Constructive Interaction on Collaborative
Programming: Case Study for Grade 6
Students Group

Sayaka Tohyamal(%), Yoshiaki Matsuzawa®, Shohei Yokoyamal,
Teppei Koguchi', and Yugo Takeuchi'

! Shizuoka University, 3-5-1 Johoku, Naka-ku,
Hamamatsu-shi, Shizuoka, Japan
toyama. sayaka@shizuoka. ac. jp
2 Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku,
Sagamihara-shi, Kanagawa, Japan

Abstract. Recent learning sciences have revealed some of the mechanisms of
how people learn through interactions in collaborative educational settings. In
this research, we tried to capture the nature of constructive interaction by
in-depth qualitative analysis of the discourse in a programming learning envi-
ronment. The analyzed group was comprised of three female students, all in the
sixth grade, who engaged in making an animation using Scratch. However, they
had trouble with their object modelling during the task. Through their
problem-solving procedure, the students attempted externalizations of their
solution ideas, and these interactions promoted their understanding of the
problem through the iterative process of each individual. Working collabora-
tively, the three students used various procedures to solve their shared
object-modelling problems.

Keywords: Collaborative learning - Programming - Computational thinking
K-12 - Constructive interaction

1 Introduction

Computing education with “Computational Thinking” [1] is not only growing as a
research field but is also being addressed as a political and common issue all over the
world [2]. To develop computing competencies during the early stage of citizens’ lives,
many countries start compulsory programming education in grades K—12. They have
been discussing what should be taught [3, 4] as Computational Thinking at this level
for all citizens living in a 21st century knowledge-based society.

There is a consensus between researchers that the movement of computing edu-
cation is a revival of the 1980s programing education conducted using Logo [5]. The
origin of programming education with Logo by Papert, who coined the term “com-
putational thinking” [6], was not primarily intended to develop programming skills but
to open a new method of learning mathematics through programming. By preparing
situated environments, children could construct their ideas by directly operating them
in a situated world [7]. Kay expanded the application of the idea from mathematics to

© IFIP International Federation for Information Processing 2017

Published by Springer International Publishing AG 2017. All Rights Reserved

A. Tatnall and M. Webb (Eds.): WCCE 2017, IFIP AICT 515, pp. 589-598, 2017.
https://doi.org/10.1007/978-3-319-74310-3_59

590 S. Tohyama et al.

various other disciplines [8]—he called it “dynamic media”—in which programming is
considered basic literacy in a computing society where citizens are using computers as
meta media [9]. This dream was inherited to the latest programming environments for
kids, Scratch, which is the direct successor of Squeak and Logo.

Many works exploring the effects of programming education with Logo were done
by cognitive science researchers in the ‘80s and ‘90s. At that time, synonyms for
computational thinking included powerful thinking or higher order problem-solving
skills, with the key issue being whether programming experiences developed such
skills. While we assume “programming” to be a cyclic process comprised of modelling,
planning, coding, and the evaluation (debugging) process, it is considered a complex,
ill-structured task. As expert programmers can integrate the knowledge of generic
algorithm-construction and that of programming language [10], they are assumed to
possess high cognitive skills. Actually, they showed a higher level of generic
problem-solving skills, such as the decomposition or inferring of problems [11].
Accordingly, programming was expected to develop one’s cognitive skills.

Despite the limited numbers, there are a few works that show evidence of devel-
oping transferrable competencies through programming. Lawler succeeded in illus-
trating the development process of a 6-year-old child’s cognitive strategy for
calculation through Logo programming experiences [12], albeit within the limitations
of single-subject research. Clements and Gullo conducted an experimental study
between a CAI and a programming group. The results supported that the programming
experiences developed students’ creative-thinking, reflectivity, and cognitive skills
[13].

However, many reports have appeared to show some results that contradict the
expectation of programming education. In particular, Pea and Kurland [14, 15] criti-
cized developing transferrable cognitive skills by programming, based on their results.
Webb et al. tackled analyzing the problem-solving strategies in a group programming
process [16, 17]. Pair of children (aged 11-14) learned programming using BASIC.
Although the results were not negative, they did not succeed in finding clear evidence
of advancing children’s planning skills.

This issue in programming education has been controversial since the 1980s, as
discussed above; however, there has been remarkably little research conducted after
2000. Consequently, we remain at the 1980s level of discussion in the cognitive study
of programming education, despite the improvement of the programming environment
[18] and studies from cognitive science and the “learning sciences”.

From these points of view, firstly, we suggest the use of Scratch. Scratch, is a
visualized programming environment that is broadly used by practitioners and
researchers in programming workshops. Scratch may better enhance students’ focus on
higher level problem-solving than the text coding. Secondly, we focused on collabo-
rative learning. For this reason, the handbook of collaborative learning was published
[19], and PISA started an assessment of collaborative problem solving in 2015 [20].
From the trend of collaborative learning, Constructive Interaction (CI) [21] is a key
reason for our choice of a collaborative setting in this study. Not only is the CI analysis
method capable of revealing an iterative, progressive problem-solving process, but
participants deepened their own understandings when CI occurred in their discussions.
Miyake pointed out that CI is well produced if the participants externalize their own

Constructive Interaction on Collaborative Programming 591

understandings and the depths of their understandings differed. In this paper, the key
suggestion is that there are levels of understanding, and the difference in these levels
helps the participants deepen their understanding.

We intend to contribute to the pursuit of a modern version of Webb’s work [16, 17]
using the viewpoints of Miyake’s work [21]. Webb’s paper discussed concerns about
familiarity with and the students’ typing skills as reasons for why they could not
observe quality interactions. Higher-level problem-solving interactions can be expected
if we add CI points of view.

Toward the goal of clarifying the mechanism for problem solving in programming,
we attempted a qualitative analysis of collaborative programming that enhances the
externalization of the participants’ different levels of understanding using Scratch.

2 Method

2.1 Programming Workshop

We held a one-day collaborative programming workshop for elementary school stu-
dents. The participants were 16 sixth-grade students who responded to the request for
participation issued at Hamamatsu Elementary School, which is attached to the Faculty
of Education, Shizuoka University (8 boys, 8 girls; 4 of the students had no pro-
gramming experience). We conducted the workshop at the school, on August 9, 2016,
using iPads. We installed the app “Pyonkee” on the iPads and distributed one iPad to
each student.

Based on constructionism, we designed the workshop so as to encourage students
to express their creative ideas in their own ways. We avoided a training design that
focuses solely on fostering accurate and impressive coding skills.

To encourage collaborative programming, we asked the students to form teams and
to produce a single work from each team. We allowed the students to form their teams
themselves. The students formed five three-person, unisex teams.

Table 1 shows the flow of the workshop. We first conducted a preliminary ques-
tionnaire survey (four-point scale) to ascertain the students’ programming experience,
their impressions of programming, and their attitudes toward collaborative learning.
Next, each team produced a storyboard design sheet for the program to externalize their
work designs, and the teams presented their diagrams to each other. The team members
then wrote a program to implement what they envisaged on their team’s storyboard
design sheet. Finally, the teams presented their programs to each other and completed a
feedback questionnaire. The feedback questionnaire was identical in content to the
preliminary questionnaire (see Table 1).

We recorded the students’ activities in the workshop using a video camera and
audio recorder. During the programming process, we projected the screen content of
the students’ iPads onto a projector using Apple TV and recorded the projected images
using a video camera.

592 S. Tohyama et al.

Table 1. Timetable of the workshop

Time Contents

10:00-10:50 | Preliminary questionnaire, guidance
11:00-12:00 | Drawing storyboard design sheet
13:00-15:15 | Programming

15:15-15:45 | Presentation

15:45-15:55 | Feedback questionnaire

2.2 Programming Environment: Pyonkee

Figure 1 shows Pyonkee’s operation screen. It works in almost the same manner as
Scratch. Scratch is an environment for object-oriented programming in which users can
issue motion instructions to objects (an example of an object is the character at the top
right of Fig. 1). Pyonkee allows users to create a range of works, including moving
picture shows and shooter games. In Pyonkee, the protagonist and his/her environment
(the ground, the sky, etc.) are treated as “objects.” Multiple objects can move corre-
spondingly. If we use two objects, they will impact each other using “message-
passing.” The programs are written by selecting pre-prepared blocks of code and
arranging them into as many combinations as desired.

Pyonkee also allows users to create objects as backgrounds (the stage). In Pyonkee,
the entire stage is treated as a single object.

BE L
RreB | WX3
bt

OHEWST
Vip3ET OFEEW
RTOWELDHSD

[pouvsEhRES

BOCESENSEDS
&8 =izl ERWTHD
=212 BosascLr | B L]
3575 - D2 81215 < 3 2R [OeUied

BEMTS

e B TOERD
(3 £ 00 B £
o ER

FURE Y TOXRY
7Y% () BPMICT]

‘. FuK
.

Fig. 1. Pyonkee

Constructive Interaction on Collaborative Programming 593

2.3 Analytical Sample

Of the children who participated in the workshop, we focused on one of the five
groups. There were three girls in this group (X, Y, and Z). In the questionnaires, these
three girls exhibited a different trend than those of the other teams. Specifically, the
girls’ average score for the question, “Does programming feature in your daily life?”
improved by 1.5 points in the feedback survey compared to the preliminary survey
(change in the overall mean score for this question was 0.2 points).

These girls had participated in a previous programming workshop that we con-
ducted. X conducted most of the programming operations on the iPad without any
suggestions from the supervisors or the other girls (Y and Z).

2.4 Analytical Method

To analyze the girls’ activity qualitatively, we transcribed their discourse and opera-
tions on the iPad. We split the discourse into 236 utterances made by mouth, and we
wrote each utterance into lines of the transcript.

The girls’ programming progress culminated in the completion of their program
according to their storyboard design sheet (see Fig. 2). They told the story of a
climbing experience during school camp. The storyboard design sheet comprised three
situations: the protagonist started climbing, it started to rain mid-climb, and the pro-
tagonist slipped on muddy tracks while climbing.

2.5 Focused Situation

We focused on the third situation (the protagonist slipped) because it required using the
message-passing technique to depict the protagonist, rain, and ground simultaneously.
The girls took about 40 min to complete their program.

_ Our climbing experience in the camp

P \
1\-/ Start climbing \

£ 7 ™ = 3
7o it starts i (\ -~ We felt the
<) to rain v& now = 5 ‘/— > ha,rshness

s -/ of nature!

T
/‘) Slip on ol ik / \ s -
\=/ muddy tracks ' \J‘_ﬁ

75
Fig. 2. Storyboard design sheet designed by X, Y and Z

2.6 Levels

We defined “levels” to depict how the girls’ programming completion levels raised on
the third situation qualitatively. To distinguish each level, we checked the existence of
objects, separation between each object, and appropriateness of rotations of each

594 S. Tohyama et al.

object. Five levels were defined, and a higher number of levels indicate a higher state of
program completion. Level 1 showed only the protagonist; Level 2 included all of the
objects but not appropriate rotation of the rain and the ground because they were not
separated from the protagonist; Level 3 did not include the ground; Level 4 had all of
the objects, but the ground was not separated from the protagonist; and Level 5 showed
the third situation perfectly.

2.7 Phases

According to time series, we divided the girls’ transcript into “phases” to summarize
their activities. We separated the phases based on which level was focused on by each
girl. We did not consider whether their program had been completed or not because we
focused on the girls’ viewpoints. The transcript was split into 27 phases.

Table 2. Levels of the girls’ programming (v means the object exists, +means correct rotation
of the object, - means incorrect rotation of the object)

Levels execution results protagonist ground rain| protagonist ground rain

Y(\
1 g 3 v +

o

2 v v v + - _

3 v v + +

4 v v v| + -+

5 v v v + + +

Constructive Interaction on Collaborative Programming 595

3 Results

3.1 Summary

First of all, the girls began trying the command of rotation (see Level 1 in Table 2).
Then, they depicted the protagonist, the ground, and the rain, as if these three were one
object, and gave commands such as “turn 30 degrees.” As a result, they failed to get the
protagonist to turn independently from the background (see Level 2 in Table 2). The
girls discussed why the protagonist and the ground turned, and eventually they were
able to separate the protagonist from the background.

In the activity, the girls showed different trends. X initially remained at Level 1, and
then moved between levels 1 and 5. Y was alongside X from Phases 8 to 20. Z mainly
focused on Level 5 and did not say much. We will show these trends in Fig. 3.

3.2 Detailed Analysis

Referring to Table 2, we analyzed the utterances and programming actions of X, Y, and
Z and plotted the results of this analysis onto a graph (see Fig. 3). We divided the
above phases into four scenes according to their activity trends to create an outline. The
orange circles in Fig. 3 indicate that programming was executed in that phase.

Scene 1: X struggled by herself (Phases 1-6)

X was separated from Y and Z. Y and Z repeatedly explained the desired program
motion (Level 5) as depicted in their storyboard design sheet. X attempted to imple-
ment their ideas using Pyonkee. However, she failed to make a complete program for
the desired motion, and Y and Z conveyed their opinions.

Scene 2: X and Y shared the problem (Phases 7-12)

X raised an issue with Y in the form of a question, saying “Hey Y? There’s
something that doesn’t work.” She then made the following Level 5 utterance: “We
should not put the background in when the protagonist is climbing; the background
should only be there when the protagonist is slipping” (Phase 9, Level 5). Y responded:
“So I guess it should just be the protagonist that moves?” (Phase 10, Level 5). X then
restated her utterance, saying, “We should only put the background in here (when the
protagonist is slipping)” (Phase 12, Level 5). However, these ideas were not incor-
porated into the program during this scene.

Meanwhile, Z was focusing more on the background than on the protagonist. She
reminded the others about the background, saying, “I want the background to be rain”
(Phase 11, Level 3).

Scene 3: X and Y compromised (Phases 13-20)

Despite Z’s reminder, X modified the program in such a way that the protagonist
alone slipped (no ground). This was not the result that even X intended. Y again
pointed out that the execution result differed from the storyboard design sheet. Then, Y
joined X in the iPad operation, and they collaborated to erase the ground from the
protagonist object (Phases 14-18).

596 S. Tohyama et al.

After some discussion between X and Y—with X around Level 2 and Y around
Level 5—they edited the program so that the protagonist slipped along the ground in
the rain (Level 3). Even though the program was incomplete, X and Y expressed
satisfaction with this result to Z, saying, “Not bad, is it?”” (Phases 19 and 20).

Scene 4: Clarified the Goal (Phase 21-27)

Z, who was acting as a monitor from Phases 1 to 21, pointed out that there was still
a discrepancy between the program and the storyboard design sheet: “When the pro-
tagonist slips, there needs to be ground there; without any ground, I cannot understand
that the protagonist has slipped on a muddy track!” In response, X drew ground
beneath the protagonist, but the ground also turned along with the protagonist. Y dis-
agreed with the results because the ground should be flat. In an attempt to correct this
fault, X erased the ground beneath the protagonist. Then, Z intervened again, saying
“Now there’s no ground... you got rid of the ground? Why did you do that?” In
response, X drew the ground as a background, which means the protagonist was
separated from the ground. Consequently, they completed a program that matched their
storyboard design sheet.

O : execution of their program

Levels

3 A ——y
: -2
]
1 ==X
! I
2 : '
L |
. |
! I
1 (%) 1 |
123456'7891011121314151617181920'21222324252627
' 2)XandY !
ndY | 4)They clarifi
! sharedthe ' 3) Xand) They clarified

separated ! ! compromised their goal

problem

Fig. 3. Levels of the girls’ viewpoints in each phase

4 Discussion

In conclusion, CI was observed because the completeness of the program was even-
tually getting higher through the discussion between the task-doer (X) and the monitors
(Y, Z). The girls gradually noticed their problems by observing the execution results,
solved their problems by discussing them with each other, and eventually raised the
program’s completion level. These problems were not identified by the task-doer
(X) but by the monitors (Y and Z).

Constructive Interaction on Collaborative Programming 597

As we showed in the example of the discussion, collaborative programming is
effective in avoiding the downsizing of goals to match what the learners can do.
A statement such as, “There we are. I think it’s complete now,” which we observed in
the third scene, is far from rare in a Constructionism-based workshop. In that case,
collaborators (often monitors) deny downsizing because the monitor still strives to
complete the program as planned. The monitor then contributes to raising their pro-
gram’s completion level.

Programming has the potential to foster in children a tenacious learning attitude.
However, such a learning attitude would never take root if the learner gives up, as in
the above example, and sets their sights on a lower goal. From that point of view,
collaborative programming has the potential to elevate the activity of programming and
to foster children’s creativity. Based on this perspective, the process analysis that we
conducted in this study might serve as a measure for assessing children’s collaborative
programming processes.

5 Conclusion and Future Directions

According to our analysis, it is possible to identify the challenges and difficulties
children face in programming. The girls encountered difficulties even though they were
only distinguishing (not coding) the objects in our analysis. Furthermore, even after
separating the ground and rain from the protagonist, the girls still had to undergo a
number of trial-and-error iterations. We think that the reason that the girls raised their
completion level of their program is that they continued their endeavor from the
viewpoint of asking, “Why has it gone wrong?”

In the example, there were a number of problems that needed to be resolved in
order to complete the program. Most often, the person who identified these problems
was not the one who engaged directly in the problem-solving operations (who in this
case was X), but it was rather the person who closely observed the problem-solver’s
work (in this case, Y and Z). According to Shirouzu et al. [22], monitors are better at
observing the task objectively than is a task-doer. Kent argued that pair programming
improves productivity [23]. This is probably because the strategy of having a task-doer
and monitor exchange opinions from their respective positions works effectively.

As the mechanism of CI, a single person notices ambiguous points in his/her
thinking when another person asks questions. These questions encourage the task-doer
to reconsider the matter in order to resolve such ambiguity, and it encourages him or
her to achieve a deeper understanding. In a sense, programming has the potential to
enhance the mechanism of CI because it requires the externalization of one’s thinking.

A limitation of this study is that the analysis focused only on one team. In the
future, we intend to create an assessment method for evaluating teams that produce
different kinds of work and to use this method for evaluating the workshop.

Acknowledgments. This study received funding from Shizuoka University’s Takayanagi
Memorial Future Technology Creation Fund and a JSPS Grant-in-Aid for Scientific Research
(KAKENHI; No. 26280129, 17K17786). In addition, we were able to implement the study owing to
the support of Koji Tominaga, a teacher at Hamamatsu Elementary School, attached to the Faculty
of Education, Shizuoka University. We would like to express our sincere appreciation to him.

598

S. Tohyama et al.

References

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

. Wing, J.: Computational thinking and thinking about computing. Philos. Trans. Roy. Soc.

A 366, 3717-3725 (2008)

. Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K.: Developing

computational thinking in compulsory education-implications for policy and practice
(No. JRC104188). Joint Research Centre (Seville site) (2016)

. Lye, S., Koh, J.: Review on teaching and learning of computational thinking through

programming: what is next for K-12? Comput. Hum. Behav. 41, 51-61 (2014)

. Barr, V., Stephenson, C.: Bringing computational thinking to K-12: what is involved and

what is the role of the computer science education community? ACM Inroads 2(1), 48-54
(2011)

. Tedre, M., Denning, P.: The long quest for computational thinking. In: Proceedings of the

16th Koli Calling Conference on Computing Education Research, pp. 120-129 (2016)

. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, New York

(1980)

. Papert, S.: Situating Constructionism. In: Harel, 1., Papert, S. (ed.) Construtionism, pp. 1-12

(1991)

. Papert, S.: Perestroika and epistemological politics. In: Harel, 1., Papert, S. (eds.)

Construtionism, pp. 13-28 (1991)

. Kay, A., Goldberg, A.: Personal dynamic media. Computer 10(3), 3141 (1977)
. Nickerson, R.S.: Computer programming as a vehicle for teaching thinking skills. Think.

J. Philos. Child. 4, 4248 (1982)

Hayes-Roth, B., Hayes-Roth, F.A.: A cognitive model of planning. Cogn. Sci. 3, 275-310
(1979)

Lawler, R.W.: The progressive construction of mind. Cogn. Sci. 5, 1-30 (1981)
Clements, D.H., Gullo, D.F.: Effects of computer programming on young children’s
cognition. J. Educ. Psychol. 76(6), 1051-1058 (1984)

Pea, R.: Logo programming and problem solving. Paper Presented at Symposium of
American Educational Research Association (1983)

Pea, R., Kurland, D.: On the cognitive effects of learning computer programming. New Ideas
Psychol. 2(2), 137-168 (1984)

Webb, N.M.: Microcomputer learning in small groups: cognitive requirements and group
processes. J. Educ. Psychol. 76, 1076-1088 (1984)

Webb, N.M., Ender, P., Lewis, S.: Problem-solving strategies and group processes in small
groups learning computer programming. Am. Educ. Res. J. 23(2), 243-261 (1986)
Brennen, K., Resnick, M.: New frameworks for studying and assessing the development of
computational thinking. In: Annual Meeting of the American Educational Research
Association (2012)

Hmelo-Silver, C.E., Chinn, C.A., Chan, C.K.K., O’donnell, A., (eds.): The International
Handbook of Collaborative Learning. Routledge, New York (2013)

OECD: PISA 2015 Collaborative Problem Solving Framework. OECD Publishing (2013)
Miyake, N.: Constructive interaction and the iterative process of understanding. Cogn. Sci.
10(2), 151-177 (1986)

Shirouzu, H., Miyake, N., Masukawa, H.: Cognitively active externalization for situated
reflection. Cogn. Sci. 26(4), 469-501 (2002)

Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn.
Addison-Wesley Professional, Boston (2004)

	Constructive Interaction on Collaborative Programming: Case Study for Grade 6 Students Group
	Abstract
	1 Introduction
	2 Method
	2.1 Programming Workshop
	2.2 Programming Environment: Pyonkee
	2.3 Analytical Sample
	2.4 Analytical Method
	2.5 Focused Situation
	2.6 Levels
	2.7 Phases

	3 Results
	3.1 Summary
	3.2 Detailed Analysis

	4 Discussion
	5 Conclusion and Future Directions
	Acknowledgments
	References

