

24 = hire(

25 makeCompany

26 (cn,ca,getNIN(md),createPersonnel(),createContracts()),

27 md, k);

28 predicate isHired (c:Company, n:NIN) =

29 isPresent(getPersonnel(c), n);

30 function findEmployee (c:Company, n:NIN) : Person

31 guard isHired(c,n) = find(getPersonnel(c), n);

32 function findContract (c:Company, n:NIN) : Contract

33 guard isHired(c,n) = find(getContracts(c), n);

34 function hire (c:Company, p:Person, k:Contract) : Company

35 guard ! isHired(c, getNIN(p)) = {

36 var ps = insertNew(getPersonnel(c),getNIN(p),p);

37 var ks = insertNew(getContracts(c),getNIN(p),k);

38 return setPersonnel(setContracts(c,ks),ps);

39 };

40 function fire (c:Company, n:NIN) : Company

Domain Engineering the Magnolia Way 207

41 guard isHired(c,n) = {

42 var cp = setPersonnel(c, removeEntry(getPersonnel(c),n));

43 cp = setContracts (cp, removeEntry(getContracts(cp),n));

44 return cp;

45 };

46 };

The require clause for a concept (or type or operation) makes the types and
operations (but not the axioms) available as a required API for the implementa-
tion. These are the generic parameters of the implementation. In order to claim
that the implementation above satisfies the SimpleCF concept, we also need to
make certain any generic arguments have the right properties.
1 satisfaction simpleCompany_models_SimpleCP = {

2 use SimplePerson;

3 type CompanyName;

4 use Dictionary

5 [Key => NIN, Data => Person, Dictionary => Personnel]

6 [createDictionary => createPersonnel];

7 use Dictionary

8 [Key => NIN, Data => Contract, Dictionary => Contracts]

9 [createDictionary => createContracts];

10 } with simpleCompany models SimpleCP;

This separates the correctness argument from the code itself, following the
institution framework [10] closely. It breaks with the dominant tradition from
[9,13] where the specification of software components is integrated with the
implementation.

The specification of the premises for the generic implementation, should now
make it possible to prove the correctness of the implementation with respect to
the target specification. We can also use axioms as test oracles, by providing
the premises as concrete implementations. In the satisfaction relation above, the
SimplePerson part of SimpleCP is satisfied by the premises. In the simplified
setting below, we use the axioms from SimpleCompany , avoiding the extra layer
of SimplePerson axioms.

1 renaming SC = [CompanyName => Integer,

2 NIN => Integer, Person => Integer, Address => Integer];

3
4 satisfaction test_simpleCompany_models_SimpleCompany_Integer = {

5 use modulusInteger8bitCxx;

6 use dictionaryArrayLinearCxx[Key => Integer, Data => Integer];

7 /∗∗ An arbitrary link between a person and the person’s NIN. ∗/
8 function getNIN (p:Integer) : Integer = p - 1 ;

9 function setNIN (p:Integer, nin:Integer) : Integer = nin + 1 ;

10 } with simpleCompany

11 [SC, Personnel => Dictionary, Contracts => Dictionary]

12 [createPersonnel => createDictionary,

13 createContracts => createDictionary]

14 [Contract => Integer, PersonName => Integer, getName => getNIN,

208 M. Haveraaen

15 getAddress => getNIN, setName => setNIN, setAddress => setNIN

16]

17 models
18 SimpleCompany

19 [SC, findSalary => findContract, Salary => Integer];

Here we use an 8bit integer as the data type for all simple generic arguments
(see the renaming SC), and a single (array list) dictionary data type for all
the internal data bases of the company. Given the generic typing discipline of
simpleCompany_models_SimpleCP (ignoring the axioms), and assuming a vali-
dated dictionary implementation, only testing a small part of 8bit data space is
needed to guarantee correctness of the simpleCompany implementation [4]. The
details are beyond the scope of this paper.

We can coin proof driven design (PDD) for deriving the implementation
from expressed proof requirements, i.e., starting with a satisfaction claim as
simpleCompany_models_SimpleCP . Starting with a concrete instantiation, i.e.,
from test_simpleCompany_models_SimpleCompany_Integer , we get a kind of test
driven design (TDD) [2] which we could called axiom driven design (ADD).

Carefully selecting how to organise the implementation can cut down on
development time. For instance, it may be worthwhile to start with a simplistic
implementation (straight forward algorithms and data structures), then provide
more advanced and efficient alternatives later on. The first application is a final
proof-of-concept for the API. It shows that the chosen architecture and API
provides a solution to the domain.

4.5 Step 5: Application Development

Application development is configuring the library to achieve an executable. We
can produce an interactive application by adjoining a graphical user interface
(GUI) to the application. GUIs can be created from multi-way dataflow con-
straint systems [8], which provides a low cost approach to advanced user interface
logic and reactive behaviour. The ability to flexibly build different configurations
yields a software product line of applications.

For our running example, we can instantiate the generic person and com-
pany implementations with suitable executable implementations for names (for
example a UTF-8 string), for addresses (for example a triple of UTF-8 strings:
street address and number, post code and city name, country name), for NINs
(for example 64bit integers), and for salaries (for example a fixed digit repre-
sentation with 6 decimal digits). The dictionary part (personnel and contract)
can be covered by an external data base. This will be a simple HRMS engine
suited for the Norwegian market. With different selections for name, address,
salary and NIN types, we can create configurations suitable for other countries.
If we cannot configure a distribution for some country, e.g., Russia, we need
to go back to earlier steps. The nearest being step 4 which will deliver missing
implementation components. For more fundamental issues, we need to regress
to even earlier steps, but this is rare.

Domain Engineering the Magnolia Way 209

With this perspective, requirements engineering is a part of domain engineer-
ing. The functional parts of a requirement is given by the domain concepts. The
non-functional parts are related to choosing suitable configurations, or providing
another generic implementation with the required characteristics.

5 Conclusion

In this paper we have shown how the Magnolia way of domain engineer-
ing provides an agile approach to domain engineering and implementation.
The thoroughness of the approach can be adjusted from fairly lightweight, mostly
informal, through an in depth domain and architecture engineering heavy on for-
malisation.

The Magnolia way is less meticulous than Bjørner’s TripTych approach to
domain engineering [6], but shares the same goals—and achieves the same rigour
when used as a heavyweight approach. The proof driven (PDD) and axiom driven
(ADD) development methods indicated in the paper are both based on concepts
formalised during the domain analysis steps. These methods are refinements of
the well established agile test driven development (TDD) [2].

Taken together the Magnolia way delivers the core artefacts needed for sup-
porting software product lines (SPL) and reap the benefits of lower development
costs, shorter time to market, and better quality promised by SPL [17], while
meeting the demands of lean business [16] in the domain engineered, and thus
mastered, domain.

Acknowledgment. This research has in part been financed by The Research Council
of Norway through the project Design of a Mouldable Programming Language (DMPL).
The Magnolia IDE and compiler was implemented by Anya Bagge during her postdoc
for DMPL.

References

1. Bagge, A.H., David, V., Haveraaen, M.: Testing with axioms in C++ 2011. J.
Object Technol. 10(10), 1–32 (2011). https://doi.org/10.5381/jot.2011.10.1.a10

2. Beck, K.: Test-Driven Development: By Example. Addison-Wesley, Boston (2002)
3. Bergstra, J.A., Tucker, J.: Algebraic specifications of computable and semicom-

putable data types. Theor. Comput. Sci. 50, 137–181 (1987). https://doi.org/10.
1016/0304-3975(87)90123-X

4. Bernardy, J.-P., Jansson, P., Claessen, K.: Testing polymorphic properties. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 125–144. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11957-6 8

5. Bjørner, D.: The Vienna Development Method (VDM). In: Blum, E.K., Paul, M.,
Takasu, S. (eds.) Mathematical Studies of Information Processing. LNCS, vol. 75,
pp. 326–359. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09541-
1 33

6. Bjørner, D.: Manifest domains: analysis and description. Formal Aspects Comput.
29(2), 1–51 (2016). https://doi.org/10.1007/s00165-016-0385-z

https://doi.org/10.5381/jot.2011.10.1.a10
https://doi.org/10.1016/0304-3975(87)90123-X
https://doi.org/10.1016/0304-3975(87)90123-X
https://doi.org/10.1007/978-3-642-11957-6_8
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/s00165-016-0385-z

210 M. Haveraaen

7. Favre, J.-M., Lämmel, R., Schmorleiz, T., Varanovich, A.: 101companies: a com-
munity project on software technologies and software languages. In: Furia, C.A.,
Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 58–74. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30561-0 6

8. Foust, G., Järvi, J., Parent, S.: Generating reactive programs for graphical user
interfaces from multi-way dataflow constraint systems. In: Kästner, C., Gokhale,
A.S. (eds.) Proceedings of GPCE 2015, Pittsburgh, PA, USA, 26–27 October 2015,
pp. 121–130. ACM (2015). https://doi.org/10.1007/978-3-642-30561-0 6

9. Goguen, J.A.: Reusing and interconnecting software components. Computer 19(2),
16–28 (1986). https://doi.org/10.1109/MC.1986.1663146

10. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992). https://doi.org/10.1145/147508.
147524

11. Haveraaen, M., Friis, H.A., Johansen, T.A.: Formal software engineering for com-
putational modelling. Nordic J. Comput. 6(3), 241–270 (1999)

12. Hjørland, B.: Domain analysis in information science: Eleven approaches - tra-
ditional as well as innovative. J. Doc. 58(4), 422–462 (2002). https://doi.org/10.
1108/00220410210431136

13. Hoare, C.A.R.: Proof of correctness of data representations. In: Bauer, F.L., Dijk-
stra, E.W., Ershov, A., Griffiths, M., Hoare, C.A.R., Wulf, W.A., Samelson, K.
(eds.) Language Hierarchies and Interfaces. LNCS, vol. 46, pp. 183–193. Springer,
Heidelberg (1976). https://doi.org/10.1007/3-540-07994-7 54

14. Robertson, J.: Eureka! Why analysts should invent requirements. IEEE Softw.
19(4), 20–22 (2002). https://doi.org/10.1109/MS.2002.1020281

15. Stepanov, A., McJones, P.: Elements of Programming, 1st edn. Addison-Wesley
Professional, Boston (2009)

16. Terho, H., Suonsyrjä, S., Jaaksi, A., Mikkonen, T., Kazman, R., Chen, H.: Lean
startup meets software product lines: Survival of the fittest or letting products
bloom? In: Nummenmaa, J., Sievi-Korte, O., Mäkinen, E. (eds.) Proceedings of
SPLST 2015. CEUR Workshop Proceedings, vol. 1525, pp. 134–148. CEUR-WS.org
(2015). http://ceur-ws.org/Vol-1525/paper-10.pdf

17. Tüzün, E., Tekinerdogan, B.: Analyzing impact of experience curve on ROI in the
software product line adoption process. Inf. Softw. Technol. 59, 136–148 (2015).
https://doi.org/10.1016/j.infsof.2014.09.008

https://doi.org/10.1007/978-3-642-30561-0_6
https://doi.org/10.1007/978-3-642-30561-0_6
https://doi.org/10.1109/MC.1986.1663146
https://doi.org/10.1145/147508.147524
https://doi.org/10.1145/147508.147524
https://doi.org/10.1108/00220410210431136
https://doi.org/10.1108/00220410210431136
https://doi.org/10.1007/3-540-07994-7_54
https://doi.org/10.1109/MS.2002.1020281
http://ceur-ws.org/Vol-1525/paper-10.pdf
https://doi.org/10.1016/j.infsof.2014.09.008

Approximating Event System Abstractions
by Covering Their States and Transitions

Jacques Julliand, Olga Kouchnarenko, Pierre-Alain Masson(B),
and Guillaume Voiron

FEMTO-ST, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté,
16, route de Gray, 25030 Besançon Cedex, France

{jjulliand,okouchna,pamasson,gvoiron}@femto-st.fr

Abstract. In event systems, contrarily to sequential ones, the control
flow is implicit. Consequently, their abstraction may give rise to dis-
connected and unreachable paths. This paper presents an algorithmic
method for computing a reachable and connected under-approximation
of the abstraction of a system specified as an event system. We com-
pute the under-approximation with concrete instances of the abstract
transitions, that cover all the states and transitions of the predicate-
based abstraction. To be of interest, these concrete transitions have to
be reachable and connected to each other. We propose an algorithmic
method that instantiates each of the abstract transitions, with heuristics
to favour their connectivity. The idea is to prolong whenever possible the
already reached sequences of concrete transitions, and to parameterize
the order in which the states and actions occur. The paper also reports
on an implementation, which permits to provide experimental results
confirming the interest of the approach with related heuristics.

Keywords: Predicate abstraction · Under-approximation
Event systems

1 Introduction

Abstracting a program or its specification allows to control the size of its state
space description, at the price of a loss in accuracy. That facilitates their algo-
rithmic exploitation, otherwise limited by the huge if not infinite number of
concrete states. The general idea of abstraction is to gather states that share
common properties into super-states. In predicate abstraction [1] the concrete
states are mapped onto a finite set of abstract ones, by means of a set of pred-
icates that characterizes each abstract state. An abstract transition links two
abstract states when it has at least one concrete instantiation. Such transitions
are called may [2], meaning that they may be instantiated. Still there is no
guarantee that two consecutive may transitions can necessarily be instantiated
as two consecutive connected concrete transitions: their respective target and
source concrete states may differ.
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 211–226, 2018.
https://doi.org/10.1007/978-3-319-74313-4_16

212 J. Julliand et al.

This paper aims at computing connected and reachable concrete paths from a
predicate abstraction of a system formally specified as an event system [3], which
is a special kind of action system [4,5]. We propose an algorithmic method for
computing an under-approximation that covers all the states and transitions of
this abstraction.

An event in an event system specifies state variable modifications by means of
a guarded action. The actions are activated whenever their guard becomes true,
so that there is no natural control flow as in a program. As a result, paths of the
system may become disconnected and even unreachable in the abstraction. Still,
we are interested in covering the reachable part of the abstraction as best as
possible. This work has been motivated by a testing purpose: our aim is to cover
by tests some selected execution paths of a system, and abstracting it avoids
its state space to blow-up. But the method could also apply for example to the
model-checking of safety properties.

We propose to under-approximate the abstraction by computing concrete
instances of the abstract event sequences. The idea behind our method is to
favour the connectivity and reachability of the successive concrete instances by
prolonging whenever possible the already reached concrete transitions. Our pro-
posal in this paper is as sketched:

– we instantiate each of the abstract transitions by enumerating all the possi-
bilities of connecting two abstract states by any event,

– we use heuristics for controlling the order in which the events and states are
enumerated, according to some know-how of the natural flow of the events
succession,

– we use concrete state coloration, similarly to [6], for prolonging preferably the
sequences known to be reachable and connected.

Our contributions allow then generating a concrete transition system from
an event system. We also report on an implementation, which permits us to
provide experimental results confirming the interest of the approach with the
related heuristics.

The technical background of our paper regarding event systems, predicate
abstraction and may transition systems is given in Sect. 2. Section 3 presents
an electrical system as an illustrative example. The algorithm for computing
both an abstraction and its approximation is presented in Sect. 4. The heuristics
that we propose to enhance the coverage achieved by the algorithm are given
in Sect. 5. Our experimental results are presented in Sect. 6. Section 7 describes
related work, and Sect. 8 concludes the paper.

2 Background

In this paper systems are specified by event systems (ES) described in the B
syntax [3,7]1. Notice however that our proposals and results are generic since
event system semantics is defined by concrete labelled transition systems.
1 Our experimental models were written in B, but could alternatively be translated

to a syntax with guarded commands [4], such as Abstract State Machines [8,9].

Approximating Event System Abstractions 213

In this section we first present the syntax and the semantics of the B event
systems. Then we present the concept of predicate abstraction and formalize the
abstraction of event systems by means of May Transition Systems (MTS).

2.1 Model Syntax and Semantics

We start by introducing B event systems in Definition 1. The events are defined
by means of guarded actions [4] by composition of five primitive actions where
a, ai are actions, E, F are arithmetic expressions and P , P ′ are predicates:
skip an action with no effect, x, y := E,F a multiple assignment, P ⇒ a a
guarded action, a1[]a2 a bounded non-deterministic choice between a1 and a2,
and @z.a an unbounded non-deterministic choice az1 []az2 [] . . . for all the values
of z satisfying the guard of a denoted as grd(a). Here grd is defined on the
primitive actions by: grd(skip) def= true, grd(x, y := E,F) def= true, grd(P ′ ⇒
a) def= P ′ ∧ grd(a), grd(a1[]a2)

def= grd(a1) ∨ grd(a2) and grd(@z.a) def= ∃z · grd(a).

Definition 1 (Event System). Let Ev be a set of event names. A B event
system is a tuple 〈X, I, Init,EvDef〉 where X is a set of state variables, I is a
state invariant, Init is an initialization action such that I holds in any initial
state, EvDef is a set of event definitions, each in the shape of e

def
= a for any

e ∈ Ev, and such that every event preserves I.

Following [10], we use labelled transition systems to define the semantics of
event systems. An example of a B event system will be provided in Sect. 3.

Let e
def= a be an event. It has a weakest precondition [5] and a weakest

conjugate precondition [10] w.r.t. a set of target states Q′ denoted respectively
as wp(a,Q′) and wcp(a,Q′). wp(a,Q′) is the largest set of states from which
applying a always leads to a state of Q′ whereas wcp(a,Q′) is the largest set of
states from which it is possible to reach a state of Q′ by applying a. An event
also defines a relation between the values of the state variables X before and
after the application of the event. It is expressed by the before-after predicate
of the event e

def= a denoted as prdX(a).
Let us now formally define wp, wcp and prdX following [11]. Classically, we

directly consider the set of states Q and Q′ as predicates of the same name: a
set of states Q defines a predicate Q that holds in any state of Q but does not
holds in any state not in Q.

We define the wp w.r.t. the five primitive actions as:

– wp(skip,Q′) def= Q′,
– wp(x := E,Q′) def= Q′[E/x] that is the usual substitution of x by E,
– wp(P ⇒ a,Q′) def= P ⇒ wp(a,Q′),
– wp(a1[]a2, Q

′) def= wp(a1, Q
′) ∧ wp(a2, Q

′),
– wp(@z.a,Q′) def= ∀z.wp(a,Q′) where z is only bound by predicates in a.

214 J. Julliand et al.

We define the wcp and prdX w.r.t. wp as:

– wcp(a,Q′) def= ¬wp(a,¬Q′),
– prdX(a) def= wcp(a, x′

1 = x1 ∧ . . . ∧ x′
n = xn) that is a predicate on the state

variables X = {x1, . . . , xn} in the source state before a and the target state
variables X ′ = {x′

1, . . . , x
′
n} after a.

2.2 Predicate Abstraction

Predicate abstraction [1] is a special instance of the framework of abstract inter-
pretation [12] that maps the potentially infinite state space C of a concrete
transition system onto the finite state space A of an abstract transition system
via a set of n predicates P def= {p1, p2, . . . , pn} over the state variables. The set
of abstract states A contains 2n states. Each state is a tuple q

def= (q1, q2, . . . , qn)
with qi being equal either to pi or to ¬pi, and we also consider q as the predicate∧n

i=1 qi. We define a total abstraction function α : C → A such that α(c) is an
abstract state q where c satisfies qi for all i ∈ 1..n. By a misuse of language, we
say that c is in q, or that c is a concrete state of q.

Let us now define the abstract transitions as may ones. Consider two abstract
states q and q′ and an event e. There exists a may transition from q to q′ by
e, denoted by q

e→ q′, if and only if there exists at least one concrete transition
c

e→ c′ where c and c′ are concrete states with α(c) = q and α(c′) = q′.
We check predicate satisfiability thanks to SMT solvers. For a predicate P ,

we define the solver call SATc(P) as returning either a model of P , or unsat if P
is unsatisfiable, or unknown if the solver failed to determine the satisfiability of P.
We also define SAT (P) as the predicate that is true iff SATc(P) returns a model
(showing that P is satisfiable). Let e

def= a be an event definition, q
e→ q′ is a

may transition iff SAT (wcp(a, q′)∧q). We compute a concrete witness c
e→ c′ by

using the before-after predicate: (c, c′) := SATc(prdX(a) ∧ q′[X ′/X] ∧ q) where
q′[X ′/X] is the predicate q′ in which each state variable xi is substituted by x′

i.

2.3 May Transition Systems

Let us introduce may transition systems (MTS), which are transition systems
with abstract states, and abstract may transitions. They are related to Modal
Transition Systems [13–15], but with only the may modality.

Definition 2 (May Transition System). Let Ev be a finite set of event

names and P def
= {p1, p2, . . . , pn} be a set of predicates. Let A be a finite set

of abstract states defined by {p1,¬p1} × {p2,¬p2} × . . . × {pn,¬pn}. A tuple
〈Q,Q0,Δ〉 is an MTS if it satisfies the following conditions:

– Q(⊆ A) is a finite set of states,
– Q0(⊆ Q) is a set of abstract initial states,
– Δ(⊆ Q × Ev × Q) is a may labelled transition relation.

Approximating Event System Abstractions 215

Now, Definition 3 associates an abstraction defined by an MTS with an event
system.

Definition 3 (MTS associated with an ES). Let ES
def
= 〈X, I, Init,EvDef〉

be an event system and P def
= {p1, p2, ..., pn} be a set of n predicates over variables

of X defining a set of 2n abstract states A
def
= {p1,¬p1} × {p2,¬p2} × ... ×

{pn,¬pn}. A tuple 〈Q,Q0,Δ〉 is an MTS associated to ES and P if it satisfies
the following conditions:

– Q
def
= {q ∈ A|∃(q′, e).(q e→ q′ ∈ Δ ∨ q′ e→ q ∈ Δ)},

– Q0
def
= {q|q ∈ A ∧ (SAT (prdX(Init) ∧ q[X ′/X]))[X/X ′]},

– Δ
def
= {q

e→ q′|q ∈ A ∧ q′ ∈ A ∧ e
def
= a ∈ EvDef ∧ SAT (wcp(a, q′) ∧ q)}.

Further in this paper, in Fig. 2 of Sect. 4, the reader will find an MTS example,
whose ES is described in Fig. 1(b). The MTS is the part shown in dashed lines,
with the four abstract states named q0 to q3 appearing as rounded rectangular
dashed boxes. The abstract transitions of Δ are represented as dashed arrows
labelled by event names.

3 Illustrative Example: An Electrical System

To illustrate our approach, this section describes an electrical (EL) system exam-
ple. It is a finite state control and command system that illustrates the MTS, as
represented in Fig. 2.

(a) Physical representation

X
def= {H, Sw, Bat}

I
def= H ∈ {tic, tac} ∧ Sw ∈ 1..3 ∧ (Bat ∈ 1..3 → {ok, ko}) ∧

Bat(Sw) = ok

Init
def= H, Sw, Bat := tac, 1, {1 �→ ok, 2 �→ ok, 3 �→ ok}

Tic
def= H = tac ⇒ H := tic

Com
def= ∃(i, j).(i ∈ 1..3 ∧ j ∈ 1..3 ∧ i �= j ∧ Bat(i) = ok ∧

Bat(j) = ok) ∧ H = tic ⇒
@ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ∧ ns �= Sw ⇒ H,Sw := tac, ns)

Fail
def= ∃(i, j).(i ∈ 1..3 ∧ j ∈ 1..3 ∧ i �= j ∧ Bat(i) = ok ∧ Bat(j) = ok) ⇒

@nb.(nb ∈ 1..3 ∧ Bat(nb) = ok) ⇒
(nb = Sw ⇒ @ns.(ns ∈ 1..3 ∧ ns �= Sw ∧
Bat(ns) = ok ⇒ Sw,Bat(nb) := ns, ko))

[](nb �= Sw ⇒ Bat(nb) := ko))

Rep
def= @nb.(nb ∈ 1..3 ∧ Bat(nb) = ko) ⇒ Bat(nb) := ok)

(b) Specification

Fig. 1. Electrical system and its specification

Figure 1(a) shows a device D powered via a switch to one of three batteries
B1, B2, and B3. A clock H periodically sends a signal that causes a commutation
of the closed switch. The system has to meet the following requirements: one and
only one switch is closed at a time, and a clock signal changes the switch that is
closed. The batteries may break down. If it happens to the one that is powering

216 J. Julliand et al.

D, an exceptional commutation is triggered. We assume that there is always at
least one battery working. When there is only one battery working, the clock
signals are ignored.

The event system in Fig. 1(b) uses three variables. H models the clock and
takes two values: tic to ask for a commutation, and tac when it has occurred. Sw
models the switches by indicating which one is closed. Bat models the batteries
breakdowns by a total function that associates ok or ko (for a broken battery)
to each battery. The state changes occur by applying four events: Tic sends a
commutation signal, Com changes the closed switch responding to a Tic, Fail
breaks down at random a battery, and Rep repairs at random a broken battery.

The MTS (in dashed lines) of Fig. 2 in the next section abstracts the model
of Fig. 1(b) w.r.t. the set of abstraction predicates P0

def= {p1, p2}, where p1
def=

H = tic (meaning that a commutation is asked) and p2
def= ∃(i, j).(i ∈ 1..3 ∧ j ∈

1..3 ∧ i �= j ∧ Bat(i) = ok ∧ Bat(j) = ok). p2 means that at least two batteries
are ok, so that a single battery is left working in the states where it is false.

4 Abstraction and Approximated Transition System
Computation

This section presents an algorithm used to compute both an abstraction that is
an MTS, and an under-approximation. The reunion of both is called an Approx-
imated Transition System (ATS, defined in Definition 4), in which 〈C,C0,Δ

c〉 is
an under-approximation of the labelled transition system that is the semantics
of the event system from which the MTS is deduced.

Definition 4 (Approximated Transition System). Let 〈Q,Q0,Δ〉 be an
MTS. A tuple 〈Q,Q0,Δ,C,C0, α,Δc〉 is an ATS whose 〈C,C0, α,Δc〉 is a con-
cretization of the MTS 〈Q,Q0,Δ〉 where:

– C,C0 are sets of respectively concrete states and concrete initial states,
– α is a total abstraction function from C to Q,
– Δc(⊆ C × Ev × C) is a concrete labelled transition relation.

For example, Fig. 2 shows an ATS of the electrical system of Fig. 1(a). The
MTS appears in dashed lines while the full lines represent its concretization. The
concrete states are showed as big dots.

In the rest of the paper, for the abstract states, we distinguish between
the may-reachability and the reachability. The former is the reachability by the
abstract may transition relation Δ, and the latter is the reachability by the
concrete transition relation Δc in the ATS. We say that an abstract state q is
reachable if there exists at least one concrete instance of q that is reachable
thanks to the transition relation Δc. By extension, an abstract transition is
reachable if there exists at least one concrete instance in Δc whose source state
is reachable.

The ATS computation algorithm that we present concretizes the may tran-
sitions on the fly during the MTS computation. It guarantees that every may

Approximating Event System Abstractions 217

Tic

c0(1, 111)

c1(1, 101) c8(2, 011)

c6(2, 111)

c9(1, 111)

c5(1, 101)

Rep

Fail

Com

Com

Com

Rep Rep

c10(3, 111)

Fail

Rep

c4(1, 100) c7(1, 100)

c11(1, 110)

Tic

q0 = {¬p1, p2} (h = tac) q2 = {p1, p2} (h = tic)

q1 = {¬p1,¬p2} (h = tac) q3 = {p1,¬p2} (h = tic)

Rep

Fail

Com

Tic

Rep

Fail

Tic

Rep

Fail

c2(2, 110)

Tic

Rep, Fail Rep, Fail

Fail

Rep

Rep

c3(2, 111)

Fig. 2. Example MTS and ATS of the Electrical System. The values of the concrete
states are indicated in parentheses right by them. For example with state c8, (2, 011)
means that battery 2 is used, and that battery 1 is ko while batteries 2 and 3 are ok.
The value of h is given globally in the abstract states.

transition between two abstract states is concretized. A total abstraction func-
tion α maps each concrete state of C to an abstract state of Q. The algorithm
comes in two versions, both of them being presented in the same figure. The
first version is the one presented in this section. It is referred to as Algorithm 1.
The second version, referred to as Algorithm 2, is enhanced by heuristics that
are explained in Sect. 5. The differences between Algorithms 1 and 2 are high-
lighted and enclosed in square brackets. Read the left hand highlighted parts
for Algorithm 1, and replace them with the right hand ones for Algorithm 2.
Notice that since Algorithm 2 computes more things than Algorithm 1, some fic-
tive empty parts (the empty highlighted square brackets []) have been added in
Algorithm 1.

Lines 1 to 8 of Algorithm 1 compute the set of initial abstract states Q0, an
instance of each being recorded as a concrete witness in C0 with its association in
α. Lines 9 to 35 compute the may transition relation Δ. Each abstract transition
is concretized by a witness {cw

e→ c′
w}, and the concrete states cw and c′

w are
recorded in C with their associations in α. For that it computes in the set RQ
the set of may-reachable states. For each may-reachable source state, it checks
for each potential abstract state (line 12) and for each event (line 13) if a may
transition exists (line 14). When it is the case, the algorithm records the witness

218 J. Julliand et al.

Algorithm: ATS computation [1: without heuristics] [2: with heuristics]

Inputs : 〈X, I, Init,EvDef〉: an Event System where EvDef
def
= {e

def
= a | e ∈ Ev}

A: a finite set of abstract states
[] [orderStates: 2A × Q → list of Abstract States

(ordering function of the abstract states)]
[] [oEv: ordered list of the events of Ev]

Output : 〈Q, Q0, Δ, C, C0, α, Δc, [] 〉: [κ]
an ATS [] [provided with a coloration function κ ∈ C → {green, blue}]

Variables : RQ: the set of abstract states remaining to be handled
q, q′: the source and target abstract states of the current transition
c, c′: the concrete source and target states of respectively q and q′

cw, c′
w: the witness concrete source and target states of a may-transition

GC: the set of [already known] concrete states of q [green C-reachable]
[] [BC: the set of blue concrete states of q]

1 Q := ∅; Q0 := ∅; Δ := ∅; C0 := ∅; α := ∅; Δc := ∅; [] [κ := ∅;]
2 foreach q ∈ A do
3 c := (SATc(prdX(Init) ∧ q[X′/X]))[X/X′]
4 if c /∈ {unsat, unknown} then
5 Q0 := Q0 ∪ {q}; C0 := C0 ∪ {c}; α(c) := q
6 [] [κ(c) := green;]

7 end
8 end
9 C := C0; RQ := Q0;

10 while RQ �= ∅ do
11 choose q ∈ RQ; RQ := RQ − {q}; Q := Q ∪ {q}
12 foreach q′ ∈ [A] do [list orderStates(A, q)]

13 foreach (e
def
= a) ∈ [EvDef] do [list oEv]

14 (cw, c′
w) := SATc(prdX(a) ∧ q′[X′/X] ∧ q)

15 if (cw, c′
w) /∈ {unsat, unknown} then

16 Δ := Δ ∪ {q
e→ q′};

17 GC := {cq | α(cq) = q []} [∧ κ(cq) = green]

18 (c, c′) := SATc(prdX(a) ∧ q′[X′/X] ∧ ∨
cq∈GC cq)

19 if (c, c′) /∈ {unsat, unknown} then
20 C := C ∪ {c′}; α(c′) := q′; Δc := Δc ∪ {c

e→ c′};
21 [] [κ(c′) := green; BC := {c′

q | α(c′
q) = q′ ∧ κ(c′

q) = blue};]
22 [] [(c, c′) := SATc(prdX(a) ∧ (

∨
c′
q∈BC c′

q)[X
′/X] ∧ ∨

cq∈GC cq);]

23 [] [if (c, c′) /∈ {unsat, unknown}then
24 Δc := Δc ∪ {c

e→ c′};
25 recursively colour in green from c′;
26 end]
27 end

28 C := C ∪ {cw, c′
w}; Δc := Δc ∪ {cw

e→ c′
w}; α(cw) := q; α(c′

w) := q′;
29 [] [if cw �∈ domain(κ) then κ(cw) := blue end]

30 [] [if c′
w �∈ domain(κ) ∨ κ(cw) = green then κ(c′

w) := κ(cw) end]

31 if q′ �∈ Q then RQ := RQ ∪ {q′} end
32 end
33 end
34 end
35 end

transition (see lines 16 and 28), but also possibly another concrete transition
(see lines 17 to 27) whose source state is one of the existing concrete states of
the current source state q when it exists. This last transition is computed first to
improve the reachability of the concrete transition relation. Indeed, the existing
concrete states are more likely to be connected to the initial states than the

Approximating Event System Abstractions 219

witness source state provided by the solver in line 14. Last, line 31 adds q′ as
a may-reachable state that has not been taken into account yet to compute the
may transition relation.

The algorithm terminates because it iterates on a finite number of abstract
states and events. It is sound because the transitions computed are concrete
instances of the semantics of the event system.

5 Heuristics for Better Abstraction Coverage

Using Algorithm 1, the connectivity and the reachability of the computed ATS
might be weak, depending on which witnesses are exhibited by the solver. This
section provides two heuristics, integrated into Algorithm 2, for improving both
the connectivity and the reachability. The first heuristic addresses this problem
by allowing the engineer to firstly define an order for the set of events of Ev in
an ordered list oEv (line 13) and, secondly, a custom function ordering the
set of abstract states A (line 12). The second heuristic, exposed in Sect. 5.2,
adapts the partial computation of reachability proposed in [6] to our purpose
for integrating it into Algorithm 2. The resulting new algorithm’s complexity
is the same as the previous one. The ATS of Fig. 2 was obtained by applying
Algorithm 2 to the electrical system of Fig. 1(a), w.r.t. the set of predicates P0

(defined in Sect. 3). The concrete states are numbered according to their order
of discovery by Algorithm 2.

5.1 Events and States Ordering

Our first heuristic consists of providing means to control the order in which the
events and abstract target states are handled by the algorithm.

Indeed, usually in reactive systems, some events can only be fired after other
events have previously been executed. Let us consider the EL system where no
battery repairing (modelled by the Rep event) can occur unless at least one
battery has broken down first (modelled by the Fail event). Since Algorithm 1
currently uses an unordered set of events EvDef, it might attempt to concretize
a Rep transition before trying to concretize any Fail transition. In this case, the
concrete source state of the Rep transition would not be a reachable one. To fix
this, we introduce the ordered list of events oEv as an input in Algorithm 2. To
compute a complete abstraction, i.e. covering all events and all states, oEv must
contain at least one occurrence of each event of the set EvDef. For example, for
the EL system, in all judicious orders, Fail must precede Rep for the aforemen-
tioned reason, and Tic must precede Com because Com is a response to the
event Tic.

Similarly, the orderStates function parameterizes Algorithm 2. Thanks to this
function, the order in which the abstract target states are handled can be con-
trolled. To compute a complete abstraction, the list returned by orderStates must
contain at least all the abstract states of A. While being completely customiz-
able by the engineer, the function used in our experiments presented in Sect. 6

220 J. Julliand et al.

gives better results for an order in which the first target abstract state handled
is the source abstract state (state q in line 11) and the other states are ordered
arbitrarily. Indeed, treating reflexive abstract transitions first tends to increase
the number of reachable concrete states within the source abstract state. As a
result, the chances that the next abstract transitions can be concretized from a
reachable source state are increased.

When applying Algorithm 1 to the EL system with a set of abstraction pred-
icates (first AP in Table 1), 33.33% of the abstract states and 11.11% (see line
1) of the abstract transitions are covered by the ATS. Integrating the event and
state ordering without coloration improved these ratios respectively to 66.67%
and 44.44%.

These ordering heuristics are integrated into Algorithm 2, along with the
concrete states coloration discussed in Sect. 5.2. Even though our results did
not focus on that point, an interesting perspective could be to consider the
concretization of a same abstract transition multiple times. This could be useful
for instance for systems requiring initialization steps that repetitively apply the
same event, such as a credit card system for example. In fact, this behaviour
can already be implemented using our algorithm by adding the same event to
oEv several times, and by adding the target state of the abstract transition
several times to the list returned by the orderStates function.

5.2 Concrete States Coloration

The reachability of the concrete states of the under-approximation is improved
and computed on the fly in Algorithm 2 at no additional cost w.r.t. Algorithm 1.
The principle is to associate a colour with each concrete state. A reachable state
is coloured in green and a state whose reachability is unknown is coloured in blue.
While Algorithm 1 tried to concretize the abstract transitions from an already
known concrete state, Algorithm 2 uses the reachability information when con-
cretizing the abstract transitions. It first tries to concretize an abstract transition
from any known and reachable state (see lines 17 and 18). If it is indeed pos-
sible (line 19), the solver returns a first reachable concrete transition, added to
the ATS, whose concrete target state becomes green (see lines 20 and 21). To
improve the connectivity, the algorithm also tries to join a green source concrete
state to a target blue one, whose reachability is thus currently unknown (line
22). If it is possible (line 23), its colour becomes green (line 24) since it is a
target of a concrete transition starting from a reachable (green) concrete state.
Even if the concretization from a known green concrete state is not possible, the
abstract transition is still concretized. The corresponding concrete source and
target states may already be known. In this case, their reachability remain the
same. Otherwise, since we have no information about their reachability, they are
coloured in blue (see lines 28 and 29).

When applying Algorithm 2 with coloration and without events and states
ordering to the EL system with the first set of abstraction predicates in Table 1,
100% of the abstract states and 77.78% of the abstract transitions are covered
by the ATS. This is better than with Algorithm 1 that gives respectively 33.33%

Approximating Event System Abstractions 221

and 11.11%. Moreover, integrating the two heuristics seen in Sect. 5.1 into Algo-
rithm 1 improved these two ratios to 100%.

These heuristics allow improving the reachability of the ATS for all the sys-
tems that we use in our experiments (see Sect. 6.2).

6 Implementation and Experimentation

This section introduces in Sect. 6.1 our proof-of-concept tool developed to eval-
uate the effects of the heuristics. The experimental results on four examples in
Table 1 are presented in Sect. 6.2. Then, in Sect. 6.3 we analyse these results and
conclude on the contributions of the heuristics presented in this paper.

6.1 About the Tool

The developed tool can be seen as a library for handling abstract and concrete
transition systems as well as event systems. It embeds an event-B parser and
allows to manipulate most event-B systems. The two algorithms are implemented
and can be applied to them. The library also provides the user with many facil-
ities for dealing with event systems. For instance, pre-implemented functions
allow to easily compute an abstraction of a model from a set of abstraction
predicates, as well as the wp, wcp and before-after predicates prdX of events
defined by guarded actions. The library also contains functions to check the
modality of abstract transitions and to find a concretization of an abstract state
or an abstract transition. It can also be seen as a simple API for multiple SMT-
solvers since the tool automatically generates SMT-Lib2 code for checking the
satisfiability of any first order boolean formula. The tool is constituted of more
than 5000 lines of JAVA code (version 8) and uses Z3 [16] as default SMT-solver.
The library can be downloaded at https://github.com/stratosphr/stratest/wiki.
This website also gives information on how to use the tool.

6.2 Experimental Results

This section provides the results obtained when applying Algorithm 1 and Algo-
rithm 2 to a set of four realistic event systems of increasing size. These event sys-
tems, available in the aforementioned GitHub repository, were taken back from
various previous work without modification so as not to influence the experi-
ment and threaten the validity of the results. The set of examples contains the
electrical system (EL) presented in Sect. 3, a phone book service (PH), a coffee
machine system (CM), and a car alarm system (CA). For each of them, two
different sets of abstraction predicates have been used (see the AP column).

The following column names appear in Table 1: Sys for the system studied
and an upper approximation of its size between parentheses, #Ev for the num-
ber of events in the event system, AP for an identification of the set of abstrac-
tion predicates used, #AP for the number of abstraction predicates in AP,
Alg. for the algorithm applied, #AS for the number of may-reachable abstract

https://github.com/stratosphr/stratest/wiki

222 J. Julliand et al.

states, #ASreach for the number of reachable abstract states computed, τAS for
the abstract state coverage that is the ratio #ASreach

#AS , #AT for the number of
abstract transitions, #ATreach for the number of reachable abstract transitions
computed. Note that we say that an abstract transition is reachable if there
exists a concrete instance of it in the ATS that is reachable. Next, there are
the following column names: τAT for the abstract transition coverage that is the
ratio #ATreach

#AT , #CT for the number of concrete transitions computed, ρCT for
the ratio #CT

#ATreach
which measures the efficiency of the method, by indicating

in average how many concrete transitions have been computed for making an
abstract transition reachable, and finally Time for the ATS computation run-
time (in seconds). The connectivity between transitions is indirectly measured
via the coverage and efficiency rates, since a reachable state or transition is
necessarily connected to a concrete initial state.

The main results of our method are the coverage ratios of abstract states
(τAS) and abstract transitions (τAT). For almost identical computation time(s),
an improvement of these ratios indicates a better performance of the method. For
ρCT , a value between 3 and 1 indicates that the algorithm covers one abstract
transition per iteration step. When this ratio decreases that indicates an improve-
ment of the efficiency. Indeed, for each abstract transition, each iteration step
computes one up to three transitions according to the conditions in lines 19 and
23. For the EL system, with the first set of abstraction predicates, ρCT decreases
from 13 to 2, meaning that the heuristic allowed to compute more interesting
concrete transitions, increasing the abstraction transition coverage from 11.11%
to 100%.

6.3 Analysis of the Obtained Results

This section comments on the results exposed in Table 1.

Table 1. ATS computation results

Sys #Ev AP #AP Alg. #AS #ASreach τAS(%) #AT #ATreach τAT (%) #CT ρCT Time

EL (24) 4 1 2 1 3 1 33.33 9 1 11.11 13 13 00.283

2 3 3 100 9 9 100 18 2 00.297

2 2 1 4 4 100 11 8 72.73 15 1.88 00.429

2 4 4 100 11 11 100 17 1.55 00.449

PH (210) 4 1 3 1 3 3 100 12 11 91.67 16 1.45 00.261

2 3 3 100 12 12 100 22 1.83 00.287

2 6 1 8 8 100 62 60 96.77 83 1.38 01.994

2 8 8 100 62 62 100 88 1.42 02.204

CM (216) 8 1 3 1 4 3 75 30 5 16.67 47 9.4 00.753

2 4 4 100 30 24 80 54 2.25 00.854

2 3 1 6 3 50 52 7 13.46 83 11.86 01.639

2 6 6 100 52 25 48.08 77 3.08 01.629

CA (215) 20 1 6 1 8 5 62.5 31 18 58.065 44 2.44 13.818

2 8 8 100 31 25 80.65 50 2 13.283

2 9 1 9 5 55.56 30 11 36.67 37 3.36 23.978

2 9 9 100 30 28 93.33 52 1.86 25.381

Approximating Event System Abstractions 223

As expected, the ATS computation times are nearly identical, no matter
which version of the algorithm has been used. Note that for two cases out of
eight the ATS computation time with Algorithm 2 is on average slightly faster
than with Algorithm 1. Since the formulas whose satisfiability is checked are
different between the two algorithms, the solver may be faster to provide an
answer for the formulas in Algorithm 2 than in Algorithm 1.

We observe that Algorithm 2 improves both the abstraction coverage rates
and the efficiency ρCT compared to Algorithm 1. In particular, we point out the
CM case with the first AP where the transition coverage and the efficiency
achieved by Algorithm 2 is about respectively five and four times better than by
Algorithm 1.

For all systems and all sets of abstraction predicates, the abstraction cover-
age is improved by Algorithm 2. Depending on the set of predicates used, the
coverage for states and transitions can reach up to 100%. On most examples
however, Algorithm 1 covers less than half of the abstract states and transitions.
Note for example the CM case with the second set of abstraction predicates
where the abstract states and transitions coverage(s) are respectively twice and
three times better using the heuristics. All these results empirically confirm the
interest of the proposed heuristics to improve the abstraction coverage.

The heuristics also produced good results concerning the efficiency rate ρCT .
For most cases, its value is decreased by Algorithm 2 thanks to the heuristics,
which means that they generally help concretizing abstract transitions by useful
transitions improving the abstraction coverage. For the CM system with the sec-
ond AP and Algorithm 1 for example, an average of 11.86 concrete transitions
need to be computed in order to cover one abstract transition. When the heuris-
tics are used however, an average of only 3.08 concrete transitions computation
is needed to cover one abstract transition.

The ordering heuristic alone does not necessarily improve the abstraction cov-
erage w.r.t. Algorithm 1, whereas the coloration heuristic alone always improves
the results. Nevertheless, for four cases out of the eight presented in this paper,
combining the ordering and coloration heuristics improves the abstraction cov-
erage compared to coloration only. For the CM system with the first AP for
example, the ordering heuristic alone covers two abstract states compared to
three with Algorithm 1, and six abstract transitions compared to five. The col-
oration heuristics alone covered all of the four abstract states, and twenty-two
out of the thirty abstract transitions. When combining both heuristics, the four
abstract states and twenty-four abstract transitions are covered.

7 Related Work

In [17,18], the set of abstraction predicates is iteratively refined in order to
compute a bisimulation of the semantics of the model when it exists. None of
these two methods is guaranteed to terminate, because of the refinement step
that sometimes needs to be repeated endlessly. SYNERGY [19] and DASH [20]
combine under-approximation and over-approximation computations to check

224 J. Julliand et al.

safety properties on programs. As we aim at proposing an efficient method to
build a reachable under-approximation of a system that covers all abstract states
and all abstract transitions w.r.t. a specification and a set of predicates, our
algorithm does not refine the approximation and so always terminates.

The closest methods to ours are those that are proposed in [6,21]. These
approaches propose algorithms that compute an under-approximated concretiza-
tion of a predicate abstraction covering its abstract states and transitions. Both
these methods are exploited for generating tests. The algorithm in [21] does not
traverse nor compute the may abstraction. It builds a partial concretization of
the abstract states that are reached from an initial concrete state by a forward
walk. To improve this method, the algorithm in [6] computes exhaustively the
may abstraction by random abstract state generation. Therefore, some gener-
ated concrete states are not reached. Then Veanes and Yavorsky [6] propose to
distinguish between four kinds of abstract transitions: green transitions when
there exists an instance that is reached from an initial concrete state, blue tran-
sitions when there exists instances, but none known to be reachable from an
initial state, red transitions when there does not exist any instance, and grey
transitions for the transitions that have not been concretized yet. In our method,
we compute and concretize only the part of the may abstraction that is may-
reachable by an abstract transition from an initial abstract state. We do not
record the red transitions that are non-existing transitions in the MTS, and we
do not need the grey transitions that are the ones which remain to be treated. In
contrast with [6], our method colours the concrete states instead of the abstract
transitions. This allows us to distinguish between the reached states (green) and
the states for which we do not know whether they are reached (blue) or not.
So for improving the method, Algorithm 2 connects in priority a green source
state s to a blue target state t. That has a “domino effect” because all the blue
reached states from t remain blue, but become reachable.

Some other work under-approximate an abstraction for generating tests. The
tools Agatha [22], DART [23], CUTE [24], EXE [25] and PEX [26] also compute
abstractions from models or programs, but only by means of symbolic execu-
tions [27]. This data abstraction approach computes an execution graph. Its set
of abstract states is possibly infinite whereas it is finite with our method.

Our method can be applied to generate tests as the concolic execution in [24].
The concolic method allows to generate structural tests of systems covering par-
tially the control flow that must be explicited. Our approach allows to generate
tests covering the paths defined by the set of abstraction predicates for systems
whose control flow is implicitly defined.

8 Conclusion and Further Work

This paper has presented an algorithmic method for computing a concrete
approximation of the predicate abstraction of an event system. All of the abstract
states and transitions are covered, but as the control flow is implicit in an event
system, our method focuses on computing concrete sequences that are connected

Approximating Event System Abstractions 225

and reachable. We have presented two heuristics allowing us to better reach and
connect these sequences. One heuristic colours the states that are known to be
reachable, and the other takes a user defined order on the events and abstract
states enumeration as parameters. Experimental results on four case studies are
exhibited to confirm the practical interest of our approach.

As future work, we intend to define other means for guiding the sequences
instantiation, in addition to the events ordering. We could introduce a relevance
function on concrete states, as is done in [21], for targeting peculiar concrete
states considered as more relevant. Also, our intention is to use the concrete
sequences that we compute as model-based tests issued from a formal model of
the specification. Abstracting this model would allow selection criteria such as
paths selection to be used, when the size of the explicit model would prevent it.

References

1. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

2. Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In: Zuck,
L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol.
2575, pp. 206–222. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36384-X 18

3. Abrial, J.R.: Modeling in Event-B: System and Software Design. Cambridge Uni-
versity Press, Cambridge (2010)

4. Dijkstra, E.: Guarded commands, nondeterminacy, and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

5. Dijkstra, E.: A Discipline of Programming. Prentice-Hall, Upper Saddle River
(1976)

6. Veanes, M., Yavorsky, R.: Combined algorithm for approximating a finite state
abstraction of a large system. In: ICSE 2003/Scenarios Workshop, pp. 86–91 (2003)

7. Abrial, J.R.: The B Book. Cambridge University Press, Cambridge (1996)
8. Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.): ASM 2000. LNCS, vol.

1912. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44518-8
9. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.

ACM Trans. Comput. Log. 1(1), 77–111 (2000)
10. Bert, D., Cave, F.: Construction of finite labelled transition systems from B

abstract systems. In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000.
LNCS, vol. 1945, pp. 235–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-40911-4 14

11. Bride, H., Julliand, J., Masson, P.A.: Tri-modal under-approximation for test gen-
eration. Sci. Comput. Program. 132(P2), 190–208 (2016)

12. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992)

13. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210 (1988)
14. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using

modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44685-0 29

https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-36384-X_18
https://doi.org/10.1007/3-540-36384-X_18
https://doi.org/10.1007/3-540-44518-8
https://doi.org/10.1007/3-540-40911-4_14
https://doi.org/10.1007/3-540-40911-4_14
https://doi.org/10.1007/3-540-44685-0_29
https://doi.org/10.1007/3-540-44685-0_29

226 J. Julliand et al.

15. Ball, T.: A Theory of predicate-complete test coverage and generation. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004. LNCS, vol.
3657, pp. 1–22. Springer, Heidelberg (2005). https://doi.org/10.1007/11561163 1

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Namjoshi, K.S., Kurshan, R.P.: Syntactic program transformations for automatic
abstraction. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
435–449. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 33

18. Păsăreanu, C.S., Pelánek, R., Visser, W.: Predicate abstraction with under-
approximation refinement. LMCS 3(1:5), 1–22 (2007)

19. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
a new algorithm for property checking. In: SIGSOFT FSE, pp. 117–127 (2006)

20. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J., Tetali, S., Thakur,
A.V.: Proofs from tests. IEEE Trans. Software Eng. 36(4), 495–508 (2010)

21. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. In: ISSTA, pp. 112–122 (2002)

22. Rapin, N., Gaston, C., Lapitre, A., Gallois, J.P.: Behavioral unfolding of formal
specifications based on communicating extended automata. In: ATVA (2003)

23. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI, pp. 213–223 (2005)

24. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
ESEC/SIGSOFT FSE, pp. 263–272 (2005)

25. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: ACM CCS, pp. 322–335 (2006)

26. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9 10

27. Păsăreanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. STTT 11(4), 339–353 (2009)

https://doi.org/10.1007/11561163_1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/10722167_33
https://doi.org/10.1007/978-3-540-79124-9_10

Implementing the Symbolic Method
of Verification in the C-Light Project

Dmitry Kondratyev(B)

Institute of Informatics Systems SB RAS, Novosibirsk 630090, Russia
apple-66@mail.ru

http://persons.iis.nsk.su/ru/postgraduates/kondratyev

Abstract. The C-light is a project aimed onto deductive verification of
C programs. It relies on three basic ideas, namely—metageneration of
verification conditions (MetaVCG), semantic mark-up and the symbolic
method, two-level verification that uses C-light language as a front-end
and C-kernel language as a back-end. The semantic mark-up extends
the standard Hoare inference rules by semantic labels for explanations of
failed verification conditions. The symbolic method is based on a replace-
ment of each for-loop by a single assignment with a cumulative effect, it
allows us to avoid explicit invariant generation. However, to make ver-
ification efficient, it is necessary to develop new techniques instead of
the replacement. These new techniques for verification of linear algebra
programs is presented and explained in this article.

Keywords: MetaVCG approach · Semantic mark-up method
Symbolic method of verification of definite iterations

1 Introduction

C-light verification project [13] is under development in the Laboratory for the-
ory of programming, Institute of Informatics Systems (SB RAS). The C-light
language is a representative subset of the C language [12]. One of the goals
of the project is the development of an extendable self-applicable verification
condition generator (VCG) for the C language.

A formal semantics of a programming language is one of prerequisites
for deductive program verification. A so-called operational semantics is very
natural to understand how programs work because it defines some abstract
machine to execute programs. (By the way, since of C-light abstract machine
has un-structured memory model, C-light doesn’t support machine word level
operations.)

However, operational approach is commonly used for model checking; instead
in deductive verification a so-called axiomatic semantics is in use. On the

This research was in part supported by RFBR (grant No. 15-01-05974 and grant No.
17-01-00789).

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 227–240, 2018.
https://doi.org/10.1007/978-3-319-74313-4_17

228 D. Kondratyev

other hand, the axiomatic approach may be too complicated for language
like C-light [12], and so a two-level method of deductive verification has been
employed. In the first stage C-light is translated into the intermediate language
C-kernel [13]. This stage is necessary for elimination of constructs that are com-
plicated for axiomatic semantics. A set of formal rules is used for this translation.
For example, increment operators are eliminated by translation into pieces of
code with assignments and addition. The C-kernel language is a strongly limited
subset of the C-light language [11]. In the second stage verification conditions
(VCs) are generated for the intermediate C-kernel program. Then generated ver-
ification conditions are passed to the theorem prover. The verification condition
generation is based on the axiomatic semantics of C-kernel [11].

Two new objectives result from the logic of the C-light project [6]. The first
objective is to develop and implement a method, which allows us to extend the
C-kernel language by new program constructs without major changes in veri-
fication condition generator. The second objective is to develop highly special-
ized domain-oriented verification condition generators based on domain-specific
methods for specialized classes of programs. It has been decided to use the
concept of meta verification condition generation (MetaVCG) to address these
objectives. Initially this concept was proposed and developed by Moriconi and
Schwartz [9].

A conventional verification condition generator is a stand-alone highly spe-
cialized program. However, MetaVCG is an entirely different approach to creat-
ing a verification condition generator. The meta verification condition generator
takes axiomatic semantics (in a special format) and automatically produces a
VCG. The correctness and completeness of MetaVCG are ensured by using as an
input only axiomatic semantics in very special format. Consequently, it is nec-
essary to validate whether axiomatic semantics meets limitations before using
MetaVCG.

The following problems may occur in the practical application of deductive
verification: the program may be incorrect, specifications may be incorrect, the
automatic theorem prover may be inefficient, the underlying theory may be
incomplete. Once any of these happens, the user of the verification system will
receive just a set of unproven VCs without any information about the reasons
of the failure.

The metageneration idea allows the C-light verification system to be sup-
plemented with the semantic mark-up method. The method focuses on such
problems as the analysis, tracing and explanation of VCs. This method was pro-
posed by Denney and Fisher [3]. It is based on the extension of the Hoare rules
by semantic labels that can be used to generate explanations (in plain language)
of the VCs.

The problem of automatic generation of loop invariants is undecidable [8].
However, the symbolic method of verifying for-loops with so-called definite iter-
ations [10] allows us to tackle this problem. This opportunity is based on apply-
ing special inference rules to such loops. These rules allow us to avoid invari-
ants. They are based on a special replacement function that represents the

Implementing the Symbolic Method of Verification in the C-Light Project 229

commutative loop effect in a symbolic form. The MetaVCG approach allows the
C-light system to be easily supplemented with such inference rules. The paper
presents experimental application of MetaVCG, semantic labels, and symbolic
method to verification of C-light program from linear algebra domain.

The paper is organized as follows. Section 2 presents theoretical basis of
the research, namely: a brief introduction to deductive program verification,
the MetaVCG approach, and the semantic mark-up method. Section 3 provides
details of symbolic method of verifying definite iterations with a special attention
to replacement operation. Section 4 addresses linear algebra program verification
with a particular attention to inference rule for matrix column update. Verifi-
cation case study is described in the Sect. 5 where program that calculates dot-
product is verified on base of symbolic method and with aid of PVS verification
system. A summary of results and plans for the future research are presented in
the concluding Sect. 6.

2 Theoretical Background

This section sketches basics of deductive program verification, the MetaVCG
approach and the semantic mark-up method.

2.1 Deductive Program Verification

Deductive program verification is applied to the Hoare triple [1]. The first part
of a Hoare triple is a precondition. It is a logical formula. The second part of
a Hoare triple is a program fragment. It is a list of statements. The third part
of a Hoare triple is a postcondition. It is a logical formula also. In a standard
notation {P} S {Q} for Hoare triples P is the precondition, S is the program
fragment, Q is the postcondition. Given the Hoare triple, the precondition and
the postcondition specify desirable behavior of the program fragment. Therefore,
they are referred to as specifications or annotations, and the Hoare triple is
referred to as the annotated program fragment.

The deductive program verification is automatic derivation of valid (partially
correct) Hoare triples. The partial correctness of the Hoare triple means that if
the precondition is true before the execution of the program fragment and if its
execution terminates, then the postcondition is true upon its completion [9].

The inference rule has the following structure:

ψ1, ..., ψn

ϕ
(1)

where ψ1, ..., ψn are the premises (Hoare triples and logical formulas) and ϕ is the
conclusion (Hoare triple). This notation means that ϕ is derived from ψ1, ..., ψn.
The semantics of simple program statements (for example, the assignment oper-
ator) is normally based on a set of axioms, and the semantics of any compound
statement is often based on an inference rule. The syntax-driven axiomatic sys-
tem (i.e. that contains inference rules for all syntax constructs of the program-
ming language) is called Hoare logic or axiomatic semantics.

230 D. Kondratyev

Verification conditions generator (VCG) is a procedure, which reduces deriva-
tion the annotated program fragments to validation of program-free logical for-
mulas. These formulas are referred to as verification conditions. Since programs
are written in particular programming languages, a VCG depends on a par-
ticular programming language. Furthermore, a VCG is based on the axiomatic
semantics of a particular programming language. Consequently, it allows a VCG
to derive VCs from the Hoare triple.

The weakest precondition (wp) method is one particular VCG. Given the
Hoare triple {P} S {Q}, the wp is denoted by wp(S,Q). The wp is the precon-
dition that ensures the truth of the corresponding Hoare triple and it can be
derived from other preconditions that guarantees the truth of the corresponding
Hoare triple. The Hoare triple is valid if and only if P implies wp(S,Q). Thus,
VCG can be implemented as a program that calculates wp(S,Q) [9].

As an example, let us consider the inference rule from a very popular text-
book [1]:

{P ∧ B} S {P}, P ∧ ¬B ⊃ Q

{P} while (B) assert P do S {Q} (2)

It is necessary to use induction to derive the Hoare triple for the while loop.
Induction statement in this case is called the loop invariant: it is a statement
that is true before loop execution, true after each loop iteration, and that ensures
the correctness of loop exit.

2.2 The Extensions of the VCG

In academic settings it is possible to assume that a programming language isn’t
evolving and hence VCG shouldn’t evolve also. But this static assumption in not
true in industrial settings.

Firstly, the programming language may be supplemented with new language
constructs. For example, plans of extending the C language are considered [6].
The new language constructs that appear in the new C language standard (C11)
are of great interest. Also, C-light [13] can be extended by language constructs
of related languages such as Objective C and C++.

Secondly, the implementation of highly specialized versions of the VCG is of
interest. They should be based on specific methods of applying inference rules
and classes of programs. This specialization makes verification simpler. Let us
consider an example.

This example relates to linear algebra [14]. The axiomatic semantics of the
class of linear algebra programs has been developed in the Laboratory for theory
of programming [16]. The class is for vector and matrix manipulations. Given M
is a rectangle matrix and an expression e = e(k, i) that depends on the indices
k and i, let us consider the following template [14]:

{Q(M ← rep(M,mat(e1, e2, e3, e4), e(s, t)))}
for(k = e1; k <= e2; k++)

for(i = e3; i <= e4; i++)
M[k][i] = e(k, i);

{Q}

Implementing the Symbolic Method of Verification in the C-Light Project 231

where the matrix rep(M,mat(e1, e2, e3, e4), e(s, t))) results from the replacement
of all elements of the submatrix mat(e1, e2, e3, e4) by the expression e. Note that
the problem of automatic generation of loop invariants is an algorithmically
undecidable. However, the symbolic method of verifying for-loops allows us to
avoid invariant generation by using some special constructs (rep and mat). How-
ever, it leads to necessity to modify the VCG to implement this approach.

Thus, an extendable VCG is a necessity. A non-specialized VCG that contains
all possible axioms and inference rules is not a good option. Instead a set of
specialized VCG is a better solution. Consequently, approaches that make the
implementation of such sets simpler are of great interest. Due to these reasons
the MetaVCG approach [9] is implemented in the C-light project.

A VCG is based on the axiomatic semantics of a particular programming
language. The metagenerator takes axiomatic semantics in the normal form and
automatically produces a VCG. The wp method is used for building the VCG.
The axiomatic semantics should be given in the normal form to guarantee the
correctness and completeness of MetaVCG [9]. The normal form imposes rigid
syntax constraints on axiomatic semantics. Many classical inference rules do not
satisfy these constrains, so some preliminary transformation to equivalent form
is required [6].

Note that it is necessary to generate explanations of the VC in the case
of verification failure. Thus, the VCG must supplement the VC with special
information. In the semantic mark-up method, this information appears in the
form of semantic labels. With this approach [3], natural language explanations
of the VC are generated. Consequently, the VCG must add labels to a special
position in the VC. The VCG should use modified Hoare rules to do that. The
modified Hoare rules are based on a special semantic mark-up (i.e., label types
and positions) [6]. Note that term term supplemented by label label is denoted
by �term�label. Labels are added to the following three places: the incoming
postcondition of a recursive VCG call in the premise of an inference rule, to the
wp, or to the generated VC.

Note that MetaVCG takes inference rules in the normal form as an input.
They define patterns of program constructs. The classical graphical representa-
tion of inference rules is easy to read, but is hard to input using a keyboard.
Thus, the important task is to develop a language for defining them. This lan-
guage should be based on first-order logic and the target language [6]. However,
inference rules define the semantics of specific programs. Thus, a programming
language has to be supplemented with some metaidentifiers. More detailed infor-
mation about the C-light project can be found in [6,11,12].

3 The Essence of Symbolic Method

Let us consider a so-called definite iteration over data structures [10]. The body
of a loop for definite iteration is a sequence of assignment operators and con-
ditional operators. It can be represented by the vector assignment operator
v = body(v, x), where x is the iteration parameter, v is the vector of other

232 D. Kondratyev

variables, and body(v, x) is the vector of conditional expressions that is based on
if-then-else operation. This form may result from applying a sequence of appro-
priate substitutions that replace conditional operators by conditional expressions
and replace the sequence of assignment operators by an assignment operator.

Let us consider the form of definite iteration over data structures:

for x in S do v = body(v, x) end (3)

where S is a structure (possibly hierarchical). The initial value of the vector v is
v0. If empty(S) is true, then the result of the iteration is v0. If ¬empty(S) and
vec(S) = [s1, ..., sn], then the loop body is executed sequentially for x that takes
on a value from s1, ..., sn.

Let us introduce some notation. The result of the substitution of the expres-
sion exp for all occurrences of the variable y in the formula R is denoted by
R(y ← exp). The result of the simultaneous substitution of the expressions
of the vector vexp for all occurrences of the variable vec in the formula R is
denoted by R(vec ← vexp). The inference rule for iteration (3) is based on the
replacement operation rep(v, S, body), where the function represented by the
loop body is denoted by body. The replacement operation rep(v, S, body) repre-
sents the loop effect in a symbolic form. If v0 = v, n = 0 and empty(S), then
rep(v, S, body) = vn. If i = 1, ..., n, ¬empty(S) and vec(S) = [s1, ..., sn], then
vi = body(vi−1, si). The following theorem describes useful features [10] of the
replacement operation:

Theorem 1. Iteration (3) is equal to the vector assignment v = rep(v, S, body).

The following inference rule [10] results from Theorem 1:

{P} prog {Q(v ← rep(v, S, body))}
{P} prog; for x in S do v = body(v, x) end {Q} (4)

where P is the precondition, Q is the postcondition that is independent of the
iteration parameter, prog is the program fragment, the partial correctness of the
program prog relative to P and Q is denoted by {P} prog {Q}.

The VCs that are based on using the replacement operation result from the
application of this rule. The induction or problem-oriented approach is used to
prove such VCs.

The MetaVCG [9] allows this rule to be easily introduced to the C-light
system. It satisfies the normal form constraints. Consequently, this rule can be
used as an argument of the metagenerator. The language of defining axioms and
inference rules can be used to define it. Let us consider this form of it:

{P} prog {substitution(Q, v, rep(v, S, body))},

|- {any_predicate(P)} any_code(prog) for_iteration(x, v, S, body)

{any_predicate(Q)}

where the substitution of v for rep is denoted by substitution(Q, v, rep(v,
S, body)) and the definite iteration is denoted by for iteration(x, v, S,
body).

Implementing the Symbolic Method of Verification in the C-Light Project 233

Note that for iteration(...) is the template that will be matched with
program constructs by the metagenerator. The implementation of the matching
algorithm in the metagenerator allows this template to be used. This implemen-
tation allows definite iteration over arrays to be matched with this template at
the current stage of work. The extension of this algorithm by matching defi-
nite iteration over other structures such as trees with this template is a further
research topic.

Generation of rep operation is based on symbolic computation of variables
from vector v. Arithmetic operations, logic operations, conditional operator, sub-
script operator and assignment can be processed by the rep generator at the cur-
rent stage. Note that conditional operator and assignment are base operations
of the symbolic method of verification of definite iterations. We plan to extend
our implementation by other operations.

MetaVCG allows the semantic mark-up method to be implemented. Thus,
this rule has been supplemented with semantic labels. Let us consider them:

{P} prog {�Q(v ← �rep(v, S, body)�rep iter)�for iter}
{P} prog; for x in S do v = body(v, x) end {Q} (5)

The MetaVCG approach allows us to avoid modifying the C-light system
“manually” to add new concepts of semantic labels. Thus, two new concepts
of labels have been implemented in the C-light project easily. The subformula
that results from the replacement operation has been supplemented with the
rep iter concept. The postcondition that has been changed by substitution has
been supplemented with the for iter concept. The language of defining axioms
and inference rules has been supplemented with new language constructs for
semantic labels. Let us consider it:

{P} prog {(label for_iter substitution(Q, v,

(label rep_iter rep(v, S, body))))}

|- {any_predicate(P)} any_code(prog) for_iteration(x, v, S, body)

{any_predicate(Q)}

The MetaVCG approach allows the C-light project to be supplemented with
the symbolic method of verifying definite iterations.

4 Towards Verification of Linear Algebra Programs

The elimination of loop invariants using the symbolic method may be applied
to a wide class of programs. Note that the axiomatization of some special forms
of the replacement operation has already been created [16]. But in the present
paper we consider only verification of linear algebra programs.

Linear algebra programs are based on special for-loops [15]. These loops per-
mute matrix rows, or divide a row by a number, or subtract a row multiplied by
a number from another row [14]. The invariants of such loops can be represented
by the replacement operation. This operation allows special inference rules to be
defined without using loop invariants. However, it is necessary to check special
conditions to apply such rules.

234 D. Kondratyev

Let us consider an example of such a rule [14]. The matrix that has been
created from M by the replacement of each matrix element (s, t) ∈ S (where S
is a set of matrix indices) by the value of the expression e(s, t) is denoted by
rep(M,S, e(s, t)). Thus, the following rule is based on this replacement operation:

{P} prog {Q(M ← rep(M, col(i, e1, e2), e(s, t)))}
{P} prog; for(k = e1; k <= e2; k++) M [k][i] = e(k, i) {Q} (6)

This rule represents the replacement of a part of a matrix column by the
expression that depends only on this column and the current row. The set that
includes each matrix element of the column l from the row m to row n is denoted
by col(l,m, n). Consequently, (u, v) ∈ col(l,m, n) ⇐⇒ (v = l ∧ m ≤ u ≤ n).
There is the following condition of applying this inference rule: if e(i, k) depends
on M [m][n] then (m,n) /∈ col(i, e1, k − 1). Let us consider multiple conditions of
applying inference rules for linear algebra programs [16]. These conditions ensure
the independence of the replacement operation rep(M,S, e(s, t)) from the order
of selecting elements of the set of matrix indices S.

This rule satisfies normal form constraints [9]. Thus, it can be used as an
argument of the metagenerator. The language of defining axioms and inference
rules can be used to define it. Let us consider such a definition of this rule:

{P} prog {substitution(Q, M, rep(M, col(i, e1, e2), e(s, t)))},

|- {any_predicate(P)} any_code(prog) for_col(M, i, k, e1, e2, e(s, t))

{any_predicate(Q)}

where the replacement of M by rep(M, col(i, e1, e2), e(s, t)) in Q is
denoted by substitution(Q, M, ...), the template that corresponds to iter-
ation over the matrix column is denoted by for col(M, i, k, e1, e2, e(s,
t)). The algorithm of matching templates and a program construct that has
been implemented in the metagenerator allows this template to be compared
successfully with the loop body. Also, this algorithm checks the condition of
applying this rule. There were no for-loops in the C-kernel language. Thus,
this algorithm allows a special form of for-loop to be introduced easily to this
language.

MetaVCG allows the semantic mark-up method to be implemented in the
C-light system. Let us consider this rule as supplemented with semantic labels:

{P} prog {�Q(M ← �rep(M, col(i, e1, e2), e(s, t))�rep col)�for col}
{P} prog; for(k = e1; k <= e2; k++) M [k][i] = e(k, i) {Q} (7)

The MetaVCG approach allows the C-light project to be extended by new
concepts of semantic labels. Thus, two new concepts of labels have been eas-
ily implemented in the C-light project. The subformula that results from the
replacement operation has been supplemented with the rep col concept. The
postcondition that has been changed by substitution has been supplemented
with the for col concept. The language of defining axioms and inference rules

Implementing the Symbolic Method of Verification in the C-Light Project 235

allows expressing this inference rule supplemented by the semantic labels. Let
us consider it:

{P} prog {(label for_col substitution(Q, M,

(label rep_col rep(M, col(i, e1, e2), e(s, t)))))}

|- {any_predicate(P)} any_code(prog) for_col(M, i, k, e1, e2, e(s, t))

{any_predicate(Q)}

Note that using special inference rules for iteration over the matrix makes
proving VCs easier than using more common inference rules in this case. It is
easier to define the axiomatization of the replacement operation for iteration
over the matrix because of an enormous amount of knowledge about matrices.
Thus, this axiomatization has already been defined [15]. Given the verification
of many linear algebra programs, it allows us to simplify their proving.

Noteworthy, using special inference rules for iteration over a matrix makes
proving VCs easier than using the more common axiomatic semantics of the C-
kernel programming language. Firstly, it is necessary to translate iteration over
the matrix from for loop to while loop. Secondly, at least two additional VCs
result from applying the inference rule for the while loop from the axiomatic
semantics of the C-kernel language. Finally, it is necessary to “manually” define
loop invariants to apply this semantics. The MetaVCG approach allows generat-
ing highly specialized versions of the VCG that will be based on special inference
rules for linear algebra programs.

5 The Experiment

A program verification experiment has been performed to demonstrate the pos-
sibility of loop invariant elimination in practice. This experiment is based on
the symbolic method of verification of definite iterations. The linear algebra
program [14] that computes dot-product is considered in this experiment. The
annotated function dot product is the implementation of the function from the
BLAS interface. This interface provides standard linear algebra procedures. A
large number of linear algebra programs [16] are based on using this interface.
Thus, the verification of such function implementation is important for programs
that use it. Let us consider the C-light function dot product:

/*@ requires (x != NULL) && (y != NULL) && (length > 0);

ensures (value = DP_RESULT(0, length, x, y)); */

int dot_product(unsigned int length, int* x, int* y){

int value = 0;

for (unsigned int i = 0; i < length; i++){

value += x[i] * y[i];}

return value;}

This function calculates the dot-product of the vectors x and y. This dot-
product accumulates in value variable. Thus, vector v from the symbolic method
of verification of definite iterations consists of value variable in this case.

The language in which its specifications are defined is ACSL [6]. These
specifications are present in usual C-commentaries to save program semantics.

236 D. Kondratyev

The requires section in the ACSL language defines precondition and the
ensures section in the ACSL language defines postcondition. The postcondi-
tion of this function is based on the DP RESULT function. Let us consider the
DP RESULT function:

(declare-fun DP_RESULT (Int Int (Array Int Int) (Array Int Int)) Int)

(assert (and

(forall ((i Int) (j Int) (x (Array Int Int)) (y (Array Int Int)))

(implies (<= j i) (= (DP_RESULT i j x y) 0)))

(forall ((i Int) (j Int) (x (Array Int Int)) (y (Array Int Int)))

(implies (< i j) (= (DP_RESULT i j x y) (+

(DP_RESULT i (- j 1) x y) (* (select x (- j 1)) (select y (- j 1)))))))))

The language defining this function is that of Z3, an automated theorem
prover. This function provides a recursive definition of the dot-product of two
vectors from the i-th to j-th element. This definition is based on using prefix
notation.

The translator from C-light to C-kernel does not modify this program,
because the translator recognizes the definite iteration. The inference rule for
definite iteration [10] has been implemented in the metagenerator. Thus, the
metagenerator yields the following VC for Z3. For the sake of simplicity, let us
consider this VC without labels:

(assert (not (forall ((value Int) (length Int)

(x (Array Int Int)) (y (Array Int Int)))

(implies (> length 0) (= (rep length 0 x y)

(DP_RESULT 0 length x y))))))

This VC is the negation of the statement that ensures the partial correctness
of the Hoare triple. This statement is based on using assert construct. It allows
us to define constraints on model. The negation is a feature of using SMT solvers
such as Z3 [8].

This VC is based on the rep function. Therefore, the generator produces the
recursive definition of the rep function for this program. Let us consider the rep
function:

(declare-fun rep (Int Int (Array Int Int) (Array Int Int)) Int)

(assert (and

(forall ((i Int) (value Int) (x (Array Int Int)) (y (Array Int Int)))

(implies (<= i 0) (= (rep i value x y) value)))

(forall ((i Int) (value Int) (x (Array Int Int)) (y (Array Int Int)))

(implies (< 0 i) (= (rep i value x y) (+

(rep (- i 1) value x y) (* (select x (- i 1)) (select y (- i 1)))))))))

It provides a recursive definition of the replacement operation that represents
the loop effect in a symbolic form [10]. It allows us to avoid defining an invariant
in this case. This definition is based on implies construct. It allows generator
to define implication.

Z3 does not support induction [8]. Induction allows proving the theory that
is based on the recursive definition of a function. Consequently, it is necessary

Implementing the Symbolic Method of Verification in the C-Light Project 237

to use any constant value of length to prove this VC using Z3. The proof that is
based on the statement that length is equal to 19 results in “unsat”. This result
means that there is a correspondence between the program and its specifications
in the case of length being equal to 19.

However, there are theorem provers that allow us to use induction. PVS
provides one of such prover [17]. Moreover, PVS is the complex environment that
contains the specification language, the predefined theories, the type checker, the
interactive theorem prover and etc.

This language is based on typed higher-order logic. It allows assumptions,
definitions, axioms and theorems to be organized into theories. Therefore, the
translation from intermediate structures to this language has been implemented
in the C-light project. Let us consider the theory for our example:

dot_product: THEORY

BEGIN

DP_RESULT(i:nat, j:nat, x:ARRAY[nat->int],

y:ARRAY[nat->int]): RECURSIVE int =

IF j <= i THEN 0

ELSE x(j-1) * y(j-1) + DP_RESULT(i, j-1, x, y) ENDIF

MEASURE j

rep(i:nat, value:int, x:ARRAY[nat->int],

y:ARRAY[nat->int]): RECURSIVE int =

IF i <= 0 THEN value

ELSE x(i-1)*y(i-1)+rep(i-1, value, x, y) ENDIF

MEASURE i

vc: LEMMA

FORALL (value:int, length:nat,

x:ARRAY[nat -> int], y:ARRAY[nat -> int]):

(0 < length) IMPLIES

rep(length, 0, x, y) = DP_RESULT(0, length, x, y)

END dot_product

This theory contains the definition of DP RESULT function, the definition of
rep function and the verification condition. The definition of VC is based on
using implication. Note that it is necessary to define measure in the case of
recursive function. This measure is an expression that decreases across recursive
calls and is non-negative. It allows PVS system to avoid infinity recursion. The j
parameter is the measure in the case of DP RESULT function and the i parameter
is the measure in the case of rep function. The verification condition corresponds
to lemma in this theory. Note that PVS is the interactive theorem prover [17].
Therefore, PVS tries to prove this lemma using strategy proposed by user.

This strategy consists of applying the inference procedures. PVS provides a
collection of powerful primitive inference procedures that contains propositional
and quantifier rules, induction, rewriting, simplification using decision proce-
dures for equality and linear arithmetic and etc. Using (induct-and-simplify

238 D. Kondratyev

"length") proof rule is the strategy in the case of our experiment. This is the
special proof rule to prove theory in the case of induction. The application of
this rule to this VC results in the following statement:

By induction on length, and by repeatedly rewriting and simplifying,

Q.E.D.

Run time = 0.14 secs.

Real time = 19.32 secs.

This result means that this theory has been proved. Consequently, there is a
correspondence between the program and its specifications.

The (induct-and-simplify "length") rule reduces proof of initial for-
mula to treatment of two cases: the induction basis and the induction step.
Using (induct "length") rule instead of (induct-and-simplify "length")
one may demonstrate these intermediate stages of proving. PVS automatically
proves the induction basis and the induction step in the case of this experiment.

The almost automatic verification of dot product function is the important
result at the current stage of work. Consequently, it has been decided to use
PVS instead of Z3 in the C-light project.

This program is error-free. However, it is important to check the performance
of the system of explanations of unproven VCs. The semantic mark-up method [3]
allows the following explanation of this VC to be generated automatically:

This VC corresponds to lines 6-10 in the "dot_product" function.

Its purpose is to correctly represent the effect of definite iteration

over the arrays x, y.

Hence, given

the assumption that the precondition holds at line 6,

it is demonstrated that the value correctly represents the effect of

definite iteration over the arrays x, y at lines 7-10.

The generation of this explanation is based on semantic labels. Certain names
and numbers are automatically inserted in this text by the metagenerator. The
correspondence between this VC and the code is demonstrated by them. This
explanation allows us to understand the aim and structure of this correctness
condition.

This experiment allows us to check the performance of the C-light system.
The VCs that are based on using the induction result from the application of
symbolic method of verification of definite iterations. Thus, the experience of
proving induction-based VC is important for us. The goal of this experiment has
been achieved. Thus, this experiment is of great interest for us.

6 Conclusion

The primary purpose of the C-light project is to make verification practical
in industrial settings. Automatic program error localization and explanation is
very important in this context. (Otherwise, the user has to analyze “manually”
unproved VCs.) The approach proposed by Denney and Fisher [3] has been

Implementing the Symbolic Method of Verification in the C-Light Project 239

chosen to tackle this problem. The MetaVCG approach allows us to simplify
the implementation of the semantic mark-up method in our project. The idea
of this approach is based on a special extension of the Hoare rules by labels
so that the axiomatic semantics itself can be used to generate explanations for
unproved VCs.

Let us list some related research.
Firstly, the Centaur project [5] allows analyzing VCs using loop- and if-

conditions. It is based on some algorithms of testing and debugging. Note that
basic language of this system is very simple.

The mixed axiomatic semantics allows the symbolic method of verification
of definite iterations to be implemented. This approach is under development
by Maryasov and Nepomniaschy [8], it allows us to use a conventional VCG
(but not a metagenerator). This semantics consists of the C-kernel programming
language axiomatic semantics and some auxiliary inference rules. These rules
allow generating simple VCs in some special cases. The VCG should identify
these cases to apply these rules. These cases include definite iteration (3).

Frama-C tool is the part of WHY [4] project. This tool is environment for
static analysis of C code. Jessie is a plugin for this tool. It is a deductive verifi-
cation system. Note that it provides a common intermediate language for C and
Java and translator from annotated C code to this intermediate language.

Boogie tool translates annotated programs to logical formulas in the VCC
(A Verifier for Concurrent C) [2] project. Boogie provides Boogie PL interme-
diate language and VCG. Z3 is used to prove VCs. (Note that Boogie PL is
not subset of the C language.) The correctness of the translation has not been
proven in the case of VCC project and in the case of Jessie project.

Finally, Leino et al. [7] proposed to translate input language into a lower-level
form for debugging. This form is extended by special labels from the underlying
logic. Then explanations are generated for traces to safety conditions.

Let us consider topics for further research.
The application of the C-light system for verification of certain classes of

programs, such as programs of engineering mathematics, is the most important
task for future work. The MetaVCG approach [9] may be applied to any appro-
priate set inference rules and axioms extended by semantic labels. We are most
interested in verification of linear algebra programs [14]. The symbolic method
for verification of for-loops [10] should be applicable to such programs.

We plan also more verification case studies with search and sorting programs
in general and counting sort in particular. The symbolic method of verifying
definite iterations should allow us to avoid invariants in this case. In future
we plan to try C-light system for verifying telecommunication protocols. It is
worth noting that implementations of some protocols are based on using loops.
Consequently, question about using the symbolic method of verifying definite
iterations for simplifying verification for such programs is in the scope of our
research interests.

240 D. Kondratyev

References

1. Apt, K.R., de Boer, F.S., Olderog, E.R.: Verification of sequential and concurrent
programs, p. 450. Springer, London (1991). https://doi.org/10.1007/978-1-84882-
745-5

2. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

3. Denney, E., Fischer, B.: Explaining verification conditions. In: Meseguer, J., Roşu,
G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 145–159. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79980-1 12

4. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30482-1 10

5. Fraer, R.: Tracing the origins of verification conditions. In: Wirsing, M., Nivat, M.
(eds.) AMAST 1996. LNCS, vol. 1101, pp. 241–255. Springer, Heidelberg (1996).
https://doi.org/10.1007/BFb0014320

6. Kondratyev D.A.: The extension of the MetaVCG approach by semantic mark-up
concept. In: Proceedings of the International Workshop Conferences on Tools &
Methods of Program Analysis, St. Petersburg, pp. 107–118 (2015). (in Russian)

7. Leino, K.R.M., Millstein, T., Saxe, J.B.: Generating error traces from verification
condition counterexamples. Sci. Comput. Program. 55(1–3), 209–226 (2005)

8. Maryasov, I.V., Nepomniaschy, V.A.: Loop invariants elimination for definite iter-
ations over unchangeable data structures in C programs. Model. Anal. Inf. Syst.
22(6), 773–782 (2015)

9. Moriconi, M., Schwartz, R.L.: Automatic construction of verification condition
generators from Hoare logics. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS,
vol. 115, pp. 363–377. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-
10843-2 30

10. Nepomniaschy, V.A.: Symbolic method of verification of definite iterations over
altered data structures. Program. Comput. Softw. 31(1), 1–9 (2005)

11. Nepomniaschy, V.A., Anureev, I.S., Promsky, A.V.: Towards verification of C pro-
grams: axiomatic semantics of the C-kernel languages. Program. Comput. Softw.
29(6), 338–350 (2003)

12. Nepomniaschy, V.A., Anureev, I.S., Mikhailov, I.N., Promsky, A.V.: Towards veri-
fication of C programs. C-light language and its formal semantics. Program. Com-
put. Softw. 28(6), 314–323 (2002)

13. Nepomniaschy, V.A., Anureev, I.S., Mikhailov, I.N., Promsky, A.V.: Verification-
oriented language C-light. In: System Informatics: Scientific Transactions/RAS.
Siberian branch. Institute of Informatics Systems, vol. 9, pp. 51–134 (2004)

14. Nepomniaschy, V.A., Ryakin, O.M.: Applied methods of program verification. In:
Radio and Communication, 256 p. Moscow (1988). (in Russian)

15. Nepomniaschy, V.A., Sulimov, A.A.: Problem-oriented verification system and
its application to linear algebra programs. Theor. Comput. Sci. 119(1), 173–185
(1993)

16. Nepomniaschy, V.A., Sulimov, A.A.: Verification of the linear algebra programs in
the system SPECTRUM. Cybern. Syst. Anal. 28(5), 766–774 (1992)

17. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-540-79980-1_12
https://doi.org/10.1007/978-3-540-30482-1_10
https://doi.org/10.1007/BFb0014320
https://doi.org/10.1007/3-540-10843-2_30
https://doi.org/10.1007/3-540-10843-2_30
https://doi.org/10.1007/3-540-55602-8_217

Highlights of the Rice-Shapiro Theorem
in Computable Topology

Margarita Korovina1(B) and Oleg Kudinov2

1 A.P. Ershov Institute of Informatics Systems, SbRAS,
Novosibirsk State University, Novosibirsk, Russia

rita.korovina@gmail.com
2 Sobolev Institute of Mathematics, SbRAS, Novosibirsk State University,

Novosibirsk, Russia
kud@math.nsc.ru

Abstract. Computable topological spaces naturally arise in computer
science for continuous data type representations that have tools for
effective reasoning about quite complex objects such as real numbers
and functions, solutions of differential equations, functionals and opera-
tors. Algebraic and continuous domains, computable metric spaces, com-
putable Polish spaces have been successfully used in the theoretical foun-
dation of computer science. In this paper we consider generalisations of
the famous Rice-Shapiro theorem in the framework of effectively enumer-
able topological spaces that contain the weakly-effective ω–continuous
domains and computable metric spaces as proper subclasses. We start
with the classical case when the spaces admit principal computable num-
berings of computable elements and one can investigate arithmetical
complexity of index sets. We provide requirements on effectively enumer-
able topological spaces which guarantee that the Rice-Shapiro theorem
holds for the computable elements of these spaces. It turns out that if we
relax these requirements then the Rice-Shapiro theorem does not hold.
Then we discuss the perspective of extensions of the Rice-Shapiro theo-
rem to spaces that do not have computable numberings of computable
elements, in particular to computable Polish spaces.

Keywords: Continuous data type · Program semantics
Arithmetical complexity · The Rise-Shapiro theorem

1 Introduction

One of the natural ideas in computable topology is an adaptation of the results
from classical computability (recursion) theory concerning the lattice of com-
putably enumerable sets to computable analysis for studying the structures of

The research leading to these results has received funding from the DFG grant
WERA MU 1801/5-1 and the DFG/RFBR grant CAVER BE 1267/14-1 and 14-01-
91334 and the grant council (under RF President) for State Aid of Leading Scientific
Schools (grant NSh-6848.2016.1).

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 241–255, 2018.
https://doi.org/10.1007/978-3-319-74313-4_18

242 M. Korovina and O. Kudinov

computable elements and effectively open sets of topological spaces. The major
obstacle for the achievement of this goal is the different nature of discrete and
continuous data. To overcome difficulties an approach is to figure out which
particular classes of topological spaces fit better for generalisations of classi-
cal results. In this paper we propose to consider the theory of index sets as
a promising candidate for merging classical recursion theory and computable
topology. There are several reasons for doing this. One of them is that the the-
ory of index sets provides methods for encoding problems in an effective way by
natural numbers, i.e., generate the corresponding index sets which can be used
for analysing their complexity in the settings of the Kleene-Mostowski arithmeti-
cal hierarchy. Another reason is that the theory of index sets has been already
successfully employed in many areas in mathematics and computer science. In
recursion theory index sets have been applied to get both new results and new
elegant proofs of classical theorems such as the Post’s theorem and the den-
sity theorem [11,27,29]. In computable model theory recent advancements are
closely related to index sets [5,6]. Following this direction in this paper we con-
sider the famous Rice-Shapiro theorem. In classical computability theory the
theorem gives a characterisation of subsets of natural numbers with computably
enumerable index sets that provides a simple description of effectively enumer-
able properties of program languages in computer science.

Historically generalisations of the Rice-Shapiro theorem has been first proven
for the algebraic domains [10], for the weakly effective ω-continuous domains [33]
and later on for the effectively pointed topological spaces that expand the weakly
effective ω-continuous domains [31].

We start with the case when the spaces admit principal computable num-
berings of computable elements and one can investigate arithmetical complexity
of index sets. We are interested in principal computable numberings since they
adequately reflect arithmetical complexity of subclasses of the computable ele-
ments, i.e., the index sets of a subclass with respect to any other computable
numberings are m–reducible to the index set of the subclass with respect to
the principal computable numbering. For example, if the index set of a sub-
class is computably enumerable (c.e.) with respect to the principal computable
numbering then it is computably enumerable with respect to every computable
numbering.

In this paper as promising candidates we consider effectively enumerable T0-
spaces with conditions on the family of basic neighborhoods of computable ele-
ments that guarantee the existence of a principal computable numbering. In [21]
we already have shown that for this class of topological spaces generalisations of
Rice’s theorem hold. However these conditions are not sufficient to establish the
Rice-Shapiro theorem. Towards the Rice-Shapiro theorem we enhance require-
ments on effectively enumerable T0–spaces that result in a new class we call the
class of modular T0–spaces. It turns out that, on one hand, the Rice-Shapiro
theorem holds for this class, on the other hand, this class extends the weakly
effective ω-continuous domains.

Highlights of the Rice-Shapiro Theorem in Computable Topology 243

Finally, we explore possible extensions of the Rice-Shapiro theorem to spaces
that do not have computable numberings of computable elements, in particular
to the class of computable Polish spaces (CPS) that contains the real num-
bers, the Cantor space, the Baire space and many others spaces widely used in
the foundation of computer science. Until now there have been no Rice-Shapiro-
type theorems known that hold on the whole class CPS. There are two natural
approaches how to avoid difficulties arising due the lack of computable num-
bering of computable elements. One approach is to embed the space under con-
sideration to a wider space that admits a principal computable numbering of
the computable elements and at the same time induces some properties of index
sets to the original space. As examples of such spaces for embeddings we can
consider the set of partial recursive functions for total recursive functions [27]
in classical computability theory and the interval domain for the real numbers
[1] in domain theory. Following this approach we embed the computable ele-
ments of a computable Polish space to the set of effective elements. We show
that for any computable Polish space the set of effective elements admits prin-
cipal computable numbering and the Rice-Shapiro theorem holds on them. As
a corollary we get a weak Rice-Shapiro theorem for the computable elements.
The other approach is to relax uniformity of the Rice-Shapiro theorem, i.e., con-
sider subsets of computable elements that have computably enumerable index
sets with respect to all computable sequences. We show that for the Baire space
this approach does not work.

The paper is organised as follows. In Sect. 2 we give basic notions and defini-
tions. We recall the notion of a computable element and conditions on the family
of basic neighborhoods of computable elements that guarantee the existence of
a principal computable numbering. Section 3 contains the definition of the class
of modular T0-spaces and the Rice-Shapiro theorem for this class. In Sect. 4 we
explore possible extensions of the Rice-Shapiro theorem to spaces that do not
have computable numberings of computable elements, in particular to the class
of computable Polish spaces that contains the real numbers, the Cantor space,
the Baire space and many others spaces widely used in the foundation of com-
puter science.

2 Preliminaries

2.1 Recursion Theory

We refer the reader to [27,28] for basic definitions and fundamental concepts of
recursion theory and to [11] for basic definitions and fundamental concepts of
numbering theory. We recall that, in particular, ϕe denotes the partial com-
putable (recursive) function with an index e in the Kleene numbering. Let
ϕs

e(x) = ϕe(x) if computation requires not more than s steps and x ≤ s, other-
wise ϕs

e(x) = −1. In this paper we also use notations We = dom(ϕe), πe = im(ϕe)
and W s

e = {x | ϕs
e(x) ≥ 0}. A sequence {Vi}i∈ω of computably enumerable sets

is computable if {(n, i)|n ∈ Vi} is computably enumerable. It is worth noting

244 M. Korovina and O. Kudinov

that this is equivalent to existence of a computable function f : ω → ω such that
Vi = Wf(i). A numbering of a set Y is a total surjective map γ : ω → Y .

2.2 Weakly Effective ω-continuous Domains

In this section we present a background on domain theory. The reader can find
more details in [14]. Let (D;⊥,≤) be a partial order with a least element ⊥. A
subset A ⊆ D is directed if A �= ∅ and (∀x, y ∈ A)(∃z ∈ A)(x ≤ z ∧ x ≤ z).
We say that D is a directed complete partial order, denoted dcpo, if any directed
set A ⊆ D has a supremum in D, denoted

⊔
A. For two elements x, y ∈ D we

say x is way-below y, denoted x y, if whenever y ≤ ⊔
A for a directed set

A, then there exists a ∈ A such that x ≤ a. We say that B ⊆ D is a basis
(base) for D if for every x ∈ D the set approxB(x) = {y ∈ B | y x} is
directed and x =

⊔
approxB(x). We say that D is continuous if it has a basis;

it is ω–continuous if it has a countable basis.

Definition 1. [14] Let D = (D;B, β,≤,⊥) be an ω–continuous domain where
B is a basis, β : ω → B is a numbering of the basis. We say that D is a weakly
effective if the relation β(i) β(j) is computably enumerable.

2.3 Effectively Enumerable T0-spaces

In the paper we work with the effectively enumerable T0-spaces. The class of
effectively enumerable topological spaces has been proposed in [23]. This is a
wide class containing the weakly effective ω–continuous domains, computable
metric spaces and positive predicate structures [22] that retains certain natural
effectivity requirements which allow to represent important concepts of com-
putability.

Let (X, τ, α) be a topological space, where X is a non-empty set, B ⊆ 2X is
a base of the topology τ and α : ω → B is a numbering.

Definition 2. [23] A topological space (X, τ, α) is effectively enumerable if the
following conditions hold.

(1) There exists a computable function g : ω × ω × ω → ω such that

α(i) ∩ α(j) =
⋃

n∈ω

α(g(i, j, n)).

(2) The set {i | α(i) �= ∅} is computably enumerable.

In [23] it has been shown that the class of effectively enumerable topological
spaces is a proper extension of the weakly effective ω–continuous domains and
the computable metric spaces. Further on we will often abbreviate (X, τ, α) by
X if τ and α is clear from a context. We use the following notion of an effectively
open set.

Highlights of the Rice-Shapiro Theorem in Computable Topology 245

Definition 3. x[23] Let (X, τ, α) be an effectively enumerable topological space.

1. A set O ⊆ X is effectively open if there exists a computably enumerable set
V such that O =

⋃
n∈V α(n).

2. A sequence {On}n∈ω of effectively open sets is called computable if there
exists a computable sequence {Vn}n∈ω of computably enumerable sets such
that On =

⋃
k∈Vn

α(k).

Let OX denote the set of all open subsets of X and Oe
X denote the set of all

effectively open subsets of X.

Definition 4. [20]

1. A numbering β : ω → Oe
X is called computable if {β(n)}n∈ω is a computable

sequence.
2. A numbering β : ω → Oe

X is called principal computable if it is computable
and every computable numbering ξ is computably reducible to β, i.e., there
exists a computable function f : ω → ω such that ξ(i) = β(f(i)).

Proposition 1. [20] For every effectively enumerable topological space there
exists a principal computable numbering αe

X of Oe
X .

2.4 Computable Elements

In this section we work with effectively enumerable T0-spaces (X, τ, α) and use
the following notion of a computable element.

Definition 5. [21] Let (X, τ, α) be an effectively enumerable T0–space

1. An element x ∈ X is called computable if the set Ax = {n | x ∈ α(n)} is
computably enumerable.

2. A sequence {an}n∈ω of computable elements is called computable if the
sequence {Aan

}n∈ω of computably enumerable sets is computable.

Let Xc be the set of all computable elements of an effectively enumerable T0-
space X and SX = {Aa | a ∈ Xc}. It is easy to see that the definition above
agrees with the notions of computable real number, computable element of
a computable metric space [3], computable element of a weakly effective ω-
continuous domain [33,36] and computable element of a computable topological
space [16].

It is worth noting that there are effectively enumerable topological spaces
without computable elements. As example we can consider the real numbers
without the computable points. It is an effectively enumerable T0-space, however
there are no computable elements in this space.

Definition 6.

1. A numbering γ : ω → Xc is called computable if {Aγ(n)}n∈ω is a computable
sequence.

246 M. Korovina and O. Kudinov

2. A numbering γ : ω → Xc is called principal computable if it is computable
and every computable numbering ξ is computably reducible to α, i.e., there
exists a computable function f : ω → ω such that ξ(i) = γ(f(i)).

Now we address the natural question whether for an effectively enumerable space
there exists a computable numbering of the computable elements. First, we
observe that while for the computable real numbers there is no computable num-
bering [7,24] as well as for the computable points of a complete computable met-
ric space [3], for a weakly effective ω–continuous domain there is a computable
numbering of the computable elements [36]. Below we point out a natural suf-
ficient condition on the family of basic neighborhoods of computable elements
that guarantees the existence of a principal computable numbering. We recall
that weakly effective ω–continuous domains satisfy this condition.

Definition 7. [11] Let S be a set of computably enumerable subsets of ω. The set
S is called a wn-family if there exists a partial computable function σ : ω → ω
such that

(i) if σ(n) ↓ then Wσ(n) ∈ S and
(ii) if Wn ∈ S then n ∈ dom(σ) and Wn = Wσ(n).

From [11] it follows that any wn-family SX has a standard principal computable
numbering γ : n �→ Wσ(h0(n)), where h0 : ω → ω is a total computable function
such that im(h0) = dom(σ).

Proposition 2. [18] Let (D;B, β,≤,⊥) be a weakly effective ω–continuous
domain. Then, the set SD = {{n | β(n) a}|a ∈ Dc} is a wn-family.

Theorem 1. [19] Let (X, τ, α) be an effectively enumerable T0-space and SX =
{Aa | a ∈ Xc}. If SX is a wn-family then there exists an algorithm to construct
a principal computable (canonical) numbering γ̄ : ω → Xc.

Proof. Let us define γ̄(n) = a ↔ Aa = γ(n).

Definition 8. Let γ̄ : ω → Xc be a principal computable numbering and L ⊆ Xc.
The set Ix(L) = {n | γ̄(n) ∈ L} is called an index set for the subset L.

Proposition 3. [19] Let (X, τ, α) be an effectively enumerable T0-space and SX

be a wn-family. If K is effectively open in Xc then Ix(K) is computably enu-
merable.

In [21] we already have shown that for an effectively enumerable topological
space X such that SX is a wn-family generalisations of Rice’s theorem hold.
Moreover from the results in [11] it is easy to see the following. If Xc has the least
element then the principal computable numbering is complete. So several results
from classical numbering theory can be generalised for this case, in particular, if
Ix(K) is computably enumerable then it is creative. Hence at the first glance this
class looks promising to generalise the Rice-Shapiro theorem. However there is a
counterexample that shows the existence of an effectively enumerable topological

Highlights of the Rice-Shapiro Theorem in Computable Topology 247

space X such that SX is a wn-family but the Rice-Shapiro theorem does not hold
[18]. This forces us to search for stronger requirements on effectively enumerable
topological spaces which do not restrict the class too much and at the same time
guarantee that the Rice-Shapiro theorem holds.

3 The Rice-Shapiro Theorem for Modular T0-spaces

In this section we recall the generalised Rice-Shapiro Theorem for the class of
modular T0-spaces. Below We use the specialisation order

x ≤ y � for all open O if x ∈ O then y ∈ O.

For B ⊆ X we use notation x ≤ B if, for all y ∈ B, x ≤ y.

Definition 9. [18] An effectively enumerable T0-space (X, τ, α) is called a mod-
ular T0–space if it satisfies the following requirements:

Req 1: SX is a wn-family.
Req 2: There exist a computable sequence {bn}n∈ω of computable elements and

a computable sequence {On}n∈ω of effectively open sets such that
(a) bn ≤ On, where ≤ is the specialisation order, and
(b) for all m ∈ ω α(m) =

⋃
bi∈α(m) Oi.

Proposition 4. [18] Any weakly effective ω-continuous domain is a modular
T0-space.

Theorem 2 (Generalised Rice-Shapiro). [18] Let X be a modular T0–space
and K ⊆ Xc. Then Ix(K) is computably enumerable if and only if K is effectively
open in Xc.

As a straightforward corollary we get the well-known result that for com-
putable elements of a weakly effective ω–continuous domain the Rice-Shapiro
theorem holds.

4 The Rice-Shapiro Theorem for CPS

In this section we work with the following notion of a computable Polish space
abbreviated as CPS. A computable Polish space is a complete separable metric
space X without isolated points and with a metric d : X × X → R such that
there is a countable dense subset B = {b1, b2, . . . } called a basis of X with the
numbering β that makes the following two relations: {(n,m, i) | d(bn, bm) <
qi, qi ∈ Q} and {(n,m, i) | d(bn, bm) > qi, qi ∈ Q} computably enumerable (c.f.
[37]). The standard notations B(x, y) and B(x, y) are used for open and closed
balls with the center x and the radius y. We also use the notation β(n) = bn for
a numbering β : ω → B.

248 M. Korovina and O. Kudinov

For a computable Polish space (X,B, d) in a natural way we define the num-
bering of the base of the standard topology as follows.

α(0) = ∅,

α(i) = B(bu(i), ri) for i > 0,where

u : ω → ω is a suitable computable function, {ri}i∈ω is a computable sequence
of all positive rational numbers such that {(u(i), ri) | i > 0} = (ω \ {0}) × Q

+.
It is easy to see that (X, τ, α) is an effectively enumerable topological space.
Therefore we consider the computable Polish spaces as a proper subclass of the
effectively enumerable topological spaces. For details we refer to [23]. We use the
Baire space N = (ωω, τN) defined as follows.

ω0 = {⊥}, where ⊥ is the empty word,

ω<ω =
⋃

n∈ω

ωn,

ωω = {f | f : ω → ω}
(informally, the set of all paths in the tree ω<ω).

The standard topology τN on ωω is generated by the base that contains all
clopen sets of the type

Aw = {f ∈ N | f [s] = w, s = length(w)},

where w ∈ ω<ω and the interpretation of f [s] is as follows:

f [0] = ⊥,

f [s] = 〈f(0), . . . , f(s − 1)〉 .

It is easy to verify that the topology on N is generated by the metric

d(f, g) =
{

0 if f = g
1

leastn[f(n) �=g(n)]+1 if f �= g.

Below we use the following notations R
+ � {r | r ∈ R and r ≥ 0} and

Q
>0 � {q | q ∈ Q and q > 0}.

4.1 A Weak version of the Rice-Shapiro theorem for CPS

In this section we embed the computable elements of a computable Polish space
in the set of effective elements. On intermediate steps for a computable Polish
space (M,d,B) we construct a lifted domain DM that is a weakly effective ω–
continuous domain such that the Scott topology on DM agrees with the metric d
and the set of maximal elements is homeomorphic to the original space. Then in
a natural way we map the maximal computable elements of the lifted domain to
the effective elements of the original space. We show that for any computable
Polish space the set of effective elements admits principal computable numbering
and the Rice-Shapiro theorem holds on them. As a corollary we get a weak Rice-
Shapiro theorem for the computable elements.

Highlights of the Rice-Shapiro Theorem in Computable Topology 249

Theorem 3. For any M = (M,d,B) ∈ CPS one can effectively construct
a weakly effective ω–continuous domain DM = (DM;B, γ,≤) called a lifted
domain for M such that

– M is homeomorphic to the set of all maximal elements of D with respect to
the specialisation order on DM.

– The standard topology on M coincides with the topology induced by the Scott
topology on DM.

We give an outline of the proof based on the following propositions and obser-
vations. First we define

DM � M × R
+ = {(a, r) | a ∈ M and r ∈ R

+};
(b, q) ≤ (a, r) � d(a, b) + r ≤ q;

B � {(a, q) | a ∈ B and q ∈ Q
>0};

γ : ω → B is the numbering induced by β and the standard numbering of Q>0.

Remark 1. On the real numbers R with the standard metric there is a one-to-
one correspondence between the pair (a, r) and the closed ball B(a, r) and the
relation ≤ coincides with the inverse non-strict inclusion, i.e., (b, q) ≤ (a, r) ↔
B(a, r) ⊇ B(a, r). Unfortunately, in general on a computable Polish space there
is no such intuitive natural correspondence.

Lemma 1. (DM,≤) is a dcpo.

Proof. We prove that any directed set has a least upper bound. Let A be a
directed subset of DM. For convenience we bijectively associate A with (I,≤I),
where i ≤I j ↔ (ai, ri) ≤ (aj , rj). Therefore we can write A = {(ai, ri)}i∈I .
Since {ri}i∈I is also directed, put inf({ri | i ∈ I}) = ε ≥ 0. From (ai, ri −
ε) ≤ (aj , rj − ε), for i ≤I j, it follows that {ai}i∈I is a Cauchy net therefore
ai → a ∈ M . Let us prove that (a, ε) = sup({(ai, ri) | i ∈ I}). By definition,
for j ≥I i, d(aj , ai) + rj ≤ ri. Passing to the limit on the index j we have
d(a, ai) + ε ≤ ri. So, (a, ε) ≥ (ai, ri) for any i ∈ I. Now we assume that (b,R) is
an upper bound of {(ai, ri) | i ∈ I}. So, for all i ∈ I, d(b, ai) + R ≤ ri. Passing
to the limit on the index i we have d(b, a)+R ≤ ε, i.e., (b,R) ≥ (a, ε). Therefore
(a, ε) is the least upper bound.

Lemma 2. For the way-below relation the following holds.

(b, q) (a, r) ↔ d(a, b) + r < q.

The sub-basis of topology τDM is the set of open sets in the form

Un,q = {(b, r) | (b, r) � (β(n), q), where β(n) ∈ B and q ∈ Q
>0}.

250 M. Korovina and O. Kudinov

Lemma 3. The topology τDM is the Scott topology on DM.

Let DM,⊥ denote DM ∪ {⊥}, where ⊥ a for all a ∈ DM. We can chose ⊥
as {M}.

Proposition 5. The space DM,⊥ = (DM,⊥;B, γ,≤) is a weakly effective ω–
continuous domain such that the set of maximal elements of DM,⊥ is homeo-
morphic to M and SDM,⊥ is a wn-family with respect to the Scott topology.

Proof. The claim follows from Lemmas 1, 2 and 3.

Corollary 1. There exists a principal computable numbering ν : ω → DM,⊥
c

and the Rice-Shapiro theorem holds.

Proof. The claim follows from the results in [33].

Now we introduce the notion of an effective element of M and show that the
set of effective elements Meff admits a principal computable numbering. Let
r : ω → Q be the standard computable numbering of Q.

Definition 10. Let M = (M,d,B) ∈ CPS. An element x ∈ M is called ε–
effective if the set {(n,m) | β(n) ∈ B, r(m) ∈ Q

>0 and d(x, β(n)) + ε < r(m)}
is computably enumerable.

Definition 11. Let M = (M,d,B) ∈ CPS. An element x ∈ M is called effec-
tive if there exists a right–computable number ε ≥ 0, i.e., {n | r(n) > ε} is
computably enumerable, such that x is ε–effective.

Remark 2. It is worth noting that the effective real numbers contain right-
computable and left-computable reals. Moreover, the effective elements are
exactly sums of right- and left-computable reals. At first glance it looks nat-
ural for embeddings of the reals to consider either the left-computable or the
right-computable reals. However the main obstacle is that while admitting com-
putable numberings the left-computable and the right-computable reals don’t
admit principal computable numberings.

Definition 12. 1. A numbering α : ω → Meff is computable if, for some com-
putable sequence {εn}n∈ω of right-computable reals, the set {(n,m, k) | β(m) ∈
B, r(k) ∈ Q

>0 and d(α(n), β(m)) + εn < r(k)} is computably enumerable.
2. A numbering γ : ω → Meff is called principal computable if it is computable

and every computable numbering ξ is computably reducible to α, i.e., there
exists a computable function f : ω → ω such that ξ(i) = γ(f(i)).

The principal computable numbering of Meff can be constructed as the following
composition:

ν τ
ω → DM,⊥

c → Meff ,

τ is a Borel function such that τ((a, r)) = a and τ(⊥) = β(0).
It is worth noting that τ maps any computable sequence of elements of DM,⊥

c

to a computable sequence of elements of Meff .

Highlights of the Rice-Shapiro Theorem in Computable Topology 251

Proposition 6. Let M = (M,d,B) ∈ CPS. Then K ⊆ Meff is effectively open
in Meff if and only if Ix(K) is computably enumerable.

Proof. The claim follows from Theorem 2, Corollary 1 and the construction
above.

Theorem 4 (Weak Rice-Shapiro Theorem). Let M = (M,d,B) ∈ CPS.
Then K ⊆ Mc is effectively open in Mc if and only if there exists K̃ ⊆ Meff

such that Ix(K̃) is computably enumerable and K̃ ∩ Mc = K.

Proof. The claim follows from Proposition 6.

Remark 3. It is worth noting that for a recursive Polish space [17,26] the index
set of computable elements is Π0

2 -complete with respect to the principal com-
putable numbering of the effective elements. However we conjecture that for
some computable Polish spaces the set can be Π0

3 -complete.

4.2 Towards a Non-uniform Rice-Shapiro Theorem

We discuss the perspective of a non-uniform version of the Rice-Shapiro theorem
for spaces that do not have computable numberings of computable elements,
in particular to the class of computable Polish spaces that contains the real
numbers, the Cantor space and the Baire space.

The following definition looks like a natural generalisation of the subsets of
Xc with computably enumerable index sets when the space lacks a computable
numbering of computable elements.

Definition 13. Let X = (X, τ, α) be an effectively enumerable T0-space and Xc

be the set of computable elements. Then K ⊆ Xc is called intrinsically com-
putably enumerable if for all computable sequences {xn}n∈ω, where xn ∈ Xc, the
set {k | xk ∈ K} is computably enumerable.

Conjecture 1. (Non-uniform Rice-Shapiro Theorem) The set K ⊆ Xc is effec-
tively open in Xc if and only if K is intrinsically computably enumerable.

Proposition 7. For any effectively enumerable T0-space if K ⊆ Xc is effectively
open in Xc then K is intrinsically computably enumerable.

Now we consider the Baire space N = (ωω, τN) with the standard topology.

Theorem 5. There exists an intrinsically computably enumerable set K ⊆ Nc

that is not effectively open in Nc. Therefore Conjecture 1 does not hold on N .

The outline of our proof for the Baire space is based on the following propo-
sitions and observation. We consider the Sierpinski space S = ({0, 1}, τS) with
the standard topology τS = {∅, {1}, {0, 1}}. The key idea of the proof is based on
the closed relations between Banach–Mazur–computable functions F : X → S

and intrinsically computably enumerable subsets K ⊆ X, between effectively

252 M. Korovina and O. Kudinov

open in Xc subsets K ⊆ X and total computable functions G : X → S. There-
fore by constructing a Banach–Mazur–computable function FK : N → S with
certain properties that does not have a total computable continuation on N we
will prove Theorem 5.

By analogy to [25] we give the notion of Banach-Mazur–computable function
over effectively enumerable T0–spaces.

Definition 14. Let X and Y be effectively enumerable T0–spaces. A function
f : X → Y is called Banach-Mazur–computable if dom(f) ⊇ Xc and it maps any
computable sequence of computable elements of X to a computable sequence of
computable elements of Y .

For the notion of total computable functions over effectively enumerable T0–
spaces we refer to [19]. Below we use the following property.

Proposition 8. [19] Let X = (X, τ, α) be an effectively enumerable topological
space and Y = (Y, λ, β) be an effectively enumerable T0-space. A total function
f : X → Y is computable if and only if f is effectively continuous.

Lemma 4. Let X = (X, τ, α) be an effectively enumerable topological space,
F : X → S be a partial function such that dom(F) ⊆ Xc and K = {x ∈ Xc |
F (x) = 1}. Then the following assertions hold.

1. The set K is intrinsically computably enumerable if and only if the function
F is Banach-Mazur–computable.

2. The set K is effectively open in Xc if and only if the function F coincides on
Xc with a total computable function G : X → S.

In order to construct a required function we take the well-known Friedberg
function [12,27] F : N → ω such that dom(F) = Nc and it is Banach-Mazur–
computable but does not have a total computable continuation on N , i.e., there
is no a total computable function G : N → S such that G �Nc

= F �Nc
. In fact, it

means that {F−1(n)}n∈ω is not a computable sequence of effectively open sets
in Nc. For our construction we use the computable function Delay : N → N
defined as Delay(f)(n) = f(n + 1), i.e., Delay removes f(0) and shifts the
arguments of f . Let us define F̃ : N → S by the following rules:

F̃ (f) =

⎧
⎨

⎩

1 if F (Delay(f)) = f(0)
↑ if f �∈ Nc

0 otherwise.

It is easy to see that F̃ is a Banach-Mazur–computable function, i.e., it maps
a computable sequence of computable elements of N to a computable sequence
of computable elements of S. However, as well as F the function F̃ does not
have a computable continuation on N . Indeed, assume that such continuation
G : N → S exists. Then G̃−1(1) ∩ N = {Con(n, g) | g ∈ F−1(n)} should be
effectively open in N , where Con(n, g) = f and

f(x) =
{

n for x = 0
g(x − 1) for x > 0.

Highlights of the Rice-Shapiro Theorem in Computable Topology 253

Hence {F−1(n)}n∈ω is a computable sequence of effectively open sets in Nc.
This contradicts the choice of F . So, by Lemma 4, the set K = {x ∈ Nc |
F̃ (x) = 1} is intrinsically computably enumerable but not effectively open
in Nc.

For the real numbers R, we hope that a proof can be done in a similar way
using results from [13].

5 Conclusion

In this paper we showed the generalised Rice-Shapiro theorem for computable
elements in the framework of modular T0-spaces that are a wide class of effec-
tively enumerable topological spaces which contains the weakly effective ω–
continuous domains as a proper subclass. For the computable Polish spaces we
also gave a hint how to get a weak Rice-Shapiro theorem. We discussed the
perspective of a non-uniform version of the Rice-Shapiro theorem. It will be
challenging to give an answer to Conjecture 1 for the whole computable Polish
spaces.

References

1. Edalat, A.: Domains for computation in mathematics, physics and exact real arith-
metic. Bull. Symbolic Logic 3(4), 401–452 (1997)

2. Berger, U.: Total sets and objects in domain theory. Ann. Pure Appl. Logic. 60(2),
91–117 (1993)

3. Brattka, V.: Computable versions of Baire’s category theorem. In: Sgall, J., Pultr,
A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 224–235. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4 20

4. Brodhead, P., Cenzer, D.A.: Effectively closed sets and enumerations. Arch. Math.
Log. 46(7–8), 565–582 (2008)

5. Calvert, W., Fokina, E., Goncharov, S.S., Knight, J.F., Kudinov, O.V., Morozov,
A.S., Puzarenko, V.: Index sets for classes of high rank structures. J. Symb. Log.
72(4), 1418–1432 (2007)

6. Calvert, W., Harizanov, V.S., Knight, J.F., Miller, S.: Index sets of computable
structures. J. Algebra Logic 45(5), 306–325 (2006)

7. Ceitin, G.S.: Mean value theorems in constructive analysis. Transl. Am. Math. Soc.
Transl. Ser. 2(98), 11–40 (1971)

8. Cenzer, D.A., Remmel, J.B.: Index sets for Π0
1 classes. Ann. Pure Appl. Logic

93(1–3), 3–61 (1998)
9. Cenzer, D.A., Remmel, J.B.: Index sets in computable analysis. Theor. Comput.

Sci. 219(1–2), 111–150 (1999)
10. Ershov, Y.L.: Model C of partial continuous functionals. In: Logic Colloquium 76,

pp. 455–467. North-Holland, Amsterdam (1977)
11. Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Com-

putability Theory, pp. 473–503. Elsevier Science B.V., Amsterdam (1999)
12. Friedberg, R.M.: 4-quantifier completeness: a Banach-Mazur functional not uni-

formly partial recursive. Bulletin de l’Academie Polonaise des sciences, Serie des
sci. math., astr. et phys. 6(1), 1–5 (1958)

https://doi.org/10.1007/3-540-44683-4_20

254 M. Korovina and O. Kudinov

13. Hertling, P.: A Banach-Mazur computable but not Markov computable function
on the computable real numbers. Ann. Pure Appl. Logic 132(2–3), 227–246 (2005)

14. Gierz, G., Heinrich Hofmann, K., Keime, K., Lawson, J.D., Mislove, M.W.: Contin-
uous lattices and domain. In: Encyclopedia of Mathematics and its Applications,
vol. 93. Cambridge University Press, Cambridge (2003)

15. Grubba, T., Weihrauch, K.: On computable metrization. Electr. Notes Theor. Com-
put. Sci. 167, 345–364 (2007)

16. Grubba, T., Weihrauch, K.: Elementary computable topology. J. UCS 15(6), 1381–
1422 (2009)

17. Gregoriades, V., Kispeter, T., Pauly, A.: A comparison of concepts from com-
putable analysis and effective descriptive set theory. Math. Struct. Comput. Sci.
(2014). http://arxiv.org/abs/1403.7997

18. Korovina, M., Kudinov, O.: Rice-Shapiro Theorem in Computable Topology
(2017). http://arxiv.org/abs/1708.09820

19. Korovina, M., Kudinov, O.: Computable elements and functions in effectively enu-
merable topological spaces. J. Math. Struct. Comput. Sci. (2016). https://doi.org/
10.1017/S0960129516000141

20. Korovina, M., Kudinov, O.: Index sets as a measure of continuous constraint com-
plexity. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol. 8974, pp.
201–215. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46823-
4 17

21. Korovina, M., Kudinov, O.: Rice’s theorem in effectively enumerable topologi-
cal spaces. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS,
vol. 9136, pp. 226–235. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20028-6 23

22. Korovina, M., Kudinov, O.: Positive predicate structures for continuous data. J.
Math. Struct. Comput. Sci. 25(8), 1669–1684 (2015)

23. Korovina, M., Kudinov, O.: Towards computability over effectively enumerable
topological spaces. Electr. Notes Theor. Comput. Sci. 221, 115–125 (2008)

24. Martin-Löf, P.: Notes on Constructive Mathematics. Almqvist & Wiksell, Stock-
holm (1970)

25. Mazur, S.: Computable Analysis, vol. 33. Razprawy Matematyczne, Warsaw (1963)
26. Moschovakis, Y.N.: Recursive metric spaces. Fund. Math. 55, 215–238 (1964)
27. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-

Hill, New York (1967)
28. Soare, R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable

Functions and Computably Generated Sets. Springer, Heidelberg (1987)
29. Shoenfield, J.R.: Degrees of Unsolvability. North-Holland Publishing Company,

Amsterdam (1971)
30. Spreen, D.: On effective topological spaces. J. Symb. Log. 63(1), 185–221 (1998)
31. Spreen, D.: Effective inseparability in a topological setting. Ann. Pure Appl. Logic

80(3), 257–275 (1996)
32. Spreen, D.: On some decision problems in programming. Inf. Comput. 122(1),

120–139 (1995)
33. Spreen, D.: On r.e. inseparability of CPO index sets. In: Börger, E., Hasen-

jaeger, G., Rödding, D. (eds.) LaM 1983. LNCS, vol. 171, pp. 103–117. Springer,
Heidelberg (1984). https://doi.org/10.1007/3-540-13331-3 36

34. Vjugin, V.V.: On some examples of upper semilattices of computable numberings.
Algebra Logic 13(5), 512–529 (1973)

35. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

http://arxiv.org/abs/1403.7997
http://arxiv.org/abs/1708.09820
https://doi.org/10.1017/S0960129516000141
https://doi.org/10.1017/S0960129516000141
https://doi.org/10.1007/978-3-662-46823-4_17
https://doi.org/10.1007/978-3-662-46823-4_17
https://doi.org/10.1007/978-3-319-20028-6_23
https://doi.org/10.1007/978-3-319-20028-6_23
https://doi.org/10.1007/3-540-13331-3_36

Highlights of the Rice-Shapiro Theorem in Computable Topology 255

36. Weihrauch, K., Deil, T.: Berechenbarkeit auf cpo-s. Schriften zur Angew. Math. u.
Informatik 63. RWTH Aachen (1980)

37. Weihrauch, K.: Computability on computable metric spaces. Theor. Comput. Sci.
113(1), 191–210 (1993)

A Memory Model for Deductively Verifying
Linux Kernel Modules

Mikhail Mandrykin1(B) and Alexey Khoroshilov1,2,3,4

1 Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

{mandrykin,khoroshilov}@ispras.ru
2 The Faculty of Computational Mathematics and Cybernetics of Lomonosov

Moscow State University, Moscow, Russia
3 Moscow Institute of Physics and Technology, Dolgoprudny, Russia

4 National Research University Higher School of Economics, Moscow, Russia

Abstract. Several previous evaluations of memory models for SMT-
based deductive verification tools have shown that the choice of memory
model may significantly affect both the number of automatically dis-
charged verification conditions and the capabilities of the verification
tool. One of the most efficient memory models for deductive verification
of low-level C code is based on region analysis and component-as-array
modeling. However, originally this model doesn’t support many C lan-
guage idioms widely used in low-level system code including the Linux
kernel. The paper suggests a modification of this model that extends
it with full support for arbitrarily nested structures, unions and arrays,
arbitrary pointer arithmetic and general pointer type casts. The exten-
sion for nested structures and arrays requires no additional annotation
overhead. The support for pointer arithmetic, unions and pointer type
casts generally requires user annotations. The proposed model fully pre-
serves the performance of the original memory model for earlier sup-
ported code. Preliminary practical evaluation on an industrial security
kernel module showed a small specification overhead required for code
where the proposed model is not fully automatic.

Keywords: Deductive verification · Memory model · Region analysis

1 Introduction

Reasoning about memory separation is a well known problem in the field of
imperative program analysis and verification. In particular, there are two major
categories of approaches to dealing with memory separation in the context of
deductive verification.

The overall idea of approaches in the first category basically consists in
finding a sufficiently expressive and at least partially automizable logical frag-
ment relevant to the target code, then restricting the logic allowed in supported

The research was supported by RFBR grant 15-01-03934.

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 256–275, 2018.
https://doi.org/10.1007/978-3-319-74313-4_19

A Memory Model for Deductively Verifying Linux Kernel Modules 257

specifications to this fragment, and finally employing the developed automa-
tion techniques (decision procedures and/or type checkers). The corresponding
approaches are successfully implemented in tools supporting various fragments
of separation logic [1] e.g. Logic of Graph Reachability with Stratified Sets
(GRASS) [2,3] or a fragment of separation logic with fractional permissions [4],
and fragments of other logics for recursive data structures (often equivalent to
some separation logic fragments) e.g. the Logic of Interpreted Sets and Bounded
Quantification (LISBQ) [5]. The most notable advantage of these approaches is
resulting concision of specifications and (possibly) proofs while the most impor-
tant limitation is the expressiveness of the supported logics.

In scope of deductive verification for low-level system code the most impor-
tant limitations of these approaches are related to handling of arrays, some
specific uses of pointer arithmetic (e.g. obtaining the address of the outer struc-
ture by subtracting the corresponding offset from the address of a nested struc-
ture), pointer type casts (e.g. (char *)p when p has type int *) and casts
between pointer types and the integer type of the corresponding size (e.g.
using (unsigned long)p in order to save a pointer into a general-purpose
structure field intended to store a limited amount of arbitrary custom data).
Most of the known solutions either require significant manual proof overhead
(e.g. VeriFast [6]) or limit the analysis to memory safety (by analyzing only
the shape of the data in the heap, but not the contents of non-pointer vari-
ables) and also allow imprecise analysis in certain cases in form of false alarms
(e.g. SLAyer [7]). Despite those limitations these approaches quite efficiently
handle most common operations on recursive data structures e.g. lists and trees
and were successfully applied in practice for verification of low-level system code.

Approaches form the other category suggest a more naive modeling of mem-
ory state with a number of logical arrays (from the well-known and well-
automized array theory) and leaving the problem of dealing with particular
features of recursive data structures (e.g. formalizing the reachability relation)
and memory separation (i.e. disjointness of memory areas) to the user. To com-
pensate for the lack of built-in support for particular properties of recursive data
structures the user is usually provided with an expressive logical framework sup-
porting definition of general inductive predicates, recursive functions, axiomatic
specifications and the ability to use appropriate proof techniques (e.g. proof
assistants or lemma functions). These approaches trade relatively large specifi-
cations and possibly longer proofs for the expressiveness of the supported logic.
They are implemented in many verification tools e.g. VCC [8,9], Jessie [10]
and WP plugin for Frama-C [11]. In this paper we are focusing on this sec-
ond category of approaches. The ultimate purpose of our ongoing study is to
demonstrate how it can be optimized and enhanced to support a simpler and
more natural and concise specifications and possibly proofs for critical programs
where reasoning about memory separation, recursive data structures as well as
low-level memory representation of data is relevant. Linux kernel modules are
especially good examples of such programs.

258 M. Mandrykin and A. Khoroshilov

Since in this context the supported logical fragment is usually quite expres-
sive, the corresponding decision problems are usually undecidable in general.
Thus instead of providing a guarantee of decidability the corresponding verifica-
tion tools usually implement various optimizations of the verification conditions
(VCs) they produce based on relatively simple memory separation heuristics
such as typed memory modeling [12], component-as-array modeling (also known
as Burstall and Bornat memory model) [13,14] and region-based memory sepa-
ration [15]. We chose the region-based memory model as a basis of our further
development. So the next section briefly presents the idea of region-based mem-
ory modeling and the subsequent sections refine and transform the idea to extend
the expressiveness of the basic model for support of low-level pointer operations
such as pointer type casts and pointer arithmetic beyond array indexing.

2 Overview

In Sect. 3 we first briefly introduce the notions of region-based memory model-
ing and separation analysis in the context of deductive verification tools (Sub-
sect. 3.1). Then in the Subsect. 3.2 we turn our attention to the fact that most
existing separation analyses are devised to assure soundness at the cost of loosing
precision. While this trade-off is well suitable for most of the traditional appli-
cations of separation analysis (e.g. optimizing compilers and automatic static
checkers), in the context of deductive verification it’s not that clearly justified.
Even a relatively small change in separation assumptions, e.g. separation between
different structure fields of the same type, can lead to changes in the performance
of SMT-solvers on the resulting formulas up to an order of magnitude [9]. On
the other hand, in the context of a deductive verification tool, that is always
interactive, we don’t need to ensure soundness of the separation analysis in the
general case, but can verify its soundness separately for every individual code
fragment by emitting the corresponding VCs. In case the VCs fail to verify the
soundness of the analysis can be recovered by relying on user-supplied annota-
tions. Thus we arrive at the notation of user-guided separation analysis that we
introduce in Subsect. 3.3. In this subsection we also explain how typed memory
model with reinterpretation [12] can be regard as an instance of user-guided sep-
aration analysis and how the corresponding solution can be extended to integrate
user-guided region analysis, support for memory reinterpretation and memory
safety checking into a single unified memory model. We introduce such a memory
model in the following sections. In Sect. 4 we introduce a sufficiently expressive
core language whose semantics closely follows that of C and is intended to be
modeled by the suggested memory model. In Sect. 5 we provide an argument
for the soundness of the proposed model and in Sect. 6 we identify the minimal
set of necessary annotation capabilities that should be offered to the user to
allow annotating any correct code fragment in such a way that its semantics
is accurately represented in the corresponding model (thus also demonstrating
completeness of the model). In Sect. 7 we provide some preliminary results on
the amount of memory model-specific user annotations needed in practice for

A Memory Model for Deductively Verifying Linux Kernel Modules 259

verification of a real Linux kernel module. In Sect. 8 we briefly discuss current
very basic support for framing and the corresponding directions of future work.
We finally conclude in Sect. 9.

3 Region-Based Memory Modeling

3.1 Basic Idea

Let’s demonstrate the basic idea of region-based memory modeling by a simple
example. Suppose we are given an array arr of integers (int) and two pointers,
pf and pl, referring to the first and the last element of the array arr correspond-
ingly. Suppose also we have a pointer pe to an integer that is not an element of
the array arr. Consider a single C decrement operator:

*pe --;

Suppose the operator is executed in a context where the following precondition
is fulfilled:

∑pl−pf
i=0 pf[i] ≥ 0 ∧ (pe < pf ∨ pe > pl). To formally prove a trivial

postcondition
∑pl−pf

i=0 pf[i] ≥ 0 we can model the varying memory state naively
using a single sequence of logical arrays Mi mapping the memory addresses to
the corresponding integer values (let’s assume for a moment that we only have
integer variables in memory). Then the sum can be modeled by an uninter-
preted function S(pf , pl,Mi) with the necessary axiomatization. Thus using the
strongest postcondition semantics [16] we obtain the following formula:

S(pf, pl,M0) ≥ 0 ∧ (pe < pf ∨ pe > pl) precondition
∧ M1 = M0

[
pe ← M0[pe] − 1

]
*pe--;

∧ (∀Mi,Mj ∈ Z → Z. ∀pf , pl ∈ Z.

(∀x ∈ Z. pf ≤ x ≤ pl ⇒ Mi[x] = Mj [x])
=⇒ S(pf , pl,Mi) = S(pf , pl,Mj)

)

⎫
⎪⎬

⎪⎭
axiom

∧ ¬(
S(pf, pl,M1) ≥ 0

)
negated postcondition.

The formula is a conjunction of the strongest postcondition of the given operator
in the given context with the negated postcondition to be verified. The unsatis-
fiability of this conjunction implies inconsistency between any possible state of
the program after execution of the given operator and any state where the post-
condition in question is not fulfilled. Thus if the strongest postcondition itself
is not inconsistent, the unsatisfiability of the formula implies the validity of the
postcondition for any possible execution. The unsatisfiability of this formula can
be determined by most modern SMT-solvers with support for quantifiers and
theory of arrays, although satisfiability in first-order logic with arrays is unde-
cidable in general. But the fact that the formula for even a trivial postcondition
turned out to include five nested universal quantifiers demonstrates significant
inefficiency of the chosen approach to modeling varying memory state.

The basic idea of region-based memory modeling is to rely on the results
of a preliminary separation analysis that is able to separate pointer expressions
in the program into disjoint sets so that any two pointers taken from different

260 M. Mandrykin and A. Khoroshilov

sets necessarily (under certain assumptions) reference disjoint memory locations
(here we only consider pointers and locations of simple types e.g. int). Such
disjoint sets of pointer expressions are further referred to as regions. In our
example such separation analysis could give us a hint that the pointer expressions
pf and pl belong to the same region while the expression pe belongs to a different
one. So this additional assumption can be used to encode the formula more
efficiently by modeling the program state with two separate sequences of logical
arrays: Marr

i and Mpe
j (one sequence per region). Now the precondition stating

disjointness of locations addressed by the sets of pointers {pf, . . . , pl} and {pe}
is unnecessary. The formula becomes as small as:

S(pf, pl,Marr
0) ≥ 0 ∧ Mpe

1 = Mpe
0

[
pe ← Mpe

0 [pe] − 1
] ∧ ¬(

S(pf, pl,Marr
0) ≥ 0

)
,

which is trivially unsatisfiable. Even though such optimization doesn’t guarantee
decidability in general, there are studies [9,15] showing it can lead to significant
benefits in practice.

3.2 Soundness/Precision Trade-Off

Now the problem with various fully automatic separation analyses (they are
usually called alias analyses) in context of deductive verification is that most of
them significantly loose precision in order to assure soundness. A typical example
of this would be:

int n; char *pc = (char *)&n;

Here many existing separation analysis algorithms would assign the expressions
&n and pc the same region. While this can be perfectly relevant for, say, an
optimizing compiler, for a deductive verification tool such behavior is usually
very undesirable. To understand this it’s sufficient to consider an assignment
*pc = 0; and its effect on the value of the variable n. Precise modeling of such
assignments can significantly complicate the resulting formulas and effectively
eliminate any benefit of using the separation analysis. A similar loss of precision
typically occurs to a conventional separation analysis when it encounters a non-
trivial pointer arithmetic or an integer-to-pointer type cast. This is one of the
reasons why a special separation analysis for deductive verification was suggested
in [15].

But the proposed solution was quite limited. To make the analysis sound
many aspects of C were restricted. In particular, no nested structures,
pointer type casts and unions were allowed. Essentially, all C constructs
that can potentially violate separation between pointer expressions of dif-
ferent types were prohibited. The proposed solution was partially improved
in [17], but many programming idioms widely used in the Linux kernel
e.g. nested structures, the container of macro (essentially equivalent to
(struct container *)((char *)p containee - offsetof(struct container,
containee))) and non-prefix pointer type casts (e.g. (char *)p int), were still
unsupported by the separation analysis and the corresponding memory model.

A Memory Model for Deductively Verifying Linux Kernel Modules 261

3.3 User-Guided Separation Analysis

General idea. Yet in the context of a deductive verification tool there are
very useful opportunities that were missed by the separation analysis suggested
in [15]: it’s the availability of user support provided through annotations and
the possibility to ensure correctness of the region analysis for every particular
code fragment separately by explicitly emitting the necessary VCs.

The availability of a posteriori check of the region analysis results (by gener-
ating appropriate VCs) and the opportunity to require user annotations in some
special cases suggest an essentially reversed trade-off for a separation analysis
suitable for a deductive verification tool, i.e. an analysis that sacrifices soundness
for better precision. In the context of a deductive verification tool we can safely
use an unsound pointer analysis that initially makes unrealistically optimistic
assumptions about memory separation. If the result of the analysis turns out to
be incorrect for a particular code fragment, this can be detected by the corre-
sponding VCs that in this case become invalid. The user is thus informed about
a failed verification attempt due to unsoundness of the region analysis and is
requested to provide additional annotations to guide the analysis and recover
soundness.

Here an important downside of the suggested approach emerges. With this
approach the user gets informed about a need for additional annotations to
recover soundness, but does not necessary get a clear guidance about the par-
ticular problem and a concrete form of the annotations required. One of a few
solutions to this problem is to make the region analysis simple and transpar-
ent for the user so the one can understand its limitations, manually investigate
the particular reason for unsoundness and come up with the necessary addi-
tional annotations. This significantly limits the potential intricacy of the analysis
involved, since its functioning should be easily traceable and the results should
be easily predictable by the user. So primary benefit should come not from the
elaborateness of the region analysis, but from the relevance of the initial opti-
mistic assumptions and the rules applied by the analysis for the vast majority of
real code fragments. Also the cases when these assumptions do not hold should
be clearly distinguishable by the user.

Let’s demonstrate how this general approach was earlier applied in a rela-
tively simple memory model of the VCC2 deductive verification tool.

Typed memory model with reinterpretation as user-guided separation
analysis. The solution involving additional annotations and VCs as appeared
in VCC2 was called typed memory model with reinterpretation. The initial opti-
mistic assumption it adopted was unconditional separation between memory
areas addressed by pointers to different simple types. The technique applied for
checking the validity of this assumption consisted in maintaining a special ghost
(model) set of typed pointers with two available operations (split and join)
and an invariant stating that a memory address must be referred to by no more
than a single typed pointer in the set. Each pointer dereference was guarded
with a check for containment of the dereferenced typed pointer in the ghost
set. In case of a failing containment check, the two available model operations

262 M. Mandrykin and A. Khoroshilov

(split and join) could be inserted by the user in the appropriate places to
locally adjust the separation assumptions. The split operation allowed to con-
vert a pointer addressing an arbitrary continuous object (variable, structure or
array) into the corresponding set of pointers to char, while the join operation
allowed to perform the reverse transformation. Instances of those two operations
were called memory reinterpretation. With the use of reinterpretation the follow-
ing code fragment unsupported by the basic region-based model ([15]) as well as
the typed memory model in its initial form (without the use of reinterpretation):

int n = 0;
char *pc = (char *)&n, c;
c = *pc;
n = 1;

can be easily made admissible by inserting two user annotations corresponding
to the operations on the ghost pointer set:
int n = 0; {(&n, int)}
char *pc = (char *)&n, c; {(&n, int)}
/*@ split(&n); */ {(&n + i, char) | 0 ≤ i < sizeof(int)}
c = *pc; {(&n + i, char) | 0 ≤ i < sizeof(int)}
/*@ join(&n); */ {(&n, int)}
n = 1; {(&n, int)}
The state of the ghost typed pointer set after execution of each operator is shown
on the right. The memory occupied by the variable c having no aliases is not
indicated in the pointer set. As said above, in the typed memory model with
reinterpretation all the indirect memory access operations (pointer dereferences
and operations on possibly aliased variables) are supplied with the correspond-
ing VCs that check for the presence of the corresponding typed pointer in the
ghost pointer set at the current state, e.g. *pc implies �pc�E ∈ {(&n + i, char) |
0 ≤ i < sizeof(int)}, where �·�E denotes evaluation of the expression in the
current state of the environment E (here in the example E = {pc �→ &n}). The
corresponding VC is invalid if the first user annotation (split) is omitted. This
corresponds to the fact that initial optimistic type-based separation assumption
is not valid for this code fragment.

Thus despite the type-based separation assumption is generally wrong and
makes the (trivial) separation analysis unsound, this unsoundness is necessarily
detected by the failing verification attempts and can be eliminated by provid-
ing additional annotations. On the other hand, the introduction of type-based
separation gave a significant boost to the VCC verification tool allowing, in
particular, practical verification of some recursive data structures [12].

Extending the approach with memory safety and regions. The mem-
ory reinterpretation mechanism previously applied in typed memory model can
be quite naturally extended to keep track of the currently allocated memory to
support verification of memory safety properties. To do this one needs to aug-
ment the corresponding memory allocation and deallocation operations with the
corresponding semantics regarding the state of the typed pointer set. Also, the
initial state of the set should be chosen empty while at the locations correspond-

A Memory Model for Deductively Verifying Linux Kernel Modules 263

ing to the end of program execution the corresponding VCs should be generated
ensuring the final emptiness of the set. Such extension allows to get rid of the
need for additional separate memory safety model with its own annotations and
VCs, but it also has its drawbacks.

In the initial typed model a failed verification attempt can quite clearly point
to the particular problem of the separation analysis. With memory separation
soundness and memory safety checks combined, the cases where separation anal-
ysis is unsound are not anymore clearly distinguishable from true memory safety
alarms, incomplete preconditions (that should require the corresponding mem-
ory to be allocated) and, due to general undecidability of the underlying logic,
also false alarms arising from incompleteness of the decision procedures. So even
though the overall verification framework remains sound and the number of
required VCs decreases (no need for separate memory safety checks), under-
standing the output of the verification tool becomes more complicated. Here
again we rely mostly on the relative simplicity and predictability of the separa-
tion analysis.

We suggest extending the typed memory model with memory safety checking
and interactive region separation based on relatively simple rules. The suggested
model is also extended with component-as-array modeling of structure fields [14],
but this extension was already proposed and implemented earlier in VCC3 and
is described in paper [9].

So the next step that we suggest in this paper is to use the same ghost pointer
set yet another time to ensure the soundness of region-based separation analysis.
This can be done by refining the set of typed pointers (address, type) into the
set of pairs (address, region) were regions are assigned to pointers according to
the rules of region analysis. Here we implicitly assume the invariant restricting
admissible region analysis algorithms to those that always place pointer expres-
sions of different types into different regions. This implies that any region ρ
always has a single corresponding type τ(ρ). If we denote the fact (a, ρ) ∈ V
where V is the set of currently allocated pointer-region pairs as “the address
a is allocated in region ρ”, then the corresponding invariant on the pointer set
transforms into the following statement: Any address can be allocated in at most
one region. As explained further in Sect. 5, with this invariant the VCs ensuring
the correct use of reinterpretation are sufficient to also guarantee the soundness
of any region analysis satisfying type-based separation between regions (every
region is assigned exactly one corresponding type).

Thus we suggest to use the set of pointer-region pairs simultaneously for
three distinct purposes, namely: (1) Ensuring the correct use of reinterpretation
mechanism; (2) Verifying memory safety properties; (3) Ensuring the soundness
of region-based separation analysis. To refine more on this basic idea let’s intro-
duce a sufficiently expressive core language capturing all the basic C language
patterns involving pointers, structures, unions, arrays, pointer type casts and
arbitrary combinations of those constructs.

264 M. Mandrykin and A. Khoroshilov

4 The Core Language

Let’s begin with a simplifying assumption. We assume all pointers to be pointers
to structure types. Pointers to simple (non-composite i.e. arithmetic or pointer)
types can be rewritten as pointers to special dummy structures of the form
struct t s { t f; }; where t is the simple type and f is an arbitrary field
name. The dereferences of the form *p where p has type t are rewritten to p->f .
This transformation is also described in [15].

But unlike the model suggested in the paper we don’t apply nested structure
elimination. Instead we suggest to make nested structures part of the memory
model and support them directly by providing two corresponding core language
constructs: &p->f and container of (p, f) where container of corresponds to
the container of macro (subtraction of the nested structure offset defined in
Sect. 3.2) widely used in the Linux kernel. Let’s consider motivation for intro-
duction of explicit &p->f and container of (p, f) constructs in mode detail.
Consider the following code fragment:

struct outer {
struct inner { char c; } inner;
int a; } outer;

struct inner *pinner = &outer ->inner;
struct outer *pouter =

container_of(pinner , struct outer , inner);
pouter ->a = 0;

In the typed memory model (even without reinterpretation) the separation analy-
sis for this code fragment is trivial since every pointer to a simple type addresses the
memory object of that type, with initial optimistic type-based separation correctly
assumed and no splits or joins required. So in typed memory model (and actually
also in its extension with component-as-array modeling) there is no need in special
support for &outer->inner or container of(pinner, struct outer, inner)
constructs. They can be simply reduced to combinations of more “primitive”
pointer arithmetic and pointer type cast operations: &outer->inner � (struct
inner *)((char *)outer + offsetof(struct outer, inner)), container of
(pinner, struct outer, inner) � (struct outer *)((char *)pinner - off

setof(struct outer, inner)) (the latter is essentially just an expansion of the
corresponding macro). It’s important to note that in the typed memory model it’s
irrelevant whether offsetof(struct outer, inner) is a statically known con-
stant, it can be replaced with any expression that evaluates to the same value with-
out any consequence for separation analysis. Yet in the memory model with regions
and memory safety checks this code fragment is non-trivial. To verify the valid-
ity of the pointer dereference pouter->a the pointer expression (variable) pouter
should be necessarily assigned the same region as the expression &outer. But this
can only be done if the corresponding offset offsetof(struct outer, inner) is
a statically known constant. In general with the use of arbitrary expressions as off-
sets, the problem becomes undecidable and the region-based model either collapses

A Memory Model for Deductively Verifying Linux Kernel Modules 265

to the typed memory model or has to remain unsound at least for some uncom-
mon uses of pointer arithmetic and pointer type casts. So according to the over-
all idea of a simple user-guided separation analysis a clear-cut criterion is intro-
duced. &p->f and container of (p, f) become primitive constructs given the cor-
responding special semantics with respect to region analysis and the remaining
corner cases generally result in unsoundness (of the analysis, but not the model)
and has to be resolved by inserting a newly introduced specification construct
may alias(p1, p2). This construct only affects region analysis and has no-op oper-
ational semantics and it’s especially important for the completeness of the mem-
ory model addressed in Sect. 6. Since we suggest to support reinterpretation and
integrate it with memory safety checks we need four corresponding core language
constructs: split(p), join(p), p = alloc(n) and free(p). The allocation opera-
tor alloc is type-specialized (it’s not an ordinary C function) and unlike the usual
malloc function it allocates memory for n consecutive elements of the type cor-
responding to the pointer expression (lvalue) p in its left hand side. So the sug-
gested model initially requires special treatment of allocation functions. However,
the reinterpretation actually makes it possible to specify general allocation func-
tions e.g. malloc without ad-hoc means. We don’t use this approach initially to
make the subset of programs supported without additional annotations (reinter-
pretation) more comprehensive.

Since we intend to define a core language of contract-free paths to be used
in context of deductive verification we also need constructs for assumptions (at
least at the start of a contract-free path), assertions (at least at the end of a
contract-free path), and non-deterministic memory updates needed for support
of framing contracts (specifying aggregated effects of function calls, more specif-
ically, each call site consists of an assertion of the function’s precondition, some
non-deterministic memory updates, and an assumption of the function’s post-
condition). Currently we introduce three corresponding constructs: assume(c),
assert(c) and havoc(p, fpv). The metavariable c denotes any predicate in the
appropriate specification language (can be a fragment of a real C specification
language e.g. ACSL [18]). The suggested model naturally incorporates the well-
known component-as-array modeling technique, i.e. the state of each structure
field is modeled by a separate sequence of logical arrays. Let’s further denote the
region assigned by the separation analysis to a pointer expression p as P(p) and
the corresponding sequence of memory states for a field f as Mp->f

i . The opera-
tor havoc(p, fpv) makes the entire state of the memory Mp->f corresponding to
the field f of the pointer expression p non-deterministic (this is easily modeled
by increasing the current index i of the sequence Mp->f

i without restricting the
value of the corresponding fresh logical array).

Now the complete abstract syntax of the core language can be presented,
as shown in Fig. 1. Besides only allowing pointers to structures here we make
the second simplifying assumption that a single integral type of the same size
as any pointer type is available. The variables occurring in the contract-free
path are split into integer variables (v) and pointer variables (p), the terms and

266 M. Mandrykin and A. Khoroshilov

tv ::=
| i
| p1 - p2

| p1 == p2

| p->fv

tp ::=
| NULL

| p + v
| p->fp
| &p->fs
| container of (p, fs)

o ::=
| v = tv
| p = tp
| p = alloc(n)
| free(p)
| p->fv = v
| p1->fp = p2

| assert(c)
| assume(c)
| havoc(p, fpv)
| split(p)
| join(p)
| may alias(p1, p2)

s ::=
| ε
| o; s

Fig. 1. Abstract syntax of the core language.

fields are split in the same way (tv, tp, fv, and fp; fpv is either fp or fv). The
fields corresponding to nested structures are denoted as fs. The metavariable i
denotes an arbitrary arithmetic expression (we don’t describe modeling of arith-
metic operations in this paper), o denotes core language operators and s denotes
contract-free paths. The core language assumes a type system compatible with
that of C and extended with a region environment P populated by the separa-
tion analysis. Since soundness is checked by emitting the corresponding VCs, we
don’t need any concrete typing rules for the environment P. Instead we need to
supply the operations modifying the ghost pointer set V (alloc, free , split and
join) with the semantics that preserves the necessary invariants (see Sect. 5).

4.1 Translation of C

Now let’s show that not only the constructs earlier supported by the model
described in [15] and nested structures, but also arbitrary unions and pointer
type casts can be expressed in the suggested core language. The idea is since
the language supports nested structures, prefix pointer casts can be directly
expressed by using the corresponding operators of the form pi = &po->f and po =
container of (pi, f) where f is the first field of the outer structure referenced
by po and f has the same type as pointer pi (so the corresponding prefix casts
are (typeof (pi))(po) and (typeof (po))(pi)). Then to express non-prefix pointer
casts and unions we introduce a special dummy structure type void with no fields
and place a special field fs.void of that structure type (a nested structure of zero
size) as the first field to every structure type s other than the void itself. Thus
a cast of the form (struct s1)p where p has type struct s2 can be translated
as container of (&p->fs2.void, fs1.void). In this setting unions can be treated
as pointers to the void structure (the type void * can also be treated this
way). Then referring to a field of a union can be regarded as the corresponding
pointer type cast. The only corner case arises from the use of nested unions and

A Memory Model for Deductively Verifying Linux Kernel Modules 267

arrays (when they are used as structure fields), but even those have to be treated
specially only in the semantics of allocation and deallocation operators.

5 Soundness

We suggest demonstrating the soundness of the memory model for any arbi-
trary region analysis. We only assume that the results of the region analysis are
represented by the region environment P mapping every syntactic pointer core
language term (tp) of the target contract-free path to a corresponding region.
We also assume, as mentioned earlier in Sect. 3.2, that every region ρ has a single
corresponding structure type tag τ(ρ).

We introduce two semantics of the core language described in the previous
section: one that closely corresponds to the operational semantics of the appro-
priate fragment of C and one that follows closely the semantics as formulated
by the generated VCs. The former semantics is further denoted as reference
semantics while the latter one is further called model semantics.

We can use small-step operational semantics [19] with non-deterministic
choice to capture all possible executions of a contract-free path starting from a
particular state using a single evaluation relation. We define intermediate eval-
uation state in the reference semantics as a quintuple (Ep, Ev,B,V,L), where Ep

and Ev denote the environments for pointer and integer variables correspond-
ingly, B represents the state of actual program memory (the map from addresses
to the corresponding values), V represents the set of currently allocated (valid)
addresses (by mapping the addresses to the set {⊥,}) and L : Bd → N ∪ {0}
represents the lengths of currently allocated blocks. The map L is needed to
formalize the semantics of the free operator to be close enough to the standard
C function free. The set of values (terminal evaluation states) for contract-free
paths is defined as {,⊥}, i.e. either any possible execution of the path respects
all explicit and implicit specifications (assert operators and VCs for memory
safety), which corresponds to the value , or there exists an execution of the
path violating at least some specifications (⊥).

An intermediate state in the model semantics is defined as a triple (Ep, Ev,M)
where Ep and Ev are exactly the same as in reference semantics while the states
of B, V and L are modeled with a set of maps M. Each map in the set M is
uniquely identified by a pair (ρ, f) where ρ is a region and f is a corresponding
structure field, so that p->f is a valid lvalue as long as p has type τ(ρ). Besides
normal structure fields f we also introduce two special fields s.V and s.L for
every non-void structure s. With these special fields, the set of maps M is able to
model the reference maps V and L correspondingly. The most crucial difference
between model and reference semantics is the separate modeling of different
memory regions and different structure fields. Another difference is that in every
map of the form Mρ

V uniquely identified by the region ρ and the field fτ(ρ).V the
validity of the memory area corresponding to all non-composite fields of structure
s at address a is represented by a single binary value Mρ

V [a]. This value also
indicates whether the structure at a is currently allocated in the region ρ.

268 M. Mandrykin and A. Khoroshilov

Let’s summarize the invariants maintained by the reference and models
semantics. These invariants determine constraints on the corresponding correct
intermediate evaluation states.

Each reference evaluation state of the form (Ep, Ev,B,V,L) satisfies the fol-
lowing constraints:

∀a, i ∈ B
d . i < L[a] =⇒ V[a + i] (L �→ V),

∀a, i ∈ B
d . 0 < i < L[a] =⇒ L[a + i] = 0 (L �→ L),

∀a ∈ B
d . V[a] =⇒ ∃i ∈ B

d . L[a - i] > i (V �→ L),
¬V[0] (NULL).

Here B
d is the set of all memory addresses (d is the bit-length of an address e.g.

32 or 64). Operations + and - are wrap-around (assume arithmetic modulo 2d).
In the model semantics the corresponding constraints get a bit more involved:

∀a, i ∈ B
d, ρ ∈ R. i < Mρ

L[a] × sizeof(ρ) =⇒ Valid(a + i) (ML �→ MV),
∀a ∈ B

d, ρ ∈ R. Mρ
L[a] > 0 =⇒ uniqL(a, ρ,Mρ

L[a]) (ML �→ ML),
∀a ∈ B

d, ρ ∈ R. Mρ
V [a] =⇒

∃i ∈ B
d, ρ′ ∈ R. Mρ′

L [a - i] × sizeof(ρ′) > i (MV �→ ML),
∀a ∈ B

d, ρ ∈ R. Mρ
V [a] =⇒ uniqV(a, ρ) (MV �→ MV),

¬Valid(0) (NULLρ),

where

Valid(a) ≡ ∃ρ ∈ R. Validρ(a, ρ),
Validρ(a, ρ) ≡ ∃f ∈ F(ρ). Mρ

V
[
a - offsetof(f)

]
,

uniqL(a, ρ, l) ≡
∀i ∈ B

d, ρ′ ∈ R. i < l × sizeof(ρ) ∧ (ρ′ �= ρ ∨ i > 0) =⇒ Mρ′
L [a + i] = 0,

uniqV(a, ρ) ≡
(
∀f ∈ F(ρ), ρ′ ∈ R. ρ′ �= ρ ⇒ ¬Validρ

(
a + offsetof (f), ρ′)

)
∧

(∀i ∈ B
d . 0 < i < sizeof(ρ) =⇒ ¬Mρ

V [a + i]
)
.

Here R = imgP is the finite set of all regions assigned to pointer expressions by
the region analysis, F(ρ) = fields

(
τ(ρ)

)
is the set of all non-composite fields of

the structure corresponding to the region ρ, sizeof(ρ) = sizeof
(
τ(ρ)

)
.

The above constraints state that maps Mρ
V and Mρ

L should be self- and
mutually consistent. L and ML should correctly specify the lengths of allocated
blocks (L �→ V and ML �→ MV). Every valid address should be attributed to
an allocated block (V �→ L and MV �→ ML). The blocks should be disjoint
(L �→ L and ML �→ ML). In the model semantics every valid address is also
attributed to a single valid structure as an address of one of its non-composite
fields (see V �→ MV below). Valid structures should also be disjoint and every
valid structure should be allocated in exactly one region (MV �→ MV). So the
validity of structure in a region is represented by the value at the starting
address of the structure in that region (as in definition of Validρ) and bottoms
(⊥) at all its other (non-zero) offsets in that region as well as all offsets of
non-composite fields in all other regions (MV �→ MV). The validity of nested

A Memory Model for Deductively Verifying Linux Kernel Modules 269

structures is indicated in their corresponding regions. So the support for nested
structures need not be manifested in the invariant.

The important difference between representations of validity and block
lengths reflected in predicates uniqV and uniqL is that while validity of memory
occupied by non-composite fields of nested structures is represented by the cor-
responding validity flags of the innermost structures (the immediate containers
of the corresponding fields), the length of an allocated block is only represented
once per block by the corresponding s.L field of the first outermost structure
in the block. This allows to apply arbitrary reinterpretations of the memory
allocated within the block while still respecting the semantics of standard C
functions malloc and free (or Linux kernel functions kmalloc and kfree) by
ensuring that the whole block is deallocated simultaneously after passing its
starting address to the function free (or kfree). The only extra limitation here
is that before the call to free the layout (typed interpretation) of the memory
should be restored to its original state as it was just after the allocation.

Now we can formulate the invariant relating the corresponding correct refer-
ence and model intermediate evaluation states:

(∀a ∈ B
d . V[a] =⇒ Valid(a)

) ∧ (V �→ MV)(∀a ∈ B
d . L[a] > 0 =⇒ ∃ρ ∈ R. L[a] = Mρ

L[a] × sizeof(ρ)
) ∧ (L �→ ML)(∀a ∈ B

d, ρ ∈ R. Mρ
L[a] > 0 =⇒ L[a] = Mρ

L[a] × sizeof(ρ)
) ∧ (ML �→ L)

∀a ∈ B
d, ρ ∈ R. Mρ

V [a] =⇒(∀f ∈ F(ρ).
V[

a + offsetof (f)
] ∧ (MV �→ V)

Mρ
f [a] = B[

a + offsetof(f)
])

(MB←��→B).

This invariant essentially establishes a bijection between the three maps V, B,
L and the map M. (V �→ MV) guarantees that any valid (currently allocated)
address is valid in at least one region as an address of some non-composite
structure field (a field of primitive type). (MV �→ V) states that validity of a
structure in a region implies validity of all addresses corresponding to its non-
composite fields and (MB←��→B) also states that this implies equivalence between
the values in the maps M and B for those addresses. (ML �→ L) and (L �→ ML)
together with the consistency invariants (L �→ L) and (ML �→ ML) stated above
provide one-to-one correspondence between the map L and the corresponding
set of maps Mρ

L.
With all the self- and mutual consistency invariants maintained, soundness

of the modeling can be ensured by simply checking the precondition Mρ
V [Ep(p)]

for every pointer dereference of the form p->f . These checks guarantee that the
read and write accesses always happen to the maps Mρ

f that exactly represent
the corresponding values from the map B. The only remaining concern is to
ensure the semantics of memory (de)allocation and reinterpretation operations
(alloc, free , split and join) also respect the invariants. The corresponding
formal description of their semantics is quite long, but essentially uninteresting,
so we omit it in this paper.

270 M. Mandrykin and A. Khoroshilov

If we denote the above invariants as (B,V,L) ∼ M, the evaluation relation of
the reference semantics as �, and the evaluation relation of the model semantics
as �, then the final soundness result can be presented as follows:

∀Ev,Ep,B,V,L,M,s. (B,V,L) ∼ M ⇒ s|(Ev,Ep,B,V,L) �∗ ⊥ ⇒ s|(Ev,Ep,M) �∗ ⊥.

This is a typical statement of a sound approximation: Provided the initial
states respect the invariant, the correctness of the model guarantees the cor-
rectness of the original path. It’s worth noting here again that the approxima-
tion remains sound regardless of the particular assignment of regions to pointer
expressions (P).

Yet soundness only guarantees that an incorrect contract-free path (that
may evaluate to ⊥ under the reference semantics) also remains incorrect (has
⊥ as one of its values) under the model semantics. This does not imply any
guarantees about correct contract-free paths. Thus arises the completeness issue
since the memory model doesn’t impose any restrictions on the region analysis
and an unrestricted analysis can easily assign the regions in such a way that
makes any correctness under the model semantics impossible. For an example, a
region analysis that assigns a fresh region to every pointer expression will make
it impossible to correctly dereference any pointer.

6 Completeness

Since the overall approach of user-guided region analysis relies on the use of
auxiliary annotations, the goal of this section is to identify the minimal required
set of annotation constructs that allows the user to adjust any correct contract-
free path without changing its reference semantics so that the path becomes
correct (necessarily evaluates to) under the model semantics. In this section
we still impose only just a few additional restrictions on the kind of region
analyses we admit. So instead of identifying the annotations potentially needed
for a particular region analysis algorithm (or a restricted set of algorithms) we
suggest the set of constructs and the corresponding annotation strategy that
cover the worst case and allow to annotate any correct path for any admissible
region analysis algorithm. This strategy is of course very redundant and not
practical, but it proves the theoretical completeness of the proposed memory
model and also provides the user with a guiding hint about what annotations
should be inserted in practice for the cases when default optimistic assumptions
of the region analysis end up being wrong for a particular code fragment. The
actual amount of annotations really needed in practice is preliminary assessed
in Sect. 7.

So there are essentially three reasons for the incompleteness of our region-
based model. The first two reasons are concerned with separation assumptions,
namely spurious (overoptimistic) separation between two regions of the same
structure type and two regions of different structure types. The third reason is
coarser granularity in representation of maps MV and ML relative to the maps
V and L.

A Memory Model for Deductively Verifying Linux Kernel Modules 271

The first issue, spurious separation between regions of the same type can
be easily addressed by explicitly providing the necessary equality constraints in
the form of special unification operators may alias introduced in Sect. 4. These
operators with no-op reference semantics can be added to the path in arbitrary
places to constrain the separation analysis when needed. There is a subtlety
here in the fact that an entirely unrestricted separation analysis can in theory
assign different regions to different occurrences of the same expression (physical
vs. structural equivalence between pointer expressions is irrelevant for soundness
and so both are theoretically admissible) and also that the semantics of some
operators (e.g. alloc) implicitly involves regions that can even have no corre-
sponding pointer expressions syntactically present in the path (e.g. regions of the
nested structures). So the separation analysis is further restricted to be control-
flow insensitive and the existence of a map N from pairs of the form (ρ, fs) to
the corresponding nested structure regions is assumed. Since some operators also
implicitly involve container regions (split and join , when casting the pointer
to/from char *) the existence of a similar container structure map N−1 is also
assumed. But the consistency of the two maps is, strictly speaking, not neces-
sary for completeness since the number of regions is always final and bounded
in advance and so necessary unifications can in theory be added explicitly with
may alias. There is yet another issue with the presented core language since it
doesn’t allow arbitrary complex pointer expressions: the auxiliary variables have
to be introduced. To resolve this, mandatory region unification on all assignment
operators is required, which makes results of separation analysis invariant under
the introduction of intermediate variables.

The second issue, spurious separation between regions of different types, has
the solution already built into the core language, which is its support for rein-
terpretation (operators split and join). Since each operator (see o in Fig. 1)
allows only a single pointer dereference, the same memory cannot be accessed
through two pointers of different types in one operator. So in theory it’s enough
to add a join before each operator involving a pointer dereference and a split
afterwards. This is completely analogous to the trick used in the completeness
proof for the typed memory model in [12].

Now the most problematic concern for the incompleteness of the region-
based memory model is that the reference semantics allows even only a part
of a structure to be correctly allocated and successfully accessed as long as the
operations only involve the allocated parts. In contrast, the invariants of the
correct intermediate model evaluation states make some configurations of the
map V inexpressible within the corresponding set of maps Mρ

V . In the model
semantics a partially valid structure having both some valid and some invalid
non-composite fields simply can not be represented (as stated by the clause
(MV �→ V) of the invariants ∼ in Sect. 5). The issue also occurs when trying to
translate a C program involving an addressing operator & on a non-composite
structure field. The problem is that to our knowledge there’s no good known
solution to resolve this issue in a way that is both sound and modular (that is
also pointed out in [9]). We choose a non-modular solution which is to translate

272 M. Mandrykin and A. Khoroshilov

the original program differently depending on which structure fields of simple
types are addressed (either with & or by using offsetof corresponding to the
field). In relation to the completeness of the model semantics in theory we can
translate each non-composite field as a nested structure of the corresponding
dummy structure type with a single field mentioned in Sect. 4. The operators on
the path should be transformed correspondingly.

Thus we introduce three additional specification constructs, namely
may alias, split and join and also suggest special preliminary code trans-
formation for addressed structure fields of primitive types, where the addressing
operator & can also be regarded as an annotation in the original program before
the transformation. So by combining the suggested solutions together it’s possi-
ble to transform any original path in such a way that whenever it’s only related to
the correct result () under the reference semantics, the result of its evaluation
in model semantics is also necessarily i.e. in theory it’s possible to demon-
strate the correctness of any given path under the model semantics. Since the
transformations don’t change the reference semantics of the original path, the
presented model can in theory be used to soundly prove correctness (evaluation
to for any possible execution) of arbitrary individual contract-free paths.

7 Annotation Overhead

The worst-case annotation strategy suggested in the previous section assumes a
very large potential number of annotations, exceeding the number of operators
in the original code. However, the model can be easily viewed as a generalization
of the model presented in [15], which was successfully applied to code fragments
amounting to ≈ 3000LoC from an embedded system for avionics. The model
didn’t make use of any additional annotations. To make the separation analysis
a direct extension of the one considered in [15], it’s enough to impose an addi-
tional constraint—the existence of a map Δ from pairs of the form (ρ, fp) to
the corresponding regions of pointer expressions p->fp where p is assigned the
region ρ. This constraint alone makes all the programs admitted by the basic
region-based memory model [15] with its separation analysis also admissible by
the model presented in this paper. But since the goal of the suggested model is
support of C language constructs and programming idioms used in the Linux
kernel, it’s also reasonable to consider automatic (annotation-free) support of
a larger language subset. Indeed it seems natural to show that the suggested
model also supports those uses of arbitrarily nested structures (and arrays of
structures) that are syntactically recognizable, since the constructions &p->fs

and container of (p,fs) are part of the core language. However, a rigorous proof
of the corresponding statement requires introduction of quite a few new notions
(e.g. syntactically recognizable use of nested structures) and is quite involved.

So far we only refer to our practical experience based on a custom Linux
security module being approximately 3.5 KLoC that showed only 12 out of 255
functions needed any additional annotations required by the memory model
(to int ,of int , may alias or explicit field addressing & absent in the original

A Memory Model for Deductively Verifying Linux Kernel Modules 273

code) totally amounting to 32 additional annotations. 6 of the functions requiring
additional annotations involved memory reinterpretation between integral types
of different size and byte reordering (those required 4 reinterpretation anno-
tations for each function), 4 functions involved allocating memory for flexible
array members (this is not supported automatically and requires reinterpre-
tation annotations, also the semantics of allocation operator can be extended
to support final flexible arrays), 1 function involved memory reinterpretation
between a structure type and an array of unsignedchar (the function required
2 annotations), and 1 remaining function involved a pointer type cast of the
form (t **)p where p has type void ** and t is not void, which is also consid-
ered reinterpretation by the model since void * and t * are treated as different
primitive types (the function required 2 annotations). The implementation of
the suggested memory model is not yet finished, primarily regarding framing
and support for inductive and recursive logic definitions, so some additional
kinds of annotations can be further required. But they are more likely to be
related to framing and logic function domains rather than the memory model
for contract-free paths.

8 Framing

The particular problem regrading embedding of a callee frame condition (con-
tract) into the caller sequence of operators is the requirement to maintain the
invariants underlying the soundness of the memory model. We suggest quite a
simple solution that is to require the regions of the callee function to match the
regions of the caller function precisely. This simple solution can potentially make
the memory model significantly less efficient in some cases. Similar to the basic
model [15] our implementation propagates unification i. e. equivalence of regions
from the callee functions to the caller. This makes the region separation in higher-
level functions more coarse-grained, but allows to support a significant subset of
C without requiring additional annotations. The only case that is not covered by
this solution is a call of a function which assumes more fine-grained separation
that is already assumed in the caller function. This problem can be solved in
a non-modular way by inserting the appropriate may alias annotation in the
body of the callee function (this is what we currently use in practice). But this
may potentially degrade the performance of SMT solvers on the callee function.
So since this solution is not only non-modular, but also potentially disruptive,
we suggest an alternative in the form of an additional specification construct
allowing to move a set of allocated memory addresses between regions. This,
however, requires formal introduction of address sets, corresponding operations,
and mechanisms to compensate for the additional overhead arising from the use
of such moving annotation. The development of the corresponding solutions is
left for future work.

274 M. Mandrykin and A. Khoroshilov

9 Conclusion

In this paper we suggested a modification of region-based memory model for
deductive verification that allowed to support arbitrarily nested structures,
unions and arrays, arbitrary pointer arithmetic and general pointer type casts.
The support of nested structures and arrays is fully automatic and requires no
additional annotation overhead, while the support for pointer arithmetic, unions
and pointer type casts requires user annotations provided through three special
specification constructs (split , join and may alias). Preliminary experimental
evaluation on an industrial security kernel module showed a small required addi-
tional specification overhead related to the memory model (32 annotations per
approximately 3.5 KLoC). Framing is not fully automatic and may require addi-
tional non-modular annotations that can potentially make the resulting SMT-
formulas harder to decide. Overcoming this limitation is currently left for future
work.

References

1. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
LICS 2002, Washington, DC, USA, pp. 55–74. IEEE Computer Society (2002)

2. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 47

3. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 54

4. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 439–
458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19718-5 23

5. Lahiri, S., Qadeer, S.: Back to the future: revisiting precise program verification
using SMT solvers. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, pp. 171–182.
ACM, New York (2008)

6. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: Ver-
iFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5 4

7. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: memory safety for systems-level code.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 15

8. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03359-9 2

https://doi.org/10.1007/978-3-319-08867-9_47
https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-22110-1_15
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2

A Memory Model for Deductively Verifying Linux Kernel Modules 275

9. Böhme, S., Moskal, M.: Heaps and data structures: a challenge for automated
provers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol.
6803, pp. 177–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22438-6 15

10. Moy, Y.: Automatic modular static safety checking for C programs. Ph.D. thesis,
Université Paris-Sud, January 2009

11. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

12. Cohen, E., Moskal, M., Tobies, S., Schulte, W.: A precise yet efficient memory
model for C. Electron. Notes Theor. Comput. Sci. 254, 85–103 (2009)

13. Burstall, R.M.: Some techniques for proving correctness of programs which alter
data structures. Mach. Intell. 7(23–50), 3 (1972)

14. Bornat, R.: Proving pointer programs in Hoare Logic. In: Backhouse, R., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000).
https://doi.org/10.1007/10722010 8

15. Hubert, T., Marché, C.: Separation analysis for deductive verification. In: Heap
Analysis and Verification (HAV 2007), Braga, Portugal, pp. 81–93, March 2007

16. Dijkstra, E.W., Schölten, C.S.: The strongest postcondition. In: Predicate Calculus
and Program Semantics. Texts and Monographs in Computer Science. Springer,
New York (1990). https://doi.org/10.1007/978-1-4612-3228-5 12

17. Moy, Y.: Union and cast in deductive verification. In: Proceedings of the C/C++
Verification Workshop, vol. Technical Report ICIS-R07015, pp. 1–16. Radboud
University Nijmegen, July 2007

18. Baudin, P., Cuoq, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y.,
Prevosto, V.: ACSL: ANSI/ISO C Specification Language. Version 1.11 –
Aluminium-20160501, September 2016

19. Plotkin, G.D.: A structural approach to operational semantics (1981)

https://doi.org/10.1007/978-3-642-22438-6_15
https://doi.org/10.1007/978-3-642-22438-6_15
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/10722010_8
https://doi.org/10.1007/978-1-4612-3228-5_12

Indexing of Hierarchically Organized
Spatial-Temporal Data Using Dynamic

Regular Octrees

Sergey Morozov1,2, Vitaly Semenov1,3, Oleg Tarlapan1,2,
and Vladislav Zolotov1(B)

1 Institute for System Programming, Russian Academy of Sciences,
Moscow, Russia

{serg,sem,oleg,vladislav.zolotov}@ispras.ru
2 Lomonosov Moscow State University, Moscow, Russia

3 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia

Abstract. The paper is devoted to theoretical and experimental study
of indexing methods as applied to spatial-temporal datasets appearing in
different science and industry domains. For this purpose a general spatial-
temporal data model is presented as a scene that admits hierarchically
organized, heterogeneous spatial objects with individual temporal behav-
iors. For the model presented we argue the relevance of dynamic event-
driven regular octrees as an underlying spatial-temporal indexing struc-
ture to a wide class of applications and prove its effectiveness for queries
such as scene reconstruction, region search, and collision detection.

For hierarchically organized scenes a complementary generalization
of the octrees is proposed. Its performance and memory consumption
advantages over traditional structures are confirmed by carrying out a
series of computational experiments with industry meaningful datasets
originated from the construction modeling applications. Results of com-
putational experiments substantiate theoretical conclusions and demon-
strate possibilities of creating efficient applications under the conditions
of permanently growing scales and complexity of spatial-temporal data.

1 Introduction

Spatial-temporal information systems and, particularly, spatial-temporal
database management systems, are becoming increasingly important in differ-
ent science and industry domains such as agriculture, climatology, ecology, eco-
nomics, telecommunication, transportation, navigation, construction, multime-
dia where real-world objects live in three-dimensional space and undergo to per-
manent changes [1,2]. Traditional relational and object-oriented database tech-
nologies are not suitable for effective managing and retrieving such data. On
the other side, research efforts in multidimensional databases showed that such
queries cannot be efficiently resolved without considering the data semantics.
Particularly, spatial, temporal, and spatial-temporal (e.g. velocity, acceleration)
concepts must be captured to meet the performance requirements [3]. It becomes
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 276–290, 2018.
https://doi.org/10.1007/978-3-319-74313-4_20

Indexing of Hierarchically Organized Data 277

especially important if computationally intensive queries like dynamic collision
detection (finding all the spatial objects which are overlapped over a given time
period) or motion planning (finding a conflict-free path in complex environment
from source to destination position) must be resolved in a real-time application
[4]. However, a lack of comprehensive spatial-temporal data models and holistic
indexing frameworks prevents the creation of efficient applications.

A choice of spatial-temporal model plays a crucial role for the devel-
oped applications. But often this factor is neglected when the application
is being designed and proper indexing structures and techniques are being
selected. Spatial-temporal models can be classified into the following ten cat-
egories: Snapshot model, Space-Time Composite model, Simple Time-Stamping
models, Event-Oriented models, Three-Domain model, History Graph model,
Spatio-Temporal Entity-Relationship model, Object-Relationship model, Spatio-
Temporal Object-Oriented models and Moving Object Data model. For brevity
we omit the detailed comparative analysis of the models, addressing to [5,6].

Since the late 1980s different spatial-temporal indexing methods have been
proposed and developed mostly as extension or generalization of well-known spa-
tial data access structures. Following the excellent surveys [7,8], these structures
can be roughly subdivided into three families:

– structures implying the space decomposition (overlapping linear quadtree,
PMR quadtree);

– structures employing the object composition based on the R-trees (MR-tree,
HR-tree, HR+-tree, 3-dimensional R-tree, 2+3 R-tree, MV3R–tree, 2–3 TR-
tree, LUR-tree, RT-tree, STR-tree, TB-tree, SETI, SEB-tree, TPR-tree, PR-
tree, VCI R-tree, STAR-tree, TPR*-tree, REXP-tree, NSI, RST-tree);

– structures representing space and time using transformations (duality trans-
formations, transformations with kinetic data structure, transformations with
starting location and velocity).

As can be seen, less attention is paid to the methods based on regular and
irregular space decomposition, although many structures like quadtrees, octrees,
k-d-trees, puzzle-trees, X-Y-trees, BSP-trees, treemaps, multilevel grids, and
metric trees are successfully employed in sophisticated applications of computer
graphics, virtual and augmented reality, CAD/CAM. In previous studies we ana-
lyzed main families of spatial decomposition methods and singled out a family
of indexing methods based on dynamic regular octrees [9]. Main advantage of
regular octrees is cheap updates owing to a priori known position of cutting
planes and a capability to meet permanent changes occurring in time. In combi-
nation with the temporal access methods, particularly those that rely on event
indexing trees, regular octrees support spatial queries highly effective. Although
non-uniformly distributed spatial data may result in unbalancing of indexes and
some temporal queries need spanning the entire event history, these shortcomings
do not prevent high performance results in some applications [10].

In the paper we present own Scene Model that incorporates different concepts
of the spatial-temporal models mentioned above and leverages their construc-
tive features. The model admits hierarchically organized, heterogeneous spatial

278 S. Morozov et al.

objects with individual temporal behaviors which combine both discrete events
and continuous movements. For the model presented we argue the relevance of
dynamic event-driven regular octrees as an underlying spatial-temporal indexing
structure to a wide class of applications and prove its effectiveness for typical
queries such as scene reconstruction, region search, and collision detection. The
presence of hierarchical organization brings uniqueness in the model and results
in a wider interpretation of queries addressed simultaneously to both parent
and child objects between which the composition relations are established. For
such cases we provide a hierarchical generalization of the proposed indices and
confirm its performance and memory consumption advantages over traditional
structures by carrying out a series of computational experiments with industry
meaningful data sets originated from the construction modeling applications.

The rest of the paper is organized as follows. In Sect. 2 we present the scene
model and focus on its peculiarities caused by a hierarchical organization of the
spatial-temporal data and a wider interpretation of typical queries. Dynamic
event-driven regular octrees are considered in Sect. 3 where their hierarchical gen-
eralization for the scene data is provided too. Section 4 is dedicated to theoretical
complexity analysis of the data access methods based on the presented index-
ing structures. Results of computational experiments are discussed in Sect. 5. In
Conclusions we summarize the achieved benefits of the proposed indexing meth-
ods and outline the directions of further research and the perspectives for their
practical employment.

2 Scene Data Model

In the scene model the entire dataset is considered as a collection of dynamic
spatial objects or as a scene. The scene consists of simple and compound objects
which in turn consist of other children objects and, thereby, the scene has a
hierarchical structure due to parent-child composition relations among objects.
Simple objects may be points, lines, surfaces, volumes and hyper-volumes in
high-dimensional spaces of corresponding geometry and topology semantics.

The composition relations introduced in the scene model have another assign-
ment implying that spatial positions of the child object are always defined in
a local coordinate system of its direct parent. That is true, except for the top-
level objects which are located in a global coordinate system of the entire scene.
With local positions, absolute position of any object in the global coordinate
system can be easy computed by traversing all the parents and multiplying local
transformation matrices as it is usually done in computer graphics applications.
Bounding volumes like AABB (Axis-Aligned Bounding Box) (sometimes, they
are also called Minimum Bounding Rectangles (MBR)) can be determined for
any scene object in a local coordinate system of its parent.

A temporal behavior of the scene is modeled by means of defining and
sequencing object events. Each event is associated strongly with one object and
stores one timestamp when the event happens in the modeled reality. The scene
model is a valid time model assuming that all the timestamps fix the absolute

Indexing of Hierarchically Organized Data 279

Fig. 1. A series of images illustrating the construction project progress within the scene
data model.

linear time points when the facts are true. Current modeling time is called a
focus time. No transaction times peculiar to some other models are supported.
The events are interpreted in a wider context as deterministic precedents which
change the object states or modify their behavioral patterns. The considered
events may be either appearance or disappearance of an object or a movement
to another position along a given path. A sequence of all the events associated
with a given object is called the object behavior and can include its multiple
discrete-in-time appearances in the scene, its multiple disappearances from the
scene as well as continuous-in-time movements. The events are defined so that
any of their sequences is interpreted unambiguously, e.g. the existence of the
object in the scene, its position and orientation can be determined as a func-
tion of time. The events driving continuous movements induce the subsequences
of derived events which are not persistent data, but are involved in evaluation
of temporal queries. During query processing the derived events are generated
with a time step adaptively selected in accordance with the spatial-temporal
coherence of the scene.

Thus, the scene model admits hierarchically organized, heterogeneous spa-
tial objects with assigned individual behaviors combining both discrete events
and continuous movements. The model has a lot of sophisticated applications
in different sciences and industries. Figure 1 provides an application example
aimed at modeling of construction projects and detecting spatial-temporal con-
flicts in the project schedules. A series of images reproduces a project progress
on the construction site of a modern-of-art stadium. Building objects appear in
the model scene at predetermined discrete times according to the project sched-
ule, and remain there until the end of the entire modeling period. The objects

280 S. Morozov et al.

are placed in the positions and orientations of the relevant project 3D design
documentation. Some technological objects, being installed, are later removed.
Complicated construction operations are modeled using continuous movements.

3 Scene Indexing Structures

The discussed scene indexing structure combines an event tree and spatial
decomposition trees. The event tree plays the role of primary temporal index
which can be computed once and then be updated if only the model events have
happened. It can be implemented as an AVL binary search tree or B-tree ordered
by the event timestamps and identifiers. It allows fast lookup, efficient retrieval
of events in a given time interval and quick updates when registering new events
in the model. All these operations take time proportional to logarithm of the
number of model events and this fact makes possible the use of the event tree
for various computational tasks and evaluation of various temporal queries. One
of the typical queries is the reconstruction of a dynamic scene at a given focus
time.

Fig. 2. Spatial-temporal indexing structure for the one-level scene model.

Spatial decomposition trees are secondary indexes which are computed or
updated whenever a model focus time is changed. They depend on the entire
model dataset, and that is why their updates should be organized effectively. Our
previous research has proved that regular octrees being used as spatial indexes
exhibit high performance for such queries as frustum culling, nearest neighbor
search, collision localization, hidden surface removal meanwhile being applicable
to objects with extended borders. At the same time non-expensive incremental
updates are admitted to bring the indexes to consistent states. Figure 2 illustrates
the discussed indexing structure.

The traditional regular octrees use recursive subdivision of the scene space by
planes perpendicular to coordinate axes into eight equal parts. This procedure is
repeated recursively until the number of objects in each newly obtained octant

Indexing of Hierarchically Organized Data 281

becomes less than some threshold m > 1. The resulting spatial decomposition is
associated with a tree data structure. The tree root corresponds to the original
AABB parallelepiped containing the complete dataset, and the vertices corre-
spond to the nested octants that group objects on different hierarchical levels of
spatial decomposition.

Previous theoretical and practical research showed that the presented index-
ing structure works well for both synthetic scenes and datasets originated from
industrial applications under the condition that the scenes consist of simple
objects and spatial-temporal queries are directly addressed to them. But the
indexing structure becomes ineffective and shows degradable performance for
the queries addressed simultaneously to both simple and compound objects of
the hierarchically organized scenes. Indeed, traditional octrees do not reflect
the composition relations among spatial objects while typical queries like region
search and collision detection take other meaningful interpretations.

In the case of hierarchical scenes the region search query can be reinterpreted
as a selection of the highest level objects which are placed inside the given region
entirely or cross it partially. It does not make sense to include child objects in
the resulting list once their high-level parents have been already identified and
included. For example, one has to find all the equipment units and their pieces
which are placed within some area of a construction site at a given focus time.
Complex equipment, such as a crane or an excavator, may consist of thousands
and millions of pieces. Using traditional octrees each piece should be indexed
individually and then be analyzed and grouped with other localized pieces so
that the resulting high-level objects can be identified. This process may consume
significant computational resources, ultimately neglecting benefits from spatial
indexing.

For hierarchical scenes the collision detection query should be reinterpreted
too. The query aims at the determination of collisions between those simple
objects which belong to different compound objects. For this purpose the top-
level scene objects or preliminary selected objects are usually analyzed. Return-
ing to our example, it is interesting to know which of equipment units and
building elements intersect each other. Collisions of separate pieces of the same
crane or excavator are beyond of the problem of modeling construction project
progress. The use of traditional octrees for the query evaluation would lead to
unreasonably high expenses. Indeed, it would require deploying the octree for
all simple objects, determining all the objects collisions and then deciding which
of the intersected objects belong to different equipment units and building ele-
ments. It is obvious that the most procedures are redundant and can be avoided
by evolving the underlying indexing structure.

To address the discussed queries, we propose to employ the original scene
representation and to deploy multiple octrees for those compound objects of the
scene hierarchy which contain a relatively large number of child objects, includ-
ing the scene as a top-level compound object. We call this indexing structure a
complementary generalization of octrees meaning that it complements the orig-
inal hierarchical scene representation. Figure 3 demonstrates an example of the

282 S. Morozov et al.

complementary generalization of octrees deployed for some compound objects
of the presented scene. On the assumption that compound objects group child
objects located close to each other, it can be argued that the complementary
indexing structure leverages both spatial decomposition and object composition
techniques. Being combined with the event tree, it can be used constructively to
resolve complex spatial-temporal queries discussed above.

Fig. 3. Indexing structure for the multi-level scene model.

Consider the region search query performed in a dynamic hierarchical scene at
a given focus time. It can be evaluated by recursive traversing through the scene
hierarchy in a top-down manner while the visited objects are located within the
region. Once the current object is located within the region entirely, it is added
to the list of results, thereby preventing a redundant analysis of its children
which may consist of thousands and millions of pieces. If the object is beyond
the region, the object and its children are immediately avoided from further
analysis. To identify whether a visited object is within the region or beyond the
region, AABB of the object is checked. If the object crosses the region then the
query readdresses to its children. To optimize this procedure for the traversed
children, the complementary octree associated with the parent is utilized for the
search propagation. If the complementary octree is not deployed for the parent
by some reasons, then all its children are checked directly.

The collision detection query can be also evaluated by recursive traversing
the scene hierarchy, but starting at the preliminary selected objects. In some
sense it repeats well-known Bounding Volume Hierarchy (BVH) techniques [11].
At each level of the object representations the pairs of suspicious objects are
identified by intersecting AABBs and are placed in the resulting set. The pro-
cedure begins with a pair of the given compound objects and ends when the
resulting list contains only pairs of simple objects. It can be reached recursively
by readdressing the original query specified for the parent objects to similar
queries for their children. If the complementary octrees are not deployed, it can
be done by naive intersecting AABBs of the children. If some compound objects
are complemented with octrees, then it can be done more effectively using the
region search query as specified above.

Indexing of Hierarchically Organized Data 283

Because the unbalanced scenes are ubiquitous in practice and compound
objects may have the extremely varied number of children, the complementary
indexing structure and the described query resolution methods exhibit uniformly
high performance. That is confirmed by theoretical study and practical experi-
ments reported below.

4 Theoretical Study

The efficiency of indexing methods based on dynamic regular octrees was proved
in the previous studies [9]. The goal of the presented investigation is to compare
the proposed complementary indexing structure with its base version. It may
seem that because of the deployment and updating of multiple octrees, the com-
plementary structure is not effective and does not have a competitive advantage
over the base version. However, the proved statements refute this assumption.

For brevity, we restrict ourselves to two statements, the first is concerning the
complexity of the index deployment, and the second - the memory consumption
for index storage. Since the worst case complexity analysis is trivial and the
resulting estimations do not reflect real performance and memory consumption
parameters, we provide the estimations on average using the probability theory
and the introduced concepts of synthetic scenes.

Definition 1. An octree with subdivisions into equal octants, strict multilevel
localization of objects and upper boundary of ocrtant cardinality m is called a
regular octree and denoted as Octree(m).

Definition 2. A set of n identical cubes with the edges of length 0 ≤ l < 1/2
directed along the principal coordinate axes is called a synthetic one-level scene
and denoted as S(n, l) if the cubes are independently and randomly distributed
in a unit cube and appear successively one after another.

Definition 3. Let the synthetic multilevel scene be a dataset S(n, l, h) holding
the following characteristics:

– scene and each non-leaf object has exactly n ∈ N , n > 1 children of equal size,
uniformly distributed over the space occupied by the parent object;

– the scene tree is balanced (i.e. all the sibling objects have the same height)
and the scene tree has a height h;

– all simple objects are cubes;
– AABBs of the whole scene and its compound objects are cubes;
– assuming linear size of the parent objects is 1, the size of the child object is

l, 0 ≤ l ≤ 1/2;
– the scene events are successive appearances of top-level compound objects with

all children.

Let us estimate the computational expenses of preparing and updating the
complimentary indexing structure for modeling synthetic scenes. For this pur-
pose, we consider a multi-level synthetic scene S(n, l, h) and compare the costs

284 S. Morozov et al.

of the base and complementary structures. To take advantage of the previous
results [9], we assume that the multi-level synthetic scene is equivalent in com-
plexity to one-level synthetic scene S(nh, lh) with the same number of simple
objects and events. For this reason, the costs of event trees coincide and may be
excluded from further comparative analysis.

It is interesting to estimate the costs of spatial indexing structures. In the
mentioned work it was shown that the computational expenses required to deploy
a regular octree Octree(m) for the synthetic scene S(n, l) can be estimated as
follows:

Q = CLn

H∑

i=1

(
1 − 2i−1l

)3

(1 − l)3

where CL – cost of the object localization in the child octants, n – total number
of objects, l – object linear size. In this formula octree height H is defined as
follows:

H =

⎧
⎨

⎩

⌈
log2

2

l+(1−l) 3
√

m
n

⌉
,m ≥ nl3

⌈
log2

1
l

⌉
,m < nl3

Then the computational expenses required to deploy the complimentary
structure for the scene S(n, l, h) are estimated using the following series of expres-
sions:

Qcompoctree = CLn

⎛

⎝
h−1∑

j=0

nj

⎞

⎠
(

H1∑

i=1

(
1 − 2i−1l

)3

(1 − l)3

)

=
CLn

(
nh − 1

)

n − 1

H1∑

i=1

(
1 − 2i−1l

)3

(1 − l)3

H1 =

⎧
⎨

⎩

⌈
log2

2

l+(1−l) 3
√

m
n

⌉
,m ≥ nl3

⌈
log2

1
l

⌉
,m < nl3

Here we assume that a separate regular octree is deployed for each compound
object with the number of children exceeding the given threshold parameter m ≤
n. No octrees are deployed if m > n. The complementary structure degenerates
and becomes a scene hierarchy in this case.

Theorem 1. On the assumption that computational expenses are expressed in
terms of the operations of the object localization in child octants, the costs of
the complimentary indexing structure and the base indexing structure for the
synthetic multilevel scene S(n, l, h) are interrelated as follows:

Qcompoctree ≤
(
nh − 1

)

(nh − nh−1)

(
1 − lh

)3

(1 − l)3
Qoctree

Indexing of Hierarchically Organized Data 285

Proof. Indeed, according to the mentioned above results the expenses required
to deploy a dynamic regular octree for the equivalent one-level scene S(nh, lh)
are as follows:

Qoctree = CLnh
H2∑

i=1

(
1 − 2i−1lh

)3

(1 − lh)3

H2 =

⎧
⎨

⎩

⌈
log2

2
lh+(1−lh) 3

√
m

nh

⌉
,m ≥ nhl3h

⌈
log2

1
lh

⌉
,m < nhl3h

Consider ratio:

Qcompoctree

Qoctree
=

nh − 1
nh − nh−1

(
1 − lh

)3

(1 − l)3

∑H1
i=1

(
1 − 2i−1l

)3
∑H2

i=1 (1 − 2i−1lh)3

Let us analyze the third factor. Since the base structure stores more objects of
smaller size than any complementary octree associated with compound objects,
it is obvious that H1 ≤ H2. Also notice that 2i−1l > 2i−1lh, since 0 ≤ l ≤ 1/2
by definition of synthetic scenes. Therefore:

∑H1
i=1

(
1 − 2i−1l

)3
∑H2

i=1 (1 − 2i−1lh)3
≤ 1

The original ratio can be estimated as:

Qcompoctree

Qoctree
≤ nh − 1

nh − nh−1

(
1 − lh

)3

(1 − l)3

�
It can be shown that ratio 1 ≤ nh−1

nh−nh−1 ≤ 2, given n ∈ N , n > 1, and

limn→∞ nh−1
nh−nh−1 = 1. Also (1−lh)3

(1−l)3
< 8 since 0 ≤ l ≤ 1/2 and liml→0

(1−lh)3
(1−l)3

=
1. Thereby, the costs of the complimentary indexing structure are limited by a
constant factor compared with the costs of the base structure under the synthetic
scene assumptions.

Now let us consider the memory overhead required for the complimentary
indexes. For this purpose we count the number of octants in all complimentary
octrees deployed and then compare it with the number of octants in the base
structure deployed for the equivalent one-level scene. The overall number of the
octants of the complimentary structure can be calculated as follows:

Ncompoctree =
h−1∑

i=0

ni
H1∑

j=1

8j−1 =
nh − 1
n − 1

H1∑

j=1

8j−1 =
nh − 1
n − 1

8H1 − 1
7

while the number of octants of the base structure:

Noctree =
H2∑

i=1

8i−1 =
8H2 − 1

7

286 S. Morozov et al.

Theorem 2. The overall number of octants in the complimentary and base
indexing structures deployed for the equivalent synthetic scenes S(n, l, h) and
S(nh, lh) are interrelated as follows:

Ncompoctree =
ρh + m

nhl3
Noctree

where
ρ = nl3

Proof. Consider ratio:

Ncompoctree

Noctree
=

nh − 1
n − 1

8H1 − 1
8H2 − 1

It can be shown that in a regular octree the following inequality holds:

log2
2

l + (1 − l) 3
√

m
n

≤ H < log2
2
l

Therefore,

8H1 − 1
8H2 − 1

≤
8
l3 − 1
8(

lh+(1−lh) 3
√

m

nh

)3 − 1
≤

(
8 − l3

) (
lh + 3

√
m
nh

)3
(
8 − (

lh + 3
√

m
nh

)3)
l3

≤ ρh + m

nhl3

�

This result can be interpreted as follows. While the spatial density factor
ρ = nl3 (determining the share of the total volumes of children in the volume
of their parent) remains small, the number of octants in the complimentary
structure is less than the number of octants in the base structure. However, if the
spatial density factor grows above 1, the number of octants in the complimentary
structure rises quickly in comparison with the number of octants in the base
structure.

Provided statements prove that, under certain conditions, the computational
and memory expenses required to deploy the complimentary indexing struc-
ture based on dynamic regular octrees are comparative with the corresponding
expenses for the base structure and, therefore, will unlikely become a bottle-
neck in practice. Noteworthy, that the estimated computational expenses of the
indexing structures reflect the complexity of the evaluation of relevant queries
of the synthetic scene reconstruction, assuming that it is carried out from the
beginning when no objects are placed in the scene, to the current focus time,
when all objects have already appeared in the scene.

Certainly, the applied mathematical models of computations and memory
consumption are rather abstract and need practical validation through a series of
computational experiments with industry-meaningful spatial-temporal datasets.

Indexing of Hierarchically Organized Data 287

5 Experimental Study

Let us discuss the results of the complementary index application in evaluation
of queries addressed to real spatial-temporal data. Models of implementation
of large-scale industrial projects presented in Fig. 4 have been selected for the
tests. Parameters of the models, such as the number of simple objects that have
their own geometric representation, the minimum and maximum depth of the
hierarchy, the average and maximum number of children, the total number of
events in a dynamic scene and the spatial occupancy of the scene are shown in
Table 1, which represent a wide range of experimental data.

(a) (b)

(c) (d)

Fig. 4. Industrial models used in the computational experiments. (a) – a skyscraper
construction model, (b) – a large-grained park development plan, (c) – a bridge con-
struction plan, (d) – a construction and equipping plan for a port warehouse.

The models chosen for testing contain tens or hundreds of thousands of geo-
metric objects that allows to consider them as large-scale data. All the objects
are organized in hierarchies, but their structures are very unbalanced.

Model (a) is a detailed spatial-temporal model describing the progress of
construction works for a skyscraper in accordance with an approved schedule.
This model is characterized by the presence of many small parts, each of them has
its own dynamic behavior. Model (b) describes a large-grained park development
plan consisting of several parts where the details of their implementation are not

288 S. Morozov et al.

Table 1. Parameters of the models chosen for testing.

Model (a) Model (b) Model (c) Model (d)

Number of simple objects 73731 188465 85776 169606

Number of events 6877 6105 4381 752

Maximum hierarchy height 13 25 18 8

Minumum hierarchy height 5 3 2 3

Maximum number of children 5526 16625 21816 31932

Average number of children 4.5286 1.66046 5.79458 1.99634

Spatial occupancy of the scene 0.505344 0.140742 0.0108893 0.691711

specified. Visually, realization of each part of the plan leads to the simultaneous
appearance of an independent model consisting of a large number of objects in
the scene. Model (c) implements a construction plan for a bridge taking into
account the deployment and use of construction equipment. A feature of the
model is the extension of individual elements of the construction. Finally, model
(d) describes a construction and equipping plan for a warehouse at a port. The
pecularity of the model consists in the development of logistics scenarios implying
the movement of large amounts of cargo and port facilities.

(a) (b)

Fig. 5. Comparison of deploying cost and memory expenses using octree and comple-
mentary index for test models (a), (b), (c), (d)

The experiments have been conducted using a typical desktop computer:
Core i7 3770 3.4GHz, 16 GB RAM (1600MHz). First of all, compare the cost
of deploying the spatial indexes for these test models. The comparison results
are shown in Fig. 5 and illustrate the fact that the computational cost and the
memory expenses required for the construction of the complementary index do
not exceed and often lower the cost of deploying a regular octree for the equiv-
alent model containing only simple objects of the scene. Thus, the construction
of the complementary index does not lead to additional overhead as compared
with traditional structures and confirms the theoretical conclusions.

Indexing of Hierarchically Organized Data 289

Fig. 6. Comparison of time required for collision detection and region search using
octree and complementary index for test models (a), (b), (c), (d)

Let us analyze the time required to evaluate typical collision detection and
region lookup queries in a scene. Figure 6 shows the results of comparative testing
of the complementary and basic indexing structures. Note that the detailed
search of intersections, the efficiency of which is mainly determined by using
special methods for intersection of curves, surfaces, solids, was not implemented.
Instead, their preliminary localization using AABB has been performed.

It can be seen that in most cases the computational cost for collision detection
using the complementary indexing structure is much lower than with regular
octree. This can be explained by the fact that object hierarchies in the industrial
models reflect not only a logical structure of assembling the components, but
also their natural spatial composition. As a result, collisions between compound
objects appear infrequently. This allows you to make decisions about potential
intersections of objects already at the higher levels of the hierarchy and avoid
traversing and analysis of simple objects. However, if a hierarchical structure
does not reflect the spatial object composition (as it happens in the model (b))
the complementary index may lose performance.

In the experiments on region search by area of size equal to 1
2 a stage for

each dimension was generated 100 times, the position was selected randomly,
and then the results were summarized. The results are shown in Fig. 6(b). The
experiments demonstrate that the computational complexity of the region search
in the case of using the base structure greatly exceeds the cost of using the
complementary index. This fact can be explained by the possibility to return
a verdict of belonging a compound object to the given spatial region without
extensive analysis of simple objects.

6 Conclusions

We have presented the spatial-temporal data model as a scene that admits hier-
archically organized, spatially heterogeneous objects with individual temporal
behaviors. The data model is quite general, allowing its use in different science

290 S. Morozov et al.

and industry applications. For the model presented we have argued the rele-
vance of dynamic event-driven regular octrees as an underlying spatial-temporal
indexing structure and have shown its effectiveness for queries such as scene
reconstruction, region search, and collision detection. For hierarchically orga-
nized scenes the complementary generalization of the indexing structures has
been proposed. Its advantages over traditional structures have been confirmed
by theoretical conclusions and practical experiments with industry meaningful
datasets originated from the construction modeling applications.

References

1. Carvalho, A., Ribeiro, C., Augusto Sousa, A.: A spatio-temporal database system
based on timeDB and oracle spatial. In: Tjoa, A.M., Xu, L., Chaudhry, S.S. (eds.)
CONFENIS 2006. IIFIP, vol. 205, pp. 11–20. Springer, Boston, MA (2006). https://
doi.org/10.1007/0-387-34456-X 2

2. Griffiths, T., et al.: TRIPOD: a spatio-historical object database system. In: Lad-
ner, R., Shaw, K., Abdelguerfi, M. (eds.) Mining Spatio-Temporal Information
Systems. The Kluwer International Series in Engineering and Computer Science,
vol. 699. Springer, Boston (2002)

3. Oracle Corporation: Oracle Spatial User’s Guide and Reference, 10g Release 1
(10.1) (2003)

4. Semenov, V.A., Kazakov, K.A., Zolotov, V.A.: Global path planning in 4D envi-
ronments using topological mapping. In: Gudnason, G., Scherere, R. (eds.) eWork
and eBusiness in Architecture, Engineering and Construction, pp. 263–269. CRC
Press, Taylor & Francis Group, London, UK (2012)

5. Nandal, R.: Spatio-temporal database and its models: a review. IOSR J. Comput.
Eng. 11(2), 91–100 (2013)

6. Seo-Young, N.: Literature Review on Temporal, Spatial, and Spatiotermpoal Data
Models: Computer Science Technical Reports. Paper 150 (2004). http://lib.dr.
iastate.edu/cs techreports/150

7. Nguyen-Dinh, L.-V., Aref, W.G., Mokbel, M.F.: Spatio-temporal access methods:
Part 2. IEEE Data Eng. Bull. 33(2), 46–55 (2010)

8. Menninghaus, M., Breunig, M., Pulvermuller, E.: High-Dimensional Spatio-
Temporal Indexing. Open J. Databases 3(1), 1–20 (2016)

9. Zolotov, V.A., Petrishchev, K.S., Semenov, V.A.: Methods of spatial indexing of
dynamic scenes based on regular octrees. Program. Comput. Softw. 42(6), 375–381
(2016)

10. Semenov, V.A., Anichkin, A.S., Morozov, S.V., Tarlapan, O.A., Zolotov, V.A.:
Visual planning and scheduling of industrial projects with spatial factors. In: Bil,
C., Mo, J., Stjepandic, J. (eds.) Proceedings of 20th ISPE International Conference
on Concurrent Engineering. IOS Press, Melbourne, Australia, pp. 343–352 (2013).
ISBN: 978-1-61499-301-8

11. Dinas, S., Bañón, J.M.: A literature review of bounding volumes hierarchy focused
on collision detection. Ingenieŕıa Y Competitividad 17(1), 49–62 (2015)

https://doi.org/10.1007/0-387-34456-X_2
https://doi.org/10.1007/0-387-34456-X_2
http://lib.dr.iastate.edu/cs_techreports/150
http://lib.dr.iastate.edu/cs_techreports/150

An Approach to the Validation of XML
Documents Based on the Model Driven

Architecture and the Object
Constraint Language

Denis A. Nikiforov(B), Dmitriy V. Korj, and Ruslan L. Sivakov

Center of Information Technologies LLC, Ekaterinburg, Russia
{Denis.Nikiforov,Dmitriy.Korj,Ruslan.Sivakov}@centre-it.com

Abstract. It is possible to develop data processing applications using
a variety of different data representation formats (EDI, CSV, XML,
JSON), domain-specific languages, and general-purpose programming
languages (XSLT, SQL, Java, C#). On the one hand, such a variety
allows one to choose the most optimal data format or language based
on the specific requirements being applied, while on the other one, con-
temporary information systems or complexes of integrated information
systems have become similar to the Tower of Babel, being so cumber-
some to build and maintain. A possible solution to this issue could be
found in developing platform-independent specifications to be used for
generating the source code for each required platform.

This article describes an approach to the XML document valida-
tors’ generation based on UML models with Object Constraint Lan-
guage (OCL) rules. The authors give a brief account of similar tools and
propose a generalized schema for generating the validators based on a
model-driven approach. The core component of this schema is the trans-
formation of OCL constraints to XPath assertions. The first ones could
come from one of the supported platform-independent models (Eurasian
Economic Union Data Model or ISO 20022), while the later could be
embedded into XML Schema 1.1, XSLT or Java code.

The transformation is implemented at the model level in the Query/
View/Transformation language. The article does not go into details of con-
verting OCL into XPath, because such a description takes up a lot of space
and has already been given in similar articles. The authors describe only
the key features of their approach: development of metamodels for XPath,
XSD 1.1, and XSLT, support of a variety of platform-independent and
platform-specific models, determination of elements subject to validation,
external data sources, kinds of validation messages, preconditions.

Keywords: XML validation · Semantic validation
Unified Modeling Language · Object Constraint Language
XPath · XML Schema · XSLT · Model Driven Architecture
Platform-independent model · Metamodel · Model transformation
Query/View/Transformation · Eclipse Modeling Framework
ISO 20022

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 291–305, 2018.
https://doi.org/10.1007/978-3-319-74313-4_21

292 D. A. Nikiforov et al.

1 Introduction

Consider the following example. Let us say you are designing a website where
users can post their resumes (Fig. 1). Among other things, users are to specify an
employment period for each job they had, however they only specify a starting
date for their currently held job. You could introduce the following constraint to
ensure consistency of each job’s dates: if an end date is specified, then it must not
be earlier than the starting date. Such a restriction can be easily implemented
in JavaScript.

Fig. 1. Example of a data-entry form for resume details

Subsequently, you decide to make it easier for users to add their resumes to
your site, and implement an option allowing them to upload the resumes in an
XML format:

<CurriculumVitae>
<!-- ... -->
<WorkExperience><!-- Past Employment -->

<StartDate>2015-01-01</StartDate>
<EndDate>2017-03-31</EndDate>
<Organization>Company A Inc.</Organization>

</WorkExperience>
<WorkExperience><!-- Current Employment -->

<StartDate>2017-04-01</StartDate>
<Organization>Company B Inc.</Organization>

</WorkExperience>
</CurriculumVitae>

You can use an existing JavaScript code to validate the XML documents
if the server-side logic is implemented on Node.js, however this is not always
the case, and you may need to do a repeat implementation of the constraints
by means of XSD 1.1, XSLT, or a general-purpose programming language, such
as Java.

An Approach to the XML Validation Based on MDA and OCL 293

Let us assume that despite the implemented constraints your application’s
database still receives inconsistent data. In order to ensure the data’s integrity,
you define the constraints in a third language – SQL. This duplication may
result in a disagreement of implementations and an increase in the application’s
development and maintenance costs.

The Object Management Group (OMG) proposes to use the Model Driven
Architecture (MDA) to solve this problem [15]. Towards this end, you would
define the data schema and constraints in a Platform-Independent Model (PIM),
e.g. in UML [28] and OCL [19,26] languages, correspondingly. The constraint
under consideration could be defined in OCL in the following manner:

WorkExperience->forAll(x |
x.EndDate->notEmpty() implies x.StartDate <= x.EndDate)

You transform the PIM into various Platform-Specific Models (PSM) when-
ever the need to implement constraints for a particular platform arises, those
PSMs being used as a basis for generating the required source code [1,5,16].

This article discusses only the transformations from PIM to PSM, used to
generate validators for XML documents. Implementation of constraints for web
forms or relational databases lies outside this article’s scope.

The paper is organized as follows. In Sect. 2, we define and compare the
existing XML document validation tools using OCL constraints. In Sect. 3, we
propose a generalized framework for generating validators based on the MDA. In
Sect. 4, we define some special aspects of our approach that distinguish it from
its analogues. In Sect. 5, we list areas to focus on in the future.

2 Overview of Analogues

There are two approaches to validating XML documents using OCL rules: (1)
transforming the rules into expressions in a language that can be run on a certain
technology platform (Schematron [10], XPath, Java, etc.) or (2) interpreting the
rules within the context of an XML document’s object model [25].

In the first case, the OCL rules get adapted to run on a desired technology
platform (Fig. 2), while in the second case it is the data that gets adapted from its
platform-specific representation to a suitable platform-independent form (Fig. 3).

The first approach is preferred in situations where the environment, in which
the XML documents are to be validated, has to comply with stringent require-
ments. However, if the part played by overhead costs associated with generating
an object model of the XML document is insignificant, and there are no restric-
tions on the choice of technologies, it is more appropriate to use the second
approach. This is due to the fact that generating an object model for data is
much simpler than mapping all the operations defined in the OCL Standard
Library.

Table 1 describes the existing tools for XML documents validation using OCL
rules. The OCL specification’s support provided by tools based on the OCL
interpreter is more complete. However, the most recent versions of OCLE and

294 D. A. Nikiforov et al.

Platform-Specific Level

Platform-Independent Level

Transformation

Execution engine

Validator

Validation resultsXML document

UML model

OCL rules

conforms to

Fig. 2. Flowchart of transformation of OCL constraints

Platform-Specific Level

Platform-Independent Level

Validation results

UML model

OCL rules

OCL interpreterObject model

XML document

Adapter

conforms to

Fig. 3. Flowchart of interpretation of OCL constraints

Dresden OCL date back, respectively, to years 2005 and 2015, meaning that
they implement older versions of the specification. Unlike other Schematron-
generating tools, eXolutio supports relatively complex “iterate” and “closure”
operations, however it is not clear if “substring” is supported [13].

eXolutio and OCLE support plain UML class diagrams as a PIM.
ShapeChange and NIEM transformation support UML models as per ISO 19109
and NIEM specification, respectively. For Eclipse OCL, either a simple UML
class diagram or an Ecore model adapted for the Pivot Meta-Model can be used
as a PIM. Dresden OCL additionally provides adapters for Java classes and XML
schemas.

Some tools allow to extend the OCL Standard Library by using custom UML
classes with OCL operations. The latter are either interpreted, or transformed
to XSLT, XQuery or Java functions.

External data sources are fully supported only by OCLE. All data sources
are defined in a single logical model, and can be referenced from the OCL rules.

An Approach to the XML Validation Based on MDA and OCL 295

For eXolutio, an OCL syntax extension to reference external XML documents
is proposed in [13].

Most tools are implemented in Java or other general-purpose programming
languages. The only exclusion to this is the NIEM PIM to Schematron trans-
formation, having been implemented in QVTo [30], however even in its case the
XPath expressions are generated directly as text, bypassing PSM.

Table 1. Comparison of analogues

Tool Validation

mechanism

OCL

support

Source PIM OCL

extension

mechanism

Support of

external

sources

Imple-

mentation

Shape-Changea Schematron Extremely

limited

ISO 19109 Absent Absent Java

NIEM [27] Schematron Limited NIEM Absent Absent QVTo

eXolutio [11,14] Schematron Average UML class

diagram

Present Proposed Unknown

Dresden OCL [3] Interpretation,

Java

Potentially

complete

Adapted

model

Present Absent Java, EMF

Eclipse OCL [31] Interpretation Complete Adapted

model

Present Absent Java, EMF

OCLE [2] Interpretation,

Java

Potentially

complete

UML class

diagram

Present Present Unknown

ahttp://shapechange.net/targets/xsd/extensions/ocl/.

3 Proposed Generalized Validator Generation Scheme

Most of the above-discussed tools are solid applications written in general-
purpose programming languages. This significantly complicates understanding
of how exactly the UML models and OCL rules are transformed in those tools,
and makes it difficult to adjust transformations to support other PIM or to
better support the OCL Standard Library.

MDA offers an alternative approach to developing applications, where all
source, intermediate and target artifacts are considered to be models within
a certain modeling space [4]. A development process can be represented as a
sequence of model transformations [15]. Each model must conform to a certain
metamodel, and each metamodel should be developed in accordance with a cer-
tain meta-metamodel. Each meta-metamodel forms its own modeling space [4].

OMG has developed a number of specifications describing metamodels (UML,
OCL), meta-metamodels (MOF), model transformation languages (QVTo), text
representation of models (XMI). Eclipse Modeling Project (EMP) [6] implements
some of these specifications. There are various specifications and tools for model-
based development, however, OMG is the main standardizing organization in this
field and offers the most complete set of specifications, while the most complete
implementation of the specifications is provided by the EMP.

Figure 4 shows our proposed and implemented generalized scheme of valida-
tor generation based on UML models with OCL constraints. Metamodels and
transformations developed by us at [21–23] are marked in gray in the figure. All

http://shapechange.net/targets/xsd/extensions/ocl/

296 D. A. Nikiforov et al.

text artifacts belong to the EBNF modeling space. UML models, XSLT models,
OCL Abstract Syntax Trees (AST), XPath AST belong to the Ecore [31] model-
ing space (Ecore is an analog of MOF in EMP). The figure depicts the sequence
of transformations for a single pair of PIM and PSM. It is possible to use not
only XSLT, but also XSD 1.1 or Java as a PSM.

Fig. 4. Proposed generalized validator generation scheme

The transformation is done in three stages. First, the UML model with OCL
constraints is translated from a text representation in an EBNF modeling space
to an Ecore modeling space [4]. Subsequently, the Ecore modeling space is used
to transform PIM to PSM, with the transformation being defined in QVTo.
Finally, the PSMs are converted to text and sent back to the EBNF modeling
space. Let us review each step in more detail.

3.1 Transformation of PIM from Textual to Ecore Representation

The source UML model is represented in the XMI format [29]. The XMI file
contains OCL rules. We use Eclipse UML and Eclipse OCL to parse them [6].
The result is an UML model conforming to an UML metamodel and a set of
OCL models (abstract syntax trees) conforming to an OCL metamodel. Both
metamodels are based on the Ecore meta-metamodel, so their subsequent trans-
formations can be described in the QVTo language.

3.2 Transformation of PIM to PSM

Currently, two kinds of source PIMs (data model of the Eurasian Economic
Union (EAEU)1 and ISO 20022 [9,12,24]) and three kinds of target PSMs (XML

1 https://eomi.eaeunion.org.

https://eomi.eaeunion.org

An Approach to the XML Validation Based on MDA and OCL 297

Schema, XSLT, and Java) are supported by the transformation. A separate
QVTo transformation is implemented for each of the six PIM and PSM combi-
nations, while the main part – which is the transformation of OCL to XPath –
is reused. In order to implement these transformations via Eclipse QVTo it is
necessary to define metamodels based on the Ecore meta-metamodel for each
source and target model. For UML and OCL the metamodels are implemented
within the EMP.

Moreover, this project includes an implementation of the XSD 1.0 meta-
model. We cannot use it in our generator, because it is impossible to embed
XPath assertions in XSD 1.0. An XSD 1.1 metamodel is required. The later itself
is an XML-based language, it is defined in the corresponding XML schema. We
imported this schema with the wizard provided by the Eclipse Modeling Frame-
work (EMF) [17,31], and created an Ecore-based metamodel for XSD 1.1 [21].
Similarly, we have generated on the basis of the XML schema an Ecore-based
metamodel for XSLT 2.0 [21].

In addition to XSD and XSLT, our transformation also generates Java code
and XPath expressions that are not XML-based languages and that has not
XML schemas. Their syntax is defined in EBNF, making it necessary to use
other tools to develop Ecore-based metamodels. One of such tools is EMFText [8,
18]. It allows to define a textual representation in an EBNF-like language for
Ecore-based metamodels. For Java, an Ecore-based metamodel has already been
implemented in the JaMoPP project [7]. For XPath 2.0, we have implemented
our own metamodel and described its syntax [22]. General principles of design of
Ecore-based metamodels based on EBNF grammars were described by us in [20]
using the example of SQL.

3.3 Transformation of PSM from an Ecore Representation
to a Textual One

Serialization of Ecore models for XML-based languages (XSD, XSLT) is a trivial
task. When importing an Ecore-based metamodel from an XML schema the
former is complemented by extended metadata that allow to (de-)serialize Ecore
models not just in XMI format, but also in the form of XML documents that
conform to the original XML schema. It is possible to generate parsers and
printers automatically for languages implemented by means of EMFText. For
Java, they are available in the JaMoPP project, for XPath 2.0 – in [22].

3.4 Summary

In a general case scenario, in order to transform n PIMs to m PSMs it is necessary
to develop n×m transformations. In this case, such transformations number
2 × 3 = 6. This nonlinear relationship complicates the development of validator
generators. The difference between our approach and the approaches described
in Sect. 2 is that we have decomposed the transformations as much as possible.

298 D. A. Nikiforov et al.

Transformations from a text representation (Sect. 3.1) or into a text represen-
tation (Sect. 3.3) are generalized and reusable. Their number is linearly depen-
dent on the number of PIMs and PSMs to be supported by the generator of val-
idators. Some of these transformations had already been implemented (Eclipse
XMI parser), other ones we implemented on our own (XPath 2.0 printer) [22].

The transformation from OCL to XPath 2.0 is also generic and does not
depend on the PIM and PSM combination. This is described in further details
in Sects. 4.1 and 4.2.

It is these transformations that are the most difficult to implement, whereas
transformations that are specific to each pair of PIM and PSM are more numer-
ous, but easier to implement.

4 Features Distinguishing Our Approach from Its
Analogues

As seen in the case of tools discussed in Sect. 2, the rules of OCL transformation
to XPath generally coincide. Therefore, we will not describe them in detail in this
paper, especially since the OCL Standard Library defines around two hundred
operations. The description of the rules is quite voluminous. Hence, we will
describe only those features of our approach that distinguish it from its peers in
a fundamental way.

4.1 Different Source PIMs

Each of the analogues described in Sect. 2 can generate validators only for certain
kinds of PIM. If you used a different PIM, you would not be able to use any of
these tools, or you would have to adapt your PIM somehow. Our generator of
validators supports two kinds of PIM (EAEU data model and ISO 20022) and
can be easily enhanced to support additional kinds of models.

This is achieved as follows. A significant part of OCL expressions is converted
to XPath expressions without regard to which data model they are used in. For
example, the trivial “2 + 2 <> 5” expression of OCL is always converted to a
“2 + 2 ne 5” XPath expression, regardless of the applicable PIM.

The specifics of various types of PIMs appear only when converting expres-
sions that include calls to object properties (PropertyCallExp). Different PIMs
use different UML stereotypes for data elements, data types, attributes, and
external data sources. Moreover, their modeling can be done using different UML
elements. For example, the data model of EAEU models reusable data elements
as classes, while ISO 20022 allows only local elements that are modeled as prop-
erties of classes. In order to put aside these differences, the following abstract
operations are declared in our transformation: “isDataType”, “isDataElement”,
“isAttribute”, “isExternalSource”. These operations have to be implemented to
add support for a new PIM.

Moreover, each PIM requires “getQName” and “getUnprefixedQName” oper-
ations, that return the model object’s name with and without the namespace

An Approach to the XML Validation Based on MDA and OCL 299

prefix, correspondingly, to be implemented. Finally, it is necessary to imple-
ment the following operations that allow to abstract the OCL transforma-
tion to XPath from primitive type systems which tend to vary from one PIM
to another: “isNumericType”, “isStringType”, “isBooleanType”, “isDateType”,
“isDateTimeType”, “isTimeType”, “isDurationType”.

The tools discussed in the Sect. 2 have their own private OCL to XPath
transformations. Our experience shows that it is possible to develop a generalized
transformation treated separately from the original PIM. It is also possible to
develop a generalized system of primitive types that unifies the type systems of
different PIMs.

4.2 Different Target XPath Host Languages

OCL expressions are meaningful only for some UML or Ecore (MOF) models.
Similarly, XPath expression cannot be interpreted by themselves, they are to
be embedded into some host language. Our tool supports three host languages:
XSD 1.1, XSLT, and Java.

In contrast to the source PIM, the target PSM (host language) does not affect
the OCL transformation rules to XPath. Only the upper levels of ASTs of OCL
expressions have different ways of transformation. If they contain any “forAll”
or “implies” operations, those get transformed to host language expressions, not
to XPath expressions. Further details can be found in Sects. 4.4, 4.5, and 4.6.

Table 2 lists the features of XPath host languages that our generator of valida-
tors supports. XSD, unlike XSLT and Java, serves for basic structural validation
of XML documents. It is much more difficult to check the sequence of XML
elements or to make sure there are no unexpected elements through XSLT or
Java. Therefore, it is necessary to combine validators based on such technologies
with XML schema-based checks.

XML schema 1.1, as opposed to its version 1.0, may be supplemented with
XPath assertions that implement relatively complex validation rules. However,
in XML schemas the rules are defined for data types, while in the case of using
XSLT or Java the XPath processor usually will not be datatype-aware. Hence,
if an XML document reuses the same data type for several data elements, one
has to duplicate constraints for each element. This is not always a problem, in
business applications it is often the elements that are semantically constrained,
not the data types, so it is easier to implement the rules using XSLT or Java
than XSD.

Many information systems already use XML schemas for validation of XML
documents. If XPath assertions generated from the OCL constraints comple-
ment these, no further changes to the validator are necessary. Using XSLT or,
especially, Java can require significant changes in the execution environment.

However, when using the XML schema, you have almost no influence on the
way validation results are presented. XSLT and Java allow to generate different
types of messages in the required representation. See more details in Sect. 4.6.

Finally, XML schemas do not allow to validate XML documents using exter-
nal data source or remote services. For example, they cannot check a code against

300 D. A. Nikiforov et al.

Table 2. Outline of host languages

Feature XSD 1.1 XSLT Java

Basic structural validation Yes No No

Rules are specified for Data types Data elements and
data typesa

Data elements

Execution environment
requirements

Low Moderate High

Customization of validation
results representation

No Yes Yes

External data sources and
complex constraints

No Maybe (via
extensibility)

Yes

aOnly for schema-aware XSLT processors.

a code list stored in the database. XSLT (via extensibility) and Java do have the
capability to use external data sources.

4.3 External Data Sources

Sometimes you need to check the data contained in an XML document using
remote services or external data sources. For example, code values might need
to be checked against code lists stored in relational databases. The currently
existing tools offer only a very limited support for such data validation rules.
Our tool supports two kinds of checks – one with remote and another with local
execution of expressions. The first kind corresponds to OCL expressions that
include the “allInstances” operation. For example, in the following constraint
the database is checked for any resumes with the same telephone number but a
different email address:

not CurriculumVitae.allInstances()->exists(x |
x.Email <> self.Email and x.Phone = self.Phone)

The body of “exists” iteration is transformed to an XPath expression for its
remote execution:

fn:not(ext:exists("CurriculumVitae", fn:concat(
"Email != ", Email, " and Phone = ", Phone)))

For simplicity reasons, we do not consider the quoting of parameter values.
Many databases support such XPath queries over XML documents.

For the second kind of rules there should be an external data source or service
defined in the UML model, e.g. “ExternalService1”:

ExternalService1::isValidPhone(Address/Country, Phone)

An Approach to the XML Validation Based on MDA and OCL 301

A procedure is defined for the service that validates phone numbers against
the country indicated in the address. In this case all XPath expressions are
computed locally, and only the results are passed to the remote service:

ext:call("ExternalService1", "isValidPhone",
Address/Country, Phone)

Validation of a code against a code list can be implemented in either way. In
the first case the UML model should define the code list’s structure, while in the
second it is the interface to access it that has to be defined. Note that XPath and
OCL are not intended to describe operations with complex logic. In principle,
some constraints can be implemented in these languages, but if such constraints
are too complicated, it is advisable to implement them through external services.

4.4 Determination of XML Elements Subject to Validation

OCL constraints are always tied to a specific UML classifier. When checking an
OCL constraint, instances of this classifier are considered to be valid or invalid.
Accordingly, when converting an OCL constraint to an XPath assertion, frag-
ments of XML documents containing data on the instance are considered valid
or invalid.

The validation rules are often specified for the entire message, not for indi-
vidual data elements. An example of such a rule is the OCL constraint specified
in Sect. 1. The following XPath expression would be generated for it:

every $x in WorkExperience satisfies
fn:not($x/EndData) or $x/StartDate <= $x/EndDate

If there is at least one entry in the work experience with the starting date
falling later than the end date, an error will be issued for the entire resume.
XPath, as well as OCL, is an expression language, and it lacks the statements to
display error messages. In order to display error messages job-by-job one must
expand the “forAll” iteration in the following way:

<xsl:for-each select="WorkExperience">
<xsl:choose>

<xsl:when test="fn:not(EndData) or StartDate <= EndDate">
<!-- Success --></xsl:when>

<xsl:otherwise><!-- Error --></xsl:otherwise>
</xsl:choose>

</xsl:for-each>

The current context item is the current validation element. For Java or
another host language, the “forAll” iteration is expanded in a similar way.

Surely, this will give us more informative validation results, however the area
of validation can be narrowed even further. To do this you must find in the OCL
rule all sub-expressions that returns values of some data elements. In our case

302 D. A. Nikiforov et al.

OperationCallExp
(owningClass.isBooleanType() and
referredOperation.name = ‘implies’)

OperationCallExp
(owningClass.isCollectionType() and

referredOperation.name = ‘notEmpty’)

OperationCallExp
(referredOperation.name = ‘<=’)

PropertyCallExp

VariableExp

Variable
(name = ‘x’ and type = WorkExperience)

Property
(name = ‘EndDate’)

Property
(name = ‘StartDate’)

PropertyCallExp PropertyCallExp

VariableExp VariableExp

arguments

source arguments

variable

property

source

source

source

source source

Fig. 5. Example of an abstract syntax tree of an OCL expression

those are the sub-expressions marked gray on Fig. 5: “StartDate” and “End-
Date”. In general, it can be not only “PropertyCallExp”, but “IteratorExp”, as
well.

4.5 Preconditions

In our example the current job (with a missing “EndDate”) would result in a
message declaring that the validation was successful, which is not quite proper,
because “StartDate” and “EndDate” were not compared with each other. Often
it is practical to distinguish between the following situations: 1) the precondition
was met and the test completed successfully; and 2) the precondition was not
met and the test was not completed. In such a case, OCL expressions containing
the “implies” operation can be expanded as follows:

<xsl:choose>
<xsl:when test="EndData">

<xsl:choose>
<xsl:when test="StartDate <= EndDate">

<!-- Success --></xsl:when>
<xsl:otherwise><!-- Error --></xsl:otherwise>

</xsl:choose>
</xsl:when>
<xsl:otherwise><!-- Not checked --></xsl:otherwise>

</xsl:choose>

4.6 Kinds of Validation Messages

Usually XML document validation tools allow to specify for each rule the error
message that the user sees in case of a data element failing the check. We have

An Approach to the XML Validation Based on MDA and OCL 303

implemented five kinds of messages in our tool: success, error, not checked (see
Sect. 4.5), not found (see Sect. 4.4), not supported (see Sect. 4.3).

<xsl:variable name="__items" as="item()*">
<xsl:for-each select="WorkExperience">

<xsl:choose>
<xsl:when test="EndData">

<xsl:choose>
<xsl:when test="StartDate <= EndDate">

<!-- Success --></xsl:when>
<xsl:otherwise><!-- Error --></xsl:otherwise>

</xsl:choose>
</xsl:when>
<xsl:otherwise><!-- Not checked --></xsl:otherwise>

</xsl:choose>
<xsl:for-each>

</xsl:variable>
<xsl:copy-of select="$__items" />
<xsl:if test="fn:empty($__items)"><!-- Not found --></xsl:if>

Messages may contain embedded OCL expressions:

{{StartDate}} must not be greater than {{EndDate}}

In general, the embedded expressions can be more sophisticated. Their
abstract syntax tree can be analyzed as described in Sect. 4.4, and data elements
that served as basis for the computed value can be determined.

5 Conclusion

In Sect. 1 we gave an example of a platform-independent formalization of a con-
straint in OCL. Section 4.6 presents a fragment of an XSLT code that can be
generated based on this constraint using our approach and tools [21–23].

Generating XML document validators based on UML models with OCL con-
straints cannot be reduced to the transformation of OCL rules into XPath asser-
tions. We have shown in this article that by analyzing the abstract syntax trees
of OCL expressions it is possible to generate various subprograms in different
host languages (XSLT, Java, etc.) that would test the preconditions, determine
elements subject to validation, and output different kinds of validation messages.

Currently, our generator of validators supports only one-third of the OCL
Standard Library. This is sufficient for its use in commercial projects. For exam-
ple, the “closure” iteration that is not supported for the time being, in effect sees
very little use in semantic business rules. Subsequently, we plan to implement a
full support for the OCL and describe in detail its transformation to XPath.

Our experience shows that OCL allows to specify constraints that are syn-
tactically correct, but make no sense from a business point of view. For example,
the rules should be free of preconditions that always return false values or always

304 D. A. Nikiforov et al.

true values, they should not contain checks for presence of required elements in
a document, etc. A number of similar semantic checks of OCL expressions must
be performed by the generator. We plan to describe them in more detail.

Further, a formal proof of the validity of OCL to XPath transformation is
an important task. None of the existing generators guarantee that the resulting
XPath assertions are semantically equivalent to the original OCL constraints.

Finally, another problem pertaining to the development of generators is the
lack of a truly platform-independent system of primitive data types. For example,
primitive types of ISO 20022 effectively duplicate the XSD data types. That is
why the data types are mapped one to one when converting OCL constraints to
XPath assertions. On other platforms (SQL, Java, etc.) data types may differ
significantly from XSD or ISO 20022, making it difficult to generate code for
these platforms. In fact, ISO 20022 is tied to a single platform – XML.

References

1. Cabot, J., Teniente, E.: Constraint support in MDA tools: a survey. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 256–267. Springer,
Heidelberg (2006). https://doi.org/10.1007/11787044 20

2. Chiorean, D., Bortes, M., Corutiu, D.: Object constraint language environment,
a tool supporting teaching and learning UML and OCL, the understanding and
using of metamodeling, abstraction and design by contract. In: Eight Workshop on
Pedagogies and Tools for Teaching and Learning Object Oriented Concepts (2000)

3. Demuth, B., Hussmann, H., Loecher, S.: OCL as a specification language for busi-
ness rules in database applications. In: Gogolla, M., Kobryn, C. (eds.) UML 2001.
LNCS, vol. 2185, pp. 104–117. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45441-1 9

4. Djurić, D., Gaševic, D., Devedžic, V.: The tao of modeling spaces. J. Object Tech-
nol. 5, 125–147 (2006)

5. Gaafar, A., Sakr, S.: Towards a framework for mapping between UML/OCL and
XML/XQuery. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML
2004. LNCS, vol. 3273, pp. 241–259. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30187-5 18

6. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley Professional, Boston (2009)

7. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Construct to reconstruct -
reverse engineering Java code with JaMoPP. In: Reverse Engineering Models from
Software Artifacts - REM 2009 (2009)

8. Henriksson, J., Heidenreich, F., Johannes, J., Zschaler, S., Abmann, U.: Extending
grammars and metamodels for reuse: the Reuseware approach. IET Softw. 2(3),
165–184 (2008)

9. ISO: Financial services - Universal financial industry message scheme - Part 1:
Metamodel. ISO 20022–1, International Organization for Standardization (2003)

10. ISO: Information technology - Document Schema Definition Languages (DSDL) -
Part 3: Rule-based validation - Schematron. ISO/IEC 19757–3:2016, International
Organization for Standardization (2016)

11. Klmek, J., Malý, J., Necaský, M., Holubová, I.: eXolutio: methodology for design
and evolution of XML schemas using conceptual modeling. Inform. Lith. Acad.
Sci. 26, 453–472 (2015)

https://doi.org/10.1007/11787044_20
https://doi.org/10.1007/3-540-45441-1_9
https://doi.org/10.1007/3-540-45441-1_9
https://doi.org/10.1007/978-3-540-30187-5_18
https://doi.org/10.1007/978-3-540-30187-5_18

An Approach to the XML Validation Based on MDA and OCL 305

12. Korchagin, A.B., Lisikh, I.G., Nikiforov, D.A., Sivakov, R.L.: Data models for
information exchange. Int. J. Open Inf. Technol. 5(3), 49–55 (2017)

13. Malý, J.: XML Document Adaptation and Integrity Constraints in XML. Ph.D.
thesis, Charles University in Prague (2013)

14. Malý, J., Nečaský, M.: Evaluation of OCL expressions over XML data model. J.
Univ. Comput. Sci. 20, 329–365 (2014)

15. Miller, J., Mukerji, J.: MDA guide version 1.0.1 (2003). http://www.omg.org/cgi-
bin/doc?omg/03-06-01

16. Moskal, J., Kokar, M., Morgan, J.: Semantic validation of T&E XML data. In:
International Telemetering Conference Proceedings, International Foundation for
Telemetering, October 2015

17. Nikiforov, D.A.: Development of metamodels using the Eclipse Modeling Frame-
work, September 2015. https://habrahabr.ru/company/cit/blog/266433/

18. Nikiforov, D.A.: An introduction to the development of DSLs using EMFText,
November 2015. https://habrahabr.ru/company/cit/blog/270483/

19. Nikiforov, D.A.: The Object Constraint Language, August 2015. https://
habrahabr.ru/company/cit/blog/264963/

20. Nikiforov, D.A.: Development of the parser, printer, and editor for SQL using
EMFText, December 2016. https://habrahabr.ru/company/cit/blog/271945/

21. Nikiforov, D.A.: Ecore-based metamodels of XML Schema 1.1 and XSLT 2.0,
February 2017. https://doi.org/10.5281/zenodo.291483

22. Nikiforov, D.A.: The EMFText-based metamodel, parser, and printer of XPath
2.0, February 2017. https://doi.org/10.5281/zenodo.291481

23. Nikiforov, D.A.: UML to XML Schema 1.1 transformation, version 1.1, February
2017. https://doi.org/10.5281/zenodo.291482

24. Nikiforov, D.A., Korchagin, A.B., Sivakov, R.L.: An ontology-driven approach
to electronic document structure design. In: Ignatov, D.I., Khachay, M.Y.,
Labunets, V.G., Loukachevitch, N., Nikolenko, S.I., Panchenko, A., Savchenko,
A.V., Vorontsov, K. (eds.) AIST 2016. CCIS, vol. 661, pp. 3–16. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-52920-2 1

25. Nikiforov, D.A., Korj, D.V., Sivakov, R.L.: A survey of tools for XML validation
based on the object constraint language (OCL). Inf. Technol. 23(5), 342–351 (2017)

26. OMG: Object Constraint Language (OCL), version 2.4. Specification, Object
Management Group (2014)

27. OMG: UML Profile for National Information Exchange Model (NIEM), version
3.0. Specification, Object Management Group (2015)

28. OMG: Unified Modeling Language (UML), version 2.5. Specification, Object Man-
agement Group (2015)

29. OMG: XML Metadata Interchange (XMI), version 2.5.1. Specification, Object
Management Group (2015)

30. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation, version 1.3.
Specification, Object Management Group (2016)

31. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Reading (2009)

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
https://habrahabr.ru/company/cit/blog/266433/
https://habrahabr.ru/company/cit/blog/270483/
https://habrahabr.ru/company/cit/blog/264963/
https://habrahabr.ru/company/cit/blog/264963/
https://habrahabr.ru/company/cit/blog/271945/
https://doi.org/10.5281/zenodo.291483
https://doi.org/10.5281/zenodo.291481
https://doi.org/10.5281/zenodo.291482
https://doi.org/10.1007/978-3-319-52920-2_1

Compositional Relational Programming
with Name Projection and Compositional

Synthesis

Görkem Paçacı(B), Steve McKeever, and Andreas Hamfelt

Department of Informatics and Media,
Uppsala University, Uppsala, Sweden

gorkem.pacaci@im.uu.se

Abstract. CombInduce is a methodology for inductive synthesis of logic
programs, which employs a reversible meta-interpreter for synthesis, and
uses a compositional relational target language for efficient synthesis of
recursive predicates. The target language, Combilog, has reduced usabil-
ity due to the lack of variables, a feature enforced by the principle of
compositionality, which is at the core of the synthesis process. We present
a revision of Combilog, namely, Combilog with Name Projection (CNP),
which brings improved usability by using argument names, whilst still
staying devoid of variables, preserving the compositionality.

1 Introduction

Automated program synthesis is the task of generating programs that follow
given specifications. There are various forms of synthesis, such as deductive syn-
thesis, where the specifications are expressed in a formalized language, and induc-
tive synthesis, where the specifications take the form of program input/output
examples [1]. These two distinct approaches have competing qualities. For exam-
ple, deductive synthesis guarantees the generated program will follow the specifi-
cation, which means as long as the specification is correct, the generated program
will also be correct. As a result, the usability of the specification language is of
crucial value. It is also an issue that the specification language has to be as
expressive as the target language, and often the specification itself is as long
as the program to be generated [12]. In inductive synthesis, the input/output
data examples are usually provided in a very simple form, so they require almost
no formality. This makes inductive synthesis more versatile in this respect, but
also the correctness of the generated program will rely on the completeness of
the examples given. At the end it is up to the user (or programmer) to review,
and confirm/deny the generated program. This brings the usability of the target
language to focus, as it becomes a determining factor of the methods success.

Here we focus on the linguistic usability of CombInduce, a method for induc-
tive synthesis of logic programs [10,11]. It employs a reversible meta-interpreter,
which is a technique developed through the 1990s [9,14], and recently revis-
ited by multiple works [4,13]. The CombInduce approach is distinguished by its
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 306–321, 2018.
https://doi.org/10.1007/978-3-319-74313-4_22

Compositional Relational Programming 307

capability to synthesize two nested recursions at once, classified as a fold-2 pro-
gram. Fold-2 programs include a fold operator as a recursive case of another fold
operator, such as naive reversal of a list, or multiplication in Peano arithmetic.
CombInduce can synthesise these using only the standard elementary predicates
providing the identity and list construction, and the general list recursion oper-
ators fold-left and fold-right. This is in contrast to most recent publications on
inductive synthesis, which seem to focus on only one level of recursion [4,7,13].
Moreover, CombInduce generates mentioned fold-2 programs in under a second
with mostly less than a handful examples, compared to some other methods
that require tens of examples and are distinctly slower. On the other hand, some
capabilities of CombInduce are still to be investigated, such as its strength in
synthesizing complex non-recursive programs, and programs with negation.

The distinguishing recursive synthesis capability of CombInduce comes at a
cost. The target language, namely Combilog, is required to be compositional1,
as well as being equivalent to definite clause programs in expressiveness. This
means that the meaning of any operator of the language should be defined only
in terms of meanings of its operands, isolating the meaning of an expression from
the context it appears in. This leaves the language devoid of variables, decreasing
its overall usability as a human-facing aspect of the synthesis. There are only
a few notations that follow this principle. One of these is Quine’s Predicate-
Functor Logic[18], another is Combinatory Logic [5,6,19], but neither of these
are intended to provide a reasonable level of usability or specialized recursion
operators. As noted earlier, readability of the target language itself is crucial
for the methods success, as the programmer needs to be able to comprehend
and confirm the generated code as correct. If the notation is easy to modify,
then when the synthesizer creates a close but incorrect candidate, the user can
perform manual alterations.

In our earlier study, we identified the usability issues with Combilog to be
related to the lack of variables as discussed above [16,17]. We devised a visual
language, Visual Combilog, which can mirror the textual Combilog code, and
developed an editor that can view and edit Combilog code and Visual Combilog
code side-by-side in real time, transforming back and forth as necessary. As a
result of a user study involving 20 participants, we measured Visual Combilog to
be significantly more usable compared to Combilog. We measured a 46% increase
in speed and a 69% decrease in errors when the users were dealing with problems
specifically devised to focus on argument binding [16].

As a continuation of our work on improving the linguistic usability of Com-
bInduce, we present here a textual iteration of the Combilog language, namely,
Combilog with Name Projection (CNP). In Sect. 2, we will reveal the specific
problem that requires Combilog to be revised, and discuss why CNP is an
improvement. We will continue by the formal semantics of CNP in Sect. 3.
Section 4 will support our claims of usability with the results of a usability study,
and Sect. 5 demonstrate how CNP is used for synthesis in place of Combilog.

1 The concept of compositionality here refers to the principle of compositionality [21],
where the meaning of an expression is defined as a function of meanings of its
components only, and not to the concept of or-compositionality [3].

308 G. Paçacı et al.

2 Compositional Relational Argument Binding Problem

In order to provide the mechanics for binding arguments of component predi-
cates, Combilog devises the make operator which takes a source predicate and
produces a new predicate where the arguments are bound to those in the source
according to a given list of indices. To demonstrate, let us look at three uses of
the make operator, in relation to how it’s ordinarily achieved using variables.
The first example reflects cropping, which eliminates arguments from a predicate:

using variables: p(X,Y) ← r(X,Y,) using make: p ← make([1, 2], r)

Because the index list of the make operator refers only to the arguments 1 and
2, the predicate p has only two arguments bound to the respective arguments
from r. The second example displays the case where the arguments in the new
predicate do not appear in the same order as the source predicate. This use case
of the make operator is referred to as permutation of arguments:

using variables: p(Y,X) ← r(X,Y,) using make: p ← make([2, 1], r)

This is almost identical to the one in the first example, except the arguments
appear in the switched order. The third argument of r is still cropped. The third
and final example reflects the expansion use of the make operator. This is used
to introduce new arguments that are unbound to the source predicate.

using variables: p(Y,X,) ← r(X,Y,) using make: p ← make([2, 1, 4], r)

The only difference in this example is the introduction of a third index 4, which
yields a third argument in p which is not bound to an argument of r, since r
does not have a 4th argument. For introducing new unbound arguments further
higher indices can be used. A complete predicate definition shows the difficulty
of comprehension and modification resulting from the use of make more clearly.
Consider this implementation of the append predicate in Prolog:

append([],Ys,Ys).
append([X|Xsrest],Ys, [X|MidList]) ← append(Xsrest,Ys,MidList).

In order to be able to compare the code above to its Combilog equivalent, it
is useful to first observe a version of it where the syntactic sugar specific to
Prolog is removed. This version of the code is given below, where the list oper-
ator [X|T] and the empty list constant [] are replaced by auxiliary predicates
cons(H,T, [H|T]), and const[]:

append(Xs,Ys,Zs) ← const[](Xs), id(Ys,Zs).
append(Xs,Ys,Zs) ← cons(X,Xsrest,Xs) ∧

append(Xsrest,Ys,MidList) ∧
cons(X,MidList,Zs).

Compositional Relational Programming 309

in Combilog the same predicate is written as:

append ←or(and(make([1, 2, 3], const []),make([3, 1, 2], id)),
make([1, 2, 3], and(make([3, 4, 5, 1, 2, 6], cons),

make([4, 2, 5, 6, 1, 3], append),
make([4, 5, 3, 1, 6, 2], cons)))).

The Combilog definition is significantly more difficult to comprehend and
modify than the Prolog equivalent. This is the main issue addressed in this
paper. The intention is to introduce a new syntax for Combilog without reducing
expressiveness or breaking the compositionality principle. The principle can be
expressed as follows. The meaning of every valid expression in a language: (1)
Should be defined as a function of meanings of its components. (2) Should not
depend on the context it appears. (3) Should not depend on what comes before
or after it sequentially (excluding the name-called components of the expression
that may happen to come before or after it). The principle is formally stated as:

�operator(ϕ1, . . . , ϕm)� = Foperator(�ϕ1� , . . . , �ϕm�)

Free variables may incorporate the context into the meaning of an expres-
sion, therefore the compositionality principle prohibits a general use of variables.
Combilog programs contain no variables, and the constructs of the language are
devised in this manner. The elementary components of Combilog programs are
a limited number of predicates:

– true for logical truth
– constC for introducing a constant C, defined as constC(C).
– id for identity, defined as id(X,X)
– cons for working with lists, defined as cons(H,T, [H|T]).

Combilog programs are composed using the following operators.

– Logic operators and and or , which are correspond to set intersection and
union, requiring their components to have equal number of arguments:

and(P,Q)(X1, . . . , Xn) ← P (X1, . . . , Xn) ∧ Q(X1, . . . , Xn)
or(P,Q)(X1, . . . , Xn) ← P (X1, . . . , Xn) ∨ Q(X1, . . . , Xn)

– The generalized projection operator, make:

make([μ1, . . . , μm], P)(Xμ1 , . . . , Xμm
) ← P (X1, . . . , Xn)

– The list recursion operators foldr and foldl :

foldr(P,Q)(Y, [], Z) ← Q(Y,Z)
foldr(P,Q)(Y, [X|T] ,W) ← foldr(P,Q)(Y, T, Z) ∧ P (X,Z,W)

foldl(P,Q)(Y, [], Z) ← Q(Y,Z)
foldl(P,Q)(Y, [X|T] ,W) ← P (X,Y,Z) ∧ foldl(P,Q)(Z, T,W)

310 G. Paçacı et al.

Let observe how these operators behave through some examples:

isFather ← and(isMale, hasChildren)

In the Combilog code above, the predicate isFather is defined as the conjunction
of isMale and hasChildiren predicates, all three predicates being unary. In con-
trast, in a language such as Prolog, using variables, the same could have been
written as follows.

isFather(X) ← isMale(X) ∧ hasChildren(X)

When arguments are bound in a non-trivial scheme, the make operator is
required. Let us define the daughterOf predicate, which succeeds if A is the
daughter of B, A being the first argument and B the second:

daughterOf ← and
(
make([2, 1], parentOf),make([1, 2], isFemale)

)

In this example, assuming the isFemale is unary, but parentOf is binary,
it is necessary to expand the isFemale predicate to binary by adding a sec-
ond, unbound argument. The index 2 in the make operation associated with
isFemale does exactly this. Since there is no second argument in the original
isFemale predicate, make defines a second argument but binds it to no argument
of isFemale, introducing an unbound argument. The same expression could have
been written using variables as:

daughterOf (X,Y) ← parentOf (Y,X) ∧ isFemale(X)

As a final example of a Combilog program, let us demonstrate the recursion.
The append example from earlier can be written using the foldr operator as:

append ← make([2, 1, 3], foldr(cons , id)).

Even though the definition of append with the foldr operator is quite simpler
than without, the code involving a make operator renders any Combilog code
relatively difficult to read and modify. In the next section, we present CNP which
introduces argument names to overcome this usability problem.

3 Combilog with Name Projection (CNP)

CNP introduces the following changes to Combilog’s syntax, which foremost
includes the introduction of names for arguments. This allows a direct benefit
since names also stand as a form of documentation as opposed to being only an
identifier. There are also indirect benefits of using argument names, such as the
possibility of defining operators that use argument names as a hint for schema
matching between their operands’ arguments. Here we summarize the overall
changes CNP involves:

Compositional Relational Programming 311

1. Numeric sequential argument positions (1st, 2nd, etc.) are replaced with nom-
inal argument positions (head, c, etc.).

2. Elementary predicates are modified to include argument names.
3. The logic operators and and or are replaced with their name-aware variants

which exhibit an auto-expanding behaviour, using arguments names of the
components as clue.

4. The expansion use of the make operator is taken over by new auto-expanding
logic operators (ande and ore) which accept components with any arity. This
is made possible due to nominal argument positions, also.

5. A new proj operator is introduced, replacing the make operator. This new
operator takes over the cropping, as well as introducing a renaming use.

6. The list recursion operators foldl and foldr are replaced with name-aware
versions which introduce restrictions on argument names of the operands as
well as fixed argument names for the resulting predicates.

These improvements are guided by a heuristic usability analysis using Green’s
Cognitive Dimensions [8], and a thorough discussion can be found in the rele-
vant work of Paçacı [15]. They improve the usability significantly while preserv-
ing expressiveness and the compositionality principle. The resulting approach
significantly resembles Codd’s Relational Algebra [2], especially the unordered
relational domains with the non-sequential nominal argument positions and
natural join with the auto-expanding logic operators. The intention here is
to perform logic programming rather than modelling and querying relational
data. Let us observe the following examples of CNP syntax. In the examples,
the argument names of a component predicate are given in a signature form
predName : {name1 ,name2 , . . .}. Let us start with the daughterOf predicate:

parentOf : {parent , child}
isFemale : {name}
daughterOf ← ande

(
proj (parentOf , {parent �→ parent , child �→ daughter}),

proj (isFemale, {name �→ daughter})
)

The two proj operators project the parentOf and isFemale predicates to produce
anonymous predicates with argument names {parent , daughter} and {daughter},
respectively. Then, the ande operator takes their conjunction, mapping identi-
cally named arguments, producing another anonymous predicate with arguments
{parent , daughter}, which is finally assigned to the predicate name daughterOf .
The second example is the recursive definition of the append predicate:

append ← foldr(cons , id)

This example is identical to that in Combilog, since it does deal with arguments.
As it will be discussed later, the foldr operator in CNP has fixed argument names,
therefore the anonymous predicate above has the argument names inherited
from this operator: {as, a0 , b}. In order to change these to a more conventional
argument names for append , we can project it, and assign it to a predicate name:

append ← proj (foldr(cons , id), {as → xs, a0 → ys, b → zs})

which has the argument names {xs, ys, zs}.

312 G. Paçacı et al.

Analogous to Combilog programs, CNP programs consist of a set of predicate
definitions in the form of p ← ϕ, where p is a predicate symbol and ϕ is a body.
The body is a CNP expression, constructed from elementary predicates and
composition operators (proj, ande, ore, foldr , foldl). In the following sections,
we will we will present the formal semantics of these CNP program constructs.

3.1 Name-Aware Tuples and Extensions

Before moving on to specific operators and their denotations, let us clarify a
fundamental concept. In order to support the mechanics of argument binding
with names, we shall adopt a special understanding of a relational tuple, namely,
α-tuple, which is in line with a record. An ordinary tuple with k elements can
be formalized as a function from a k-size subset of the natural numbers K to
elements from the Herbrand Universe, τ : K → H. For example, for a given tuple
τ = 〈t1, . . . , tk〉, applications of τ as a function are τ(1) = t1, . . . , τ(k) = tk.
Assuming the existence of a bijective name map α from a set of names A to
the same subset of the natural numbers K, that is, α : A → K, then α is a
compatible name map to transform an ordinary tuple τ to an α-tuple τα = τ ◦α.
As a result, τα is obtained as a function from a set of names A to elements from
the Herbrand universe. Given a usual tuple τ = 〈t1, . . . , tk〉 and a compatible
name map α = {a1 �→ 1, . . . , ak �→ k}, the applications of τα as a function are
τα(a1) = t1, . . . , τα(ak) = tk. Since the name map α is bijective, it can also be
used to obtain an ordinary tuple from an α-tuple, establishing the isomorphism
between them. Consequently, the relational extensions discussed in the following
sections should be read as sets of α-tuples, rather than sets of ordinary tuples,
referred to as α-extensions.

In the following sections, we will give denotations of elementary predicates
and operators of CNP, and we will finalize the semantics with the fixpoint seman-
tics of CNP programs.

3.2 Elementary Predicates

CNP includes a set of elementary predicates as counterparts to Combilog’s ele-
mentary predicates, the only difference being that they denote α-extensions. The
denotations of these elementary predicates are given below, with their associated
name maps given as subscripts to the predicate symbols.

�true∅� = {{}}
�const(N,C)α1� = {{N �→ C}}

�idα2� = {{a �→ C, b �→ C} | C ∈ H}
�consα3� = {{a �→ X, b �→ Xs, ab �→ XXs} |

〈X,Xs ,XXs〉 ∈ H3 ∧ X · Xs = XXs}

Compositional Relational Programming 313

where
H = Herbrand universe of the program

H3 = tertiary cartesian product of H

α1 = {N �→ 1}
α2 = {a �→ 1, b �→ 2}
α3 = {a �→ 1, b �→ 2, ab �→ 3}

Note that the Herbrand Universe is understood as that of a corresponding defi-
nite clause program. The const operator is parametric, where N is the name of
the single argument of the predicate, and C is the constant the predicate should
succeed for. CNP also defines an explicit instance of the const operator, namely
isNil , for providing easy access to the empty list constant, defined as:

isNil = const(nil , [])

3.3 Projection Operator

CNP replaces Combilog’s make operator with the proj operator. The projection
operator proj (Sα, P) produces a new predicate based on a given source predicate
Sα, considering the projection map given as P . A valid projection map P is a
map from a non-empty set of existing names A ⊆ Dom(α) from the name map
of S to a set of new names B, formalized as a function as P : A → B. P is not
required to cover all names appearing in the name map of S, but has to have
at least one mapping, and is required to be bijective (every old name a ∈ A is
mapped to exactly one new name, and every new name b ∈ B is mapped by
exactly one old name). The map entries where a name is mapped to itself by
P are only projection, while the map entries that map names to new names are
called renaming.

�proj (Sα, P)αc
� = {τα ◦ P−1 | τα1 ∈ �Sα�}

where αc = α ◦ P−1

The resulting name map associated with application of proj is the composition
of the name map of S and P−1, containing only those names that are projected
by P . The proj operator takes over most of the functionality of make except
introduction of argument names, which is taken over by the logic operators,
discussed in the next section.

3.4 Logic Operators

The logic operators defined in CNP have the option to vary their behaviour
by using argument names as hints to establish bindings between arguments of
the component predicates. The auto-expanding logic operators ande and ore
are introduced, which behave as if the component predicates are expanded with
unbound arguments to cover all argument names of all the component predicates,

314 G. Paçacı et al.

taking their union. This helps to reduce the boilerplate code that emerges as a
result of compulsory use of expanding the make operator to each operand of a
logic operator, as discussed earlier. This functionally takes over the expanding
use of the make operator in Combilog. Denotations of the auto-expanding logic
operators are given below, where Dom(α) refers to the domain of a name map,
which consists of the relevant argument names.

�ande(Rα1 , Sα2)αc
� = {ταc

∈ Hαc
| (ταc

⊇ τα1 ∧ ταc
⊇ τα2) ∧

τα1 ∈ �Rα1� ∧ τα2 ∈ �Sα2�}
�ore(Rα1 , Sα2)αc

� = {ταc
∈ Hαc

| (ταc
⊇ τα1 ∨ ταc

⊇ τα2) ∧
τα1 ∈ �Rα1� ∧ τα2 ∈ �Sα2�}

where As = Dom(α1) ∪ Dom(α2)
HAs = {{A} × H | A ∈ As}
Hαc

= {{T1, . . . , Tn} | T1 ∈ HA1 ∧ . . . ∧ Tn ∈ HAn
∧

{HA1 , . . . , HAn
} = HAs}

The set of argument names A in the expanded composition is established as the
union of all names appearing in domains of component predicates’ name maps.
The set HA is a set of sets, where each set contains a mapping for one of the
names in A to every element of the Herbrand Universe. Each of these sets is
referred as Ti in the definition of Hαc

. Every name-value pair t has a name from
A as its first element, and an element of the Herbrand Universe as its second
element. In this way, Hαc

is established as a set of α-tuples compatible with αc,
which is the name map associated with the composition. The resulting name
map αc maps the union of argument names in α1 and α2 to numeric indices,
where names in α1 are mapped to their original indices and the unique names
in α2 are mapped to the following indices, preserving their original order. For
example, given α1 = {a �→ 1, b �→ 2} and α2 = {b �→ 1, c �→ 2}, the resulting
name map of the composition is αc = {a �→ 1, b �→ 2, c �→ 3}.

The availability of argument names enables the implementation of a wider
range of logic operators that apply various argument binding schemes. Besides
ande and ore, operators such as ando and oro which bind every name-matching
argument but returns a predicate with only the unmatched argument names can
be implemented, resembling relation composition [20] but applying to multi-ary
predicates as well as binary. Another alternative is the pair andl/orl, which return
a predicate with only the arguments from the left-hand component. Extending
these binary logic operators to multiary variants is straightforward.

3.5 Recursion Operators

CNP defines list recursion operators foldr and foldl . These are the counterparts
to their namesakes in Combilog, and operate the same way, modulo the addi-
tion of names for their arguments. In their denotations below, the aggregate
definitions foldr and foldl refer to the auxiliary definitions foldr0/foldr i+1 and
foldl i/foldl i+1, respectively, where i ≥ 0.

Compositional Relational Programming 315

�foldr(P,Q)� =
∞⋃

i=0

�foldri(P,Q)�

�foldr0(P,Q)� =
{{a0 �→ Y, as �→ [], b �→ Z} ∈ Hαf

| {a �→ Y, b �→ Z} ∈ �Q�
}

�
foldr i+1(P,Q)

�
=

{{a0 �→ Y, as �→ (X · Xs), b �→ W} ∈ Hαf
|

(∃Z ∈ H s.t.

{a0 �→ Y, as �→ Xs, b �→ Z} ∈ �foldr i(P,Q)� ∧
{a �→ X, b �→ Z, ab �→ W} ∈ �P �

)}

�foldl(P,Q)� =
∞⋃

i=0

�foldli(P,Q)�

�foldl0(P,Q)� =
{{a0 �→ Y, as �→ [], b �→ Z} ∈ Hαf

| {a �→ Y, b �→ Z} ∈ �Q�
}

�
foldl i+1(P,Q)

�
=

{{a0 �→ Y, as �→ (X · Xs), b �→ W} ∈ Hαf
|

(∃Z ∈ H s.t.

{a �→ X, b �→ Y, ab �→ Z} ∈ �P �∧
{a0 �→ Z, as �→ Xs, b �→ W} ∈ �foldl i(P,Q)�

)}

where Hαf
=

{{a0 �→ A0, as �→ As, b �→ B} | 〈A0,As, B〉 ∈ H3
}

The name maps for the fold operations are fixed, as well as their operand expres-
sions P and Q. Operand expressions must comply with these pre-determined
name maps. This is due to a design compromise for avoiding introduction of
another higher-order argument (on top of P and Q) for indicating the roles of
the arguments, due to the lack of argument indices. With their fixed names,
argument a0 refers to the initial value, argument as refers to the list, and
b refers to the result of the folding. The fixed name maps are as follows:
αfoldr = {a0 �→ 1, as �→ 2, b �→ 3}, αP = {a �→ 1, b �→ 2, ab �→ 3},
αQ = {a �→ 1, b �→ 2}. There are also two binary variants, omitting the argument
a0 , instead obtaining the initial value through the base case. These are defined
in terms of the generic fold operators, as in the definition of foldr2 :

foldr2 (P,Q) = proj (foldr(P, ande(Q, id)), {as �→ as, b �→ b})

3.6 Fixpoint Semantics

The model-theoretical meaning M|=(Pcnp) of a CNP program Pcnp is expressed
in a similar way to that of Combilog as the least fixed point of the power
function of an immediate consequence operator T cnp. Similar to Combilog, the
domain of T cnp is an extension map instead of the usual Herbrand interpreta-
tions. Extension maps are structure that map predicates names to their exten-
sions. For a CNP program Pcnp with m predicate definitions, the extension map
is formalized as: Eα =

⋃m
i=1{pi �→ eα

i } Similarly, for a CNP program Pcnp,
the immediate consequence operator T cnp

Pcnp
is defined using extension maps is

316 G. Paçacı et al.

T cnp
Pcnp

(Eα) =
⋃m

i {pi �→ �ϕi�Eα}, where pi refers to the ith predicate symbol,
ϕi to the ith predicate body, and �ϕ�Eα denotes the α-extension of the body ϕ
with regard to extension map Eα and the denotations of elementary predicates.
The definition of a power function of the T cnp

Pcnp
is given as:

T cnp
Pcnp

↑ 0 =
m⋃

j=1

{pj �→ ∅}

T cnp
Pcnp

↑ (i + 1) = T cnp
Pcnp

(T cnp
Pcnp

↑ i)

T cnp
Pcnp

↑ ω =
m⋃

j=1

{pj �→
∞⋃

i=0

(
(T cnp

Pcnp
↑ i)(pj)

)}

and the model-theoretical meaning of a CNP program Pcnp is calculated as the
least fixed point of the power function: M|=(Pcnp) = T cnp

Pcnp
↑ ω.

Using meaning-preserving reversible transformation steps, Combilog and
CNP programs can be converted to each other, and through these transforma-
tion steps it can be proven that the least fixed point of any two program trans-
formed would be model-theoretically isomorphic, modulo introduction/removal
of names. This proof is omitted here for brevity, but it can be found in authors’
other work [15]. Because the meaning of Combilog programs are proven to be
equivalent to a corresponding definite clause program, the meaning of a CNP
program and a corresponding definite clause program would also be isomorphic
by transitivity.

4 Usability of CNP Programs

It is self-evident from observing the examples of CNP code in the previous section
that CNP code is more readable compared to the original Combilog code. The
question remains that how does it compare to notations with variables most
common in the Logic Programming paradigm? In order to answer this, a within-
subjects usability test has been conducted. The study compared two notations,
a Notation X which is based on Prolog-like syntax with variables but included
none of the syntactic sugar, such as list construction ([|]) or pattern match-
ing; and a Notation Y, which is based on CNP. Elimination of syntactic sugar
was deemed necessary to focus the study on the argument binding problem.
Counter-balancing was performed by ordering the notations differently for two
groups consisting of 10 participants each. Participants consisted of programmers
working either in the industry or at a university, equally weighted, and dis-
tributed among the two groups. Through a pre-questionnaire, participants who
had experience using Prolog were disqualified in order to have balanced results.
The study was conducted through a text-based on-line questionnaire. It included
six questions, out of which three involved comprehensibility and three modifiabil-
ity. Each question was based on between one and four short predicate definitions.
The code segments were based on working code, relating to well-known textbook

Compositional Relational Programming 317

examples, but they were obfuscated differently for each notation to reduce the
learning effect, and included increasing levels of complexity in terms of number
of operations (variable binding or logic operators). Let us observe the first mod-
ification question, which includes the following fragments of code, given here
before obfuscation of predicate names. In notation X (Prolog-like):

flightRoute(A, B).
trainRoute(A, B).
outInRouteOpt(D, E) :- flightRoute(D, _), trainRoute(D, _),

flightRoute(_, E), trainRoute(_, E).

and in notation Y (CNP):

flightRoute :: {x, y}
trainRoute :: {x, y}
outInRouteBoth :: {a, b} =

and(and(flightRoute {x->a}, trainRoute {x->a}),
and(flightRoute {y->b}, trainRoute {y->b}))

The question required the participants to identify and refactor out a reusable
component from the conjunction of flightRoute and trainRoute predi-
cates, thereby creating a new route predicate. In plain text the proj opera-
tor is implicit, where flightRoute {x->a} is equivalent to proj (flightRoute,
{x �→ a}).

The participants took 276s (seconds, on average) to answer the first three
comprehension questions for Notation X, while they took 345 s for Notation Y,
which corresponds to a 25% longer task time while using Notation Y (P < 0.05).
For the following three modification questions, the results were in favour of Nota-
tion Y. While the participants took 468 s to finish modification questions in Nota-
tion X, they took 366 s for Notation Y, which corresponds to 22% shorter task
time while using Notation Y (P < 0.05). The correctness of participants’ answers
were also measured. For comprehension questions there were no noticeable dif-
ferences. For modification questions, the participants gave 42% more correct
answers while they were using Notation Y (P < 0.01). This difference is mostly
due to a single refactoring question which required alpha-renaming in Notation
X but was a simple replacement in Notation Y. In a post-test questionnaire, the
participants were asked three questions about their preferences. In answer to the
question “Which notation did you find easier to read”, 12 participants replied
notation X, and 8 replied notation Y. The second question was “Which notation
did you find easier to modify?”, to which 8 participants replied X, 11 replied Y,
and 1 replied no preference. The third question was “Which notation would you
choose, if you had to use one for a project?”, to which 8 participants replied X,
10 replied Y, and 2 replied no preference.

5 Compositional Synthesis

The synthesis approach in CombInduce can be described as a top-down search
procedure that attempts to place language operators and elementary predicates

318 G. Paçacı et al.

in an expression tree, written as a reversed meta-interpreter in Prolog [9,11].
The synthesizer incorporates well-modedness constraints to make sure the gen-
erated programs are procedurally terminating, and operators are utilized in valid
combinations [10]. The CNP synthesizer is written the same way, in Prolog, as a
single predicate synInc as the entry point [15]. This predicate gradually increases
the depth of the search, to find shorter programs first, if there are any, while
also changing the default depth-first search strategy of Prolog for a breadth-first
search. To demonstrate the technique through examples, let us synthesize the
naive reverse operation using the CNP synthesizer. This operation requires two
levels of recursion, and an elementary predicate to construct a unit list, a list
consisting of one element. Let us start by synthesizing this predicate first.

?- synInc(P, [a:in, aList:out], [[a:1, aList:[1]]]).

The call above asks for a predicate P with two arguments {a, aList}, and spec-
ifies a mode {a : in, aList : out} for the program that the synthesizer should
guarantee it will procedurally terminate when executed. The call also includes a
single input/output example, specifying when the argument a is 1, the argument
aList should be a unit list [1]. The first predicate suggested is the correct one:

P = proj(ande(cons, proj(isNil, [nil->b])), [a->a, ab->aList]).

The suggestion constructs a conjunction of cons and isNil , binding the tail of a
list to the empty list, its head to an argument a, and the whole list to the argu-
ment aList . After the user inspects and confirms the code above, and assigns a
predicate name asList , it is available as background knowledge to the synthe-
sizer. The next step is to synthesize the recursion stage:

?- synInc(P, [as:in, bs:out], [[as:[1,2,3], bs:[3,2,1]]]).

The call requests a predicate P with two arguments {as, bs}, with a single
input/output example. The first suggested implementation is the correct one:

P = proj(foldr2(
proj(foldr(cons, proj(asList, [a->a, aList->b])),

[a0->a, as->b, b->ab]),
proj(isNil, [nil->b])), [as->as, b->bs]).

The suggested predicate uses two nested fold variants, traversing a given list as
(the foldr2 operation) where each element is appended to a running list (the
foldr operation). The foldr operation is a variant of the ordinary append pred-
icate visited earlier in Sect. 2 with the second argument being a single element
instead of a list. After the user confirms the synthesized predicate as the correct
implementation, and manually assigns it a predicate name (reverse), it can be
tested through the meta-interpreter predicate named cnp:

Compositional Relational Programming 319

?- cnp(reverse, [as:[a,b,c,d], bs:Bs]).

succeeds with the answer binding the Bs variable:

Bs = [d,c,b,a].

Even though the program was asked to terminate in one direction, it can be used
to un-reverse a list:

?- cnp(reverse, [as:As, bs:[d,c,b,a]]).

which succeeds with the following answer, binding the As variable instead:

As = [a,b,c,d].

6 Conclusion

In the introduction we drew attention to the usability of the target language,
as it is necessary that the user inspects, comprehends and confirms the synthe-
sized programs. If necessary, the user may choose to add more example cases
that are not covered to achieve more specific programs. We have demonstrated
this through a synthesis application in Sect. 5 through the synthesis of a naive
reverse predicate, where the user had to intervene to initiate and confirm two
separate predicates. Besides being readable, if the notation is modifiable, the
user may manually alter the program as well. Among the results of the user
study presented in Sect. 4, it was shown that the argument binding using nom-
inal projection compares well to use of variables when measured in isolation. It
shall be made clear that we do not claim to have devised a language which is
equally user-friendly as Prolog. The user study measured only specific aspects
of the languages, narrowly focusing on argument binding comprehensibility and
modifiability. Programming for general problem solving involves various other
skills. It is important to consider the context of our work, CNP and Combilog are
fundamentally different to languages such as Prolog or Mercury, due to composi-
tionality. A fair comparison can only be made with the likes of Predicate-Functor
Logic or Combinatory Logic, which are also variable-free, compositional systems
of logic. For future work, we intend to improve the synthesis for even deeper
levels of recursion, such as fold-3 programs, which would be able to synthesise
programs such as exponent in Peano arithmetic.

References

1. Basin, D., Deville, Y., Flener, P., Hamfelt, A., Fischer Nilsson, J.: Synthesis of
programs in computational logic. In: Bruynooghe, M., Lau, K.-K. (eds.) Pro-
gram Development in Computational Logic. LNCS, vol. 3049, pp. 30–65. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-25951-0 2

2. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

https://doi.org/10.1007/978-3-540-25951-0_2

320 G. Paçacı et al.

3. Comini, M., Levi, G., Meo, M.C.: A theory of observables for logic programs. Inf.
Comput. 169(1), 23–80 (2001)

4. Cropper, A., Tamaddoni-Nezhad, A., Muggleton, S.H.: Meta-interpretive learning
of data transformation programs. In: Inoue, K., Ohwada, H., Yamamoto, A. (eds.)
ILP 2015. LNCS (LNAI), vol. 9575, pp. 46–59. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40566-7 4

5. Curry, H.B.: Grundlagen der kombinatorischen logik. Am. J. Math. 52(3), 509–536
(1930)

6. Curry, H.B., Feys, R.: Combinatory Logic. Studies in logic and the foundations of
mathematics, vol. 1. North-Holland Publishing Company, Amsterdam (1958)

7. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. SIGPLAN Not. 50(6), 229–239 (2015)

8. Green, T.R.G.: Cognitive dimensions of notations. In: People and Computers V,
pp. 443–460 (1989)

9. Hamfelt, A., Nilsson, J.F.: Inductive metalogic programming. In: Proceedings
Fourth International Workshop on Inductive Logic Programming, pp. 85–96. Bad
Honnef/Bonn GMD-Studien Nr. 237 (1994)

10. Hamfelt, A., Nilsson, J.F.: Inductive logic programming with well-modedness
constraints. In: Rached, E. (ed.) Proceedings of the 8th International Work-
shop on Functional and Logic Programming, pp. 220–231. Centre National de
la Recherche Scientifique, Institut National Polytechnique de Grenoble, Universit
Joseph Fourier, Laboratoire Leibniz, Institut IMAG, 1999. UMR no 5522 (1999)

11. Hamfelt, A., Nilsson, J.F.: Inductive synthesis of logic programs by composition of
combinatory program schemes. In: Flener, P. (ed.) LOPSTR 1998. LNCS, vol. 1559,
pp. 143–158. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48958-
4 8

12. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive func-
tions. In: Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA 2013,
New York, pp. 407–426. ACM (2013)

13. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1),
49–73 (2015)

14. Numao, M., Shimura, M.: Combinatory logic programming. In: Bruynooghe, M.
(ed.) Proceedings of the 2nd Workshop on Meta-programming in Logic, pp. 123–
136. K.U. Leuven, Belgium (1990)

15. Paçacı, G.: Representation of compositional relational programs. Ph.D. thesis,
Uppsala University, Information Systems (2017)

16. Paçacı, G., Hamfelt, A.: Colour beads visual representation of compositional rela-
tional programs. In: Proceedings of IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), San Jose, CA, USA, pp. 131–134 (2013)

17. Paçacı, G., Hamfelt, A.: A visual system for compositional relational programming.
In: Proceedings of the The 23rd European Japanese Conference On Information
Modelling And Knowledge Bases (EJC), Nara, Japan, 2013, pp. 235–243. IOS Press
(2014)

18. Quine, W.V.: Predicate-functor logic. In: Fenstad, E. (ed.) Proceedings of Second
Scandinavian Logic Symposium, pp. 309–315. North-Holland (1971)

https://doi.org/10.1007/978-3-319-40566-7_4
https://doi.org/10.1007/978-3-319-40566-7_4
https://doi.org/10.1007/3-540-48958-4_8
https://doi.org/10.1007/3-540-48958-4_8

Compositional Relational Programming 321

19. Schönfinkel, M.: über die bausteine der mathematischen logik. Math. Ann. 92(3–4),
305–316 (1924)

20. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(03), 73–89 (1941)
21. van Benthem, J., Ter Meulen, A.: Handbook of Logic and Language. Elsevier,

Amsterdam (1996)

WhaleProver: First-Order Intuitionistic
Theorem Prover Based on the Inverse Method

Vladimir Pavlov(B) and Vadim Pak

Peter the Great St. Petersburg Polytechnic University,
29 Politechnicheskaya St., St. Petersburg 195251, Russia

vlapav239@gmail.com, vadimpak917@gmail.com

Abstract. The first-order intuitionistic logic is a formal theory from
the family of constructive theories. In intuitionistic logic, it is possible
to extract a particular example x = a and a proof of a formula P (a)
from a proof of a formula ∃xP (x). Thanks to this feature, intuitionistic
logic has many applications in mathematics and computer science. Sev-
eral modern proof assistants include automated tactics for the first-order
intuitionistic logic which could simplify the task of solving challenging
problems, e.g. formal verification of software, hardware, and protocols.

In this article, we present a new theorem prover (named WhaleProver)
for full first-order intuitionistic logic. Testing on the ILTP benchmark-
ing library has shown that WhaleProver performance is comparable with
state-of-the-art intuitionistic provers. Our prover has solved more than
800 problems from the ILTP version 1.1.2. Some of them are intractable
for other provers.

WhaleProver is based on the inverse method proposed by S. Yu. Maslov.
We introduce an intuitionistic inverse method calculus which is in turn a
special kind of sequent calculus.Then,wedescribe how to adopt for this cal-
culus several existing proof search strategies which were proposed for dif-
ferent logical calculi by S. Yu. Maslov, V.P. Orevkov, A.A. Voronkov, and
other authors. In addition,we suggest newproof search strategy that allows
avoiding redundant inferences. This article includes results of experiments
with WhaleProver on the ILTP library. We believe that WhaleProver can
be used further as a test bench for different inference procedures and strate-
gies, as well as for educational purposes.

Keywords: Automated reasoning · Proof assistants
Theorem proving · Inverse method · Intuitionistic logic · ILTP

1 Introduction

Automated theorem proving (ATP) systems are used for automated proof search
in different formal theories. Nowadays, ATP systems are applied successfully
to solve the variety of problems in science and industry. Those problems are
traditionally considered as intellectual: mathematical theorem proving, software,
hardware, and network protocols verification, software synthesis, and others.
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 322–336, 2018.
https://doi.org/10.1007/978-3-319-74313-4_23

WhaleProver: First-Order Intuitionistic Theorem Prover 323

Current interactive ATP systems (“proof assistants”) such as Coq, Agda, and
Nuprl provide strong instruments for solving such problems in semi-automated
mode. All the systems mentioned above are based on constructive higher-order
theories (namely, on type theories). Due to the theories constructiveness, these
ATP systems are able to generate programs from proofs they have built [1].
Moreover, each of them includes the programming language which provides the
possibility for correct-by-construction programs synthesis.

So, constructive theories are important in ATP because every proof in these
theories provides construction. The first-order intuitionistic logic is one of these
theories. Standard propositional connectives and quantifiers are interpreted there
in another way than in the classical logic. In particular, the classical laws of
tertium non datur A ∨ ¬A and double negation elimination (¬¬A) ⊃ A are
unacceptable in the intuitionistic logic.

Interactive systems Coq and Nuprl can solve complex problems thanks to
tactics mechanisms which include automated tactics for the first-order intuition-
istic logic. For example, the automated ATP system JProver [21] is embedded
in Coq, Nuprl, and MetaPRL. But, we cannot say that existing intuitionistic
tactics are very effective. As a proof, we can refer to the results of JProver on
the ILTP library [24].

In this paper, we present the results of the work which aim is the ATP
system development. The system should exceed JProver in effectiveness. Also, it
should solve new problems compared with all the current ATP systems for the
first-order intuitionistic logic. We use the ILTP library [20,24] for testing and
estimating performance. That library includes a wide problems collection (more
than 2500) for testing and comparing ATP systems for intuitionistic logic.

The previous results of this work are presented in [18] and (in Russian) [19].

2 The Inverse Method

To solve the task, we choose Maslov’s inverse method [8], see also [2,7,15]. The
main particularities of this method are the following: first, the proof search in
the top-down direction, i.e. from axioms to the goal, and second, the subformula
property of logical calculi usage.

It is hardly possible to implement an efficient theorem prover without using
proof search strategies which allow reducing proof search space. Different strate-
gies for the inverse method are analyzed in [2,9,11,13,14,23,25].

We can emphasize the two programs from existing inverse method imple-
mentations for the first-order intuitionistic logic: Gandalf [23] and Imogen [13].
The former can produce incorrect results according to the ILTP site [24]. The
latter is rather efficient, mainly because of the strategies used (namely, focusing
and polarization). However, that prover does not include a variety of strategies
exposed in [2,11,14,23,25] which can be not less efficient.

In this work, we attempted to diminish the gap between theory and practice
described above. In the paper, the inverse method calculi in the form of special
sequent calculi the same as in [2] are considered. Strategies proposed by different

324 V. Pavlov and V. Pak

authors for classical and non-classical inverse method calculi have been adapted
for those calculi. Also, new strategies have been developed.

3 Main Definitions and Notational Convention

In the paper, we use the standard first-order logic language with logical opera-
tions symbols ¬, ∨, ∧, ⊃, quantifiers ∃, ∀, predicate symbols P , Q, R, variables
x, y, z, and so on, certain terms symbols r, s, t, certain formulas symbols A, B,
C, and so on. Mainly, we will use terminology from [2].

Multiset is the set generalization which permits several occurrences of the
same element. Arbitrary multisets (maybe empty) are denoted as Γ, Δ. Sub-
scripts or dashes are permitted. The note Γ, Δ (or Γ, A) means that it is a
multiset which is obtained as a sum of Γ and Δ (Γ and element A accordingly).

Expression is a certain term, formula, substitution, formulas multiset,
sequent, and so on. The var(E) note means the set of all the variables of the
expression E; free(E) is the set of all free variables of E.

Domain of the substitution θ = {x1/t1, . . . , xn/tn} marked as dom(θ)
is the set of variables {x1, . . . , xn}. The ran(θ) note means the terms set
{t1, . . . , tn}; vran(θ) is the set of all the variables in the terms from ran(θ).
The ε symbol means the empty substitution.

The substitution θ = {x1/t1, . . . , xn/tn} narrowing on the variables set
Ω is the substitution denoted as θ|Ω and consisting of those and only those pairs
xi/ti from θ for which xi ∈ Ω. The θ−x means the θ|dom(θ)\{x} substitution.

For the expression E and the substitution θ admissible for E, E · θ is an
acronym for E

(
θ|free(E)

)
. If the variable x is written decisive in the expression

E(x), then E(t) means E {x/t} under the admissibility of {x/t} for E.
Renaming is a substitution as one-to-one mapping from its domain to itself.
The most general unifier for substitutions σ1 and σ2 is the most general

unifier for ordered collections (x1σ1, . . . , xnσ1) and (x1σ2, . . . , xnσ2) where
{x1, . . . , xn} = dom (σ1) ∪ dom (σ2).

The subformula occurrence in the formula and the subformula occur-
rence polarity (positive or negative) are defined in the standard way (see e.g.
[2] or [8]). E.g. the formula P (x) ⊃ (P (y) ⊃ P (x)) contains one (negative) occur-
rence of subformula P (y) and two occurrences of subformula P (x), the first of
which is negative, and the second is positive.

Let the 	 symbol mean any of the following symbols: ¬, ∧, ∨, ⊃, ∀, and
∃. The 	 symbol occurrence in the formula F is called the occurrence of the
kind 	+ (−) if it is a positive (accordingly, negative) occurrence in F .

Rectified formula is the formula F where all the quantifiers bind different
variables, and no bound variable occurs free in F .

Agreement 1. Further, the ξ symbol marks closed rectified first-order logic
formula only consisting of the ¬, ∧, ∨, and ⊃ logical operations symbols, and the
∃, ∀ quantifiers.

The notions defined further depend on the particular formula ξ, that is why
we write decisive the ξ symbol in the terms.

WhaleProver: First-Order Intuitionistic Theorem Prover 325

So, ξ-atom is the atomic subformula occurrence in ξ; ξ-sequent is a sequent
of the specific kind: A1 · σ1, . . . , An · σn
 B1 · δ1, . . . , Bm · δm where
all Ai, i ∈ {1, . . . , n} are negative subformulas occurrences in ξ; all Bj ,
j ∈ {1, . . . , m} are positive subformulas occurrences in ξ; σi, i ∈ {1, . . . , n},
and δj , j ∈ {1, . . . , m} are arbitrary substitutions of terms for variables. Part
of the sequent S to the left of the symbol
 is called the antecedent of S, part
of S to the right of the symbol
 is called the succedent of S.

The ξ-formula is a formula of the form ψ · σ where ψ is a subformula
occurrence in ξ, and σ is substitution of terms instead of variables. An antecedent
and succedent of a ξ-sequent are ξ-formulas multisets. Further, we use the term
“sequent” instead of “ξ-sequent” if it is clearly from the context that the latter
sequent is meant.

The free(S) means the set of free variables in ξ-sequent S:
free (A1σ1) ∪ · · · ∪ free (Anσn) ∪ free (B1δ1) ∪ · · · ∪ free (Bmδm).

For ξ-sequent S = (A1 · σ1, . . . , An · σn
 B1 · δ1, . . . , Bm · δm) and
substitution θ, notation Sθ means the ξ-sequent
A1 · (σ1θ) , . . . , An · (σnθ)
 B1 · (δ1θ) , . . . , Bm · (δmθ).

The main instance of the ξ-sequent S is a sequent
A1σ1, . . . , Anσn
 B1δ1, . . . , Bmδm. Actually, a ξ-sequent and its main
instance represent the same sequent in two different forms.

Let S and S′ be ξ-sequents, and (Γ
 Δ) and (Γ′
 Δ′) be their main instances
correspondingly. We write S ⊆̇ S′ if Γ ⊆ Γ′ and Δ ⊆ Δ′. In this case, S is the
subsequent of S′.

The norm(S) note means the normal form of the ξ-sequent S. It is obtained
from S by means of domain narrowing for all substitutions in it: each ξ-formula
ψ · σ is substituted by ψ · σ|free(ψ).

The ξ-formula ψ · σ is called proper if
dom(σ) = free(ψ) and vran(σ) ∩ var(ξ) = ∅. The ξ-sequent S is called proper
if each ξ-formula in it is proper.

We will say that a formula ξ is derivable in a sequent calculus C if a
sequent consisting of the only formula ξ in the succedent is derivable in C.

Also we use standard notions related to sequent calculi, e.g. the notion of the
side formula . For detailed background see for example [5].

Sequent calculus is called multi-succedent if sequents with more than one
formula in the succedent could be derived in this calculus. In a single-succedent
calculus such sequents are not derivable.

4 Multi-Succedent Inverse Method Calculus
for the First-Order Intuitionistic Logic

Let us define a free-variable inverse method calculus IMξ
inv for the first-order

intuitionistic logic. The calculus IMξ
inv is built exclusively for each goal formula

ξ, and all formulas in the proof in this calculus are subformulas of ξ.
Axioms and inference rules of IMξ

inv are presented in Table 1. In all the rules
except (Rn) and (Nrm), premises are proper ξ-sequents and do not contain

326 V. Pavlov and V. Pak

Table 1. Calculus IMξ
inv

P1 · ρ1τ � P2 · ρ2τ
(Ax)

Γ, A1 · σ � Δ
Γ, A1 ∧ A2 · σ � Δ

(L∧1)
Γ, A2 · σ � Δ

Γ, A1 ∧ A2 · σ � Δ
(L∧2)

Γ1 � Δ1, A1 · σ1 Γ2 � Δ2, A2 · σ2

Γ1θ, Γ2θ � Δ1θ, Δ2θ, A1 ∧ A2 · σ1θ
(R∧)

Γ1, A1 · σ1 � Δ1 Γ2, A2 · σ2 � Δ2

Γ1θ, Γ2θ, A1 ∨ A2 · σ1θ � Δ1θ, Δ2θ
(L∨)

Γ � Δ, A1 · σ

Γ � Δ, A1 ∨ A2 · σ
(R∨1)

Γ � Δ, A2 · σ

Γ � Δ, A1 ∨ A2 · σ
(R∨2)

Γ1 � Δ1, A1 · σ1 Γ2, A2 · σ2 � Δ2

Γ1θ, Γ2θ, A1 ⊃ A2 · σ1θ � Δ1θ, Δ2θ
(L ⊃)

Γ, A1 · σ �
Γ � A1 ⊃ A2 · σ

(R ⊃1)
Γ � Δ, A2 · σ

Γ � Δ, A1 ⊃ A2 · σ
(R ⊃2)

Γ, A1 · σ1 � A1 ⊃ A2 · σ2

Γθ � A1 ⊃ A2 · σ2θ
(R ⊃3)

Γ � Δ, A · σ

Γ, ¬A · σ � Δ
(L¬)

Γ, A · σ �
Γ � ¬A · σ

(R¬)

Γ, A · σ � Δ
Γ, ∀xA · σ−x � Δ

(L ∀)
Γ � A · σ

Γ � ∀xA · σ−x
(R ∀)

Γ, A · σ � Δ
Γ, ∃xA · σ−x � Δ

(L ∃)
Γ � Δ, A · σ

Γ � Δ, ∃xA · σ−x
(R ∃)

Γ, A · σ1, A · σ2 � Δ
Γθ, A · σ1θ � Δθ

(LC)
Γ � Δ, A · σ1, A · σ2

Γθ � Δθ, A · σ1θ
(RC)

S

Sρ
(Rn)

S

norm(S)
(Nrm)

common free variables. In the axiom scheme (Ax), P1, P2 are ξ-atoms; ρ1, ρ2 are
renamings for which free(P1ρ1) ∩ free(P2ρ2) = ∅; τ is the most general unifier
for formulas P1ρ1 and P2ρ2. The θ substitution is the most general unifier for σ1

and σ2. In the rule (Rn), S is a ξ-sequent, ρ is a renaming. In the rule (Nrm),
S is a ξ-sequent. In the rules (L∃) and (R ∀), the eigenvariable condition holds
for the term xσ: xσ is a variable not occurring free in the conclusion.

The structural rules (LC) and (RC) are called the contraction rules. The
rules (Rn) and (Nrm) are called the renaming and normalization rules cor-
respondingly. The calculus has been constructed using the standard recipe from
[2,10].

It can be shown that the calculus IMξ
inv is equivalent to the GHPC calculus

from the article by Dragalin [3] which is in turn equivalent to the HPC (Heyting’s
Predicate Caclulus).

Theorem 1 (Completeness of IMξ
inv). Let ξ be a closed rectified formula

corresponding to Agreement 1, and ξ′ is obtained from ξ by replacing all subfor-

WhaleProver: First-Order Intuitionistic Theorem Prover 327

mula occurrences of the form ¬A by A ⊃ ⊥. Then, ξ is derivable in IMξ
inv iff ξ′

is derivable in GHPC.

Proof. The proof is similar to the completeness proof for the calculus Iξ
inv which

is given in [2].

Actually, in the axiom (Ax) of IMξ
inv, it is enough to rename variables in the

only one of two ξ-atoms. However, the axiom (Ax) from Table 1 has its technical
advantages: for each ξ-atom, we could fix “unique” renaming and use it in all
related instances of (Ax) instead of renaming this ξ-atom each time when the
(Ax) axiom is applied.

The calculus IMξ
inv is multi-succedent, in contrast to existing single-

succedent inverse method calculi, e.g. calculus Iξ
inv from [2].

5 Proof Search Strategies

To make the proof search by the inverse method more efficient, we need to sup-
plement the developed multi-succedent calculus IMξ

inv with proof search strate-
gies (or tactics in Maslov’s terminology) to get rid of redundant sequents or
inferences. Simultaneously, we will consider the strategies applicability to the
single-succedent calculus Iξ

inv from [2].

5.1 Subsumption Strategy

Let us introduce the subsumption strategy for the calculus IMξ
inv which is not a

standard subsumption like in [14] or [13], but rather an adaptation of a stronger
form for the subsumption proposed by Voronkov in [25]. We will refer to the
former subsumption form as the standard subsumption , and to the latter as
the strong subsumption . A strong subsumption adaptation consists in formu-
lation of subsumption relation for IMξ

inv with specific restrictions which satisfies
the general definition of subsumption relation for deductive systems from [25].

First, let us define a standard subsumption relation ≺ for IMξ
inv.

Definition 1. Relation S ≺ S′ holds for ξ-sequents S and S′ iff there exists
such a substitution σ that S′σ ⊆̇ S.

Definition 2. Basic rules of IMξ
inv include all the rules except renaming and

normalization. The same definition is also applicable to the calculus Iξ
inv from

[2] (in that calculus, the normalization rule is used implicitly).

Definition 3. The renaming rule application (with renaming ρ) for a ξ-sequent
S is called proper iff free(Sρ) ∩ var(ξ) = ∅. In this case, ρ is called proper
renaming for S.

Let Π be a ξ-sequent S′ derivation from a ξ-sequent S in IMξ
inv (Iξ

inv). This
derivation is called proper iff every basic rule application in Π is followed by
a proper renaming rule application which is in turn followed by a normalization
rule application.

328 V. Pavlov and V. Pak

Note 1. Any derivation in IMξ
inv (Iξ

inv) can be transformed into a proper
derivation.

Definition 4. Let �ξ be the list which contains the following rules of the calculus
IMξ

inv: (L∧1), (L∧2), (R∨1), (R∨2), (L¬), (R ⊃2), (L∀), (R∃), (L∃), plus (R∀)
in case when ξ does not contain negative occurrences of ∨.

Now we can define the binary relation ≺IM on ξ-sequents (the strong sub-
sumption relation).

Definition 5. Relation S ≺IM S′ holds (i.e. S′ subsumes S) iff there exists a
ξ-sequent S∗ such that S∗ ≺ S′, and S∗ is properly derivable from S only using
rules from �ξ, and without applying the rules (R∨1), (R∨2), (L¬), (R ⊃2), (R∃),
and (R∀) when the side formula in the premise has the form (A ⊃ B) · σ.

Definition 6. The subsumption strategy for IMξ
inv is the following: if two

sequents S and S′ have been derived in the proof search process, and S ≺IM S′,
then S can be removed immediately from the proof search space.

It can be shown that this subsumption strategy is complete not only for the
calculus IMξ

inv, but also for Iξ
inv from [2].

Theorem 2 (The subsumption strategy completeness). The subsumption
strategy is complete for IMξ

inv and Iξ
inv.

Proof. This theorem can be proved by showing that the relation ≺IM is sub-
sumption ordering for IMξ

inv and Iξ
inv (see [25]). An alternative way is to show

compatibility of the standard subsumption with the strategy of lifting the rules
from �ξ upwards in the proof tree. Permutability of rules from �ξ can be shown
in the same way as it done by Kleene in [5]. The only special case is lifting the
rules (L∃) and (R∀): they are not permutable with the rules (R∃) and (L∀) in
the sense of S. Kleene, but it is permissible to apply them as soon as possible
(after lifting the rule (L∃), a duplicate application of this rule might be needed).

5.2 Subsumption Strategy (Reformulation)

Let us revise Definition 5 from the previous subsection. It is not obvious how
to use this definition in a practical algorithm for checking whether S ≺IM S′

holds for arbitrary ξ-sequents S and S′. We will formulate more practical defi-
nition of ≺IM. For this purpose, we need to introduce additional definitions and
agreements.

Let ψ and ψ′ be subformula occurrences in ξ. Then, ψ ∈ ψ′ means that ψ
belongs to ψ′.

Definition 7. We will say that the path from ψ′ to ψ (where ψ ∈ ψ′) con-
tains an occurrence of the logical symbol 	 iff this occurrence belongs to ψ′

and does not belong to ψ. Similar definition can be given for occurrences of the
type 	+ (of the type 	−) and for subformulas occurrences.

WhaleProver: First-Order Intuitionistic Theorem Prover 329

Definition 8. The path from ψ′ to ψ (ψ ∈ ψ′) contains the sign change
iff it contains such occurrence of the subformula of the form ¬A or A ⊃ B that
ψ belongs to the specified occurrence of A.

Definition 9. Let S, S′ be ξ-sequents, and let F = (ψ · σ), F ′ = (ψ′ · σ′) be
ξ-formulas from S and S′ respectively. The F ′ formula properly subsumes F
with substitution δ iff the following conditions hold.
1. ψ ∈ ψ′.
2. ∀x ∈ free(ψ′) ∩ free(ψ) xσ′δ = xσ.
3. Let x be an arbitrary variable from free(ψ′)\free(ψ), and ρ be proper renam-

ing for S. Then, xσ′ρ is a variable which only once occurs in all substitutions
from S′ρ.

4. A path from ψ′ to ψ only contains occurrences of type ∧−, ∨+, ¬−, ⊃+, ∀−,
∃+, ∃−, plus ∀+ if ξ does not contain negative occurrences of ∨−.

5. A path from ψ′ to ψ contains at most one occurrence of type ⊃+.
6. If a path from ψ′ to ψ contains a positive occurrence of subformula of the

form A ⊃ B, then this occurrence coincides with ψ′ and ψ ∈ B.
7. If ψ has the form A ⊃ B, then ψ′ coincides with ψ.

The third condition from Definition 9 ensures that all free variables from ψ′

which does not occur in ψ are substituted by unique variables. It helps to avoid
“collision of variables” when positive quantifier rules are applicable to S, but
not applicable to S′. Conditions 4–7 correspond to the restriction on the rules
from Definition 5.

Definition 10 (Reformulation of relation ≺IM). Let S and S′ be ξ-
sequents, and F ′

1, . . . , F ′
n be all different occurrences of ξ-formulas in S′. Then,

S ≺IM S′ iff there exist different occurrences F1, . . . , Fn of ξ-formulas in S,
and a substitution δ such that F ′

i properly subsumes Fi with the substitution δ
(i ∈ {1, . . . , n}).

5.3 Reduction Strategy

In this subsection, we consider the reduction strategy (the strategy named fol-
lowing Tammet [23]).

The reduction step consists in the following. If any rule R from �ξ is appli-
cable to a sequent S, then S is replaced by a result of applying R together with
proper renaming to S. Reduction steps can be applied to a sequent S recur-
sively until deriving such a sequent S′ (called a reduction of S) that no more
reduction steps are applicable to S′.

Definition 11. The reduction strategy consists in replacing any derived
sequent by its reduction.

Theorem 3 (The reduction strategy completeness). The reduction strat-
egy is complete for IMξ

inv and Iξ
inv.

Proof. It follows from the subsumption strategy completeness for IMξ
inv (Iξ

inv).

Reduction strategy for other inverse method calculi can be found in articles
by Tammet [23] and Voronkov [25].

330 V. Pavlov and V. Pak

5.4 Trivial Contraction Strategy

By analogy with the “tactics of transition to trivial specifications” proposed by
S. Yu. Maslov for the classical logic [11], we suggest to use the trivial contrac-

tion strategy for IMξ
inv and Iξ

inv: if derived sequent S has such contraction S′

that S ≺ S′, then S is immediately replaced by S′.
The trivial contraction can be seen as the reduction strategy analog for con-

traction rules. The trivial contraction strategy completeness follows from the
subsumption strategy completeness.

5.5 Removing Inadmissible Sequents Strategy

Let us first consider the inadmissible sequents class which in its general form has
been noticed by Maslov [8] and specified for classical logic by Orevkov [16] (with
a difference that clauses are used instead of sequents in the mentioned articles).
In the case of the sequent calculi IMξ

inv and Iξ
inv, this class includes sequents

with inadmissible substitutions. For example, this class includes each sequent
which contains such a ξ-formula ψ · σ and a variable x ∈ free(ψ) that xσ is not
a variable and x is bound in ξ by a quantifier of type ∀+ or ∃−.

It can be proved that the strategy of removing sequents with inadmissible
substitutions is still complete for IMξ

inv and Iξ
inv.

Definition 12. The strategy of removing sequents containing inadmis-
sible substitutions (RSIS) for IMξ

inv and Iξ
inv consists in removing any

derived sequent which contains inadmissible substitutions.

The next, we consider a new strategy for IMξ
inv and Iξ

inv which can be con-
sidered as a stronger variant of nesting strategy by Tammet [23]. Our strategy is
called the strategy of removing sequents with inadmissible formulas. It is based
on two sets of inadmissible sequents U form1 and U form2 which will be defined
below.

Definition 13. A subformula ψ in formula ξ occurrence is called strictly pos-
itive iff ψ is a positive occurrence in ξ, and ψ does not belong to any negative
subformula occurrence in ξ.

Definition 14. Let ψ and ψ′ be subformulas occurrences in ξ. The ψ occurrence
critically belongs to ψ′ (denoted ψ ∈̄ ψ′) iff ψ ∈ ψ′, and there exists such
positive subformula ψ+ occurrence in ξ that ψ+ has the form A ⊃ B, ¬A, or
∀xA, ψ+ ∈ ψ′, and ψ ∈ A.

Definition 15. Let ψ1 and ψ2 be subformulas occurrences in ξ. By the common
superformula of ψ1 and ψ2 we mean such subformula ψ∗ occurrence in ξ that
ψ1 ∈ ψ∗ and ψ2 ∈ ψ∗. The minimal common superformula of ψ1 and ψ2

(denoted parξ(ψ1, ψ2)) is such common superformula that parξ(ψ1, ψ2) ∈ ψ∗ for
any other common superformula ψ∗ of ψ1 and ψ2.

WhaleProver: First-Order Intuitionistic Theorem Prover 331

Definition 16. A set U form1 for IMξ
inv and Iξ

inv is defined as follows. A
sequent S belongs to the set U form1 iff there exists such a pair of ξ-formulas
ψ1 · σ1, ψ2 · σ2 from S that ψ2 �∈ ψ1 (in particular, ψ2 does not coincide with
ψ1), parξ(ψ1, ψ2) is a strictly positive subformula occurrence in ξ, and at least
one of the following conditions holds.

1. parξ(ψ1, ψ2) has the form A ⊃ B and coincides with ψ2, and either ψ1 ∈̄A,
or ψ1 ∈̄B.

2. parξ(ψ1, ψ2) has the form A ⊃ B, ψ1 ∈̄ A, ψ2 ∈ B, and ψ2 is a strictly positive
subformula occurrence in ξ.

3. parξ(ψ1, ψ2) does not have the form A ⊃ B, and either ψ1 ∈̄ parξ(ψ1, ψ2), or
ψ2 ∈̄ parξ(ψ1, ψ2).

Definition 17. Let ψ and ψ′ be subformulas occurrences in ξ. The ψ occurrence
critically belongs to ψ′ without sign change (denoted ψ ∈̂ ψ′) iff ψ ∈ ψ′, and
there exists such positive subformula ψ+ = (∀xA) occurrence in ξ that ψ+ ∈ ψ′,
ψ ∈ A, and path from ψ+ to ψ does not contain sign change.

Definition 18. Let us define a set U form2 for the calculus IMξ
inv. A sequent

S belongs to U form2 iff there exists such a pair of ξ-formulas ψ1 · σ1, ψ2 · σ2

from the succedent of S that for each i ∈ {1, 2} ψi ∈̂ ξ holds, and at least for one
i ∈ {1, 2} ψi ∈̂ parξ(ψ1, ψ2) holds.

A set U form2 for the calculus Iξ
inv is empty. It can be shown that sequents

belonging to the sets U form1 and U form2 cannot occur in a derivation of ξ
in IMξ

inv and Iξ
inv.

Definition 19. The strategy of removing sequents containing inadmis-
sible formulas (RSIF) for IMξ

inv and Iξ
inv consists in removing any derived

sequent which belongs to U form1 or U form2.

5.6 Singular Sequent Strategy for the Multi-Succedent Calculus

Since any proof in the single-succedent calculus Iξ
inv can be easily transformed

into a proof in the multi-succedent calculus IMξ
inv, we can consider the following

strategy for IMξ
inv.

Definition 20. The singular strategy for IMξ
inv consists in constructing the

formula ξ proof in the calculus Iξ
inv using any complete strategies for Iξ

inv, and
then, transforming this proof into a proof in IMξ

inv.

5.7 Combining Strategies

Theorem 4 (The strategies compatibility). Any combination of the fol-
lowing strategies is complete for IMξ

inv and Iξ
inv: the subsumption strategy, the

reduction strategy, the strategies RSIS and RSIF, the trivial contraction strategy.

332 V. Pavlov and V. Pak

Proof. The RSIS and RSIF strategies are compatible with other strategies
because they only allow removing inadmissible sequents. Other three strategies
are based on the same subsumption relation, and therefore are compatible too.

Corollary 1. The singular strategy together with any combination of the strate-
gies for Iξ

inv mentioned in Theorem 4 is complete for IMξ
inv.

5.8 Example

Let us demonstrate how some strategies work on a simple example. Let the
formula ξ = ∀x¬¬ (

P (x) ∨ ¬P̄ (x)
)
.

We will build the proof of ξ in IMξ
inv using the strategies presented above.

First of all, ξ contains two atomic subformula P (x) occurrences, positive and
negative. Negative occurrence is marked with overline to distinguish it in the
proof. So, we could derive only one axiom (up to renaming):

1. P̄ (x) · {x/v}
 P (x) · {x/v} [(Ax)].

Variable v is new. Now we could apply the reduction strategy to the sequent 1
using the rule (R∨1). So, we replace sequent 1 with the following one:

1. P̄ (x) · {x/v}
 P (x) ∨ ¬P̄ (x) · {x/v} [(Ax) + (R∨1)].

We could continue reducing the sequent 1 using the rule (L¬):

1. P̄ (x) · {x/v} ,¬ (
P (x) ∨ ¬P̄ (x)

) · {x/v}
 [(Ax) + (R∨1) + (L¬)].

No further reductions are possible, but now we could apply the rule (R¬):

2. ¬ (
P (x) ∨ ¬P̄ (x)

) · {x/v}
 ¬P̄ (x) · {x/v} [(R¬) : 1].

Next, we apply the reduction strategy to the sequent 2 using the rules (R∨2)
and (L¬), and then contract two equal ξ-formulas in the antecedent using the
trivial contraction strategy (let us skip intermediate steps).

2. ¬ (
P (x) ∨ ¬P̄ (x)

) · {x/v}
 [(R¬) + (R∨2) + (L¬) + (LC) : 1].

Now, we could finish the proof by applying the rules (R¬) and (R∀).

3.
 ¬¬ (
P (x) ∨ ¬P̄ (x)

) · {x/v} [(R¬) : 2].
4.
 ∀x¬¬ (

P (x) ∨ ¬P̄ (x)
) · ε [(R∀) : 3].

The eigenvariable condition holds for the rule (R∀), since variable v does not
occur free in the conclusion.

WhaleProver: First-Order Intuitionistic Theorem Prover 333

6 WhaleProver and Experiments on the ILTP Library

WhaleProver is a software implementation of the inverse method for intuitionistic
and classical logics that has been developed within the scope of current research.
WhaleProver supports several inverse method calculi and their modifications
including IMξ

inv from Sect. 4, plus Iξ
inv and Cξ

inv from [2]. Our prover can be
configured to use any combination of strategies from Sect. 5. Also, it can be
extended with new sequent calculi and proof search strategies. WhaleProver is
written in C++ and uses an adapted variant of given clause algorithm [12].

We carried out several experiments with WhaleProver on the ILTP library
[20] version 1.1.2. We used the computer with Intel Core i5 3.40 GHz, OC Win-
dows 7, and 16 Gb RAM (the prover was executed on a single core in 32-bit
address space, therefore, available memory size was limited by 2 Gb).

The first series of experiments was connected with comparison of strategies
from Sect. 5 on the representative subset of 366 problems from the ILTP. We
used the following comparison criteria: average proof length, average proof space
size, and summary proof time. The experiments have shown that the strong
subsumption is about 20–30 % more efficient (by all three criteria) than the
standard subsumption. The subsumption and reduction strategies have the most
impact on the prover performance. New RSIF strategy helps to reduce proof time
by 25 %. The singular strategy allows reducing proof time in average by 10 %,
but its impact becomes less significant when all other strategies are turned on.
All the strategies together allow reducing total proof time up to 30 times. We
do not present here detailed results of the comparison due to the lack of space.

As the second experiment, we have run our prover on the same computer
on all ILTP problems with 100 s timeout for each problem. The WhaleProver
results and statistics of other first-order intuitionistic provers are presented in
Table 2.

Table 2. Comparison of WhaleProver with other provers on the ILTP

Param JProver ft-Prolog ft-C ileanSeP ileanTAP ileanCoP Imogen WhaleProver

Timeout

used, s

600 600 600 600 600 600 600 100

Solved after

1 s

243 285 351 249 299 557 681 660

Solved after

10 s

254 294 357 282 307 603 731 719

Solved after

100 s

262 295 364 301 312 647 854 811

Total solved 268 299 364 313 315 690 856 811

Total proved 264 299 334 309 311 610 645 620

Total refuted 4 0 30 4 4 80 211 191

334 V. Pavlov and V. Pak

WhaleProver results were obtained in compliance with the guidelines for use
of the ILTP [20]. The only changes made to the original problems were syntax
transforming and equality axioms adding by using the tptp2X tool.

The results of Imogen prover were taken from [13], and also, from the regres-
sion statistics provided with the source code of the prover [4]. Results of other
provers are published on the ILTP website [24]. Despite the fact that different
provers were launched on computers with different configuration, comparison
from Table 2 is correct according to the methodology recommended by ATP
experts [22]: all compared provers have passed their PPP (Peter Principle Point).

We are aware of the recent testing results of the new nanoCop-i prover (700
problems from the ILTP proved) and the new version of ileanCoP prover –
ileanCoP 1.2 (717 problems proved in “full” configuration) published by Otten
[17]. However, we did not include those results to Table 2 since not all details
needed to fill in this table are available. Also, it is not clear whether those provers
have passed their PPP or not, and how many problems can be refuted by them.

At least, we can draw the conclusion that WhaleProver solves about three
times more problems than JProver, and that WhaleProver performance is com-
parable with performance of the most efficient intuitionistic provers.

WhaleProver solves 70 problems with known intuitionistic status which have
not been solved by any prover included into ILTP platform (it includes all
provers from Table 2 except Imogen and WhaleProver). If we take into account
the regression results of Imogen from [4], then WhaleProver solves 16 new prob-
lems with known status in comparison with all other provers. Also, WhaleProver
solves 16 new problems with unknown intuitionistic status (i.e. “Unsolved” or
“Open”). For example, the following problems related to the natural language
processing were solved (with result “not a theorem”): NLP198+1 (processing the
text fragment about the old dirty white Chevy) and NLP223+1 (processing the
phrase “Vincent believes that every man smokes. . . ”). Moreover, WhaleProver
solves a number of problems several times faster than other provers can.

7 Conclusion

In the current article, we discussed the inverse method application for the first-
order intuitionistic logic. We presented a multi-succedent inverse method calcu-
lus IMξ

inv which differs from the existing single-succedent intuitionistic inverse
method calculi, e.g. the calculus Iξ

inv from [2]. We have shown how to adopt exist-
ing proof search strategies to the calculus IMξ

inv, and suggested new strategy
RSIF which allows removing redundant sequents from the proof search space.
All considered strategies are also applicable to the calculus Iξ

inv.
All the suggested strategies were implemented in the theorem prover for

the first-order intuitionistic logic called WhaleProver. Experiments on problems
from the ILTP library have shown that it is possible to obtain an efficient proof
search procedure by combining these strategies. WhaleProver has shown promis-
ing results on the ILTP comparable with results of state-of-the-art intuitionis-
tic provers, e.g. ileanCoP and Imogen. We are pretty sure that it is possible

WhaleProver: First-Order Intuitionistic Theorem Prover 335

to improve our prover performance further by extending it with new powerful
strategies and heuristics, e.g. by adopting focusing strategy from [13]. However,
to our knowledge, the problem of developing complete combination of focusing
and strong subsumption strategies has not been solved yet.

In the future, we plan to use WhaleProver as a test bench for inverse method
calculi and strategies. Also, we are going to integrate WhaleProver as a plug-in to
existing proof assistants (Coq, Nuprl), following works [6,21].

References

1. Constable, R. L.: On building constructive formal theories of computation. Noting
the roles of Turing, Church, and Brouwer. In: Proceedings of the 2012 27th Annual
IEEE/ACM Symposium on Logic in Computer Science (LICS 2012), pp. 2–8 (2012)

2. Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, vol. 1, pp. 179–272. Elsevier, Amster-
dam (2001)

3. Dragalin, A.G.: Mathematical intuitionism. Introduction to proof theory (Russian).
Nauka, Moscow (1979). English transl. in Translations of Mathematical Mono-
graphs 67 (1988)

4. Imogen GitHub page. https://github.com/seanmcl/imogen
5. Kleene, S.C.: Permutability of inferences in Gentzen’s calculi LK and LJ. Mem.

Amer. Math. Soc. 10, 1–26 (1952). Russian transl. in “Matematicheskaya teoriya
logicheskogo vyvoda”, 208–236 “Nauka”, Moscow (1967)

6. Kunze, F.: Towards the integration of an intuitionistic first-order prover into Coq.
In: Proceedings of the 1st International Workshop Hammers for Type Theories
(HaTT 2016) (2016). https://arxiv.org/abs/1606.05948

7. Lifschitz, V.: What is the inverse method? J. Autom. Reasoning 5(1), 1–23 (1989)
8. Maslov, S.Y.: The inverse method for establishing deducibility for logical calculi

(Russian). Trudy Matem. Inst. AN SSSR 98, 26–87 (1968). English transl. in Proc.
Steklov Inst. of Mathematics 98, 25–95, AMS, Providence (1971)

9. Maslov, S.Y.: Deduction-search tactics based on unification of the order of mem-
bers in a favourable set (Russian). Zap. Nauchn. Sem. LOMI 16, 126–136 (1969).
English transl. in Seminars in Mathematics. Steklov Math. Inst. 16, Consultants
Bureau, New York - London (1971)

10. Maslov, S.Y.: Deduction search in calculi of general type (Russian). Zap. Nauchn.
Sem. LOMI 32, 59–65 (1972). English transl. in Journal of Soviet Mathematics,
vol. 6, no. 4, 395–400 (1976)

11. Maslov, S.Y.: The inverse methods and tactics for establishing deducibility for a
calculus with functional symbols (Russian). Trudy Matem. Inst. AN SSSR 121,
14–56 (1972). English transl. in Proc. Steklov Inst. of Mathematics 121, 11–60,
AMS, Providence (1974)

12. McCune, W.: Prover9 and Mace4 (2005–2010). https://www.cs.unm.edu/
∼mccune/mace4/

13. McLaughlin, S., Pfenning, F.: Efficient intuitionistic theorem proving with the
polarized inverse method. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI),
vol. 5663, pp. 230–244. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02959-2 19

https://github.com/seanmcl/imogen
https://arxiv.org/abs/1606.05948
https://www.cs.unm.edu/~mccune/mace4/
https://www.cs.unm.edu/~mccune/mace4/
https://doi.org/10.1007/978-3-642-02959-2_19
https://doi.org/10.1007/978-3-642-02959-2_19

336 V. Pavlov and V. Pak

14. Mints, G.: Resolution strategies for the intuitionistic logic. In: Mayoh, B., Tyugu,
E., Penjam, J. (eds.) Constraint Programming. NATO ASI F, vol. 131, pp. 289–
311. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-642-85983-0 11

15. Mints, G.: Decidability of the class E by Maslov’s inverse method. In: Blass, A.,
Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol.
6300, pp. 529–537. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15025-8 26

16. Orevkov, V.P.: Obratnyi metod poiska vyvoda dlia skulemovskikh predvarennykh
formul ischisleniia predikatov (Russian). In: Adamenko, A.N., Kuchukov, A.M.:
Logicheskoe programmirovanie i Visual Prolog, appendix 4, 952–965, BHV, St.
Petersburg (2003)

17. Otten, J.: Non-clausal connection-based theorem proving in intuitionistic first-
order logic. In: Proceedings of the 2nd International Workshop on Automated Rea-
soning in Quantified Non-Classical Logics (ARQNL/IJCAR 2016), CEUR Work-
shop Proceedings, vol. 1770, pp. 9–20 (2016). http://ceur-ws.org/Vol-1770/

18. Pavlov, V., Pak, V.: The inverse method application for non-classical logics. Non-
linear Phenom. Complex Syst. 18(2), 181–190 (2015)

19. Pavlov, V.A., Pak, V.G.: An experimental computer program for automated rea-
soning in intuitionistic logic using the inverse method (Russian). SPbSPU J. Com-
put. Sci. Telecommun. Control Syst. 6(234), 70–80 (2015)

20. Raths, T., Otten, J., Kreitz, C.: The ILTP library: benchmarking automated theo-
rem provers for intuitionistic logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS
(LNAI), vol. 3702, pp. 333–337. Springer, Heidelberg (2005). https://doi.org/10.
1007/11554554 28

21. Schmitt, S., Lorigo, L., Kreitz, C., Nogin, A.: JProver: integrating connection-based
theorem proving into interactive proof assistants. In: Goré, R., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 421–426. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45744-5 34

22. Sutcliffe, G., Suttner, C.: Evaluating general purpose automated theorem proving
systems. Artif. Intell. 131(1–2), 39–54 (2001)

23. Tammet, T.: A resolution theorem prover for intuitionistic logic. In: McRobbie,
M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 2–16. Springer, Hei-
delberg (1996). https://doi.org/10.1007/3-540-61511-3 65

24. The ILTP Library. Provers and Results. http://iltp.de/results.html
25. Voronkov, A.: Theorem proving in non-standard logics based on the inverse

method. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 648–662. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55602-8 198

https://doi.org/10.1007/978-3-642-85983-0_11
https://doi.org/10.1007/978-3-642-15025-8_26
https://doi.org/10.1007/978-3-642-15025-8_26
http://ceur-ws.org/Vol-1770/
https://doi.org/10.1007/11554554_28
https://doi.org/10.1007/11554554_28
https://doi.org/10.1007/3-540-45744-5_34
https://doi.org/10.1007/3-540-61511-3_65
http://iltp.de/results.html
https://doi.org/10.1007/3-540-55602-8_198

Distributed In Situ Processing of
Big Raster Data in the Cloud

Ramon Antonio Rodriges Zalipynis(B)

National Research University Higher School of Economics,
Moscow, Russia

arodriges@hse.ru

Abstract. A raster is the primary data type in Earth science, geology,
remote sensing and other fields with tremendous growth of data vol-
umes. An array DBMS is an option to tackle big raster data processing.
However, raster data are traditionally stored in files, not in databases.
Command line tools have long being developed to process raster files.
Most tools are feature-rich and free but optimized for a single machine.
This paper proposes new techniques for distributed processing of raster
data directly in diverse file formats by delegating considerable portions
of work to such tools. An N -dimensional array data model is proposed to
maintain independence from the files and the tools. Also, a new scheme
named GROUP–APPLY–FINALLY is presented to universally express
the majority of raster data processing operations and streamline their
distributed execution. New approaches make it possible to provide a rich
collection of raster operations at scale and outperform SciDB over 410×
on average on climate reanalysis data. SciDB is the only freely available
distributed array DBMS to date. Experiments were carried out on 8- and
16-node clusters in Microsoft Azure Cloud.

Keywords: Big raster data · Climate reanalysis
Distributed systems · Cloud computing · SciDB · Array DBMS
In situ · NetCDF operators

1 Introduction

Modern volumes of raster data are overwhelming. The most prominent examples
of big raster data come from Earth remote sensing and climate modeling. For
example, DigitalGlobe is the largest commercial satellite imagery provider col-
lecting 70 TB of imagery on an average day with their constellation of six large
satellites [9]. European Centre for Medium-Range Weather Forecasts (ECMWF)
has alone accumulated 137.5 million files sized 52.7 PB in total [7].

The long history of file-based data storage resulted in a broad range of sophis-
ticated raster file formats. For example, NetCDF format supports multidimen-
sional arrays, chunking, compression, diverse data types, metadata and hier-
archical namespace [10]. NetCDF has been under development since 1990 [17]
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 337–351, 2018.
https://doi.org/10.1007/978-3-319-74313-4_24

338 R. A. Rodriges Zalipynis

and was standardized by OGC (Open Geospatial Consortium) [13]. Decades of
development and feedback resulted in numerous elaborate and quality-assured
tools for processing raster files. For example, NetCDF Operators (NCO) is a
set of command line tools for processing NetCDF files. NCO have been under
development since 1995 [12].

In situ approach processes data directly in their native file formats. The bene-
fits of in situ approach are widely recognized [2,4,5,21,22]. Raster file formats are
in the spotlight while already existing and highly-optimized command line tools
are largely ignored in this research trend: raster operations are re-implemented
almost from scratch. For example, SciDB was first released in 2008 and still lacks
even core raster operations like interpolation [8].

The idea of partially delegating raster data processing to existing command
line tools was first presented and proved to outperform SciDB 3× to 193× in [19].
This paper extends [19] with new theory, techniques, and experimental results
further showing that the tools may be a valuable component of an array DBMS.

The delegation ability is being integrated into ChronosServer [18]. Raster files
in diverse file formats are distributed among cluster nodes. Section 2 presents
a formalized logical data model to abstract from the files and the distributed
environment: a user works with a single N -d array backed by a set of raster files
on a computer cluster. The model is used to design generic distributed algorithms
for in situ processing of arbitrary N -d arrays (Sect. 3).

It is formally shown that the tools are widely applicable: each algorithm has
major portions of work which it delegates to a tool by directly launching this tool
on respective files residing on the same cluster node. ChronosServer is responsible
for proper exchange of the output files produced by the tools between cluster
nodes. This enables efficient raster data processing within a single machine and
provides a rich collection of raster processing operations at scale (Sect. 4).

2 ChronosServer

2.1 ChronosServer Multidimensional Array Model

In this paper, an N -dimensional array (N -d array) is the mapping A : D1 ×
D2 × . . . × DN �→ T, where N > 0, Di = [0, li) ⊂ Z, 0 < li is a finite integer,
and T is a standard numeric type1. li is said to be the size or length of ith
dimension (in this paper, i ∈ [1, N] ⊂ Z). Let us denote the N -d array by

A〈l1, l2, . . . , lN 〉 : T (1)

By l1 × l2× . . . × lN denote the shape of A, by |A| denote the size of A such that
|A| =

∏
i li. A cell or element value of A with integer indexes (x1, x2, . . . , xN) is

referred to as A[x1, x2, . . . , xN], where xi ∈ Di. Each cell value of A is of type T.
The array may be initialized after its definition by enumerating the values of the

1 To be specific about value ranges, size in bytes, precision, etc., a standard C++ type
can be taken for T according to ISO/IEC 14882.

Distributed In Situ Processing of Big Raster Data in the Cloud 339

cells. For example, the following defines and initializes a 2-d array of integers:
A〈2, 2〉 : int = {{1, 2}, {3, 4}}. In this example, A[0, 0] = 1, A[1, 0] = 3, |A| = 4,
and the shape of A is 2 × 2.

Indexes xi are optionally mapped to specific values of ith dimension by coor-
dinate arrays A.di〈li〉 : Ti, where Ti is a totally ordered set, and di[j] < di[j +1]
for all j ∈ Di. In this case, A is defined as

A(d1, d2, . . . , dN) : T (2)

A hyperslab A′ � A is an N -d subarray of A. The hyperslab A′ is defined by
the notation

A[b1 : e1, . . . , bN : eN] = A′(d′
1, . . . , d

′
N) (3)

where bi, ei ∈ Z, 0 � bi � ei < li, d′
i = di[bi : ei], |d′

i| = ei − bi + 1, and for all
yi ∈ [0, ei − bi] the following holds

A′[y1, . . . , yN] = A[y1 + b1, . . . , yN + bN] (4a)
d′

i[yi] = di[yi + bi] (4b)

Equations (4a) and (4b) state that A and A′ have a common coordinate subspace
over which cell values of A and A′ coincide. Note that the original dimensionality
is preserved even if some bi = ei (in this case, “: ei” may be omitted in (3)).

2.2 ChronosServer Datasets

A dataset D = (A,M,P) contains a user - or higher-level array A(d1, . . . , dN) : T
and the set of system- or lower-level arrays P = {(Ak, Bk, Ek,Mk, nodek)},
where Ak � A, k ∈ N, nodek is an identifier of the cluster node storing array
Ak, Mk is metadata for Ak, B〈N〉 : int = {b1, b2, . . . , bN}, E〈N〉 : int =
{e1, e2, . . . , eN} such that Ak = A[b1 : e1, . . . , bN : eN]. A user-level array is
never materialized and stored explicitly: operations with A are mapped to a
sequence of operations with respective arrays Ak. Let us call a user-level array
and a system-level array an array and a subarray respectively for short. A
dataset also contains metadata M = {(key, val)}, where key is a string and
val is a string or a number. Dataset metadata include two types of informa-
tion: general dataset properties (name, description, contacts, etc.) and meta-
data valid for all p ∈ P (array data type T, storage format, etc.). For example,
M = {(name = “Wind Speed”), (type = float), (format = NetCDF)}. Let us
refer to an element in a tuple p = (Ak, Bk, . . .) ∈ P as p.A for Ak, etc.

2.3 ChronosServer Architecture

ChronosServer runs on a computer cluster of commodity hardware. Files of
diverse raster file formats are kept intact and distributed among cluster nodes
without changing their names and formats. A file is always stored entirely on a
node in contrast to parallel or distributed file systems. Workers are launched at
each node and are responsible for data processing. A single Gate at a dedicated

340 R. A. Rodriges Zalipynis

node receives client queries and coordinates workers. A file may be replicated on
several workers for fault tolerance and load balancing.

The Gate stores metadata for all datasets and their subarrays. Consider a
dataset D = (A,M,P). Arrays A.di and elements of ∀p ∈ P except p.A are
stored on the Gate. In practice, array axes usually have coordinates such that
A.di[j] = start+ j × step, where j ∈ [0, |A.di|) ⊂ N, start, step ∈ R: only |A.di|,
start and step values have to be usually stored. ChronosServer array model
merit is that it has been designed to be as generic as possible but allowing the
establishment of 1:1 mapping of a subarray to a dataset file.

Upon startup workers connect to the Gate and receive the list of all available
datasets and file naming rules. Workers scan their local filesystems to discover
datasets and create p.M , p.B, p.E by parsing file names or reading file metadata.
Workers transmit to the Gate all elements of p except p.A.

2.4 GROUP–APPLY–FINALLY (GAF)

The proposed scheme described in this subsection makes it possible to universally
express the majority of raster data processing operations and organize their
distributed execution in a clear and uniform manner.

Raster operations can be classified as global (involve all data), local (cell-
wise), focal (cell values from a rectangular window are required to compute the
new cell value), zonal (the same as focal but the area is defined by a function).

Given that subarrays may be distributed among cluster nodes, some opera-
tions cannot be completed autonomously using data on a single node. For exam-
ple, consider daily data 01.01.1979, 02.01.1979, 03.01.1979 for a dataset with 6
hour time step (each subarray contains data for one day, e.g. 4 time steps for
hours 00, 06, 12 and 18). The interpolation of data from 6 to 3 h step for the
subarray with data for 02.01.1979 requires the presence of the both subarrays
for 01.01.1979 and 03.01.1979 on the same node.

The new scheme enables to perform raster operations that involve subarrays
residing on several nodes: GROUP pattern APPLY FA COMBINE FC FINALLY FF ,
where FA, FC , and FF are sequences of raster operations. All phases except
APPLY are optional. If present, GROUP phase serves as a preparation step before
executing an APPLY phase: pattern defines a rule according to which subarrays
are to be collocated within a single node to apply FA on them.

For example, in the case of interpolation described above, the pattern may
state that there should be at least two subarrays on the same cluster node
containing data from the next and the previous days (except for the first and
the last subarray in the available time interval). Satisfying pattern conditions
may require data movement between cluster nodes. GROUP phase ensures that
the nodes involved in the computations satisfy the grouping criterion required
to enable autonomous execution of the next phases.

After a GROUP phase, an APPLY phase is launched on each involved node.
Since some nodes may have files from disjoint temporal or spatial intervals, their
intermediate results may be combined on the same node to reduce network traffic

Distributed In Situ Processing of Big Raster Data in the Cloud 341

with FC on COMBINE phase if possible. All results (output subarrays after FA or
FC) are gathered on a single node and FF is applied to obtain the final result.

The GROUP phase and subarray gathering for the FINALLY phase are realized
using STREAM [node] dataset1 and CONSUME [count] dataset2 phases. STREAM phase
sends all subarrays of dataset1 to the node with identifier node. CONSUME accepts
count subarrays from other nodes into the dataset named dataset2.

Unlike existing schemes, the proposed distributed execution scheme takes
into account peculiarities inherent to raster operations and the file-based storage
model. For example, respective grouping pattern must be specified to guarantee
the possibility of computing intermediate results autonomously on each node.

2.5 New Delegation Approach

The ChronosServer array data model has two levels of abstraction. This leads to
two levels of array processing commands: user-level and system-level. The latter
commands are expressed in terms of the GAF scheme by providing pattern,
FA, FC , and FF what may be difficult for a ChronosServer user. System-level
processing explicitly takes place on subarrays. A user-level command is defined
on user-level N -d arrays and is mapped to a predefined GAF structure.

ChronosServer users operate with a familiar command line syntax: the names
of ChronosServer user-level commands coincide with the names of existing com-
mand line tools. Command options have the same meaning and names as for the
tool but without options related to file names or paths in order to abstract from
the notion of a file.

The syntax of a ChronosServer command is the same as launching a tool from
a command line. Input and output dataset names must be specified instead of
input and output file names. For example, the command below is analogous to
ncra (NetCDF Record Average) utility from NCO package (STREAM and CONSUME
phases are not shown). The command calculates the sum of all array cells along
the first dimension (the input dataset description is in Sect. 4).

user-level: ncra -D 2 -y ttl r2.wind.u10m.u r2.wind.u10mtotal

system-level: APPLY ncra -D 2 -y ttl r2.wind.u10m.u key:all $u total

FINALLY ncra -D 4 -y ttl $u total:all r2.wind.u10mtotal

The proposed theoretical framework makes it straightforward to partially
delegate array processing to an external command line tool. For some functions
from FA, FC , and FF an equivalent functionality can be achieved by running a
command line tool on a subarray (file).

The input dataset is “r2.wind.u10m.u” (due to the large number of datasets
their namespace is hierarchical, the levels of hierarchy are separated by dots).
The output dataset name is “r2.wind.u10mtotal”. Intermediate datasets are pre-
fixed with “$” and are reused in subsequent commands in FA, FC , or FF . Inter-
mediate datasets are not registered as regular datasets on the Gate to save time
and network traffic. Dataset r2.wind.u10m.u key is created by the Gate and
contains the subset of subarrays, Sect. 3.1. Several system-level commands are
created to perform the aggregation of a dataset, Sect. 3.1.

342 R. A. Rodriges Zalipynis

Dataset quantiles are specified after a colon “:”. They are designed to fully
leverage the power of the tools. For example, ncra can take several files as input.
It is reasonable not to launch ncra on each file and then combine the result into
a single file on COMBINE phase but to feed all locally available files to ncra
on APPLY phase to reduce the computation and I/O time. This is exactly the
behavior triggered by the “all” quantile.

3 Array Operations

3.1 Aggregation

The aggregate of an N -d array A(d1, d2, . . . , dN) :T over axis d1 is the (N − 1)-d
array Aaggr(d2, . . . , dN) :T such that Aaggr[x2, . . . , xN] = faggr(cells(A[0 : |d1|−
1, x2, . . . , xN])), where x2, . . . , xN are valid integer indexes, faggr : T �→ w is an
aggregation function, T is a multiset of values from T, w ∈ T, cells : A′ �→ T is
the multiset of all cell values of an array A′ � A.

Algorithm 1 assumes that a user-level array is split onto subarrays by hyper-
planes, Fig. 1. This is a usual case in practice.

5
4

time

3
2

0 1 2 3 lon4 5

1
0

lat

0

1

lat

0

1

0 1 2 3 lon4 5

Fig. 1. Array aggregation.

Figure 1 illustrates Algorithm 1 which is executed on the Gate. Lines prefixed
by worker(node) contain messages sent to the worker №node. The messages
contain instructions for GAF phases. Several such messages can be packed into
a single network message. Subarrays with the same color reside on the same node,
workers in parallel aggregate all subarrays (the left of Fig. 1) that contribute to
the same 2-d key over the first axis to obtain interim 2-d aggregates (the right
of Fig. 1). The 2-d arrays having the same 2-d key are gathered on one of the
nodes which calculates the final result for a particular 2-d key (not shown). The
mapping μ :key �→ id returns the worker ID to which the partial aggregates must
be sent. For example, red and blue 2-d arrays ([0 : 1, 0 : 1]) at the right of Fig. 1
are intermediate aggregates residing on two different nodes. The nodes will send
their subarrays to the node μ(0, 0) to calculate the final result.

Distributed In Situ Processing of Big Raster Data in the Cloud 343

Algorithm 1 is for faggr ∈ {max,min, sum}. Calculation of avg is reduced
to calculating the sum and dividing each cell of the resulting array on |A.d1|.

Lines 5 and 8 of Algorithm 1 are highlighted in gray to accent the work being
delegated to an external tool.

3.2 Hyperslabbing

Hyperslabbing is an extraction of a hyperslab from an array, Eq. (3). Consider
a 2-d array A(lat, lon), Fig. 2. Array A has shape 8 × 16 and consists of 15
subarrays that are separated from each other by thick lines and may reside on
different cluster nodes. The hatched area marks the hyperslab A′ = A[2 :7, 2:11].

lat

lon

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2. Array hyperslabbing.

Hyperslabbing an array is reduced to hyperslabbing the respective subarrays
as follows. Some subarrays do not participate in the hyperslabbing: almost 40% of
them do not overlap with A′ and can be filtered out beforehand (e.g., A[0 :1, 0:4]).
Also, almost 40% of the subarrays are entirely inside A′ and must migrate to the
resulting dataset as is (e.g., A[4 : 5, 5 : 7]). It is possible to avoid copying these
subarrays and store only references to them from the new dataset since datasets
are immutable in ChronosServer.

It is necessary to hyperslab only 3 subarrays to complete the operation. Since
any subarray is entirely located on a machine in a single file, hyperslabbing a

344 R. A. Rodriges Zalipynis

subarray is delegated to a command line tool. Almost every tool supports raster
file subsetting. However, most tools work on a single machine. ChronosServer
scales them out by orchestrating their massively parallel execution.

Algorithm 2 outlines the hyperslabbing algorithm. Line 17 is highlighted in
light gray to accent the work which is possible to delegate to an external tool:
ncks (NCO) for NetCDF format.

3.3 Reshaping

The reshaping operation Ψ : A, π �→ A′ takes as input an N -d array
A(d1, . . . , dN) : T and the permutation mapping π : i �→ j, where i, j ∈
[1, N] ⊂ N, π(i)
= π(j) for i
= j, and

⋃
i{π(i)} = [1, N]. The reshaping oper-

ation outputs the N -d array A′(dπ(1), . . . , dπ(N)) : T such that A[x1, . . . , xN] =
A′[xπ(1), . . . , xπ(N)], where xi ∈ [0, |di|) ⊂ N for all i.

Reshaping an array is reduced to the independent reshaping of its subarrays.
Figure 3 depicts array A(lat, lon) : int (shape 9 × 4) and its reshaped version
A′(lon, lat) : int (shape 4 × 9), the dimensions of A and A′ are swapped. Subarrays
of A and A′ are separated by thick lines.

Hatched areas within A and A′ correspond to subarrays A[0 : 2, 2 : 3] and
A′[2 : 3, 0 : 2] respectively. Subarray A′[2 : 3, 0 : 2] is the reshaped version of
subarray A[0 : 2, 2 : 3]. Subarray A′[bπ(1) : eπ(1) , . . . , bπ(N) : eπ(N)] is the reshaped
version of subarray A[b1 :e1, . . . , bN :eN]. Figure 3 clearly shows that no exchange
of elements between distinct subarrays of A does not occur during reshaping.
In order to reshape an arbitrary N -d array, all its subarrays must be reshaped
independently of each other.

Distributed In Situ Processing of Big Raster Data in the Cloud 345

lon

lat

0

1

2

3

0 1 2 3 4 5 6 7 8

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31 32 33

34 35 36

lon

lat

0 1 2 3

0

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 Layout of ′A[0 :2, 2:3]

4 1 5 2 6 3

Layout of A′[2 :3, 0:2]

4 5 6 1 2 3

A′(lon, lat)

A(lat, lon)

Fig. 3. Array reshaping.

Array reshaping re-organizes the storage layout of array cells according to
the given order of array dimensions. An N -d array has a linear storage layout in
the memory. Usually the last dimension of an N -d array varies the fastest (i.e.
elements along the Nth dimension are sequential in the memory). The storage
layouts of subarrays A[0 : 2, 2 : 3] and A[0 : 2, 2 : 3] are depicted on Fig. 3 as two
strips (1-d arrays). A cell with index (x1, x2) precedes the cell (x1, x2+1). Thick
lines on the strips separate elements with distinct x1 indexes.

Reshaping is used to achieve the fastest possible performance of reading array
data along a certain dimension. Consider a 3-d array A(time, lat, lon). The lon
and time dimensions vary the fastest and the slowest respectively. It is required
to issue |A.d1| I/O requests to read the time series A[0 : |A.d1| − 1, x2, x3] if
A is not chunked (Sect. 3.4). However, only a single I/O request will suffice to
read the time series from the reshaped array A(lat, lon, time). It is possible for
chunking to make up some of the performance difference. However, no chunking
scheme will be as fast as just re-ordering the data. This is especially important
in the Cloud which usually limits IOPS (I/O operations per second). Reshaping
is delegated to ncpdq tool (NCO) for NetCDF file format.

3.4 Chunking

Chunking is the process of partitioning original array into a set of smaller sub-
arrays called chunks. Chunks are autonomous, possibly compressed subarrays
(hyperslabs) with contiguous storage layout. Given chunk shape c1 × . . . × cN

and an N -d array A(d1, . . . , dN) : T, the exact chunking operation reorga-
nizes cells in array A such that all cells of A with coordinates (x1, . . . , xN)
and (y1, . . . , yN) belong to the same chunk if xi div ci = yi div ci for all i.

346 R. A. Rodriges Zalipynis

A chunk is usually read/written completely from/to disk in one request to a
storage subsystem. Chunking is one of the classical approaches to significantly
accelerate disk I/O when only a portion of raster is read. Unlike reshaping
(Sect. 3.3), chunking does not alter array metadata: a cell index remains the
same after chunking. Chunking is often used when there is no space to store the
reshaped version of an array or when the most frequent array access patterns
are not known in advance.

no chunking
12 × 12 array

read 1 × 2 slices
6 I/O requests

(a)

4 chunks
one chunk 6 × 6

read 2 chunks
50% of all data

(b)

16 chunks
one chunk 3 × 3

read 2 chunks
12.5% of all data

(c)

Fig. 4. Array chunking.

Consider reading a 6 × 2 slice from a 2-d array, Fig. 4. For a row-major
storage layout, two vertically adjacent cells are located far apart each other.
A possible solution is to read 6 portions sized 1 × 2 which requires 6 I/O requests
and disk seeks, Fig. 4a. For a compressed array, much larger part of it might be
required to be read and uncompressed before getting the requested portion.

In contrast, only chunks containing required data are read from disk from a
chunked array. However, inappropriate chunk shape may result in a large I/O
overhead, Fig. 4b. Good chunk shape allows to reduce communication with stor-
age layer, disk seeks and I/O volume, Fig. 4c. This is especially prominent in a
Cloud where IOPS (I/O operations per second) are always limited and billed
for. Since many raster operations are mostly I/O bound [23], chunk shape is one
of the crucial performance parameters for a dataset [6].

Chunk shape depends on data characteristics and workload. Optimal chunk
shape usually does not exist for all access patterns. It is also difficult to guess
a good chunk shape a priori: chunk shape is often tuned experimentally. An
array DBMS must be capable to quickly alter chunk shape in order to support
experimentation as well as to adapt to dynamic workloads.

The exact chunking of an array may lead to data movement between files
and cluster nodes. However, in practice the condition ci � |A.di| usually holds.
This translates to ci � |p.A.di| for ∀p ∈ P (in practice, raster data are already

Distributed In Situ Processing of Big Raster Data in the Cloud 347

shipped in wisely cut files satisfying this condition). For example, in climate
modeling it is common to split a time series with hourly time step into files
storing yearly or monthly data.

A practical approach is to do inexact user-level array chunking and exact
independent chunking of its subarrays. More chunks will smaller shapes than
the given one will appear, Fig. 5. However, the fraction of such small chunks will
be negligible and they will not influence the I/O performance significantly. Note
that if |A.di| mod ci
= 0, then even the exact chunking of a user-level array is
not possible leading to a certain amount of chunks with smaller shapes.

lat

lon

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

lat

lon

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9
Inexact 2 × 2 chunking

(b)
Exact 2 × 2 chunking

(a)

Fig. 5. Inexact array chunking.

In practice, inexact chunking is even more desirable in many cases: it is
much faster and more consistent than the exact chunking. Recall that files under
ChronosServer control are directly accessible by a user and any other software.
Consider the climate modeling example given above. In this case, it is inconsis-
tent to have a perfectly chunked file named “2015.*” and supposed to store data
for year 2015 but with extra grids from the next and/or previous years.

ChronosServer does not move data between cluster nodes to alter chunk
shape of a user-level array; every system-level array is chunked autonomously.
ChronosServer delegates chunking to ncks (NCO).

4 Performance Evaluation

4.1 Experimental Setup

Microsoft Azure Cloud was used for the experiments. Azure cluster creation,
scaling up and down with given network parameters, number of virtual machines,
etc. was fully automated using Java Azure SDK. We used the latest SciDB
version 16.9 released in November, 2016. The latest version of Ubuntu Linux
on which SciDB 16.9 runs is 14.04 LTS. Standard D2 v2 virtual machines were
used with 2 CPU cores (Intel Xeon E5-2673 v3 (Haswell) 2.4 GHz), 7 GB RAM,

348 R. A. Rodriges Zalipynis

100 GB local SSD drive (4 virtual data disks), max 4 × 500 IOPS. SciDB cluster
deployment is extremely labor-intensive. SciDB must be compiled from scratch
directly on a computer cluster in order to deploy it on a cluster.

Although Azure states the disks to be SSD, after the creation of such a disk
Azure displays it to be a standard HDD disk backed by a magnetic drive. This
leads to a large spread of I/O latencies among cluster nodes, makes some nodes
in the cluster much slower than the others, and explains larger runtimes for 16
nodes than for 8 nodes for ChronosServer aggregation queries, Table 1. Possibly
the ChronosServer aggregation runtime is comparable to the I/O overhead of
the HDD disks. This can be concluded from the hot runtimes, Table 1.

Eastward (U-wind) wind speed at 10 meters above surface from NCEP/ DOE
AMIP-II Reanalysis (R2) between 1979–1994 (16 years) was used for experi-
ments [11]. These are 6-hourly forecast data (4-times daily values at 00:00, 06:00,
12:00, and 18.00). Data are 3-dimensional on 94 latitudes × 192 longitudes
Gaussian grid in NetCDF3 format. This comprised only 804 MB in NetCDF3
format since it is impossible to import large data volumes into SciDB in a rea-

Table 1. Results of performance evaluation

Operation

N
od

es Execution Time, seconds SciDB/
ChronosChronosServer SciDB

Cold Hot Cold Hot

Average
8
16

2.82
3.5

1.16
0.53

59.06
30.14

20.94
8.61

50.91
56.87

Maximum
8
16

1.21
1.94

0.83
0.53

37.88
17.58

31.30
9.06

45.64
33.17

Minimum
8
16

1.11
1.42

0.84
0.49

33.88
17.46

30.52
12.30

40.33
35.63

Chunk
10 × 10 × 8

16 2.15 1.96 3205.94 1491.13 1635.68

Chunk
100 × 20 × 16

8
16

1.42
1.02

1.29
0.63

314.88
211.56

221.75
207.41

244.09
335.81

Reshape1 8
16

9.51
2.93

5.64
2.86

345.55
196.85

36.33
67.18

61.27
68.83

Hyperslab
original2

8
16

2.64
1.40

0.24
0.22

263.59
116.80

99.84
83.43

1098.29
530.91

Hyperslab
chunked3

8
16

6.11
2.55

0.39
0.27

3.46
1.95

0.57
0.76

8.87
7.22

1 A(time, lat, lon) → A(lon, lat, time)
2 A[0 : 23360 − 1, 0, 0] from A(time, lat, lon)
3 A[0 : 23360 − 1, 0, 0] from chunked 100 × 20 × 16

Distributed In Situ Processing of Big Raster Data in the Cloud 349

sonable time frame [19]. However, small test data volume and single machine
turned out to be sufficient for representative results (Table 1).

We have written a Java program that converts NetCDF files to CSV files to
feed the latter to SciDB. To date, this is the only way to import an external
NetCDF file into SciDB 16.9. The resulting shape of the wind speed array was
23360 × 94×192 (time, lat, lon). Import time of the 16 years of data into SciDB
took about 27 h on a powerful local machine in order not to waste the Cloud
time. The resulting SciDB array was exported into the file of proprietary SciDB
binary format and copied into the Cloud when needed (SciDB imports data from
its own format much faster: 148.32 s on 16 nodes).

SciDB is mostly written on C++, parameters used: 0 redundancy, 2 instances
per machine, other settings are default. ChronosServer has 100% Java code,
ran one worker per node, Oracle JDK 1.8.0 111 64 bit, max heap size 978 MB
(-Xmx). The cloud was running only ChronosServer workers. Gate was running
on a separate VPS (Virtual Private Server) within another datacenter to simplify
the overall deployment procedure. Workers connected to the gate via the Inter-
net. We used NCO tools available from the standard Ubuntu 14.04 repository:
v4.4.2, last modified 2014/02/17.

We have evaluated cold and hot query runs (a query is executed for the first
and for the second time respectively on the same data). Every runtime reported
is the average of 3 runtimes of the same query. Respective OS commands were
issued to free pagecache, dentries and inodes each time before executing a
cold query to prevent data caching at various OS levels. ChronosServer benefits
from native OS caching and is much faster during hot runs when the same
query is executed the second time on the same data. This is particularly useful
for continues experiments with the same data. This type of experiments occurs
quite often (e.g., tuning certain parameters, refer to Sect. 3.4 for an example).
There is no significant runtime difference between cold and hot SciDB runs.

The result of aggregate queries presented in Table 1 is a single 94 × 192
grid. NetCDF files were evenly distributed among cluster nodes. SciDB also
evenly distributes its chunks (this can be checked by summarize SciDB plugin).
SciDB array had chunk shape 1 × 94 × 192 which is similar to NetCDF data.
Experiments for chunking the array to 10 × 10 × 8 is reported only for the
16-node cluster due to its high runtime.

5 Related Work

Four modern raster data management trends are relevant to this paper: industrial
raster data models, formal array models and algebras, in situ data processing
algorithms, and array DBMS. A good survey on the algorithms is in [4]. A recent
survey of existing array DBMS and similar systems is in [19]. It is worth men-
tioning SciDB [6], Oracle Spatial [14], ArcGIS IS [1], RasDaMan [2], MonetDB
SciQL [24], Intel TileDB [15,20], and PostGIS [16].

The most well-known array models and algebras targeted at dense multidi-
mensional, general-purpose arrays are Array Algebra, AML (Array Manipulation

350 R. A. Rodriges Zalipynis

Language), AQL (Array Query Language) and RAM. All of them can be mapped
to Array Algebra [3]. SciDB does not have a formal description of its data model.
It neither allows array dimensions to be of temporal or spatial types making it
difficult or sometimes impossible to process many real-world datasets.

Three industry standard data models are most widely used to abstract from
raster file formats: Unidata CDM, GDAL Data Model and ISO 19123 which
are mappable to each other [10]. Each data model has resulted from decades of
considerable practical experience. Unlike CDM, GDAL or ISO, our data model
is formalized and a subarray (not a dataset) representation resembles CDM to
(i) leverage industrial experience, (ii) provide a rich set of data types (Gaussian,
irregular grids, meshes, etc.), (iii) make the model mapping to a raster file format
clear but still independent from a format. Most popular command line tools are
readily compatible with our model since they rely on CDM, GDAL or ISO.

6 Conclusions

ChronosServer is gradually becoming a file based, distributed array DBMS. It
delegates some raster data processing work to feature-rich and highly opti-
mized command line tools. This makes it run much faster than SciDB. Also,
the ChronosServer formal array model maintains a high level of independence
from the underlying raster file formats and the tools. The tools are shown to
be widely applicable: in every algorithm designed for general-purpose N -d array
processing there is always a significant portion of work for the tools.

Future work includes adding ACID guarantees and fault-tolerance. This may
be easier than in a traditional DBMS since ChronoServer datasets are read-only.

Acknowledgments. This work was partially supported by Russian Foundation for
Basic Research (grant No. 16-37-00416).

References

1. ArcGIS for server — Image Extension. http://www.esri.com/software/arcgis/
arcgisserver/extensions/image-extension

2. Baumann, P., Dumitru, A.M., Merticariu, V.: The array database that is not a
database: file based array query answering in rasdaman. In: Nascimento, M.A.,
Sellis, T., Cheng, R., Sander, J., Zheng, Y., Kriegel, H.-P., Renz, M., Sengstock,
C. (eds.) SSTD 2013. LNCS, vol. 8098, pp. 478–483. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40235-7 32

3. Baumann, P., Holsten, S.: A comparative analysis of array models for databases.
Int. J. Database Theory Appl. 5(1), 89–120 (2012)

4. Blanas, S., et al.: Parallel data analysis directly on scientific file formats. In: ACM
SIGMOD (2014)

5. Buck, J., et al.: SciHadoop: array-based query processing in Hadoop. In: SC (2011)
6. Cudre-Mauroux, P., et al.: A demonstration of SciDB: a science-oriented DBMS.

Proc. VLDB Endowment 2(2), 1534–1537 (2009)

http://www.esri.com/software/arcgis/arcgisserver/extensions/image-extension
http://www.esri.com/software/arcgis/arcgisserver/extensions/image-extension
https://doi.org/10.1007/978-3-642-40235-7_32

Distributed In Situ Processing of Big Raster Data in the Cloud 351

7. Grawinkel, M., et al.: Analysis of the ECMWF storage landscape. In: 13th USENIX
Conference on File and Storage Technologies, p. 83 (2015)

8. Interpolation - SciDB forum. http://forum.paradigm4.com/t/interpolation/1283
9. Digitalglobe’s maps API. https://www.mapbox.com/blog/digitalglobe-maps-api/

10. Nativi, S., Caron, J., Domenico, B., Bigagli, L.: Unidata’s common data model
mapping to the ISO 19123 data model. Earth Sci. Inform. 1, 59–78 (2008)

11. NCEP-DOE AMIP-II Reanalysis. http://www.esrl.noaa.gov/psd/data/gridded/
data.ncep.reanalysis2.html

12. NCO homepage. http://nco.sourceforge.net/
13. OGC netcdf. http://www.opengeospatial.org/standards/netcdf
14. Oracle spatial and graph. http://www.oracle.com/technetwork/database/options/

spatialandgraph/overview/index.html
15. Papadopoulos, S., et al.: The TileDB array data storage manager. Proc. VLDB

Endowment 10, 349–360 (2016)
16. PostGIS raster data management. http://postgis.net/docs/manual-2.2/using

raster dataman.html
17. Rew, R., Davis, G.: NetCDF: an interface for scientific data access. IEEE Comput.

Graphics Appl. 10(4), 76–82 (1990)
18. Rodriges Zalipynis, R.A.: ChronosServer: real-time access to “native” multi-

terabyte retrospective data warehouse by thousands of concurrent clients. In: Infor-
matics, Cybernetics and Computer Engineering, vol.14, no. 188, pp. 151–161 (2011)

19. Rodriges Zalipynis, R.A.: ChronosServer: fast in situ processing of large multidi-
mensional arrays with command line tools. In: Voevodin, V., Sobolev, S. (eds.)
RuSCDays 2016. CCIS, vol. 687, pp. 27–40. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-55669-7 3

20. TileDB. http://istc-bigdata.org/tiledb/index.html
21. Wang, Y., Jiang, W., Agrawal, G.: SciMATE: a novel MapReduce-like framework

for multiple scientific data formats. In: CCGRID, pp. 443–450 (2012)
22. Wang, Y., et al.: SAGA: array storage as a DB with support for structural aggre-

gations. In: SSDBM 2014
23. Zender, C., et al.: Scaling properties of common statistical operators for gridded

datasets. Intl. J. High Perf. Comp. Appl. 21(4), 458–496 (2007)
24. Zhang, Y., et al.: SciQL: bridging the gap between science and relational DBMS.

In: IDEAS (2011)

http://forum.paradigm4.com/t/interpolation/1283
https://www.mapbox.com/blog/digitalglobe-maps-api/
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
http://nco.sourceforge.net/
http://www.opengeospatial.org/standards/netcdf
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
http://postgis.net/docs/manual-2.2/using_raster_dataman.html
http://postgis.net/docs/manual-2.2/using_raster_dataman.html
https://doi.org/10.1007/978-3-319-55669-7_3
https://doi.org/10.1007/978-3-319-55669-7_3
http://istc-bigdata.org/tiledb/index.html

Statistical Approach to Increase Source Code
Completion Accuracy

Valeriy Savchenko1(B) and Alexander Volkov2(B)

1 Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn street, Moscow 109004, Russian Federation

vsavchenko@ispras.ru
2 Lomonosov Moscow State University, GSP-1, Leninskie Gory,

Moscow 119991, Russian Federation
volkovas 174@icloud.com

Abstract. Code completion is an essential feature in every IDE’s tool-
box, boosting a developer’s productivity and significantly reducing time
spent on code exploration. In this paper, we introduce the extension of a
typical code completion system. At each point, we construct a list of all
possible functions, which are then sorted according to our probabilistic
model. We draw our inspiration from natural language processing (NLP).
As the foundation, we select the N-gram model, which works on top of
abstract syntax tree (AST) nodes. Since our approach is not bound to any
other analyses, our model is language-agnostic, and thus, can be applied
to any programming language. Experiments on several well-known open
source projects show that the described method is sound. It has an exe-
cution time comparable to näıve approaches and achieves much more
accurate results.

Keywords: Code completion · Statistics · Language modeling

1 Introduction

To deliver code faster and more efficiently, many software developers rely on the
rich functionalities provided by different IDEs. According to the Stack Overflow
Developer Survey [1], full-stack developers tend to prefer Development Envi-
ronments over text editors. Studies [2,17] show that code completion is by far
the most popular IDE feature. It helps programmers to type faster, avoid mis-
spellings and explore code without constant switching to documentation and
back. Code completion is used three times more frequently than copy-paste
functionality [2]. Thus code completion and the level of its performance have
a drastic effect on a developer’s productivity.

Several approaches to improve code completion have been proposed in the
literature. Some works extend the basic idea of code completion to improve
usability. For example, the abbreviation completion algorithm [8] suggests com-
pletions for abbreviated input, while active code completion [18] suggests not
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 352–363, 2018.
https://doi.org/10.1007/978-3-319-74313-4_25

Statistical Approach to Increase Source Code Completion Accuracy 353

only functions, but colors and regular expressions. However, the main area of
research focuses on increasing code completion precision. To achieve this, authors
have proposed methods using different sources of additional information: type
hierarchies and function popularity [10], program change history [20], an n-gram
language model to predict the next token [9]. To improve code completion as
a code exploration tool a few approaches have also been suggested. Within a
database of API usage examples, either structural similarities between the user’s
code and examples can be captured to provide better candidates [3], or alterna-
tively the database can be used to train a language model to fill API calls in the
given snippet [19].

In this paper, we propose a method of increasing code completion precision
without any source of information outside a user’s project. Our method repre-
sents a fusion of previous ideas. With the goal of improving a user’s experience
of working with her own code, and not an external API.

Our approach includes statistical language modeling that has been effectively
used in several areas of NLP including sentiment analysis, speech recognition
and machine translation. Studies [9,19] show that it can also be applied to
programming code. We collect data on a user’s project and construct a smoothed
n-gram model. Then the model is built on top of AST nodes, thus providing the
probability of a certain function call to appear in the current sub-tree. Finally,
we sort completion candidates by their probabilities.

2 Language Model

In NLP, language modeling estimates the probability of the next word in a
sequence of words [16]. This sequence can be of any length, whether it’s a sen-
tence, a paper, or even a novel. A sequence of words is defined as an ordered set
of words wi, where each wi is an element of dictionary D, which is the set of all
words in a particular language. If {w1, w2, . . . , wm−1} (for any arbitrary m) is a
sequence from D∗, then for each w ∈ D, there is a probability of w to be wm,
i.e. the next word in the sequence.

P (w = wm|wm−1, wm−2, . . . , w2, w1) (1)

Using the formula for conditional probability, we get:

P (w|wm−1, wm−2, . . . , w2, w1) =
P (w,wm−1, wm−2, . . . , w2, w1)
P (wm−1, wm−2, . . . , w2, w1)

(2)

In practice, it’s impossible to estimate both P (w,wm−1, wm−2, . . . , w2, w1)
and P (wm−1, wm−2, . . . , w2, w1) for every possible length of a sequence because
in order to get a proper estimation, every single possible sequence should be
counted. Considering the fact that |D∗| = |IN|, this task is equal to counting all
the elements in IN. Since it’s impossible to do this, a major challenge for NLP
is to find a way to estimate (1).

354 V. Savchenko and A. Volkov

2.1 N-gram Model

One of the most widespread approaches to this problem is to make the Markov
assumption, which states that the target probability depends only on the n − 1
last elements of the sequence, i.e.

P (w|wm−1, wm−2, . . . , w2, w1) = P (w|wm−1, . . . , wm−n+1) (3)

Let’s denote γn(m) as the n−1 previous words for the m-th word, i.e. γn(m) =
wm−1, . . . , wm−n+1. Then the target probability (3) takes the following form:

P (w|wm−1, wm−2, . . . , w2, w1) = P (w|γn(m)) (4)

Joining (2) and (4), we get a formula to estimate the target probability:

P̂ (w|γn(m)) =
P̂ (γn(m), w)
P̂ (γn(m))

(5)

To estimate probabilities in the right-hand side of (5), we can use relative
frequencies:

P̂ (γn(m), w) =
1

|Sn|
∑

s∈Sn

1s=γn(m),w (6)

P̂ (γn(m)) =
1

|Sn−1|
∑

s∈Sn−1

1s=γn(m) (7)

where Sn is a set of all sequences of the length n that occur in a sample.
Using (6) and (7) in (5), we get the resulting formula for estimation:

P̂ (w|γn(m)) =
|Sn−1|
|Sn|

∑
s∈Sn

1s=γn(m),w

∑
s∈Sn−1

1s=γn(m)
(8)

Considering the fact that for a given sample, |Sn−1|
|Sn| is a constant, (8) is

usually simplified to:

P̂ (w|γn(m)) �

∑
s∈Sn

1s=γn(m),w

∑
s∈Sn−1

1s=γn(m)
(9)

The resulting estimate (9) is referred to as the maximum likelihood (ML)
estimate.

Statistical Approach to Increase Source Code Completion Accuracy 355

3 Programming Language Model

Our central hypothesis is that in various contexts, functions have different prob-
abilities to be called, and furthermore, these probabilities vary enough that they
can be exploited for better completions. Figure 1 shows one possible scenario.
std::vector’s most callable functions are push_back and operator[], except in
the context of a for-loop. It would make more sense for iteration-related func-
tions to appear there, i.e. it would be more logical for the top suggestions to be
begin and end. Of course, we can come up with a couple of hand-written rules to
describe this particular situation. However, we need to use a statistical approach
to capture such a dependency in the most general form (for any function, type,
and context).

Fig. 1. An example of a context-sensitive completion. The context of a code affects
the list of candidates raising only the most probable ones.

3.1 AST Nodes

In this paper, we use language models to learn and generalize such rules from
a user’s code. As mentioned before, several studies have shown that language
models can be used effectively for programming languages. Most of these works
use tokens as words in language models. Tokens are the result of lexical analysis,
the lowest level of program analysis, and consequently, represent shallow infor-
mation about the code. On the other hand, we want to go one step further, and
use AST, which represents a deeper approach. It provides richer syntactic and
semantic information.

Fig. 2. An example of a depth-first traversal of AST that provides a sequential order.

356 V. Savchenko and A. Volkov

The n-gram model works on top of sequential structures, but the structure
of AST is tree-like. To “straighten” AST, we traverse it in a way similar to the
order of corresponding tokens. We select depth-first order with a rule of visiting
leftmost children first. Figure 2 shows an example of our traversal. We use AST
node types as words in an n-gram model, which is always of a fixed length for
any particular programming language. For example, the i-th word’s context γn(i)
might have the following form: FuncDecl BinaryExpr VarDecl UnaryExpr.

Our goal, though, is to predict the correct function to call. To do so, we need
to collect statistics about actual calls. For each n-gram that finishes with a call
expression, we store every function’s number of occurrences. To illustrate, the
example from Fig. 1 might have the following n-gram: ForStmt AssignmentExpr
VarDecl VarDecl begin. As a result, the size of dictionary D is defined by the
number of all types of AST nodes for the given language and the number of all
functions in the user’s project.

3.2 Candidate Sorting

If γ(m) = wm−n+1, . . . , wm−1 is a context at point m, and C(m) is a set of
all functions that are semantically possible to be called at point m, then the
language model defines a mapping P (·|γ(m)) : C �→ IR[0,1], and a binary relation
� on the set C(m):

∀a, b ∈ C(m) → a � b ⇔ P (a|γ(m)) > P (b|γ(m)) (10)

Relation � defines a linear order on C(m). We denote {ĉi} as the ordered
set of completion candidates, where ∀i, j ∈ IN[1,|C(m)|] : i > j ⇔ ĉi � ĉj . We
refer to the set {ĉi} as a completion list, and say that ĉi is the i-th completion
candidate.

4 Smoothing

According to the law of large numbers, we need to encounter each possible n-gram
a significant number of times in order to give a good estimate for correspond-
ing probabilities. This represents a perfect world scenario. However, according
to |Dn| = |D|n, the number of possible n-grams grows exponentially with the
growth of n. Because of that, in the real world, some n-grams appear rarely or
do not appear in a sample at all. The estimated probability for those n-grams
would be ≈0, which is not a good estimate. This problem is usually referred to
as a data sparsity problem [4]. The target of smoothing is to construct a bet-
ter estimate for n-grams that we did not encounter without having to use any
additional data [4,6,16].

4.1 Interpolated Model

A very typical distribution of function calls is shown in Fig. 3. Almost 85% of all
functions have less than 20 calls, ∼80% have less than 10, and ∼40% have only

Statistical Approach to Increase Source Code Completion Accuracy 357

1 5 9 13 17 21 25 29 33 37 41 45 49
Number of calls

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

N
u
m

b
er

of
fu

n
ct

io
n
s

×
10

3

Fig. 3. The distribution (The actual distribution’s tail is much longer, reaching to the
thousands.) of functions over number of calls on the LLVM project.

one call. This is a restriction that cannot be overcome because it is not possible
to gather more data. To ease the effects of the restriction, we use Jelinek-Mercer
smoothing [12]. According to Chen and Goodman [4], it is better for small test
samples. Jelinek-Mercer smoothing makes use of lower order models including
them in the target estimate. Because of this, the resulting model is often referred
to as an interpolated model. The target estimate for an interpolated n-gram model
is defined by the following formula:

P̂JM,n(wi,λ) =
n∑

j=1

λjP̂j(wi) (11)

where P̂j(wi) is an estimate of the probability for wi to appear in the current

context according to a j-gram model, and ∀j ∈ [1, n] → λj ∈ [0, 1] :
n∑

j=1

λj = 1.

Many widely-used smoothing techniques are interpolated models and differ in
defining the λ parameter [11,14,24]. In our work, we pick a constant vector for
λ. For evaluation, we use the following three choices:

1. Equal coefficients λ=: ∀j ∈ [1, n] → λj = 1
n

2. Exponential coefficients λexp: ∀j ∈ [2, n] → λj = 1
2n−j+1 and λ1 = 1

2n+1

3. Optimal coefficients λ∗

4.2 Optimal Coefficients

We define optimal coefficients as a minimizing parameter for the following
function:

L(λ, k) =
∑

c∈C

ξ(c,λ, k) (12)

ξ(c,λ, k) =

{
Δ(c,λ)2, if Δ(c,λ) < k

k2, otherwise
(13)

358 V. Savchenko and A. Volkov

where Δ(c,λ) = i, and i ∈ IN : c = ĉi(λ). For a set of calls C, function L defines
a cumulative penalty for putting an actual call c in a different position than first.
Parameter k is a visibility area, which means that positions with an index bigger
than k are penalized with the same value. The following example demonstrates
why this is important.

Let the set C contain only two calls c1 and c2, where each call has a 100
candidates for completion. Let us also consider that we have some initial vector
λ1. For this vector, our model puts c1 in the 80th place, and c2 in the 10th
place. Imagine that we have two options of improving the initial vector: λ2

and λ3. For λ2 our model improves the position of c1 from 80th to 60th place,
for λ3 it improves the position of c2 from 10th to 4th. The question is: which
improvement is better? Without a visibility area, it would be λ2 because it gives
better improvement in terms of positions, but this change would not even be
noticed by the user. Vector λ3, on the other hand, makes c2 visible for the user
(if we assume that she can see the top 5 functions in the completion list). In
a model with a visibility area, this improvement is better. In summary, the k
parameter allows only reasonable improvements.

To minimize the penalty function, we use a stochastic gradient descent. Func-
tion L is not differentiable because we don’t have an analytic form for Δ(c,λ).
Therefore, we are limited to use an empirical estimation of L’s gradient.

4.3 Kneser-Ney Smoothing

Kneser-Ney smoothing [15] is considered to be the most efficient smoothing tech-
nique [4]. Its main idea is usually explained with the “San Francisco” example.
Let us imagine that “San Francisco” appears in the text many times. Because of
this, the separate words “San” and “Francisco” are unigrams with high probabil-
ities. Bigram “reading Francisco”, on the other hand, has never been encountered
in the text. Using a unigram model to smooth its probability, we would incor-
rectly conclude that “reading Francisco” should have a high probability because
“Francisco” is a common word. This case demonstrates why it’s better to esti-
mate unigram probability by the number of different words it follows, instead of
the number of occurrences in the text. Since the word “Francisco” appears only
after “San”, “reading Francisco” should receive a low probability. The idea can
be generalized for an n-gram model and described by the following formula:

P̂n
KN(w|γn(i)) =

max(
∑

s∈Sn

1s=γn(i),w − δ, 0)
∑

w′∈D

∑
s∈Sn

1s=γn(i),w′

+δ
|{w′ : γn(i)w′ ∈ Sn}|∑
w′∈D

∑
s∈Sn

1s=γn(i),w′
P̂n−1
KN (w|γn−1(i))

(14)

P̂ 1
KN(w) =

|{w′ : w′w ∈ S2}|
|{(w′, w′′) : w′w′′ ∈ S2}| (15)

Statistical Approach to Increase Source Code Completion Accuracy 359

5 Implementation

An experimental system was implemented for C/C++ language using Clang
libTooling API1 for code parsing purposes. To capture the correct compiler
options and get the whole list of source files, we use CMake and CMake’s com-
pilation database2. For each file, we build AST and collect n-gram frequencies.

For storage, we use suffix trees [23], which provide fast access to collected
statistics (O(n) for n-gram model). The suffix tree is the best candidate for our
needs because it provides access to all lower order models [13]. Thus they grant
a compact and memory-efficient way to store data for interpolated models.

To optimize the penalty function L and retrieve λ∗, we use the GNU Scientific
Library [7].

6 Evaluation

Empirical evaluation was held on the following open source projects:
LLVM+Clang3, MySQL4, OpenCV5, and Caffe6.

6.1 Theta Function

To measure the precision of our models, we need to use a function that reflects
how good our completion system works. It should be based not only on the fact
that the target function is ranked as a top candidate, but also on achieving a
position visible to the user. The previously defined penalty function L could be
what we are looking, but its values are good only for comparing models, and not
for getting an impression of how good the overall prediction is. For this purpose,
let us consider the following function:

Θ(m) .=
1

|C|
∑

c∈C

m∑

i=1

δcĉi (16)

where C is a set of all calls, c is a particular function call, ĉi is a i-th candidate
according to an order defined by � binary relation, and δ is the Kronecker delta.

m∑

i=1

δcĉi =

{
1, if c is among firstm candidates
0, otherwise

(17)

1 https://clang.llvm.org/docs/LibTooling.html.
2 https://clang.llvm.org/docs/JSONCompilationDatabase.html.
3 http://www.llvm.org/.
4 https://www.mysql.com/.
5 http://www.opencv.org/.
6 http://www.caffe.berkeleyvision.org/.

https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
http://www.llvm.org/
https://www.mysql.com/
http://www.opencv.org/
http://www.caffe.berkeleyvision.org/

360 V. Savchenko and A. Volkov

unigra
m
bigra

m
3-gr

am
4-gr

am
5-gr

am λ
=

λ
exp λ

∗
KN

0
10
20
30
40
50
60
70
80
90

100

Θ
(m

)
·1

00
%

m = 1
m = 3
m = 5

unigra
m
bigra

m
3-gr

am
4-gr

am
5-gr

am λ
=

λ
exp λ

∗
KN

0
10
20
30
40
50
60
70
80
90

100

Θ
(m

)
·1

00
%

unigra
m
bigra

m
3-gr

am
4-gr

am
5-gr

am λ
=

λ
exp λ

∗
KN

0
10
20
30
40
50
60
70
80
90

100

Θ
(m

)
·1

00
%

unigra
m
bigra

m
3-gr

am
4-gr

am
5-gr

am λ
=

λ
exp λ

∗
KN

0
10
20
30
40
50
60
70
80
90

100

Θ
(m

)
·1

00
%

Fig. 4. Evaluation results on open-source projects: LLVM (top-left), MySQL (top-
right), OpenCV (bottom-left), and Caffe (bottom-right)

As a result, Θ defines a natural ratio of “guessed” calls to the total number
of calls. Θ depends explicitly on m and implicitly on a set C. As far as we use
Θ as a measure of effectiveness for different models, it’s better to use data that
was not a part of a sample. Because of this fact, each project was randomly split
into three parts: 80% for model construction, 10% for λ∗ calculation, 10% for
testing.

6.2 Results

Figure 4 shows the evaluation results. Alphabetical ordering gives less than 1%
for each project and each m, and thus is not included. The unigram model can be
interpreted as a sorting of candidates by popularity, which is a similar approach
to [10]. Average time spent on completion list construction is 2.5 × 10−6 sec,
which implies that our system can be used as a real-time completion system.

Figure 4 also shows that the best results are bounded from above. The upper
bound is different for every project and can be related to the limitation shown by
Fig. 3. Even with smoothed models, it’s impossible to estimate the probability of
a function that had not been called before. If a function has only one call, then
the moment when we try to predict it, we have no data to do so. This limitation
cannot be overcome without more deeply integrating semantic information into
the model. On the bright size, our smoothed models have managed to reach
maximum performance in terms of this limitation:

Θ(5) ≈ 1 − |F1|
|C| (18)

where F1 is a set of functions that are called only once.

Statistical Approach to Increase Source Code Completion Accuracy 361

7 Conclusion and Further Work

In this paper, we presented a new approach to improve the precision of code
completion. It is based on statistical language models and uses a user’s project
as the input data to build the model. We use AST nodes as words for the model,
which gives us rich syntactic and semantic information about the code. Due to
the fact that AST is constructed for all programming languages, our approach
can be applied to any language. Our evaluation shows that the method achieves
better results than similar methods. Average time spent on completion for each
call is much less than 1 s, and this makes our system applicable for every day use.

There are several directions that further work could take. Our approach
“straightened” AST to get a sequential order, but AST is a tree with a sig-
nificant amount of information stored in its structure. The process of straighten-
ing inevitably leads to a loss of information, so future methods should make an
attempt to avoid this limitation. One possible way is to use syntactic dependency
based n-grams [21].

Another direction would be to add more details in n-grams. We used AST
nodes as clusters and used names only for function calls, but AST also contains
information about types, variables and operations. Future work should develop
a method for integrating this data into the model. A study by Gao et al. [5] is a
good place to start, as it shows how to unify a clustering approach with a more
detailed one.

However, the most promising direction is to use a language-specific analysis
to give better probability estimates. As mentioned earlier, this could solve the
problem caused by functions with only one call, which was a major limitation
for our system. Raychev et al. [19] presented a synthesis of program analysis
and statistical modeling. They use Steensgaard alias analysis [22] to improve
results. While this method was not appropriate for our purposes, it is still a
good example of how these two worlds can be merged to achieve better results.

References

1. Stack Overflow developer survey 2016 results. http://stackoverflow.com/research/
developer-survey-2016

2. Amann, S., Proksch, S., Nadi, S., Mezini, M.: A study of visual studio usage in
practice. In: 2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), vol. 1, pp. 124–134. IEEE (2016)

3. Bruch, M., Monperrus, M., Mezini, M.: Learning from examples to improve code
completion systems. In: Proceedings of the 7th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2009), pp. 213–222. ACM, New York
(2009). http://doi.acm.org/10.1145/1595696.1595728

4. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language
modeling. In: Proceedings of the 34th Annual Meeting on Association for Com-
putational Linguistics (ACL 1996), pp. 310–318. Association for Computational
Linguistics, Stroudsburg (1996). http://dx.doi.org/10.3115/981863.981904

http://stackoverflow.com/research/developer-survey-2016
http://stackoverflow.com/research/developer-survey-2016
http://doi.acm.org/10.1145/1595696.1595728
http://dx.doi.org/10.3115/981863.981904

362 V. Savchenko and A. Volkov

5. Gao, J., Goodman, J., Miao, J., et al.: The use of clustering techniques for lan-
guage modeling-application to Asian languages. Comput. Linguist. Chin. Language
Process. 6(1), 27–60 (2001)

6. Goodman, J.T.: A bit of progress in language modeling. Technical report (2001)
7. Gough, B.: GNU Scientific Library Reference Manual, 3rd edn. Network Theory

Ltd., Bristol (2009)
8. Han, S., Wallace, D.R., Miller, R.C.: Code completion from abbreviated input. In:

Proceedings of the 2009 IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2009), pp. 332–343. IEEE Computer Society, Washington
(2009). http://dx.doi.org/10.1109/ASE.2009.64

9. Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of
software. In: Proceedings of the 34th International Conference on Software Engi-
neering (ICSE 2012), pp. 837–847. IEEE Press, Piscataway (2012). http://dl.acm.
org/citation.cfm?id=2337223.2337322

10. Hou, D., Pletcher, D.M.: An evaluation of the strategies of sorting, filtering,
and grouping API methods for code completion. In: ICSM, pp. 233–242. IEEE
Computer Society (2011). http://dblp.uni-trier.de/db/conf/icsm/icsm2011.html#
HouP11

11. Hsu, B.J.: Generalized linear interpolation of language models. In: IEEE Workshop
on Automatic Speech Recognition & Understanding (ASRU 2007), pp. 136–140.
IEEE (2007)

12. Jelinek, F., Mercer, R.L.: Interpolated estimation of Markov source parameters
from sparse data. In: Gelsema, E.S., Kanal, L.N. (eds.) Proceedings Workshop on
Pattern Recognition in Practice, pp. 381–397. North Holland, Amsterdam (1980)

13. Kennington, C.R., Kay, M., Friedrich, A.: Suffix trees as language models. In:
Calzolari, N., Choukri, K., Declerck, T., Doan, M.U., Maegaard, B., Mariani, J.,
Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Eight International
Conference on Language Resources and Evaluation (LREC 2012). European Lan-
guage Resources Association (ELRA), Istanbul, May 2012

14. Klakow, D.: Log-linear interpolation of language models. In: Proceedings of ICSLP
1998, pp. 1695–1698 (1998)

15. Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, Detroit, Michigan, vol. 1, pp. 181–184, May 1995

16. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge (1999)

17. Murphy, G.C., Kersten, M., Findlater, L.: How are java software developers using
the eclipse IDE? IEEE Softw. 23(4), 76–83 (2006). http://dx.doi.org/10.1109/MS.
2006.105

18. Omar, C., Yoon, Y., LaToza, T.D., Myers, B.A.: Active code completion. In: Pro-
ceedings of the 34th International Conference on Software Engineering (ICSE
2012), pp. 859–869. IEEE Press, Piscataway (2012). http://dl.acm.org/citation.
cfm?id=2337223.2337324

19. Raychev, V., Vechev, M., Yahav, E.: Code completion with statistical lan-
guage models. SIGPLAN Not. 49(6), 419–428 (2014). http://doi.acm.org/10.1145/
2666356.2594321

20. Robbes, R., Lanza, M.: How program history can improve code completion. In:
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008), pp. 317–326. IEEE Computer Society, Wash-
ington (2008). http://dx.doi.org/10.1109/ASE.2008.42

http://dx.doi.org/10.1109/ASE.2009.64
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dblp.uni-trier.de/db/conf/icsm/icsm2011.html#HouP11
http://dblp.uni-trier.de/db/conf/icsm/icsm2011.html#HouP11
http://dx.doi.org/10.1109/MS.2006.105
http://dx.doi.org/10.1109/MS.2006.105
http://dl.acm.org/citation.cfm?id=2337223.2337324
http://dl.acm.org/citation.cfm?id=2337223.2337324
http://doi.acm.org/10.1145/2666356.2594321
http://doi.acm.org/10.1145/2666356.2594321
http://dx.doi.org/10.1109/ASE.2008.42

Statistical Approach to Increase Source Code Completion Accuracy 363

21. Sidorov, G.: Syntactic dependency based n-grams in rule based automatic English
as second language grammar correction. Int. J. Comput. Linguist. Appl. 4, 169–188
(2013)

22. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 1996), pp. 32–41. ACM, New York (1996). http://doi.acm.org/10.
1145/237721.237727

23. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th Annual
Symposium on Switching and Automata Theory (Swat 1973) (SWAT 1973), pp.
1–11. IEEE Computer Society, Washington (1973). http://dx.doi.org/10.1109/
SWAT.1973.13

24. Witten, I.H., Bell, T.C.: The zero-frequency problem: estimating the probabilities
of novel events in adaptive text compression. IEEE Trans. Inf. Theor. 37(4), 1085–
1094 (2006). http://dx.doi.org/10.1109/18.87000

http://doi.acm.org/10.1145/237721.237727
http://doi.acm.org/10.1145/237721.237727
http://dx.doi.org/10.1109/SWAT.1973.13
http://dx.doi.org/10.1109/SWAT.1973.13
http://dx.doi.org/10.1109/18.87000

Using the Subject Area Ontology
for Automating Learning Processes

and Scientific Investigation

Dmitry Shachnev1(B) and Dmitry Karpenko2

1 Faculty of Mechanics and Mathematics,
Lomonosov Moscow State University, Moscow, Russia

mitya57@mitya57.me
2 Institute of Complex Systems Mathematical Research,
Lomonosov Moscow State University, Moscow, Russia

dskarpenko@gmail.com

Abstract. This paper presents the ways and the methods to build and
populate the ontology, based on the taxonomy of the subject area, which
can then be used to automate the learning processes. The applications
include: analysis of educational and teaching activity of students and
lecturers, contextual analysis and thematic search in big data systems,
analysis of texts including the anti-plagiary protection, modeling the
learning processes and generating various content such as teaching plans
and tests. The ontology is also used to form the unified semantic network
of the research center.

The ontology is populated by scientists and users working on different
branches of science, using the ontology editor developed by the authors.
The editor is built as part of ISTINA (Intellectual System for Thematic
Investigation of Scientometrical Data), the current research information
system used in Lomonosov Moscow State University. The core concepts
and relations in each branch of science are verified by experts on that
branch.

Keywords: Scientometrics · Ontology · Subject area · Taxonomy
Learning process · Tests generation · Knowledge map

1 Goals of the Work

The goal of this work is to develop a way to improve the scientific investigation
and learning processes in a high school, by formalizing the subject area and
allowing for effective actualization of it. To achieve this, we develop the algo-
rithms and the technical means that would allow us to build such formalization
in a form of an ontology, control the quality of it and use it for generating the
students’ individual learning trajectories and work plans.

D. Karpenko—The authors would also like to thank Sergey Artamkin and Gennady
Bogopolsky for their help with preparing this paper.

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 364–374, 2018.
https://doi.org/10.1007/978-3-319-74313-4_26

Subject Area Ontology for Learning Processes Automation 365

1.1 Previous Works in This Area

The problem of formalizing the learning process is quite popular in Russia,
because the education system here is more centralized and less oriented on
the concrete lecturers. Some research on using an ontology for this task was
performed in Lomonosov Moscow State University [3,7], in Pirogov Russian
National Research Medical University (RNRMU) [2,6] and in the A. P. Ershov
Institute of Informatics Systems of the Siberian Branch of Russian Academy of
Sciences [8].

2 The ISTINA System

ISTINA (the Russian abbreviation for “Intellectual System for Thematic Investi-
gation of Scientometrical Data”) [4,5] is the current research information system
(CRIS) which is used in Lomonosov Moscow State University and in several insti-
tutes of the Russian Academy of Sciences. It stores various results of scientific
and educational activity of employees, such as articles, conference talks, patents,
research projects, lecture courses, students’ guidance, etc. It is integrated with
international systems such as Web of Science and Scopus. Figure 1 shows a profile
of a user in ISTINA.

Fig. 1. Profile of a user in ISTINA system.

One of the key features of ISTINA is the ability to build a list of works for
an employee using a certain formula, with every work having a weight according
to that formula. A formula is a set of lines, where each line defines a set of works
and a function to build the weight. For example, a line can say that articles in
a journal having a Scopus impact-factor get a weight equal to N × journal IF ÷√

number of coauthors. It is possible to add multiple filters and restrictions,

366 D. Shachnev and D. Karpenko

such as “select all oral talks on international conferences where the worker was
the presenter”. A work is included into the result if it matches at least one
formula line; if it matches several lines the one which yields the maximum weight
is used. Internally these formulae are stored as JSON, where each line is a tuple
of (category of works, restrictions, parameter to use as initial weight, numeric
multiplier, modifier functions to apply). A formula can be evaluated for a single
employee, forming a set of ranked works, or for a department, which gives a
ranked list of employees where for each employee a sum of their works’ weights
is given.

The formulae evaluating system uses its own very simple ontology struc-
ture. A category in a formula defines a class of works, and a relation between a
worker and a work, for example “course–author”, “course–lecturer”, or “project–
responsible implementer”. Each category has a set of properties, either numeric
or boolean. For example, for a course being read these are its duration in weeks,
number of academic hours per week, and number of students. There is a JSON-
like structure which maps the categories and the properties onto the underlying
relational database structure. This mapping is used to generate the SQL queries
for each line of a formula. The internal structure of the formulae and the algo-
rithms used in the SQL generator are described in detail in [1].

3 Structure of the Ontology

The most important part of the ontology is the taxonomy, which is the hierarchy
of the subject areas that are used in a high school. The rest of the ontology is
built around the taxonomy. The ontology consists of multiple layers, listed below.

– The core ontology, which is in general immutable and can only be edited
by the administrators. It consists of the meta-ontology, which contains some
basic concepts and relations, and the items which have a special meaning
throughout the ISTINA system, most importantly the ontology used in the
formulae.

– The teaching plans and the hierarchy of the disciplines. The work teaching
plan of the chair describes one or several disciplines; each discipline consists
of several modules, and each module has several topics and subtopics.

– The terms from each branch of science and the relations between them.
– Any other concepts that are needed to build the relations between the layers

mentioned above.

The ontology concepts can usually be divided into classes and their instances.
These work like classes and instances in object-oriented programming. For exam-
ple, “Stokes’ theorem” is an instance of class “theorem”, and “Linear algebra”
is an instance of class “discipline”. Everything except the core ontology is freely
editable by all users, but the changes can be moderated by experts in the relevant
science areas, which are granted special rights for this.

Subject Area Ontology for Learning Processes Automation 367

4 Building the Ontology

From organizational point of view the process of building the ontology can be
split into two stages. During the first stage, the ontology is tightly bound to the
teaching process. Each chair or department develops its own part of the ontology,
which is usually bound to the courses that are being read by that chair. There
can be no deviations within the chair, to make it easier to merge the resulting
ontologies afterwards. On the second stage, all separate parts of the ontology are
joined together, and each worker can maintain his own changes to the structure
of the chair.

4.1 The Ontology Editor

The ontology editor can work in two different modes: the standalone mode and
the inline mode. In the standalone mode the editor has a row of tabs, which
are used to switch between pages. The first tab is called “Edit course structure
and terms” and is shown on Fig. 2. On this tab one can enter the hierarchical
structure, and then for every topic and subtopic in this structure add the terms
related to it.

Fig. 2. The structure and terms page of the ontology editor.

The other tabs are called ontology pages, and are used for entering the relation
types and the relations themselves. Each page belongs to the user who created
it: everyone can view it, but only the page owner can edit it. The page has a
set of concepts associated with it, all relations within this set are automatically
shown on the page. While it is recommended to enter the terms on the first tab,
there is a built-in interface to add the new terms on the work pages too. There
is also a way to split the existing relation into two relations by inserting a new
term in the middle.

There is a version control system for pages and their content. It is possible
to compare different revisions of the same page, or pages of different users. It is
also possible to “fork” a page of different user and make changes to it.

The algorithm for adding terms and relations to the system using the ontology
editor is as follows.

368 D. Shachnev and D. Karpenko

1. On the course structure tab, the relevant topic or subtopic should be selected.
If it does not exist, it can be created using the “Add a topic” link. Similar
links can be used to create the missing disciplines and modules.

2. New terms should be added using the “Add a term” button. For each term,
its name and description should be entered. It is also possible to click on
existing terms and edit their names or descriptions.

3. If a term has an equivalent in one of the projects that are part of the Linking
Open Data cloud, it is possible to add the URIs for those remote terms, and
the links will be created.

4. Either a new page should be created, or an existing one should be opened.
The existing pages usually represent the lowest in the hierarchy branches of
science, or the instances of a particular class. The user can also save some
page and reopen it later.

5. If it was a new page, some existing terms should be loaded to that page first.
This can be done using the search field. If there are multiple objects with the
same name, the object classes are shown in parentheses for disambiguation.
If some of the added terms have any relations between each other, these
relations are automatically shown on the page. It is possible to filter the
relations types by clicking on checkboxes with these types in the side panel.

6. Relations between terms should be drawn. Dragging the cursor from one item
to the other one automatically creates a relation and puts it into focus. After
that it is possible to choose the relation type, using the same interface that
is used for searching for terms. Figure 3 shows how the editor looks like when
the rdfs:isDefinedBy concept from the core (RDF) ontology is opened.

4.2 Technical Implementation of the Ontology Store

The ISTINA system uses a relational database to store all its data and the
Django web framework to process requests to the website. Because of the need to
integrate the ontology and the existing objects in the relational database, it has
been decided to store the ontology in the same database, and not in a separate
RDF storage. We have taken advantage of RDFLib, a Python library for working
with RDF, and have implemented a custom Store backend for RDFLib which
uses the Django object-relational mapping to generate the SQL queries to the
relational database.
In the database, the following tables are used:

– Concept — maps concept URIs to internal numeric IDs;
– ConceptProperty — stores literal values of properties;
– Triplet — stores (subject, predicate, object) triplets where subject and object

are generic foreign keys: for example, object can be a concept, a literal value,
or an object that is part of ISTINA system but not part of the ontology;

– Revision — stores meta-information about ontology revisions: revision num-
ber, user and creation date;

– Page, PageMembership — stores information about ontology pages, who owns
them, and which concepts belong to which pages.

Subject Area Ontology for Learning Processes Automation 369

Fig. 3. The rdfs:isDefinedBy concept and its properties.

The Triplet table also has two fields that store data needed for the version
control system: RevCreated and RevDeleted. When a triplet is created, the first
field gets a value equal to the revision ID, the second field stays NULL. When a
user requests to delete the triplet, it is not actually deleted, but the second field
is set to the revision ID instead. This way the version control operations become
very easy.

– To browse the current state, one can use the RevDeleted is NULL expression.
– To browse a state at revision N : RevCreated <= N and (RevDeleted is
NULL or RevDeleted > N).

– To check changes of revision N : RevCreated = N or RevDeleted = N.

RDFLib provides means to import and export data in different formats:
in particular, import foreign ontologies in Turtle format. This can be used for
importing standard ontologies (such as Dublin Core), or ontologies created in
offline editors, such as Protégé. RDFLib also provides a SPARQL endpoint imple-
mentation, which automatically converts SPARQL queries to method calls to
the Store backend (which are then converted to SQL queries). The result of a
SPARQL query can be serialized in several formats, the most important for us
being the JSON format documented by the W3 Consortium. The ontology edi-
tor performs some SPARQL queries via AJAX, for example, to get a list of all
classes.

The changes from the editor (client side application) to the store (server
side application) are submitted in form of “change lists”. Every change in a
change list can be of the following types: create or remove a concept, create or
remove a triplet, add a concept to or remove from a given page. The change
list is represented as a JSON array where every item is a tuple specifying the
change type and its parameters (for example, the concept URIs). The patch is

370 D. Shachnev and D. Karpenko

processed as a single database transaction: if applying a change fails, then the
whole change list is not saved, and the error message is presented to the user.

4.3 Automatic Suggestions

The inline mode of the editor is used on the page where new works are added
to the ISTINA system. When an annotation is entered into the system, it is
parsed using the modified version of Brainsterm algorithm [3], which extracts
the potential terms and thesaural relations between them. These suggestions are
presented to the work author, who then checks for their correctness and can add
them to the ontology in several clicks.

5 Applications

5.1 Searching for Works and Authors

Each work in the system has some keywords, which are linked to concepts in
the ontology. Given the search query, it is analysed, and the most close nodes in
the ontology are determined for it as well. Then, for every work in the system,
its weight is set to the distance between two sets of concepts, that is the closest
distance between a concept from the keywords and a concept from the search
query. In some cases, a logarithmic function of a distance can be used instead
of the plain value of distance. Technically this is implemented by maintaining
a cache which stores the closest pairs of keywords throughout the system, and
closest concepts for the keywords for every work in the system.

Given the keywords, we can also find the authors which have the biggest
number of works in an area determined by these keywords. First, based on the
works found, the set of candidate authors is determined. Then, for this set, a
formula like ones described in Sect. 2 is evaluated, where the weights of works
calculated with the formula are multiplied by the weights corresponding to the
search. This approach allows us to perform search in accordance to the users’
needs: for example, one can search for authors that have most articles on given
subject in journals with high impact-factor only.

As the modules and topics have terms attached to it, the system can also use
that to find the literature to help students with these topics.

5.2 Anti-plagiary Text Analysis

We are currently experimenting with the ways to improve the detection of pla-
giarism. The classical approach of finding similar blocks of text is more effective
when it is combined with comparing the ontologies that were generated from
the texts. While the automatic suggestions formed by the parser are not always
smart enough to generate a proper ontology, they can be used as an invariant:
when structure of a sentence changes slightly, the structure of the ontology usu-
ally remains the same. This allows us to find the semantically similar works,
which may indicate that either these are works in the same field of science, or
one of the works was copied without proper citing.

Subject Area Ontology for Learning Processes Automation 371

5.3 Generating Collections of Test Exercises

The test exercises are generated automatically based on the ontology that is
linked to a discipline or to a module. The system can generate the collections of
test exercises, where each collection covers the whole discipline, and the exercises
in all collections differ from each other.

There are several kinds of exercises, which correspond to different kinds of
relations. For example, a possible task for a symmetric relation is to match pairs
of terms, and a task for an asymmetric relation is to order the terms into a
sequence based on that relation.

Examples of generated test questions are given below.

1. Which of these are parts of Hemispherium cerebri?

� Lobus frontalis
� Insula (lobus insularis)

� Lobus occipitalis
� Substantia perforata anterior

2. Which of these are on the surface of Facies superolateralis hemispherii cere-
bri?

� Gyrus postcentralis
� Gyrus precentralis
� Gyrus rectus

� Gyri orbitales
� Gyrus occipitotemporalis medi-

alis

3. Put the following anatomic formations in the order from the innermost to the
outermost (put numbers 1–4 into the fields):

Caput nuclei caudati
Crus anterius capsulae internae

Putamen
Capsula externa

The test exercises generated from the ontologies have the following benefits:
(a) they are formed automatically; (b) it is impossible for students to learn
the correct answers, because the questions are generated randomly and there
are up to several thousands possible variants; (c) the students should learn the
relations between terms, not only the definitions of terms themselves; (d) it is
possible to analyze the test results of a student or of a group, and form a new
test based on topics where the result was the worst (see the next subsection for
details).

Another possible task is asking the students to draw the parts of ontolo-
gies on some topic themselves. They can use the ontology editor for this task,
however they will work in an isolated environment, and the concepts from the
main ontology would not be available to them. Then the two ontologies can be
compared, and wrongly entered concepts and relations can be detected.

372 D. Shachnev and D. Karpenko

5.4 Building the Knowledge Map for a Student

Based on the test results, we can build knowledge maps for individual students
or for groups of students. Each term in the test ontology can have one of four
states for every student: (a) learned correctly; (b) learned incorrectly; (c) not
learned; (d) not checked in the test. Each link between terms can have one of
three states: (a) link inserted correctly; (b) link inserted incorrectly; (c) link not
inserted by the student, although it was part of the original ontology.

The knowledge map is generated from the original ontology by applying colors
corresponding to the states of terms and links. An example is shown in Fig. 4,
based on the data kindly granted by Dmitry Karpenko, Gennady Bogopolsky and
Alexander Sokolov. Figure 5 shows how the ontological approach to the student
progress map is better than the classical ways to form such a map, and provides
an example of how the disciplines can intersect and form the knowledge map
together.

5.5 Generating the Individual Learning Trajectories

The individual learning trajectories for students are generated based on the
knowledge maps. The accent on study is given to the topics and subtopics where
the percent of correctly learned terms and links in the knowledge map is lower.
As the map is updated, the learning trajectories can be shifted to different
subtopics.

Fig. 4. A fragment of knowledge map based on a test about miology.

5.6 Adding More Detail into the Working Programs
of High Schools

The Russian standard for teaching materials defines the documents that every
high school needs to provide for each teaching program. The key part of every
document is the glossary, which is generated automatically from the ontology.
The key benefit of using the ontology is the ability to re-use the same work for
different courses, with the fixes and updates automatically propagating to each
document without any need of manual copying.

Subject Area Ontology for Learning Processes Automation 373

Fig. 5. Comparison of classical and ontological approaches to the student progress map.

6 Conclusion

The developed technology allows the high schools to solve a number of practical
problems occurring there. The effectiveness is demonstrated with an example of
generating collections of test exercises. For each discipline, an “onto-discipline”
is created, the three benefits of which are:

– formalization of the subject area;
– ways for effective actualization of the subject area;
– integration with other onto-disciplines.

References

1. Afonin, S., Kozitsyn, A., Shachnev, D.: Software mechanisms for scientometrical
data aggregation based on ontological representation of the relational database
structure. Softw. Eng. 7(9), 408–413 (2016). http://novtex.ru/prin/eng/10.17587/
prin.7.408-413.html

2. Bogopolsky, G., Karpenko, D., Rauzina, S., Zarubina, T., Tikhonova, T.: Knowledge
management within the medical university. Stud. Health Technol. Inf. 213, 107–110
(2015)

3. Golomazov, D.: Methods and tools for managing scientific information with ontolo-
gies. Ph.D. thesis, Lomonosov Moscow State University, February 2012. https://
istina.msu.ru/dissertations/1857980/

4. Lomonosov Moscow State University: The ISTINA website. https://istina.msu.ru/
5. Sadovnichiy, V., Afonin, S., Bakhtin, A., Bukhonov, V., Vasenin, V., Gankin, G.,

Gasparyants, A., Golomazov, D., Itkes, A., Kozitsyn, A., Tumaykin, I., Shapchenko,
K.: The Intellectual System of Thematic Investigation of Scientometrical Informa-
tion (“ISTINA”). Lomonosov Moscow State University (2014). https://istina.msu.
ru/publications/book/7375366/

http://novtex.ru/prin/eng/10.17587/prin.7.408-413.html
http://novtex.ru/prin/eng/10.17587/prin.7.408-413.html
https://istina.msu.ru/dissertations/1857980/
https://istina.msu.ru/dissertations/1857980/
https://istina.msu.ru/
https://istina.msu.ru/publications/book/7375366/
https://istina.msu.ru/publications/book/7375366/

374 D. Shachnev and D. Karpenko

6. Tikhonova, T., Sutyagin, P., Rauzina, S.: Ontologies in learning of human anatomy
in institute of higher medical education. Int. J. Exp. Educ. 5(3), 277–280 (2016).
https://www.expeducation.ru/ru/article/view?id=10012

7. Vasenin, V., Afonin, S., Golomazov, D., Kozitsyn, A.: The intellectual system of
thematic investigation of scientometrical information (ISTINA). Inf. Soc. 1–2(3),
21–36 (2013). http://emag.iis.ru/arc/infosoc/emag.nsf/BPA/f04aeb516e101d3d
44257be8003c9517

8. Zagorulko, Y., Zagorulko, G.: Ontology-based technology for development of intel-
ligent scientific internet resources. In: Fujita, H., Guizzi, G. (eds.) SoMeT 2015.
CCIS, vol. 532, pp. 227–241. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22689-7 17

https://www.expeducation.ru/ru/article/view?id=10012
http://emag.iis.ru/arc/infosoc/emag.nsf/BPA/f04aeb516e101d3d44257be8003c9517
http://emag.iis.ru/arc/infosoc/emag.nsf/BPA/f04aeb516e101d3d44257be8003c9517
https://doi.org/10.1007/978-3-319-22689-7_17
https://doi.org/10.1007/978-3-319-22689-7_17

Runtime Specialization of PostgreSQL
Query Executor

Eugene Sharygin1,2(B), Ruben Buchatskiy1, Roman Zhuykov1,
and Arseny Sher1,2

1 Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

{eush,ruben,zhroma}@ispras.ru, sher-ars@yandex.ru
2 Lomonosov Moscow State University, Moscow, Russia

Abstract. For computationally intensive workloads, achieving high
database performance is in direct correspondence to utilizing CPU effi-
ciently. At the same time, interpretation overhead inherent to traditional
interpretive SQL engines gets in the way of optimal CPU utilization.

One solution to this problem is dynamic query compilation, which
consists in generating efficient machine code at run time given a partic-
ular input query.

Creating a complete query compiler from scratch for an existing
database system takes a large amount of development and maintenance
effort. Similar results, however, can be obtained more easily using pro-
gram specialization of a generic query engine with respect to a particular
query.

This paper presents intermediate results of applying this approach to
the query engine at the core of PostgreSQL database system.

Keywords: Dynamic optimization · JIT compilation
Partial evaluation · Runtime specialization · Query execution
PostgreSQL · LLVM

1 Introduction

One of the central parts of any database system is its query engine, which
takes a query from an input channel (usually a network socket) and executes it
on the database. This is naturally an interpretive process, and, in fact, in most
database systems query engines are implemented as straight query interpreters.

However, interpretation overhead often takes its toll on the overall perfor-
mance of a database system, which warrants a search for a more efficient query
engine implementation.

One usual alternative to interpretation is just-in-time compilation, which
has been widely deployed across different domains, including database systems

This work is supported by RFBR grant 17-07-00759 A.

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 375–386, 2018.
https://doi.org/10.1007/978-3-319-74313-4_27

376 E. Sharygin et al.

[CPS+81,Gre99,KVC10,Neu11,NL14,MB17]. Creating a just-in-time compiler
takes large amounts of development effort.

Some developing compiler toolchains strive for minimizing the program-
mer effort needed in order to arrive at an efficient language implementation,
for example, by deriving efficient JIT compilers from specially crafted inter-
preters [WWS+12] or providing tools to develop compilers in the style of inter-
preters [RO10], all with little to no guidance from language implementors. How-
ever, these techniques are not applicable to existing language interpreters.

Micro-specialization [ZDS12,ZSD12a,ZSD12b] is another approach to opti-
mizing DBMS performance, which consists in replacing particular utility func-
tions with implementations specialized at run time based on hand-crafted tem-
plates. However, the applicability and efficiency of this approach is limited due
to the lack of automaticity.

For the task of developing a query compiler in an extension to an existing
database system, ideally, we would like to keep the source code of its existing
interpretive query engine as a reference implementation of the database busi-
ness logic instead of creating a parallel but different implementation. Given
the source code of an interpreter and a new query, the tool would produce
efficient machine code that is semantically equivalent to the interpreter, but has
superior performance. This would allow to combine interpretive and compiled
execution within a single database system and continue to use the interpreter
for queries that are not worth the compilation effort. Perhaps more importantly,
this would redeem us from the burden of continuing support and maintainance
of our newly developed just-in-time compiler as to bringing new features and
bug fixes from the existing query interpreter.

Automatic program specialization is exactly that tool. Generally, it is a type
of optimizing program transformation that, given a program and some of its
input data, generates a residual program that, when given remaining input data,
yields the same result as running the original program on all of its input data.

This paper describes the ongoing work in developing a specializer for Post-
greSQL [Pos] query executor using LLVM compiler infrastructure [LLVM]. It is
organized as follows. Sections 2 and 3 describe online and offline partial evalu-
ation, which are two different specialization methods that we used. Section 4
describes application of runtime specialization to PostgreSQL query engine.
Finally, Sect. 5 concludes the paper.

2 Online Partial Evaluation for LLVM

Online partial evaluation is the kind of specialization that is based on aggressive
constant propagation and loop unrolling.

Online partial evaluator takes a root function and a list of values of the argu-
ments and starts repeatedly evaluating the function’s basic blocks until reaching
a fixed point. Partial evaluator attempts to evaluate each instruction statically
given known values of its operands. If it succeeds in doing so, the instruction is
subsequently eliminated and its value is replaced with the constant it has been

Runtime Specialization of PostgreSQL Query Executor 377

evaluated to. This basic procedure can be implemented rather efficiently using
the properties of the SSA form which is provided by LLVM.

In contrast to compile-time online partial evaluators such as LLPE [Smo14],
a runtime partial evaluator can take advantage of the constant values residing
in the process memory. This is implemented by the following transfer function:

fx=load(a)(m) =

⎧
⎨

⎩

m[x �→ heap(m(a))], m(a) ∈ Const0
m[x �→ ⊥], m(a) = ⊥
m[x �→ �], m(a) /∈ Const0 ∪ {⊥}

,

where m : Var → Const ∪ {�,⊥} is a lattice value, Const0 ⊆ Const is a set
of addresses of constants in the heap, and heap(c) is the value of the memory
cell at the given location.

Despite the conceptual simplicity, we faced several problems with online par-
tial evaluation which mostly boil down to the following:

– The results are hard to test, debug, and visualize. Online partial evalua-
tion fuses annotation and specialization into a single run-time phase, which
(1) requires a developer to find test queries exercising very specific parts
of the code in order to ensure the expected binding-time division and (2)
provides no intermediate representation better suited for analysis and visual-
ization than specializer-generated code with its lack of static parts, duplicated
dynamic code and unrolled loop iterations.

– Having no means to conduct the analyses ahead-of-time means that con-
tinuing development of online partial evaluator inevitably leads to trading
complexity and accuracy of partial evaluation for reduced run-time overhead
(or vice versa), which is highly suboptimal because the binding-time division
does not have to be done at run time since it doesn’t require anything but
the source code of the interpreter.

3 Offline Partial Evaluation for LLVM

In contrast to online partial evaluation, offline partial evaluation proceeds in two
distinct phases:

1. At compile time, binding-time analysis (BTA; see Sect. 3.2) takes the root
function (the entry point of the interpreter) and the initial argument division,
which is a list of binding times (“static” or “dynamic”) per each of its argu-
ments. The values of static arguments are known at specialization time (and
not during BTA), while the values of dynamic arguments are only known
at query execution time (and not at specialization time). BTA then anno-
tates each instruction as either static or dynamic, which indicates whether
the instruction can be completely evaluated at specialization time or not.

2. The annotated program is then specialized at run time (Sect. 3.3) with respect
to concrete values of static arguments, which results in a program specialized
to those values. Specialization combines execution of static program fragments
with generating residual code for dynamic program fragments.

378 E. Sharygin et al.

One of the main benefits of offline partial evaluation is the ability to separate
these two phases in time: BTA can be conducted ahead-of-time (which makes
it a lot easier to test and debug the BTA, and visualize the results), while
specialization (directed by annotations in a rather straightforward manner) runs
just-in-time.

To our knowledge, this is the first work to describe in detail and implement
such a scheme for LLVM IR, although the idea has been proposed before [LC14].

3.1 Representation of Binding Times in LLVM IR

As for the intermediate representation BTA and specialization are performed
at, we find LLVM IR rather satisfying. It allows a developer to use the wide
range of tools, either included in LLVM or external, and to integrate program
specialization gradually into an otherwise LLVM IR-centric system (such as our
traditional JIT-compiler for PostgreSQL we are basing this work upon [MB17]).

define i32 @power.ds(i32 %x , i32 %n) !arg_spec !1 {
entry:

%n.mod2 = srem i32 %n, 2, !static !2
%n.odd = icmp eq i32 %n.mod2 , 1, !static !2
br i1 %n.odd , label %odd , label %even

odd:
%n.1 = phi i32 [%n, %entry], [%n.half , %even.step], !static !2
%x.1 = phi i32 [%x, %entry], [%x.sqr , %even.step]
%n.dec = add nsw i32 %n.1, -1, !static !2
%result.prev = tail call i32 @power.ds(i32 %x.1, i32 %n.dec)
%result.odd = mul nsw i32 %result.prev , %x.1
ret i32 %result.odd

even:
%n.2 = phi i32 [%n.half , %even.step], [%n , %entry], !static !2
%x.2 = phi i32 [%x.sqr , %even.step], [%x, %entry]
%n.positive = icmp sgt i32 %n.2, 0, !static !2
br i1 %n.positive , label %even.step , label %zero

even.step:
%x.sqr = mul nsw i32 %x.2, %x.2
%n.half = lshr i32 %n.2, 1, !static !2
%n.half.mod2 = and i32 %n.half , 1, !static !2
%n.half.even = icmp eq i32 %n.half.mod2 , 0, !static !2
br i1 %n.half.even , label %even , label %odd

zero:
ret i32 1

}

Fig. 1. Example of LLVM IR with binding-time annotations

LLVM IR provides a means of expressing domain-specific semantics using
the notion of a metadata: each instruction or function can be labeled in an appli-
cation-specific way, which is exactly what we need to represent binding-time
annotations and to link the annotated code of a particular function to its source
(so that it can later be discovered by the specializer). Figure 1 shows an example
of binding-time annotations as expressed using LLVM IR metadata.

Runtime Specialization of PostgreSQL Query Executor 379

Overall, our BTA operates on the LLVM module containing the source code
of the interpreter, and, one by one, annotates each of its functions, in effect
creating annotated function variants and linking them to their sources. The result
is a fully functional LLVM module, which contains both all the original functions
and their annotated variants.

3.2 Binding-Time Analysis

BTA described here is polyvariant in functions and monovariant in basic blocks,
meaning that it can produce multiple annotated variants for a single function
(effectively cloning each function for each group of contexts with matching argu-
ment divisions) but it does not clone function’s basic blocks or annotate instruc-
tions within a single function ambiguously.

For any given function, BTA computes binding-time annotations for each
of its instructions (except for control flow transfer instructions, see below).
Any instruction’s binding time is a function of the binding times of its operands.

The basic rule, called the congruence condition, that drives the analysis is
that all instruction users (with the sole exception of the call instruction —
see below) of a dynamic value are themselves dynamic by necessity. In order
to compute the solution preserving the maximum amount of static informa-
tion, the algorithm starts from annotating most of the instructions as static and
then repeatedly fixes binding times by restoring this property across SSA edges
(by changing some binding times back to dynamic), until reaching the fixed
point.

Annotating Memory Access Instructions. In addition to the binding time
of the address operand, annotating a memory access instruction also needs
the binding-time type of a corresponding data type, which is a supplementary
piece of annotation indicating which fields of a data structure, if any, can be
loaded at specialization time. If both the address operand and the accessed field
are static, then the load is safe to be annotated static.

%ExprState = type {
static i32 , ;tag
static i8, ;flags
dynamic i8 , ;resnull
dynamic i64 , ;resvalue
static %TupleTableSlot*, ;resultslot
static %ExprEvalStep*, ;steps
static %Expr* ;expr

}

Fig. 2. Binding-time type annotations

Binding-time types are expressed in a dialect of LLVM IR (not in LLVM
IR proper because the latter does not currently allow metadata on types). See
example in Fig. 2.

380 E. Sharygin et al.

The reason these annotations need to be supplied rather than computed is
not only predictability and simplicity of the approach, but mainly that the latter
would require a whole-program alias analysis which would lead to overly con-
servative results since the query interpreter we apply the specializer to performs
multiple calls to external database management functions which are out of scope
of specialization.

Annotating Control Transfer Instructions. Control flow transfer instruc-
tions such as branch or return are always annotated dynamic for the reason that
doing the opposite would effectively mean combining several blocks into one
at specialization time, which is not only of little value because the post-speciali-
zation code is optimized by LLVM anyway, but also actively harmful since it
can lead to needless code duplication and even non-termination (resulting from,
for example, duplicating instructions in the loop header block when statically
branching to it from the latch).

Annotating Loops. The way the specializer does loop unrolling is by cloning
the body of a loop per each set of values of variables reaching its header
(see Sect. 3.3). If any of such variables are static and not constants, but the loop
is controlled by a dynamic condition, then the specializer won’t terminate.

loop:
%n = phi i32 [0, %0], [%n.inc , %loop], !static !0
%n.inc = add i32 %n , 1, !static !0
%cmp = icmp slt i32 %n, %d
br i1 %cmp , label %loop , label %exit

Fig. 3. Static variables in the header of a dynamic loop

The problem is illustrated by Fig. 3. On each subsequent iteration of this loop,
the values of static variables %n and %n.inc will be different: (0, 1), (1, 2), (2, 3)
and so on, and the specializer won’t terminate in an attempt to unrolling it.

The solution is to check if exit conditions in the latch blocks of a loop are
dynamic, and if this is the case, annotate all changing variables in the header
of the loop as dynamic.

Annotating Function Calls. Function calls are an exception to the congru-
ence condition because a call can be annotated static even if some of its argu-
ments are dynamic. The reason is that the semantics of a call instruction being
static is different from that of other instructions: static calls are still performed
at run time (unless the function is completely static (see Sect. 3.3) — but this is
nothing but a minor optimization, and nothing is conceptually changed in what
follows), the binding time simply indicates that the return value is known at spe-
cialization time, before the call has to be made at run time.

Runtime Specialization of PostgreSQL Query Executor 381

The binding time of a call instruction is hence determined by the bind-
ing times of values returned from the called function when the latter is ana-
lyzed according to the argument division at the call site. Therefore, annotating
a function call requires performing binding-time analysis for a called function.
On the other hand, the binding time of a call instruction may influence the bind-
ing time of a value returned from the function as well. In case of recursive function
calls, this is a cyclic dependency that needs to be resolved.

The simplest way to resolve this is to initialize return binding times for all
functions as dynamic and use this default value for all calls which are back
edges in the call graph. This has an obvious downside of failing to handle static
recursion as such — but the latter is barely used in PostgreSQL source code
which is our primary application (see Sect. 4).

The algorithm that we use for analyzing a single function is thus as follows:

1. Initially, annotate all function results as dynamic and all call instructions
as static.

2. Upon reaching a fixed point in annotating the individual instructions, recur-
sively analyze all called functions that are not already being analyzed, accord-
ing to the argument divisions at corresponding call sites. Reannotate call
instructions as dynamic if return binding times of corresponding functions
are dynamic.

3. If binding time of at least one of the calls has changed, analyze the function
again until the fixed point is reached, and repeat the algorithm.

4. If no binding times have changed, change callees appropriately (to refer
to the newly annotated functions) and update the binding time of the return
value of this function.

Determining binding times of call instructions requires recursively analyzing
called functions, perhaps multiple times with different argument divisions, gen-
erating annotated functions which won’t necessarily be used in the end. This
may lead to unpredicatable performance of the BTA phase as a whole, although
its termination is guaranteed (see below). This is not, however, a major problem
for runtime specialization since BTA is expected to be performed only once.

Termination. Here, we briefly show that binding-time analysis as described
in this section always terminates.

Since no function can be annotated twice with regards to a particular argu-
ment division and since there are only finitely many function—argument division
pairs in any given source program, BTA always terminates as long as annotating
a particular function with respect to a particular argument division terminates.

In the course of annotating instructions in a particular function, binding time
of any particular instruction never changes from dynamic to static. For calls, this
is true because binding time of a function result can’t ever change from dynamic
to static in case binding time of a particular argument changes from static
to dynamic. Since for any particular function annotation only finitely many
S → D binding-time changes are possible, annotating a particular function
always terminates.

382 E. Sharygin et al.

3.3 Specialization

Specialization is driven by binding-time annotations produced in the BTA phase.
As described here, it is polyvariant both in functions and basic blocks, meaning
that for each new pair of an annotated function and a list of static argument
values, a new residual function is constructed, and for each new pair of a basic
block and a static store containing values of reaching definitions, a new residual
basic block is constructed.

Function specialization starts from the entry basic block of a function and
the initial static store containing only the values of static arguments in the func-
tion call, and proceeds by repeatedly evaluating basic blocks and their suc-
cessors and updating corresponding static stores, until there are no more pairs
of (block, store) to evaluate. This strategy effectively propagates particular static
values towards their uses by duplicating conditional branches and unrolling
loops.

Any particular annotated basic block can be evaluated multiple times, but
each time a new residual basic block is constructed, a new set of residual defini-
tions is built from the same set of dynamic instructions in the annotated code,
thus maintaining the SSA property automatically.

Result of specializing function @power.ds (Fig. 1) with respect to %n=4 is
shown in Fig. 4.

define i32 @power .4(i32 %x) {
%x.sqr = mul i32 %x , %x
%x.sqr.1 = mul i32 %x.sqr , %x.sqr
ret i32 %x.sqr.1

}

Fig. 4. Result of specialization for example in Fig. 1

Static Store. Static store is a data structure that maps static variable defini-
tions to particular constant values. Each definition can have multiple values due
to the polyvariance of specialization in basic blocks: each basic block, for example
in a body of a static loop, can be evaluated multiple times, each time resulting
in a new residual basic block.

Static store is organized as a tree of scopes. At any point during special-
ization process, the state of the specializer includes some particular leaf node
in the store, and new leaf nodes can be added when a control flow edge is vis-
ited. Any particular leaf node is associated with a particular residual basic block,
and every node on the path to the root scope corresponds to some block that
dominates the current block in the CFG — in a way that every dominator has
at least one scope associated with it, and each pair of basic blocks that corre-
sponds to a pair of scopes immediately following one another in the tree, is itself
connected by a control-flow edge.

Runtime Specialization of PostgreSQL Query Executor 383

%n = 4

arguments
%n.mod2 = 0
%n.odd = 0

%entry

%n.2 = 2
%n.positive = 1

%even
%n.half = 1
%n.half.mod2 = 1
%n.half.even = 0

%even.step

%n.2 = 4
%n.positive = 1

%even
%n.half = 2
%n.half.mod2 = 0
%n.half.even = 1

%even.step

%n.1 = 1
%n.dec = 0

%odd

Fig. 5. Static store example

Example in Fig. 5 shows the state of the static store created during special-
izing the function @power.ds (Fig. 1) to %n=4 (see the residual code in Fig. 4).
The root scope of the store contains the value for the static argument %n. Dur-
ing specialization, the basic blocks %even and %even.step are visited twice each,
and so two pairs of scopes are created.

Static Functions. If all non-terminating instructions in a function are anno-
tated as static, then the function represents a completely static calculation and
does not need a residual function. In fact, if such a function was to be constructed
at specialization time, it would contain nothing but a single return instruction
with a static value.

As an optimization, these cases are annotated appropriately at binding-time
analysis time, and no residual function is created at specialization time —
instead, the specializer evaluates the entirety of the function statically, and
replaces corresponding calls with a single static result.

4 Runtime Specialization of PostgreSQL Query Executor

We finally describe the application of program specialization to PostgreSQL
query executor.

Query execution in PostgreSQL is implemented in several stages: parsing and
rewriting, which manipulate a query’s syntactic representation, optimization,
which constructs a plan tree, and execution, which interprets a plan tree (using
Volcano (also known as pull-based) execution model [G94]) in order to obtain
the result.

PostgreSQL provides hooks for extensions into almost all of these stages.
In particular, ExecutorRun hook provides the ability to replace the default exe-
cution strategy (plan interpretation) with query compilation.

Given a particular SQL query, our specialization-based query compiler spe-
cializes PostgreSQL source code on the fly in order to obtain efficient machine
code. Overall, the method can be summarized by the following:

384 E. Sharygin et al.

1. At compilation time (only for offline partial evaluation):
(a) First, PostgreSQL source code is compiled with Clang, which results

in an LLVM IR module containing a function named ExecutePlan,
which is an entry point to the built-in query interpreter. This function
takes as arguments a query plan and an execution context and evaluates
the plan according to the context.

(b) The function ExecutePlan is then annotated according to its binding-
time division, which results in a new function ExecutePlanann. All direct
and indirect callees are annotated as well.

2. At run time:
(a) The function ExecutePlanann is specialized with respect to a particular

query plan and execution context at hand, resulting in ExecutePlanres.
(b) The function ExecutePlanres is further optimized and compiled by LLVM

JIT to machine code, which is then immediately executed.

Along with the query-executor-related parts of PostgreSQL source code,
binding-time analysis for offline partial evaluation also takes as input the LLVM
IR file with binding-time type definitions of struct types used when annotating
memory operations (see Sect. 3.2). Notable examples of such struct types are
query plan nodes and expression nodes.

Online partial evaluation does not have a compile-time phase, but instead
requires a run-time preprocessing phase to gather all memory addresses of con-
stants in the heap (in order to define the heap() function — see Sect. 2).

5 Conclusion

In this paper we described program specialization methods and their application
to PostgreSQL query executor.

We are developing prototype query compilers based on online (Sect. 2) and
offline (Sect. 3) partial evaluation. Online specializer is implemented for Post-
greSQL 9.6 and shows up to 1.4x speedup on some synthetic queries. Offline spe-
cializer is implemented for PostgreSQL 10 and shows up to 1.4x speedup on TPC-
H Q1 which is part of the industry-standard TPC-H benchmark [TPC-H]. Offline
specializer currently requires some minor binding-time improvements applied
to the PostgreSQL codebase.

Our experiments show that runtime specialization can be used to effectively
eliminate interpretation overhead and inline static query and database parame-
ters into the compiled machine code, but its performance is not currently on par
with that of the traditional query compiler [MB17] that we are developing sepa-
rately, which shows up to 5.5x speedup on Q1. We speculate that this difference
is due to push-based execution model that the compiler implements and other
algorithmic improvements that can’t be automated.

We propose implementing algorithmic improvements separately in C and
applying runtime specialization on top. We started by implementing the push
model for PostgreSQL. Combined with the offline specializer, it shows 1.6x
speedup on TPC-H Q1 compared to PostgreSQL 10.

Runtime Specialization of PostgreSQL Query Executor 385

Our implementation also suggests that query compilers can effectively com-
bine specialization of some parts of an interpretive query engine with traditional
compiled implementation of the other in order to maximize efficiency of gener-
ated code.

References

[CPS+81] Chamberlin, D.D., Putzolu, F., Selinger, P.G., Schkolnick, M., Slutz, D.R.,
Traiger, I.L., Yost, R.A.: A history and evaluation of System R. Commun.
ACM 24(10), 632–646 (1981). https://doi.org/10.1145/358769.358784

[G94] Graefe, G.: Volcano - an extensible and parallel query evaluation system.
IEEE Trans. Knowl. Data Eng. 6(1), 120–135 (1994). https://doi.org/10.
1109/69.273032

[Gre99] Greer, R.: Daytona and the fourth-generation language cymbal. Sigmod,
525–526 (1999). https://doi.org/10.1145/304181.304242

[KVC10] Krikellas, K., Viglas, S.D., Cintra, M.: Generating code for holistic query
evaluation. In: Proceedings of International Conference on Data Engineer-
ing, pp. 613–624 (2010). https://doi.org/10.1109/ICDE.2010.5447892

[LC14] Lomuller, V., Charles, H.-P.: A LLVM extension for the generation of
low overhead runtime program specializer. In: Proceedings of International
Workshop on Adaptive Self-Tuning Computing Systems - ADAPT 2014,
pp. 14–16 (2014). https://doi.org/10.1145/2553062.2553064

[LLVM] The LLVM Compiler Infrastructure. http://llvm.org/
[MB17] Melnik, D., Buchatskiy, R., Zhuykov, R., Sharygin, E.: JIT-compiling SQL

queries in PostgreSQL using LLVM. Presented at PGCon 2017 (2017).
http://www.pgcon.org/2017/schedule/events/1092.en.html

[Neu11] Neumann, T.: Efficiently compiling efficient query plans for modern hard-
ware. Proc. VLDB Endow. 4(9), 539–550 (2011). https://doi.org/10.
14778/2002938.2002940

[NL14] Neumann, T., Leis, V.: Compiling database queries into machine code.
IEEE Data Eng. Bull. 37(1), 3–11 (2014)

[Pos] PostgresSQL Global Development Group. PostgresSQL. http://www.
postgresql.org/

[RO10] Rompf, T., Odersky, M.: Lightweight modular staging. In: Proceedings
of the Ninth International Conference on Generative Programming and
Component Engineering - GPCE 2010, p. 127 (2010). https://doi.org/10.
1145/1868294.1868314

[Smo14] Smowton, C.S.F.: I/O Optimisation and elimination via partial evaluation.
University of Cambridge, Computer Laboratory, Ph.D. thesis, (UCAM-
CL-TR-865), 1131 (2014)

[TPC-H] TPC-H, an ad-hoc, decision support benchmark. Transaction Processing
Performance Council. http://www.tpc.org/tpch

[WWS+12] Wurthinger, T., Wob, A., Stadler, L., Duboscq, G., Simon, D., Wimmer,
C.: Self-Optimizing AST Interpreters (2012)

[ZDS12] Zhang, R., Debray, S., Snodgrass, R.T.: Micro-specialization: dynamic code
specialization of database management systems. In: International Sympo-
sium on Code 6373 (2012). https://doi.org/10.1145/2259016.2259025

https://doi.org/10.1145/358769.358784
https://doi.org/10.1109/69.273032
https://doi.org/10.1109/69.273032
https://doi.org/10.1145/304181.304242
https://doi.org/10.1109/ICDE.2010.5447892
https://doi.org/10.1145/2553062.2553064
http://llvm.org/
http://www.pgcon.org/2017/schedule/events/1092.en.html
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
http://www.postgresql.org/
http://www.postgresql.org/
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/1868294.1868314
http://www.tpc.org/tpch
https://doi.org/10.1145/2259016.2259025

386 E. Sharygin et al.

[ZSD12a] Zhang, R., Snodgrass, R.T., Debray, S.: Micro-specialization in DBMSes.
In: Proceedings - International Conference on Data Engineering, pp. 690–
701 (2012). https://doi.org/10.1109/ICDE.2012.110

[ZSD12b] Zhang, R., Snodgrass, R.T., Debray, S.: Application of micro-specialization
to query evaluation operators. In: Proceedings - 2012 IEEE 28th Inter-
national Conference on Data Engineering Workshops, ICDEW 2012, pp.
315–321 (2012). https://doi.org/10.1109/ICDEW.2012.43

https://doi.org/10.1109/ICDE.2012.110
https://doi.org/10.1109/ICDEW.2012.43

MicroTESK: A Tool for Constrained Random
Test Program Generation for Microprocessors

Alexander Kamkin1,2,3,4 and Andrei Tatarnikov1,4(B)

1 Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

{kamkin,andrewt}@ispras.ru
2 Lomonosov Moscow State University, Moscow, Russia

3 Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia

4 National Research University Higher School of Economics, Moscow, Russia

Abstract. The paper presents MicroTESK, a tool for test program gen-
eration for functional verification of microprocessors. It generates test
programs from templates which describe generation tasks in terms of
constraints that must be satisfied in order to reach certain coverage goals.
The tool uses formal specifications of the instruction set as a source of
knowledge about the microprocessor under verification. This gives several
advantages. First, the tool is easily adapted to new architectures by pro-
viding corresponding specifications. Second, constraints that constitute
coverage model are automatically extracted from specifications. Third, a
reference model used to track the microprocessor state during test gen-
eration is constructed on the basis of specifications. Such an approach
helps to reduce the effort required to create test programs and increase
the quality of testing. The tool has been successfully applied in industrial
projects for verification of ARMv8 and MIPS64 microprocessors.

Keywords: Microprocessors · Functional verification
Test program generation · Formal specifications
Instruction set architectures

1 Introduction

Functional verification is an integral part of the microprocessor design process.
Its task is to ensure that the implementation being developed conforms to the
specification. Growing complexity of modern microprocessors makes this task
extremely challenging. According to various estimates, functional verification
accounts for up to 80% of overall project resources.

In current industrial practice, functional verification mainly relies on
simulation-based techniques [1]. They imply executing stimuli on the design
prototype and comparing its behavior with the expected behavior described by
the specification. Stimuli used for microprocessor verification are usually repre-
sented by streams of instructions, which constitute test programs. This approach
c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 387–393, 2018.
https://doi.org/10.1007/978-3-319-74313-4_28

388 A. Kamkin and A. Tatarnikov

is the most natural since instruction set architecture (ISA) is the only interface
available to users to interact with a microprocessor.

Test programs are created according to verification requirements with the
help of special automation tools referred to as test program generators (TPGs)
or instruction stream generators (ISGs). Verification requirements are formulated
in the verification plan that enumerates test situations to be covered. Normally,
it is described in a natural language and derived from the design specifications.
The task of translating these descriptions into test programs is not straightfor-
ward since requirements can be quite complex. They can cover situations related
to pipelining, memory management and multicore execution. In addition, con-
structed tests must comply with the validity requirements imposed by the ISA.

TPGs based on pseudorandom generation, which are widely used in practice,
are not capable of covering verification requirements in a systematic way. Stimuli
generated by such tools are often prone to redundancy and insufficient cover-
age. One of the possible solutions to this problem is to utilize constraint solving
techniques. In this approach, a TPG constructs stimuli by solving constraint
satisfaction problems (CSPs) that correspond to verification requirements. How-
ever, due to complexity, constraints may not take into account all factors that
determine the behavior of the microprocessor. Therefore, to increase chances of
hitting “interesting” situations, constraint solving is combined with randomiza-
tion. Such an approach is known as constrained random generation.

One of the tools implementing this approach is MicroTESK [2] developed
at ISP RAS. The key feature of MicroTESK is using formal specifications as
a source of knowledge about the design under verification (DUV). Information
provided in specifications is used in three ways: (1) to get assembly format of
instructions; (2) to build constraints corresponding to various test situations; (3)
to construct a reference model of the DUV. The reference model is an instruction
set simulator (ISS) which is used to track the state of the DUV during test
generation. It helps to maintain a context for constraint solving and to ensure
validity of the generated stimuli. Generation tasks are formulated in the form of
test templates in a Ruby-based language, which specify instructions to be used,
their order and constraints on their operands. The approach facilitates creating
high-quality tests and simplifies configuring the TPG for testing new designs.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of existing tools for constrained random generation. Section 3 describes the
approach used by MicroTESK. Section 4 contains case studies of applying
MicroTESK in industrial projects. Section 5 concludes the paper.

2 Related Works

Constrained random generation has been applied for functional verification of
microprocessors since the end of the 1990s. Despite significant effort put into
development of industrial TPGs, none of them can be considered as a universal
solution to all verification tasks. They have different characteristics and applica-
tion area. For example, they may support different ISAs, use different constraint-
solving methods and have different degree of randomness and generation speed.

MicroTESK: A Tool for Constrained-Random Test Program Generation 389

The best known TPG is Genesys-Pro by IBM Research [1]. It generates ran-
dom and constraint-based tests from two types of input data: (1) microprocessor
model and (2) test templates. The first provides a declarative description of the
DUV’s ISA which includes signatures of instructions, their semantics in the form
of CSPs and related heuristics that help increase coverage. The second repre-
sents an abstract description of test scenarios, where situations to be covered are
specified in terms of CSPs and heuristics defined by the microprocessor model.
Genesys-Pro performs generation in an instruction-wise manner: at each step,
it selects an instruction, solves CSPs for the chosen instruction, simulates the
instruction, and, finally, prints it in the assembly format. Microprocessor models
are described in XML using special building blocks. Test templates are created
in a special domain-specific language, which provides constructs for describing
generation tasks. To simulate instructions, the tool uses an external ISS inte-
grated with the help of special libraries. Genesys-Pro lacks support for modeling
floating-point and memory access instructions. To create tests for such instruc-
tions, additional tools are used. They provide facilities to specify and solve spe-
cialized CSPs for corresponding test situations.

Another well-known TPG is RAVEN (Random Architecture Verification
Machine) [3] developed by Obsidian Software, which is now owned by ARM.
Like Genesys-Pro, it uses microprocessor models to specify the DUV configura-
tion and test templates to describe test scenarios. Models are described in XML,
while test templates are created in a domain-specific language. Test templates
are focused on coverage grids and use CSPs to formulate specific coverage goals.
RAVEN simulates generated instructions in an external ISS integrated into the
tool. As we can see, RAVEN is based on the same principles as Genesys-Pro, but
it is more oriented on random generation and uses CSPs to shift bias towards
certain areas. Also, there are differences in formats of input data, which affect
usability.

Common issues of these TPGs are difficulties related to configuring them for
a new DUV: creating descriptions of the model in multiple formats, which might
not be easy to understand, and integrating external ISSs. So, this is likely to
require close interaction with TPG developers. An important point is that CSP
descriptions have to be created by hand. This is laborious and imposes a risk
that some test situations will be missed.

3 MicroTESK Approach

3.1 Key Requirements

To provide a high level of coverage, a TPG requires information on the DUV.
Since the verification plan is based on the design specifications, it would be logical
to use descriptions derived from these specifications. Having such descriptions in
a standardized format understandable to verification engineers would simplify
the maintenance of the TPG. There is a family of formal languages known as
architecture description languages (ADLs) [4] that would be suitable for this
task. Such languages have been actively used to create disassemblers, ISSs and

390 A. Kamkin and A. Tatarnikov

retargetable compilers. In addition, ADL specifications can be used to extract
constraints.

Another issue to consider is the test template description language. This lan-
guage must be easy to learn for verification engineers. It must allow describing
generation tasks for any ISA and establishing constructs to describe new types
of generation tasks. Also, since modern industrial testbenches can contain thou-
sands lines of code, it must provide facilities to organize template code into
reusable libraries. It would be reasonable to take advantage of a well-tried high-
level language extended with domain-specific constructs. This would give the
language power and flexibility and decrease the learning effort.

An important part of TPG functionality is construction of instruction
sequences. To exercise the DUV behavior in complex situations that require
large sets of CSPs to be satisfied, it is efficient to create stimuli by merging
smaller instruction sequences with the help of random or combinatorial algo-
rithms. A TPG must provide such facilities. To accommodate various verifica-
tion requirements, the set of supported merging strategies must be flexible and
allow extension.

Finally, a TPG must support various constraint solving methods. Constraints
applied to stimuli include: (1) constraints on memory location; (2) constraints
on execution path of specific instructions; (3) constraints related to control flow
of the program; (4) floating-point constraints; (5) MMU-related constraints; (6)
pipeline-related constraints. They are solved with different engines, which must
be integrated into the TPG to be used in combination.

3.2 MicroTESK Architecture

MicroTESK is divided into two main parts: (1) the modeling framework and
(2) the testing framework. The first one processes formal specification to con-
struct a microprocessor model that holds all design-specific information. The
second one generates stimuli on the basis of the model and templates provided
by users. The architecture of MicroTESK is shown in Fig. 1. The model con-
sists of the following components: (1) the metadata that provides a catalogue of
supported instructions, their arguments and associated test situations; (2) the
ISS that simulates execution of instructions; (3) the coverage model that holds
constraints extracted from formal specifications.

3.3 Modeling Framework

The modeling framework includes a set of translators that analyze formal specifi-
cations, extract the necessary information and construct the model using special
libraries.

MicroTESK uses ISA specifications created in the nML ADL [5]. They
include descriptions of constants, data types, registers, addressing modes,
instructions, memory and temporary variables. The syntax of nML is very close
to notations used in microprocessor architecture manuals to describe instruction
semantics. For example, here is a description of the ADD instruction from the
MIPS64 manual:

MicroTESK: A Tool for Constrained-Random Test Program Generation 391

MicroTESK
Modeling framework

Model generators

Test template parser

Formal
specifications

Test
templates

Specification analyzers

Metadata ISS
Model

Coverage model

Sequence generators

Data generatorsTest
programs

Testing framework

Fig. 1. Architecture of the MicroTESK TPG

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp → GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 �= temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] → sign_extend(temp31..0)
endif

Such descriptions can be turned into formal specifications with minimal effort.
The code below shows how the ADD instruction and resources it accesses can
be specified in nML:

type DWORD = card(64)
reg GPR [32, DWORD]
mode R (i: card(5)) = GPR[i]

syntax = format("r%d", i)
image = format("%5s", i)

var temp33[card(33)]
op add (rd: R, rs: R, rt: R)

syntax = format("add %s, %s, %s", rd.syntax, rs.syntax, rt.syntax)
image = format("000000%5s%5s%5s00000100000", rs.image, rt.image, rd.image)
action = {

if sign_extend(WORD, rs<31>) != rs<63..32> || sign_extend(WORD, rt<31>) != rt<63..32> then
unpredicted;

endif;
temp33 = rs<31>::rs<31..0> + rt<31>::rt<31..0>;
if temp33<32> != temp33<31> then

exception("IntegerOverflow");
else

rd = sign_extend(DWORD, temp33<31..0>);
endif;

}

The configuration of MMU is specified using a specialized language called
mmuSL, which extends nML with facilities to describe address types, segments,
buffers, tables and logic of memory accesses. More details and examples are
provided in works [6,7].

392 A. Kamkin and A. Tatarnikov

3.4 Testing Framework

The role of the testing framework is to generate test programs by processing
test templates. To create test templates, a specialized Ruby-based language [8]
is used. Templates are represented by classes derived from a special library class
which provides constructs to describe generation tasks. Architecture-specific con-
structs are added dynamically using Ruby’s metaprogramming facilities.

Instruction streams described by templates consist of the following parts:
(1) a prologue that initializes the environment, (2) stimuli that perform specific
actions and check the results, (3) dispatching code that performs control transfers
between different parts and (4) an epilogue that terminates the execution. Since
different parts solve different tasks and might be based on different generation
methods, they are generated and simulated separately. When it is required to
simulate sequences produced by different template parts as a single scenario,
dispatching code is used. For example, different parts can be executed on different
processing elements of a multiprocessor.

The generation process includes the following stages: (1) parsing the tem-
plate; (2) constructing instruction sequences; (3) solving CSPs to generate data
and constructing initialization code to assign the data values to input argu-
ments; (4) executing the instruction sequences in the ISS; (5) creating self-checks
based on information provided by the ISS; (6) printing the resulting instruction
sequences to a file.

For example, below is a test template that describes all possible pairs of ADD
and SUB instructions with applied constraints “Normal” and “IntegerOverflow”.
class MyTemplate < Template

def initialize ... end
def pre ... end
def post ... end
def run

block(:combinator => ‘product’) {
iterate {

add t0, t1, t2 do situation(‘Normal’) end
add t0, t1, t2 do situation(‘IntegerOverflow’) end

}
iterate {

sub t3, t4, t5 do situation(‘Normal’) end
sub t3, t4, t5 do situation(‘IntegerOverflow’) end

}
}.run

end
end

CSPs are solved with generic SMT-solvers like Z3 and CVC4 or with specialized
engines. The data generation engine facilitates adding support for new solvers.

4 Practical Application

MicroTESK has been applied for verification of ARMv8 and MIPS64 micropro-
cessors. Also, there is an ongoing research dedicated to verification of PowerPC
and RISC-V microprocessors. Table 1 provides metrics for the created specifica-
tions. The average generation speed of the MicroTESK is about 3500 instruc-
tions/second for random generation and 100 instructions/second for constrained
generation.

MicroTESK: A Tool for Constrained-Random Test Program Generation 393

Table 1. Size of formal specifications and required effort

Project ARMv8 MIPS64 PowerPC RISC-V

Number of instructions 795 220 34 63

Size of ISA specifications (lines of code) 12220 3999 935 816

Size of MMU specifications (lines of code) 2119 267 0 0

Efforts (person-months) 13 4 1 0.75

5 Conclusion

In the paper the MicroTESK [2] TPG was presented. MicroTESK has been
successfully applied in industrial projects for verification of ARMv8 [6] and
MIPS64 [9] microprocessors.

References

1. Adir, A., Almog, E., Fournier, L., Marcus, E., Rimon, M., Vinov, M., Ziv, A.:
Genesys-pro: innovations in test program generation for functional processor verifi-
cation. Des. Test Comput. 21, 84–93 (2004)

2. MicroTESK page. http://forge.ispras.ru/projects/microtesk
3. RAVEN test program generator. http://www.slideshare.net/DVClub/introducing-

obsidian-software-andravengcs-for-powerpc
4. Mishra, P., Dutt, N. (eds.): Processor Description Languages. Systems on Silicon.

Morgan Kaufmann, San Francisco (2008). 432 pages
5. Freericks, M.: The nML machine description formalism. Technical report TR SM-

IMP/DIST/08, TU Berlin CS Department (1993)
6. Chupilko, M., Kamkin, A., Kotsynyak, A., Protsenko, A., Smolov, S., Tatarnikov,

A.: Specification-based test program generation for ARM VMSAv8-64 memory
management units. In: Workshop on Microprocessor Test and Verification, pp. 1–6
(2015). https://doi.org/10.1109/MTV.2015.13

7. Kamkin, A., Kotsynyak, A.: Specification-based test program generation for MIPS64
memory management units. In: Trudy ISP RAN [Proceedings of ISP RAS], vol. 28,
part 4, pp. 99–114 (2016)

8. Tatarnikov, A.: Language for describing templates for test program generation for
microprocessors. In: Trudy ISP RAN [Proceedings of ISP RAS], vol. 28, part 4, pp.
81–102 (2016)

9. MicroTESK for MIPS64 page. http://forge.ispras.ru/projects/microtesk-mips64

http://forge.ispras.ru/projects/microtesk
http://www.slideshare.net/DVClub/introducing-obsidian-software-andravengcs-for-powerpc
http://www.slideshare.net/DVClub/introducing-obsidian-software-andravengcs-for-powerpc
https://doi.org/10.1109/MTV.2015.13
http://forge.ispras.ru/projects/microtesk-mips64

Enriching Textual Xtext-DSLs with a Graphical
GEF-Based Editor

Marcel Toussaint and Thomas Baar(B)

Hochschule für Technik und Wirtschaft (HTW) Berlin,
Wilhelminenhofstraße 75A, 12459 Berlin, Germany
m.toussaint@web.de, thomas.baar@htw-berlin.de

Abstract. Xtext is a widely accepted framework to develop domain-
specific languages (DSLs). However, these DSLs are bound to be purely
textual, what is appropriate in many but not all cases. Sometimes, one
wishes to have another concrete syntax for a DSL. For example, a model
should be represented only by graphical elements (i.e., a purely graphical
syntax) or by a mixture of graphical elements and textual annotations
(i.e., a hybrid syntax).

In this paper, we describe an approach for developing a graphical edi-
tor for a hybrid concrete syntax of a given DSL. The starting point is an
Xtext grammar of a DSL, together with all the usual accompanying fea-
tures such as validators and code generators. We describe the necessary
steps to enrich the existing toolset with a graphical editor based on the
GEF framework.

Our approach is highly flexible since large parts of the editor can
be implemented and tailored manually to accommodate the underly-
ing DSL. Nevertheless, the effort to create such an editor is manageable,
since the GEF framework offers most of the necessary features for graph-
ical editing. We describe what conditions must be met with regards to
the underlying language designed with Xtext and how a corresponding
graphical GEF-based editor for a hybrid syntax can be implemented.

Keywords: Xtext · Graphical syntax · GEF · DSL

1 Introduction

Over the last decade, there has been an increased interest in domain-specific
languages (DSLs) in academic research [2]. Domain-specific languages are spe-
cialized computer languages that are created to express problems and solutions
in a specific problem domain. Compared to general purpose languages, DSLs
allow for an expression using the same level of abstraction as is commonly used
in the particular problem domain. This means, that domain-specialists should
be able to use a DSL to describe certain problems in their domain in an easily
understandable way without extensive additional knowledge on programming
languages [6].

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 394–401, 2018.
https://doi.org/10.1007/978-3-319-74313-4_29

Enriching a Textual Xtext-DSL with a Graphical GEF-Based Editor 395

There is a multitude of frameworks and tools like the JetBrains Meta Pro-
gramming System [9], the MetaEdit+ Domain-Specific Modeling (DSM) envi-
ronment [10], or the Spoofax Language Workbench [13] available at this time to
implement domain-specific languages. In most cases, one would implement a lan-
guage by defining a meta-model containing all the necessary modeling concepts
together with their attributes. This language meta model builds the founda-
tion of the language to model the desired aspects. Instances of this language
(i.e., models) are often developed in a purely textual way. There are, however,
situations where a graphical representation of such models and especially the
ability to edit such models via a graphical editor would be useful and desir-
able. To address this, the Graphical Modeling Project (GMP) sought to provide
generic mechanisms to outfit textual syntax with graphical syntax. This generic
approach turned out to be rather elaborate [12]. Although literature reports
on a robust approach for synchronous editing of the textual and the graphical
representation of a model in the context of the aforementioned Spoofax [11],
this approach cannot yet be considered mainstream. In this paper we propose
a solution to implement a tailored editor application for a graphical model rep-
resentation (i.e., graphical or hybrid syntax) for a specific user-defined DSL.
The DSL has been defined with the Xtext Framework [7]. We will showcase a
workflow to (a) identify the requirements in regards to the underlying DSL, (b)
to choose, if applicable and useful, appropriate graphical representations of the
entities defined in this DSL and (c) to synchronize the textual to the graphical
model and vice versa.

The rest of the paper is organized as follows: In Sect. 2 we describe the utilized
Xtext and GEF frameworks together with a simple example of an Xtext-DSL to
model state machines in a textual manner. A showcase model of said language
will be described as a textual Xtext representation. In Sect. 3 we propose a poten-
tial solution for implementing an editor application using the GEF framework to
create and manipulate textual Xtext models via their graphical representation.
In Sect. 4 we describe the subsumption of this project into current related works
and subsequently in Sect. 5 we outline potential future extensions of this project
considering the synchronization mechanisms developed and the lessons learned
so far.

2 Basic Concepts

2.1 The Open Source Framework Xtext

Xtext is an open-source framework for the development of domain-specific lan-
guages. Xtext is developed in the Eclipse Project as part of the Eclipse Mod-
eling Framework. Compared to other frameworks for implementing DSLs like
the aforementioned JetBrains Meta Programming System or the MetaEdit+
Domain-Specific Modeling (DSM) environment, Xtext offers the advantage of
a complete integration into the Eclipse IDE. It allows the usage of typical edi-
tor features such as syntax highlighting, code completion and error markers,
when editing a model in the defined DSL. The models of the created language

396 M. Toussaint and T. Baar

are purely textual. Typically, a language environment also includes user-defined
code generators to generate code of a target language from the edited DSL model.
The (abstract) syntax of DSLs defined with Xtext can be of arbitrary complexity
since every valid syntax tree must pass all — possibly sophisticated — syntax
checks defined by so-called validators.

Fig. 1. Grammar of a DSL to model simple finite-state machines and valid model
(excerpt)

Figure 1 shows an excerpt from the grammar of an Xtext language for simple
finite-state machines (upper part) and a valid (i.e. correct w.r.t. the language
syntax) textual model (lower part) that will be used as a running example. Each
model expressed in the language represents a self-contained state machine with
states, transitions, events and optional constraints for state transitions in form
of simple Boolean expressions on defined variables.

2.2 The Graphical Editing Framework (GEF)

The Graphical Editing Framework GEF [3] provides end user tools integrated
into the Eclipse IDE as well as components to create rich JAVA editor applica-
tions. GEF offers a great number of prefabricated features to implement graph-
ical editors like mechanisms to deal with multi-selects, drag and drop function-
alities and undo/redo mechanisms.
Figure 2 shows the basic structure of a GEF editor. GEF uses a Model-View-
Controller concept to compartmentalize the graphical representation and the
underlying semantic model. Each model (in GEF terminology content model)
usually consists of instances of different types representing the individual enti-
ties in the model (i.e. in case of the aforementioned state machine model, states,
transitions etc.). For each such instance type a controller (model part) has to
be implemented to connect the model instance with its graphical representation
(Visual). By providing interfaces and adapters for different graphical representa-
tions like JavaFX or SWT, GEF offers a great level of exchangeability regarding
the actual UI-representation.

Enriching a Textual Xtext-DSL with a Graphical GEF-Based Editor 397

Fig. 2. GEF MVC architecture [1]

3 Implementing a GEF-Based Editor to Create DSL
Models

In the following subsections we describe our approach and lessons learned while
implementing a graphical GEF-based editor application for our example DSL1.

3.1 Architecture of the Editor Application

The starting point for the editor application is the aforementioned Xtext DSL
to model finite-state machines. Consider you have been given this DSL grammar
accompanied by some custom syntax validators for the textual models of that
language. Using the onboard features of the Xtext framework, creating models
in that Xtext language is only possible in a purely textual manner. To create an
editable graphical representation for these models, a graphical syntax has to be
found that maps each modeling concept from the textual DSL grammar.

For some modeling concepts it might not be a simple task to find meaningful
graphical equivalents. Therefore a hybrid syntax might prove more useful com-
pared to a purely graphical syntax. In regards to our state machine language
this means that while for example a graphical representation for transition con-
straints (which are represented as Boolean expressions in the grammar) can cer-
tainly be found, the textual expressions might be more convenient to use even
in the context of a graphical editor. Models created with the help of the hybrid
syntax have to be parsed against the grammar of the language for validation. To
do so, it is necessary to transform the hybrid model into an equivalent textual
model that can be parsed using the provided validators. These considerations
led us to the following model of the principle workflow for the graphical model
editor.
Figure 3 shows the principle workflow of the editor application. Models can
be created and edited by the user utilizing the hybrid syntax provided. When
requested by the user, the emerging model is transferred into a corresponding
1 The described editor together with its source code is freely available from https://

github.com/m-toussaint/SME.

https://github.com/m-toussaint/SME
https://github.com/m-toussaint/SME

398 M. Toussaint and T. Baar

(2') generate code

create
edit
view

warnings/errors

target code

hybrid model

GEF Xtext

textual model

(3) display
(2) parse/
validate

(1) generate textual input

Fig. 3. Graphical editor workflow

textual model (1) which can then be parsed against the underlying DSL by
using the generated parser and the implemented validators (2). If the model is
parsed without errors, additional Xtext features like the code generation can be
triggered (2’). If the textual representation of the editor model however cannot
be parsed without errors, the emerging error messages are masked and displayed
in the graphical editor application (3).
With the help of the created editor application based on the presented workflow
we are able to create editable hybrid representations of our underlying textual
DSL. Figure 4 shows the graphical/hybrid representation of the example state
machine illustrated in Sect. 2 in the implemented GEF editor application.

3.2 Utilizing AST Classes as Content Model

Since Xtext is based on the Eclipse Modeling Framework (EMF) and thus uses
an Ecore model for the specified language, it seems obvious to use the classes
of the Ecore model as content model classes for the GEF editor. This approach
is certainly useful when the underlying language only consists of modeling con-
cepts that can be purely represented with a graphical syntax. However, in case
of a hybrid syntax as chosen for our running example (see Fig. 4), things are
different. Though modeling concepts for states, events and variables could be
straightforward derived from the Ecore model classes, the transition constraints
are annotated as pure text. For these cases, the corresponding content model
classes have to be implemented manually.

3.3 Synchronizing the Textual DSL Model and the Graphical
GEF Model

Since we already store all the necessary information required for the textual rep-
resentation of a graphical model in the instances of the content model classes,
the synchronization from the graphical to the textual representation is rather

Enriching a Textual Xtext-DSL with a Graphical GEF-Based Editor 399

Fig. 4. Example graphical state machine model

straightforward. By extracting the required attributes, we can derive the tex-
tual model using a pretty-printing mechanism. For the most cases, the graphical
model will contain more information than necessary for the textual representa-
tion (e.g. information on the position in the drawing area). However, there might
be instances, where the graphical representation is actually missing required
information for the textual representation. For example, the aforementioned DSL
for state machines requires unique identifiers for states, but in the context of the
graphical representation, states might only be represented by geometric figures
without a label or a name (i.e., an identifier). When deriving the textual model
these missing information have to be complemented with meaningful substitutes
(e.g. automatically created IDs).

Synchronizing from the textual to the graphical representation requires more
effort than the opposite direction. As we have already established, the infor-
mation stored in the content model classes of the graphical editor potentially
contains more information than needed for the textual model (i.e., position val-
ues, etc.). Here, we are forced to assume meaningful default values for the missing
information. Take the described example DSL for state machines: each state is
solely described by a unique identifier (i.e., its name or label). In the context
of the graphical model, we need additional information on its position in the
drawing area. For a graphical syntax, for which the position of its elements does
not have any semantic significance, an auto-layout mechanism can be used to
assume the missing position values.

400 M. Toussaint and T. Baar

4 Related Work

There is already a manifold of tools available to edit graphical syntax via an
editor like for example the YAKINDU Statechart Tools [8]. However, these tools
are bound to provide editor features for a specific syntax only (state machines
in case of YAKINDU for example). Our approach describes a workflow, how to
find a graphical syntax and implement a graphical editor application to create
and edit models of arbitrary DSLs.

The project GMF [4] has the same goal as we do which is providing generic
graphical representations for DSLs. However, using GMF the user is bound to
develop models representing the mapping of DSL modeling concepts to their
graphical representation. In contrast, our approach relies on implementing edi-
tor applications using the GEF framework. While the GMF approach sounds
promising, the mapping models turned out to be quite complicated depending
on the complexity of the model concepts [12].

Another interesting approach with similar goals as our’s is the Eclipse project
Sirius [5]. Sirius offers to define individual representations of arbitrary EMF mod-
els. Out of the box, representations in form of diagrams, tables (property views),
and trees are supported. By using a pre-defined (or even user-defined) query lan-
guage, one can programmatically create and manipulate the model. In case of
manipulation of the underlying EMF model, Sirius updates the defined repre-
sentations (graphical, tabular, or hierarchical) automatically. This difference to
our approach is the starting point of the language definition: While Sirius relies
on an explicit metamodel, we start with the Xtext definition of the language, i.e.
with a grammar and a set of validators. This allows us to support hybrid con-
crete syntaxes, where parts of the model are still represented by pure text, since
the mapping to the EMF classes is done in our workflow by the Xtext parser.

5 Conclusion and Future Works

The objective of the presented approach is to show how the process of edit-
ing DSL models of a domain-specific language can be improved by providing a
graphical editor application. Although large parts of the implementation code of
the editor application have to be implemented manually, the usage of the GEF
framework reduces the effort to a bearable level. All necessary artifacts can
be customized to accommodate preferences and characteristics of the underly-
ing language. The advantage of substituting purely textual representations with
graphical representations (at least partially) can improve in many cases the user
acceptance of the language.

The editor application presented in this paper has been created under the
premise, that the usage of the graphical editor should not necessarily require
knowledge on the underlying DSL grammar. Therefore, the textual model rep-
resentation and changes therein are not propagated to the user of the editor
application. To achieve a higher level of usability and integration in the existing

Enriching a Textual Xtext-DSL with a Graphical GEF-Based Editor 401

tool chain provided by the Xtext framework, it would be preferable to simulta-
neously provide the ability to work with the graphical and the textual represen-
tation in a synchronized editor view. This is going to be the focus of our work
efforts in the near future since it potentially enables users to choose which model
representation they use to create and edit the model and thus alleviating the
workflow. Since the Xtext framework is already seamlessly integrated into the
Eclipse IDE and GEF provides the components necessary to create editor views
integrated into Eclipse, other future goals would be (i) to recreate the prototype
application as an Eclipse plugin, (ii) to use incremental parsing as the underlying
mechanism to synchronize graphical and internal representations of the model,
and (iii) to extend our graphical editor by features like code-completion.

References

1. Benoit, F.: GEF4 tutorial. http://fbenoit.blogspot.de/2015/11/gef4-tutorial-part-
3-model-tree-and.html

2. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Not. 35(6), 26–36 (2000)

3. Eclipse: GEF homepage. https://eclipse.org/gef/
4. Eclipse: GMP homepage. http://www.eclipse.org/modeling/gmp/
5. Eclipse: Sirius homepage. https://www.eclipse.org/sirius/
6. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of Inter-

national Conference on Software Reuse (ICSR), pp. 134–142. IEEE (1998)
7. Itemis: Xtext homepage. http://www.eclipse.org/Xtext
8. Itemis: Yakindu homepage. https://www.itemis.com/en/yakindu/statechart-

tools/
9. JetBrains: Meta programming system homepage. https://www.jetbrains.com/mps/

10. MetaCase: Metaedit+ domain-specific modeling homepage. https://www.
metacase.com

11. van Rest, O., Wachsmuth, G., Steel, J.R.H., Süß, J.G., Visser, E.: Robust real-time
synchronization between textual and graphical editors. In: Duddy, K., Kappel,
G. (eds.) ICMT 2013. LNCS, vol. 7909, pp. 92–107. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38883-5 11

12. Seehusen, F., Stølen, K.: An evaluation of the graphical modeling framework
(GMF) based on the development of the CORAS tool. In: Cabot, J., Visser, E.
(eds.) ICMT 2011. LNCS, vol. 6707, pp. 152–166. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21732-6 11

13. Visser, E.: Spoofax language workbench homepage. www.metaborg.org/

http://fbenoit.blogspot.de/2015/11/gef4-tutorial-part-3-model-tree-and.html
http://fbenoit.blogspot.de/2015/11/gef4-tutorial-part-3-model-tree-and.html
https://eclipse.org/gef/
http://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/sirius/
http://www.eclipse.org/Xtext
https://www.itemis.com/en/yakindu/statechart-tools/
https://www.itemis.com/en/yakindu/statechart-tools/
https://www.jetbrains.com/mps/
https://www.metacase.com
https://www.metacase.com
https://doi.org/10.1007/978-3-642-38883-5_11
https://doi.org/10.1007/978-3-642-21732-6_11
www.metaborg.org/

Towards Automated Static Verification
of GNU C Programs

Evgeny Novikov and Ilja Zakharov(B)

Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

{novikov,ilja.zakharov}@ispras.ru

Abstract. Static verification based on such methods as Bounded Model
Checking and Counterexample-Guided Abstraction Refinement aims at
non-interactive formal proving of programs correctness against safety
property specifications. To leverage existing tools for verification of a
program one should prepare verification tasks first. In addition to a pro-
gram fragment of a moderate size, each verification task has to contain a
rather accurate model of its environment. To achieve high-quality results
this model should be incrementally refined in accordance with checked
safety properties. For verification of specific software, like Windows or
Linux drivers, a few frameworks provide a convenient user interface and
perform in an automated way generation of verification tasks, execution
of static verification tools and preliminary processing of results. This
paper presents a method for automated static verification of any pro-
gram developed in the GNU C programming language and addresses the
ongoing development of the Klever framework.

Keywords: Static verification · Software verification
Formal specification · Environment model · GNU C

1 Introduction

Static verification allows both finding of specified safety property violations and
proving of formal program correctness under certain assumptions. There are
many advanced static verification tools like SLAM [1], CBMC [2], CPAchecker [3]
implementing Bounded Model Checking [4], Counterexample-Guided Abstrac-
tion Refinement [5] and other methods. However, their practical application is
rather limited. Despite many merits of static verification users can not leverage
the tools out of the box for industrial software. Existing static verification frame-
works dramatically simplify the workflow, but their scope is bound to particular
kinds of programs.

We propose a new method for automated static verification of programs
developed in the GNU C programming language. Currently, the method has
been partially implemented within the Klever static verification framework.

The reported study was partially supported by RFBR, research project No. 16-31-
60097.

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 402–416, 2018.
https://doi.org/10.1007/978-3-319-74313-4_30

Towards Automated Static Verification of GNU C Programs 403

2 Static Verification Background

In this section we consider an interface, features and requirements of static ver-
ification tools from the perspective of users.

Though first static verification tools appeared at the beginning of the cen-
tury, their developers have been forming an active solid community. One of the
most important steps in this direction was organization of a series of annual com-
petitions on software verification, SV-COMP1. SV-COMP 2012 attracted about
a dozen of static verification tool developer teams from leading research cen-
ters from all over the world [6]. The number of participants steadily grows and
already 32 teams participated in SV-COMP 2017 [7]. SV-COMP competition
rules de facto introduce a standard static verification tools interface accepted by
all participants2.

2.1 Target Programs

In this paper we consider primarily static verification of programs developed in
the GNU C programming language. C programs verification is of great impor-
tance since there is much such software that operates in critical domains. For
instance, various operating system kernels and libraries, programming language
compilers and interpreters, database systems and web servers belong to this
class.

Static verification tools analyze a model of a given program extracted auto-
matically directly from its source code. To check software developed in various
programming languages tools translate programs into internal representations
using appropriate front-ends first. For instance, having a program LLVM inter-
nal representation, SMACK translates it into Boogie to run static verification
tools like Corral then [8]. This potentially enables support for programming lan-
guages such as C and Java, since there are appropriate LLVM front-ends. The
CPAchecker static verification tool has an internal representation suitable for
checking C and Java programs [3]. For parsing C programs it uses the Eclipse
CDT parser.

There is the SV-COMP benchmark suite to estimate and to compare capa-
bilities of static verification tools comprehensively. According to the competition
rules this suit contains so-called verification tasks. A verification task contains a
program and a safety properties specification. The safety properties specification
represents requirements to check and we discuss this in the next subsection.

The program should be already prepared in advance so that static verifi-
cation tools can take it as input without any additional processing and check
it non-interactively. Programs developed in the GNU C programming language
constitute the lion share of the competition benchmark suit. Thus, many partici-
pating in the SV-COMP competition static verification tools have a high-quality
support of GNU C programs. Each program of the SV-COMP benchmark suite

1 https://sv-comp.sosy-lab.org/.
2 https://sv-comp.sosy-lab.org/2017/rules.php.

https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/2017/rules.php

404 E. Novikov and I. Zakharov

should be a single preprocessed C file. Just few static verification tools support
verification tasks that consist of several source files.

2.2 Checking Requirements

In this paper we focus on static verification of programs against non-functional
requirements. These requirements include generic rules of safe programming suit-
able for any program. Violations of these rules cover such errors as buffer over-
flows and null pointer dereferences. Also, we consider as non-functional require-
ments specific rules of correct usage of the particular program API which viola-
tions are also quite widespread [9]. Below we refer to both generic and specific
rules as correctness rules.

Static verification tools can check safety and liveness properties. To run a
tool the SV-COMP community first proposes to describe a safety properties
specification as a temporal logic formula. Currently, the formula can represent
only a hard-coded set of safety properties corresponding mostly to generic rules
of safe programming:

– error function unreachability,
– valid memory deallocations, pointer dereferences and memory tracking (to

search such errors as buffer over-reads and over-writes, null pointer derefer-
ences, uses after free and memory leaks),

– absence of integer overflows,
– program termination.

For verifying other correctness rules a user can use the following two options.
The first one is weaving an additional code into a program either manually or
automatically to express requirements using one of the supported safety proper-
ties. For instance, correct API usage rules can be formulated as unreachability of
an error function. Exploiting means of particular static verification tools is the
second option. For instance, CPAchecker allows to specify requirements to a pro-
gram using automata that guide analysis [10]. However, this approach prevents
using other static verification tools and it is out of the scope of this paper. Also
in addition to the SV-COMP safety property specifications some tools support
checking of other requirements such as absence of data races [11].

Static verification tools allow checking safety property specifications one by
one and most of them terminate after finding a first violation. That is why it
is better to check substantially different correctness rules independently. Nev-
ertheless, it makes sense to express closely related requirements using the same
safety property to avoid analysis of similar results, say, false alarms due to the
same reasons, and to decrease computational resources consumption.

2.3 Analysis Accuracy

Static verification tools construct a program model in a sound way that keeps
all errors present in a source code under verification. Also, they check specified

Towards Automated Static Verification of GNU C Programs 405

safety properties at all possible paths including poorly tested ones. Due to this
proving model correctness means that there is no erroneous paths in the program.

However, to deal with real programs developed in the GNU C programming
language static verification tools usually make some assumptions. Many tools can
treat undefined functions as functions without side effects returning any value of
corresponding return types. According to our knowledge, no static verification
tool has support of the inline assembler. Some tools, e.g. implementing Bounded
Model Checking, unroll loops to a given number of iterations. These assumptions
can result in both missing bugs and false alarms, but hopefully users can change
parameters and provide models to bypass these issues.

2.4 Performance and Scalability

Static verification is an extremely complicated problem and even the best static
verification tools have poor scalability at verification of large programs. Usually,
it is difficult to predict computational resources required for verification since an
outcome depends on many factors such as a code complexity, a safety property
being checked, verification algorithms, SMT and interpolation solvers. At the
SV-COMP competition each verification task is executed under the following
limits: 15 min of CPU time and 15 GB of RAM. Most successful tools can cope
with programs of several dozens of KLOC in size within these limits but not
always. Significant increasing of the code complexity almost always results in an
enormous growth of required computational resources and inability to proceed
with the same verification scope and precision.

Static verification tools often implement algorithms sequentially because of
their nature, a few tools can use multi-core CPUs or distributed computing and
there is no tools that employ GPUs [12]. Parallel solving of a verification task
helps to yield verdicts faster but usually there is a considerable overhead to
share complicated internal data structures. Thus, we do not consider this use
case in the given paper. To substantially speed up solution of many independent
verification tasks, static verification tools are executed in parallel at IaaS or PaaS
clouds and clusters [12].

2.5 Environment Modeling and Checking Program Fragments

Libraries that used by a program, other programs, user inputs, etc. constitute an
environment that can influence a program execution. To verify the program it
is necessary to provide an environment model to a static verification tool which
represents certain assumptions about the environment. In practice it should
call program functions, initialize and modify a heap and exported variables as
the environment does. Also, the environment model should contain models of
undefined functions which the program calls.

Our experience shows that usually some results can be obtained even without
the very accurate environment model. To get an acceptable false alarm rate and
sufficient code coverage to avoid missing bugs it can be necessary to refine it.

406 E. Novikov and I. Zakharov

To achieve really high-quality results it is crucial to provide the precise environ-
ment model taking into account specifics of the checked safety property and the
program under verification.

To drastically reduce consumption of computational resources it is possible
to verify program fragments of a moderate size separately. A program fragment
can contain several source files of the program and libraries or just particular
functions from them. However, it becomes even more important to provide the
appropriate environment model at verification of the program fragment to avoid
missing bugs and false alarms.

The SV-COMP community does not provide any tools or formats for facil-
itating specifying the environment model in a commonly accepted way. So, the
most generic approach to provide the environment model is to weave it as an
additional C code into the target program or the program fragment. Particular
tools can provide additional means to describe an environment model as anno-
tations, formulas or automata [10,13]. But we do not consider such the use case
in the given paper.

2.6 Tools Execution

Each verification task solution may require a considerable amount of CPU time,
RAM and disk space. The BenchExec benchmarking tool comes to the aid as
it enables fair computational resources distribution, isolates tool runs, performs
preliminary results processing and simplifies integration of new static verifica-
tion tools that follow the SV-COMP rules [14]. BenchExec measures and reports
consumed CPU time, RAM and disk space. If tools exceed allowed limits, it ter-
minates them. BenchExec is the convenient and reliable tool to solve verification
tasks using a single machine.

BenchExec contains wrappers for all static verification tools that partici-
pate in the SV-COMP competition. Wrappers allow abstracting from the static
verification tools interface when describing sets of verification tasks and when
processing obtained results. However, a user still has to provide parameters to
tune algorithms for each tool individually because default parameters defined
at tool wrappers often do not suit for practical applications. For each successful
static verification tool run a corresponding wrapper provides a verdict meaning
a checked safety properties specification is satisfied or not. For each failed run
the wrapper provides a short failure reason like “timeout” or “parsing failure”
while details are kept within log files.

2.7 Formal Confirmation and Manual Analysis of Results

Static verification tools can provide proofs and counterexamples in a machine-
readable format on each successful run. There is a common format of correctness
and violation witnesses3. The proposed witness validation technique establishes
confirmation of such witnesses detecting spurious ones [15,16]. The technique is

3 https://github.com/sosy-lab/sv-witnesses.

https://github.com/sosy-lab/sv-witnesses

Towards Automated Static Verification of GNU C Programs 407

widely used in SV-COMP, so today all static verification tools participating in
the competition provide their results similarly.

Witnesses express proofs and counterexamples using observer automata. A
violation witness contains an observer automaton corresponding to a counterex-
ample error path that leads from a program start to a found error. By design
this automaton can miss some details of the error path and even some its parts.
A witness validation tool considers the observer automaton in combination with
a control-flow automaton extracted from the program to check feasibility of the
error path.

Correctness witnesses have almost the same format but present results of
proving, e.g. invariants for loops, for many paths of the program. However, cor-
rectness witnesses do not contain any complete proofs or guaranties for users.
For instance, it is even impossible to understand which parts of the program
were verified.

Although witnesses can be automatically validated, users should investigate
them manually to comprehend proofs and reasons of bugs and false alarms.
According to our knowledge, just CPAchecker represents witnesses in a more
user-friendly way, but this does not help much for large programs because of this
representation contains too many details. These details could be hidden using
a domain knowledge, e.g. that some statements correspond to the environment
model or some statements are not relevant for the checked safety properties
specification.

In addition to witnesses some static verification tools can provide code cover-
age which lists analyzed lines and functions of the program. For its visualization
one can use standard tools like LCOV4.

BenchExec can provide to a user statistics on verdicts provided by static
verification tools and on computational resources consumed by them in the form
of tables and plots. Such results visualization finely presents performance and
correspondence of obtained verdicts to ideal ones (ideal verdicts for SV-COMP
verification tasks are known in advance). This suits pretty well for comparison
of static verification tools at the competition. However, users need additional
means convenient at practical use for evaluation of results obtained for their
programs when ideal verdicts are unknown.

3 Automating Static Verification of GNU C Programs

We do not suggest solutions that allow to completely automate the static ver-
ification workflow from scratch for all programs developed in the GNU C pro-
gramming language. Our primary goal is to suggest solid foundations that are
generic enough to not restrict application to some specific software. However, the
framework will support out of the box those program subclasses for which we or
others will develop and implement appropriate algorithms. For other software it
will be worth doing that to reduce required manual efforts, to increase results
quality and to decrease demands for computational resources.
4 http://ltp.sourceforge.net/coverage/lcov.php.

http://ltp.sourceforge.net/coverage/lcov.php

408 E. Novikov and I. Zakharov

Following subsections consider steps of the proposed method. For first two
steps we implicitly assume that everything that is generated automatically can
be incrementally refined manually if one will find this necessary.

3.1 Decomposition of Programs

Most of industrial programs are quite large, so it can be hard or impossible to
statically verify them against any non-trivial correctness rule under reasonable
computational resource limitations. To increase chances to get a meaningful out-
come we suggest decomposing target programs and perhaps libraries invoked by
them into program fragments which were already introduced in the previous
section. The most challenging problem at programs decomposition is to deter-
mine particular files for program fragments. Program fragments may vary from
a single C file to all files of a program or even several programs and libraries.

We suggest implementing the following options in the static verification
framework:

– Provide to a user means to describe program fragments explicitly. This is
the most time-consuming but flexible approach that can help to gain the
best results. It is especially suitable at verifying some particular version and
configuration of a medium-sized program.

– Develop a generic algorithm that will automatically split a program into
weakly connected parts of a specified size. In contrast to the previous approach
this one considerably reduces manual work at the programs decomposition
step. But it might be necessary to spend much more time for analysis of worse
results.

– Implement an algorithm for a particular project taking into account its struc-
ture. This approach requires an extra time for implementation for each new
kind of programs but it contributes to both automatic programs decomposi-
tion and good enough results. This way suits for verification of large programs
or many various configurations and versions of the same program.

For both manual and automatic approaches for program fragments generation
it is useful to extract a build commands base that helps to understand how
program source files are combined together to form the final object files and
executables. For particular version and configuration of the program this base
should include the following information on build commands in the strict order
of their execution:

– For all build commands of interest:
• corresponding build tool names,
• absolute paths to directories where they are executed,
• input and output file names.

– For compilation commands:
• corresponding versions of source files referred both explicitly (C files) and

implicitly (header files),
• preprocessor options.

Towards Automated Static Verification of GNU C Programs 409

For extracting the build commands base we propose to intercept build com-
mands during a program build. Indeed, GNU C programs often have complicated
build processes. Thus, it can be necessary to describe semantics of additional
build commands that should be intercepted.

The build commands base can be collected either outside the framework or
from within it. The former is preferable when users want to perform builds as
they usually do and to incorporate static verification with continuous integration
systems. The latter is better when users need to verify some particular versions
and configurations of their software.

3.2 Verification Tasks Generation

As it was stated in the previous section a verification task should contain besides
a program fragment an additional code that corresponds to an environment
model and, if necessary, that expresses checked requirements using one of the
supported safety properties. Also, particular correctness rules can require setting
specific parameters for a chosen static verification tool. We propose to generate
these additional code and tool parameters on the basis of specifications developed
manually using appropriate domain specific languages.

For each particular pair of a program fragment and a correctness rule a set
of specifications can be unique, but some specifications can be the same for
different pairs. To avoid repeats during development of specifications we suggest
to use templates. Also, we propose to reuse a generated code if it is the same for
different program fragments or correctness rules.

We already proposed a method for generating an environment model part
that invokes program fragment interfaces for Linux kernel modules [17]. Cor-
responding specifications allow describing complicated interactions for event-
driven programs in a quite compact way. Also, we have been starting developing
a more generic approach on the base of this method. For developing the addi-
tional code, that expresses checked requirements using one of the supported
safety properties, and models of interfaces invoked by the program fragment we
suggest using an aspect-oriented extension for the C programming language [18].
Corresponding specifications and tools allow weaving program fragments, e.g.
redirect function calls and macro substitutions from the original source code to
model functions.

The final steps of the verification tasks generation is preprocessing, that
is usually performed together with weaving, and merging of preprocessed files
together. For the latter we suggest to use CIL that is a source-to-source trans-
formation tool allowing merging files developed in the GNU C programming
language [19]. Besides, CIL performs many optimizations simplifying following
analysis.

After all each verification task is a single GNU C file prepared for an imme-
diate run of a static verification tool and a safety properties specification which
comply with the SV-COMP rules. In addition, a name, a version and parameters
of the given tool and an amount of computational resources that can be used for
solution are specified.

410 E. Novikov and I. Zakharov

To incorporate a domain knowledge within verification tasks, e.g. to distin-
guish the additional code from the original one and to emphasize statements that
are the most relevant to checked requirements, we suggest to use special com-
ments. These comments can be provided directly within specifications. Besides,
they can be generated automatically.

3.3 Verification Tasks Solution and Results Processing

Verification tasks generation can take a considerable amount of time. Hence, we
suggest to start solution of verification tasks as soon as they appear if there are
enough computational resources. For solving a few verification tasks we propose
to use a single powerful enough machine. To considerably reduce a total time for
verification of many program fragments or/and correctness rules it is necessary
to solve corresponding verification tasks at an IaaS cloud or at a cluster.

Monitoring of available computational resources and their fair distribution
between verification tasks are responsibilities of a scheduler. The scheduler
should respect verification task priorities specified by users. Also, the scheduler
should support canceling solution of verification tasks since sometimes users can
decide that they do not need to continue verification anymore.

Some verification tasks can require considerably less computational resources
than requested by a user. To avoid useless reservation we suggest performing
speculative scheduling trying to run a static verification tool with lesser limi-
tations first. It is worth accumulating statistics for verification tasks solution
to base scheduling on that ground. For instance, some correctness rules can be
much easier for checking on average than other ones.

In case of using a cloud or a cluster the scheduler should allow connecting
and disconnecting worker nodes. If a worker node goes down, we suppose to
automatically reschedule terminated verification tasks solution.

For isolating static verification tool runs and for measuring and limiting
computational resources consumed by them at a single machine we propose to
use already mentioned BenchExec [14]. After BenchExec finishes, the framework
should process its output and results from a static verification tool. We suggest
retrieving a verdict, a consumed computational resources report, a witness, log
files and other information like code coverage and statistics if so.

As far as witnesses can omit some details, we suggest adding them by consid-
ering witnesses together with the program from the corresponding verification
task. Besides, we propose to enrich witnesses with domain knowledge annota-
tions on the base of special comments generated at the previous step.

Regarding code coverage users can be interested in total code coverage for all
program fragments rather than code coverage for individual verification tasks.
Thus, we suggest uniting it for various correctness rules.

3.4 User Interface

Below we present different use cases of the static verification framework and
discuss relevant user interfaces.

Towards Automated Static Verification of GNU C Programs 411

Verification Processes Setup. In this use case we assume that the frame-
work already supports everything required for a program under verification, in
particular appropriate correctness rule specifications are available.

To proceed to verification users should choose correctness rules to be checked
and provide program fragments either by describing them manually or by choos-
ing and configuring an appropriate algorithm (a target program should be pro-
vided in form of its source code or build commands base). In addition, to get
better results for particular programs we suggest to incrementally tune various
parameters for programs decomposition, verification tasks generation, verifica-
tion tasks solution and results processing.

For providing data and parameters and for starting subsequent automatic
static verification we propose to use a multiuser graphical interface shareable via
a network. Project-specific interfaces, which assumes various forms and helpers,
are most likely the most convenient way for users, but usually it is hard to
develop them. Therefore, we suggest to support a file-based configuration that
is flexible enough to cope with various programs. In addition, users should be
able to start up verification using command-line tools providing some data like
a build commands base. This use case is quite natural when one incorporates
static verification with continuous integration systems.

Expert Results Analysis. To simplify analysis of results by experts we suggest
extending the interface for verification processes setup with the following:

– Provide information on running and completed verification processes. For
each verification process experts should be able to analyze data and parame-
ters with which it was set up. For running verification processes the interface
should present their progress: the number of already solved and the total
number of verification tasks, elapsed time and approximate left time.

– Visualize witnesses, code coverage and failure descriptions. The primary goal
of this visualization is to hide from experts as much irrelevant details as
possible according to the domain knowledge.

– Show various statistics over results that can help to understand a picture in
general. For instance, it can be very useful to see how many warnings were
yielded for a particular verification process, what warnings correspond to bugs
and to false alarms, what are the most significant reasons of false alarms and
so on.

– Allow to evaluate results by associating them with marks that should be
applied automatically for similar results such as witnesses and failure descrip-
tions. Experts should be able to supply each mark with a detailed description
and tags. To further simplify analysis we suppose to keep all history of marks
changes.

– Support views allowing arranging data in a more convenient way and to filter
out irrelevant results. For instance, experts may want to see just violations
of a specific correctness rule or marks modified after some date.

412 E. Novikov and I. Zakharov

It is worth noting that since static verification can take considerable time
it does have sense to represent results to experts as soon as they appear. In
this case they are able to proceed to analysis of results faster, in particular it is
possible to understand that something was done wrong without waiting for all
results.

Developing Correctness Rule Specifications and Extending the Frame-
work. If verification process setup itself does not help to improve results quality,
e.g. to increase code coverage or to decrease a false alarm rate, we suggest to
incrementally improve correctness rule specifications. In case when the static
verification framework does not cope well with specific programs out of the box,
one can develop and implement more appropriate algorithms to be incorporated
into the framework.

Users can perform both these activities using their favorite editors or IDEs.
Also, we encourage to supply them with special domain specific language editors
and a SDK for developing framework extensions. We propose the framework GUI
to support simple extensions like hot plugging of new static verification tools.

To understand consequences of improvements we suggest users should be
able to compare results and associated expert marks for different verification
processes.

4 Implementation

We partially implemented the proposed method for automated static verifica-
tion of programs written in the GNU C programming language within the Klever
framework5. Klever is an open source project. The primary programming lan-
guage is Python 3.4. Users can install Klever on various Linux distributions.
Also, we implemented scripts for automatic deployment within an OpenStack
cloud.

We use the Django framework for developing Klever Bridge that provides
the web GUI for verification processes setup and expert results analysis. As a
database system Klever Bridge supports PostgreSQL and MariaDB. For deploy-
ing the GUI users can use either Apache2 with mod wsgi or NGINX with Guni-
corn. Klever Bridge already supports multiple users with different roles, fair
results representation and automated results assessment. For the latter one can
use one of the several algorithms for comparing violation witnesses and regular
expressions for matching failure descriptions. At the moment Klever Bridge does
not support visualization of correctness witnesses.

Users should specify for each cloud or cluster worker node how many CPU
cores, RAM and disk space the framework can use for solving verification tasks.
Enough computational resources should be reserved for generation of program
fragments and verification tasks, results processing as well as for an operating
system and other running services and applications.

5 https://forge.ispras.ru/projects/klever.

https://forge.ispras.ru/projects/klever

Towards Automated Static Verification of GNU C Programs 413

There are three schedulers currently implemented:

1. Klever Native Scheduler provides means to solve verification tasks using a
single machine. For monitoring available computational resources and running
services it uses Consul.

2. Klever Docker Scheduler can solve verification tasks within a cluster or a
cloud by leveraging an infrastructure for Docker containers.

3. Klever VerifierCloud Scheduler submits verification tasks to VerifierCloud6.

At the moment verification tasks can be solved with help of CPAchecker and
Ultimate Automizer [20]. To integrate new static verification tools within Klever
users need to do the following:

1. Describe specific options suitable for checking corresponding correctness rules.
2. Provide static verification tool binaries in case of using Klever Native Sched-

uler.
3. For Klever Container Scheduler install tools within Docker images and push

these images to a Docker registry.

Currently, fully automatic programs decomposition and generation of verifi-
cation tasks are available only for Linux kernel loadable modules as a proof of
concept. The framework extracts the build command base itself allowing users
to guide the build process via parameters. Users can choose one of the several
algorithms for program fragments generation. The main one is to verify each
Linux kernel loadable module separately. Another one allows specifying files and
modules to unite manually. It is also possible to generate program fragments
for groups of modules fully automatically on the base of dependencies between
modules using a greedy algorithm.

The framework generates verification tasks in parallel to speed up the entire
verification process when many computational resources are available. As a
source code querier and a weaver we use CIF [18]. It is a source-to-source weaver
that is based on GCC, and, thus, it can handle GNU C programs. CIF allows
to perform a variety of structural source code queries and support weaving of
macro substitutions and function calls.

The environment model is described as a parallel composition [17]. It is trans-
lated into a C code using an additional information extracted by querying a
source code of a target program. Utilization of different translators allows gener-
ating either a parallel or sequentialized environment model. It also allows making
heuristic simplifications of the model, e.g. to reduce interleaving. For Linux ker-
nel loadable modules we have implemented environment model specifications to
support interrupts, timers and interfaces of kernel subsystems including USB,
PCI, SCSI, SERIAL, NET, file systems, etc.

We allow users to check a variety of correctness rules ranging from generic
memory safety to correct usage of the most popular Linux kernel API. Also, one
can check new requirements by developing additional specifications.

6 https://vcloud.sosy-lab.org/cpachecker/webclient/help/.

https://vcloud.sosy-lab.org/cpachecker/webclient/help/

414 E. Novikov and I. Zakharov

5 Related Work

According to our knowledge, no static verification framework automates prepa-
ration of an arbitrary GNU C program before static verification, runs static
verification tools, processes results and provides means for their further analy-
sis and improvement. There are a few projects that focus on automated static
verification of specific software.

SDV is the best-known application of static verification in practice [21]. It
aims at checking correct usage of the kernel API in Windows drivers using SLAM,
YOGI and Q [1,22]. There are also LDV Tools [23], DDVerify [24], Avinux [25]
frameworks intended for static verification of Linux drivers. As a result, hundreds
of bugs have been found and acknowledged by driver developers already.

CBMC [2] has been applied for verification of TinyOS [26] and embedded
software [27]. Authors deliver successful case studies as a proof of concept.

DC2 is a framework that aims at static verification of industrial software [13].
To bound a verification scope it generates contracts relevant for safety properties
like memory leaks and array-bound overflows. If necessary, users can improve
these contracts manually. Then DC2 runs the Varvel model checker. However,
it is the in-house NEC research project, so it is not possible to estimate its
applicability to software developed in the GNU C programming language in
more details.

There is an IDE for development of embedded software mbeddr that allows
to automatically run CBMC to check programs under development against a
predefined set of safety properties [28]. The IDE also provides developers with
nicely arranged results. However, mbeddr is not intended for automated static
verification of programs developed outside of it.

6 Conclusion

We presented the method that addresses problems of automated application of
static verification tools for checking programs developed in the GNU C program-
ming language. This method has been partially implemented within the Klever
framework that already demonstrated its applicability to large industrial soft-
ware projects like Linux kernel loadable modules. To complete the research, we
are going to provide comprehensive evaluation verifying various programs.

We based Klever on solutions accepted by the SV-COMP community. More-
over, we keep in touch with it to cooperate and to solve the most vital problems
together discussing the interface, providing a feedback and contributing gener-
ated verification tasks to the competition benchmark suit.

Towards Automated Static Verification of GNU C Programs 415

References

1. Ball, T., Bounimova, E., Kumar, R., Levin, V.: SLAM2: Static driver verification
with under 4% false alarms. In: Proceedings of the 2010 Conference on Formal
Methods in Computer-Aided Design, pp. 35–42. FMCAD Inc, Austin (2010)

2. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

3. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

4. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

6. Beyer, D.: Competition on software verification. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 38

7. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 20

8. Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.:
SMACK+Corral: a modular verifier. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 451–454. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 42

9. Mutilin, V.S., Novikov, E.M., Khoroshilov, A.V.: Analysis of typical faults in Linux
operating system drivers. Proc. ISP RAS 22, 349–374 (2012)

10. Apel, S., Beyer, D., Mordan, V., Mutilin, V., Stahlbauer, A.: On-the-fly decomposi-
tion of specifications in software model checking. In: Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
349–361. ACM, New York (2016)

11. Andrianov, P.S., Mutilin, V.S., Khoroshilov, A.V.: Predicate abstraction based
configurable method for data race detection in Linux kernel. In: Itsykson, V., Sce-
drov, A., Zakharov, V. (eds.) TMPA 2017. CCIS, vol. 779, pp. 11–23. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71734-0 2

12. Zakharov, I.S.: A survey of high-performance computing for software verification.
In: Itsykson, V., Scedrov, A., Zakharov, V. (eds.) TMPA 2017. CCIS, vol. 779, pp.
196–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71734-0 17

13. Ivančić, F., Balakrishnan, G., Gupta, A., Sankaranarayanan, S., Maeda, N., Imoto,
T., Pothengil, R., Hussain, M.: Scalable and scope-bounded software verification
in varvel. Autom. Softw. Eng. 22(4), 517–559 (2015)

14. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In: Fis-
cher, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23404-5 12

15. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering, pp. 721–733. ACM, New
York (2015)

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-46681-0_42
https://doi.org/10.1007/978-3-662-46681-0_42
https://doi.org/10.1007/978-3-319-71734-0_2
https://doi.org/10.1007/978-3-319-71734-0_17
https://doi.org/10.1007/978-3-319-23404-5_12

416 E. Novikov and I. Zakharov

16. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchang-
ing verification results between verifiers. In: Proceedings of the 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pp. 326–
337. ACM, New York (2016)

17. Khoroshilov, A., Mutilin, V., Novikov, E., Zakharov, I.: Modeling environment for
static verification of Linux Kernel modules. In: Voronkov, A., Virbitskaite, I. (eds.)
PSI 2014. LNCS, vol. 8974, pp. 400–414. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46823-4 32

18. Novikov, E.M.: An approach to implementation of aspect-oriented programming
for C. Program. Comput. Softw. 39(4), 194–206 (2013)

19. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 16

20. Heizmann, M., Dietsch, D., Leike, J., Musa, B., Podelski, A.: Ultimate
Automizer with array interpolation. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 455–457. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 43

21. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
SLAM. Commun. ACM 54(7), 68–76 (2011)

22. Lal, A., Qadeer, S.: Powering the static driver verifier using corral. In: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 202–212. ACM, New York (2014)

23. Zakharov, I.S., Mandrykin, M.U., Mutilin, V.S., Novikov, E.M., Petrenko, A.K.,
Khoroshilov, A.V.: Configurable toolset for static verification of operating systems
kernel modules. Program. Comput. Softw. 41(1), 49–64 (2015)

24. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking con-
current Linux device drivers. In: Proceedings of the 22nd International Conference
on Automated Software Engineering, pp. 501–504. ACM, New York (2007)

25. Post, H., Küchlin, W.: Integrated static analysis for Linux device driver verification.
In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 518–537. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-5 27

26. Bucur, D., Kwiatkowska, M.Z.: Software verification for TinyOS. In: Proceedings of
the 9th ACM/IEEE International Conference on Information Processing in Sensor
Networks, pp. 400–401. ACM, New York (2010)

27. Schlich, B., Kowalewski, S.: Model checking C source code for embedded systems.
Int. J. Softw. Tools Technol. Transf. 11(3), 187–202 (2009)

28. Cârlan, C., Ratiu, D., Schätz, B.: On using results of code-level bounded model
checking in assurance cases. In: Skavhaug, A., Guiochet, J., Schoitsch, E., Bitsch,
F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 30–42. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45480-1 3

https://doi.org/10.1007/978-3-662-46823-4_32
https://doi.org/10.1007/978-3-662-46823-4_32
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/978-3-662-46681-0_43
https://doi.org/10.1007/978-3-662-46681-0_43
https://doi.org/10.1007/978-3-540-73210-5_27
https://doi.org/10.1007/978-3-319-45480-1_3

Domain Specific Semantic Validation
of Schema.org Annotations

Umutcan Şimşek(B), Elias Kärle, Omar Holzknecht, and Dieter Fensel

STI Innsbruck, University of Innsbruck, Technikerstrasse 21a, 6020 Innsbruck, Austria
{umutcan.simsek,elias.kaerle,omar.holzknecht,dieter.fensel}@sti2.at

http://www.sti2.at

Abstract. Since its unveiling in 2011, schema.org has become the de
facto standard for publishing semantically described structured data on
the web, typically in the form of web page annotations. The increas-
ing adoption of schema.org facilitates the growth of the web of data,
as well as the development of automated agents that operate on this
data. Schema.org is a large heterogeneous vocabulary that covers many
domains. This is obviously not a bug, but a feature, since schema.org
aims to describe almost everything on the web, and the web is huge.
However, the heterogeneity of schema.org may cause a side effect, which
is the challenge of picking the right classes and properties for an anno-
tation in a certain domain, as well as keeping the annotation semanti-
cally consistent. In this work, we introduce our rule based approach and
an implementation of it for validating schema.org annotations from two
aspects: (a) the completeness of the annotations in terms of a specified
domain, (b) the semantic consistency of the values based on pre-defined
rules. We demonstrate our approach in the tourism domain.

Keywords: Rule-based systems · Semantic validation · Schema.org

1 Introduction

To publish structured data on the web there are a lot of collections of vocabular-
ies and ontologies that all serve a different or overlapping purpose and appear,
grow and vanish in an unpredictable manner. However, there is one initiative to
provide structured data on the web which stands out by means of community
adoption and distribution and became a de facto standard, which is schema.org1.
Schema.org was developed in 2011 by Google, Microsoft, Yahoo! and Yandex and
has been supported since by a broad community and found application on mil-
lions of websites [2]. Schema.org can be included into the website’s source code
with common technologies like Microdata, RDFa or JSON-LD. The vocabulary
covers local businesses, products, events, recipes, people and much more and is
adapted and supported by the big search engine providers. This naturally makes

1 https://schema.org.

c© Springer International Publishing AG 2018
A. K. Petrenko and A. Voronkov (Eds.): PSI 2017, LNCS 10742, pp. 417–429, 2018.
https://doi.org/10.1007/978-3-319-74313-4_31

https://schema.org

418 U. Şimşek et al.

the vocabulary quite heterogeneous. The vocabulary is also semantically imper-
fect [9]. For instance classes may inherit properties improperly (e.g. a waterfall
can have a telephone number) and not formally strict, but this is rather a design
decision to facilitate rapid and decentralized evolution of the vocabulary. The
side effect of this feature is that picking the right classes and properties for a
domain can be quite challenging and low quality annotations in terms of con-
forming to the rules of a field (e.g. tourism) may occur.

The World Wide Web was originally designed as an internet-based hypertext
system. It contains blocks of information, the websites, which are connected via
hyperlinks to other blocks of information. Due to that simple design and the
open-to-all approach it rapidly evolved to be the biggest information network
that ever existed. The headless web2 is a layer which grows on top of the Web we
know. Within this layer goods are not sold by individual producers or small retail
websites, but by a few large retail platforms like Alibaba or Amazon. Rooms are
not sold by hotels or destination marketing organizations (DMOs) but by a
hand full of huge online travel agencies (OTAs) like booking.com or Expedia.
In a not too distant future information will no longer be found on individual
websites, but gathered by the search engines and presented to the searching user
directly on the search engine website. So the web is, in the true sense of the
word, losing its head: its graphical representation. The data will be extracted
from websites and presented to the user not only by the search engines but also
by personal assistant software like Cortana, Siri, or Google Now. With this new
layer we can observe a trend towards going-out-of-use of graphical representation
and the rising necessity of structured, high quality, data. The data for services
like Cortana or Siri is going to be collected and gathered by crawlers and only
structured, machine read- and understandable data will be part of the game
at that point. In the headless web there will be no room for unstructured but
beautifully designed content. The challenge for small and medium enterprises
(SME) is to bring their data into this new layer by precise, correct and complete
semantic annotations on their websites. Schema.org is the vocabulary of choice
to do that and hence SMEs need a way to produce schema.org annotations in a
correct way and a tool to validate those annotations.

This paper describes such a method to define domain specific subsets of the
schema.org vocabulary with enriched semantics and also introduces the tool we
provide in order to validate the semantics of domain specific structured data
annotated with schema.org on websites. Depending on the domain, a subset
of schema.org classes and properties will be selected and a set of rules will be
defined by a domain expert - which is the foundation of the validation process.
From there on users can validate their own annotations and websites based on
the domain specific subset and the validation rules defined by the domain expert.

2 https://paul.kinlan.me/the-headless-web/.

https://paul.kinlan.me/the-headless-web/

Domain Specific Semantic Validation of Schema.org Annotations 419

The remainder of this paper is organized as follows: Sect. 2 compares the
described approach with related work. Section 3 describes our method which
includes a domain definition and validation approach and a tool that implements
it. Section 4 shows the approach in action and Sect. 5 gives an outlook to future
work and concludes the paper.

2 Related Work and Motivation

While the adoption of schema.org has been increasing [8], the conformance of
the schema.org annotations to the vocabulary specification is still questionable.
A large scale study on the usage of schema.org in the tourism domain [3] shows
that the schema.org vocabulary is mostly used incorrectly or missing funda-
mental properties (e.g. many hotels do not have address information in their
annotations). The issue of completeness for the schema.org annotations occurs
due to the size of the vocabulary and the lack of guidance for adopters to decide
which classes and properties to use. In addition to this issue, there is also the
semantic consistency issue (e.g. consistency between the country and the coun-
try code of a phone number) for annotations that is not possible to capture with
the prominent validation tools like the Google Structured Data Testing Tool3.

Given the developments about the new layer on top of the web, providing well
formed and semantically consistent structured data on the web is more important
than ever. Therefore, we propose an approach, that allows us to obtain a specific
subset of the schema.org vocabulary containing important classes and properties
for a domain and to validate the annotations based on pre-defined rules to ensure
the completeness and the semantic correctness of the data.

The related work to our approach comes mostly from the RDF validation
domain. An approach described in [1] applies SPIN Rules for domain inde-
pendent detection of certain data quality problems namely, inconsistency (i.e.
inconsistent representation of the data, functional dependency and referential
integrity), comprehensibility (i.e. ambiguity of the data), heterogeneity and
redundancy. An approach [11] presented in the RDF Validation Workshop [7]
proposes a simple mechanism for declaring the properties to be used for a class
and a SPARQL based extension for defining more complex constraints. Parallel
to the RDF Validation Workshop results, there have been an increased develop-
ment of new RDF validation methods. Shape Expressions (ShEx) [10] is a domain
specific language for validating and transforming RDF Data. Similar to ShEx,
RDF Data Shapes Working Group has been developing the Shapes Constraint
Language (SHACL) [6] for describing and validating RDF graphs. SHACL allows
us to define constraints targeting specific nodes in a data graph based on their
type, identifier, or a filtering SPARQL query. It is currently investigated that
at what level SHEx can be represented in SHACL, based on the identified simi-
larities and differences4. The rule-based validation of RDF data is an emerging
field, mostly focused around the re-use of prominent standards like SPARQL.
3 https://search.google.com/structured-data/testing-tool.
4 http://shex.io/primer/#rel-to-shacl.

https://search.google.com/structured-data/testing-tool
http://shex.io/primer/#rel-to-shacl

420 U. Şimşek et al.

All of the aforementioned validation approaches are somewhat compatible with
SPARQL. Our approach shows similarities with aforementioned approaches in
terms of using rules for checking consistency of the data and defining constraints
over classes. The works in [6,10] allow us to define “shapes” that constraint types
and instances in terms of subset of properties and expected types for those prop-
erties as well as nested shapes.

We introduce the notion of “domain” and a simple specification of it for
schema.org, which adopts a similar nested definition of constraints that restricts
classes and properties in relation to other classes of which they are expected
types. The concept of selecting a subset of schema.org appears in [5], but to
the best of our knowledge, the domain selection of the editor described there is
limited to the selection of classes. We propose a different domain specification
approach including selecting a subset of properties and restricting the range of
those properties to a subset of subclasses of the range defined by schema.org.
The importance of this restriction is described in Sect. 3.1 in more detail. Addi-
tionally, our validator brings domain definition and semantic consistency rules
together in one holistic tool.

In order to show a concrete example of our motivation for domain specific
validation, we can consider annotation of an event. The Event class of schema.org
vocabulary contains 38 properties including the ones inherited from the Thing
class. Even though this number seems not too high, the properties whose range
is a complex type makes the annotation size unmanageable. Let us take only one
property of the Event class into account: organizer. This property can have values
in the Organization class. If a user starts to annotate an event and its organizer,
she will soon realize that the Organization class itself offers 50 properties. The
amount of properties and classes the user needs to deal with explodes as we
continue. When we define a domain, we can select a subset of properties of the
Organization class as the value of the organizer property, for instance, to only
name and url. This restriction of classes when they are the value of a certain
property will give a clear idea to the user who creates schema.org annotations.

3 Method

In this section, we explain our approach in detail and demonstrate the web based
tool5 that implements it.

Our approach consists of two main parts. First, the definition of a domain
by selecting a subset of classes and properties (Sect. 3.1) as well as a set of
semantic validation rules (Sect. 3.2). Second, the creation and validation of a
schema.org annotation in terms of its completeness regarding the defined domain
and semantic consistency based on the validation rules (Sect. 3.3).

5 http://sdo-validator.sti2.at.

http://sdo-validator.sti2.at

Domain Specific Semantic Validation of Schema.org Annotations 421

3.1 Domain Definition

A domain expert, who has an extensive knowledge in a certain field (e.g.
tourism), defines a domain by selecting a subset of the schema.org vocabulary,
the classes and properties, which is relevant to a certain domain. Moreover, it
can be specified whether a property is required for a concept or allowed to have
multiple values. The domain definition process consists of the following steps:
First, the domain expert selects a subset of schema.org classes. Second, she
specifies the allowed properties for the selected classes, as well as whether they
are optional or allowed to have multiple values. In step three, for every prop-
erty added into the domain, she selects the expected types of the property. She
continues the domain specification by recursively following the aforementioned
steps for complex types (e.g. If the address property of a Hotel is included to the
domain and its expected value type is PostalAddress, the same process should
be applied also for the PostalAdress class) until the domain is complete.

In order to facilitate the domain definition, we developed the Domain Def-
inition Interface (Fig. 1) as a part of our tool. The aforementioned steps can
be applied via the interface to create a domain. After the domain expert com-
pletes the domain, the tool generates a JSON file which contains the domain
specification.

A domain specification consists of classes, that contains properties whose
expected values can be in unrestricted classes (i.e. schema.org/Class) and
restricted classes (e.g. a class with only a subset of its properties). Every
restricted class is based on a schema.org/Class. The expected types of a prop-
erty can also be restricted to a certain subset of their subclasses. Being able
to restrict expected types to a subset of subclasses would be especially use-
ful for properties like schema.org/potentialAction, since its range is the Action
class which is the most generic action. However, for a specific domain, a cer-
tain class may be required to have more specific actions as its potential action
(e.g. The schema.org/potentialAction of the schema.org/HotelRoom class may
be restricted to schema.org/ReserveAction). A concrete example of a domain
can be found in Sect. 4.

3.2 Rule Definition

Rules are created by domain experts. In order to define a rule, the domain expert
first has to select a predefined domain or create a new one. Then she can create
the set of rules applying to the defined domain. A semantic validation rule is a
condition-action rule where an action is triggered when a condition is satisfied.
Since these rules are used for validation, the condition part of a rule must state
the condition that violates the domain requirement and the action part should
contain the action that will be taken when the condition is satisfied (i.e. domain
requirement is violated). Domain experts may use the concepts and properties
that are allowed in the domain definition (Sect. 3.1), Boolean and arithmetic
operations as well as some predefined utility functions. In some cases, rules
might require more complex processing of the data. To achieve this, domain

422 U. Şimşek et al.

Fig. 1. A screenshot from the domain definition interface. Here, a domain expert can
select a subset of properties and define restrictions on them and their expected types

experts can define their own utility function (e.g. a function that looks up for
the international country calling code for a given country). We introduce two
different type of condition-action rules: local consistency and global consistency
rules. Local consistency rules compare the value of a property with a literal value
(e.g. The floor size of a room must be greater than zero). An example of the
local consistency rule is shown in Listing 1.1.

Condition:
HotelRoom.floorSize.QuantitativeValue.value <= 0
Action:
show(" Floor size of a hotel room must be greater

than zero.", Severity:Error)

Listing 1.1. “An informal representation of a local consistency validation rule”

Domain Specific Semantic Validation of Schema.org Annotations 423

A global consistency rule is involved with multiple properties. These prop-
erties can originate from the same class or from different classes. The following
example explains the elements of a global consistency rule: A domain expert may
want to create a validation rule that checks if the international country calling
code of a telephone number is consistent with the country in the postal address.
Such an informal validation rule may look like the Listing 1.2.

Condition:
extractCountryCode(Place.telephone) !=

getCountryCodeByCountry
(Place.address.PostalAddress.addressCountry)

Action:
show("The international country code of the phone

number of the place is not consistent with the
country of the address.", Severity:Error)

Listing 1.2. “An informal representation of a global consistency validation rule”

In the condition part, a utility function called “extractCountryCode” takes
the value of the telephone property of a Place instance as parameter and returns
the international country calling code. Another utility function called “getCoun-
tryCodeByCountry” takes the value of the addressCountry property of a Postal-
Address instance of the same Place instance and returns the international coun-
try calling code for the specified country. If the comparison shows that two values
are not equal, the Action part is triggered. The predefined utility function “show”
displays the reason and the severity of the violation. Rules not only define what
is allowed or what is not, but also gives meaningful correction suggestions like
“The phone number you specified does not match the mentioned country. Is that
really correct?”. These suggestions have to be defined in the rules as well.

Figure 2 shows the first prototype of the rule designer, which is a form based
component of our tool to enable domain experts to create semantic validation
rules. Via this interface, the domain expert can create rule conditions that rep-
resent semantic inconsistencies and suitable error messages to show, in case the
violation conditions are satisfied.

3.3 Annotation and Validation

In order to guide a user who wants to create an annotation in a certain domain,
we generate an annotation editor based on a domain specification and ensure the
completeness of the annotation. An annotation is valid in terms of completeness
if it contains all required properties, none of the unspecified properties, and
correct expected types for the properties defined in the domain and used in the
annotation.

424 U. Şimşek et al.

Fig. 2. Prototypical interface of the Rule Designer

The annotation then can be validated for semantic consistency. The vali-
dation process iterates over all the rules defined and saves the result of the
validation against each rule in a list to be presented to the user. Similar to the
definition of the rules, we distinguish between local and global consistency rules.
Local consistency rules consider the value of only one property, global consis-
tency rules consider the values of several properties, check complex relations
between various properties, and can go over several rules.

Figure 3 depicts the validation interface of our tool, which is used by the
user for validation of an annotation. This interface can validate an annotation
for both completeness and semantic consistency.6 The validator first ensures the

6 For the annotations that are created via the editor based on the domain specification,
only the semantic consistency validation applies.

Domain Specific Semantic Validation of Schema.org Annotations 425

Fig. 3. Validation interface

syntactic correctness of the entries. Then it validates the completeness of the
annotation. If the annotation conforms the domain specification, the validator
iterates over the rules defined in the rule set and warns the user if there is any
semantic inconsistency within the annotation.

426 U. Şimşek et al.

4 Use Case: Annotation of a Lodging Business

In order to demonstrate our approach and implementation, we created the
domain represented in Fig. 4 and semantic validation rule in Listing 1.2 via the
domain definition interface and rule designer depicted in Fig. 2.

In our scenario, a user wants to validate the annotation for Moosleite in
Mayrhofen (Listing 1.3) against the domain specification and semantic validation
rule. When the user enters the domain specification and rule set to the validator
and then validates the annotation, she receives a completeness error. This is
because the domain requires the currenciesAccepted property but the annotation
does not have it.

After the addition of the missing required property to the annotation, the
rule-based validation takes place. The semantic validation rule validates whether
the country code of the phone number is consistent with the country of the
address. Since this is not the case, the user receives the “The international
country code of the phone number of the place is not consistent with the country
of the address.” error message defined in the action part of the rule in Listing
1.2. When the country code of the telephone number is also corrected, the user
receives the confirmation that the annotation is valid.

Fig. 4. A domain definition for lodging businesses

Domain Specific Semantic Validation of Schema.org Annotations 427

{
"@context ": "http :// schema.org",
"@type ": "LodgingBusiness ",
"url": [
"http :// www.tiscover.com/moosleite",
"http :// maps.mayrhofen.at/? foreignResource =E33CFC29
-050E-43D7 -9BB3 -EA937D33FCA4"
],
"address ": {
"@type ": "PostalAddress ",
"postalCode ": "6290" ,
"streetAddress ": "Neu -Burgstall 318",
"addressCountry ": "AT",
"telephone ": "+42 5285 62894" ,
"email ": "eberl.friedl@tirol.com",
"faxNumber ": "0043 5285 62064" ,
"url": "http :// www.tiscover.com/moosleite"
},
"name": "Moosleite",
"description ": "Our house is situated approx. 1.5km from

Mayrhofen , at the edge of the forest and enjoying
wonderful panoramic views.",

"geo": {
"@type ": "GeoCoordinates",
"latitude ": "47.1862746335978" ,
"longitude ": "11.8581855297089"
}
}

Listing 1.3. An example annotation of Moosleite Hotel Mayrhofen. The country
code of the phone number does not match the country of the address and the
currenciesAccepted property is missing.

5 Conclusion and Future Work

The web we know is changing and the only way to remain visible on the new
layer of the web is providing semantically described structured data. Schema.org
is helping us to achieve this goal since 2011 as the de facto standard for describing
things on the web.

We acknowledge that schema.org adopts “some data better than no data”
motto and its data model is imperfect by its nature7. However, it is still impor-
tant to publish high quality structured data that conforms to the schema.org
vocabulary. We aim to help users for achieving this goal with our domain specific
validation approach. In this paper, we introduced a domain specific approach to
validate schema.org annotations. Our approach allows domain experts to spec-
ify a domain based on a subset of schema.org vocabulary as well as validation
rules for semantic consistency. We showed the web based implementation of our
approach alongside a use case in the tourism area.

7 http://schema.org/docs/datamodel.html.

http://schema.org/docs/datamodel.html

428 U. Şimşek et al.

For the future work we will follow the works of different groups, especially the
RDF Data Shapes Working Group, to find out possible alignments between our
approaches. For instance, development in the SHACL shows promising results
and can be utilized for the later implementation of our approach.

Moreover, we are in the processes of advancing the tool that implements our
approach while including the development of more sophisticated rule designer
and validator. We will test our tool in a larger scale in tourism domain within
the next months.

Our approach currently does not consider multi-typed entities, which are
encouraged by the schema.org initiative. For instance, the schema.org hotel
extension [4] suggests that a lodging business should define their rooms as both
schema.org/Room and schema.org/Product in order to conform schema.org spec-
ifications. We will investigate how we can adopt the multi-typed entity notion
in the future work.

References

1. Fürber, C., Hepp, M.: Using SPARQL and SPIN for data quality management
on the semantic web. In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP,
vol. 47, pp. 35–46. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12814-1 4

2. Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data on
the web. Commun. ACM 59(2), 44–51 (2016). http://doi.acm.org/10.1145/2844544

3. Kärle, E., Fensel, A., Toma, I., Fensel, D.: Why are there more hotels in Tyrol than
in Austria? Analyzing Schema.org usage in the hotel domain. In: Inversini, A.,
Schegg, R. (eds.) Information and Communication Technologies in Tourism 2016,
pp. 99–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28231-2 8

4. Kärle, E., Simsek, U., Akbar, Z., Hepp, M., Fensel, D.: Extending the Schema.org
vocabulary for more expressive accommodation annotations. In: Schegg, R., Stangl,
B. (eds.) Information and Communication Technologies in Tourism 2017, pp. 31–41.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51168-9 3

5. Khalili, A., Auer, S.: WYSIWYM authoring of structured content based on
Schema.org. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE
2013. LNCS, vol. 8181, pp. 425–438. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41154-0 32

6. Knublauch, H., Kontokostas, D.: Shapes constraint language (2016). https://w3c.
github.io/data-shapes/shacl/

7. Le Hors, A., Solbrig, H., Prudhommeaux, E.: RDF validation workshop report,
practical assurances for quality RDF data. Technical rep., Cambridge, MA, USA
(2013). https://www.w3.org/2012/12/rdf-val/report

8. Meusel, R., Bizer, C., Paulheim, H.: A web-scale study of the adoption and evo-
lution of the Schema.org vocabulary over time. In: Proceedings of the 5th Inter-
national Conference on Web Intelligence, Mining and Semantics, WIMS 2015, pp.
15:1–15:11. ACM, New York (2015). http://doi.acm.org/10.1145/2797115.2797124

9. Patel-Schneider, P.F.: Analyzing Schema.org. In: Mika, P., et al. (eds.) ISWC 2014.
LNCS, vol. 8796, pp. 261–276. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11964-9 17

https://doi.org/10.1007/978-3-642-12814-1_4
https://doi.org/10.1007/978-3-642-12814-1_4
http://doi.acm.org/10.1145/2844544
https://doi.org/10.1007/978-3-319-28231-2_8
https://doi.org/10.1007/978-3-319-51168-9_3
https://doi.org/10.1007/978-3-642-41154-0_32
https://doi.org/10.1007/978-3-642-41154-0_32
https://w3c.github.io/data-shapes/shacl/
https://w3c.github.io/data-shapes/shacl/
https://www.w3.org/2012/12/rdf-val/report
http://doi.acm.org/10.1145/2797115.2797124
https://doi.org/10.1007/978-3-319-11964-9_17
https://doi.org/10.1007/978-3-319-11964-9_17

Domain Specific Semantic Validation of Schema.org Annotations 429

10. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF
validation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems - SEM 2014, pp. 32–40 (2014)

11. Simister, S., Brickley, D.: Simple application-specific constraints for RDF mod-
els. In: RDF Validation Workshop. Practical Assurances for Quality of RDF
Data, Cambridge, MA, Boston, pp. 1–5 (2013). https://www.w3.org/2001/sw/
wiki/images/0/00/SimpleApplication-SpecificConstraintsforRDFModels.pdf

https://www.w3.org/2001/sw/wiki/images/0/00/SimpleApplication-SpecificConstraintsforRDFModels.pdf
https://www.w3.org/2001/sw/wiki/images/0/00/SimpleApplication-SpecificConstraintsforRDFModels.pdf

Author Index

Artemev, Vasilii 1
Askarpour, Mehrnoosh 12
Avetisyan, Arutyun 28

Baar, Thomas 394
Belevantsev, Andrey 28
Brass, Stefan 43
Buchatskiy, Ruben 375

Carvallo, Pamela 59
Cavalli, Ana R. 59
Chernenkiy, Valeriy M. 72
Chernishev, George 88

Dovgalyuk, Pavel 132
Dragoni, Nicola 95

Ermakov, Mikhail 105

Fedorenko, Yuriy S. 72
Fensel, Dieter 417
Ferrarotti, Flavio 117
Fursova, Natalia 132

Galaktionov, Viacheslav 88
Gapanyuk, Yuriy E. 72
Garanina, Natalia 147
Gorlatch, Sergei 179
Grigorev, Valentin 88
Grinkrug, Efim 163
Gushcha, Anton V. 72

Hagedorn, Bastian 179
Hamfelt, Andreas 306
Haveraaen, Magne 196
Holzknecht, Omar 417

Ivanov, Vladimir 1

Julliand, Jacques 211

Kamkin, Alexander 387
Kärle, Elias 417
Karpenko, Dmitry 364
Khoroshilov, Alexey 256

Klyuchikov, Evgeniy 88
Kondratyev, Dmitry 227
Kononenko, Irina 147
Korj, Dmitriy V. 291
Korovina, Margarita 241
Kouchnarenko, Olga 211
Kudinov, Oleg 241

Lanese, Ivan 95
Larsen, Stephan Thordal 95

Makarov, Vladimir 132
Mallouli, Wissam 59
Mandrioli, Dino 12
Mandrykin, Mikhail 256
Masson, Pierre-Alain 211
Mazzara, Manuel 1, 95
McKeever, Steve 306
Morozov, Sergey 276
Mustafin, Ruslan 95

Nardid, Anatoly N. 72
Nikiforov, Denis A. 291
Novikov, Evgeny 402

Paçacı, Görkem 306
Pak, Vadim 322
Pavlov, Vladimir 322

Rodriges Zalipynis, Ramon Antonio 337
Rogers, Alan 1
Rossi, Matteo 12

Safina, Larisa 95
Savchenko, Valeriy 352
Schewe, Klaus-Dieter 117
Semenov, Vitaly 276
Shachnev, Dmitry 364
Sharygin, Eugene 375
Sher, Arseny 375
Sidorova, Elena 147
Sillitti, Alberto 1
Şimşek, Umutcan 417
Sivakov, Ruslan L. 291

Smirnov, Kirill 88
Stephan, Heike 43
Steuwer, Michel 179
Succi, Giancarlo 1

Tarlapan, Oleg 276
Tatarnikov, Andrei 387
Tec, Loredana 117
Toussaint, Marcel 394

Vasiliev, Ivan 132
Vicentini, Federico 12
Voiron, Guillaume 211
Volkov, Alexander 352

Zakharov, Ilja 402
Zhuykov, Roman 375
Zolotov, Vladislav 276
Zouev, Eugene 1

432 Author Index

	Preface
	Organization
	Contents
	An Architecture for Non-invasive Software Measurement
	1 Introduction
	2 An Architecture for Non-invasive Metrics Collection
	3 Discussion of Architectural Decisions
	4 Use Case: A MacOS Agent Prototype
	5 Related Works on Architectures for Non-invasive Measurement Systems
	5.1 PRO Metrics
	5.2 ElectroCodeoGram
	5.3 Empirical Project Monitor
	5.4 Hackystat

	6 Conclusion and Future Work
	References

	A Human-in-the-Loop Perspective for Safety Assessment in Robotic Applications
	1 Introduction
	1.1 Related Work

	2 Semantic Model
	2.1 ORL-Module Formalizing Operator, Robot and Layout
	2.2 Formalization of Tasks
	2.3 Hazard Definition Module
	2.4 Risk Estimator Module
	2.5 RRMs Module

	3 Overview of Iterative Risk Assessment
	4 SAFER-HRC for a Case-Study
	5 Conclusion
	References

	Multi-level Static Analysis for Finding Error Patterns and Defects in Source Code
	Abstract
	1 Introduction
	2 Lightweight Analysis Level
	3 Interprocedural Analysis Level
	3.1 Intraprocedural Analysis
	3.2 Creating and Applying Function Summaries

	4 Path-Sensitive Analysis Level
	5 Svace Analyzer Collection
	6 Conclusions

	Pipelined Bottom-Up Evaluation of Datalog Programs: The Push Method
	1 Introduction
	2 Query Language
	3 Goal-Directed Query Evaluation with SLDMagic
	4 The Push Method with Procedure Calls
	4.1 Basic Code Structure, Requirements
	4.2 Example, Data Structures for Query Evaluation
	4.3 Duplicate Elimination, Termination
	4.4 Temporary Relations for Complex Rules
	4.5 Code Block for a Rule Activation
	4.6 An Optimization for Complex Rules
	4.7 Remarks About Inlining

	5 Benchmark Results
	6 Related Work
	7 Conclusion
	References

	A Platform for Security Monitoring of Multi-cloud Applications
	1 Introduction
	2 The MUSA Security Assurance Platform SaaS
	2.1 The MUSA Framework
	2.2 The MSAP Inputs
	2.3 Monitoring Agents
	2.4 Preprocessing Module
	2.5 Metrics and Threat Analyzer
	2.6 Service Level Objectives (SLO) Manager
	2.7 Alert Manager and Countermeasures Manager

	3 Case Study: Service Availability in Smart-City Application
	4 Related Work
	5 Conclusion and Future Work
	References

	The Hybrid Multidimensional-Ontological Data Model Based on Metagraph Approach
	Abstract
	1 Introduction
	2 Ontological Approach
	3 Multidimensional Approach
	4 The Idea of Multidimensional and Ontological Approaches Hybridization
	5 The Metagraph Model Definition
	6 The Metagraph Agent Definition
	7 The Representation of Object-Oriented Data Structures in Form of Metagraph
	8 The Hybrid Multidimensional-Ontological Data Model
	9 Predicate Representation of Metagraph Model
	10 Conclusions
	References

	PosDB: A Distributed Column-Store Engine
	1 Introduction
	2 Column-Store Basics
	3 Motivation and Aims
	4 Existing Column-Store Systems
	5 Architecture
	6 Implementation Details
	7 Current State: Present and Missing Features
	8 Conclusion
	References

	Microservices: How To Make Your Application Scale
	1 Introduction
	2 Scalability
	3 The Language Choice
	4 Applications
	5 Microservices and Beyond
	References

	Static Binary Code Instrumentation for ARM Architecture
	1 Introduction
	2 Instrumentation Framework Overview
	2.1 Input Specifications
	2.2 Instrumentation Code Generation

	3 Working with ELF Files
	4 Inserting Instrumentation Code
	4.1 Code Linkage

	5 Practical Evaluation
	6 Conclusion
	References

	A Behavioural Theory for Reflective Sequential Algorithms
	1 Introduction
	2 Reflective Algorithms and Their Axiomatisation
	2.1 Reflective Sequential Time Postulate
	2.2 Reflective Abstract Extended-State Postulate
	2.3 Reflective Bounded Exploration Postulate
	2.4 Reflective Sequential Algorithms and Behavioural Equivalence

	3 Reflective Abstract State Machines
	4 The Reflective Sequential ASM Thesis
	5 Conclusion
	References

	Lightweight Non-intrusive Virtual Machine Introspection
	1 Introduction
	2 Reusing ABI for Virtual Machine Introspection
	2.1 System Call Monitoring
	2.2 Execution Context

	3 Introspection Plugins for QEMU
	3.1 Simulator Events for Plugins
	3.2 Guest Code Instrumentation
	3.3 File Monitoring
	3.4 Mapping Files to the Memory
	3.5 API Monitoring
	3.6 Process Monitoring

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	A Distributed Approach to Coreference Resolution in Multiagent Text Analysis for Ontology Population
	1 Introduction
	2 Problem Statement and Base Definitions
	3 The Coreference Resolution in the Multiagent Information Extraction
	4 Conclusion
	References

	A Framework for Dynamical Construction of Software Components
	Abstract
	1 Introduction
	2 Motivation
	3 Component Interface and Implementation
	4 Hardcoded Component Implementation
	5 Prototype Construction
	5.1 Prototype Interface Construction
	5.2 Prototype Implementation Construction
	5.3 Protoinstance Functionality

	6 Composed Type Instance Implementation
	7 Related Works
	8 Conclusion
	References

	A Transformation-Based Approach to Developing High-Performance GPU Programs
	1 Motivation and Related Work
	2 Our Approach: Patterns and Transformations
	3 Algorithmic Patterns and Rewriting
	3.1 High-Level Algorithmic Patterns
	3.2 Algorithmic Rewrite Rules
	3.3 Transformation Using Algorithmic Rewrite Rules

	4 OpenCL-Specific Patterns and Rewriting
	4.1 Exploiting the Thread Hierarchy Using Low-Level Map Patterns
	4.2 Exploiting the Memory Hierarchy Using Low-Level Patterns
	4.3 Using Low-Level Patterns to Implement High-Level Reduction
	4.4 Code Generation

	5 Evaluation
	6 Conclusion
	A Additional Rewrite Rules
	B Proof of a Rewrite Rule
	C Derived Low-Level Reduction Programs
	References

	Domain Engineering the Magnolia Way
	1 Introduction
	2 Domain Expertise
	3 Running Example: 101 Companies
	4 Steps in a Domain Engineering Process
	4.1 Step 1: Finding the Signature
	4.2 Step 2: Formalising the Specification
	4.3 Step 3: Refining the Domain Concepts
	4.4 Step 4: Library Development and Architecture Design
	4.5 Step 5: Application Development

	5 Conclusion
	References

	Approximating Event System Abstractions by Covering Their States and Transitions
	1 Introduction
	2 Background
	2.1 Model Syntax and Semantics
	2.2 Predicate Abstraction
	2.3 May Transition Systems

	3 Illustrative Example: An Electrical System
	4 Abstraction and Approximated Transition System Computation
	5 Heuristics for Better Abstraction Coverage
	5.1 Events and States Ordering
	5.2 Concrete States Coloration

	6 Implementation and Experimentation
	6.1 About the Tool
	6.2 Experimental Results
	6.3 Analysis of the Obtained Results

	7 Related Work
	8 Conclusion and Further Work
	References

	Implementing the Symbolic Method of Verification in the C-Light Project
	1 Introduction
	2 Theoretical Background
	2.1 Deductive Program Verification
	2.2 The Extensions of the VCG

	3 The Essence of Symbolic Method
	4 Towards Verification of Linear Algebra Programs
	5 The Experiment
	6 Conclusion
	References

	Highlights of the Rice-Shapiro Theorem in Computable Topology
	1 Introduction
	2 Preliminaries
	2.1 Recursion Theory
	2.2 Weakly Effective -continuous Domains
	2.3 Effectively Enumerable T0-spaces
	2.4 Computable Elements

	3 The Rice-Shapiro Theorem for Modular T0-spaces
	4 The Rice-Shapiro Theorem for CPS
	4.1 A Weak version of the Rice-Shapiro theorem for CPS
	4.2 Towards a Non-uniform Rice-Shapiro Theorem

	5 Conclusion
	References

	A Memory Model for Deductively Verifying Linux Kernel Modules
	1 Introduction
	2 Overview
	3 Region-Based Memory Modeling
	3.1 Basic Idea
	3.2 Soundness/Precision Trade-Off
	3.3 User-Guided Separation Analysis

	4 The Core Language
	4.1 Translation of C

	5 Soundness
	6 Completeness
	7 Annotation Overhead
	8 Framing
	9 Conclusion
	References

	Indexing of Hierarchically Organized Spatial-Temporal Data Using Dynamic Regular Octrees
	1 Introduction
	2 Scene Data Model
	3 Scene Indexing Structures
	4 Theoretical Study
	5 Experimental Study
	6 Conclusions
	References

	An Approach to the Validation of XML Documents Based on the Model Driven Architecture and the Object Constraint Language
	1 Introduction
	2 Overview of Analogues
	3 Proposed Generalized Validator Generation Scheme
	3.1 Transformation of PIM from Textual to Ecore Representation
	3.2 Transformation of PIM to PSM
	3.3 Transformation of PSM from an Ecore Representation to a Textual One
	3.4 Summary

	4 Features Distinguishing Our Approach from Its Analogues
	4.1 Different Source PIMs
	4.2 Different Target XPath Host Languages
	4.3 External Data Sources
	4.4 Determination of XML Elements Subject to Validation
	4.5 Preconditions
	4.6 Kinds of Validation Messages

	5 Conclusion
	References

	Compositional Relational Programming with Name Projection and Compositional Synthesis
	1 Introduction
	2 Compositional Relational Argument Binding Problem
	3 Combilog with Name Projection (CNP)
	3.1 Name-Aware Tuples and Extensions
	3.2 Elementary Predicates
	3.3 Projection Operator
	3.4 Logic Operators
	3.5 Recursion Operators
	3.6 Fixpoint Semantics

	4 Usability of CNP Programs
	5 Compositional Synthesis
	6 Conclusion
	References

	WhaleProver: First-Order Intuitionistic Theorem Prover Based on the Inverse Method
	1 Introduction
	2 The Inverse Method
	3 Main Definitions and Notational Convention
	4 Multi-Succedent Inverse Method Calculus for the First-Order Intuitionistic Logic
	5 Proof Search Strategies
	5.1 Subsumption Strategy
	5.2 Subsumption Strategy (Reformulation)
	5.3 Reduction Strategy
	5.4 Trivial Contraction Strategy
	5.5 Removing Inadmissible Sequents Strategy
	5.6 Singular Sequent Strategy for the Multi-Succedent Calculus
	5.7 Combining Strategies
	5.8 Example

	6 WhaleProver and Experiments on the ILTP Library
	7 Conclusion
	References

	Distributed In Situ Processing of Big Raster Data in the Cloud
	1 Introduction
	2 ChronosServer
	2.1 ChronosServer Multidimensional Array Model
	2.2 ChronosServer Datasets
	2.3 ChronosServer Architecture
	2.4 GROUP–APPLY–FINALLY (GAF)
	2.5 New Delegation Approach

	3 Array Operations
	3.1 Aggregation
	3.2 Hyperslabbing
	3.3 Reshaping
	3.4 Chunking

	4 Performance Evaluation
	4.1 Experimental Setup

	5 Related Work
	6 Conclusions
	References

	Statistical Approach to Increase Source Code Completion Accuracy
	1 Introduction
	2 Language Model
	2.1 N-gram Model

	3 Programming Language Model
	3.1 AST Nodes
	3.2 Candidate Sorting

	4 Smoothing
	4.1 Interpolated Model
	4.2 Optimal Coefficients
	4.3 Kneser-Ney Smoothing

	5 Implementation
	6 Evaluation
	6.1 Theta Function
	6.2 Results

	7 Conclusion and Further Work
	References

	Using the Subject Area Ontology for Automating Learning Processes and Scientific Investigation
	1 Goals of the Work
	1.1 Previous Works in This Area

	2 The ISTINA System
	3 Structure of the Ontology
	4 Building the Ontology
	4.1 The Ontology Editor
	4.2 Technical Implementation of the Ontology Store
	4.3 Automatic Suggestions

	5 Applications
	5.1 Searching for Works and Authors
	5.2 Anti-plagiary Text Analysis
	5.3 Generating Collections of Test Exercises
	5.4 Building the Knowledge Map for a Student
	5.5 Generating the Individual Learning Trajectories
	5.6 Adding More Detail into the Working Programs of High Schools

	6 Conclusion
	References

	Runtime Specialization of PostgreSQL Query Executor
	1 Introduction
	2 Online Partial Evaluation for LLVM
	3 Offline Partial Evaluation for LLVM
	3.1 Representation of Binding Times in LLVM IR
	3.2 Binding-Time Analysis
	3.3 Specialization

	4 Runtime Specialization of PostgreSQL Query Executor
	5 Conclusion
	References

	MicroTESK: A Tool for Constrained Random Test Program Generation for Microprocessors
	1 Introduction
	2 Related Works
	3 MicroTESK Approach
	3.1 Key Requirements
	3.2 MicroTESK Architecture
	3.3 Modeling Framework
	3.4 Testing Framework

	4 Practical Application
	5 Conclusion
	References

	Enriching Textual Xtext-DSLs with a Graphical GEF-Based Editor
	1 Introduction
	2 Basic Concepts
	2.1 The Open Source Framework Xtext
	2.2 The Graphical Editing Framework (GEF)

	3 Implementing a GEF-Based Editor to Create DSL Models
	3.1 Architecture of the Editor Application
	3.2 Utilizing AST Classes as Content Model
	3.3 Synchronizing the Textual DSL Model and the Graphical GEF Model

	4 Related Work
	5 Conclusion and Future Works
	References

	Towards Automated Static Verification of GNU C Programs
	1 Introduction
	2 Static Verification Background
	2.1 Target Programs
	2.2 Checking Requirements
	2.3 Analysis Accuracy
	2.4 Performance and Scalability
	2.5 Environment Modeling and Checking Program Fragments
	2.6 Tools Execution
	2.7 Formal Confirmation and Manual Analysis of Results

	3 Automating Static Verification of GNU C Programs
	3.1 Decomposition of Programs
	3.2 Verification Tasks Generation
	3.3 Verification Tasks Solution and Results Processing
	3.4 User Interface

	4 Implementation
	5 Related Work
	6 Conclusion
	References

	Domain Specific Semantic Validation of Schema.org Annotations
	1 Introduction
	2 Related Work and Motivation
	3 Method
	3.1 Domain Definition
	3.2 Rule Definition
	3.3 Annotation and Validation

	4 Use Case: Annotation of a Lodging Business
	5 Conclusion and Future Work
	References

	Author Index

