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Abstract
Until now, chemotherapy has been the main line of defense against Leishmania
infections. However, drug use and abuse have resulted in the selection and
development of resistance mechanisms which strongly limit the number of
antiprotozoal agents that are effective for the treatment of this disease. The
emergence and spread of resistance to drugs currently in use and available for
leishmaniasis emphasize that new compounds need to be identified and developed
and that novel chemotherapeutic targets must be characterized. Mechanisms of
drug resistance are often associated with decreased uptake of the drug into the
parasite, poor drug activation, physiological alterations in the drug target, and
overexpression of drug transporter proteins. One mechanism of resistance to
antimony in Leishmania involves a decrease in its accumulation by either reduced
uptake or increased efflux, mediated by P-glycoprotein (Pgp)-like transporters,
which belong to the ATP-binding cassette (ABC) superfamily of proteins. The
inhibition of the function of these proteins represents an attractive way to control
drug resistance in clinical environments. New natural or synthetic sesquiterpenes,
flavonoids, acridonecarboxamide derivative modulators of human Pgp (zosuquidar
and elacridar), statins, pyridine analogs, 8-aminoquinolines, or phenothiazines
revert in Leishmania the resistance phenotype to antimony, pentamidine, sodium
stibogluconate, and miltefosine by modulating intracellular drug concentrations. In
this chapter, we review some concepts concerning the reversal mechanism of
multidrug resistance by the use chemosensitizers which alter the capacity of Pgp.
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14.1 Introduction

Arsenic- and antimony-containing drugs are still the first line of treatment for
leishmaniasis. Pentavalent antimonial compounds (SbV) remain the choice of treat-
ment for all forms of leishmaniasis, ranging from cutaneous lesions to fatal visceral
infections. The emergence and spread of resistance to currently used antileishmanial
drugs emphasize the fact that new compounds need to be identified and developed.
Resistance to antimonial drugs is everyday more frequently reported [1–3].

A large amount of scientific effort is spent on elucidating the mechanisms
underlying this resistance with the hope of restoring/improving the efficacy of
existing drugs and of developing new drugs that can bypass resistance mechanisms.

Among the various drug resistance mechanisms identified, those based on drug
movement through the membranes appear to play an important role by decreasing
the drug concentration at the target sites. The transport proteins of the ATP-binding
cassette (ABC) superfamily provide the basis of multidrug resistance in mammalian
cancer cells and in pathogenic yeasts, fungi, parasites, and bacteria [4–8]. ABC
proteins were also identified in resistance to antileishmanial drugs (see Table 14.1).
The ABC transporters are described in Chap. 11.

But all of the ABC families are not associated with antileishmanial drug resis-
tance, such as the ABCA family [9].

The ABCB family includes the multidrug-resistant protein 1 (MDR1) or ABCB4
protein and the multidrug-resistant protein 2 (MDR2) or ABCB2 protein, whose
overexpression confers resistance to vinblastine and structurally non-related hydro-
phobic compounds such as puromycin, adriamycin, doxorubicin, and daunomycin
[10–16]. LeMDR1 (LeABCB4) can also affect pentamidine resistance [17]. Addi-
tionally, LgMDR1 and LaMDR1 are increased in antimony-resistant strains of
L. (V.) guyanensis or L. (L.) amazonensis [18]. The subcellular location of
LeABCB4 and LaABCB2 (LaMDR2) in the tubular structure, a compartment that
may correspond to a multivesicular tubule lysosome, suggests that mechanisms of
resistance in Leishmania are different from those acting in the conventional mam-
malian efflux pump Pgp MDR1.

The ABCC family includes the multidrug-resistant protein A (MRPA) or
P-glycoprotein A (PGPA) or ABCC3; the P-glycoprotein E (PGPE) or ABCC4,
associated with resistance to arsenite and antimonial drugs; and the pentamidine
resistance protein 1 (PRP1) or ABCC7. ABCC3 and ABCC4 are involved in the
resistance of Leishmania toward arsenic and antimony compounds [19–
22]. Overexpression of ABCC4 and ABCC5 can also confer resistance to antimonial
drugs in L. (S.) tarentolae [23]. Additionally, field-resistant isolates to antimony
exhibit upregulation in ABCC3 (MRPA or PGPA) transcript levels in L. (L.)
donovani, L. (V.) braziliensis, L. (V.) guyanensis, L. (L.) amazonensis, or L. (L.)
major (>1.5) [18, 24, 25]. ABCC7 is shown to confer pentamidine resistance in the
promastigote and amastigote form of L. (L.) major and is cross-resistant to trivalent
antimonial drugs when overexpressed [26–28].

The ABCG family includes the ABCG4 and ABCG6 proteins. ABCG4, localized
mainly to the parasite plasma membrane, reduced the accumulation of
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Table 14.1 ATP-binding cassette (ABC) transporters in Leishmania spp.

ABC
subfamily

Leishmania
spp. Protein

Involvement in drug
resistance

ABCA L. (L.)
infantum

LiABCA4 No

LiABCA8 No

L. (L.) major LmABCA3 No

LmABCA4 No

LmABCA8 No

L. (L.) tropica LtrABCA4 or LtrABCA2 No

LtrABCA8 or LtrABC1.1 No

ABCB PgP
cluster

L. (L.)
amanozensis

LaABCB4 or LaMDR1 Yes

LaABCB2 or LaMDR2 Yes

L. (L.)
donovani

LdABCB4 or LdMDR1 Yes

L. (M.)
enriettii

LeABCB4 or LeMDR1 Yes

L. (V.)
guyanensis

LgABCB4 or LgMDR1 Yes

L. (L.) tropica LtrABCB4 or LtrMDR1 Yes

ABCC MRP
cluster

L. (L.)
amazonensis

LaABCC3 or LaMRPA Yes

LaABCC7 or LaPRP1 Yes

L. (V.)
braziliensis

LbABCC3 or LbMRPA Yes

L. (L.)
donovani

LdABCC3 or LdPGPA or
LdMRPA

Yes

L. (V.)
guyanensis

LgABCC3 or LgMRPA Yes

L. (L.)
infantum

LiABCC3 or LiPGPA or
LiMRPA

Yes

LiABCC4 or LiPGPE Yes

LiABCC5 Yes

LiABCC7 or LiPRP1 Yes

LiABCC9 ?

L. (L.) major LmABCC3 or LmPGPA or
LmMRPA

Yes

LmABCC7 or LmPRP1 Yes

L. (L.)
mexicana

LmeABCC3 or LmePGPA or
LmeMRPA

Yes

L. (S.)
torentolae

LtABCC2 or LtPGPB Yes

LtABCC3 or LtPGPA or
LtMRPA

Yes

LtABCC4 or LtPGPE Yes

LtABCC5 Yes

L. (L.) tropica LtrABBC4 or LtrPGPE Yes

(continued)
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phosphatidylcholine analogs and conferred resistance to alkyl-phospholipids
(miltefosine (MIL), edelfosine, and perifosine) when overexpressed. The second
ABCG reported, ABCG6, also localized mainly to the parasite plasma membrane,
confers resistance to MIL and sitamaquine when overexpressed in L. (L.) infantum
[29]. ABCG6 confers also resistance to camptothecin and arsenite [30].

The inhibition of the activity of ABC proteins represents an interesting way to
control drug resistance. This concept of inhibiting ABC transporters is well studied
for malaria [31–33]. Leishmania parasites overexpressing ABCG2 are resistant to
antimony, as they demonstrate a reduced accumulation of SbIII due to an increase in
drug efflux [34].

14.2 Transporter Inhibitors and Modulators of Multidrug
Resistance

A number of compounds, e.g., calcium channel blockers, calmodulin antagonists,
hydrophobic peptides, protein kinase inhibitors, antibiotics, hormone derivatives,
and flavonoids, have been previously described to reverse in vitro multidrug resis-
tance in mammalian cells [35]. They are called modulators or chemosensitizers;
those that reverse the multidrug-resistant phenotype in Leishmania spp. are listed in
Table 14.2.

14.2.1 Calcium Channel Blockers: Verapamil

Some of these compounds, like the L-type voltage-gated channel blocker verapamil,
are known to efficiently overcome multidrug-resistant phenotype in vitro, not only in
mammalian cells [54–56] but also in some bacteria such as Mycobacterium spp.
[57, 58] or Enterococcus spp. [59] and in parasites such as nematodes like
Haemonchus contortus [60–62] and protozoa like Entamoeba histolytica [63–65]
or Plasmodium falciparum [66–68]. Verapamil is an inhibitor of the human Pgp
(ABCB1) [69].

Previous studies have demonstrated that verapamil increases the in vitro anti-
mony activity on L. (L.) donovani [36]. Verapamil shows efficacy in reversing
several P-glycoprotein and MRP overexpression-mediated arsenite resistance

Table 14.1 (continued)

ABC
subfamily

Leishmania
spp. Protein

Involvement in drug
resistance

ABCG L. (L.)
donovani

LdABCG6 Yes

L. (L.)
infantum

LiABCG4 Yes

LiABCG6 Yes

L. (L.) major LmABCG2 Yes

? Not determined
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Table 14.2 Major multidrug resistance reversal drugs investigated in Leishmania spp.

Class of compound and specific
modulators Resistance to Strains References

Calcium channel blockers

Verapamil Antimonials L.(L.) donovani [36]

Pentamidine L. (L.) mexicana [37]

Arsenites L. (L.) donovani [30]

L. (S.) tarentolae [38]

Pirarubicin L. (V.) braziliensis [39]

L. (V.) guyanensis [39]

L. (L.) mexicana [39]

L. (V.) peruviana [39]

L. (V.) panamensis [39]

Vinblastine L. (L.) amazonensis [13]

Calmodulin inhibitors: Phenothiazine derivatives

Chlorpromazine Antimonials L. (L.) donovani [40]

L. (L.) major [40]

L. (V.) braziliensis [39]

L. (V.) guyanensis [39]

L. (L.) mexicana [39]

Pentamidine L. (L.) mexicana [37]

Trifluoperazine, prochlorperazine Pirarubicin L. (V.) braziliensis [39]

L. (V.) guyanensis [39]

L. (L.) mexicana [39]

Thioridazine, trifluoropromazine Pirarubicin L. (V.) braziliensis [39]

L. (V ) guyanensis [39]

L. (L.) mexicana [39]

Flavonoids

Silymarin and silybin derivatives Daunomycin L. (L.) tropica [41]

Quercetin Arsenites L. (L.) donovani [30]

Synthetic flavonoids Pentamidine L. (L.) donovani [42]

L. (M.) enriettii [42]

Sodium
stiboglucanate

L. (L.) donovan [42]

L. (M.) enriettii [42]

Synthetic flavonoid derivatives Antimonials L. (L.) major [43]

Trolox and derivatives Antimonials L. (L.) major [43]

Sesquiterpenes

Dihydro-β-agarofuran
sesquiterpenes

Miltefosine L. (L.) tropica [41]

Sesquiterpene C-3 (agarofuran
derivative)

Edelfosine L. (L.) tropica [41]

Daunomycin L. (L.) tropica [41]

Nortriterpene Daunomycin L. (L.) tropica [44]

Glycyrrhizic acid Sodium
stiboglucanate

L. (L.) donovani [45]

(continued)
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phenotype in L. (S.) tarentolae or L. (L.) donovani [30, 38]. The reversion of in vitro
drug resistance by verapamil is confirmed in L. (L.) donovani clinical isolates
resistant to sodium stibogluconate [70]. This drug partially reverses the resistance
in vinblastine-resistant L. (L.) amazonensis, which show cross-resistance to
adriamycin [13]. The energy-dependent efflux of pirarubicin, an anthracycline
derivative, is inhibited by verapamil in L. (V.) braziliensis, L. (V.) guyanensis,
L. (L.) mexicana, L. (V.) peruviana, and L. (V.) panamensis [39]. However, verapa-
mil cannot revert the resistance to camptothecin, a cytotoxic quinoline alkaloid
which inhibits the DNA enzyme topoisomerase-I [30]. Various studies in cancer
cell lines reveal that development of resistance to topoisomerase inhibitors is a
multifactorial event including altered transport, modified drug metabolism and
detoxification, and change in drug-target interaction. Amino acid substitutions in
topoisomerase-I confer camptothecin resistance in L. (L.) donovani [71]. The appar-
ent wide substrate specificity of the Leishmania transport system suggests that it
could be responsible for the intrinsic resistance of parasite promastigotes to drugs. Its
physiological relevance is supported by the fact that it was described in at least five
different Leishmania species. It seems that verapamil regulates drug susceptibility by
downregulating Pgp expression in arsenical-resistant Leishmania spp. [72]. In tumor
cells, the ability of verapamil to modulate multidrug resistance protein 1 (MRP1 or
ABCC1)-mediated resistance seems to be link to its effect on the reduced glutathione

Table 14.2 (continued)

Statins

Lovastatin Antimonials L. (L.) donovani [46]

Pyridine analogs

PAK104P Pirarubicin L. (V.) braziliensis [39]

L. (V.) guyanensis [39]

L. (L.) mexicana [39]

Oxazolo[3,2-α]pyridine Daunomycin L. (L.) tropica [47]

Miltefosine L. (L.) tropica [47]

Sulfonylurea

Glibenclamide Glucantime L. (L.) mexicana [48]

L. (L.) major [49]

Benzoquinones

Bis-pyranobenzoquinones Daunomycin L. (L.) tropica [50]

Acridine derivatives

Quinacrine Pentamidine L. (L.) donovani [42]

L. (V.) enriettii [51]

8-aminoquinolines

Sitamaquine Miltefosine L. (L.) tropica [52]

Antimonials L. (L.) tropica [52]

Acridonecarboxamide derivatives

Elacridar, zosuquidar Miltefosine L. (L.) tropica [53]
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(GSH) status [73]. In addition to stimulate MRP1-mediated GSH transport, verapa-
mil modulates MRP1-mediated leukotriene C4 transport [74].

Verapamil also enhances pentamidine uptake into resistant L. (L.) mexicana and
also partially reverses the drug resistance phenotype in promastigotes [37], but not in
axenic amastigotes [75]. In addition, using nontoxic concentrations of verapamil, a
dose-dependent reversion of pentamidine is observed in resistant parasites when
compared with those not treated with verapamil in L. (L.) amazonensis [27]. How-
ever, verapamil has any impact either in drug uptake or drug resistance in L. (L.)
donovani [76]. This suggests that Pgp-mediated efflux of pentamidine is not opera-
tive in L. (L.) donovani as it is in L. (L.) mexicana or L. (L.) amazonensis. PRP1
(ABCC7) is shown to confer pentamidine resistance in the promastigote and
amastigote form of L. (L.) major and in L. (L.) infantum when overexpressed
[26, 28], but not in L. (L.) amazonensis [27]. No difference in PRP1 transcript levels
is observed between susceptible and resistant L. (L.) donovani parasites to SbV [77].

The specific Pgp inhibitor cyclosporin-A does not interfere with calcein cell
retention (efflux measurement) in L. (L.) amazonensis, while verapamil does
[78]. These results demonstrate that the drug transport systems expressed in Leish-
mania are susceptible to MRP (ABCC) inhibitors like verapamil, but not to the Pgp
(ABCB) inhibitor like cyclosporin-A.

In addition, it seems that verapamil is ineffective in reverting ABCG6
overexpression-mediated resistance in Leishmania [30].

14.2.2 Calmodulin Inhibitors: Phenothiazine Derivatives

Phenothiazines and reserpine can also reverse drug resistance in mammalian cells,
bacteria, and parasites [79–82]. Phenothiazine drugs, of which chlorpromazine is the
leading molecule, are widely used for their antipsychotic, antianxiety, and antiemetic
effects. In addition, they also possess protozoacidal activity against amastigotes and
promastigotes of L. (L.) donovani and L. (L.) chagasi in vitro as well as in vivo [83–
85]. Chlorpromazine is also an inhibitor of the human Pgp (ABCB1) [69].

Chlorpromazine, trifluoropromazine, thioridazine, trifluoperazine, and
prochlorperazine are reported to inhibit the energy-dependent efflux of pirarubicin,
an anthracycline derivative, in L. (V.) braziliensis, L. (V.) guyanensis, and L. (L.)
mexicana [39]. A synergistic effect between chlorpromazine and N-meglumine
antimoniate is observed in multidrug-resistant L. (L.) donovani and L. (L.) major
cells in vitro [40]. The effect of phenothiazine derivatives on Leishmania drug
transport may be explained by their ability to inhibit the activity of trypanothione
reductase [86, 87]. Indeed, if we consider that the reduced form of trypanothione is
an important co-factor for the function of the Leishmania drug transporter, in the
same way as reduced glutathione is required for the MRP1 function [74, 88],
phenothiazines may inhibit transport activity by decreasing the intracellular level
of reduced trypanothione [39]. However, no significant effect is observed in vivo
against amastigotes of L. (L.) major and L. (L.) mexicana, in cutaneous lesions in
mice [40]. The toxic effects reported with the most frequently studied phenothiazine,

14 P-Glycoprotein-Like Transporters in Leishmania: A Search for Reversal Agents 325



which is chlorpromazine, have impaired the investigation of other phenothiazines as
potential clinical agents.

Prochlorperazine and trifluoperazine enhance pentamidine uptake into resistant
L. (L.) mexicana and also partially reverse the drug resistance phenotype [37]. How-
ever, these drugs have any impact either in drug uptake or drug resistance in L. (L.)
donovani [76]. This indicates that Pgp-mediated efflux of pentamidine is not opera-
tive in L. (L.) donovani as it is in L. (L.) mexicana, like for verapamil.

14.2.3 Flavonoids

The flavonoid class is constituted by flavones, flavonols, isoflavones, flavanones,
and chacones [89]. More than 6500 different flavonoids have been identified from
plant sources.

Flavonoids have shown promise to reverse multidrug-resistant phenotypes in
L. (L.) tropica [41, 42, 90, 91]. Flavonoids constitute a well-known class of natural
inhibitors of different proteins [92] with contradictory results concerning their
modulation effects on different multidrug-resistant cells [93–95]. They bind to the
two cytosolic NBSs of the ABC transporters. The flavanolignan silybin and its
hemisynthetic derivatives exhibit good affinity to NBD2 [96]. The flavonoid
interactions with the ATP-binding site and a vicinal hydrophobic region [41, 91,
97] cause the inhibition of drug efflux and reverse the resistance to daunomycin in
L. (L.) tropica. Only flavonoids which bind with high affinity to the cytosolic domain
NBD2 are able to both increase daunomycin accumulation in a L. (L.) tropica line
overexpressing MDR1 (LtrABCB4) and inhibit the parasite growth in the presence
of the drug [41]. In addition, flavonoids, such as quercetin a flavone, may modulate
the multidrug transporter by decreasing Pgp synthesis and inhibiting the transcrip-
tional activation of the mdr gene involved in the susceptibility to daunomycin
[53, 98]. Quercetin is a human Pgp (ABCB1), MRP2 (ABCC2), and BCRP
(ABCG2) transporter inhibitor [69, 99]. Quercetin reverts the resistance to
camptothecin in L. (L.) donovani that overexpresses LdABCG6 involved in resis-
tance to camptothecin and arsenite [30] and is associated with reduction of accumu-
lation of alkyl-phospholipid drugs such as MIL in Leishmania [29]. Synthetic
flavonoid dimmers exhibit a significant reversing activity on pentamidine and
sodium stibogluconate resistance in L. (S.) enriettii and L. (L.) donovani [42]. This
modulatory effect is dose-dependent and due to the bivalent nature of the flavonoid
compounds. Compared to other MDR inhibitors such as verapamil, reserpine,
quinine, quinacrine, and quinidine, these compounds are the only agents that can
reverse sodium stibogluconate resistance in L. (S.) enriettii. These modulators
exhibit reversal activity on pentamidine resistance, comparable to that of reserpine
and quinacrine but whatever the level of overexpression of Lemdr1 gene suggesting
that these modulators are not specific to LeABCB4 (LeMDR1). Recently, new
compounds derived from aurone, flavones, isoflavones, xanthone, chalcones, and
trolox were evaluated against antimony-resistant strains of L. (L.) major [43]. Two
trolox carboxamides induce reversion of antimony resistance in the promastigote
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form of L. (L.) major. These two compounds are specific reversal agents targeting
the Leishmania ABCI4 transporter. This transporter belongs to an unclassified group
of proteins in the ABC family with no known homology with other eukaryotic ABC
proteins but with orthologues in Trypanosoma brucei and Trypanosoma cruzi
[100]. ABCI4 is a protein located in the plasma membrane and mitochondria of
the parasite and efflux antimony. Overexpression of ABCI4 confers resistance to
antimony.

14.2.4 Sesquiterpenes

Agarofuran sesquiterpenes, e.g., natural compounds isolated from Maytenus
cuzcoina [101, 102], M. chubutensis [91], M. macroparta [103], M. magellanica
[91],M. apurimacensis, [104] and Crossopetalum tonduzii [105], are new promising
reversal agents that overcome the multidrug-resistant phenotype in Leishmania,
including the resistance to anthracyclines (daunomycin) and alkyl-
lysophospholipids (MIL and edelfosine). In L. (L.) tropica, dihydro-β-agarofuran
sesquiterpenes enhance accumulation of calcein, a Pgp substrate, probably due to
Pgp-like transporter inhibition [91]. These compounds bind to the NBD2 C-terminal
of L. (L.) tropica Pgp-like transporter, LtrMDR1 (LtrABCB4) [105]. A series of
dihydro-β-agarofuran sesquiterpenes isolated from the leaves of Maytenus cuzcoina
or semisynthetic derivatives have been tested on L. (L.) tropica parasites
overexpressing Pgp [101]. Three-dimensional quantitative structure-activity rela-
tionship using the comparative molecular similarity indices analysis (3D-QSAR/
CoMSIA) is employed to characterize the steric, electrostatic, lipophilic, and
hydrogen-bond-donor and hydrogen-bond-acceptor requirements of these
sesquiterpenes as modulators at Pgp-like transporter. The most salient features of
requirements are the H-bond interaction between the substituents at the C-2 and C-6
positions with the receptor. The structure-activity relationship (SAR) suggests that a
substituent at the C-2 position seems to be essential for reversal activity in the MDR
Leishmania line by acting as a H-bond acceptor. The furan ring at the C-6 position
seems to form a hydrogen bond with the receptor. The introduction of a carbonyl
group, capable of acting as a H-bond acceptor in the H-bond with the receptor,
produces a tenfold higher chemosensitization. This suggests a direct interaction with
the receptor. These results would be used to design and synthesize more effective
and specific new Pgp inhibitors.

Sesquiterpene C-3 remarkably sensitizes multidrug-resistant parasites to MIL and
edelfosine by increasing alkyl-lysophospholipid accumulation [53]. Moreover,mdr1
gene transfections can alter membrane fluidity in mammalian cells and change alkyl-
lysophospholipid effects [106, 107].

Nortriterpene, extracted from Maytenus chubutensis and M. magellanica
(Celastraceae family), shows only moderate MDR1 reversal activity in a L. (L.)
tropica strain overexpressing LtrMDR1, involved in daunomycin resistance [64].

Glycyrrhizic acid, a triterpenoid saponin isolated from the root of the liquorice
plant, limits infection with sodium antimony gluconate (SAG)-resistant L. (L.)
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donovani in combination with SAG treatment [45]. Glycyrrhizic acid enhances
antimony retention by inhibition of MRP1 and Pgp expression levels in splenic
macrophages from infected mice. Glycyrrhizic acid acts by modulation of host ABC
transporters. Glycyrrhizic acid suppresses cell surface expression of MRP1 and Pgp
in host macrophages.

14.2.5 Statins: Lovastatin

Statins, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors,
belong to a family of lipid-lowering drugs that are currently used for the control of
hyperlipidemia and are considered useful for protection from cardiovascular events.
Apart from the cholesterol-lowering activity of statins, the immunomodulatory and
pleiotropic effects of statins may significantly impact infection-related survival
[108, 109]. Statins interfered with the growth of protozoan parasites in the
Trypanosomatidae family, such as Trypanosoma cruzi and various Leishmania
species [110–112].

Statins are also inhibitors of Pgp in cancer cells [66, 113, 114]. Additionally, in
Plasmodium falciparum, atorvastatin has synergistic effects in combination with
antimalarial drugs such as dihydroartemisinin, quinine, or mefloquine [115–117].
atorvastatin acts probably by inhibition of MDR-like proteins, which are involved in
malaria resistance.. In Leishmania, the combination of the antifungal drug micona-
zole and lovastatin is synergic in terms of inhibition of promastigote proliferation,
macrophage infection, and amastigote number [118]. In promastigote cultures, the
effect is more marked in L. (L.) amazonensis parasites than L. (L.) donovani. But it
seems that this effect is due to inhibition of sterol biosynthesis by both lovastatin and
miconazole. More recently, lovastatin, which can inhibit both Pgp and MRP1
(ABCC1), allows the accumulation of sodium antimony gluconate in resistant
L. (L.) donovani and reversion of antimony resistance [46]. Lovastatin can induce
not only the retention of antimony compounds but also that of an unrelated chemo-
therapeutic agent such as doxorubicin in cancer cells.

14.2.6 Pyridine Analog: PAK-104P

A pyridine analog, PAK-104P, was demonstrated in vitro as well as in vivo to inhibit
Pgp-mediated multidrug resistance to vincristine, adriamycin, doxorubicin, pacli-
taxel, and antimonial and arsenical drugs [119–124]. PAK-104P partially reverses
the resistance and increases the arsenite accumulation in cancer cells that
overexpress MRP1 (ABCC1) [125]. PAK-104P can inhibit both Pgp and MRP
[123]. PAK-104P also blocks the energy-dependent efflux of pirarubicin in L. (V.)
braziliensis, L. (V.) guyanensis, and L. (L.) mexicana [39]. This compound probably
alters the activity of trypanothione reductase and the transport activity by decreasing
the intracellular level of reduced trypanothione.
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Oxazolo[3,2-α]pyridine derivatives produce a significant reversion of resistance
to both MIL and daunomycin in a MDR1 overexpressing L. (L.) tropica strain [47].

14.2.7 Sulfonylurea: Glibenclamide

Glibenclamide is a sulfonylurea that inhibits ABC proteins such as Pgp (ABCB1)
[69, 126] and MRP1 (ABCC1) of cancer cells [127].

Glibenclamide increases calcein accumulation in L. (L.) amazonensis-resistant
line, like verapamil [78]. Cyclosporin-A, which is a specific inhibitor of Pgp, doesn’t
increase calcein accumulation. These results demonstrate that the drug transport
systems expressed in L. (L.) amazonensis are susceptible to MRP (ABCC) inhibitors
like glibenclamide or verapamil, but not to the Pgp (ABCB) inhibitor like
cyclosporin-A. The increased expression of MRP1 (ABCC1) at the plasma mem-
brane of the protoplast of Arabidopsis thaliana is associated with an increase in the
resistance of Arabidopsis to SbIII and a decrease of SbIII accumulation in protoplast
[128]. The simultaneous administration in vitro of glibenclamide, a human MRP1
(ABCC1) inhibitor, increases the efficacy of Glucantime and decreases the infection
rate of infected macrophages by L. (L.) major [49]. A fixed concentration of 50 μM
glibenclamide in combination with various concentration of Glucantime caused an
inhibition of 80–90% in cell growth. The administration of glibenclamide in experi-
mental in vivo settings increases the potency of Glucantime when administered
simultaneously and reduces the size of lesions in mice infected with drug-susceptible
and drug-resistant Leishmania [48]. The Glucantime-glibenclamide combination
could represent a novel strategy to fight against Leishmania infection.

14.2.8 Acridonecarboxamide Derivatives: Elacridar and Zosuquidar

Acridonecarboxamide derivatives, elacridar (LY335979) and zosuquidar
(GF120918), modulators of human P-glycoprotein [129, 130], can overcome Pgp
(LtrMDR1 or LtrABCB4)-mediated LeishmaniaMIL resistance by increasing intra-
cellular MIL accumulation [131]. Overexpression of LtrABCB4 is involved in MIL
resistance [59]. In addition, ABCG4, localized mainly to the parasite plasma mem-
brane, reduced the accumulation of phosphatidylcholine analogs and conferred
resistance to alkyl-phospholipids (MIL, edelfosine, and perifosine) when
overexpressed [132]. The second ABCG reported, ABCG6, also localized mainly
to the parasite plasma membrane, conferred resistance to MIL and sitamaquine when
overexpressed in L. (L.) infantum [29]. Overexpression of ABCG6 is associated with
reduction of accumulation of alkyl-phospholipid drugs into Leishmania.
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14.2.9 Dithiocarbamate: Disulfiram

Disulfiram (Antabuse) is used as an adjunct in the treatment of chronic alcoholism.
Disulfiram is able to potentiate the antimalarial action of subcurative doses of
chloroquine and amodiaquine in Plasmodium berghei- and P. vinckei petteri-
infected mice [133]. Disulfiram inhibits P-glycoproteins by covalently modifying
one or more endogenous cysteine residues (Cys1074) in NBD2 [134]. Modification
of only one of the Walker A cysteines is sufficient to inactive Pgp [135]. This drug
could be effective in combination with Glucantime [136].

14.2.10 Benzoquinones

Bis-pyranobenzoquinones inhibit the activity of Pgp of mammalian cells but not
MRP1 (ABCC1) [50]. In addition, these compounds increase the activity of dauno-
rubicin in resistant L. tropica line. Bis-pyrano-1,4-benzoquinones are the best
modulators in MDR human cancer cells, while bis-pyrano-1,2-benzoquinones
exhibit the higher toxicity in combination with daunorubicin in MDR L. (L.)
tropica line.

14.2.11 Quinacrine

Quinacrine is an acridine derivative with antimalarial, antileishmanial, and
antitrypanosomal activities [137–139].

Quinacrine can have a synergistic effect in combination with pentamidine in
L. (M.) enriettii and in L. (L.) donovani [42, 51]. Moreover, quinacrine is only
effective in the pentamidine-resistant Leishmania, not in the sodium stibogluconate-
resistant or vinblastine-resistant parasites [42]. Surprisingly, quinacrine not only
restores the susceptibility of resistant parasites to pentamidine but also increases
the susceptibility of susceptible parasites. This result suggests that the quinacrine
target remains unaltered in susceptible and resistant parasites to pentamidine. What-
ever the quinacrine target might be, it cannot be an ABC transporter in Leishmania.

14.2.12 8-Aminoquinolines: Sitamaquine

Sitamaquine (WR6026), an 8-aminoquinoline analog, overcomes the MDR1-
mediated resistance to MIL by increasing intracellular MIL accumulation in a
L. (L.) tropica strain overexpressing MDR1 and resistant to MIL [52]. Additionally,
sitamaquine also modulates the activity of MRPA, involved in antimony resistance,
in resistant L. (L.) tropica strain. Sitamaquine reverses MRPA-mediated resistance to
antimony.
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14.3 Conclusion and Future Trends

Efflux transporters play a key role in the emergence and dissemination of resistant
parasites and in the acquisition of additional mechanisms of drug resistance caused
by a decrease in intracellular drug concentration. Despite their noticeable divergence
in structure and membrane topology, the major efflux systems share a dependence on
specific key parameters including (1) the functional assembly of a membrane
transporter, (2) the energy required (e.g., ATP, ion antiport, or membrane potential)
for active transport, and (3) the presence of affinity sites inside the transporter that
are involved in substrate recognition and transport.

The identification of functional domains and the characterization of various
interactions with the transported drug may elucidate key parameters that govern
efflux activity. At present, some 3D structures have been solved for bacterial drug
transporters, and these have allowed the proposal of dynamic and mechanical
models for drug transport [140]. The same approach must be used for Leishmania
infection. Drug-transporter interactions have recently been shown to be an important
part of multidrug resistance. In silico modeling is a powerful tool often employed to
predict drug properties prior to in vitro and in vivo studies. Modeling efforts are
currently being undertaken using both ligand- and transporter-based methods such as
structure-activity relationship (SAR) studies, quantitative-SAR (QSAR) studies,
hologram QSAR (HQSAR), comparative molecular field analysis (CoMFA) and
comparative molecular similarity index analysis (CoMSIA) studies, pharmacophore
modeling, homology modeling, and molecular dynamics studies. The most common
approaches to discover human ABC substrates and inhibitors are development of
QSAR models and SAR. This approach has been carried out in the case of human
ATP-transporter multidrug resistance-associated protein 2 (MRP2 or ABCC2)
[141]. The goal of QSAR modeling is to construct a mathematical relationship
between descriptors and pharmacological activities of compounds. The model can
then be used to predict the activity for an untested compound. The goal of SAR is
usually to discern the structural features or side groups that directly lead to the
desired activity under investigation. In order to use these in silico modeling
techniques, compounds need to be screened to find the degree of substrate binding
to inhibition. Until now, there are no or very few inhibitors or substrate datasets
available for ABC transporters in Leishmania in literature. Some compounds with
inhibitory effects toward human ABCB1 (Pgp) and ABCC1 (MRP1) transporters
were studied by pharmacophore modeling, docking, and 3D QSAR to described the
binding preferences of these proteins [142]. Docking of selective inhibitors into the
Pgp binding cavity by the use of a structural model based on the recently resolved
Pgp structure confirms the Pgp pharmacophore features identified and reveals the
interactions of some functional groups and atoms in the structures with particular
protein residues. However, due to the complex nature of the applied methods, useful
interpretation of the models that can be directly translated into chemical structures by
the medicinal chemist is rather difficult.

The aim of these efforts is to decipher the molecular basis of drug transport, to
explain how differences in chemical structures modify interactions with the
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transporter, or to elucidate how the transporter functions in general. In addition,
original molecules have been demonstrated to restore the antileishmanial activity of
drugs that are pump substrates, and these studies make it possible to identify
pharmacophoric groups that are involved in efflux inhibition.

These data are crucial for the design of (1) new antileishmanial molecules that are
devoid of efflux-substrate characteristics and can reach a normal intracellular accu-
mulation level and (2) new compounds that have strong efflux pump affinity
associated with a high inhibitor capability and block the pump, restoring the
intracellular concentration of antileishmanial drugs.

The most prevalent mechanisms of resistance in Leishmania are mutations of
proteins involved in the drug transport (uptake or efflux) and amplification of
transporter genes. The role of ABC transporters in drug resistance in Leishmania
is well established. Several modulators have been described to reverse multidrug
resistance in vitro in Leishmania.Most of these drugs remain to be evaluated in vivo.
Hence, clinical evaluation of therapeutic regimens is now required to validate the
efficacy of these promising compounds or combinations for the treatment of
leishmaniasis.

Another perspective is to modulate proteins which participate to the regulation of
the expression of the level of MDR1 in Leishmania. Silent information regulator
2 (Sir2) is involved in Leishmania survival by preventing programmed cell death
[143]. Sir2 plays a role in regulating the expression of MDR1 and thereby
amphotericin-B (AMB) efflux from the resistant L. (L.) donovani [144]. Inhibition
or deletion of Sir2 allele shows decreased expression levels of MDR1 and lower
efflux of AMB in resistant parasites. In contrast, Sir2 overexpression in susceptible
parasites leads to resistant phenotype associated with reduced activity of AMB,
increased drug efflux, and increased mRNA level of MDR1. Sir2 will be used as a
potent drug target for Leishmania treatment.
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