
Feedback Control as MAPE-K Loop
in Autonomic Computing

Eric Rutten1(B), Nicolas Marchand2, and Daniel Simon3,4

1 INRIA, Grenoble, France
eric.rutten@inria.fr

2 CNRS, GIPSA-lab, Grenoble, France
Nicolas.Marchand@gipsa-lab.fr
3 INRIA, Sophia Antipolis, France

daniel.simon@inria.fr
4 LIRMM, Montpellier, France

https://team.inria.fr/ctrl-a/members/eric-rutten,

http://www.gipsa-lab.fr/∼nicolas.marchand, http://www2.lirmm.fr/∼simon

Abstract. Computing systems are becoming more and more dynami-
cally reconfigurable or adaptive, to be flexible w.r.t. their environment
and to automate their administration. Autonomic computing proposes a
general structure of feedback loop to take this into account. In this paper,
we are particularly interested in approaches where this feedback loop is
considered as a case of control loop where techniques stemming from
Control Theory can be used to design efficient safe, and predictable con-
trollers. This approach is emerging, with separate and dispersed effort,
in different areas of the field of reconfigurable or adaptive computing, at
software or architecture level. This paper surveys these approaches from
the point of view of control theory techniques, continuous and discrete
(supervisory), in their application to the feedback control of computing
systems, and proposes detailed interpretations of feedback control loops
as MAPE-K loop, illustrated with case studies.

Keywords: Autonomic managers · Administration loops
Control theory

1 Feedback Loops in Computing Systems

1.1 Adaptive and Reconfigurable Computing Systems

Computing systems are becoming more and more dynamically reconfigurable
or adaptive. The motivations for this are that, on the one hand, these systems
should dynamically react to changes on their environment or in their execution
platform, in order to improve performance and/or energy efficiency. On the other

This work has been partially supported by CNRS under the PEPS Rupture Grant
for the project API: https://team.inria.fr/ctrl-a/members/eric-rutten/peps-api and
by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).

c© Springer International Publishing AG 2017
R. de Lemos et al. (Eds.): Self-Adaptive Systems III, LNCS 9640, pp. 349–373, 2017.
https://doi.org/10.1007/978-3-319-74183-3_12

https://team.inria.fr/ctrl-a/members/eric-rutten/peps-api


350 E. Rutten et al.

hand, complex systems are too large to continue being administrated manually
and must be automated, in order to avoid error-prone or slow decisions and
manipulations.

This trend can be observed at very diverse levels of services and application
software, middle-ware and virtual machines, operating systems, and hardware
architectures. The automation of such dynamical adaptation manages various
aspects such as computing and communication resources, quality of service, fault
tolerance. It can concern small embedded systems like sensors networks, up to
large-scale systems such as data-centers and the Cloud. For example, data-centers
infrastructures have administration loops managing their computing resources,
typically with energy-aware objectives in mind, and possibly involving manage-
ment of the cooling system. At a lower level, FPGA-based architectures (Field-
Programmable Gate Arrays) are hardware circuits that can be configured at run-
time with the logics they should implement: they can be reconfigured dynamically
and partially (i.e. on part of the reconfigurable surface) in response to environment
or application events; such reconfiguration decisions are taken based on monitor-
ing the system’s and its environment’s features.

1.2 Autonomic Computing

Autonomic computing [50] proposes a general feedback loop structure to take
adaptive and reconfigurable computing into account. In this closed loop, systems
are instrumented with monitors of sensors, and with reconfiguration actions or
actuators; these two have to be related by a control and decision component,
which implements the dynamic adaptation policy or strategy. The loop can be
defined as shown in Fig. 1 with the MAPE-K approach, with sub-components
for Analysis of Monitored data, Planning response actions, Execution of these
actions, all of them based on a Knowledge representation of the system under
administration. Autonomic computing has now gained a large audience [54].

Analyse

Sensor Actuator
Managed element

Plan

ExecuteMonitor Knowledge

Fig. 1. The MAPE-K autonomic manager for administration loop.

Such autonomic loops can be designed and developed in many different ways,
relying on techniques from e.g. Artificial Intelligence. However, an important



Feedback Control as MAPE-K Loop in Autonomic Computing 351

issues remains in that it is generally difficult to master the behavior of the
automated closed-looped systems with precision.

1.3 Need for Control

We are therefore particularly interested in an approach where this MAPE-K loop
is considered as a case of a control loop. Then, techniques stemming from control
theory can be used to design efficient, safe, and predictable controllers. Control
theory provides designers with a framework of methods and techniques to build
automated systems with well-mastered behavior. A control loop involves sensors
and actuators that are connected to the process or “plant” i.e., the system to
be controlled. A model of the dynamical behavior of the process is built, and
a specification is given for the control objective, and on these bases the control
is derived. Although there are approaches to the formal derivation of software
from specifications, such as the B method [3], this methodology is not usual in
Computer Science, where often a solution is designed directly, and only then it
is analyzed and verified formally, and the distinction between the process and
its controller is not made systematically.

We observe that this approach of using Control Theory methods and tech-
niques for computing systems, although well identified [44,77], is still only emerg-
ing. Works are scattered in very separate and dispersed efforts, in different areas
of the field of reconfigurable or adaptive computing, be it at software or archi-
tecture level, in communities not always communicating with each other. Some
surveys are beginning to be offered [35], some offering a classification [66], or con-
centrating on Real-Time computing systems [7,22] but a synthesis of all these
efforts is still lacking. The community begins to structure itself, notably around
workshops focused specifically on the topic e.g., Feedback Computing [21].

There exist related works in the community on Software Engineering for self-
adaptive systems presenting approaches to integrate Control Theory, typically
with continuous models [34]: here we focus on the MAPE-K loop as a target
for Control techniques. Also, some works exist considering different approaches
to discrete control, in the sense of considering events and states (see Sect. 3.3,
[56]) related to planning techniques from Artificial Intelligence e.g., [17,28,70]
or reactive synthesis in Formal Methods or Game Theory e.g., [13,29]. A wide
overview is given in another chapter of this book [56]. In this paper we make the
choice to focus in more detail on approaches from the Control Theory community,
based on continuous models and on the supervisory control of Discrete Event
Systems [18,69,73].

Our point in this paper is to contribute to relating on the one hand, the
general notion of control loop in Autonomic Computing, and on the other hand,
design models and techniques stemming specifically from Control Theory. In
doing so, we perform choices and do not pretend to exhaustivity. In particular,
we do not include in our scope techniques from different approaches and com-
munities like, e.g., Artificial Intelligence or Formal Methods, even though they
may have features not covered here.



352 E. Rutten et al.

Indeed several layers and different flavors of control must be combined to
fully handle the complexity of real systems. This already lead a long time ago
to hierarchical control, e.g. [5], where low level (i.e. close to the hardware) fast
control layers are further coordinated by slower higher level management layers.
Besides the different bandwidth between layers, it also happens that different
control technologies must be combined. For example, it is often observed in
robot control architectures that low level control laws, designed in the realm of
continuous control, are managed by a control actions scheduler based on discrete
events systems, such as in [2]. Both the continuous and discrete time control
designs described in the next sections are example of building blocks to be further
used in hierarchical control for Autonomic Computing.

1.4 Outline

This paper proposes interpretations of the MAPE-K loop from Autonomic Com-
puting in terms of models and techniques from Control Theory. We first consider
this from the point of view of continuous control in Sect. 2, starting with the clas-
sical PID up to more elaborate nonlinear and event-based control.

Discrete control is then considered in Sect. 3, where discrete event systems
are modeled by transition systems e.g., Petri nets or labelled automata.

Then some illustrative case studies are presented in Sect. 4, showing how
these concepts can be put into practice in the framework of real-world computing
systems.

Finally, Sect. 5 provides discussions and perspectives.

2 Continuous Control for Autonomic Computing

2.1 Brief Basics of Continuous Control

The basic paradigm in control is feedback, or closed-loop control, as depicted in
Fig. 2. The underlying idea is that control signals are continuously computed
from the error signal, i.e. the difference between the actual behavior of the plant
(measured by its outputs) and its desired behavior (specified by a reference
signal). The loop is closed through the controlled plant, and control actions
are computed indefinitely at a rate fast enough with respect to the process
dynamics [8,9].

The behavior of the controlled process, whatever its nature (e.g. electro-
mechanical or chemical for physical devices, but also digital for schedulers,
databases and other numerical components) is never perfectly known. It is known
only through a dynamic model which aims to capture the main characteristics of
the process. It is most often given as of a set of difference equations where the
continuous time is sampled (usually periodically) at instants tk, tk+1, ...:

xk+1 = f(xk,uk), x(t = 0) = x0

yk = g(xk) (1)



Feedback Control as MAPE-K Loop in Autonomic Computing 353

Fig. 2. The control loop for continuous control.

Here x is the state vector of the process able to describe its behavior over time, x0

is its value at the initialization of the system. y is a vector of outputs measured
on the process via sensors and f(.) and g(.) are respectively the state evolution
function and the output function of the plant model. u is the vector of control
signals sent to the actuators, it is repetitively computed by a controller, e.g. by
a state feedback as:

uk = K(x̂k, rk) (2)

where x̂ is an estimate of the state vector, r is a set of reference signals to be
tracked and K(.) is a function (which can be static or dynamic) of the state (or
outputs) and of the reference signals.

For example, considering the control model of a web server, the system state
may gather the number of admitted requests and an estimate of the CPU load,
the observed output vector may gather a measure of the CPU activity filtered
over some time window and the observed response time, and the control input
can be an admission controller. The control objective can be the result of the
minimization of a Quality of Service criterion gathering the rejection rate and the
response time of the server under constraint of CPU saturation avoidance. Note
that most often the variables of interest are not directly available from simple
measurements, and that the system state must be reconstructed and smoothed
using signal processing and filtering from the raw sensors outputs.

Remember that (1) is a model of the plant, i.e. an abstraction of reality
where the structure is simplified and the value of the parameters is uncertain.
Therefore, an open-loop control, using the inverse of the model to compute con-
trol inputs from the desired outputs, inevitably drifts away and fails after some
time. Compared with open-loop control (which would rely on an utopian perfect
knowledge of the plant), the closed-loop structure brings up several distinctive
and attractive properties:



354 E. Rutten et al.

Stability. Briefly speaking, a system is said stable if its output and state remain
bounded provided that its inputs and disturbances remain bounded (formal
definitions, such as BIBO stability, Lyapunov stability and others, can be
easily found thorough the control literature). It is a crucial property of a con-
trol system, ensuring that the trajectory of the controlled plant is kept close
enough to the specified behavior to satisfy the end-user’s requirements. A dis-
tinctive property of feedback controllers is that, if they are well designed and
tuned, they are able to improve the stability of marginally stable plants, and
even to stabilize naturally unstable systems, e.g., modern aircrafts. Anyway
the stability of a control system must be carefully assessed, as poor design or
tuning can drive the system to unstability;

Robustness. The control actions are repeated at a rate which is fast compared
with the system dynamics, hence the increments of tracking errors due to
imperfect modeling are small, and they are corrected at every sample. Indeed,
besides the main directions of the dynamics, the model does not need to
capture the details of the process dynamics. Most often, poorly known high
frequencies components are discarded, and exact values of the parameters are
not needed. Therefore, feedback is able to provide precise and effective control
for systems made of uncertain components.

Tracking and performance shaping. As the controller amplifies and adjusts
the tracking error before feeding the actuators, it is able to shape the per-
formance of the controlled plant. For example, the closed-loop system can be
tuned for a response faster than the open-loop behavior, and disturbances
can be rejected in specified frequency bands. Thanks to robustness, tracking
objectives can be successfully performed over a large range of input trajecto-
ries without need for on-line re-tuning;

2.2 The MAPE-K Loop as a Continuous Control Loop

The MAPE-K description corresponding to the model (1) with control (2) is
as shown in Fig. 3. The Monitor phase of the MAPE-K loop corresponds to the
sampling of the system, typically, it defines the frequency at which the data must
be acquired. It is usually related to sampling theory (Shannon theorem). The
Analyse phase is in our description represented by the hat over x. This notation is
commonly used to denote that the exact value of x is not known, either because of
noise that requires a filtering action or because it can not be measured directly
from the system. It is for instance the case of energy consumption that must
be estimated using other variables like CPU or disk usage. The analyse phase
would in that case include the signal estimation/reconstruction or more simply
the filtering. The Plan phase corresponds to the computation of the control law
using the Knowledge of the system held in the model. Finally, the Execute phase
consist in changing the value of the actuator at a frequency which is most often
identical to the sampling frequency of the monitor phase.



Feedback Control as MAPE-K Loop in Autonomic Computing 355

Fig. 3. The continuous control loop as a MAPEK diagram

2.3 Continuous Feedback Computing

Let us now examine how feedback can be applied to computing system adminis-
tration, resource management or network management. Although feedback con-
trol was first developed to control physical devices like steam engines, factory
lines or various kind of vehicles [9], the closed-loop concept has been adapted
for the control of digital devices such database servers, e.g. [44,60], or real-time
schedulers as in [62]. However, compared with usual control applications, the
nature of the controlled process deeply differs in the case of control for comput-
ing devices, and the usual components of the control loops must be adapted for
the particular technology.

Models. Usual models for the control of continuous process are given as a set
of differential equations, which are further discretized as difference equations
for numerical control purpose. In contrast, at a detailed level, digital objects
can be often described by large FSMs which are not well suited for closed-
loop control. However, thanks to robustness, a feedback-control compliant
model only needs to capture the essential of the plant dynamics. For example,
computing devices can be approached by “fluid modeling” where, e.g., flow
equations describe flows of input requests and levels in tanks represent the
state of message queues [44]. Using such abstractions leads to quite simple
difference models, where for example queues behave as integrators and provide
the basic dynamics in the model. Besides metrics related to performance,
as computation loads or control bandwidth, some relevant properties of a
software are related to reliability. For example, the failure probabilities of
software components may lead to a reliability formal model given as a Discrete
Time Markov Chain, further used for the design of a predictive feedback
control law [33]. Some control related modeling issues are detailed in another
chapter of this book [56].

Sensors. Sensors provide raw measurements from the controlled process, they
are provided by hardware or software probes in the operating system or in the



356 E. Rutten et al.

application code. Basic measurements record the system activity such as the
CPU use, deadlines misses or response times of individual components. Raw
measurements are gathered and pre-processed to provide compound records
and quality of service clues to the controller. Note that the CPU use is always
of interest, as CPU overloading is a permanent constraint. However, it is only
meaningful when estimated over windows of time: the size of these measure-
ment windows and associated damping filters provide a second main source
of dynamics in the plant model.

Actuators. In software control, the actuators are provided by function calls
issued by the operating system, or by other software components with enough
authority. Scheduling parameters such as clock rates, deadline assignments
and threads priorities can be used to manage multitasking activities. Admis-
sion control can be used to handle unpredictable input request flows. The fre-
quency scaling capability of modern chips is also an effective tool to optimize
the energy consumption due to high speed calculations in mobile devices.

Controllers. Potentially all the control algorithms found in the existing con-
trol toolbox can be adapted and used for the control of digital devices [66].
Most often, thanks to the usually simple dynamic models considered for soft-
ware components, simple and cheap controllers can be effective as detailed in
Sect. 2.4. Anyway some more complex control algorithms have been worked
out to better handle the complexity of QoS control for computing systems
(Sect. 2.5).

2.4 Basic Control

PID (Proportional, Integral, Derivative) control algorithms are widely used, as
they are able to control many single input/single output (SISO) systems through
a very simple modeling and tuning effort. In that case the control input u is
written as a function of the error signal -that is the difference between a desired
output and its measure on the real system- e(t) = r(t) − y(t) as:

u(t) = Ke(t) +
K

Ti

∫ t

0

e(τ)dτ + KTd
d

dt
e(t) (3)

Here the proportional term K · e(t) controls the bandwidth and rising time
of the control loop, the derivative term KTd

d
dte(t) damps the oscillations and

overshoots and the integral term K
Ti

∫ t

0
e(τ)dτ nullifies the static errors, that is

the value of the error e(t) when t goes to the infinite.
Indeed, the ideal continuous PID must be discretized for implementation

purpose. For example, using a backward difference method (with Ts the sampling
period) yields

uk = uk−1 + K[ek − ek−1] +
K · Ts

Ti
ek +

K · Td

Ts
[ek − 2ek−1 + ek−2] (4)

The MAPEK diagram of the PID controller then follows as in Fig. 4. Tuning
the PID is made using the knowledge of the system. This knowledge can take



Feedback Control as MAPE-K Loop in Autonomic Computing 357

the form of a state space or transfer function model but can also reside in an
empirical tuning of the parameter of the PID controller.

Fig. 4. The PID continuous control loop as a MAPEK diagram

2.5 Advanced Modeling and Control

Besides PID controllers which have been used in pioneering works (e.g. [59]),
other simple/linear control schemes were also implemented in the context of com-
puter science. [44] is an emblematic example of a black-box modeling in order
to derive a controller using classical linear control theory aiming to maximize
the efficiency of Lotus Notes. Other linear approaches were also implemented
for periods rescaling [19] or to control elasticity of distributed storage in cloud
environment [65]. All linear systems share the same superposition property and
can be analyzed and assessed using well established mathematical tools. Unfor-
tunately, their use to real systems that are most of the time non-linear is possible
only on a limited range of the state space for which linearization is meaningful.

Indeed, many classical non-linearities of computer systems (limited range for
variables, limited bandwidth, etc.) can hardly be taken into account only with
linear tools [34]. In particular, optimizing a computing system operation may
need to intentionally load the actuators (i.e. the CPUs) until saturation, rather
than avoiding the actuators limits as in the linear control approach. Therefore,
in addition to the linear control theory, the control toolbox now contains a rich
set of advanced control algorithms, which have been developed over years to
supplement the shortage of simple linear control in specific cases.

For example, early models of servers were simple linear fluid models and
the corresponding linear controller as [44]. However, handling trashing in servers
needs to model the overhead due to parallel operations: the resources needed by a
server to serve requests is not proportional to the number of requests. Non-linear
models and control are needed in that case detailed in Sect. 4.2 [62].

In another case study [67], handling the static input and output non-
linearities of a software reservation system is made by the combination of linear



358 E. Rutten et al.

and non-linear blocks in a Hammerstein-Wiener block structure. Then, the cor-
responding QoS controller is designed in the predictive control framework. Note
that even when these more elaborated non-linear models are considered, the
resulting controllers remain simple with a very small run-time overhead and a
moderate programming effort.

Other non-linear, switched, hybrid, hierarchical and cascaded schemes were
implemented on various computing systems (see for instance [76,78] and the
references therein).

Indeed it appears that, considering the quite simple dynamics of the con-
trolled system, the time devoted to modeling is by far larger than the time
devoted to control design. Models well suited for control purpose must be simple
enough to allow for the synthesis of a control algorithm, while being able to cap-
ture the essence of the system behavior. Typically, modeling for the control of
autonomic computing systems needs to consider trade-offs between the control
objectives and the cost needed to reach them through the execution of parallel
activities running on shared hardware and software resources [55].

For example, it has been shown in [61] that a game theoretic framework
allows for the decoupling between the resource assignment and the quality set-
ting, finally leading to a resource manager with a linear time complexity in the
number of applications running in parallel. Once the resources and concurrent
activities has been suitably modeled, the control decisions can be implemented
as a hierarchy of layered controllers ranging from the control of elementary com-
ponents up-to QoS optimization, e.g., as in [57].

Finally, the execution cost of the controller itself must be considered. Tradi-
tionally control systems are time triggered, allowing for a quite simple stability
analysis in the framework of periodic sampling. However, the choice of the trig-
gering period is an open issue, as reactivity needs fast sampling leading to a high
computing cost. However, fast reactions are not always necessary, for example in
case of slowly varying workloads. To avoid wasting the computing resource, the
event-based control paradigm has been proposed (e.g. [75]). With this approach,
the controller is activated only when some significant event acting on the system
triggers an event detector.

3 Discrete Control for Autonomic Computing

3.1 Brief Basics of Supervisory Control of Discrete Event Systems

Amongst the different approaches to discrete control (see Sects. 1.3 and 3.3,
[56]) this Section focuses on and technically details the supervisory control of
Discrete Event Systems [18,69]. Figure 5 shows a control loop for the case of
discrete control with a memorized state, a transition function, and a supervisory
controller obtained by discrete controller synthesis.

The characterization of Discrete Event Systems [18] is given by the nature
of the state space of the considered system: when it can be described by a
set of discrete values, like integers, or vectors of Booleans, and state changes are
observed only at discrete points in time, then such transitions between states are



Feedback Control as MAPE-K Loop in Autonomic Computing 359

Fig. 5. The control loop for discrete control.

associated with events. In this section we very briefly and informally summarize
some essential notions.

The modeling of sequences of such events, like the sequence of values, at time
k, of yk and uk in Fig. 5, can be approached by formal languages. They enable to
specify structure in the sequences of events, representing possible behaviors of
a system, or desired behaviors in the interaction with a system. Operations on
languages can help composing them, or making computations on the represented
behaviors.

Automata are formal devices that are capable of representing languages, in the
graphical and intuitive form of state and transition graphs, also called transition
systems, or Finite State Machines (FSM). As shown in Fig. 5, they involve two
main features. On the one hand, there is a memorizing of a state, the current
value xk resulting from the previous transition at k − 1 (with an initial value xi
at time 0). On the other hand, is a transition function T computing the next
value of the state x′

k in function of the current observed value yk (we do not yet
distinguish controllable variables c) and current state xk. It can also compute
values uk that can be used to send commands to the controlled system. Figure 5
also shows possible pre-processing between raw data and yk, or post-processing
between uk and concrete actions, e.g. corresponding to implementation-specific
filters.

(x′
k,uk) = T (yk,xk)
xk = x′

k−1

x0 = xi
(5)

Such automata can be associated with properties pertaining to their gen-
eral behavior e.g., determinism, reactivity, or more specific like reachability of
a state, and manipulated with operations e.g., parallel or hierarchical compo-
sition. The transitions are labelled by the events which are recognized when
they are taken. Such automata-based models are precisely the basic semantic



360 E. Rutten et al.

formalism underlying reactive systems and languages [11,43]. Related models in
terms of transitions systems also include Petri nets, where the transitions are
connecting places which are associated with tokens: the marking of the set of
places by present tokens defines the state of the Petri net. The transitions can be
labelled by events and their sequences define languages. The relationship with
automata is given by the graph of reachable markings of the net. Analysis of
such transition systems is made possible by algorithmic techniques exploring the
reachable states graph in order to check typically for safety properties (e.g., using
model checking techniques and tools), or concerning diagnosis of the occurrence
of unobservable events from the observations on the behavior of a system.

Control of transition systems has then been defined as the problem of restrict-
ing the uncontrolled behaviors of a system. The latter can be described by an
automaton G, control restricts its behavior so that it remains in a subset of the
language of G, defined by a control objective, describing the desired behavior.
The notion of supervisory control of discrete event systems has been introduced
[69], which defines a supervisor that can inhibit some transitions of G, called
controllable (controllability of a system can be partial), in such a way that,
whatever the sequences of uncontrollable events, these controllable transitions
can be taken in order for the desired behavior to be enforced, and the undesirable
behavior avoided. Typical desired behaviors, or control objectives, in the super-
visory control approach are safety properties: deadlock avoidance, or invariance
of a subset of the state space (considered good). A specially interesting prop-
erty of the supervisor is it should be restricting only the behaviors violating the
desired objectives, or in other terms it should be maximally permissive. It can be
noted that this important property is possible in this approach, whereas it is not
considered or defined in approached dealing with more expressive goals such as
liveness. As shown in Fig. 5, the resulting synthesized controller C gives values
to controllable variables c, which are part of the parameters of the transition
function T :

(x′
k,uk) = T (yk, ck,xk)
ck = C(yk,xk)
xk = x′

k−1

x0 = xi

(6)

Tools available to users who wish to apply such automated controller synthe-
sis techniques, adopting the approach of supervisory control for Discrete event
Systems, include: TCT, based on languages models and theory [74]; Supremica,
related to the manufacturing languages of the IEC standard [4]; SMACS, which
achieves Controller Synthesis for Symbolic Transition Systems with partial infor-
mation [47]; Sigali, which is integrated in the synchronous reactive programming
environments [63], and in the compiler of the BZR language [23]. A new tool,
ReaX, extends the expressivity to Discrete Controller Synthesis for infinite state
systems, and treats logic-numeric properties [12].



Feedback Control as MAPE-K Loop in Autonomic Computing 361

(a)

sensor

state
inputs

actuator

managed element

outputs

transition
function

(b)

sensor

state
inputs

actuator

managed element

outputs

transition
function

control

Fig. 6. The discrete control loop as a MAPEK diagram. (a): simple automaton-based
manager; (b): exhibiting observability and controllability.

3.2 The MAPE-K Loop as a Discrete Supervisory Control Loop

In the general framework for autonomic computing shown in Fig. 1, discrete
control can be integrated as shown in Fig. 6(a): it instantiates the general auto-
nomic loop with knowledge on possible behaviors represented as a formal state
machine, and planning and execution as the automaton transition function, with
outputs triggering the actuator. As evoked in previous Section, the models used
in supervisory control of DES enable to address properties on the order of events
or the reachability of states, with tool-equipped techniques for verification (e.g.
model checking) and especially Discrete Controller Synthesis (DCS). The latter
is automated and constructive, hence we use it for the logic control of autonomic
systems, encapsulated in a design process for users experts of systems, not of
formalisms.

In the autonomic framework, in order to support coordination of several
autonomic managers by an upper layer, some additional observability can be
obtained by having additional outputs, as shown by dashed arrows in Fig. 6(b)
for a FSM autonomic manager, exhibiting (some) of the knowledge and sensor
information (raw, or analyzed); this can feature state information on the auto-
nomic manager itself or of managed elements below. At that level, additional
inputs can provide for controllability by an external coordinator.

3.3 Discrete Feedback Computing

As was noted by other authors, while classical control theory has been readily
applied to computing systems [44], applying Discrete Control Theory to com-
puting systems is more recent. One of the earliest works deals with controlling
workflow scheduling [71]. Some focus on the use of Petri nets [45,46,58] or finite
state automata [68].

In the area of fault-tolerant systems, some works [15,53] present notions simi-
lar to control synthesis, not explicitly considering uncontrollables. In that sense,
it resembles more open-loop control, considering the internals of a computing
system, to which we prefer closed-loop control, taking into account events from
its environment.



362 E. Rutten et al.

A whole line of work focuses on the computing systems problem of deadlock
avoidance in shared-memory multi-threaded programs. These work rely on the
literature in Discrete Control Theory concerning deadlock avoidance, which was
originally motivated by instances of the problem in manufacturing systems. [73]
is a programming language-level approach, that and relies upon Petri net formal
models, where control logic is synthesized, in the form of additional control
places in the Petri nets, in order to inhibit behaviors leading to interlocking.
The Gadara project elaborates on these topics [72]. They apply Discrete Control
internally to the compilation, only for deadlock avoidance, in a way independent
of the application. Other works also target deadlock avoidance in computing
systems with multi-thread code [10,30].

Another kind of software problem is attacked by [37,38]: they consider run-
time exceptions raised by programs and not handled by the code. Supervisory
control is used to modify programs in such a way that the un-handled exceptions
will be inhibited. In terms of autonomic computing, this corresponds to a form of
self-healing of the system. Applications of the Ramadge and Wonham framework
to computing systems can also be found concerning component-based systems
reconfiguration control, enforcing structural as well as behavioral properties [51],
and more generally adaptive systems, as one of the decision techniques in a multi-
tier architecture [28].

In an approach related to reactive systems and synchronous programming,
discrete controller synthesis, as defined and implemented in the tool Sigali, is
integrated in a programming language compiler. [27] describes “how” compi-
lation works, with modular DCS computations, performing invariance control.
This language treats expression of objectives as a first class programming lan-
guage feature. The programming language, called BZR, is used in works con-
cerning component-based software [16]. It is extended to handle logico-numeric
properties, by replacing, in the modular architecture of the compiler, Sigali with
the new tool ReaX [12]. Other previous work related to the synchronous lan-
guages involved some separate and partial aspects of the problem, testing the
idea in the framework of a more modest specialized language [25], and particular
methods and manual application of the techniques [36], and elaborating on the
articulation between reactive programs and DCS [6,24,64], as well as application
to fault-tolerance [31,39].

As noted above, some other related work can be found in computer sci-
ence and Formal Methods, in the notions of program synthesis. It consists in
translating a property on inputs and outputs of a system, expressed in tem-
poral logics, into a lower-level model, typically in terms of transition systems.
For example, it is proposed as form of liberated programming [41] in a UML-
related framework, with the synthesis of StateChart from Live Sequence Charts
[42,52]. Other approaches concern angelic non-determinism [14], where a non-
deterministic operator is at the basis of refinement-based programming. These
program synthesis approaches do not seem to have been aware of Discrete Con-
trol Theory, or reciprocally: however there seems to be a relationship between
them, as well as with game theory, but it is out of the scope of this paper.



Feedback Control as MAPE-K Loop in Autonomic Computing 363

Also, interface synthesis [20] is related to Discrete Controller Synthesis. It
consists in the generation of interfacing wrappers for components, to adapt them
for the composition into given component assemblies w.r.t. the communication
protocols between them.

4 Case Studies

4.1 Video Decoding and DVFS

Energy availability is one of the main limiting factors for mobile platforms pow-
ered by batteries. Dynamic Voltage and Frequency Scaling (DVFS) is a very
effective way to decrease the energy consumption of a chip, by reducing both
the clock frequency and the supply voltage of the CPUs when high computation
speeds are not necessary. Many chips used in embedded or mobile systems are
now fitted with such capabilities, and the computing speed is adapted on-the-fly
thanks to some estimated computing performance requirement.

Using feedback loops is an effective way to robustly adapt the chip computing
speed even if the incoming computation load is hard to predict, as in the example
described in [32]. The problem is to minimize the energy consumption of a H.264
video decoder by using the lowest possible computing speed able to decode the
frames with respect to the output display rate (25 frames/sec).

The computing speed is adapted thanks to the control architecture depicted
in (Fig. 7a). At low level, a computing speed controller -integrated in silicon-
drives the DVFS hardware with frequency and Vdd set points (see [32] for
details). It is driven from estimates of the needed computation load (i.e. the
number of CPU cycles) and decoding deadline for the incoming frame. These
estimates are themselves computed by an outer frame control loop.

Measurements of decoding execution times (Fig. 7b) show that, between noisy
and almost flat segments, the decoding times exhibit sharp and unpredictable
isolated peaks when switching between plans. Therefore, rather than trying to
compute any prediction, the estimation of the next frame computation load Ω̂i+1

can be simply taken equal to the last one, i.e. Ωi, recorded by the instrumentation
inserted in the H.264 decoder. Even better, it can be provided by smoothed past
values through a low pass filter:

Ω̂i+1 = αΩ̂i−1 + (1 − α)Ωi (7)

where 0 ≤ α < 1 controls the filter damping.
This rough estimate is used by the frame controller to compute the ideal

deadline for the incoming frame using a simple proportional controller:

Δri+1 = τi+1 + β δi, 0 < β ≤ 1 (8)

where δi is the observed overshoot for the last decoded frame. Indeed this con-
troller aims at driving the end-of-computation of frame i+1 towards τi+1, which
is the theoretic timing of the periodic video rate.



364 E. Rutten et al.

Encoded
Bitstream

Quality cost model
Consumption model

Display parameters
Battery monitoring

Bitstream structure

Decoder
display rate

resolution

contrast

Filter

Skip

Frame
Controller

Timing patterns
Cycles estimator

R
eq

D
ea

dl
in

e

V
hi

gh
/V

lo
w

 r
at

io

timing tags
actual cycles

Req_Quality

actual quality
aggregated costs

T
im

in
g 

St
at

us
Controller

req. frequency/voltage

Operating system side

Layers

Computing

Speeden
er

gy
m

on
ito

ri
ng

Silic
on side

R
eq

C
yc

le
s

en
d 

of
 ta

sk

m
ax

 s
pe

ed

Controller
Quality of Service

100 200 300 400 500 600 700 800 900 1000
30

35

40

45

50

55

60

65

70

Frame number

D
ec

od
in

g 
tim

e 
(m

s)

I frames

(a) (b)

Fig. 7. (a) Control architecture – (b) Frames computation times

Despite the apparently overly simple computing load model (7), the very
simple and low cost frame controller (8) is able to regulate the decoding tim-
ing overshoot to very small values (Fig. 8a), thus keeping an fluid display rate.
Computing a penalty function based on the viewing quality (Fig. 8b) shows that
using these elementary feedback loops allow both for a better viewing quality
and up-to 24% energy saving compared with the uncontrolled decoding case.

0 100 200 300 400 500 600 700 800 900 1000
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Frame number

D
ea

dl
in

e 
er

ro
r 

(m
s)

(r
eq

. d
ea

dl
in

e:
 5

0 
m

s)

Experience with deadline control

 

 
error δ

k

−2.10
6

1000Frames

P
en

al
ty

−4.10
6

−6.10
6

−8.10
6

6
−10.10

45ms, ctrl

50ms, ctrl

40ms, ctrl

50ms, no ctrl

0

(a) (b)

Fig. 8. (a) Deadline with control – (b) Video viewing penalty function

Hence, this example show that even very simple control loops with negligible
computation overheads, if carefully designed, may have a very positive impact
on an embedded system adaptiveness and robustness against a poorly modelled
environment.

4.2 Server Provisioning

A classical technique used to prevent servers from thrashing when the workload
increases consists in limiting client concurrency on servers using admission con-
trol. Admission control has a direct impact on server performance, availability,
and quality of service (QoS). Modeling of servers and feedback control of their
QoS has been one of the first application domain targeted by feedback schedul-
ing, first using linear models [44,60]. However, it appears that to handle trashing,
the model must accurately capture the dynamics and the nonlinear behavior of
server systems, while being simple enough to be deployed on existing systems.



Feedback Control as MAPE-K Loop in Autonomic Computing 365

Based on numerous experiments and identification, a nonlinear continuous-
time control theory based on fluid approximations has been designed in [62].
It is both simple to use and able to capture the overhead due to the parallel
processing of requests responsible for trashing (Fig. 9a).

AC

(a) (b)

Fig. 9. (a) Fluid model – (b) Rejection rate

The request queue is considered as a fluid tank receiving client request flows
M and N and emitting a served requested flow with latency L for the served
requests. The system state is defined by the number of concurrently admitted
requests Ne, the server throughput T0 and the rejection rate α. The modelling
effort leads to the following model for the input/output latency:

L(Ne,M, t) = a(M, t)N2
e + b(M, t)Ne + c(M, t) (9)

where the latency L is a non-linear function of the number of Ne, of the server
mix load M and of continuous time t. The rejection rate is given by

α̇(t) = − 1
Δ

(
α(t) − Ne(t)

AC(t)
·
(

1 − To(t)
Ti(t)

))
(10)

with Δ the sampling rate, Ti the input flow and AC the admission control value.
Then two control laws could be derived for different control objectives:

– AC = Ne

1+γ
L
(L−Lmax)

maximizes the availability of the server, i.e. minimizes
the rejection rate;

– AC = αNe

α−γα (α−αmax)
maximizes the performance, i.e. minimizes the latency

for the admitted requests.

These simple control laws are cost effective and easy to tune, as they both use
a single tuning parameter γ

L
or γα .

Despite their simplicity, using these simple controllers allows for an efficient
on-line management of an Apache web server. For example, Fig. 10 show that
the rejection rate can be kept close to a desired goal, or that the latency of the
served requested can be regulated around the requested value.



366 E. Rutten et al.

0 5 10

(a) (b)

15 20
0

2

4

6

8

10

12

14

16

18

Time (min)

La
te

nc
y 

(s
)

Latency with control
Latency without control
Lmax

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

Time (min)

A
ba

nd
on

 ra
te

 (%
)

Abandon rate with control
Abandon rate without control

Fig. 10. (a) Latency control – (b) Rejection rate control

Even more important, these controllers –with negligible computing cost–
turns the nature of the system into a safer behavior. Indeed, trashing is auto-
matically avoided even in the case of huge overloads with no need for an operator
to manually re-tune the AC parameters.

4.3 Coordination of Multiple Autonomic Administration Loops

Real autonomic systems require multiple management loops, each complex to
design, and possibly of different kinds (quantitative, synchronization, involving
learning, ...). However their uncoordinated co-existence leads to inconsistency or
redundancy of action. Therefore we apply discrete control for the interactions of
managers [40]. We validate this method on a multiple-loop multi-tier system.

Controllable managers as seen in Fig. 6(b) can be assembled in composites,
where the coordination is performed in a hierarchical framework, using the pos-
sibilities offered by each of them, through control interfaces, in order to enforce
a coordination policy or strategy. We base our approach on the hierarchical
structure in Fig. 11: the top-level AM coordinates lower-level ones.

control

state
inputs outputs

transition
function

sensor

state
inputs

actuator

outputs

transition
function

sensor

state
inputs

actuator

outputs

transition
function

controlcontrol

managed element

Fig. 11. Autonomic coordination for multiple administration loops.



Feedback Control as MAPE-K Loop in Autonomic Computing 367

We consider the case study of the coordination of two administration loops
for the management of a replicated servers system based on the load balancing
scheme. Self-sizing addresses resource optimization, and dynamically adapts the
degree of replication depending on the CPU load of the machines hosting the
active servers. Self-repair addresses server recovery upon fail-stop failure of a
machine hosting a single or replicated server. Co-existence problems occur when
failures trigger incoherent decisions by self-sizing: The failure of the load balancer
can cause an under-load of the replicated servers since the latter do not receive
requests until the load balancer is repaired. The failure of a replicated server can
cause an overload of the remaining servers because they receive more requests
due to the load balancing. A strategy to achieve an efficient resource optimization
could be to (1) avoid removing a replicated server when the load balancer fails,
and (2) avoid adding a replicated server when one fails.

Fig. 12. Managers models: self-sizing (left) and self-repair (right).

Figure 12 shows the automata modelling the behaviors of the managers, in
the BZR language [26], abstracted to the relevant activity information. In the
right of the Figure, the self-sizing manager is composed of three sub-automata.
In brief, the two external ones model the control of the adding (resp. removal)
of servers, with disU (resp. disD), which, when true, prevent transitions where
output add (resp. rem) triggers operations. The center one models the behaviors
in reaction to load variation, for which all detail is available elsewhere [40]. In
the left of the Figure are self-repair managers for the load balancer (LB) and
the replicated servers (S). The right automaton concerns servers, and is initially
in OkS. When failS is true, it emits repair order rS and goes to the RepS state,
where repS is true. It returns back to OkS after repair termination (Sr is true).
Repair of the LB is similar. The automata in Fig. 12 are composed in order to
have the global behavior model, and a contract specifies the coordination policy.
The policies (1) and (2) in Sect. 4.3 are enforced by making invariant, by control
upon the controllable variables Cu, Cd, the subset of states where the predicate
holds: ((repLB => disD) and (repS => disU))

This controller was validated experimentally on a multi-tier system based on
Apache servers for load balancing (with a self-repair manager) and replicated



368 E. Rutten et al.

Tomcat servers (with both self-sizing and self-repair managers), with injection
of workloads and failures to which the system responded properly, without over-
reacting, according to the objective.

5 Conclusions and Perspectives

We propose a discussion of the problem of controlling autonomic computing sys-
tems, which is gaining importance due to the fact that computing systems are
becoming more and more dynamically reconfigurable or adaptive, to be flexible
w.r.t. their environment and to automate their administration. We observe that
one approach consists of using Control Theory methods and techniques for com-
puting systems: although it is well identified [44], it is still only emerging, and
works are scattered in separate areas and communities of Computer Science.

We aim at conveying to Computer Scientists the interest and advantages of
adopting a Control Theory perspective for the efficient and predictable design
of autonomic systems. Compared with open-loop, closed-loop control provides
adaptability and robustness, allowing for the design of fault-tolerant systems
against varying and uncertain operating conditions. However, there still is a
deep need for research in the problems of mapping from high-level objectives
in terms of Quality of Service (QoS) or Service Level Objectives (SLO) and
abstract models towards lower-levels effective actions on the managed systems.
In the area of Computing Systems research, there is an important topic in the
design of architectures so that they are made controllable [48], as self-aware
software (adaptive, reflective, configuring, repairing...) needs explicitly built-in
sensing and acting capabilities [49]. On the other side, the kind of models usual
in Control Theory must be totally reworked to be useful for computing systems,
and this is a research challenge for the Control community. Also, an important
issue is that complex systems will involve multiple control loops, and their well-
mastered composition and coordination to avoid interferences is a difficult and
hardly tackled question [1].

One lesson learned in this work is that the open problems are concerning
both Control Theory and Computer science, and that solutions going beyond
simple cases require active cooperation between both fields. As noted by other
authors e.g., [33], this bi-disciplinary field is only beginning, and the problems
involved require competences in Control, as well as expertise in the computing
systems. There is a costly investment in time to build common vocabulary and
understanding, for which the MAPE-K loop offers a common ground, and this
investment opens the way for better controlled autonomic computing systems,
safer and optimized.



Feedback Control as MAPE-K Loop in Autonomic Computing 369

References

1. Abdelzaher, T.: Research challenges in feedback computing: an interdisciplinary
agenda. In: 8th International Workshop on Feedback Computing, San Jose,
California (2013)

2. Aboubekr, A.S., Gwenaël, D., Pissard-Gibollet, R., Rutten, É., Simon, D.: Auto-
matic generation of discrete handlers of real-time continuous control tasks. In:
IFAC World Congress 2011, Milano, Italie, August 2011

3. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

4. Akesson, K.: Supremica. http://www.supremica.org/
5. Albus, J.S., Barbera, A.J., Nagel, R.N.: Theory and practice of hierarchical control.

National Bureau of Standards (1980)
6. Altisen, K., Clodic, A., Maraninchi, F., Rutten, E.: Using controller-synthesis tech-

niques to build property-enforcing layers. In: Degano, P. (ed.) ESOP 2003. LNCS,
vol. 2618, pp. 174–188. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36575-3 13

7. Årzén, K.-E., Robertsson, A., Henriksson, D., Johansson, M., Hjalmarsson, H.,
Johansson, K.H.: Conclusions of the ARTIST2 roadmap on control of computing
systems. ACM SIGBED (Special Interest Group on Embedded Systems) Rev. 3(3),
11–20 (2006)

8. Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and
Engineers, 2nd edn. Princeton University Press, Princeton (2015). http://www.cds.
caltech.edu/∼murray/amwiki/index.php/Main Page

9. Åström, K.J., Wittenmark, B.: Computer-Controlled Systems. Information and
System Sciences Series, 3rd edn. Prentice Hall, Upper Saddle River (1997)

10. Auer, A., Dingel, J., Rudie, K.: Concurrency control generation for dynamic
threads using discrete-event systems. In: 2009 47th Annual Allerton Conference on
Communication, Control, and Computing, Allerton 2009, 30 September–2 October
2009, pp. 927–934 (2009)

11. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages twelve years later. Proc. IEEE 91(1), 64–83 (2003).
Special issue on embedded systems

12. Berthier, N., Marchand, H.: Discrete controller synthesis for infinite state systems
with ReaX. In: 12th International Workshop on Discrete Event Systems, WODES
2014. IFAC, May 2014

13. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

14. Bodik, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N., Barman, S.,
Rodarmor, C.: Programming with angelic nondeterminism. In: Principles of Pro-
gramming Languages, POPL, pp. 339–352, January 2010

15. Bonakdarpour, B., Kulkarni, S.S.: On the complexity of synthesizing relaxed and
graceful bounded-time 2-phase recovery. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 660–675. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-05089-3 42

16. Bouhadiba, T., Sabah, Q., Delaval, G., Rutten, E.: Synchronous control of recon-
figuration in fractal component-based systems: a case study. In: Proceedings of
the Ninth ACM International Conference on Embedded Software, EMSOFT 2011,
Taipei, Taiwan, pp. 309–318, October 2011

http://www.supremica.org/
https://doi.org/10.1007/3-540-36575-3_13
https://doi.org/10.1007/3-540-36575-3_13
http://www.cds.caltech.edu/~murray/amwiki/index.php/Main_Page
http://www.cds.caltech.edu/~murray/amwiki/index.php/Main_Page
https://doi.org/10.1007/978-3-642-05089-3_42
https://doi.org/10.1007/978-3-642-05089-3_42


370 E. Rutten et al.

17. Braberman, V., D’Ippolito, N., Kramer, J., Sykes, D., Uchitel, S.: MORPH: a refer-
ence architecture for configuration and behaviour self-adaptation. In: Proceedings
of the 1st International Workshop on Control Theory for Software Engineering,
CTSE 2015, pp. 9–16. ACM, New York (2015)

18. Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
New York (2008). https://doi.org/10.1007/978-0-387-68612-7

19. Cervin, A., Eker, J., Bernhardsson, B., Årzén, K.E.: Feedback-feedforward schedul-
ing of control tasks. Real-Time Syst. 23(1–2), 25–53 (2002)

20. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Mang, F.Y.C.: Synchronous and
bidirectional component interfaces. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 414–427. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45657-0 34

21. Feedback Computing. http://www.feedbackcomputing.org/
22. Control for Embedded Systems Cluster: Roadmap on control of real-time comput-

ing systems. Technical report, EU/IST FP6 Artist2 NoE (2006)
23. Delaval, G.: Bzr. http://bzr.inria.fr
24. Delaval, G.: Modular distribution and application to discrete controller synthesis.

In: International Workshop on Model-driven High-level Programming of Embedded
Systems (SLA++P 2008), Budapest, Hungary, April 2008

25. Delaval, G., Rutten, E.: A domain-specific language for multi-task systems, apply-
ing discrete controller synthesis. J. Embed. Syst. 2007(84192), 17 (2007)

26. Delaval, G., Rutten, É., Marchand, H.: Integrating discrete controller synthesis
into a reactive programming language compiler. Discrete Event Dyn. Syst. 23(4),
385–418 (2013)

27. Delaval, G., Marchand, H., Rutten, É.: Contracts for modular discrete controller
synthesis. In: ACM International Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES 2010), Stockholm, Sweden, pp. 57–66, April 2010

28. D’Ippolito, N., Braberman, V., Kramer, J., Magee, J., Sykes, D., Uchitel, S.: Hope
for the best, prepare for the worst: multi-tier control for adaptive systems. In:
Proceedings of the 36th International Conference on Software Engineering, ICSE
2014, pp. 688–699. ACM, New York (2014)

29. D’ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesizing nonanoma-
lous event-based controllers for liveness goals. ACM Trans. Softw. Eng. Methodol.
22(1), 9:1–9:36 (2013)

30. Dragert, C., Dingel, J., Rudie, K.: Generation of concurrency control code using
discrete-event systems theory. In: Proceedings of the 16th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, SIGSOFT 2008/FSE-
16, pp. 146–157. ACM, New York (2008)

31. Dumitrescu, E., Girault, A., Marchand, H., Rutten, E.: Multicriteria optimal dis-
crete controller synthesis for fault-tolerant tasks. In: Proceedings of the 10th IFAC
International Workshop on Discrete Event Systems (WODES 2010), September
2010

32. Durand, S., Alt, A.-M., Simon, D., Marchand, N.: Energy-aware feedback control
for a H.264 video decoder. Int. J. Syst. Sci. 46(8), August 2013

33. Filieri, A., Ghezzi, C., Leva, A., Maggio, M.: Self-adaptive software meets control
theory: a preliminary approach supporting reliability requirements. In: Proceedings
of 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011), pp. 283–292 (2011)

34. Filieri, A., Hoffmann, H., Maggio, M.: Automated design of self-adaptive software
with control-theoretical formal guarantees. In: Proceedings of the 36th Interna-
tional Conference on Software Engineering, ICSE 2014. ACM, New York (2014)

https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.1007/3-540-45657-0_34
https://doi.org/10.1007/3-540-45657-0_34
http://www.feedbackcomputing.org/
http://bzr.inria.fr


Feedback Control as MAPE-K Loop in Autonomic Computing 371

35. Filieri, A., Maggio, M., Angelopoulos, K., D’Ippolito, N., Gerostathopoulos, I.,
Hempel, A.B., Hoffmann, H., Jamshidi, P., Kalyvianaki, E., Klein, C., Krikava, F.,
Misailovic, S., Papadopoulos, A.V., Ray, S., Sharifloo, A.M., Shevtsov, S., Ujma,
M., Vogel, T.: Software engineering meets control theory. In: Proceedings of the
10th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS 2015, pp. 71–82. IEEE Press, Piscataway (2015)

36. Gamatié, A., Yu, H., Delaval, G., Rutten, E.: A case study on controller synthesis
for data-intensive embedded systems. In: Proceedings of the 6th IEEE Interna-
tional Conference on Embedded Software and Systems (ICESS 2009), HangZhou,
Zhejiang, China, May 2009

37. Gaudin, B., Nixon, P.: Supervisory control for software runtime exception avoid-
ance. In: Proceedings of the Fifth International C* Conference on Computer Sci-
ence and Software Engineering, C3S2E 2012, pp. 109–112. ACM, New York (2012)

38. Gaudin, B., Vassev, E.I., Nixon, P., Hinchey, M.: A control theory based app-
roach for self-healing of un-handled runtime exceptions. In: Proceedings of the 8th
ACM International Conference on Autonomic Computing, ICAC 2011, pp. 217–
220. ACM, New York (2011)

39. Girault, A., Rutten, E.: Automating the addition of fault tolerance with discrete
controller synthesis. Int. J. Formal Methods Syst. Des. 35(2), 190–225 (2009).
https://doi.org/10.1007/s10703-009-0084-y

40. Gueye, S.M.-K., de Palma, N., Rutten, E.: Coordination control of component-
based autonomic administration loops. In: Proceedings of the 15th International
Conference on Coordination Models and Languages, COORDINATION, 3–6 June
2013, Florence, Italy (2013)

41. Harel, D.: Can programming be liberated, period? Computer 41(1), 28–37 (2008)
42. Harel, D., Kugler, H., Pnueli, A.: Synthesis revisited: generating statechart mod-

els from scenario-based requirements. In: Kreowski, H.-J., Montanari, U., Orejas,
F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems
Modeling. LNCS, vol. 3393, pp. 309–324. Springer, Heidelberg (2005). https://doi.
org/10.1007/978-3-540-31847-7 18

43. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (eds.)
Logics and Models of Concurrent Systems. NATO ASI Series (Series F: Computer
and Systems Sciences), vol. 13, pp. 477–498. Springer, Heidelberg (1985). https://
doi.org/10.1007/978-3-642-82453-1 17

44. Hellerstein, J., Diao, Y., Parekh, S., Tilbury, D.: Feedback Control of Computing
Systems. Wiley-IEEE (2004)

45. Iordache, M., Antsaklis, P.: Concurrent program synthesis based on supervisory
control. In: 2010 American Control Conference (2010)

46. Iordache, M.V., Antsaklis, P.J.: Petri nets and programming: a survey. In: Pro-
ceedings of the 2009 American Control Conference, pp. 4994–4999 (2009)

47. Kalyon, G., Gall, T.L.: SMACS. http://www.smacs.be/
48. Karamanolis, C., Karlsson, M., Zhu, X.: Designing controllable computer systems.

In: Proceedings of the 10th Conference on Hot Topics in Operating Systems,
HOTOS 2005, vol. 10, p. 9. USENIX Association, Berkeley (2005)

49. Kephart, J.: Feedback on feedback in autonomic computing systems. In: 7th Inter-
national Workshop on Feedback Computing, San Jose, California (2012)

50. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput.
36(1), 41–50 (2003)

51. Khakpour, N., Arbab, F., Rutten, E.: Supervisory controller synthesis for safe
software adaptation. In: 12th IFAC - IEEE International Workshop on Discrete
Event Systems, WODES, Cachan, France, 14–16 May 2014 (2014)

https://doi.org/10.1007/s10703-009-0084-y
https://doi.org/10.1007/978-3-540-31847-7_18
https://doi.org/10.1007/978-3-540-31847-7_18
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-642-82453-1_17
http://www.smacs.be/


372 E. Rutten et al.

52. Kugler, H., Plock, C., Pnueli, A.: Controller synthesis from LSC requirements. In:
Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 79–93. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00593-0 6

53. Kulkarni, S.S., Ebnenasir, A.: Automated synthesis of multitolerance. In: DSN
2004 Proceedings of the 2004 International Conference on Dependable Systems
and Networks, pp. 209–219 (2004)

54. Lalanda, P., McCann, J.A., Diaconescu, A.: Autonomic Computing - Principles,
Design and Implementation. Undergraduate Topics in Computer Science Series.
Springer, London (2013)

55. Lindberg, M., Årzén, K.-E.: Feedback control of cyber-physical systems with multi
resource dependencies and model uncertainties. In: 31st IEEE Real-Time Systems
Symposium, San Diego, California, USA, November 2010

56. Litoiu, M., Shaw, M., Tamura, G., Villegas, N.M., Müller, H.A., Giese, H., Rouvoy,
R., Rutten, E.: What can control theory teach us about assurances in self-adaptive
software systems? In: de Lemos, R., et al. (eds.) Self-Adaptive Systems III. LNCS,
vol. 9640, pp. 90–134. Springer, Heidelberg (2017)

57. Litoiu, M., Woodside, M., Zheng, T.: Hierarchical model-based autonomic control
of software systems. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005)

58. Liu, C., Kondratyev, A., Watanabe, Y., Desel, J., Sangiovanni-Vincentelli, A.:
Schedulability analysis of petri nets based on structural properties. In: 2006 Sixth
International Conference on Application of Concurrency to System Design, ACSD
2006, pp. 69–78, June 2006

59. Lu, C., Stankovic, J., Abdelzaher, T., Tao, G., Son, S., Marley, M.: Performance
specifications and metrics for adaptive real-time systems. In: Real-Time Systems
Symposium, December 2000

60. Lu, C., Stankovic, J.A., Son, S.H., Tao, G.: Feedback control real-time scheduling:
framework, modeling and algorithms. Real-Time Syst. 23(1/2), 85–126 (2002).
Journal, Special Issue on Control-Theoretical Approaches to Real-Time Computing

61. Maggio, M., Bini, E., Chasparis, G., Årzén, K.-E.: A game-theoretic resource man-
ager for RT applications. In: 25th Euromicro Conference on Real-Time Systems,
ECRTS13, Paris, France, July 2013

62. Malrait, L., Bouchenak, S., Marchand, N.: Experience with ConSer: a system for
server control through fluid modeling. IEEE Trans. Comput. 60(7), 951–963 (2011)

63. Marchand, H.: Sigali. http://www.irisa.fr/vertecs/Logiciels/sigali.html
64. Marchand, H., Bournai, P., Le Borgne, M., Le Guernic, P.: Synthesis of discrete-

event controllers based on the signal environment. Discrete Event Dyn. Syst. Theor.
Appl. 10(4), 325–346 (2000)

65. Moulavi, M.A., Al-Shishtawy, A., Vlassov, V.: State-space feedback control for elas-
tic distributed storage in a cloud environment. In: ICAS 2012, The Eighth Inter-
national Conference on Autonomic and Autonomous Systems, pp. 18–27 (2012)

66. Patikirikorala, T., Colman, A., Han, J., Wang, L.: A systematic survey on the
design of self-adaptive software systems using control engineering approaches. In:
2012 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), Zurich, Switzerland (2012)

67. Patikirikorala, T., Wang, L., Colman, A., Han, J.: Hammerstein Wiener nonlinear
model based predictive control for relative QoS performance and resource manage-
ment of software systems. Control Eng. Pract. 20, 49–61 (2012)

68. Phoha, V.V., Nadgar, A.U., Ray, A., Phoha, S.: Supervisory control of software
systems. IEEE Trans. Comput. 53(9), 1187–1199 (2004)

69. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

https://doi.org/10.1007/978-3-642-00593-0_6
http://www.irisa.fr/vertecs/Logiciels/sigali.html


Feedback Control as MAPE-K Loop in Autonomic Computing 373

70. Sykes, D., Corapi, D., Magee, J., Kramer, J., Russo, A., Inoue, K.: Learning revised
models for planning in adaptive systems. In: Proceedings of the 2013 Interna-
tional Conference on Software Engineering, ICSE 2013, pp. 63–71. IEEE Press,
Piscataway (2013)

71. Wallace, C., Jensen, P., Soparkar, N.: Supervisory control of workflow scheduling.
In: Advanced Transaction Models and Architectures Workshop (ATMA), Goa,
India (1996)

72. Wang, Y., Cho, H.K., Liao, H., Nazeem, A., Kelly, T., Lafortune, S., Mahlke, S.,
Reveliotis, S.A.: Supervisory control of software execution for failure avoidance:
experience from the Gadara project. In: Proceedings of the 10th IFAC International
Workshop on Discrete Event Systems (WODES 2010), September 2010

73. Wang, Y., Lafortune, S., Kelly, T., Kudlur, M., Mahlke, S.: The theory of deadlock
avoidance via discrete control. In: Principles of Programming Languages, POPL,
Savannah, USA, pp. 252–263 (2009)

74. Wonham, W.M.: TCT. http://www.control.utoronto.ca/cgi-bin/dlxptct.cgi
75. Xia, F., Tian, G., Sun, Y.: Feedback scheduling: an event-driven paradigm. ACM

SIGPLAN Not. 42(12), 7–14 (2007)
76. Yfoulis, C.A., Gounaris, A.: Honoring SLAs on cloud computing services: a control

perspective. In: Proceedings of the European Control Conference (2009)
77. Zhu, X.: Application of control theory in management of virtualized data centres.

In: Fifth International Workshop on Feedback Control Implementation and Design
in Computing Systems and Networks (FeBID), Paris, France (2010)

78. Zhu, X., Wang, Z., Singhal, S.: Utility-driven workload management using nested
control design. In: 2006 American Control Conference, p. 6. IEEE (2006)

http://www.control.utoronto.ca/cgi-bin/dlxptct.cgi

	Feedback Control as MAPE-K Loop in Autonomic Computing
	1 Feedback Loops in Computing Systems
	1.1 Adaptive and Reconfigurable Computing Systems
	1.2 Autonomic Computing
	1.3 Need for Control
	1.4 Outline

	2 Continuous Control for Autonomic Computing
	2.1 Brief Basics of Continuous Control
	2.2 The MAPE-K Loop as a Continuous Control Loop
	2.3 Continuous Feedback Computing
	2.4 Basic Control
	2.5 Advanced Modeling and Control

	3 Discrete Control for Autonomic Computing
	3.1 Brief Basics of Supervisory Control of Discrete Event Systems
	3.2 The MAPE-K Loop as a Discrete Supervisory Control Loop
	3.3 Discrete Feedback Computing

	4 Case Studies
	4.1 Video Decoding and DVFS
	4.2 Server Provisioning
	4.3 Coordination of Multiple Autonomic Administration Loops

	5 Conclusions and Perspectives
	References


