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Preface

The 4th SAA 2016, fourth in the series of international seminars on algebra and its
applications, was held at the Department of Mathematics and Applications,
University of Mohaghegh Ardabili, Iran, during 9–11 August, 2016. Following the
tradition of its predecessors, this meeting gathered researchers around topics in
present recent progress and new trends in algebra and its applications. A total
number of 105 participants from several countries have attended the conference in
the University of Mohaghegh Ardabili (UMA). The main goal of the seminar is to
introduce Iranian faculty and graduate students to important ideas in the mainstream
of algebra. A secondary goal is for Iranian mathematicians to open channels of
communication with algebraists from around the globe and eventually begin col-
laborative research projects. The audience was multidisciplinary allowing the par-
ticipants to exchange diversified ideas and to show the wide attraction of algebra
and its applications. There were two kinds of lectures: invited talks of one hour
presented by distinguished experts and half an hour contributions.

The Scientific Committee consisted of Kamran Divaani-Azar (Alzahra
University), Hossien Abdolzadeh, Jafar Azami—Chair, Kamal Bahmanpour,
Adel P. Kazemi, Ahmad Khojali, Majid Rahro-Zargar, Ahmad Yousefian Darani,
and Naser Zamani all from UMA.

The Organizing Committee was constituted by Goudarz Sadeghi, Mohammad
Narimani, Yousef Abbaspour, Daioush Latifi, Kazem Haghnejad, Hossein
Abdolzadeh, Abbas Najati, and Ahmad Yousefian Darani (Chair) all from UMA.

We are particularly indebted to our plenary speakers: Moharam Aghapour (Arak
University), Fariborz Azar Panah (Shahid Chamran University of Ahvaz), Ayman
Badawi (American University of Sharjah), Reza Naghipour (University of Tabriz),
Peyman Nasehpour (University of Tehran), Mohammad Reza Vedadi (Isfahan
University of Technology), Roger Wiegand (University of Nebraska-Lincoln),
Sylvia Wiegand (University of Nebraska Lincoln), Siamak Yassemi (University of
Tehran), and Rahim Zaare-Nahandi (University of Tehran). Thanks are also due to
the presenters of contributed papers, as well as everyone who attended for making
the seminar a success. According to the evaluations of the scientific committee,
there were several excellent talks presented by invited speakers.

v



The 4th SAA 2016 was sponsored by the UMA, and organized by the Faculty of
Mathematics and Department of Mathematics and Applications, UMA. We would
like to publicly acknowledge the financial support of the Vice-Chancellorship for
Research and Technology of UMA, as well as the hospitality of the Faculty of
Mathematics and Department of Mathematics and Applications of UMA. We are
also very grateful for the secretarial help of Negin Karimi. Selected papers of 4th
SAA 2016 are presented in the volume Homological and Combinatorial Methods
in Algebra in the series Springer Proceedings of Mathematics & Statistics published
by Springer. With the publication of this proceeding, we hope that a wider math-
ematical audience will benefit from the seminar research achievements and new
contributions to the field of algebra and its applications. More details of the event
can be found at http://uma.ac.ir//links/4saa.

Sharjah, United Arab Emirates Ayman Badawi
Isfahan, Iran Mohammad Reza Vedadi
Tehran, Iran Siamak Yassemi
Ardabil, Iran Ahmad Yousefian Darani
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b-Symbol Distance Distribution
of Repeated-Root Cyclic Codes

Hojjat Mostafanasab and Esra Sengelen Sevim

Abstract Symbol-pair codes, introduced by Cassuto and Blaum (Proc IEEE Int
Symp Inf Theory, 988–992, 2010 [1]), have been raised for symbol-pair read
channels. This new idea is motivated by the limitations of the reading process
in high-density data storage technologies. Yaakobi et al. (IEEE Trans Inf Theory
62(4):1541–1551, 2016 [8]) introduced codes for b-symbol read channels, where
the read operation is performed as a consecutive sequence of b > 2 symbols. In this
paper, we come up with a method to compute the b-symbol-pair distance of two n-
tuples, where n is a positive integer. Also, we deal with the b-symbol-pair distances
of some kind of cyclic codes of length pe over Fpm .

Keywords b-Symbol pair · Distance distribution · Cyclic codes

1 Introduction

Recently, it is possible to write information on storage devices with high resolution
using advances in data storage systems. However, it causes a problem of the gap
between write resolution and read resolution. Cassuto and Blaum [1, 2] laid out
a framework for combating pair-errors, relating pair-error correction capability to
a new metric called pair-distance. They proposed the model of symbol-pair read
channels. Such channels are mainly motivated by magnetic-storage channels with
highwrite resolution, due to physical limitations, each channel contains contributions
from two adjacent symbols. Cassuto and Listsyn [3] studied algebraic construction of
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2 H. Mostafanasab and E. S. Sevim

cyclic symbol-pair codes. Yaakobi et al. [9] proposed efficient decoding algorithms
for the cyclic symbol-pair codes. Chee et al. [4, 5] established a Singleton-type
bound for symbol-pair codes and constructed codes that meet the Singleton-type
bound. Hirotomo et al. [7] proposed the decoding algorithm for symbol-pair codes
based on the newly defined parity-check matrix and syndromes.

For this new channels, the codes defined as usual over some discrete symbol
alphabet, but whose reading from the channel is performed as overlapping pairs of
symbols. LetΞ be the alphabet consisting of q elements. Each element inΞ is called
a symbol. We useΞ n to denote the set of all n-tuples, where n is a positive integer. In
the symbol-pair read channel, there are in fact two channels. If the stored information
is x = (x0, x1, . . . , xn−1) ∈ Ξ n , then the symbol-pair read vector of x is

π(x) = [(x0, x1), (x1, x2), . . . , (xn−2, xn−1), (xn−1, x0)],

and the goal is to correct a large number of the so called symbol-pair errors. The
pair distance, dp(x, y), between two pair-read vectors x and y is the Hamming
distance over the symbol-pair alphabet (Ξ × Ξ) between their respective pair-read
vectors, that is, dp(x, y) = dH (π(x), π(y)). The minimum pair distance of a code
C is defined as dp(C ) = min{dp(x, y)|x, y ∈ C and x �= y}. Accordingly, the pair
weight of x is ωp(x) = ωH (π(x)). If C is a linear code, then the minimum pair-
distance of C is the smallest pair-weight of nonzero codewords of C . The minimum
pair-distance is one of the important parameters of symbol-pair codes. This distance
distribution is very difficult to compute in general, however, for the class of cyclic
codes of length pe over Fpm , theirHamming distance has been completely determined
in [6]. In [10], Zhu et al. investigated the symbol-pair distances of cyclic codes of
length pe over Fpm .

For b ≥ 3, the b-symbol read vector corresponding to the vector

x = (x0, x1, . . . , xn−1) ∈ Ξ n

is defined as

πb(x) = [(x0, x1, . . . , xb−1), (x1, x2, . . . , xb), . . . , (xn−1, x0, . . . , xb−2)] ∈ (Ξ b)n.

We refer to the elements of πb(x) as b-symbols. The b-symbol distance between
x and y, denoted by db(x, y), is defined as db(x, y) = dH (πb(x), πb(y)). Similarly,
we define the b-weight of the vector x as ωH (πb(x)). In the analogy of the definition
of symbol-pair codes, the minimum b-symbol distance of C , db(C ), is given by
db(C ) = min{db(x, y)|x, y ∈ C and x �= y}. For more information on these notions
see [8].

We can rewrite [8, Proposition 9] for any arbitrary alphabet Ξ .

Proposition 1. Let x ∈ Ξ n be such that 0 < ωH (x) ≤ n − (b − 1). Then

ωH (C ) + b − 1 ≤ ωb(C ) ≤ b · ωH (C ).
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Referring to Proposition 1, we see that:

Corollary 1. Let C be a code. If 0 < dH (C ) ≤ n − (b − 1), then

dH (C ) + b − 1 ≤ db(C ) ≤ b · dH (C ).

In the next section we give a method to calculate the b-symbol distance of two
n-tuples.We know that all cyclic codes of length pe over a finite field of characteristic
p are generated by a single “monomial” of the form (x − 1)i , where 0 ≤ i ≤ pe (see
[6]). Determining the b-symbol-pair distances of some kind of these cyclic codes is
the main purpose of the next section.

2 Main Results

In the following theorem we give a formula to calculate the b-symbol distance of
two n-tuples.

Theorem 1. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in
Ξ n with 0 < dH (x, y) ≤ n − (b − 1). Suppose that

A = {1, 2, . . . , n}\{r, r + 1, r + 2, . . . , s | r, s are such that s − r ≥ b − 2 and xi = yi

for each r ≤ i ≤ s and indices may wrap around modulon},

and A = ∪L
l=1Bl is a minimal partition of the set A to subsets of consecutive indices

(every subset Bl = [sl, el ] is the sequence of all indices between sl and el , inclusive,
and is the smallest integer that achieves such partition, also indices may wrap around
modulo n). Then

db(x, y) = dH (x, y) + e + L(b − 1),

where e = |{i | i ∈ Bl for some 1 ≤ l ≤ L such that xi = yi }|.
Proof. Since the partition is minimal, there are no two indices i, i + j , where
j ∈ {1, . . . , b − 1}, that belong to different subsets Bl, Bl ′ . The b-symbol distance
between x and y is equal to the sum of the sizes of the b-tuple subsets

{(sl − b + 1, sl − b + 2, . . . , sl ), (sl − b + 2, sl − b + 3, . . . , sl , sl + 1), . . . , (sl , sl + 1, . . . , sl + b − 1),

(sl + 1, sl + 2, . . . , sl + b), . . . , (el , el + 1, . . . , el + b − 1)}.

The number of b-tuples in each b-tuple subset equals |Bl | + b − 1, whence
db(x, y) = ∑L

l=1 Bl + L(b − 1). Furthermore, it is easy to see that
∑L

l=1 Bl =
dH (x, y) + e where e = |{i | i ∈ Bl for some 1 ≤ l ≤ L such that xi = yi }|.
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Corollary 2. Let x = (x1, x2, . . . , xn) ∈ Ξ n with 0 < ωH (x) ≤ n − (b − 1). Sup-
pose that

A = {1, 2, . . . , n}\{r, r + 1, r + 2, . . . , s | r, s are such that s − r ≥ b − 2 and xi = 0

for each r ≤ i ≤ s and indices may wrap around modulo n},

and A = ∪L
l=1Bl is a minimal partition of the set A to subsets of consecutive indices

(every subset Bl = [sl, el ] is the sequence of all indices between sl and el , inclusive,
and is the smallest integer that achieves such partition, also indices may wrap around
modulo n). Then ωb(x) = ωH (x) + e + L(b − 1), where

e = |{i | i ∈ Bl for some 1 ≤ l ≤ L such that xi = 0}|.

Example 1. Let n = 15, b = 4 and x = (0, 0, 1, 3, 0, 5, 0, 0, 0, 2, 0, 7, 0, 0, 0) ∈
Z15. We list all of the 4-tuples as follows:

(0, 0, 1, 3), (0, 1, 3, 0), (1, 3, 0, 5), (3, 0, 5, 0), (0, 5, 0, 0), (5, 0, 0, 0), (0, 0, 0, 2),

(0, 0, 2, 0), (0, 2, 0, 7), (2, 0, 7, 0), (0, 7, 0, 0), (7, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 1).

Hence ω4(x) = 13. On the other hand, ωH (x) = 5, e = 2 and L = 2. Therefore, the
equation ωb(x) = ωH (x) + e + L(b − 1) holds.

Theorem 2. ([6, Theorem 6.4]) Let C be a cyclic code of length pe over Fpm . Then
C = 〈(x − 1)i 〉 ⊆ Fpm [x]

〈x pe−1〉 , for i ∈ {0, 1, . . . , pe}. Also,
(1) dH (C ) = 1 if i = 0.
(2) dH (C ) = β + 2 if βpe−1 + 1 ≤ i ≤ (β + 1)pe−1 where 0 ≤ β ≤ p − 2.
(3) dH (C ) = (t + 1)pk if pe − pe−k + (t − 1)pe−k−1 + 1 ≤ i ≤ pe − pe−k +

tpe−k−1, where 1 ≤ t ≤ p − 1, and 1 ≤ k ≤ e − 1.
(4) dH (C ) = 0 if i = pe.

From now on, in order to simplify the notation, for i ∈ {0, 1, . . . , pe}, we denote
each code 〈(x − 1)i 〉 by Ci .

Proposition 2. If b ≤ pe, then db(C0) = b.

Proof. By Theorem 2, we have that dH (C0) = 1. So, by Corollary 1, b ≥ db(C0) ≥
dH (C0) + b − 1 = b. Hence db(C0) = b.

Proposition 3. Let b < pe. Then b + 1 ≤ db(Ci ) ≤ 2b for every 1 ≤ i ≤ pe−1.

Proof. By Theorem 2, dH (Ci ) = 2 for every 1 ≤ i ≤ pe−1. Hence, 2b ≥ db(Ci ) ≥
2 + (b − 1) = b + 1, by Corollary 1.

Notice that, for two codes C ,C ′ ⊆ F pe

pm with C ⊆ C ′, we have db(C ) ≥ db(C ′).
We define db(Cpe ) = 0.

Proposition 4. Let b ≤ p and e = 1. Then db(Ci ) = i + b for each 0 ≤ i ≤ p − b.
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Proof. By Theorem 2, dH (Ci ) = i + 1 for 0 ≤ i ≤ p − 1. Assume that 0 ≤ i ≤
p − b. Hence, by Corollary 1, db(Ci ) ≥ i + 1 + b − 1 = i + b. Moreover ωb((x −
1)i ) = i + 1 + (b − 1) = i + b. Then db(Ci ) = i + b.

Theorem 3. Let e ≥ 2 and 1 ≤ i ≤ pe−1 such that i + b ≤ pe and i ≤ b. Then
db(Ci ) = i + b.

Proof. Since i + b ≤ pe, then by Corollary 2, ωb((x − 1)i ) = i + 1 + (b − 1) =
i + b. So, db(Ci ) ≤ i + b. By Proposition 3, db(Ci ) ≥ b + 1. Let c(x) be a poly-
nomial in Fpm [x]. If ωb(c(x)) = j + b for some 1 ≤ j ≤ i − 1, then i ≤ b implies
that c(x) = xt (a0 + a1x + · · · + a j x j ) where al’s are in Fpm , a0, a j �= 0 and t is a
non-negative integer. However c(x) /∈ Ci . So db(Ci ) = i + b.

Lemma 1. Let e and k be two integers such that e ≥ 2 and 1 ≤ k ≤ e − 1. Suppose
that c(x) = (x − 1)p

e−pe−k
g(x) where g(x) is a nonzero polynomial in Fpm [x] with

d := deg(g(x)) < pe−k and b ≤ pe − d. Then

(1) If d ≤ pe−k − b or gk = 0 for every0 ≤ k ≤ b − pe−k + d − 1, thenωb(c(x)) =
pkωb(g(x)).

(2) If d > pe−k − b and gk �= 0 for some 0 ≤ k ≤ b − pe−k + d − 1, thenωb(c(x))
= pk

(
ωb(g(x)) − (b − 1) + ζ

)
where ζ = pe−k − d − 1.

Proof. Assume that g(x) = ∑d
j=0 g j x j . Thus

c(x) =
pk−1∑

i=0

xip
e−k
g(x) =

pk−1∑

i=0

d∑

j=0

g j x
ipe−k+ j .

As usual, we identify the polynomial h(x) = h0 + h1x + · · · + hnxn with the

vector h = (h0, h1, . . . , hn). Therefore, we have c = (

pk−time
︷ ︸︸ ︷
ĝ, . . . , ĝ) where

ĝ = (g0, . . . , gd ,

(pe−k−d−1)−time
︷ ︸︸ ︷
0, . . . , 0 ).

We denote ωb(ĝ(x)) := ωb(ĝ). Since πb(c) = [
pk−time

︷ ︸︸ ︷
πb(ĝ), . . . , πb(ĝ)], then

ωb(c(x)) = pkωb(ĝ(x)). On the other hand, ωb(g(x)) = ωb(g), where

g = (g0, g1, . . . , gd ,

(pe−d−1)−time
︷ ︸︸ ︷
0, . . . , 0 ).



6 H. Mostafanasab and E. S. Sevim

We can check that:

(1) If d ≤ pe−k − b or gk = 0 for every 0 ≤ k ≤ b − pe−k + d − 1, then ωb(g) =
ωb(ĝ), i.e., ωb(g(x)) = ωb(ĝ(x)). Hence ωb(c(x)) = pkωb(g(x)).

(2) If d > pe−k − b and gk �= 0 for some 0 ≤ k ≤ b − pe−k + d − 1, then ωb(g) =
ωb(ĝ) + (b − 1) − ζ where ζ = pe−k − d − 1, i.e., ωb(g(x)) = ωb(ĝ(x)) +
(b − 1) − ζ . So, ωb(c(x)) = pk

(
ωb(g(x)) − (b − 1) + ζ

)
.

Theorem 4. Let e and k be two integers such that e ≥ 2 and 1 ≤ k ≤ e − 1. If
0 ≤ i ≤ pe−k−1 such that b + i ≤ pe−k and i ≤ b, then db(Cpe−pe−k+i ) = pk(b + i).

Proof. Fix 0 ≤ i ≤ pe−k−1 such that b + i ≤ pe−k and i ≤ b. Let 0 �= c(x) ∈
Cpe−pe−k+i . Then, there exists 0 �= f (x) ∈ Fpm [x] such that c(x) = (x − 1)p

e−pe−k

(x − 1)i f (x). Set g(x) := (x − 1)i f (x) and d := deg(g(x)). Without loss of the
generality we may assume that d < pe−k . Notice that by Theorem 2, ωH (g(x)) ≥ 2,
and by Theorem 3, ωb(g(x)) ≥ b + i . Regarding Lemma 1, we consider the follow-
ing cases:

Case 1. If d ≤ pe−k − b or gk = 0 for every 0 ≤ k ≤ b − pe−k + d − 1, then
ωb(c(x)) = pkωb(g(x)) ≥ pk(b + i).

Case 2. If d > pe−k − b and gk �= 0 for some 0 ≤ k ≤ b − pe−k + d − 1, then
ωb(c(x)) = pk

(
ωb(g(x)) − (b − 1) + ζ

)
where ζ = pe−k − d − 1. If ωH (g(x)) ≥

b + i , then Corollary 1 implies that ωb(g(x)) ≥ b + i + b − 1. Hence ωb(c(x)) ≥
pk

(
b + i + (b − 1) − (b − 1)

) = pk(b + i). Assume that ωH (g(x)) = i + j for
some 2 − i ≤ j ≤ b − 1. It is easy to see that ωH (g(x)) + z = d + 1 where
z = |{l | 0 ≤ l ≤ d and gl = 0}|. We claim that, z ≥ b − j − ζ . Otherwise d +
1 < ωH (g(x)) + b − j − ζ = i + j + b − j − (pe−k − d − 1) = i + b − pe−k +
d + 1. But b + i ≤ pe−k leads us to a contradiction. Therefore the claim holds. So,
ωb(g(x)) ≥ i + j + b − j − ζ + (b − 1). Thusωb(c(x)) ≥ pk

(
ωb(g(x)) − (b − 1)

+ ζ
) = pk(i + b). Hence db(Cpe−pe−k+i ) ≥ pk(i + b). Moreover, by part (1) of

Lemma 1, ωb((x − 1)p
e−pe−k+i ) = pkωb((x − 1)i ) = pk(b + i). Consequently,

db(Cpe−pe−k+i ) = pk(b + i).
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Bhargava Rings Over Subsets

I. Al-Rasasi and L. Izelgue

Abstract Let D be an integral domain with quotient field K and let E be any
nonempty subset of K . TheBhargava ring over E at x ∈ D is defined byBx (E, D) :=
{ f ∈ K [X ] | f (x X + e) ∈ D[X ], ∀e ∈ E}. This ring is a subring of the ring of
integer-valued polynomials over E . This paper studies Bx (E, D) for an arbitrary
domain D. we provide information about its localizations and transfer properties,
describe its prime ideal structure, and calculate its Krull and valuative dimensions.

Keywords Integer-valued polynomial · Bhargava ring · Prime ideal · Localization
Residue field · Krull dimension · Valuative dimension

1 Introduction

Throughout this paper we let D be an integral domain with quotient field K and E
be a nonempty subset of K . The set of integer-valued polynomials on E is defined
by

Int(E, D) = { f ∈ K [X ] | f (E) ⊆ D}.

Clearly, Int(E, D) is a subring of K [X ] and if E = D, then Int(E, D) = Int(D),
the ring of integer-valued polynomials on D. These two rings, Int(D) and Int(E, D),
were studied extensively for a long time and much is known about them. Refer-
ence [4] is a good reference on the algebraic properties of the rings of integer-valued
polynomials.
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J. Yeramian,[10], studied a special class of subrings of Int(D); namely the rings

Bx (D) = { f ∈ K [X ]; f (x X + d) ∈ D[X ] ∀d ∈ D},

where 0 �= x ∈ D. Continuing her work, we studied in [1], the prime ideal structure
of Bx (D) in a general setting. Notice that for x �= 0, Bx (D) = ⋂

a∈D D[ X−a
x ] and

Int(D) = ⋃
0 �=x∈D Bx (D); i.e., the rings Bx (D) form a covering of Int(D) (cf. [1],

[10], [11]).
As Int(E, D) is a generalization of Int(D), it seems natural to introduce the ring

Bx (E, D) := { f ∈ K [X ] | ∀e ∈ E, f (x X + e) ∈ D[X ]},

where x ∈ D \ {0}, as a generalization of Bx (D). We call such a ring, the Bhargava
ring over E at x . In fact, if E = D, then Bx (E, D) = Bx (D).

These rings were independently introduced in two different papers ([3, 5]). In [3],
Bhargava, Cahen, and Yeramian defined such a ring as “the ring of integer-valued
polynomials on E of modulus x”, denoted by Intx (E, D). Their study focused on
the problem of finite generation for rings of integer-valued polynomials. Particularly,
they stated that:

For a Dedekind domain D and E any subset of K , Bx (E, D) is finitely generated over D
and hence is Noetherian (cf. [3, Theorem 0.1]).

When investigating the problem of the flatness of Int(E, D) as a D–module,
Elliott [5] introduced such a ring as “the Bhargava ring over E at x”. Among other
interesting results he stated that:

For a subset E of D, if Bx (E, D) is D–flat for every nonzero x ∈ D then Int(E,D) is also
D–flat (cf. [5, Proposition 6.4]).

As a simple extension of what is known about Bx (D), they all stated that

Bx (E, D) =
⋂

a∈E
D[ X − a

x
]

which intersection may be restricted to a set of representatives of E modulo x . Also,
as in the case of Bhargava rings (cf. [11, Theorem 1.4], the rings Bx (E, D) form a
covering of Int(E, D); i.e.,

Int(E, D) =
⋃

0 �=x∈D
Bx (E, D).

Wewill assume throughout, unless otherwise specifically stated, that x is a nonzero
element of D.

Our goal in this paper is to study Bhargava rings over subsets. Thus, Sect. 2 is
devoted to some basic properties about Bhargava rings over subsets. In particular, we
characterize subsets E for which Bx (E, D) contains nonconstant polynomials (cf.
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Proposition 3). In Sect. 3, we investigate the behavior ofBx (E, D) under localization.
In Sect. 4, we study how the algebraic structure of D may transfer to Bx (E, D). In
particular, we show that Bx (E, D) is (completely) integrally closed if and only if the
same is true for D (cf. Propositions 13 and 15). In Sect. 5 we give a detailed study of
the prime ideal structure of Bx (E, D). Thus, we introduce some particular forms of
the prime ideals of Bx (E, D) and we study inclusion relationships among them (cf.
Proposition 20). Also we study the lifting problem of the ideal p[X ] ∈ Spec(D[X ])
to Bx (E, D), when E ⊆ D (cf. Proposition 22). In Sect. 6, we compute the valua-
tive dimension of Bx (E, D) (that is the supermum of dimV , where V runs over the
valuation overrings of Bx (E, D)). The main result of this section is: For any ring B,
such that D ⊂ B ⊆ D + (X − a)K [X ] then dimv B = 1 + dimvD (cf. Theorem 2).

As a corollary, we establish that dimvBx (E, D) = 1 + dimvD. This allows us to
give conditions under which Bx (E, D) is a Jaffard domain; i.e., dimvBx (E, D) =
dimBx (E, D).

2 Basic Properties

We start our study of Bhargava rings over subsets by listing some basic properties
satisfied by these rings.

Proposition 1 Let D1 ⊆ D2 be two domains with the same quotient field K , E ⊆ F
two nonempty subsets of K , and 0 �= x ∈ D1. Then

Bx (F, D1) ⊆ Bx (E, D2).

Proof straightforward.

Corollary 1 Let D be a domain with quotient field K , 0 �= x ∈ D and E be a subset
of K . The following statements are equivalent:

(i) E ⊆ D;
(ii) Bx (D) ⊆ Bx (E, D);
(iii) D[X ] ⊆ Bx (E, D).

Proof (i)⇒ (ii). It follows fromProposition 1. Since D[X ] ⊆ Bx (D), then (ii)⇒(iii).
Now, statement (iii) implies that f (X) = X ∈ D[X ] ⊆ Bx (E, D), and then x X +
e ∈ D[X ] for every e ∈ E . Thus e ∈ D for every e ∈ E and hence (iii)⇒ (i).

Remark 1 (1) If x is a unit element of D and E ∩ D �= ∅, we have Bx (E, D) ⊂
D[X ]: indeed, let a ∈ E ∩ D, then Bx (E, D) ⊆ D[ X−a

x ] ⊆ D[X ]. In contrast
to Bx (D), which is then such that Bx (D) = D[X ], It follows from Corollary 1
that we have Bx (E, D) �= D[X ], when E is not contained in D.
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(2) If x is a non-unit element of D and E ⊆ D, then D[X ] ⊆ Bx (D) ⊆ Bx (E, D).
By [1, Proposition 2.4], if the factor ring D/(x) is finite then D[X ] ⊂ Bx (D), and
thenD[X ] ⊂ Bx (E, D) aproper inclusion. In general, if the set of representatives
of E modulo (x) is finite, then arguing as in the proof of [1, Proposition 2.4],
we see that D[X ] is a proper subset of Bx (E, D). If, moreover, D contains an
infinite field then D[X ] = Bx (D) ⊂ Bx (E, D).

Now, it is easy to see that Int(Q,Z) does not contain any nonconstant polynomial.
A fortiori the same holds forBx (Q,Z), whatever x ∈ Z. Hence the question arises to
determine for which subsets of the domain D, Bx (E, D) does contain nonconstant
polynomials. Partial answers are next given to this question. A sufficient condition
is that E be fractional, that is if there exists a nonzero element d of D such that
dE ⊆ D. In this case the isomorphism K [X ] −→ K [X ] taking f (X) to f (X/d)

yields an isomorphism Bx (E, D) ∼= Bdx (dE, D); that is f (X) ∈ Bx (E, D) if and
only if f (X/d) ∈ Bdx (dE, D). By Corollary 1, Bx (E, D) contains an isomorphic
copy of D[X ]. So, if E is a fractional subset of D, we may as well assume that E is
a subset of D.

Yet, the condition that E be a fractional subset of D is not necessary forBx (E, D)

to contain a nonconstant polynomial [4, Exercise 8, page 20]. Next thus comes a
necessary condition, similar to [4, Proposition I.1.9]. Beforehand, we denote by D′
the integral closure of D.

Proposition 2 Let D be a domain, with quotient field K , and E be a nonempty
subset of K . If Bx (E, D) contains a nonconstant polynomial, then E is a fractional
subset of D′.

Proof As recalled in the introduction, one has Bx (E, D) ⊆ Int(E, D). Thus, if
Bx (E, D) contains a nonconstant polynomial, then so does Int(E, D). By, [4, Propo-
sitionI.1.9] E must be a fractional subset of D′

For a fractional subset of D the situation is described in the following proposition:

Proposition 3 Let D be a domain with quotient field K , and E be a nonempty subset
of K . The following statements are equivalent:

(i) E is a fractional;
(ii) Bx (E, D) contains a polynomial of degree 1;
(iii) Int(E, D) contains a polynomial of degree 1.

Proof (i) =⇒ (ii). If E is a fractional subset of D, then there exists 0 �= d ∈ D such
that dE ⊂ D. It follows that the polynomial f (X) = dX belongs to Bx (E, D).
(ii) =⇒ (iii). Straightforward.
(iii) =⇒ (i). Let f (X) = a

s X + b
s ∈ Int(E, D), where a, s ∈ D\{0} and b ∈ D.

Since D ⊂ Int(E, D), then s f (X) = aX + b ∈ I nt (E, D). It follows that for each
e ∈ E , ae + b ∈ D and thus aE ⊆ D. That is E is a fractional subset of D.
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The condition given in Proposition 2 is not sufficient: there is an example where
Int(D′, D) (a fortiori Bx (D′, D) does not contain any nonconstant polynomial [4,
Exercise 9, page 20]. However, putting together the two previous propositions, one
derives immediately a characterization in case D is integrally closed:

Corollary 2 Let D be an integrally closed domain. Let E be a nonempty subset of
K and 0 �= x ∈ D. Then Bx (E, D) contains nonconstant polynomials if and only if
E is a fractional subset of D.

If e ∈ E , then f (x X + e) ∈ D[X ] if and only if f (X) ∈ D[ X−e
x ]. Thus we have

Bx (E, D) =
⋂

e∈E
D[ X − e

x
].

We use this representation to prove the following proposition.

Proposition 4 Let D be a domain, with quotient field K , and ∅ �= E ⊆ K. Let λ

and x be nonzero elements of D. Then, Bx (E, D) ⊆ Bλx (E, D), with equality when
λ is invertible in D.

Proof For each e ∈ E , X−e
x = λ X−e

λx and hence D[ X−e
x ] ⊆ D[ X−e

λx ]. This yields

Bx (E, D) =
⋂

e∈E
D[ X − e

x
] ⊆

⋂

e∈E
D[ X − e

λx
] = Bλx (E, D).

If λ is invertible in D, then Bx (E, D) ⊆ Bλx (E, D) ⊆ Bλ−1λx (E, D) = Bx (E, D).

Definition 1 Let A be a nonempty subset of D. Define the set

BA(E, D) :=
⋂

x∈A

Bx (E, D) = { f ∈ K [X ] : ∀x ∈ A, ∀e ∈ E, f (x X + e) ∈ D[X ]}.

We note that

• BA(E, D) = ⋂
0 �=x∈A

⋂
e∈E D[ X−e

x ].
• BA(E, D) ⊆ Int(E, D).

Proposition 5 If A1 and A2 are two nonempty subsets of D, then:

1. BA1∪A2(E, D) = BA1(E, D) ∩ BA2(E, D).

2. If A1 ⊆ A2, then BA2(E, D) ⊆ BA1(E, D).

Proof Both assertions follow immediately from the definition.

Remark 2 If Dx is the principal ideal of D generated by x , then BDx (E, D) =
Bx (E, D). This follows from the definition and using Proposition 4.
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Proposition 6 Let D be a domainwith quotient field K , E a subset of K , 0 �= x ∈ D,
and p be a prime ideal of D with infinite residue field. If E meets infinitely many
cosets of p, then Bx (E, D) ⊆ Dp[X ].
Proof By [4, Proposition I.3.1], Int(E, D) ⊆ Dp[X ], a fortiori,Bx(E, D) ⊆ Dp[X ].
Remark 3 It follows fromCorollary 1 that if E ⊆ D, then D[X ] ⊆ Bx (E, D). Thus,
under the assumptions of Proposition 6, we obtain the equalityBx (E, D)p = Dp[X ].
Proposition 7 Let D be a domain with quotient field K , E be a subset of D, and
0 �= x ∈ D. If there exists a familyF of prime ideals of D with infinite residue fields
such that D = ⋂

p∈F Dp and E meets infinitely many cosets of p for each p ∈ F ,
then

Bx (E, D) = D[X ]

Proof Since E is a subset of D, byCorollary 1, D[X ] ⊆ Bx (E, D).ByProposition 6,
we obtain Bx (E, D) ⊆ ⋂

p∈F Dp[X ] = D[X ] and hence the equality follows.

3 Localization Properties

In this section, we study the behavior of Bx (E, D) under localization

Lemma 1 Let S be a multiplicative subset of D, E be a subset of K , and x ∈ D.
Then

(1) S−1
Bx (E, D) ⊆ Bx (E, S−1D).

(2) For each s ∈ S, Bx (E, D) ⊆ B x
s
(E, S−1D)

Proof (1). Let 1
s f ∈ S−1

Bx (E, D), where s ∈ S and f ∈ Bx (E, D). Then,
f (x X + e) ∈ D[X ] for all e ∈ E . This implies 1

s f (x X + e) ∈ S−1D[X ] for all
e ∈ E and so 1

s f ∈ Bx (E, S−1D).
(2). By statement (1), Bx (E, D) ⊆ S−1

Bx (E, D) ⊆ Bx (E, S−1D), and by Proposi-
tion 4, Bx (E, S−1D) ⊆ B x

s
(E, S−1D) for all s ∈ S.

Proposition 8 Let S be a multiplicative subset of D, E a subset of K , and I be an
ideal of D. Then S−1

BI (E, D) ⊆ BS−1 I (E, S−1D).

Proof Wefirst show thatBI (E, D) ⊆ BS−1 I (E, S−1D). For this, let f ∈ BI (E, D) =
∩x∈IBx (E, D). Then f ∈ Bx (E, D), for all x ∈ I . By statement (2) of Lemma 1,
f ∈ B x

s
(E, S−1D), for all x ∈ I and s ∈ S, and hence f ∈ BS−1 I (E, S−1D).

Now let 1
s f ∈ S−1

BI (E, D), where s ∈ S and f ∈ BI (E, D). By the above
observation, f ∈ BS−1 I (E, S−1D); that is, f (yX + e) ∈ S−1D[X ] for all y ∈ S−1 I
and e ∈ E . This gives 1

s f (yX + e) ∈ S−1D[X ] for all y ∈ S−1 I and e ∈ E . Thus
1
s f ∈ BS−1 I (E, S−1D).
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Proposition 9 Let R be a subring of the domain D with quotient field K , S be a
multiplicative subset of R, and I be an ideal of R. Then

S−1
BI (R, D) ⊆ BS−1 I (R, S−1D) = BS−1 I (S

−1R, S−1D).

Proof By Proposition 8, S−1
BI (R, D) ⊆ BS−1 I (R, S−1D). Now, since R ⊆ S−1R,

then BS−1 I (R, S−1D) ⊇ BS−1 I (S−1R, S−1D). For the reverse inclusion, we first
prove that, for any x ∈ S−1D \ {0}, Bx (R, S−1D) ⊆ Bx (S−1R, S−1D). This can be
shown by induction on the degree n of f ∈ Bx (R, S−1D). Clearly the statement
holds if n = 0. So, assume it holds for all polynomials of degree less than n. Let
f ∈ Bx (R, S−1D) be of degree n. We need to show that f (x X + r

s ) ∈ S−1D[X ], for
all r ∈ R and s ∈ S. Now, he polynomial g(X) = sn f (X) − f (sX) is of degree less
than n and g ∈ Bx (R, S−1D): in deed, for each r ∈ R, g(x X + r) = sn f (x X + r) −
f (sx X + sr) and since f ∈ Bx (R, S−1D), then f (x X + r) ∈ S−1D[X ]. Hence
sn f (x X + r) ∈ S−1D[X ]. Since f ∈ Bx (R, S−1D)⊆Bsx (R, S−1D), then f (sx X +
sr) ∈ S−1D[X ]. Thus,wehave g(x X + r) ∈ S−1D[X ] andhence g ∈ Bx (R, S−1D).
By the induction hypothesis, we conclude that g ∈ Bx (S−1R, S−1D). Now, we have
that sn f (x X + r

s ) = g(x X + r
s ) + f (sx X + r) and f ∈ Bx (R, S−1D) ⊆ Bsx (R, S−1

D), then f (sx X + r) ∈ S−1D[X ]. Also, g(x X + r
s ) ∈ S−1D[X ]which implies that

sn f (x X + r
s ) ∈ S−1D[X ] and so f (x X + r

s ) ∈ S−1D[X ]. Thus, f ∈ Bx (S−1R,

S−1D). Now, let f ∈ BS−1 I (R, S−1D) = ⋂
0 �=x∈S−1 I Bx (R, S−1D). Then f ∈ Bx (R,

S−1D), for all 0 �= x ∈ S−1 I , and hence f ∈ Bx (S−1R, S−1D) for all 0 �= x ∈ S−1 I .
Thus, f ∈ BS−1 I (S−1R, S−1D).

Corollary 3 Let S be a multiplicative subset of D and I be an ideal of D. Then

S−1
BI (D) ⊆ BS−1 I (D, S−1D) = BS−1 I (S

−1D).

Proof Take R = D in Proposition 9.

Proposition 10 (a) Let D be a Noetherian domain, E a fractional subset of D, and
S a multiplicative subset of D. Then S−1

BI (E, D) = BS−1 I (E, S−1D).

(b) Let D be a domain and R a Noetherian subring of D. Let S be a multiplica-
tive subset of R and I an ideal of R. Then S−1

BI (R, D) = BS−1 I (R, S−1D) =
BS−1 I (S−1R, S−1D).

Proof (a) By Proposition 8 and Proposition 9, we need only prove

BS−1 I (E, S−1D) ⊆ S−1
BI (E, D).

Let f ∈ BS−1 I (E, S−1D). Since E is a fractional subset of D, we may assume
E to be a subset of D. Let M be the D-module generated by the coefficients
of the polynomials f (x X + e), for all x ∈ I (⊆ S−1 I ) and all e ∈ E (⊆ D ⊆
S−1D). Then M ⊆ S−1D (as f ∈ BS−1 I (E, S−1D)). LetC( f ) be the D-module
generated by the coefficients of f . Then clearly C( f ) is a finitely generated
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D-module. Since M ⊆ S−1D ∩ C( f ), S−1D ∩ C( f ) is a finitely generated D-
module, and D is Noetherian, then S−1D ∩ C( f ) is a Noetherian D-module
and hence M is a finitely generated D-module. So there exists s ∈ S such that
sM ⊆ D and hence s f (x X + e) ∈ D[X ] for all x ∈ I and e ∈ E . This yields
s f ∈ BI (E, D) and thus f ∈ S−1

BI (E, D).
(b) By Proposition 8 and Proposition 9, we need only prove

BS−1 I (R, S−1D) ⊆ S−1
BI (R, D).

This can be proved by proceeding as in part (a) by replacing E and D-module
with R and R-module respectively.

Proposition 11 Let D be a Krull domain, p be a height-one prime ideal of D, E be
a fractional subset of D, and I be an ideal of D. Then BI (E, D)p = BIp(E, Dp).

Proof By Proposition 8, it is enough to prove the inclusion BIp(E, Dp) ⊆ BI

(E, D)p.So, let f ∈ BIp(E, Dp). Then there exists 0 �= d ∈ D such thatd f ∈ D[X ].
Let T be the set of height-one prime ideals that are different from p and contain-
ing d. Since D is Krull, then T is finite. For each q ∈ T , there exists an element
bq ∈ D such that bq ∈ q and bq /∈ p. It follows that there exists an integer nq such
that vq(b

nq
q ) > vq(d), where vq is the valuation corresponding to the discrete valua-

tion domain Dq. Set b = ∏
q∈T b

nq
q . Then b /∈ p and, for each q ∈ T , d divides b

in Dq. Thus, b f ∈ Dq[X ]. Further, if q /∈ T , then d is invertible in Dq and hence
f ∈ Dq[X ]. Since b ∈ D, then b f ∈ Dq[X ]. Thus far we have shown that for each
height-one prime ideal q �= p, b f ∈ Dq[X ]. As E is a fractional subset of D, we may
assume that E ⊆ D. hence, we have for each q �= p, b f (x X + e) ∈ Dq[X ] for each
x ∈ I and e ∈ E .
As f ∈ BIp(E, Dp), then f (x X + e) ∈ Dp[X ], for each x ∈ I and e ∈ E . Since b ∈
D, then b f (x X + e) ∈ Dp[X ] for each x ∈ I and e ∈ E . We conclude that for each
x ∈ I and e ∈ E , b f (x X + e) ∈ ⋂

ht(p)=1 Dp[X ] = D[X ]. Thus b f ∈ BI (E, D) and
hence f ∈ BI (E, D)p as b /∈ p.

Corollary 4 Let D be a Krull domain, E be a fractional subset of D, and I be an
ideal of D. Then BI (E, D) = ⋂

ht(p)=1 BIp(E, Dp).

Proof By Proposition 11, BI (E, D) ⊆ ⋂
ht(p)=1 BIp(E, Dp). For the reverse inclu-

sion, let f ∈ ⋂
ht(p)=1 BIp(E, Dp). Then for each height-one prime ideal p, f (x X +

e) ∈ Dp[X ] for each x ∈ I and e ∈ E . Thus f (x X + e) ∈ ⋂
ht(p)=1 Dp[X ] = D[X ]

and hence f ∈ BI (E, D).

Proposition 12 Let S be amultiplicative subset of D and E a subset of D. If the set of
representatives of E modulo (x) = xD is finite, then S−1

Bx (E, D) = Bx (E, S−1D).

Proof If E = {a1, ..., an} is a set of representatives of E modulo (x), then every
element of E is a fortiori congruent to one ai modulo S−1(x), and thus Bx (E, D) =⋂

a∈E D[ X−a
x ] = ⋂i=n

i=1 D[ X−ai
x ]. Thus
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S−1
Bx (E, D) = S−1

⋂

ai∈Ē
D[ X − ai

x
] =

i=n⋂

i=1

S−1D[ X − ai
x

].

On the other hand, if ES denotes the set of representatives of E modulo S−1(x),
then E ⊆ ES. Hence

Bx (E, S−1D) =
⋂

a∈ES

S−1D[ X − a

x
] ⊆

⋂

a∈Ē
S−1D[ X − a

x
] = S−1

Bx (E, D).

The equality follows from statement (1) of Lemma 1.

Corollary 5 Let E be a subset of D such that the set of representatives of E modulo
(x) is finite. Then, for each prime ideal p of D, Bx (E, D)p = Bx (E, Dp).

4 Transfer Properties

In this section, we investigate the transfer of some algebraic properties between D
and Bx (E, D).

Proposition 13 Let E be a nonempty subset of K . Then Bx (E, D) is integrally
closed if and only if D is integrally closed.

Proof Clearly if Bx (E, D) is integrally closed, then so is D. Conversely, let
f ∈ K (X) be integral overBx (E, D). Then f n + gn−1 f n−1 + · · · + g1 f + g0 = 0,
where gi ∈ Bx (E, D) for all i, 0 ≤ i ≤ n − 1. Since gi ∈ K [X ], then f is integral
over K [X ] and so f ∈ K [X ], as K [X ] is integrally closed. Let e ∈ E , then
f n(x X + e) + gn−1(x X + e) f n−1(x X + e) + · · · + g1(x X + e) f (x X + e) + g0
(x X + e) = 0. Since gi (x X + e) ∈ D[X ] for all i, 0 ≤ i ≤ n − 1, then f (x X + e)
is integral over D[X ] and hence, f (x X + e) ∈ D[X ] as D[X ] is integrally closed.
Since e is arbitrary, then f ∈ Bx (E, D).

Remark 4 From the above proof, we deduce that Bx (E, D)′ ⊆ Bx (E, D′) :
For if f is integral over Bx (E, D), then f (x X + e) is integral over D[X ], for all
e ∈ E . So f (x X + e) ∈ (D[X ])′ = D′[X ], for all e ∈ E . Thus, f ∈ Bx (E, D′).

Proposition 14 Let D be a Noetherian domain and E be a fractional subset of D.
Then Bx (E, D′) is almost integral over Bx (E, D).

Proof Let f ∈ Bx (E, D′), that is, for each e ∈ E , f (x X + e) ∈ D′[X ]. Thus, for
every positive integer n, f n(x X + e) is integral over D[X ] and hence f n(x X +
e) ∈ R, a finitely generated D[X ]-module. Thus, the conductor I = (D[X ] : R) =
{g ∈ D[X ] : gR ⊆ D[X ]} �= (0). In fact, an element of R can be written as a linear
combination of afinite number of polynomials hi ∈ D′[X ],with coefficients in D[X ].
As D′ ⊆ K , then hi ∈ K [X ]. Let d be the common denominator of the coefficients
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of all hi . Then 0 �= d ∈ I . It follows that d f n(x X + e) ∈ D[X ] and hence, d f n ∈
Bx (E, D).

Proposition 15 Let D be a domain, 0 �= x ∈ D and E ⊆ K. The domain Bx (E, D)

is completely integrally closed if and only if D is completely integrally closed.

Proof It is easy to see that if Bx (E, D) is completely integrally closed, then so is
D. Conversely, let f ∈ K (X) be almost integral over Bx (E, D). Then there is a
polynomial 0 �= h ∈ Bx (E, D) such that h f n ∈ Bx (E, D) for each positive integer
n. Since f is almost integral over K [X ] and K [X ] is completely integrally closed,
then f ∈ K [X ]. As h f n ∈ Bx (E, D) for each positive integer n, then, for each e ∈ E ,
h(x X + e) f n(x X + e) ∈ D[X ] for each n. This implies that f (x X + e) is almost
integral over D[X ], for each e ∈ E . Since D[X ] is completely integrally closed (as D
is, cf. [8, section13]), then f (x X + e) ∈ D[X ] for each e ∈ E . Thus, f ∈ Bx (E, D)

and so Bx (E, D) is completely integrally closed.

We point out that, in general, Proposition 15 does not hold for Int(E, D) as
indicated by [4, Exercise 10, page 153].

By [3, Proposition 3.13] the ACCP property transfers from D to any ring R such
that D ⊆ R ⊆ Int(E, D). As a consequence we can state:

Proposition 16 Let D be a domain, 0 �= x ∈ D and E an (infinite) subset of K .
Then Bx (E, D) has ACCP if and only if D has ACCP.

In Proposition 16 the word “infinite”may be omitted: indeed, Bx (E, D) may be
described only by a set of representatives of E modulo x , which may be a finite set.

Proposition 17 Let D be a domain, 0 �= x ∈ D. Unless D is a field, Bx (D) is never
a Bezout domain.

Proof Assume that D is not a field. If x is a unit, thenBx (D) = D[X ] is not a Bezout
domain since D is not a field. So assume x is not a unit. Assume (x, X) = ( f )
for some f ∈ Bx (D). Then f (X) = xg1(X) + Xg2(X) for some g1, g2 ∈ Bx (D).
This implies that f (0) = xg1(0) := d ∈ D. Further, we have X = f (X)h1(X) and
x = f (X)h2(X) for some h1, h2 ∈ Bx (D). From x = f (X)h2(X), we deduce that
the degree of f is zero and hence f (X) = d (As x = f (0)h2(0) = dh2(0), then
x �= 0 implies d �= 0). From X = f (X)h1(X), it follows that the degree of h1 is one.
Write h1(X) = αX + β. Then, on one hand, we get α = h1(1) − h1(0) ∈ D and,
on the other hand, we get 1 = dα and hence α = 1

d = 1
xg1(0)

/∈ D since x is not a
unit. This contradiction proves that (x, X) �= ( f ) and hence Bx (D) is not a Bezout
domain.

5 The Prime Ideal Structure

In this section, we determine and study the prime ideals of Bx (E, D). Then we
generalize some results that hold in the case of Bx (D) (see [1] and [11]).
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Since the prime ideals of Bx (E, D) are defined by means of those of D[X ],
we better first recall the prime ideals of D[X ]. In fact, any prime ideal P of
D[X ] is either an expansion ideal of p = P ∩ D, that is of the form p[X ] =
{ f (X) = a0 + ... + an Xn | ai ∈ p} or P =< p, f > is an upper to p in D[X ]: that is
P = ϕ−1( f χ(p)[X ]), whereχ(p) = q f (D/p), ϕ : A[X ] −→ qf(D/p)[X ] the nat-
ural ring homomorphism and f ∈ D[X ] modulo pDp is irreducible in qf(D/p)[X ]
(for convenience, we say that ϕ is irreducible modulo p) (cf. [9, Theorem 1 and 2]).

Proposition 18 Let p be a prime ideal of D, with infinite residue field, and E a
fractional subset of D that meets infinitely many cosets of p. Then, the prime ideals
of Bx (E, D) above p are of the following types:

1. pDp[X ] ⋂
Bx (E, D), which is the set of polynomials of Bx (E, D) with coeffi-

cients in pDp.
2. (p, h)Dp[X ] ⋂

Bx (E, D), which is the set of polynomials of Bx (E, D) which
are divisible by h modulo pDp, where h ∈ Dp[X ] is irreducible modulo pDp,

Proposition 19 Let E be a fractional subset of D and K = qf(D). The nonzero
prime ideals of Bx (E, D) above (0) are in one-to-one correspondence with the
monic irreducible polynomials of K [X ]. To each monic irreducible polynomial ϕ of
K [X ] corresponds the prime ideal

Bϕ = ϕK [X ]
⋂

Bx (E, D).

Proof Since E is a fractional subset of D, then Bx (E, D) contains a nonconstant
polynomial of degree 1 (cf. Proposition 3). It follows that S−1

Bx (E, D) = K [X ],
where S = D \ (0). Hence Spec(S−1

Bx (E, D)) = Spec(K [X ]). In fact, if p is a
prime ideal of Bx (E, D) with p

⋂
D = (0) , then S−1p is a prime ideal of K [X ]. So,

there exists an irreducible polynomial ϕ ∈ K [X ], such that S−1p = ϕK [X ]. Thus
p = Bϕ = ϕK [X ] ⋂

Bx (E, D).

Now, if E is a subset of D and K = q f (D), then by Corollary 1

D[X ] ⊆ Bx (E, D).

So, if S = D \ p, where p is a prime ideal of D, then

Dp[X ] = S−1D[X ] ⊆ S−1
Bx (E, D) ⊆ Bx (E, S−1D).

Thus, if x /∈ p, then x is a unit of S−1D = Dp. Hence Bx (E, S−1D) = Dp[X ]. It
follows that S−1

Bx (E, D) = Dp[X ]. In this case, the prime ideals ofBx (E, D) above
p ∈ Spec(D) are in one–one correspondence with those of Dp[X ] above pDp.

Notice, in this case, that the prime ideal p[X ] = pD[X ] lifts to Bx (E, D).
On the other hand, {Q ∈ Spec(Bx (E, D); x /∈ Q} is in one–one correspondence

with Spec(D[ 1x , X ]), that is with {P ∈ Spec(D[X ]); x /∈ P}: in deed, N = {xn; n ≥
0} is a multiplicative subset of both D[X ] and Bx (E, D), with
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N−1D[X ] ⊆ N−1
Bx (E, D) = Bx (E, N−1D) = N−1D[X ] = D[ 1

x
, X ].

Now, as in the case of Bx (D) (cf. [1, Lemma 3.1]), with E any subset of qf(D) =
K , the following ring homomorphisms are useful in order to define some particular
prime ideals of Bx (E, D).

Lemma 2 Let D be a domain, p a prime ideal of D, E be a subset of K and a ∈ E.

(1) The map
Ψa : Bx (E, D) → D[X ]

f (X) �−→ f (x X + a)

is an injective ring homomorphism.
(2) The map

Φa : Bx (E, D) → D/p
f (X) �−→ f (a) + p

is a surjective ring homomorphism.

Next we define some particular types of prime ideals of Bx (E, D). We then
investigate inclusion relations among them.

Let D be an integral domain and p a prime ideal of D. Let E be a subset of K
and a ∈ E .
To avoid the case Bx (E, D) = D, we assume that, Bx (E, D) contains nonconstant
polynomials (for instance E is a fractional subset of D). Set

Bp,a = { f ∈ Bx (E, D) | f (a) ∈ p}

pa[X ] = { f ∈ Bx (E, D) | f (x X + a) ∈ p[X ]}

M<p,ϕ>,a = { f ∈ Bx (E, D) | f (x X + a) ∈< p, ϕ >}

Proposition 20 Under the previous hypotheses and notations, we have:

(1) pa[X ],Bp,a and M<p,ϕ>,a are prime ideals of Bx (E, D) above p.
(2) pa[X ] ⊆ pBp,a and pa[X ] ⊆ M<p,ϕ>,a.
(3) Let p ⊂ q in Spec(D). Then pa[X ] ⊂ qa[X ], Bp,a ⊂ Bp,a and for each <

p, ϕ >⊂< q, ψ >, wehaveM<p,ϕ>,a ⊂ M<q,ψ>,a. Furthermore, if< p, ϕ >⊂
q[X ], then M<p,ϕ>,a ⊂ qa[X ].

Proof Using the previous ring homomorphisms, the same proof as in [1, Proposition
3.3] holds, just replace Bx (D) with Bx (E, D).

Next, we will determine maximal ideals of Bx (E, D) among those of Proposi-
tion 20.

Proposition 21 Let D be a domain, x ∈ D \ {0}, E a subset of K and a ∈ E.
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(1) Let p ∈ Spec(D). Then Bx (E, D)/Bp,a � D/p.
(2) Let m be a maximal ideal of D and < m, ϕ > be an upper to m in D[X ]. Then

Bm,a and M<m,ϕ>,a are maximal ideals of Bx (E, D).

Proof To avoid the trivial case ofBx (E, D) = D, we assume thatBx (E, D) contains
nonconstant polynomials. Then replace Bx (D) with Bx (E, D) in the proof of [1,
Proposition 3.4].

Proposition 22 Let D be a domain, E a subset of D and 0 �= x ∈ D. Let p ∈
Spec(D) and a ∈ E.

(1) If x /∈ p, then: pa[X ] ∩ D[X ] = p[X ]. Moreover, pa[X ] is a proper subset of
both Bp,a and M<p,η>,a.

(2) If x ∈ p, then p[X ] is a proper subset of pa[X ] ∩ D[X ]. Furthermore, if D/p
is infinite and E meets infinitely many cosets modulo p, then p[X ] lifts to a
prime ideal P ∈ Spec(Bx (E, D)) and P ⊂ pa[X ] = Bp,a = M<p,η>,a, for
each η ∈ D[X ] with η irreducible modulo p.

Proof We just reproduce the proof of [1, Proposition 3.4], with necessary changing.
First of all by Proposition 20, pa[X ] is a subset of both Bp,a and M<p,η>,a , for

each η ∈ D[X ] with η irreducible modulo p. On the other hand, Since E is a subset
of D, by Corollary 1, D[X ] ⊆ Bx (E, D).

(1). Assume that x /∈ p. Localizing at Sx = {xn|n ≥ 0}, we get S−1
x Bx (E, D) =

D[ 1x , X ]. Then S−1
x pa[X ] ⊆ S−1

x Bp,a are prime ideals of D[ 1x , X ]. Since
X − a ∈ D[ 1x , X ], then S−1

x pa[X ] = pDp[ 1x , X ] and S−1
x Bp,a =< p, X − a >

Dp[ 1x , X ]. Hence

pa[X ] ∩ D[X ] = S−1
x pa[X ] ∩ Bx (E, D) ∩ D[X ] = pDp[ 1

x
, X ] ∩ D[X ] = p[X ].

In a similar way, we getBp,a ∩ D[X ] =< p, X − a > Dp[ 1x , X ] ∩ D[X ] =<

p, X − a > . Since x /∈ p, then X − a ∈ Bp,a \ pa[X ]. Thus, pa[X ] ⊂ Bp,a .
On the other hand, since x /∈ p, then x is a unit in Dp. Hence, the fact that
pa[X ] ⊂ M<p,η>,a is a consequence of Proposition 20 and Proposition 21. On
the other hand, If D/p is finite, then p is amaximal ideal of D. ByProposition 21,
p<p,η>,a is a maximal ideal of Bx (E, D). Thus, pa[X ] ⊂ M<p,η>,a . If D/p is
infinite, by Remark 3, Bx (E, Dp) = Bx (E, D)p = Dp[X ]. With S = D \ p, it
is easy to see that S−1pa[X ] = (S−1p)a[X ] and S−1M<p,η>,a = M<S−1p,η>,a .
It follows that pa[X ] ⊂ M<p,η>,a .

(2). Since x ∈ p, then X − a ∈ pa[X ]. It follows that X − a ∈ pa[X ] ∩ D[X ] and
thus p[X ] ⊂ pa[X ] ∩ D[X ]. Now, Assume that D/p is infinite and E meets
infinitely many cosets modulo p. By Remark 3, Bx (E, D)p = Bx (E, Dp) =
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Dp[X ]. So, set P = pDp[X ] ∩ Bx (E, D). Then P ∩ D[X ] = p[X ] and nec-
essarilyP ⊂ pa[X ].

On the other hand, < p, X − a >= p[X ] + (X − a)D[X ] ⊆ pa[X ] ⊆ Bp,a . It
follows that S−1 < p, X − a >⊆ S−1pa[X ] ⊆ S−1Bp,a retracts to the same
ideal < p, X − a > of D[X ]. It follows that pa[X ] = Bp,a = M<p,η>,a , for
each η ∈ D[X ] with η irreducible modulo p.

Next, if E ⊆ D, we show that for each a ∈ E and for x ∈ p, the three prime ideals
pa[X ], Bp,a , and M<p,ϕ>,a of Bx (E, D) always have the same trace in D[X ].
Proposition 23 Let D be a domain and E ⊆ D. Let p ∈ Spec(D), 0 �= x ∈ p and
a ∈ E. Then

pa[X ] ∩ D[X ] = Bp,a ∩ D[X ] = M<p,ϕ>,a ∩ D[X ].

Proof Since E ⊆ D, then D[X ] ⊆ Bx (E, D). The proof is then similar to that of [1,
Proposition 3.6]

Remark 5 Let D be an integral domain, 0 �= x ∈ D and E ⊆ D such that E ∩ xD �=
∅. Then, for each f ∈ Bx (E, D), of degree n, xn f ∈ D[X ]: indeed, E ∩ xD �= ∅
implies that f ∈ D[ Xx ] and thus, xn f ∈ D[X ].
Proposition 24 Let D be an integral domain, 0 �= x ∈ D and E ⊆ D such that
E ∩ xD �= ∅. Letp ∈ Spec(D). if either x /∈ por E meets infinitely D/p, thenBp,a =
Bp,b if and only if a ≡ b mod p.

Proof The same as in the proof of [1, Proposition 3.9]: just replace Lemma 2.8 (resp.,
Proposition 2.2) with Remark 5 (resp., Proposition 6).

Proposition 25 Let D be an integral domain, 0 �= x ∈ D and E ⊆ D. Let p ∈
Spec(D) and a, b ∈ E with a − b ∈ xD. Then pa[X ] = pb[X ].
Proof The fact that a ≡ b mod xD implies that X−a

x = X−b
x + α, for some α ∈

D. Thus p[ X−a
x ] = p[ X−b

x ]. The result follows by intersecting with Bx (E, D).

6 Krull and Valuative Dimension

In this section, we will compute the valuative dimension of Bx (E, D) and give
conditions under which, Bx (E, D) is a Jaffard domain. But we first establish bounds
for the Krull dimension of Bx (E, D).

Recall that the Krull dimension of a domain A, denoted by dimA, is defined to be
the largest length of all possible chains of prime ideals in A. The valuative dimension
of A, denoted by dimv A, is defined to be the supremum of dimV , where V runs over
all valuation overrings of A. When dimA = dimv A, then A is called a Jaffard domain
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[2]. Noetherian, valuation, Dedekind and Prüfer domains are all examples of Jaffard
domains.

Proposition 26 Let D be a domain with quotient field K , E be a subset of K , and
0 �= x ∈ D. Then dimBx (E, D) ≥ dimD.

Furthermore, if E is a fractional subset of D, then dimBx (E, D) ≥ dimD + 1.

Proof Let dimD = n, e ∈ E and let (0) = p0 ⊂ p1 ⊂ · · · ⊂ pn be a chain of prime
ideals of length n in D. ThenBp0,e ⊂ Bp1,e ⊂ · · · ⊂ Bpn ,e is a chain of prime ideals
of length n in Bx (E, D) (for some e ∈ D). This yields the first inequality. If E is a
fractional subset of D, then dE ⊆ D for some 0 �= d ∈ D. Since dX − de ∈ Bp0,e,
then (0) ⊂ Bp0,e and hence the second inequality follows.

Theorem 1 Let D be a domain with quotient field K , E be a subset of K , and
0 �= x ∈ D. Assume that Bx (E, D) contains nonconstant polynomials (for instance
if E is a fractional subset of D ). Then dimBx (E, D) ≥ dimD[X ] − 1.

Proof The same proof as for [1, Theorem 4.2 ], just replace Proposition 3.4 (resp.,
3.5) with Proposition 19 (resp., 2).

Remark 6 If Bx (E, D) does not contain nonconstant polynomials, then the inequal-
ity in Theorem 1 fails to be true. For instance, [7, Example 4.4] give a non Jaffard
two-dimensional domain D, with dimD[X ] = 5. So, Take E = qf(D), then for any
0 �= x ∈ D, one necessarily has Bx (E, D) = D. It follows that, dimBx (E, D) =
dimD = 2 < 4 = dimD[X ] − 1.

However, in case D is either a Jaffard of a Strong S–domain, then dimD[X ] =
dimD + 1. Thus even if Bx (E, D) does not contain nonconstant polynomials, one
has dimBx (E, D) ≥ dimD[X ] − 1 = dimD (see also Proposition 26).

Theorem 2 Let D be a domain with quotient field K and a ∈ K. Let B be a domain
such that D ⊂ B ⊆ D + (X − a)K [X ]. If B contains a nonconstant polynomial,
then:

(1) dim(B) ≥ 1 + dimD.

(2) dimv(B) = 1 + dimvD.
(3) D is a Jaffard domain if, and only if B is a Jaffard domain and dimB = 1 +

dimD.

Proof Since B contains a nonconstant polynomial, then we can easily see that it may
be of the form f (X) = (X − a)h(X) ∈ D[X ]\{0}.
(1.) Set I = (X − a)K [X ] and let 0 = p0 ⊂ p1 ⊂ · · · ⊂ pn be a chain of prime

ideals of D of length n = dimD. By [6, Lemma 1.1], it follows that 0 ⊂
I ⊂ p1 + I ⊂ · · · ⊂ pn + I is a chain of prime ideals of D + (X − a)K [X ]
of length n + 1 = dimD + 1. On the other hand, f (X) ∈ B ∩ I implies that
B ∩ I �= 0 and hence 0 ⊂ I ∩ B ⊂ (p1 + I ) ∩ B ⊂ · · · ⊂ (pn + I ) ∩ B is
a chain of prime ideals in B of length n + 1 = dimD + 1. It follows that
dimB ≥ 1 + dimD.
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(2). Note first that we have D[ f ] ⊆ B ⊆ D + (X − a)K [X ] ⊆ K (X). Clearly
K (X) is algebraic over D[ f ] and thus, by [8, Theorem 30.8], we have dimvD +
(X − a)K [X ] ≤ dimv B ≤ dimvD[ f ]. By [6, Lemma 2.2], dimvD + (X −
a)K [X ] = 1 + dimvD. Since D[ f ] is isomorphic to D[X ], then dimvD[ f ] =
1 + dimvD. Thus dimv B = 1 + dimvD.

(3). If D is a Jaffard domain, then dimvD = dimD. It follows from statement (2)
that dimv B = 1 + dimD. From statement (1) we get

1 + dimD ≤ dimB ≤ dimv B = 1 + dimD.

Thus dimB = 1 + dimD = dimv B and B is a Jaffard domain. Conversely, if
B is a Jaffard domain of dimension 1 + dimD, then, by statement (2), dimD =
dimvD and D is Jaffard.

Corollary 6 Let D be a domain with quotient field K and E be a subset of K . Let
0 �= x ∈ D be such that Bx (E, D) contains a nonconstant polynomial (for instance,
if E is a fractional subset of D). Then,

(a) dimInt(E, D) ≥ 1 + dimD.
(b) dimBx (E, D) ≥ 1 + dimD.
(c) dimvBx (E, D) = dimvInt(E, D) = 1 + dimvD.
(d) The following statements are equivalent:

(i) D is a Jaffard domain;
(ii) Int(E, D) is a Jaffard domain and dimInt(E, D) = 1 + dimD;
(iii) Bx (E, D) is a Jaffard domain and dimBx (E, D) = 1 + dimD.

Proof Let a ∈ E . Then

D ⊆ Bx (E, D) ⊆ Int(E, D) ⊆ Int({a}, D) = D + (X − a)K [X ].

Thus, the result follows if we take either B = Bx (E, D) or B = Int(E, D) in Theo-
rem 2.

Corollary 7 Let D be a domain with quotient field K and E a subset of K . if D[X ]
is a Jaffard domain then dimBx (E, D) ≤ dimD[X ].
Lemma 3 Let D be a domain, 0 �= x ∈ D and E ⊆ xD. Then Bx (E, D) = D[ Xx ].
Proof Since E ⊆ xD, so there exists A ⊆ D such that E = Ax . Thus

Bx (E, D) =
⋂

e∈E
D[ X − e

x
] =

⋂

a∈A

D[ X − ax

x
] =

⋂

a∈A

D[ X
x

− a] = D[ X
x

].

Remark 7 (1) ByLemma3, For each domain D and each 0 �= x ∈ D,Bx (xD, D) =
D[ Xx ] � D[X ]. Thus, dimBx (xD, D) = dimD[X ].

(2) If further D[X ] is a Jaffard domain, then Bx (xD, D) is a Jaffard domain. So if
D is not Jaffard, necessarily dimBx (xD, D) > 1 + dimD.
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(3) The inequality dimBx (E, D) ≤ dimD[X ] (cf, Corollary 7) may hold even if
D[X ] is not a Jaffard domain. for instance in [1, Example 5.2] we constructed a
domain of the form: D = k + M such that:

• dimD = 2, dimvD = 3 and dimD[X ] = 1 + dimD = 3,
• D and D[X ] are not Jaffard.
So taking D/M = k finite and x a nonzero non-unit of D, then for each positive
integer n, Bx (xnD, D) �= D[X ] and dimBx (xnD, D) = dimD[X ].

By Proposition 3, if E is a fractional subset of D, then Bx (E, D) contains non-
constant polynomials. However, if E is not a fractional subset of D, we may have
Bx (E, D) = D, for instance, take D = Z, E = S−1

Z with S any nontrivial multi-
plicative subset of Z. However, it may happen that Bx (E, D) contains a nonconstant
polynomial, even if E is not a fractional subset of D, as the following example shows:

Example 1 (cf. [4, Exercise 8, p. 20]).We construct a domain D and a non-fractional
subset E of D, such that:

(1) Bx (E, D) contains nonconstant polynomials (cf. Proposition 2 and 3).

(2) Bx (E, D) is a Jaffard domain, with dimBx (E, D) = dimD[X ] = 1 + dimD.

Let k be a field of characteristic p �= 0 and V = k[[t]] be the power series ring
with coefficients in k: V is the ring of a discrete valuation v on the field k((t)). As
stated in the reference above:

(i) Let y ∈ V be such that y and t are algebraically independent over k. Set
K = k(t, y p) and L = k(t, y). Then K ⊂ L ⊂ k((t)). Further, L is a purely
inseparable algebraic extension of degree p over K and L p ⊆ K .

(ii) Let W = V ∩ K and D = W [y]. Then D is a one-dimensional Noetherian
domain (W is DVR) with quotient field L .

(iii) The integral closure of D is D′ = V ∩ L .
(iv) Let w be the restriction of the valuation v to K . The ring of the valuation w is

W and w extends uniquely to L . The ring of this extension is D′.
(v) D′ is not a finitely generated D–module. However, D = W [y] is a finitely

generated W–module.

(1). By the statement (v), D′ is not a fractional subset of D. Now let x ∈ D. Then for
each b ∈ D′, we have (x X + b)p = x pX p + bp, (the remaining coefficients are
multiples of p and hence are zero). On the other hand, bp ∈ D since (D′)p ⊆ D.
It follows that the nonconstant polynomial X p belongs to Bx (D′, D).

(2). Now since D is Noetherian and one-dimensional, then D is one-dimensional
Jaffard domain and by applying Corollary 6, we see that for each x ∈ D, the
ring Bx (D′, D) is a two-dimensional Jaffard domain, with dimBx (D′, D) =
dimD[X ] = 1 + dimD.
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On Commutativity of Banach ∗-Algebras
with Derivation

Mohammad Ashraf and Bilal Ahmad Wani

Abstract The aim of this paper is to apply purely ring theoretic results to discuss the
commutativity of a Banach algebra and Banach ∗-algebra via derivations. We prove
that if A is a semiprime Banach algebra and G a nonempty open subsets of A which
admits a nonzero continuous linear derivation d : A → A such that d([xm − x, y]) ∈
Z(A) for each x in G and an integerm = m(x) > 1, thenA is commutative. Further,
we discuss the commutativity of Banach ∗-algebra. In particular, it is shown that
either a semiprime Banach ∗-algebra A with continuous involution and derivation is
commutative or the set of x ∈ A for which [d(xk), d((xk)∗)] ∈ Z(A) for no positive
integer k ≥ 1, is dense in A. Finally, few more parallel results have been established
about the commutativity of Banach and Banach ∗-algebras.

Keywords Commutativity · Derivations · Banach algebras · Banach ∗-algebras

1 Introduction

LetA denote a Banach algebra over the complex fieldCwith identity e, Z(A) denote
the centre of A and M be a closed linear subspace of A. Recall that an algebra A
is said to be prime if for any a, b ∈ A, aAb = {0} implies a = 0 or b = 0, and A
is semiprime if for a ∈ A, aAa = {0} implies a = 0. For any x, y ∈ A, the symbol
[x, y] will denote the commutator xy − yx . A linear mapping x �→ x∗ of A into
itself is called an involution on A if it satisfies the conditions: (i) (x∗)∗ = x , (ii)
(xy)∗ = y∗x∗ for all x, y ∈ A. A Banach algebra A equipped with an involution ∗
such that ‖ x∗ ‖=‖ x ‖ is called a Banach ∗-algebra. An element x of Banach ∗-
algebra is said to be self-adjoint if x∗ = x . We say that x ∈ A is normal modulo
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M if [x, x∗] ∈ M . A linear mapping d : A → A is said to be a derivation on A if
d(xy) = d(x)y + xd(y) holds for all x, y ∈ A.

In ring theory, much attention has been devoted to show that certain rings must
be commutative as a consequence of conditions which are seemingly too weak to
imply commutativity. This work was initiated largely by Jacobson, Kaplansky and
especially Herstein and has continued up to the present time. Yood in [1, 2] and [3]
pursued the same aim for Banach algebras.

One of the first mathematicians to follow-up Jacobson‘s result was Herstein [4]
who proved that if there exists a positive integer n in a ring R such that xn − x is in
the center of R, then R is commutative. In 1955 and 1957, Herstein [5, 6] proved that
for a ring R, to be commutative the following conditions are necessary and sufficient:

(H1) For all x and y in R there exists an integer n = n(x, y) ≥ 2 such that (xn −
x)y = y(xn − x);

(H2) For all x and y in R there exists an integer n = n(x, y) ≥ 2 such that xy −
yx = (xy − yx)n;

If a ring is semisimple then the following are necessary and sufficient for com-
mutativity:

(H3) For all x and y in R there exists an integer n = n(x, y) ≥ 1 such that xn y =
yxn;

(H4) For all x and y in R there exists an integer n = n(x, y) ≥ 2 such that (xy)n =
xn yn .

Further several authors have done tremendous work in this area for reference see
[7–15] etc. where more references can be found. Another technique for investigating
commutativity of rings (algebras) is the use of additive mappings like derivations
and automorphisms of the ring R. To indicate how strongly related a derivation is
to commutativity, we say a derivation (or other function) d : R → R is commuting
if [d(x), x] = 0 for all x ∈ R, and centralizing if [d(x), x] ∈ Z(R) for all x ∈ R.
The study of such mappings was initiated by Posner (Posner second theorem). In
[16, Theorem 2], Posner proved that if a prime ring R admits a nonzero derivation
d such that [d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative. A number of
authors have generalized Posner’s result in the setting of rings and algebras (see [17–
21]). Considerable attention has been paid to commutativity theorems for rings and
algebras (see, for example, Chap. 2 of [22, 23] and Chap.3 of [24], where further
references can be found). Herstein [25] connected commutativity and derivations
by proving that if a prime ring R admits a derivation d �= 0 such that d(x)d(y) =
d(y)d(x) for all x, y ∈ R then, (i) if char R = 2, then R is a commutative integral
domain, and (i i) if char R = 2, then R is commutative or an order in a simple algebra
which is 4-dimensional over its center.

There has been a great deal of work concerning the relationship between the
commutativity of rings and algebras and the existence of certain specified additive
mappings like derivations (see [12, 13, 26–30] where further references can be
found). The objective of this paper is to investigate the commutativity of Banach
algebras and Banach ∗-algebras involving derivations.
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2 Results on Banach Algebras

This research is motivated by the work of Yood [1]. Throughout this section A will
denote a Banach algebra over the complex field C with identity e and Z(A) denotes
the centre of A. Here an important tool is the Baire category theorem. In this section
we will use the ring theoretic results to study the commutativity of Banach algebra.
We shall use several times the readily established fact that p(t) = ∑n

r=0 br t
r is a

polynomial in real variable t for infinite values of t and each br ∈ A. If p(t) ∈ M ,
then each br lies inM (see [22]).

Amotivating theorem for our study is the following result due toYood [1, Theorem
2.5].

Theorem 1. Let u ∈ A. Suppose that there is a nonempty open set G inA such that,
for each x ∈ G, we have a positive integer n = n(x) > 1 such that

[xn − x, u] ∈ M .

For M = (0) we have u ∈ Z(A). If A has no nonzero nilpotent ideals and
M = Z(A), then u ∈ Z(A).

We begin with the following results which are important for developing the proof of
main result.

Lemma 1. LetA be aBanach algebra and d : A → A be a linearmapping. Suppose
that z ∈ A and m ≥ 1 be a positive integer such that d([z, xm]) ∈ M for all x ∈ A,
then d([zm, x]) ∈ M for all x ∈ A.

Proof. Since d([z, xm]) ∈ M for all x ∈ A. Therefore, for each real t , we have

d([z, (z + t x)m]) ∈ M .

The expression d([z, (z + t x)m]) can be written as

d([z, (z + t x)m]) = d([z, Pm,0(z, x)]) + d([z, Pm−1,1(z, x)])t + · · ·
+d([z, P1,m−1(z, x)])tm−1 + d([z, Pm,0(z, x)])tm .

Let i, j be nonnegative integers. If i + j = m, then Pi, j (z, x) denotes the sum of
all the terms in which z appears exactly i times and x appears exactly j times in the
expansion of (z + t x)m . The above expression is a polynomial in t and the coefficient

of t in this polynomial is d[z,
m−1∑

k=0
zk xzm−1−k]. Therefore, we have

d([z,
m−1∑

k=0

zk xzm−1−k]) = d([zm, x]) ∈ M .
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Theorem 2. Let A be a Banach algebra and d : A → A be a continuous linear
mapping. Suppose that there is a nonempty open set G in A such that d([xm, yn]) ∈
M for each x, y in G and positive integers m = m(x, y) ≥ 1 and n = n(x, y) ≥ 1
. Then there exists a fixed positive integer k ≥ 1 such that d([xk, y]) ∈ M for all
x, y ∈ A.

Proof. Fix z ∈ G. For each positive integers m, n; we define the set

Vm,n = {y ∈ A|d([zm, yn]) /∈ M }.

We claim that each Vm,n is open in A. To show that Vm,n is open we have to show
that V c

m,n is closed. For this, we take a sequence (wk) ∈ V c
m,n such that wk → w as

k → ∞ and prove that w ∈ V c
m,n . Since wk ∈ V c

m,n ,

d([zm,wn
k ]) ∈ M .

Taking limit on k, we obtain

lim
k→∞ d([zm,wn

k ]) ∈ M .

Since d is continuous, we have

lim
k→∞ d([zm,wn

k ]) = d([zm, lim
k→∞wn

k ]) = d([zm,wn])

is inM . This implies thatw ∈ V c
m,n , so V

c
m,n is closed and hence Vm,n is open. If every

Vm,n is dense inA then, by the Baire category theorem their intersection is also dense.
But this would contradict the existence of G. Therefore there are positive integers r
and s so that Vr,s is not dense and a nonempty open set Q in the compliment of Vr,s

such that d([zr , us]) ∈ M for all u ∈ Q. If u0 ∈ Q and x ∈ A, then u0 + t x ∈ Q,
for all sufficiently small real t . Therefore, we have

d([zr , (u0 + t x)s]) ∈ M .

It can be easily seen that

d([zr , (u0 + t x)s]) = d([zr , As,0(u0, x)]) + d([zr , As−1,1(u0, x)])t + · · ·
+d([zr , A1,s−1(u0, x)])t s−1 + d([zr , A0,s(u0, x)])t s .

Let i, j be nonnegative integers. If i + j = s, then Ai, j (u0, x) denotes the sum
of all terms in which u0 appears exactly i times and x appears exactly j times in the
expansion of (u0 + t x)s . The above expression is a polynomial in t and the coefficient
of t s in this polynomial is d([zr , xs]). Therefore we obtain d([zr , xs]) ∈ M for all
x ∈ A. By Lemma 1 we obtain d([zrs, x]) ∈ M for all x ∈ A.
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Next fix y ∈ A and for each positive integer k, set Sk = {x ∈ A|d([xk, y]) /∈ M }.
Each Sk is open (as shown above). If every Sk is dense inA then, by the Baire category
theorem their intersection is also dense. But this would contradict the existence of
G. Therefore there exists a positive integerm so that Sm is not dense and a nonempty
open set P in the compliment of Sm such that d[xm, y] ∈ M for all x ∈ P . If z ∈ P
and w ∈ A, then z + tw ∈ P for all sufficiently small real t . Therefore, we have

d([(z + tw)m, y]) ∈ M .

Arguing in a similarmanner,we see that d([wm, y]) ∈ M for all y ∈ A andw ∈ A.

Corollary 1. Let A be a semiprime Banach algebra and d : A → A be a nonzero
continuous linear derivation. Suppose that there is a nonempty open set G inA such
that d([xm, yn]) ∈ Z(A) for each x, y in G and positive integers m = m(x, y) ≥ 1
and n = m(x, y) ≥ 1. Then A is commutative.

Proof. ByusingTheorem2, there exists a positive integer k so thatd([xk, y]) ∈ Z(A)

for all x, y ∈ A. Since A is semiprime, by applying Theorem 2.5 of [31] we see that
A is commutative.

Theorem 3. Let A be a Banach algebra, u ∈ A and d : A → A be a nonzero con-
tinuous linear mapping. Suppose that there is a nonempty open set G in A such
that d([xm − x, u]) ∈ M for each x in G and an integer m = m(x) > 1. Then
d([x, u]) ∈ M for all x ∈ A.

Proof. For each positive integer m > 1, we define the set

Qm = {y ∈ A|d([ym − y, u]) /∈ M }.

We claim that each Qm is open inA. To show that Qm is openwe have to show that
Qc

m is closed. For this, we take a sequence (zk) ∈ Qc
m such that zk → z as k → ∞

and prove that z ∈ Qc
m . Since zk ∈ Qc

m , then

d([zmk − zk, u]) ∈ M .

Taking limit on k, we obtain

lim
k→∞ d([zmk − zk, u]) ∈ M .

Since d is continuous, we have

lim
k→∞ d([zmk − zk, u]) = d([ lim

k→∞ zmk − lim
k→∞ zk, u]) = d([zm − z, u])

is in M . This implies that z ∈ Qc
m , so Qc

m is closed and hence Qm is open. If every
Qm is dense in A then, by the Baire category theorem their intersection is also dense.
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But this would contradict the existence ofG. Therefore there exists a positive integers
r so that Qr is not dense and a nonempty open set P in the compliment of Qr such
that

d([zr − z, u]) ∈ M for all z ∈ P. (1)

If x ∈ A, and z ∈ P , then z + t x ∈ P for all sufficiently small real t . Therefore,
we have

d([(z + t x)r − (z + t x), u]) ∈ M .

This can be written as

d([Ar,0(z, x) + Ar−1,1(z, x)t + · · · + A1,r−1(z, x)t
r−1 + A0,r (z, x)t

r − (z + t x), u])
= d([Ar,0(z, x) − z, u]) + d([Ar−1,1(z, x) − x, u])t + · · ·
+d([A1,r−1(z, x), u])tr−1 + d([A0,r (z, x)], u)tr .

Let i, j be nonnegative integers. If i + j = r , then Ai, j (z, x) denotes the sum of
all terms in which z appears exactly i times and x appears exactly j times in the
expansion of (z + t x)r . The above expression is a polynomial in t and the coefficient
of tr in this polynomial is d([xr , u]). Therefore, we obtain

d([xr , u]) ∈ M for all x ∈ A. (2)

Combining (1) and (2), we have d([z, u]) ∈ M for all z ∈ P . If z ∈ P and v ∈ A,
then z + tv ∈ P , for all sufficiently small real t . Therefore, we have

d([z + tv, u]) ∈ M .

Using similar arguments as above, we see that d([v, u]) ∈ M for all v ∈ A.

We close this section with the following corollary :

Corollary 2. LetA be a prime Banach algebra, y ∈ A and d : A → A be a nonzero
continuous derivation. Suppose that there exists a nonempty open set G in A, such
that for each x ∈ G there exists a positive integer m = m(x) > 1 such that d([xm −
x, y]) = 0. Then A is commutative.

Proof. By using Theorem 3 we get d([x, y]) = 0 for all x, y ∈ A. Now applying
Theorem 2.5 of [32], we see that A is commutative.

Corollary 3. Let A be a semiprime Banach algebra, y ∈ A and d : A → A be a
nonzero continuous linear derivation. Suppose that there exists a nonempty open set
G in A such that for each x ∈ G there exists a positive integer m = m(x) > 1 such
that d([xm − x, y]) ∈ Z(A). Then A is commutative.
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Proof. By using Theorem 3we get d([x, y]) ∈ Z(A) for all x, y ∈ A. Now byCorol-
lary 2.6 of [31], we see that A is commutative.

3 Results on Banach ∗-Algebras

Throughout this section A will denote a Banach ∗-algebra over the complex field C

with a continuous involution x �→ x∗ and Z(A) denotes the centre of A. Moreover
M will denote a closed linear subspace ofA. Recall that x ∈ A is normal moduloM
if [x, x∗] ∈ M . In this section it is shown that either a semiprime Banach ∗-algebra
Awith continuous involution and continuous derivation is commutative or the the set
of x ∈ A for which [d(xk), d((xk)∗)] ∈ Z(A) for no positive integer k, is dense in
A. Further few more parallel results have been obtained to prove the commutativity
of Banach ∗-algebra A.

We begin this section by obtaining some important results which will be used
extensively to prove our main theorems.

Lemma 2. Let A be a Banach ∗-algebra and d : A → A be a linear mapping. Sup-
pose m ≥ 1 is a fixed positive integer such that d(hm) ∈ M for all self-adjoint
elements h. Then d(xm) ∈ M for all x in A.

Proof. Leth and k be self-adjoint inA. Sinced(hm) ∈ M for all self-adjoint elements
h. Therefore, for each real t , we have

d((h + tk)m) ∈ M .

The expression d((h + tk)m) can be written as

d((h + tk)m) = d(Pm,0(h, k)) + d(Pm−1,1(h, k))t + · · ·
+d(P1,m−1(h, k))tm−1 + d(Pm,0(h, k))tm .

Let i, j be nonnegative integers. If i + j = m, then Pi, j (h, k) denotes the sum of
all the terms in which h appears exactly i times and k appears exactly j times in
the expansion of (h + tk)m . The above expression is a polynomial in t and therefore
each coefficient in this polynomial lies inM . Now consider x = h + ik. We have

d(xm) =
m∑

r=0

ir d(Pm−r,r ) ∈ M .

Lemma 3. Let h and k be self-adjoint elements of Banach ∗-algebraA and d : A →
A be a linear mapping. Suppose that d([xm, (x∗)m]) ∈ M for all x in A and fixed

positive integer m ≥ 1. Then d[hm,
m−1∑

j=0
h jkhm−1− j ] ∈ M .
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Proof. Let h and k be self-adjoint and t �= 0 be real. Since d([xm, (x∗)m]) ∈ M for
all x in A. Substituting x = h + i tk, we arrive at

d([(h + i tk)m, ((h + i tk)∗)m]) ∈ M .

Let i, j be nonnegative integers. If i + j = m, then Pi, j denotes the sum of all
the terms in which h appears exactly i times and k appears exactly j times in the
expansion of (h + tk)m . Therefore the above expression can be written as

d([(h + i tk)m, ((h + i tk)∗)m]) = d([
m∑

r=0

ir Pm−r,r t
r ,

m∑

r=0

(−i)r Pm−r,r t
r ]) ∈ M .

Let σ(t) be the sum of the terms of this expression for even r and ρ(t) be the sum
for odd r . Then we have

d([(h + i tk)m, ((h + i tk)∗)m]) = d([σ(t) + ρ(t), σ (t) − ρ(t)])
= d([σ(t), ρ(t)]) ∈ M ,

for all real t . The above expression is a polynomial in t . Thus the coefficient of t
must lie inM . Therefore,

d[Pm−0,0, Pm−1,1] ∈ M .

This implies that,

d[hm,

m−1∑

j=0

h jkhm−1− j ] ∈ M .

Lemma 4. Let A be a Banach ∗-algebra and d : A → A be a continuous linear
mapping. Suppose that the set of x ∈ A for which there exists a positive integer
n = n(x) ≥ 1 so that d([xn, (x∗)n]) ∈ M has a nonempty interior. Then there exists
a fixed positive integer m ≥ 1 such that d([xm, (x∗)m]) ∈ M for all x ∈ A.

Proof. For each positive integer n, we set

Sn = {x ∈ A : d([xn, (x∗)n]) /∈ M }.

We claim that sn is open. To show that Sn is open we prove its complement, Scn
is closed. For this, we take a sequence (zk) ∈ Scn such that zk → z as k → ∞ and
prove that z ∈ Scn . Since zk ∈ Scn , we have

d([znk , (z∗
k )

n]) ∈ M .
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Taking limit on k, we obtain

lim
k→∞ d([znk , (z∗

k )
n]) ∈ M .

Since d and involution ∗ are continuous, we have

lim
k→∞ d([znk , (z∗

k )
n]) = d([( lim

k→∞ zk)
n, (( lim

k→∞ zk)
∗)n]) = d([zn, (z∗)n]) ∈ M .

This implies that z ∈ Scn , so Scn is closed and hence Sn is open. If every Sn is dense in
A then, by the Baire category theorem their intersection is also dense. But this would
contradicts our hypothesis. Hence there exists a positive integer m and a nonempty
open subset G ofA so that d([wm, (w∗)m]) ∈ M for all w ∈ G. If u ∈ G and x ∈ A,
then u + t x ∈ G, for all sufficiently small real t . Therefore, we have

d([(u + t x)m, ((u + t x)∗)m]) = d([(u + t x)m, (u∗ + t x∗)m]) ∈ M .

The above expression is a polynomial in t and the coefficient of t2m is d([xm,

(x∗)m]). Hence, we have

d([xm, (x∗)m]) ∈ M for all x ∈ A.

Theorem 4. Let A be unital Banach ∗-algebra and d : A → A be a continuous
linear mapping. Then either d([x, y]) ∈ M for all x, y in A or the set S of x ∈ A,
for which d([xk, (xk)∗]) ∈ M for no positive integer k ≥ 1, is dense in A.

Proof. Let e be the identity of A. Suppose that the set S is not dense in A. Then,
by Lemma 4, there exists a positive integer m such that d([xm, (x∗)m]) ∈ M for all
x ∈ A. For t �= 0, t real, set

u = t−1((e + th)m − e);

v =
m−1∑

j=1

(e + th) j k(e + th)m−1− j .

By using Lemma 3, we have d([u, v]) ∈ M . Letting t → 0, we see that d([h, k]) ∈
M . Since h and k are self-adjoint elements in A, we have d([x, y]) ∈ M for all
x, y ∈ A.

Corollary 4. Let A be a unital Banach ∗-algebra and d : A → A be a continuous
linear derivation. If A has no nonzero nilpotent ideal then either A is commutative
or the set S of x ∈ A, for which d([xk, (x∗)k]) ∈ Z(A) for no positive integer k ≥ 1,
is dense in A.
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Proof. By Theorem 4, we have d([x, y]) ∈ Z(A) for all x, y in A. Since A has no
nonzero nilpotent ideal. Then by Corollary 2.6 of [31], A is commutative.

Lemma 5. Let h and k be self-adjoint elements of Banach ∗-algebra A and d :
A → A be a linear mapping such that d commutes with ∗. Suppose that d(xm)

is a normal modulo M for all x in A and a fixed positive integer m ≥ 1. Then

[d(hm), d(
m−1∑

j=0
h jkhm−1− j )] ∈ M .

Proof. Let h and k be self-adjoint and t �= 0 be real. Since [d(xm), d((x∗)m)]) ∈ M
for all x in A. Substituting x = h + itk we arrive at

[d((h + i tk)m), d(((h + i tk)∗)m)] ∈ M .

The above expression can be written as

[d((h + i tk)m), d(((h + i tk)∗)m)] = [
m∑

r=0

ir d(Pm−r,r )t
r ,

m∑

r=0

(−i)r d(Pm−r,r )t
r ]) ∈ M .

(3)

Let i, j be nonnegative integers. If i + j = m, then Pi, j denotes the sum of all
the terms in which h appears exactly i times and k appears exactly j times in the
expansion of (h + tk)m . Again consider,

d((h + i tk)m) =
m∑

r=0

ir d(Pm−r,r )t
r = σ(t) + ρ(t) for each real t, (4)

where σ(t) be the sum of the terms of this expression for even r and ρ(t) be the sum
for odd r . Since ∗ commutes with d, we get

(d((h + i tk)m))∗ = d(((h + i tk)∗)m) = σ(t) − ρ(t). (5)

Since d((h + i tk)m) is normal modulo M . Combining (3), (4) and (5) we get

σ(t)ρ(t) − ρ(t)σ (t) ∈ M .

for all real t . The above expression is a polynomial in t . Thus the coefficient of t
must lie inM . Therefore,

[d(Pm−0,0), d(Pm−1,1)] ∈ M .
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This implies that

[d(hm), d(

m−1∑

j=0

h jkhm−1− j )] ∈ M .

Lemma 6. Let A be a Banach ∗-algebra and d : A → A be a continuous linear
mapping such that d commutes with ∗. Suppose that the set of x ∈ A for which
there exists a positive integer n = n(x) ≥ 1 so that d(xn) is normal moduloM has
nonempty interior. Then there exists a fixed positive integer m ≥ 1 such that d(xm)

is normal moduloM for all x ∈ A.

Proof. For each positive integer n, let

Wn = {x ∈ A : d(xn) is not normal modulo M }.

Since d commutes with ∗, this can be written as

Wn = {x ∈ A : [d(xn), d((x∗)n)] /∈ M }.

We claim thatWn is open. To show thatWn is open we prove its complement,Wc
n

is closed. For this, we take a sequence (zk) ∈ Wc
n such that zk → z as k → ∞ and

prove that z ∈ Wc
n . Since zk ∈ Wc

n , we have

[d(znk ), d((z∗
k )

n)] ∈ M .

Taking limit on k, we obtain

lim
k→∞[d(znk ), d((z∗

k )
n)] ∈ M .

Since d and involution ∗ are continuous, we have

lim
k→∞[d(znk ), d((z∗

k )
n)] = [d(( lim

k→∞ zk)
n), d((( lim

k→∞ zk)
∗)n)] = [d(zn), d((z∗)n)] ∈ M .

This implies that z ∈ Wc
n , so Wc

n is closed and hence Wn is open. If every Wn is
dense in A then, by the Baire category theorem their intersection is also dense. But
this would contradict our hypothesis. Hence there exists a positive integer m and a
nonempty open subset G of A so that [d(um), (u∗)m)] ∈ M for all u ∈ G. If w ∈ G
and x ∈ A, then w + t x ∈ G, for all sufficiently small real t . Therefore, we have

[d((u + t x)m), d(((u + t x)∗)m)] = [d((u + t x)m), d((u∗ + t x∗)m)] ∈ M .



38 M. Ashraf and B. A. Wani

The above expression is a polynomial in t and the coefficient of t2m is [d(xm),

d((x∗)m)]. Thus, we have

[d(xm), d((x∗)m)] ∈ M for all x ∈ A.

Theorem 5. Let A be a unital Banach ∗-algebra and d : A → A be a continuous
linear mapping such that d commutes with ∗ . Then either [d(x), d(y)] ∈ M for all
x, y in A or the set S of x ∈ A for which [d(xk), d((x∗)k)]) ∈ M for no positive
integer k ≥ 1, is dense in A.

Proof. Let e be the identity of A. Suppose that the set S is not dense in A. Then,
by Lemma 6, there is a positive integer m such that [d(xm), d((x∗)m)] ∈ M for all
x ∈ A. For nonzero real t , set

u = t−1((e + th)m − e);

v =
m−1∑

j=1

(e + th) j k(e + th)m−1− j .

By using Lemma 5, we have [d(u), d(v)] ∈ M . Letting t → 0 and using the
continuity of d, we see that [d(h), d(k)] ∈ M . Since h and k are self-adjoint elements
in A, we have [d(x), d(y)] ∈ M for all x, y ∈ A.

Corollary 5. Let A be a unital Banach ∗-algebra and d : A → A be a continuous
linear derivation such that d commutes with ∗. If A has no nonzero nilpotent ideals
then eitherA is commutative or the set S of x ∈ A forwhich [d(xk), d((xk)∗)] ∈ Z(A)

for no positive integer k ≥ 1, is dense in A.

Proof. By Theorem 4, we have [d(x), d(y)] ∈ Z(A) for all x, y in A. Since A has
no nonzero nilpotent ideals we have by Corollary 2.6 of [31] A is commutative.

Acknowledgements The authors are indebted to the referee for his/her useful suggestions and
comments.
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An Application of Linear Algebra to Image
Compression

Khalid EL Asnaoui, Mohamed Ouhda, Brahim Aksasse
and Mohammed Ouanan

Abstract Nowadays the data are transmitted in the form of images, graphics, audio
and video. These types of data require a lot of storage capacity and transmission
bandwidth. Consequently, the theory of data compression becomes more significant
for reducing the data redundancy in order to save more transfer and storage of data.
In this context, this paper addresses the problem of the lossy compression of images.
This proposed method is based on Block SVD Power Method that overcomes the
disadvantages of Matlab’s SVD function. The quantitative and visual results are
showing the superiority of the proposed compression method over those of Matlab’s
SVD function and some different compression techniques in the state-of-the-art. In
addition, the proposed approach is simple and can provide different degrees of error
resilience, which gives, in a short execution time, a better image compression.

Keywords Image compression · Singular value decomposition · Block SVD
Power Method · Lossy image compression · PSNR

1 Introduction

The Singular Value Decomposition (SVD) is a generalization of the eigen-
decomposition used to analyze rectangular matrices. It plays an important role
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in many applications: physical and biological processes, mathematical models in
economics, data mining applications, search engines to rank documents in very large
databases, including the Web, image processing applications, etc. In this paper, we
will study the SVD applied to the image compression.

Image compression is a type of data compression that involves encoding infor-
mation in images using fewer bits than the original image representation. The main
idea of image compression is reducing the redundancy of the image and the trans-
ferring data in an efficient form. The image compression takes an important place in
several domains like web designing, in fact, maximally reduce an image allows us
to create websites faster and saves bandwidth users, it also reduces the bandwidth
of the servers and thus save time and money. When talking about compression, we
generally take into account two aspects: image size in pixels and its degree of com-
pression. The nature of the image is also playing a significant role. The main goal of
such system is to reduce the storage quantity as much as possible while ensuring that
the decoded image displayed in the monitor can be visually similar to the original
image as much as it can be.

The rest of this paper is structured as follows. We briefly introduce a review of
previous related work in Sect. 2. Section3 describes the proposed system for image
compression. The performance evaluation of the proposed algorithm is reported in
Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Related Work

In recent years, numerous image compression schemes and their applications in
image processing have been proposed. In this section, a brief review of some impor-
tant contributions from the existing literature is presented.

In general, there are two approaches for image compression: lossy or lossless
[1, 2].

A lossless compression is a kind of image compression method that allows no
loss of data, and which retains the full information needed to reconstruct the original
image. This type of compression is also known as entropy coding because of the
fact that a compressed signal is generally more random than the original one and the
patterns are removed when a signal is compressed. The lossless compression can be
very useful for exact reconstruction of images. The compression ratio provided by
this kind of methods is not sufficiently high to be truly used in image compression.
Lossless image compression is particularly useful in image archiving as in the storage
of legal or medical records. The lossless image compression methods include: Run-
length coding, Bit-plane coding, Huffman coding [3], LZW (Lempel Ziv Welch)
coding and Entropy coding.

Lossy compression is another type of image compression technique in which the
original signal cannot be exactly reconstructed from the compressed data. The reason
behind this is that much of the detail in an image can be discarded without greatly
changing the appearance of the image. In lossy image compression, even a very fine
detail of the images can be lost, but ultimately, the image size is drastically reduced.
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Lossy image compressions are useful in many applications such as broadcast
television, video conferencing, and facsimile transmission, inwhich a certain amount
of error is an acceptable trade-off for increased compression performance. Among
methods for lossy compression, we find: Fractal compression [4], Transform coding,
Fourier-related transform, DCT (Discrete Cosine Transform) [5, 6] and Wavelet
transform.

Generally, SVD is a lossy compression technique which achieves compression
by using a smaller rank to approximate the original matrix representing an image.
Furthermore, lossy compression yields good compression ratio comparing with loss-
less compression while the lossless compression gives good quality of compressed
images.

When we give the definition of lossless or lossy methods, it is necessary to clarify
that near lossless algorithms are theoretically lossless. However, they may suffer
from numerical floating point accuracy reconstruction issues.

According to the state-of-the-art, there are several works suggested to use the
SVD with other compression methods or with variation of SVD. Awwal et al. [7]
presented new compression technique using SVD and theWavelet Difference Reduc-
tion (WDR). The WDR used for further reduction. This technique has been tested
with other techniques such as WDR and JPEG 2000 and gives a better result than
these techniques. Furthermore, using WDR with SVD enhance the PSNR and com-
pression ratio.

A technique based onWavelet-SVD, which used a graph coloring technique in the
quantization process, is presented in [8]. This technique worked well and enhanced
the PSNR and compression ratio. The generated compression ratio by this work
ranged between 50–60%, while the average PSNR ranged between 40–80db.

Ranade et al. [9] suggested a variation on SVD based image compression. This
approach is a slight modification to the original SVD algorithm, which gives much
better compression than the standard compression using SVD method. In addition,
it performs substantially better than the SVD method. Typically, for any given com-
pression quality, this approach needs about 30% fewer singular values and vectors
to be retained.

Doaa et al. [10], proposed Block Truncation Coding (BTC), it is an image com-
pression method proposed by Delp et al. [11, 12]. It is one of the simplest and easiest
image compression algorithms, and also an efficient image coding method that has
been adopted to obtain the statistical properties of a block in the compressed image.

The technique given by El Abbadi et al. [13], proposes to use SVD and MPQ-
BTC, the input image is compressed by reducing the image matrix rank, by using
the SVD process and then the result matrix compressed by using BTC.

Following the same objective of image compression using SVD, themost problem
is which K rank to use for giving a better image compression. For this reason, the
method presented in El Asnaoui et al. [14], introduces two new approaches: The
first one is an improvement of the Block Truncation Coding method that overcomes
the disadvantages of the classical Block Truncation Coding, while the second one
describes how to obtain a new rank of SVD method, which gives a better image
compression.
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3 Image Compression Technique Using SVD

The main goal of studying the SVD of an image (matrix of m ∗ n) is to create
approximations of an image using the least amount of the terms of the diagonal
matrix in the decomposition. This approximation of the matrix is the basis of image
compression using SVD, since images can be viewed as matrices with each pixel
being an element of a matrix.

The main idea of this section is to present two algorithms: The first one is the
Matlab’s SVD function, while the second one describes how to obtain a new SVD
using Block SVD Power Method.

3.1 Algorithm of Matlab’s SVD Function

Input: A ∈ Mm∗n(R)

Output:A = Um∗m ∗ ∑
m∗n ∗V T

n∗n⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U and V are unitary matrices
∑ = diag[(σ1, σ2, ..., σp)]
where p = min(m, n)

r = rank(A)

and σ1 ≥ σ1 ≥ ... ≥ σr

σr > σr+1 = σr+2 = ...σp = 0
[U,

∑
, V ] = svd(A); (notation matlab is used)

3.2 Algorithm of Block SVD Power Method [15]

Input: A matrix A ∈ (R)n∗m, a block − vector
V = V (0) ∈ R

m∗sand a tolerance tol
Output: An orthogonal matrices

U = [u1, u2, ..., us] ∈ R
n∗s

V = [v1, v2, ..., vs] ∈ R
m∗s

and a posi tive diagonal matri x∑ = diag(σ1, σ2, ..., σs)

such that : AV = U
∑

While (err > tol) do
AV = QR( f actori zation QR),

U ← Q(:, 1 : s)
(the s f irst vector colonne of Q)

ATU = QR,

V ← Q(:, 1 : s) and ∑ ← R(1 : s, 1 : s)
err = ‖AV −U

∑ ‖
End
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3.3 Proposed Lossy Image Compression Technique

The contribution of this paper is the introduction of the concept of application of
Block SVD Power Method to image compression, since the main idea of image
compression is reducing the redundancy of the image and the transferring data in an
efficient form.

In this section, we propose our contribution on which we integrate the Block SVD
Power Method and adopt it to create an algorithm that compress an image. Figure1
shows the main pipeline of the proposed method.

When the SVD is applied to an image, it is not compressed, but the data take a
form in which the first singular value has a great amount of the image information.
With this, we can use only a few singular values to represent the image with little
differences from the original. The input image can be a color image with RGB color
components or may be a grayscale image. Furthermore, for Creating new image with
Matlab’s SVD function as indicated in the Fig. 1, we use:

Icomp = U (:, 1 : K ) ∗
∑

(1 : K , 1 : K ) ∗ (V (:, 1 : K )T ) (1)

Our contribution in this paper is to set up a new algorithm for image compres-
sion that overcomes some inconveniences encountered in existing methods that use
Matlab’s SVD function. Our modification consists of a computing the SVD for each
component step, in which the entries in the image I are computed using Block SVD

Fig. 1 Image pre-processing using SVD
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Power Method obtained by [15] instead of Matlab’s SVD function [14] and keeps
the K rank determined by (see Eq.5).

Thus for the same compression, we have better quality.We also provide a heuristic
argument to justify our experimental finding.

To the best of our knowledge, this is the first work suggesting an image compres-
sion based on Block SVD Power Method. Most of methods focus on other methods
and other variation of SVD. Moreover, our method is novel, efficient for solving our
problem. It is general and many other computer visions can benefit from using it.

In the next section, the experimental results are reported. The results are clearly
showing the superiority of the proposed lossy image compression technique over
those of Matlab’s SVD function and some different compression techniques in the
state-of-the-art.

4 Experimental Results

Our work is aimed at image compression. For this purpose, our experiments were
performed on several images available on Windows 7 Professional and numerical
examples. Simulations were done in MATLAB 2009a using computer with Proces-
sor: Intel(R) Core (TM) 2 CPUT5200@1.60GHz, 1.60GHz, 2GoRAM running on
a Microsoft Windows 7 Professional (32-bit). In addition, the results and discussion
of the proposed method are given in this section.

4.1 Parameters for comparison

To evaluate the performance of the proposed method, the quality of the image is esti-
mated using several quality measurement variables like, Mean Square Error (MSE)
and Peak Signal-to-Noise Ratio (PSNR). These variables are signal fidelity metrics
and do not measure how viewers perceive visual quality of an image.

4.1.1 Compression Ratio

The degree of data reduction obtained by a compression method can be evaluated
using the compression ratio (Qcomp) defined by the formula:

Qcomp = Size of original image

Size of compressed image
(2)
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4.1.2 Mean Square Error (MSE)

MSE, which for two M ∗ N monochrome images X and Y where one of the images
is considered noisy approximation of the other and is defined as follows:

eMSE = 1

MN

M−1∑

i=0

N−1∑

j=0

[X (i, j) − Y (i, j)]2 (3)

4.1.3 Peak Signal-to-Noise Ratio (PSNR)

PSNR is measured in decibels (dB), and is onlymeaningful for data encoded in terms
of bits per sample bits per pixel.

For example, an image with 8 bits per pixel contains integers from 0–255. PSNR
is given by the following equation:

PSN R = 10log10
(2B − 1)2

eMSE
(4)

A high PSNR value indicates that there is less visual degradation in the compressed
image.

4.2 Numerical Examples

The results of the image compression depend strongly on the goodness of the algo-
rithm to compress an image. To illustrate it, first we checked if the chosen of Block
SVD Power Method detects correctly the relative errors occurred when computing
the singular values and CPU time (Figs. 2 and 3). For this purpose, we did several
tests where we chose some numerical examples.

We have compared and tested in this section the numerical results obtained by
algorithm [15] with Matlab’s SVD function. Towards this end, Let A ∈ (R)n∗m be
a rectangular matrix defined as follows: A ∈ Q

∑
UT where Q and U are random

orthogonal matrices. We give below relative errors occurred when computing the
singular values and the CPU time. The started block-vector in algorithm [15] is given
by V = V (0) = eye(m, s) (Matlab notation). The results are given from algorithm
[15] after only at most K =1 iteration. We have stopped the algorithm [15] whenever
the error of the reduction: err‖AV −U

∑ ‖ is smaller than that achieved byMatlab’s
SVD function.
Example 1:
Let:∑ = diag([104, 104, 10−11, 10−11, 10−12, 10−12, 10−13, 10−13, 10−14, 10−14])
m = 1000, n = 1000, s = rank(A) = 10. After only K = 1 iteration, we obtain:
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Matlab’s SVD function Algorithm [14]
Error ‖AV −U

∑ ‖ 2.3936e −011 9.1089e −012
CPU time (s) 19.3789 0.2830

Fig. 2 Relative errors occurred when computing the singular values

Example 2:
Let:∑ = diag([103, 103, 103, 10−12, 10−12, 10−13, 10−13, 10−13, 10−13, 10−13, 10−13,

10−13])
m = 1000, n = 1000, s = rank(A) = 12. After only K = 1 iteration, we obtain:

Matlab’s SVD function Algorithm [14]
Error |AV −U

∑ ‖ 2.6714e −012 1.2523e −012
CPU time (s) 21.0487 0.5318

4.3 Image Compression

To test our method, we develop a user interface. The method was applied to various
and real images to demonstrate the performances of the proposed algorithm of image
compression.

We use in this paper, 2 color images, Chrysantheme and Desert available in Win-
dows 7 professional (32-bit), and 1 in grayscale. Figures4, 5, 6 and 7 show the test
images and the resulting compressed images using Matlab’s SVD function [14] and
the proposed compression method.
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Fig. 3 Relative errors occurred when computing the singular values

We recall that our goal is to approximate an image (matrix of m ∗ n) using the
least amount of information. Thereby, to obtain a better quality of the compressed
image using SVD, we use the K rank determined by El Asnaoui et al. [14]:

K = m ∗ n

m + n + 1
(5)

Where m and n are the size of original image.

(a) (b) (c)

Fig. 4 Original images: a. Chrysantheme, b. Desert, c. grayscale

4.3.1 Test with Color Image

After rank K = 438, we obtain:
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(a) (b)

Fig. 5 Compressed results obtained by: a. Matlab’s SVD function [14], b. Proposed method

Table 1 Compression results for Chrysantheme.jpg, 1024× 768, 858Ko, by using:

Matlab’s SVD function [14] Proposed method

K Qcomp MSE PSNR Qcomp MSE PSNR

50 9.41 31.22 32.86 7.41 47.20 49.68

100 8.28 35.50 36.97 7.37 49.38 51.85

150 7.84 38.41 40.07 7.35 51.07 53.48
200 7.64 40.79 42.75 7.35 51.60 53.99

250 7.54 42.96 45.17 7.34 53.87 56.12

300 7.46 45.08 47.46 7.33 56.14 58.36

350 7.41 47.20 49.68 7.33 58.68 61.28

400 7.37 49.38 51.85 7.32 62.45 66.33

438 7.35 51.07 53.48 7.32 70.90 76.92

(a) (b)

Fig. 6 Compressed results obtained by: a. Matlab’s SVD function [14], b. Proposed method

4.3.2 Test with Grayscale Image

In order to compare this performance, we also applied the new method to the gray
scale image. After rank K = 548, we obtain:
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Table 2 Compression results for Desert.jpg, 1024× 768, 826Ko, by using:

Matlab’s SVD function [14] Proposed method

K Qcomp MSE PSNR Qcomp MSE PSNR

50 9.24 28.40 35.10 6.98 44.51 48.44

100 7.98 31.29 37.49 6.94 47.82 51.20

150 7.49 33.83 39.60 6.92 50.61 53.60
200 7.25 36.32 41.65 6.92 51.56 54.43

250 7.10 38.86 43.75 6.89 55.93 58.88

300 7.02 41.56 45.99 6.88 60.11 63.26

350 6.98 44.51 48.44 6.87 64.43 67.19

400 6.94 47.82 51.20 6.87 70.78 74.64

438 6.92 50.61 53.60 6.87 84.75 92.97

(a) (b)

Fig. 7 Compressed results obtained on the: a. Matlab’s SVD function, b. Proposed method

Table 3 Compression results for grayscale.jpg, 1280× 960, 480Ko, by using:

Matlab’s SVD function [14] Proposed method

K Qcomp MSE PSNR Qcomp MSE PSNR

50 4.98 78.51 29.22 4.06 9.45 38.41

100 4.31 33.27 32.94 4.08 5.58 40.70

150 4.10 16.95 35.87 4.12 3.47 42.76

200 4.06 9.45 38.41 4.12 2.24 44.67

250 4.08 5.58 40.70 4.09 1.48 46.46

300 4.12 3.47 42.76 4.06 1.00 48.18

350 4.12 2.24 44.67 4.04 0.68 49.86

400 4.09 1.48 46.46 4.02 0.47 51.46
450 4.06 1.00 48.18 4.01 0.30 53.35

500 4.04 0.68 49.86 4.01 0.18 55.62

548 4.02 0.47 51.46 4.01 0.08 58.94
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4.3.3 Test with Other Methods

To evaluate the robustness of our scheme, we test it with other methods like: [10, 13,
14]. Added experiment results for two images are listed in Table4.

Table 4 Comparison against various algorithms

Color image (Fig. 4a) Grayscale image (Fig. 4c)

Qcomp MSE PSNR Qcomp MSE PSNR

BTC method [13] 9.27 62.09 30.20 5.39 161.1 26.09

BTC method [10] 7.34 7.96 39.12 3.98 19.03 35.37

BTC method [14] 6.72 2.74 43.75 2.84 3.47 42.76

SVD method [14] 7.35 0.29 53.48 4.02 0.47 51.46

Proposed method 7.31 0.0013 76.92 4.01 0.08 58.94

4.4 Discussion

In this paper, the proposed algorithm is compared with the Matlab’s SVD function
[14] and the other state-of-the-art algorithms.

Numerical examples given above show the efficiency of the new SVD approach
in computing the decomposition, the error and CPU time.

When applying the proposed method to image compression, Figs. 5, 6 and 7, it
is clear that the compressed images by two approaches are perceptually similar to
original images. However, the human visual response to image quality is insufficient.

In order to compare the performances of the proposed method, several values
were used in this study to measure the quality of the compressed image. We will
only discuss PSNR and MSE values, because, they are used to compare the squared
error between the original image and the reconstructed image. There is an inverse
relationship between PSNR and MSE. Therefore, a higher PSNR value indicates the
higher quality of the image (better).

The above analysis shows the comparison when SVD and proposed method are
applied on the real images. In these experiments, we used the K rank for different
images. We see in this case that the compression ratio and PSNR, and other values of
images varied when changing the rank of image during the SVD process as showed
in Tables1, 2 and 3, and it is evident that the proposed technique gives better perfor-
mance compared to the SVD. In addition, for theMatlab’s SVD function, the value of
K which provides better PSNR value is the maximum value of K =438, while for the
proposed technique, a better, compression ratio, PSNR is provided from K =150 for
color images.We can say that in this caseMatlab’s SVD function [14] approximately
present 1/3 of the proposed method in terms of K rank.
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Concerning the grayscale image tested, it seems that the value of K which gives
better PSNR value is the maximum value of K = 548, while for the proposedmethod,
a better, compression ratio, PSNR is provided from K = 400.

We mainly compared the proposed algorithm with the other algorithms as illus-
trated in Table4, because these algorithms are well-known and are mainly using
Matlab’s SVD function. Hence, we see that our proposed algorithm performs com-
parable to current state-of-the-art techniques, and is able to produce a compressed
image with better visual quality, as indicated by its PSNR.

5 Conclusion

We suggest in this work a novel method for image compression. This approach is
simple, and it can be used to overcome limitations of existing algorithms, that use
theMatlab’s SVD function. The results obtained indicate that the proposed approach
might be considered as a solution for the development of image compression. Satis-
factory compression of expected images is provided faster due to the lower number of
iterations in the compression algorithm.Of course,Matlab’s SVDmethod is accurate.
However, in numerical analysis, we focus on always improving results.

Future Scope

This proposed method opens the door of lots of future work. For example, using
the SVD for statistical applications to find relations between data, in the area of
medical image denoisingwith different thresholding techniques associatedwith these
multiwavelets, implements a compression technique using neural network. It is also
useful with other techniques in image restoration.
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Intuitionistic Fuzzy Group With Extended
Operations

S. Melliani, I. Bakhadach and L. S. Chadli

Abstract In this paper we give an extension in the intuitionistic fuzzy frame of a
low of a crisp group (G, ∗) by means of the extended form of the Zadeh’s extension
principle, And we build the conditions whose permit us to give an intuitionistic
fuzzy group structure. Furthermore, we investigates some other properties for the
intuitionistic fuzzy subgroups and homomorphisms for our set.

1 Introduction

L.A. Zadeh introduced the concept of fuzzy subsets of a well-defined set in his paper
[16] for modeling the vague concepts in the real world. After him the concept of
fuzzy group was introduced by Rosenfeld in 1971 [11], the theories and approaches
on different fuzzy algebraic structures developed rapidly. Anthony and Sherwood [1]
gave the definition of fuzzy subgroup based on t-norm. Yuan and Lee [15] defined
the fuzzy subgroup and fuzzy subring based on the theory of falling shadows. Liu [7]
gave the definition of fuzzy invariant subgroups. By far, two books on fuzzy algebra
have been published [4, 9, 10].

K. Atanassov [2] introduced the concept of intuitionistic fuzzy sets in 1986. Since
then, many researchers have investigated this topic such as intuitionistic fuzzy group
[3]. It is well known that the intuitionistic fuzzy set and the interval-valued fuzzy set
are equivalent [14], and consequently the results about interval-valued fuzzy sets can
be generalized to the intuitionistic fuzzy sets. In his paper [6] Dubois has showed
that the set of fuzzy numbers is just a semi-group. The purpose of this paper is to
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define the concept of intuitionistic fuzzy group based of the extended operation and
develop the important results.

This paper is organized as follows. In Section 2we recall some concept concerning
the intuitionistic fuzzy set and give some basic results. The concept of extension
operation of the binary operation of the group G takes place in Section 3. In Section
4 we show the associativity and the identity element of the extended operation. To
complete the conditions, on the extended operation, which will allows us to define
our intuitionistic fuzzy group we will demonstrate the symmetry of this operation in
Section 5.

2 Preliminaries

First we give the concept of intuitionistic fuzzy set defined by Atanassov and we
recall some elementary definitions that we use in the sequel. Assume that X is an
arbitrary universe.

Definition 1. The intuitionistic fuzzy subsets (in shorts IFSS) are defined on a non-
empty set X as objects having the form

A = {< x, μ(x), ν(x) >: x ∈ X}

where the functions μ : X → [0, 1] and ν : X → [0, 1] denote the degree of mem-
bership and the degree of non-membership of each element x ∈ X to the set A
respectively, and 0 ≤ μ(x) + ν(x) ≤ 1 for all x ∈ X .

For the sake of simplicity, we shall use the symbol < μ, ν > for the intuitionistic
fuzzy subset A = {< x, μ(x), ν(x) >: x ∈ X}.
Definition 2. Let A =< μA, νA > and B =< μB, νB > be IFSS of X . Then
A ⊂ B iff μA ≤ μB and νA ≥ νB

A = B iff A ⊂ B and B ⊂ A
Ac =< νA, μA >

A ∩ B =< μA ∧ μB, νA ∨ νB >

A ∪ B =< μA ∨ μB, νA ∧ νB >

[]A =< μA, 1 − μA >, <> A =< 1 − νA, νA > .

Definition 3. [4] Let G and G ′ be groups and f : G → G ′ be a function. Then, f
is called a homomorphism if

f (xy) = f (x) f (y) (1)

for all x, y ∈ G.
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Definition 4. [4] A non-empty subset A of a group G is said to be a subgroup of G
if, under the operation in G, A itself forms a group.

Definition 5. [4] A semigroup is a non-empty setG together with a binary operation
on G which is associative a(bc) = (ab)c, for all a, b, c ∈ G.

Definition 6. Let G be a classical group. Then A =< x, μA(x), νA(x) >∈ IFS[G] is
called an intuitionistic fuzzy subgroup on G if the following conditions (1) − (2)
are satisfied for all x, y ∈ G,

1. μA(xy) ≥ μA(x)) ∧ μA(y), νA(xy) ≤ νA(x) ∨ νAyx);
2. μA(x−1) ≥ μA(x), νA(x−1) ≤ νA(x)

3 The Extended ∗ Operation

Let ∗ be an operation definied on a product set X × Y and taking values on a set Z .
The ∗ operation can be extended to intuitionistic fuzzy sets bymeans of the following
extension principle.

Definition 7. Let A ∈ X , B ∈ Y be two intuitionistic fuzzy subsets, then the ex-
tension principle allows to define an intuitionistic fuzzy subset C = A∗̃B of Z as
follows, in the case of noninteractive variables : ∀z ∈ Z

μA∗̃B(z) = sup
x∗y=z

μA(x) ∧ μB(y) and νA∗̃B(z) = inf
x∗y=z

μA(x) ∨ μB(y) (2)

where, as usual μA and νA are the membership and the nonmembership functions of
IFS A, ∧ and ∨ denotes the min and max operations.

A pratical application of our study is of course intuitionistic fuzzy arithmetic when
A, B andC are intuitionistic fuzzy numbers, i.e. intuitionistic fuzzy subsets ofR, and
when ∗ is one of the usual operations +,−,×,÷. For example, A + B = C does
not imply B = C − A as illustrated in Figure 1 using just the membership functions,
where : ∀z ∈ R

μA+B(z) = sup
x+y=z

μA(x) ∧ μB(y) and νA+B(z) = inf
x+y=z

μA(x) ∨ μB(y)

(3)
μA−B(z) = sup

x−y=z
μA(x) ∧ μB(y) and νA−B(z) = inf

x−y=z
μA(x) ∨ μB(y)

(4)

Example 1. 1. When A and B are crisp sets, A being a subset of X and B a subset
of Y , A∗̃B reduces to a subset C of Z defined as

A ∗ B = {z ∈ Z , z = x ∗ y, x ∈ Ay ∈ B} (5)
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Fig. 1 Illustrative example for A + B = C � A = C − B.

2. When X = Y = Z = R and ∗ stands for addition on numbers, A ∗ B stands then
for the addition A + B of two sets as defined by H. Minkowski in 1911.

3. When X = Y = Z = I (R), i.e. the set of interval numbers, ormore simply inter-
vals, in the real line R, and when ∗ stands for example for addition, subtraction,
multiplication or division, the study of A ∗ B corresponds to Interval Analysis
[8].

For practical computations, let us show now one can transform the expression of
A ∗ B given in 2.
Assume first that B is a (non-fuzzy) singleton identified with its unique element, say
b ∈ Y , so thatμB(y) = 1 if y = b andμB(y) = 0 if y �= b. Thus, equation 2 yields:
∀z ∈ Z

μA∗̃b(z) = sup
x∈X
x∗b=z

μA(x) and νA∗̃b(z) = inf
x∈X
x∗b=z

μA(x) (6)

Equation 6 takes the following simpler form : ∀z ∈ Z

∀z ∈ Z μA∗̃B(z) = sup
x∗y=z

μA(z − b) and νA∗̃B(z) = inf
x∗y=z

νA(z − b)

Let us return to 2

∀z ∈ Z μA∗̃B(z) = sup
x∈X,y∈Y
x∗y=z

μA(x) ∧ μB(y)

= sup
y∈Y

(
sup
x∈X,
x∗y=z

μA(x) ∧ μB(y)
)

= sup
y∈Y

(
μB(y) ∧ sup

x∈X,
x∗y=z

μA(x)
)

= sup
y∈Y

μB(y) ∧ μA∗̃y(z),

and similary, we have
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∀z ∈ Z νA∗̃B(z) = inf
x∈X,y∈Y
x∗y=z

νA(x) ∨ νB(y)

= inf
y∈Y

(
inf
x∈X,
x∗y=z

νA(x) ∨ νB(y)
)

= inf
y∈Y

(
νB(y) ∨ inf

x∈X,
x∗y=z

νA(x)
)

= inf
y∈Y νB(y) ∨ νA∗̃y(z)

from (6) with y playing the role of b. Hence, (2) is equivalent to

μA∗̃B(z) = sup
x∈X

μA(x) ∧ μB∗̃x (z) and νA∗̃B(z) = inf
x∈X νA(x) ∨ νB∗̃x (z). (7)

Analogously, exchanging the roles of A and B, we have

μA∗̃B(z) = sup
y∈Y

μA∗̃y(z) ∧ μB(y) and νA∗̃B(z) = inf
y∈Y νA∗̃y(z) ∨ νB(y). (8)

Note that with addition of intuitionistic fuzzy numbers, (7) takes the form

μA∗̃B(z) = sup
y∈Y

μA(z − y) ∧ μB(y) and νA∗̃B(z) = inf
y∈Y νA(z − y) ∨ νB(y).

(9)

4 The Monoid Structure of (IFS(G); ∗̃)

In order to show that the intiuitionistic fuzzy set IFS(G) is a group we will first
demonstrate that is a monoid structure. Let A, B andC the intuitionistic fuzzy subset
of IFS(G), we have

μ(A∗̃B)∗̃C(z) = sup
x∗y=z

(μ(A∗̃B)(x) ∧ μC(y))

= sup
x∗y=z

( sup
a∗b=x

(μA(a) ∧ μB(b)) ∧ μC(y))

= sup
(a∗b)∗y=z

(μA(a) ∧ μB(b)) ∧ μC(y))

= sup
a∗(b∗y)=z

μA(a) ∧ (μB(b) ∧ μC(y)))

= sup
a∗β=z

μA(a) ∧ sup
b∗y=β

(μB(b) ∧ μC(y)))

= sup
a∗β=z

μA(a) ∧ μB∗̃C(β)

= μA∗̃(B∗̃C)(z)
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ν(A∗̃B)∗̃C(z) = inf
x∗y=z

ν(A∗̃B)(x) ∨ νC(y)

ν(A∗̃B)∗̃C(z) = inf
x∗y=z

( inf
a∗b=x

νA(a) ∨ νB(b)) ∨ μC(y))

ν(A∗̃B)∗̃C(z) = inf
(a∗b)∗y=z

(νA(a) ∨ νB(b)) ∨ μC(y))

ν(A∗̃B)∗̃C(z) = inf
a∗(b∗y)=z

νA(a) ∨ (νB(b) ∨ μC(y)))

ν(A∗̃B)∗̃C(z) = inf
a∗β=z

νA(a) ∨ inf
b∗y=β

(νB(b) ∨ μC(y)))

ν(A∗̃B)∗̃C(z) = inf
a∗β=z

νA(a) ∨ μ(B∗̃C)(β)

ν(A∗̃B)∗̃C(z) = νA∗̃(B∗̃C)(z).

and the identity element is given by:

∀y ∈ G μe(y) =
{
1 i f e = y

0 i f e �= y
and νe(y) =

{
0 i f e = y

1 i f e �= y
Indeed

A∗̃ẽ(z) = sup
a∗b=z

μA(a) ∧ μe(b)

=
{

μA(z) i f e = y

0 i f e �= y

Now let we define a symetric element of an intuitionistic fuzzy element.

5 Symetric Element For ∗̃

We know that the symetric element of A is the solution of the equation A∗̃X = ẽ.
to this end we will define the α operator. and solving the ∗̃-equation problem i.e
A∗̃X = C in general for any ∗ : X × Y −→ Z operation.

5.1 The α operator

In order to solve the ∗̃-equation problem on intuitionistic fuzzy sets we need to recall
the definition of the α operator which is characteristic of Brouwerian lattices. That
α operator has proved to be useful in the resolution of composite fuzzy relation
equations [[12],[13]] and we study here a particular composite, with a constraint
expressed by the ∗ operation.
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Definition 8. Given a and b in [0, 1], aαb is defined as the greatest element x in
[0, 1] such that a ∧ x ≤ b, i.e.

aαb =
{
1 i f a ≤ b

b i f a > b

Here are some properties of the α operator that will be used in the sequel. We recall
that, as usual, ∨ denotes the max operation. For all a, b ∈ [0, 1] and for all family
(bi )i ∈ I of elements of [0, 1], we have

a ∧ (aαb) ≤ b (10)

aα(sup
i∈I

bi ) ≥ aαb (11)

aα(a ∧ b) ≤ b (12)

According to (8), properties (10) and (12) are directly verified. To check (11), it
suffices to denote c = sup

i∈I,i �= j
bi , and to show that aα(c ∨ bi ) ≥ aαb j .

Definition 9. Given A ∈ IFS(X) and C ∈ IFS(Z) and ∗̃ : IFS(X) × IFS(Y ) →
IFS(Z), we define ♦ : IFS(Z) × IFS(X) → IFS(Y ) as follows ∀y ∈ Y
μC♦A(z) = inf

x ∗̃y=z
μA(x)αμC (z) and νC♦A(z) = sup

x ∗̃y=z
νA(x)ανC (z)

As a property for this operation we have

C1 ⊆ C2 ⇒ C1♦A ⊆ C2♦A (13)

this equation is simply verified after checking that in [0, 1], if c1 ≤ c2 then aαc1 ≤
aαc2

5.2 Resolution Of ∗̃ Equation On IFS

Theorem 1. For every intuitionistic fuzzy set A of G, and for
∗̃ : I FS(X) × I FS(Y ) → I FS(Z), we have

A∗̃(C♦A) ⊆ C (14)

In order terms, C♦A is a particular solution to A∗̃X = C

Proof. Let U = A∗̃(C♦A) and let z ∈ G. Then
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μU (z) = sup
x ∗̃y=z

μA(x) ∧ μ(C♦A)(y)

μU (z) = sup
x ∗̃y=z

μA(x) ∧ inf
x ′ ∗̃y=z′

μA(x
′)αμẽ(z

′)

μU (z) ≤ sup
x ∗̃y=z

μA(x) ∧ (μA(x)αμC (z))

μU (z) ≤ sup
x ∗̃y=z

μC(z)

μU (z) ≤ μC(z)

and

νU (z) = inf
x ∗̃y=z

νA(x) ∨ ν(C♦A)(y)

νU (z) = inf
x ∗̃y=z

νA(x) ∨ sup
x ′ ∗̃y=z′

νA(x
′)ανẽ(z

′)

νU (z) ≥ inf
x ∗̃y=z

νA(x) ∨ (νA(x)ανC (z))

νU (z) ≥ inf
x ∗̃y=z

νC(z)

νU (z) ≥ νC(z)

��
Theorem 2. For everypair of intuitionistic fuzzy sets A ∈ I FS(X)and B ∈ I FS(Y )

and for ∗̃ : I FS(X) × I FS(Y ) → I FS(Z), we have

B ⊆ (A ∗ B)♦A (15)

Note that when, A∗̃B = C, we have B ⊆ C♦A

Proof. Let V = (A ∗ B)♦A and let y ∈ Y .

μV (y) = inf
x∗y=z

μA(x)αμA∗̃B(z)

μV (y) = inf
x∗y=z

μA(x)α sup
x ′∗y′=z

μA(x
′) ∧ μB(y′)

μV (y) ≥ inf
x∗y=z

μA(x)α(μA(x) ∧ μB(y))

μV (y) ≥ inf
x∗y=z

μB(y)

μV (y) ≥ μB(y)

and
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νV (y) = sup
x∗y=z

νA(x)ανA∗̃B(z)

νV (y) = sup
x∗y=z

νA(x)α inf
x ′∗y′=z

νA(x
′) ∨ νB(y′)

νV (y) ≤ sup
x∗y=z

νA(x)α(νA(x) ∨ νB(y))

νV (y) ≤ sup
x∗y=z

νB(y)

νV (y) ≤ νB(y)

��
Corollary 1. Given A ∈ I FS(X),C ∈ I FS(Z)and ∗̃ : I FS(X) × I FS(Y ) → I FS(Z),

equation A∗̃X ⊆ C has always a greatest solution given by C♦A. Moreover, the set
of solutions of A∗̃X ⊆ C is a lattice.

Proof. From (14), C♦A is a solution to A∗̃X ⊆ C let us show that is the greatest
one. Let B ∈ I FS(Y ) such that A∗̃B ⊆ C . From (13) we have (A∗̃B)♦A ⊆ C♦A.
Finally (15) yields B ⊆ C♦A. The fact that the set of solutions of A∗̃X ⊆ C is a
lattice was already pointed out as a result of

A∗̃(B1 ∪ B2) = (A∗̃B1) ∪ (A∗̃B2) (16)

and
A∗̃(B1 ∩ B2) ⊆ (A∗̃B1) ∪ (A∗̃B2) (17)

��
Corollary 2. For A ∈ I FS(X), B ∈ I FS(Y ) and C ∈ I FS(Z)

A∗̃B ⊆ C i f f B ⊆ C♦A (18)

Proof. If "A∗̃B ⊆ C then B ⊆ C♦A" was already shown in the proof of Corollary 1.
Now assume that B ⊆ C♦A. Hence from the fact that the extension ∗̃ of ∗ is inclusion
monotonic i.e. B1 ⊆ B2 ⇒ A∗̃B1 ⊆ ∗̃B2 we have A∗̃B ⊆ A∗̃(C♦A). Finally from
(14) yields A∗̃B ⊆ C. ��
Theorem 3. Given an intuitionistic fuzzy set A ∈ I FS(X), C ∈ I FS(Z) and ∗̃ :
I FS(X) × I FS(Y ) → I FS(Z), the equation A∗̃X = C has a solution iff

A∗̃(C♦A) = C

Moreover, when C♦A is a solution, then it is the greatest one and the set of solutions
in an upper semi-lattice

An analogous theorem holds, of course, for equation X ∗̃B = C .
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Proof. Let us assume that B ∈ I FS(Y ) is a solution to A∗̃X = C , i, eA∗̃B = C .
Hence from (15) we have B ⊆ C♦A. But (13) yields A∗̃B ⊆ A∗̃(C♦A), i.e C ⊆
A∗̃(C♦A), so that A∗̃(C♦A) = C from (14).
When A∗̃X = C has a solution, then C♦A is the greatest one as a direct application
of (15).
The fact that the set of solutions A∗̃X = C , when non void, is an upper semi-lattice
was already pointed as a result of (16). ��
Theorem 4. Given two intuitionistic fuzzy sets A,C ∈ I FS(G) and ∗̃ : I FS(G) ×
I FS(G) → I FS(G), th equation A∗̃X = ẽ has an unique solution iff

A∗̃(ẽ♦A) = ẽ

Proof. For the exictence of the solution is immidiatly by (3).
For the uniqueness.
Let B1 and two intuitionistic fuzzy differents symetric element of A the we have
B1 = ẽ♦A the same of B2 we have B2 = ẽ♦A by definition of ♦ we have B1 = B2.

��
Example 2. In [6] we have G = R with the operation + is just a semi group, but
using the extended operation with the α oparator we have the same structur i.e. a
group. Note that in this case we denote A♦B by A � B.

Theorem 5. Let H ⊆ G. We have H is a sub-group of G then I FS(H) is an intu-
itionistic fuzzy sub-group of I FS(G).

Proof. Let H be a subgroup ofG the by the previous theoremwe have I FS(H) is an
intuitionistic fuzzy group with extended operation and we have I FS(H) ⊆ I FS(G)

that I FS(H) is an intuitionistic fuzzy sub-group of I FS(G). ��
Theorem 6. Let f : (G, �) → (G ′, T ) be a homomorphism then the extended op-
eration f̃ : (I FS(G), �̃) → (I FS(G ′), T̃ ) is an ituitionistic fuzzy homomorphism.

Proof. We have

f̃ (A∗̃B)(z) = sup
f (x∗y)=z

A(x) ∧ B(y)

= sup
f (x)T f (y)=z

A(x) ∧ B(y)

= sup
f (x)T f (y)=z

A(x) ∧ B(y)

and we have
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( f̃ (A)T̃ f̃ (B))(z) = sup
xT y=z

f̃ A(x) ∧ f̃ B(y)

= sup
xT y=z

( sup
a= f (x)

A(x) ∧ sup
b= f (y)

A(y))

= sup
f (x)T f (y)=z

A(x) ∧ B(y)

Therefore f̃ is an intuitionistic fuzzy homomorphism. ��
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Generalization of Quasi-modular Extensions

El Hassane Fliouet

Abstract Let K /k be a purely inseparable extension of characteristic p > 0. Let
lm(K /k) and um(K /k) be the smallest extensions k −→ lm(K /k) −→ K −→
um(K /k) such that K /lm(K /k) and um(K /k)/k aremodular. In this note, we continue
to study the locus problem of lm(K /k) and um(K /k) relative to K /k. Thus improving
([3], Theorem 1.4), we show that lm(K /k) is nontrivial when K /k is of finite size,
more precisely if K /k has a finite size and unbounded exponent, the same is true
of K /lm(K /k). However, if K /k is of unbounded size, it may well be that we lose
this property by obtaining lm(K /k) = K . In the following, we will say that K /k is
lq-modular (respectively, uq-modular) if lm(K /k)/k (respectively, um(K /k)/K ) has
an exponent. The first study of these two concepts devoted to the extensions of finite
size is in [4, 6, 7]. However, the object of the present work consists to generalize the
results of finite size to any extension. In particular, we treat the stability questions of
the lq-modularity and the uq-modularity relative to inclusion, intersection, and prod-
uct. Furthermore, we are interested by the questions about existence of the smallest
extensions which preserve these concepts in the ascendant or descendant sense, and
also to the questions of existence of the maximal subextensions (closures).

Keywords Purely inseparable · q-finite modular extension · Lq-modular
extension · Up-modular

1 Introduction

Let K /k be a purely inseparable extension of characteristic p > 0.We recall that K /k
ismodular if for each n ∈ N, K pn and k are k ∩ K pn -linearly disjoint. This notionwas
defined for the first time by Swedleer in [12]. In addition, the author characterizes the
purely inseparable extensions which are tensor product over k of simple extensions
of k. In the same order of ideas, Waterhouse in [13] shows that the modularity is
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stable by any intersection covering k or K , and that an increasing union of modular
extensions is also modular. In particular, there exists smallest extensions denoted,
respectively, by lm(K /k) and um(K /k) such that k −→ lm(K /k) −→ K −→
um(K /k) with K /lm(K /k) and um(K /k)/k are modular. In this note, we continue
to take an interest in the location problem of lm(K /k) and um(K /k) with respect to
K /k. Let us thus improve ([3], Theorem 1.4), we show that lm(K /k) is not trivial
when K /k is of finite size. More precisely, if K /k is of finite size and of unbounded
exponent, then the same holds also for K /lm(K /k). However, if the size of K /k is
infinite, it is highly probable that we lose this property by obtaining lm(K /k) = K .
In the following, we will say that K /k is lq-modular (respectively, uq-modular) if
lm(K /k)/k (respectively, um(K /k)/K ) has an exponent. Clearly in the case of finite
size, the q-modularity is synonymous with the modularity up to finite extension. On
the other hand, knowing that a first study of these two notions devoted to exten-
sions of finite size is found in [4, 6, 7], the object of this work is to generalize the
results of finite size to any extension. In particular, we deal with the stability issues of
the lq-modularity and the uq-modularity with respect to inclusion, intersection, and
product. We are also interested in the existence problems of the smallest extensions
which retain these two notions either in the ascending or descending sense. We study
as well the existence questions of the largest subextensions (the closure).

Finally, it should be noted that, during this note, we reiterate the notations and the
elementary results from [8], since they are frequently used here.

2 Preliminary Notions and Terminologies

First, we will begin by giving a preliminary list of the most frequently-used symbols
throughout this work:

• k always designates a commutative field with characteristic p > 0, and Ω an
algebraic closure of k.

• k p−∞
indicates the purely inseparable closure of Ω/k.

• For any a ∈ Ω , for every n ∈ N
∗,we symbolize the root of the polynomial X pn − a

inΩ bya p−n
. In addition,we put k(a p−∞

) = k(a p−1
, . . . , a p−n

, . . . ) =
⋃

n∈N∗
k(a p−n

)

and k p−n = {a ∈ Ω | a pn ∈ k}.
• For any family B = (ai )i∈I of elements in Ω , we put k(Bp−∞

) = k((ai p
−∞

)i∈I ).
• Finally, |.| designates the cardinal.

It should also be pointed out that all extensions that intervene in this paper are
purely inseparable subextensions of Ω , and it is convenient to denote [k, K ] the set
of intermediate fields of an extension K /k.
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2.1 Irrationality Degree

Definition 1 Let K /k be a purely inseparable extension. A subset G of K is said to
be r-generator of K /k if K = k(G) and, if in addition, for each x ∈ G, x /∈ k(G\x),
then G will be called a minimal r-generator of K /k.

Definition 2 Given an extension K /k of characteristic p > 0 and a subset B of K .
We say that B is a r-base (relative base) of K /k, if B is a minimal r-generator of
K /k(K p). In the same order of ideas, B is said to be r-free (or r-independent) over
k, if B is a r-base of k(B)/k, in the opposite case B is said to be r-dependent over k.

By virtue of ([1], III, p. 49, Corollary 3) and by the exchange property of
r -independence, we deduce that every extension has a r -base and that the cardi-
nal of a r -base is invariant (cf. [8], Theorems 2.7 and 2.8). We recall that a purely
inseparable extension K /k is said to have an exponent (or, to be of bounded exponent)
if there exists nonnegative integer e such that K pn ⊆ k. Taking into account ([10],
Corollary 1.6), if K /k has an exponent, then B is a r -base of K /k if and only if B is
a minimal r -generator of K /k. However, a minimal r -generator may not exist in the
general case (cf. [10], Lemma 1.16, Proposition 1.23).

We now have the required tool to define the irrationality degree of an extension
K /k. Firstly, it is immediate that for any n ∈ N, k p−n ∩ K /k has an exponent, let us
therefore consider a r -base Bn of k p−n ∩ K /k.

Definition 3 The invariant di(K/k) = supn∈N(|Bn|) will be called the irrationality
degree of K /k.

Here the sup is used in the sense from ([1], III, p. 25, Proposition 2). Moreover,
for reasons of thematic specificity and coherence, di(k/k p) will be called the imper-
fection degree of k and will be denoted di(k). Systematically these two invariants
allow to control the size of K /k and the length of every field k. On the other hand,
the size measurement of an extension is compatible with inclusion. In other words,
we have:

Theorem 2.1 ([8], Theorem 3.8) For any family k ⊆ L ⊆ L ′ ⊆ K of purely insep-
arable extensions, we have di(L/L ′) ≤ di(K/k).

As an immediate consequence di(K/k) = sup(di(L/k))L∈[k,K ], that is to say the
size measurement of K /k is seen as an inductive limit of the irrationality degree of
these intermediate subextensions.We also deduce that any increasing family (Kn)n∈N
of purely inseparable extensions satisfies di(

⋃

n∈N
(Kn)/k) = sup

n∈N
(di(Kn/k)).

Corollary 2.1.1 ([8], Corollary 3.9) For any purely inseparable extension K /k,
di(K ) ≤ di(k).
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2.2 Relatively Perfect Extensions

In this section, we recall a few notions and results from [5]. A field k of characteristic
p is said to be perfect if k p = k. In the sameorder of ideas,we say that K /k is relatively
perfect if k(K p) = K . We can easily verify that:

• The relatively perfect property is transitive, i.e., if K /L and L/k are relatively
perfect, then K /k is also perfect.

• If K /k is relatively perfect, then the same is true of L(K )/k(L).
• The relatively perfect property is stable by any product for k. In other words, for

any family (Ki /k)i∈I of relatively perfect extensions, we then have
∏

i

Ki /k is also

relatively perfect.

So for every purely inseparable extension K /k, there exists a largest relatively perfect
subextension contained in K . This is called the relatively perfect closure of K /k and
it is denoted by rp(K /k).

Proposition 2.2 ([5], Proposition 5.2) Let L be an intermediate field of a purely
inseparable extension K /k, then rp(rp(K/L)/k) = rp(K/k) and rp(K/rp(L/k)) =
rp(K/k).

Corollary 2.2.1 For every L ∈ [k, K ], we have K /L finie =⇒ rp(K/k) ⊂ L .

In particular, if K /k is relatively perfect, we have K /L finite =⇒ L = K .

Schematically we have a hole

k −→ K ;
↑

hole

and this hole characterizes the fact that K /k is relatively perfect. Indeed, suppose
that K /k satisfies the hole, and let B be a r -base of K /k. Suppose B = ∅; let x ∈ B
and L = k(K p)(B \ {x}); we have K /L is finite, so K = L , a contradiction.

Proposition 2.3 ([5], Lemma 2.1) Let K /k be a purely inseparable extension such
that [K : k(K p)] is finite. Then we have:

(i) K is relatively perfect over a finite extension of k.
(ii) The decreasing sequence (k(K pn ))n∈N is stationary over k(K pn0 ) = rp(K/k).

As a consequence of the preceding proposition, we have:

Proposition 2.4 ([5], Proposition 6.2) Let K /k be a purely inseparable exten-
sion such that [K : k(K p)] is finite. For every L ∈ [k, K ], we have rp(K/L) =
L(rp(K/k)).
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2.3 Quasi-finite Extensions

Definition 4 Any extension whose irrationality degree is finite is called q-finite
(quasi-finite) extension.

In other words, the q-finitude is synonymous of the horizontal finitude. However,
the finitude is translated by the horizontal and vertical finitude, it is a finitude in
terms of height and length, i.e., K /k is finite if and only if K /k is q-finite of bounded
exponent. Furthermore, it is verified that the irrationality degree of an extension K /k
is 1 if only the set of intermediate fields of K /k is totally ordered.Then, every extension
that satisfies the previous statement will be called extension q-simple (quasi-simple).

Now let L/k be a subextension of a q-finite extension K /k, for each n ∈ N, we
always note kn = k p−n ∩ K . We verify immediately that:

(i) The q-finitude is transitive, especially for each n ∈ N, K /k(K pn ) and kn/k are
finite.

(ii) There exists n0 ∈ N, for each n ≥ n0, di(kn/k) = di(K /k).

In addition, here are some immediate applications of Proposition 2.3.

Proposition 2.5 Let K /k be a q-finite extension. The sequence (k(K pn ))n∈N stops
over rp(K/k) from a n0. In particular, K /rp(K/k) is finite.

Proposition 2.6 ([8], Proposition 4.3) For every q-finite extension K /k, there exists
n ∈ N such that K /kn is relatively perfect. Moreover, kn(rp(K/k)) = K.

The irrationality degree of a q-finite extension K /k checks the following equality.

Proposition 2.7 ([8], Proposition 4.8)For any sequence of relatively perfect subex-
tensions k = K0 ⊆ K1 ⊆ . . . ⊆ Kn of a q-finite extension K /k, we have di(K/k) =
n−1∑

i=0

di(Kn+1/Kn) + di(K/Kn).

2.4 Exponents of a q-finite Extension

In this paragraph, we will use some basic definitions and notations as it is men-
tioned in [2]. Let K /k be a finite purely inseparable extension. For x ∈ K , put
o(x /k) = inf{m ∈ N| x pm ∈ k} ando1(K /k) = inf{m ∈ N| K pm ⊂ k}.A r -base B =
{a1, a2, . . . , an} of K /k is said to be canonically ordered if for j = 1, 2, . . . , n,
we have o(a j /k(a1, a2, . . . , a j−1)) = o1(K /k(a1, a2, . . . , a j−1)). The integer o(a j /k
(a1, . . . , a j−1)) thus defined satisfies o(a j /k(a1, . . . , a j−1)) = inf{m ∈ N| di(k
(K pm )/k) ≤ j − 1} (cf. [3], Lemma 1.3). We immediately deduce the result ([11],
Satz 14) which confirm the independence of the integers o(ai /k(a1, . . . , ai−1)), (1 ≤
i ≤ n), with respect to the choice of canonically ordered r -bases {a1, . . . , an} of K /k.
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Therefore, we put oi (K /k) = o(ai /k(a1, . . . , ai−1)) if 1 ≤ i ≤ n, and oi (K /k) = 0
if i > n where {a1, . . . , an} is a canonically ordered r -base of K /k. The invariant
oi (K /k) defined above is called the i-th exponent of K /k.

In the second step, we consider that K /k is q-finite. Recall that for each n ∈ N
∗,

kn always designates k p−n ∩ K . By virtue of ([2], Proposition 6), for each j ∈ N
∗,

the sequence of natural integers (o j (kn/k))n≥1 is increasing, and thus (o j (kn/k))n≥1

converges to+∞, or (o j (kn/k))n≥1 becomes constant after a certain rank. It is trivially
obvious that, if (o j (kn/k))n≥1 is bounded, then for each t ≥ j , (ot (kn/k))n≥1 is also
bounded (and therefore stationary).

Definition 5 Let K /k be a q-finite extension, and j a nonzero natural integer. We
call the j-th exponent of K /k the invariant o j (K/k) = lim

n→+∞(o j (kn/k)).

Lemma 2.1 ([8], Lemma 4.14) Let K /k be a q-finite extension, then os(K/k) is
finite if and only if there exists a natural integer n such that di(k(K pn )/k) < s, and
we have os(K/k) = inf{m ∈ N | di(k(K pm )/k) < s}. In particular, os(K/k) is infinite
if and only if for each m ∈ N, di(k(K pm )/k) ≥ s.

The result below makes it possible to reduce the study of properties of exponents
of a q-finite extension to a finite extension through the relatively perfect closure.

Theorem 2.8 ([8], Theorem 4.15) Let Kr /k be the relatively perfect closure of
irrationality degree s of a q-finite extension K /k (di(Kr /k) = s), then we have:

(i) For each t ≤ s, ot (K/k) = +∞.
(ii) For each t > s, ot (K/k) = ot−s(K/Kr ).

In addition, ot (K/k) is finite if and only if t > s.

Here is a list of immediate consequences (cf. [8]).

Proposition 2.9 Let K and L be two intermediate fields of a q-finite extension M/k.
For every j ∈ N

∗, we have o j (L(K )/L) ≤ o j (K/k).

Proposition 2.10 Given q-finite extensions k ⊆ L ⊆ K. For each j ∈ N
∗, we have

o j (L/k) ≤ o j (K/k).

2.5 Modular Extensions

We recall that an extension K /k is said to be modular if and only if for each n ∈ N,
K pn and k are K pn ∩ k-linearly disjoint. This notion has been for the first time
by Swedleer in [12], she characterizes the purely inseparable extensions which are
tensor product of simple extensions over k, it is the equivalent of the fundamental
concept Galois theory. Furthermore, if there exists a subset B of a given field K such
that K � ⊗k(⊗kk(a))a∈B , necessarily B will be a r -base of K /k and it will be called
subsequently modular r -base of K /k. In particular, according to Swedleer’s theorem,
if K /k has an exponent, it is equivalent to say that:
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(i) K /k has a modular r -base.
(ii) K /k is modular.

Let m j be the j-th exponent of a finite purely inseparable extension K /k
and {α1, . . . , αn} a canonically ordered r -base of K /k, therefore by ([3],
Proposition 5.3), for each j ∈ {2, . . . , n}, there exists unique constants Cε ∈ k
such that α j

pm j =
∑

ε∈� j

Cε(α1, . . . , α j−1)
pm j ε where � j = {(i1, . . . , i j−1) such that

0 ≤ i1 < pm1−m j , . . . , 0 ≤ i j−1 < pm j−1−m j }. These relations that are due toG. Pick-
ert (cf. [11]) will be called the definition equations of K /k.

The criterion below allows to test the modularity of an extension.

Theorem 2.11 (Modularity criterion, [3], Proposition 1.4) Under the previous
notions, the following properties are equivalent:

(1) K/k is modular.
(2) For every canonically ordered r-base {α1, . . . , αn} of K /k, Cε ∈ k ∩ K pm j for

each j ∈ {2, . . . , n}.
(3) There exists a canonically ordered r-base {α1, . . . , αn} of K /k such that Cε ∈

k ∩ K pm j for each j ∈ {2, . . . , n}.
The following result is an immediate consequence of the modularity.

Proposition 2.12 Let m, n ∈ Z with n ≥ m. If K /k is modular, then K pm /k pn is also
modular.

Proposition 2.13 ([3], Proposition 8.4) Let K /k be a finite (respectively, and mod-
ular) purely inseparable extension, and let L/k be a subextension (respectively, and
modular) of K /k with di(L/k) = s. If K p ⊆ L, there exists a canonically ordered r-
base (respectively, and modular) (α1, α2, . . . , αn) of K /k and e1, e2, . . . , es ∈ {1, p}
such that (α1

e1 , α2
e2 , . . . , αs

es ) be a canonically ordered r-base (respectively, and
modular) of L/k. In addition, for each j ∈ {1, . . . , s}, we have o j (K/k) = o j (L/k)
in which case e j = 1, or o j (K/k) = o j (L/k) + 1 in which case e j = p.

The following theorem which is due to Waterhouse plays an important role in the
study of modular extensions (cf. [13], Theorem 1.1).

Theorem 2.14 Let (K j ) j∈I be a family of intermediate subfields of a commutative
field Ω , and K an another subfield of Ω . If for each j ∈ I , K and K j are K ∩ K j -

linearly disjoint, then K and
⋂

j

K j are also K ∩ (
⋂

j

K j )-linearly disjoint.

As a consequence the modularity is stable by any intersection covering a commu-
tative field either above or below. More specifically, we have:
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Corollary 2.14.1 Under the same hypotheses of the above theorem, we have:

(i) If for each j ∈ I , K j /k is modular, the same is also true for
⋂

j

K j /k.

(ii) If for each j ∈ I , K /K j is modular, the same is true for K /
⋂

j

K j .

According to Waterhouse’s theorem, there exists a smallest subextension m/k of
K /k (respectively, a smallest extension M /K ) such that K /m (respectively, M /k) is
modular. Henceforth, we denote m = lm(K /k) and M = um(K /k). However, the
extension um(K /k) will be called the modular closure of K /k.

The following result is well known (cf. [9]).

Proposition 2.15 Let K /k be a purely inseparable modular extension, and let for
each n ∈ N, Kn = k(K pn ). Then kn/k, K /kn, Kn/k and K /Kn are modular.

3 Quasi-finitude and Modularity

Before stating the main results, we need to recall a few notions. Let K /k be a q-
finite extension of unbounded exponent. For each j ∈ N

∗, we put k j = k p− j ∩ K ,
U j

s (K /k) = j − os(k j /k), and I lqm(K /k) denotes the first nonzero natural integer
i0 for which the sequence (U j

i0
(K /k)) j∈N is unbounded.

The above result is an immediate application of Proposition 2.10.

Proposition 3.1 Given a q-finite extension K /k of unbounded exponent, then the
sequence (U j

s (K/k)) j∈N is increasing for each nonzero natural integer s.

Proof. As kn+1
p ⊆ kn , it’s clear that os(kn/k) ≤ os(kn+1/k) ≤ os(kn/k) + 1, and so

n + 1 − os(kn+1/k) ≥ n − os(kn/k), i.e., the sequence (U j
s (K /k)) j∈N is increasing.

In addition, we verify immediately that:

(i) For each s ≥ I lqm(K /k), lim
n→+∞(Un

s (K /k)) = +∞.

(ii) For each s < I lqm(K /k), the sequence (U j
s (K /k)) j∈N is bounded;

and, consequently, for all n ≥ sup
j∈N

(sup(U j
s (K/k)))s<I lqm(K/k), we haveUn

s (K/k) =
Un+1

s (K/k), in other words os(kn+1/k) = os(kn/k) + 1.
In the following, we set e(K /k) = sup

j∈N
(sup(U j

s (K/k)))s<I lqm(K/k), and for each

(s, j) ∈ N
∗ × N

∗, e j
s = os(k j /k).

Theorem 3.2 Let K /k be a q-finite extension of unbounded exponent. Suppose that
di(rp(K/k)/k) = t . The following statements are equivalent:
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(1) K/k is modular over a finite extension of k.
(2) For each s ∈ {1, 2, . . . , t}, the sequence (U j

s (K/k)) j∈N is bounded.
(3) I lqm(K/k) = t + 1.

Proof. It’s clear that (2) ⇔ (3). Furthermore, taking into account Proposition 2.6,
there exists a natural integer j0 such that K /k j0 is relatively perfect, so k j0(rp(K /k))
= K , and we will have di(K /k j0) = di(rp(K /k)/k) = t . Assume next that (1) is
satisfied. We distinguish two cases:

If K /k is modular, by virtue of ([8], Proposition 6.3), for each j ≥ j0, we have
k j /k j0 is equiexponential of exponent j − j0 and di(k j /k j0) = t . Hence, for each
s ∈ {1, . . . , t}, we have U j

s (K /k) = U j+1
s (K /k).

If K is modular over a finite extension L of k, having regard of finitude of L/k,
there exists a natural integer n such that L ⊆ kn . As a result, L p− j ∩ K ⊆ kn+ j , and
soUn+ j

s (K /k) ≤ n +U j
s (K /L); fromwhence the sequence (U j

s (K /k)) j is stationary
for each s ∈ {1, . . . , t} (namely rp(K /L) = L(rp(K /k)) and L/k is finite, therefore
di(rp(K /L)/L) = di(L(rp(K /k))/L) = di(rp(K /k)/k) = t).

Conversely, if the condition (2) holds, there exists m0 ≥ sup(e(K /k), j0), for
each j ≥ m0, for each s ∈ {1, . . . , t}, we have os(k j+1/k) = os(k j /k) + 1 (and
di(k j /km0) = t). Consequently, k j /k j0 is equiexponential, and a fortiori modular.

Hence, K =
⋃

j>m0

k j is modular over k j0 . ��

Theorem 3.3 The smallest subextension m/k of a q-finite extension K /k such that
K /m is modular is not trivial (m = K). More precisely, if K /k is of unbounded
exponent, the same is true of K /m.

Proof. The case where K /k is not relatively perfect (in particular, the finite case)
is trivially obvious, since K /k(K p) is modular. Thus, we are led to consider that
K /k is relatively perfect of unbounded exponent. We next give a proof by recur-
rence on the integer di(K /k) = t . If t = 1, i.e., K /k is q-simple, it is immediate
that K /k is modular. Suppose now that t > 1, if I lqm(K /k) = t + 1, by virtue
of Theorem 3.2, m/k is finite, and a fortiori K /m is of unbounded exponent. If
I lqm(K /k) ≤ t , for each j > e(K /k), for each s ∈ [1; i − 1]where i = I lqm(K /k),
we have e j+1

s = e j
s + 1. As k p

j+1 ⊆ k j , by Proposition 2.13, there exists a canoni-
cally ordered r -base (α1, . . . , αn) of k j+1/k, there exists εi , . . . , εt ∈ {1, p} such that
(α

p
1 , . . . , α

p
i−1, α

εi
i . . . , α

εt
t ) is a canonically ordered r -base of k j /k. In the sequel,

for every j > e(K /k), we denote K j = k(k pe
j
i

j ). Firstly, K j = k(α pe
j
i +1

1 , . . . , α
pe

j
i +1

i−1 )

and K j+1 = k(α pe
j+1
i

1 , . . . , α
pe

j+1
i

i−1 ). Secondly, we have e j+1
i = e j

i + ε with ε = 0
or 1, this leads to K j ⊆ K j+1. However, by definition of I lqm(K /k), we have
1 + e j

i > e j+1
i (i.e., e j

i = e j+1
i ) for an infinity of values of j . For these values,we have

di(K j+1/k) = i − 1, otherwise by Lemma 2.1, e j+1
i = e j+1

i−1 = 1 + e j
i−1 = e j

i , and so

e j
i > e j

i−1, which contradicts the definition of exponents. As (di(K j/k)) j>e(K/k) is
an increasing sequence of integers bounded by di(K /k), so it is eventually stationary
in I lqm(K /k) − 1. Furthermore, K j = K j+1, in effect if K j = K j+1 = k(K p

j+1), as
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K j+1/k is of finite exponent, we will have K j+1 = k, a contradiction. We next put

H =
⋃

j>e(K/k)

K j . We check immediately that H /k is of unbounded exponent and

di(H /k) = i − 1, in addition H /k is relatively perfect because k(K p
j+1) = K j for an

infinity of j . Moreover, according to Proposition 2.7, di(K /H) < t and K /H is of
unbounded exponent. From the recurrence hypothesis applied to K /H , we have K
is modular over an intermediate subfield m ′ of K /H such that K /m ′ is of unbounded
exponent; since m ⊆ m ′, then K /m is also of unbounded exponent. ��

An equivalent version of this in the particular case where di(k) is finite is found
in [3]. However, the above theorem is generally false if the q-finitude hypothesis is
not satisfied (cf. [5], p. 149).

4 Generalization of Lower Quasi-modular Extensions

Definition 6 A purely inseparable extension K /k is said to be lq-modular (lower
quasi-modular) if K /k is modular up to extension of finite exponent, i.e., if there
exists a subextension of a finite exponent L/k of K /k such that K /L is modular.

As immediate consequences, we have:

• K /k is lq-modular if and only if lm(K /k)/k has an exponent.
• K /k is lq-modular if and only if the same is true for K /L for any subextension of
finite exponent L/k of K /k.

Let k be a commutative field of characteristic p > 0 and Ω an algebraic closure
of k. In [k : Ω]we define the relation∼ as follows: k1 ∼ k2 if and only if k1 ⊆ k2 and
k2/k1 has an exponent or k2 ⊆ k1 and k1/k2 has an exponent. We check immediately
that ∼ is reflexive, symmetric, however ∼ is generally non-transitive. Moreover, the
relation ∼ is compatible with the lower and upper modularity. More specifically, we
have:

Proposition 4.1 Let k1 ⊆ k2 ⊆ K1 ⊆ K2 bepurely inseparable extensions.wehave:

(i) If k1 ∼ k2, then lm(K1/k1) ∼ lm(K1/k2).
(ii) If K1 ∼ K2, then um(K1/k) ∼ um(K2/k).

Proof. The proof results from the following considerations:

• lm(K1/k1) ⊆ lm(K1/k2), and if o1(k2/k1) = e1, then lm(K1/k2) ⊆ (lm(K1/

k1))
p−e1 ∩ K1 with K1/(lm(K1/k1))

p−e1 ∩ K1 is modular (cf. Proposition 2.15).
• Also, um(K1/k) ⊆ um(K2/k), and if o1(K2/K1) = e2, then um(K2/k) ⊆

(um(K1/k))
p−e2 and (um(K1/k))

p−e2 /k is modular (cf. Proposition 2.12). ��
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Let P/k be the purely inseparable closure of an algebraic closure Ω of k, the
above proposition can be interpreted in terms of correspondence as follows:

The mapping of lower modularity:

lm : [k : K1] �−→ [k : K1]
L −→ lm(K1/L),

and that of upper modularity:

um : [k : P] �−→ [k : P]
L −→ um(L/k),

are compatible with the relation ∼.
As a consequence, the lq-modularity is compatible with the relation ∼. Further-

more, the lq-modularity is stable, up to extension of finite exponent. More specifi-
cally, we have:

Proposition 4.2 Let k1/k and k2/k be two subextensions of a same purely inseparable
extension K /k. If k1 ∼ k2, then K /k1 is lq-modular if and only if the same is true for
K /k2.

Proof. Immediately follows from Proposition 4.1. ��
In particular, we have:

Corollary 4.2.1 Let n be a natural number. Then the following assertions hold true:

(i) K/k is lq-modular if and only if the same is true for K /k p−n ∩ K.
(ii) K/k is lq-modular if and only if the same is true for K /k pn .

Moreover, and unlike q-finite extensions, the lq-modularity is generally neither
extendednor reduced. In otherwords, K ∼ K ′ does not necessarily imply lm(K /k) ∼
lm(K ′/k), as the following example shows.

Example 1 Let k0 be a perfect field of characteristic p > 0 and k = k0(X, (Yi ,
Zi )i≥1) the field of rational fractions in indeterminates (X, (Yi , Zi )i≥1). For each
i ∈ N

∗, we denote by θi = Yi
p−1

X p−i−1 + Zi
p−1

and K = k(X p−∞
, (θi )i≥1). Next,

put K ′ = k(X p−∞
, (Yi

p−1
, Zi

p−1
)i≥1).

It is immediately verified that:

• K ′ � k(X p−∞
) ⊗k (k(Yi

p−1
) ⊗k k(Zi

p−1
))i≥1, and therefore K ′/k is modular.

• Using the modularity criterion, we show that lm(K /k) = k(X p−∞
), and so K /k is

not lq-modular.
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But for each i ≥ 1, we have θi = Yi p
−1
X p−i−1 + Zi

p−1
. It follows that θi ∈ k(X p−i−1

,

Yi
p−1

, Zi
p−1

) ⊆ K ′. Hence K ⊆ K ′ with o1(K ′/K ) = 1, and thus K ∼ K ′; except
that ∼ does not respect the lq-modularity. However, if we add the condition “to be
relatively perfect” to one of this extensions, the lq-modularity will be respected as
indicated by the following result.

Proposition 4.3 Let K /k be a purely inseparable and relatively perfect extension.
K /k is lq-modular if and only if the same holds true for L(K )/k for every extension
L/k such that k ∼ L

Proof. We putm0 = lm(K /k) andm1 = lm(L(K )/k). We now use a proof by induc-
tion.We start with the case o1(L/k) = 1. LetG be a subset of L such thatG is a r -base
of L(K )/K , therefore L(K ) � K ⊗k (⊗k(k(a))a∈G) � K ⊗m0 (⊗m0(m0(a))a∈G).
Firstly, according to ([8], Proposition 5.11), we have L(K )/m0 is modular, and so
m1 ⊆ m0. On the other hand, taking into account Proposition 2.15, m1((L(K ))p) =
m1(K p) is also modular over m1. But K /k is relatively perfect and m1 ⊆ m0 ⊆ K ,
thus K = m1(K p) is modular overm1, and consequentlym0 ⊆ m1. Hencem1 = m0,
and it follows that K /k is lq-modular if and only if the same holds for L(K )/k.

If L/k has an exponent e + 1, then k(L p)/k is of exponent e. From the induction
hypothesis, we have K /k is lq-modular if and only if the same is true for k(L p)(K )/k
(in particular, the same hold for k(L p)(K )/k(L p)). As o1(L/k(L p)) = 1, according
to the first case K /k is lq-modular if and only if the same is true for L(K )/k(L p), or
again it is the same for L(K )/k. ��

The lq-modularity is stable by a finite intersection covering k. More specifically,
we have:

Proposition 4.4 Let (k j ) j∈I be a finite family of purely inseparable subextensions
of a same extension K /k. If K /k j is lq-modular for any j ∈ I , then the same holds

true for K /
⋂

j∈I
k j .

Proof. We reduce to the case where I = {1, 2}. For each j = 1, 2, we put m j =
lm(K /k j ). In view of the lq-modularity, there exists e ∈ N such thatm j ⊆ k j

p−e ∩ K
for j = 1, 2, and so m1 ∩ m2 ⊆ k1 p

−e ∩ k2 p
−e ∩ K = (k1 ∩ k2)

p−e ∩ K . It follows
that m1 ∩ m2/k1 ∩ k2 is of finite exponent. Moreover, by virtue of Corollary 2.14.1,
K /m1 ∩ m2 is modular, therefore K /k1 ∩ k2 is lq-modular. ��
Remark 1 The finiteness condition in the above proposition is essential, since any
intersection covering k may not respect the lq-modularity, as shown in the following
example.

Example 2 Let k0 be a perfect field of characteristic p > 0 and k = k0((Xi ,Yi ,
Zi )i∈N∗) the field of rational fractions in indeterminates (Xi ,Yi , Zi )i∈N∗ . For every
i ≥ 1, we denote αi = Xi

p−i−1
and θi = Yi

p−1
αi + Zi

p−1
. Also, we put K =

k((αi , θi )i∈N∗), m = lm(K/k), S = k((αi
p)i∈N∗), and for each r ∈ N

∗,
Lr = k(Xr

p−∞
, (X j

p−∞
,Y j

p−∞
, Z j

p−∞
) j∈N∗\{r}) and Fr = k(α1

p, . . . , αr
p).
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As θi = Yi p
−1

αi + Zi
p−1

for each i ∈ N
∗, we verify immediately that

θi ∈ k(Yi p
−1

, αi , Zi
p−1

) ⊆ k(Yi p
−∞

, Xi
p−∞

, Zi
p−∞

), and so for every r ∈ N
∗, K ⊆

k((X j
p−∞

,Y j
p−∞

, Z j
p−∞

) j∈N∗\{r}, αr , θr ) ⊆ Lr (θr ). We also verify using the mod-
ularity criterion that m = S. Indeed, if there exists r ≥ 1 such that αr

p /∈ m, or
again the system (1, αr

p) is linearly independent over m, whence it is remains in
particular linearly independent over m ∩ K p. We complete this system to a linear
basis B of K p over m ∩ K p. As K p and m are m ∩ K p-linearly disjoint (K /m is
modular), we deduce that B is also a linear basis of m(K p) over m. But the defi-
nition equation of θr over m is written θr

p = Yrαr
p + Zr , then by identification it

results that Yr , Zr ∈ m ∩ K p ⊆ K p. Moreover, Yr p
−1

, Zr
p−1 ∈ K ⊆ Lr (θr ), and by

Theorem 2.1, we will have 2 = di(Lr (Yr p
−1

, Zr
p−1

)/Lr ) ≤ di(Lr (θr )/Lr ) = 1. As
a result, 2 ≤ 1, a contradiction. Hence, for every r ∈ N

∗, αr
p ∈ m, or again S ⊆ m.

On the other hand, it is easy to check that K /S is modular, so m = S.
Next, we denote by ki = k((α j

p) j≥i ). We show immediately that:

• For each i ∈ N ∗, K /ki is lq-modular.
•

⋂

i∈N∗
ki = k. In fact, let θ ∈

⋂
ki , in particular θ ∈ k1 = m, and therefore there

exists j ≥ 1 such that θ ∈ k(α1
p, . . . , α j

p) = Fj . Also θ ∈ k j+1, but as m �
⊗k(k(αi

p))i≥1 � Fj ⊗k k j+1, then Fj ∩ k j+1 = k; whence θ ∈ k.

Therefore K /
⋂

ki is not lq-modular (namely m/k has unbounded exponent), even
if K /ki is lq-modular for each i ∈ N ∗.

Remark 2 However if we add the q-finitude hypothesis, we will have any inter-
section covering k respect the lq-modularity. In addition, any q-finite extension K /k
contains a smallest subextensionm such that K /m is lq-modular. However, this prop-
erty falls into default without the condition of q-finitude as shown in the example
above.

The result that follows gives a necessary and sufficient condition for the existence
of the smallest subextension that respects the lq-modularity as the fixed ground field
for a given extension. More specifically, we have

Proposition 4.5 Let K /k beapurely inseparable extensionand lm(K/k) = m.Then
K /k has a smallest subextension m1/k such that K/m1 is lq-modular if and only if
m/rp(m/k) has an exponent. Moreover, if m1 exists, we have m1 = rp(m/k).

Proof. The necessary condition is obvious, just note that K/k(m1
p) is also lq-

modular, and that m1 ≤ m ≤ lm(K/m1) with lm(K/m1)/m1 is of finite exponent.
Conversely, suppose thatm/rp(m/k) has an exponent, so K /rp(m/k) is lq-modular.
Let L/k be a subextension of K /k such that K /L is lq-modular, and let L1 =
lm(K/L), therefore there exists e ∈ N such that L1 ⊆ L p−e

∩ K . Since m = lm(K/k), then m ⊆ L1; and thus rp(m/k) ⊆
⋂

i∈N
k(mpi ) ⊆

⋂

i∈N
k(L1

pi ) ⊆ L . ��
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Remark 3 Unlike q-finite extensions, the product does not respect the lq-modularity
as shown in the following example.

Example 3 We take the notations of Example 2 above, k0 always designates a perfect
field of characteristic p > 0 and k = k0((Xi ,Yi , Zi )i∈N∗) the field of rational frac-
tions in indeterminates (Xi ,Yi , Zi )i∈N∗. We recall that for all i ∈ N

∗, αi = Xi
p−i−1

and θi = Yi p
−1

αi + Zi
p−1

. We also put that K1 = k((αi )i∈N∗) and K2 = k((θi )i∈N∗).

It is immediate that K1/k and K2/k are modular, therefore lq-modular. We also
have lm(K1(K2)/k) = k(K1

p), and so K1(K2)/k is not lq-modular.

5 Upper Quasi-modular Extensions

Definition 7 A purely inseparable extension K /k is said to be uq-modular (upper
quasi-modular) if there exists an extension K ′/K of a finite exponent such that K ′/k
is modular.

As immediate consequences, we have:

• K /k is uq-modular if and only if um(K /k)/K has an exponent.
• Taking into account Example 1, and unlike q-finite extensions, the uq-modularity
generally does not implies the lq-modularity.

• The uq-modularity is compatible with the relation ∼. In addition, the uq-
modularity is stable up to extension of finite exponent. More precisely, we have:

Proposition 5.1 Let K and K ′ be two purely inseparable subextensions of a same
extension Ω/k. If K ∼ K ′, then K /k is uq-modular if and only if the same is true
for K ′/k.

Proof. Immediately follows from Proposition 4.1. ��
In particular,

Corollary 5.1.1 Let e be a natural number, then the following statements are veri-
fied:

(i) K/k is uq-modular if and only if the same holds for k(K pe)/k.
(ii) K/k is uq-modular if and only if the same holds for K p−e

/k.

Corollary 5.1.2 If k ∼ L, then K /k is uq-modular if and only if the same holds for
L(K )/k.

Let K /k be a purely inseparable extension. The smallest extension M /K such that
M /k is uq-modular when it exists will be called the uq-modular closure of K /k and
will be denoted by uqm(K /k). Clearly K ((uqm(K/k))p)/k is also uq-modular, and
therefore uqm(K /k)/K is relatively perfect.
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Remark 4 Contrary to the q-finite extensions, an extension may not have a uq-
modular closure as shown in the following example.

Example 4 Let k0 be a perfect field of characteristic p > 0 and k = k0((Xi ,Yi ,
Zi )i∈N∗) the field of rational fractions in indeterminates (Xi ,Yi , Zi )i∈N∗ . For each i ∈
N

∗, we put αi = Xi
p−i−1

, θi = Yi
p−i

αi + Zi
p−i

, K = k((αi , θi )i∈N∗), and for every
j ∈ N ∗, Fj = k(Y1 p

−1
, . . . ,Y j

p− j
).

It is immediate that:

• By applying the criterion of modularity, we have um(K/k) = K ((Yi
p−i

,

Zi
p−i

)i∈N∗). In addition, K /k is not uq-modular, (namely um(K /k)/K has
unbounded exponent).

• um(K/k) = K ((Yi
p−i

)i∈N∗) = K ((Zi
p−i

)i∈N∗) � K ⊗k (⊗kk(Zi
p−i

)i∈N∗))

� K ⊗k (⊗kk((Yi p
−i

)i∈N∗)).
• um(K/k) = k((αi ,Yi p

−i
, Zi

p−i
)i∈N∗) � (⊗kk((αi )i∈N∗)) ⊗ (⊗kk((Yi p

−i
)i∈N∗))

⊗k (⊗kk((Zi
p−i

)i∈N∗)).

Similarly, for every i ∈ N
∗, we put Mi = K ((Y j

p− j
) j≥i ). It is also verified that:

• For each i ∈ N
∗, Mi/k is uq-modular.

•
⋂

i∈N∗
Mi/k is not uq-modular, it is sufficient to show that

⋂

i∈N∗
Mi = K .

Let β ∈
⋂

i∈N∗
Mi , in particular β ∈ M1, so there exists j ∈ N

∗ tel que β ∈ K

(Y1 p
−1

, . . . ,Y j
p− j

) = K (Fj ).We also haveβ ∈ Mj+1 = K ((Yi p
−i

)i≥ j+1). ButM1 =
K ((Yi p

−i
)i∈N∗) � K ⊗k (⊗kk(Yi p

−i
)i∈N∗)) � Mj+1 ⊗k Fj ∼ Mj+1 ⊗K K (Fj ),

whence β ∈ K (Fj ) ∩ Mj+1 = K .
The result which follows gives a necessary and sufficient condition for the exis-

tence of the uq-modular closure of a given extension. More specifically, we have:

Proposition 5.2 Given a purely inseparable extension K /k and M = um(K/k).
Then K /k admits a uq-modular closure if and only if M/rp(M/K ) has an exponent.
Moreover, when ulqm(K/k) exists, then ulqm(K/k) = rp(M/K ).

Proof. It is immediate that rp(M /K )/k is uq-modular if M /rp(M /K ) has an expo-
nent. Let S/K be a purely inseparable extension such that S/k is uq-modular, so
the modular closure of S/k, denoted by S1, has an exponent e over S. As a result,
M ⊆ S1. In particular, K (Mpe) ⊆ K (S1 p

e
) ⊆ S, and consequently rp(M/K ) ⊆ S.

Hence ulqm(K/k) = rp(M/K ).
Conversely, we denote by N = uqlm(K/k) and M1 = um(N/k). It is clear that

N ⊆ M ⊆ M1 and M1 ⊆ N p−s
for some natural number s, and thus K (Mps ) ⊆

N . Moreover N /K is relatively perfect since K (N p)/k is also uq-modular, but
K (Mps )/k is uq-modular, we deduce that K (Mps ) = N , and consequently
rp(M/K ) = N . ��
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Abstract The family G(m, n) = 〈x, y|x2 = (xy2)2 = 1, y2
m = (xy)2

n 〉 of finite
2-groups will be introduced. The group G(m, n) has order 2(m+n+1), nilpotency
class 1 + max{m, n} and every automorphism of G = G(m, n) fixes G/Φ(G) ele-
mentwise and therefore Aut (G) is a 2-group. The parameterized presentation of
G = G(m, n) is efficient as the Schur multiplicator of G is non-trivial.
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1 Introduction

Presentation of a group is introducing the group by a set of generators and a sufficient
set of relations between the generators. For a group G it is denoted by G = 〈X |R〉
in which X is the set of its generators and R is a set of relations. Such an expression
of a group provides a short description of its associated group. Presentations arise
from geometrical and topological vision of groups and is a central topic in group
theory (see [6]). A group may has many presentations. A presentation 〈X |R〉 for the
group G is said to be finite if X and R are both finite sets. A group is called finitely
presented, if it has a finite presentation. A finite presentation 〈X |R〉 of a group G
is called efficient if the set X is a minimal generating set of G and for any other
presentation 〈X |S〉 for G, we have |S| ≥ |R|.
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Let G be a group. By Z ,G ′, Φ and Aut (G), we denote the center, the com-
mutator subgroup, the Frattini subgroup and the group of all automorphisms of G,
respectively. Let N be a normal subgroup of G. By Aut N (G) we mean the subgroup
of Aut (G) consisting of all automorphisms of G, normalizing N and centralizing
G/N , that is

Aut N (G) = {α ∈ Aut (G)|∀g ∈ G; g−1α(g) ∈ N }.

Clearly for a characteristic subgroup N of a group G we have Aut N (G) � Aut (G).
The group Aut N (G) of automorphisms have been investigated by several authors
where N is one of the characteristic subgroups Φ(G), Z(G) or G ′ ([1–4]). By a
well-known theorem of Burnside the group AutΦ(G) is a p-group whenever G is a
finite p-group. Therefore for a finite p-groupG, if AutΦ(G) = Aut (G) then the full
automorphisms group, Aut (G), is also a finite p-group. In [5] a class of 2-groups
with this property is introduced.

Let α ∈ Aut (G) and let H be a normal subgroup of G. We say that α fixes G/H
elementwise if and only if α ∈ Aut H (G).

In this paper we construct an infinite family of finite 2-groupswith high nilpotency
class, defined by a single parameterized efficient presentation such that for every
member, G of the family, all automorphisms of G fix G/Φ(G) elementwise and
therefore Aut (G) is a 2-group.

Let m ≥ 2 and n be positive integers and let G(m, n) be the group defined by the
following presentation

G(m, n) = 〈x, y|x2 = (xy2)2 = 1, y2
m = (xy)2

n 〉.

Our main result is the following theorem.

Theorem 1. Let G := G(m, n), m ′ = min{m, n} and let n′ = max{m, n}. Then the
following statements hold

1. |G| = 2m+n+1,
2. Z and G ′ are of orders 2 and 2m+n−2, respectively,
3. Φ(G) ∼= Z2m′−1 × Z2n′ ,
4. G is of nilpotency class 1 + n′,
5. Every automorphism of G fixes G/Φ(G) elementwise,
6. |Aut (G)| = |AutΦ(G)| = 22(m+n−1) and |AutG ′

(G)| = 22(m+n−2),
7. Aut Z (G) ∼= Z2 × Z2 and Aut (G) ∼= AutG

′
(G) � (Z2 × Z2),

8. The Schur multiplicator, M(G), of G is non-trivial and hence the presentation of
G is efficient.
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2 The Center and The Frattini Subgroup of G(m, n)

The following lemma contains a list of necessary relations to exhibit the elements
of G(m, n) in a relevant form which helps to recognize, for example, the central
elements and the non-generators of G(m, n). By non-generators of a group we mean
the elements of the Frattini subgroup.

Lemma 1. Let G := G(m, n) and let r , s be integers. Then the following relations
hold in G

1. xy2r x = y−2r ,
2. xy2r+1x = (xy)2y−(2r+1),
3. (xy)2

n+1 = y2
m+1 = 1,

4. x(xy)2r x = (xy)−2r and hence (yx)2r = (xy)−2r ,
5. x(xy)2r+1x = (xy)−(2r+1)y−2 and (yx)2r+1 = (xy)−(2r+1)y−2,
6. [(xy)2, y2] = 1.

Proof. (1) By the second relation ofG wehave xy2x = y−2. Also xy2r x = (xy2x)r ,
therefore xy2r x = y−2r .

(2) By the part (1) we see that xy2r+1x = xyy2r x = xyxy−2r = (xy)2y−2r−1.

(3) By the third relation of G the element y2
m
is a power of xy, therefore y2

m
com-

mutes with xy and hence also with x , that is xy2
m
x = y2

m
. On the other hand by

(1) we have xy2
m
x = y−2m . Therefore y2

m = y−2m . Hence (xy)2
n+1 = y2

m+1 = 1.

(4) It is obvious as (xy)2x(xy)2x = 1.

(5) Using part (4) we have

x(xy)2r+1x = (xy)−2r yx = (xy)−2r (y−1x−1xy)yx = (xy)−(2r+1)xy2x = (xy)−(2r+1)y−2.

(6) By the part (1)we have y2x = xy−2. Hence y2 commuteswith xyx and therefore
by (xy)2

Corollary 1. Every element of G := G(m, n) could be uniquely written in the form
(xy)i y j , where 0 ≤ i ≤ 2n − 1, 0 ≤ j ≤ 2m+1 − 1.

Theorem 2. Let G := G(m, n), m ′ = min{m, n} and n′ = max{m, n}, then
1. G is of order 2m+n+1 and Φ(G) ∼= Z2m′−1 × Z2n′ .
2. G ′ and Z is of order 2m+n−2 and 2, respectively.

Proof. (1)We have |G| = 2m+n+1 by Corollary 1. Consider the subgroup H = 〈a =
(xy)2, b = y2〉 of G. By the parts (1), (4) and (5) of Lemma 1 the subgroup H is
normal. Using Todd-Coxeter coset enumeration, H has the following presentation

H ∼= 〈a, b| a2n = b2
m = [a, b] = 1, a2

n−1 = b2
m−1 〉.
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Obviously H is isomorphic to Z2m′−1 × Z2n′ , where m ′ = min{m, n} and n′ =
max{m, n}. Also Φ(G) = H , since G/H ∼= Z2 × Z2 and G is two generated.
(2) It is easy to see that G/G ′ ∼= Z2 × Z4. Therefore |G ′| = 2m+n−2.
By Corollary 1 an element of G is in the form (xy)i y j . On the other hand by Lemma
1 the element (xy)i y j of G is in Z(G) if and only if i = 0 and j = 2m . Therefore
Z = 〈y2m 〉 and hence |Z | = 2.

3 The Nilpotency Class of G(m, n) and the Order
of Aut(G(m, n))

In this section it’s shown that an automorphism of G(m, n) has a special form. We
use this to compute the order of Aut (G(m, n)). Also the nilpotency class of G(m, n)

will be computed.

Theorem 3. By the above notations, the nilpotency class of G is 1 + max{m, n}.
Proof. Set K = 〈[x, y], [y−1, x]〉 which is contained in G ′. Note that [x, y] =
(xy)2y−2 and [y−1, x] = (xy)−2y−2. The relations x[x, y]x−1 = [x, y]−1, y[x, y]
y−1 = [y−1, x], x[y−1, x]x−1 = [y−1, x]−1 and y[y−1, x]y−1 = [x, y] hold. Hence
K � G and G/K ∼= Z2 × Z4. This means that G ′ = K . Also G ′ is abelian, since
[x, y][y−1, x] = [y−1, x][x, y]. Consequently we have G ′ = γ2 = 〈(xy)2y2, (xy)2
y−2〉, where γi is the i-th member of the lower central series of G.

We show thatγi = 〈(xy)2i−1
, y2

i−1〉where i ≥ 3.Clearly the relations [x, [x, y]] =
(xy)−4y4, [y, [x, y]] = (xy)−4, [x, [y−1, x]] = (xy)4y4 and [y, [y−1, x]] = (xy)4

hold in G. Hence we have
γ3 = 〈(xy)4, y4〉.

Now, the assertion follows easily by an induction method on i . If n ≥ m we have
γn+1 = 〈(xy)2n , y2n 〉 
= 1 while γn+2 = 〈(xy)2n+1

, y2
n+1〉 = 1, hence in this case the

nilpotency class of G is n + 1. If m ≥ n, by a similar argument, we obtain that the
nilpotency class of G is m + 1.

Lemma 2. The orders of the elements of the cosets Φx, Φy and Φxy are 2, 2m+1

and 2n+1, respectively.

Proof. We do this for the coset Φxy. The others are similar to this case.
As noted in the proof of Theorem 2, we have Φ(G) = 〈a = (xy)2, b = y2〉. Let

a ∈ Φ. There are integers r , s such that a = (xy)2s y2r . We have

axy = (xy)2s y2r xy

= (xy)2s+1y−2r (by Lemma 1 (1))
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Now for i ≥ 0 we have

(axy)2
i+1 = (

(xy)2s+1y−2r (xy)2s+1y−2r
)2i

= (
(xy)4s+2

)2i

= ((xy)2
i+1

)(2s+1)

which shows that the orders of axy and xy are equal. Therefore the order of axy is
equal to 2n+1.

Lemma 3. Let G := G(m, n) and let a, b ∈ Φ. Define the mapping α : {x, y} −→
G by α(x) = ax and α(y) = by. Then, α extends to an automorphism of G.

Proof. Using substitution test (Proposition 4.3 in [6]) we show that the result of
substituting ax for x and by for y in all of the relations of G yields the identity of G
and therefore α extends to a group homomorphism. By Lemma 1, there are positive
integers r, s and r ′, s ′ such that a = (xy)2s y2r and b = (xy)2s

′
y2r

′
.

1. Relation x2: The element ax is in the coset Φx and by Lemma 2 every element
of Φx has order 2 and hence (ax)2 = 1.

2. Relation (xy2)2:
We have

(by)2 = ((xy)2s
′
y2r

′
y)2 = (xy)2s

′
y2r

′
y(xy)2s

′
y2r

′
y

= (xy)2s
′
(yx)2s

′
y4r

′+2 = y4r
′+2.

Now:

(ax(by)2)2 = axy4r
′+2axy4r

′+2 = axay4r
′+2xy4r

′+2 = (ax)2 = 1.

3. Relation y2
m
(xy)−2n :

By Lemma 1 we have:

((by)−1(ax))2 = ((xy)2(s
′−s)−1y2(r

′−r))2 = (xy)4(s
′−s)−2.

Hence
(by)2

m
((by)−1(ax))2

n = ((by)2
m
(xy)−2n ) = 1.

It is enough to note that for every a, b ∈ Φ the set {ax, by} is a generating set for the
groupG, and therefore the extension of α is surjective and hence is an automorphism
of G.

Corollary 2. Let G := G(m, n). Then a map α : G −→ G is an automorphism if
and only if there exist a, b ∈ Φ such that α(x) = ax and α(y) = by.

Corollary 3. Let G := G(m, n). Then, all the automorphisms of G fix G/Φ ele-
mentwise and the order of Aut (G) is 22(m+n−1).

A purely non-abelian group is a group which has no non-trivial abelian direct factor.
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Theorem 4. Let G := G(m, n). Then Aut Z (G) ∼= Z2 × Z2 and AutΦ(G) ∼= AutG
′

(G) � (Z2 × Z2).

Proof. As |Z | = 2, the group G is purely non-abelian and Aut Z (G) is elementary
abelian group (see [4]). Then |Aut Z (G)| = |Hom(G/G ′, Z)| = 4 and Aut Z (G) ∼=
Z2 × Z2.

By Corollary 2, |AutG ′
(G)| = |G ′|2 = 22(m+n−2). Clearly the map θ defined by

θ(x) = x and θ(y) = (xy)2
n+2y is an automorphism of order 2, also there is an

automorphism ρ of order 2 defined by ρ(x) = x and ρ(y) = y−1. Now it is easy to
check that Aut (G) ∼= AutG

′
(G) � 〈ρ, θ〉 ∼= AutG

′
(G) � (Z2 × Z2).

Lemma 4. Suppose that N is a normal subgroup of a finite group G. If M(G) = 1,
then M(G/N ) ∼= (G ′ ∩ N )/[G, N ].
Proof. See Corollary 3.2.2 in [7].

Theorem 5. Let G := G(m, n), then M(G) 
= 1.

Proof. Suppose that M(G) = 1. Set N = 〈y2〉, clearly N is a normal subgroup
of G of order 2m . It is easy to check that [G, N ] = 〈y4〉. Obviously G ′N =
〈[x, y], [y−1, x], y2〉 and [x, y]y2 = (xy)2 thus Φ = G ′N and so |G ′N | = 2m+n−1.
Hence |G ′ ∩ N | = 2m−1 and thereforeG ′ ∩ N = [G, N ]. On the other handwe have

G/N ∼= 〈x, y|x2 = (xy2)2 = 1, y2
m = (xy)2

n
, y2 = 1〉

∼= 〈x, y|x2 = y2 = (xy)2
n = 1〉.

Therefore G/N ∼= D2n+1 , the dihedral group of order 2n+1, with M(G/N ) ∼= Z2,
which is a contradiction by Lemma 4.

Now the proof of Theorem 1 follows by Theorems 2 and 3, Corollary 3, Theorems
4 and 5.
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Abstract In this paper, we introduce the notion of a ring of fuzzy points, and study
some basic properties and the relationship between this set and the classical ring R.
We also define the fuzzy polynomial rings and fuzzy algebraic elements.
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1 Introduction

The concept of fuzzy sets was introduced by Zadeh [8] in 1965, which is a general-
ization of the crisp set. Since its conception, the theory of fuzzy set has developed in
many directions and is finding applications in a wide variety of fields. Rosenfeld [7]
used this concept to develop the theory of fuzzy subgroup. Liu [2] introduced the
concept of fuzzy ring in 1982. Pu and Liu [6] introduced the notion of fuzzy points,
Kyung ho kim [1] discussed the relation between the fuzzy interior ideals and the
semigroup R the subset of all fuzy points of R. Based on these researches we have
developed the notion of rings on the set of points defined by Pu and Liu [6]. We have
also introduced and discussed the notion of polynomials on this ring.

Here is the summary of the paper. In Sect. 3, we define the subring consisting the
set of all fuzzy points and discuss some basic properties of this ring. Based on the
ring defined in Sect. 3, we introduce and investigate the fuzzy polynomial rings in
Sect. 4.
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2 Preliminaries

In this section, we recall some definitions and results whichwill be used in the sequel.

Definition 1. [8] Let E be a non-empty set. A fuzzy subset of the E is a function
μ : E → [0, 1].
Definition 2. [5] Let μ be a fuzzy subset of E . For α ∈ [0, 1], define μα as follows:

μα = {x |x ∈ R,μ(x) ≥ α}.

μα is called the α-cut (or α-level set ) of μ.

Property 1. [5] Let μ, ν ⊂ R be a fuzzy subsets. Then we have

1. μ ⊆ ν,α ∈ [0, 1] =⇒ μα ⊆ να,

2. α ≤ β α,β ∈ [0, 1] =⇒ μβ ⊆ μα,

3. μ = ν,⇔ μα = να, for each α ∈ [0, 1].
Definition 3. [4] Let R be a ring with identity. Then μ ⊂ R is called a fuzzy subring
if and only if

(i) μ(x − y) ≥ μ(x) ∧ μ(y);
(ii) μ(xy) ≥ μ(x) ∧ μ(y), ∀x, y ∈ R and
(iii) μ(1) = 1.

Property 2. Let R be a ring and μ be a fuzzy subring of R. Then we have:

1. For each x ∈ R, μ(0) ≥ μ(x).
2. If x, y ∈ R and μ(x − y) = 0, then μ(x) = μ(y).
3. For each x ∈ R, μ(x) = μ(−x).

Definition 4. [6] Let A be a non-empty set and xα : A −→ [0, 1] a fuzzy subset of
A with x ∈ A and α ∈ (0, 1] defined by

xα(y) =
{

α i f x = y

0 i f x �= y

then xα is called a fuzzy point (singleton).

Definition 5. Let μ be a fuzzy subring of R, and xt be a fuzzy point of R. We write
xt ∈ μ to express that μ(x) ≥ t , by the principal extension of Zadeh we have

xt + ys = (x + y)t∧s
xs yt = (xy)t∧s .

Now we will first evolve some results on the fuzzy ring using the membership
functions and we will also give a necessary and sufficient condition for Fμ(R), the
set of fuzzy points of μ to be a ring.
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3 Fuzzy Subrings

The following theorem gives us the relationship between a fuzzy subring and all of
its α-cuts.

Theorem 1. Let μ be a fuzzy subset of R, then μ is a fuzzy subring of R if and only
if μt is a subring of R, for each t ∈ [0,μ(0)].
Proof. It is clear that μt = {x ∈ R, μ(x) ≥ t} is a non-empty subset of R.

Let x, y ∈ μt , then μ(x) ≥ t and μ(y) ≥ t . Since μ is a fuzzy subring of R, then
wehaveμ(x − y) ≥ μ(x) ∧ μ(y). This implies thatμ(x − y) ≥ t , hence x − y ∈ μt .
Similarly, μ(xy) ≥ μ(x) ∧ μ(y) then μ(xy) ≥ t . Hence xy ∈ μt . Therefore, μt is a
subring of R.

Conversely, let x, y ∈ R and let μ(x) = t1 and μ(y) = t2. Then x ∈ μt1 and y ∈
μt2 . Now suppose that t2 > t1, this implies that μt2 ⊆ μt1 . In this case, y ∈ μt2 ⊆
μt1 since x, y ∈ μt1 . So we have x − y ∈ μt1 and xy ∈ μt1 ; hence μ(x − y) ≥ t1 =
μ(x) ∧ μ(y) and μ(xy) ≥ t1 = μ(x) ∧ μ(y).

Theorem 2. Let μ be a fuzzy subset of R. Then μ is a fuzzy subring of R if and only
if, for each point xt , ys ∈ μ, we have xt − ys ∈ μ and xt .ys ∈ μ.

Proof. Suppose that μ is a fuzzy subring of R. Let x, y ∈ R and xt , ys ∈ μ. Then

μ(x − y) ≥ μ(x) ∧ μ(y)

≥ t ∧ s

this implies that xt − ys ∈ μ.
Similarly, since μ is a fuzzy subring of R,
we have

μ(xy) ≥ μ(x) ∧ μ(y)

≥ t ∧ s

hence xt .ys ∈ μ.

Conversely, let x, y ∈ R. We have

μ(x) ≥ μ(x) ∧ μ(y) and μ(x) ≥ μ(x) ∧ μ(y)

then
xμ(x)∧μ(y) ∈ μ and yμ(x)∧μ(y) ∈ μ.

Using the assumption we have

xμ(x)∧μ(y) − yμ(x)∧μ(y) ∈ μ and xμ(x)∧μ(y).yμ(x)∧μ(y) ∈ μ
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Fig. 1 Graphical representation of the set Fμ(R)

This implies that

(x − y)μ(x)∧μ(y) ∈ μ and (xy)μ(x)∧μ(y) ∈ μ

Therefore, μ(x − y) ≥ μ(x) ∧ μ(y) and μ(xy) ≥ μ(x) ∧ μ(y). Thus μ is a fuzzy
subring of R.

Let R be the subset of all fuzzy points of R given by [6]. We set Fμ(R) = {xα ∈
R | μ(x) ≥ α} (Fig. 1).
Theorem 3. Let R be a ring with identity, and let μ be a fuzzy subset of R. If μ is a
fuzzy subring of R, then (Fμ(R),+,×) is a ring.

Proof. Let xt , ys, zu ∈ Fμ(R). We have xt + ys = (x + y)t∧s ∈ Fμ(R). Hence
Fμ(R) is closed under the operation +. For associativity of + we have

xt + (ys + zu) = xt + (y + z)s∧u
= (x + (y + z))t∧(s∧u)
= ((x + y) + z)(t∧s)∧u
= (xt + ys) + zu .

Then + is associative.
We have also μ(0) ≥ μ(1) = 1. Therefore, 0s ∈ Fμ(R) for all s ∈ (0, 1], for the

symmetric element, we have μ(−x) ≥ μ(x) ≥ t , then −xt ∈ Fμ(R) and xt − xt =
(x − x)t = 0t for all t ∈ (0, 1].

Furthermore,

xt + ys = (x + y)t∧s = (y + x)s∧t = ys + xt .

Thus (Fμ(R),+) is an abelian group.
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Since xt × ys = (xy)t∧s ∈ Fμ(R), so Fμ(R) is closed under “×”. Finally, as we
have

xt × (ys × zu) = xt × (y × z)s∧u
= (x × (y × z))t∧(s∧u)
= ((x × y) × z)(t∧s)∧u
= (xt × ys) × zu

and

xt × (ys + zu) = (x × (y + z))t∧(s∧u)
= (xy + xz)t∧s∧u
= (xy)t∧s + (xz)t∧u .

it follows that (Fμ(R),+,×) is a ring.

Proposition 1. Let R be a commutative ring. Let μ and ν be two fuzzy subrings of
R such that μ ⊂ ν. Then Fμ(R) is a subring of Fν(R).

Proof. Sinceμ, ν are fuzzy subrings of R, so Fμ(R) and Fν(R) are rings by Theorem
3. Let xt ∈ Fμ(R). Then μ(x) ≥ t , since μ ⊂ ν, then ν(x) ≥ t . This implies that
Fμ(R) ⊂ Fν(R). In addition, we have 11 ∈ Fμ(R).

Definition 6. Let μ be a fuzzy subring of R. Then the singleton at �= 0t ∈ Fμ(R)
with t ∈ (0, 1], is called a fuzzy zero-divisor if there exists a nonzero fuzzy singleton
bs ∈ Fμ(R) such that at .bs = 0λ where λ = min(s, t).

Definition 7. Let Fμ(R) be a ring. We say that Fμ(R) is an integral ring if it has no
zero-divisor fuzzy singletons, that is if (xt .ys = 0t∧s , then xt = 0t or ys = 0s).

Theorem 4. Fμ(R) is an integral ring if and only if R is an integral domain.

Proof. Let xt , yt ∈ Fμ(R) with xt .ys = 0t∧s . We must show that xt = 0t or ys = 0s .
Note that xt .ys = 0t∧s implies that, for all z ∈ R, (xy)t∧s(z) = 0t∧s(z). Hence

(t ∧ s)χ{xy}(z) = (t ∧ s)χ{0}(z)

Since, for each z ∈ R,
χ{xy}(z) = χ{0}(z)

so xy = 0 and since R is an integral domain we have x = 0 or y = 0. Hence xt = 0t
or ys = 0s for all t, s ∈ (0, 1].
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Conversely, suppose that Fμ(R) is an integral ring. Let xy = 0 for some x, y ∈ R.
Since xy = 0 we have (xy)t = 0t for every t ∈ (0, 1]. This implies that xt = 0t or
yt = 0t . So, for each u, v ∈ R, xt (u) = 0t (u) or yt (v) = 0t (v). Consequently, we
have

xt (u) =
{
t i f x = u

0 i f x �= u
=

{
t i f 0 = u

0 i f 0 �= u
= 0t (u)

or

yt (v) =
{
t i f y = v

0 i f y �= v
=

{
t i f 0 = v

0 i f 0 �= v
= 0t (v)

Hence

xt (u) = 0t (u)

{
t i f x = u = 0

0 i f x �= u �= 0

or

yt (v) = 0t (v)

{
t i f y = v = 0

0 i f y �= v �= 0
.

Therefore, x = 0 or y = 0.

4 Fuzzy Polynomials Ring

In this section, we will give a new definition of a fuzzy polynomials based on the
ring of fuzzy points defined in Sect. 3. Then we will discuss some basic properties
of this new concept.

Definition 8. A fuzzy polynomial with one indeterminate on Fμ(R) is a set of
sequences (at0 , at1 , at2 ....) = (atk )k∈N with atk ∈ Fμ(R) such taht there exists n ∈ N

for all p ≥ n, atp = 0tp . So the fuzzy polynomial is defined as (at0 , at1 , at2 , ...ati ,
0s, ..., 0s) with ti , s ∈ (0, 1]. The set of all fuzzy polynomials with one indetermi-
nate on Fμ(R) is denoted by Fμ(R)[X ].

Let us now define some operations on the fuzzy polynomials.
Let P, Q ∈ Fμ(R)[X ]. Then, P = (atk )k∈N such that there exists n ∈ Nwith atp =

0tp for each p > n, and Q = (bsk )k∈N such that there exists m ∈ N with bsp = 0sp
for all p > m.

Addition “(+)”
Define P + Q = (cαk )k∈N such that cαk = atk + bsk = (a + b)tk∧sk and cαk = 0αk for
all p > max(n,m). It is obvious that P + Q ∈ Fμ(R)[X ].
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Multiplication “(×)”
The multiplication P × Q is defined by P × Q = (dβk )k∈N such that dβk =

∑
i+ j=p

ati bs j with βk = min
0≥i, j≥k

{ti , s j } with dβp = 0βp for each p > n + m because p = i +
j > n + m implies i > n or j > m. This implies that ati = 0ti or bs j = 0s j .

Remark 1. Let P, Q ∈ Fμ(R)[X ] be two fuzzy polynomials. Then P = Q if and
only if ati = bsi , for each i ∈ N. The zero fuzzy polynomial is defined as (ati )i∈N
such that ati = 0ti , for each i ∈ N.

Proposition 2. (Fμ(R)[X ],+,×) is a comutative ring.

Proof. The zero element is (0s, 0s, 0s, ..., 0s) with s ∈ (0, 1]. For all P, Q, R ∈
Fμ(R)[X ],

(P + Q) + R = (ati + bsi ) + cki
= (a + b)ti∧si + cki
= (

(a + b) + c
)
(ti∧si )∧ki

= (
a + (b + c)

)
ti∧(si∧ki )

= ati + (b + c)si∧ki
= ati + (bsi + cki )

= P + (Q + R).

Hence + is associative. In a similar way, we can prove that P + Q = Q + P . The
symmetrical element is given by

−P = (−atk )k∈N ∈ Fμ(R)[X ]

Indeed
P + (−P) = (0s, 0s, 0s, ..., 0s)

with s ∈ (0, 1]. In addition, (Fμ(R)[X ],×) is a semigroup. Using the fact that
(Fμ(R),×) is a semigroup and the definition of “×” in Fμ(R)[X ] we can easily
show that

P × (Q × R) = (P × Q) × R

and P × Q = Q × P and P × (Q + R) = P × Q + P × R. Consequently (Fμ(R)
[X ],+,×) is a commutative ring with identity. The identity is given by (11, 0s,
0s, ..., 0s) since

P × (11, 0s, 0s, ..., 0s) = (at0 , at1 , ..., atn , 0s, ..., 0s) = P.
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Denote by X = (0s, 11, 0s, ..., 0s), with s ∈ (0, 1] and call it one indeterminate.
By convention,

X0 = 11 = (11, 0s , 0s , ..., 0s ); X2 = XX = (0s , 11, 0s , ..., 0s )(0s , 11, 0s , ..., 0s ) = (0s , 0s , 11, 0s , ..., 0s )

and

Xn =
n times 0s︷ ︸︸ ︷

(0s, , 0s, ...0s, 11, ..., 0s).

Let P = (atk )k∈N ∈ Fμ(R)[X ]. Then

P = (at0 , at1 , at2 , 0s , ..., 0s ) = at0 (11, 0s , 0s , ..., 0s ) + at1 (0s , 11, 0s , ..., 0s ) + ... + atn

n times 0s︷ ︸︸ ︷
(0s , ...0s , 11, ..., 0s ).

Hence, the fuzzy polynomial P is written in the form P = at0 + at1X + at2X
2 +

... + atn X
n.

Definition 9. We say that P ∈ Fμ(R)[X ] is a fuzzy polynomial on Fμ(R) if there

exists ati ∈ Fμ(R) such that P =
i=n∑
i=0

ati X
i .

Definition 10. Let P = at0 + at1X + at2X
2 + ... + atn X

n be a nonzero fuzzy poly-
nomial. Then there exists a nonzero coefficient of at0 , at1 , ..., atn .

Definition 11. (fuzzy degree) Let P = at0 + at1X + at2X
2 + ... + atn X

n ∈ Fμ

(R)[X ]. The fuzzy degree of P denoted by deg(P) or do is defined as the maxi-
mal number n such that atn �= 0tn . In this case atn is called the leading coefficient
of P .

Proposition 3. Let Fμ(R) be an integral ring and P and Q be two polynomials of
Fμ(R)[X ]. Then, we have
(a) do(P + Q) ≤ max(do(P), do(Q)).

(b) do(P.Q) = (do(P) + do(Q)).

Proof. (a) Suppose that do(P) = n and do(Q) = p. Then P = at0 + at1X + at2
X2 + ... + atn X

n and Q = bs0 + bs1X + bs2X
2 + ... + bsp X

p. Suppose that n > p.
Then

P + Q = (a + b)t0∧s0 + (a + b)t1∧s1X + ... + atn X
n

Hence do(P + Q) = n = max do(P), do(Q). If n < p we have do(P + Q) = p =
max do(P), do(Q). If n = p, then

P + Q = (a + b)t0∧s0 + (a + b)t1∧s1X + ... + (a + b)tn∧sn X
n.
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Consider the following cases:

(i) if (a + b)tn∧sn �= 0tn∧sn , then do(P + Q) = n = max do(P), do(Q).
(ii) if (a + b)tn∧sn = 0tn∧sn , then P + Q = (a + b)t0∧s0 + (a + b)t1∧s1X + ... + (a +

b)tn−1∧sn−1X
n−1, hence do(P + Q) ≤ n − 1 ≤ max(do(P), do(Q)).

(b) P × Q = (ab)t0∧s0 + ((ab)t0∧s1 + (ab)t1∧s0)X + ... + (ab)tn∧sp Xn+p, since atn
�= 0tn and bsp �= 0sp then atn bsp �= 0tn∧sp . Therefore, do(P × Q) = do(P) + do(Q).

Remark 2. If P is a zero polynomial we denote by convention do(P) = −∞. If
Fμ(R) is a non integral ring, then do(PQ) ≤ do(P) + do(Q).

Definition 12. Let μ be a fuzzy subring of R. An extension of μ is a fuzzy subring
ν of R, such that μ ⊂ ν.

Example 1. Define μ and ν as follows:

ν :

⎧⎪⎨
⎪⎩
M2(R) −→ [0, 1]
x �−→

{
1 i f x = 0
1
2 i f x �= 0

μ :

⎧⎪⎨
⎪⎩
M2(R) −→ [0, 1]
x �−→

{
1 i f x = 0
1
4 i f x �= 0

It is easy to show that μ ⊂ ν. Hence ν is an extension of μ.

Definition 13. We say that αs ∈ Fμ(R) is a zero of P ∈ Fμ(R)[X ] if P(αs) =
i=n∑
i=0

ati α
i
s = 0β such that β ≤ s.

Let I (bt ) = {P ∈ Fμ(R)[X ], P(bt ) = 0s}. It is clear that I (bt ) is an ideal of
Fμ(R)[X ].
Definition 14. bt ∈ ν is called an algebraic element if I (bt ) �= {0}. Otherwise bt is
called a transcendent element.

Note that if ati = 11 then bt ∈ ν is called an integral element.

Theorem 5. Let R be a ring. Then R is an integral domain if and only if Fμ(R)[X ]
is an integral ring.

Proof. Suppose that R is an integral domain. According to the Theorem 4, Fμ(R)
is an integral domain. Let P, Q ∈ Fμ(R)[X ] be such that P �= 0 and Q �= 0. let
at X p and bs Xq be the monomials of more high degrees of P and Q, respectively.
The term of degree p + q of QP is atbs X p+q . Conversely, let at , bs ∈ Fμ(R) be
such that atbs = 0t∧s . We have at , bs ∈ Fμ(R)[X ] hence at = 0t or bs = 0s because
Fμ(R)[X ] is an integral ring. So we have the result.
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On (Completely) Weak*
Rad-⊕-Supplemented Modules

Manoj Kumar Patel

Abstract In this paper, we establish various properties of weak* Rad-⊕-
supplementedmodules and completelyweak*Rad-⊕-supplementedmodules, which
are the generalizations of ⊕–supplemented and Rad-⊕-supplemented modules. Our
main focus is to characterize the weak* Rad-⊕-supplemented modules in terms of
radical modules, modules having property (p∗) and w–local modules.

Keywords Rad-⊕-supplemented module · Weak* Rad-⊕-supplemented module
Completely weak* Rad-⊕-supplemented module

1 Introduction

Throughout this paper, R will be an associative ring with identity and all modules
are unitary left R–modules unless otherwise specified. Let M be an R–module. The
notation N ⊆ M means that N is a submodule of M and Rad(M) will indicate the
Jacobson radical of M . A submodule N of a module M is called small in M (denoted
by N � M), ifM �= N + K for every proper submodule K ofM . A nonzeromodule
M is said to be hollow if every proper submodule of M is small in M , and it is said
to be local if the sum of all proper submodules of M is also a proper submodule of
M , equivalently RadM is the unique maximal submodule of M and RadM � M ,
equivalently M is hollow and finitely generated. A nonzero module M is said to be
w–local, if it has a unique maximal submodule.

A module M is said to have property (p∗), if for every submodule N of M ,
there exists a direct summand K of M such that K ⊆ N and N/K ⊆ Rad(M/K ),
or equivalently, for every submodule N ⊆ M there exists a decomposition M =
K ⊕ L with K ⊆ N such that N ∩ L ⊆ RadL [1]. Recall that a module M is called
radical if M has no maximal submodule i.e. RadM = M [5]. Every divisible Z–
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module is a radical module. For a module M, P(M) will indicate the sum of all
radical submodules of M . Note that P(M) is the largest radical submodule of M . If
P(M) = 0, then M is called reduced. Also M /P(M) is reduced for every module
M .

If N and L are submodules of M , then N is called a supplement of L , if N + L =
M and N ∩ L � N . A module M is called supplemented if each of its submodules
has a supplement in M . A module M is called ⊕–supplemented (completely ⊕–
supplemented) if every submodule (direct summand) of M has a supplement that is
a direct summand of M [3–5, 7, 8]. A module M is called amply supplemented if
for every submodules N and L of M with M = N + L , L contains a supplement of
N in M .

A submodule N of amoduleM has a Rad-supplement K inM if N + K = M and
N ∩ K ⊆ RadK . AmoduleM is called Rad-supplemented if every submodule ofM
has a Rad-supplement [4, 9]. M is called Rad-⊕-supplemented if every submodule
of M has a Rad-supplement that is a direct summand of M . The Z–module Q is Rad-
⊕-supplemented but not⊕–supplemented where Z and Q denote the ring of integers
and rational numbers respectively. Every module with (p∗) is Rad-⊕-supplemented.
A module M is called completely Rad-⊕-supplemented if every direct summand of
M is Rad-⊕-supplemented [4].

2 Weak* Rad-⊕-Supplemented Modules

Definition 1. An R–module M is called a weak* Rad-⊕-supplemented module if
every semi-simple submodule of M has a Rad-supplement that is a direct summand
of M . An R–module M is called completely weak* Rad-⊕-supplemented module
if every direct summand of M is a weak* Rad-⊕-supplemented module i.e. every
direct summand of M has a Rad-supplement which is a direct summand of M [4].

Forexample,hollowmodulesandmoduleswith(p∗)areweak*Rad–⊕–supplemented
modules. Also, hollow modules are completely weak* Rad–⊕–supplemented
modules. Clearly, every Rad-⊕-supplemented module is a weak* Rad-⊕-
supplementedmodule but the converse is not true in general; for counter examples see
[4]. Thus we have the following implications, but in general the reverse implications
do not hold.

Lifting ⇒ ⊕–supplemented ⇒ Rad-⊕-supplemented ⇒ weak* Rad-⊕-
supplemented ⇒ Rad-supplemented.

Let M be an R–module. We consider the following conditions.

(D1) For every submodule N of M , there exists a decomposition of M = M1 + M2,
such that M1 ⊆ N and M2 ∩ N is small in M2.

(D2) If N is a submodule of M such that M /N is isomorphic to a direct summand
of M , then N is a direct summand of M .
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(D3) If M1 and M2 are direct summands of M with M = M1 + M2, then M1 ∩ M2

is also a direct summand of M .

An R–module M is called a lifting module if M satisfies (D1); M is called a discrete
module if it satisfies (D1) and (D2); and quasi-discrete if it satisfies (D1) and (D3).

For a submodule N of M , N ∩ RadM �= RadN in general [8]. But the equality
holds if N is a supplement or a Rad-supplement submodule of M .

Lemma 1. [8] Let M be an R–module and N be a supplement (or Rad-supplement)
submodule of M. Then N ∩ RadM = RadN.

Lemma 2. Let M be a module and N be a semi-simple submodule of M. If K
is a weak* Rad−⊕ –supplement of N in M, then (K + L)/L is a weak* Rad−⊕
–supplement of N/L in M/L for every submodule L of N.

Proof. Assume K is a weak* Rad–⊕–supplement of N in M . Then, by defini-
tion we have M = N + K , N ∩ K ⊆ Rad(K ) and K is direct summand of M i.e.
there exists X ⊆ M such that M = K ⊕ X . Hence M/L = N/L + (K + L)/L for
every submodule L of N . Consider the natural epimorphism f : K → (K + L)/L .
Then by properties of radical ([5], 2.8(1)), f (Rad(K )) ⊆ Rad((K + L)/L). Since
N ∩ K ⊆ Rad(K ), we have (N/L) ∩ (K + L)/L = (L + (N ∩ K ))/L = f (N ∩
K ) ⊆ f (Rad(K )) ⊆ Rad((K + L)/L). Clearly (K + L)/L is a direct summand
of M /L . Hence (K + L)/L is a weak* Rad−⊕–supplement of N /L in M /L .

Proposition 1. Let M be a module. If M is weak* Rad-⊕-supplemented, then the
factor module M/P(M) of M is weak* Rad-⊕-supplemented.

Proof. By ([5], 2.8(1)) we have f (Rad(P(M))) ⊆ Rad(P(M) for any endomor-
phism f of M . Also we have Rad(P(M)) = P(M). Therefore f (P(M)) ⊆ P(M)

for any endomorphism f of M . Since M is weak* Rad-⊕-supplemented, by defini-
tion, for semi-simple submodule N ofM , there exists submodules L and L ′ ofM such
that M = N + L , N ∩ L ⊆ Rad(L) and M = L ⊕ L ′. For submodule N /P(M)

of M /P(M), by Lemma 2, (L + P(M))/P(M) is a weak* Rad–⊕–supplement
of N /P(M) in M /P(M). Since f (P(M)) ⊆ P(M) for any endomorphism f of
M , we have P(M) = (L ∩ P(M)) ⊕ (L ′ ∩ P(M)). Hence (L + P(M)) ∩ (L ′ +
P(M)) ⊆ P(M) and so (L + P(M))/P(M) ∩ (L ′ + P(M))/P(M) = 0 i.e. (L +
P(M))/P(M) is a direct summand of M /P(M). Hence M /P(M) is a weak* Rad-
⊕-supplemented module.

Corollary 1. The largest radical submodule P(M) of M is completely weak* Rad-
⊕-supplemented, for every module M.

Proof. We know that every radical module is weak* Rad-⊕-supplemented by ([4],
Lemma 8). Hence it remains to show that any direct summand K of P(M) is radi-
cal. Let P(M) = K ⊕ L for some summand L of P(M). By ([5], 2.8(5)), we have
P(M) = Rad(P(M)) = Rad(K ⊕ L) = Rad(K ) ⊕ Rad(L). Applying the mod-
ular law, K = K ∩ P(M) = K ∩ (Rad(K ) ⊕ Rad(L)) = Rad(K ) ⊕ Rad(L) ∩
K = Rad(K ). Thus K = Rad(K ) i.e. K is radical. Therefore P(M) is completely
weak*Rad-⊕-supplemented.
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Proposition 2. If the module M has property (p∗), then M is completely weak*
Rad-⊕-supplemented.

Proof. For completeness, we prove that every direct summand N of M is weak*
Rad-⊕-supplemented. Let K be a semi-simple submodule of N . Since the module
M has property (p∗), there exists a decomposition of M = L ⊕ L ′ such that L ⊆ K
and K ∩ L ′ ⊆ Rad(L ′). Applying the modular law, we have N = (N ∩ L) ⊕ (N ∩
L ′) = L ⊕ (N ∩ L ′)which shows that N ∩ L ′ is a direct summand of N . Hence N =
K + (N ∩ L ′). Now it remains to show that K ∩ (N ∩ L ′) = K ∩ L ′ ⊆ Rad(N ∩
L ′). Let x be any element of K ∩ L ′. Since K ∩ L ′ ⊆ Rad(L ′) by ([6], 9.13(a)), we
get Rx � L ′ so that Rx � M . Using ([5], 2.2(6)), we get Rx � N , again using ([5],
2.2(6)), we obtain Rx � N ∩ L ′, by ([6], 9.13(a)), we have K ∩ L ′ ⊆ Rad(N ∩ L ′).

Recall that ([8], 41.15), a π–projective module is ⊕–supplemented if and only if the
module is lifting. A similar characterization for weak* Rad-⊕-supplementedmodule
is not true in general but it holds partially, which is given in the following proposition.

Proposition 3. Aπ–projectivemodule M is weak* Rad-⊕-supplemented if and only
if it has the property (p∗).

Proof. Assume that the π–projective module M is weak* Rad-⊕-supplemented.
Let K be a semi-simple submodule of M . Then by definition, there exists a direct
summand N of M such that M = K + N , K ∩ N ⊆ Rad(N ) and M = N ⊕ N ′
for some summand N ′ of M . Since M is π–projective, by ([5], 4.14(1)), we have
M = N ⊕ K ′ for some submodule K ′ of K . It follows that, for the semi-simple
submodule K of M , there exists a decomposition of M = N ⊕ K ′ such that K ′ ⊆ K
and K ∩ N ⊆ Rad(N ), which shows that M has the property (p∗) only for the
semi-simple submodule K of M . The converse is clear by Proposition 2.

Note 1. The necessary part of Proposition 3 is true for semi-simple submodules.
But it holds for all submodules if the base ring is semi-simple.

Every lifting module has the property (p∗) but the converse need not be true.
However it holds for projectivemodules,which is shown in the following proposition.

Proposition 4. If a projective module M has the property (p∗), then M is lifting.

Proof. Using Proposition 2, M is weak* Rad-⊕-supplemented. Now by ([4], Propo-
sition 5), it is ⊕–supplemented. Since M is projective, it is π–projective. Thus M is
lifting by ([8], 41.15).

Proposition 5. For a projective module M, the following statements are equivalent:

(i) M is supplemented;
(ii) M is ⊕–supplemented;
(iii) M is Rad-⊕-supplemented;
(iv) M is weak* Rad-⊕-supplemented;
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(v) M has the property (p∗);
(vi) M is lifting;
(vii) M is discrete;
(viii) M is quasi-discrete.

Proof. (i) ⇒ (i i) is an immediate consequence of ([8], 41.15). (i i) ⇒ (i i i) fol-
lows from ([4], Proposition 5). (i i i) ⇒ (iv) is obvious. (iv) ⇒ (v) partially holds
by Proposition 3 and is clear for semi-simple modules. (v) ⇒ (vi) is shown in
Proposition 4. (vi) ⇒ (vi i) is clear, since projective module satisfies (D2) property.
(vi i) ⇒ (vi i i) is obvious as property (D2) ⇒ (D3). (vi i i) ⇒ (i) is obvious by
([5], 26.6).

Proposition 6. For a ring R, the following statements are equivalent:

(i) Every R–module has property (p∗);
(ii) Every R–module is lifting;
(iii) R is an artinian serial ring and J 2 = 0, where J is the Jacobson radical of R.

Proof. (i) ⇒ (i i) Let M be any projective module. Since M is projective, it is π–
projective and so weak* Rad-⊕-supplemented by Proposition 3. It follows from ([4],
Corollary 7), that R is a left perfect ring. By assumption M has property (p∗), so
for every submodule K of M , there exists a decomposition of M = L ⊕ L ′ such
that L ⊆ K and K ∩ L ′ ⊆ Rad(L ′). Since R is left perfect, we have K ∩ L ′ � L ′,
which shows that M is lifting. (i i) ⇒ (i i i) See ([5], 29.10). (i i i) ⇒ (i) is obvious.

Proposition 7. For a reduced w–local module M, the following statements are
equivalent:

(i) M is Rad-⊕-supplemented;
(ii) M is weak* Rad-⊕-supplemented;
(iii) M is Rad-supplemented;
(iv) M is a local module;
(v) M is supplemented;
(vi) M is amply supplemented.

Proof. (i) ⇒ (i i) ⇒ (i i i) Straight forward. (i i i) ⇒ (iv) Let x ∈ M/Rad(M) and
K be a Rad-supplement of Rx in M . Since Rx + K = M , we have M/K = (Rx +
K )/K ∼= Rx/(Rx ∩ K ). ThusM /K has amaximal submodule. ButM isw–local, so
Rad(M) is the only maximal submodule of M . So K ⊆ Rad(M). Since K is a Rad-
supplement submodule ofM , by Lemma 1, it follows that Rad(K ) = K ∩ Rad(M).
Therefore Rad(K ) = K . But M is reduced, so K = 0, which gives M = Rx is a
local module. (iv) ⇒ (v) is clear. (vi) ⇒ (v) ⇒ (iv) ⇒ (vi) is straight forward.

Proposition 8. For a w–local module M, the following statements are equivalent:

(i) M is Rad-⊕-supplemented;
(ii) M is weak* Rad-⊕-supplemented;
(iii) M/P(M) is weak* Rad-⊕-supplemented;
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(iv) M/P(M) is Rad-supplemented;
(v) M/P(M) is supplemented;
(vi) M/P(M) is local module;
(vii) For every x ∈ M/Rad(M), M = P(M) + Rx and the ring R/Ix is a local

ring, where Ix = {r ∈ R|r x ∈ P(M)};
(viii) There exists x ∈ M such that M = P(M) + Rx and the ring R/Ix is a local

ring, where Ix = {r ∈ R|r x ∈ P(M)}.
Proof. (i) ⇒ (i i) is obvious. (i i) ⇒ (i i i) is done in Proposition 1. (i i i) ⇒ (iv)

is clear. (i i) ⇒ (vi) M /P(M) is weak* Rad-⊕-supplemented by Proposition 1.
It is clearly seen that M /P(M) is reduced w–local. Now applying Proposition
7, we get M /P(M) is a local module. (vi) ⇒ (vi i) Let x ∈ M/Rad(M). Since
M is w–local, Rad(M) is a maximal submodule of M ; so M = Rad(M) + Rx .
As P(M) ⊆ Rad(M), M/P(M) = Rad(M)/P(M) + (Rx + P(M))/P(M). By
assumption M /P(M) is local and M �= Rad(M), so we get M = P(M) + Rx .
Moreover M/P(M) ∼= Rx/(Rx ∩ P(M)) and AnnR(M/P(M)) = Ix . Thus R/Ix
is a local ring. (vi i) ⇒ (vi i i) is obvious. (vi i i) ⇒ (v) is clear from the fact that
M/P(M) ∼= Rx/(Rx ∩ P(M)) ∼= R/Ix . (v) ⇒ (iv) is obvious. (iv) ⇒ (i) is clear.
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When Is Int(E, D) a Locally Free D–Module

Lahoucine Izelgue and Ali Tamoussit

Abstract Let D be an integral domain with quotient field K , E a subset of K and X
an indeterminate over K . The set of integer–valued polynomials on E is defined by
Int(E, D) = { f ∈ K [X ] : f (E) ⊆ D}. Clearly, Int(E, D) is a subring of K [X ] and
Int(D, D) = Int(D), the ring of integer–valued polynomials over D. In this paper,
we investigate some conditions under which Int(E, D) is locally free, or at least flat,
as a D–module. Particularly, we are interested in domains that are locally essential
with subsets E residually cofinite.

Keywords Integer–valued polynomials · Flat modules · Locally free modules
Residue field · Locally essential domains

1 Introduction

Let D be an integral domain with quotient field K . The ring of integer–valued poly-
nomials over D is defined by Int(D) = { f ∈ K [X ] : f (D) ⊆ D}, a subring of K [X ]
with D[X ] ⊆ Int(D) ⊆ K [X ]. The fact that theremay exist subsets E � D such that
Int(D) = { f ∈ K [X ] : f (E) ⊆ D} led Gilmer to introduce and study these sets in
[16]. That give rise to a large class of integral domains, known as rings of integer–
valued polynomials on a subset E ⊆ K and defined by Int(E, D) = { f ∈ K [X ] :
f (E) ⊆ D}, a natural generalization of Int(D) as Int(D, D) = Int(D) [4, 5]. That
also generate new concepts, such as polynomially equivalent (resp., polynomially
dense, polynomial closure of) subsets. Remarkably, a circle of investigations then
began about these concepts and also about ring-theoretic properties, the module
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structure, the (prime) ideal structures and the calculation of the Krull dimensions of
Int(E, D).

Polya [23] established that for any ring D, of integers of a number field, Int(D) is
a free D–module. Later, Cahen and Chabert [6] established that Int(D) is a faithfully
flat, D–module, for any Dedekind domain D. Then Cahen [3] showed that it is,
in fact, free with a regular basis, (see also [7, Remark II.3.7(iii) and Proposition
II.3.14]).

Recently, Elliott investigated these rings in a category-theoretic viewpoint [11–
14]. Many of his works are based or dealt with the questions of when Int(D) is either
locally free or flat as a D–module.

Particularly, he established that under certain general conditions, such as [13,
Theorem 1.2 and Lemma 2.9], the domain Int(D) is locally free, hence flat, as a
D–module. This includes the case of when D is a Krull domain or more generally a
TV PvMD.

Notice also that Chabert et al. [10] showed that Int(P, Z) is a freeZ–module (with
a regular basis), where P denotes the set of all prime integers. Then, Bourlanger et al.
[2] proved that, for E an infinite subset of a discrete valuation domain V , Int(E, V )

is a free V –module.
However there is no example, in the literature, of an integral domain D such that

Int(E, D) is not flat or free as a D–module, even when E = D.
Thus, in parallel to [8, Problem 19], we pose to study the problem of when

Int(E, D) is locally free, or at least flat, as a D–module.
On the contrary to the case of Int(D), while D is always a subring of Int(E, D),

D[X ] need not be so. However, if E is a subset of D, then D[X ] ⊆ Int(D) ⊆
Int(E, D) ([5, Proposition 1.2]). On the other hand, if (D,m) is a local domain and
E meets infinitely many cosets of m, then Int(E, D) = Int(D) = D[X ] [7, Propo-
sition IV.1.20]. The D–module Int(E, D) is then free, and thus flat, over D. Also,
if R ⊆ D is an extension of integral domains such that R has infinite residue fields,
then Int(R, D) = Int(D) = D[X ] (cf. [7, Corollary IV.1.21]). Hence, Int(R, D) is
a free D–module.

On the other hand, if a fractional subset E is polynomially dense in D, that is
Int(E, D) = Int(D), then we are led to the case of Int(D) already treated in [19].

In this paper, we pose to classify locally essential domains D such that Int(E, D)

is a locally free, or at least flat, D–module.
Thus, we first establish that flatness always hold over any Prüfer domain D and

any subset E of K . Particularly, when D is (Almost) Dedekind. A similar result
holds over locally essential domains with E ⊆ D residually cofinite with D. Our
main result shows that with this last hypothesis if E is infinite and D Almost Krull,
then Int(E, D) is a locally free over D. The same result is then established over a
class of Krull–type domains.
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2 When Is Int(E,D) Locally Free, or at Least Flat, Over D?

Most of the results established in the case of Int(D) are due to the fact that, for each
p ∈ Spec(D) with infinite residue field, Int(Dp) ⊆ Dp[X ]. However, the inclusion
Int(E, Dp) ⊆ Dp[X ], may not hold. That makes it harder to characterize flatness of
Int(E, D) as a D–module.

Recall that Int(E, D) is said to be a locally free D–module if Int(E, D)m is a free
Dm–module, for each maximal ideal m of D.

Now, [2, Proposition 2.2] establishes that for any discrete valuation domain V
and any infinite subset E of V , the V –module Int(E, V ) is free, and thus flat. Next,
we see that Int(E, V ) is V –flat for any subset E of qf.(V ). In fact, any torsion–free
module over a Prüfer domain D is flat (cf. [15, Theorem 1.4, page 71]), thus we have:

Proposition 1. Let D be a Prüfer domain and E be a subset of K = qf.(D). Then
Int(E, D) is a flat D–module.

Since (Almost) Dedekind domains are Prüfer, so we have:

Corollary 1. Let D be an (Almost) Dedekind domain with quotient field K . Then
Int(E, D) is a flat D–module for any subset E of K . If moreover E is assumed to be
an infinite subset of D, then Int(E, D) is a locally free D–module.

Proof. The first affirmation follows from Proposition 1.
Now, since D is (Almost) Dedekind, then for each maximal ideal m of D, Dm

is a DVR and thus a PID. So, if E is infinite, by [2, Proposition 2.2], Int(E, Dm) is
a free Dm–module and by [24, Theorem 9.8, page 650] Int(E, D)m is also free. It
follows that Int(E, D) is a locally free, and thus faithfully flat, D–module.

Next we recover an example due to Chabert et al. [10].

Example 1. For any subset E of Q, Int(E, Z) is a flat Z–module. In particular, since
P, the set of all prime integers, is an infinite subset of Z, by Corollary 1, Int(P, Z) is
a locally free Z–module.

If D is infinite, the previous two results generalize [19, Theorem 2.2 and
Corollary 2.3].

Corollary 2. Let D be an (Almost) Dedekind domain. Then Int(D) is a locally free,
and thus faithfully flat, D–module.

Recall that a nonempty subset E of a domain D is residually cofinite with D
if it possesses the property that for each prime ideal P of D, |E/P| < ∞ implies
that |D/P| < ∞ [21]. For instance, D is cofinite with itself. On the other hand, if
a subset E of D is residually cofinite with D, then E remains so with S−1D, for
each multiplicatively closed subset of D (cf. [21, Lemma 3 (i)]). Now, if all residue
fields of D are infinite and E is residually cofinite with D, by [21, Lemma 4 (ii)],
Int(E, D) = Int(D) = D[X ].
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On the other hand, an integral domain D is said to be essential if (�) D =⋂
p∈P Dp, for some P ⊆ Spec(D) with Dp a valuation domain for each p ∈ P .

This notion does not carry up to localizations. Thus, D is said to be a locally essential
domain if Dq is an essential domain for each q ∈ Spec(D).

AKrull–type domain is an essential domain of finite character, that is each nonzero
element of D belongs to only finitely many prime ideals p ∈ P (cf. the intersection
(�)). An integral domain D is said to be Almost Krull, if Dm is a Krull domain for
eachm ∈ Max(D). Notice that domains that are Krull, almost Krull or of Krull–type
are also locally essential.

Theorem 1. Let D = ⋂
p∈P Dp, where P ⊆ Spec(D), be a locally essential

domain and E ⊆ D be residually cofinite with D. Then Int(E, D) is a flat D–module.

Proof. If m ∈ Max(D) ∩ P , then Dm is a valuation domain. Also Int(E, Dm) and
thus Int(E, D)m is a torsion-free Dm–module. By [15, Theorem 1.4, page 71],
Int(E, D)m is a flat Dm–module. Ifm ∈ Max(D) \ P , since D is a locally essential
domain, we can write Dm = ⋂

p∈P ,p�m Dp. Then, for each p ∈ P with p � m, Dp

has an infinite residue field and hence Int(E, Dp) = Dp[X ] [21, Lemmas 3 (i) and
4 (ii)]. Thus

Int(E, Dm) =
⋂

p∈P ,p�m

Int(E, Dp) =
⋂

p∈P ,p�m

Dp[X ] = Dm[X ].

Since, Dm[X ] ⊆ Int(E, D)m ⊆ Int(E, Dm) = Dm[X ], then Int(E, D)m = Int(E,

Dm) = Dm[X ]. Thus, Int(E, D)m is a flat Dm–module. By [1, Proposition 3.10,
page 41], Int(E, D) is flat as a D–module.

Since D is residually cofinite with itself, we recover [19, Theorem 2.5] in the
following:

Corollary 3. For any locally essential domain D, Int(D) is a flat D–module.

Theorem 2. Let D be an Almost Krull domain and E ⊆ D be infinite and residually
cofinite with D. Then Int(E, D) is a locally free D–module.

Proof. By [22, Proposition 2.6], D = ⋂
p∈X1(D) Dp. Thus, if m ∈ Max(D), is of

height one, then Dm is a one dimensional local Krull domain, and hence a DVR.
By [2, Proposition 2.2], Int(E, Dm) is a free Dm–module. Since Int(E, D)m is a
submodule of Int(E, Dm) and Dm is a PID, Int(E, D)m is also free as a Dm–module
(cf. [24, Theorem 9.8, page 650]). If m ∈ Max(D) \ X1(D), we can write Dm =⋂

p∈X1(D),p�m Dp, since D is locally essential. Now, for each p � m, Dp has an
infinite residue field and hence Int(E, Dp) = Dp[X ] [21, Lemmas 3 (i) and 4 (ii)].
It follows that

Int(E, Dm) =
⋂

p∈X1(D),p�m

Int(E, Dp) =
⋂

p∈X1(D),p�m

Dp[X ] = Dm[X ].



When Is Int(E, D) a Locally Free D–Module 109

Since, Dm[X ] ⊆ Int(E, D)m ⊆ Int(E, Dm) = Dm[X ], then Int(E, D)m = Int(E,

Dm) = Dm[X ].
Therefore, Int(E, D)m is a free Dm–module for each m ∈ Max(D). That ends

the proof.

If D = ⋂
p∈P Dp a locally finite intersection of localizations, then for each m ∈

Max(D), Dm = ⋂
p∈P (Dp)m [17, Proposition 43.5]. As a consequence, we have:

Theorem 3. Let D = ⋂
p∈P Dp, where P ⊆ Spec(D), be a Krull–type domain

and E ⊆ D be infinite and residually cofinite with D. If for each p ∈ P with D/p
finite, Dp is a DVR, then Int(E, D) is a locally free D–module.

Proof. Let m ∈ Max(D), then Int(E, D)m = Int(E, Dm) (cf. [18, Theorem 3.11]).
Now, if m ∈ Max(D) \ P , then Dm = ⋂

p∈P ,p�m Dp, as D is a locally finite
intersection. Since, for each p � m, Dp has an infinite residue field and hence
Int(E, Dp) = Dp[X ] [21, Lemma 3(i) and 4(ii)], then

Int(E, D)m = Int(E, Dm) =
⋂

p∈P ,p�m

Int(E, Dp) =
⋂

p∈P ,p�m

Dp[X ] = Dm[X ].

If m ∈ Max(D) ∩ P , then Dm is a valuation domain. Thus, either D/m infi-
nite and so, by [7, Remark I.3.5 (ii)], Int(E, D)m = Int(E, Dm) = Dm[X ] a free
Dm–module, or D/m is finite and thus Dm is a DVR. By [2, Proposition 2.2],
Int(E, D)m = Int(E, Dm) is a free Dm–module. It follows that Int(E, D) is locally
free as a D–module.

Corollary 4. Let D be a Krull–type domain such that Int(D) is a PvMD, then Int(D)

is a locally free D–module.

Proof. It follows from Theorem 3 and [25, Theorem 3.2].

A locally finite intersection D = ⋂
p∈X1(D) Dp, is said to be infra–Krull, if Dp is

Noetherian for each p ∈ X1(D). For instance any Krull domain is infra–Krull.

Proposition 2. Let D be an infra–Krull domain and E ⊆ D be infinite and residu-
ally cofinite with D. Assume that for each p ∈ Max(D) ∩ X1(D) with finite residue
field pDp is principal. Then Int(E, D) is a locally free D–module.

Proof. Let m be a maximal ideal of D. By [21, Lemma 3 (i)], E remains residually
cofinite with Dm and by [9, Proposition 2.2 (1)] Int(E, D)m = Int(E, Dm). Now, if
m ∈ X1(D) then either:

m is of infinite residue field, so by [21, Lemma 4 (ii)], Int(E, D)m = Dm[X ], a
free Dm–module. Or mDm is principal, in which case Dm is a DVR (cf. [20, Theo-
rem 11.2]). Hence, Int(E, Dm) is a free Dm–module (cf. [2, Proposition 2.2]). Other
ways m /∈ X1(D) and then, Dm = ⋂

p∈X1(D),p�m Dp. It follows that Int(E, Dm) =⋂
p∈X1(D),p�m Int(E, D)p = ⋂

p∈X1(D),p�m Int(E, Dp) = ⋂
p∈X1(D),p�m Dp[X ] =

Dm[X ], a free Dm–module.

Corollary 5. Let D be a Krull domain and E ⊆ D be infinite and residually cofinite
with D. Then Int(E, D) is a locally free D–module.
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Pairs of Rings Whose All Intermediate Rings
Are G–Rings

Lahoucine Izelgue and Omar Ouzzaouit

Abstract A G–ring is any commutative ring R with a nonzero identity such that the
total quotient ring T(R) is finitely generated as a ring over R. A G–ring pair is an
extension of commutative rings A ↪→ B, such that any intermediate ring A ⊆ R ⊆ B
is a G–ring. In this paper we investigate the transfer of the G–ring property among
pairs of rings sharing an ideal. Our main result is a generalization of a theorem of
David Dobbs about G–pairs to rings with zero divisors.

Keywords G–domain · G–ring · G–ring pair · Amalgamated duplication

1 Introduction

All rings considered in this paper are commutative with unit. An integral domain R
is said to be a G–domain if the quotient field K of R is a finitely generated ring over
R. This is equivalent to saying that the quotient field K is of the form R

[
1
t

]
for some

nonzero element t ∈ R (cf. [6, Theorem 18]). An integral domain with only finitely
many prime ideals is a G–domain. However, the polynomial ring with coefficients
in R is never a G–domain [6]. Notice also that an infinite G–domain R has the same
cardinality as its set of units U (R) [2]. Thus, any infinite ring with a finite group of
units, such as Z, is not a G–domain.

On the other hand, Adams [1], introduced the concept of a G–ring as a generaliza-
tion of Kaplansky’s definition of a G–domain to rings with zero divisors. He defined
a G–ring to be any commutative ring R, with a nonzero identity, such that the total
quotient ring T(R) is finitely generated as a ring over R. He then pointed out that
T(R) is finite over R if, and only if, T(R) = R[u−1], for some regular element u in
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R [1, page 1]. Also, he studied the transfer of the G–ring property between a ring
and some of its extensions by way of direct products, polynomials, power series,
and completions. Particularly, as for G–domains, The polynomial ring over a not
necessarily integral domain is never a G-ring [1, Proposition 3.2].

In [6, Theorem 20] it was established that any overring of a G–domain R is of the
form R

[
1
t

]
for some element 0 �= t ∈ R. Moreover, every overring of a G–domain

is a G–domain: that is every domain between R and its quotient field is a G–domain.
This fact motivated Dobbs [4] to introduce the notion of “G–domain pair” as any
pair of integral domains (A, B) such that for each intermediate ring A ⊆ R ⊆ B, R
is a G–domain. Thus it seems natural to extend this definition to the case of rings
with zero divisors and define a G–ring pair (in the sense of Adams). For instance,
if A is a G–ring, with total quotient ring T(A), then (A,T(A)) is a G–ring pair and,
obviously, any G–domain pair is a G–ring pair. In this paper, we study the transfer
of the G–ring property among rings that share a common regular ideal. In fact, we
generalize [5, Theorem 3.1] to rings with zero divisors. Our main result Theorem 2
generalizes [4, Theorem 2.1], in which Dobbs gave a characterization of G–domain
pairs, to the case of rings that are not necessarily integral.

2 G–Ring Pairs in the Sense of Adams

To establish our main results, we first need to extend some results from Kaplansky’s
book [6] to the case of rings with zero divisors. Thus the following result generalizes
[6, Theorem 19]:

Proposition 1. Let R be a ring with total quotient ringT(R). For any regular element
u ∈ R, the following statements are equivalent:

(i) Any regular prime ideal of R contains u;
(ii) Any regular ideal of R contains a power of u;
(iii) T(R) = R[u−1].
Proof. The proof is parallel to that of [6, Theorem 19], just replace u �= 0 by u is
regular.

Next we state two useful lemmas.

Lemma 1. Let A ⊂ B be a ring extension. If a regular element y ∈ B satis-
fies an equation of integral dependence, with minimal degree, say r0 + r1y +
... + rn−1yn−1 + yn = 0, with ri ∈ A for all i , then the constant coefficient r0 is
regular.

Proof. Straightforward, since the integral dependence equation implies that r0 =
y(−r1 − ... − rn−1yn−2 − yn−1). Thus, r0 and y are simultaneously regular.

We say that a ringT is a total quotient ring, if any regular element ofT is invertible.
The following lemma is an extension of [6, Theorem 16] to rings with zero divisors.
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Lemma 2. Let A ⊂ B be a ring extension with B integral over A. Then A is a total
quotient ring if and only if so is B.

Proof. Assume that each regular element of A is invertible and let x ∈ B be regular.
By integral dependence, x satisfies an equation of minimal degree, r0 + r1x + ... +
rn−1xn−1 + xn = 0, with ri ∈ A for all i . By Lemma 1, r0 is regular in A and thus
r0 is invertible. So multiplying r0 = x(−r1 − ... − rn−1xn−2 − xn−1) by r−1

0 , we get
1 = x(−r1 − ... − rn−1xn−2 − xn−1)r−1

0 . It follows that x is invertible in B.
The converse is a consequence of [6, Theorem 15].

Next we generalize [5, Theorem 3.1] to rings with zero divisors.

Theorem 1. Let R ⊆ B be an extension of rings, sharing a regular common ideal
I . Then R is a G-ring if and only if so is B.

Proof. Since R and B share the ideal I , they have the same total quotient ring T and
thus B is an overring of R. So if R is a G-ring then naturally so is B. Conversely,
assume that B is a G–ring, so T = B[u−1] for some regular element u ∈ B. By
Proposition 1, some power of u is in I , say ur , r > 0. We claim that B[u−1] =
I [u−1]: indeed, I [u−1] ⊆ B[u−1], so let θ = a0 + a1u−1 + ... + anu−n ∈ B[u−1].
Thus, unθ ∈ B. Since I is an ideal of B and ur ∈ I , then unθur ∈ I . Hence, θ =
(unθur )u−(n+r) ∈ I [u−1], i.e., B[u−1] = I [u−1]. It follows that R[u−1] = B[u−1] =
T, the common total quotient ring of both R and B.

As an immediate consequence we have:

Corollary 1. Let B be an integral domain, I an ideal of B and D a subring of B/I .
The ring D + I is a G-ring if and only if so is B.

Remark 1. If a commutative ring A is a G–ring then so is each of its overrings. But
as stated in [4] it is not characterized when does A admit a subring that is a G-ring.
In that context, the previous result allows us to construct subrings of a G-ring that
are G-rings.

Now, let A ⊆ B be an extension of rings. Following Snapper [8] we say that a
regular element x ∈ B is algebraic over A, if there exists a regular polynomial f (X) ∈
A[X ], such that f (x) = 0. In that case, we say that “ f (x) = 0”is an algebraicity
equation and that “x satisfies the polynomial f (X)”.

Recall that a polynomial of A[X ] is said to be regular if it is a regular element of
A[X ]. On the other hand, it is well known that if h(X) ∈ A[X ] is a zero divisor then
each coefficient of h(X) is a zero divisor, and hence there exists α ∈ A\{0} such that
αh(X) = 0.

Lemma 3. Let A ⊆ B be an extension of rings and let x ∈ B be regular. If x is alge-
braic over A, then x satisfies an algebraicity equation a0 + a1x + ... + an−1xn−1 +
an xn = 0, such that ai is a regular element of A, for each i ∈ {1, ..., n}.
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Proof. Since x ∈ B is algebraic over A, then f (x) = 0 for some regular element
f (X) ∈ A[X ] say, (�): b0 + b1x + ... + bn−1xn−1 + bn xn = 0, where the bi ’s are
elements of A, some of which are regular.

Let us write {0, ..., n} = �1 ∪ �2 such that, for each i ∈ �1, bi is regular and for
each i ∈ �2, bi is a zero divisor. Thus from (�) we deduce �i∈�1bi xi= -�i∈�2bi xi .
Multiplying by an appropriate β ∈ A we get β�i∈�1bi xi = 0. Since each bi ∈ �1

is regular, necessarily one has �i∈�1bi xi = 0. A simplification by an appropriate
power of x ends the proof.

In what follows we denote the set of units of a ring R by U(R).

Lemma 4. Let A ↪→ B be an algebraic extension of rings and A be the integral
closure of A in B. Then T(A)andT(B) have the same set of units.

Proof. Clearly U(T(A)) ⊆ U(T(B))). So, let x ∈ B be regular, it satisfies an alge-
braicity equation (#):a0 + a1x + ... + an−1xn−1 + an xn = 0, of minimal degree,
with ai ∈ A for each i ∈ {1, ..., n}. By Lemma 3, for each i = 1, ..., n, the coef-
ficient ai is a regular element of A. Thus multiplying in (#) by an−1

n we get
a0an−1

n + a1an−2
n (an x) + ... + an−1(an x)n−1 + (an x)n = 0, that is an x is integral

over A. It follows that an x ∈ A and hence x = a−1
n an x ∈ T(A), that is, T(B) and

T(A) have the same invertible elements.

We are now ready to state our generalization of [4, Theorem 2.1] to rings with
zero divisors.

Theorem 2. Let A ⊂ B be an extension of rings. The following assertions are equiv-
alent:

(i) (A, B) is a G–ring pair;
(ii) A is a G–ring and each regular element of B is algebraic over A.

Proof. (i)⇒ (ii). Let T(A) denotes the total ring of quotients of A and assume that
(A, B) is a G–ring pair. If some regular element α ∈ B is not algebraic over A. Then,
α is transcendental over A and hence A[α] is isomorphic to A[X ] and hence, A[α]
is not a G–ring. A contradiction, Since A ⊂ A[α] ⊂ B.

(ii)⇒ (i). Assume A is a G–ring and that any regular element of B is algebraic
over A. We first show that B is a G–ring. For, let A denotes the integral closure of
A in B. Since any total ring of quotients is a G-ring, we can assume that A in not a
total quotient ring (cf. Lemma 2). Hence some regular element ω ∈ A lies in each
regular prime ideal of A (cf. Proposition 1).

Now, let Q ∈ Spec(A) be regular, then it contains a regular element θ . More-
over, θ satisfies an integral dependence equation of minimal degree b0 + b1θ + ... +
bn−1θ

n−1 + θn = 0, with bi ∈ A for all i . By minimality of the degree, b0 is regular
(cf. Lemma 1), and since b0 = θ(−b1 − ... − bn−1θ

n−2 − θn−1) ∈ θ A ⊆ Q, then
b0 ∈ Q ∩ A. That is Q ∩ A is a regular prime ideal of A. Hence, it contains ω.
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We showed that each regular prime ideal of A contains ω, thus T(A) = A[ω−1].
That is A is a G–ring. By Lemma 4, we have U(T(A)) = U(T(B)) that is,

U(B[ω−1]) ⊆ U(T(B)) = U(A[ω−1]) ⊆ U(B[ω−1]).

It follows that T(B) = B[ω−1] and hence B is a G–ring.

Let A be a ring and I an ideal of A. The ring A 
� I := {(a, a + j) | a ∈
A, and j ∈ I } was introduced and studied in [3] as the amalgamated duplication
of A along I . Next we characterize G–ring pairs issued from these constructions.

Proposition 2. Let A be a ring and I ⊆ J two regular ideals of A. Then (A 
�
I, A 
� J ) is a G–ring pair if, and only if, A is a G–ring.

Proof. It is a consequence of [7, Lemma 3.2.1] and [5, Corollary 4.1].

Proposition 3. Let A ⊆ B be a ring extension, with a common regular ideal J .
Then, (A 
� J, B 
� J ) is a G–ring pair if, and only if, (A, B) is a G–ring pair.

Proof. Assume (A, B) is a G–ring pair. So, by [5, Corollary 4.1], A 
� J and B 
� J
are G–rings. Let R be a ring such that A 
� J ⊆ R ⊆ B 
� J . By [7, Lemma 3.2.13],
R = S 
� J for some intermediate ring A ⊆ S ⊆ B. As (A, B) is G–ring pair, so S is
a G–ring and again by [5, Corollary 4.1], R is a G–ring. Conversely, If (A 
� J, B 
�
J ) is a G–ring pair, then, by [5, Corollary 4.1], A and B are G–rings. Now, Let S
be a ring such that A ⊆ S ⊆ B, then A 
� J ⊆ S 
� J ⊆ B 
� J . Hence, S 
� J is
a G–ring and then S is a G–ring (cf. [5, Corollary 4.1]).
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Weakly Finite Conductor Property in
Amalgamated Algebra

Haitham El Alaoui

Abstract Let f : A−→B be a ring homomorphism and J be an ideal of B. In this
paper,we investigate the transfer ofweaklyfinite conductor property in amalgamation
of A with B along J with respect to f (denoted by A�� f J ), introduced and studied
by D’Anna, Finocchiaro and Fontana in 2009 (see D’Anna et al. (Commutative
Algebra and Applications. Walter De Gruyter Publisher, Berlin, pp. 55–172, 2009),
D’Anna et al. (J Pure Appl Algebra 214:1633–1641, 2010)). Our results generate
original examples which enrich the current literature with new families of examples
of nonfinite conductor weakly finite conductor rings.

Keywords Weakly finite conductor · Finite conductor ring · Coherent ring
Amalgamated duplication · Amalgamated algebra

1 Introduction

All rings considered in this paper are assumed to be commutative, and have identity
element and all modules are unitary.

Let A and B be two rings and J be an ideal of B and let f : A −→ B be a ring
homomorphism. In this setting, we can consider the following subring of A×B:

A �� f J = {(a, f (a) + j) /a ∈ A, j ∈ J }

called the amalgamation of A and B along J with respect to f (introduced and studied
by D’Anna, Finocchiaro, and Fontana in [4, 8]). This construction is a generalization
of the amalgamated duplication of a ring along an ideal (introduced and studied by
D’Anna and Fontana in [5–7] and denoted by A �� I ). Moreover, other classical
constructions (such as the A + XB[X ], A + XB[[X ]], and the D + M constructions)
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can be studied as particular cases of the amalgamation ([4, Examples 2.5 and 2.6])
and other classical constructions, such asNagata’s idealizations (cf. [15, page 2]), and
the CPI extensions (in the sense of Boisen and Sheldon [3]) are strictly related to it
([4, Example 2.7 and Remark 2.8]). On the other hand, the amalgamation is related to
a construction proposed by Anderson in [1] andmotivated by a classical construction
due to Dorroh [10], concerning the embedding of a ring without identity in a ring
with identity. In [4], the authors studied the basic properties of this construction (e.g.,
characterizations for A �� f J to be a Noetherian ring, an integral domain, a reduced
ring) and they characterized those distinguished pullbacks that can be expressed as
an amalgamation.

Let R be a commutative ring. For a nonnegative integer n, an R-module E is
called n-presented if there is an exact sequence of R-modules:

Fn Fn−1 . . . F1 F0 E 0

where each Fi is a finitely generated free R-module. In particular, 0-presented and
1-presented R-module are respectively, finitely generated and finitely presented R-
module.

A ring R is coherent if every finitely generated ideal of R is finitely presented;
equivalently, if (0 : a) and I ∩ J are finitely generated for every a ∈ R and any two
finitely generated ideals I and J of R. Examples of coherent ring are Noetherian ring,
Boolean algebras, von Neumann regular rings, and prüfer/semi-hereditary rings. For
instance see [12].

An ideal I of R is called n-generated ideal if I can be generated by n-elements.
Glaz (2000) extended the definition of a finite conductor domains to rings with
zero divisors. A ring R is called finite conductor if Ra ∩ Rb and (0 : c) are finitely
generated ideals of R for all elements a, b and c of R (see [2, 13, 17]). Also, Glaz
shows that R is a finite conductor ring if and only if each 2-generated ideal of R is
finitely presented ([13, Proposition 2.1]). We say that R is a weakly finite conductor
ring if Ra ∩ Rb is a finitely generated ideal of R for each pair a, b ∈ R. Hence, if R
is a domain, then R is finite conductor if and only if R is a weakly finite conductor.
For instance, any coherent ring is a finite conductor ring and so it is weakly finite
conductor.

2 Main Result

In this paper, we characterize A �� f J to be weakly finite conductor ring for some
classes of ideals J and homomorphisms f . Thereby, new examples are provided
which particularly, enriches the current literature with new classes of nonfinite con-
ductor weakly finite conductor rings.

Then, before announcing the main result, we recall by the following remark.
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Remark 1. Let f : A −→ B be a ring homomorphism andM be an B-module. Then
M is a module over A, via f . Precisely, a.m = f (a)m for each a ∈ A and m ∈ M .

Theorem 1. Let f : A −→ B bea ringhomomorphismand J beaproper ideal of B.

1. If A �� f J is a weakly finite conductor ring, then so is A.
2. Assume that A is a local ring with maximal ideal M such that M J = 0.

a. If Ma ∩ Mb and Jk ∩ Jl are finitely generated A-modules, for all a, b ∈ M
and k, l ∈ J and J ⊆ Rad(B), then A �� f J is a weakly finite conductor
ring.

b. If A is a domain and J 2 = 0, then A �� f J is a weakly finite conductor ring
if and only if so is A, and M and J are finitely generated A-modules.

Before proving main result, we establish the following Lemmas.

Lemma 1. Let f : A −→ B be a ring homomorphism and J be a proper ideal of
B. If A �� f J (a, f (a)) ∩ A �� f J (b, f (b)) is a finitely generated ideal of A �� f J
for all a, b ∈ A, then so is Aa ∩ Ab.

Proof. Let a, b ∈ A. Our aim is to show that Aa ∩ Ab is a finitely generated
ideal of A. If A �� f J (a, f (a)) ∩ A �� f J (b, f (b)) = ∑i=n

i=1 A �� f J (ai , f (ai ) +
ei ), where ai ∈ A, ei ∈ J and n is a positive integer, then Aa ∩ Ab = ∑i=n

i=1 Aai .
Indeed, let x ∈ Aa ∩ Ab so there exists α, β ∈ A such that x = αa = βb. Then:

(x, f (x)) = (αa, f (α) f (a)) = (βb, f (β) f (b))

= (α, f (α))(a, f (a)) = (β, f (β))(b, f (b)).

Hence, (x, f (x)) = ∑i=n
i=1(αi , f (αi ) + ji )(ai , f (ai ) + ei ) = (

∑i=n
i=1 αi ai ,

∑i=n
i=1( f

(αi ) + ji )( f (ai ) + ei ), where (αi , f (αi ) + ji )i=n
i=1 ∈ (A �� f J )n . Therefore, x =

∑i=n
i=1 αi ai ∈ ∑i=n

i=1 Aai . On the other hand, the (ai , f (ai ) + ei ) ∈ A �� f J (a,

f (a)) ∩ A �� f J (b, f (b)), so there exists (β j , f (β j ) + k j ), (γ j , f (γ j ) + l j ) ∈
A �� f J such that (ai , f (ai ) + ei ) = (β j , f (β j ) + k j )(a, f (a)) = (γ j , f (γ j ) + l j )
(b, f (b)) with j ∈ {1, . . . , n}, then ai = β j a = γ j b. Therefore, ai ∈ Aa ∩ Ab for
all i ∈ {1, . . . , n}. Hence, Aa ∩ Ab = ∑i=n

i=1 Aai . �	
Lemma 2. Let f : A −→ B be a ring homomorphism, and J be an ideal proper of
B. Let I and K be two ideals of A and B respectively such that K ⊆ J .

1. Assume that I J ⊆ K. Then:

a. I �� f K = {(i, f (i) + k)/ i ∈ I, k ∈ K } is an ideal of A �� f J .
b. If I and K are finitely generated A-modules. Then, I �� f K is a finitely

generated ideal of A �� f J .

2. Assume that I J = 0 and J 2 = 0. Then, I �� f K is a finitely generated ideal of
A �� f J if and only if I and K are finitely generated A-modules.
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Proof. 1. Assume that I J ⊆ K .

a. It is clear that I �� f K is an ideal of A �� f J . Indeed:
• (i, f (i) + k) + (i

′
, f (i

′
) + k

′
) = (i + i

′
, f (i + i

′
) + k + k

′
) ∈ I �� f K

for all (i, f (i) + k), (i
′
, f (i

′
) + k

′
) ∈ I �� f K .

• (a, f (a) + j)(i, f (i) + k) = (ai, f (ai) + j f (i) + k f (a) + k j) = (ai,
f (ai) + i j + ak + k j) by Remark 1, so (a, f (a) + j)(i, f (i) + k) ∈
I �� f K for all (a, f (a) + j) ∈ A �� f J and (i, f (i) + k) ∈ I �� f K ,
since I J ⊆ K .

b. Assume that I := ∑i=n
i=1 Aui is a finitely generated ideal of A, where

ui ∈ I for all i ∈ {1, . . . , n} and K = ∑i=m
i=1 Aei , where ei ∈ K for all

i ∈ {1, . . . ,m}. Let (x, f (x) + k) ∈ I �� f K , where x ∈ I and k ∈ K , so
there exists (αi )

i=n
i=1 ∈ An and (βi )

i=m
i=1 ∈ Am such that x = ∑i=n

i=1 αi ui and
k = ∑i=m

i=1 βi ei = ∑i=m
i=1 f (βi )ei by Remark 1. So, we obtain:

(x, f (x) + k) = (

i=n∑

i=1

αi ui ,
i=n∑

i=1

f (αi ) f (ui ) +
i=m∑

i=1

f (βi )ei )

= (

i=n∑

i=1

αi ui ,
i=n∑

i=1

f (αi ) f (ui )) + (0,
i=m∑

i=1

f (βi )ei )

=
i=n∑

i=1

(αi , f (αi ))(ui , f (ui )) +
i=m∑

i=1

(βi , f (βi ))(0, ei ).

Consequently, (x, f (x) + k) ∈ ∑i=n
i=1 A �� f J (ui , f (ui )) + ∑i=m

i=1 A �� f

J (0, ei ) since (αi , f (αi )) ∈ A �� f J for all i ∈ {1, . . . , n} and (βi , f (βi )) ∈
A �� f J for all i ∈ {1, . . . ,m}. Therefore, I �� f K ⊆ ∑i=n

i=1 A �� f J (ui ,
f (ui )) + ∑i=m

i=1 A �� f J (0, ei ). Conversely,
∑i=n

i=1 A �� f J (ui , f (ui )) +
∑i=m

i=1 A �� f J (0, ei ) ⊆ I �� f K since (ui , f (ui )) ∈ A �� f J for all i ∈
{1, . . . , n}, (0, ei ) ∈ A �� f J for all i ∈ {1, . . . ,m} and I �� f K is a ideal
of A �� f J . Hence, I �� f K=

∑i=n
i=1 A �� f J (ui , f (ui )) + ∑i=m

i=1 A �� f

J (0, ei ) is a finitely generated ideal of A �� f J .

2. Let I �� f K is a finitely generated ideal of A �� f J , i.e. I �� f K = ∑i=r
i=1 A �� f

J (ui , f (ui ) + ei ) where ui ∈ I and ei ∈ K for all i ∈ {1, . . . , r}. Let x ∈ I and
k ∈ K , so (x, f (x) + k) ∈ I �� f K . Then, there exists (αi , f (αi ) + ji )i=r

i=1 ∈
(A �� f J )r such that (x, f (x) + k) = ∑i=r

i=1(αi , f (αi ) + ji )(ui , f (ui ) + ei )=
(
∑i=r

i=1 αi ui ,
∑i=r

i=1( f (αi ) + ji )( f (ui ) + ei ). Therefore, x = ∑i=r
i=1 αi ui , hence

I is a finitely generated ideal of A. On the other hand, let k ∈ K . So, (0, k) ∈
I �� f K i.e., there exists (βi , f (βi ) + ki )i=r

i=1 ∈ (A �� f J )r such that (0, k) =
∑i=r

i=1(βi , f (βi ) + ki )(ui , f (ui ) + ei ) = (
∑i=r

i=1 βi ui ,
∑i=r

i=1 f (βi ) f (ui ) +
∑i=r

i=1 f (ui )ki + ∑i=r
i=1( f (βi ) + ki )ei . Then,

∑i=r
i=1 βi ui = 0 and k = ∑i=r

i=1

f (ui )ki + ∑i=r
i=1( f (βi ) + ki )ei . Moreover, we have ui ∈ I for all i ∈ {1, . . . , r},

so f (ui )ki = 0 for all i ∈ {1, . . . , r}, since (I J = 0). Hence, K = ∑i=r
i=1 f (βi )ei
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because J 2 = 0. Therefore, K is a finitely generated A-module, by Remark 1.
Conversely, let I and K are finitley generated A-modules. So, I �� f K is a
finitely generated ideal of A �� f J , by (b) as desired.

�	
Lemma 3. Let A be a local ring with maximal ideal M, f : A −→ B be a ring
homomorphism and J be a proper ideal of B such that J ⊆ Rad(B). Then, U (A �� f

J ) = U (A) �� f J .

Proof. By [8, Proposition 2.6 (5)], Max(A �� f J ) = {m �� f J/ m ∈ Max(A)} ∪
{Q f } with Q ∈ Max(B) not containing V (J ) and Q

f = {(a, f (a) + j) ∈ A/ j ∈
J, f (a) + j ∈ Q}, and since J ⊆ Rad(B) then J ⊆ Q for all Q ∈ Max(B). Hence,
Max(A �� f J ) = {m �� f J/ m ∈ Max(A)} = M �� f J since A is a local ring.
Therefore, A �� f J is a local ring with maximal ideal M �� f J . Thus, U (A �� f

J ) = (A �� f J ) − (M �� f J ) = (A − M) �� f J = U (A) �� f J as desired. �	
Lemma 4. Let A be a local ring with maximal ideal M, f : A −→ B be a ring
homomorphism, and J be an ideal proper of B such that M J = 0 and J ⊆ Rad(B).
And let aM ∩ bM and l J ∩ k J are finitely generated A-modules, for all a, b ∈
M and k, l ∈ J . Then, A �� f J (a, f (a) + k) ∩ A �� f J (b, f (b) + l) is a finitely
generated ideal of A �� f J .

Proof. If A �� f J (a, f (a) + k) ⊆ A �� f J (b, f (b) + l) or A �� f J (b, f (b) + l)
⊆ A �� f J (a, f (a) + k), nothing to demonstrate. Otherwise, A �� f J (a, f (a) +
k) ∩ A �� f J (b, f (b) + l) �= A �� f J (a, f (a) + k) (for example). Let (x, f (x) +
e) ∈ A �� f J (a, f (a) + k) ∩ A �� f J (b, f (b) + l) i.e. there exists α, β ∈ A and
j1, j2 ∈ J such that,

(x, f (x) + e) = (α, f (α) + j1)(a, f (a) + k) = (β, f (β) + j2)(b, f (b) + l)

= (αa, f (αa) + f (α)k + aj1 + k j1) = (βb, f (βb) + f (β)k + bj2 + l j2).

It is clear that α ∈ M . Otherwise, α invertible in A, then (α, f (α) + j1) is
invertible in A �� f J by Lemma 3. Therefore, (a, f (a) + k) = (α, f (α) + j1)−1(x,
f (x) + e) so (a, f (a) + k) ∈ K then A �� f J (a, f (a) + k) ⊆ K . A contradiction,
by symmetry β ∈ M hence (x, f (x) + e) = (αa, f (αa) + k j1) = (βb, f (βb) +
l j2) (becauseMJ = 0).Therefore, A �� f J (a, f (a) + k) ∩ A �� f J (b, f (b) + l) ⊆
(Ma ∩ Mb) �� f (Jk ∩ Jl). On the other hand, let y = (m1a, f (m1a) + j1k) =
(m2b, f (m2b) + j2l) ∈ (Ma ∩ Mb) �� f (Jk ∩ Jl),wherem1,m2 ∈ M and j1, j2 ∈
J . Then:

y = (m1, f (m1) + j1)(a, f (a) + k) ∈ A �� f J (a, f (a) + k)

= (m2, f (m2) + j2)(b, f (b) + l) ∈ A �� f J (b, f (b) + l).

So, A �� f J (a, f (a) + k) ∩ A �� f J (b, f (b) + l) = (Ma ∩ Mb) �� f (Jk ∩ Jl).
Therefore, A �� f J (a, f (a) + k) ∩ A �� f J (b, f (b) + l) is a finitely generated
ideal of A �� f J by Lemma 2 (1) (b). �	
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Lemma 5. Let A be a local ring with maximal ideal M, contains a regular ele-
ments a, f : A −→ B be a ring homomorphism and J be an ideal proper of B such
that M J = 0 and J 2 = 0. Then, A �� f J (a, f (a) + k) ∩ A �� f J (a, f (a) + l) =
M �� f J (a, f (a)) for all k �= l ∈ J .

Proof. Let l �= k ∈ J and (α, f (α) + j)(a, f (a) + k) = (β, f (β) + e)(a, f (a) +
l) ∈ A �� f J (a, f (a) + k) ∩ A �� f J (a, f (a) + l),where (α, f (α) + j), (β, f (β)

+ e) ∈ A �� f J . Then, αa = βb and αk = f (α)k = f (β)l = βl, because a ∈ M
and MJ = 0, so ᾱk = αk = βl = β̄l since J is a A/M-vector space. Therefore,
α = β sincea is a regular element, so ᾱ(k − l) = 0, henceα ∈ M since k − l �= 0 and
J is an A/M-vector space. Therefore, (α, f (α) + j)(a, f (a) + k) = (α, f (α) +
j)(a, f (a)) ∈ M �� f J (a, f (a)). Conversely, let (m, f (m) + e)(a, f (a)) ∈ M �� f

J (a, f (a)) where m ∈ M and e ∈ J . Clearly, (m, f (m) + e)(a, f (a)) = (m,

f (m) + e)(a, f (a) + k) = (m, f (m) + e)(a, f (a) + l) since m ∈ M , so (ma,

f (ma)) ∈ A �� f J (a, f (a) + k) ∩ A �� f J (a, f (a) + l). �	
Proof of Theorem 1.

1. By Lemma 1.
2. Assume that A is a local ring with maximal ideal M such that MJ = 0.

a. By Lemma 4.
b. If A �� f J is a weakly finite conductor ring, then M �� f J is a finitely

generated ideal of A �� f J by Lemma 5. Since A is a domain. Otherwise,
M �� f J (a, f (a)) is not finitely generated ideal of A �� f J , a contradiction.
Hence, M and J are finitely generated A-modules by Lemma 2 (2). Con-
versely, Let I = A �� f J (a, f (a) + e) and K = A �� f J (b, f (b) + j) be
two proper ideals of A �� f J i.e. a, b ∈ M by Lemma 3. Our aim is to show
that I ∩ K is a finitely generated ideal of A �� f J . Let x ∈ I ∩ K . Three
cases are then possible.
Case 1: If a = b = 0 in that case x = (α, f (α) + u)(0, e) = (β, f (β) +
v)(0, j) where (α, f (α) + u) and (β, f (β) + v) ∈ A �� f J , so αe = f (α)

e = f (β) j = β j and since J is an (A/M)-vector space then ᾱe = αe =
β j = β̄ j . So, two cases are then possible:
If {e, j} are linearly independent, then ᾱ = β̄ = 0 i.e. α, β ∈ M hence x =
(0, 0). Therefore, I ∩ K = 0, thus a finitely generated ideal of A �� f J .
If {e, j} are linearly dependent, then there exist ω ∈ A such that e = ω̄ j
so (0, e) = (0, ω j) = (ω, f (ω))(0, j) ∈ A �� f J (0, j), then I ⊆ K hence
I ∩ K = I . Therefore, I ∩ K is a finitely generated ideal of A �� f J in this
cases.
Case 2: a and b are comparable. Assume for example that a = cb, where
c ∈ A. Two cases are then possible:
If c ∈ M , we claim that I ∩ K is a finitely generated ideal of A �� f

J . Indeed, let (α, f (α) + u)(a, f (a) + e) = (β, f (β) + v)(b, f (b) + j) ∈
I ∩ K , where (α, f (α) + u), (β, f (β) + v) ∈ A �� f J . Then, αa = βb =
αcb and ᾱe = β̄ j since a, b ∈ M . But, βb = αcb implies β = αc ∈ M
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since A is a domain; so ᾱe = β̄ j = 0. Two cases are then possible: e = 0
or e �= 0.
Assume that e = 0, then I ∩ K = A �� f J (a, f (a)) ∩ A �� f J (b, f (b) +
j) = A �� f J (a, f (a)). Indeed, let y ∈ A �� f J (a, f (a)) so there exist
(λ, f (λ) + g) ∈ A �� f J such that, y = (λ, f (λ) + g)(a, f (a)) = (λ,

f (λ) + g)(bc, f (bc)) = (λ, f (λ) + g)(c, f (c))(b, f (b)) = (bc, f (bc))
(λc, f (λc))(b, f (b) + j), so A �� f J (a, f (a)) ⊆ A �� f J (b, f (b) + j),
hence I ∩ K = A �� f J (a, f (a)).
Assume that e �= 0. Hence, α ∈ M since ᾱe = 0 and so I ∩ K ⊆ M �� f

J (a, f (a)). Conversely, let y = (m, f (m) + g)(a, f (a)) ∈ M �� f J (a,

f (a)), with m ∈ M and g ∈ J , so y = (m, f (m) + g)(a, f (a)) = (m,

f (m) + g)(a, f (a) + e) because MJ = 0 and J 2 = 0, then y ∈ A �� f

J (a, f (a) + e). On the other hand, a = bc so y = (m, f (m) + g)(bc,
f (bc)) = (m, f (m) + g)(c, f (c))(b, f (b)) = (mc, f (mc))(b, f (b)) since
(c ∈ M), hence y = (mc, f (mc))(b, f (b) + j), because MJ = 0, there-
fore I ∩ K = M �� f J (a, f (a)), and since M and J are finitely generated
A-modules then I ∩ K is a finitely generated ideal of A �� f J .
If c /∈ M , then c is invertible in A, so A �� f J (b, f (b) + j) = A �� f

J (ac−1, f (ac−1) + j) = A �� f J (ac−1, ( f (a) + j f (c)) f (c−1)) = A �� f

J (c−1, f (c−1))A �� f J (a, f (a) + f (c) j) = A �� f J (a, f (a) + cj),
because (c−1, f (c−1)) is invertible in A �� f J by Lemma 3. Therefore,
I ∩ K = A �� f J (a, f (a) + e) ∩ A �� f J (a, f (a) + cj). If e �= cj , then
I ∩ K = M �� f J (a, f (a)) by Lemma 5, and since M and J are finitely
generated A-modules, so M �� f J is a finitely generated ideal in A �� f J
by Lemma 2 (1)(b); hence I ∩ K is a finitely generated ideal of A �� f J .
Otherwise I ∩ K = K which is finitely generated ideal of A �� f J .
Case 3: a and b are not comparable. We claim that I ∩ K is a finitely gen-
erated ideal of A �� f J . Indeed, let x ∈ I ∩ K = A �� f J (a, f (a) + e) ∩
A �� f J (b, f (b) + j), then there exist (α, f (α) + k) and (β, f (β) + l) ∈
A �� f J such that, x = (α, f (α) + k)(a, f (a) + e) = (β, f (β) + l)(b,
f (b) + j), so αa = βb, hence αa ∈ Aa ∩ Ab and since A is a weakly finite
conductor ring, then Aa ∩ Ab = ∑i=n

i=1 Aai where ai ∈ Aa ∩ Ab for all i ∈
{1, . . . , n}. So, there exist ci and di ∈ A such that ai = cia = did, moreover
ci ∈ M for all i ∈ {1, . . . , n}. Otherwise, there exist j ∈ {1, . . . , n} such
that c j /∈ M , then c j invertible in A, so Aa j = Ac j = Aa, and since a j ∈
Aa ∩ Ab, then Aa j ⊆ Aa ∩ Ab, so Aa = Aa j ⊆ Aa ∩ Ab ⊆ Ab, contra-
diction (because a and b are not comparable). Therefore, ci ∈ M for all
i ∈ {1, . . . , n}, and by symmetry di ∈ M for all i ∈ {1, . . . , n}. On the
other hand, αa ∈ Aa ∩ Ab = ∑i=n

i=1 Aaia = a
∑i=n

i=1 Aci , so α ∈ ∑i=n
i=1 Aci

i.e. there exists (αi )
i=n
i=1 ∈ An such thatα = ∑i=n

i=1 αi ci , and since the ci ∈ M ,
so:



124 H. El Alaoui

x = (α, f (α) + k)(a, f (a) + e) = (αa, f (α) f (a)) = (a
i=n∑

i=1

αi ci , f (a)

i=n∑

i=1

f (αi ) f (ci ))

=
i=n∑

i=1

(aαi ci , f (a) f (αi f (ci )) =
i=n∑

i=1

(αi , f (αi ))(aci , f (a) f (ci ))

=
i=n∑

i=1

(αi , f (αi ))(ai , f (ai )) ∈
i=n∑

i=1

A �� f J (ai , f (ai )).

Therefore, I ∩ K ⊆ ∑i=n
i=1 A �� f J (ai , f (ai )). Conversely, let y = ∑i=n

i=1

(αi , f (αi ) + gi )(ai , f (ai )) ∈ ∑i=n
i=1 A �� f J (ai , f (ai )), where (αi , f (αi )

+ gi ) ∈ A �� f J for all i ∈ {1, . . . , n}, then y = ∑i=n
i=1(αi ai , f (αi ) f (ai ))

(because ai ∈ Aa ∩ Ab ⊆ M), so
∑i=n

i=1(αi ci a, f (αi ) f (ci ) f (a)) = ∑i=n
i=1

(αi ci , f (αi ) f (ci ))(a, f (a) + e) (since the ci ∈ M), therefore
∑i=n

i=1(αi di b,
f (αi ) f (di ) f (b)) = ∑i=n

i=1(αi di , f (αi ) f (di ))(b, f (b) + j). Hence, I ∩ K
= ∑i=n

i=1 A �� f J (ai , f (ai )) which is a finitely generated ideal of A �� f J .
Therefore, I ∩ K is a finitely generated ideal of A �� f J in all cases. So,
A �� f J is a weakly finite conductor ring.

�	
The following Corollaries are an immediate consequence of Theorem 1.

Corollary 1. Let A be a local domain with maximal ideal M and let B = A/M2

and J = M/M2. Consider the canonical homomorphism f : A −→ B ( f (x) = x̄).
Then, A �� f J is a weakly finite conductor ring if and only if so is A, and M is a
finitely generated ideal of A.

Corollary 2. Let f : A −→ B be a ring homomorphism and J be a proper ideal
of B.

1. If A �� f J is weakly finite conductor, then so is A.
2. Assume that A is a local ring with maximal ideal M such that M J = 0 and

J 2 = 0.

a. If M is principal and A weakly finite conductor, then A �� f J is weakly
finite conductor.

b. If A is a domain and M2 = 0, then A �� f J is a weakly finite conductor
ring if and only if M and J are finitely generated A-modules.

Proof. 1. By Lemma 1.
2. Assume that A is a local ring with maximal ideal M such that MJ = 0 and

J 2 = 0.

a. Clear.
b. By [14, Example 2.4] and Theorem 1 (b).

�	
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The next Corollary examines the case of the amalgamated duplication.

Corollary 3. Let A be a ring and I be a proper ideal of A.

1. If A �� I is a weakly finite conductor ring, then so is A.
2. Assume that A is a local ring with maximal ideal M such that M I = 0.

a. If Ma ∩ Mb is a finitely generated A-module, for all a, b ∈ M, then A �� I
is a weakly finite conductor ring.

b. If A is a domain, then A �� I is a weakly finite conductor ring if and only if
so is A, and M and I are finitely generated A-modules.

Now, we give examples of a weakly finite conductor ring which is not a finite con-
ductor ring and so not a coherent ring.

Example 1. Let A be a local ring with principal maximal ideal M (for instance
A = ZZ/8ZZ and M = 2ZZ/8ZZ ) and let E be a A/M-vector space with infinite
rank, B = A ∝ E and J = 0 ∝ E . Consider the ring homomorphism f : A −→ B
( f (a) = (a, 0)). Then:

1. A �� f J is a weakly finite conductor ring.
2. A �� f J is not a finite conductor ring.

Proof. 1. A is a weakly finite conductor ring by [12, Theorem 2.4.1(1)]. So, A �� f

J is weakly finite conductor by Corollary 2 (2) (a).
2. Let c = (a, f (a)) ∈ A �� f J , where a �= 0 ∈ M (if a /∈ M then c is invertible,

and so (0 : c) = 0). Then, (0 : c) = (0 : a) �� f J is not a finitely generated ideal
of A �� f J by Lemma 2 (2) since E is a A/M-vector space with infinite rank.
Therefore, A �� f J is not a finite conductor ring.

�	
Example 2. Let A = K where K is a field and E be a K -vector space with infi-
nite rank and let B = K ∝ E and J = 0 ∝ E . Consider the ring homomorphism
f : A −→ B ( f (a) = (a, 0)). Then:

1. K �� f J is a weakly finite conductor ring.
2. K �� f J is not a finite conductor ring.

Proof. 1. We claim that K �� f J is a weakly finite conductor ring. Indeed, let
I = K �� f J (0, j) = 0 �� f K j and L = K �� f J (0, g) = 0 �� f Kg be two
principal proper ideals of K �� f J , where j, g ∈ J − {0}. Hence, I ∩ L =
0 �� f (K j ∩ Kg). But, K j ∩ Kg is a K -vector space of rang at most 1, so
K j ∩ Kg = Kh, where h ∈ J . Therefore, I ∩ L = 0 �� f (K j ∩ Kg) = 0 �� f

K h = K �� f J (0, h) is a finitely generated ideal of K �� f J and so K �� f J
is a weakly finite conductor ring.
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2. Our aim is to show that K �� f J is not a finite conductor ring. Let e ∈ J − {0}
and let I = K �� f J (0, e) be an ideal of K �� f J . It suffices to show that I is
not finitely presented. Consider the exact sequence of K �� f J -modules:

0 Ker(U ) K �� f J
U

I 0

where U (b, f (b) + j) = (b, f (b) + j)(0, e) = (0, f (b)e) = (0, be). Clearly,
Ker(U ) = 0 �� f J which is not finitely generated by Lemma 2 (2) since E is a
K -vector space with infinite rank. Therefore, I is not finitely presented and so
K �� f J is not a finite conductor ring.

�	
Acknowledgements I would like to thank the referee for the useful suggestions and comments,
which have greatly improved this article.
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Coherence in Bi-amalgamated Algebras
Along Ideals

Mounir El Ouarrachi and Najib Mahdou

Abstract Let f : A −→ B and g : A −→ C be two ring homomorphisms and let J
(resp., J ′) be an ideal of B (resp., C) such that f −1(J ) = g−1(J ′). In this paper, we
investigate the transfer of the property of coherence in the bi-amalgamation of Awith
(B,C) along (J, J ′) with respect to ( f, g) (denoted by A �� f,g (J, J ′)), introduced
and studied by Kabbaj, Louartiti, and Tamekkante in 2013. We provide necessary
and sufficient conditions for A �� f,g (J, J ′) to be a coherent ring.

Keywords Bi-amalgamated algebra · Amalgamated algebra · Coherence

1 Introduction

Throughout this paper, all rings are commutative with identity elements, and all
modules are unitary.

Let R be a commutative ring.We say that an ideal is regular if it contains a regular
element, i.e.; a nonzero divisor element.

For a nonnegative integer n, an R-module E is called n-presented if there is an
exact sequence of R-modules

Fn −→ Fn−1 −→ ...F1 −→ F0 −→ E −→ 0

where each Fi is a finitely generated free R-module. In particular, 0-presented and
1-presented R-modules are, respectively, finitely generated and finitely presented
R-modules.
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A ring R is coherent if every finitely generated ideal of R is finitely presented;
equivalently, if (0 : a) and I ∩ J are finitely generated for every a ∈ R and any two
finitely generated ideals I and J of R. Examples of coherent rings are Noetherian
rings,Boolean algebras, vonNeumann regular rings, andPrüfer/semihereditary rings.
For instance see [1, 15, 20].

Recall that an R-moduleM is called a coherent R-module if it is finitely generated
and every finitely generated submodule of M is finitely presented.

Let f : A −→ B and g : A −→ C be two ring homomorphisms and let J (resp.,
J ′) be an ideal of B (resp., C) such that f −1(J ) = g−1(J ′). In this setting, we can
consider the following subring of B × C :

A �� f,g (J, J ′) := {( f (a) + j, g(a) + j ′)|a ∈ A, j ∈ J, j ′ ∈ J ′}

called the bi-amalgamation of A with (B,C) along (J, J ′) with respect to ( f, g)
(introduced and studied by Kabbaj et al. [19]). This construction is a generaliza-
tion of the amalgamated algebra along an ideal (introduced and studied by D’Anna
and Fontana in [10, 11].) Moreover, other classical constructions (such as the
A + XB[X ], A + XB[[X ]], and the D + M constructions) can be studied as partic-
ular cases of the amalgamation [10, Examples 2.5 and 2.6]and other classical con-
structions, such as the Nagata’s idealization ([21, page2]), and the CPI extensions are
strictly related to it ([10, Example 2.7 and Remark 2.8]). In [19], the authors studied
the basic properties of this construction (e.g., characterized for A �� f,g (J, J ′) to be
a Noetherian ring, an integral domain, a reduced ring) and they characterized those
distinguished pullbacks that can be expressed as a bi-amalgamation. Moreover, they
pursued the investigation on the structure of the rings of the form A �� f,g (J, J ′),
with particular attention to the prime spectrum.

This paper investigates the property of coherence in bi-amalgamated algebra along
ideals. Our results generate original examples which enrich the current literature with
new families of non-Noetherian coherent rings.

2 Main Results

This section characterizes the bi-amalgamated algebra along ideals A �� f,g (J, J ′) to
be a coherent ring. The main result (Theorem 1) examines the property of coherence
that the amalgamation A �� f,g (J, J ′)might inherit from the rings f (A) + J , g(A) +
J for some classes of ideals J , J ′, and homomorphisms f, g and hence generates
new examples of non-Noetherian coherent rings.

Let f : A −→ B and g : A −→ C be two ring homomorphisms and let J (resp.,
J ′) be an ideal of B (resp.,C) such that f −1(J ) = g−1(J ′) and let n be a positive inte-
ger. Consider the functions f n : An −→ Bn defined by f n((αi )

i=n
i=1) = ( f (αi ))

i=n
i=1

and gn : An −→ Cn defined by gn((αi )
i=n
i=1) = (g(αi ))

i=n
i=1. Obviously, f

n and gn are
ring homomorphisms and J n , J ′n are ideals of Bn and Cn , respectively . This allows
us to defined An �� f n ,gn (J n, J ′n).
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Moreover, let φ : (A �� f,g (J, J ′))n −→ An �� f n ,gn (J n, J ′n) defined by

φ(( f (αi ) + ji , g(αi ) + j ′i )
i=n
i=1) = ( f n((αi )

i=n
i=1) + ( ji )

i=n
i=1, g

n((αi )
i=n
i=1) + ( j ′i )

i=n
i=1).

It is easily checked thatφ is a ring isomorphism. So An �� f n ,gn (J n, J ′n) and (A �� f,g

(J, J ′))n are isomorphic as rings.
Let U be a submodule of An . Then U �� f n ,gn (J n, J ′n) := {( f n(u) + j, gn(u) +

j ′) ∈ An �� f n ,gn (J n, J ′n)/u ∈ U, j ∈ J n, j ′ ∈ J ′n} is a submodule of An �� f n ,gn

(J n, J ′n).

Remark 1. 1. Let f : A −→ B be a ring homomorphism and let J be an ideal
of B. Then f n(αa) = f (α) f n(a) for all α ∈ A and a ∈ An , where f n is the
homomorphism defined as follows f n((ai )i=n

i=1) = ( f (ai ))i=n
i=1

2. If f −1(J ) = g−1(J ′) = 0, then A is a module retract of A �� f,g (J, J ′).
3. If g is injective and J ′ ⊆ g(A), then A is a module retract of A �� f,g (J, J ′).

Proof. 1. Straightforward
2. Let ϕ : A −→ A �� f,g (J, J ′) defined by ϕ(a) = ( f (a), g(a)) and

ψ : A �� f,g (J, J ′) −→ A defined by ψ( f (a) + j, g(a) + j ′) = a. ψ is well
defined since f −1(J ) = g−1(J ′) = 0 and the conclusion now is straightforward.

3. let ϕ : A −→ A �� f,g (J, J ′) defined by ϕ(a) = ( f (a), g(a)) and
ψ : A �� f,g (J, J ′) −→ A defined by ψ( f (a) + j, g(a) + j ′) = a + t , where
t is the unique element such that g(t) = j ′. ψ is well defined and the conclusion
now is straightforward.

Next, beforewe announce themain result of this section (Theorem1), we establish
the following lemmas.

Lemma 1. Let f : A −→ B and g : A −→ C be two ring homomorphisms and let
J (resp., J ′) be a proper ideal of B (resp., C) such that f −1(J ) = g−1(J ′). Then:

1. {0} × J ′ (resp., J × {0}) is a finitely generated ideal of A �� f,g (J, J ′) if and
only if J ′ (resp., J ) is a finitely generated ideal of g(A) + J ′ (resp., f (A) + J ).

2. If A �� f,g (J, J ′) is a coherent ring and J, J ′ are finitely generated ideals of
f (A) + J and g(A) + J ′, respectively, then f (A) + J and g(A) + J ′ are coher-
ent rings.

Proof. 1. Assume that J ′ := ∑i=n
i=1(g(A) + J ′)ki is a finitely generated ideal of

g(A) + J ′, where ki ∈ J ′. It is clear that
∑i=n

i=1(A �� f,g (J, J ′))(0, ki ) ⊆ {0} ×
J ′. Let x := (0,

∑i=n
i=1(g(αi ) + j ′i )ki ) ∈ {0} × J ′, where αi ∈ A and j ′i ∈ J ′.

Hence, x = (0,
∑i=n

i=1(g(αi ) + j ′i )ki ) = ∑i=n
i=1(0, (g(αi ) + j ′i )ki ) = ∑i=n

i=1( f
(αi ), g(αi ) + j ′i )(0, ki ) ∈ ∑i=n

i=1(A �� f,g (J, J ′))(0, ki ). Therefore, {0} × J ′ ⊆
∑i=n

i=1(A �� f,g (J, J ′))(0, ki ) and so {0} × J ′ = ∑i=n
i=1(A �� f,g (J, J ′))(0, ki ).

Conversely, assume that {0} × J ′ = ∑i=n
i=1(A �� f,g (J, J ′))(0, ki ) is a finitely

generated ideal of A �� f,g (J, J ′), where ki ∈ J ′. It is readily seen that J ′ =∑i=n
i=1(g(A) + J ′)ki , as desired.
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2. Assume that A �� f,g (J, J ′) is a coherent ring and J × {0} (resp., {0} × J ′ ) is
a finitely generated ideal of A �� f,g (J, J ′). Then f (A) + J (∼= A�� f,g(J,J ′)

{0}×J ′ ) and

g(A) + J ′(∼= A�� f,g(J,J ′)
J×{0} ) by [19, Proposition 4.1(b)] are coherent rings by [15,

Theorem 2.4.1], as desired.

Lemma 2. Let f : A −→ B and g : A −→ C be two ring homomorphisms and let
J (resp., J ′) be an ideal of B (resp., C) such that f −1(J ) = g−1(J ′) and let U be a
submodule of An.

Assume that U is a finitely generated A−module and J , J ′ are finitely generated
ideals of f (A) + J and g(A) + J ′, respectively. ThenU �� f n ,gn (J n, J ′n) is a finitely
generated A �� f,g (J, J ′)− module.

Proof. Assume that U := ∑i=n
i=1 Aui is a finitely generated A−module, where ui ∈

U for all i ∈ {1, ..., n}, J n := ∑i=n
i=1( f (A) + J )ei and J ′n := ∑i=n

i=1(g(A) + J )di
are finitely generated ( f (A) + J )−module and (g(A) + J ′)−module, respectively,
where ei ∈ J n and di ∈ J ′n for all i ∈ {1, ..., n}. We claim that

U �� f n ,gn (J n, J ′n) = ∑i=n
i=1(A �� f,g (J, J ′))( f n(ui ), gn(ui )) + ∑i=n

i=1(A �� f,g

(J, J ′))(ei , 0) + ∑i=n
i=1(A �� f,g (J, J ′))(0, di ).

Indeed,
∑i=n

i=1(A �� f,g (J, J ′))( f n(ui ), gn(ui )) + ∑i=n
i=1(A �� f,g (J, J ′))(ei , 0) +

∑i=n
i=1(A �� f,g (J, J ′))(0, di ) ⊆ U �� f n ,gn (J n, J ′n) since ( f n(ui ), gn(ui )) ∈

U �� f n ,gn (J n, J ′n), (ei , 0) ∈ U �� f n ,gn (J n, J ′n) and (0, di ) ∈ U �� f n ,gn (J n, J ′n)
for all i ∈ {1, ..., n}.

Conversely, let ( f n(x) + j, gn(x) + j ′) ∈ U �� f n ,gn (J n, J ′n), where x ∈ U , j ∈
J n and j ′ ∈ J ′n . Hence, x = ∑i=n

i=1 αi ui , for some αi ∈ A (i ∈ {1, ..., n}), j =
∑i=n

i=1( f (βi ) + ji )ei ∈ J n and j ′ = ∑i=n
i=1(g(λi ) + j ′i )di ∈ J ′n forβi , λi ∈ A, ji ∈ J

and j ′i ∈ J ′ (i ∈ {1, ..., n}.
We obtain

( f n(x) + j, gn(x) + j ′) = ( f n(
i=n∑

i=1

αi ui ) + j, gn(
i=n∑

i=1

αi ui ) + j ′)

= (

i=n∑

i=1

f (αi ) f
n(ui ),

i=n∑

i=1

g(αi )g
n(ui )) + ( j, 0) + (0, j ′)

=
i=n∑

i=1

( f (αi ), g(αi ))( f
n(ui ), g

n(ui )) + (

i=n∑

i=1

( f (βi ) + ji )ei , 0)

+ (0,
i=n∑

i=1

(g(λi ) + j ′i )di )

=
i=n∑

i=1

( f (αi ), g(αi ))( f
n(ui ), g

n(ui )) +
i=n∑

i=1

( f (βi ) + ji , 0)(ei , 0)
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+
i=n∑

i=1

(0, g(λi ) + j ′i )(0, di )

=
i=n∑

i=1

( f (αi ), g(αi ))( f
n(ui ), g

n(ui )) +
i=n∑

i=1

( f (βi ) + ji , g(βi ))(ei , 0)

+
i=n∑

i=1

( f (λi ), g(λi ) + j ′i )(0, di ).

Consequently, ( f n(x) + j, gn(x) + j ′) ∈ ∑i=n
i=1(A �� f,g (J, J ′))( f n(ui ), gn(ui )) +

∑i=n
i=1(A �� f,g (J, J ′))(ei , 0) + ∑i=n

i=1(A �� f,g (J, J ′))(0, di )
since ( f (αi ), g(αi )), ( f (βi ) + ji , g(βi )), ( f (λi ), g(λi ) + j ′i ) ∈ A �� f,g (J, J ′) for
all i ∈ {1, ..., n}. Hence U �� f n ,gn (J n, J ′n) = ∑i=n

i=1(A �� f,g (J, J ′))( f n(ui ),
gn(ui )) + ∑i=n

i=1(A �� f,g (J, J ′))(ei , 0) + ∑i=n
i=1(A �� f,g (J, J ′))(0, di ) is a finitely

generated (A �� f,g (J, J ′))-module, as desired.

Lemma 3. Let f : A −→ B and g : A −→ C be two ring homomorphisms and
let J (resp., J ′) be an ideal of B (resp., C) such that f −1(J ) = g−1(J ′). Assume
that J (resp., J ′) is a finitely generated ideal of f (A) + J (resp., g(A) + J ′) and
J ⊆ f (A). Then J × {0} is a coherent (A �� f,g (J, J ′))-module provided f (A) + J
is a coherent ring.

Proof. Since J × {0} is a finitely generated (A �� f,g (J, J ′))-module, it remains
to show that every finitely generated submodule of J × {0} is finitely presented.
Assume that f (A) + J is a coherent ring and let N be a finitely generated submod-
ule of J × {0}. It is clear that N = I × {0}, where I = ∑i=n

i=1( f (A) + J )bi for some
integer n and bi ∈ I . Consider the exact sequence of ( f (A) + J )-modules

0 −→ ker v −→ ( f (A) + J )n −→ I −→ 0 (1)

where v(( f (αi ) + ji )i=n
i=1) = ∑i=n

i=1( f (αi ) + ji ))bi . Then,

ker v = {( f (αi ) + ji )
i=n
i=1) ∈ ( f (A) + J )n/

i=n∑

i=1

( f (αi ) + ji ))bi = 0}

= {( f (ci ))i=n
i=1) ∈ ( f (A))n/

i=n∑

i=1

( f (ci ))bi = 0}

where ci = αi + ki and f (ki ) = ji for some ki ∈ A (since J ⊆ f (A)).
The ( f (A) + J )-module ker v is finitely generated since f (A) + J is a coherent

ring. Let { f n((c1i ))i=n
i=1), f n((c2i ))

i=n
i=1), ..., f n((cmi ))i=n

i=1)} be a generating set of ker v.
On the other hand, it is easily verified that N = ∑i=n

i=1(A �� f,g (J, J ′))(bi , 0). Con-
sider the exact sequence of (A �� f,g (J, J ′))-modules

0 −→ ker u −→ (A �� f,g (J, J ′))n −→ N −→ 0 (2)
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whereu(( f (αi ) + ji , g(αi ) + j ′i )
i=n
i=1)=

∑i=n
i=1( f (αi ) + ji , g(αi ) + j ′i ))(bi , 0). Then,

ker u = {(( f (αi ) + ji , g(αi ) + j ′i )i=n
i=1) ∈ (A �� f,g (J, J ′))n/

i=n∑

i=1

( f (αi ) + ji ))bi = 0}

= {(( f (di ), g(di ) + ki )
i=n
i=1) ∈ (A �� f,g (J, J ′))n/

i=n∑

i=1

( f (di ))bi = 0}

where di = αi + ti and f (ti ) = ji for some ti ∈ A (since J ⊆ f (A)).
Let U be the the submodule of An generated by {((c1i )i=n

i=1), ((c
2
i )

i=n
i=1), ...,

((cmi )i=n
i=1)}, we claim that ker u = U �� f n ,gn (0, J ′n).

Indeed, let x = ( f n((di )i=n
i=1), g

n((di )i=n
i=1) + ( ji )i=n

i=1) ∈ U �� f n ,gn (0, J ′n), so
((di )i=n

i=1) = ∑ j=m
j=1 a j ((c

j
i )

i=n
i=1) = (

∑ j=m
j=1 a j c

j
i )

i=n
i=1. We have

i=n∑

i=1

f (di )bi =
i=n∑

i=1

f (
j=m∑

j=1

a j c
j
i )bi =

i=n∑

i=1

(

j=m∑

j=1

f (a j c
j
i ))bi =

j=m∑

j=1

f (a j )(

i=n∑

i=1

f (c ji )bi ) = 0.

Consequently, x ∈ ker u.
Conversely, let x ∈ ker u, so x = ( f n((di )i=n

i=1), g
n((di )i=n

i=1) + (ki )i=n
i=1) such that

∑i=n
i=1 f (di )bi = 0. Then, f n((di )i=n

i=1) ∈ ker v hence

f n((di )
i=n
i=1) =

j=m∑

j=1

f (a j ) f
n((c j

i )
i=n
i=1)

=
j=m∑

j=1

f n((a j c
j
i )

i=n
i=1)

= f n((
j=m∑

j=1

a j c
j
i )

i=n
i=1)

consequently, x = ( f n((
∑ j=m

j=1 a j ci )i=n
i=1), g

n((
∑ j=m

j=1 a j c
j
i )

i=n
i=1) + (ki )i=n

i=1) where

(
∑ j=m

j=1 a j c
j
i )

i=n
i=1 ∈ U which implies that x ∈ U �� f n ,gn (0, J ′n). SinceU is a finitely

generated A-module and J is a finitely generated ideal of B, thenU �� f n ,gn (0, J ′n)
is a finitely generated (A �� f,g (J, J ′))-module (by Lemma 2). Therefore, N is a
finitely presented (A �� f,g (J, J ′))-module by the sequence (2) and hence J × {0}
is a coherent (A �� f,g (J, J ′))-module, to complete the proof of lemma 3.

Lemma 4. Let f : A −→ B and g : A −→ C be two ring homomorphisms and
let J (resp., J ′) be an ideal of B (resp., C) such that f −1(J ) = g−1(J ′). Assume
that J (resp., J ′) is a finitely generated ideal of f (A) + J (resp., g(A) + J ′) and
J 2 = 0. Then J × {0} is a coherent (A �� f,g (J, J ′))-module provided f (A) + J is
a coherent ring.

Proof. Since J × {0} is a finitely generated (A �� f,g (J, J ′))-module, it remains
to show that every finitely generated submodule of J × {0} is finitely presented.
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Assume that f (A) + J is a coherent ring and let N be a finitely generated submod-
ule of J × {0}. It is clear that N = I × {0}, where I = ∑i=n

i=1( f (A) + J )bi for some
integer n and bi ∈ I . Consider the exact sequence of ( f (A) + J )-modules

0 −→ ker v −→ ( f (A) + J )n −→ I −→ 0 (1)

where v(( f (αi ) + ji )i=n
i=1) = ∑i=n

i=1( f (αi ) + ji ))bi . Then,

ker v = {( f (αi ) + ji )
i=n
i=1) ∈ ( f (A) + J )n/

i=n∑

i=1

( f (αi ) + ji ))bi = 0}

= {( f (αi ) + ji )
i=n
i=1) ∈ ( f (A) + J )n/

i=n∑

i=1

( f (αi ))bi = 0}

since I ⊆ J and J 2 = 0.
The ( f (A) + J )-module ker v is finitely generated since f (A) + J is a coher-

ent ring. Let { f n((α1
i ))

i=n
i=1) + ( j1i )i=n

i=1, f n((α2
i ))

i=n
i=1) + ( j2i )i=n

i=1, ..., f n((αm
i ))i=n

i=1) +
( jmi )i=n

i=1} be a generating set of ker v. On the other hand, it is easily verified
that N = ∑i=n

i=1(A �� f,g (J, J ′))(bi , 0). Consider the exact sequence of (A �� f,g

(J, J ′))-modules

0 −→ ker u −→ (A �� f,g (J, J ′))n −→ N −→ 0 (2)

where u(( f (di ) + ji , g(di ) + j ′i )
i=n
i=1)=

∑i=n
i=1( f (di ) + ji , g(di ) + j ′i ))(bi , 0). Then,

ker u = {( f (di ) + ji , g(di ) + j ′i )
i=n
i=1)∈(A �� f,g (J, J ′))n/

i=n∑

i=1

( f (di ) + ji ))bi = 0}

= {( f (di ) + ji , g(di ) + ki )
i=n
i=1) ∈ (A �� f,g (J, J ′))n/

i=n∑

i=1

( f (di ))bi = 0}

since I ⊆ J and J 2 = 0.
LetU be the submodule of An generated by {((α1

i )
i=n
i=1), ((α

2
i )

i=n
i=1), ..., ((α

m
i )i=n

i=1)},
we claim that ker u = U �� f n ,gn (J n, J ′n).

Indeed, let x = ( f n((di )i=n
i=1) + ( ji )i=n

i=1, g
n((di )i=n

i=1) + ( j ′i )
i=n
i=1) ∈ U �� f n ,gn (J n,

J ′n), so ((di )i=n
i=1) = ∑ j=m

j=1 a j ((α
j
i )

i=n
i=1) = (

∑ j=m
j=1 a jα

j
i )

i=n
i=1. We have

i=n∑

i=1

f (di )bi =
i=n∑

i=1

f (
j=m∑

j=1

a jα
j
i )bi =

i=n∑

i=1

(

j=m∑

j=1

f (a jα
j
i ))bi =

j=m∑

j=1

f (a j )(

i=n∑

i=1

f (α j
i )bi ) = 0.

Consequently, x ∈ ker u.
Conversely, let x ∈ ker u, so x = ( f n((di )i=n

i=1) + (ki )i=n
i=1, g

n((di )i=n
i=1) + (k ′

i )
i=n
i=1)

such that
∑i=n

i=1 f (di )bi = 0, then f n((di )i=n
i=1) + (ki )i=n

i=1 ∈ ker v hence
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f n((di )
i=n
i=1) + (ki )

i=n
i=1 =

s=m∑

s=1

( f (as) + ts)( f
n((αs

i )
i=n
i=1) + ( j si )

i=n
i=1)

=
s=m∑

s=1

f n((asα
s
i )

i=n
i=1) + (li )

i=n
i=1

= f n((
s=m∑

s=1

asα
s
i )

i=n
i=1) + (li )

i=n
i=1

consequently, x = ( f n((
∑s=m

s=1 asαs
i )

i=n
i=1) + (li )i=n

i=1, g
n((

∑s=m
s=1 asαs

i )
i=n
i=1) + (l ′i )

i=n
i=1)

where (
∑s=m

s=1 asαs
i )

i=n
i=1 ∈ U which implies that x ∈ U �� f n ,gn (J n, J ′n). Since U

is a finitely generated A-module and J (resp., J ′) is a finitely generated ideal of B
(resp., C), then U �� f n ,gn (0, J ′n) is a finitely generated (A �� f,g (J, J ′))-module
(by Lemma 2). Therefore, N is a finitely presented (A �� f,g (J, J ′))-module by the
sequence (2) and hence J × {0} is a coherent (A �� f,g (J, J ′))-module, to complete
the proof of lemma 4.

Lemma 5. Let f : A −→ B and g : A −→ C be two ring homomorphisms and let
J (resp., J ′) be an ideal of B (resp., C) such that f −1(J ) = g−1(J ′).

1. If (A �� f,g (J, J ′)) is a coherent ring and J is regular, then J ′ is a finitely
generated ideal of g(A) + J ′.

2. Assume that J, J ′ are regular ideals of f (A) + J and g(A) + J ′, respectively.
If A �� f,g (J, J ′) is a coherent ring then so is f (A) + J and g(A) + J ′.

Proof. 1. Assume that (A �� f,g (J, J ′)) is a coherent ring and J contains a regular
element k. Set c = (k, 0) ∈ A �� f,g (J, J ′). One can easily check that

(0 : c) = {( f (a) + j, g(a) + j ′) ∈ A �� f,g (J, J ′)/( f (a) + j, g(a) + j ′)(k, 0) = 0}
= {( f (a) + j, g(a) + j ′) ∈ A �� f,g (J, J ′)/( f (a) + j)k = 0}
= {( f (a) + j, g(a) + j ′) ∈ A �� f,g (J, J ′)/( f (a) + j) = 0}
= {(0, g(a) + j ′) ∈ A �� f,g (J, J ′)/a ∈ f −1(J ) = g−1(J ′)}
= {0} × J ′

Since (A �� f,g (J, J ′)) is a coherent ring, then (0 : c) = {0} × J ′ is a finitely
generated ideal of A �� f,g (J, J ′). Therefore, J ′ is a finitely generated ideal of
g(A) + J ′, as desired.

2. Follows immediately from (1) and Lemma 1.

Now, to the main result:

Theorem 1. Let f : A −→ B and g : A −→ C be two ring homomorphisms and
let J (resp., J ′) be a proper ideal of B (resp., C) such that f −1(J ) = g−1(J ′).

1. Assume that J, J ′ are finitely generated ideals of f (A) + J and g(A) + J ′,
respectively, and J ⊆ f (A). Then
A �� f,g (J, J ′) is a coherent ring if and only if f (A) + J and g(A) + J ′ are
coherent rings.
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2. Assume that J, J ′ are finitely generated ideals of f (A) + J and g(A) + J ′,
respectively, and J 2 = 0. Then
A �� f,g (J, J ′) is a coherent ring if and only if f (A) + J and g(A) + J ′ are
coherent rings.

3. Assume that J, J ′ are regular ideals of f (A) + J and g(A) + J ′, respectively,
and J ⊆ f (A). Then
A �� f,g (J, J ′) is a coherent ring if and only if f (A) + J and g(A) + J ′ are
coherent rings and J , J ′ are finitely generated ideals of f (A) + J and g(A) + J ′,
respectively.

4. Assume that J is a regular finitely generated ideal of f (A) + J and J ′ ⊆ g(A).
Then
A �� f,g (J, J ′) is a coherent ring if and only if f (A) + J and g(A) + J ′ are
coherent rings and J ′ is a finitely generated ideal of g(A) + J ′.

5. Assume that J is a regular finitely generated ideal of f (A) + J and J ′2 = 0.
Then
A �� f,g (J, J ′) is a coherent ring if and only if f (A) + J and g(A) + J ′ are
coherent rings and J ′ is a finitely generated ideal of g(A) + J ′.

Proof. 1. If A �� f,g (J, J ′) is a coherent ring, then so are f (A) + J and g(A) +
J ′ by (lemma 1(2)) since J, J ′ are finitely generated ideals of f (A) + J and
g(A) + J ′, respectively. Conversely, assume that f (A) + J and g(A) + J ′ are
coherent rings. Since f (A) + J (∼= A�� f,g(J,J ′)

{0}×J ′ ) and g(A) + J ′(∼= A�� f,g(J,J ′)
J×{0} ) by

[19, Proposition 4.1(b)] and J × {0} is a coherent (A �� f,g (J, J ′))-module (by
Lemma 3), then A �� f,g (J, J ′) is a coherent ring by [15, Theorem 2.4.1] .

2. If A �� f,g (J, J ′) is a coherent ring, then so are f (A) + J and g(A) + J ′
by (lemma 1(2)) since J, J ′ are finitely generated ideals of f (A) + J and
g(A) + J ′, respectively. Conversely, assume that f (A) + J and g(A) + J ′ are
coherent rings. Since f (A) + J (∼= A�� f,g(J,J ′)

{0}×J ′ ) and g(A) + J ′(∼= A�� f,g(J,J ′)
J×{0} ) by

[19, Proposition 4.1 (b)] and J × {0} is a coherent (A �� f,g (J, J ′))-module (by
Lemma 1), then A �� f,g (J, J ′) is a coherent ring by [15, Theorem 2.4.1] .

3. Follows immediately from theorem 1(1) and Lemma 5.
4. Follows immediately from theorem 1(1) and Lemma 5.
5. Follows immediately from theorem 1(2) and Lemma 5.

Recall that the amalgamation of A with B along J with respect to f is given by

A �� f J := {(a, f (a) + j) | a ∈ A, j ∈ J }

Clearly, every amalgamation can be viewed as a special bi-amalgamation, since
A �� f J = A ��I d, f ( f −1(J ), J ). Accordingly, Theorem 1 covers the special case
of amalgamation [1], as recorded below.

Corollary 1. Let f : A −→ B be a ring homomorphism and let J be a proper ideal
of B.

1. If A �� f J is a coherent ring, then so is A.
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2. Assume that J and f −1(J ) are finitely generated ideals of f (A) + J and A,
respectively. Then A �� f J is a coherent ring if and only if f (A) + J and A are
coherent rings.

3. Assume that J is a regular finitely generated ideal of f (A) + J . Then A �� f J
is a coherent ring if and only if f (A) + J and A are coherent rings and f −1(J )

is a finitely generated ideal of A.

The following Corollary is an immediate consequence of Theorem 1(3)(4).

Corollary 2. Let f : A −→ B and g : A −→ C be two ring homomorphisms and
let J (resp., J ′) be an ideal of B (resp., C) such that f −1(J ) = g−1(J ′).

1. If B is an integral domain, J is a finitely generated ideal of f (A) + J and J ′2 = 0,
then:
A �� f,g (J, J ′) is a coherent ring if and only if f (A) + J and g(A) + J ′ are
coherent rings and J ′ is a finitely generated ideal of g(A) + J ′.

2. If B and C are integral domains and J ⊆ f (A), then::
A �� f,g (J, J ′) is a coherent ring if and only if f (A) + J and g(A) + J ′ are
coherent rings and J , J ′ are finitely generated ideals of f (A) + J and g(A) + J ′,
respectively.

Example 1. Let A be a non-Noetherian coherent ring, I and K are finitely generated
ideals of A such that I ⊆ K . Let f : A → A/I be the canonical homomorphism and
g : A → A × A be the injective homomorphism defined by g(a) = (a, 0), J = K/I
and J ′ = K × 0. Then A �� f,g (J, J ′) is a non-Noetherian coherent ring.

Proof. By Theorem 1, A �� f,g (J, J ′) is a coherent ring since f (A) + J = A/I and
g(A) + J ′ = A × A are both coherent rings and J (resp., J ′) is a finitely generated
ideal of f (A) + J (resp., g(A) + J ′) and J = K/I ⊆ f (A) = A/I . On the other
hand, A �� f,g (J, J ′) is a non-Noetherian ring by [19, Proposition 4.2] since g(A) +
J ′ = A × A is non-Noetherian ring.

Example 2. Let (A, M) be a non-Noetherian local coherent ring such that M is
a finitely generated ideal and E be an A/M-vector space of finite rank. Let f :
A → A � E be the injective homomorphism defined by f (a) = (a, 0) and g : A →
A/M[X1, X2, ..., Xn] defined by g(a) = a, J = 0 � E and J ′ = (X1, X2, ..., Xn).
Then A �� f,g (J, J ′) is a non-Noetherian coherent ring.

Proof. By Theorem 1, A �� f,g (J, J ′) is a coherent ring since f (A) + J = A � E
is a coherent ring by [20, Theorem 2.6] and g(A) + J ′ = A/M[X1, X2, ..., Xn] is a
coherent ring (Noetherian) and J (resp., J ′) is a finitely generated ideal of f (A) + J
(resp., g(A) + J ′) and J 2 = 0.On the other hand, A �� f,g (J, J ′) is a non-Noetherian
ring by [19, Proposition 4.2] since f (A) + J = A × E is non-Noetherian ring.

Example 3. Let A = Z[X ], B = Z + XQ[X ], C = Z and let J = n0Z + XQ[X ] ,
J ′ = n0Z ideals of B and C , respectively. Let f : A −→ B be the homomorphism
defined by f (P(X)) = P(X) and g : A −→ C be the homomorphism defined by
f (P(x)) = P(0). Then A �� f,g (J, J ′) is a non-Noetherian coherent ring.
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Proof. By Theorem 1, A �� f,g (J, J ′) is a non-Noetherian coherent ring since
f (Z[X ]) + J = Z + XQ[X ] is a non-Noetherian coherent ring and g(Z[X ]) + J ′ =
Z is a coherent ring (Noetherian) and J ′ ⊆ g(A).

Example 4. Let A = Z[X ], B = Z + XQ[X ], C = Z + iZ[i] = Z[i], and let J =
n0Z + XQ[X ] , J ′ = n0Z + iZ[i] ideals of B and C , respectively. Let f : A −→ B
be the homomorphism defined by f (P(X)) = P(0) and g : A −→ C be the homo-
morphism defined by f (P(x)) = P(i). Then A �� f,g (J, J ′) is a non-Noetherian
coherent ring.

Proof. By Theorem 1, A �� f,g (J, J ′) is a non-Noetherian coherent ring since
f (Z[X ]) + J = Z + XQ[X ] is a non-Noetherian coherent ring and g(Z[X ]) + J ′ =
Z[i] is a coherent ring (Noetherian) and J ′ ⊆ g(A).
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On the Set of Intermediate Artinian Subrings

Driss Karim

Abstract The paper contributes to the investigation of intermediate Artinian
subrings between R and T , where R ↪→ T is an extension of rings.

Keywords Artinian ring · Intermediate Artinian subring · Directed union of
Artinian subrings · Infinite product · Reduced ring · Residue fields
Semi-quasilocal ring · Von Neumann regular ring · Zero-dimensional ring

1 Introduction

The study of zero-dimensionality in commutative rings has been widely treated in
the literature (see [2, 3, 6, 9, 10]). In particular, many recent papers investigate
zero-dimensional overrings, zero-dimensional subrings, and Artinian subrings of
a commutative ring. The aim of this paper is to contribute to the investigation of
rings which can be embeddable in an Artinian ring. Recall that Artinian rings form
an important class of zero-dimensional rings. Moreover, an Artinian ring has only
finitely many idempotent elements. Essentially, the characterization of the set of
Artinian subrings of a commutative ring is known (see [9]). Now, we are interested
in the Artinian overring of pair of rings, that means, we are looking for intermediate
Artinian rings between R and T , where R is a subring of a ring T . Of particular
interest is [9, Theorem 2.1], which shows that any zero-dimensional ring with only
finitelymany distinct characteristics of its residue fields contains anArtinian subring.

We give a short overview of the paper. In Sect. 1, the basic notions and techni-
cal tools, which touch upon various aspects of zero-dimensionality, are introduced
and developed. In particular, we provide some results concerning the minimal zero-
dimensional subring of T containing R, where R is a subring of T . Section2 deals
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with the problem of determining conditions under which the pair of rings (R, T )

contains an intermediate Artinian ring. We show in Theorem 1 that if R is reduced
then there exists an indeterminate Artinian ring between R and T if and only if
I dem(R0) is finite. Finally, we offer a partial answer to the problem (P).

Find necessary and sufficient conditions on a pair (R, S) of rings such that there
exists an intermediate Artinian subring.

All rings considered in this paper are commutative with identity element and,
unless otherwise specified, are assumed to be nonzero. All ring-homomorphisms are
unital. If R is a subring of a ring S, we assume that the unity of S belongs to R.
Throughout, we use I dem(R), Spec(R), and C (R), respectively, to denote the set
of idempotent elements of R, the set of prime ideals of R, and the set {char(R/M):
M ranges over the maximal ideals of R}.

2 Preliminaries and General Results

Let R be a ring, we recall that R is reduced if
⋂

P∈Min(R) P = (0), where Min(R)

is the set of minimal prime ideals of R, and zero-dimensional if all prime ideals are
maximal. It is worthwhile recalling that any Artinian ring T is zero-dimensional but
the converse is not true, in general. For example, the ring T = QN the countable
direct product of copies ofQ, is zero-dimensional but not Artinian since Spec(T ) is
infinite.

Let S be a ring, a subring of R is assumed to contain the prime subring of S. We
denote by Z (S) and A (S), respectively, the set of zero-dimensional and Artinian
subrings of S. Let Z (R, S) denote the set of zero-dimensional overrings of R con-
tained in S and finally,A (R, S) denotes the set of all intermediate Artinian subrings
of S containing R.

Under the assumption thatZ (R, T ) is nonempty,Arapovic constructed the unique
minimal zero-dimensional subring R0 of T containing R (see [3]). If {Rα}α∈A is a
the family of zero-dimensional subrings of T containing R, then

⋂
α∈A Rα is a zero-

dimensional ring. Hence ifZ (R, T ) is nonempty, then there exists a unique minimal
zero-dimensional subring of T containing R. We will denote the minimal zero-
dimensional subring of T containing R, where Z (R, T ) �= ∅, by R0, but R0 is not
determined up to isomorphism by R alone; R0 also depends upon T , so notation such
as R0(T ) would more accurately reflect the situation. Next, we give preliminaries
and some properties of minimal zero-dimensional subrings.

Lemma 1. Let {(Ri , Ti )}ni=1 be a finite family of pairs of rings, and R
o
i be theminimal

zero-dimensional subring of Ti containing Ri , for each i = 1, . . . , n. Then
∏n

i=1 R
o
i

is the minimal zero-dimensional subring of
∏n

i=1 Ti containing
∏n

i=1 Ri .

Proof. Wedenote by R = ∏n
i=1 Ri and T = ∏n

i=1 Ti .We observe that R = ∏n
i=1 R

0
i

is a zero-dimensional ring since dim(
∏n

i=1 R
0
i ) = Sup{dim(R0

i ) : 1 ≤ i ≤ n} = 0.
Hence Z (R, T ) �= ∅. Let R0 be the minimal zero-dimensional subring of T con-
taining R. We denote by ei the primitive idempotent with support {i}. Then
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{ei }ni=1 is an orthogonal family of idempotent elements. Consider φi : T → Ti the
canonical projection homomorphism with φi (T ) = Ti and φi (R) = Ri for each
i = 1, . . . , n. Let φi (R0) = Wi be a zero-dimensional subring of Ti containing Ri for
each i = 1, . . . , n. Then R0

i ⊆ Wi for each i = 1, . . . , n. Suppose that there exists
i0 ∈ {1, . . . , n} such that R0

i ⊂ Wi which means that R ⊆ ∏n
i=1 R

0
i ⊂ ∏n

i=1 Wi =
R0
i ⊆ T , that is a contradiction with R0 is the minimal zero-dimensional subring of

T containing R.

Besides Artinian rings another distinguished class of zero-dimensional rings is
that von Neumann regular rings. We recall that a ring R is said to be von Neumann
regular if for each element t of R there is an element x in R such that t = t2x . We
will use the knowing lemmas throughout this paper.

Lemma 2. [10, Proposition 2.3] A ring R is a von Neumann regular ring if and
only if R is zero-dimensional and reduced.

Lemma 3. Any zero-dimensional ring R with only finitelymany idempotents is semi-
quasilocal.

Proof. LetM1, . . . , Mr+1 be distinctmaximal ideals of R. Let x ∈ Mr+1 \ (∪r
i=1Mi ),

since dimR = 0 by [6, Theorem3.1], there exists t ∈ Z+ and e an idempotent element
of R such that xt R = eR. Hence e ∈ Mr+1 \ (∪r

i=1Mi ). It follows that if R has n
maximal ideals, it has at least n − 1 idempotents. Therefore, R is necessarily semi-
quasilocal.

Lemma 4. Any von Neumann regular ring R with only finitely many maximal ideals
is finite product of fields.

Lemma 5. Let {Ri }ni=1 be a finite family of rings. Then
∏n

i=1 Ri is Artinian if and
only if Ri is Artinian for each i = 1, . . . , n.

Proof. Suppose that R = ∏n
i=1 Ri is Artinian, by Lemma 3, |I dem(R)| < k, for

some k ∈ Z+. Letπi : R → Ri be the natural surjective homomorphism for each i =
1, . . . , n. Ifwedenote by Ii = Ker(πi ), then R

Ii

 Ri andhence Ri is anArtinian ring,

for each i = 1, . . . , n. Conversely, let
∏n

i=1 Ri be a finite direct product of Artinian
rings. It is clear that R is Noetherian as each Ri is Noetherian. Since dim(R) =
Sup{dim(Ri ) : i = 1, . . . , n} = 0. By [4, Theorem 8.5], the ring R is Artinian.

Remark 1. If R = ∏
α∈A Rα is an infinite direct product of Artinian rings, then R is

not Artinian since |I dem(R)| is infinite.
Let R be a commutative ring and X an indeterminate over R. For a polynomial

f ∈ R[X ], denote by σ( f ) the so-called the content ideal of f , that is, the ideal
of R generated by the coefficients of f . The set S = { f ∈ R[X ] : σ( f ) = R} =
R[X ] \ ⋃{M[X ] : Mismaximal of R} is a multiplicatively closed subset of R[X ].
The localization R(X) = S−1R[X ] is called the Nagata ring in one variable over R.
(See also [8, Chapter IV]).
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Lemma 6. If Ro is the minimal zero-dimensional ring of Z (R, T ), then Ro(X) is
the minimal zero-dimensional of T (X) containing R(X).

Proof. If we denote R
′ = R[{e : e an idempotent of R}], then R0 = T (R

′
) (cf. [6,

Remark 3.5]). Since R0 is zero-dimensional, by [8, Corollary 2.12] R0 satisfies
Property A1 and by [8, Corollary 2.6] R

′
satisfies Property A. It follows that R0(X) =

T (R
′
(X)) = T (R

′
(X)) (cf. [8, Theorem 16.4]). According to [8, Theorem 14.7], T

and T (X) have the same idempotent elements, hence

(R(X))
′ = R(X)[{e; e an idempotent of T}] = R[{e; e an idempotent of T}](X) = R

′
(X).

It follows that
R0(X) = T (R(X)

′
) = (R(X))0.

By using the correspondence of ideals one can also show that if A (R, T ) �= ∅
and then so is A (S−1R, S−1T ) �= ∅, where S is a multiplicatively closed sub-
set of R. Since any intermediate Artinian subring A in A (R, T ), we have S−1A
is also Artinian ring such that S−1R ⊆ S−1A ⊆ S−1T (see [4]). It follows that,
A (S−1R, S−1T ) �= ∅.
Lemma 7. If R is an Artinian ring, then R(X) is also Artinian ring.

Proof. Assume that R is Artinian, by [11, (6.17)] R(X) is Noetherian since R is
Noetherian. Each R(X) is zero-dimensional as it is R (cf. [1, Proposition 1.21]).
Therefore, R(X) is both zero-dimensional and Noetherian, by [4, Theorem 8.5],
R(X) is Artinian.

Lemma 8. Let R be a zero-dimensional ring with finite spectrum, then R is express-
ible as a finite product of zero-dimensional quasilocal subrings.

Proof. Let Spec(R) = {Mi }ni=1 be the spectrumof R. Let SMi (0) to denote Kerϕi for
each i = 1, ..., n, where ϕi : R → RMi and ϕi (r) = r

1 , is the canonical homomor-
phism. Since Rad(SMi (0)) = Mi , SMi (0) is a primary ideal. Note that ∩n

i=1SMi (0) =
(0) and SMi (0) + SMj (0) = R for each i �= j in { 1,..., n}. Therefore, R 
 R

∩n
i=1SMi (0)

.

By the Chinese remainder theorem, R 
 ∏n
i=1

R
SMi (0)

, where R
SMi (0)

is quasilocal and
zero-dimensional, for i = 1, ..., n.

If Spec(R) is finite, then so is Spec(R0), and hence I dem(R0) is a finite set. By
Lemma 8, we can write R0 = W1 ⊕ · · · ⊕ Wn , where eachWi is a zero-dimensional
quasilocal ring. Now, assume R0 is quasilocal. In this case let M be the maximal
ideal of R0 and let P0 = M ∩ R. Then P0 is the unique minimal prime of R. We
conclude this section with a characterization of rings which are embeddable in a
zero-dimensional ring by using the annihilator of ideals.

Proposition 1. Let R be a subring of a ring T . ThenZ (R, T ) �= ∅ if and only if for
each finitely generated ideal I , the set {AnnR(I j )}∞j=1 stabilizes for some m ∈ Z+.

1A ring R satisfies Property A if each finitely generated ideal I ⊆ Z(R) has a nonzero annihilator.
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To prove this result, we need the following Lemma.

Lemma 9. [5, Theorem 4.1] If R admits a zero-dimensional extension ring, then
for each x in R, there exists a positive integer mx such that xmx and xmx+1 have the
same annihilator in R.

Proof of Proposition 1. Let I = (r1, . . . , rk) be a finitely generated ideal of R.
Let X1, . . . , Xk be indeterminates over R and let Sn be the set of all homogeneous
polynomials f ∈ R[X1, . . . , Xk] of degree n such that f (r1, . . . , rk) ∈ I n (All terms
of f have degree n). Let S = ⋃∞

i=1 Si . Let z ∈ I n , then z = f (r1, . . . , rk), i.e., z =
∑l

i=1 fi (r1, . . . , rk), where fi ∈ Sn is a monomial for each i = 1, . . . , l. That means
that fi (r1, . . . , rk) = rl11 . . . rlkk such that l1 + · · · + lk = n. SinceZ (R, T ) �= ∅, for
each i = 1, . . . , k, there exists mi ∈ Z+ such that AnnR(rmi

i ) = AnnR(rmi+1
i ). Let

s = m1 + · · · + mk = l1 + · · · + lk , we have

fi (r1, . . . , rk) = rl11 . . . rmi
i . . . rlkk ∈ I l1+···+mi+···+ lk

for each fi ∈ Sl1+···+mi+···+lk . We observe that

AnnR(rl11 . . . rmi
i . . . rlkk ) = AnnR(rl11 . . . rmi+1

i . . . rlkk )

for each i = 1, . . . , k and rl11 . . . rmi
i . . . rlkk ∈ I l1+···+mi+···+ lk . In other words, by

induction, we state that

AnnR( fi (r1 . . . rk)) = AnnR( fi+n(r1 . . . rk))

for each i ∈ Z+, and for each fi ∈ Sm1+···+mk , i.e., AnnR(I m1+···+mk ) = AnnR

(I m1+···+mk+n) for each n ∈ Z+. We denote by J = m1 + · · · + mk , we have AnnR

(I j ) = AnnR(I j+n), for each n ∈ Z+. It follows that the sequence {AnnR(I j )}∞j=1
stabilizes, which is what we wished to show. ��

3 The Set of Intermediate Reduced Artinian Subrings

Artinian rings are the simplest kind of ring after a field, and we study them not
because of their generality but because of their simplicity. Since any Artinian ring
is zero-dimensional, before working over A (R, T ) we have to recall some basic
properties concerning the setZ (R, T ). We denote that almost all rings are subrings
of zero-dimensional rings. Among these rings which are included

(i) Integral domains, since each integral domain is a subring of its quotient field.
(ii) Reduced rings, these are precisely subrings of product of fields.
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(iii) Any ring in which (0) is a finite intersection of primary ideals (this includes
Noetherian rings and Laskerain rings).2

If R is an Artinian quasilocal ring with maximal ideal m, then m is the only
prime ideal of R and therefore m is the nilradical of R. Hence every element of m is
nilpotent, andm itself is nilpotent. Every element of R is either a unit or is nilpotent.
In this section, we are interested in the problem (P). Next, we try to obtain results
concerning the emptiness of A (R, T ) for special pairs of rings.

Proposition 2. Let R be a subring of T . Assume that Z (R, T ) �= ∅. Then
A (R, T ) �= ∅ if and only if A (Ro, T ) �= ∅.
Proof. Since eachArtinian ring is zero-dimensional, we haveA (R, T ) ⊆ Z (R, T ).
Assume that A (R, T ) �= ∅, that means that there exists an intermediate Artinian
subring A between R and T , then A ∈ Z (R, T ) and hence Ro ⊆ A, because Ro is
the smallest zero-dimensional subring of T containing R. Therefore, A ∈ A (Ro, T ).
The converse is immediate from the fact that any Artinian subring of T containing
R contains R0.

Proposition 3. Let {(Rα, Tα)}α∈A be a family of pairs of rings. Then A (
∏

α∈A Rα,∏
α∈A Tα) �= ∅ if and only if A is a finite set and A (Rα, Tα) �= ∅ for each α ∈ A.

Proof. Suppose that A (
∏

α∈A Rα,
∏

α∈A Tα) �= ∅, let S be an Artinian subring of∏
α∈A Tα containing

∏
α∈A Rα . Let πβ : ∏

α∈A Tα → Tβ be the canonical projec-
tion homomorphism for each β ∈ A. Let Iβ = Ker(πβ), then πβ(S) = Sβ 
 S

Iβ∩S

and hence Sβ is Artinian which satisfies πβ(
∏

α∈A Rα) ⊆ Sβ ⊆ πβ(
∏

α∈A Tα), i.e.,
Rβ ⊆ Sβ ⊆ Tβ . It follows that, Sβ ∈ A (Rβ, Tβ) for each β ∈ A. If A is infinite,
then

∏
α∈A Rα has an infinite idempotent elements. Indeed, let eα be an element

of
∏

α∈A Rα defined by eα(β) = 0 if α �= β and eα(α) = 1. Then e2α = eα , i.e.,
eα ∈ I dem(

∏
α∈A Rα) and |I dem(

∏
α∈A Rα)| is infinite. We observe that for each

α ∈ A, eα ∈ S. That means that |I dem(S)| > |I dem(
∏

α∈A Rα)|. In other words,
I dem(S) is infinite. This is a contradiction with S is Artinian (see Lemma 3).
Thus, A is finite. Conversely, since eachA (Rα, Tα) is a non-empty set, let Sα be an
Artinian subring of Tα containing Rα . By Lemma 5,

∏
α∈A Sα is an Artinian subring

of
∏

α∈A Tα containing
∏

α∈A Rα , this is because of the finiteness of the set A.

As we saw in the previous section that there is a nice relationship between the
finiteness of the set of idempotent elements and the cardinality of the spectrum of a
commutative ring. More precisely, if a ring R has only finitely many prime ideals,
then the set of idempotents is also finite.

Whenwe turn toArtinian rings, itworth noticing that if R has infinitemanydistinct
idempotent elements, then R is not embeddable in an in an Artinian ring, because
each idempotent element of R is also an idempotent element of any extension of rings.
In this section, for convenience, we assume that the set of idempotent elements is
finite.

2A ring R is said to be Laskerian if each ideal of R admits a shortest primary representation.
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Theorem 1. Let R be a reduced subring of T . Then A (R, T ) �= ∅ if and only if
I dem(Ro) is finite.

To prove this result we need the following lemma.

Lemma 10. Let R be a subring of a ring T and assume that Z (R, T ) �= ∅. Then
R is reduced implies that Ro is also reduced.

Proof. IfZ (R, T ) is nonempty, then there exists a unique smallest zero-dimensional
subring of T containing R, say Ro. The ring Ro is generated by R and idempotents
ex ∈ T for each x ∈ R, i.e., Ro = R[ex/x ∈ R]. Let E be the Boolean algebra of
idempotents generated by the idempotents ex for each x ∈ R. Then for each x ∈ R,
x takes the following form:

x = r1 f1 + · · · + rn fn,

where fi ∈ E are orthogonal and ri ∈ R, for each i = 1, . . . , n. For each i =
1, . . . , n, setting eri ∈ I dem(T ). Let

e = er1 f1 + · · · + ern fn.

For each s ∈ Z+,
xs = r s1 f1 + · · · + r sn fn.

As f 2i = fi and fi f j = 0 for each i �= j . Then xs �= 0 for each s ∈ Z+, since R is
a reduced ring. Hence Ro is reduced.

Proof of Theorem 1. Assume that A (R, T ) �= ∅, i.e., let A ∈ A (R, T ). Since Ro

is the smallest zero-dimensional subring of T containing R, we may have R0 ⊆ A.
Then |I dem(R0)| < |I dem(A)|. As A is Artinian, there exists k ∈ Z+ such that
|I dem(A)| < k, thatmeans that |I dem(R0)| < k. It follows that I dem(R0) is a finite
set. Conversely, suppose that I dem(R0) is finite. Since R is reduced, by Lemma 10,
R0 is reduced. By Lemma 2, R0 is a von Neumann regular ring. Our hypothesis
implies that R0 is a von Neumann regular ring with finite spectrum. By Lemma 4,
R0 is a finite product of fields. Therefore, R0 is Artinian. Thus A (R, T ) �= ∅. ��

An important remark: given R ↪→ T an extension of rings, ifC (T ) = {char( T
M ) :

M ∈ Max(T )} is infinite, by [9, Theorem 2.1], the set A (T ) is empty. This shows
the relationship between the set of Artinian intermediate subrings and the set of
characteristics of residue fields of T .

Lemma 11. [9, Theorem2.1] Let R be a ring, thenA (R) �= ∅ if and only ifZ (R) �=
∅ and C (R) is a finite set.

Using this result we state the relationship between Artinian subrings and zero-
dimensional subrings since any Artinian ring is zero-dimensional, i.e., A (R) ⊆
Z (R). Further, we note that if a ring R has C (R) is infinite, then R has no Artinian
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subrings. Assume that C (T ) is a finite set. Since R0 is zero-dimensional, we have
C (T ) = C (R0). In other words, C (R0) is a finite set. Observe that if R is a zero-
dimensional ring of characteristic zero, then 0 ∈ C (R). This is clear from the fact
that Z ⊆ R impies that there exists a prime of R lying over (0) in Z.

Now, let R be a ring of characteristic 0. That means that R contains π , the prime
subring, which is isomorphic to Z. Then R is an extension of Z. Therefore, it is
desirable to find the existence of intermediate Artinian subring in A (Z, R).

Proposition 4. For each Artinian subring in A ∈ A (Z, R), we have A contains Q
the field of rational numbers.

Proof. Assume thatA (Z, R) �= ∅ and let A be an Artinian subring of R containing
Z. Since each Artinian is a finite direct product of quasilocal Artinian rings, we can
assume without loss of generality that A is a quasilocal ring. It is well known that a
quasilocal ring of characteristic zero that contains a zero-dimension subring contains
Q. That implies that A contains Q.

From this result we state the following.

Corollary 1. Let R be a ring of characteristic 0. Then A (Z, R) �= ∅ if and only if
Q ⊆ R.

Remark 2. If A (Z, R) is a non-empty set, then R needs not be semi-quasilocal.
Indeed, let R = Qw0 be a countable direct product ofQ. We observe thatA (Z, R) �=
∅ since Q(i) = {{xi }∞i=1 : xi = xi+1 = . . . }. It is not difficult to see that Q(i) = Qi is
the finite direct product of the field Q, and hence Q(i) is an Artinian subring of R.
Thus A (Z, R) �= ∅.

Finally, if R is a finitely generated extension of Z, then R does not contain a zero-
dimensional subring (cf. [6, Proposition 2.2]). This is an example of a ring which
cannot be embedded in zero-dimensional extension. Let R be a subring ofZ, ifC (R),
consists of all characteristics of residue fields of R, is infinite, then ZV is a Hilbert
ring 3 of positive dimension, and by [6, Proposition 2.2], R has not zero-dimensional
subring if R is finitely generated over ZV . Thus we can state the following result.

Corollary 2. Let R be an overring ofZ. Assume thatC (R) is finite. ThenZ (R) �= ∅
if and only ifA (R) �= ∅. That means that if R contains a zero-dimensional subring,
then R also contains an Artinian subring. WhenC (R) is infinite, we haveZ (R) = ∅
and hence A (R) = ∅.
Remark 3. A subring of a Noetherian ring is not necessarily Noetherian. Indeed,
consider R = k[X1, X2, . . . ] the polynomial ring of infinitely many indeterminates,
with k is a field. There is an ascending chain of ideals

(X1) ⊂ (X1, X2) ⊂ · · · ⊂ (X1, X2, . . . , Xi ) ⊂ . . . .

So R is not Noetherian. But clearly K , its quotient fields, is Noetherian.

3A ring R is said to be Hilbert if for each proper prime ideal of R is an intersection of maximal
ideals of R.
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Intermediate Artinian subring is preserved by taking quotient and ring-
homomorphism.

Lemma 12. Let R bea subringof a ring T andϕ : T →T ′ bea ring-homomorphism.
If A (R, T ) �= ∅, then A (ϕ(R), ϕ(T )) �= ∅.
Proof. Let S be an Artinian subring of ϕ(T ) containing ϕ(R), i.e., ϕ(R) ⊆ S ⊆
ϕ(T ). Let A be the inverse image of S byϕ, so R ⊆ A ⊆ T . Since S = ϕ(A) = A

Ker(ϕ)

is an Artinian ring, so we have A (ϕ(R), ϕ(T )) �= ∅.
Example 1. Let p be a positive prime number. Let R = ∏∞

n=1(
Z

pZ )n be an infinite

direct product of Z

pZ . Since char(R) = p, we have Z∗
p is isomorphic to Zp which

means that Z∗
p is Artinian ring. Therefore,A (Z∗

p, R) �= ∅. However, I dem(R) is an
infinite set.

Proposition 5. Let R be a subring of a ring T . If R0 is semi-quasilocal, then R has
exactly many minimal primes. In particular, R0 is the total quotient ring of R.

Proof. Let {Mi }ni=1 be the set of maximal primes of R0. Then Pi = Mi ∩ R is the set
of minimal primes of R. In other words, Z(R) = ⋃n

i=1 Pi is the set of zero-divisors
of R. Thus the total quotient ring of R is Q(R) = S−1R, where S = R \ (

⋃n
i=1 Pi ),

which is zero-dimensional and is contained in R0. Since R0 is the smallest zero-
dimensional subring of T containing R. Then Q(R) = R0.

Proposition 6. Let R be a reduced ring in which (0) has a finite primary decom-
position. If (0) = Q1 ∩ · · · ∩ Qn be a reduced primary decomposition of (0), where
Qi is a Pi− primary ideal in R. Then R is embeddable in an Artinian overring.

Proof. Assume that (0) = Q1 ∩ · · · ∩ Qn is a finite primary decomposition. As
(0) = Q1 ∩ · · · ∩ Qn , the ring-homomorphismϕ : R → RP1

Q1RP1

⊕ · · · ⊕ RPn
Qn RPn

= T

defined by r �→ ( r1 + Q1RP1 , . . . ,
r
1 + QnRPn ) is injective. Then we can regard R as

a subring of T . We have each
RPi

Qi RPi
is also reduced for each i = 1, . . . , n. It follows

that
RPi

Qi RPi
is a vonNeumann regular quasilocal ring for each i = 1, . . . , n. Therefore,

RPi
Qi RPi

is a field for each i = 1, . . . , n, since each any von Neumann regular with only

many maximal ideals is a field. Hence
RP1

Q1RP1

⊕ · · · ⊕ RPn
Qn RPn

is a finite direct product
of fields. Then R is embeddable in a Artinian overring. In other words, R is a subring
of an Artinian ring.

Remark 4. If (0) = ⋂
α∈A Qα , where {Qα}α∈A is an infinite family of primary ideals,

then R needs not be a subring of anArtinian as shows the following example: Let p be
a prime number.We have

⋂∞
i=1 p

iZ = (0) and each piZ is pZ-primary ideal ofZ.We
observe that the ring-homomorphismϕ : Z → ∏∞

i=1
Z

piZ defined byϕ(n) = n + piZ

is injective. We state thatA (Z,
∏∞

i=1
Z

piZ ) = ∅, otherwise let A ∈ A (Z,
∏∞

i=1
Z

piZ ),

which means that Z (Z,
∏∞

i=1
Z

piZ ) �= ∅, by [9, Theorem 2.1], this a contradiction

with
∏∞

i=1
Z

piZ has no zero-dimensional subring. Thus, A (Z,
∏∞

i=1
Z

piZ ) = ∅.



148 D. Karim

Remark 5. If Spec(R0) is finite, then the set of idempotents of R0 is finite (cf.
Lemma 3).We can write R0 as direct sum R0 = R0e1 ⊕ · · · ⊕ R0en , where each
ei is a nonzero idempotent, each R0ei is a quasilocal ring. We can replace R by
R[e1, . . . , en] = Re1 ⊕ · · · ⊕ Ren .

Proposition 7. Let R be a subring of a ring T . Assume R0 is a quasilocal ring. If
R is Noetherian then R is embeddable in Artinian overring.

Proof. Assume that R is a Noetherian and Z (R, T ) �= ∅. Let R0 be the minimal
zero-dimensional subring of T containing R. Since R0 is quasilocal with maximal
ideal m, we may have P = m ∩ R is the unique minimal ideal of R. In other words,
dim(RP) = 0 and RP ⊆ R0, that means, R0 = RP . As R is Noetherian, we have R0

is also Noetherian. By [4, Theorem 8.5], R0 is Artinian.

Theorem 2. Let R be a subring of a ring T . Assume that the nilradical N (T ) of T
is a finitely generated R− module. If Z (R, T ) �= ∅ then A (R, T ) �= ∅.
Proof. If Z (R, T )) �= ∅, we consider R0 the minimal zero-dimensional subring of
T containing R. To show thatA (R, T )) is nonempty, it suffices to prove that R0 is an
Artinian subring of T containing R.Also to show R0 isArtinian it suffices, byCohen’s
Theorem, to show that N (R0) is finitely generated as an ideal of R0. This is because

R0

N (R0)
is a reduced zero-dimensional with only finitely many idempotent elements.

In other words, is von Neumann regular with only finitely many idempotents which
means that R0

N (R0)
is finite direct product of fields and hence is Artinian. Furthermore,

observe that N (R0) = N (T ) ∩ R0 is a finitely generated as R0−module. ByCohen’s
Theorem, R0 is an Artinian subring of T containing R. Thus A (R, T ) �= ∅.
Remark 6. If R is not finitely generated as R-module, then N (R) needs not be finitely
generated. Indeed, let K be a field and {Xi }∞i=1 be an infinite family of indeterminates
over K .We consider I as an ideal of K [[X1, X2, . . . ]], the ring of formal power series
in variables {Xi }∞i=1, generated by (Xi X j Xk, X2

i , all i, j, k ∈ Z+). Observe that S =
K [[X1,Xn ,... ]]

I is a quasilocal zero-dimensional ringwithmaximal idealM = (X1,X2,... )

I .
Then N (S) = (x1, x2, . . . ) is not finitely generated ideal of S, where xi = Xi + I
for each i ∈ Z+. Let’s construct T that satisfies the condition that N (T ) is finitely
generated. Let T = S[[t1,t2,Yni : i=1, 2...,n=1, 2,... ]]

(t21 ,t22 ,Xi−Yn1 t1−Yn2 t2)
, all ti and Yni are indeterminates over

S. Let f : S → T be the natural ring-homomorphism, it is an inclusion. Further, the
ring T obviously has N (T ) = (t1, t2).

Proposition 8. Let R be a subring of a ring S. Assume that Z (R, S) �= ∅ and
Idem(S) is finite. If N (R) is a finitely generated ideal then A (R, S) �= ∅.
Proof. Let I dem(S) = {ei }ni=1, then we can express S as a finite direct sum of
indecomposable rings,4 i.e., S = ⊕n

i=1 Sei , where ei is an idempotent element
of S, for each i = 1, . . . , n. Since Z (R, S) �= ∅, let R0 be the minimal zero-
dimensional subring of S containing R. As Sei is a quasilocal ring for each

4A ring R is said to be indecomposable if it cannot be written as a direct sum of nontrivial rings.
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i = 1, . . . , n. Then R0e1 ⊕ · · · ⊕ R0en = R0[e1, . . . , en] is a integral extension of
R0, then dim(R0[e1, . . . , en]) = 0. Observe that R0ei is a zero-dimensional subring
of Sei containing Rei , by Lemma 2, R0ei is the minimal zero-dimensional subring
of Sei containing Rei , for each ei . We can assume without loss of generality that R0

is quasilocal with maximal ideal m. We have N (R0) = m and N (R) = m ∩ R = P
is the unique minimal prime ideal of R. Then RP is a zero-dimensional subring of S
containing R. By the minimality of R0, we have R0 = RP and PRP = m, and hence
m is a finitely generated ideal as P is a finitely generated ideal of R. According to
Cohen’s Theorem, R0 is a Noetherian ring. Then A (R, S) �= ∅.
Acknowledgements The authors are indebted to the referee for his/her useful suggestions and
comments.
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