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Abstract

The recent completion of the genomic sequencing of three species of Leishmania,
L. (L.) major, L. (L.) infantum, and L. (V.) braziliensis has enormous relevance to
the study of the leishmaniasis pathogenesis. However, since in Leishmania the
control of gene expression relies on the stability or processing of the mature
mRNA, as well as on the posttranslational modifications of proteins, the genomic
sequences alone are insufficient to predict protein expression within the parasites.
In this scenario, proteomic technologies provide feasible pathways to functional
studies of this parasite. With the challenging increase of natural drug resistance by
Leishmania, the combination of the available genomic resources of these
parasites with powerful high-throughput proteomic analysis is urgently needed
to shed light on resistance mechanisms and identify new drug targets against
Leishmania. Diverse proteomic approaches have been used to describe and
catalogue global protein profiles of Leishmania spp. reveal changes in protein
expression during development, determine the subcellular localization of gene
products, evaluate host-parasite interactions, and elucidate drug resistance
mechanisms. The characterization of these proteins has advanced, although
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many fundamental questions remain unanswered. Here we discuss the recent
proteomic discoveries that have contributed to the understanding of drug resis-
tance mechanisms in Leishmania parasites.

10.1 Introduction

Since the publication of the genome data from L. (L.) major [1], L. (L.) infantum, and
L. (V.) braziliensis [2], over 14 Leishmania spp. genomes have been sequenced to
date (http://tritrypdb.org/tritrypdb/). Such achievements, in addition to the accumu-
lation of genomic data from other Leishmania species, strains, and clinical isolates
(http://www.genedb.org/, http://www.uniprot.org/, [3]), offer the prospects of new
drug target identification and/or the exploration of particular metabolic pathways for
drug development.

For example, analysis of genomic data from L. (L.) infantum and L. (V.)
braziliensis has revealed the presence of a gene encoding cyclopropane fatty acyl
phospholipid synthase [2]. Because this enzyme appears to be involved in the
maintenance of the parasite’s membrane and is not present in humans, it has been
pointed as a putative chemotherapeutic target [2]. Such as this enzyme, many
additional targets are probably encoded within the genome of Leishmania spp. The
discovery of these targets is urgently needed given the increasing treatment failure
observed with the mainstay chemotherapy, the pentavalent antimonials (Sb") [4],
and the emergence of clinically resistant isolates [5—12].

Although all information concerning potential drug targets is contained in
sequence databases, the promises of such target identifications are hampered by
several factors. First, the limited functional annotation of the genomic sequence data
determines that more than 50% of the predicted proteins have unknown functions
[1, 2], which presents itself as an attractive challenge. Unfortunately, in 2017,
12 years after the first sequencing of a Leishmania genome, this scenario has not
changed, and near 50% of the predicted proteins lacks functional annotation. Sec-
ond, while the complexity of the cell cycle of these parasites would indicate that
specific repertoires of genes are expressed in the promastigote and amastigote stages,
global microarray genomic analyses have revealed that most Leishmania genes are
constitutively transcribed [13—15], which is in agreement with the polycistronic
organization of this parasite’s genome [1]. Third, of the approximately 8000-9000
coding genes found in Leishmania, ~6200 are common to all trypanosomatids
sequenced thus far, ~1000 are Leishmania-specific, and only ~200 genes (including
some pseudogenes) are species-specific [1, 2, 16—18]. Hence, the modest differences
between the genome sequences of L. (L.) major, L. (L.) infantum, L. (V.) braziliensis,
and L. (L.) mexicana do not reflect the vast differences among the clinical
phenotypes of leishmaniasis that are associated with each of these species. Conse-
quently, the Leishmania genome sequences alone are insufficient to predict whole
protein expression profiles throughout the life cycle of the parasite or under specific
drug pressure or other experimental conditions. Interestingly, genome heterogeneity
arisen from large-scale gene copy number variation, and extensive aneuploidy is
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observed in natural Leishmania isolates in response to drug pressure [3, 19—
22]. However, it is still unknown whether this variation in gene and chromosome
copy number is followed by variation in protein abundance.

Gene regulation in Leishmania, as with other trypanosomatids, occurs principally
at the posttranscriptional level [23, 24] mainly by mechanisms that involve RNA
stabilization and 3'UTR signatures [25-27]. Seminal analyses of RNA transcripts
using DNA microarrays in either broad gene expression studies [13, 14, 28-31] or
studies limited to specific genes [32—34] have shown that less than 6 % of genes are
modulated at the mRNA level during the different stages of the Leishmania life
cycle. Gene expression studies specifically related to drug resistance in Leishmania
have shown the same pattern [19, 20, 32, 35]. Changing this scenario, recently,
RNA sequencing (RNA-seq) of L. (L.) mexicana transcriptome showed that over
3.000 genes (~40%) are differentially expressed between promastigotes and
amastigotes [18].

Although mRNA quantification has resulted in the increase of knowledge of
several cellular processes of Leishmania, the direct analysis of protein levels is
advantageous because the relationship between transcript abundance and protein
expression levels in this parasite has been shown to be poor [15, 36]. In addition,
information concerning cellular localization, posttranslational modifications, or pro-
tein interactions cannot be obtained from mRNA data [37]. As aneuploidy and
regulation at translational and posttranslational levels make the scenario of protein
expression in this parasite more complex [36], high-resolution proteomic approaches
have the potential of shedding light on protein patterns that define a clinical
phenotype. This may include either a phenotype associated with a specific disease
manifestation or one associated with the susceptibility or resistance to a
specific drug.

Proteomic analyses, therefore, provide data that are of crucial significance for the
description and comprehension of the biology of Leishmania parasites, which are not
evident from the genome sequence or the mRNA transcripts. The proteome is
defined as the set of proteins expressed by a cell or organism under specific
conditions and at a given point in time. The field of proteomics intends to provide
detailed descriptions and integration of protein data to better ascertain protein
function in biological systems. By allowing the characterization of complex systems,
proteomic approaches offer the opportunity to identify proteins involved with drug
resistance in Leishmania, in addition to new drug targets for this parasite.

In general, most proteomic studies of Leishmania and other trypanosomatids
involve protein fractionation from a protein mixture using SDS-PAGE and/or
two-dimensional electrophoresis (2DE), followed by gel excision and enzymatic
digestion of protein spots. Peptides are submitted to mass spectrometry
(MS) methods that combine soft ionization sources [matrix-assisted laser desorp-
tion/ionization (MALDI) or electrospray ionization (ESI)] [38—40] with various
mass analyzers. Subsequent protein identification is accomplished by linking mass
spectral data to genome sequence databases using bioinformatics tools [41, 42].
Gel-free shotgun liquid chromatography tandem mass spectrometry (LC/MS/MS)
analyses have the potential to map more thoughtfully the Leishmania proteome
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under different conditions [43—45]. High-resolution LC/MS/MS for quantitative
analysis by isotopic labeling of proteins or even label-free approaches has in fact
revealed new aspects of Leishmania stage-specific proteomes or specific parasite
phenotypes [46-53].

Proteomic studies of Leishmania spp. have focused on global proteome profiling
[46, 49, 54-65], detailed descriptions of stage-specific protein expression [14, 36,
43,47, 51, 66-76], posttranslational modifications (PTMs) [44, 52, 59, 73, 77-81],
identification of proteins from subcellular proteomes and secretomes [45, 71, 82—
91], and determining potential drug targets or proteins involved in drug resistance
[50, 53, 56, 64, 92—-100], among others.

Proteomic studies for identifying molecules potentially involved in the drug
resistance of Leishmania spp. can be classified according to the approach carried
out using either (1) axenic promastigotes and/or amastigotes that have been selected
to drug resistance in vitro or (2) axenic promastigotes and/or amastigotes derived
from clinical isolates that are considered naturally drug resistant. The compounds
evaluated in these studies include drugs currently used for the treatment of leish-
maniasis, such as Sb", amphotericin-B (AMB), and miltefosine (MIL), in addition to
model drugs for the study of resistance, such as methotrexate (MTX) and arsenite,
and drug under development, such as bicyclic nitro drugs [24, 50, 53, 56, 79, 92-99,
101-108] (Table 10.1). This chapter will discuss the applications of proteomic
approaches to the study of Leishmania drug resistance, focusing on the identified
molecules and on the inferred mechanisms of resistance to current medicines used
for the treatment of leishmaniasis.

Table 10.1 Drugs analyzed in proteomic studies of Leishmania drug resistance

Drug Drug status Species analyzed | References

L. (L.) infantum [79, 93-95, 102-106,
L. (L.) donovani 124]

L(V.)

panamensis

L (L)

braziliensis

Antimonials First-line drug

Miltefosine First-line drug L. (L.) donovani |[93, 96, 97, 99, 108]
L. (L.) infantum
Amphotericin-B First-line drug L. (L.) infantum [107]
Methotrexate Model drug L. (L.) major [56, 92]
a-Difluoromethylornithine | HAT drug L. (L.) donovani [50]
Arsenite Model drug L. (L.) donovani [101]
Bicyclic nitro-drugs Under L. (L.) donovani | [53]
development

HAT human African trypanosomiasis
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10.2 Proteomic Approaches Used for Studying Drug Resistance
in Leishmania spp.

10.2.1 Protein Expression Mapping by Two-Dimensional
Electrophoresis

Proteomic studies of drug resistance in Leishmania spp. have traditionally used 2DE
and 2D differential in-gel electrophoresis (2D-DIGE) for the comparative analysis of
protein expression in drug-resistant and drug-sensitive parasites [56, 79, 92-99,
101-108]. This technique undoubtedly provided the basis for further developments
in proteomics and, despite having certain limitations, is still used for protein
expression mapping. The separation of complex cellular extracts by 2DE is achieved
by coupling two independent electrophoretic separations, using isoelectric focusing
in the first dimension and SDS-PAGE in the second [109, 110]. Soon after the first
reports of 2DE appeared, this method was widely adopted by researchers around the
world in several distinct applications [111-113].

The first works of what can be called the earliest Leishmania proteomics, even
before the term “proteomics” was coined, came from the early 1980s. In these works,
2DE was used to (1) separate cell lysates of L. (L.) tropica for further detection of
antigenic proteins using rabbit sera [114] and (2) for the comparative analysis of
protein expression patterns from distinct Leishmania species that cause American
tegumentary leishmaniasis with the aim of detecting species-specific markers
[115]. However, issues concerning reproducibility, specifically involving the stabil-
ity of the pH gradients, discouraged the widespread use of the method. Additionally,
the absence of a protein identification system prevented the designation of interest-
ing proteins. Identification was achieved by co-migration with purified proteins or
through the use of antibodies. Using these methods, the regulation of tubulin
expression during Leishmania differentiation was demonstrated [116]. Despite the
drawbacks, valuable information was obtained, such as the demonstration that
Leishmania resistance to MTX, an antiproliferative agent, is mediated by a mutation
in the target enzyme, dihydrofolate reductase (DHFR), which alters the physico-
chemical properties of the protein [117].

The introduction of immobilized pH gradients in the first dimension [118]
eliminated the reproducibility issues associated with pH stability. At the same
time, N-terminal sequencing using traditional Edman chemistry applied to proteins
separated by SDS-PAGE allowed the identification of peptides and proteins, as well
as molecular mass determination [119]. However, it was the introduction of soft
ionization techniques for peptides and proteins (MALDI and ESI) that allowed the
acquisition of mass spectra of these molecules at the subnanomolar level and also
changed the paradigm of protein identification [38—40]. Coupling 2DE and MS
identification, Drummelsmith et al. observed up to a fourfold increase in the expres-
sion of several spots of trypanothione (TRYR) protein in transfected L. (L.) major
promastigotes overexpressing the TRYR gene [56]. This assay validated the use of
2DE for drug resistance studies. Decades after 2D appeared, various studies started
using fluorescent dyes, mainly the Cy dyes, which is the principle of 2D-DIGE, in
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order to achieve a more reliable quantification of differences among the spots
detected [47, 81].

As mentioned above, all proteomic studies on Leishmania drug resistance have
used the combination of 2DE or 2D-DIGE and MS for protein identification.
However, 2DE presents major limitations, including the inability to resolve low
abundance proteins and hydrophobic proteins, which represent important sources of
information in the case of drug resistance mechanisms. Also in quantitative studies,
the protein co-migration is a significant issue when deciding which protein
contributed the more for the change in intensity observed in one spot. Despite
these limitations, 2DE is a well-characterized technique for protein separation, and
it is distinguished by its visual array that allows the detection of posttranslational
modified states [120, 121].

10.2.2 Other Proteomic Approaches for Studying Drug Resistance

Although the use of fluorescent dyes has turned 2D-DIGE into a quantitative tool
with better sensitivity and reproducibility than 2D, the gel-based approaches are still
very limited regarding linearity, dynamic range, and reliability for quantifying
differences in protein abundance, being limited to the resolution of soluble and
abundant proteins [118, 122]. These limitations have been surpassed by the devel-
opment of mass spectrometry (MS)-based approaches. In MS-based proteomic
approaches, proteins can be identified and quantified by means of detection and
quantification of their peptides [123]. The main methods include labeling with stable
isotopes or label-free approaches. Labeling methods introduce a mass tag into
proteins or peptides, either metabolically, enzymatically, or by chemical means;
labeling based on isobaric tags for relative and absolute quantification iTRAQ) and
stable isotope labeling by amino acids in cell culture (SILAC) has been used in
several proteomic analysis of Leishmania parasites enabling quantification of stage-
specific proteins, characterization of posttranslational modifications, and quantifica-
tion of protein abundance in parasites selected for drug resistance [48, 50, 53, 72, 78,
107, 124]. On the other hand, label-free methods correlate the ion intensity signal of
peptide mass spectra or the number of peptide spectral counts with the protein
quantity [122, 125, 126]. Shotgun label-free methods for protein quantification in
Leishmania have been little explored, but there is a nice example of the potential of
this approach in the quantitative analysis of the proteome of L. (L.) mexicana
reported by Paape et al. [43].

Using high-throughput proteomic technologies, pharmacoproteomics allows dis-
covery and validation of novel drug targets and generates information about drug
metabolism and transport as well as about drug efficacy, resistance, and toxicity
[127, 128]. Successful examples of these applications can be found in cancer
research [129, 130]. Pharmacoproteomics has started to be used successfully in the
study of drugs under development for leishmaniasis treatment [53].
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10.3 Proteomics of Drug Resistance in Leishmania spp.

10.3.1 Proteomics of Model Drugs for Understanding Resistance
in Leishmania: Methotrexate and Arsenite Resistance

Model drugs such as MTX and arsenite have been widely used for the study of
molecular mechanisms of drug resistance in Leishmania [131-136]. In fact, much of
the current knowledge of resistance mechanisms and novel potential drug targets in
this genus came from studies using resistant parasites obtained after in vitro selection
with these drugs [137-140]. The resistance of Leishmania to these compounds
includes events such as DNA amplification [131, 141, 142], decreased drug accu-
mulation, and increased drug efflux [98, 143—145], among others. Methotrexate is an
anticancer drug that inhibits DHFR which is responsible for the conversion of
dihydrofolate to tetrahydrofolate. Derivatives of tetrahydrofolate are essential for
the biosynthesis of purines and pyrimidines. Therefore, in the presence of MTX,
DNA synthesis is prevented. Although this antifolate is toxic to Leishmania, it was
found to be much more toxic to mammalian cells than for the parasites, thus
preventing its use as a chemotherapeutic agent for leishmaniasis [146].

The first recorded proteomic study on drug resistance in Leishmania was
conducted using L. (L.) major promastigotes that were induced in vitro to MTX
resistance [56]. Comparison of MTX-resistant parasites to sensitive parasites using
2DE revealed the overexpression of the pteridine reductase PTR1, a known primary
mediator of MTX resistance. It was demonstrated that the PTR1 overexpression was
due to several gene amplification events in the resistant parasites [56]. As PTR1 is
able to reduce dihydrofolate to tetrahydrofolate to a minimal extent, its
overexpression could compensate for the inhibition of DHFR by MTX [56].

In a further study, Drummelsmith et al. [92] observed that L. (L.) major
MTX-resistant promastigotes exhibited increased expression of proteins involved
in stress response, such as chaperonins, heat-shock proteins, and enolase, as well as
enzymes such as argininosuccinate synthetase (ARGG), which catalyzes the penulti-
mate step in arginine biosynthesis. As in the case of PTR1, the overexpression of
ARGG was also the result of gene amplification events, which was most likely a
result of the structural proximity of the PTR1 and ARGG coding genes [92]. Other
proteins with less easily predicted roles in drug resistance, such as methionine
adenosyltransferase (MAT), were also identified in this study. This enzyme is
overexpressed both in sensitive cells shocked with MTX and in mutants resistant
to the drug, suggesting that it may play a significant role in the initial cellular
responses to MTX in L. (L.) major. Unlike other proteins, the overexpression of
MAT was not due to gene amplification events [92]. In addition, it was observed that
increases in S-adenosylmethionine level, which is synthesized by MAT, correlated
with the selection and emergence of MTX resistance in L. major [92].

Finally, a proteomic analysis of L. (L.) donovani induced to arsenite resistance
was reported. However, as 2DE gels from wild-type and arsenite-resistant parasites
were completely different, comparison of the differential protein expression between
the two conditions was precluded [101].
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10.3.2 Proteomics of Antimonial Resistance

Pentavalent antimonials in the forms of sodium stibogluconate (Pentostam) and
meglumine antimoniate (Glucantime) are first-line drugs for the treatment of distinct
forms of leishmaniasis [147]. Despite the fact that Sb¥ have been used worldwide for
almost 80 years, reports on the clinical resistance and descriptions of resistant
parasites started to appear within the last 20 years [4—12]. This situation is particu-
larly alarming in India where widespread failure to Sb" treatment in previously
untreated patients has been reported [see Chap. 4 in this volume; 8, 148,
149]. Recently, it was demonstrated that arsenic contamination of drinking water
might have contributed to the development of antimonial resistance in Leishmania
parasites circulating in the Bihar region [150]. The complexity of the resistance
scenario is augmented and sometimes obscured by the variation in the clinical
response to Sb" due to species-specific sensitivity to these drugs [see Chap. 15 in
this volume; 4, 151, 152].

The understanding of the mechanism of action of Sb" drugs and resistance to
them has come from laboratory parasites, in which resistance has been selected
in vitro by the pressure of the drug. For antileishmanial activity, it is necessary that
the SbY be reduced to the trivalent form Sb™. Although debatable, reduction of the
drug can apparently occur both in the macrophage and in the amastigote [153—
156]. Reduction would be accomplished by either an enzymatic mechanism involv-
ing a thiol-dependent reductase [157] and/or an arsenate/antimonate reductase
[158, 159] or by some nonenzymatic mechanism [160]. Regarding the internaliza-
tion of the drug, it was demonstrated that AQP1, a transporter of trivalent metalloids
[161], mediates the uptake of Sb™ in Leishmania [162]. The expression level of
agpl can correlate to the sensitivity to the drug [163, 164], and a major cluster of
L. (L.) donovani isolates from the Indian subcontinent (ISC), which are resistant to
Sb", presents a mutation in the agp! gene that results in a nonfunctional protein and
therefore reduced influx of Sb™ [3].

The activity of antimoniate seems to center around thiol redox metabolism [165],
although early reports pointed to glycolytic and fatty acid p-oxidation pathways
[166] or a programmed cell death (PCD) pathway involving DNA fragmentation
non-mediated by caspase [167, 168]. On the other hand, increased levels of
y-glutamylcysteine synthetase and ornithine decarboxylase [137, 169], the enzymes
involved in the synthesis of glutathione and polyamines, which are precursors of
trypanothione, have been observed in parasites selected for resistance to Sb™ or
arsenite [137, 145]. As a consequence, accumulation of trypanothione and glutathi-
one contributes to the resistant phenotype [165, 170]. In addition, mechanisms for
the increased efflux of Sb-thiol complexes [145] and/or decreased drug influx
mediated by decreased/nonfunctional AQP1, besides drug sequestration involving
a P-glycoprotein member of the ABC transporters (PgpA/MRPA), as well as other
transporters (ABCC4, ABCC5, MRP1), might also influence the antimonial resis-
tance [163, 171-177]. Despite some controversies, it seems that resistance to
antimony is a multifactorial phenomenon involving various mechanisms such as
decreased drug uptake, diminished metal reduction, increased glutathione and
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trypanothione synthesis, and augmented drug efflux/sequestration [4, 139, 140,
178].

Proteomics of antimonial resistance have provided further evidence for some of
the above mechanisms and have added new pieces to the resistance puzzle. Seminal
studies comparing between Sb''-sensitive and in vitro selected Sb™"-resistant axenic
amastigotes of L. (L.) infantum using 2DE (pH range, 5-6) and ESI-MS/MS revealed
some downregulated proteins in Sb™'-resistant parasites, including the LACK recep-
tor, P-tubulin, proteasome pa26 subunit, pyruvate kinase, and the kinetoplastid
membrane protein 11 (KMP-11) [94]. Although none of these proteins had previ-
ously been associated with antimony resistance, several of them have been further
observed in other Leishmania species selected for antimony resistance or other drugs
[79, 95, 96, 102, 124] (Table 10.2).

Regarding KMP-11, Western blot analysis confirmed that the levels of KMP-11
were lower in Sb'-resistant parasites when compared to the parental wild-type
parasites. However, overexpression of the protein did not alter the Sb™ susceptibility
of parasites. In addition, Northern blot analysis revealed that the downregulation of
KMP-11 was not due to a decrease in mRNA levels [94]. Decrease of KMP-11
abundance was also observed in the phosphoproteome analysis of L. (V.) braziliensis
selected for antimonial resistance [79]. In L. (L.) donovani, it was shown that
KMP11 could increase the lipid bilayer pressure [179, 180]. Thus, the marked
decreased level of KMP-11, probably due to an increased turnover rate of this
protein, could alter the interaction of transporters or putative efflux systems, enhanc-
ing activity for pumping Sb™ out of parasites [94]. On other hand, it has been
proposed that the decrease of this protein could be part of a general mechanism of
response to the stress caused by the drug pressure [79].

Argininosuccinate synthetase (ARGG) was the only protein identified as
overexpressed in the L. (L.) infantum drug-resistant mutant. Increased abundance
of ARGG was also observed in L. braziliensis resistant to antimonial [79] and in
MTX-resistant L. (L.) major [92]. Both in SbV-resistant L. (L.) donovani and in
MTX-resistant L. (L.) major, it was observed that the genomic region coding for this
gene is amplified [20, 92], supporting the overexpression of ARGG [94]. However,
the role that ARGG plays on resistance to Sb" is unknown. The role in resistance of
the other identified proteins remains to be established.

Regarding proteomic studies of field isolates, a proteomic analysis recently
compared L. (L.) donovani parasites obtained from both a Sb"-unresponsive and
SbY-responsive patient to identify proteins involved in antimonial resistance [93].
First, the Sb"-resistant and Sb"-sensitive phenotypes of these isolates were corro-
borated by in vitro growth inhibition assays. Second, RT-PCR analysis showed that
the expression levels of agpl, gshl, and PgpA (mrpa), which are genes associated
with in vitro-induced resistance, were not differentially expressed between the
sensitive and resistant clinical isolates. Third, it was shown that the parasites
from the Sb"-unresponsive patient were more resistant to Sb™- and Sb"-induced
PCD. The PCD features analyzed were the mitochondrial membrane potential
(Aym), DNA fragmentation, and externalization of phosphatidylserine residues
followed by membrane permeabilization [93]. Thus, based on previous evidence
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suggesting that Sb" kill Leishmania by a process involving several features of PCD
[167, 168, 181], the soluble proteomes of these isolates naturally resistant and
sensitive to Sb¥ were analyzed by 2DE (pH range, 4-5) and MS/MS. Enolase,
14-3-3, ATP-dependent RNA helicase, dipeptidyl-peptidase III, 20 S proteasome
a5 subunit, small kinetoplastid calpain-related protein SKCRP14.1, and many heat-
shock proteins (HSP) were among the identified proteins. From this group, the
14-3-3 protein; the HSP83, whose abundances are increased in resistant parasites;
and the SKCRP14.1, which is decreased in resistant parasites, were highlighted as
having different roles in PCD. In fact, Leishmania HSP83 is an orthologue of the
mammalian HSP90, which is involved in mitochondrial apoptotic pathways [182]
(Table 10.2).

The genes coding for 14-3-3, HSP83, and SKCRP14.1 were cloned and the 14-3-
3 and HSP83 constructs were transfected individually into the sensitive parasites,
whereas the SKCRP14.1 construct was transfected into the resistant parasites
[93]. While sensitive parasites transfected with the 14-3-3 construct did not show
any increase in resistance to Sb™ or Sb¥ when compared with sensitive control
parasites, the sensitive parasites overexpressing HSP83 were more than twofold
resistant to Sb'™" compared with sensitive control parasites. In Sb™-treated parasites,
a more intense drug-mediated DNA fragmentation was observed in the control
parasites when compared to HSP83-overexpressing parasites. It was also found
that after treatment with Sb'™, the Aym was higher in HSP83-overexpressing
parasites than in control cells [93]. Overexpression of SKCRP14.1 increased the
sensitivity of resistant parasites to Sb'" and Sb", in addition to the sensitivity of
transfectant parasites to Sb™'-induced DNA fragmentation. After treatment with Sb™
, no variations in the Aym were observed between SKCRP14.1 transfectants and
control cells [93]. As will be described below, several of these effects were also
observed in MIL-treated parasites [93], which highlights the phenomenon of cross-
resistance but also reveals contrasting mechanisms involved in Leishmania drug
resistance. Hence, although the network of molecules through which HSP83 and
SKCRP14.1 interfere with drug-induced PCD pathways in L. (L.) donovani remains
to be elucidated, this study demonstrated that these proteins modulate drug suscepti-
bility in this parasite. It remains to be established if these phenomena are observed in
other L. (L.) donovani clinical isolates and in other Leishmania species for which
resistance has been reported. Interestingly, it recently was demonstrated that
antimony-resistant L. (L.) infantum exhibited decreased abundance of SKCRP14.1,
reinforcing the observation that antimonial resistance is associated with a decrease in
cell death-related proteins [106]. In addition, increased abundance of HSP83, as well
other HSPs and chaperones, has been further observed in different Leishmania
species selected for antimonial resistance [79, 95, 103-106, 124], including L. (L.)
infantum, L. (V.) panamensis, and L. (V.) braziliensis (Table 10.2). Remarkably,
parasites selected for MIL, amphotericin-B, or alpha-difluoromethylornithine resis-
tance also present a significant increase in various heat-shock proteins [50, 96, 107,
108], suggesting that these proteins are part of a general response to the stress caused
by the drug pressure. The increased protection against drug-related stress and drug-
related programmed cell death may contribute to the resistance phenotype as a whole
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[79, 104], resulting in parasites able/adapted to cope with the oxidative stress caused
by drug, probably by maintaining functional proteostasis mediated by HSPs.

Cell membrane proteins are very interesting for understanding drug transport in
resistant parasites. In this context, Kumar et al. reported a set of overexpressed
proteins in membrane- and cytosolic-enriched fractions of an L. (L.) donovani
clinical isolate resistant to Sb¥, when compared to a sensitive isolate [102]. The
six proteins identified in the membrane-enriched fraction were two ABC
transporters, a fragment of HSP83, a cysteine-leucine-rich protein (CLrP), a GPI
transamidase, and a 60S ribosomal protein (L23a). Remarkably, these authors
further demonstrated that CLrP is a glycosylated protein with dual localization, in
the membrane and nucleolus, whereas the 60s ribosomal L.23a protein (60sRL23a) is
localized in the cytosol [183, 184]. It was also shown that antimonial-resistant
clinical isolates of L. (L.) donovani present higher mRNA and protein levels of
CLrP and 60sRL23a as compared to antimonial-sensitive parasites
[183, 184]. Overexpression of CLrP or 60sRL23a in a sensitive isolate of L. (L.)
donovani significantly decreased its responsiveness to Sb¥ and Sb™, in the case of
CLrP, and also to MIL and paromomycin, in the case of 60sRL23a. Such reduction
on drug sensitivity was followed by increased parasite infectivity to murine
macrophages or increased proliferation rate, for CLrP- or 60sRL23a-overexpressing
mutants, respectively [183, 184]. Such studies reveal that resistant parasites exhibit a
higher fitness than sensitive parasites, showing increased infectivity capability to
host cells and increased proliferation rate.

Metabolic isotopic labeling of L. (L.) infantum resistant to Sb'™ followed by
comparative proteomic analysis of membrane and cytosolic fractions allowed the
observation of increased levels of the ABC transporter MRPA (ABCC3) for the first
time in a proteomic study [106]. The increased abundance of MRPA, a well-known
protein involved in antimonial sequestration, was accompanied by alterations in the
abundance of other transporters such as folate/biopterin transporters that presented
diminished abundance in resistant parasites. Interestingly, folate/biopterin
transporters have been previously pointed out as potential chemotherapeutic targets
in Leishmania [185, 186].

It is pertinent to mention that in the proteomic studies that aimed to analyze
Leishmania membrane proteins associated with drug resistance, the identification of
a higher number of membrane proteins, more representative of this fraction, has been
hampered possibly by the inherent limitation of 2DE for resolving hydrophobic
proteins. Furthermore, the methods hitherto used for sample preparation do not favor
the representativeness of such proteins. Such limitations can be overcome using
better solubilizing agents and gel-free shotgun proteomic approaches, as
demonstrated for other cells and tissues [187-189].

Seminal proteomic studies of antimonial resistance in L. (L.) donovani isolates
identified B-tubulin, enolase, fructose-1,6-bisphosphate aldolase, the proteasome
subunit aS, a carboxypeptidase, a fragment of HSP70, and the proliferative cell
nuclear antigen (PCNA) [102]. Interestingly, further expression analyses, by West-
ern blot and qPCR, confirmed that promastigote and amastigotes of resistant
parasites exhibit >threefold and ~fivefold increased levels of PCNA, respectively,
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compared to the antimonial-sensitive parasites [190]. Overexpression of PCNA in
antimonial-sensitive isolate resulted in significant increase of Sb" ICs, and parasites
overexpressing PCNA exhibited less DNA fragmentation compared to wild-type
sensitive parasites upon treatment. In addition, parasites overexpressing PCNA
modulated negatively nitric oxide (NO) production in infected macrophages [190].

Because many of the soluble proteins detected in drug resistance studies are
among the abundant proteins commonly identified in proteomic studies of Leish-
mania and other trypanosomatids [59, 68, 71, 191], it is difficult to elucidate a clear
role in resistance for them. However, as mentioned above, further proteomic
analyses of Leishmania resistance mechanisms either to Sb" or to other drugs
have corroborated that HSPs, glycolytic enzymes, TCA-related enzymes, transcrip-
tion-/translation-related proteins, peptidases, as well as DNA repair-related proteins,
among other noncanonical resistance proteins, exhibit altered abundance in resistant
parasites (Table 10.2) [50, 79, 95, 96, 103—-108, 124]. Such findings reinforce the
idea that resistant parasites exhibit a better general fitness than sensitive parasites,
mediated by the (1) remodeling of their glycolytic metabolism, (2) increasing of
virulence factor abundance, (3) and more efficient protein homeostasis and DNA
repair, which together result in an increased proliferation and infectivity capability to
host cells. Some of these phenotypic traits have been corroborated in a mutant
Leishmania line that is deficient in glucose transport [100]. A detailed description
of the association between fitness and drug resistance in Leishmania can be found in
Chap. 15, this same volume. Proteomic studies of antimonial resistance have also
shown that enzymes that are precursors of trypanothione, such as S-
adenosylmethionine synthetase (SAMS) and S-adenosylhomocysteine hydrolase
(SAHH), present increased abundance in L. (V.) panamensis, L. (L.) infantum, and
L. (L.) donovani resistant parasites [95, 104, 124]. In addition, proteins involved in
redox homeostasis, such as tryparedoxin, peroxiredoxin, and pteridine reductase, are
also more abundant in resistant parasites [79, 95, 106]. Together, these findings
corroborate the hypothesis that antimonial resistance is closely associated with
nitrosative and oxidative stress resistance and remodels the parasite thiol redox
metabolism.

10.3.3 Proteomics of Miltefosine Resistance

MIL [hexadecylphosphocholine (HePC]), an alkyl phospholipid compound, is the
only oral drug currently available for the treatment of leishmaniasis. Originally
intended for breast cancer treatment, MIL proved to be effective against Leishmania
both in vitro and in animal models [192, 193]. This drug was registered and
approved for visceral leishmaniasis (VL) treatment in India in 2002, followed by
Germany in 2004. In Colombia in 2005, MIL was approved for the treatment of
cutaneous leishmaniasis (CL), where it reached cure rates of over 91% [194, 195]. In
2005, the governments of India, Nepal, and Bangladesh adopted MIL as the first-line
treatment for VL elimination [196, 197]. The oral administration of MIL avoids the
need of patient hospitalization in VL cases and reduces the inconvenience of
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injectable drugs, augmenting treatment adherence [195, 198]. Despite the recent
approval of MIL for disease treatment, clinical failures during treatment of VL and
CL caused by different Leishmania species have already been reported [199—
201]. MIL is registered for the oral treatment of canine leishmaniasis in several
European countries since 2007 (Milteforan™) and was authorized recently (2016) for
the treatment of dogs with VL in Brazil, despite studies showing that the improve-
ment in the clinical symptoms was not followed by parasitological clearance
[202]. In fact, that study did not recommend the use of MIL for dog treatment,
especially in endemic areas of Brazil where dogs have a crucial role in the mainte-
nance and transmission of the parasite [202]. In addition, failure treatment has been
reported in naturally infected dogs treated with MIL [203].

Although MIL exhibits in vitro activity against various Leishmania species [204],
the mechanism of action of this compound is not well understood. However, based
on evidence obtained in tumor cell lines, it is known that MIL acts by triggering
apoptotic pathways [205]. Evidences of PCD induced by MIL have also been
reported for L. (L.) donovani promastigotes [206]. This drug appears to affect the
integrity of cellular membranes by interfering with lipid metabolism, resulting in the
decrease of phosphatidylcholine synthesis [207, 208]. In addition, intracellular drug
accumulation seems to be required for the drug’s activity. Accumulation involves,
among other steps, the translocation of the drug across the cellular membrane, which
is accomplished with a recently identified complex of proteins including a P-type
ATPase termed L. (L.) donovani MIL transporter (LdAMT) and its B-subunit, LdRos3
[209]. Interestingly, the expression levels of these proteins are diminished in L. (V.)
braziliensis, which would help to explain the low sensitivity of this species to the
drug [210]. In addition, a common feature of MIL-resistant parasites consists of a
decrease in drug accumulation mainly due to either the decreased uptake or increased
efflux of the drug [211].

As described above, in L. (L.) donovani field isolates, HSP83 and SKCRP14.1
were implicated in the modulation of parasite sensitivity to Sb" through a mecha-
nism involving features of PCD [93]. In the same study, it was observed that Sb"-
resistant parasites were also cross-resistant to both MIL and AMB when compared
with the Sb"-sensitive parasites. It was also shown that the parasites from the Sb"-
unresponsive patient were more resistant to MIL-induced PCD. Besides being
resistant to antimonial, the HSP83-overexpressing parasites were also resistant to
MIL and were less sensitive to drug-mediated DNA fragmentation when compared
to control parasites. In addition, 10 pM MIL first induced a more rapid hyperpolari-
zation of the mitochondria in HSP83 transfectants when compared to the control
cells, followed by a depolarization that took place more slowly in HSPS§3-
overexpressing parasites than in control ones [93]. However, the effect of MIL
treatment on SKCRP14.1-overexpressing parasites was the opposite of that observed
with antimonial treatment. Resistant parasites transfected with SKCRP14.1 became
more resistant to MIL compared with the transfectant control. In addition,
SKCRP14.1 overexpression was significantly protected against MIL-induced mito-
chondrial depolarization and led to resistance against MIL-mediated DNA fragmen-
tation when compared with the control [93]. These results reveal the contrasting
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roles of the proteins in the resistance mechanisms of Leishmania and highlight the
importance of setting the individual action scenarios for each drug.

Recently, a study was conducted using a MIL-resistant L. (L.) donovani isolate,
which was selected in vitro by sequential exposure to the drug [97]. In this study, the
total cell extracts of sensitive and resistant promastigotes were analyzed by 2DE
(pH range, 4-7), and two differentially expressed spots were identified by LC/MS/
MS. The identified spots corresponded to the probable eukaryotic initiation factor
4A (elF4A), a protein belonging to the DEAD-box subfamily of ATP-dependent
helicases. This protein participates in the regulation of translation initiation, and it
has been reported that its overexpression confers lithium resistance in Saccharomy-
ces cerevisiae, probably by restoring protein synthesis [212].

In a recent study, Carnielli et al. used 2D-DIGE/MS to study the differences in
protein abundances between MIL-sensitive and MIL-resistant L. (L.) infantum
isolates from VL patients with different MIL treatment outcomes [96]. Among
46 spots exhibiting different intensity, 22 proteins were identified. Proteins with
increased abundance in MIL-resistant isolates were associated with (1) redox
homeostasis, such as peroxiredoxin and S-adenosylmethionine synthetase
(SAMS); (2) stress response, including several HSPs; (3) DNA repair, such as
PCNA and mitochondrial ATPase f-subunit; and (4) glycolytic and TCA-related
enzymes, among others. A very similar group of proteins was observed in proteomic
studies of L. (L.) infantum in vitro selected for amphotericin-B resistance [107] and
in L. (L.) donovani selected for resistance against DL-a-difluoromethylornithine
(DFMO), an inhibitor of ornithine decarboxylase, the first enzyme of the polyamine
biosynthetic pathway [50] (Table 10.2). These results corroborate the multifactorial
character of drug resistance phenomenon in Leishmania and also show that
irrespective of the chemotherapy used to select the resistant lines, resistant parasites
respond in similar ways to the drug pressure (either in vivo or in vitro) exhibiting
increased resistance to oxidative and nitrosative stress, remodeling their glycolytic
metabolism and increasing their virulence.

10.4 Proteomic Challenges in the Study of Drug Resistance

Proteomic studies of drug resistance in Leishmania have increased over the last
decade. The reports reviewed here illustrate the value of proteomic approaches for
the identification of proteins and mechanisms involved in resistance phenomenon.
Those studies show that proteomic screens are useful in defining new roles for
already well-characterized proteins in addition to assigning roles for proteins of
unknown function. A summary of the proteins identified from proteomic studies
using either resistant parasites selected in vitro or parasites from clinical isolates that
are considered naturally drug resistant (proteins highlighted by the authors) is
presented in Table 10.2. As can be seen in this table, many proteins identified in
these studies have been implicated in Leishmania drug resistance using other
approaches, but many other proteins are new or even unexpected in the scenario of
drug resistance.
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Several proteins classically described as being involved in various resistance
mechanisms are membrane proteins, and this fraction has not been widely explored
in drug resistance studies in Leishmania. This fact points to the first challenge: the
deep analysis of distinct subcellular fractions of the parasite. Besides the contribu-
tion of protein annotation, subcellular proteomic analysis offers the possibility of
inferring protein function and elucidating biochemical pathways in drug resistance,
which can be exploited for purposes of drug development. In addition, it should be
taken into account that the approach used for the proteomic studies revisited here has
been 2DE, with the already mentioned limitations, applied to whole cell extracts and
analyzing only some pH ranges. As a result, a large part of the Leishmania “resis-
tance” proteome remains to be analyzed, which points to the second challenge: the
need for a comprehensive proteomic study using better solubilizing detergents for
sample preparation and gel-free methods [213] that ensures greater coverage of the
proteome. Such an approach will require more powerful and specific bioinformatics
tools to cope with the analysis of the enormous quantity of data that would be
produced. In fact, data analysis represents a considerable bottleneck in the proteomic
studies of parasites, mainly because ~50% of the coding genes do not have a
functional annotation, which is why it represents the third challenge.

In very nice example of the exploitation of pharmacoproteomics for the study of
drug targets and mechanisms of action, Wyllie et al. [53] studied by proteomic and
genomic approaches the effects of bicyclic nitro-compounds on L. (L.) donovani.
Nitro drugs are being used as part of a combination therapy for human African
trypanosomiasis (HAT) [214], and bicyclic nitro-compounds are potential
candidates for the treatment of VL (www.dndi.org). Comparing susceptible and
drug-resistant parasites, authors identified the hypothetical NADH/FMN-dependent
oxidoreductase as the activating nitroreductase (NTR2) and demonstrated that its
overexpression rendered parasite hypersensitive to bicyclic nitro-compounds. In
addition, it was demonstrated that knockout of NTR2 rendered parasites completely
resistant to the compounds [53]. This study shows the potential of pharmaco-
proteomics to study drug mechanisms and resistance in trypanosomatids.

A common trait of proteomic studies in Leishmania, as well as in other
organisms, is the recurrent identification of a group of proteins that correspond to
the most abundant ones [215]. This precludes the identification of the less abundant
proteins and obscures the studied phenomenon. Thus, a dedicated analysis of
Leishmania most abundant proteins with the subsequent construction of an interac-
tive database containing raw mass data and mass spectra data of these proteins would
allow a better exploitation of the proteomic studies, saving time and optimizing
resources [216]. In addition, the wide use of transfection models and the potential
exploitation of a putative RNA interference (RNAi) pathway, at least in L. (Viannia)
parasites [2, 217], would reinforce and complement the proteomic analysis of
changes associated with drug resistance. Finally, as far as we know, proteomic
studies of the resistance to other drugs used for leishmaniasis treatment, such as
pentamidine, paromomycin, and azoles, have not been reported.
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10.5 Concluding Remarks

As the cellular proteome is a dynamic scenario, it should be considered that inter-
and intraspecific Leishmania genetic variation, in addition to host immune responses
and host genetic background, might influence the resistant or sensitive phenotype of
the parasites [218]. Thus, despite being rich and detailed, proteomic profiles repre-
sent specific patterns that need to be contextualized into a “biological system” level
where the complexity must be governed by well-defined mechanisms. The continued
advances in proteomic technology development, together with genome data and
bioinformatics analysis, could reveal effective therapeutic strategies for species-
specific treatments in the future, individualizing the epidemiological settings and
valorizing the patients [219]. A large endeavor joining expertise, technologies,
facilities, and knowledge would be desirable for obtaining and (re-) interpreting
proteomic data of drug resistance in Leishmania.
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