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Abstract In this paper, we introduce the notion of a ring of fuzzy points, and study
some basic properties and the relationship between this set and the classical ring R.
We also define the fuzzy polynomial rings and fuzzy algebraic elements.
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1 Introduction

The concept of fuzzy sets was introduced by Zadeh [8] in 1965, which is a general-
ization of the crisp set. Since its conception, the theory of fuzzy set has developed in
many directions and is finding applications in a wide variety of fields. Rosenfeld [7]
used this concept to develop the theory of fuzzy subgroup. Liu [2] introduced the
concept of fuzzy ring in 1982. Pu and Liu [6] introduced the notion of fuzzy points,
Kyung ho kim [1] discussed the relation between the fuzzy interior ideals and the
semigroup R the subset of all fuzy points of R. Based on these researches we have
developed the notion of rings on the set of points defined by Pu and Liu [6]. We have
also introduced and discussed the notion of polynomials on this ring.

Here is the summary of the paper. In Sect. 3, we define the subring consisting the
set of all fuzzy points and discuss some basic properties of this ring. Based on the
ring defined in Sect. 3, we introduce and investigate the fuzzy polynomial rings in
Sect. 4.

S. Melliani · I. Bakhadach (B) · L. S. Chadli
LMACS, Laboratoire de Mathématiques Appliquées & Calcul Scientifique,
Sultan Moulay Slimane University, 523, 23000 Beni Mellal, Morocco
e-mail: idris.bakhadach@gmail.com

S. Melliani
e-mail: said.melliani@gmail.com

L. S. Chadli
e-mail: sa.chadli@yahoo.fr

© Springer International Publishing AG 2018
A. Badawi et al. (eds.), Homological and Combinatorial Methods
in Algebra, Springer Proceedings in Mathematics & Statistics 228,
https://doi.org/10.1007/978-3-319-74195-6_8

89



90 S. Melliani et al.

2 Preliminaries

In this section, we recall some definitions and results whichwill be used in the sequel.

Definition 1. [8] Let E be a non-empty set. A fuzzy subset of the E is a function
μ : E → [0, 1].
Definition 2. [5] Let μ be a fuzzy subset of E . For α ∈ [0, 1], define μα as follows:

μα = {x |x ∈ R,μ(x) ≥ α}.

μα is called the α-cut (or α-level set ) of μ.

Property 1. [5] Let μ, ν ⊂ R be a fuzzy subsets. Then we have

1. μ ⊆ ν,α ∈ [0, 1] =⇒ μα ⊆ να,

2. α ≤ β α,β ∈ [0, 1] =⇒ μβ ⊆ μα,

3. μ = ν,⇔ μα = να, for each α ∈ [0, 1].
Definition 3. [4] Let R be a ring with identity. Then μ ⊂ R is called a fuzzy subring
if and only if

(i) μ(x − y) ≥ μ(x) ∧ μ(y);
(ii) μ(xy) ≥ μ(x) ∧ μ(y), ∀x, y ∈ R and
(iii) μ(1) = 1.

Property 2. Let R be a ring and μ be a fuzzy subring of R. Then we have:

1. For each x ∈ R, μ(0) ≥ μ(x).
2. If x, y ∈ R and μ(x − y) = 0, then μ(x) = μ(y).
3. For each x ∈ R, μ(x) = μ(−x).

Definition 4. [6] Let A be a non-empty set and xα : A −→ [0, 1] a fuzzy subset of
A with x ∈ A and α ∈ (0, 1] defined by

xα(y) =
{

α i f x = y

0 i f x �= y

then xα is called a fuzzy point (singleton).

Definition 5. Let μ be a fuzzy subring of R, and xt be a fuzzy point of R. We write
xt ∈ μ to express that μ(x) ≥ t , by the principal extension of Zadeh we have

xt + ys = (x + y)t∧s
xs yt = (xy)t∧s .

Now we will first evolve some results on the fuzzy ring using the membership
functions and we will also give a necessary and sufficient condition for Fμ(R), the
set of fuzzy points of μ to be a ring.
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3 Fuzzy Subrings

The following theorem gives us the relationship between a fuzzy subring and all of
its α-cuts.

Theorem 1. Let μ be a fuzzy subset of R, then μ is a fuzzy subring of R if and only
if μt is a subring of R, for each t ∈ [0,μ(0)].
Proof. It is clear that μt = {x ∈ R, μ(x) ≥ t} is a non-empty subset of R.

Let x, y ∈ μt , then μ(x) ≥ t and μ(y) ≥ t . Since μ is a fuzzy subring of R, then
wehaveμ(x − y) ≥ μ(x) ∧ μ(y). This implies thatμ(x − y) ≥ t , hence x − y ∈ μt .
Similarly, μ(xy) ≥ μ(x) ∧ μ(y) then μ(xy) ≥ t . Hence xy ∈ μt . Therefore, μt is a
subring of R.

Conversely, let x, y ∈ R and let μ(x) = t1 and μ(y) = t2. Then x ∈ μt1 and y ∈
μt2 . Now suppose that t2 > t1, this implies that μt2 ⊆ μt1 . In this case, y ∈ μt2 ⊆
μt1 since x, y ∈ μt1 . So we have x − y ∈ μt1 and xy ∈ μt1 ; hence μ(x − y) ≥ t1 =
μ(x) ∧ μ(y) and μ(xy) ≥ t1 = μ(x) ∧ μ(y).

Theorem 2. Let μ be a fuzzy subset of R. Then μ is a fuzzy subring of R if and only
if, for each point xt , ys ∈ μ, we have xt − ys ∈ μ and xt .ys ∈ μ.

Proof. Suppose that μ is a fuzzy subring of R. Let x, y ∈ R and xt , ys ∈ μ. Then

μ(x − y) ≥ μ(x) ∧ μ(y)

≥ t ∧ s

this implies that xt − ys ∈ μ.
Similarly, since μ is a fuzzy subring of R,
we have

μ(xy) ≥ μ(x) ∧ μ(y)

≥ t ∧ s

hence xt .ys ∈ μ.

Conversely, let x, y ∈ R. We have

μ(x) ≥ μ(x) ∧ μ(y) and μ(x) ≥ μ(x) ∧ μ(y)

then
xμ(x)∧μ(y) ∈ μ and yμ(x)∧μ(y) ∈ μ.

Using the assumption we have

xμ(x)∧μ(y) − yμ(x)∧μ(y) ∈ μ and xμ(x)∧μ(y).yμ(x)∧μ(y) ∈ μ
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Fig. 1 Graphical representation of the set Fμ(R)

This implies that

(x − y)μ(x)∧μ(y) ∈ μ and (xy)μ(x)∧μ(y) ∈ μ

Therefore, μ(x − y) ≥ μ(x) ∧ μ(y) and μ(xy) ≥ μ(x) ∧ μ(y). Thus μ is a fuzzy
subring of R.

Let R be the subset of all fuzzy points of R given by [6]. We set Fμ(R) = {xα ∈
R | μ(x) ≥ α} (Fig. 1).
Theorem 3. Let R be a ring with identity, and let μ be a fuzzy subset of R. If μ is a
fuzzy subring of R, then (Fμ(R),+,×) is a ring.

Proof. Let xt , ys, zu ∈ Fμ(R). We have xt + ys = (x + y)t∧s ∈ Fμ(R). Hence
Fμ(R) is closed under the operation +. For associativity of + we have

xt + (ys + zu) = xt + (y + z)s∧u
= (x + (y + z))t∧(s∧u)
= ((x + y) + z)(t∧s)∧u
= (xt + ys) + zu .

Then + is associative.
We have also μ(0) ≥ μ(1) = 1. Therefore, 0s ∈ Fμ(R) for all s ∈ (0, 1], for the

symmetric element, we have μ(−x) ≥ μ(x) ≥ t , then −xt ∈ Fμ(R) and xt − xt =
(x − x)t = 0t for all t ∈ (0, 1].

Furthermore,

xt + ys = (x + y)t∧s = (y + x)s∧t = ys + xt .

Thus (Fμ(R),+) is an abelian group.
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Since xt × ys = (xy)t∧s ∈ Fμ(R), so Fμ(R) is closed under “×”. Finally, as we
have

xt × (ys × zu) = xt × (y × z)s∧u
= (x × (y × z))t∧(s∧u)
= ((x × y) × z)(t∧s)∧u
= (xt × ys) × zu

and

xt × (ys + zu) = (x × (y + z))t∧(s∧u)
= (xy + xz)t∧s∧u
= (xy)t∧s + (xz)t∧u .

it follows that (Fμ(R),+,×) is a ring.

Proposition 1. Let R be a commutative ring. Let μ and ν be two fuzzy subrings of
R such that μ ⊂ ν. Then Fμ(R) is a subring of Fν(R).

Proof. Sinceμ, ν are fuzzy subrings of R, so Fμ(R) and Fν(R) are rings by Theorem
3. Let xt ∈ Fμ(R). Then μ(x) ≥ t , since μ ⊂ ν, then ν(x) ≥ t . This implies that
Fμ(R) ⊂ Fν(R). In addition, we have 11 ∈ Fμ(R).

Definition 6. Let μ be a fuzzy subring of R. Then the singleton at �= 0t ∈ Fμ(R)
with t ∈ (0, 1], is called a fuzzy zero-divisor if there exists a nonzero fuzzy singleton
bs ∈ Fμ(R) such that at .bs = 0λ where λ = min(s, t).

Definition 7. Let Fμ(R) be a ring. We say that Fμ(R) is an integral ring if it has no
zero-divisor fuzzy singletons, that is if (xt .ys = 0t∧s , then xt = 0t or ys = 0s).

Theorem 4. Fμ(R) is an integral ring if and only if R is an integral domain.

Proof. Let xt , yt ∈ Fμ(R) with xt .ys = 0t∧s . We must show that xt = 0t or ys = 0s .
Note that xt .ys = 0t∧s implies that, for all z ∈ R, (xy)t∧s(z) = 0t∧s(z). Hence

(t ∧ s)χ{xy}(z) = (t ∧ s)χ{0}(z)

Since, for each z ∈ R,
χ{xy}(z) = χ{0}(z)

so xy = 0 and since R is an integral domain we have x = 0 or y = 0. Hence xt = 0t
or ys = 0s for all t, s ∈ (0, 1].
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Conversely, suppose that Fμ(R) is an integral ring. Let xy = 0 for some x, y ∈ R.
Since xy = 0 we have (xy)t = 0t for every t ∈ (0, 1]. This implies that xt = 0t or
yt = 0t . So, for each u, v ∈ R, xt (u) = 0t (u) or yt (v) = 0t (v). Consequently, we
have

xt (u) =
{
t i f x = u

0 i f x �= u
=

{
t i f 0 = u

0 i f 0 �= u
= 0t (u)

or

yt (v) =
{
t i f y = v

0 i f y �= v
=

{
t i f 0 = v

0 i f 0 �= v
= 0t (v)

Hence

xt (u) = 0t (u)

{
t i f x = u = 0

0 i f x �= u �= 0

or

yt (v) = 0t (v)

{
t i f y = v = 0

0 i f y �= v �= 0
.

Therefore, x = 0 or y = 0.

4 Fuzzy Polynomials Ring

In this section, we will give a new definition of a fuzzy polynomials based on the
ring of fuzzy points defined in Sect. 3. Then we will discuss some basic properties
of this new concept.

Definition 8. A fuzzy polynomial with one indeterminate on Fμ(R) is a set of
sequences (at0 , at1 , at2 ....) = (atk )k∈N with atk ∈ Fμ(R) such taht there exists n ∈ N

for all p ≥ n, atp = 0tp . So the fuzzy polynomial is defined as (at0 , at1 , at2 , ...ati ,
0s, ..., 0s) with ti , s ∈ (0, 1]. The set of all fuzzy polynomials with one indetermi-
nate on Fμ(R) is denoted by Fμ(R)[X ].

Let us now define some operations on the fuzzy polynomials.
Let P, Q ∈ Fμ(R)[X ]. Then, P = (atk )k∈N such that there exists n ∈ Nwith atp =

0tp for each p > n, and Q = (bsk )k∈N such that there exists m ∈ N with bsp = 0sp
for all p > m.

Addition “(+)”
Define P + Q = (cαk )k∈N such that cαk = atk + bsk = (a + b)tk∧sk and cαk = 0αk for
all p > max(n,m). It is obvious that P + Q ∈ Fμ(R)[X ].
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Multiplication “(×)”
The multiplication P × Q is defined by P × Q = (dβk )k∈N such that dβk =

∑
i+ j=p

ati bs j with βk = min
0≥i, j≥k

{ti , s j } with dβp = 0βp for each p > n + m because p = i +
j > n + m implies i > n or j > m. This implies that ati = 0ti or bs j = 0s j .

Remark 1. Let P, Q ∈ Fμ(R)[X ] be two fuzzy polynomials. Then P = Q if and
only if ati = bsi , for each i ∈ N. The zero fuzzy polynomial is defined as (ati )i∈N
such that ati = 0ti , for each i ∈ N.

Proposition 2. (Fμ(R)[X ],+,×) is a comutative ring.

Proof. The zero element is (0s, 0s, 0s, ..., 0s) with s ∈ (0, 1]. For all P, Q, R ∈
Fμ(R)[X ],

(P + Q) + R = (ati + bsi ) + cki
= (a + b)ti∧si + cki
= (

(a + b) + c
)
(ti∧si )∧ki

= (
a + (b + c)

)
ti∧(si∧ki )

= ati + (b + c)si∧ki
= ati + (bsi + cki )

= P + (Q + R).

Hence + is associative. In a similar way, we can prove that P + Q = Q + P . The
symmetrical element is given by

−P = (−atk )k∈N ∈ Fμ(R)[X ]

Indeed
P + (−P) = (0s, 0s, 0s, ..., 0s)

with s ∈ (0, 1]. In addition, (Fμ(R)[X ],×) is a semigroup. Using the fact that
(Fμ(R),×) is a semigroup and the definition of “×” in Fμ(R)[X ] we can easily
show that

P × (Q × R) = (P × Q) × R

and P × Q = Q × P and P × (Q + R) = P × Q + P × R. Consequently (Fμ(R)
[X ],+,×) is a commutative ring with identity. The identity is given by (11, 0s,
0s, ..., 0s) since

P × (11, 0s, 0s, ..., 0s) = (at0 , at1 , ..., atn , 0s, ..., 0s) = P.
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Denote by X = (0s, 11, 0s, ..., 0s), with s ∈ (0, 1] and call it one indeterminate.
By convention,

X0 = 11 = (11, 0s , 0s , ..., 0s ); X2 = XX = (0s , 11, 0s , ..., 0s )(0s , 11, 0s , ..., 0s ) = (0s , 0s , 11, 0s , ..., 0s )

and

Xn =
n times 0s︷ ︸︸ ︷

(0s, , 0s, ...0s, 11, ..., 0s).

Let P = (atk )k∈N ∈ Fμ(R)[X ]. Then

P = (at0 , at1 , at2 , 0s , ..., 0s ) = at0 (11, 0s , 0s , ..., 0s ) + at1 (0s , 11, 0s , ..., 0s ) + ... + atn

n times 0s︷ ︸︸ ︷
(0s , ...0s , 11, ..., 0s ).

Hence, the fuzzy polynomial P is written in the form P = at0 + at1X + at2X
2 +

... + atn X
n.

Definition 9. We say that P ∈ Fμ(R)[X ] is a fuzzy polynomial on Fμ(R) if there

exists ati ∈ Fμ(R) such that P =
i=n∑
i=0

ati X
i .

Definition 10. Let P = at0 + at1X + at2X
2 + ... + atn X

n be a nonzero fuzzy poly-
nomial. Then there exists a nonzero coefficient of at0 , at1 , ..., atn .

Definition 11. (fuzzy degree) Let P = at0 + at1X + at2X
2 + ... + atn X

n ∈ Fμ

(R)[X ]. The fuzzy degree of P denoted by deg(P) or do is defined as the maxi-
mal number n such that atn �= 0tn . In this case atn is called the leading coefficient
of P .

Proposition 3. Let Fμ(R) be an integral ring and P and Q be two polynomials of
Fμ(R)[X ]. Then, we have
(a) do(P + Q) ≤ max(do(P), do(Q)).

(b) do(P.Q) = (do(P) + do(Q)).

Proof. (a) Suppose that do(P) = n and do(Q) = p. Then P = at0 + at1X + at2
X2 + ... + atn X

n and Q = bs0 + bs1X + bs2X
2 + ... + bsp X

p. Suppose that n > p.
Then

P + Q = (a + b)t0∧s0 + (a + b)t1∧s1X + ... + atn X
n

Hence do(P + Q) = n = max do(P), do(Q). If n < p we have do(P + Q) = p =
max do(P), do(Q). If n = p, then

P + Q = (a + b)t0∧s0 + (a + b)t1∧s1X + ... + (a + b)tn∧sn X
n.
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Consider the following cases:

(i) if (a + b)tn∧sn �= 0tn∧sn , then do(P + Q) = n = max do(P), do(Q).
(ii) if (a + b)tn∧sn = 0tn∧sn , then P + Q = (a + b)t0∧s0 + (a + b)t1∧s1X + ... + (a +

b)tn−1∧sn−1X
n−1, hence do(P + Q) ≤ n − 1 ≤ max(do(P), do(Q)).

(b) P × Q = (ab)t0∧s0 + ((ab)t0∧s1 + (ab)t1∧s0)X + ... + (ab)tn∧sp Xn+p, since atn
�= 0tn and bsp �= 0sp then atn bsp �= 0tn∧sp . Therefore, do(P × Q) = do(P) + do(Q).

Remark 2. If P is a zero polynomial we denote by convention do(P) = −∞. If
Fμ(R) is a non integral ring, then do(PQ) ≤ do(P) + do(Q).

Definition 12. Let μ be a fuzzy subring of R. An extension of μ is a fuzzy subring
ν of R, such that μ ⊂ ν.

Example 1. Define μ and ν as follows:

ν :

⎧⎪⎨
⎪⎩
M2(R) −→ [0, 1]
x �−→

{
1 i f x = 0
1
2 i f x �= 0

μ :

⎧⎪⎨
⎪⎩
M2(R) −→ [0, 1]
x �−→

{
1 i f x = 0
1
4 i f x �= 0

It is easy to show that μ ⊂ ν. Hence ν is an extension of μ.

Definition 13. We say that αs ∈ Fμ(R) is a zero of P ∈ Fμ(R)[X ] if P(αs) =
i=n∑
i=0

ati α
i
s = 0β such that β ≤ s.

Let I (bt ) = {P ∈ Fμ(R)[X ], P(bt ) = 0s}. It is clear that I (bt ) is an ideal of
Fμ(R)[X ].
Definition 14. bt ∈ ν is called an algebraic element if I (bt ) �= {0}. Otherwise bt is
called a transcendent element.

Note that if ati = 11 then bt ∈ ν is called an integral element.

Theorem 5. Let R be a ring. Then R is an integral domain if and only if Fμ(R)[X ]
is an integral ring.

Proof. Suppose that R is an integral domain. According to the Theorem 4, Fμ(R)
is an integral domain. Let P, Q ∈ Fμ(R)[X ] be such that P �= 0 and Q �= 0. let
at X p and bs Xq be the monomials of more high degrees of P and Q, respectively.
The term of degree p + q of QP is atbs X p+q . Conversely, let at , bs ∈ Fμ(R) be
such that atbs = 0t∧s . We have at , bs ∈ Fμ(R)[X ] hence at = 0t or bs = 0s because
Fμ(R)[X ] is an integral ring. So we have the result.
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