
B. S. Panda
Partha P. Goswami (Eds.)

 123

LN
CS

 1
07

43

4th International Conference, CALDAM 2018
Guwahati, India, February 15–17, 2018
Proceedings

Algorithms
and Discrete Applied
Mathematics

Lecture Notes in Computer Science 10743

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

B. S. Panda • Partha P. Goswami (Eds.)

Algorithms
and Discrete Applied
Mathematics
4th International Conference, CALDAM 2018
Guwahati, India, February 15–17, 2018
Proceedings

123

Editors
B. S. Panda
Indian Institute of Technology Delhi
New Delhi
India

Partha P. Goswami
University of Calcutta
Kolkata
India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-74179-6 ISBN 978-3-319-74180-2 (eBook)
https://doi.org/10.1007/978-3-319-74180-2

Library of Congress Control Number: 2017963776

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at CALDAM 2018: the 4th International
Conference on Algorithms and Discrete Applied Mathematics held during February
15–17, 2018, in Guwahati. CALDAM 2018 was organized by the Department of
Computer Science and Engineering, Indian Institute of Technology, Guwahati. The
conference had papers in the areas of algorithms, graph theory, codes, polyhedral
combinatorics, computational geometry, and discrete geometry. The 68 submissions
had authors from 12 different countries. Each submission received at least one detailed
review and nearly all were reviewed by three Program Committee members. The
committee decided to accept 23 papers. The program also included four invited talks by
Andreas Brandstädt, Sathish Govindarajan, J. Mark Keil, and Miklós Simonovits.

The first CALDAM was held in February 2015 at the Indian Institute of Technol-
ogy, Kanpur, and had 26 papers selected from 58 submissions from ten countries. The
second edition was held in February 2016 at the University of Kerala, Thiruvanan-
thapuram (Trivandrum), India, and had 30 papers selected from 91 submissions from
13 countries. The third edition was held in February 2017 at Birla Institute of Tech-
nology and Science, Pilani (BITS Pilani), K. K. Birla Goa Campus, Goa, India, and had
selected 32 papers from 103 submissions from 18 countries.

We would like to thank all the authors for contributing high-quality research papers
to the conference. We express our sincere thanks to the Program Committee members
and the external reviewers for reviewing the papers within a very short period of time.
We thank Springer for publishing the proceedings in the Lecture Notes in Computer
Science series. We thank the invited speakers Andreas Brandstädt, Sathish Govin-
darajan, J. Mark Keil, and Miklós Simonovit for accepting our invitation. We thank the
Organizing Committee chaired by R. Inkulu from the Indian Institute of Technology,
Guwahati, for the smooth functioning of the conference. We thank the chair of the
Steering Committee, Subir Ghosh, for his active help, support, and guidance
throughout. We thank our sponsors Google Inc., Microsoft Research India, and the
National Board of Higher Mathematics, Department of Atomic Energy, for their
financial support. We also thank Springer for its support for the two Best Paper Pre-
sentation Awards. Last but definitely most importantly, we thank the EasyChair con-
ference management system, which was very effective in handling the entire reviewing
process.

December 2017 B. S. Panda
Partha P. Goswami

Organization

Program Committee

John Ebenezer Augustine Indian Institute of Technology, Chennai, India
Amitabha Bagchi Indian Institute of Technology, Delhi, India
Niranjan Balachandran Indian Institute of Technology, Mumbai, India
Partha P Bhowmick Indian Institute of Technology, Kharagpur, India
Boštjan Brešar University of Maribor, Slovenia
Sunil Chandran Indian Institute of Science, Bengaluru, India
Manoj Changat University of Kerala, India
Sandip Das Indian Statistical Institute, Kolkata, India
Ajit A. Diwan Indian Institute of Technology, Mumbai, India
Zachary Frigstaad University of Alberta
Sumit Ganguly Indian Institute of Technology, Kanpur, India
Daya Gaur University of Lethbridge, Canada
Partha P. Goswami Institute of Radio Physics and Electronics, University

of Calcutta, Kolkata, India
Sathish Govindarajan Indian Institute of Science, Bengaluru, India
Subrahmanyam

Kalyanasundaram
Indian Institute of Technology, Hyderabad, India

Gyula O. H. Katona Alfred Renyi Institute of Mathematics, Hungary
Sandi Klavzar University of Ljubljana, Slovenia
Ramesh Krishnamurti Simon Fraser University, Canada
Van Bang Le Universität Rostock, Germany
Andrzej Lingas Lund University, Sweden
Anil Maheshwari Carleton University, Canada
Kazuhisa Makino Kyoto University, Japan
Bodo Manthey University of Twente, The Netherlands
Rogers Mathew Indian Institute of Technology, Kharagpur, India
Bojan Mohar Simon Fraser University, Canada
Apurva Mudgal Indian Institute of Technology, Ropar, India
N. S. Narayanaswamy Indian Institute of Technology, Chennai, India
Sudebkumar Prasant Pal Indian Institute of Technology, Kharagpur, India
B. S. Panda Indian Institute of Technology, Delhi, India
Abraham P. Punnen Simon Fraser University, Canada
Venkatesh Raman The Institute of Mathematical Sciences, Chennai, India
Günter Rote Freie Universität, Berlin, Germany
Michiel Smid Carleton University, Canada
C. R. Subramanian The Institute of Mathematical Sciences, Chennai, India
Ambat Vijayakumar Cochin University of Science and Technology, India
Alexander Wolff Universität Würzburg, Germany

Organizing Committee

Santosh Biswas Indian Institute of Technology, Guwahati
Gautam K. Das Indian Institute of Technology, Guwahati
R. Inkulu (Chair) Indian Institute of Technology, Guwahati
Deepanjan Kesh Indian Institute of Technology, Guwahati
Pinaki Mitra Indian Institute of Technology, Guwahati
S. V. Rao Indian Institute of Technology, Guwahati

Steering Committee

Subir Kumar Ghosh (Chair) Ramakrishna Mission Vivekananda University, India
János Pach École Polytechnique Fédérale De Lausanne (EPFL),

Lausanne, Switzerland
Nicola Santoro School of Computer Science, Carleton University,

Canada
Swami Sarvattomananda Ramakrishna Mission Vivekananda University, India
Peter Widmayer Institute of Theoretical Computer Science, ETH Zurich,

Switzerland
Chee Yap Courant Institute of Mathematical Sciences, New York

University, USA

Additional Reviewers

Aravind, N. R.
Basavaraju, Manu
Benkoczi, Robert
Bera, Sahadev
Biswas, Ranita
Chakraborty, Suvradip
Chaplick, Steven
Cheung, Yun Kuen
Das, Bireswar
Dijk, Thomas C. Van
Dolžan, David
Francis, Mathew
González Yero, Ismael
Iranmanesh, Ehsan
Issac, Davis
Iyer, Venkitesh
Johansson, Thomas

Kern, Walter
Khodamoradi, Kamyar
Kowaluk, Miroslaw
Kryven, Myroslav
Lahiri, Abhiruk
Levcopoulos, Christos
Lipp, Fabian
M. A., Shalu
Majumdar, Diptapriyo
Molla, Anisur Rahaman
Moses Jr., William K.
Nandakumar, Satyadev
Nath, Swaprava
Padinhatteeri, Sajith
Pal, Shyamosree
Pandey, Arti
Panigrahi, Pratima

Pradhan, D.
Pratihar, Sanjoy
Ramaswamy, Krithika
Ray Chaudhury, Baskar
Roy, Bodhayan
Sarnovsky, Martin
Sen, Sagnik
Simon, Sunil
Singh, Rishi
Soto, Mauricio
Spoerhase, Joachim
Togni, Olivier
Tripathi, Utkarsh
Vaishali, S.
Viglietta, Giovanni

VIII Organization

Abstracts of Invited Talks

Efficient Domination and Efficient Edge
Domination: A Brief Survey

Andreas Brandstädt

Institut für Informatik, Universität Rostock, 18051 Rostock, Germany
andreas.brandstaedt@uni-rostock.de

Abstract. In a finite undirected graph G ¼ ðV ;EÞ, a vertex v 2 V dominates
itself and its neighbors in G. A vertex set D�V is an efficient dominating set
(e.d.s. for short) ofG if every v 2 V is dominated inG by exactly one vertex ofD.

The Efficient Domination (ED) problem, which asks for the existence of an
e.d.s. in G, is known to be NP-complete for bipartite graphs, for (very special)
chordal graphs and for line graphs but solvable in polynomial time for many
subclasses. For H-free graphs, a dichotomy of the complexity of ED has been
reached.

An edge setM�E is an efficient edge dominating set (e.e.d.s. for short) of G
if every e 2 E is dominated in G by exactly one edge ofM with respect to the line
graph LðGÞ. Thus, M is an e.e.d.s. in G if and only if M is an e.d.s. in LðGÞ. An
e.e.d.s. is called dominating induced matching in various papers.

The Efficient Edge Domination (EED) problem, which asks for the existence
of an e.e.d.s. in G, is known to be NP-complete even for special bipartite graphs
but solvable in polynomial time for various graph classes.

The problems ED and EED are based on the NP-complete Exact Cover
problem on hypergraphs.

The Use of Dynamic Programming
in Intersection Graphs

J. Mark Keil

Department of Computer Science, University of Saskatchewan, Canada

Abstract. The intersection graph of a family F of sets is the graph having F as
the node set with two elements of F adjacent in the graph if and only if their
intersection is nonempty. For example, the intersection graphs of subtrees of a
tree are the chordal graphs. A graph G is a geometric intersection graph if G is
the intersection graph of a set of geometric objects. If the geometric objects are
intervals of the real line, then interval graphs are formed. String graphs are the
intersection graphs of curves in the plane and they are among the most general
geometric intersection graphs that have been studied. String graphs are a
superclass of planar graphs, chordal graphs, and circle graphs. The restriction
that each string touches the infinite face of the plane results in the class of
outerstring graphs.

Let G ¼ ðV ;EÞ be an undirected graph with n nodes and m edges.
For two specified nodes s and t in V , the k most vital nodes in G are those
k; ð1� k� n� 2Þ nodes whose removal maximizes the increase in the length
of the shortest path from s to t. The problem of identifying the k most vital nodes
was defined by Corley and Sha [3] in 1982 as a way to identify locations in a
network that may need to be reinforced against an interdictor or a natural
disaster, and shown to be NP-complete by Bar-Noy, Khuller and Schieber in
1995 [1]. In this talk I will describe polynomial time dynamic programming
algorithms for the k most vital nodes problem for some classes of intersection
graphs, namely interval graphs, chordal graphs, permutation graphs and interval
bigraphs. This is joint work with Leizhen Cai [2].

I will also describe a dynamic programming algorithm to the maximum
weight independent set problem in an outerstring graph which is polynomial in
the size of the geometric input representation of the graph. This result is joint
work with D. Pradhan, J. Mitchell and M. Vatshelle [4].

References

1. Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of finding most vital arcs and nodes.
Techinical report CS-TR-3539, University of Maryland (1995)

2. Cai, L., Keil, J.M.: Finding the most vital nodes in classes of intersection graphs (2018,
submitted)

3. Corley, H.W., Sha, D.Y.: Most vital links and nodes in weighted networks. Oper. Res. Lett. 1,
157–160 (1982)

4. Keil, J.M., Mitchell, J.S.B., Pradhan, D., Vatshelle, M.: An algorithm for the maximum
weight independent set problem on outerstring graphs. Comput. Geom. Theory Appl. 60,
19–25 (2017)

Extremal Graph Theory, Stability,
and Anti-Ramsey Theorems

Miklós Simonovits

Alfréd Rényi Mathematical Institute of the Hungarian Academy of Sciences,
Budapest

Extremal graph theory is one of the most developed branches of Discrete Mathematics.
Stability methods introduced by the author [5] are very successful to prove sharps
results in this field. We shall give some illustration of this method for graphs, hyper-
graphs, (among others, the Füredi-Simonovits and Füredi-Pikhurko-Simonovits theo-
rems obtained by the Stability methods). We shall also apply stability methods to
Anti-Ramsey problems. An ANTI-RAMSEY problem is where a sample graph L is fixed
and we colour, e.g., the edges of a complete graph Kn without having a copy of L in
which all the edges have distinct colours.

Several problems in combinatorics can be reduced to extremal graph problems.
Erdős, Simonovits and Sós [4] basically reduced certain ANTI-RAMSEY problems to
extremal graph problems. Some others, like the problem of L ¼ Ck were much more
difficult.

In the lecture we shall also consider Dual ANTI-RAMSEY problems, coming from
Theoretical Computer Science. Burr, Erdős, Graham and T. Sós [1] defined and
investigated a dual variant of the ANTI-RAMSEY problems. Some of their results also can
be found in a second paper joint with Peter Frankl [2]. As they pointed out, one of the
most interesting cases they could not settle was that of C5.

The dual Anti-Ramsey problem. Let us fix a sample graph L, and consider a (variable) graph
Gn on n vertices, with

e ¼ eðGnÞ[exðn;LÞ

edges. Let vSðGn;LÞ denote the minimum number of colours needed to colour the edges of Gn

so that no L�Gn has two edges of the same colour. Determine

vSðn; e; LÞ :¼ min vSðGn;LÞ : eðGnÞ ¼ ef g:

Here we improve several results of [1] and [2]. We shall prove, among others, that
if a graph Gn has e ¼ 1

4 n
2

� �þ 1 edges and we colour its edges so that every C5 � Gn is
5–coloured, then we have to use at least n

2

� �þ 3 colours, if n is sufficiently large. This
result is sharp.

Theorem 1 (Erdős-Simonovits). There exists a threshold n0 such that if n[n0, and a
graph Gn has 1

4 n
2

� �þ 1 edges and we colour its edges so that every C5 is 5–coloured,
then we have to use at least n

2

� �þ 3 colours.

Theorem 2. There exists a function #ðnÞ ! 1 such that if 0\ k ¼ h
2

� �
\#ðnÞ, then

the upper bound of Theorem 4.2/[1] is sharp for e ¼ 1
4 n

2
� �þ k:

vSðn; e;C5Þ ¼ ðhþ 1Þ n
2

j k
þ k:

Because of the monotonicity, this implies

Theorem 3. There exists a function #ðnÞ ! 1 such that if 0\ k� h
2

� �
\#ðnÞ, then

for e ¼ 1
4 n

2
� �þ k,

vSðn; e;C5Þ ¼ ðhþ 1Þ n
2

j k
þ kþOð

ffiffiffi
k

p
Þ:

We have several further results in this area. Altogether, mostly we restrict ourselves
here to the simplest versions of our results.

This lecture is partly based on a manuscript of Erdős and Simonovits [3] from the
late 1980’s.

References

1. Burr, S.A., Erdős, P., Graham, R.L., Sós, V.T.: Maximal antiramsey graphs and the strong
chromatic number. J. Graph Theory 13(3), 163–182 (1989)

2. Burr, S., Erdős, P., Frankl, P., Graham, R.L., Sós, V.T.: Further results on maximal Anti–
Ramsey graphs. Proc. Kalamazoo Combin. Conf. 193–206 (1989)

3. Erdős, P., Simonovits, M.: How many colours are needed to colour every pentagon of a graph
in five colours? (manuscript, under publication)

4. Erdős, P., Simonovits, M., Sós, V.T.: Anti-Ramsey theorems, infinite and finite sets (Colloq.,
Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), vol. II, pp. 633–643, Colloq.
Math. Soc. János Bolyai, vol. 10, North-Holland, Amsterdam (1975)

5. Simonovits, M.: A method for solving extremal problems in graph theory. In: Erdős, P.,
Katona, G. (eds.): Theory of graphs (Proceedings Colloquium, Tihany (1966)), pp. 279–319.
Academic Press, NY (1968)

XIV M. Simonovits

Contents

Efficient Domination and Efficient Edge Domination: A Brief Survey 1
Andreas Brandstädt

Mixed Unit Interval Bigraphs . 15
Ashok Kumar Das and Rajkamal Sahu

Hamiltonian Path in K1;t-free Split Graphs- A Dichotomy 30
Pazhaniappan Renjith and Narasimhan Sadagopan

A Fully Polynomial Time Approximation Scheme for Refutations
in Weighted Difference Constraint Systems . 45

Bugra Caskurlu, Matthew Williamson, K. Subramani,
Vahan Mkrtchyan, and Piotr Wojciechowski

Probabilistic Properties of Highly Connected Random Geometric Graphs 59
Bodo Manthey and Victor M. J. J. Reijnders

On Indicated Coloring of Some Classes of Graphs 73
P. Francis, S. Francis Raj, and M. Gokulnath

Line Segment Disk Cover . 81
Manjanna Basappa

Fixed-Parameter Tractable Algorithms for Tracking Set Problems 93
Aritra Banik and Pratibha Choudhary

Exact Computation of the Number of Accepting Paths of an NTM 105
Subrahmanyam Kalyanasundaram and Kenneth W. Regan

Determining Minimal Degree Polynomials of a Cyclic Code
of Length 2k over Z8 . 118

Arpana Garg and Sucheta Dutt

Consistent Subset Problem with Two Labels . 131
Kamyar Khodamoradi, Ramesh Krishnamurti,
and Bodhayan Roy

The Edge Geodetic Number of Product Graphs. 143
Bijo S. Anand, Manoj Changat, and S. V. Ullas Chandran

Burning Spiders . 155
Sandip Das, Subhadeep Ranjan Dev, Arpan Sadhukhan,
Uma kant Sahoo, and Sagnik Sen

Drawing Graphs on Few Circles and Few Spheres 164
Myroslav Kryven, Alexander Ravsky, and Alexander Wolff

On a Lower Bound for the Eccentric Connectivity Index of Graphs. 179
Devsi Bantva

On the Tractability of (k, i)-Coloring . 188
Saurabh Joshi, Subrahmanyam Kalyanasundaram,
Anjeneya Swami Kare, and Sriram Bhyravarapu

Window Queries for Problems on Intersecting Objects
and Maximal Points*. 199

Farah Chanchary, Anil Maheshwari, and Michiel Smid

Bounded Stub Resolution for Some Maximal 1-Planar Graphs 214
Michael Kaufmann, Jan Kratochvíl, Fabian Lipp,
Fabrizio Montecchiani, Chrysanthi Raftopoulou, and Pavel Valtr

On Structural Parameterizations of Firefighting . 221
Bireswar Das, Murali Krishna Enduri, Neeldhara Misra,
and I. Vinod Reddy

On the Simultaneous Minimum Spanning Trees Problem 235
Matěj Konečný, Stanislav Kučera, Jana Novotná, Jakub Pekárek,
Martin Smolík, Jakub Tětek, and Martin Töpfer

Variations of Cops and Robbers Game on Grids . 249
Sandip Das and Harmender Gahlawat

Alternation, Sparsity and Sensitivity: Combinatorial Bounds
and Exponential Gaps . 260

Krishnamoorthy Dinesh and Jayalal Sarma

On Oriented L(p, 1)-labeling. 274
Sandip Das, Soumen Nandi, and Sagnik Sen

Radius, Diameter, Incenter, Circumcenter, Width and Minimum Enclosing
Cylinder for Some Polyhedral Distance Functions . 283

Sandip Das, Ayan Nandy, and Swami Sarvottamananda

Author Index . 301

XVI Contents

Efficient Domination and Efficient Edge
Domination: A Brief Survey

Andreas Brandstädt(B)

Institut für Informatik, Universität Rostock, 18051 Rostock, Germany
andreas.brandstaedt@uni-rostock.de

Abstract. In a finite undirected graph G = (V, E), a vertex v ∈ V dom-
inates itself and its neighbors in G. A vertex set D ⊆ V is an efficient
dominating set (e.d.s. for short) of G if every v ∈ V is dominated in G
by exactly one vertex of D.

The Efficient Domination (ED) problem, which asks for the existence
of an e.d.s. in G, is known to be NP-complete for bipartite graphs, for
(very special) chordal graphs and for line graphs but solvable in poly-
nomial time for many subclasses. For H-free graphs, a dichotomy of the
complexity of ED has been reached.

An edge set M ⊆ E is an efficient edge dominating set (e.e.d.s. for
short) of G if every e ∈ E is dominated in G by exactly one edge of M
with respect to the line graph L(G). Thus, M is an e.e.d.s. in G if and
only if M is an e.d.s. in L(G). An e.e.d.s. is called dominating induced
matching in various papers.

The Efficient Edge Domination (EED) problem, which asks for the
existence of an e.e.d.s. in G, is known to be NP-complete even for spe-
cial bipartite graphs but solvable in polynomial time for various graph
classes.The problems ED and EED are based on the NP-complete Exact
Cover problem on hypergraphs.

1 Exact Cover for Hypergraphs and Maximum Weight
Independent Set for Graphs

A hypergraph H = (V, E) has a finite vertex set V and for all e ∈ E , e ⊆ V
(E possibly being a multiset). A packing (also called matching) in a hypergraph
H is a subset of pairwise disjoint hyperedges, and a covering of H is a subset of
edges whose union is V .

A subset of hyperedges E ′ ⊆ E is an exact cover of H if for all e, f ∈ E ′

with e �= f , e ∩ f = ∅ and
⋃ E ′ = V . In other words, E ′ is an exact cover

of H if and only if it is a partition of V , i.e., E ′ is a packing and a covering
of H. Clearly, not every hypergraph has an exact cover. The Exact Cover
problem asks for the existence of an exact cover in a given hypergraph H. As
part of his famous list of 21 problems, Karp [56] showed that this problem is NP-
complete; it is NP-complete even for 3-uniform hypergraphs, i.e., every hyperedge
has size 3 (problem X3C [SP2] in [47]). For 2-uniform hypergraphs, Exact Cover
corresponds to Perfect Matching for graphs.
c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 1–14, 2018.
https://doi.org/10.1007/978-3-319-74180-2_1

2 A. Brandstädt

Let L(H) = (E , F) denote the line graph of H, i.e., the graph with the
hyperedges E of H as its nodes such that for any two hyperedges e, e′ ∈ E ,
e �= e′, ee′ ∈ F if and only if e ∩ e′ �= ∅. Clearly, for E ′ ⊆ E , E ′ is a packing in H
if and only if E ′ is an independent set of nodes in L(H).

The Exact Cover problem for hypergraphs can be reduced to the Maximum
Weight Independent Set (MWIS) problem for graphs by the following weight
function w(e) := |e| of the hyperedges e ∈ E . Let αw(G) denote the maximum
weight of an independent vertex set in G. Obviously, αw(L(H)) ≤ |V | and we
have:

Lemma 1. A packing E ′ in hypergraph H is an exact cover of H if and only if
Σe∈E′ w(e) = |V |, that is, αw(L(H)) = |V |.

This means that Exact Cover can be solved in polynomial time for any class of
hypergraphs where MWIS can be solved in polynomial time for the line graphs
of this class. By Lovász [73], a hypergraph H is normal if it has the Helly
property and its line graph is perfect. By the famous result of Grötschel et al.
[52], MWIS is solvable in polynomial time for perfect graphs. Thus, Exact Cover
is polynomial for normal hypergraphs.

MWIS plays an important role as well for Efficient Domination and Efficient
Edge Domination as described in the subsequent sections. Thus we collect some
of these results as follows:

Theorem 1. MWIS is solvable in polynomial time for

(i) perfect graphs [52],
(ii) chordal graphs [44] (in linear time),
(iii) weakly chordal graphs [53,54] (in time O(n4)),
(iv) asteroidal-triple-free (AT-free) graphs [24,59] (in time O(n3)),
(v) circular-arc graphs (in time O(nm)),
(vi) interval-filament graphs [48].

Frank’s result in Theorem1 (ii) is based on a perfect elimination ordering of
the given chordal graph. For a circular-arc graph G = (V,E), the subgraph of G
induced by the non-neighborhood of each vertex v ∈ V is an interval graph and
thus chordal. This obviously leads to Theorem1 (v).

A special case of normal hypergraphs are hypertrees which have the Helly
property and whose line graphs are chordal. Thus, by Theorem1 (ii), Exact
Cover is solvable in polynomial time for hypertrees; in [16], we have shown that
Exact Cover is NP-complete for the dual variant of hypertrees, namely α-acyclic
hypergraphs.

2 Efficient Domination and Efficient Edge Domination

2.1 Efficient Domination

Let G = (V,E) be a finite undirected graph without loops and multiple edges;
let |V | = n and |E| = m. A vertex v ∈ V dominates itself and its neighbors.

Efficient Domination and Efficient Edge Domination: A Brief Survey 3

A vertex subset D ⊆ V is an efficient dominating set (e.d.s. for short) of G if
every vertex of G is dominated by exactly one vertex in D, that is |D∩N [v]| = 1
for every v ∈ V (where N [v] denotes the closed neighborhood of x). Clearly,
not every graph has an e.d.s.; the Efficient Dominating Set (ED) problem
asks for the existence of an e.d.s. in a given graph G. Clearly, ED for graph G
corresponds to the Exact Cover problem for the closed neighborhood hypergraph
N (G) of G.

The notion of efficient domination was introduced by Biggs [3] under the
name perfect code. Efficient dominating sets are also called independent perfect
dominating sets in various papers (see e.g. [36,85]) and perfect dominating sets
in [42].

The ED problem is motivated by various applications, including coding theory
and resource allocation in parallel computer networks; see e.g. [1–3,36,65,66,70,
76,78,84,85]. Bange et al. [1] showed that the ED problem isNP-complete (see also
[2]). Moreover, using a standard reduction from the Exact Cover problem, it was
shown that ED isNP-complete for 2P3-free (and thus, for P7-free) chordal unipolar
graphs [41,81,85] and for bipartite graphs. In [76], it was shown that ED is NP-
complete for chordal bipartite graphs.

ED is NP-complete for planar bipartite graphs [76] and for planar graphs with
maximum degree at most 3 [42,61], and is NP-complete for 3-regular graphs [62].
In [28], this is extended to p-regular graphs, p > 3. Moreover, for every g ≥ 3,
the ED problem is NP-complete for planar bipartite graphs of maximum degree
3 with girth at least g [11,17,79].

If a vertex weight function w : V → N∪{∞} is given, the Minimum Weight
Efficient Dominating Set (WED) problem asks for a minimum weight e.d.s.
in G, if there is one, or for determining that G has no e.d.s. Since negative weights
are allowed, the Minimum Weight Efficient Dominating Set problem is equivalent
to the Maximum Weight Efficient Dominating Set problem; subsequently we
restrict the problem to the minimum weight version.

The vertex weight ∞ plays a special role; vertices which are definitely not in
an e.d.s. D get weight ∞, and thus, in the WED problem we are asking for an
e.d.s. of finite minimum weight.

The property of having an e.d.s. is not hereditary. In [77,78], Milanič [78]
characterized the graph class where every induced subgraph has an e.d.s.

2.2 Efficient Edge Domination

For a graph G = (V,E), a subset M ⊆ E is an induced matching in G [25] if
the pairwise distance of edges in M is at least 2, i.e., for e, e′ ∈ M with e �= e′,
e ∩ e′ = ∅ and there is no edge between e and e′. In other words, the induced
subgraph G[V (M)] is the disjoint union of edges. In [45,49], an induced matching
is called strong matching of G, and in [82], the notion was originally introduced
under the name risk-free marriage.

The Maximum Induced Matching (MIM) problem asks for an induced
matching of maximum cardinality inG. In [82], the more general case of δ-separated

4 A. Brandstädt

matchingswas considered; a 2-separatedmatching is the sameas an inducedmatch-
ing. While it is well known that the maximum matching problem is solvable in poly-
nomial time (based on Jack Edmonds’ results [40]), Stockmeyer and Vazirani [82]
showed that for every δ ≥ 2, Maximum δ-Separated Matching (including the MIM
problem) is NP-complete for bipartite graphs of maximum degree 4.

A subset M ⊆ E of edges is an efficient edge dominating set (e.e.d.s. for
short) of G = (V,E) if with respect to the line graph L(G), every e ∈ E is
dominated in L(G) by exactly one edge of M . Thus, we have:

M is an e.e.d.s. in G ⇐⇒ M is an e.d.s. in L(G). (1)

In various papers such as [13,29,30,55], an e.e.d.s. is called dominating
induced matching (d.i.m.); the main reason for that is the following obvious
fact:

Observation 1. M is an e.e.d.s. in G if and only if M is an induced matching
in G such that V \ V (M) is an independent vertex set in G.

Clearly, not every graph (in fact, not every tree) has an e.e.d.s.; the Effi-
cient Edge Dominating Set (EED) problem asks for the existence of an
e.e.d.s. in a given graph G. By Observation 1, the EED problem is also called
DIM. Grinstead et al. [51] showed that EED is NP-complete. This implies that
the ED problem is NP-complete for line graphs. Actually, ED is NP-complete
even for line graphs of bipartite graphs [75].

See [13,18,29,74,75] for various other NP-completeness results for EED. In
[79], it is shown that EED is NP-complete for planar bipartite graphs with max-
imum degree at most 3 and girth at least g for every fixed g. Moreover, for each
p ≥ 3, the EED problem is NP-complete for p-regular graphs [28].

3 Complexity of Efficient Domination

3.1 A Dichotomy for H-free Graphs

For a subset U ⊆ V , let G[U] denote the induced subgraph of G with vertex set U .
For a graph H, a graph G is H-free if G does not contain any induced subgraph
isomorphic to H. Let Pk denote a chordless path with k vertices. H +H ′ denotes
the disjoint union of graphs H and H ′; for example, 2P3 denotes P3 + P3. H
is a linear forest if H is claw-free and Ck-free for every k ≥ 3, that is, H is
the disjoint union of chordless paths. Recall that ED is NP-complete for chordal
graphs, bipartite graphs, and claw-free graphs. Thus, whenever H contains Ck,
k ≥ 3, or claw then ED is NP-complete for H-free graphs.

For linear forests H, recall that ED is NP-complete for 2P3-free graphs. Thus,
if two of the components of H contain P3 or one of its components contains 2P3

(such as P7) then ED is NP-complete for H-free graphs. Moreover, ED is solvable
in linear time for 2P2-free graphs [17], and for P5-free graphs [4,20], and if ED
is polynomial for H-free graphs then it is polynomial for (H + kP2)-free graphs
for every fixed k [10].

Efficient Domination and Efficient Edge Domination: A Brief Survey 5

The complexity of ED for P6-free graphs was the last open question for
H-free graphs [10]; it was the main open question in [17]. As partial results,
based on [46], ED was solved in polynomial time for P6-free chordal graphs [7],
and in [14,57], for some further subclasses of P6-free graphs.

Recently, it has been shown by Lokshtanov, Pilipczuk and van Leeuwen [71]
that ED is solvable in polynomial time for P6-free graphs (the time bound is more
than O(n500)). Their result for ED is based on their quasi-polynomial algorithm
for the MWIS problem on P6-free graphs. Independently, in [19,20] we found a
polynomial time solution for ED on P6-free graphs using a direct approach.

Theorem 2 ([19,20,71]). For P6-free graphs, the WED problem is solvable in
polynomial time.

Thus Theorem 2 finally lead to a dichotomy for the ED problem on H-free
graphs. Our approach in [19,20] is simpler than the one in [71] and leads to the
better time bound O(n5m).

In [22], the complexity of ED for H-free chordal graphs is analyzed (without
reaching a dichotomy).

3.2 Further Polynomial Time Results for ED

In many papers, polynomial time or even linear time algorithms for the weighted
ED (and consequently the ED) problem on special graph classes were found:

– trees [84],
– co-comparability graphs [31,36],
– split graphs [34] (linear time),
– interval graphs [35,36] and on their superclasses AT-free graphs [9], dually

chordal graphs [9] (linear time), and circular-arc graphs [35],
– permutation graphs [65],
– trapezoid graphs [65,66],
– bipartite permutation graphs [76] (linear time),
– convex bipartite graphs [16] and on their superclass interval bigraphs [16],
– hereditary efficiently dominatable graphs [78],
– block graphs [85], distance-hereditary graphs [76] (linear time), and, more

generally, graphs of bounded clique-width [38].

Some of these results can be reached by using the G2 approach described in
the next section.

3.3 Solving Efficient Domination for G via MWIS for G2

The square of a graph G = (V,E) is the graph G2 = (V,E2) such that uv ∈ E2 if
and only if dG(u, v) ∈ {1, 2}. It is easy to see that the dual N (G)∗ of the closed
neighborhood hypergraph N (G) is N (G) itself, and for any graph G, we have:

G2 is isomorphic to the line graph L(N (G)). (2)

6 A. Brandstädt

In [16,64,77,78], the following relationship between the ED problem on a
graph G, the minimum weight dominating set problem on G and the MWIS
problem on G2 is used. For this, we need the following notions: For G = (V,E)
and v ∈ V , let w(v) := |NG[v]| = degG(v) + 1, and for D ⊆ V , let w(D) :=
Σd∈Dw(d). Obviously, the following holds:

Proposition 1. Let G = (V,E) be a graph and D ⊆ V .

(i) If D is a dominating vertex set in G then w(D) ≥ |V |.
(ii) If D is an independent vertex set in G2 then w(D) ≤ |V |.

Recall Lemma 1 for e.d.s. D as the exact cover of N (G).

Lemma 2. Let G = (V,E) be a graph and w(v) := |N [v]| a vertex weight func-
tion for G. Then the following are equivalent for any subset D ⊆ V :

(i) D is an efficient dominating set in G.
(ii) D is a minimum weight dominating set in G with w(D) = |V |.
(iii) D is a maximum weight independent set in G2 with w(D) = |V |.

Thus, the ED problem on a graph class C can be reduced to the MWIS
problem on the squares of graphs in C. Let ω denote the matrix multiplication
exponent; by [83], ω < 2.2737.

Theorem 3 ([16,78]). Let C be a graph class for which the MWIS problem is
solvable in time T (|G|) on squares of graphs from C. Then the ED problem is
solvable on graphs in C in time O(min(nω, nm + n) + T (|G2|).

In [9], Theorem 3 is extended to the weighted version of ED (with the same
time bound).

Squares of circular-arc graphs are circular-arc graphs [80], and correspond-
ingly for trapezoid graphs [43]. Since trapezoid graphs are AT-free, by Theorem1
(iv) and (v), WED is solvable in polynomial time for these graph classes.

An important example is the class of dually chordal graphs: In [76], the
complexity of ED for strongly chordal graphs was mentioned as an open problem.
Actually, a graph G is strongly chordal if and only if every induced subgraph of
G is dually chordal, that is, strongly chordal graphs are the hereditarily dually
chordal graphs [6].

Theorem 4 ([5,6,39]). Let G be a graph and H be a hypergraph.

(i) G is dually chordal if and only if N (G) is a hypertree.
(ii) G is dually chordal if and only if G2 is chordal and N (G) has the Helly

property.
(iii) If H is α-acyclic then its line graph L(H) is dually chordal.
(iv) If H is a hypertree then its 2-section graph 2sec(H) is dually chordal.

Efficient Domination and Efficient Edge Domination: A Brief Survey 7

Recall Theorem 1 (ii). Thus, ED is solvable in polynomial time for every
graph class C such that for G ∈ C, G2 is chordal. In particular, for dually chordal
graphs, ED is solvable in polynomial time. In [16], we refined this approach by
avoiding the explicit construction of G2: For dually chordal graphs, and thus,
also for strongly chordal graphs, the ED problem is solvable in linear time. In
[9], this is extended to linear time for WED on the same graph classes.

Another important example is the class of AT-free graphs: In [33], it is shown
that for AT-free graphs G, G2 is a co-comparability graph (which is AT-free).

Recall Theorem 1 (iv). Thus for AT-free graphs, the WED problem is solv-
able in polynomial time. This extends the result of [36] showing that WED is
polynomial for co-comparability graphs.

Finally we mention an interesting result about P6-free graphs with e.d.s. by
Friese [46] (see [7,8]): If G is P6-free and has an e.d.s. then G2 is hole-free (i.e.,
Ck-free for every k ≥ 5). Friese’s conjecture is that in this case, G2 is also odd-
antihole-free which, by the Strong Perfect Graph Theorem [37] would imply that
G2 is perfect (which would be another approach for solving ED in polynomial
time for P6-free graphs).

4 Complexity of Efficient Edge Domination

4.1 Direct Approaches

Recall that by Observation 1, EED and DIM are equivalent; in this section, we
use the notions of d.i.m. and the DIM problem. In [29,74], the complexity of
the DIM problem for weakly chordal graphs was mentioned as an open problem.
Using a direct approach, we showed in [13] that DIM is solvable in polynomial
time for weakly chordal graphs.

Theorem 5 ([13]). For weakly chordal graphs, the DIM problem can be solved
in polynomial time.

Details of the direct approach are the following facts: An edge e ∈ E is forced
if it is contained in every d.i.m. of G = (V,E).

Observation 2 ([13]). Let M be a d.i.m. in G.

(i) M contains at least one edge of every odd cycle C2k+1 in G, k ≥ 1, and
exactly one edge of every odd cycle C3, C5, C7 of G.

(ii) No edge of any C4 can be in M .
(iii) For each C6 either exactly two or none of its edges are in M .

As a consequence, the clique K4 of size 4 (and any graph containing K4) has
no d.i.m., the mid-edge of diamond and the two peripheral edges of butterfly are
forced edges, and gem has no d.i.m. Thus graph G can be reduced such that it
is (K4, diamond, butterfly)-free. In particular, the treewidth of chordal graphs
having a d.i.m. is bounded which implies a linear time algorithm for DIM on
chordal graphs.

8 A. Brandstädt

Moreover, long anti-holes (i.e., Ck, k ≥ 6) have no d.i.m., i.e., a hole-free
graph having an d.i.m. is weakly chordal. Thus, the polynomial-time solution
for weakly chordal graphs implies that for hole-free graphs, the DIM problem is
solvable in polynomial time (in [13], a direct approach for this was described):

Corollary 1. DIM can be solved in polynomial time for hole-free graphs.

An improved time bound O(nm) for Minimum Weight DIM on hole-free
graphs is given in [79].

For indices i, j, k ≥ 0, let Si,j,k denote the graph with vertices u, x1, . . . , xi,
y1, . . . , yj , z1, . . . , zk such that the subgraph induced by u, x1, . . . , xi forms a Pi+1

(u, x1, . . . , xi), the subgraph induced by u, y1, . . . , yj forms a Pj+1 (u, y1, . . . , yj),
and the subgraph induced by u, z1, . . . , zk forms a Pk+1 (u, z1, . . . , zk), and there
are no other edges in Si,j,k. Thus, claw is S1,1,1, and Pk is isomorphic to e.g.
S0,0,k−1.

Recall Observation 1: G has a d.i.m. if and only if V has a partition into an
independent vertex set I and the vertex set of an induced matching.

Thus every graph having a d.i.m. is monopolar. In [29], this partition is
called black-white partition, i.e., V (G) is partitioned into W (the white vertices)
and B (the black vertices) such that W is an independent set and G[B] is a 1-
regular subgraph. Based on this partition, a polynomial-time algorithm for DIM
on claw-free graphs is found in [29].

For various graph classes defined by forbidden Si,j,k, using a direct approach,
DIM is solvable in polynomial time:

Theorem 6. DIM is solvable in polynomial time for H-free graphs if H is:

(i) S1,1,1 [29]
(ii) S1,2,3 [60]
(iii) S2,2,2 [55]
(iv) S1,2,4 [23]
(v) P7 [18] (even in linear time)
(iv) P8 [21]

Note that P7 is isomorphic to S0,3,3, and S1,2,4 contains P7 as an induced
subgraph. The results (i)–(iii) are done via the black-white approach (the proof
for result (iii) is very long and technical) while in (iv), this black-white approach
is combined with the direct approach done in [18,21]. In [67,68], DIM is solved
in time O(n) for S1,1,1-free graphs.

In [55], it is conjectured that for every fixed i, j, k, DIM is solvable in poly-
nomial time for Si,j,k-free graphs; this also includes Pk-free graphs for k ≥ 9.

4.2 Solving Efficient Edge Domination for G via MWIS for L(G)2

Recall Lemma 2 and the fact that M is an e.e.d.s. of G if and only if M is
an e.d.s. of L(G). Since the EED problem for graph G corresponds to the ED
problem for L(G), EED for G can be reduced to MWIS for L(G)2. There are

Efficient Domination and Efficient Edge Domination: A Brief Survey 9

various examples of graph classes C where for any G ∈ C we have L(G)2 ∈ C
(most of these results were motivated by the Maximum Induced Matching (MIM)
problem). The class of chordal graphs is the first example:

Theorem 7 ([25]). If G is

(i) chordal then so is L(G)2 [25].
(ii) HHD-free (HHDA-free, respectively) then so is L(G)2 [63].
(iii) weakly chordal then so is L(G)2 [27].
(iv) a circular-arc graph then so is L(G)2 [49].
(v) a co-comparability graph then so is L(G)2 [50].
(vi) an interval-filament graph then so is L(G)2 [26].
(vii) AT-free then so is L(G)2 [26,32].
(viii) P5-free then so is L(G)2 [58].

Recall Theorem 1 (iii). Thus, by Theorem 7 (iii), EED can be solved in poly-
nomial time for weakly chordal graphs (and the “open problem” mentioned in
[29,74] was solved already by this approach).

For circular-arc graphs, recall Theorem 1 (v). Thus, by Theorem 7 (iv), EED
is polynomial for circular-arc graphs.

Since interval graphs and polygon-circle graphs [26] are subclasses of interval-
filament graphs, Gavril’s result in Theorem1 (vi) implies by Theorem 7 (vi) that
EED is polynomial for interval-filament graphs.

Co-comparability graphs, permutation graphs and trapezoid graphs are AT-
free (see e.g. [15]). Thus, by Theorem 1 (iv) and Theorem 7 (vii), EED is poly-
nomial for AT-free graphs.

By the result of [72], (viii) implies that MIM can be solved in polynomial
time for P5-free graphs; for DIM, the direct approach however is much simpler.

For line graphs, the complexity of DIM and MIM is different: While Kobler
and Rotics [58] showed that MIM is NP-complete for line graphs, Cardoso et al.
[29] showed that DIM is polynomial even for claw-free graphs and more general
cases - see Theorem 6.

In [69], a linear-time algorithm for EED on circular-arc graphs is given.
MIM is solvable in linear time for chordal graphs [12]. In contrast to this,

MIM is NP-complete for dually chordal graphs [16].
By Theorem 7 (i), EED is solvable in polynomial time for chordal graph but

recall that EED is solvable in linear time for chordal graphs [74] (and by bounded
treewidth).

By Observation 2, a graph having an e.e.d.s. is gem-free and W4-free (W4 is a
C4 plus a universal vertex). This allows us to solve the EED problem for dually
chordal graphs using the following lemma:

Lemma 3 ([16]). If G is a graph with an e.e.d.s. then G is chordal if and only
if G is dually chordal.

Corollary 2 ([16]). EED is solvable in linear time for dually chordal graphs.

10 A. Brandstädt

In [67,68], DIM is solved in time O(n) for dually chordal graphs. The subse-
quent scheme summarizes some of our results in [16]; NP -c. means NP-complete,
pol. (linear) means polynomial-time (linear-time) solvable, and XC means the
Exact Cover problem.

Chordal gr. Dually chordal gr. α-acyclic hypergr. Hypertrees

ED NP -c. [85] linear NP -c. pol.

EED linear [74] linear pol. NP -c.

MIM pol. [25] NP -c. pol. NP -c.

XC NP -c. pol.

5 Conclusion

The results presented in this survey do not explain all the other aspects which
are important for Efficient Domination and Efficient Edge Domination. Some of
them are approximation, exact algorithms, fixed-parameter tractability and the
influence of eigenvalues and spectra. Moreover, due to the space limitation, the
survey cannot present typical and important proofs. Efficient Domination and
Efficient Edge Domination is still an attractive task for many researchers, and
for many open problems, it is impossible to solve them immediately.

Acknowledgment. The author thanks all of his coauthors for working on these topics.

References

1. Bange, D.W., Barkauskas, A.E., Slater, P.J.: Efficient dominating sets in graphs.
In: Ringeisen, R.D., Roberts, F.S. (eds.) Applications of Discrete Mathematics, pp.
189–199. SIAM, Philadelphia (1988)

2. Bange, D.W., Barkauskas, A.E., Host, L.H., Slater, P.J.: Generalized domination
and efficient domination in graphs. Discrete Math. 159, 1–11 (1996)

3. Biggs, N.: Perfect codes in graphs. J. Comb. Theory Ser. B 15, 289–296 (1973)
4. Brandstädt, A.: Weighted efficient domination for P5-free graphs in linear time.

CoRR arXiv:1507.06765v1 (2015)
5. Brandstädt, A., Chepoi, V.D., Dragan, F.F.: The algorithmic use of hypertree

structure and maximum neighbourhood orderings. Discrete Appl. Math. 82, 43–
77 (1998)

6. Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.I.: Dually chordal graphs.
SIAM J. Discrete Math. 11, 437–455 (1998)

7. Brandstädt, A., Eschen, E.M., Friese, E.: Efficient domination for some subclasses
of P6-free graphs in polynomial time. CoRR arXiv:1503.00091 (2015). Extended
abstract. In: Mayr, E.W. (ed.) Proceedings of WG 2015. LNCS, vol. 9224, pp.
78–89 (2015)

http://arxiv.org/abs/1507.06765v1
http://arxiv.org/abs/1503.00091

Efficient Domination and Efficient Edge Domination: A Brief Survey 11

8. Brandstädt, A., Eschen, E.M., Friese, E., Karthick, T.: Efficient domination for
classes of P6-free graphs. Discrete Appl. Math. 223, 15–27 (2017)

9. Brandstädt, A., Fičur, P., Leitert, A., Milanič, M.: Polynomial-time algorithms
for weighted efficient domination problems in AT-free graphs and dually chordal
graphs. Inf. Process. Lett. 115, 256–262 (2015)

10. Brandstädt, A., Giakoumakis, V.: Weighted efficient domination for (P5+kP2)-free
graphs in polynomial time. CoRR arXiv:1407.4593v1 (2014)

11. Brandstädt, A., Giakoumakis, V., Milanič, M., Nevries, R.: Weighted efficient dom-
ination for F -free graphs. Manuscript (2014, submitted)

12. Brandstädt, A., Hoàng, C.T.: Maximum induced matchings for chordal graphs in
linear time. Algorithmica 52, 440–447 (2008)

13. Brandstädt, A., Hundt, C., Nevries, R.: Efficient edge domination on hole-free
graphs in polynomial time. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol.
6034, pp. 650–661. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12200-2 56

14. Brandstädt, A., Karthick, T.: Weighted efficient domination in two subclasses of
P6-free graphs. Discrete Appl. Math. 201, 38–46 (2016)

15. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications, vol. 3. SIAM, Philadelphia
(1999)

16. Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient dominating and edge domi-
nating sets for graphs and hypergraphs. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.)
ISAAC 2012. LNCS, vol. 7676, pp. 267–277. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35261-4 30. Full version: CoRR arXiv:1207.0953v2,
[cs.DM] (2012)

17. Brandstädt, A., Milanič, M., Nevries, R.: New polynomial cases of the weighted
efficient domination problem. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS,
vol. 8087, pp. 195–206. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40313-2 19. Full version: CoRR arXiv:1304.6255v1

18. Brandstädt, A., Mosca, R.: Dominating induced matchings for P7-free graphs in
linear time. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC
2011. LNCS, vol. 7074, pp. 100–109. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25591-5 12. Full version: Algorithmica 68, 998–1018 (2014)

19. Brandstädt, A., Mosca, R.: Weighted efficient domination for P6-free graphs in
polynomial time. CoRR arXiv:1508.07733 (2015). Based on a manuscript by R.
Mosca, Weighted Efficient Domination for P6-Free Graphs, July 2015

20. Brandstädt, A., Mosca, R.: Weighted efficient domination for P6-free and for P5-free
graphs. In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 38–49. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53536-3 4. Full version: SIAM
J. Discrete Math. 30(4) (2016)

21. Brandstädt, A., Mosca, R.: Dominating induced matchings for P8-free graphs in
polynomial time. Algorithmica 77, 1283–1302 (2017)

22. Brandstädt, A., Mosca, R.: On efficient domination for some classes of H-free
chordal graphs. CoRR arXiv:1701.03414 (2017). Extended abstract in Conference
Proceedings of LAGOS 2017, Marseille, Electron. Notes Discrete Math. 62, 57–62
(2017)

23. Brandstädt, A., Mosca, R.: Dominating induced matchings in S1,2,4-free graphs.
CoRR arXiv:1706.09301 (2017)

24. Broersma, H.J., Kloks, T., Kratsch, D., Müller, H.: Independent sets in asteroidal-
triple-free graphs. SIAM J. Discrete Math. 12, 276–287 (1999)

http://arxiv.org/abs/1407.4593v1
https://doi.org/10.1007/978-3-642-12200-2_56
https://doi.org/10.1007/978-3-642-12200-2_56
https://doi.org/10.1007/978-3-642-35261-4_30
https://doi.org/10.1007/978-3-642-35261-4_30
http://arxiv.org/abs/1207.0953v2
https://doi.org/10.1007/978-3-642-40313-2_19
https://doi.org/10.1007/978-3-642-40313-2_19
http://arxiv.org/abs/1304.6255v1
https://doi.org/10.1007/978-3-642-25591-5_12
https://doi.org/10.1007/978-3-642-25591-5_12
http://arxiv.org/abs/1508.07733
https://doi.org/10.1007/978-3-662-53536-3_4
http://arxiv.org/abs/1701.03414
http://arxiv.org/abs/1706.09301

12 A. Brandstädt

25. Cameron, K.: Induced matchings. Discrete Appl. Math. 24, 97–102 (1989)
26. Cameron, K.: Induced matchings in intersection graphs. Discrete Math. 278, 1–9

(2004)
27. Cameron, K., Sritharan, R., Tang, Y.: Finding a maximum induced matching in

weakly chordal graphs. Discrete Math. 266, 133–142 (2003)
28. Cardoso, D.M., Cerdeira, J.O., Delorme, C., Silva, P.C.: Efficient edge domination

in regular graphs. Discrete Appl. Math. 156, 3060–3065 (2008)
29. Cardoso, D.M., Korpelainen, N., Lozin, V.V.: On the complexity of the dominating

induced matching problem in hereditary classes of graphs. Discrete Appl. Math.
159, 521–531 (2011)

30. Cardoso, D.M., Lozin, V.V.: Dominating induced matchings. In: Lipshteyn, M.,
Levit, V.E., McConnell, R.M. (eds.) Graph Theory, Computational Intelligence
and Thought. LNCS, vol. 5420, pp. 77–86. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02029-2 8

31. Chang, M.-S.: Weighted domination of co-comparability graphs. Discrete Appl.
Math. 80, 135–148 (1997)

32. Chang, J.-M.: Induced matchings in asteroidal-triple-free graphs. Discrete Appl.
Math. 132, 67–78 (2004)

33. Chang, J.-M., Ho, C.-W., Ko, M.-T.: Powers of asteroidal-triple-free graphs with
applications. Ars Comb. 67, 161–173 (2003)

34. Chang, M.-S., Liu, Y.C.: Polynomial algorithms for the weighted perfect domina-
tion problems on chordal graphs and split graphs. Inf. Process. Lett. 48, 205–210
(1993)

35. Chang, M.-S., Liu, Y.C.: Polynomial algorithms for the weighted perfect domina-
tion problems on interval and circular-arc graphs. J. Inf. Sci. Eng. 11, 549–568
(1994)

36. Chang, G.J., Pandu Rangan, C., Coorg, S.R.: Weighted independent perfect dom-
ination on co-comparability graphs. Discrete Appl. Math. 63, 215–222 (1995)

37. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Ann. Math. 164, 51–229 (2006)

38. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33, 125–150 (2000)

39. Dragan, F.F., Prisacaru, C.F., Chepoi, V.D.: Location problems in graphs and
the Helly property. Discrete Math. 4, 67–73 (1992). Moscow, (in Russian), the
full version appeared as preprint: Dragan, F.F., Prisacaru, C.F., Chepoi, V.D.:
r-domination and p-center problems on graphs: special solution methods and
graphs for which this method is usable, Kishinev State University, preprint Mold-
NIINTI, N. 948-M88 (1987), (in Russian)

40. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)
41. Eschen, E., Wang, X.: Algorithms for unipolar and generalized split graphs. Dis-

crete Appl. Math. 162, 195–201 (2014)
42. Fellows, M.R., Hoover, M.N.: Perfect domination. Australas. J. Comb. 3, 141–150

(1991)
43. Flotow, C.: On powers of m-trapezoid graphs. Discrete Appl. Math. 63, 187–192

(1995)
44. Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. In:

Proceedings of the 5th British Combinatorial Conference (Aberdeen 1975), Con-
gressus Numerantium, No. XV, pp. 211–226 (1976)

45. Fricke, G., Laskar, R.: Strong matchings on trees. Congr. Numer. 89, 239–243
(1992)

https://doi.org/10.1007/978-3-642-02029-2_8
https://doi.org/10.1007/978-3-642-02029-2_8

Efficient Domination and Efficient Edge Domination: A Brief Survey 13

46. Friese, E.: Das Efficient-Domination-Problem auf P6-freien Graphen. Master thesis.
University of Rostock, Germany (2013). (in German)

47. Garey, M.R., Johnson, D.S.: Computers and Intractability – A Guide to the Theory
of NP-completeness. Freeman, San Francisco (1979)

48. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of
filaments. Inf. Process. Lett. 73, 181–188 (2000)

49. Golumbic, M.C., Laskar, R.: Irredundancy in circular arc graphs. Discrete Appl.
Math. 44, 79–89 (1993)

50. Golumbic, M.C., Lewenstein, M.: New results on induced matchings. Discrete Appl.
Math. 101, 157–165 (2000)

51. Grinstead, D.L., Slater, P.L., Sherwani, N.A., Holmes, N.D.: Efficient edge domi-
nation problems in graphs. Inf. Process. Lett. 48, 221–228 (1993)

52. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197 (1981). Corrigendum.
Combinatorica 4, 291–295 (1984)

53. Hayward, R.B., Spinrad, J.P., Sritharan, R.: Weakly chordal graph algorithms via
handles. In: Proceedings of the 11th Symposium on Discrete Algorithms (SODA),
pp. 42–49 (2000)

54. Hayward, R.B., Spinrad, J.P., Sritharan, R.: Improved algorithms for weakly
chordal graphs. ACM Trans. Algorithms 3, Article No. 14 (2007)

55. Hertz, A., Lozin, V.V., Ries, B., Zamaraev, V., de Werra, D.: Dominating induced
matchings in graphs containing no long claw. CoRR arXiv:1505.02558 (2015)

56. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations,
pp. 85–103. Plenum Press, New York (1972)

57. Karthick, T.: New polynomial case for efficient domination in P6-free graphs. In:
Ganguly, S., Krishnamurti, R. (eds.) CALDAM 2015. LNCS, vol. 8959, pp. 81–88.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14974-5 8

58. Kobler, D., Rotics, U.: Finding maximum induced matchings in subclasses of claw-
free and P5-free graphs, and in graphs with matching and induced matching of
equal maximum size. Algorithmica 37, 327–346 (2003)

59. Köhler, E.: Graphs without asteroidal triples. Ph.D. thesis, Technical University
of Berlin (1999)

60. Korpelainen, N., Lozin, V.V., Purcell, C.: Dominating induced matchings in graphs
without a skew star. J. Discrete Algorithms 26, 45–55 (2014)

61. Kratochv́ıl, J.: Perfect codes in general graphs, Rozpravy Československé Akad.
Věd Řada Mat. Př́ırod Vď 7. Akademia, Praha (1991)

62. Kratochv́ıl, J.: Regular codes in regular graphs are difficult. Discrete Math. 133,
191–205 (1994)

63. Krishnamurthy, C.M., Sritharan, R.: Maximum induced matching problem on
HHD-free graphs. Discrete Appl. Math. 160, 224–230 (2012)

64. Leitert, A.: Das dominating induced matching problem für azyklische Hyper-
graphen. Diploma thesis, University of Rostock, Germany (2012)

65. Liang, Y.D., Lu, C.L., Tang, C.Y.: Efficient domination on permutation graphs and
trapezoid graphs. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276,
pp. 232–241. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0045090

66. Lin, Y.-L.: Fast algorithms for independent domination and efficient domination
in trapezoid graphs. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS,
vol. 1533, pp. 267–275. Springer, Heidelberg (1998). https://doi.org/10.1007/3-
540-49381-6 29

http://arxiv.org/abs/1505.02558
https://doi.org/10.1007/978-3-319-14974-5_8
https://doi.org/10.1007/BFb0045090
https://doi.org/10.1007/3-540-49381-6_29
https://doi.org/10.1007/3-540-49381-6_29

14 A. Brandstädt

67. Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: Fast algorithms for some dominating
induced matching problems. Inf. Process. Lett. 114(10), 524–528 (2014)

68. Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: O(n) time algorithms for dominating
induced matching problems. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS,
vol. 8392, pp. 399–408. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54423-1 35

69. Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: Efficient and perfect domination on
circular-arc graphs. CoRR arXiv:1502.01523v1 (2015). Electron. Notes Discrete
Math. 50, 307–312 (2015)

70. Livingston, M., Stout, Q.: Distributing resources in hypercube computers. In: Pro-
ceedings of Third Conference on Hypercube Concurrent Computers and Applica-
tions, pp. 222–231 (1988)

71. Lokshtanov, D., Pilipczuk, M., van Leeuwen, E.J.: Independence and efficient dom-
ination on P6-free graphs. CoRR arXiv:1507.02163v2 (2015). Conference Proceed-
ings of SODA 2016, pp. 1784–1803

72. Lokshtanov, D., Vatshelle, M., Villanger, Y.: Independent set in P5-free graphs in
polynomial time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 570–581 (2014)

73. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math.
2, 253–267 (1972)

74. Lu, C.L., Ko, M.-T., Tang, C.Y.: Perfect edge domination and efficient edge dom-
ination in graphs. Discrete Appl. Math. 119, 227–250 (2002)

75. Lu, C.L., Tang, C.Y.: Solving the weighted efficient edge domination problem on
bipartite permutation graphs. Discrete Appl. Math. 87, 203–211 (1998)

76. Lu, C.L., Tang, C.Y.: Weighted efficient domination problem on some perfect
graphs. Discrete Appl. Math. 117, 163–182 (2002)

77. Milanič, M.: A hereditary view on efficient domination. In: Proceedings of the 10th
Cologne-Twente Workshop. Extended Abstract, pp. 203–206 (2011)

78. Milanič, M.: Hereditary efficiently dominatable graphs. J. Graph Theory 73, 400–
424 (2013)

79. Nevries, R.: Efficient domination and polarity. Ph.D. thesis, University of Rostock
(2014)

80. Raychaudhuri, A.: On powers of strongly chordal and circular-arc graphs. Ars
Combin. 34, 147–160 (1992)

81. Smart, C.B., Slater, P.J.: Complexity results for closed neighborhood order param-
eters. Congr. Numer. 112, 83–96 (1995)

82. Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett. 15, 14–19 (1982)

83. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Pro-
ceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 887–
898. ACM, New York (2012)

84. Yen, C.-C.: Algorithmic aspects of perfect domination. Ph.D. thesis, Institute of
Information Science, National Tsing Hua University, Taiwan (1992)

85. Yen, C.-C., Lee, R.C.T.: The weighted perfect domination problem and its variants.
Discrete Appl. Math. 66, 147–160 (1996)

https://doi.org/10.1007/978-3-642-54423-1_35
https://doi.org/10.1007/978-3-642-54423-1_35
http://arxiv.org/abs/1502.01523v1
http://arxiv.org/abs/1507.02163v2

Mixed Unit Interval Bigraphs

Ashok Kumar Das(B) and Rajkamal Sahu

Department of Pure Mathematics, University of Calcutta, Kolkata, India
ashokdas.cu@gmail.com, rajkamalmath@gmail.com

Abstract. The class of intersection bigraphs of unit intervals of the
real line whose ends may be open or closed is called mixed unit inter-
val bigraphs. This class of bigraphs is a strict superclass of the class of
unit interval bigraphs. We provide several infinite families of forbidden
induced subgraphs of mixed unit interval bigraphs. We also pose a con-
jecture concerning characterization of mixed unit interval bigraphs and
verify parts of it.

Keywords: Interval bigraphs · Unit interval bigraphs
Mixed unit interval bigraphs

1 Introduction

Interval graphs are the intersection graphs of intervals of the real line. Unit inter-
val graphs are interval graphs where all the intervals are of unit length. Proper
interval graphs are interval graphs where no interval is properly contained in
another. Interval graphs and their subclasses like unit/proper interval graphs
have been extensively studied by several researchers from structural [7,10],
algorithmic [2,3] and application [9] view point.

However, most of the researchers do not specify which type of interval is used,
that is, whether the ends of the intervals are open, closed or semi-closed. This is
acceptable because the class of graphs does not actually depend on this. Frankl
and Meahara [8] observed that using only open intervals or only closed intervals
leads to the same class of graphs. In [6] it was shown that this is even true
when we allow all possible types of intervals in the intersection representation.
This is no longer true for the class of unit interval graphs. Rautenbach and
Szwarcfiter [15] showed that the class of intersection graphs of unit intervals
of open and closed intervals is a strict superclass of the class of unit interval
graphs. They also characterized this class of graphs, by a finite list of forbidden
induced subgraphs. Dourado et al. [6] generalized the result of [15] to mixed
unit interval graphs allowing all four distinct types of unit intervals. Felix Joos
[12] gave a complete characterization of mixed unit interval graphs in terms of
infinite families of forbidden induced subgraphs.

A bipartite graph (in short, bigraph) B = (X,Y,E) is an interval bigraph if
there exist a one-to-one correspondence between the vertex set X ∪ Y of B and
a collection of intervals {I(v) : v ∈ X ∪Y } on the real line such that two vertices
c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 15–29, 2018.
https://doi.org/10.1007/978-3-319-74180-2_2

16 A. K. Das and R. Sahu

are adjacent if and only if their corresponding intervals intersect and they belong
to different partite sets. The collection of intervals {I(v) : v ∈ X∪Y } is called an
interval representation of B. We simply denote the interval representation of B
by I (which is a function from the vertex set X ∪ Y to a collection of intervals).

An interval bigraph is a unit interval bigraph if all the intervals in the interval
representation are of unit length. An interval bigraph B = (X,Y,E) is a proper
interval bigraph if in the interval representation no interval is properly contained
in another. Hell and Huang [11] proved that an interval bigraph is a unit interval
bigraph if and only if it does not contain the bipartite claw (H1), the bipartite
net (H2) or the bipartite tent (H3) as an induced subgraph (see Fig. 1). In [4] we
observe that the bigraphs H1,H2 and H3 have intersection representation with
unit open and closed intervals. In the same paper we give a characterization of
the class of finite intersection bigraphs of unit open and closed intervals in terms
of forbidden induced bigraphs.

In the present paper we generalize the results of [4] to the mixed unit interval
bigraphs where we allow all four types of unit intervals namely closed, open,
left closed-right open and right closed-left open unit interval in the interval
representation. Here we show that the list of forbidden induced subgraphs for
mixed unit interaval bigraphs is infinite.

In Sect. 2 we introduce basic definitions, terminology, and results related to
our work. In Sect. 3 we give some forbidden induced subgraphs of mixed unit
interval bigraphs. In Sect. 4 we pose a conjecture concerning characterization of
mixed unit interval bigraphs and verify parts of it.

2 Preliminary Results

We consider only simple, finite and connected bigraphs. For a bigraph B =
(X,Y,E) the neighbourhood of a vertex u ∈ X ∪ Y is denoted by NB(u). Two
distinct vertices u and v of B are copies if NB(u) = NB(v). If no two vertices of
B are copies then B is copy-free. If F is a set of graphs and a graph G does not
contain a graph in F as an induced subgraph then G is F-free.

Let M be a family of sets. An M-intersection representation of a bigraph is
a function f : X ∪ Y → M such that for any two distinct vertices u and v of
a bigraph B, we have uv ∈ E if and only if f(u) ∩ f(v) �= ∅. A bigraph is an
M-bigraph if it has an M-intersection representation.

For two real numbers a and b, we denote the open interval {x ∈ R|a < x < b}
by (a, b), the closed interval {x ∈ R|a ≤ x ≤ b} by [a, b], the open-closed interval
{x ∈ R|a < x ≤ b} by (a, b] and the closed-open interval {x ∈ R|a ≤ x < b}
by [a, b). For an interval I, let l(I) = inf(I) and r(I) = sup(I). We suppose
I++ is the set of closed intervals, I−− is the set of open intervals, I+− is the
set of closed-open intervals and I−+ is the set of open-closed intervals. Also
suppose U++ is the set of unit closed intervals, U−− is the set of unit open
intervals, U+− is the set of unit closed-open intervals and U−+ is the set of unit
open-closed intervals. In addition, let I± = I++ ∪ I−−, U± = U++ ∪ U−−,
I = I++ ∪ I−− ∪ I+− ∪ I−+, and U = U++ ∪ U−− ∪ U+− ∪ U−+.

Mixed Unit Interval Bigraphs 17

Our first result shows that as in the case of interval graphs, the class of
interval bigraphs does not depend on the type interval used in the intersection
representation.

Proposition 1. The classes of I++-bigraphs, I−−-bigraphs, I±-bigraphs,
I+−-bigraphs, I−+-bigraphs and I-bigraphs are the same.

The following proposition extends the result of Proposition 2 of [6] which showed
that a bigraph is a U++-bigraph if and only if it is a U−−-bigraph.

Proposition 2. The classes of U++-bigraphs, U−−-bigraphs, U+−-bigraphs,
U−+-bigraphs and U+− ∪ U−+-bigraphs are the same.

The proofs of the above propositions are similar to the proof of Dourado et al. [6]
and so omitted.

Fig. 1. The bipartite claw (H1), net (H2) and tent (H3)

Interval bigraphs coincide with I++-bigraphs and unit interval bigraphs coin-
cide with U++-bigraphs. Following theorem relates the class of interval bigraphs,
unit interval bigraphs and proper interval bigraphs.

Theorem 3 ([11,13,16]). An interval bigraph is a unit interval bigraph if and
only if it is a proper interval bigraph if and only if it does not contain H1, H2

or H3 as an induced subgraph.

As mentioned in the introduction, the bigraphs H1, H2 and H3 have U-
intersection representation; see Figs. 2, 3 and 4.

x2

y2

4

y1

x1

y3
x3

y2

y1 y3

x1 x4 x3

x2

Fig. 2. The bipartite claw H1 and its U-intersection representation.

As observed in [4] each intersection representation of H1, H2 and H3 is unique
upto trivial modifications (these trivial modifications include suitable interval
shifts that preserve intersections and relative positions between intervals, changes
in the types (open, closed or half closed) of some intervals, reflection of the

18 A. K. Das and R. Sahu

y2

x2

y1

x1

x3

y3
y4

y2 y1

y4 y3

x2

x3 x2 x1
x3

y2 y1
y4

x1

y3

(i) (ii)

Fig. 3. The bipartite Net H2 and its two U-intersection representation.

y2

x2
y1

x3

y3
x4

x1

y1

y2 y3

x2 x3

x4

x4
x2 x3

x1y2
y1

x1

y3

(i) (ii)

Fig. 4. The bipartite tent H3 and its two U-intersection representation.

entire model about a point on the real line, translation of the entire model, and
relabeling of some intervals).

Therefore the class of U±-bigraphs is a strict superclass of the class of unit
interval bigraphs. We have characterized these class of bigraphs in [4] (Fig. 5).

For an I++-bigraph if two vertices u and v are copies then they belong to
the same partite set. And in the I++-interval representation we can take same
interval for these two vertices. Thus we consider that our bigraphs are copy free.

F1 F2 F3 F4 F5 F6

F7 F8 F9 F10 F11 F12

Fig. 5. Forbidden induced subgraphs of U±-bigraphs.

x4

y5

x3

y3

y1
x2

y2

x1

y4

y5

y1

x4 x2
x3 x1

y2
y3y4

Fig. 6. The bigraph F3 and its U-intersection representation.

Mixed Unit Interval Bigraphs 19

Theorem 4 ([4]). For a copy-free bipartite graph B, the following statements
are equivalent.

(i) B is a {F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12}-free interval bigraph.
(ii) B is an almost proper interval bigraph.
(iii) B is a U++ ∪ U−−-bigraph.

3 Forbidden Induced Subgraphs of Mixed Unit
Interval Bigraphs

It can be observed that the bigraphs F2, F4, F5, F8, F9, F10, F11 and F12 have no
U-intersection representation. In this section we shall give some other forbidden
induced subgraphs of mixed unit interval bigraphs (Figs. 7, 8, 9, 10, 11 and 12).

L1,1 L1,2

Li,j

i vertices j vertices

Fig. 7. The class L

M1 M2

Mi

i vertices

Fig. 8. The class M.

N1 N2

Ni
i vertices

Fig. 9. The class N .

H ′
1 H ′

2

H ′
i

i vertices

Fig. 10. The class H′.

20 A. K. Das and R. Sahu

Fig. 11. The bigraph B1

y2 x2

y1
x

y

x′
2 y′

2

x′
3

y′
4

x3

y4

x1

Fig. 12. The bigraph B2

Lemma 5. The bigraph F1 has unique U-intersection upto trivial modifications.

x2

y1

x1

y0

x0

y2
x3y3

x1
y0

y1 y2

x3x2

y3

x0

Fig. 13. The graph F1 and its U-representation.

Proof. The proof follows from the Proposition 5 of [4]. The bigraph F1−y3 is the
bipartite claw (H1). Thus from that Proposition, H1 has a unique U-intersection
as shown in Fig. 2. Since the vertex y3 is adjacent to x1 only, so we can take
I(y3) as in Fig. 13 to get the U-intersection representation of F1. Again I(y3)
can be taken as closed-open copy of I(y2) and make some trivial modifications
to get the same representation of F1 as earlier. This completes the proof. 	

From the above Lemma we have the following corollary.

Corollary. The bigraph B1 is the minimal forbidden induced subgraph of the
class of U-intersection bigraphs (Fig. 14).

x′′
0

y′′
1

x′
0

x

y0

x0

y

y1

x′ y′

x′′
y′′ x′′

0

y′′
1

x′
0

x

y0

x0

y

y1

x1
y′ x′

y′′
x′′x′

1
v′′

u
v′

x′′
1 y′′

1

x

y0

x0

y

y1

x1 w
z′ w′

z′′
w′′x′

1x′′′
1y′′′

1
y′
1

F1,1 F1,2 Fi,j

i vertices j vertices

Fig. 14. The class F ′ of bigraphs

In the bigraph Fi,j , if i is even then u ∈ X and v′, v′′ ∈ Y ; and if i is odd
then u ∈ Y and v′, v′′ ∈ X. Similarly if j is even then w ∈ X and if j is odd then
w ∈ Y and w, z are vertices of different partite sets. The two vertices v′ and v′′

are the special vertices of Fi,j . In the next lemma, we show that the bigraph Fi,j

has a unique U-intersection representation upto trivial modifications.

Mixed Unit Interval Bigraphs 21

Lemma 6. Let i, j ∈ N

(a) A U-intersection representation I : V (Fi,j) → U of Fi,j, where I(V (Fi,j))
consists of the following intervals
• I(x) = I(y0) = [0, 1], I(x0) = (0, 1), I(y) = (−1, 0]
• I(yk) = [2(k − 1) + 1, 2(k − 1) + 2], I(xk) = [2(k − 1) + 2, 2(k − 1) + 3],

(k ≥ 1)
• I(x′

k) = (2(k − 1) + 1, 2(k − 1) + 2), I(y′
k) = (2(k − 1) + 2, 2(k − 1) + 3),

(k ≥ 1)
• I(y′′

k) = [−2(k−1)−1,−2(k−1)], I(x′′
k) = [−2(k−1)−2,−2(k−1)−1],

(k ≥ 1)
• I(x′′′

k) = (−2(k − 1) − 2,−2(k − 1) − 1], I(y′′′
k) = (−2k − 1,−2k], (k ≥ 1)

• I(w) = [j, j+1], I(z′′) = I(w′′) = (j, j+1), I(z′) = [j+1, j+2], I(w′) =
[j + 2, j + 3] or [j + 2, j + 3) and

• I(u) = [−i,−i + 1], I(v′) = I(v′′) = [−i − 1,−i] or (−i − 1,−i]
is unique upto trivial modifications.

(b) Li,j is a minimal forbidden induced subgraph for the class of U-bigraphs.

Proof. (a) It can be easily observed that every Fi,j contains F1 as an induced
subgraph. Consider F1,1, it contains F1 as an induced subgraph, where V (F1) =
{x0, y0, x, y, y1, y

′′
1 , x

′
0, x

′}. Without loss of generality we consider the U-inter-
section of F1 for the vertices x0, y0, x, y, y1, y

′′
1 , x

′
0, x

′ as follows: I(x) = I(y0) =
[0, 1], I(x0) = (0, 1), I(y1) = [1, 2], I(x′) = [2, 3], I(y′′) = [−1, 0], I(y) = (−1, 0],
I(x′

0) = [−2,−1] or (−2,−1]. Next we take I(x′′) = I(y′′) = (1, 2), I(y′) =
[3, 4] or [3, 4) and I(x′′

0) = I(x′
0). Now consider Fi,j and let j = 2n. Then w = xn,

and the path y1, x1, y2, x2, . . . , yk, xk, . . . , yn, xn has the representation I(y1) =
[1, 2], I(x1) = [2, 3], I(y2) = [3, 4], I(x2) = [4, 5], and by induction I(yk) =
[2(k− 1) + 1, 2(k− 1) + 2] and I(xk) = [2(k− 1) + 2, 2(k− 1) + 3]. Then we have
I(xn) = [2(n−1)+2, 2(n−1)+3] = [2n, 2n+1]. In the other case, if j = 2n+1,
then w = yn+1 and we have I(yn+1) = [2(n+1−1)+1, 2n+2] = [2n+1, 2n+2].
Thus I(w) = [j, j+1], I(z′) = [j+1, j+2], I(w′) = [j+2, j+3] or [j+2, j+3).
As z′′ is adjacent to w only in this path and w′′ is adjacent to z′′ so we take
I(z′′) = I(w′′) = (j, j +1). As the vertices x0, y0, x, y belong to Fi,j , we take the
interval representation of these vertices as before (i.e. as in the case of F1,1).

Next x′
k is adjacent to yk and y′

k is adjacent to xk only so we take I(x′
k) as the

open copy of I(yk) and I(y′
k) as the open copy of I(xk). Again consider the path

x, y′′
1 , x

′′
1 , . . . , y

′′
k , x

′′
k , . . . , u. As I(x) = [0, 1] we take the interval representation of

I(y′′
1) = [−1, 0], I(x′′

1) = [−2,−1], I(y′′
2) = [−3,−2], I(x′′

2) = [−4,−3], and by
induction I(y′′

k) = [−2(k− 1)− 1,−2(k− 1)] and I(x′′
k) = [−2(k− 1)− 2,−2(k−

1) − 1]. If i = 2m, then u = xm; so I(u) = I(xm) = [−2(m − 1) − 2,−2(m −
1) − 1] = [−2m,−2m + 1]. And if i = 2m + 1, then u = ym+1, so I(u) =
[−2(m+ 1 − 1) − 1,−2(m+ 1 − 1)] = [−2m− 1,−2m]. Thus I(u) = [−i,−i+ 1]
and I(v′

0) and I(v′′
0) = [−i − 1,−i] or (−i − 1,−i]. Finally, x′′′

k is adjacent to y′′
k

only and y′′′
k is adjacent to x′′

k only. So we take I(x′′′
k) as the open-closed copy

of I(x′′
k) and I(y′′′

k) as the open-closed copy of I(y′′
k+1). Which completes the

proof of (a).

22 A. K. Das and R. Sahu

(b) Li,j is obtained from Fi,j by adjoining two distinct vertices u′ and u′′

with v′ and v′′, where u′ is adjacent to v′ and u′′ is adjacent to v′′. Thus from
U-intersection representation of Fi,j , it follows that Li,j is the minimal forbidden
induced subgraph of U-bigraphs. 	

As before the two vertices v′ and v′′ are the special vertices of M ′
i . In the

following lemma we show that the bigraph M ′
i has a unique U-intersection rep-

resentation upto trivial modifications.

Lemma 7. Let i ∈ N

(a) A U-intersection representation I : V (M ′
i) → U of M ′

i , where I(V (M ′
i))

consists of the following intervals
• I(x′′

2) = I(y′′
4) = [0, 1], I(x′′

3) = I(y1) = [1, 2], I(y′′
2) = [−1, 0] or

(−1, 0], I(y′′
3) = (1, 2)

• I(xk) = [2k, 2k + 1], I(x′
k) = [2k, 2k + 1), (k ≥ 1)

• I(yk) = [2k − 1, 2k], I(y′
k−1) = [2k − 1, 2k), (k ≥ 2) and

• I(u) = [i + 1, i + 2], I(v′) = I(v′′) = [i + 2, i + 3] or [i + 2, i + 3)
is unique upto trivial modifications.

(b) Mi is a minimal forbidden induced subgraph for the class of U-bigraphs
(Fig. 15).

y′′
3

x′′
3

y1

x′′
2y′′

2

y′′
4

x′
1

x1
y′

y′′
y′′
3

x′′
3

y1

x′′
2y′′

2

y′′
4

x′
1

x1

y2
x′′

y′
1

x′

y′′
3

x′′
3

y1

x′′
2y′′

2

y′′
4

x′
1

x1 y2

x′
2y′

1

u
v′

v′′

M ′
1 M ′

2 M ′
i

i vertices

Fig. 15. The class M′ of bigraphs.

Proof. (a) It can be easily observed that the bigraph M ′
i contains H2 as an

induced subgraph, where V (H2) = {x1, y1, x
′′
2 , y

′′
2 , x

′′
3 , y

′′
3 , y

′′
4 }. From Proposi-

tion 6 of [4] we take the intervals corresponding to these vertices as I(x′′
2) =

I(y′′
4) = [0, 1], I(y′′

2) = [−1, 0] or (−1, 0], I(x′′
3) = I(y1) = [1, 2], I(y′

3) =
(1, 2), I(x1) = [2, 3]. As x′

1 is adjacent to y1 only we must take I(x′
1) = [2, 3). In

M ′
i consider the path P : y1, x1, y2, x2, . . . , yk, xk, . . . , u. If i = 2n, then u = yn+1

and if i = 2n + 1, then u = xn+1. Now intervals corresponding to the vertices
y2, x2, y3, x3 are I(y2) = [3, 4], I(x2) = [4, 5], I(y3) = [5, 6], I(x3) = [6, 7].
Thus by induction, I(yk) = [2k − 1, 2k] and I(xk) = [2k, 2k + 1]. Hence
I(yn+1) = [2n + 1, 2n + 2] and I(xn+1) = [2n + 2, 2n + 3].

Thus I(u) = [i + 1, i + 2] and I(v) and I(v′′) = [i + 2, i + 3] or [i + 2, i + 3).
Now x′

k is adjacent to yk only so we take I(x′
k) as the closed-open copy of I(xk).

Again y′
k−1 is adjacent to xk−1 only, and as yk is adjacent to xk−1 in P . So

we take I(y′
k−1) as the closed-open copy of I(yk), (k ≥ 2). This completes the

proof of (a).

Mixed Unit Interval Bigraphs 23

(b) From the above representation of M ′
i it follows that Mi has no U-

intersection representation and hence Mi is a minimal forbidden induced sub-
graph for the class of U-bigraphs. 	

The vertices v′ and v′′ are the special vertices of N ′
i . In the next lemma we

show that the bigraph N ′
i has a unique U-intersection representation upto trivial

modifications.

Lemma 8. Let i ∈ N.

(a) A U-intersection representation I : V (N ′
i) → U of N ′

i , where I(V (N ′
i))

consists of the following intervals
• I(x′′

2) = I(y′′
2) = [−2,−1], I(x′′

4) = I(y′′
1) = [−1, 0], I(x′′

1) = (−1, 0)
• I(x′′

3) = [0, 1], I(y′′
3) = [0, 1)

• I(y′′
4) = [−3,−2] or (−3, 2]

• I(yk) = [2k − 2, 2k − 1], I(xk) = [2k − 1, 2k], (k ≥ 1)
• I(x′

k) = [2k − 1, 2k), (k ≥ 1) and I(y′
k) = [2k − 2, 2k − 1), (k ≥ 2) and

• I(u) = [i − 1, i], I(v′) and I(v′′) = [i, i + 1] or [i, i + 1)
is unique upto trivial modifications.

(b) Ni is a minimal forbidden induced subgraph for the class of U-bigraphs
(Fig. 16).

y′′
2

x′′
4

y′′
3

x′′
3

y′′
1

x′′
2

y′′
4

x′′
1

y1

x′

x′′

y′′
2

x′′
4

y′′
3

x′′
3

y′′
1

x′′
2

y′′
4

x′′
1

y1 x1

y′x′
1

y′′

y′′
2

x′′
4

y′′
3

x′′
3

y′′
1

x′′
2

y′′
4

x′′
1

y1 x1

y′
2x′

1

y2

x′
2

u

v′

v′′N ′
1 N ′

2 N ′
i

i vertices

Fig. 16. The class N ′ of bigraphs.

Proof. (a) It is easy to obeserve that each of the bigraph N ′
i con-

tains the graph H3 + y′′
4 as an induced subgraph, where V (H3 + y′′

4) =
{x′′

1 , y
′′
1 , x

′′
2 , y

′′
2 , x

′′
3 , y

′′
3 , x

′′
4 , y

′′
4}. Without loss of generality we take the follow-

ing representation of H3 + y′′
4 . Where I(y′′

2) = I(x′′
2) = [−2,−1], I(x′′

4) =
I(y′′

1) = [−1, 0], I(x′′
1) = (−1, 0), I(x′′

3) = [0, 1] and I(y′′
3) = [0, 1). As y1 is

adjacent to x′′
3 and x′′

4 and x1 is adjacent to y1 so we take I(y1) = [0, 1] and
I(x1) = [1, 2]. Again as y2 is adjacent to x1, x2 is adjacent to y2 and so on; we
can take the interval representation of the path y1, x1, y2, x2, . . . , yk, xk, . . . , u
where I(y1) = [0, 1], I(x1) = [1, 2], I(y2) = [2, 3], I(x2) = [3, 4]. And by induc-
tion, we have I(yk) = [2k−2, 2k−1] and I(xk) = [2k−1, 2k]. Now if i = 2m, then
u = xm. Then I(xm) = [2m− 1, 2m] = [i− 1, i]. In the other case, if i = 2m− 1,
then u = ym. And I(ym) = [2m−2, 2m−1] = [i−1, i]. As v and v′ are adjacent to
u, we take I(v) = I(v′) = [i, i+1] or [i, i+1). Again as x′

k is adjacent to yk only
also yk is adjacent to xk we take I(x′

k) = [2k− 1, 2k), (k ≥ 1). As y′
k is adjacent

24 A. K. Das and R. Sahu

to only xk−1 also xk−1 is adjacent to yk, we take I(y′
k) = [2k−2, 2k−1), (k ≥ 2).

This completes the proof of (a).
(b) From the representation of N ′

i it follows that Ni is the minimal forbidden
induced subgraphs for U-bigraphs. 	

The two vertices v′ and v′′ are the special vertices of H ′′
i . In the next lemma

we show that the bigraph H ′′
i has a unique U-intersection representation upto

trivial modifications.

Lemma 9. Let i ∈ N.

(a) A U-intersection representation I : V (H ′′
i) → U of H ′′

i , where I(V (H ′′
i))

consists of the following intervals
• I(x′′

2) = [−1, 0] or (−1, 0], I(y′′
2) = [−1, 0] or (−1, 0]

• I(x′′
4) = I(y′′

1) = [0, 1], I(y′′
3) = (0, 1), I(x′′

3) = [12 ,
3
2]

• I(x1) = [1, 2], I(x′′
1) = [1, 2)

• I(xk) = [2k − 1, 2k], I(yk) = [2k, 2k + 1], (k ≥ 1)
• I(y′

k) = [2k, 2k + 1), I(x′
k) = [2k + 1, 2k + 2), (k ≥ 1)

• I(u) = [i, i + 1], I(v′) and I(v′′) = [i + 1, i + 2] or [i + 1, i + 2)
is unique upto trivial modifications.

(b) H ′
i is a minimal forbidden induced subgraph for U-bigraph (Fig. 17).

y′′
3 x′′

3

y′′
1

x′′
2y′′

2

x′′
4 x1

y′′x′′
1

y′
y′′
3 x′′

3

y′′
1

x′′
2y′′

2

x′′
4 x1

y′
1x′′

1

y1
x′

x′′

y′′
3 x′′

3

y′′
1

x′′
2y′′

2

x′′
4 x1

y′
1x′′

1

y1 x2

x′
1 y′

2

u

v′′

v′

H ′′
1 H ′′

2 H ′′
i

i vertices

Fig. 17. The class H′′ of bigraphs.

Proof. (a) Every H ′′
i contains H3 as an induced subgraph, where V (H3) is

{x′′
2 , y

′′
2 , x

′′
3 , y

′′
3 , x

′′
4 , y

′′
1 , x1}. Consider the following representation of H3, where

I(x′′
2) = I(y′′

2) = [−1, 0] or (−1, 0], I(x′′
4) = I(y′′

1) = [0, 1], I(y′′
3) = (0, 1),

I(x′′
3) = [12 ,

3
2], I(x1) = [1, 2]. Next, consider the interval representation of

the path y′′
1 , x1, y1, x2, y2, . . . , xk, yk, . . . , u, where I(x1) = [1, 2], I(y1) = [2, 3],

I(x2) = [3, 4], I(y2) = [4, 5]. And by induction I(xk) = [2k − 1, 2k], I(yk) =
[2k, 2k+1], (k ≥ 1). For the ith vertex u, if i = 2m then u ∈ Y and u = ym, and
I(u) = [2m, 2m+ 1] = [i, i+ 1]. Again if i = 2m+ 1, u ∈ X and u = xm+1, then
I(u) = [2(m+ 1) − 1, 2(m+ 1)] = [2m+ 1, 2m+ 1 + 1] = [i, i+ 1]. Consequently
I(v′) and I(v′′) are [i+ 1, i+ 2] or [i+ 1, I + 2). Again x′′

1 is adjacent to y′′
1 only

so I(x′′
1) = [1, 2). Similarly y′

k is adjacent to xk only so I(y′
k) = [2k, 2k + 1) as

yk is also adjacent to xk. Next x′
k is adjacent to yk and xk+1 is also adjacent to

yk, so I(x′
k) = [2k + 1, 2k + 2), (k ≥ 1), this completes the proof of (a).

(b) From the U-representation of H ′′
i it follows that H ′

i is minimal induced
forbidden subgraph for U-bigraphs. 	

Mixed Unit Interval Bigraphs 25

Lemma 10. The bigraph B2 is minimal forbidden induced subgraph for U-
bigra-phs.

Proof. B2 contains H1 as an induced subgraph, where V (H1) =
{y, x, y1, x2, y2, x

′
2, y

′
2}. As H1 has a unique U±-representation upto trivial modi-

fications, we take the following representation of it, I(x) = I(y1) = [1, 2], I(y) =
(1, 2), I(x2) = [0, 1], I(x′

2) = [2, 3] and I(y2) = [−1, 0] or (−1, 0], I(y′
2) = [3, 4]

or [3, 4). As x3 is adjacent to y1 but not to y2 we take I(x3) = (0, 1]. Simi-
larly I(x′

3) = [2, 3). Again as y4 is adjacent to x2 and x3 only so we may take
I(y4) = (0, 1). Similarly I(y′

4) = (2, 3). Now it is not possible to give an interval
representation for the vertex x1.

Also it may be noted that B2 contains H2−y3 as an induced subgraph, where
V (H2−y3) = {x1, y1, x2, y2, x3, y4}. Consider the representation of H2−y3, where
I(x3) = [1, 2], I(x1) = (1, 2) or (1, 2], I(y1) = [1, 2], I(x2) = [0, 1], I(y4) =
[0, 1], I(y2) = [−1, 0] or (−1, 0]. Now x′

2 and x′
3 are adjacent to y1 and y′

2

is adjacent to x′
2. So we take I(x′

2) = [2, 3], I(x′
3) = [2, 3), I(y′

2) = [3, 4] or
[3, 4). Again y′

4 is adjacent to x′
2 and x′

3 only so I(y′
4) = (2, 3). As x is adjacent

to y1 only so we take I(x) = (1, 2). But now, it is not possible to give an
interval representation for the vertex y. Also it can be verified that for other
representation of H2 − y3, it is not possible to give an interval representation of
B2. This completes the proof of the lemma. 	

u
v′′
0 u′

0

v0
v′
0

u0

Fig. 18. The bigraph B0

Lemma 11. In the bigraphs Fi,j , M ′
i , N ′

i , H ′′
i if we have the bigraph B0 con-

taining u as an induced subgraph (the vertices v′ and v′′ are absent) then the
resulting bigraphs are still minimal forbidden induced subgraphs for U-bigraphs
(u and v are vertices of different partite sets) (Fig. 18).

Proof. In the U-intersection representation of any of the bigraphs Fi,j , M ′
i , N ′

i

or H ′′
i , let the interval corresponding to u is I(u) = [a, a + 1]. As v′

0 and v′′
0

are adjacent to u, u0 is adjacent to v′
0, v′′

0 and u′
0 is adjacent to v′′

0 only, we
take intervals corresponding to these vertices as follows: I(v′′

0) = [a + 1, a +
2], I(v′

0) = [a + 1, a + 2), I(u0) = (a + 1, a + 2) and I(u′
0) = [a + 2, a + 3] or

[a+2, a+3). Now the interval representation of v0 is not possible as there exists
an interval I(u′) = [a, a+1) in the interval representation of each of the bigraphs
Fi,j , M ′

i , N ′
i , H ′′

i . This completes the proof of the lemma. 	

26 A. K. Das and R. Sahu

4 A Conjecture for Mixed Unit Interval Bigraphs

In the previous Section we have seen that the bigraphs F2, F4, F5, F8, F9, F10, F11,
F12, B1 and B2 are minimal forbidden induced subgraphs for U-bigraphs. Also
several infinite families of bigraphs, namely, L,M,N ,H′ that are the forbidden
families of U-bigraphs. Next, we observe that in the bigraph Fi,j , the vertex
u is adjacent to two special vertices v′ and v′′. Now if there exist two distinct
vertices u′ and u′′ such that u′ is adjacent to v′ and u′′ is adjacent to v′′ we
have the bigraph Li,j . Similar observation can be made for the bigraphs Mi, Ni

and H ′′
i . Also in the Lemma 11, we proved that for the bigraphs Fi,j ,M

′
i , N

′
i ,H

′′
i

where vertices v′ and v′′ are deleted, if we have the bigraph B0 as an induced
subgraph containing the vertex u, then the resulting graph is also a forbidden
induced subgraph for U-bigraphs. These results inspire us to pose a conjecture.
But before that we introduce a new definition. For notational convenience we
write l(I(v)) = l(v) and r(I(v)) = r(v)

A bigraph B = (X,Y,E) is a mixed proper interval bigraph if it has an
I-intersection representation I : V (B) → I such that

(i) for two distinct vertices u and v of B with I(u), I(v) ∈ I++, I(u) �⊂ I(v)
and I(v) �⊂ I(u), and

(ii) for every vertex u of B with I(u) �∈ I++, there is a vertex v of B with
I(v) ∈ I++, l(u) = l(v) and r(u) = r(v), that is no closed interval is
properly contained in another closed interval and for any non closed interval,
there is a closed interval with same end point.

Let B′ be the class of bigraphs, where B′ = F ′ ∪ M′ ∪ N ′ ∪ H′′. We are now in
a position to phrase our conjecture.

Conjecture 12. For a bigraph B, the following statements are equivalent.

(a) • B is {B1, B2, F2, F4, F5, F8, F9, F10, F11, F12} ∪ L ∪ M ∪ N ∪ H′-free
interval bigraph and

• for every induced subgraph H of B that is isomorphic to one of the
bigraphs of the class B′ and any vertex u∗ ∈ V (B) \ V (H) is such that
u∗ is adjacent to exactly one of the special vertices of H,

• if H ′ = H \ {v′, v′′} then H ′ ∪ B0 is not an induced subgraph of B.
(b) B is a mixed proper interval bigraph.
(c) B is a mixed unit interval bigraph.

In the last two results we verify the conjecture partly and we leave open the
problem of finding the complete list of forbidden bigraphs of mixed unit interval
bigraphs.

Proposition 13. The implication (c) ⇒ (a) of Conjecture 12 is true.

Proof. Let B be a U-bigraph, and let I be a U-intersection representation of
B. Then obviously B is F2, F4, F5, F8, F9, F10, F11, F12-free interval bigraphs.
Also corollary of Lemmas 5 and 10 imply that B is B1 and B2-free. And from
Lemmata 6, 7, 8 and 9, B is L ∪ M ∪ N ∪ H′-free interval bigraph

Mixed Unit Interval Bigraphs 27

Now the H be an induced subgraph of B that is isomorphic to any bigraph of
the class B′. Let the vertices in H be denoted as in the definition of the bigraphs
in the class B′. Then the two pendant vertices v′ and v′′ are special vertices
which are adjacent to u. And v′, v′′, u ∈ V (H). Let u∗ ∈ V (B) \ V (H) be such
that u∗ is adjacent to v′ but not to v′′. By Lemmata 6, 7, 8 and 9 we may assume
that I(v′) = [a, a + 1] and I(v′′) = [a, a + 1), where a ∈ R. r(I(v)) ≤ a for any
v ∈ V (H) \ {v′, v′′}. Thus I(u∗) can be taken as any of intervals [a+ 1, a+ 2] or
[a + 1, a + 2) and this implies that u∗ is adjacent to v′ only. From Lemma 11,
it follows that H ′ ∪ B0 is forbidden induced subgraph of B. This completes
the proof. 	

Theorem 14. A bigraph is a mixed proper interval bigraph if and only if it is
a U-bigraph; that is; statements (b) and (c) of Conjecture 12 are equivalent.

Proof. The ‘only if’ part of the proof is similar to the proof of Theorem 8 in [6].
For the sake of completeness, we give here details.

Let B be a mixed proper interval bigraph and I be a mixed proper interval
representation of B. Let V1 denote the set of vertices u of B such that I(u) ∈
U++. By the definition of mixed proper interval bigraphs, the subgraph B[V1]
induced by the vertex set V1 is a proper interval bigraph. And the interval
representation of B[V1] is given by the corresponding intervals of I. Bogart and
West [1], gave a constructive method how a proper interval representation I1
produces to a unit interval representation I2 gradually converting the intervals
into unit intervals by means of successive contraction, dilations and translation.
In this procedure it may be noted that two intervals intersect at a single point in
I1 if and only if the corresponding intervals intersect at a single point in I2. And
two intervals intersect more than one point in I1 if and only if corresponding
intervals intersects more than one point in I2. Also two intervals do not intersect
in I1 if and only if they do not intersect in I2. This implies that reinserting the
mixed intervals corresponding to the vertices in V (B) \ V1 as mixed copies of
the corresponding closed intervals results in a U-intersection representation of
B, and this completes the ‘only if’ part.

For the ‘if’ part let B be a U-bigraph and I : V (B) → U-intersection repre-
sentation of B. Let I(u) be an open interval of I. As I(u) is forced to be open
there must exist v1 and v2, such that I(v1) and I(v2) are closed and r(v1) = l(u),
l(v2) = r(u). Now I(v1) and I(v2) must not be moved to the left and the right
respectively as then I(u) can be made to a closed interval, so there exist u′ such
that I(u′) is closed and l(u) = l(u′), r(u) = r(u′), u and v vertices of different
partite sets.

Next, let I(u) be an open-closed interval (i.e. l(u) is open and r(u) is closed).
By the similar reason there exists a closed interval I(v) such that l(u) = r(v).
Since B is connected we have I(u′) intersecting I(v). Now I(u′) ∈ U++ and
l(u′) = l(u) and r(u′) = r(u), otherwise I(v) can be moved to the left and may
makes l(u) closed. Thus for every I(z) �∈ U++, z ∈ V (B), we have closed interval
with the same end points as of I(z). This completes the proof. 	

28 A. K. Das and R. Sahu

5 Conclusion

In this paper we provide some forbidden subgraphs and four infinite families
of forbidden subgraphs of mixed unit interval bigraphs. We also put forward a
conjecture and hope that this will motivate to give a complete characterization
of the class of mixed unit interval bigraphs in terms of forbidden induced sub-
graphs. In an earlier paper [4] we give the forbidden subgraph characterization of
unit interval bigraphs of open and closed intervals, but the forbidden subgraph
characterization of interval bigraphs is an interesting open problem. In [5] Das
et al. have made considerable progress to solve it. The complexity of the only
known recognition of interval bigraphs given by Müller [14] is very high. The
problem of finding a recognition algorithm for interval graphs (or bigraphs) of
open and closed intervals is still open. However, in a very recent paper [17] Talon
and Kratochv́ıl have given a quadratic-time algorithm to recognize the class of
mixed unit interval graphs.

References

1. Bogart, K.P., West, D.B.: A short proof that “proper=unit”. Discret. Math. 201,
21–23 (1999)

2. Corneil, D.G.: A simple 3-sweep LBFS algorithm for recognition of unit interval
graphs. Discret. Appl. Math. 138, 371–379 (2004)

3. Corneil, D.G., Olariu, S., Stewart, L.: The ultimate interval graph recognition
algorithm? (Extended abstract). In: Proceedings of the 9th Annual ACMSIAM
Symposium on Discrete Algorithms (SODA), pp. 175–180 (1998)

4. Das, A.K., Sahu, R.: A characterization of unit interval bigraphs of open and closed
intervals. J. Graph Theory (under revision)

5. Das, A.K., Das, S., Sen, M.: Forbidden substructure for interval digraphs/bigraphs.
Discret. Math. 339, 1028–1051 (2016)

6. Dourado, M.C., Le, V.B., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Mixed unit
interval graphs. Discret. Math. 312, 3357–3363 (2012)

7. Fishburn, P.C.: Interval Orders Interval Graphs. A Study of Partially Ordered Sets.
Wiley, New York (1985)

8. Frankl, P., Maehara, H.: Open-interval graphs versus closed-interval graphs. Dis-
cret. Math. 63, 97–100 (1987)

9. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against
physical mapping of DNA. J. Comput. Biol. 2, 139–152 (1995)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, vol. 57. North-Holland Publishing Co., Amsterdam (2004)

11. Hell, P., Huang, J.: Interval bigraphs and Circular arc graphs. J. Graph Theory.
46, 313–327 (2004)

12. Joos, F.: A characterization of mixed unit interval graphs. J. Graph Theory. 79,
267–281 (2015)

13. Lin, I.J., West, D.B.: Interval digraphs that are indifference digraphs. In: Graph
Theory, Combinatorics and Algorithms (Proceedings of the Quadrennial Confer-
ence Kalamazo, MI, 1992), pp. 751–765. Wiley-Interscience (1995)

14. Müller, H.: Recognizing interval digraphs and interval bigraphs in polynomial time.
Discret. Appl. Math. 78, 189–205 (1997)

Mixed Unit Interval Bigraphs 29

15. Rautenbach, D., Szwarcfiter, J.L.: Unit interval graphs of open and closed intervals.
J. Graph Theory. 72, 418–429 (2013)

16. Sen, M., Sanyal, B.K.: Indifference digraphs: a generalization of indifference graphs
and semi orders. SIAM J. Disc. Math. 7, 157–165 (1994)

17. Talon, A., Kratochv́ıl, J.: Completion of the mixed unit interval graphs hierarchy.
J. Graph Theory, 1–15 (2017). https://doi.org/10.1002/jgt.22159

https://doi.org/10.1002/jgt.22159

Hamiltonian Path in K1,t-free Split
Graphs- A Dichotomy

Pazhaniappan Renjith(B) and Narasimhan Sadagopan

Indian Institute of Information Technology, Design and Manufacturing,
Kancheepuram, India

{coe14d002,sadagopan}@iiitdm.ac.in

Abstract. In this paper, we investigate Hamiltonian path problem in
the context of split graphs and produce a dichotomy result on the com-
plexity of the problem. That is, unless P=NP, Hamiltonian path problem
has no polynomial-time solution inK1,5-free split graphs and polynomial-
time solvable in K1,4-free split graphs.

1 Introduction

Hamiltonian path problem is a well studied problem of finding a spanning path
in a connected graph. This problem has been studied in various perspectives. In
the initial stages of study, researchers explored the problem on structural per-
spective. That is, necessary conditions and sufficient conditions for the existence
of Hamiltonian paths in connected graphs. Further, special graphs with bounded
graph parameters such as degree, toughness, connectivity, independence number,
etc., have been explored for obtaining Hamiltonian paths [1]. Another interesting
view on the Hamiltonian problems have been obtained on graphs with forbidden
sub graph structures. For example, Hamiltonian paths in claw-free graphs and
its sub classes have been explored [2]. Variants of Hamiltonian problems such
as Hamiltonian path starting from a specific vertex, Hamiltonian path between
a fixed pair of vertices, Hamiltonian connectedness, pancyclicity, etc., have also
been explored in the literature.

On algorithmic perspective, the problem is NP-complete in general graphs,
and in particular, special graph classes such as chordal [3], bipartite, chordal
bipartite [4], planar [5], grid graphs [6], etc. On the other hand, polynomial-time
results for the problem have been obtained for interval graphs [7], circular arc
graphs [8], etc. It is important to note that although polynomial-time results
are known for special graph classes, we still have a “thick complexity line” sep-
arating NP-complete instances and polynomial-time solvable instances. In this
paper we revisit the Hamiltonian path problem in chordal graphs and present a
tight hardness result. We attempt a micro level structural study for Hamiltonian
path problem in split graphs and establish that Hamiltonian path problem in
K1,5-free split graph is NP-complete, which is a popular sub class of chordal
graphs. Further, to make the borderline thin between NP-complete instances

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 30–44, 2018.
https://doi.org/10.1007/978-3-319-74180-2_3

Hamiltonian Path in K1,t-free Split Graphs- A Dichotomy 31

and polynomial-time instances, we do a deeper investigation of the structure of
K1,4-free split graphs, which is a major contribution of this paper.

A split graph G is a C4, C5, 2K2-free graph and the vertex set of G can be
partitioned into a clique K and an independent set I. Such a split graph is
denoted as G(K ∪ I, E). For a split graph G(K ∪ I, E), we assume K to be
a maximum clique. For S ⊂ V (G), N(S) = {u : u /∈ S, v ∈ S, uv ∈ E(G)}.
If S = {v}, N(S) is also denoted as N(v). For a split graph G(K ∪ I, E) and
S ⊂ K we define N I(S) = N(S) ∩ I. Accordingly, if S = {v}, N I(v) = N I(S).
dI(v) = |N I(v)| and ΔI = max{dI(v) : v ∈ K}. For S ⊂ V (G), G−S represents
the subgraph of G induced on the vertex set V (G) \ S. c(G) represents the
number of components in graph G. For a cycle or a path C = (v1, . . . , vn), by−→
C , we mean the visit of vertices in order (v1, . . . , vn). Similarly, by

←−
C , we mean

the visit of vertices in order (vn, . . . , v1). u
−→
C u represents the ordered vertices

from u to v in C. For a path P = (v1, . . . , vn≥1) of length n, for simplicity, we
use P to denote the underlying set V (P) and v1, vn are end vertices of P .

2 Polynomial-Time Results

We organize our results on Hamiltonian path as Hamiltonian path in K1,3-free
split graphs and Hamiltonian path in K1,4-free split graphs. We present our
results on K1,4-free split graphs in a systematic way. That is, we shall present
Hamiltonian path in K1,4-free split graph with ΔI = 1, ΔI = 2 followed by
ΔI = 3. We observe the following corollary to present our results.

Corollary 1 (of Claim A in [9]). Let G be a connected K1,4-free split graph
with v ∈ K, dI(v) = 3. For every vertex w ∈ K \ {v}, N I(v) ∩ N I(w) �= ∅.

2.1 Results on K1,3-free Split Graphs

Theorem 1. Let G be a connected K1,3-free split graph. G contains a Hamil-
tonian path if and only if G has at most 2 vertices u, v ∈ I such that d(u) = 1,
and d(v) = 1.

Proof. If there exists at least three vertices {u, v, w} ⊆ I such that d(u) = d(v) =
d(w) = 1, then clearly G has no Hamiltonian path. For the sufficiency, we see
the following cases.
Case 1: For every u ∈ I, if d(u) ≥ 2, then G is 2-connected, and by [9], G has a
Hamiltonian cycle. Thus G has a Hamiltonian path.
Case 2: If there exists only one vertex u ∈ I with d(u) = 1, then observe that
G − u is 2-connected. By [9], there is a Hamiltonian cycle in G − u, which can
be easily extended to a Hamiltonian path in G.
Case 3: There exists two vertices u, v ∈ I with d(u) = d(v) = 1. If I = {u, v}, it
is easy to see that there is a (u, v)-Hamiltonian path in G. If I = {u, v, w},
then we claim that N(w) ∩ N(u) = ∅ and N(w) ∩ N(v) = ∅. Suppose
N(w) ∩ N(u) �= ∅, then let N I(u′) = {u,w}, u′ ∈ K. Clearly, all the vertices

32 P. Renjith and N. Sadagopan

x ∈ K \ {u′} are adjacent to w, otherwise {u′, u, w, x} induces a K1,3. It follows
that K ∪ {w} is a clique of larger size, contradicting the maximality of K. Sim-
ilar arguments hold with respect to the vertex v, and hence N(w) ∩ N(v) = ∅.
Thus we conclude that ΔI = 1. From [9], if |I| > 3, since G is connected,
ΔI = 1. Now we produce a Hamiltonian path in G with |I| ≥ 3 as follows. Let
I = {u, v, w1, . . . , wk}, k ≥ 1 such that for all wi, 1 ≤ i ≤ k, d(wi) > 1.
Let xi, yi, 1 ≤ i ≤ k be any two elements in N(wi). Since ΔI = 1, note
that for all s, t ∈ I, N(s) ∩ N(t) = ∅. Let Pi = (xi, wi, yi), 1 ≤ i ≤ k,
v′ = N(v), u′ = N(u) and {z1, . . . , zl} = K \ {x1, . . . , xk, y1, . . . , yk, u

′, v′}, then
P = (u, u′, x1, w1, y1, . . . , xi, wi, yi, . . . , xk, wk, yk, z1, z2, . . . , zl, v

′, v) is a Hamil-
tonian path in G. P can also be written as (u, u′,

−→
P1, . . . ,

−→
Pk, z1, z2, . . . , zl, v

′, v).
This completes a proof of Theorem 1. �

2.2 Results on K1,4-free Split Graphs

Theorem 2. Let G(K ∪ I, E) be a connected K1,4-free split graph with ΔI = 1.
G contains a Hamiltonian path if and only if there exists at most 2 vertices
u, v ∈ I such that d(u) = 1, and d(v) = 1.

Proof. The proof is similar to the proof of Case 3 in Theorem1.

We shall define some special paths and cycles in a K1,4-free split graph G(K ∪
I, E). We define the restricted bipartite subgraph H of G as follows. Va = {u ∈
I : d(u) ≤ 2}, Vb = N(Va), V (H) = Va ∪ Vb and E(H) = {uv : u ∈ Va, v ∈ Vb}.
An induced cycle C in H is referred to as short cycle in H (as well as G) if
V (C) ⊂ V (G). An I-I path is a maximal path in H that starts and ends in I.
Similarly K-K path and I-K path are maximal paths in H with end vertices in
K and end vertices in I, K, respectively. A maximal I-I path P in H is referred
to as Short I-I path if V (P) ⊂ V (G).

Theorem 3. Let G(K ∪ I, E) be a connected K1,4-free split graph with ΔI = 2
and H be the restricted bipartite subgraph of G. G contains a Hamiltonian path
if and only if the following holds true.

1. H has no short I-I path.
2. The number of I-K paths in H is at most 2.

Proof. If there exists a short I-I path P in H, then note that c(G−S) > |S|+1
where S = P ∩ K, and there is no Hamiltonian path in G as per Chvatal’s
necessary condition [10]. It is easy to see that if the number of I-K paths in
H is more than 2, then there is no spanning path in G that includes all the
vertices in all such I-K paths. For sufficiency, we see the following. Since H is
the restricted bipartite subgraph of G, H is a collection of maximal paths and
short cycles. Moreover, any short cycle in H is also a maximal I-K path in H.
We initialize a set S with the set of maximal paths in H. It follows that S has
at most two I-K paths. Let I ′ = I \ ⋃

∀P∈S

V (P) and K ′ = K \ ⋃

∀P∈S

V (P). We

now outline a procedure to update S in two stages, using which we construct a

Hamiltonian Path in K1,t-free Split Graphs- A Dichotomy 33

Hamiltonian path in G. In the first stage, for every vertex u ∈ K ′, which is by
definition P1, include P1 in S. Since ΔI = 2, observe that any vertex v ∈ I ′ is not
adjacent to any internal vertex of paths in S. Thus such a vertex v is adjacent
to the end vertices of paths in S. In particular, v may be adjacent to some of
the newly added P1 in S during the first stage. Further, d(v) ≥ 3 implies that
v is adjacent to the end vertices of at least two different paths Qi, Qj ∈ S. As
a part of the second stage, we update S as follows. For every vertex v ∈ I ′, we
find paths Qi, Qj such that one of Qi, Qj is either a K-K path or P1. The paths
Qi, Qj are replaced with the path (

−→
Qi, v,

−→
Qj) in S. Let Sf = {Q1, . . . , Qk} be

the resultant set of paths after completing the second stage. If there exists two
I-K paths, then let it be Qi, Qj , i < j and if there exists only one I-K path,
then let it be Qi. Then (

−→
Qi,

−→
Q1, . . . ,

−→
Q i−1,

−→
Q i+1, . . . ,

−→
Q j−1,

−→
Q j+1, . . . ,

−→
Qk,

−→
Qj) is

a Hamiltonian path in G. This completes the sufficiency part and a proof of the
theorem. �
Definition: A connected K1,4-free split graph G satisfies Property A if |K| ≥
|I| − 1 ≥ 8, G has no short I-I path, and the sum of the number of I-K paths
and the number of short cycles is at most 2. In a K1,4-free split graph G with
ΔI

G = 3, we define V3 = {v : v ∈ K, dI(v) = 3}.

Consider a K1,4-free split graph G with ΔI
G = 3. We shall now show that the

number of short cycles in G is at most 1 and the length of short cycle is at most
8. Subsequently, if G satisfies Property A, then we produce a Hamiltonian path
in G. Towards this attempt, we bring in a transformation which will transform
an instance of ΔI

G = 3 into ΔI
G′ = 2 instance. Our results are deep and inves-

tigates the structure of the restricted bipartite subgraph H ′ of G′ to obtain a
Hamiltonian path in G.

Lemma 1. Let G be a connected K1,4-free split graph with ΔI = 3. Then, the
number of short cycles in G is at most one. Further, if G has a short cycle Cn,
then n ≤ 8.

Proof. For a contradiction assume that there are at least two short cycles in G.
Let C,D be any two short cycles in G. Since ΔI

G = 3, there exists v ∈ V3. Clearly,
there exist a vertex v1 ∈ N I(v) such that v1 is adjacent to all the vertices in
C∩K and D∩K. It follows that all the vertices in K \(C∪D) are adjacent to v1.
Note that K ∪{v1} is a clique of larger size, which contradicts the maximality of
clique K. For the second part, assume for a contradiction that there exists a short
cycle Cn≥10. Consider the cycle C such that V (C) = {w1, . . . , wj , x1, . . . , xj},

j ≥ 5, {w1, . . . , wj} ⊂ K, {x1, . . . , xj} ⊂ I, E(C) =
j⋃

i=1

{wixi, xiw(i+1)mod j}.

Since ΔI(G) = 3, there exists v ∈ V3. To complete our proof, we identify a vertex
v1 ∈ N I(v) as follows. If v /∈ C, then from Corollary 1, there exists a vertex
v1 ∈ N I(v) such that v1w1 ∈ E(G). If v ∈ C, then without loss of generality,
we assume w1 = v. There exists v1 ∈ N I(v) such that v1 /∈ C. We claim that
the vertices {w3, . . . , wj−1} are adjacent to v1, otherwise N I(w1) ∪ {w1, wi},
3 ≤ i ≤ j−1 induces a K1,4. Further w2v1 ∈ E(G), otherwise N I(w4)∪{w4, w2},

34 P. Renjith and N. Sadagopan

induces a K1,4. Also wjv1 ∈ E(G), otherwise N I(w3)∪{w3, wj}, induces a K1,4.
From Corollary 1, it follows that all the vertices in K \ C are adjacent to v1.
Suppose there exists w ∈ K \ C such that wv1 /∈ E(G), then for any u ∈ C ∩ K,
N I(u) ∪ {u,w} induces a K1,4, a contradiction. Finally, K ∪ {v1} is a larger
clique, contradicting to the maximality of K. Therefore, no such Cn≥10 exists.
Note that this is tight. This completes a proof of the lemma. �
Definition: Let G be a connected K1,4-free graph with ΔI

G = 2 satisfying
property A and H be the restricted bipartite subgraph of G. By the constructive
proof of Theorem 3, there exists a collection Sf of vertex disjoint paths containing
all the vertices of G. Such a collection is termed as a path collection of H.

Let G be a K1,4-free split graph with ΔI = 3, satisfying Property A. For a vertex
v ∈ V3 let G′ = G − N I(v). Let H, H ′ be the restricted bipartite subgraphs of
G, G′, respectively and Sf be a path collection of H ′. Clearly, H ′ is a subgraph
of H. Let Pk, k ≥ 1 be the set containing all the maximal paths of length k
in Sf . Thus, Sf = P1 ∪ P2, . . . ,∪Pk, where Pj is the set of maximal paths of
size j where for every Q ∈ Pj , there does not exist Q′ ∈ Sf such that E(Q) ⊂
E(Q′). Note that Sf has I-K paths (even length paths) and K-K paths (odd
length paths). A K-K path Pa ∈ Sf is defined on the vertex set V (Pa) =
{w1, . . . , wj , x1, . . . , xj−1}, E(Pa) = {wixi : 1 ≤ i ≤ j − 1} ∪ {xk−1wk : 2 ≤
k ≤ j} such that {w1, . . . , wj} ⊆ K, {x1, . . . , xj−1} ⊆ I. We denote such a path
as Pa = P (w1, . . . , wj ;x1, . . . , xj−1). Similarly, Pb = P (w1, . . . , wj ;x1, . . . , xj)
represents an I-K path with V (Pb) = {w1, . . . , wj , x1, . . . , xj}, {w1, . . . , wj} ⊆
K, {x1, . . . , xj} ⊆ I and E(Pb) = {wixi : 1 ≤ i ≤ j} ∪ {xk−1wk : 2 ≤ k ≤ j}.

Lemma 2. Let G be a connected K1,4-free split graph with ΔI = 3, satisfying
Property A. If G has a short cycle C, then there exists a Hamiltonian path in G.

Proof. Let v ∈ V3, N I(v) = {v1, v2, v3}. Recall that H ′ is the restricted bipartite
subgraph of G − N I(v) and Sf is a path collection of H ′. From Lemma 1, there
exists exactly one short cycle C in G. Let length of C be k and P ∈ Pk is such
that V (P) = V (C). We see the following cases depending on the presence of v
in C.
Case 1: v /∈ C. Consider a vertex w ∈ C∩K. From Corollary 1, N I(v)∩N I(w) �=
∅. Thus there exists v1 ∈ N I(v) such that v1w ∈ E(G). Now we claim that there
exists x ∈ C ∩ K such that v1x /∈ E(G). Suppose for a contradiction assume
for every x ∈ C ∩ K, v1x ∈ E(G). It follows from Corollary 1 that all the
vertices in K \C are adjacent to v1 and K ∪{v1} is a larger clique, contradicting
the maximality of K. Thus v1x /∈ E(G). Further, from Corollary 1, either v2x ∈
E(G) or v3x ∈ E(G). Without loss of generality, let v2x ∈ E(G). Using the above
vertices w, x, we claim that in the collection Sf of H ′, for n �= k, Pn≥4 = ∅.
Note that |Pk| = 1. Suppose there exists a path Pa �= P , Pa ∈ Pn≥4, then
there exists a vertex u ∈ Pa ∩ K such that in Pa, dI(u) = 2. From Corollary 1,
N I(u)∩N I(v) �= ∅. If uv1 ∈ E(G), then N I(x)∪{x, u} induces a K1,4, otherwise
N I(w){w, u} induces a K1,4. If d(v3) = 1, then since G satisfies Property A, there
does not exist z ∈ I \ (C ∪ N I(v)) such that dG(z) = 1. It follows that P2 = ∅.

Hamiltonian Path in K1,t-free Split Graphs- A Dichotomy 35

This is true because G has already one short cycle and apart from that it can have
at most one I-K path as per Property A. Since d(v3) = 1, no such z exists. Let
P1 = {{v}, {w1}, . . . , {wk}} and P3 = {(wk+1, x1, wk+2), (wk+3, x2, wk+4), . . .}.
We construct a path Q = (w1, w2, . . . , wk, wk+1, x1, wk+2, wk+3, x2, wk+4, . . .).
As per the premise, |K| ≥ |I| − 1 ≥ 8. Thus |I| ≥ 9, and P3 �= ∅. It follows that
Q is non-empty, further |Q| ≥ 5. From Corollary 1, all the vertices in Q ∩ K are
adjacent to both v1 and v2. Suppose there exists s ∈ Q such that v1s /∈ E(G) or
v2s /∈ E(G), then either N I(w)∪{w, s} or N I(x)∪{x, s} induces a K1,4. Thus for
every s ∈ Q∩K, v1s ∈ E(G) and v2s ∈ E(G). Observe that (v3, v, v2,

−→
Q, v1, w

−→
C)

is a Hamiltonian path in G. If d(v3) > 1, then we see the following. If P2 �= ∅,
since G satisfies Property A, |P2| = 1 i.e., P2 = {Pb}, Pb = (y, z), y ∈ K. Further,
there exists w′ ∈ K such that v3w

′ ∈ E(G). Now we claim that w′ /∈ C. Suppose
not, then there exists w′′ ∈ C ∩ K such that N I(w′′) ∪ {w′′, w′} induces a K1,4.
Similar to the argument with respect to the vertex s, for the vertex w′, we argue
that v1w

′, v2w′ ∈ E(G), and {w′} ∈ P1. Let w′ = wi, i ≤ k. Then we construct
a path Q′ = (w1, w2, . . . , wi−1, wi+1, . . . , wk, wk+1, x1, wk+2, wk+3, x2, wk+4, . . .).
Now we obtain Pc = (z, y, w′, v3, v, v2,

−→
Q′, v1, w

−→
C) as a Hamiltonian path in G.

If P2 = ∅, then a (w′−→Pc) is a Hamiltonian path in G.
Case 2: v ∈ C. Let v2, v3 ∈ N I(v) ∩ C. Then note that there exists v1 ∈ N I(v)
such that v1 /∈ C. Clearly, for all w ∈ K \ C, wv1 ∈ E(G). Since K is a maximal
clique, it follows that there exists x ∈ C∩K such that v1x /∈ E(G). We now claim
that Pn≥4 = ∅, n �= k. Suppose there exists a path Pa �= P , Pa ∈ Pn≥4, then
there exists a vertex u ∈ Pa∩K such that in Pa, dI(u) = 2. We already observed
that v1u ∈ E(G). Further, N I(u) ∪ {u, x} induces a K1,4, a contradiction. Thus
such a path Pa does not exist. If P2 �= ∅, then let (y, z) ∈ P2, y ∈ K. Then
(
−→
C v, v1,

−→
Q, y, z) is a Hamiltonian path in G. If P2 = ∅, then (

−→
C v, v1,

−→
Q) is a

Hamiltonian path in G. This completes the case analysis and a proof of the
lemma. �
We work on a K1,4-free split graph G with ΔI = 3, satisfying Property A, with
G′, H ′ and Sf as defined previously. If G has a short cycle, then by Lemma 2,
G has a Hamiltonian path. If G has no short cycles, then note that there exists
at most 2 I-K paths in Sf . For the following claims, we shall consider such a G
with no short cycle. The structural study of paths in Sf is deep, which is the
highlight of this paper. Now we shall present some claims to show the structural
observations of paths in Sf .

Claim 1. If there exists a path Pa ∈ Pk, k ≥ 10 such that Pa = P (w1, . . . , wj′ ;
x1, . . . , xj), j + 1 ≥ j′ ≥ j ≥ 5, then there exists v1 ∈ N I(v) such that v1wi ∈
E(G), 2 ≤ i ≤ j.

Proof. First we show that for any two vertices wi, wl ∈ K, 2 ≤ i, l ≤ j, |i−l| > 1;
v1wi, v1wl ∈ E(G). By Corollary 1, clearly there exists v1 ∈ N(v) such that
v1wi ∈ E(G). If v1wl /∈ E(G), then by Corollary 1, v2wl ∈ E(G) or v3wl ∈ E(G)
is true. It follows that N I(wi)∪{wi, wl} induces a K1,4. Since |{w2, . . . , wj}| ≥ 4,
for every 2 ≤ i ≤ j, v1wi ∈ E(G). �

36 P. Renjith and N. Sadagopan

Claim 2. Pi≥12 = ∅.
Proof. Assume for a contradiction there exists a path Pa ∈ Pi, i ≥ 12. Let Pa =
P (w1, . . . , wj′ ;x1, . . . , xj), j + 1 ≥ j′ ≥ j ≥ 6. From Claim 1 there exists v1 ∈
N I

G(v) such that v1wk ∈ E(G), 2 ≤ k ≤ j. We now claim that v1w1 ∈ E(G).
Suppose not, then from Corollary 1, v2w1 ∈ E(G) or v3w1 ∈ E(G). Further,
w1x3 ∈ E(G), otherwise N I(w3)∪{w3, w1} or N I(w4)∪{w4, w1} has an induced
K1,4. Similarly, w1x5 ∈ E(G). It follows that N I(w1)∪{w1} has an induced K1,4,
a contradiction. Thus v1w1 ∈ E(G). If Pa is an odd path, then similar arguments
with respect to w1 holds good for the vertex wj′ , and hence v1wj′ ∈ E(G). Since
the clique is maximum in G, there exists s ∈ K such that v1s /∈ E(G). Further,
there exists at least three vertices in x1, . . . , xj adjacent to s, otherwise, for
some 2 ≤ r ≤ j, N I

G(wr) ∪ {wr, s} induces a K1,4. Finally, from Corollary 1,
either v2s ∈ E(G) or v3s ∈ E(G). It follows that N I

G(s) ∪ {s} induces a K1,4,
a contradiction. Thus such a path Pa does not exist. This completes a proof of
the claim. �
Claim 3. Let Pa = P (w1, . . . , wi′ ;x1, . . . , xi), i + 1 ≥ i′ ≥ i ≥ 2, and Pb =
P (s1, . . . , sj′ ; t1, . . . , tj), j + 1 ≥ j′ ≥ j ≥ 2 be arbitrary paths in Sf . Then
there exists v1 ∈ N I(v) such that ∀ 2 ≤ l ≤ i, v1wl ∈ E(G), and ∀ 2 ≤ m ≤ j,
v1sm ∈ E(G).

Proof. From Corollary 1, there exists v1 ∈ N I(v) such that v1w2 ∈ E(G). If
v1sm /∈ E(G), 2 ≤ m ≤ j then by Corollary 1, v2sm ∈ E(G) or v3sm ∈ E(G). It
follows that N I(w2) ∪ {w2, sm} induces a K1,4. Thus v1sm ∈ E(G). If path Pa

has size more than 5, then for every 3 ≤ l ≤ i, v1wl ∈ E(G). Suppose not, then
by Corollary 1, v2wl ∈ E(G) or v3wl ∈ E(G). It follows that N I(s2) ∪ {s2, wl}
induces a K1,4. Therefore, we conclude that for all possible l,m; v1wl, v1sm ∈
E(G), and the claim follows. �
Corollary 2 (of Claim 3). If Pa = P (w1, . . . , wl′ ;x1, . . . , xl), l + 1 ≥ l′ ≥ l ≥ 2,
Pb = P (s1, . . . , sm′ ; t1, . . . , tm), m + 1 ≥ m′ ≥ m ≥ 2 and Pc = P (q1, . . . , qn′ ;
r1, . . . , rn), n + 1 ≥ n′ ≥ n ≥ 2 are arbitrary paths in Sf , then there exists
v1 ∈ N I(v) such that ∀ 2 ≤ i ≤ l, v1wi ∈ E(G), ∀ 2 ≤ j ≤ m, v1sj ∈ E(G) and
∀ 2 ≤ k ≤ n, v1qk ∈ E(G).

Claim 4. If there exists Pa ∈ Pk≥8, then there does not exist Pb such that
|Pb| ≥ 4.

Proof. Assume for a contradiction that there exists such a path Pb ∈ Pj , j ≥
4. Let Pa = (w1, . . . , wl′ ;x1, . . . , xl), l + 1 ≥ l′ ≥ l ≥ 4 and Pb =
(s1, . . . , sr′ ; t1, . . . , tr), r +1 ≥ r′ ≥ r ≥ 2. From Claim 3, v1wi ∈ E(G), 2 ≤ i ≤ l
and v1si ∈ E(G), 2 ≤ i ≤ r. Now we claim v1w1 ∈ E(G). Otherwise, by
Corollary 1, v2w1 or v3w1 is in E(G). Observe that w1x3 ∈ E(G), other-
wise N I(w3) ∪ {w3, w1} or N I(w4) ∪ {w4, w1} induces a K1,4. Further, either
w1t1 ∈ E(G) or w1t2 ∈ E(G), otherwise N I(s2) ∪ {s2, w1} induces a K1,4. Now
N I(w1) ∪ {w1} induces a K1,4, a contradiction and thus v1w1 ∈ E(G). If Pa is
an odd path, then using similar argument, we establish v1wl′ ∈ E(G). Now we

Hamiltonian Path in K1,t-free Split Graphs- A Dichotomy 37

claim that v1s1 ∈ E(G). Otherwise, by Corollary 1, s1v2 ∈ E(G) or s1v3 ∈ E(G).
Further, s1x1 ∈ E(G) or s1x2 ∈ E(G), otherwise N I(w2) ∪ {w2, s1} induces a
K1,4. Similarly, s1x3 ∈ E(G) or s1x4 ∈ E(G). Now N I(s1) ∪ {s1} induces a
K1,4, a contradiction. Therefore, v1s1 ∈ E(G). If Pb is an odd path, then using
similar argument, we establish v1sr′ ∈ E(G). Since the clique is maximal, there
exists a vertex w′ ∈ K such that v1w

′ /∈ E(G). By Corollary 1, w′v2 ∈ E(G)
or w′v3 ∈ E(G); without loss of generality, let w′v2 ∈ E(G). Also due to the
similar reasoning for s1, w′ is adjacent to one among x1, x2, and w′ is adjacent
to one among x3, x4. Further, either t1w

′ ∈ E(G) or t2w
′ ∈ E(G), otherwise

N I(s2) ∪ {s2, w′} induces a K1,4. Finally, N I(w′) ∪ {w′} induces a K1,4, a con-
tradiction. Therefore, Pb does not exist. This completes a proof of Claim 4. �
Claim 5. If there exists Pa ∈ P11, then G has a Hamiltonian path.

Proof. Let Pa = (w1, . . . , w6;x1, . . . , x5). From Claim 1, there exists a vertex
say v1 ∈ N I

G(v), such that v1wi ∈ E(G), 2 ≤ i ≤ 5. From the proof of the
previous claim, v1w1, v1w6 ∈ E(G). Since the clique is maximal, there exists
w′ ∈ K, such that w′v1 /∈ E(G). By Corollary 1, w′v2 ∈ E(G) or w′v3 ∈
E(G). Without loss of generality, let w′v2 ∈ E(G). We claim w′x2 ∈ E(G) and
w′x4 ∈ E(G), otherwise for some 2 ≤ i ≤ 5, N I(wi) ∪ {wi, w

′} induces a K1,4.
One among v2, x2, x4 is adjacent to w1, otherwise N I(w′) ∪ {w1, w

′} induces a
K1,4. Similar argument holds good with respect to the vertex w6. From Claim 4,
Pj = ∅, j ≥ 4. If P2 �= ∅, since G satisfies Property A, note that at most two
vertices of I have degree 1. If d(v3) = 1, then |P2| ≤ 1. Let Pb ∈ P2. Let

−→
Q

represents an ordering of paths in P1 ∪ P3, excluding the paths {v}, {w′}. P =
(v3, v, v2, w

′, x2
−→
Paw6, v1, w1

−→
Paw2,

−→
Q,

−→
Pb) or (

−→
P w2,

−→
Q) is a Hamiltonian path in

G. If d(v3) > 1, then |P2| ≤ 2 and let Pc ∈ P2, Pc �= Pb. Note that there exists
w′′ ∈ K such that v3w

′′ ∈ E(G) and w′′ is adjacent to at least two vertices in
{x1, . . . , x5}, otherwise for some 2 ≤ i ≤ 5, N I(wi) ∪ {wi, w

′′} induces a K1,4.
Thus {w′′} ∈ P1. Let

−→
Q′ represents an ordering of paths in P1∪P3, excluding the

paths {v}, {w′}, {w′′}. P ′ = (
←−
Pb, w

′′, v3, v, v2, w
′, x2

−→
Paw6, v1, w1

−→
Paw2,

−→
Q′,

−→
Pc) is

a Hamiltonian path in G. If |P2| < 2, then a observe that (
−→
P ′w2,

−→
Q′) or (w′′−→P ′)

or (w′′−→P ′w2,
−→
Q′) is a spanning path of G. This completes a proof of the claim. �

Claim 6. If there exists Pa ∈ P10, then G has a Hamiltonian path.

Proof. Due to page constraints, proof of this claim is included in [11]. �
From here onwards, for producing Hamiltonian paths in the proof of claims, we
obtain a special path, termed as desired path, which is a path containing the
vertices {v1, v2, v3} and all (at most two) the I-K paths in Sf along with some
K-K paths. Let

−→
Q be an ordering of the paths in Sf which are not included in

the desired path. Depending on the adjacency of the first vertex of
−→
Q to N I(v),

(
−→
Pa, vi,

−→
Q,

−→
Pb) is a Hamiltonian path in G, where (

−→
Pa, vi,

−→
Pb), i ∈ {1, 2, 3} is the

desired path, with |−→Pa| ≥ 0, |−→Pb| ≥ 0.

38 P. Renjith and N. Sadagopan

Claim 7. If there exists Pa ∈ P9, then G has a Hamiltonian path.

Proof. Let Pa = (w1, . . . , w5;x1, . . . , x4). There exists a vertex in v1 ∈ N I(v)
such that v1w2 ∈ E(G). Note that v1w4 ∈ E(G), otherwise N I(w2) ∪ {w2, w4}
induces a K1,4. Recall from Claim 4, Pj≥4 = ∅. Now we claim that for an
arbitrary path P ∈ P2 ∪ P3 and s ∈ K be an end vertex of P , then v1s ∈ E(G).
Suppose not, then v2s ∈ E(G) or v3s ∈ E(G). Further, s is adjacent to either
x1 or x2, otherwise N I(w2) ∪ {w2, s} induces a K1,4. Similarly, s is adjacent to
one of x3, x4, otherwise N I(w4)∪{w4, s} induces a K1,4. Therefore, N I(s)∪{s}
induces a K1,4, a contradiction. Thus v1s ∈ E(G). Note that the above argument
is true for any end vertex s ∈ K of every such paths in P2 ∪ P3. Since the clique
is maximal, there exists a non-adjacency for v1 in K, and based on the non-
adjacency, we see the following cases as shown in Table 1.

Due to page constraints, for the following 3 claims, proofs are included in [11].

Claim 8. If there exists Pa ∈ P8, then G has a Hamiltonian path.

Table 1. Case analysis for the proof of Claim 7

Case Arguments

Case 1: v1w1 /∈ E(G) or
v1w5 /∈ E(G)

Without loss of generality, we shall assume
v1w1 /∈ E(G). Note that one of v2, v3 is adjacent to
w1, without loss of generality, let v2w1 ∈ E(G).
Further, note that w1 is adjacent to one of x3, x4,
otherwise, NI(w4) ∪ {w4, w1} induces a K1,4

Case 1.1: d(v3) = 1 From Property A, at most 2 vertices of I have degree
1. Thus, |P2| ≤ 1. Let Pb ∈ P2. Further, from
Property A, |I| ≥ 9. Therefore, there exists Pc ∈ P3.

Let
−→
Q be an ordering of the paths in P1 ∪ P3

excluding paths {v} and Pc. Then

(v3, v, v2, w1
−→
Paw5,

−→
Q,

−→
Pc, v1,

−→
Pb) is a Hamiltonian

path in G

Case 1.2: d(v3) > 1 Recall dI(w1) = 3. We claim v3 is not adjacent to
s ∈ K such that s is an end vertex of any path in
P2 ∪ P3. Recall that v1s ∈ E(G). Suppose
v3s ∈ E(G), then NI(w1) ∪ {w1, s} induces a K1,4.
Thus v3s /∈ E(G). It follows that v3 is adjacent to w3

or w5 or a vertex in P1. Observe that |P2| ≤ 2. To
complete the proof, we shall assume that |P2| = 2.
Proof of other two cases are similar. Let Pb, Pd ∈ P2,
y ∈ Pb ∩ K

Case 1.2.1 v3w5 ∈ E(G) or v3w3 ∈ E(G) or v3z ∈ E(G), z /∈ Pa.
Proof is included in [11]

Case 2: v1w3 /∈ E(G) or v1t /∈ E(G), t /∈ Pa. Proof is included
in [11]

Hamiltonian Path in K1,t-free Split Graphs- A Dichotomy 39

Claim 9. If there exists Pa, Pb ∈ P7∪P6, then there does not exist Pc ∈ Sf such
that Pc �= Pa, Pc �= Pb and |Pc| ≥ 4. Further, |P7| + |P6| ≤ 2.

Claim 10. If there exists Pa, Pb ∈ P7 ∪ P6, then G has a Hamiltonian path.

Claim 11. If there |P7| + |P6| = 1, then |P5| + |P4| ≤ 1.

Proof. Let Pa = P (w1, . . . , wl;x1, . . . , x3), l ∈ {3, 4}, Pb = P (s1, . . . , sm;
t1, . . . , t2), m ∈ {2, 3}. Assume for a contradiction that there exists a path Pc =
P (q1, . . . , qn; r1, . . . , r2), n ∈ {2, 3}. From Corollary 2, there exists v1 ∈ N I(v)
such that v1w2, v1w3, v1s2, v1q2 ∈ E(G). We claim that v1w1, v1s1, v1q1 ∈ E(G).
Suppose v1w1 /∈ E(G), then w1 is adjacent to either v2 or v3, and one each from
Pb∩I and Pc∩I. Therefore, N I(w1)∪{w1} induces a K1,4, a contradiction. Sim-
ilar argument holds good for the other edges. If Pa, Pb, Pc are odd paths, then
similar to the previous argument, the end vertices wl, sm, qn are adjacent to v1.
Since the clique is maximal, there exists w′ ∈ K such that v1w

′ /∈ E(G). From
the previous argument, w′ /∈ {w1, . . . , wl, s1, . . . , sm, q1, . . . , qn}. By Corollary 1,
either v2w

′ ∈ E(G) or v3w
′ ∈ E(G). Further, we argue that w′x2 ∈ E(G), other-

wise N I(w2) ∪ {w2, w
′} or N I(w3) ∪ {w3, w

′} induces a K1,4. Observe that w′ is
adjacent to one of {t1, t2}, otherwise N I(s2)∪{s2, w′} induces a K1,4. Similarly,
w′ is adjacent to one of {r1, r2}. Now, N I(w′) ∪ {w′} induces a K1,4, which is a
final contradiction to the existence of such a path Pc. This completes a proof of
the claim. �
Claim 12. If there exists Pa ∈ P7 ∪P6, Pb ∈ P5 ∪P4, then G has a Hamiltonian
path.

Proof. Let Pa = P (w1, . . . , wl;x1, . . . , x3), l ∈ {3, 4}, Pb = P (s1, . . . , sm;
t1, . . . , t2), m ∈ {2, 3}. From Corollary 2, there exists v1 ∈ N I(v) such that
v1w2, v1w3, v1s2 ∈ E(G). We argue that v1w1 ∈ E(G). Suppose not, then from
Corollary 1, w1 is adjacent to either v2 or v3. Further, w1 is adjacent to one
of {x2, x3}, otherwise N I(w3) ∪ {w3, w1} induces a K1,4. w1 is also adjacent
to one of {t1, t2}, otherwise N I(s2) ∪ {s2, w1} induces a K1,4. It follows that
N I(w1) ∪ {w1} induces a K1,4, a contradiction. Thus v1w1 ∈ E(G). If Pa is an
odd path, then similar arguments holds good with respect to the other end ver-
tex of Pa and v1wl ∈ E(G). From Claim 11, there are no paths of size 4 or more
other than Pa, Pb in Sf . Now we claim that for an arbitrary path P ∈ P2∪P3 and
s ∈ K be an end vertex of P , then v1s ∈ E(G). Suppose not, then v2s ∈ E(G)
or v3s ∈ E(G). Further, s is adjacent to x2, otherwise N I(w2) ∪ {w2, s} or
N I(w3) ∪ {w3, s} induces a K1,4. Similarly, s is adjacent to one of t1, t2, other-
wise N I(s2) ∪ {s2, s} induces a K1,4. From the above arguments it follow that
N I(s) ∪ {s} induces a K1,4, a contradiction. Therefore, v1s ∈ E(G). Note that
the above argument is true for any end vertex s ∈ K of every such paths in
P2 ∪ P3. Since the clique is maximal, there exists y ∈ K such that v1y /∈ E(G).
Now we see the following cases depending on the length of paths Pa, Pb, and in
each case, we also see the possibility of adjacency of y.

40 P. Renjith and N. Sadagopan

Case 1: |Pa| = 7, |Pb| = 5 and v1y /∈ E(G).

Case 1.1: y ∈ {s1, s3}, without loss of generality, let s1v1 /∈ E(G). From
Corollary 1, s1v2 ∈ E(G) or s1v3 ∈ E(G). Without loss of generality,
let s1v2 ∈ E(G). Note that s1x2 ∈ E(G), otherwise N I(w2) ∪ {w2, s1}
or N I(w3) ∪ {w3, s1} induces a K1,4. Consider d(v3) = 1. Since there are
at most 2 vertices in I of degree 1, |P2| ≤ 1, let Pc ∈ P2. We obtain
(v3, v, v2, s1

−→
Pb,

−→
Pa, v1,

−→
Pc) as a desired path in G. If d(v3) > 1, then we observe

the following. Since there are at most 2 vertices in I of degree 1, |P2| ≤ 2, let
Pc, Pd ∈ P2. Observe that w1, w4 are adjacent to a vertex in N I(s1). Thus
dI(w1) = dI(w4) = 3. We now claim that there does not exist a vertex s ∈ K
such that s is an end vertex of a path in P2 ∪ P3 and v3s ∈ E(G). Sup-
pose, for such a vertex s, let v3s ∈ E(G), then N I(s1) ∪ {s1, s} induces a
K1,4. From the above observations we conclude that v3 is adjacent to either
s3 or a vertex in P1. If v3s3 ∈ E(G), then note that s3x2 ∈ E(G), other-
wise for some w ∈ {w2, w3, s1}, N I(w) ∪ {w, s3} induces a K1,4. Further,
w1x2, w4x2 ∈ E(G). Note that d(v2) = d(v3) = d(t1) = d(t2) = 2. Since
G has no short cycles, there exists w′ ∈ P1 such that w′ is adjacent to one
among {v2, v3, t1, t2}. In each cases, we obtain a desired path P as follows.

If w′v2 ∈ E(G), then P = (
−→
Pc, w

′, v2, v, v3, s3
←−
Pbs1,

−→
Pa, v1,

−→
Pd).

Ifw′v3 ∈ E(G), then P = (
−→
Pc, w

′, v3, s3
←−
Pbs1, v2, v, v1,

−→
Pa,

−→
Pd).

Ifw′t1 ∈ E(G), then P = (
−→
Pc, w

′, t1, s1, v2, v, v3, s3, t2, s2, v1,
−→
Pa,

−→
Pd).

Ifw′t2 ∈ E(G), then P = (
−→
Pc, w

′, t2, s3, v3, v, v2, s1, t1, s2, v1,
−→
Pa,

−→
Pd).

For a vertex z ∈ P1, if v3z ∈ E(G), then P = (
−→
Pc, z, v3, v, v2, s1

−→
Pbs3,−→

Pa, v1,
−→
Pd).

Case 1.2: y ∈ P1. In this case we shall assume that v1s1, v1s3 ∈ E(G).
From Corollary 1, yv2 ∈ E(G) or yv3 ∈ E(G). Without loss of generality,
let yv2 ∈ E(G). Consider d(v3) = 1. Since there are at most 2 vertices in
I of degree 1, |P2| ≤ 1, let Pc ∈ P2. We obtain (v3, v, v2, y,

−→
Pb,

−→
Pa, v1,

−→
Pc)

as a desired path in G. On the other hand, if d(v3) > 1, then we observe
the following. Since there are at most 2 vertices in I of degree 1, |P2| ≤ 2,
let Pc, Pd ∈ P2. If v3s1 ∈ E(G), then (

−→
Pc, s3

←−
Pbs1, v3, v, v2, y,

−→
Pa, v1,

−→
Pd) is a

desired path in G. If v3s3 ∈ E(G), then (
−→
Pc, s1

−→
Pbs3, v3, v, v2, y,

−→
Pa, v1,

−→
Pd) is a

desired path in G. If v3z ∈ E(G) for some z ∈ P1, then we see the following.
Observe that yx2 ∈ E(G) and there exists a vertex in Pb ∩ I adjacent to y.
Therefore, dI(y) = 3 and z �= y. We obtain (

−→
Pc, z, v3, v, v2, y,

−→
Pb,

−→
Pa, v1,

−→
Pd) as

a desired path in G.

One could produce desired paths in all the other possibilities, and a detailed
analysis is shown in [11].

Claim 13. If there exists Pa ∈ P7 and there does not exist P ∈ Sf such that
P �= Pa and |P | ≥ 4, then G has a Hamiltonian path.

Hamiltonian Path in K1,t-free Split Graphs- A Dichotomy 41

Proof. Let Pa = (w1, . . . , w4; , x1, . . . , x3). From Corollary 1, the vertices w2, w3

are adjacent to at least one of the vertices in N I(v). Depending on this adjacency,
we see the following two cases.

Case 1: There exists v1 ∈ N I(v) such that v1w2, v1w3 ∈ E(G). Consider a path
Q ∈ P2 ∪ P3, and s ∈ Q ∩ K. We first claim that s is adjacent to either v1 or
x2. Suppose that v1s, x2s /∈ E(G). Note that v2s ∈ E(G) or v3s ∈ E(G). If
sx1 /∈ E(G), then N I(w2) ∪ {w2, s} induces a K1,4. Therefore, sx1 ∈ E(G) and
similarly, sx3 ∈ E(G), otherwise N I(w3)∪{w3, s} induces a K1,4. It follows that
N I(s) ∪ {s} induces a K1,4. Therefore all the end vertices of all such paths are
adjacent to either v1 or x2. Since the clique is maximal, there exists v′ ∈ K such
that v1v

′ /∈ E(G). We further classify based on the possibilities of v′ as follows.
Case 1.1: v′ ∈ Pa; i.e., w1 or w4 is non-adjacent to v1. Without loss of generality,
let v1w4 /∈ E(G). Note that w4 is adjacent to either v2 or v3. Without loss of
generality, let v2w4 ∈ E(G).
Case 1.1.1: d(v3) = 1. Since |I| ≥ 9, there exists Pd, Pe ∈ P3; Pd = P (s1, s2; t1),
and Pe = P (q1, q2; r1). Further, note that |P2| ≤ 1. If |P2| = 1, then let Pb ∈ P2.
Recall that the vertices s1, s2, q1, q2 are adjacent to at least one of v1, x2. We
obtain a desired path P as follows.

If s1v1, q1v1 ∈ E(G), then P = (v3, v, v2,
←−
Pa,

←−
Pd, v1,

−→
Pe,

−→
Pb).

If s1x2, q1x2 ∈ E(G), then P = (v3, v, v2, w4, x3, w3, v1, w2, x1, w1,
←−
Pd, x2,

−→
Pe,

−→
Pb).

If s1v1, q1x2 ∈ E(G), thenP = (v3, v, v2, w4, x3, w3, v1,
−→
Pd,

←−
Pe, x2

←−
Pa,

−→
Pb).

If s1x2, q1v1 ∈ E(G), thenP = (v3, v, v2, w4, x3, w3, v1,
−→
Pe,

←−
Pd, x2

←−
Pa,

−→
Pb).

Case 1.1.2: d(v3) > 1. Note that w4 is adjacent to a vertex in N I(w2). In
particular, either w4x1 ∈ E(G) or w4x2 ∈ E(G). Thus the only vertex to
which v3 is adjacent in Pa is w1. Consider v3w1 ∈ E(G). Since |I| ≥ 9, there
exists Pd ∈ P3; Pd = P (s1, s2; t1). Note that |P2| ≤ 2. If |P2| = 2, then let
Pb, Pc ∈ P2. Let y1 = Pb ∩ K, y2 = Pc ∩ K. Recall that y1, y2, s1, s2 are
adjacent to either v1 or x2. Let C = (w2, x1, w1, v3, v, v2, w4, x3, w3, x2, w2)
and C ′ = (w2, x1, w1, v3, v, v2, w4, x3, w3, v1, w2). We obtain desired path P
as follows. If s1v1 ∈ E(G) then we observe the following. If y1x2 ∈ E(G),
then P = (

−→
Pb, x2, w2

−→
C ′v1,

−→
Pd,

−→
Pc). Note y2x2 ∈ E(G) is a symmetric case. If

y1v1, y2v1 ∈ E(G), then note that y1 is adjacent to a vertex s in N I(w4). Note
N I(w4) ⊂ C. We obtain P = (

−→
Pb, s

−→
C ,

−→
Pd, v1,

−→
Pc).

If s1x2 ∈ E(G) and y1v1 ∈ E(G), then P = (
−→
Pb, v1, w2

−→
C x2,

−→
Pd,

−→
Pc).

Note that s1x2, y2v1 ∈ E(G) is a symmetric case. If s1x2, y1x2, y2x2 ∈ E(G),
then note that y1 is adjacent to a vertex s in N I(v). Note N I(v) ⊂ C ′.
We obtain P = (

−→
Pb, s

−→
C ′,

−→
Pd, x2,

−→
Pc). Now we consider the case in which v3

is adjacent to a vertex in P2 ∪ P3. If v3y1 ∈ E(G), then we observe the fol-
lowing. Observe that either y1v1 ∈ E(G) or y1x2 ∈ E(G). If w4x1 ∈ E(G),
then N I(y1) ∪ {y1, w4} induces a K1,4. Therefore, w4x2 ∈ E(G). Further,
all the end vertices of paths in P2 ∪ P3 which are in K are adjacent to x2.
We obtain (

−→
Pb, v3, v, v2, w4, x3, w3, v1, w2, x1, w1,

−→
Pd, x2,

−→
Pc) as a desired path.

42 P. Renjith and N. Sadagopan

If v3s1 ∈ E(G), then similar to the arguments for with respect to the vertex
y1, all the end vertices of paths in P2 ∪P3 which are in K are adjacent to x2. We
obtain (

−→
Pb, x2, s2, t1, s1, v3, v, v2, w4, x3, w3, v1, w2, x1, w1,

−→
Pc) as a desired path.

Now we shall consider the case in which v3 is adjacent to a vertex in P1; for
w′ ∈ P1, let v3w

′ ∈ E(G). We obtain desired path P as follows.

If y1x2, s1x2 ∈ E(G), then P = (
−→
Pb, x2,

−→
Pd, w

′, v3, v, v2, w4, x3, w3, v1, w2,

x1, w1,
−→
Pc).

If y1v1, s1v1 ∈ E(G), then P = (
−→
Pb, v1,

−→
Pd, w

′, v3, v, v2, w4
←−
Paw1,

−→
Pc).

If y1x2, s1v1 ∈ E(G), then P = (
−→
Pb, x2

←−
Paw1,

←−
Pd, v1, w3, x3, w4, v2, v, v3, w

′,
−→
Pc).

Note y1v1, s1x2 ∈ E(G) is a symmetric case.

Proof. when v′ /∈ Pa and Case 2, which is if there exists v1, v2 ∈ N I(v) such
that v1w2, v2w3 ∈ E(G), are included in [11]. �
Claim 14. If there exists Pa ∈ P6 and there does not exists P ∈ Sf such that
P �= Pa and |P | ≥ 4, then G has a Hamiltonian path.

Proof. The proof is similar to the proof of Claim13. �
Claim 15. If Pj = ∅, j ≥ 6, and P5 ∪ P4 �= ∅, then |P5| + |P4| ≤ 2.

Proof. Let Pa = P (w1, . . . , wl;x1, x2), l ∈ {2, 3}, Pb = P (s1, . . . , sm; t1, t2),
m ∈ {2, 3}. Assume for a contradiction that there exists a path Pc =
P (q1, . . . , qn; r1, r2), n ∈ {2, 3}. From Corollary 2, there exists v1 ∈ N I(v)
such that v1w2, v1s2, v1q2 ∈ E(G). We claim that v1w1, v1s1, v1q1 ∈ E(G).
Suppose v1w1 /∈ E(G), then w1 is adjacent to one among {v2, v3}, and one
each from Pb ∩ I and Pc ∩ I. Therefore, N I(w1) ∪ {w1} induces a K1,4,
a contradiction. Similar argument holds good for the other edges and thus
v1s1, v1q1 ∈ E(G). If Pa, Pb, Pc are odd paths, then similar to the previous
argument, the end vertices w3, s3, q3 are adjacent to v1. Since the clique is max-
imal, there exists w′ ∈ K such that v1w

′ /∈ E(G). From the previous arguments,
w′ /∈ {w1, . . . , wl, s1, . . . , sm, q1, . . . , qn}. By Corollary 1, either v2w

′ ∈ E(G) or
v3w

′ ∈ E(G). Further, we argue that w′ is adjacent to one of {x1, x2}, one of
{t1, t2} and one of {r1, r2}. Now, N I(w′) ∪ {w′} induces a K1,4, which is a final
contradiction to the existence of such a path Pc. This completes a proof of the
claim. �
Claim 16. If there exists Pa, Pb ∈ P5 ∪ P4 and there does not exists P ∈ Sf

such that P �= Pa, P �= Pb and |P | ≥ 4, then G has a Hamiltonian path.

Proof. Case analysis is similar to Claim 10. �
Claim 17. If there exists Pa ∈ P5 ∪ P4, and there does not exists P ∈ Sf such
that P �= Pa, P �= Pb and |P | ≥ 4, then G has a Hamiltonian path.

Claim 18. If Pj≥4 = ∅, then G has a Hamiltonian path.

Hamiltonian Path in K1,t-free Split Graphs- A Dichotomy 43

Proof. For the above two claims, case analysis are similar to Claim 13. �
Theorem 4. Let G be a K1,4-free split graph with |K| ≥ |I| − 1 ≥ 8. Then G
has a Hamiltonian path if and only if G has no short I-I path, and the sum of
the number of I-K paths and the number of short cycles is at most 2. Further,
finding such a cycle is polynomial-time solvable.

Proof. Necessity is trivial. Sufficiency follows from all the results mentioned in
this section. �

3 Hardness Result

Akiyama et al. [12] proved the NP-completeness of Hamiltonian cycle in planar
bipartite graphs with maximum degree 3. In [9], Hamiltonian cycle problem
in planar bipartite graphs with maximum degree 3 is reduced to Hamiltonian
cycle problem in K1,5-free split graph. An in depth analysis of the reduction
reveals that the reduced instances are split graphs with ΔI ≤ 3. We show a
polynomial-time reduction from Hamiltonian cycle problem in split graphs with
ΔI ≤ 3 to Hamiltonian path problem in split graphs with ΔI ≤ 3 as follows.
Further note that such graphs are sub class of K1,5-free split graphs. For a given
instance of split graph G with ΔI ≤ 3, having partitions K and I, we create
m instances of K1,5-free split graphs Gj , 1 ≤ j ≤ m with partitions Kj and Ij
where m = |E = {uv : u ∈ K, v ∈ I}|. That is, corresponding to each edge uv in
G such that u ∈ K, v ∈ I, Gj is constructed as follows:

Kj = K ∪ {z}, Ij = I ∪ {s, t}, E′ = {zw : w ∈ K},
E(Gj) = E(G) ∪ E′ ∪ {zt, zv, us} \ {uv}.

In the next theorem, we prove that Unless P = NP, Hamiltonian path prob-
lem in K1,5-free split graph has no polynomial-time algorithm using the above
reduction.

Theorem 5. Unless P=NP, there is no polynomial-time algorithm for Hamil-
tonian path problem in K1,5-free split graphs.

Proof. Due to page constraints, proof is included in [11]. �
Conclusions: We produced a dichotomy on the Hamiltonian path problem in
split graphs. A natural extension is to study longest path problem and minimum-
leaf spanning tree problem which are generalizations of Hamiltonian path
problem.

44 P. Renjith and N. Sadagopan

References

1. Broersma, H.J.: On some intriguing problems in hamiltonian graph theory - a
survey. Discrete Math. 251(1), 47–69 (2002)

2. Gould, R.J.: Advances on the Hamiltonian problem - a survey. Graphs Comb.
19(1), 7–52 (2003)

3. Bertossi, A.A., Bonuccelli, M.A.: Hamiltonian circuits in interval graph general-
izations. Inf. Process. Lett. 23(4), 195–200 (1986)

4. Muller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math.
156(1), 291–298 (1996)

5. Garey, M.R., Johnson, D.S., Tarjan, R.E.: Planar hamiltonian circuit problem is
NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

6. Gordon, V.S., Orlovich, Y.L., Werner, F.: Hamiltonian properties of triangular grid
graphs. Discrete Math. 308(24), 6166–6188 (2008)

7. Keil, J.M.: Finding Hamiltonian circuits in interval graphs. Inf. Process. Lett.
20(4), 201–206 (1985)

8. Shih, W.K., Chern, T.C., Hsu, W.L.: An O(n2log n) algorithm for the Hamiltonian
cycle problem on circular-arc graphs. SIAM J. Comput. 21(6), 1026–1046 (1992)

9. Renjith, P., Sadagopan, N.: Hamiltonicity in split graphs - a dichotomy. In: Gaur, D.,
Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp. 320–331.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9 28

10. West, D.B.: Introduction to Graph Theory. Prentice Hall of India, New Delhi (2003)
11. Renjith, P., Sadagopan, N.: Hamiltonian path in split graphs - a dichotomy. In:

arXiv (2017)
12. Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the Hamiltonian cycle

problem for bipartite graphs. J. Inf. Process. 3(2), 73–76 (1980)

https://doi.org/10.1007/978-3-319-53007-9_28

A Fully Polynomial Time Approximation
Scheme for Refutations in Weighted Difference

Constraint Systems

Bugra Caskurlu1, Matthew Williamson2(B), K. Subramani3,
Vahan Mkrtchyan4, and Piotr Wojciechowski3

1 TOBB University of Economics and Technology, Ankara, Turkey
caskurlu@gmail.com

2 Marietta College, Marietta, OH, USA
williamm@marietta.edu

3 West Virginia University, Morgantown, WV, USA
k.subramani@mail.wvu.edu, pwojciec@mix.wvu.edu

4 University of Verona, Verona, Italy
vahanmkrtchyan2002@ysu.am

Abstract. This paper is concerned with the design and analysis of
approximation algorithms for the problem of finding the least weight
refutation in a weighted difference constraint system (DCS). In a
weighted DCS (WDCS), a positive weight is associated with each con-
straint. Every infeasible DCS has a refutation, which attests to its infea-
sibility. The length of a refutation is the number of constraints used in
the derivation of a contradiction. Associated with a DCS D is its con-
straint network G. D is infeasible if and only if G has a simple, negative
cost cycle. It follows that the shortest refutation of D corresponds to the
length of the shortest negative cost cycle in G. The constraint network
of a WDCS is represented by a constraint network, where each edge con-
tains both a cost and a positive, integral length. In the case of a WDCS,
the weight of a refutation is defined as the sum of the lengths of the
edges corresponding to the refutation. The problem of finding the mini-
mum weight refutation in a WDCS is called the weighted optimal length
resolution refutation (WOLRR) problem and is known to be NP-hard.
In this paper, we describe a pseudo-polynomial time algorithm for the
WOLRR problem and convert it into a fully polynomial time approxi-
mation scheme (FPTAS). We also generalize our FPTAS to determine
the optimal length refutation of a class of constraints called Unit Two
Variable per Inequality (UTVPI) constraints.

Keywords: Difference constraint systems
“No”-certificate · Approximation algorithms · Graph theory
Negative cost cycle · Certification

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 45–58, 2018.
https://doi.org/10.1007/978-3-319-74180-2_4

46 B. Caskurlu et al.

1 Introduction

This paper is concerned with the design and analysis of approximation algorithms
for determining the least weight refutation in a weighted difference constraint
system (DCS). Every infeasible DCS has a refutation that verifies its infeasibil-
ity. For a DCS, the refutation is a subset of the difference constraints such that
its conjunction results in a contradiction of the form 0 ≤ −b, b > 0. The length of
a refutation is the number of difference constraints in the subset that proves the
infeasibility of the DCS.

For each DCSD, there exists a corresponding difference constraint networkG.
D is infeasible if and only if G contains a simple, negative cost cycle. The length of
a negative cost cycle is the number of edges in the negative cost cycle. The shortest
negative cost cycle is defined as the negative cost cycle having the fewest number
of edges. It follows that the refutation in D with the fewest number of constraints
corresponds to the length of the shortest negative cost cycle in G.

If each difference constraint in a DCS has unit length, then the problem of
determining the length of the refutation with the fewest number of constraints
is called the optimal length resolution refutation (OLRR) problem. The OLRR
problem is motivated by a number of applications, as discussed in [6], including
program verification [5], real-time scheduling [3], and incremental shortest paths
in weighted networks [1]. The first polynomial time algorithm for this problem
was proposed in [6] and runs in O(n3 · log K) time, where n is the number
of vertices in G, and K is the OLRR. The current fastest algorithm runs in
O(m · n · K) time [7], where m is the number of edges in G.

In this paper, we are interested in a weighted DCS (WDCS), where a positive
weight is associated with each constraint. We represent the constraint network of
a WDCS D as a constraint network G, where each edge has both a cost and a
positive, integral length. Note that the term “weight” is used for a WDCS, while
the term “length” is used for the difference constraint network. In the case of a
WDCS, the weight of a refutation is defined as the sum of the lengths of the edges
in the corresponding negative cost cycle in G. The problem of finding the mini-
mum weight refutation in a WDCS is called the weighted optimal length resolution
refutation (WOLRR) problem. This problem is known to be NP-hard [6].

In this paper, we present a pseudo-polynomial time algorithm for comput-
ing the WOLRR for a WDCS. Our algorithm applies a dynamic programming
approach for computing the WOLRR. If L is the largest edge length in G, our
algorithm runs in O(n4 ·L) time. In addition, we present a fully polynomial-time
approximation scheme (FPTAS) for the WOLRR problem. This algorithm trans-
forms G into a simpler network by removing specific edges and then applying
the pseudo-polynomial time WOLRR algorithm. The FPTAS runs in O(n6 · 1

ε)
time, and the approximation ratio is bounded by (1 + ε), where ε > 0.

We extend our FPTAS to finding optimal length refutations in Unit Two
Variable Per Inequality (UTVPI) constraint systems. These constraints gener-
alize difference constraint systems. We provide both a pseudo-polynomial time
algorithm and an FPTAS for finding the weighted optimal length resolution
refutation (WOLRR) of a weighted UTVPI constraint system (WUCS).

A Fully Polynomial Time Approximation Scheme for Refutations in WDCS 47

2 Formal Problem Statement

A constraint of the form Σn
i=1ai · xi ≤ b is called a linear inequality or linear

constraint, where ai, b ∈ R. A conjunction of linear inequalities is called a linear
inequality system or a linear constraint system. This system is represented in
matrix form as: A · x ≤ b.

A constraint of the form xi −xj ≤ bij is called a difference constraint. A con-
junction of difference constraints is called a difference constraint system (DCS).
If A · x ≤ b is a DCS, then there exists a vector x ∈ Rn such that A · x ≤ b if
and only if there exists a vector x ∈ Zn such that A · x ≤ b, provided that b
is integral. This is because the constraint matrix of a DCS is totally unimodu-
lar [4]. Therefore, the linear and integer programs are indistinguishable from the
perspective of non-emptiness of the constraint polyhedron when b is integral. We
should note this is not always the case since linear programming is polynomial
time solvable, while integer programming is NP-hard.

Given a DCS A · x ≤ b, we can construct the corresponding difference con-
straint network G = 〈V,E,b〉 as follows:

1. For each variable xi, we create vertex vi.
2. For each difference constraint xi − xj ≤ bij , we add the directed edge eji =

(vj , vi) with cost bij .

In the difference constraint network G, V is the vertex set with n vertices,
E is the edge set with m edges, and b : E → R is the cost function that assigns
a real number to each edge in E.

Every refutation in a DCS corresponds to a simple negative cost cycle in the
corresponding constraint network [6]. Thus, any negative cost cycle is a “no”-
certificate for the satisfiability of the DCS. It therefore follows that the refutation
with the fewest number of constraints corresponds to the simple negative cost
cycle with the fewest number of edges. The problem of finding the size of such a
negative cost cycle is known as the optimal length resolution refutation (OLRR)
problem [6].

In this paper, we are concerned with weighted difference constraints. A con-
straint C of the form xi − xj ≤ bij is called a weighted difference constraint if
C is associated with a weight lij > 0, where l : E → Z+ is the weight func-
tion. Observe that if E′ ⊆ E is a set of edges in G, then l(E′) =

∑
eij∈E′ lij is

defined as the sum of the lengths of all edges in E′. A conjunction of weighted
difference constraints is called a weighted difference constraint system (WDCS).
Constructing the corresponding constraint network of a WDCS G = 〈V,E,b, l〉
is similar to constructing the constraint network of a DCS. The key difference
is that for each constraint C : xi − xj ≤ bij with weight lij , we add the edge
eji = (vj , vi) with cost bij and length l(C) = lij . We denote the length of a path
Pij from vertex vi to vertex vj as l(Pij). Note that for constraint networks, we
use the term “length” rather than “weight.”

We already know that if a DCS is unsatisfiable, then there must exist a
simple negative cost cycle in the corresponding constraint network [6]. The same

48 B. Caskurlu et al.

applies for a WDCS. Therefore, the refutation with the smallest total weight
corresponds to the negative cost cycle (“no”-certificate) with the smallest total
length. We call the length of such a negative cost cycle the weighted optimal
length resolution refutation (WOLRR).

Using the terminology above, we define the WOLRR problem as follows:
Given a WDCS D : A · x ≤ b, where the weight of each constraint is a positive
integer, find the weight of a refutation having the smallest total weight.

Alternatively, based on the equivalence between difference constraints and
constraint networks, we define the WOLRR problem as: Given a network G =
〈V,E,b, l〉, where b is the set of real edge costs and l is the set of positive
integral edge lengths, find the length of a negative cost cycle having the smallest
total length.

3 A Pseudo-Polynomial Time Algorithm

In this section, we present a pseudo-polynomial time algorithm for computing the
WOLRR in a WDCS. Recall that an algorithm runs in pseudo-polynomial time if
the running time is bounded by both the size (i.e., number of bits) and magnitude
(i.e., value) of the input. Note that pseudo-polynomial time algorithms may
run in exponential time in the worst case scenario. However, they may run in
polynomial time if the input is bounded by a polynomial function.

Consider the difference constraint network G = 〈V,E,b, l〉. Our approach
applies the pseudo-polynomial time algorithm described in [2]. This algorithm
computes the shortest path from source vertex v1 to all other vertices vj ∈ V
for networks with positive integral edge costs and having a transition time at
most T . Note that [2] denotes the cost of an edge with lij , while we use bij .
Furthermore, [2] uses the term “delay” (denoted as tij), while we use the term
“length” (denoted as lij) to define the same property.

Assume the vertices are enumerated from 1 to n, where v1 denotes the source
vertex. Let L(j, t) denote the cost of the shortest path from vertex v1 to vertex vj

with length at most t. We compute L(j, t) using the following dynamic program [2]:

L(j, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 j = 1 t = 0, . . . , T
∞ j = 2, . . . , n t = 0

min

{

L(j, t − 1), min
k|tkj≤t,ekj∈E

{L(k, t − tkj) + bkj}
}

j = 2, . . . , n t = 1, . . . , T.

Our algorithm modifies the dynamic program for networks with real edge
costs. We use the notation D(j, t) rather than L(j, t). This is to differ-
entiate our modified dynamic program from the dynamic program in [2].
We initialize D(j, t) to 0 when j = 1. However, we compute D(j, t) =
min

{
D(j, t − 1),mink|tkj≤t,ekj∈E{D(k, t − tkj) + bkj}

}
when j = 1, . . . n. Note

that our algorithm does not apply to networks where the edge lengths may be
zero. Otherwise, D(j, t) could be defined in terms of itself if tkj = 0.

After computing D(j, t) for all vj ∈ V and a single value of t, we check if
D(1, t) < 0. If this is true, then there exists a negative cost cycle from vertex

A Fully Polynomial Time Approximation Scheme for Refutations in WDCS 49

v1 to itself with length t. Otherwise, we repeat the computation for t + 1, where
t + 1 ≤ T .

To compute the WOLRR, we apply the above dynamic program for all ver-
tices. For each source vertex vs, let Ds(j, t) be the shortest path from vs to vj

with length t. We compute Ds(j, t) for all values of s, j, and a single value of
t. We then check if Ds(s, t) < 0 for any vs ∈ V. If this is true, we immediately
halt the algorithm and return t as the WOLRR. Otherwise, we repeat the cal-
culations for t + 1, where t + 1 ≤ T . If L denotes the largest length of any edge
in G, then we set T = n ·L, which is the largest possible length for any negative
cost cycle.

The above observations are summarized in Algorithms 3.1 and 3.2. Observe
that Algorithm 3.2 gives us only the weight of the shortest refutation. The actual
negative cost cycle can be obtained by using a predecessor subgraph.

Function Single-Vertex-WOLRR(G, vs, t)

1: Enumerate the vertices such that vs is v1.
2: for (j = 1 to n) do

3: D1(j, t) = min
{
D1(j, t − 1),mink|lkj≤t,ekj∈E{Dl(k, t − lkj) + bkj}

}
.

4: if (D1(1, t) < 0) then
5: return (True).
6: return (False).

Algorithm 3.1: Single Vertex WOLRR Algorithm

Function Pseudo-WOLRR(G)

1: n = |V|.
2: L = maxvi,vj∈V{lij}.
3: T = n · L.
4: for (each vertex s ∈ V) do
5: for (t = 0 to T) do
6: Ds(s, t) = 0.
7: for (vj ∈ V − {s}) do
8: Ds(j, t) = ∞.
9: for (t = 1 to T) do

10: for (each vertex vs ∈ V) do
11: Single-Vertex-WOLRR(G, vs, t).
12: if (Single-Vertex-WOLRR returned True) then
13: return (“The WOLRR is t”).

Algorithm 3.2: Pseudo-Polynomial Time Algorithm for WOLRR

3.1 Analysis

From [2], we know that Algorithm 3.1 takes O(m) time because we scan each
edge exactly once.

50 B. Caskurlu et al.

We now analyze the running time of Algorithm3.2. The for loop at line 4
clearly has O(n) iterations. Observe that the for loop at line 5 takes O(T) =
O(n · L) time, where L is the largest length among all edges. Furthermore, the
for loop at line 7 takes O(n) time. Therefore, the for loop at line 4 runs in
O(n2 · L) time.

To analyze the for loop at line 9, observe that line 11 takes O(m) time since
this is Algorithm 3.1. The for loop at line 10 has O(n) iterations, and the for
loop at line 9 has O(T) = O(n · L) iterations. Therefore, the for loop at line 9
takes O(n · L · n · m) = O(m · n2 · L) = O(n4 · L) time.

3.2 Correctness

We now prove the correctness of our pseudo-polynomial time algorithm. We
first address the correctness of the dynamic program. Observe that [2] proves
that the dynamic program correctly computes the shortest paths from vertex
vj to all other vertices with length t for j = 2, . . . , n and t = 1, . . . , T , where
T = n · L. The key difference with our algorithm is that we include j = 1 in
the computation. Thus, it must be the case that the dynamic program correctly
computes the shortest paths from the source vertex vj = v1 to all other vertices.

This implies that when we update the value of D(j, t) for j = 1, D(j, t)
represents the cost of the shortest cycle containing vertex v1 whose length is
at most t. The smallest t, for which Ds(s, t) < 0, represents the length of the
shortest negative cost cycle C containing vs. We need to show that C is a simple
negative cost cycle.

Suppose C is not a simple negative cost cycle, and there exists a vertex v ∈ V
that appears in C more than once. Consider the path along C from v to itself.
This path forms a cycle, which we denote as C1. Furthermore, C\C1 forms a
second cycle, denoted as C2. Observe that the total cost of C is the sum of the
costs of C1 and C2. Likewise, the total length of C is the sum of the lengths of
C1 and C2.

Since C has a negative cost, at least C1 or C2, or both, must also have a
negative cost. Without loss of generality, assume that C1 is the negative cost
cycle. Since all edge lengths are strictly positive, the total length of C1 is less
than the total length of C. This contradicts the fact that C is the negative cost
cycle with the smallest length. Therefore, C must be a simple negative cost cycle.

4 A Fully Polynomial-Time Approximation Scheme

In this section, we present a fully polynomial time approximation scheme
(FPTAS) for computing the WOLRR of a DCS.

4.1 Preprocessing Phase

The first phase of our algorithm converts G into a simpler network by erasing a
carefully selected subset of edges. This phase preserves the WOLRR of G.

A Fully Polynomial Time Approximation Scheme for Refutations in WDCS 51

Function Pre-Process(G)

1: Let A be a vector of edges initialized as A = ∅.
2: while (G has a negative cost cycle) do
3: Let eij denote the edge of G with the largest length.
4: Remove eij from G.
5: Add eij to A.
6: Let euv be the last edge added to A.
7: for (each edge est in A such that lst ≤ n · luv) do
8: Add est back to G.

Algorithm 4.1: Preprocessing Step

Algorithm 4.1 removes the edges of G one-by-one in descending order with
respect to the lengths until G does not have a negative cost cycle. Let euv be
the last edge removed in this manner. Observe that the length of any negative
cost cycle in G is at least luv. This is because any negative cost cycle has to
contain at least one edge whose length is at least luv. Therefore, luv is a lower
bound for the WOLRR of G.

Consider the moment immediately before the algorithm removes euv from G.
luv is an upper bound for the lengths of the remaining edges in G at that time
moment since the algorithm removes the edges in descending order with respect
to their lengths. Since G has a negative cost cycle at that moment, and a simple
cycle can have at most n edges, (n · luv) is an upper bound for the WOLRR of
G. In other words, if |OPT | is the length of the negative cost cycle with the
smallest length in G, then |OPT | ≤ n · luv.

Algorithm 4.1 then inserts the edges with length at most (n · luv) back into G.
This means that when the algorithm terminates, the only edges that are pruned
are the ones whose lengths are more than (n · luv). Note that the transformation
made by Algorithm 4.1 on G preserves the WOLRR. Since one can check the
existence of a negative cost cycle on a constraint network in O(m · n) time, the
running time of Algorithm4.1 is O(m2 · n) = O(n5).

4.2 An FPTAS for WOLRR

We next present the main part of our algorithm. Let G = 〈V,E,b, l〉 be the
constraint network after the preprocessing step, and let ε > 0. We let P = ε·luv

n ,
where ε > 0 is arbitrarily chosen. For each edge eij remaining in G, we set

l′ij to be
⌈

lij
P

⌉
. We then apply Algorithm3.2 on G′ = 〈V,E,b, l′〉, and the

resulting WOLRR is our approximation. The above observations are summarized
in Algorithm 4.2.

Let OPT denote the negative cost cycle with the smallest length in G. Let
OPT ′ denote the negative cost cycle with the smallest length after running
Algorithm 4.2. Let |OPT | and |OPT ′| denote the lengths of their respective neg-
ative cost cycles. Our algorithm returns |OPT ′| at termination. In order to prove
that our algorithm is an FPTAS, we will show that |OPT ′| ≤ (1 + 2 · ε) · |OPT |.

52 B. Caskurlu et al.

Function WOLRR-FPTAS(G)

1: Pre-Process().
2: Let G be the resulting constraint network.
3: Let P = ε·luv

n
.

4: for (each edge eij ∈ E) do

5: l′ij =
⌈

lij
P

⌉
.

6: Define: G′ = 〈V,E,b, l′〉
7: Let OPT ′ denote the resulting negative cost cycle with the smallest length from

running Pseudo-WOLRR(G′).
8: return (|OPT ′|).

Algorithm 4.2: FPTAS for WOLRR

Clearly, this will prove our claim since ε > 0 is chosen arbitrarily and 2 is a
constant.

Recall that for each edge eij ∈ E, we have l′ij =
⌈

lij
P

⌉
<

lij
P + 1. We claim

that lij < P · l′ij + P . If lij ≥ P · l′ij + P , then lij
P ≥ l′ij + 1, and therefore,

l′ij =
⌈

lij
P

⌉
≥ lij

P ≥ l′ij + 1, which is a contradiction.
Let l′(C) =

∑
eij∈C l′ij be defined as the sum of the scaled and rounded

lengths of the edges in C. If we add the above inequalities for all edges eij that
lie in OPT ′, we have l(OPT ′) < P · l′(OPT ′) + P · n. Here we used the fact
that OPT ′ contains at most n edges. Now, observe that OPT ′ is a negative cost
cycle with the smallest length in G′. Hence, it must be the case that l′(OPT ′) ≤
l′(OPT). Thus, we will have l(OPT ′) < P · l′(OPT)+P ·n. Taking into account
that l′ij <

lij
P + 1 and ε · luv = n · P , we get

|OPT ′| = l(OPT ′) < P · l′(OPT) + P · n < P · (l(OPT)
P + n) + P · n

= l(OPT) + 2 · P · n = |OPT | + 2 · ε · luv.

Recall that euv is the last edge added to G such that the absence of euv

would result in G having no negative cost cycles. This means that any negative
cost cycle in G must include an edge of length at least luv. Hence, the length
of any negative cost cycle in G must be at least luv. Therefore, luv ≤ |OPT |.
Thus, we have |OPT | + 2 · ε · luv ≤ |OPT | + 2 · ε · |OPT | = (1 + 2 · ε) · |OPT |.
Therefore, we can conclude that |OPT ′| ≤ (1 + 2 · ε) · |OPT |.

We now analyze the running time of Algorithm4.2. As previously stated,
Line 1 takes O(n5) time. The for loop at line 4 takes O(m) = O(n2) time.
For line 7, recall that Algorithm 3.2 takes O(n4 · L) time, where L is the length
of the largest edge length. However, in this case, the pseudo-polynomial time
algorithms takes O(n4 ·L′) time, where L′ =

⌈
L
P

⌉
. Hence, the total running time

is O(n4 · L′).
We distinguish two cases. In the first case, L

P < 1. This means that
O

(
n4 · ⌈

L
P

⌉)
= O

(
n4

)
. In the second case, L

P ≥ 1. This implies that
⌈

L
P

⌉ ≤
⌊

L
P

⌋
+ 1 ≤ L

P + 1 ≤ 2 · L
P . Therefore,

A Fully Polynomial Time Approximation Scheme for Refutations in WDCS 53

O
(
n4 · ⌈

L
P

⌉) ≤ O
(
n4 · L

P

)
= O

(
n4 · n·L

ε·luv

)
= O

(
n4 · n L

ε·luv

)

≤ O
(
n5 · n·luv

ε·luv

)
= O

(
n6 · 1

ε

)

Observe that if ε < 1, then O(n6 · 1
ε) dominates the running time of our

algorithm. Since the running time is polynomial in both (1/ε) and the size of
the input instance, the above algorithm is an FPTAS.

5 The WOLRR Problem in UTVPI Constraint Systems

In this section, we generalize the algorithms discussed in previous sections to
determine optimal length refutations in UTVPI constraint systems (UCS). We
recall that a UTVPI constraint has the form: ai · xi + aj · xj ≤ bij , where
ai, aj ∈ {0, 1,−1}. Clearly, such constraints are more general than difference
constraints, since in the latter we must have ai = −aj .

5.1 Constructing the Constraint Network

Our algorithms utilize the constraint network introduced in [8]. Let U : A·x ≤ b
be the UTVPI constraint system. We can construct the corresponding UTVPI
constraint network G = 〈V,E,b〉 as follows: For each variable xi, we create a
vertex vi ∈ V. For each constraint, we create an edge in E using the following
rules:

1. A constraint of the form xi − xj ≤ bij is represented as an undirected “gray”

edge, (vj

bij
vi), or (vi

bij
vj), with cost bij .

2. A constraint of the form −xi − xj ≤ bij is represented by an undirected

“black” edge, (vi

bij
vj), with cost bij .

3. A constraint of the form xi +xj ≤ bij is represented by an undirected “white”

edge, (vi

bij
vj), with cost bij .

We then add vertex v0 to G. This vertex allows us to include absolute con-
straints which are of the form ai · xi ≤ bi, where ai ∈ {0, 1,−1}. Each absolute
constraint xi ≤ bi is replaced by a pair of constraints xi+x0 ≤ bi and xi−x0 ≤ bi.

The corresponding edges (v0
bi

vi) and (v0
bi

vi) are added to G.
Unlike difference constraint networks, a cycle in a UTVPI constraint network

may consist of edges and vertices that occur more than once. An edge reduction
represents the addition of the two corresponding UTVPI constraints such that
the resulting constraint is also a UTVPI constraint. An edge reduction can be
thought of as determining the edge equivalent to a two-edge path. If a path can
be reduced to an edge of type t, where t ∈ { , , , }, then we say that the
path has type t. The shortest path of type t between vi and vj is a path of type
t from vi and vj with minimum cost. Furthermore, a negative cost gray cycle is

a path that can be reduced to an edge (vi
bi

vi) (or (vi
bi

vi)) such that bi < 0.

54 B. Caskurlu et al.

UTVPI constraint systems may require refutations that use constraints more
than once. In fact, every infeasible UTVPI constraint system has a refutation
where each constraint is used at most twice [8]. [8] also shows that a UTVPI
constraint system has a refutation of length l if and only if the corresponding
constraint network has a negative cost gray cycle of length l. Thus, the optimal
length refutation can be obtained by finding the negative cost gray cycle with
the smallest length.

This paper is concerned with the Weighted OTLR (WOLRR) problem. In
this problem, each UVTPI constraint ai · xi + aj · xj ≤ bij also has a positive
weight lij , where l : E → Z+ is the weight function. Constructing the constraint
network is similar to constructing the constraint network of a UCS except we
assign to each edge eij a length lij . Note that the term “length” is used for the
constraint network rather than “weight.” The refutation with the smallest total
weight corresponds to the negative cost gray cycle with the smallest total length.
We call the length of such a negative cost gray cycle the WOLRR.

5.2 Modifying the Pseudo-Polynomial Time Algorithm to Handle
UTVPI Constraints

In this subsection, we describe how we modify Algorithm 3.2 to find the WOLRR
of a weighted UTVPI constraint system. Recall that in Sect. 3, we modified
the dynamic program described by Goel [2] for networks with real edge costs.
To utilize the dynamic program for UTVPI constraints, we make the following
additional modifications:

1. We apply the dynamic program for each edge type in the weighted UCS. Let
D()(j, t), D()(j, t), D()(j, t), and D()(j, t) denote the shortest path
from vertex v1 to vj with length at most t for the respective edge types.

2. We initialize D()(j, t), D()(j, t), D()(j, t), and D()(j, t) to 0 when
j = 1.

3. We let vr, instead of vk, denote the neighboring vertex of vj .
4. We compute the minimum value for j = 1, . . . n instead of j = 2, . . . , n. This

allows us to compute the shortest path from vertex v1 to itself.
5. Instead of computing min{D(j, t − 1), mink|tkj≤t,ekj∈E{D(k, t − tkj) + bkj}},

we apply the dynamic programs from [8]. We formally define our dynamic
programs below.

D()(j, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 j = 1 t = 0
∞ j = 2, . . . , n t = 0

min

⎧
⎪⎪⎨

⎪⎪⎩

D()(j, t − 1)

minr|lrj≤t

⎧
⎨

⎩

D()(r, t − lrj) + b(vr vj)

D()(r, t − lrj) + b(vr vj)

j = 1, . . . , n t = 1, . . . , T.

A Fully Polynomial Time Approximation Scheme for Refutations in WDCS 55

D()(j, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 j = 1 t = 0
∞ j = 2, . . . , n t = 0

min

⎧
⎪⎪⎨

⎪⎪⎩

D()(j, t − 1)

minr|lrj≤t

⎧
⎨

⎩

D()(r, t − lrj) + b(vr vj)

D()(r, t − lrj) + b(vr vj)

j = 1, . . . , n t = 1, . . . , T.

D()(j, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 j = 1 t = 0
∞ j = 2, . . . , n t = 0

min

⎧
⎪⎪⎨

⎪⎪⎩

D()(j, t − 1)

minr|lrj≤t

⎧
⎨

⎩

D()(r, t − lrj) + b(vr vj)

D()(r, t − lrj) + b(vr vj)

j = 1, . . . , n t = 1, . . . , T.

D()(j, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 j = 1 t = 0
∞ j = 2, . . . , n t = 0

min

⎧
⎪⎪⎨

⎪⎪⎩

D()(j, t − 1)

minr|lrj≤t

⎧
⎨

⎩

D()(r, t − lrj) + b(vr vj)

D()(r, t − lrj) + b(vr vj)

j = 1, . . . , n t = 1, . . . , T.

After computing D(type)(j, t) for all j ∈ V, for all type ∈ { , , , },
and a single value of t, we check if D()(1, t) < 0 (or D()(1, t) < 0). If this
is true, then there exists a negative cost gray cycle from vertex v1 to itself with
length t. Otherwise, we repeat the computation for (t + 1) ≤ T .

As with Algorithm 3.2, we apply the dynamic programs for all vertices. For
each source vertex vs, D

(type)
s (j, t) is the shortest path from vs to vj with length

t, where type ∈ { , , , }. We compute D
(type
s (j, t) for all values of vs, vj ,

type, and a single value of t. We then check if D
()
s (s, t) < 0 (or D

()
s (s, t) < 0)

for any vs ∈ V. If this is true, then t is the WOLRR. Otherwise, we repeat the
calculations for (t + 1) ≤ T . If L denotes the largest edge length of any edge in
G, then we set T = (2 · n + 2) · L, which is the largest possible length for any
negative cost gray cycle.

The above observations are summarized in Algorithms 5.1 and 5.2.

Function Single-Vertex-WOLRR-UTVPI(G, vs, t)

1: Enumerate the vertices such that vs is v1.
2: for j = 1 to n do
3: for (type ∈ { , , , }) do

4: Compute D
(type)
1 (j, t) as described above.

5: if (D
()
1 (j, t) < 0) then

6: return (True).
7: return (False).

Algorithm 5.1: Single Vertex WOLRR Algorithm for UTVPI Constraints

56 B. Caskurlu et al.

Function Pseudo-WOLRR-UTVPI(G)

1: n = |V|.
2: L = maxvi,vj∈V{lij}.
3: T = (2 · n + 2) · L.
4: for (each vertex vs ∈ V) do
5: for (t = 0 to T) do
6: for (type ∈ { , , , }) do

7: D
(type)
s (s, t) = 0.

8: for (vj ∈ V − {vs}) do

9: D
(type)
s (j, t) = ∞.

10: for (t = 1 to T) do
11: for (each vertex vs ∈ V) do
12: Single-Vertex-WOLRR-UTVPI(G, vs, t).
13: if (Single-Vertex-WOLRR-UTVPI returned True) then
14: return (“The WOLRR is t”).

Algorithm 5.2: Pseudo-Polynomial Time Algorithm for WOLRR in UTVPI
Constraints

Analysis. From [2], we know that Algorithm 5.1 takes O(m) time because we
scan each edge exactly once. In Algorithm 5.2, observe that lines 10 to 14 dom-
inate the running time. Since these steps are identical to lines 9 to 13 in Algo-
rithm3.2, and those steps take O(m · n2 · L) = O(n4 · L) time, Algorithm 5.1
takes O(n4 · L) time.

Correctness. We now prove the correctness of our pseudo-polynomial time
algorithm. We first address the correctness of the dynamic program in Algo-

rithm5.1. Consider the dynamic program for computing D
()
1 (j, t). When com-

puting the shortest white path from vj to all other vertices (i.e., t = 1, . . . , T),
we compute the following dynamic program:

D()(j, t) = min

⎧
⎪⎨

⎪⎩

D()(j, t − 1)

minr|lrj≤t

{
D()(r, t − lrj) + b(vr vj)
D()(r, t − lrj) + b(vr vj)

From [8], we know that the above dynamic program correctly computes the
shortest white paths in a UCS. When we include the case where t = 0, we have
the same dynamic program from Sect. 3 except it applies to a WUCS instead of a
WDCS. Since Sect. 3.2 proves the correctness of the dynamic program in Sect. 3,
it must be the case that our dynamic program correctly computes the shortest

white paths in a WUCS. Similar arguments can be used to prove that D
()
1 (j, t),

D
()
1 (j, t), and D

()
1 (j, t) correctly compute their respective shortest paths in

a WUCS.
This implies that when we update the values of D

(type)
1 (j, t) for j = 1 and

type ∈ { , , , }, D
()
1 (j, t) represents the cost of the shortest gray

A Fully Polynomial Time Approximation Scheme for Refutations in WDCS 57

cycle containing vertex v1 whose length is at most t. The smallest t, for which

D
()
s (s, t) < 0, represents the length of the shortest negative cost gray cycle

Cs containing vs. The smallest length among all Ci for all vi ∈ V must give the
WOLRR.

5.3 Modifying the FPTAS for the WOLRR Problem

We now describe how we modify our FPTAS in Sect. 4.2 to detect the WOLRR.
We find that our modified FPTAS is nearly identical to Algorithm4.2 with a
few changes:

1. In Line 7 of Algorithm 4.1, we change lij ≤ n · luv to lij ≤ (2 · n + 2) · luv.
This is because a negative cost gray cycle has at most (2 ·n+2) edges. Hence,
((2 · n + 2) · luv) is an upper bound for the WOLRR.

2. In Line 3 of Algorithm 4.2, we change ε·luv

n to ε·luv

2·n+2 . This is because the
largest negative cost gray cycle has (2 · n + 2) edges.

3. In Line 7 of Algorithm 4.2, we execute Pseudo-WOLRR-UTVPI(G′)
instead of Pseudo-WOLRR(G′).

Observe that the running time of Algorithm5.2 is the same as the running
time of Algorithm 3.2. Thus, using the same analysis for the FPTAS in Sect. 4.2,
our FPTAS for the WOLRR runs in O(n6 · 1

ε) time.

Acknowledgments. This work was done while the first author was at West Virginia
University. The first author was supported in part by the National Science Foundation
through Award CNS-0849735 and the Air Force Office of Scientific Research through
Award FA9550-12-1-0199. The third author was supported in part by the National Sci-
ence Foundation through Awards CCF-1305054 and CNS-0849735, and the Air Force
Office of Scientific Research through Award FA9550-12-1-0199. The fourth author was
supported in part by the Air Force Office of Scientific Research through Award FA9550-
12-1-0199. The fifth author was supported in part by the National Science Foundation
through Award CCF-1305054, and by NASA through the West Virginia Space Grant.
We thank Ashish Goel for useful conversations.

References

1. Demtrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths.
J. ACM 51(6), 968–992 (2004)

2. Goel, A., Ramakrishnan, K.G., Kataria, D., Logothetis, D.: Efficient computation
of delay-sensitive routes from one source to all destinations. In: Proceedings of the
IEEE Conference on Computer Communications. Twentieth Annual Joint Confer-
ence of the IEEE Computer and Communications Society, INFOCOM 2001 (Cat.
No. 01CH37213), vol. 2, pp. 854–858 (2001)

3. Han, C.C., Lin, K.J.: Job scheduling with temporal distance constraints. Technical
report, UIUCDCS-R-89-1560, University of Illinois at Urbana-Champaign, Depart-
ment of Computer Science (1989)

58 B. Caskurlu et al.

4. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,
New York (1999)

5. Seshia, S.A., Lahiri, S.K., Bryant, R.E.: A hybrid SAT-based decision procedure for
separation logic with uninterpreted functions. In: DAC, pp. 425–430 (2003)

6. Subramani, K.: Optimal length resolution refutations of difference constraint sys-
tems. J. Autom. Reason. (JAR) 43(2), 121–137 (2009)

7. Subramani, K., Williamson, M., Gu, X.: Improved algorithms for optimal length
resolution refutation in difference constraint systems. Form. Asp. Comput. 25(2),
319–341 (2013)

8. Subramani, K., Wojciechowski, P.J.: A combinatorial certifying algorithm for linear
feasibility in UTVPI constraints. Algorithmica 78(1), 166–208 (2017)

Probabilistic Properties of Highly Connected
Random Geometric Graphs

Bodo Manthey and Victor M. J. J. Reijnders(B)

University of Twente, Enschede, The Netherlands
{b.manthey,v.m.j.j.reijnders}@utwente.nl

Abstract. In this paper, we study the probabilistic properties of reliable
networks of minimum costs in d-dimensional Euclidean space. We study
reliability in terms of k-edge-connectivity in graphs. We show that this
problem fits into Yukich’s framework for Euclidean functionals for arbi-
trary k, dimension d and distant-power gradient p with p < d. With this
framework results on convergence and concentration of the value of opti-
mal solutions of random inputs follow. These results are then extended
to optimal k-edge-connected power assignment graphs, where we assign
transmit power to vertices, and two vertices are connected if they both
have sufficient transmit power. This variant models wireless networks.
Finally, we devise a partitioning heuristic to find approximate solutions
quickly, and we analyze its performance in the framework of smoothed
analysis.

Keywords: Random geometric graphs · Average-case analysis
Connectivity of graphs

1 Introduction

The design of fault tolerant networks is an important issue in today’s research,
due to their numerous applications. The goal is to find cheap and reliable net-
works with some specific characteristics. Reliability is generally expressed in
terms of the connectivity of the network. Applications for these type of prob-
lems can be found in the design of reliable communication and transportation
networks [2,10].

Wireless ad hoc networks have also received significant attention in recent
studies [6,9]. Instead of direct connections between nodes, communication can
also take place by relaying through intermediate nodes. Here we assign a trans-
mission power to each node. As the transmission range is directly related to the
power used by a node, the goal is to find a fault tolerant network with min-
imum total power usage. Possible applications are environmental monitoring,
emergency disaster relief where wiring is difficult, and networks of vehicles [3,9].

In this paper, we study the probabilistic properties of the value of the optimal
solution within Yukich’s framework for Euclidean optimization problems. This
yields results both about convergence and concentration of the value of optimal
c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 59–72, 2018.
https://doi.org/10.1007/978-3-319-74180-2_5

60 B. Manthey and V. M. J. J. Reijnders

solutions as a function of the number n of vertices, dimension d of the underlying
Euclidean space, distance-power gradient p, and connectivity requirement k.

Finding a cheapest k-edge-connected network is NP-hard [8], and so is finding
a minimal power wireless network [5]. As we still want to have reasonably good
solutions in acceptable computation time, we need to find a good approxima-
tion algorithm. Partitioning algorithms are a simple, easy-to-implement type of
heuristics that show good performance on Euclidean optimization problems [4].
We devise a partitioning heuristic for the design of optimal k-edge-connected net-
works. Furthermore, we analyze it in the framework of smoothed analysis [14,19]
in order to explain its performance.

The rest of this paper is organized as follows. In Sect. 2 we give the relevant
definitions. We summarize related work in Sect. 3. The properties of k-edge-
connected graphs are in Sect. 4. The partitioning heuristic and its smoothed
analysis are presented in Sect. 5. We extend these results to k-edge-connected
power graphs in Sect. 6. We conclude with some open problems.

2 Definitions

Let V ⊆ R
d be a finite set of vertices, where d ∈ N is an arbitrary constant. In the

rest of the paper, n = |V | is the number of vertices. For two nodes u, v ∈ V , let
(u, v) denote the edge connecting u and v, and let |(u, v)| denote the Euclidean
distance between u and v.

A graph G = (V,E) is called k-edge-connected if G is connected after removal
of any set of at most k − 1 of its edges. An alternative characterization of k-
edge-connectedness is that there exist k edge-disjoint paths between every pair of
vertices. In this paper, we also call any complete graph k-edge-connected, even if
it contains fewer than k vertices. (Otherwise, no k-edge-connected graphs below
a certain size exist, which would cause technical issues.)

In this paper, we study k-edge-connected graphs of minimal costs, where costs
are defined as the sum of all edge lengths. The cost of an edge (u, v) is |(u, v)|p,
where p > 0 denotes the distant-power gradient. For a given graph G = (V,E),
the costs of this graph is the sum of its edge costs, i.e.,

∑
(u,v)∈E |(u, v)|p. Then

k-ECp(V) is the minimum cost of any k-edge-connected graph on V with costs
computed with distant-power gradient p. In the remainder of this paper, k ∈ N,
d ∈ N, and p > 0 are assumed to be fixed constants.

Besides the model above, where we pay per edge, and which could be viewed
as modeling wired networks, we also consider a model where we assign transmit
power PA(v) to the vertices v. Two vertices u and v are connected by an edge if
both have sufficient transmit power, i.e., if PA(u),PA(v) ≥ |(u, v)|p. The costs
of such a power assignment is the sum of all transmit powers, i.e.,

∑
v∈V PA(v).

The graph resulting of a power assignment is called the corresponding power
assignment graph.

k-ECPAp(V) denotes the minimum costs of any power assignment whose
corresponding power assignment graph is k-edge-connected. Both k-ECPAp and
k-ECp are Euclidean functionals. This means that they map a finite point set to

Probabilistic Properties of Highly Connected Random Geometric Graphs 61

a non-negative real number, are translation invariant, and scaling all points by
a factor of α > 0 changes the costs by a factor of αp [20].

Following Yukich [20], for a Euclidean functional Lp, we write Lp(V,R) to
denote the functional on V ∩ R, where R is some hyperrectangle. Usually, R =
[0, 1]d, and we omit R if it is clear from the context.

In order to fit k-ECp and k-ECPAp into Yukich’s framework for Euclidean
optimization problems [20], we have to define corresponding canonical boundary
functionals, an idea first articulated in Redmond’s thesis [16]. Roughly speaking,
in these functionals, the entire boundary of the rectangle is considered as one
additional vertex that can be used. To distinguish between a functional and its
boundary functional, we refer to the former as the original functional.

Given a hyperrectangle R and a point set V ⊆ R, a boundary graph
is a graph with nodes V plus the boundary ∂R of R as additional node.
A vertex v is connected to the boundary ∂R by adding edge (v, v∂) where
v∂ = arg minw∈∂R|(v, w)|. A boundary graph is called k-edge-connected if the
graph restricted to V is k-edge-connected, or if the graph on V ∪{∂R} is k-edge-
connected. Here, any edge connecting v ∈ V to ∂R counts as up to k independent
edges. We denote by k-ECp

B the boundary functional corresponding to k-ECp.
This means that k-ECp

B(V,R) is the minimum total length of a k-edge-connected
graph in terms of summed edge lengths on V ∪ ∂R in d-dimensional rectangle R
with pth power-weighted edges. Similarly, k-ECPAp

B is the boundary functional
of k-ECPAp. Here v is connected to the boundary if PA(v) ≥ |(v, v∂)|p.

3 Related Work

For a survey about properties of k-edge-connected graphs, we refer to Kammer
and Täubig [12]. Finding k-edge-connected networks of minimum costs is NP-
hard for k ≥ 2, both in the classical and the power assignment model [5,8].
Therefore, a considerable amount of research has been focused on approximation
algorithms.

Khuller and Vishkin [13] proved that the problem of finding a minimum-cost
k-edge connected graph can be approximated within a factor of 2 approximation
algorithm. Czumaj and Lingas [7] gave a polynomial-time approximation scheme
for this problem for the Euclidean case, where points are contained in R

d for some
fixed d.

Althaus et al. [1] devised several approximation algorithms for the problem of
finding a connected power assignment graph. Santi et al. [18] studied the connec-
tivity of power assignment graphs in the Euclidean case for d ∈ {1, 2, 3} under the
restriction that every vertex is assigned the same power r. They derived bounds
for r to achieve connectivity with high probability. De Graaf and Manthey [9]
analyzed connectivity in power assignment graphs. They proved properties sim-
ilar to our results of Sect. 4 for simple connectivity.

62 B. Manthey and V. M. J. J. Reijnders

Călinescu and Wan [6] analyzed several approximation algorithms for finding
cheap k-edge-connected power assignment graphs and obtained an approxima-
tion ratio of 2k for this problem.

4 Properties of k-ECp

In this section we show that k-ECp fits into Yukich’s framework for Euclidean
functionals [20]. We make heavy use of the following lemma, which states that
the union of two k-edge-connected graphs with non-empty intersection is also
k-edge-connected.

Lemma 4.1 (Matula [15]). Let G1 = (V1, E1) and G2 = (V2, E2) be k-edge-
connected graphs with V1 ∩ V2 �= ∅. Then the graph H = (V1 ∪ V2, E1 ∪ E2) is
k-edge-connected.

4.1 Yukich’s Framework

First, we prove that k-ECp is a geometrically subadditive functional. This shows
that the function value of a whole set is not larger – up to an additive error
term – than the sum of the function values of the sets in a partition.

Lemma 4.2. For p ≥ 1, k-ECp is geometrically subadditive, i.e. for all finite
sets V , all rectangles R and partitions of R into rectangles R1 and R2 we have

k-ECp(V,R) ≤ k-ECp(V,R1) + k-ECp(V,R2) + C1(diam R)p,

where C1 = C1(d, p) is a constant.

Proof. Consider the graphs (V1, E1) and (V2, E2) with Vi = V ∩ Ri that realize
the optimal solutions of k-ECp(V,R1) and k-ECp(V,R2), respectively. Without
loss of generality, we assume that |V1| ≥ |V2|. We distinguish three cases.

1. |V1|, |V2| ≥ k + 1. We join (V1, E1) and (V2, E2) by k vertex-disjoint edges
e1, . . . , ek. This results in a k-edge-connected graph on V . We have |ei| ≤
diam R. Thus, the costs of this k-edge-connected graph is bounded by

k-ECp(V,R) ≤ k-ECp(V,R1) + k-ECp(V,R2) +
k∑

i=1

|ei|p

≤ k-ECp(V,R1) + k-ECp(V,R2) + kdp/2(diam R)p.

2. |V1| ≥ k+1 and |V2| ≤ k. We know that (V2, E2) is complete. For each vertex
vi ∈ V2 we add k edges ei1 , . . . eik with endpoints in V1. Each pair of vertices
from V1 has at least k edge-disjoint paths in E1, and by adding eij each pair
in V has k edge-disjoint paths as well. At most k2 edges have been added this
way, and we can bound the costs of the k-edge-connected graph thus obtained
in a similar way as in the first case.

Probabilistic Properties of Highly Connected Random Geometric Graphs 63

3. |V1|, |V2| ≤ k. Both (V1, E1) and (V2, E2) are complete, and we know that
a complete graph is always k-edge-connected. So if we make the combined
graph complete as well, it is k-edge-connected. We need to add at most k2

edges this way, and k-ECp(V,R) can be bounded as in the previous cases.
�
Subadditivity gives an upper bound on the growth of k-ECp as a function of |V |.
Lemma 4.3 (growth bound). Let 0 < p < d. Then there exists a constant
C = C(d, p) such that for all cubes R ⊂ R

d and all V ⊂ R, we have

k-ECp(V,R) ≤ C(diam R)p|V |(d−p)/d.

Proof. This lemma follows directly by combining Lemma 4.2 and a result by
Yukich [20, Lemma 3.3].
�

Unfortunately, as the Euclidean functionals considered by Yukich [20], k-ECp

is not superadditive. If it were superadditive, then together with subadditivity
this makes the functional nearly additive in the sense that

k-ECp(V,R) ≈ k-ECp(V,R1) + k-ECp(V,R2).

We could then approximate the optimal solution value of the whole set by the
sum of optimal solutions on its partitions. The way to superadditivity is via the
canonical boundary functional of k-ECp

B , which is superadditive according to
the following lemma.

Lemma 4.4. For p ≥ 1, k-ECp
B is superadditive, i.e. for all finite sets V , all

rectangles R and all partitions of R into rectangles R1 and R2 we have

k-ECp
B(V,R) ≥ k-ECp

B(V,R1) + k-ECp
B(V,R2).

Proof. Let V and R together with a partition of R into rectangles R1 and R2

be given. Let Vi = V ∩ Ri for i ∈ {1, 2}. Let E be the edge set of a boundary
k-edge-connected graph on V or V ∪ {∂R} of minimum costs. For each edge
(u1, u2) ∈ E with ui ∈ Vi, we add two edges: One edge connecting u1 to the
closest point ∂u1 on the boundary of R1, and one edge connecting u2 to the
closest point ∂u2 on the boundary of R2. Now, he two induced subgraphs are
k-edge-connected. The sum of the costs of these two graphs does not exceed the
costs of k-ECp(V,R) by the triangle inequality and because p ≥ 1.
�

Next, we show that k-ECp and k-ECp
B are pointwise close. This yields that

both are approximately subadditive and superadditive.

Lemma 4.5. For 1 ≤ p < d, k-ECp is pointwise close to k-ECp
B, i.e. for all

finite sets V ⊂ [0, 1]d we have
∣
∣k-ECp(V) − k-ECp

B(V)
∣
∣ = o(|V |(d−p)/d).

64 B. Manthey and V. M. J. J. Reijnders

Proof. Let V ⊆ [0, 1]d be a finite set of points. Clearly, k-ECp(V) ≥ k-ECp
B(V).

Thus, we only have to prove k-ECp(V) ≤ k-ECp
B(V) + o(|V |(d−p)/p). If |V | ≤ k,

then this holds as |V | is constant. Thus, we assume that |V | ≥ k + 1 from now
on. We first need the following claim.

Claim 4.6. Let V ⊆ [0, 1]d, |V | = n, and 1 ≤ p < d. Consider a graph G =
(V,E) that realizes the optimal solution of k-ECp

B(V). Then the sum of the p-th
powers of the lengths of the edges connecting vertices in V with the boundary of
[0, 1]d is bounded by O(n(d−p−1)/(d−1)).

Proof. The proof follows ideas from Yukich [20] and depends on a dyadic sub-
division of [0, 1]d. Let Q0 by the cube of edge length 1/3 and centered within
[0, 1]d. Let Q1 be the cube of edge length 2/3, also centered within [0, 1]d. We
partition Q1−Q0 into subcubes of edge length 1/6. The number of such subcubes
is bounded by C6d−1 for some constant C = C(d).

We continue with this subdivision recursively. This means that at the j-th
stage we define cube Qj of edge length 1 − 2(3 · 2j)−1 and partition Qj − Qj−1

into subcubes of edge length (3 ·2j)−1. The number of such subcubes is bounded
from above by C3d−12j(d−1). We carry out this recursion until the �-th stage,
where � is the unique integer satisfying 2(�−1)(d−1) ≤ n ≤ 2�(d−1).

This procedure produces nested cubes Q1 ⊆ Q2 ⊆ · · · ⊆ Q�. It pro-
duces a dyadic covering of the cube until the moat [0, 1]d − Q� has a width
of O(n−1/(d−1)). We use these properties to prove Claim 4.6 as follows.

This dyadic subdivision partitions the largest cube Q� into at most∑k
j=0 C3d−12j(d−1) ≤ Cn subcubes, each with an edge length equal to the dis-

tance between the subcube and the boundary of [0, 1]d. Furthermore, by parti-
tioning each subcube into (k2y)d congruent subcubes, where y is the least integer
satisfying 2y ≥ d1/2, we obtain a partition P of Q� consisting of at most Cn sub-
cubes with the property that k times the diameter of each subcube is less than
the distance to the boundary.

Suppose V ⊆ [0, 1]d is a finite point set and G = (V,E) is the graph realizing
the optimal solution of k-ECp

B(V). We observe that in G, each subcube Q in P
contains at most k points in V which are rooted to the boundary. If there were
more than k points in V ∩ Q rooted to the boundary, we can do the following.
We know that these points will not have edges directly between them as they
already have k edge-disjoint paths between them, and edges between them would
then not all be in G. So we can take one of them and connect it to all the
other points rooted to the boundary (which are at least k), while removing the
connection to the boundary. As the diameter of each subcube is less than 1/k
times the distance to the boundary, this relinking gives us a cheaper solution,
contradicting the optimality of G.

The sum of the p-th powers of the lengths of the edges connecting vertices
in V ∩ (Qj − Qj−1) with the boundary is thus bounded by the product of the
number of subcubes in Qj − Qj−1 and the p-th power of the common diameter
of the subcubes, namely

C3d−12j(d−1) · (3 · 2j)−p := A(d, p, j).

Probabilistic Properties of Highly Connected Random Geometric Graphs 65

Summing over all 1 ≤ j ≤ � gives a bound for the sum of the p-th power of the
lengths of the edges connecting points to the boundary in V ∩ Q�:

�∑

j=1

A(d, p, j) ≤
{

C max{n(d−p−1)/(d−1), log n} if 1 ≤ p ≤ d − 1
C if d − 1 < p < d.

(1)

The log n term is needed to cover the case p = d−1. The sum of the p-th powers
of the lengths of the edges connecting vertices in V ∩ ([0, 1]d − Q�) with the
boundary is at most the product of n = |V | and the p-th power of the width of
the moat [0, 1]d − Q�, i.e. at most

n · Cn−p/(d−1) = Cn(d−p−1)/(d−1). (2)

Combining (1) and (2) proves the claim.
�
We can now continue with the proof of Lemma4.5. Consider U ⊂ V the set

of all vertices connected to the boundary. Let B ⊆ ∂[0, 1]d be the set of points
on the boundary to which vertices are connected. Then |U | ≥ |B|. As we want to
remove all edges to the boundary to get to a solution for our original functional,
we have to add new edges to maintain k-edge-connectivity. Recall that edges to
the boundary can count as up to k edges. As in the proof of Claim 4.6, we know
there are no edges between the points of U . To get a good bound on the increase
of costs that incurs by adding these edges, we use the following lemma.

Lemma 4.7. Fix 1 ≤ p < d and let G = (V,E) be a k-edge-connected graph
realizing the optimal solution for k-ECp(V, [0, 1]d). Then there exists a constant
c = c(k, d) such that the degree of every vertex v ∈ V is bounded by c.

Proof. Let us assume to the contrary that there exists a vertex v ∈ V for which
the degree is not bounded by c. We then divide [0, 1]d into cones originating
from v and with the property that for every two points x and y in a cone we
have ∠(x, y, v) < π/3. In this way, the number of cones we create is finite since
d is constant, and every point is covered by a cone. We consider a cone C with
an unbounded number of points connected to v and look at the point y that is
furthest from v and connected to v. Such a cone has to exist as the number of
cones is bounded. Let us consider two cases.

In the first case, the degree of y is greater than c as well, and y is connected
to all vertices in C that are also connected to v. This means both are connected
to more than k vertices in C. In that case we can remove the edge between v
and y as we would still have more than k edge-disjoint paths between v and y
(and other points will not be affected). Removing an edge would only lower the
cost for the graph, so this would contradict the optimality of the solution.

In the other case, we can find a vertex to which y is not connected, but v is.
Let us call this vertex z and consider the triangle Δ(v, z, y). As we know that
∠(z, v, y) < π/3, either ∠(z, y, v) > π/3 or ∠(v, z,)y > π/3 (or both). Using that
|(v, y)| ≥ |(v, z)|, we can see that |(y, z)| < |(v, y)|. If we then replace the edge
from v to y by the edge from y to z, the number of edge-disjoint paths from y to

66 B. Manthey and V. M. J. J. Reijnders

z or v cannot decrease. But as |(y, z)| < |(v, y)|, we also have |(y, z)|p < |(v, y)|p.
Thus, we have lowered the cost and still have a k-edge-connected graph. This
again would contradict the optimality of G.
�

With this lemma we can continue the proof of Lemma4.5. We can also get
a bound on the length of each edge we need to add. By using the triangle
inequality for p = 1 we get |(u, v)| ≤ |(u, u∂)| + |(u∂ , v∂)| + |(v∂ , v)|. Using the
triangle inequality for powers of metrics, we obtain

∑

(u,v)∈M

|(u, v)|p ≤ 2p−1

⎛

⎝
∑

(u,·)∈M

|(u, uB)|p +
∑

(u,v)∈M

|(uB , v)|p
⎞

⎠ (3)

≤ 4p−1

⎛

⎝
∑

(u,·)∈M

|(u, uB)|p +
∑

(u,v)∈M

|(uB , vB)|p +
∑

(·,v)∈M

|(vB , v)|p
⎞

⎠

≤ 4p
∑

(u,·)∈M

|(u, uB)|p + 4p−1k-ECp(B, [0, 1]d)

≤ 4pC1

∑

u∈U

|(u, uB)|p + 4p−1C2|V |(d−p−1)/(d−1) (by Lemma 4.3)

≤ 4pC1C3|V |(d−p−1)/(d−1) + o(|V |(d−p)/d) (by Claim 4.6)

≤ o(|V |(d−p)/d).

Now we have changed a graph that achieves the optimal solution for
k-ECp

B(V, [0, 1]p) into a k-edge-connected graph. The cost of this new graph
provides an upper bound for k-ECp(V). Observing that we have increased the
costs by at most o(|V |(d−p)/d) concludes the proof.
�

We have shown geometric subadditivity, superadditivity, and pointwise close-
ness. The last property that we need is smoothness. Roughly speaking, smooth-
ness means that adding or removing a few vertices does not change the function
value by much.

Theorem 4.8. For 1 ≤ p < d, k-ECp is smooth, i.e. for all finite sets U, V ⊆
[0, 1]d we have

∣
∣k-ECp(U ∪ V) − k-ECp(U)

∣
∣ = O(|V |(d−p)/d).

Proof. Subadditivity (Lemma4.2) and Lemma 4.3 together yield

k-ECp(U ∪ V) ≤ k-ECp(U) + k-ECp(V) + O(1) ≤ k-ECp(U) + O
(|V |(d−p)/d

)
.

It remains to be shown that

k-ECp(U, [0, 1]d) − k-ECp(U ∪ V, [0, 1]d) ≤ O(|V |(d−p)/d).

We start with a graph G = (U ∪ V,E) that realizes k-ECp(U ∪ V). After
removal of V , we can modify the remaining graph to obtain a k-edge-connected

Probabilistic Properties of Highly Connected Random Geometric Graphs 67

graph on U without increasing the cost by more than O(|V |(d−p)/d). Let NV ⊆ U
be the set of direct neighbors of vertices in V . By Lemma 4.7 we know that
|NV | ≤ c|V | for some constant c, that only depends on k and d. Let m = |NV |.

We now compute a k-edge-connected graph T of minimum cost on NV . By
Lemma 4.3, the cost of this graph is bounded by O(m(d−p)/d). Let F be the set
of edges of the subgraph of G induced by U . Clearly, the graph with edge set
T ∪F has weight at most k-ECp(U ∪V, [0, 1]d)+O(|V |(d−p)/d). It remains to be
proved that it is k-edge-connected. Fix any two vertices u, v ∈ V . We distinguish
three cases:

1. Both u and v are in NV . As T is k-edge-connected graph, there are k edge-
disjoint paths connecting u to v.

2. Only one of u and v is in NV . Without loss of generality, let v ∈ NV and
u ∈ U\NV . Consider k edge-disjoint paths P1, . . . , Pk from u to v in (U∪V,E).
Let qi be the first vertex of NV that Pi reaches. The nodes q1, . . . , qk are not
necessarily distinct, and we can have qi = v. However, since T is k-edge-
connected, there exist k edge-disjoint paths within T connecting qi to v for
each i ∈ {1, . . . , k}.

3. Both u and v are not in NV . Take any x ∈ NV , then Item 2 yields that there
are k edge-disjoint paths from u to x and from x to v. By Lemma 4.1, we
know there are also k edge-disjoint paths from u to v.
�

Smoothness for the boundary functional follows with an almost identical proof.

Theorem 4.9. For 1 ≤ p < d, k-ECp
B is smooth.

4.2 Limit Theorems

For the theorems on the convergence of optimal solutions, we need the notion
of complete convergence. Let Xn, for n ∈ N, be a sequence of random variables.
Then Xn converges completely (c.c.) to a constant C if and only if for all ε > 0
we have ∞∑

n=1

P
(|Xn − C| > ε

)
< ∞.

This notion of convergence was first introduced by Hsu and Robbins [11].
As we have geometric subadditivity, superadditivity, pointwise closeness,

and smoothness, several limit theorems directly follow. These are given in this
section. The results show that the functional on random points is highly concen-
trated around its expected value.

Theorem 4.10. Let V be a set of n points drawn independently and uniformly
from [0, 1]d. Fix 1 ≤ p < d and k ∈ N. Then there exists a positive constant
α = α(k-ECp, d, k) such that

lim
n→∞

k-ECp(V)
n(d−p)/p

= α c.c., and

lim
n→∞

k-ECp
B(V)

n(d−p)/p
= α c.c.

68 B. Manthey and V. M. J. J. Reijnders

The following famous limit theorem is due to Rhee [17]. This theorem states that
the solution value is not far from its expected value when we look at randomly
places vertices.

Theorem 4.11. Fix d ≥ 2, 1 ≤ p < d and k ∈ N. Let V be a set of n points
drawn independently and uniformly from [0, 1]d. Then there exists constants c1 =
c1(k-ECp, d) and c2 = c2(k-ECp, d) such that for all t > 0 we have

P
(∣
∣k-ECp

(
V

) − E[k-ECp
(
V

)
]
∣
∣ > t

) ≤ c1 exp
(−c2t

2d/(d−p)

n

)

.

5 Partitioning Heuristics

Partitioning heuristics are a generic approach to design heuristics for Euclidean
optimization problems: The d-dimensional Euclidean space is divided into a num-
ber of cells such that each cell contains only a small number of points. This allows
es to compute quickly optimal solutions for the set of points in each cell. Finally,
the solutions of the individual cells are combined to obtain a solution of the whole
set of points. We describe this more formally in the following Algorithm5.1.

Algorithm 5.1. (Partitioning Scheme)
Input: set V ⊆ [0, 1]d of n points and number s > k.

1. Partition [0, 1]d into � = d
√

n/s stripes of dimension d − 1 such that each
stripe contains exactly n/� = (nd−1s)1/d points.

2. Keep partitioning each i + 1-dimensional stripe into � stripes of dimension i
such that each stripe contains exactly n/�i = (nd−isi)1/d points. Stop at i = 1
so that each 2-dimensional stripe is partitioned into � cells with n/�d = s
points. In this way we end up with �d = n/s cells.

3. Compute a graph achieving the optimal solution of k-ECp for each cell.
4. Join the graphs to obtain a k-edge-connected graph on V as follows: Choose

k points of each cell. Connect these k points to the k points of an adjacent
cell such that the graph becomes k-edge-connected.

Overall, we obtain the following upper bound on the approximation performance.

Theorem 5.2. Let s > k, and let 1 ≤ p < d. The partitioning heuristic (Algo-
rithm5.1) for k-ECp can be implemented to run in time 2O(s2) + O(n). Further-
more, let PSEp(V) denote the cost of the k-edge-connected graph computed by
Algorithm5.1. Then PSEp(V) ≤ k-ECp(V) + O

(
(n/s)

d−p
d

)
.

Proof. First, the graph that we get as an output from Algorithm5.1 is k-edge-
connected because of Lemma 4.1. Thus, a feasible solution is computed. Second,
a simple brute-force search shows that an optimal k-edge-connected graph of
s points can be computed in time 2O(s2). The joining can easily be done in
linear time. Third, let PSEp(V) be the cost of the k-edge-connected graph on V
computed by Algorithm 5.1. By using subadditivity, PSEp(V) is bounded from

Probabilistic Properties of Highly Connected Random Geometric Graphs 69

above by k-ECp(V) + C1 plus the costs of joining the optimal solutions in the
cells (Step 4). Here, C1 = C1(d, p) > 0 is the constant of Lemma 4.2.

The joining (Step 4) can be implemented to yield additional costs of at most
O((n/s)(d−p)/d) using Theorem 4.3). We do this by lacing cells together in a
snakelike succession. We create a minimal length matching of k vertices between
two succeeding cells. It is easy to check that this yields a k-edge-connected graph
on the cells we lace together. This yields the last claim of the theorem.
�

The running-time of the partitioning algorithm is polynomial for s =
Ω(n/

√
log n). The above theorem does not yield an approximation ratio in the

worst case. If the value of an optimum solution is small compared to the additive
error term, then the approximation guarantee is poor. However, typically, this
is not the case, and partitioning heuristics work quite well on typical instances.

In order to explain this, partitioning heuristics for Euclidean optimiza-
tion problems have been analyzed in the framework of smoothed analysis for
Euclidean optimization problems introduced by Bläser et al. [4]. They use the
so-called one-step model to construct semi-random instances: Let φ ≥ 1 be
a perturbation parameter. For each of the n points, an adversary specifies a
probability density function [0, 1]d → [0, φ]. Then the points are drawn indepen-
dently according to their respective probability density function. The smoothed
performance is then the maximum expected performance that the adversary can
achieve by choosing the density functions. The parameter φ limits the power of
the adversary: If φ = 1, then the adversary can only choose the uniform dis-
tribution on the unit hypercube [0, 1]d. For larger φ, the adversary can concen-
trate more and more probability mass and, thus, is able to specify (worst-case)
instances more accurately.

For ease of presentations, we restrict ourselves to the case d = 2 and p = 1
in the remainder of this section, because Bläser et al. [4] also stated their results
only for d = 2. It is quite straightforward to generalize the results to larger values
of d, but it seems to be non-trivial to generalize them to p > 1. We obtain the
following smoothed analysis result.

Theorem 5.3. For p = 1, d = 2, and s = Θ(
√

log n), Algorithm5.1 has
polynomial running-time and achieve a smoothed approximation ratio of 1 +
O

(√
φ√
log n

)
.

Proof. The polynomial running-time follows from the discussion above. The
approximation ratio follows from a result by Bläser et al. [4, Theorem 3.8]
together with Theorem 5.2.
�

6 Extension to k-ECPA

The results for k-ECp are easily copied to k-ECPAp by making some small
adjustments to the proofs. We start off with subadditivity.

Lemma 6.1. For p ≥ 1, k-ECPAp is a geometric subadditive functional.

70 B. Manthey and V. M. J. J. Reijnders

Proof. We follow the proof of Lemma 4.2. We need to increase PA(v) accordingly
for the edges that need to be added in the power assignment graph. We define
duv = max{0, |(u, v)| − PA(u)}. This denotes the increase in power needed for
u to reach v. Then we can add an edge (u, v) by a change of power equal to
(PA(u) + duv)p + (PA(v) + dvu)p − PA(u)p − PA(v)p ≤ 2(diam R)p. The rest of
the proof follows.
�

Proving superadditivity of k-ECPAp
B is even easier than proving it of k-ECp

B

as the power of vertices that lose a connection is already large enough to reach
to boundary.

Lemma 6.2. For p ≥ 1, k-ECPAp
B is superadditive.

Obtaining pointwise closeness of k-ECPAp and k-ECPAp
B is a bit more dif-

ficult as not all theorems we used in the proof of Lemma 4.5 hold for these
functionals. We first state corresponding auxiliary results.

Claim 6.3. Let V ⊂ [0, 1]d, |V | = n, and 1 ≤ p < d. Consider a graph realis-
ing the optimal solution of k-ECPAp

B(V, [0, 1]d). The sum of the p-th powers of
the lengths of the edges connecting vertices in V with the boundary of [0, 1]d is
bounded by O(n(d−p−1)/(d−1)).

Proof. The proof is similar to that of Claim 4.6, except that for power assign-
ment, in case more than k points are rooted to the boundary, all of them are
also connected to each other (as the diameter of the subcube is less than the
distance to the boundary). Without changing the solution, we can remove one
of the roots to the boundary. This also gives us that we only have to take into
account at most k points rooted to the boundary in each subcube. The rest of
the proof follows.
�

As we know the degree of vertices in an optimal power assignment graph
can be unbounded [9], we cannot show Lemma 4.7 for k-ECPAp as well. We do
however have the following lemma:

Lemma 6.4. Fix 1 ≤ p < d, let V ⊂ [0, 1]d be V is a finite subset and let R be
a d-dimensional rectangle. Then we have that k-ECPAp(V,R) ≤ 2 k-ECp(V,R).

Proof. Consider a graph G = (V,E) achieving an optimal solution for
k-ECp(V,R). Then for each vertex v ∈ V we take the longest edge from v and
we set power PA(v) to the length of this edge. Now all edges that were in E, are
also in the graph resulting from power assignment PA. So the power assignment
graph resulting from power assignment PA is also k-edge-connected, and has
costs no more than twice k-ECp(V,R). An optimal solution for k-ECPAp(V,R)
cannot have costs higher than PA, so k-ECPAp(V,R) ≤ 2k-ECp(V,R) follows.
�
These now make sure we can obtain pointwise closeness.

Lemma 6.5. For 1 ≤ p < d, k-ECPAp is pointwise close to k-ECPAp
B.

Probabilistic Properties of Highly Connected Random Geometric Graphs 71

Proof. The proof for power assignments is the same as the proof of Lemma 4.5,
except that use Lemma 6.4 and Eq. (3) to get the following result for a k-edge-
connected power assignment graph on U

k-ECPAp(U, [0, 1]d) ≤ 2 k-ECp(U, [0, 1]d) = 2
∑

(u,v)∈M

d(u, v)p ≤ o(|V |(d−p)/d),

where M is the set of edges used create a k-edge-connected graph on U . This
gives us for k-ECPAp that we have k-ECPAp(V, [0, 1]d) ≤ k-ECPAp

B(V, [0, 1]d)+
o(|V |(d−p)/p), and therefore k-ECPAp

B and k-ECPAp are pointwise close.
�
If we try to extend the proof of Theorem4.8 to power assignments, we get

into trouble with the possible unbounded degree of power assignment. So instead
of trying to bound the number of vertices connected to one vertex, we bound the
number of k-edge-connected components connected to one vertex. To do this, we
use another lemma [9, Lemma 3.2]. This way, we get smoothness for k-ECPAp.

Theorem 6.6. For 1 ≤ p < d, k-ECPAp is smooth.

Now the limit theorems also hold for k-ECPAp (Theorems 4.10 and 4.11), as
well as the results for the partitioning algorithm (Theorems 5.2 and 5.3).

7 Conclusions and Open Problems

In this paper, we have looked at fault tolerant networks in terms of k-edge-
connected graphs. We studied both a standard (wired) model and a model for
wireless networks. We analyzed the corresponding Euclidean functionals k-ECp

and k-ECPAp on random inputs. We fitted k-ECp into Yukich’s framework
for Euclidean functionals, and obtained probabilistic results for k-ECp. With
Yukich’s framework we derived several concentration results. We derived a par-
titioning heuristic for k-EC1, for which we proved an additive approximation
guarantee. We analyzed its approxmiation ratio in the framework of smoothed
analysis. Finally, we transferred results to k-ECPAp.

We conclude this paper with a few open problems for future research.
In this paper we have looked only at k-edge-connected graphs. But we can

also consider connectivity in terms of k-vertex-connected graphs. While subaddi-
tivity, superadditivity of the corresponding boundary functional, and pointwise
closeness is relatively straightforward to prove, we feel that the main technical
difficulty in proving smoothness is the lack of a counterpart of Lemma4.1.

Another possible extension would be the case p ≥ d, which would require
closeness in mean and smoothness in mean, because pointwise closeness and
smoothness do not hold in this setting.

References

1. Althaus, E., Călinescu, G., Mandoiu, I.I., Prasad, S., Tchervenski, N., Zelikovsky, A.:
Power efficient range assignment for symmetric connectivity in static ad hoc wireless
networks. Wireless Netw. 12(3), 287–299 (2006)

72 B. Manthey and V. M. J. J. Reijnders

2. Bendali, F., Diarrassouba, I., Mahjoub, A.R., Didi Biha, M., Mailfert, J.: A branch-
and-cut algorithm for the k-edge connected subgraph problem. Networks 55(1),
13–32 (2010)

3. Bettstetter, C.: On the minimum node degree and connectivity of a wireless multi-
hop network. In: Proceedings of the 3rd ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc), pp. 80–91. ACM (2002)

4. Bläser, M., Manthey, B., Rao, B.V.R.: Smoothed analysis of partitioning algo-
rithms for euclidean functionals. Algorithmica 66(2), 397–418 (2013)

5. Clementi, A.E.F., Penna, P., Silvestri, R.: On the power assignment problem in
radio networks. Mob. Netw. Appl. 9(2), 125–140 (2004)

6. Calinescu, G., Wan, P.-J.: Range assignment for high connectivity in wireless ad
hoc networks. In: Pierre, S., Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2003.
LNCS, vol. 2865, pp. 235–246. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39611-6 21

7. Czumaj, A., Lingas, A.: On approximability of the minimum-cost k-connected
spanning subgraph problem. In: Tarjan, R.E., Warnow, T.J. (eds.) Proceedings
of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
281–290. ACM/SIAM (1999)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness (1979)

9. de Graaf, M., Manthey, B.: Probabilistic analysis of power assignments. Random
Struct. Algorithms 51(3), 483–505 (2017)

10. Grötschel, M., Monma, C.L., Stoer, M.: Polyhedral approaches to network surviv-
ability. In: Roberts, F., Hwang, F., Monma, C.L. (eds.) Proceedings of the Work-
shop on Reliability of Computer and Communication Networks. Series in Discrete
Mathematics and Theoretical Computer Science, vol. 5, pp. 121–141. American
Mathematical Society (1991)

11. Hsu, P.L., Robbins, H.: Complete convergence and the law of large numbers. Proc.
Nat. Acad. Sci. 33(2), 25–31 (1947)

12. Kammer, F., Täubig, H.: Connectivity. In: Brandes, U., Erlebach, T. (eds.) Net-
work Analysis. LNCS, vol. 3418, pp. 143–177. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31955-9 7

13. Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. J.
ACM 41(2), 214–235 (1994)

14. Manthey, B., Röglin, H.: Smoothed analysis: analysis of algorithms beyond worst
case. IT – Inf. Technol. 53(6), 280–286 (2011)

15. Matula, D.W.: The cohesive strength of graphs. In: Chartrand, G., Kapoor, S.F.
(eds.) The Many Facets of Graph Theory. LNM, vol. 110, pp. 215–221. Springer,
Heidelberg (1969). https://doi.org/10.1007/BFb0060120

16. Redmond, C.: Boundary rooted graphs and euclidean matching algorithms. Ph.D.
thesis, Lehigh University, Bethlehem, PA, USA (1993)

17. Rhee, W.T.: A matching problem and subadditive euclidean functionals. Ann.
Appl. Probab. 3(3), 794–801 (1993)

18. Santi, P., Blough, D.M., Vainstein, F.: A probabilistic analysis for the range assign-
ment problem in ad hoc networks. In: Proceedings of the 2nd ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pp. 212–220. ACM
(2001)

19. Spielman, D.A., Teng, S.H.: Smoothed analysis: an attempt to explain the behavior
of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)

20. Yukich, J.E.: Probability Theory of Classical Euclidean Optimization Problems.
LNM, vol. 1675. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0093472

https://doi.org/10.1007/978-3-540-39611-6_21
https://doi.org/10.1007/978-3-540-39611-6_21
https://doi.org/10.1007/978-3-540-31955-9_7
https://doi.org/10.1007/978-3-540-31955-9_7
https://doi.org/10.1007/BFb0060120
https://doi.org/10.1007/BFb0093472

On Indicated Coloring of Some Classes
of Graphs

P. Francis, S. Francis Raj(B), and M. Gokulnath

Department of Mathematics, Pondicherry University,
Puducherry 605014, India

selvafrancis@gmail.com, francisraj s@yahoo.com,

gokulnath.math@gmail.com

Abstract. Indicated coloring is a slight variant of the game coloring
which was introduced by Grzesik [6]. In this paper, we obtain structural
characterization of connected {P5, K4, Kite, Bull}-free graphs which
contains an induced C5 and connected {P6, C5, K1,3}-free graphs that
contains an induced C6. Also, we prove that these graphs are k-indicated
colorable for all k ≥ χ(G). In addition, we show that complete expan-
sion of C5 is k-indicated colorable for all k ≥ χ(G) and as a consequence,
we exhibit that {P2 ∪ P3, C4}-free graphs, {P5, C4}-free graphs are k-
indicated colorable for all k ≥ χ(G). This partially answers one of the
questions which was raised by Grzesik [6].

Keywords: Game chromatic number · Indicated chromatic number
P5-free graphs

2000 AMS Subject Classification: 05C75

1 Introduction

All graphs considered in this paper are simple, finite and undirected. For S, T ⊆
V (G), let 〈S〉 denote the subgraph induced by S in G and let [S, T] denote the set
of all edges with one end in S and the other end in T . Let F be a family of graphs.
We say that G is F-free if it contains no induced subgraph which is isomorphic to
a graph in F . For two vertex-disjoint graphs G1 and G2, the join of G1 and G2,
denoted by G1+G2, is the graph whose vertex set V (G1+G2) = V (G1)∪V (G2)
and the edge set E(G1 + G2) = E(G1) ∪ E(G2) ∪ {xy : x ∈ V (G1), y ∈ V (G2)}.
We write H � G, if H is an induced subgraph of G. Next, the coloring number
of a graph G, denoted by col(G), is defined by col(G) = 1 + max

H⊆G
δ(H).

A game coloring of a graph is a coloring of the vertices in which two players
Ann and Ben are alternatively coloring the vertices of the graph G properly by
using a fixed set of colors C. The first player Ann is aiming to get a proper
coloring of the whole graph, where as the second player Ben is trying to prevent
the realization of this project. If all the vertices are colored then Ann wins the

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 73–80, 2018.
https://doi.org/10.1007/978-3-319-74180-2_6

74 P. Francis et al.

game, otherwise Ben wins (that is, at that stage of the game there appears a
block vertex. A block vertex means an uncolored vertex which has all colors from
C on its neighbors). The minimum number of colors required for Ann to win the
game on a graph G irrespective of Ben’s strategy is called the game chromatic
number of the graph G and it is denoted by χg(G). There has been a lot of papers
on game coloring. See for instance, [11–13]. In indicated coloring, the role of Ann
and Ben is as follows: in each round the first player Ann selects a vertex and
the second player Ben colors it properly, using a fixed set of colors. The aim of
Ann as in game coloring is to achieve a proper coloring of the whole graph G,
while Ben tries to “block” some vertex. The smallest number of colors required
for Ann to win the game on a graph G is known as the indicated chromatic
number of G and is denoted by χi(G). Clearly from the definition we see that
ω(G) ≤ χ(G) ≤ χi(G) ≤ Δ(G)+1. For a graph G, if Ann has a winning strategy
while using k colors, then we say that G is k-indicated colorable.

In [13], Zhu has asked the following question for game coloring. If Ann has
a winning strategy using k colors, will Ann have a winning strategy using k + 1
colors? The same question was asked by Grzesik for indicated coloring. The
question can be equivalently stated as “Whether G is k-indicated colorable for
every k ≥ χi(G)”. There has been already some partial answers to this question.
For instance see [5,8,10]. In this paper, we obtain structural characterization of
connected {P5,K4,Kite,Bull}-free graphs which contains an induced C5 and
connected {P6, C5,K1,3}-free graphs which contains an induced C6. Also, we
prove that these graphs are k-indicated colorable for all k ≥ χ(G). In addition,
we show that K[C5], the complete expansion of C5, is k-indicated colorable for
all k ≥ χ(G) and as a consequence, we exhibit that {P2 ∪ P3, C4}-free graphs,
{P5, C4}-free graphs are k-indicated colorable for all k ≥ χ(G).

2 Structural Characterization of Some Free Graphs
and Their Indicated Coloring

For a bipartite graph G, the game chromatic number can be arbitrarily large
when compared to the indicated chromatic number. In [6], Grzesik has shown
that χi(G) = 2.

Theorem 2.1 ([6]). Every bipartite graph is k-indicated colorable for every
k ≥ 2.

Next, let us recall the definition of complete expansion and independent
expansion of a graph G. Let G be a graph on n vertices v1, v2, . . . , vn, and let
H1,H2, . . . , Hn be n vertex-disjoint graphs. An expansion G(H1,H2, . . . , Hn) of
G is the graph obtained from G by

(i) replacing each vi of G by Hi, i = 1, 2, . . . , n, and
(ii) by joining every vertex in Hi with every vertex in Hj whenever vi and vj

are adjacent in G.

On Indicated Coloring of Some Classes of Graphs 75

For i ∈ {1, 2, . . . , n}, if Hi = Kmi
, then G(H1,H2, . . . , Hn) is said to be

a complete expansion of G and is denoted by K[G](m1,m2, . . . ,mn) or K[G].
For i ∈ {1, 2, . . . , n}, if Hi = Kmi

, then G(H1,H2, . . . , Hn) is said to be an
independent expansion of G and is denoted by I[G](m1,m2, . . . ,mn) or I[G].

Fig. 1. {P6, C5, K1,3}-free graph contains an induced C6

The study of P5-free graphs and P6-free graphs has been of interest for a
lot of coloring parameters. For instance see, [2,4,7,9]. In this direction, we have
obtained the structural characterization of a connected {P6, C5,K1,3}-free graph
that contains an induced C6.

Theorem 2.2. If G is a connected {P6, C5,K1,3}-free graph which contains an
induced C6 then G is isomorphic to the graph given in Fig. 1. Here V (G) =
(∪5

i=0Ai) ∪ (∪2
j=0Bj) and the circle denote the complete subgraph induced by the

sets Ai and Bj and the double line between any two sets denote the join of the
two sets.

Proof. Let G be a connected {P6, C5,K1,3}-free graph that contains an induced
C6

∼= 〈{v0, v1, v2, v3, v4, v5}〉 = 〈N0〉, and let Ni = {x ∈ V (G) : dist(x,N0) = i},
i ≥ 1.

Claim 1: If x ∈ N1, then 〈N(x) ∩ N0〉 ∼= P3 or 2K2.

For x ∈ N1, the possibilities for 〈N(x)∩N0〉 are K1,K2, P3, P4, P5, 2K1, 3K1,
2K2,K1∪K2,K1∪P3 and C6. Here (a) if 〈N(x)∩N0〉 ∼= K1 or K2, then P6 � G,
(b) if 〈N(x) ∩ N0〉 ∼= P4 or K1 ∪ K2, then C5 � G, (c) if 〈N(x) ∩ N0〉 ∼= P5 or
C6 (or) K1 ∪ P3 (or) 3K1 (or) 2K1, then K1,3 � G, a contradiction. Finally, if
〈N(x)∩N0〉 ∼= P3 or 2K2, we see that neither P6 nor C5 (nor) K1,3 is an induced
subgraph of 〈N0 ∪ N1〉. Thus 〈N(x) ∩ N0〉 ∼= P3 or 2K2.

Throughout this proof, for any integer i, vi means vi (mod 6) and Ai means
Ai (mod 6). For 0 ≤ i ≤ 5, let Ai = {x ∈ N1 : N(x)∩N0 = {vi−1, vi, vi+1}}∪{vi}
and Bi = {x ∈ N1 : N(x) ∩ N0 = {vi−2, vi−1, vi+1, vi+2}}.

76 P. Francis et al.

Claim 2: 〈∪5
i=0Ai〉 ∼= K[C6].

For every i, 0 ≤ i ≤ 5, we have (a) 〈Ai〉 is complete (suppose if there exist
vertices x, y ∈ Ai such that xy /∈ E(G), then 〈{vi+1, vi+2, x, y}〉 ∼= K1,3 �
G), (b) [Ai, Ai+1] is complete, (if not, there exist vertices x ∈ Ai and y ∈
Ai+1 such that xy /∈ E(G), and hence 〈{x, vi, y, vi+2, vi+3, vi+4}〉 ∼= P6 � G),
(c) [Ai, Ai+2] = ∅, (suppose if there exist vertices x ∈ Ai and y ∈ Ai+2 such
that xy ∈ E(G), then 〈{x, y, vi+3, vi+4, vi+5}〉 ∼= C5 � G), (d) [Ai, Ai+3] = ∅,
(otherwise as shown previously, we can find x ∈ Ai and y ∈ Ai+3 such that
xy ∈ E(G), and 〈{x, vi−1, vi+1, y}〉 ∼= K1,3 � G). Thus from (a), (b), (c) and
(d), it can be seen that 〈∪5

i=0Ai〉 ∼= K[C6].

Claim 3: 〈Bi〉 is complete, for i = 0, 1, 2, 3, 4, 5.

Here, if there exist vertices x, y ∈ Bi such that xy /∈ E(G), then
〈{vi−1, vi, x, y}〉 ∼= K1,3 � G, a contradiction.

Claim 4: [Bi, Bi+1] = ∅, for i = 0, 1, 2, 3, 4, 5.

Suppose if there exist vertices x ∈ Bi and y ∈ Bi+1 such that xy ∈ E(G),
then 〈{x, y, vi+1, vi−2}〉 ∼= K1,3 � G, a contradiction.

Claim 5: [Ai, Bi] = ∅, i = 0, 1, 2, 3, 4, 5.

On the contrary, if there exist vertices x ∈ Ai and y ∈ Bi such that xy ∈
E(G), then 〈{y, x, vi−2, vi+2}〉 ∼= K1,3 � G, a contradiction.

Claim 6: [Ai, Bi+1] is complete, for i = 0, 1, 2, 3, 4, 5.

If not, there exist vertices x ∈ Ai and y ∈ Bi+1 such that xy /∈ E(G). Here
〈{x, vi−1, y, vi+2, vi+1}〉 ∼= C5 � G, a contradiction.

Claim 7: [Ai, Bi+2] is complete, for i = 0, 1, 2, 3, 4, 5.

It is easy to observe that if there exist vertices x ∈ Ai and y ∈ Bi+2 such
that xy /∈ E(G), then 〈{x, vi−1, vi−2, y, vi+1}〉 ∼= C5 � G, a contradiction.

Claim 8: Ni = ∅, for all i, i ≥ 2.

It is enough to show that N2 = ∅. Suppose N2 = ∅, then there exists a vertex
x ∈ N2. Since G is connected, there exists a vertex y ∈ Aj or y ∈ Bj for some
j ∈ {0, 1, . . . , 5} such that xy ∈ E(G). Then 〈{y, vj−1, vj+1, x}〉 ∼= K1,3 � G, a
contradiction. Thus V (G) = N0 ∪ N1.

Note that Bj = Bj+3 for every j ∈ {0, 1, 2}. From all these Claims, we see
that G will be isomorphic to the graph shown in Fig. 1. ��
Corollary 2.3. If G is a connected {P6, C5, P5,K1,3}-free graph that contains
an induced C6 then G ∼= K[C6].

On Indicated Coloring of Some Classes of Graphs 77

Fig. 2. Some special graphs

Next, we have obtain the structural characterization of a connected
{P5,K4,Kite,Bull}-free graphs that contains an induced C5. Here, the graphs
Kite and Bull are shown in Fig. 2. The proof of Theorem 2.4 is similar to that
given in Theorem 2.2 but with a little more involvement.

Theorem 2.4. If G is a connected {P5,K4,Kite,Bull}-free graph that contains
an induced C5, then V (G) = V1∪V2∪V3 such that (1) 〈V2〉 is a complete bipartite
graph with bipartition B and S, (2) 〈V1 ∪ V3〉 is disjoint union of I[C5]’s and
bipartite graphs, (3) [V1, B] is complete, [V1, S] = [V1, V3] = [V3, B] = ∅ and (4)
there exists x∗ ∈ S such that [x∗, V3] is complete.

Even though the graph G shown in Fig. 1 looks simple, it looks challenging to
obtain the indicated chromatic number of G. So, we have only considered the
indicated coloring of K[C6].

Proposition 2.5. For 1 ≤ i ≤ 6, let mi’s be positive integers. Then the graph
G = K[C6](m1,m2,m3,m4,m5,m6) is k-indicated colorable for all k ≥ χ(G).

Without much difficulty, by using Theorem 2.9, Corollary 2.3 and Proposition
2.5 one can get Corollary 2.6.

Corollary 2.6. If G is a {P6, C5, P5,K1,3}-free graph that contains an induced
C6, then G is k-indicated colorable for all k ≥ χ(G).

By using the structural characterization given in Theorem 2.4, one can easily
find the chromatic number of {P5,K4,Kite,Bull}-free graph that contain an
induced C5.

Corollary 2.7. If G is a {P5,K4,Kite,Bull}-free graph that contain an induced
C5, then χ(G) = 3 if and only if G ∼= I[C5], otherwise χ(G) = 4.

Now let us consider the indicated coloring of G = I[Cn](m1,m2, . . . ,mn). By
presenting the vertices of any induced Cn cyclically in G and then by presenting
the remaining vertices in any order, Ann will get a winning strategy for G using
k colors, for all k ≥ χ(G).

Theorem 2.8. For 1 ≤ i ≤ n, let mi’s be positive integers. Then the graph G =
I[Cn](m1,m2, . . . ,mn) is k-indicated colorable for all k ≥ χ(G).

Let us recall the result on indicated coloring of union of two graphs.

78 P. Francis et al.

Theorem 2.9 ([10]). Let G = G1 ∪ G2. If G1 is k1-indicated colorable for
every k1 ≥ χi(G1) and G2 is k2-indicated colorable for every k2 ≥ χi(G2), then
χi(G) = max{χi(G1), χi(G2)} and G is k-indicated colorable for all k ≥ χi(G).

Now, let us consider the indicated coloring of {P5,K4,Kite,Bull}-free graphs
which contains an induced C5.

Theorem 2.10. Let G be a {P5,K4,Kite,Bull}-free graph which contains an
induced C5. Then G is k-indicated colorable for all k ≥ χ(G).

Proof. By Theorem 2.9, it is enough to prove the result for a connected
{P5,K4,Kite,Bull}-free graph that contains an induced C5. Let G be such a
graph. Suppose χ(G) = 3, then G ∼= I[C5]. Thus by Theorem 2.8, G is k-indicated
colorable for all k ≥ χ(G). Suppose not, χ(G) = 4. Then G is isomorphic to the
graph mentioned in Theorem 2.4. Let {1, 2, . . . , k ≥ 4} be the set of colors. We
shall show that G is k-indicated colorable. Let Ann start by presenting x∗ and a
vertex b ∈ B. Without loss of generality, let the color used by Ben for b and x∗

be 1 and 2 respectively. Since [b, V1] is complete and [x∗, V3] is complete, the set
of available colors for V1 and V2 are {2, 3, . . . , k} and {1, 3, 4, . . . , k} respectively.
Since [V1, V3] = ∅, 〈V1 ∪ V3〉 is a disjoint union of I[C5]’s and bipartite graphs,
by Theorems 2.1 and 2.8, 〈V1 ∪ V3〉 is l-indicated colorable for all l ≥ 3. That
is, Ann has a winning strategy for 〈V1〉 while using the colors {2, 3, . . . , k} and a
winning strategy for 〈V3〉 while using the colors {1, 3, 4, . . . , k}. After presenting
the vertices of V1 and V3 by using these winning strategies, Ann will present the
remaining vertices of B and S in any order. Clearly, the color of the vertices
b and x∗, namely 1 and 2 are available for the uncolored vertices of B and S
respectively. Thus Ann wins the game on G with k colors, k ≥ 4. ��

3 Indicated Coloring of K[C5] and Some
of its Consequences

Let us start this Section by recalling two of the results which were proved in [10].

Theorem 3.1 ([10]). Any graph G is k-indicated colorable for all k ≥ col(G).

Theorem 3.2 ([10]). Let G = G1 + G2. If G1 is k1-indicated colorable for
every k1 ≥ χi(G1) and G2 is k2-indicated colorable for every k2 ≥ χi(G2),
then χi(G) = χi(G1) + χi(G2) and G is k-indicated colorable for all k ≥ χi(G).

Next, let us recall the structural characterization of {P2∪P3, C4}-free graphs,
{P5, C4}-free graphs and {P5, (P2 ∪ P3), P5,Dart}-free graphs which contains an
induced C5. The graphs (P2 ∪ P3) and Dart are shown in Fig. 2.

Theorem 3.3 ([3]). If G is a connected {P2 ∪ P3, C4}-free graph, then G is
chordal or there exists a partition (V1, V2, V3) of V (G) such that (1) 〈V1〉 ∼= Km,
for some m ≥ 0, (2) 〈V2〉 ∼= Kt, for some t ≥ 0, (3) 〈V3〉 is isomorphic to a
graph obtained from one of the basic graphs Gt (1 ≤ t ≤ 17) shown in Fig. 3 by
expanding each vertex indicated in circle by a complete graph (of order ≥ 1), (4)
[V1, V3] = ∅ and (5) [V2, V3\S] is complete.

On Indicated Coloring of Some Classes of Graphs 79

Fig. 3. Basic graphs used in Theorem 3.3 (S = ∅ for Gi, 6 ≤ i ≤ 17)

Theorem 3.4 ([4]). Let G be a connected {P5, C4}-free graph. Then V (G) =
V1 ∪ V2 such that

(i) 〈V1〉 is a P5-free graph which is also chordal.
(ii) If V2 = ∅, then 〈V2〉 = A1 ∪A2 ∪· · ·∪Al where each Ai is a K[C5], for every

i ∈ {1, 2, . . . , l} for some l ≥ 1. Also, 〈N(Ai)〉 is a complete subgraph of V1

and [Ai, N(Ai)] is complete.

Theorem 3.5 ([1]). If G is a connected {P5, (P2 ∪ P3), P5,Dart}-free graph that
contains an induced C5, then G is either isomorphic to C5(S1, S2, S3, S4, S5) or
C5(S1, S2, S3, S4, S5) + H, where S′

is are induced split subgraphs of G, H is
nonempty and H � G.

It can be noted that K[C5] is one of the graphs mentioned in Fig. 3 of
Theorem 3.3. Also K[C5] is an induced subgraph of the graphs mentioned in
Theorems 3.4 and 3.5. So, we obtain the indicated coloring for the complete
expansion of C5.

Theorem 3.6. For 1 ≤ i ≤ 5, let mi’s be positive integers. Then the graph G =
K[C5](m1,m2,m3,m4,m5) is k-indicated colorable for all k ≥ χ(G).

Proof of Theorem 3.6 follows by considering the cases when ω(G) ≥
⌈

|V (G)|
2

⌉

and ω(G) <
⌈

|V (G)|
2

⌉
. In both the cases, we have obtained an indicated coloring

for G using k colors, for all k ≥ χ(G).
Corollaries 3.7, 3.8, 3.9, 3.10 and Theorem 3.11 are some of the consequences of
Theorem 3.6.

Corollary 3.7. For 1 ≤ i ≤ 5, let mi’s be positive integers. Then for the graph
G = K[C5](m1,m2,m3,m4,m5), χ(G) = max

{
ω(G),

⌈
|V (G)|

2

⌉}
.

80 P. Francis et al.

Corollary 3.8. If G is a {P5, C4}-free graph, then G is k-indicated colorable
for all k ≥ χ(G).

Corollary 3.9. Let S1, S2, S3, S4, S5 be the split graphs. The graph G =
C5(S1, S2, S3, S4, S5) is k-indicated colorable for all k ≥ χ(G).

Corollary 3.10. If G is connected {P5, (P2 ∪ P3), P5,Dart}-free graph that
contains an induced C5, then G is k-indicated colorable for all k ≥ χ(G).

Theorem 3.11. If G is a connected {P2 ∪ P3, C4}-free graph, then G is k-
indicated colorable for all k ≥ χ(G).

Acknowledgments. For the first author, this research was supported by the Council
of Scientific and Industrial Research, Government of India, File no: 09/559(0096)/2012-
EMR-I. For the second author, this research was supported by the SERB DST Project,
Government of India, File no: EMR/2016/007339. Also, for the third author, this
research was supported by the UGC-Basic Scientific Research, Government of India.

References

1. Aravind, N.R., Karthick, T., Subramanian, C.R.: Bounding χ in terms of ω and
Δ for some classes of graphs. Discrete Math. 311, 911–920 (2011)

2. Brandstädt, A., Mosca, R.: On the structure and stability number of P5- and co-
chair-free graphs. Discrete Appl. Math. 132, 47–65 (2004)

3. Choudum, S.A., Karthick, T.: Maximal cliques in {P2 ∪ P3, C4}-free graphs. Dis-
crete Math. 310, 3398–3403 (2010)

4. Fouquet, J.L., Giakoumakis, V., Maire, F., Thuillier, H.: On graphs without P5

and P5. Discrete Math. 146, 33–44 (1995)
5. Francis Raj, S., Pandiya Raj, R., Patil, H.P.: On indicated chromatic number of

graphs. Graphs Comb. 33, 203–219 (2017)
6. Grzesik, A.: Indicated coloring of graphs. Discrete Math. 312, 3467–3472 (2012)
7. Hof, P.V., Paulusma, D.: A new characterization of P6-free graphs. Discrete Appl.

Math. 158, 731–740 (2010)
8. Lasoń, M.: Indicated coloring of matroids. Discrete Appl. Math. 179, 241–243

(2014)
9. Liu, J., Peng, Y., Zhao, C.: Characterization of P6-free graphs. Discrete Appl.

Math. 155, 1038–1043 (2007)
10. Pandiya Raj, R., Francis Raj, S., Patil, H.P.: On indicated coloring of graphs.

Graphs Comb. 31, 2357–2367 (2015)
11. Sekiguchi, Y.: The game coloring number of planar graphs with a given girth.

Discrete Math. 330, 11–16 (2014)
12. Wu, J., Zhu, X.: Lower bounds for the game colouring number of partial k-trees

and planar graphs. Discrete Math. 308, 2637–2642 (2008)
13. Zhu, X.: The game coloring number of planar graphs. J. Combin. Theory Ser-B

75, 245–258 (1999)

Line Segment Disk Cover

Manjanna Basappa(B)

School of Computer Science and Engineering,
VIT University, Vellore 632014, India
manjanna@alumni.iitg.ernet.in

Abstract. In this paper, we consider the following variations of Line
Segment Disk Cover (LSDC) problem.

LSDC-H: In this version of LSDC problem, we are given a set S =
{s1, s2, . . . , sn} of n horizontal line segments of arbitrary length and
an integer k(≥1). Our aim is to cover all segments in S with k disks
of minimum radius centered at arbitrary points in the plane.
LSDC-A: In this version of LSDC problem, we are given a set S =
{s1, s2, . . . , sn} of n line segments of arbitrary length with arbitrary
orientation and an integer k(≥1). Our aim is to cover all segments
in S with k disks of minimum radius centered at arbitrary points in
the plane.
LSDC-D: In the discrete version of LSDC problem, we are given a
set S = {s1, s2, . . . , sn} of n line segments of arbitrary length with
arbitrary orientation and a set D = {d1, d2, . . . , dm} of m disks of unit
radius. Our aim is to cover all segments in S with minimum number
of disks in D i.e. S ⊂ ⋃

d∈D′
d, where D′ ⊆ D is of minimum cardinality.

For LSDC-H and LSDC-A problems, we propose (1 + ε)-factor approx-
imation algorithms, which run in O((� π

δ2
�)kn(|log ropt| + log� 1

ρ
�)) time

and O((� π
δ2

�)kn log n(|log ropt|+log� 1
ρ
�)) time respectively, where ropt is

the minimum radius of k disks which cover all segments in S, and δ > 0,
ρ > 0 and ε > 0 are fixed constants such that ε ≥ (δ + δρ + ρ). For
LSDC-D problem, we propose a (1 + ε)-factor approximation algorithm

(PTAS), which runs in O(m2(8
√

2
ε

)2+3 + m2n) time, and a (9 + ε)-factor

approximation algorithm, which runs in O(m(5+ 18
ε

) logm + m2n) time,
where a constant ε > 0.

Keywords: Approximation scheme · Fixed-parameter-tractable
Line segment disk cover

1 Introduction

In the wireless sensor network such as mobile network, deployment of base sta-
tions is a critical step in the establishment of the network. In the mobile network
the two major components are mobile devices which are constantly moving and
base stations which are usually fixed. Due to the constant movement of mobile
c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 81–92, 2018.
https://doi.org/10.1007/978-3-319-74180-2_7

82 M. Basappa

users or devices, providing end-end communication between mobile users though
the base stations is a challenging task. Mobile network service providers some-
times establish additional base stations to handle the occasional heavy gathering
of mobile users in certain places due to events such as sports etc. In order to find
proper locations for mobile base stations to be established, we can collect the
history of mobile users’ movement patterns. We can then model these patterns
as line segments, which a mobile user has traversed often in the past. We can
now consider the placement of base stations or sensors to cover all these target
line segments. We may consider several variations of positioning base stations
such as placing exactly k base stations with smallest possible range and placing
minimum number of base stations with fixed range. Motivated by these scenarios
of base stations placement, we study the line segment disk cover problem and
its variations in this paper.

In Subsect. 1.1, we discuss various covering problems involving line segments.
In Sect. 2, we present an (1 + ε)-approximation algorithm for LSDC-H problem,
where ε > 0 is any constant. In Sect. 3, we present an (1 + ε)-approximation
algorithm for LSDC-A problem, where ε > 0 is any constant. Next, we propose
a PTAS and a (9 + ε)-approximation algorithm for LSDC-D problem, where
0 < ε ≤ 6. in Sect. 4. Finally, in Sect. 5, we conclude the paper and mention
some future work.

1.1 Related Work

Several variations of geometric covering problems involving line segments have
already been studied in the literature. Agnetis et al. [2] studied the disk covering
problem on a line. In this problem the objective is to center disks of variable radii
so that a given line segment is fully covered with least total cost incurred by these
disks. When only one type of disk is available, they developed a simple polyno-
mial time algorithm, which solves the problem. When there are different types of
disks, they developed a branch and bound algorithm as well as an efficient heuris-
tic algorithm for the special case of this variation of the problem. Dash et al. [11]
studied the following variant of coverage problem involving line segments. Here,
a line segment � is said to be k-covered if it intersects with atleast k disks. Simi-
larly, a line segment � is said to be k-uncovered if it intersects with atmost k − 1
disks. Given a set of n disks in the plane, Dash et al. [11] proposed algorithms
to compute the smallest k-covered line segment and longest k-uncovered line
segment. The time complexity of their algorithms is O((X + n) log n) for both
smallest k-covered line segment and longest k-uncovered line segment, where the
line segments can be of the following types: (i) line segments are axis-parallel, (ii)
line segments whose one end point is fixed and are of arbitrary orientation, and
X is the number of intersections among n disks. For the case that the line seg-
ments are arbitrary, their algorithm takes (X2 log n + n

11
3 +ε) time to determine

the smallest k-covered line segment and (X2 log n + n2+β+ε) time to determine
the longest k-uncovered line segment, where β = log2(1 +

√
5) − 1 and ε is a

small value greater than or equal to 0. On the other side, given a set of line
segments, Dash et al. [9] considered the problem of finding minimum number of

Line Segment Disk Cover 83

disks of uniform radius to 1-cover each of these line segments. This variation of
line segment disk cover problem is known to be NP-hard. Hence, they proposed
constant factor approximation algorithms and PTAS for this problem. Acharyya
et al. [3] studied several variations of line segment square cover problem. In this
problem a set S of n line segments is given, the objective is to find the mini-
mum number of axis-parallel unit squares, which cover at least one end point of
each segment. They considered several variations depending on the orientation
and the length of the line segments. They showed that some of these variations
are NP-complete, and developed constant factor approximation algorithms for
these problems. For some variations they proposed exact algorithms, which run
in polynomial time. In the similar line we consider different orientations of line
segments, and thus study some variations of line segment disk cover problem in
this paper.

In the context of geometric covering with disks, we find that numerous vari-
eties of problems have been considered, and extensively studied in the literature.
In the similar line, one of the well known and well studied geometric disk cov-
ering problems is known as Discrete Unit Disk Cover (DUDC) problem. Here,
we are given a set P of n points and a set D of m unit disks, the objective is to
cover all points in P with smallest number of disks in D. The DUDC problem
is known to be NP-hard [13]. Mustafa and Ray [14] proposed a PTAS for the
DUDC problem. Unfortunately, their PTAS’s running time is very huge even
for the largest possible approximation bound. However, several authors [1,4–
8,10,12,15] proposed constant factor approximation algorithms with reasonable
running times. We use the result of Mustafa and Ray [14] to develop a PTAS
for one of our variations of line segment disk cover problem considered in this
paper. Similarly, we use the result of Basappa et al. [4] to propose constant factor
approximation algorithm with reasonable running time for the same variation of
the LSDC problem.

2 LSDC-H Problem

In the LSDC-H problem, we are given a set S = {s1, s2, . . . , sn} of n horizontal line
segments of arbitrary length and a positive integer k. The objective is to compute
a set Dopt = {dopt

1 , dopt
2 , . . . , dopt

k } of k disks of minimum radius ropt such that

S ⊂ (
k⋃

i=1

dopt
i). The disks in Dopt can be centered anywhere in the plane.

2.1 Preliminaries

Let S = {s1, s2, . . . , sn} be a set of n line segments. Through out the paper, we
use the following terminologies. Let pL

i and pR
i denote the left-end point and the

right-end point of a line segment si ∈ S. Let pL
i∗ be the left-most left-end point

of segment si∗ among all segments in S. Let dopt
i∗ be the disk of radius ropt in an

optimal solution, which covers pL
i∗ . Let α(d) denote the center of disk d. Let �i be

the vertical line passing through the left end-point pL
i of segment si. Let �+i and

84 M. Basappa

dopt
i∗

pR
i∗

d′
i∗

�+i∗

�i∗

pL
i∗

Fig. 1. Proof of Observation 1

Δ3
i∗

Δ2
i∗

pR
i∗

Δ1
i∗

�+i∗

�i∗

pL
i∗

Fig. 2. Partition of the disk Δ(pL
i∗ , r) ∩ �+i∗ into three equal sectors Δ1

i∗ , Δ2
i∗ , Δ3

i∗

�−
i denote the right half-plane and the left half-plane respectively. The region of

disk with radius r and centered at any point p is denoted by Δ(p, r).

Observation 1. There always exists an optimal solution Dopt such that the
point α(dopt

i∗) lies in �+i∗ .

Proof. Assume that the disk dopt
i∗ has its center α(dopt

i∗) lying to the left of the
line �i∗ . Then, we can center a disk d′

i∗ of radius ropt on the vertical line �i∗ such
that the points α(d′

i∗) and α(dopt
i∗) are collinear and (dopt

i∗ ∩ S) ⊆ (d′
i∗ ∩ S) (See

Fig. 1). �	

2.2 (2 + 2ρ)-Factor Approximation Algorithm

To develop a (2 + 2ρ)-factor approximation algorithm for LSDC-H problem for
ρ > 0, we first consider the decision version of LSDC-H problem as follows:

– For a given radius r, can we center k disks of radius 2r at arbitrary points
such that union of these k disks covers all segments in S?

For the above decision problem, we develop an algorithm which returns a set D′

of k disks of radius 2r if the answer is positive. Otherwise, the algorithm returns

Line Segment Disk Cover 85

a set D′ of k+1 arbitrary disks. We then apply doubling technique and bisection
method to find the minimum radius r for which the answer to the above decision
problem is positive.

Consider the left-most left-end point pL
i∗ . Partition the half-disk Δ(pL

i∗ , r) ∩
�+i∗ into three sectors such that each pair of its consecutive radii makes an angle
π
3 at the point pL

i∗ . Thus, the half-disk Δ(pL
i∗ , r) ∩ �+i∗ is split into three equal

sectors Δ1
i∗ , Δ2

i∗ and Δ3
i∗ as shown in Fig. 2.

Lemma 1. If r ≥ ropt and α(dopt
i∗) ∈ Δj

i∗ , j ∈ {1, 2, 3}, then any disk di∗ of
radius 2r centered at arbitrary point in the region Δj

i∗ covers at least the same
portion of S that is covered by the disk dopt

i∗ .

Proof. Let us first observe that the distance between any two arbitrary points
lying within any sector Δj

i∗ is at most r. Given the facts that (i) r ≥ ropt, and
(ii) the radius of disk di∗ is 2r, by the triangle inequality, the lemma follows. �	

Our algorithm for the decision problem is based on line-sweep technique and
bounded search tree method. We know that the bounded search tree method
attempts to do exhaustive search on the problem space. Hence, our algorithm
which solves the decision problem for a given radius r works as follows. We start
off with set S′ = S and set D′ = ∅. We sweep the plane containing a given set
S of segments from left to right by a vertical line �i∗ . At each left most left-end
point pL

i∗ , we partition the half-disk Δ(pL
i∗ , r) ∩ �+i∗ into three sectors Δ1

i∗ , Δ2
i∗

and Δ3
i∗ . We then consider each sector Δj

i∗ , j = {1, 2, 3} separately. We place
the disk di∗ of radius 2r centered at arbitrary point from Δj

i∗ . We then update
the set D′ by D′ ∪{di∗}. Let R ⊆ S′ be the portion of S lying inside di∗ . Update
S′ = S′ \ R. We also update the left-most left-end point pL

i∗ with respect to
the updated set S′ of segments. Unless S′ = ∅, we repeat the above process
recursively by considering the left-most left-end point pL

i∗ . Thus, we proceed our
search in a depth-first manner on a 3-way search tree where the depth of the tree
is at most k. The pseudocode of the above procedure is available in Algorithm 1.

Lemma 2. If Algorithm 1 is invoked with radius r ≥ ropt, then it always pro-
duces a positive reply with a set D′ of at most k disks of radius 2r whose union
covers all segments in S, i.e. S ⊂ ∪d∈D′d.

Proof. From Lemma 1, it is clear that α(dopt
i∗) lies in one of three sectors Δ1

i∗ ,
Δ2

i∗ and Δ3
i∗ . Since we explore all possible paths in the 3-way search tree, there

exists atleast one path, along which our recursive procedure ultimately results
in the set S′ = ∅ while the depth of recursion is atmost k. Thus, the lemma
follows. �	
Lemma 3. The running time of Algorithm 1 is O(3kn).

Proof. Each segment si ∈ S can intersect at most twice on the boundary of
any disk. Every time we consider a new left-most left-end point pL

i∗ , we spend at
most O(n) time to update the set S′. Therefore, since the degree of each internal

86 M. Basappa

Algorithm 1. Two-Cover(S, k, r)
1: Input: The set S of uncovered horizontal line segments of arbitrary length, a

positive integer k and a radius r.
2: Output: true if a set D′ of at most k disks of radius 2r covers the set S; false

otherwise and an arbitrary set D′.
3: if (S = ∅) then
4: return (true, ∅)
5: else if (k = 0) then
6: return (false, ∅)
7: else
8: Consider the disk Δ(pL, r) centered at left-most left-end point pL of segment s

among all segments in S, and let � be a vertical line through pL and �+ be the
region right side of �.

9: Partition the right half-disk Δ(pL, r)∩ �+ into three equal sectors Δ1, Δ2, Δ3 as
shown in Figure 2.

10: Set i ← 1; flag ← false; D′ ← ∅
11: while (i ≤ 3 and flag=false) do
12: Place a disk d of radius 2r centered at arbitrary point in Δi

13: S′ = S \ (S ∩ d)
14: (flag, D′) = Two-Cover(S′, k − 1, r)
15: if (flag=true) then
16: D′ = D′ ∪ {d}
17: end if
18: Set i = i + 1;
19: end while
20: end if
21: return (flag, D′)

node of the 3-way search tree the algorithm explores is 3, the running time of
Algorithm 1 is given by the recurrence Ti(S′) = 3(Ti+1(S′ \ (dopt

i+1 ∩ S)) + n),
where the base case Tk(S′) = O(n). The lemma follows from the solution of this
recurrence i.e. T0(S) = O(3kn). �	

Now, we describe the procedure (Algorithm 2) to find a radius r for which
Algorithm 1 produces a positive reply such that r ≤ (1+ρ)ropt, where a constant
ρ > 0. In Algorithm 2, we first use the doubling technique as follows: we initially
check whether ropt > 1 or ropt ≤ 1 by invoking Algorithm 1 with radius r = 1. We
then repeatedly invoke Algorithm 1 with radius r = 2j for every j = 1, 2, . . . , j∗

until the corresponding set D′ covers S if the radius ropt > 1, where j∗ is the
smallest positive integer. Similarly, if ropt ≤ 1, Algorithm 1 is invoked with
radius r = 2−j for every j = 1, 2, . . . , j∗ until the set S is covered by the union
of disks in D′, where j∗ is the largest positive integer. Therefore, ropt belongs to
one of the intervals [2j∗−1, 2j∗] and [2−j∗−1, 2−j∗] on the real line. Note that the
length of this interval is at most ropt because the radius is doubled every time.
Therefore, |2j∗ − 2j∗−1| ≤ ropt or |2−j∗ − 2−j∗−1| ≤ ropt. We further reduce the
length of this interval by bisecting it log 1

ρ times as long as Algorithm 1 returns
a positive reply. Let [μ, ν] denote this interval before the bisection applied on it.

Line Segment Disk Cover 87

Algorithm 2. Rho-Cover(S, k, ρ)
1: Input: A set S of n horizontal line segments of arbitrary length, a positive integer

k and a real number ρ > 0.
2: Output: a set D of at most k disks of radius r′ ≤ (2 + 2ρ)ropt such that union of

disks in D covers all segments in S.
3: (flag, D,)= Two-Cover(S, k, 1) //Run Algorithm 1
4: if (flag = true) then
5: Set j = 1
6: while (flag = true) do
7: Set j = j − 1
8: (flag, D)= Two-Cover(S, k, 2j−1) //Run Algorithm 1
9: end while
10: else
11: Set j = 0
12: while (flag = false) do
13: Set j = j + 1
14: (flag, D)= Two-Cover(S, k, 2j) //Run Algorithm 1
15: end while
16: end if
17: Set μ = 2j−1, ν = 2j

18: for (i = 1, 2, . . ., log� 1
ρ
�) do

19: Set γ = μ+ν
2

20: (flag, D)= Two-Cover(S, k, γ) //Run Algorithm 1
21: if (flag = true) then
22: Set ν = γ
23: else
24: Set μ = γ
25: end if
26: end for
27: (flag, D)= Two-Cover(S, k, ν) //Run Algorithm 1
28: Return (D, ν)

Lemma 4. (ν −μ) ≤ ρropt after bisection applied on interval [μ, ν] log 1
ρ times.

Proof. After bisection is applied log 1
ρ� times, (ν−μ) ≤ ropt

2
log 1

ρ
≤ ρropt as interval

is halved every time. Thus, the lemma follows. �	
Theorem 1. Algorithm 2 is (2 + 2ρ)-factor approximation algorithm with run-
ning time O(3kn(| log ropt| + log 1

ρ�)) for LSDC-H problem, where ρ > 0.

Proof. Since ropt ∈ [μ, ν], μ ≤ ropt and Algorithm 1 is invoked finally with radius
r = ν, r = ν = μ + (ν − μ) ≤ ropt + ρropt = (1 + ρ)ropt. From Lemma 2, for any
radius r ≥ ropt Algorithm 1 produces 2-factor approximation result and runs in
O(3kn). Algorithm 2 invokes Algorithm 1 O(| log ropt|+log 1

ρ�) times. Thus, the
theorem follows. �	

88 M. Basappa

Algorithm 3. Delta-Cover(S, k, r, δ)
1: Input: The set S of uncovered horizontal line segments of arbitrary length, a

positive integer k, a radius r and a real number δ > 0.
2: Output: true if a set D′ of at most k disks of radius (1 + δ)r covers the set S;

false otherwise and an arbitrary set D′.
3: if (S = ∅) then
4: return (true, ∅)
5: else if (k = 0) then
6: return (false, ∅)
7: else
8: Consider the disk Δ(pL, r) centered at left-most left-end point pL of segment s

among all segments in S, and let � be a vertical line through pL and �+ be the
region right side of �.

9: Partition the right half-disk Δ(pL, r) ∩ �+ into at most � π
δ2

� grid cells

(Δ1, Δ2, . . . , Δ
� π

δ2
�
), each of size δr√

2
× δr√

2
.

10: Set i ← 1; flag ← false; D′ ← ∅
11: while (i ≤ � π

δ2
� and flag=false) do

12: Place a disk d of radius (1 + δ)r centered at arbitrary point in Δi

13: S′ = S \ (S ∩ d)
14: (flag, D′) = Delta-Cover(S′, k − 1, r, δ)
15: if (flag=true) then
16: D′ = D′ ∪ {d}
17: end if
18: Set i = i + 1;
19: end while
20: end if
21: return (flag, D′)

2.3 (1 + ε)-Factor Approximation Algorithm

In this subsection we develop an (1 + ε)-factor approximation algorithm for
LSDC-H problem for any ε > 0. Here, we develop a procedure, which is a modi-
fied version of Algorithm 1. For a given radius r ≥ ropt and a real number δ > 0,
this procedure computes a set D′ of at most k disks of radius (1 + δ)r such that
union of disks in D′ covers all segments in S. Unlike in Algorithm 1, here the
half-disk Δ(pL

i∗ , r) ∩ �+i∗ is partitioned into O(1
δ2) sectors by placing a 2D grid of

size δr√
2

× δr√
2

over this half-disk. This results in solution space being π
δ2 �-way

search tree instead of 3-way search tree. The pseudocode of the procedure is
formalized in Algorithm 3.

Lemma 5. For any constant ε > 0, there exist constants δ > 0 and ρ > 0 such
that ε ≥ (δ + δρ + ρ).

Proof. The inequality ε ≥ (δ + δρ + ρ) can be rewritten as ε−ρ
1+ρ ≥ δ. Now, for

a given positive real number ε, choose another positive real number ρ such that
ρ < ε. Then, we can always a choose a positive real number δ such that δ ≤ ε−ρ

1+ρ .
Thus, the lemma follows. �	

Line Segment Disk Cover 89

Theorem 2. We have an (1 + ε)-factor approximation algorithm with running
time O((π

δ2 �)k
n(| log ropt| + log 1

ρ�)) for LSDC-H problem, where δ > 0, ρ > 0
and ε > 0.

Proof. Observe that the diameter of each grid cell of size δr√
2

× δr√
2

is δr. If the
subroutine invoked in Algorithm 2 is Algorithm 3 instead of Algorithm 1, then
the radius r′ of disks in D′ returned by Algorithm 3 satisfies the inequality
r′ ≤ (1 + δ)r, where r ≤ (1 + ρ)ropt by Lemma 4. Hence, by Lemma 5 r′ ≤
(1 + δ)(1 + ρ)ropt ≤ (1 + ε)ropt for any ε > 0. Thus, the theorem follows. �	
Corollary 1. We have a polynomial time approximation scheme (PTAS) for
LSDC-H problem when δ = O(1

polynomial(n)), k = O(1
δ(1+ρ)+ρ), ropt =

O(2polynomial(n)).

Proof. Follows as Algorithm 3 produces (1 + ε)-approximation result in time
O(polynomial′(n)O(1

ε)polynomial(n, 1
ε)) for a given integer k and a set of n line

segments such that k = O(1ε), ropt = O(2polynomial(n)) and δ = O(1
polynomial(n)). �	

Corollary 2. We have a fully polynomial time approximation scheme (FPTAS)
for LSDC-H problem when ropt = O(2polynomial(n)), and k is fixed.

Proof. Follows as Algorithm 3 produces (1 + ε)-approximation result in time
O(polynomial(n, 1

ε)) when k is fixed and ropt = O(2polynomial(n)). �	

3 LSDC-A Problem

In the LSDC-A problem, we are given a set S = {s1, s2, . . . , sn} of n line segments
of arbitrary length with arbitrary orientation and a positive integer k. The objec-
tive is to compute a set Dopt = {dopt

1 , dopt
2 , . . . , dopt

k } of k disks of minimum radius

ropt such that S ⊂ (
k⋃

i=1

dopt
i). The disks in Dopt can be centered anywhere in the

plane.
To solve the LSDC-A problem, as in Sect. 2 we first consider the decision

problem as follows:

– For a given radius r and a real number δ > 0, can we center k disks of radius
(1+δ)r at arbitrary points such that union of these k disks covers all segments
in S?

In order to solve the decision problem we make the following changes in
Algorithm 3 described as follows. We first set S = S. Let us denote the convex
hull of end points {pL

1 , pR
1 , pL

2 , pR
2 , . . . , pL

n , pR
n } of segments in S by CH(S). We

then compute the convex hull CH(S) of end points of segments in S. At every
node of π

δ2 �-way search tree explored by Algorithm 3 we can consider any vertex
of the convex hull CH and rotate the axes so as this vertex becomes left-most
left-end point pL

i∗ . We then repeat the remaining steps of Algorithm 3. We update
the convex hull CH(S) with respect to the updated set S of line segments. We
repeat the above procedure until either the depth of the tree is k or the updated
set S becomes empty.

90 M. Basappa

Theorem 3. We have an (1 + ε)-factor approximation algorithm with running
time O((π

δ2 �)k
n log n(| log ropt| + log 1

ρ�)) for LSDC-A problem, where δ > 0,
ρ > 0 and ε > 0.

Proof. Follows as in the case of LSDC-H problem (Theorem 2) due to the facts
that the search space is π

δ2 �-way search tree, and we spend O(n log n) time to
update the convex hull CH(S) whenever the set S is updated. �	
Remark 1. It is further to remark that the space required in our algorithms for
both LSDC-H and LSDC-A problems is only (kn).

4 LSDC-D Problem

In the LSDC-D problem, we are given a set S = {s1, s2, . . . , sn} of n line segments
of arbitrary length with arbitrary orientation and a set D = {d1, d2, . . . , dm} of
m disks of unit radius. Our aim is to cover all segments in S with minimum
number of disks in D i.e. S ⊂ ⋃

d∈D′
d, where D′ ⊆ D is of minimum cardinality.

In this section, using the PTAS of Mustafa and Ray [14] for DUDC problem, we
propose a PTAS for LSDC-D problem, and using the (9+ε)-approximation result
of Basappa et al. [4] for DUDC problem, we propose a (9 + ε)-approximation
algorithm for LSDC-D problem.

Given a set D of m unit disks in the plane, let us define the sector as a
maximal region such that every point within that region is covered by the same
set of disks in D. Thus, the region covered by the union of m disks in D is divided
into many number of sectors. Let f denote the number of those sectors. Let e be
the number of smallest boundary segments of disks such that each such segment
appears on the boundary of at most two sectors.

Lemma 6. For a set D of m unit disks, the number of sectors f = O(m2).

Proof. Let β(d) denote the boundary line of disk d. Consider some disk d in
the plane containing m unit disks. The largest number of boundary segments,
denoted by T (m), is contributed by β(d) when the disk d intersects with m − 1
other disks in the following manner. Without loss of generality, the ith disk
bisects and splits two boundary segments among the segments contributed by
the first i − 1 disks for i = 3, 4, . . . ,m. Thus, the largest number of boundary
segments for every disk d is given by the recurrence T (m) = T (m − 1) + 2 for
m > 2 with the base case T (2) = 2.

The solution to the above recurrence is T (m) = 2(m − 1). Since there are
m disks and each β(d) contributes at most 2(m − 1) boundary segments, the
total number of boundary segments e = 2(m − 1)m. Observe that each sector
is bounded by at least two boundary segments of disks. Therefore, 2f ≤ 2e as
each boundary segment appears on the boundary of at most two sectors. This
implies that f ≤ 2(m2 − m). Thus, the lemma follows. �	

Line Segment Disk Cover 91

To develop approximation algorithms for LSDC-D problem, we transform
every instance of LSDC-D problem into an instance of DUDC problem as follows.
An instance of LSDC-D problem consists of a set D of m disks of unit radius and
a set S of n line segments of arbitrary length with arbitrary orientation. Then,
split each line segment s ∈ S such that each of the splitted slices sl1, sl2, . . . , slk
of s lies within a sector, where k ≤ f . Now, for each set of all slices lying within
one sector, we add one point into the same sector and remove all these slices.
Hence, from Lemma 6 we have the number of points n′ = O(m2) and number of
disks m′ = m, which is an instance of DUDC problem. Therefore, we have the
following results for LSDC-D problem.

Theorem 4. We have an (1 + ε)-factor approximation algorithm with running
time O(m2(8

√
2

ε)2+3 + m2n) for LSDC-D problem, where ε > 0 is a real number.

Proof. Follows by setting the number of points n = O(m2) in the PTAS of
Mustafa and Ray [14] and the fact that we spend O(m2n) time to construct this
new set of n = O(m2) points. �	
Theorem 5. We have a (9 + ε)-factor approximation algorithm with running
time O(m(5+ 18

ε) log m + m2n) for LSDC-D problem, where 0 < ε ≤ 6 is a real
number.

Proof. Follows by setting the number of points n = O(m2) in the (9 + ε)-
approximation algorithm of Basappa et al. [4], and the fact that we spend
O(m2n) time to construct this new set of n = O(m2) points. �	

5 Conclusion

For LSDC-H and LSDC-A problems our algorithms will turn to be fixed-
parameter tractable approximation algorithms for fixed δ, where the parameter
is k. For LSDC-D problem we have proposed a PTAS and a constant factor
approximation algorithm with reasonable running time. In the future work, we
want to investigate the complexities of LSDC-H and LSDC-A problems.

References

1. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approxi-
mation for minimum-weight (connected) dominating sets in unit disk graphs. In:
Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM-2006.
LNCS, vol. 4110, pp. 3–14. Springer, Heidelberg (2006). https://doi.org/10.1007/
11830924 3

2. Agnetis, A., Grande, E., Mirchandani, P.B., Pacifici, A.: Covering a line segment
with variable radius discs. Comput. Oper. Res. 36(5), 1423–1436 (2009)

3. Acharyya, A., Nandy, S.C., Pandit, S., Roy, S.: Covering segments with unit
squares. In: Workshop on Algorithms and Data Structures, pp. 1–12 (2017)

4. Basappa, M., Acharyya, R., Das, G.K.: Unit disk cover problem in 2D. J. Discrete
Algorithms 33, 193–201 (2015)

https://doi.org/10.1007/11830924_3
https://doi.org/10.1007/11830924_3

92 M. Basappa

5. Brönnimann, H., Goodrich, M.: Almost optimal set covers in finite VC-dimension.
Disc. Comput. Geom. 14, 463–479 (1995)

6. Claude, F., Das, G.K., Dorrigiv, R., Durocher, S., Fraser, R., López-Ortiz, A.,
Nickerson, B.G., Salinger, A.: An improved line-separable algorithm for discrete
unit disk cover. Discrete Math. Algorithms Appl. 2(1), 77–87 (2010)

7. Carmi, P., Katz, M.J., Lev-Tov, N.: Covering points by unit disks of fixed location.
In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 644–655. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-77120-3 56

8. Călinescu, G., Măndoiu, I.I., Wan, P.J., Zelikovsky, A.Z.: Selecting forwarding
neighbors in wireless ad hoc networks. Mob. Netw. Appl. 9(2), 101–111 (2004)

9. Dash, D., Bishnu, A., Gupta, A., Nandy, S.C.: Approximation algorithms for
deployment of sensors for line segment coverage in wireless sensor networks. Wirel.
Netw. 19(5), 857–870 (2013)

10. Das, G.K., Fraser, R., López-Ortiz, A., Nickerson, B.G.: On the discrete unit disk
cover problem. Int. J. Comput. Geom. Appl. 22(5), 407–420 (2012)

11. Dash, D., Gupta, A., Bishnu, A., Nandy, S.C.: Line coverage measures in wireless
sensor networks. J. Parallel Distrib. Comput. 74(7), 2596–2614 (2014)

12. Fraser, R., López-Ortiz, A.: The within-strip discrete unit disk cover problem.
In: Proceedings of Canadian Conference on Computational Geometry, pp. 61–66
(2012)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

14. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Dis-
crete Comput. Geom. 44(4), 883–895 (2010)

15. Narayanappa, S., Vojtechovskỳ P.: An improved approximation factor for the unit
disk covering problem. In: Proceedings of Canadian Conference on Computational
Geometry, pp. 15–18 (2006)

https://doi.org/10.1007/978-3-540-77120-3_56

Fixed-Parameter Tractable Algorithms
for Tracking Set Problems

Aritra Banik and Pratibha Choudhary(B)

Indian Institute of Technology, Jodhpur, India
aritrabanik@gmail.com, pratibhac247@gmail.com

Abstract. We consider parameterized complexity of the recently intro-
duced problem of tracking paths in graphs, motivated by applications
in security and wireless networks. Given an undirected and unweighted
graph with a specified source s and a terminal t, the goal is to find a
k-sized subset of vertices that intersect with each s-t path (or s-t short-
est) path in a distinct sequence (or set).

We first generalize this problem to a problem on set systems with a
universe of size n and a m sized family of subsets of the universe. Using
a correspondence with the well-studied Test Cover Problem, we give
a lower bound of lgm for the solution size and show the problem fixed-
parameter tractable. We also show that when k is the parameter, then
for such a set system

– finding a Tracking Set for such a set system of size at most lgm+ k
is hard for parameterized complexity class W [2];

– finding a Tracking Set of size at most m − k is fixed parameter
tractable;

– finding a Tracking Set of size at most n− k is complete for parame-
terized complexity class W[1].

Using the solution for the set system generalization, we show the main
result of the paper that finding a Tracking Set of size at most k for short-

est paths is fixed-parameter tractable. We first give an O∗(2k2k) algo-

rithm using the set system solution, which we later improve to O∗(2k2
).

1 Introduction and Motivation

In this paper, we consider parameterized complexity of the recently introduced
problem of tracking shortest paths in an undirected graph with a source and a
terminal. Given an undirected graph with a specified source s and a terminal t,
the goal is to find the smallest subset of vertices whose intersection with every
s-t path (or every shortest s-t path) is unique.

We start with motivation for the problem. Consider the security system at
a large airport. Suppose there are multiple points of entry based on nationality,
destination, reason for travel and some other factors. A set of carefully chosen
security scan points can be selected as identification points. Every time a pas-
senger passes through an identification point, a seal is stamped on their ticket.
Hence when a traveler reaches his/her flight, by looking at the stamps on their
c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 93–104, 2018.
https://doi.org/10.1007/978-3-319-74180-2_8

94 A. Banik and P. Choudhary

ticket a security inspector can identify the exact sequence of security points
passed by the traveler.

Another major application scenario is tracking of moving objects in telecom-
munication networks and road networks. The goal can be efficient and optimized
tracking of an object, for the purpose of surveillance, monitoring, intruder detec-
tion, and operations management. The problem solution can be used for recon-
struction of path traced by an object in order to detect potential network flaws,
to study traffic patterns of moving objects, to optimize network resources based
on such patterns, and for other such network analysis based tasks.

Tracking of moving objects has been studied in the field of wireless sensor
networks. See [2] for a survey of target tracking protocols using wireless sensor
networks. Some researchers have studied it with respect to power management of
sensors [9]. Despite being as active area of research, a major part of this research
so far is heuristic-based. In [1], the authors formalized the problem of tracking in
networks as a graph theoretic problem and did a systematic study. Among some
other problems, they introduced following two optimization problems. V (P) is
used to denote the set of vertices in path P . We use ΠP (V ′) to denote the
sequence in which the vertices from V (P) ∩ V ′ appear in path P . A graph with
a unique source s and unique destination t is called an s-t graph, and in such
a graph, a path from s to t is called an s-t path. We consider the graph to be
undirected and unweighted.

Problem 1. Tracking Set for Paths Problem (TPP): Given an s-t graph
G = (V,E), find a minimum cardinality Tracking Set T ⊆ V for G, such that
for any distinct two s-t paths P1 and P2, ΠP1(T) �= ΠP2(T).

Problem 2. Tracking Set for Shortest Paths Problem (TSPP): Given
an s-t graph G = (V,E), find a minimum cardinality Tracking Set T ⊆ V for
G, such that for any two distinct shortest s-t paths P1 and P2, T ∩ V (P1) �=
T ∩ V (P2).

The authors showed the problems to be NP-hard and provided a 2-
approximation algorithm for tracking shortest paths in planar graphs. Our goal
in this paper is to address the parameterized complexity of the problems (see
Sect. 2.1 for definitions). Towards that, we first look at a more general version
of the problem in terms of set systems.

A set system is a pair P = {X,S}, where X is a finite set and S is a family
of subsets of X.

A Tracking Set for Set System for a set system, P = {X,S} is a set of
elements that has a unique intersection with each of the subsets in the family.
The Tracking Set System Problem is defined as follows.

Problem 3. Tracking Set System Problem (TSSP): Given a set system
P = {X,S}, find a minimum cardinality Tracking Set T ⊆ X for P, such that
for any two distinct Si, Sj ∈ S, Si ∩ T �= Sj ∩ T .

We denote each vertex present in Tracking Set by tracker. We show a corre-
spondence between Tracking Set System Problem and the Test Cover

Fixed-Parameter Tractable Algorithms for Tracking Set Problems 95

Problem [6]. Using this result we show that the size of a Tracking Set for Set
System with n elements and m sets is at least �lg m�1 and using this we show
that determining whether a given set system has a Tracking Set of size at most
k has a O∗(2k2

k

) fixed-parameter algorithm2. We then consider other natural
parameterizations of the solution and we show that

– Determining whether a set system with n elements and m sets has a Tracking
Set of size at most (lg m + k) is hard for the parameterized complexity class
W[2].

– Determining whether a set system with n elements has a Tracking Set of size
at most (n− k) is complete for the parameterized complexity class W[1], and

– Determinining whether a set system with n elements and m sets has a Track-
ing Set of size at most (m − k) is fixed-parameter tractable.

In Sect. 4, we consider the parameterized complexity of the Tracking Set for
Shortest Paths. By using our fixed-parameter algorithm for Tracking Set for Set
System, we show that Tracking Set for Paths is fixed-parameter tractable param-
eterized by the solution size as long as we can count the number of s-t paths
in polynomial time. It is possible to count number of shortest paths in poly-
nomial time. Thus Tracking Set for Shortest Paths is fixed-parameter tractable
parameterized by solution size. In Sect. 4.2, we give an improved fixed-parameter
tractable algorithm for Tracking Set for Shortest Paths using some properties
of the shortest s-t paths and by using some reduction rules. Finally Sect. 5 con-
cludes with some open problems.

2 Preliminaries

The problem of finding the minimum Tracking Set for Shortest Paths in graphs
was introduced by Banik et al. [1], and was proven to be NP-hard and APX-
hard for general graphs. The authors suggested multiple versions of the Track-

ing Set Problem, along with providing a 2-approximation algorithm for special
instance of problem, when the graph is planar.

Throughout this paper, we assume graph G = (V,E) to be an s-t graph with
s and t already given to us. We preprocess the graph and delete vertices that are
not reachable from s (or t). This can be accomplished by any standard graph
search method (BFS or DFS).

If there exists a path P1 between vertices u and v, and there exists another
path P2 between vertices v and w, we use P1 · P2 to denote the path between u
and w obtained by concatenation of paths P1 and P2 at v.

2.1 Fixed-Parameter Tractability

A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed, finite
alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the parameter. A param-
eterized problem L ⊆ Σ∗ × N is called fixed-parameter tractable (FPT) if there
1 We use lg to denote logarithm to the base 2.
2 O∗ notation ignores polynomial factors.

96 A. Banik and P. Choudhary

exists an algorithm A (called a fixed-parameter algorithm), a computable func-
tion f : N → N, and a constant c such that, given (x, k) ∈ Σ∗ ×N, the algorithm
A correctly decides whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The
complexity class containing all fixed-parameter tractable problems is called FPT.
There is also an associated hardness hierarchy and the basic hardness classes are
W[1] and W[2]. The clique problem (does the given graph have a clique of
size at least k) is a canonical complete problem for W[1] while the dominating

set problem (does the given graph have a dominating set of size at most k)
is a canonical complete problem for W[2]. See [7] for more on parameterized
complexity.

Let A,B ⊆ Σ∗×N be two parameterized problems. A parameterized reduction
from A to B is an algorithm that, given an instance (x, k) of A, outputs an
instance (x′, k′) of B such that

1. (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B,
2. k′ ≤ g(k) for some computable function g, and
3. the running time of algorithm is f(k)·|x|O(1) for some computable function f .

A reduction rule is a rule that translates a given instance into another. The
rule is said to be safe if the reduced instance is equivalent to the original instance
in the sense that the reduced instance is an YES instance if and only if the
original instance is an YES instance.

3 Tracking Set for Set System

In this section we give some FPT and hardness results for Tracking Set Sys-

tem Problem. For a given set system P = {X,S}, Tracking Set is a set of
elements that have a unique intersection with each of the subsets in the family.
Formally, T ⊆ X is a Tracking Set for P if for any two subsets Si, Sj ∈ S (i �= j),
T ∩ Si �= T ∩ Sj .

We first observe that the Tracking Set System Problem is similar to the
well known Test Cover Problem and we will establish one to one correspon-
dence between Tracking Set System Problem and Test Cover Problem.
Tracking Set in this section refers to Tracking Set for Set System. We refer an
instance of the Tracking Set or the Test Cover problem as an (x, y) instance if
the size of the universe (element set) is x and the size of the family is y. Also,
we use k-Tracking Set to refer to the problem of finding a Tracking Set of size
at most k.

In the Test Cover Problem we are given a set M = {1, 2, . . . n} of elements
called vertices and a family T = {T1, T2, . . . , Tm} of distinct subsets of M called
tests. We say that a test Tl separates a pair i and j if |{i, j} ∩ Tl| = 1. A subset
T ′ of T is called a Test Cover if for every pair of distinct vertices i, j ∈ M , there
exists a test Ti ∈ T ′ that separates them. The Test Cover Problem requires
finding a minimum size Test Cover if one exists.

Test Cover Problem is a well studied problem [3,8]. It is known that
the Test Cover Problem is NP-hard and APX-hard [11]. There exists an

Fixed-Parameter Tractable Algorithms for Tracking Set Problems 97

O(log n)-approximation algorithm for the problem [14] and there is no o(log n)-
approximation algorithm unless P = NP [11].

Parameterized complexity of Test Cover Problem has also been studied
extensively [5,6,10]. Given (M, T), and k ∈ N ∪ {0}, the parameterized version
of the Test Cover Problem asks if there exists a Test Cover of size at most k.

Observe that just as lg n is a lower bound for the size of Test Cover, n and m
form upper bounds on the size of Test Cover. Given lower and upper bounds of
solution size, natural questions are to ask if there exists a FPT on a parameter
k which determines that whether there exists a solution k greater than the lower
bound or k less than the upper bound. Parameterizations of NP- optimization
problems above their guaranteed lower/upper bounds was initiated by Mahajan
and Raman in [12]. They proved some above guarantee versions of Max Cut

and Max Sat to be FPT. Further in [13], the authors gave several results on
parameterizing above or below the lower/upper guaranteed bounds.

On the same line we have the following results by Crowston et al. [6] which
is summarized in the following theorem.

Theorem 1 ([6]). For an (n,m)-Test Cover instance,

(i) there does not exist a Test Cover of size less than �lg n�. Hence Test Cover
is fixed-parameter tractable when parameterized by solution size and Test
Cover can be solved in time O∗(2k2

k

).
(ii) Determining whether there exists a Test Cover of size at most (m − k) is

complete for the parameterized complexity class W[1].
(iii) Determining whether there exists a Test Cover of size at most (n − k) is

fixed-parameter tractable.
(iv) Determining whether there exists a Test Cover of size at most (lg n + k) is

hard for the parameterized complexity class W[2].

Next we show a tight correspondence between Tracking Set Problem
and Test Cover Problem. Let P = {X,S} be a set system, where X =
{x1, x2, ..., xn} and S = {S1, S2, ..., Sm}. Let R(P) = {M, T } is defined as fol-
lows, M = {1, ...,m}, and T = {T1, . . . Tn} where Ti = {j | xi ∈ Sj}.

Lemma 1. There exists a Tracking Set of size at most k for P if and only if
there exists a Test Cover of size at most k for R(P).

Proof. Let us assume that TS ⊆ X is a Tracking Set for P. We define a set
TC ⊆ T as TC = {Ti | xi ∈ TS}. We claim that TC is a Test Cover for
R(P). Suppose not. Then there exists i, j ∈ M such that for any set Tr ∈ TC,
|Tr ∩ {i, j}| �= 1. This leads to two possibilities, the first being that i and j do
not appear in any of the tests in TC, i.e. |Tr ∩ {i, j}| = 0, and the second being
that i appears in all those tests in TC that contain j, i.e. |Tr ∩ {i, j}| = 2. We
analyze these two cases individually.

1. ∀Tr ∈ TC, i, j /∈ Tr

By definition of R(P), i, j /∈ Tr implies that xr /∈ Si, Sj . And, by definition
of TC, ∀Tr ∈ TC, i, j /∈ Tr implies that ∀xr ∈ TS, xr /∈ Si, Sj . Hence

98 A. Banik and P. Choudhary

TS ∩ Si = TS ∩ Sj = ∅. This contradicts the assumption that TS is a
Tracking Set for P.

2. ∀Tr ∈ TC, i ∈ Tr if and only if j ∈ Tr

By definitions of R(P) and TC, we can say that this implies, ∀xr ∈ TS,
xr ∈ Si if and only if xr ∈ Sj . Hence TS ∩ Si = TS ∩ Sj . This contradicts
the assumption that TS is a Tracking Set for P.

Conversely, assume that TC ⊆ T is a Test Cover for R(P). Now consider
TS = {xi | Ti ∈ TC}. We will argue that TS is a Tracking Set for P. Suppose
not. Then there exists Si, Sj ∈ S such that TS ∩ Si = TS ∩ Sj . This means
that ∀xr ∈ TS, xr ∈ Si whenever xr ∈ Sj . Hence, ∀Tr ∈ TC, i ∈ Tr whenever
j ∈ Tr. Thus there does not exist a test Ts ∈ TC, such that |Ts ∩ {i, j}| = 1.
This contradicts the assumption that TC is a Test Cover for R(P). �

Based on Theorem 1 and Lemma 1, we have the following two corollaries.

Corollary 1. For a (n,m)-set system the following holds.

(i) There does not exists a Tracking Set of size less than �lg m�.
(ii) Tracking Set is fixed-parameter tractable when parameterized by solution

size and Tracking Set can be solved in time O∗(2k2
k

).
(iii) (n − k)-Tracking Set is W[1]-complete.
(iv) (m − k)-Tracking Set is FPT.
(v) (lg m + k)-Tracking Set is W[2]-hard.

4 FPT Algorithm for TSPP

In this section, we provide two FPT algorithms for finding Tracking Set in graphs,
first using Tracking Set for Set System and then without using it. While the first
one works for any Tracking Set problem where the number of s-t paths can be
counted efficiently, the second approach is faster and is suited for the TSPP
problem.

4.1 Using Tracking Set for Set System

To cast TPP and TSPP as a Tracking Set problem for a set system P = {X,S},
we simply take the vertex set of the given graph as the universe X and the
family S consists of sets of vertices in all simple s-t paths or shortest s-t paths
as appropriate.

In the TSPP problem since we consider only shortest s-t paths, we find and
remove those edges and vertices that do not participate in any shortest s-t path.
Observe that this can be done by first finding a shortest s-t path, say of length
ls, using a standard algorithm, and then removing each edge (u, v) for which the
following equality does not hold:

Distance from s to u + 1 + Distance from v to t = ls

Fixed-Parameter Tractable Algorithms for Tracking Set Problems 99

Now in the remaining graph none of the edges exist between vertices equidistant
from s (or t). In fact, the end points of each edge are such that the difference
of their distances from s (or t) is always one. Thus the vertices of graph can be
categorized into layers, such that each layer consists of the vertices equidistant
from s (or t). Such a graph is called a layered s-t graph. We can also consider
each edge to be directed from the vertex closer to s, towards the vertex closer
to t. Thus we can perceive our graph as a directed acyclic graph while solving
the TSPP problem.

We define level L(v) of a vertex v as the length of the shortest path from s
to v. We denote out-degree of a vertex v by do(v) and its in-degree by di(v). In
the rest of the paper, Tracking Set is used to refer Tracking Set for Paths and
Tracking Set for Shortest Paths.

We can solve TPP and TSPP by modeling it as a Tracking Set problem for
a set system. Observe that in order to do so we need to bound the number
of s-t paths. However, for general graph, counting the number of s-t paths is
hard for the complexity class #P [15]. For some special class of graphs it can
be done in polynomial time. Suppose for a graph class we can enumerate all
the s-t paths in f(n) time. Let the number of paths be m. From Corollary 1 we
know m > 2k there does not exists a of size less than equals to k. Thus we can
assume that m ≤ 2k. Observe that no two vertex in the graph are present in
the same set of s-t paths (assuming each vertex participates in at least one s-t
path). Therefore number of vertices n is bounded by 22

k

. We can verify whether
a subset of vertices is a tracking set or not in 2O(k) time by checking whether it
intersects every path uniquely or not. Thus we have the following theorem.

Theorem 2. If for a graph s-t paths can be enumerated in f(n) time then it is
possible to determining whether G has a Tracking Set of size at most k or not
in time f(n) + 22

O(k)
.

Next we show that verifying whether a given a set of vertices is a Tracking Set
for Shortest Paths or not can be done in polynomial time, and hence establish
that Tracking Set for Shortest Paths is in NP. A similar proof is given
in [1], however for the sake of completeness we provide a complete proof here
as well. After that we show that number of shortest paths between two vertices
can be counted in polynomial time.

In Lemma 2 we show that the following condition is necessary and sufficient
for a set of vertices to be a Tracking Set.

Condition 1. A set of vertices V ′ is said to follow Tracking Set Condition if
there exists at most one shortest path between any two vertices u, v ∈ V ′ ∪ {s, t}
that does not contain any vertex from V ′ ∪ {s, t} \ {u, v}.

As explained earlier, we perceive the graph to be directed. Hence, the shortest
path between any two vertices has to be a sub-path of some shortest s-t path.

100 A. Banik and P. Choudhary

Now we have the following lemma.

Lemma 2. Let G = (V,E) be a graph and T ⊆ V is a set of vertices. T is a
Tracking Set for Shortest Paths if and only if it follows Tracking Set Condition.

Proof. Let T be a Tracking Set for shortest paths in G. First we prove that T
follows Tracking Set Condition. Assume that Tracking Set Condition does not
hold for T, i.e. there exist two vertices u, v ∈ T′ = T∪{s, t} such that there are
two or more shortest paths λ1 and λ2 between u and v, that do not contain any
vertices from T′ \ {u, v}. Observe that both u and v are part of some shortest
s-t path (not necessarily the same). Let λs and λt be any shortest path from s
to u and v to t. Thus λs and λt are also shortest. Observe the following

– ∀vi ∈ λs \ {u}, L(vi) < L(u)
– ∀vj ∈ λ1 ∪ λ2 \ {u, v}, L(u) < L(vj) < L(v)
– ∀vk ∈ λt \ {v}, L(vk) > L(v)

Hence λs · λ1 · λt and λs · λ2 · λt are two valid shortest s-t paths containing the
same set of trackers. This contradicts the fact that T is a Tracking Set.

ts
ti

ti+1

λ1

λ2

Fig. 1. Illustration of Lemma 2

Let T is a set of vertices which follows Tracking Set Condition. We prove
that T is a Tracking Set for shortest s-t paths in G. Suppose T is not a Tracking
Set. Then there exists at least two shortest s-t paths, say λ1 and λ2 that contain
the same set of vertices from T (see Fig. 1). Observe that in a specific order O
the vertices from T′ = T ∪ {s, t} appears in λ1 and λ2. There are at least one
pair of consecutive vertices ti and ti+1 in O such that the path from ti to ti+1 is
different in λ1 than in λ2, otherwise both the paths are same. These paths are
part of some shortest s-t paths. Hence there exists two shortest paths between
ti and ti+1. This violates the Tracking Set Condition. Hence the result holds. �

Verifying whether a given subset of vertices of size at most k is a Tracking
Set for shortest paths can be done using Lemma2 in O(k2(m + n)) time, by
checking for unique paths without a tracker between every pair of vertices in the
set.

Fixed-Parameter Tractable Algorithms for Tracking Set Problems 101

Next we have the following observation which is probably folklore, we provide
details here for completeness. Level of a vertex v is the shortest distance from s
to v.

Observation 1. Let v be any vertex at level �. Assume that it has k in-neighbors
in level � − 1 which are {v1, v2, ..., vk}. If there are α1, α2, ..., αk paths from s
to v1, v2, ..., vk respectively, then there are α1 + α2 + ... + αk many paths (not
necessarily disjoint) from s to v.

The observation immediately gives a dynamic programming (on levels) algorithm
to compute the number of shortest s-t paths and we have the following lemma.

Lemma 3. The number of shortest s-t paths in a graph G = (V,E) with |V | =
n, |E| = m, can be found in O(m + n) time.

Essentially, the same algorithm works for counting the number of paths in a
directed acyclic graph if we traverse the vertices in topologically sorted order to
show the following (see [4]).

Lemma 4. The number of s-t paths in a directed acyclic s-t graph G = (V,E)
with |V | = n, |E| = m, can be found in O(m + n) time.

Thus from Theorem 2 and Lemma 4, we have

Corollary 2. When the given s-t graph is a directed acyclic graph, we can deter-
mine whether the graph has a Tracking Set for Paths of size at most k for all
the paths in time O(m + n + 2k2

k

k2(m + n)).

Also applying Theorem3 in Step 1 of the algorithm of Sect. 3, we get

Theorem 3. For a given s-t graph G = (V,E) where |V | = n and |E| = m,
a Tracking Set for Shortest Paths of size at most k, if exists, can be found in
O(2k2

k

k2(m + n)) time.

4.2 Improved FPT Algorithm for TSPP

We obtain an improved FPT algorithm for TSPP using an additional rule which
results in a larger lower bound for the number of paths, thereby giving a smaller
upper bound for the size of the universe.

We start with the following reduction rules.

Reduction Rule 1. If there is an edge from vertex x to vertex y and if both
x and y have degree 2, then delete y and draw an edge between x and vi, ∀vi ∈
N(y) \ {x}.

Reduction Rule 2. If there exists a set of m degree 2 vertices, such that they
are all adjacent to a pair of vertices u, v ∈ V , then arbitrarily delete m − 1 of
these vertices and reduce k by m − 1.

102 A. Banik and P. Choudhary

Proof of safeness of above two reduction rules will be provided in the full
version of the paper.

Observation 2. In a reduced instance for any pair of vertices u, v with degree
at least 3, there exists at most one vertex of degree 2 that is adjacent to both u
and v.

u

u1

ur

uw
1u11

s tv

Fig. 2. Illustration of proof of Lemma 5

Lemma 5. In a reduced instance the number of s-t paths in graph is at least
1 +

∑

v∈V \{t}
(do(v) − 1).

Proof. Let p = 1 +
∑

v∈V \{t}
(do(v) − 1).

We prove the claim by induction on p. Consider the base case when p = 1.
In this case,

∑

v∈V \{t}
(do(v) − 1) = 0. This means that each vertex in V \ {t} will

have out-degree exactly 1. Clearly, the lemma holds.
For the induction hypothesis, assume that the lemma holds for the case when

p < δ. Now for induction, consider the case when p = δ. Consider a vertex u that
is closest to t among those having out-degree at least 2 (break ties arbitrarily).
Assume that u has out-degree equal to r. Let u1, u2, ..., ur are out-neighbours of
u (see Fig. 2). Consider one of the out-neighbors, say u1. Observe that the path
from u1 to t does not contain any vertex with out-degree greater than 1. In the
path from u1 to t consider the first vertex, say v which has in-degree greater
than or equal to 2 (such a vertex exists as otherwise Reduction Rule 1 would
be applicable). Let the path from u1 to v is Pu1v = (u1, u

1
1, u

2
1, ..., u

w
1 , v). Delete

all the vertices in the path from u1 to v, say λ, except the vertex v. If u1 = v,
delete the edge between u and v. After deleting the vertices in λ \ {v}, let the
new graph be G′(V ′, E′). Observe that the deletion of vertices {u1

1, u
2
1, ..., u

w
1 }

does not affect δ. However, the out-degree of u is reduced by 1 due to deletion
of u1 and consequently δ reduces by 1. Observe that the number of s-t paths in
G is also reduced by at least 1. Therefore the lemma holds. �
Lemma 6. In a layered s-t graph G = (V,E) on n vertices, with the property
that each vertex participates in at least one s-t path, and no two vertices of degree
2 are adjacent, there exists at least

√
n/4 s-t paths.

Fixed-Parameter Tractable Algorithms for Tracking Set Problems 103

Proof. Assume that the number of vertices with degree greater than equal to 3
is n3 and the number of vertices with degree equal to 2 is n2. Since there can
exist at most one vertex of degree 2 adjacent to a pair of vertices of degree 3 or
more, n2 is at most

(
n3
2

)
. Hence n3 is at least

√
2n2.

Assume that we short-circuit all vertices of degree equal to 2 and create a
new graph G′. Observe that the number of s-t paths in G is the same as the
number of s-t paths in G′. Since the graph G′ comprises of only vertices with
degree greater than or equal to 3, the total degree of all vertices in graph is
greater than equal to 3n3. Thus the total out-degree of all vertices in graph is
greater than equal to 3n3/2. From Lemma 5, we know that the total number of
s-t paths, say p, is at least 1 +

∑

v∈V \{t}
(do(v) − 1). So p is at least 3n3/2 − n3 =

n3/2 = n3/4+n3/4 ≥ (
√

n2/2)/2+n3/4 which is at least
√

n/4 as n3 +n2 = n.

Theorem 4. For a given s-t graph G = (V,E), we can determine whether it
has a size-k Tracking Set for Shortest Paths in time O(22k

2+4kk2(m + n)).

Proof. From Lemma 6, we know that m, the number of paths is at least
√

n/4.
From Corollary 1, we know that we need at least lg(m) ≥ lg

√
n − 2 trackers.

Hence if k < 0.5 lg n − 2, we reply that a k-sized solution is not possible. Other-
wise, k ≥ lg(

√
n/4), therefore n ≤ 22k+4. Now for each subset of V of size k, we

verify whether it is a Tracking Set using Lemma 2 in O(k2(m + n)) time. Thus
in O(22k

2+4kk2(m+n)) time, we can find a Tracking Set of size at most k if one
exists. �

5 Conclusions

We gave FPT algorithms for TSPP and some special cases of TPP . Improving
the runtime of our FPT algorithm for TSPP and determining whether the
general TPP is FPT are interesting open problems.

A related notion to fixed-parameter tractability is the notion of kernelization.
Gutin et al. [10] have shown that there does not exist a polynomial kernel for

the Test Cover Problem when parameterized by solution size, under standard
complexity theory assumptions. Due to the correspondence with Tracking Set

Problem it will follow that the general Tracking Set Problem also does not
have a polynomial kernel under the same assumptions when parameterized by
the solution size. However as TSPP and TPP are special instances of Tracking
Set, it is possible that they have polynomial sized kernels.

Another direction of study is further exploration of approximation algorithms
for TPP and TSPP in special classes of graphs.

Acknowledgments. We thank Venkatesh Raman and Saket Saurabh for fruitful dis-
cussions and valuable suggestions.

104 A. Banik and P. Choudhary

References

1. Banik, A., Katz, M.J., Packer, E., Simakov, M.: Tracking paths. In: Fotakis, D.,
Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 67–79.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 7

2. Bhatti, S., Xu, J.: Survey of target tracking protocols using wireless sensor network.
In: Proceedings of the 2009 Fifth International Conference on Wireless and Mobile
Communications, ICWMC 2009, Washington, D.C., pp. 110–115. IEEE Computer
Society (2009)

3. De Bontridder, K.M.J., Halldórsson, B.V., Halldórsson, M.M., Hurkens, C.A.J.,
Lenstra, J.K., Ravi, R., Stougie, L.: Approximation algorithms for the test cover
problem. Math. Program. 98(1–3), 477–491 (2003)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

5. Crowston, R., Gutin, G., Jones, M., Muciaccia, G., Yeo, A.: Parameterizations of
test cover with bounded test sizes. Algorithmica 74(1), 367–384 (2016)

6. Crowston, R., Gutin, G., Jones, M., Saurabh, S., Yeo, A.: Parameterized study
of the test cover problem. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS
2012. LNCS, vol. 7464, pp. 283–295. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32589-2 27

7. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms, 1st edn. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21275-3

8. De Bontridder, K.M.J., Lageweg, B.J., Lenstra, J.K., Orlin, J.B., Stougie, L.:
Branch-and-bound algorithms for the test cover problem. In: Möhring, R., Raman,
R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 223–233. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45749-6 23

9. Ganesan, D., Cristescu, R., Beferull-Lozano, B.: Power-efficient sensor placement
and transmission structure for data gathering under distortion constraints. ACM
Trans. Sens. Netw. 2(2), 155–181 (2006)

10. Gutin, G., Muciaccia, G., Yeo, A.: (Non-)existence of polynomial kernels for the
test cover problem. Inf. Process. Lett. 113(4), 123–126 (2013)

11. Halldórsson, B.V., Halldórsson, M.M., Ravi, R.: On the approximability of the
minimum test collection problem. In: auf der Heide, F.M. (ed.) ESA 2001. LNCS,
vol. 2161, pp. 158–169. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44676-1 13

12. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999)

13. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed
values. J. Comput. Syst. Sci. 75(2), 137–153 (2009)

14. Moret, B.M.E., Shapiro, H.D.: On minimizing a set of tests. SIAM J. Sci. Stat.
Comput. 6(4), 983–1003 (1985)

15. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

https://doi.org/10.1007/978-3-319-57586-5_7
https://doi.org/10.1007/978-3-642-32589-2_27
https://doi.org/10.1007/978-3-642-32589-2_27
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/3-540-45749-6_23
https://doi.org/10.1007/3-540-44676-1_13
https://doi.org/10.1007/3-540-44676-1_13

Exact Computation of the Number
of Accepting Paths of an NTM

Subrahmanyam Kalyanasundaram1(B) and Kenneth W. Regan2

1 Department of Computer Science and Engineering,
IIT Hyderabad, Sangareddy, India

subruk@iith.ac.in
2 Department of Computer Science and Engineering,

University at Buffalo, Buffalo, USA
regan@buffalo.edu

Abstract. We look at the problem of counting the exact number of
accepting computation paths of a given nondeterministic Turing machine
(NTM). We give a deterministic algorithm that runs in time ˜O(

√
S),

where S is the size (number of vertices) of the configuration graph of
the NTM, and prove its correctness. Our result implies a deterministic
simulation of probabilistic time classes like PP, BPP, and BQP in the
same running time. This is an improvement over the currently best known
simulation by van Melkebeek and Santhanam [SIAM J. Comput., 35(1),

2006], which uses time ˜O(S1−δ). It also implies a faster deterministic
simulation of the complexity classes ⊕P and ModkP.

1 Introduction

For a given nondeterministic Turing machine (NTM), counting the number of
accepting computation paths is a difficult problem in general. For instance, the
complexity class #P captures the complexity of counting for decision problems
in NP. The computational power of #P is highlighted by a celebrated result of
Toda [12]. Toda showed that a polynomial time machine with a #P oracle can
perform any computation in the polynomial hierarchy.

In this paper, we prove that we can deterministically count the number of
accepting paths of a k-tape NTM N in time akt/2 · f(·), where a is the alphabet
size and t is the running time of N . The function f grows much slower than akt/2

and so does not contribute significantly to the running time. Our main theorem is:

Theorem 1. There is a deterministic algorithm that computes the number of
accepting computations of any k-tape NTM N on a given input x in time

akt/2Hk
√

t log t
a · q2poly(log q, k, t, a),

where a is the alphabet size, t is the time complexity, and q is the number of
states of N and Ha is a constant that depends only on a.

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 105–117, 2018.
https://doi.org/10.1007/978-3-319-74180-2_9

106 S. Kalyanasundaram and K. W. Regan

The counting variants of many specific problems have been looked at. Two
classic results are Kirchhoff’s matrix-tree theorem, which counts the number of
spanning trees in an arbitrary graph, and Kasteleyn’s theorem, which counts
the number of perfect matchings in a planar graph. Both yield polynomial-time
algorithms. But other problems—such as counting the number of perfect match-
ings in an arbitrary graph or the number of satisfying assignments of a CNF
formula—are known to be #P-complete. The class #P-complete denotes the
hardest problems in #P and a polynomial time algorithm for any of them would
imply P = NP. Interestingly, some #P-complete problems admit a Fully Poly-
nomial Randomized Approximation Scheme (FPRAS). Examples are counting
the number of satisfying assignments of a DNF formula and counting the num-
ber of perfect matchings in a bipartite graph. See the book by Jerrum [6] for
a good account of techniques used for counting problems and the paper [3] for
approximability results on counting problems. However, we are interested in the
counting version of a language that is accepted by an arbitrary NTM, and not
an NTM that accepts a specific language. Hence we cannot assume any structure
specific to the language. To the best of our knowledge, ours is the first attempt
in this direction.

For a given NTM N , counting the number of accepting computation paths is a
harder problem than deciding if it accepts the given input—that is, to determine
if N has at least one accepting computation path. One way to go through the
accepting computations would be to search the configuration graph of N . The
number of strings that can be written on to the k tapes of N is already akt.
In [7], it was shown that the computation of a k-tape NTM N can be simulated
by a deterministic Turing machine (DTM) in time roughly1 akt/2, achieving a
running time approximately square root of the size of the configuration graph.
This was obtained by combining two techniques used to simulate the NTM: a
breadth-first search (BFS) approach and a block trace (BT) approach.

Counting the number of accepting computations is harder insofar as the BT
component cannot simply allow computation paths to “merge” because exact
counts of paths need to be preserved. We follow the structure of [7] but develop
more refined techniques to track these numbers. Sections 2 and 3 explain the
model and the BFS and BT approaches, giving details for reference in the proof
of the main theorem in Sect. 4. Neither BFS nor BT improves the akt term by
itself, but we show how the balancing idea of [7] survives the need to keep exact
track of counts.

The ability to count the number of accepting computations immediately
implies a faster simulation of the “counting complexity classes”. The reader
is referred to [2,10,13] for a detailed study on various complexity classes where
membership in a language is determined as a function of the number of accepting
paths in a nondeterministic TM. These include probabilistic classes such as PP,
BPP and BQP. In [14], van Melkebeek and Santhanam had shown a simulation
of probabilistic time t machines in deterministic time o(2t). Their improvement

1 There are other multiplicative factors in the running time of the simulation, but
akt/2 is the fastest growing factor.

Exact Computation of the Number of Accepting Paths of an NTM 107

comes from using techniques that save on randomness and observing that the
number of random bits required can be reduced from t to (1 − δ)t. However,
their model assumes that there are only 2 nondeterministic choices available at
each step. Our model is more general and considers all the choices available,
i.e., the choices in tape movement, written alphabet and next state. Our result
reduces the exponent of the running time by half, whereas the reduction in [14] is
incremental in nature. Our result also implies a faster simulation of other count-
ing classes such as ⊕P (also known as ParityP) and ModkP. The connections to
probabilistic and parity classes are explored in Sect. 5. See [8] and [11] for other
related work.

2 Preliminaries and the BFS Approach

Given a nondeterministic Turing machine (NTM) N and an input x of length
n, t = t(n) is defined to be the maximum number of time steps that N takes to
halt on all the computation paths on inputs of length n. At any given instant,
the NTM N can have up to ak3kq different options for its next step, where a is
the alphabet size, k is the number of tapes and q is the number of states. This
is because, each of the k tape heads have a different choices for the characters
to be written on the tape, and 3 different choices for the head movements – left,
stay or right. We assume that t(n) is time-constructible and space-constructible
(see a standard textbook such as [1] or [9] for a definition).

A configuration of the NTM N is a snapshot of the present situation of the
machine. The configuration contains the current state, the tape contents of all
the k tape heads, and current position of all the heads. The total number of
configurations possible is q · (att)k = qakttk. The above expression follows from
the fact that in a computation that uses at most t steps, the NTM traverses
at most t locations in each tape. The computation starts from the standard
starting configuration: start state of N , first tape containing the input x, and
the remaining k − 1 tapes being empty with all heads at the left-most positions.
Each transition follows the rules of the NTM N , and since N is nondeterministic,
a configuration may be followed by 0, 1 or multiple successor configurations. The
transitions naturally define a directed graph with the configurations as vertices.

The computation halts when the NTM reaches the accept or reject state. We
use #accN (x) to denote the number of accepting computation paths of the NTM
N on a given input x. We look at the problem of deterministically computing
#accN (x) in the most efficient manner.

The naive approach would be to try a Depth First Search on the configuration
graph, simulating each computation path till it halts. This is inefficient because
of the high out-degree of the graph. However, a modified version of Breadth First
Search works better, because each vertex in the graph is visited only once. Thus
we have the following:

Theorem 2 (BFS Approach). Given a k-tape nondeterministic Turing
machine N and an input x, there is a deterministic algorithm that computes
#accN (x), in time q2(3at)kaktpoly(log q, k, t, a).

108 S. Kalyanasundaram and K. W. Regan

Proof. We consider the following modified configuration graph ˜G: the nodes
are pairs (ρ, p), where ρ is a configuration of the NTM N and p is an integer
0 ≤ p ≤ t. By the above bound, this graph has at most qakttk · (t + 1) nodes.
There is a directed edge from (ρ, p) to (ρ′, p′) if and only if ρ′ is a valid successor
configuration for ρ in the NTM N and p′ = p + 1.

Notice that ˜G is a directed acyclic graph, and that for any two nodes (ρ, p),
(ρ′, p′) ∈ V (˜G) all paths from (ρ, p) to (ρ′, p′) are of the same length. Let ρx

denote the starting configuration when N takes the string x as input. We modify
BFS by maintaining a count variable at each node of ˜G that stores the number of
shortest paths from the starting node (ρx, 0) to that node. By the construction
of ˜G, each path is a shortest path. Thus the BFS variant actually gives the
number of paths from (ρx, 0) to each node. We use a look up table for simulating
the transition rules of N to figure out adjacencies of ˜G on the fly.

Finally, we go through all the nodes, and sum up the number of paths to all
the nodes corresponding to accepting configurations of N .

The dominant term in the running time comes from the number of edges of
the graph ˜G. We have e = |E(˜G)| ≤ qakttk ·(t+1)·qak3k = q2(3at)kakt·(t+1). We
would also need to keep track of the different adjacencies, and other bookkeeping.
This brings in an additional2 (log e)O(1) factor. Thus the total time required for
computing the number of accepting computations is:

O(e · log(e)O(1)) = q2(3at)kaktpoly(log q, k, t, a).

��

3 Block Trace Computation

Block traces are succinct witnesses of computation paths that periodically take
stock of the computation path of the NTM N . They capture information of the
NTM once every d steps. The general idea of block traces has been used in the
past, but we restate from [7] the particular form used here.

Definition 3 (Block trace [7]). A segment of size d for a k-tape NTM N is a
sequence of 4-tuples

τ = [(r1, f1, �1, u1), . . . , (rk, fk, �k, uk)]

where for each tape j, 1 ≤ j ≤ k:

– rj ∈ { 0, . . . , d } is the maximum number of cells to the right of its starting
position the tape head will ever be over the next d steps,

– fj ∈ { 0, . . . , d − rj } is the number of cells left of the position of rj that the
tape head ends up after the d-th step,

2 We require log(qakttk) time to even read a configuration.

Exact Computation of the Number of Accepting Paths of an NTM 109

– �j ∈ { 1, . . . , d } is the number of distinct cells that shall be accessed over the
next d steps on the tape j, and

– uj is a string of length �j , which represents the final contents of those cells.

A block trace of block-size d is a sequence of segments of size d.
An accepting computation path is compatible with a block trace if the latter

has �t/d� blocks where t is the total number of steps in the path, and in every
block each 3-tuple (rj , fj , �j) correctly describes the head locations after the
corresponding d steps of the path, and every character in uj is the correct final
content of its cell after the d steps.

Our plan is to enumerate the number of accepting paths of N compatible to
each of the block trace witnesses. We first show the simple, but critical Lemma 4
that allows us to use block traces without losing track of the count of accepting
paths. We then state the key Lemma5 that shows that we can deterministically
enumerate the number of accepting computation paths corresponding to each of
the witnesses. Combining Lemma 5 with Lemma 6 that bounds the number of
block trace witnesses, we get a bound on the running time of the deterministic
algorithm that computes the number of accepting paths of N , #accN (x). This
bound is proved in Theorem7.

Lemma 4. Two different block trace witnesses give rise to a disjoint set of com-
putation paths.

Proof. Every computation path has a corresponding block trace witness with
which it is compatible. So it is enough to show that this witness is unique. For
a given fixed computation path, at each time instance and for each tape j, the
values rj , fj , �j , uj are fixed as in Definition 3. So the lemma follows. ��
Lemma 5. The number of accepting computations of N on a given input x, that
are compatible with a given block trace witness can be calculated by an algorithm
in time q2a3kdpoly(log q, k, t, a, d).

Proof. We are given a block trace witness. Let 1 ≤ i ≤ �t/d� be a segment in the
block trace. For each value of i, we maintain a set Ri that contains pairs (r, c).
A pair (r, c) ∈ Ri if the state r of NTM N can be reached after the ith segment
(id time steps), and c is the number of distinct compatible computation paths
that lead up to r. Initially, we have R0 = {(q0, 1)}, where q0 is the start state
of N .

To assist us in maintaining the sets Ri, we create a lookup table which can
be thought of as a d step equivalent of the NTM transition function, along with
additional information. Given an input state p and a segment, we want to know
the set of states reachable from p after d steps, and the number of distinct
compatible (with the given segment) computation paths for each of these states.
The lookup table is indexed with (i) the state p, (ii) the segment, and (iii) for each
of the k tapes, the contents of (2d−1) tape cells surrounding the tape head. For
each of the index values, the table returns a set of pairs (p′, cp′) which contains

110 S. Kalyanasundaram and K. W. Regan

all the states p′ reachable from p after d steps in a manner compatible with the
given segment, and cp′ is the number of distinct compatible computation paths.

We use this lookup table to generate Ri from Ri−1 successively. For the given
block trace, note that we can compute all the tape contents of the NTM after the
(i−1)th segment. For each pair (r, c) ∈ Ri−1, we look up the entry corresponding
to the state r, the ith segment in the block trace and the relevant tape contents.
This entry will be a set of pairs (r′, c′). For each pair (r′, c′), we add the entry
(r′, cc′) to Ri. This is because we had c compatible paths to reach r till the
(i − 1)th segment and c′ compatible ways to reach from r to r′ during the ith
segment. For the moment, we will add another entry corresponding to r′ even if
one already exists. We repeat this for all entries of Ri−1, and for each entry of
Ri−1, all the pairs in the set returned by the lookup table. After doing this, we
sort Ri according to the state values in the pairs. All of the pairs (r′, αr′) are
replaced by a single entry (r′,

∑

αr′). This ensures that the count is preserved,
and that the set Ri’s are of bounded size. We continue this for all the �t/d�
segments, and the entry corresponding to the accepting state qA in Rt/d gives
the number of accepting computations.

The lookup table has qa(3d−1)kd2 rows. This follows from the fact that there
are at most akdd2 segments. If the lookup table is stored serially, the cost of each
lookup is at most qa(3d−1)kd2(log q + 3kd log a + 2 log d) + q log q. The unsorted
list of states could be of size at most q2, and we require q2 log q comparisons
to sort, with each comparison costing log q time. Together with this, the total
running time for the algorithm on t/d segments is

[qa3kdd2(log q + 3kd log a + 2 log d) + q log q + q2 log2 q] · �t/d�,

which is at most q2a3kdpoly(log q, k, t, a, d). ��
A few remarks are in order:

1. We would like to point out that the above computation can be carried out
by a deterministic Turing machine having k + 3 tapes. The first k tapes can
be used to simulate the k tapes of the NTM N , the next tape to store the
lookup table used above and the last two for other computations.

2. Notice that the lookup table can be precomputed from the description of the
NTM directly. Once the table is in place, it can be reused for different inputs
x. The time required for computing the lookup table does not blow up the
running time of our main result.

3. The counts stored in the lookup table do not contribute significantly to the
running time. As noted before, at every step, the NTM has (3a)kq options,
which means the total number of computation paths (including rejecting com-
putations) is at most ((3a)kq)t. The space required for storing each count is
thus at most t · [k log(3a) + log q]. This is absorbed in the poly(log q, k, t, a, d)
term above.

Once the r and f values in the block trace are fixed, the number of fea-
sible values of � that can achieved by a TM head movement gets restricted.

Exact Computation of the Number of Accepting Paths of an NTM 111

This argument leads to a bound on the number of block trace witnesses. The
following Lemma 6 provides this bound. Lemma6 was originally proved in [7],
so we omit the proof.

Lemma 6 ([7]). The number B of valid segments is at most (32ad)k. Hence the
number of potential block trace witnesses is at most Bt/d = akt32kt/d.

Theorem 7 (Block trace approach). The number of accepting computation
paths of a nondeterministic k-tape TM with q states and alphabet size a on an
input x can be computed by a deterministic algorithm in time

aktCk
√

t
a · q2poly(log q, k, t, a),

where Ca is a constant that depends only on a.

Proof. As mentioned previously, Lemmas 6 and 5, respectively bound the number
of block traces, and the time required to compute the number of compatible
accepting paths. The algorithm generates all the valid block traces, and computes
the number of compatible accepting paths. The running time is bounded by

q2akt+3kd32kt/dpoly(log q, k, t, a, d).

The algorithm keeps track of number of compatible accepting paths for each wit-
ness and then adds them up to get the total number of accepting computations.
Lemma 4 ensures that there is no overcounting, i.e., each computation path is
captured by exactly one block trace witness. We choose d such that the dominant
factors are optimized. We need to minimize the product of a3kd and 32kt/d. A
straightforward calculation gives us that this happens when d =

√

5t/(3 log2 a).
Substituting this value of d in the expression, we get a running time of

aktCk
√

t
a · q2poly(log q, k, t, a),

where Ca = 2
√

60 log2 a. ��

4 Main Theorem

In this section, we discuss an algorithm that reduces the exponent of the compu-
tation time by half. We have seen the BFS approach in Theorem2 that requires
a running time of q2(3at)kaktpoly(log q, k, t, a). The block trace approach in
Theorem 7 requires a running time of aktCk

√
t

a · q2poly(log q, k, t, a). In both
these approaches, the dominating factor is akt. On first sight, the akt factor
seems unavoidable this is the number of different patterns that can be present
on the k tapes of the NTM. We will see how to combine the two algorithms to
bring down the exponent of the akt factor.

In the BFS approach, the number of configurations is upper bounded by
qakttk. This was a consequence of the fact that the maximum tape usage is
kt cells over all the k tapes. If the total tape usage were ≤kt/2 cells over

112 S. Kalyanasundaram and K. W. Regan

all the k tapes, then the number of configurations would be no more than
qakt/2tk. Then the running time of the BFS approach would be at most
q2(3at)kakt/2poly(log q, k, t, a).

That still leaves us with the case when N uses more than kt/2 space across all
the tapes. We note that if the tape head is not returning ever to a tape location,
then the content that the tape head writes in that location is irrelevant. If the
NTM N uses more than kt/2 space, each of these locations are visited once for
a last time. When visiting a location for the last time, we can modify the block
trace method so that nothing is written in that location. This can save us a
factor of akt/2 on the running time.

We now need a mechanism to determine which of the two situations we are
in: tape usage >kt/2 or tape usage ≤kt/2. We introduce directional traces for
that purpose.

Definition 8 (Directional trace [7]). A directional segment of size d for a
k-tape NTM N with alphabet size a is a segment of size d, omitting the strings
uj , that is

τ = [(r1, f1, �1), . . . , (rk, fk, �k)]

where rj , fj and �j are defined as in Definition 3.
A directional trace of block size d, is a sequence of directional segments of

size d.

By considering the number of 3-tuples (r, f, �), we get a bound on the number
of directional segments. A calculation similar to that in the proof of Lemma 6
gives us that for a given �, the number of pairs (r, f) is at most (d + 1 − �)2 +
5(d+1−�). Thus the number of directional segments is at most

∑d
i=1(i

2 +5i) =
d(d + 1)(d + 8)/3 ≤ d3, for d ≥ 6. Thus we get the following:

Lemma 9 ([7]). The number of directional segments of block size d is upper
bounded by d3k. The number of potential directional trace witnesses is at most
d3kt/d.

The following lemma ensures that we do not over-count the number of accept-
ing computations and is immediate from the definition of directional traces.

Lemma 10. Two different directional trace witnesses give rise to a disjoint set
of computation paths. In other words, every computation path corresponds to a
unique directional trace witness.

Now we are ready to prove the main theorem.

Proof (of Theorem 1). We assume that we know the time complexity t = t(n)
of the NTM N . Even if t(n) is not known, we could perform a linear search by
setting t = 1, 2, 3, · · · , and the overhead that this will introduce can be absorbed
into the poly(t) component. The algorithm that computes #accN (x) works in
three stages:

Exact Computation of the Number of Accepting Paths of an NTM 113

– Preliminary Stage: In this stage, the directional traces are used to decide
which of the two approaches to use. The directional trace carries the infor-
mation about the extent of tape usage for each block of size d. For each
directional trace, the algorithm decides if the tape usage is >kt/2 or ≤kt/2.
Corresponding to the tape usage, the suitable method is used for computa-
tion. By Lemma 9, there are d3kt/d directional traces. We use the block length
d =

√

5t/(3 log2 a) as optimized in Theorem 7. Thus we get the upper bound
on number of directional traces as

2
[√

27√
20

·√log a·k√
t·(log t+log(5/(3 log2 a)))

]
,

which is at most 2αak
√

t log t, where αa is a constant that depends3 only on a.

From the directional traces, the algorithm computes the tape usage, and
determine whether to use the BFS approach or the block trace approach.
Moreover, for each tape location, the algorithm determines the block when
that location was visited last. This information is stored as a lookup table for
easy reference. Given a directional trace, the computation of tape usage and
last visits can be done in time polynomial in k and t.

– Block Trace Algorithm: For the directional traces where the total tape
usage is >kt/2, the block trace approach is used. The algorithm generates all
the block traces by adding an appropriate u of length �, to each 3-tuple (r, f, �)
of the directional trace. Recall that the time instances where the location is
being visited for the last time have been identified in the preliminary stage.
For the spots in u corresponding to the last visits of the respective tape
locations, no symbol from the tape alphabet is assigned. Only a wildcard
symbol * is assigned.
Since the tape usage is >kt/2, we will assign at least >kt/2 wildcard
symbols *. This will result in a reduction in the number of block traces by a
factor of at least akt/2. So the number of block traces that we will consider
for block trace algorithm will be at most 2αak

√
t log takt/2. We can modify

Lemma 5 by including block trace segments with the * symbol in the lookup
table. The lookup table should return all pairs (r, c) such that r is a state
reachable in a manner compatible with the block trace in c different ways.
This can be precomputed along with the lookup table, by combining the
entries where different tape alphabets are considered in place each wildcard
character.
The wildcard overhead is insignificant when compared with the running time
of Lemma 5. The total running time of this is obtained by multiplying the
number of block traces under consideration with the running time of Lemma5,
thus we get a running time of

2αak
√

t log takt/2 · q2a3kdpoly(log q, k, t, a).

3 In fact, for values of a ≥ 4, we can set αa =
√

(27/20) log a and for a ∈ {2, 3},

setting αa to be slightly greater than
√

(27/20) log a works.

114 S. Kalyanasundaram and K. W. Regan

Substituting the optimal value of d, we get that the total running time of this
stage is at most Hk

√
t log t

a akt/2 · q2poly(log q, k, t, a), where Ha is obtained by
absorbing the a3kd into the 2αak

√
t log t factor. Notice that Ha depends only

on a.
– BFS Algorithm: We do not require the directional traces when the total

tape usage is ≤kt/2. We run the BFS algorithm as in Theorem2 just once,
but without pursuing any computations where tape usage exceeds kt/2. Thus
the running time is at most q2(3at)kakt/2poly(log q, k, t, a).

Notice that each computation path of N is considered in exactly one of
the block trace or BFS algorithms. The output #accN (x) is obtained by sum-
ming the results yielded by the two algorithms. The total running time is upper
bounded by

Hk
√

t log t
a akt/2q2poly(log q, k, t, a).

��
Remark: We observe that we could convert the computation in the above
proof into a uniform computation performed by a deterministic universal Turing
machine. This DTM would take the description of the NTM N , along with its
input x as arguments. This is possible because the description of N is used only
in computing the lookup tables. An application of the Hennie-Stearns construc-
tion [5] on the universal machine would yield a 2-tape machine which computes
#accN (x), but the running time incurs a small blowup. Most of the additional
factors in the blowup can be accommodated by increasing Ha slightly, except for
an additional q2 factor. Thus the running time of the 2-tape DTM that computes
#accN (x) is

akt/2Hk
√

t log t
a · q4poly(log q, k, t, a).

5 Implications and Possible Extensions

We have shown techniques by which we can deterministically search the com-
putation tree and count the number of accepting computations of an NTM in
time square root of the size of the configuration graph. It would be interesting to
see if one could use this approach along with additional techniques to push the
running time even lower. Also, it would be interesting to see any lower bounds
for the problem.

We note that our result is general enough to give a faster deterministic sim-
ulation of any language in which membership is determined as a function of the
number of accepting paths.

Definition 11. The complexity class ⊕P (also known as Parity P) is the set of
all languages L, such that there exists an NTM N that runs in time polynomial
in the length of the input, and

∀x, x ∈ L ⇐⇒ #accN (x) ≡ 1 (mod 2) .

Exact Computation of the Number of Accepting Paths of an NTM 115

Analogously, the complexity classes ModkP are defined by having modk
instead of mod2 in the above definition. Thus our simulation also implies a
bound on the running time of the deterministic simulation of ⊕P and ModkP.

5.1 Simulating Probabilistic Classes

Another consequence of being able to count the number of accepting computa-
tions exactly is that we can deterministically simulate some randomized com-
plexity classes. We use the following definition of a probabilistic Turing machine
and prove the succeeding theorem, almost immediately.

Definition 12 ([4]). A probabilistic Turing machine is a TM which makes
choices, possibly at each step, based on probabilities assigned to each of the
choices. We say that a probabilistic TM P accepts a string x, if it accepts x with
probability at least 1/2.

A language L is said to be in the class Probabilistic Polynomial Time (denoted
by PP) if it can be decided by a probabilistic Turing machine that runs in
polynomial time.

An alternative characterization of PP is that a language L is in PP if there is a
nondeterministic polynomial-time Turing machine N such that x is in L if and
only if M(x) has more accepting than rejecting paths.

Theorem 13. Consider a language L, that is decided by a k-tape probabilistic
TM with q states, alphabet size a and time complexity t(n). Then there is a
deterministic algorithm for L with time complexity

akt/2Hk
√

t log t
a · q2poly(log q, k, t, a),

where Ha is a constant depending only on a.

Proof. Given a probabilistic machine P , which generates random coins for its
computation, consider the corresponding nondeterministic Turing machine N ,
which makes nondeterministic choices in place of the random coins. For a given
input x, P would decide on acceptance based on the number of random choices
which lead to acceptance. In terms of N , this translates to the number of different
nondeterministic choices which lead to acceptance.

As seen in Theorem 1, we can compute #accN (x) in the stated running time. ��
If we set t(n) to be a polynomial of n, the above theorem gives us a bound

on the running time of deterministically simulating of PP. van Melkebeek and
Santhanam [14] gave an unconditional simulation of time-t(n) probabilistic Tur-
ing machines by Turing machines operating in deterministic time o(2t). They
showed that the exponent in the simulation of probabilistic TM can be reduced
by a multiplicative factor smaller than 1 (as compared to our factor of 1/2).
Moreover, the class PP contains the probabilistic classes such as BPP, ZPP and
BQP. Hence our simulations imply a faster simulation of these classes also.

116 S. Kalyanasundaram and K. W. Regan

5.2 Polynomial Hierarchy and Alternating TMs

By Toda’s theorem [12], we have that the entire polynomial hierarchy (PH)
is contained in P#P. But we cannot conclude that we have an ˜O(akt/2) time
simulation for classes in PH. This is because Toda’s theorem involves a blow-up
of the running time when converting a problem in say, Σ2 to #P. This negates
the advantage that we gain by halving the exponent.

This leads us to a further open question. It would be interesting to see if
we can simulate any of the classes in PH by #P in the same time bound. This,
combined with our counting algorithm, would lead to a faster simulation of the
classes in PH. Alternatively, we could try to simulate a time-t(n) alternating
TM, for instance a Σ2-machine A, directly by iterating our uniform simulation
for NTM’s. This seems to work if the two (the existential and universal) phases
of A are divided neatly into t(n)/2 steps each, but encounters a problem if A is
existential for t(n)(1 − ε) steps in some computation paths and existential for
only εt(n) steps in others.

Acknowledgement. We thank Richard Lipton for helpful discussions, and the refer-
ees for comments that improved the presentation.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn.
Cambridge University Press, New York (2009)

2. Beigel, R., Gill, J., Hertramp, U.: Counting classes: thresholds, parity, mods, and
fewness. In: Choffrut, C., Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp.
49–57. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52282-4 31

3. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: On the relative complexity
of approximate counting problems. In: Jansen, K., Khuller, S. (eds.) APPROX
2000. LNCS, vol. 1913, pp. 108–119. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44436-X 12

4. Gill III, J.T.: Computational complexity of probabilistic Turing machines. In: Pro-
ceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC
1974, New York, pp. 91–95. ACM (1974)

5. Hennie, F.C., Stearns, R.E.: Two-tape simulation of multitape Turing machines.
J. ACM 13(4), 533–546 (1966)

6. Jerrum, M.: Counting, Sampling and Integrating: Algorithms and Complexity. Lec-
tures in Mathematics. ETH Zürich. Birkhäuser, Basel (2003)

7. Kalyanasundaram, S., Lipton, R.J., Regan, K.W., Shokrieh, F.: Improved simula-
tion of nondeterministic Turing machines. Theor. Comput. Sci. 417, 66–73 (2012).
Earlier version in Proceedings of the 35th International Symposium on Mathemat-
ical Foundations of Computer Science, 2010

8. Pippenger, N.: Probabilistic simulations (preliminary version). In: Proceedings of
the Fourteenth Annual ACM Symposium on Theory of Computing, STOC 1982,
New York, pp. 17–26. ACM (1982)

9. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing
Company, Reading (1994)

https://doi.org/10.1007/3-540-52282-4_31
https://doi.org/10.1007/3-540-44436-X_12
https://doi.org/10.1007/3-540-44436-X_12

Exact Computation of the Number of Accepting Paths of an NTM 117

10. Schöning, U.: The power of counting. In: Selman, A.L. (ed.) Complexity Theory
Retrospective: In Honor of Juris Hartmanison the Occasion of His Sixtieth Birth-
day, July 5, 1988, pp. 204–223. Springer, New York (1990)

11. Simon, J.: On some central problems in computational complexity. Technical
report, Cornell University, Ithaca (1975)

12. Toda, S.: On the computational power of PP and ⊕P. In: Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, FOCS 1989, pp. 514–519.
IEEE (1989)

13. Torán, J.: Counting the number of solutions. In: Rovan, B. (ed.) MFCS 1990.
LNCS, vol. 452, pp. 121–134. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0029600

14. van Melkebeek, D., Santhanam, R.: Holographic proofs and derandomization.
SIAM J. Comput. 35(1), 59–90 (2005). Earlier version in Proceedings of the 18th
Annual IEEEConference on Computational Complexity, 2003

https://doi.org/10.1007/BFb0029600
https://doi.org/10.1007/BFb0029600

Determining Minimal Degree Polynomials
of a Cyclic Code of Length 2k over Z8

Arpana Garg and Sucheta Dutt(B)

Department of Applied Sciences, PEC University of Technology, Chandigarh, India
arpanapujara@gmail.com, suchetapec@yahoo.co.in

Abstract. The rank of a cyclic code of length n = 2k over Z8 is n − v
where v is the degree of a minimal degree polynomial in the code. In this
paper, minimal degree polynomials in a cyclic code C of length n = 2k

(where k is a natural number) over Z8 are determined. Further, using
these minimal degree polynomials, all 95 (46 principally generated and 49
non principally generated) cyclic codes of length 4 over Z8 are calculated
in terms of their distinguished sets of generators.

Keywords: Cyclic codes · Minimal degree polynomial · Rank

1 Introduction

A linear code C of length n over a finite commutative ring R is defined as an
R-submodule of Rn. A cyclic code C over R of length n is a linear code such
that whenever (c0, c1, c2, . . . , cn−1) is in C, (cn−1, c0, c1, . . . , cn−2) also belongs
to C. The rank of a code C (denoted by rank(C)) over a ring R is defined as
the minimum number of generators of C as an R− module [1].

Cyclic codes over finite rings have been recently studied by many authors.
For reference see ([2–5,8–10]). The structure of a cyclic code of length n = 2k

over Z8 as an ideal of the ring Z8[x]/ 〈xn − 1〉 is given in [6]. Using this structure
of a cyclic code of length n = 2k over Z8, a distinguished set of generators and
rank of such a cyclic code is obtained in [7] and it is proved that the rank of a
cyclic code of length n = 2k over Z8 is n − v, where v is the degree of a minimal
degree polynomial in the code. Moreover, the minimal degree polynomials play
an important role in enumeration of cyclic codes of length 2k over Z8. However,
for a given code with distinguished form of generators, the value of v is not always
obvious. Abualrub et al. has found the degree of minimal degree polynomial in
a cyclic code of length 2k over Z4 in [1].

In this paper, minimal degree polynomials with leading coefficient 2, 4 or 6
in a cyclic code C of length n = 2k over Z8 are determined. Further, using
these minimal degree polynomials, all 95 (46 principally generated and 49 non
principally generated) cyclic codes of length 4 over Z8 are calculated in terms of
their distinguished sets of generators.

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 118–130, 2018.
https://doi.org/10.1007/978-3-319-74180-2_10

Determining Minimal Degree Polynomials of a Cyclic Code 119

2 Preliminaries

Let C be cyclic code of length n = 2k over Z8. Let f(x) = q0(x) be a mini-
mal degree polynomial among all monic polynomials in C, g(x) = 2q1(x) be a
minimal degree polynomial among all polynomials in C with leading coefficient
2 or 6 and h(x) = 4q2(x) be a minimal degree polynomial among all polyno-
mials in C with leading coefficient 4. Let deg(f(x)) = r, deg(g(x)) = s and
deg(h(x)) = v. It is obvious that r ≥ s ≥ v. A unique form for the polynomials
f(x), g(x) and h(x) is determined in Theorem 1 below. Note that the cyclic code
C may or may not contain any monic polynomial or any polynomial with leading
coefficient 2 or 6.

For ready reference, we recall the following results.

Corollary 1 [7]. The following identities hold in Z8[x]/〈xn − 1〉,
1. (x + 1)n = 2(x + 1)

n
2 + 4(x + 1)

3n
4 + 4(x + 1)

n
4 for all n = 2k, k ≥ 2.

2. 2(x + 1)n = 4(x + 1)
n
2 for all n = 2k, k ≥ 1.

Theorem 1 [7]. Let C be a cyclic code of length n = 2k over Z8. Let f(x), g(x)
(if they exist) and h(x) be polynomials in C as defined above. Then

1. h(x) = 4q2(x) = 4(x + 1)v.
2. If C contains polynomials with leading coefficient 2 or 6, then there exists a

unique polynomial in C of the type 2(x + 1)s + 4
∑v−1

i=0 αi(x + 1)i of degree
s, where αi ∈ Z2. Therefore, g(x) = 2q1(x) can be chosen as 2(x + 1)s +
4
∑v−1

i=0 αi(x + 1)i, where αi ∈ Z2.
3. If C contains monic polynomials, then there exists a unique polynomial in C

of the type (x+1)r +2
∑s−1

i=0 βi(x+1)i +4
∑v−1

i=0 γi(x+1)i of degree r, where
βi, γi ∈ Z2. Therefore, f(x) = q0(x) can be chosen as (x+1)r+2

∑s−1
i=0 βi(x+

1)i + 4
∑v−1

i=0 γi(x + 1)i, where βi, γi ∈ Z2.

Theorem 2 [7]. A cyclic code C of length 2k over Z8 is generated by one or
more polynomials from the set {f(x), g(x), h(x)} where

1. f(x) = q0(x) = (x+1)r+2
∑s−1

i=0 βi(x+1)i+4
∑v−1

i=0 γi(x+1)i with βi, γi ∈ Z2

2. g(x) = 2q1(x) = 2(x + 1)s + 4
∑v−1

i=0 αi(x + 1)i with αi ∈ Z2

3. h(x) = 4q2(x) = 4(x + 1)v

Remark 1. Referring back to Theorem 2, the generators of a cyclic code of length
2k over Z8 can further be written as

1. f(x) = q0(x) = (x+1)r +2(x+1)cβ(x)+ 4(x+1)dγ(x) where β(x) and γ(x)
belong to Z2[x]/〈xn − 1〉.

2. g(x) = 2q1(x) = 2(x + 1)s + 4(x + 1)eα(x) where α(x) ∈ Z2[x]/〈xn − 1〉.

120 A. Garg and S. Dutt

3 The Main Results

As stated in Theorem 2 above, a cyclic code of length 2k over Z8 is generated by
one or more polynomials from the set {f(x), g(x), h(x)}. Clearly, the minimal
degree polynomial in any cyclic code of length 2k over Z8 is h(x) = 4(x + 1)v.
In case h(x) = 4(x + 1)v is not a generator of the cyclic code of length 2k over
Z8, then the minimal degree polynomial h(x) = 4(x + 1)v in the code is not
obviously known. Therefore the minimal degree polynomials in the cyclic codes
〈g(x)〉 , 〈f(x), g(x)〉 , 〈f(x)〉 need to be determined.

Theorem 3. Let C = 〈g(x)〉 be a cyclic code of length 2k over Z8, where g(x)
is a polynomial in C as defined above. Then the minimal degree polynomial in
C is h(x) = 4(x + 1)v where v is given by the following

1. If 4
∑v−1

i=0 αi(x + 1)i �= 0, let e be the least positive integer such that αe = 1,
then
(a) If n

2 �= n − s + e then v = min(n2 , s, n − s + e).
(b) If n

2 = n− s+ e then v = min(s, n− s+ e1), where e1 is the least positive
integer greater than e such that αe1 = 1. If no such e1 exists then v = s.

2. If 4
∑v−1

i=0 αi(x + 1)i = 0, then v = min(s, n
2).

Proof. 1. Consider an element l(x) =
∑n−1

j=0 cj(x + 1)j + 2
∑n−1

j=0 dj(x +
1)j + 4

∑n−1
j=0 fj(x + 1)j in Z8[x]/ 〈xn − 1〉, where cj , dj , fj ∈ Z2 such that

g(x)l(x) = 4(x + 1)v. Note that g(x)l(x) = 2
∑n−s−1

j=0 cj(x + 1)j+s +
4(x + 1)

n
2

∑n−1
j=n−s cj(x + 1)j−n+s + 4

∑n−1
j=0 dj(x + 1)j+s + 4

∑v−1
i=e αi(x +

1)i
∑n−1

j=0 cj(x+1)j ≡ 0(mod4) if and only if cj = 0 for j = 0, 1, 2, ..., n−s−1.
Thus

g(x)l(x) = 4(x + 1)
n
2

n−1∑

j=n−s

cj(x + 1)j−n+s + 4(x + 1)s
n−1∑

j=0

dj(x + 1)j

+4(x + 1)n−s+e

[
v−1∑

i=e

αi(x + 1)i−e

] ⎡

⎣
n−1∑

j=n−s

cj(x + 1)j−n+s

⎤

⎦

= 4(x + 1)min(n
2 ,n−s+e,s)[unit] ∈ C

(1)

This implies that v ≥ min(n2 , n − s + e, s).
Now, 2 (g(x)) = 4(x + 1)s ∈ C and (x + 1)n−s [g(x)] = 4(x + 1)

n
2 + 4(x +

1)n−s+e
∑v−1

i=e αi(x + 1)i = 4(x + 1)min(n
2 ,n−s+e)[unit] ∈ C.

(a) If n
2 �= n−s+e then v ≤ min(s, n

2 , n−s+e). Hence v = min(s, n
2 , n−s+e).

(b) If n
2 = n− s+ e then v ≤ min(s, n− s+ e1), where e1 is the least positive

integer greater than e such that αe1 = 1. Hence v = min(s, n − s + e1).
If no such e1 exists then v ≤ s. Hence v = s.

Determining Minimal Degree Polynomials of a Cyclic Code 121

2. If 4
∑v−1

i=0 αi(x + 1)i = 0, then

2(x + 1)sl(x) = 4(x + 1)
n
2

n−1∑

j=n−s

cj(x + 1)j−n+s + 4(x + 1)s
n−1∑

j=0

dj(x + 1)j

= 4(x + 1)min(s,n2)[unit] ∈ C
(2)

This implies that v ≥ min(n2 , s).
Note that 2 (g(x)) = 4(x + 1)s ∈ C and (x + 1)n−s [g(x)] = 4(x + 1)

n
2 ∈ C.

This implies that v ≤ min(s, n
2). Hence v = min(n2 , s). This proves the result.

In case, a cyclic code of length 2k over Z8 is generated by f(x) only, the
degree of a minimal degree polynomial g(x) with leading coefficient 2 or 6 in
the code is not obvious. The following result which can be proved on the similar
lines as Theorem 3, gives the degree of g(x) in the code.

Lemma 1. Let C = 〈f(x)〉 be a cyclic code of length 2k over Z8, where f(x) is as
defined above. Then the minimal degree polynomial in C with leading coefficient
2 or 6 is g(x) = 2(x + 1)s + 4

∑v−1
i=0 αi(x + 1)i, where s is given by the following

1. If 2
∑s−1

i=0 βi(x + 1)i �= 0 and c is the least positive integer such that βc = 1,
then
(a) s = min(r, n

2 , n + c − r), in case n
2 �= n + c − r.

(b) s = min(r, n− r + c1), where c1 is the least positive integer greater than c
such that βc1 = 1, in case n

2 = n+ c− r. If no such c1 exists, then s = r.
2. If 2

∑s−1
i=0 βi(x + 1)i = 0, then s = min(r, n

2).

Theorem 4. Let C = 〈(x + 1)r, g(x)〉 be a cyclic code of length 2k over Z8,
where g(x) is as defined above. Then the minimal degree polynomial in C is
h(x) = 4(x + 1)v where v is given by the following

1. If 4
∑v−1

i=0 αi(x + 1)i �= 0, let e be the least positive integer such that αe = 1,
then
(a) v = min(n4 , s, r − s + e), in case r < n

2 .
(b) v = min(n4 , s, n

2 − s + e), in case r ≥ n
2 provided n

2 − s + e �= n
4 . If

n
2 − s + e = n

4 and e1 is the least positive integer greater then e such that
αe1 = 1 then v = min(s, n

2 − s + e1). If no such e1 exists then v = s.
2. If 4

∑v−1
i=0 αi(x + 1)i = 0, then v = min(n4 , s).

Proof. A minimal degree polynomial h(x) = 4(x+1)v in C is either a multiple of
(x+1)r or a multiple of g(x) or a linear combination of (x+1)r and g(x). First,
consider an element g1(x) =

∑n−1
i=0 ai(x+1)i+2

∑n−1
i=0 bi(x+1)i+4

∑n−1
i=0 ci(x+

1)i in Z8[x]/ 〈xn − 1〉 such that 4(x + 1)v = (x + 1)rg1(x). Using Corollary 1,
we have 4(x + 1)v =

∑n−r−1
i=0 ai(x + 1)i + [2(x + 1)

n
2 + 4(x + 1)

n
4 + 4(x +

1)
3n
4]

∑n−1
i=n−r ai(x+1)i−n+r+4(x+1)

n
2

∑n−1
i=n−r bi(x+1)i−n+r+2

∑n−r−1
i=0 bi(x+

1)i+r + 4
∑n−r−1

i=0 ci(x + 1)i+r. This is possible if and only if
n−r−1∑

i=0

ai(x+1)i+2(x+1)
n
2

n−1∑

i=n−r

ai(x+1)i−n+r+2
n−r−1∑

i=0

bi(x+1)i+r ≡ 0(mod4)

(3)

122 A. Garg and S. Dutt

(a) If r < n
2 , then Eq. (3) is possible if and only if ai = 0 for i = 0, 1, 2, . . . , n−r−

1, an−r = 1 and bn
2 −r = 1. It follows that (x+1)rg1(x) = 4(x+1)

n
2 +4(x+

1)
n
4 +4(x+1)

3n
4 +4(x+1)

n
2

∑n−1
i=n−r bi(x+1)i−n+r+4(x+1)r

∑n−r−1
i=0 βi(x+

1)i. This implies that v ≥ min(r, n
4).

Now 4[(x+1)r] ∈ C and (x+1)r
[
(x + 1)n−r + 2(x + 1)

n
2 −r

]
= 4(x+1)

n
2 +

4(x + 1)
n
4 + 4(x + 1)

3n
4 ∈ C. Therefore v ≤ min(n4 , r). Hence v is equal to

min(r, n
4).

(b) If r ≥ n
2 then Eq. (3) is possible if and only if ai = 0 for i = 0, 1, 2, . . . , n−r−1

and an
2

= 1, b0 = 1. This implies that (x+1)rg1(x) = 4(x+1)r+4(x+1)r− n
4 +

4(x+1)r+
n
4 +4(x+1)

n
2

∑n−1
i=n−r bi(x+1)i−n+r+4(x+1)r

∑n−r−1
i=0 βi(x+1)i.

This further implies that v ≥ min(r − n
4 , n

2).
Now 2(x + 1)n−r [(x + 1)r] = 4(x + 1)

n
2 ∈ C and (x + 1)r

[
(x + 1)

n
2 + 2

]
=

4(x + 1)r + 4(x + 1)r− n
4 + 4(x + 1)r+

n
4 ∈ C. Therefore v ≤ min(n2 , r − n

4).
Hence v is equal to min(n2 , r − n

4).

Next, we consider the case when 4(x + 1)v is multiple of g(x) only. As proved in
Lemma 1, we have deg(g(x)) = min(n2 , r). This implies that s < n

2 and therefore
n − s + e > n

2 . Further, if 4
∑v−1

i=0 αi(x + 1)i �= 0 then as proved in Theorem3,
v = min(n2 , s, n − s + e) = min(n2 , s). Also, if 4

∑v−1
i=0 αi(x + 1)i = 0 then as

proved in Theorem 3, v = min(s, n
2).

Finally, consider elements g3(x) and g4(x) of Z8[x]/ 〈xn − 1〉 such that
4(x + 1)v = (x + 1)rg3(x) + g(x)g4(x) =

∑n−1
i=0 Ai(x + 1)i+r + 2

∑n−1
i=0 Bi(x +

1)i+r + 4
∑n−1

i=0 Ci(x + 1)i+r + 2
∑n−1

i=0 Di(x + 1)i+s + 4
∑n−1

i=0 Ei(x + 1)i+s +
4(x + 1)eα(x)

∑n−1
i=0 Di(x + 1)i =

∑n−r−1
i=0 Ai(x + 1)i + [2(x + 1)

n
2 + 4(x +

1)
n
4 + 4(x + 1)

3n
4]

∑n−1
i=n−r Ai(x + 1)i−n+r + 4(x + 1)

n
2

∑n−1
i=n−r Bi(x + 1)i−n+r +

2
∑n−r−1

i=0 Bi(x + 1)i+r + 4
∑n−r−1

i=0 Ci(x + 1)i+r + 4(x + 1)
n
2

∑n−1
i=n−s Di(x +

1)i−n+s + 4
∑n−s−1

i=0 Ei(x + 1)i+s + 4(x + 1)eα(x)
∑n−1

i=0 Di(x + 1)i.
This implies that

∑n−r−1
i=0 Ai(x + 1)i + 2(x + 1)

n
2

∑n−1
i=n−r Ai(x + 1)i−n+r +

2
∑n−r−1

i=0 Bi(x + 1)i+r + 2
∑n−s−1

i=0 Di(x + 1)i+s ≡ 0(mod4).
This is possible if and only if Ai = 0 for i = 0, 1, 2, . . . , n − r − 1, An−r = 1,

B0 = 1, Dn
2 −s = 1, Dr−s = 1. Thus (x + 1)rg3(x) + g(x)g4(x) = 4(x + 1)

n
2 +

4(x + 1)
n
4 + 4(x + 1)

3n
4 + 4(x + 1)

n
2

∑n−1
i=n−r Bi(x + 1)i−n+r + 4(x + 1)r + 4(x +

1)r
∑n−r−1

i=0 Ci(x + 1)i + 4(x + 1)
n
2

∑n−1
i=n−s Di(x + 1)i−n+s + 4

∑n−s−1
i=0 Ei(x +

1)i+s + 4(x + 1)
n
2 −s+eα(x) + 4(x + 1)r−s+eα(x).

1. If 4
∑v−1

i=0 αi(x + 1)i �= 0, then v ≥ min(n4 , r − s + e, n
2 − s + e). Note that

(x + 1)r [(x + 1)n−r] + [2(x + 1)s + 4(x + 1)eα(x)][(x + 1)
n
2 −s] = 4(x + 1)

n
2 +

4(x+1)
n
4 +4(x+1)

3n
4 +4(x+1)

n
2 −s+eα(x) = 4(x+1)min(n

4 ,n2 −s+e)unit ∈ C.
2(x + 1)r + [2(x + 1)s + 4(x + 1)eα(x)][(x + 1)r−s] = 4(x + 1)r + 4(x +
1)r−s+eα(x) = 4(x+1)r−s+e ∈ C. Therefore v ≤ min(n4 , n

2 − s+ e, r − s+ e).
Hence v = min(n4 , n

2 − s + e, r − s + e).

Determining Minimal Degree Polynomials of a Cyclic Code 123

2. If 4
∑v−1

i=0 αi(x + 1)i = 0, (x + 1)rg3(x) + g(x)g4(x) = 4(x + 1)
n
2 + 4(x +

1)
n
4 + 4(x + 1)

3n
4 + 4(x + 1)

n
2

∑n−1
i=n−r Bi(x + 1)i−n+r + 4(x + 1)r + 4(x +

1)r
∑n−r−1

i=0 Ci(x+1)i +4(x+1)
n
2

∑n−1
i=n−s Di(x+1)i−n+s +4

∑n−s−1
i=0 Ei(x+

1)i+s. This implies that v ≥ min(n4 , s). Note that (x + 1)r(x + 1)n−r + 2(x +
1)s(x + 1)

n
2 −s = 4(x + 1)

n
2 + 4(x + 1)

n
4 + 4(x + 1)

3n
4 = 4(x + 1)

n
4 [unit] ∈ C.

As 4(x + 1)s belongs to C, we get that v ≤ min(n4 , s). Hence v = min(n4 , s).

Taking the minimum value of v from the above cases, we get that

1. If 4
∑v−1

i=0 αi(x + 1)i �= 0 and let e be the least positive integer such that
αe = 1 and 4

∑v−1
i=0 αi(x + 1)i = 4(x + 1)eα(x) then

(a) v = min(n4 , s, r − s + e), in case r < n
2 .

(b) v = min(n4 , s, n
2 − s + e), in case r ≥ n

2 provided that n
2 − s + e �= n

4 . If
n
2 − s + e = n

4 and let e1 is the least positive integer greater then e such
that αe1 = 1 then v = min(s, n

2 −s+e1). If e1 does not exists then v = s.
2. If 4

∑v−1
i=0 αi(x + 1)i = 0 then v = min(n4 , s).

This proves the result.

Theorems 5, 6 and 7 can be proved in a similar fashion as Theorem4.

Theorem 5. Let C =
〈
(x + 1)r + 4(x + 1)dγ(x), g(x)

〉
be a cyclic code of length

2k over Z8, where g(x) is as defined above. Then the degree v of h(x) is given
by the following

1. If 4
∑v−1

i=0 αi(x + 1)i �= 0, let e be the least positive integer such that αe = 1,
then
(a) v = min(n4 , s, r − s + e), in case r < n

2 .
(b) v = min(n4 , s, n

2 − s + e), in case r ≥ n
2 provided that n

2 − s + e �= n
4 . If

n
2 − s + e = n

4 and αe1 = 1 then v = min(s, n
2 − s + e1). If no such e1

exists then v = s.
2. If 4

∑v−1
i=0 αi(x + 1)i = 0, then v = min(n4 , s).

Theorem 6. Let C = 〈(x + 1)r + 2(x + 1)cβ(x), g(x)〉 be a cyclic code of length
2k over Z8, where g(x) is as defined above. Then degree v of h(x) in C is given
by the following

1. If 4
∑v−1

i=0 αi(x + 1)i �= 0, let e be the least positive integer such that αe = 1,
then
(a) v = min(n4 , c, r − s + e), in case r ≤ n

2 provided that minimum values
are not equal. Otherwise value of v depends upon the values of β(x) and
α(x).

(b) v = min(c, n
4 , n

2 − s + e), in case n
2 < r < n

2 + c provided that minimum
values are not equal. Otherwise value of v depends upon the values of β(x)
and α(x).

(c) In case r = n
2 + c and β(x) = 1 + (x + 1)c1−cβ1(x), where c1 is the

least positive integer greater than c such that α1(x) is a unit, we have the
following

124 A. Garg and S. Dutt

i. If 2c ≤ c1, then v = min(n4 , c, r−s+e) provided that minimum values
are not equal. Otherwise it depends upon the value of β(x) and α(x).

ii. If 2c > c1, then v = min(n4 , c, n−r+c1−s+e) provided that minimum
values are not equal. Otherwise it depends upon the value of β(x) and
α(x).

If c1 does not exists that is β(x) = 1 then v = min(n4 , c, r − s + e)
(d) v = min(c, n

4 , n− r + c− s+ e), in case r > n
2 + c provided that minimum

values are not equal. Otherwise it depends upon the value of β(x) and
α(x) and v ≤ c.

2. If 4
∑v−1

i=0 αi(x + 1)i = 0, then v = min(n4 , c).

Theorem 7. Let C = 〈f(x), g(x)〉 be a cyclic code of length n = 2k over Z8,
where f(x) and g(x) are as defined above. Then degree v of h(x) is given by the
following

1. If 4
∑v−1

i=0 αi(x + 1)i �= 0 and e is the least positive integer such that αe = 1,
then
(a) v = min(n4 , c, r − s+ e), in case r ≤ n

2 provided that minimum values are
not equal. Otherwise value of v depends upon the values of β(x), γ(x) and
α(x) and v ≤ min(n4 , n

2 − r + c, s)
(b) v = min(c, n

4 , s, n − r + d, n
2 − s + e), in case n

2 < r < n
2 + c provided

that minimum values are not equal. Otherwise value of v depends upon
the values of β(x), γ(x) and α(x) and v ≤ min(c, r − n

4 , s).
(c) In case r = n

2 + c and β(x) = 1 + (x + 1)c1−cβ1(x), where c1 is the
least positive integer greater than c such that β1(x) is a unit, we have the
following
i. If 2c ≤ c1 then v = min(n4 , n − r + d, c, r − s + e) provided that

minimum values are not equal. Otherwise it depends upon the values
of β(x), γ(x) and α(x).

ii. If 2c > c1 then v = min(n4 , c, n−r+d, n−r+c1−s+e) provided that
minimum values are not equal. Otherwise it depends upon the values
of β(x), γ(x) and α(x).

If c1 does not exists that is β(x) = 1 then v = min(n4 , c, n−r+d, r−s+e).
(d) v = min(c, n

4 , s, n − r + d, n − r + c − s + e), in case r > n
2 + c provided

that minimum values are not equal. Otherwise it depends upon the values
of β(x), γ(x) and α(x) and v ≤ c.

2. If 4
∑v−1

i=0 αi(x+1)i = 0, then v = min(n4 , c, n−r+d) provided that minimum
values are not equal. Otherwise it depends upon the values of β(x) and γ(x).

Theorem 8. Let C = 〈(x + 1)r〉 be a cyclic code of length n = 2k over Z8, then
degree v of h(x) in C is given by the following

1. v = min(n4 , r), if r ≤ n
2

2. v = min(n2 , r − n
4), if r > n

2 .

Determining Minimal Degree Polynomials of a Cyclic Code 125

Proof. Let g(x) be a minimal degree polynomial in C with leading coefficient
2 or 6 which is a multiple of (x + 1)r. A minimal degree polynomial h(x) =
4(x + 1)v in C is either a multiple of (x + 1)r or a multiple of g(x) or a linear
combination of (x + 1)r and g(x). First, consider the case when 4(x + 1)v =
(x+1)rg1(x) = (x+1)r[

∑n−1
i=0 ai(x+1)i+2

∑n−1
i=0 bi(x+1)i+4

∑n−1
i=0 ci(x+1)i] =

∑n−r−1
i=0 ai(x+1)i+[2(x+1)

n
2 +4(x+1)

n
4 +4(x+1)

3n
4]

∑n−1
i=n−r ai(x+1)i−n+r +

4(x+1)
n
2

∑n−1
i=n−r bi(x+1)i−n+r+2

∑n−r−1
i=0 bi(x+1)i+r+4

∑n−r−1
i=0 ci(x+1)i+r.

This is possible if and only if

n−r−1∑

i=0

ai(x+1)i+2(x+1)
n
2

n−1∑

i=n−r

ai(x+1)i−n+r+2
n−r−1∑

i=0

bi(x+1)i+r ≡ 0(mod4)

(4)

1. If r ≤ n
2 , then Eq. (4) holds if and only if ai = 0 for i = 0, 1, 2, . . . , n − r − 1

and an−r = 1, bn
2 −r = 1. Thus (x+1)rg1(x) = 4(x+1)

n
2 +4(x+1)

n
4 +4(x+

1)
3n
4 + 4(x + 1)

n
2

∑n−1
i=n−r bi(x + 1)i−n+r + 4(x + 1)r

∑n−r−1
i=0 ci(x + 1)i. This

implies that v ≥ min(r, n
4).

Note that 2[(x + 1)r] ∈ C and (x + 1)r[(x + 1)n−r + 2(x + 1)
n
2 −r] = 4(x +

1)
n
2 + 4(x + 1)

n
4 + 4(x + 1)

3n
4 = 4(x + 1)

n
4 unit ∈ C. Therefore v ≤ min(r, n

4).
Hence v = min(r, n

4).
2. If r > n

2 , then Eq. (4) holds if and only if ai = 0 for i = 0, 1, 2, . . . , n − r − 1
and an

2
= 1, b0 = 1. Thus (x + 1)rg1(x) = 4(x + 1)r + 4(x + 1)r− n

4 + 4(x +
1)r+

n
4 +4(x+1)

n
2

∑n−1
i=n−r bi(x+1)i−n+r +4(x+1)r

∑n−r−1
i=0 ci(x+1)i. This

implies that v ≥ min(r − n
4 , n

2).
Note that (x + 1)r2(x + 1)n−r = 4(x + 1)

n
2 ∈ C and (x + 1)r[(x + 1)

n
2 + 2] =

4(x + 1)r + 4(x + 1)r− n
4 + 4(x + 1)r+

n
4 = 4(x + 1)r− n

4 unit ∈ C. Therefore
v ≤ min(r − n

4 , n
2). Hence v = min(r − n

4 , n
2).

Again, in case h(x) is a multiple of g(x) only, we get by Lemma 1 and Theorem 3
that v = min(r, n

2), g(x) = 2(x + 1)r if r ≤ n
2 and v = n

2 , g(x) = 2(x + 1)
n
2 +

4(x + 1)
n
4 + 4(x + 1)

3n
4 if r > n

2 .
Further, in case h(x) is a linear combination of (x + 1)r and g(x), we have

the following

1. If r ≤ n
2 then it can easily seen that s = r and v = min(n4 , r).

2. If r > n
2 then 4(x + 1)v = (x + 1)rg3(x) + [2(x + 1)

n
2 + 4(x + 1)

n
4 + 4(x +

1)
3n
4]g4(x) =

∑n−1
i=0 Ai(x + 1)i+r + 2

∑n−1
i=0 Bi(x + 1)i+r + 4

∑n−1
i=0 Ci(x +

1)i+r +2
∑n−1

i=0 Di(x+1)i+s +4
∑n−1

i=0 Ei(x+1)i+s +4(x+1)
n
4

∑n−1
i=0 Di(x+

1)i + 4(x + 1)
3n
4

∑n−1
i=0 Di(x + 1)i =

∑n−r−1
i=0 Ai(x + 1)i + [2(x + 1)

n
2 + 4(x +

1)
n
4 +4(x+1)

3n
4]

∑n−1
i=n−r Ai(x+1)i−n+r+4(x+1)

n
2

∑n−1
i=n−r Bi(x+1)i−n+r+

2
∑n−r−1

i=0 Bi(x + 1)i+r + 4
∑n−r−1

i=0 Ci(x + 1)i+r + 4(x + 1)
n
2

∑n−1
i=n−s Di(x +

1)i−n+s + 4
∑n−s−1

i=0 Ei(x + 1)i+s + 4(x + 1)
n
4

∑n−1
i=0 Di(x + 1)i + 4(x +

1)
3n
4

∑n−1
i=0 Di(x + 1)i.

126 A. Garg and S. Dutt

This implies that
∑n−r−1

i=0 Ai(x + 1)i + 2(x + 1)
n
2

∑n−1
i=n−r Ai(x + 1)i−n+r +

2
∑n−r−1

i=0 Bi(x + 1)i+r + 2
∑n−s−1

i=0 Di(x + 1)i+s ≡ 0(mod4). This is possible
if and only if Ai = 0 for i = 0, 1, 2, . . . , n − r − 1, An−r = 1, B0 = 1, D0 = 1,
Dr−s = 1. Thus (x + 1)rg3(x) + [2(x + 1)

n
2 + 4(x + 1)

n
4 + 4(x + 1)

3n
4]g4(x) =

4(x + 1)
n
2 + 4(x + 1)

n
4 + 4(x + 1)

3n
4 + 4(x + 1)

n
2

∑n−1
i=n−r Bi(x + 1)i−n+r +

4(x+1)r +4(x+1)r
∑n−r−1

i=0 Ci(x+1)i +4(x+1)
n
2

∑n−1
i=n−s Di(x+1)i−n+s +

4
∑n−s−1

i=0 Ei(x+1)i+s +4(x+1)
n
4 +4(x+1)

3n
4 +4(x+1)r− n

4 +4(x+1)r+
n
4 .

This implies that v ≥ min(r − n
4 , n

2).
Note that (x + 1)n−r(x + 1)r + 2(x + 1)

n
2 + 4(x + 1)

n
4 + 4(x + 1)

3n
4 =

4(x+1)
n
2 ∈ C and 2(x+1)r+(x+1)r− n

2 [2(x+1)
n
2 +4(x+1)

n
4 +4(x+1)

3n
4] =

4(x + 1)r + 4(x + 1)r−n
4 + 4(x + 1)r+

n
4 = 4(x + 1)r−n

4 [unit] ∈ C. Therefore
v ≤ min(r − n/4, n/2). Hence v = min(r − n

4 , n
2)

Taking the minimum value of v from the above cases, we get that

1. v = min(n4 , r), if r ≤ n
2

2. v = min(n2 , r − n
4), if r > n

2 .

Theorems 9, 10 and 11 can be proved in a similar way as Theorem 8.

Theorem 9. Let C =
〈
(x + 1)r + 4(x + 1)dγ(x)

〉
be a cyclic code of length n =

2k over Z8, then degree v of h(x) is given by the following

1. v = min(n4 , r), if r ≤ n
2

2. v = min(n2 , r − n
4), if r > n

2 .

Theorem 10. Let C = 〈(x + 1)r + 2(x + 1)cβ(x)〉 be a cyclic code of length
n = 2k over Z8. Then degree v of h(x) in C is given by the following

1. If r < n
2 , then v = min(n4 , r, n

2 − r + c) provided that n
4 �= n

2 − r + c. If
n
4 = n

2 − r + c then v ≤ min(n2 − r + c1, r) if c1 exists otherwise v = r
2. If n

2 ≤ r < n
2 + c, then v = min(r − n

4 , c, 3n
4 − r + c) provided that r − n

4 �= c.
If r − n

4 = c and β(x) = 1 + (x + 1)c1−cβ1(x) then v = c1. If β(x) = 1 then
v = n

2 .
3. If r = n

2 + c and β(x) = 1 + (x + 1)c1−cβ1(x) where c1 is the least positive
integer greater than c such that β1(x) is a unit, then we have the following
(a) v = min(n4 , c1 − c), in case 2c ≤ c1 and n

4 �= c1 − c. Otherwise the value
of v depends upon β1(x).

(b) v = min(c, n
4), in case 2c > c1.

If no such c1 exists then v = n
4

4. If r > n
2 + c, then v = min(c, n

4).

Theorem 11. Let C = 〈f(x)〉 =
〈
(x + 1)r + 2(x + 1)cβ(x) + 4(x + 1)dγ(x)

〉
be

a cyclic code of length n = 2k over Z8. Then degree v of h(x) in C is given by
the following

1. If r < n
2 , then v = min(n4 , r, n

2 − r + c) provided that n
4 �= n

2 − r + c. If
n
4 = n

2 −r+c then v = min(n2 −r+c1, r) where c1 is the least positive integer
greater than c such that if c1 exists otherwise v = r

Determining Minimal Degree Polynomials of a Cyclic Code 127

2. If n
2 ≤ r < n

2 + c, then v = min(r − n
4 , c, 3n

2 − 2r + c + d, 3n
4 − r + c) provided

that minimum values are not equal.
3. If r = n

2 + c and β(x) = 1 + (x + 1)c1−cβ1(x), where c1 is the least positive
integer greater than c such that β1(x) is a unit, then we have the following
(a) v = min(n4 , n − r + d, c1 − c), in case 2c ≤ c1.
(b) v = min(c, n

4 , n − r + d) in case 2c > c1, provided that minimum values
are not equal.

If no such c1 exists then v = min(n4 , n− r +d) provided that n
4 �= n− r +d. If

n
4 = n − r + d and γ(x) = 1 then v = n

2 . If γ(x) �= 1 then value of v depends
upon γ(x).

4. If r > n
2 + c, then v = min(c, n

4 , n − r + d) provided that n
4 �= n − r + d.

Otherwise v = min(c, n − r + d1) if d1 exists. If no such d1 exists then v = c.

4 Cyclic Codes of Length 4 over Z8

Using the above results, we have calculated all 95 cyclic codes of length 4 over Z8

in terms of their distinguished generators and listed them in the form of tables.
Table 1 below lists all 46 principally generated cyclic codes of length 4 over Z8.

Table 1. Principally generated cyclic codes of length 4 over Z8

Sr. No Cyclic code

1 〈0〉
2 〈4〉
3 〈4(x+ 1)〉
4 〈4(x+ 1)2〉
5 〈4(x+ 1)3〉
6 〈2〉
7 〈2(x+ 1)〉
8 〈2(x+ 1)2〉
9 〈2(x+ 1)3〉

10 〈1〉
11 〈(x+ 1)〉
12 〈(x+ 1)2〉
13 〈(x+ 1)3〉
14 〈2(x+ 1) + 4〉
15 〈2(x+ 1)2 + 4〉
16 〈2(x+ 1)2 + 4(x+ 1)〉
17 〈2(x+ 1)2 + 4 + 4(x+ 1)〉
18 〈2(x+ 1)3 + 4〉

(continued)

128 A. Garg and S. Dutt

Table 1. (continued)

Sr. No Cyclic code

19 〈2(x+ 1)3 + 4(x+ 1) + 4(x+ 1)2〉
20 〈2(x+ 1)3 + 4(x+ 1)〉
21 〈(x+ 1) + 4〉
22 〈(x+ 1)2 + 4〉
23 〈(x+ 1)3 + 4〉
24 〈(x+ 1)3 + 4(x+ 1)〉
25 〈(x+ 1)3 + 4 + 4(x+ 1)〉
26 〈(x+ 1) + 2〉
27 〈(x+ 1)2 + 2 + 2(x+ 1)〉
28 〈(x+ 1)2 + 2(x+ 1)〉
29 〈(x+ 1)2 + 2〉
30 〈(x+ 1)3 + 2〉
31 〈(x+ 1)3 + 2(x+ 1) + 2(x+ 1)2〉
32 〈(x+ 1)3 + 2(x+ 1)〉
33 〈(x+ 1) + 2 + 4〉
34 〈(x+ 1)2 + 2 + 2(x+ 1) + 4 + 4(x+ 1)〉
35 〈(x+ 1)2 + 2 + 2(x+ 1) + 4〉
36 〈(x+ 1)2 + 2 + 2(x+ 1) + 4(x+ 1)〉
37 〈(x+ 1)2 + 2 + 4〉
38 〈(x+ 1)2 + 2(x+ 1) + 4 + 4(x+ 1)〉
39 〈(x+ 1)2 + 2(x+ 1) + 4〉
40 〈(x+ 1)2 + 2(x+ 1) + 4(x+ 1)〉
41 〈(x+ 1)3 + 2(x+ 1) + 2(x+ 1)2 + 4〉
42 〈(x+ 1)3 + 2(x+ 1) + 2(x+ 1)2 + 4(x+ 1)〉
43 〈(x+ 1)3 + 2(x+ 1) + 2(x+ 1)2 + 4(x+ 1)2〉
44 〈(x+ 1)3 + 2(x+ 1) + 4〉
45 〈(x+ 1)3 + 2(x+ 1) + 4 + 4(x+ 1) + 4(x+ 1)2〉
46 〈(x+ 1)3 + 2(x+ 1) + 4 + 4(x+ 1)〉

Table 2 below lists all 49 non principally generated cyclic codes of length 4
over Z8.

Determining Minimal Degree Polynomials of a Cyclic Code 129

Table 2. Non principally generated cyclic codes of length 4 over Z8

Sr. No Cyclic code

1 〈2(x + 1), 4〉
2 〈2(x + 1)2, 4〉
3 〈2(x + 1)2, 4(x + 1)〉
4 〈2(x + 1)3, 4〉
5 〈2(x + 1)3, 4(x + 1)〉
6 〈2(x + 1)2 + 4, 4(x + 1)〉
7 〈2(x + 1)3 + 4(x + 1), 4(x + 1)2〉
8 〈(x + 1), 2〉
9 〈(x + 1), 4〉
10 〈(x + 1)2, 2〉
11 〈(x + 1)2, 2(x + 1)〉
12 〈(x + 1)2, 2(x + 1) + 4〉
13 〈(x + 1)2, 2(x + 1), 4〉
14 〈(x + 1)2, 4〉
15 〈(x + 1)3, 2〉
16 〈(x + 1)3, 2(x + 1)〉
17 〈(x + 1)3, 4〉
18 〈(x + 1)3, 4(x + 1)〉
19 〈(x + 1)3, 2(x + 1), 4〉
20 〈(x + 1)3, 2(x + 1) + 4〉
21 〈(x + 1)3 + 4, 4(x + 1)〉
22 〈(x + 1)2 + 4, 2(x + 1)〉
23 〈(x + 1)2 + 4, 2(x + 1) + 4〉
24 〈(x + 1)3 + 4, 2(x + 1)〉
25 〈(x + 1)3 + 4, 2(x + 1) + 4〉
26 〈(x + 1) + 2, 4〉
27 〈(x + 1)2 + 2 + 2(x + 1), 4〉
28 〈(x + 1)2 + 2 + 2(x + 1), 4(x + 1)〉
29 〈(x + 1)2 + 2(x + 1), 4〉
30 〈(x + 1)2 + 2(x + 1), 4(x + 1)〉
31 〈(x + 1)2 + 2, 2(x + 1)〉
32 〈(x + 1)2 + 2, 4〉
33 〈(x + 1)3 + 2(x + 1) + 2(x + 1)2, 4〉
34 〈(x + 1)3 + 2(x + 1) + 2(x + 1)2, 4(x + 1)〉
35 〈(x + 1)3 + 2(x + 1) + 2(x + 1)2, 4(x + 1)2〉
36 〈(x + 1)3 + 2(x + 1), 4〉
37 〈(x + 1)3 + 2(x + 1), 2(x + 1)2〉
38 〈(x + 1)3 + 2(x + 1), 2(x + 1)2 + 4〉
39 〈(x + 1)3 + 2(x + 1), 2(x + 1)2, 4〉
40 〈(x + 1)2 + 2(x + 1) + 4, 4(x + 1)〉
41 〈(x + 1)3 + 2(x + 1) + 4, 2(x + 1)2〉
42 〈(x + 1)3 + 2(x + 1) + 4, 2(x + 1)2 + 4〉
43 〈(x + 1)3 + 2(x + 1) + 4, 2(x + 1)2 + 4 + 4(x + 1)〉
44 〈(x + 1)3 + 2(x + 1) + 4, 2(x + 1)2 + 4, 4(x + 1)〉
45 〈(x + 1)3 + 2(x + 1) + 4, 4(x + 1)〉
46 〈(x + 1)3 + 2(x + 1) + 4 + 4(x + 1), 2(x + 1)2 + 4〉
47 〈(x + 1)3 + 2(x + 1) + 4 + 4(x + 1), 2(x + 1)2 + 4 + 4(x + 1)〉
48 〈(x + 1)3 + 2(x + 1) + 4 + 4(x + 1), 4(x + 1)2〉
49 〈(x + 1)2 + 2 + 2(x + 1) + 4, 4(x + 1)〉

130 A. Garg and S. Dutt

References

1. Abualrub, T., Oehmke, R.: On generators of Z4 cyclic codes of length 2e. IEEE
Trans. Inf. Theor. 49(9), 2126–2133 (2003)

2. Abualrub, T., Ghrayeb, A., Oehmke, R.: A mass formula and rank of Z4 cyclic
codes of length 2e. IEEE Trans. Inf. Theor. 50(12), 3306–3312 (2004)

3. Dinh, H.Q.: On the linear ordering of some classes of negacyclic and cyclic codes
and their distance distributions. Finite Fields Appl. 14(1), 22–40 (2008)

4. Dinh, H.Q., Lopez Permouth, S.R.: Cyclic and negacyclic codes over finite chain
rings. IEEE Trans. Inf. Theor. 50(8), 1728–1744 (2004)

5. Dougherty, S.T., Park, Y.H.: On modular cyclic codes. Finite Fields Appl. 13,
31–57 (2007)

6. Garg, A., Dutt, S.: Cyclic codes of length 2k over Z8. Sci. Res. Open J. Appl. Sci.
2, 104–107 (2012). October - 2012 World Congress on Engineering and Technology

7. Garg, A., Dutt, S.: On rank and MDR cyclic codes of length 2k Over Z8. In: Gaur,
D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp. 177–186.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9 16

8. Kiah, H.M., Leung, K.H., Ling, S.: Cyclic codes over GR(p2,m) of length pk. Finite
Fields Appl. 14, 834–846 (2008)

9. Minjia, S., Shixin, Z.: Cyclic codes over the ring Zp2 of length pe. J. Electron.
(China) 25(5), 636–640 (2008)

10. Salagean, A.: Repeated-root cyclic and negacyclic codes over a finite chain ring.
Discrete Appl. Math. 154(2), 413–419 (2006)

https://doi.org/10.1007/978-3-319-53007-9_16

Consistent Subset Problem with Two Labels

Kamyar Khodamoradi1, Ramesh Krishnamurti2, and Bodhayan Roy3(B)

1 Department of Computing Science, University of Alberta,
Edmonton, Canada

khodamor@cs.ualberta.ca
2 School of Computing Science, Simon Fraser University,

Burnaby, Canada
ramesh@cs.sfu.ca

3 Faculty of Informatics, Masaryk University,
Brno, Czech Republic
b.roy@fi.muni.cz

Abstract. In this paper, we prove that the consistent subset problem
with two labels is NP-complete.

1 Introduction

Let P be a labelled point set in the d-dimensional Euclidean space, where mul-
tiple points are allowed to have the same label. A subset C of P is said to be
a consistent subset of P if for any point v ∈ P \ C, the point of C closest to v
has the same label as v [5]. Consistent subsets have their applications in pattern
recognizing problems [2]. The consistent subset of minimum cardinality among
all consistent subsets of P is known as the minimum consistent subset of P .
Hart [2] gave a method for computing a consistent subset, but it was not guar-
anteed to be an optimum solution. Ritter et al. [4] defined a related notion of
selective subsets and gave an algorithm for computing minimum selective sub-
sets, which has an exponential worst case running time, but an average running
time of O(n3) [6].

Wilfong [5], using techniques from Masuyama et al. [3], showed that comput-
ing the minimum consistent subset with three or more labels is NP-complete.
He further showed that the selective subset problem is NP-complete with two or
more labels, but left the problem of computing a minimum consistent subset of
a point set with only two labels open [5]. In this paper, we show that even with
only two labels, computing a minimum consistent set is NP-complete.

2 NP-completeness

The consistent subset problem with any specific number of labels is in NP, as it
can be verified in polynomial time whether a given subset of points is a consistent
subset. It has already been proved that the consistent subset problem is NP-
hard when it involves three or more labels [5]. In this section we prove that the
consistent subset problem with only two labels is NP-hard. To achieve this, we
reduce the Rectilinear planar monotone 3-SAT problem to the present problem.
c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 131–142, 2018.
https://doi.org/10.1007/978-3-319-74180-2_11

132 K. Khodamoradi et al.

2.1 Rectilinear Planar Monotone 3-SAT

Consider a 3-SAT formula θ on n variables {x1, x2, . . . , xn} and m clauses
{C1, C2, . . . , Cm}. Suppose that θ is monotone, i.e. each of the clauses in θ has
either all three positive or all three negative literals. These are called positive
or negative clauses respectively. Then θ and a representation ξ of θ in the plane
are together called a planar rectilinear monotone 3-SAT [1] if ξ satisfies the
following properties (Fig. 1(a)):

(a) All the variables are represented by axis parallel squares of the same side a
and lie on the x-axis, an equal distance b apart.

(b) All the clauses are represented by axis-parallel rectangles of height a.
(c) The rectangles representing positive clauses lie above the x-axis, and the

rectangles representing negative clauses lie below the x-axis.
(d) If a variable occurs in a clause, their corresponding square and rectangle are

connected by a single vertical line segment.
(e) No two line segments cross each other, and the rectangles are all pairwise

disjoint.

We assume that each literal occurs in at least one clause, for otherwise we can
assign 0 to it and remove the variable and all clauses containing that variable
from θ. Note that the same literal can occur twice in one clause. Wlog we assume
that for all pairs of variables xi, xj ∈ θ, i < j, xi lies to the left of xj on the
x-axis. For any clause Cj having variables xi, xj , xk, i < j < k, we call xi, xj

and xk the left, middle and right literals of Cj respectively.

2.2 Overview of the Reduction

Here we give an overview of the reduction. Rectilinear planar monotone 3-SAT is
an NP-complete problem [1]. The planar rectilinear drawing of θ can be modified
into a bicoloured point set P for the reduction, as shown in Fig. 1. The point
set P has five distinct components, namely the clause-gadgets, variable-gadgets,
CVC-paths, variable-line and the walls. The clause-gadgets are three red points
representing the three literals in a clause. The variable-gadgets are two red points
representing a variable and its negation. The variable-line is a sequence of alter-
nating green and red points running between variable-gadgets. Each CVC-path
is a branching sequence of alternating red and green points connecting a point
in a variable-gadget to all the clauses in which its corresponding literal occurs.
All the CVC-paths have the same number of points. The walls are clusters of
points four points thick that run alongside the CVC-paths.

We show that any consistent subset C of P must contain all points in all
walls and the variable-line. C must also contain at least one among two points
of each variable-gadget and at least one among three points of each clause-gadget.
Furthermore, if C contains a variable-point or clause-point, then it must contain
all points from their corresponding CVC-paths. Since the number points of all
CVC-paths is the same, the number of points in C contained via the CVC-paths
is minimized by a satisfying assignment of θ, for which the CVC-paths included

Consistent Subset Problem with Two Labels 133

x1 x2 x3 x4 x5x1 x2 x3 x4 x5

x1 ∨ x4 ∨ x5

x2 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x3 x3 ∨ x4 ∨ x5

x1
x2
x3

x3
x4
x5

x2
x3

x4

x1
x4

x5

(a) (b)

a

a

a

(c)

a

b b

Fig. 1. (a) Planar rectilinear monotone 3-SAT. (b) The drawing is modified for our con-
struction. (c) An approximate depiction of our final construction. Due to lack of space
the positioning and number of points in the components are not precisely depicted, and
the walls are depicted as continuous structures. The leftmost wall has extra point to
make the total number of wall points equal Wn. The CVC-paths have extra branchings
so that each of them has Pn points. (Color figure online)

134 K. Khodamoradi et al.

in C due to the clause-gadgets are exactly the CVC-paths included in C due to
the variable-gadgets.

2.3 Construction for the Reduction

From a planar rectilinear drawing ξ of θ, we now construct the point set P . We
use quantities like Pn and Wn to which we will assign values in terms of m and
n in the end of the construction, to prove its feasibility. We have the following
steps for the construction:

(a) Stretch the line segments between the clauses and variables in ξ by a fac-
tor of m. Translate the clause rectangles vertically so that no horizontal
line may intersect two clause rectangles, and two consecutive clause rectan-
gles in their vertical ordering are exactly a distance a apart. Next shrink
the clause rectangles into squares of side a and place them on the vertical
segment from their middle literal. Extend the segments from the left and
right literals vertically by a distance of a

2 and extend them horizontally till
they hit the clause square. Now, if multiple segments originate from the
same variable-square, then join them into a single segment that branches off
towards different clause-squares (Fig. 1(b)).

(b) Let the bottom left vertex of the variable square for the variable xi have
coordinates (x, y). Replace this square by two red points with coordinates
(x+ a

2 , y+ a
2 +2d) and (x+ a

2 , y+ a
2 −2d), representing xi and xi respectively.

These two points constitute the variable-gadget for xi (Fig. 3) and are called
variable-points. Repeat the step for all variables of θ.

(c) Let the bottom left vertex of the clause square for a positive clause Cj have
coordinates (x, y). Replace this square by three red points with coordinates
(x + a

2 − d, y + a
2 + 2d), (x + a

2 , y + a
2 − 3d) and (x + a

2 + d, y + a
2 + 2d),

representing left, middle and right literals of Cj respectively (Fig. 2). These

d

5d

5d

6d
2d√

10d

√
61d

wall

CVC-path

clause-gadget

wall

√
61d

√
45d

√
65d

xl

xm

xr pc

pd

pe

wall

wall
wall

wall

CVC-path

CVC-path

W1 W2

Fig. 2. A clause-gadget, its corresponding CVC-paths and walls. (Color figure online)

Consistent Subset Problem with Two Labels 135

xi

d

5d

6d

7d
4d

√
40d

√
61d

variable-line

variable-gadget

wall

CVC-path

pa

pb

first layer

second layer

wall

llawllaw

CVC-path

Fig. 3. A variable-gadget, its two CVC-paths, nearby points of the variable-line and
walls. (Color figure online)

three points constitute the clause-gadget for Cj , and are called clause-points.
Repeat the step for all positive clauses of θ. For negative clauses, let the top
left vertex of the clause square have coordinates (x, y). Follow an analogous
process, replacing the clause square by three red points with coordinates.
(x + a

2 − d, y − a
2 − 2d), (x + a

2 , y − a
2 + 3d) and (x + a

2 + d, y − a
2 − 2d).

(d) Let the coordinates of the top points of two consecutive variable-gadgets
be (x1, y1) and (x2, y1) respectively, where x1 < x2. Then consider the line
segment from point (x1 + 6d, y1 − 2d) to (x2 − 6d, y1 − 2d). Place a green
point on (x1+6d, y1−2d) (Fig. 3) and continue placing red and green points
alternately on the line segment, with consecutive points a distance of d units
apart. Repeat this process for all consecutive variable-gadgets. These points
constitute the variable-line and are called variable-line points.

(e) Now we construct the CVC-path. We basically replace the line segments
connecting the clause-gadgets and variable-gadgets with sequences of red
and green alternating points. Place a green point pa 5d units above the top
point of each variable-gadget (Fig. 3), and continue placing red and green
points alternately on the segment d units apart. Similarly, place a green
point pb 5d units below the bottom point of each variable-gadget (Fig. 3),
and continue placing red and green points alternately on the segment.
For a clause-gadget of a positive clause, place three green points pc, pd and
pe, 5d units to the left, below and right of its left, bottom and right points
respectively and place red and green points alternately d units apart in each
direction (Fig. 2). For a clause-gadget of a negative clause, repeat the process

136 K. Khodamoradi et al.

6d

6d

8d

√
74d

√
72d

√
98d

√
85d

√
45d

√
65d√

52d

d

5d

6d

5d

√
125d

wall

CVC-path

6d

√
52d

√
65d

9d

5d
√
50d

8d

3d

√
29d

√
74d

√
72d

√
98d

√
85d

√
45d

√
65d√

52d

d

5d

6d

5d

√
125d

wall

CVC-path

6d

√
52d

√
65d

9d

5d

(a)

(b)

px

px

wall

wallwall

px

pxpa pb

pc

pd

pe

pf

pg

ph

pi

pj

pa pb

pc

pd

pe

pf

pg

W1

W2

W3

Fig. 4. (a) Points at the bifurcation of a CVC-path. The path bifurcates and makes
a turn to reach a clause-gadget to the left, and also continues upwards to reach other
clause-gadgets. For the CVC-path points, the distance to the nearest point of the same
colour outside of the CVC-path is shown with a red dashed segment, while the distances
to some other points are shown with green dotted segments. (b) A path turning without
a bifurcation. (Color figure online)

Consistent Subset Problem with Two Labels 137

by placing three green points 5d units to the left, right and above its left,
right and top points respectively (Fig. 2).
Consider a bifurcation of the line-segments between clauses and variables.
Suppose the segment bifurcates towards the left. Let the point px of
bifurcation have coordinates (x, y). Then place red points pa(x − 21d, y),
pc(x−10d, y −3d), pe(x−3d, y −10d), pg(x, y −21d), ph(x−2d, y −3d) and
pj(x, y +5d) (Fig. 4(a)). Place green points pb(x−16d, y), pd(x−6d, y −6d),
pf (x, y − 16d) and pi(x, y + 2d) (Fig. 4(a)). Construct sequences of alternat-
ing red and green points d units apart running to the left of pa, below pg
and above pj (Fig. 4(a)). For path turnings without bifurcations, repeat the
above process without placing ph, pi and pj (Fig. 4(b)). Construct all path
turnings and bifurcations analogously.
When a CVC-path has less than Pn points, within a vertical distance of
a units from the variable-line, create bifurcations to the left and extend
the path without reaching any other gadget or CVC-path, until the path
contains Pn points (Fig. 1(c)).

(f) Now we construct the walls. The walls run along the CVC-paths. The walls
are four points deep with red and green points alternating and placed d
units apart. The walls are 6d units away from the nearest CVC-path points.
At any cross section of a wall, the first and last point are said to be in the
first layer, while the other points are said to be in the second layer (Figs. 3
and 2).
When a CVC-path ends at a variable-gadget, place walls to both sides of the
path. The walls begin with points having the same y-coordinates as the last
point of the path, the first layer points of the wall are only 6d units away
from the nearest path points (i.e. path points with the same y-coordinates)
and have the same colour as the nearest path point (Fig. 3).
When a CVC-path ends at a positive clause-gadget, if it corresponds to a
middle-literal, we place the first-layer points of the wall on both sides of it,
6d units away from the nearest path point, and begin from the same vertical
level as before. It corresponds to the left or right literals, then we place
the walls above the paths, only 6d units away from the path and begin at
the same x-coordinate as the last point of the path. However, while placing
walls below the path we begin the walls (say, W1 and W2 only at the 10th

point before the path ends (Fig. 2). Walls for CVC-paths ending at negative
clauses are constructed analogously.
For a bifurcation with respect to a point px(x, y), there are three separate
walls W1, W2 and W3 (Fig. 4(a)). The wall W1 takes 90◦ turns at points
(x − 6d, y − 20d), (x − 8d, y − 20d), (x − 8d, y − 17d), (x − 12d, y − 17d),
(x − 12d, y − 12d), (x − 17d, y − 12d), (x − 17d, y − 8d), (x − 20d, y − 8d),
(x − 20d, y − 6d). The wall W2 takes 90◦ turns at points (x − 20d, y + 6d),
(x − 20d, y + 8d), (x − 12d, y + 8d), (x − 12d, y + 6d) and (x − 6d, y + 6d).
The wall W3 takes 90◦ turns at points (x + 6d, y − 20d), (x + 8d, y − 20d),
(x + 8d, y − 12d) and (x + 6d, y − 12d). For turnings without bifurcation the
walls W2 and W3 join and form a single wall. Repeat an analogous process
for all turnings and bifurcations.

138 K. Khodamoradi et al.

If Wn points are not exhausted by the walls then add the rest of the points
to the leftmost wall of P .

Let the total length and height of ξ be L and B respectively. Let the distance
between two consecutive variable-gadgets be b units. A CVC-path can reach at
most m clauses, so it can be at most L + mB units long. Therefore we set
Pn = L+mB = na+(n− 1)b+m(a+2ma). Due to our construction, there can
be two bifurcations in the same direction in the same CVC-path only 40d units
apart. Leaving space for the turnings and walls, we see that each bifurcation can
accommodate at least a − 30 more points in the CVC-path. Then we must have
(a−30)(b/40) ≥ Pn = na+(n−1)b+m(a+2ma). Then putting a = 160(m+30)
and b = 4a + 2ma satisfies this relation, because by our earlier assumption each
literal occurs in at least one clause, giving 3m ≥ 2n. Thus the CVC-paths can
have enough bifurcations to include Pn points. Each wall runs alongside some
path, and is four points deep. There are slightly more points used during turnings
where the walls are thicker and the path points are separated by distances greater
than d units. Since there are 2n CVC-paths, we set Wn = 32Pn. Let the total
number of points in the variable-line be Vn. Then Vn = (n − 1)(b + a − 12d).
Lastly, we simply set a = 8d, thus making d the unit length for our construction.
Due to the relative values of a and d, the variable-line, clause-gadgets, variable-
gadgets, walls and CVC-paths do not overlap with each other. Note that since a
is an even multiple of d, the variable-line always has green points at both ends
of each of its segments, and the CVC-paths also end in green points near clause
and variable gadgets.

The above arguments and the values assigned to the constants show that P
has polynomially many points in terms of the size of θ. All the operations involved
in the construction can also be achieved in polynomial time. This brings us to
the following lemma which we state without repeating the proof.

Lemma 1. The construction of P from θ and ξ is feasible in polynomial time.

2.4 Properties of the Constructed Point Set

Let C be a consistent subset of P . We start by showing that if C contains a
point of a CVC-path or wall, then C must contain all points of that CVC-path,
or wall. We have the following lemmas.

Lemma 2. If C contains a point of a wall, then C must contain all points of
the wall.

Proof. By construction, the points of a wall are only d units apart. So the point
closest to a wall point is another wall point. Since red and green points alternate
throughout a wall, if C contains one of them then C must contain all of them. ��
Lemma 3. If C contains one point of a CVC-path, then C must contain all
points of the CVC-path.

Consistent Subset Problem with Two Labels 139

Proof. Consecutive points of a CVC-path, except at turnings and bifurcations
are only d units apart, while their nearest point outside of the CVC-path is in
a wall, at a distance 6d units away. By construction, at turnings, the distances
between two consecutive points in a CVC-path can be 3d, 5d,

√
29d or

√
45d. But

in each case, their nearest points outside of the CVC-path and also inside the
CVC-path, are even further away (Fig. 4). Since red and green points alternate
throughout a CVC-path, if one of them is in C, then it is the closest point of C
to its one or two neighbours in the CVC-path, that have a different colour. So,
these neighbours also must be included in C, and so on. ��
Now we explore the relationships between the different components of P in terms
of their inclusion in C. We have the following lemmas.

Lemma 4. If C contains a clause-point or variable-point corresponding to a
CVC-path, then C contains all points of the CVC-path.

Proof. Consider the point p of a CVC-path closest to a clause-gadget. The point
p is green. All three clause-points are red, and by construction, the clause-point
(say, q) nearest to p is only 5d units away while its nearest point in a wall is 6d
away from p (Fig. 2). Suppose q is in C. By Lemma 3, if some point from the
CVC-path is in C, then p is in C. Otherwise, q is the nearest point to p in C.
But p and q have different colours, so p must be in C. Thus if q is in C, then p
also must be in C. Then by Lemma 3 all points of the CVC-path are in C.

Now consider the point p of a CVC-path closest to its variable-gadget. By
construction, the two variable-points are 5d and 9d units away from it (Fig. 3).
If its corresponding variable-point i.e. the red point only 5d units away from it
is in C, then p must also be in C because its nearest green points outside of the
CVC-path are at least 6d units away from p. Then by Lemma 3 all points of the
CVC-path are in C. ��
Lemma 5. If C contains a point of a variable-line or variable-gadget, then C
also contains all points of the variable-line and at least one point from each
variable-gadget.

Proof. Between two consecutive variable-gadgets, the points of the variable-line
are only d units apart. Hence the closest point to a variable-line point is a
variable-line point. Since red and green points alternate through a variable-line,
if C contains one of them, C must contain all variable-line points between two
consecutive variable-gadgets. By construction, the nearest point to a variable-
gadget point is green (Fig. 3). Since the two endpoints of such a portion of the
variable-line are green points, at least one of the two red points of the variable-
gadget must also be in C. But then, the variable-point in C is only

√
40d units

away from its other nearest point (say, q) of the variable-line, whereas the nearest
wall point to q is 7d units away. So, q or some point in the portion of the variable-
line containing q must also be in C. Then by the first part of the proof, all points
of the variable-line and at least one point from each variable-gadget must be
in C. ��

140 K. Khodamoradi et al.

Lemma 6. If C contains a point of a CVC-path then C also contains all points
of all the corresponding walls.

Proof. If C contains a point of a CVC-path, then by Lemma3 C must also
contain all points of the CVC-path. But by construction, at anywhere other
than turnings and bifurcations, the closest non wall point to a second layer wall
point is a CVC-path point only 7d units away and of a different colour. This
means that the second layer wall point must also be included in C. Then by
Lemma 2 all points of the wall are in C. ��
Lemma 7. If C contains a point of a wall of some CVC-path, then C contains
all points of all walls of the CVC-path.

Proof. Other than at turnings and bifurcations, the wall is only 6d units away
from the CVC-path. So, two consecutive walls of the path are only 12d units
apart, and any other point closer to these walls must be from the CVC-path
itself. If C contains a point of the CVC-path, then by Lemma 6 C must also
contain all points of all of its walls. If C does not contain any point of the CVC-
path, then consider a wall W1 not in C that is next to a wall W2 in C. For any
point in the second layer of W1, the closest point of C is a first layer point of
W2, which is of a different colour. So, a second layer point of W1 must be in C.
Then by Lemma 2 all points of W1 are in C. The same argument applies for all
walls of the CVC-path. ��
Lemma 8. If C contains a wall then C contains the variable-line and at least
one point from each variable-gadget.

Proof. Assume that C contains no point from the variable-line or any variable-
gadget, for otherwise the claim is true by Lemma 5. If C contains a wall then by
Lemma 7 C contains all walls of the same CVC-path. This means, C contains a
wall-point that is only

√
61d away from a variable-point (Fig. 3). This variable-

point is also 5d away from a CVC-path point, which may or may not be in C.
Both the CVC-path point and the wall point are green whereas the variable-
point is red. So, one of the two variable-points must be in C. Then the claim
follows from Lemma 5. ��
Lemma 9. If C contains the variable-line or a variable-point then C contains
all walls.

Proof. If C contains the variable-line or a variable-point then by Lemma5 C
contains the variable-line and at least one point from each variable-gadget. Now
consider a wall point that is only

√
61d away from a variable-point (Fig. 3). Call

its immediate vertical neighbour on the wall q. By construction, q is a red point.
Assume that C does not contain the corresponding CVC-path, for otherwise by
Lemma 6 C contains the wall as well. The variable-point nearest to q is

√
72d

apart. The red point on the variable-line nearest to q is
√

65d units away. But
the green point on the variable-line nearest to q is only 8d units away and by
our assumption it is in C. So, q must also be in C. The claim now follows from
Lemma 7. ��

Consistent Subset Problem with Two Labels 141

Lemma 10. If C contains a wall then C contains at least one point from each
clause-gadget.

Proof. If C contains a wall then by Lemma 8 C contains the variable-line and
at least one point from each variable-gadget. Then by Lemma 9, C contains
all walls. This means, C contains a wall-point that is only

√
61d away from a

clause-point (Fig. 2). This clause-point is also 5d away from a CVC-path point,
which may or may not be in C. Both the CVC-path point and the wall point are
green whereas the clause-point is red. So, one of the three clause-points must be
in C. This argument applies to all clause-gadgets. ��

Now with the help of the relationships established in the above lemmas, we
characterize consistent sets of P .

Lemma 11. C contains (a) all walls of P , (b) the variable-line of P , (c) at least
one variable-point from each variable-gadget, and its corresponding CVC-path,
and (d) at least one clause-point clause-gadget, and its corresponding CVC-path.

Proof. Consider any point q of C. Suppose that q is a wall point. Then
by Lemma 7, C contains all wall points of the corresponding CVC-path. By
Lemma 8, C contains the variable-line and at least one variable-point from each
variable-gadget, and by Lemma9, it contains all walls. By Lemma 10, C contains
at least one clause-point from each clause-gadget. Then by Lemma 4, C contains
the CVC-paths of the clause-points and variable-points that it contains.

Using the above part of the proof, to prove the rest of the lemma we just
have to show that C contains a wall point in each case. If q is a point on the
variable-line or a variable-point, then by Lemma9 C contains a wall point. If q
is a clause-point, then by Lemmas 4 and 6, C contains a wall point. Finally, if q
is a point in a CVC-path, then again by Lemma6, C contains a wall point. ��
As defined earlier, the total number of wall points in P is Wn. The number of
points in each CVC-path, and the variable-line are Pn and Vn respectively.

Lemma 12. The minimum consistent subset of P has a total of Wn + nPn +
Vn + n + m points if and only if θ is satisfiable.

Proof. First suppose that θ has a satisfying assignment. We include all walls
and the variable-line in C. This accounts for Wn +Vn points. Now we choose the
variable-points that represent the literals that are assigned 1 in the satisfying
assignment, and include them in C. This accounts for n points. For each clause,
we choose one satisfied literal in the clause and include the corresponding clause-
point in C. This accounts for m points. Finally, we choose the CVC-paths for
all the chosen variable points. This accounts for nPn points. For each variable-
gadget, the point chosen in C is the point of C closest to the other point. The
same holds for each clause-gadget. By construction, the points of the CVC-paths
not included in C have wall points of the same colour as their closest points of C,
since their corresponding clause-points and variable-points are not in C either.
So, C is indeed a consistent subset of P .

142 K. Khodamoradi et al.

Now suppose that a consistent subset C has only Wn + nPn + Vn + n +
m points. Due to Lemma 11, and the number of points in each component,
C contains exactly one clause-point from each clause-gadget and exactly one
variable-point from each variable-gadget, and only the CVC-paths corresponding
to these clause-points and variable-points. We build a satisfying assignment of
θ from C. We assign 1 to the literals represented by the variable-points in C.
So for each variable, either the variable itself or its negation is assigned 1. If
this assignment does not satisfy some clause of θ, then one of the CVC-paths of
its clause-gadget is in C but leads to a variable-point not in C. This means the
CVC-paths contribute a total of at least (n+1)Pn points, pushing the cardinality
of C to at least Wn + (n + 1)Pn + Vn + n + m, a contradiction. ��
Theorem 1. The minimum consistent subset problem is NP-complete for point
sets with two labels.

Proof. The fact that the problem is in NP is obvious, because given a subset C
of a 2-coloured point set P , it can be verified in polynomial time whether or not
C is a consistent subset of P . We now prove NP-hardness of the problem.

By Lemma 12 it is possible to construct from a given planar monotone 3-SAT
formula θ of n variables and m clauses, a 2-coloured point set that has a minimum
consistent subset of size Wn + nPn + Vn + n + m if and only if θ is satisfiable.
Furthermore, by Lemma 1, this construction is possible in time polynomial in
the size of θ, thus completing the proof. ��

3 Concluding Remarks and Acknowledgments

We have proved that the consistent subset problem with only two labels is also
NP-complete, a curious result given that the problem is trivial for monochrome
point sets. The scope of designing parameterized algorithms and approximations
better than the general case remains open for point sets with two labels.

We are grateful to Sasanka Roy for introducing the minimum consistent
subset problem to us, and the discussions that followed. We thank the anonymous
referees whose scrutiny of the paper has improved its presentation and clarity.

References

1. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012)

2. Hart, P.E.: The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theor.
14(3), 515–516 (1968)

3. Masuyama, S., Ibaraki, T., Hasegawa, T.: The computational complexity of the
m-center problems on the plane. IEICE Trans. (1976–1990) 64(2), 57–64 (1981)

4. Ritter, G.L., Woodruff, H.B., Lowry, S.R., Isenhour, T.L.: An algorithm for a selec-
tive nearest neighbor decision rule (corresp.). IEEE Trans. Inf. Theor. 21(6), 665–
669 (1975)

5. Wilfong, G.T.: Nearest neighbor problems. Int. J. Comput. Geom. Appl. 2(4), 383–
416 (1992)

6. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning
algorithms. Mach. Learn. 38(3), 257–286 (2000)

The Edge Geodetic Number of Product Graphs

Bijo S. Anand1, Manoj Changat2(B), and S. V. Ullas Chandran3

1 Department of Mathematics, Sree Narayana College,
Punalur 691305, Kerala, India

bijos anand@yahoo.com
2 Department of Futures Studies, University of Kerala,

Thiruvananthapuram 695034, Kerala, India
mchangat@gmail.com

3 Department of Mathematics, Mahatma Gandhi College, Kesavadasapuram,
Thiruvananthapuram 695004, Kerala, India

svuc.math@gmail.com

Abstract. For a nontrivial connected graph G = (V (G), E(G)), a set
S ⊆ V (G) is called an edge geodetic set of G if every edge of G is con-
tained in a geodesic joining some pair of vertices in S. The edge geodetic
number eg(G) of G is the minimum order of its edge geodetic sets. It is
observed that the edge geodetic sets and numbers are interesting con-
cepts and possess properties distinct from the vertex geodetic concepts.
In this work, we determine some bounds and exact values of the edge
geodetic numbers of strong and lexicographic products of graphs.

Keywords: Geodetic number · Edge geodetic number
Extreme vertex · Extreme edge · Semi-extreme vertex

AMS Subject Classification: 05C12

1 Introduction

Covering problems form one of the fundamental problems in graph theory, both
vertex covering and edge covering. One of the important vertex covering prob-
lems is the geodetic covering problem, namely covering the entire vertex set
of a graph using a set S of vertices with smallest cardinality such that every
vertex of the graph belongs to a geodesic or shortest path between a pair of
vertices in S. Harary et al. introduced the geodetic covering problem and the
related graph parameter, namely the geodetic number in [5,11] followed by other
authors in [4,6,8,13]. The edge version of the geodetic covering is named as the
edge geodetic set, defined as the set S of vertices with smallest cardinality such
that every edge of the graph belongs to a geodesic between a pair of vertices in
S. The parameter, edge geodetic number of a graph was introduced and studied
in [15,16]. Although the edge geodetic number is greater than or equal to the
geodetic number for an arbitrary graph, the properties of the edge geodetic sets
c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 143–154, 2018.
https://doi.org/10.1007/978-3-319-74180-2_12

144 B. S. Anand et al.

and numbers are quite different from that of vertex geodetic concepts. There is
a strong motivation to study the edge geodetic problem and the edge geodetic
number, as there are many applications, for e.g., in the problem of designing
the route for a shuttle transportation, as all the edges will be covered when we
consider the edge geodetic sets instead of vertex geodetic sets. Recently, an appli-
cation of the edge geodetic sets, the strong edge geodetic problem is introduced
in [12] in the analysis of structural behavior of social networks. In particular, the
edge geodetic sets are more useful than geodetic sets in regulating and routing
the goods vehicles to transport the commodities to important places.

The edge geodetic number is investigated in Cartesian product graphs in [17],
where we observe that the edge geodetic number and the geodetic number have
significant difference. Motivated by this work, in this paper, we study the edge
geodetic number in other standard graph products, namely the strong products
and Lexico-graphic products. First, we fix the notation, in Sect. 2, we discuss
some interesting properties of edge geodetic sets; study and estimate the upper
and lower bounds on strong products and lexicographic products, respectively
in Sects. 3 and 4.

By a graph G = (V (G), E(G)) we mean a finite undirected connected simple
graph (without loops or multiple edges). The order and size of G are denoted
by n and m respectively. The distance d(u, v) between two vertices u and v in
a connected graph G is the length of a shortest u - v path in G. An u - v path
of length d(u, v) is called an u - v geodesic. It is known that this distance is
a metric on the vertex set V (G). For a vertex v of G, the eccentricity e(v) is
the distance between v and a vertex farthest from v. The minimum eccentricity
among the vertices of G is the radius, rad G, and the maximum eccentricity
is its diameter, diam G of G. A vertex v of a graph G is called simplicial or
extreme if its neighborhood N(v) induces a clique. A geodetic set of G is a set
S ⊆ V (G) such that every vertex of G is contained in a geodesic joining some
pair of vertices in S. The geodetic number g(G) of G is the minimum order of its
geodetic sets.

The strong product of graphs G and H, denoted by G � H, has vertex set
V (G)×V (H), where two distinct vertices (x1, y1) and (x2, y2) are adjacent with
respect to the strong product if,

(a) x1 = x2 and y1y2 ∈ E(H), or
(b) y1 = y2 and x1x2 ∈ E(G), or
(c) x1x2 ∈ E(G) and y1y2 ∈ E(H).

The mappings πG : (x, y) �→ x and πH : (x, y) �→ y from V (G � H) onto
G and H respectively are called projections. For a set S ⊆ V (G � H), we
define the G-projection on G as πG(S) = {x ∈ V (G) : (x, y) ∈ S for some
y ∈ V (H)}, and the H-projection πH(S) = {y ∈ V (H) : (x, y) ∈ S for some
x ∈ V (G)}. For a walk P : (x1, y1), (x2, y2), . . . , (xn, yn) in G � H, we define the
G-projection πG(P) of P as a sequence that is obtained from (x1, x2, . . . , xn)
by changing each constant subsequence with its unique element. For exam-
ple, if P : (x2, y3), (x2, y4), (x2, y5), (x4, y5), (x4, y2), (x3, y2), (x2, y2), then πG(P)
is (x2, x4, x3, x2) (it is obtained from the sequence (x2, x2, x2, x4, x4, x3, x2)).

The Edge Geodetic Number of Product Graphs 145

The H-projection πH(P) is defined similarly. It is clear from the definition of
strong product that for any walk P in G�H, both πG(P) and πH(P) are walks
in the factor graphs G and H respectively.

The lexicographic product of graphs G and H is the graph G ◦ H on vertex
set V (G) × V (H) in which the vertices (g1, h1) and (g2, h2) are adjacent if and
only if either g1g2 ∈ E(G) or g1 = g2 and h1h2 ∈ E(H). This graph operation
is also known as the graph composition and denoted by G[H].

For basic graph theoretic terminology, we refer to [9]. We also refer to [5] for
results on distance in graphs and to [10] for metric structures in strong product
graphs. Throughout the following G denotes a connected graph with at least two
vertices. The following theorem will be used in the sequel.

Theorem 1.1 [5]. Each extreme vertex of a connected graph G belongs to every
geodetic set of G.

2 Edge Geodetic Sets

An edge geodetic set of a connected graph G is a set S ⊆ V (G) such that every
edge of G is contained in a geodesic joining some pair of vertices in S. The edge
geodetic number eg(G) of G is the minimum order of its edge geodetic sets.

For the graph G given in Fig. 1, S = {v1, v2, v4} is a minimum edge geodetic
set of G so that eg(G) = 3. Also S′ = {v3, v5} is a minimum geodetic set of G
so that g(G) = 2. Thus the geodetic number and the edge geodetic number of a
graph are different.

v5

v2

v4

v3

v1

Fig. 1. G

Theorem 2.1 [16].Every edge geodetic set of a connected graph G is a geodetic
set of G.

An edge e = uv in a connected graph G is said to be an extreme edge if e
lies on an x − y geodesic in G, then u = x or v = y. In any graph G, end edges
are extreme edges but the converse need not be true. Moreover, if a graph G has
diameter 2, then any edge in G is an extreme edge.

146 B. S. Anand et al.

Observation 2.2. Every edge geodetic set contains at least one end of each
extreme edge. Moreover, if a connected graph G has k independent extreme edges,
then eg(G) ≥ k.

A vertex v in G is called a semi-extreme vertex of G if Δ(〈N(v)〉) = |N(v)|−
1. That is, the induced subgraph of N(v) has a full degree vertex in N(v). For
the graph G in Fig. 1, the vertices v1 and v2 are semi-extreme. The set of all
semi-extreme vertices of a graph G is denoted by sxt(G) and s(G) = |Sxt(G)|.
Note that every extreme vertex is semi-extreme. A graph G is said to be semi-
complete if all of its vertices are semi-extreme. It is clear that the complete
graphs, K4 − e, G + K2 are semi-complete graphs. The behavior of the edge
geodetic number was recently investigated in [15].

Theorem 2.3 [15]. Let G be a connected graph. Then each semi-extreme vertex
belongs to every edge geodetic set of G.

Proof. Let T be an edge geodetic set of G. Suppose that there exists u ∈ sxt(G)
such that u /∈ T . Since Δ(〈N(u)〉) = |N(u)| − 1, there exists v ∈ N(u) such that
deg〈N(u)〉(v) = |N(u)| − 1. Since T is an edge geodetic set of G, the edge e = uv
lies on a x − y geodesic P : x = x0, x1, . . . , xi = u, xi+1 = v, . . . , xn = y with
x, y ∈ T . Then v
= x, y. Since deg〈N(u)〉(v) = |N(u)| − 1, u is adjacent to xi+2,
which is a contradiction to the fact that P is a x − y geodesic. Hence sxt(G) is
contained in every edge geodetic set of G. �
Theorem 2.4. A graph G is semi-complete if and only if eg(G) = n.

Proof. If G is semi-complete, then by Theorem 2.3, eg(G) = n. Conversely,
suppose that eg(G) = n. If sxt(G)
= V (G), then there exists u ∈ V (G) such that
u /∈ S. Thus Δ(〈N(u)〉) ≤ |N(u)| − 2. It follows that deg〈N(u)〉(v) ≤ |N(u)| − 2
for all v ∈ N(u). Let T = V (G) − {u}. We claim that T is an edge geodetic
set of G. Let e = xy be an edge in G. If x, y ∈ T , then there is nothing to
prove. So, assume that y = u. Then x ∈ N(u) ∩ T . Let x′ ∈ N(u) be such that
x and x′ are non-adjacent. Then it is clear that the edge e = xu lies on the
geodesic P : x, u, x′ with x, x′ ∈ T . Hence T is an edge geodetic set of G and
so eg(G) ≤ n − 1, which is a contradiction to the fact that eg(G) = n. Thus
sxt(G) = V (G). �

3 Edge Geodetic Sets in Strong Product Graphs

In this section, we investigate the behavior of edge geodetic sets on strong prod-
ucts of graphs. We establish both lower and upper bounds for the edge geodetic
number and obtain the exact value of this parameters for a number of strong
product graphs.

Theorem 3.1 [6,13]. Let G and H be connected graphs with (u, v) and (x, y)
arbitrary vertices of the strong product G � H of G and H. Then dG�H((u, v),
(x, y)) = max{dG(u, x), dH(v, y)}. Moreover, if P a (u, v) − (u′, v′) geodesic in
G � H of length n and if dG(u, u′) ≥ dH(v, v′), then πG(P) is a u − u′ geodesic
in G of length n.

The Edge Geodetic Number of Product Graphs 147

Theorem 3.2 [6,13]. If G and H are non trivial connected graphs, then
g(G � H) ≥ 4

Theorem 3.3. Let G and H be connected graphs. Then

sxt(G � H) = [sxt(G) × V (H)] ∪ [V (G) × sxt(H)]

Proof. Let g ∈ sxt(G) and h ∈ V (H). Then there exists g′ ∈ NG(g) such that
deg〈N(g)〉(g′) = |NG(g)−1|. Thus the vertex g′ is adjacent to all the neighbors of
g in G. Let (x, y) be any neighbor of (g, h) different from (g′, h) in G � H. Then
we have that x = g or x is adjacent to g in G. Also, y = h or y is adjacent to
h in H. This shows that the vertex (g′, h) is adjacent to (x, y) in G � H and so
(g, h) ∈ sxt(G � H). On the otherhand, let (x, y) be any semi-extreme vertex in
G�H. Assume the contrary that both x and y are not semi-extreme vertices in
the corresponding components. Now, let (u, v) be a neighbor of (x, y) in G � H
such that it is adjacent to all other neighbors of (x, y) in G � H. Then we have
that u
= x or v
= y, say u
= x. Since x is not a semi-extreme vertices in G, we
can choose u′
= u such that u and u′ are non-adjacent neighbors of x. Then it
is clear that the vertex (u′, y) is a neighbor of (x, y) in G � H such that (u, v)
and (u′, y) are non-adjacent in G�H, which is a contradiction. Hence the result
follows. �

Corollary 3.4. Let G and H be connected graphs of order n and m respectively.
Then

eg(G � H) ≥ m.s(G) + n.s(H) − s(G)s(H)

Corollary 3.5. For any connected graph G of order n, eg(G � Kn) = mn.

Remark 3.6. Let G and H be connected graphs of order n and m respectively.
Let S be an edge geodetic set of G � H. If sxt(G)
= ∅, then it follows from
Theorem 3.3 that πH(S) = V (H). This shows that m ≤ eg(G � H). Moreover,
if sxt(G)
= ∅ and sxt(H)
= ∅, then max{m,n} ≤ eg(G � H) ≤ mn.

Theorem 3.7. Let G and H be connected graphs and let S be an edge geodetic
set in G � H. Then πG(S) is an edge geodetic set in G and πH(S) is an edge
geodetic set in H.

Proof. Let eG = xx′ be an edge in G and let y be any vertex in H. Then (x, y)
and (x′, y) are adjacent in G�H, call this edge as e. Since S is an edge geodetic
set in G � H, there exist vertices (g0, h0), (gn, hn) ∈ S such that e lies on a
(g0, h0)−(gn, hn) geodesic, say P : (g0, h0), (g1, h1), . . . , (gi, hi) = (x, y), (x′, y) =
(gi+1, hi+1), . . . , (gn, hn). This shows that l(πH(P)) < l(P) and so it follows
from Theorem 3.1 that l(πG(P)) = l(P) and πG(P) is a g0 − gn geodesic in G
containing the edge eG = xx′. �

Corollary 3.8. Let G and H be connected graphs of order n and m respectively.
Then

eg(G � H) ≥ max{m.s(G) + n.s(H) − s(G)s(H), eg(G), eg(H)}

148 B. S. Anand et al.

Proof. This follows from Theorem 3.7 and Corollary 3.4. �
Theorem 3.9. Let G and H be connected graphs. Then G�H is semi-complete
if and only if G or H is semi-complete.

Proof. If G or H is semi-complete, say G, then sxt(G) = V (G). Then it follows
from Theorem 3.3 that sxt(G � H) = V (G) × V (H) and hence G � H is semi-
complete. conversely, suppose that G�H is semi-complete. Then sxt(G�H) =
V (G) × V (H). If both G and H are not semi-complete, choose vertices x in
G and y in H such that both x and y are not semi-extreme vertices in G and
H respectively. Now, since (x, y) is semi-extreme vertex in G � H, there exists
a neighbor (u, v) of (x, y) in G � H such that (u, v) is adjacent to all other
neighbors of (x, y) in G�H. Now, we have that u
= x or v
= y, say u
= x. Now,
choose u′ ∈ N(x) such that u and u′ are non-adjacent in G. Then it is clear
that the vertex (u′, y) is neighbor of (x, y) in G � H which is non-adjacent with
the vertex (u, v). This is a contradiction to the fact that (x, y) is a semi-extreme
vertex in G � H. �
Remark 3.10. If G�H is semi-complete, then both G and H need not be semi-
complete graphs. For example, the graph C4 � K2 is semi-complete, whereas C4

is not semi-complete.

Theorem 3.11. Let G and H be connected graphs of order n and m respectively.
Then eg(G � H) ≤ n.eg(H) + m.eg(G) − eg(G)eg(H).

Proof. Let S be a minimum edge geodetic set in G and let T be a minimum
edge geodetic set in H. We claim that the set W = (V (G) × T) ∪ (S × V (H)) is
an edge geodetic set in G � H. For, let e = (x1, y1)(x2, y2) be an edge in G � H.

Case 1. x1
= x2. Then x1 and x2 are adjacent in G and d(y1, y2) ≤ 1. Since S is
an edge geodetic set in G, there exist vertices g1, gr ∈ S such that the edge x1x2

lies on a g1−gr geodesic in G, say P : g1, g2, . . . , gi = x1, gi+1 = x2, . . . , gn. Then
it follows from Theorem 3.1 that the path Q : (g1, y1), (g2, y1), . . . , (gi, y1) =
(x1, y1), (x2, y2) = (gi+1, y2), . . . , (gr, y2) is a (g1, y1)− (gr, y2) geodesic in G�H
containing the edge e with (g1, y1), (gr, y2) ∈ S × V (H).
Case 2. x1 = x2. Then y1y2 is an edge in H. Since T is an edge geodetic set
in H, there exist vertices h1, hs ∈ T such that the edge y1y2 lies on a h1 − hs

geodesic in H, say P ′ : h1, h2, . . . , gj = y1, gj+1 = y2, . . . , hs. Then it follows from
Theorem 3.1 that the path Q′ : (x, h1), (x, h2), . . . , (x, hj) = (x, y1), (x, y2) =
(x, hj+1), . . . , (x, hs) is a (x, h1) − (x, hs) geodesic in G � H containing the edge
e with (x, h1), (x, hs) ∈ V (G) × T . Hence the result follows. �
As a direct consequence of the above theorem, the following results are obtained.

Corollary 3.12. Let G and H be connected graphs of order n and m respec-
tively. Then

max{m.s(G) + n.s(H) − s(G)s(H), eg(G), eg(H), 4} ≤ eg(G � H) ≤
n.eg(H) + m.eg(G) − eg(G)eg(H).

The Edge Geodetic Number of Product Graphs 149

Corollary 3.13. Let T1 be a tree of order m with r end vertices and T2 be a
tree or order n with s end vertices. Then

eg(T1 � T2) = ms + nr − rs.

Corollary 3.14. For integers m,n ≥ 4,

eg(W1,m � W1,n) = mn + m + n.

4 Edge Geodetic Sets of Lexicographic Product
of Graphs

There is a constant research interest for lexicographic product of graphs over the
years, which overlaps several branches of graph theory. This is evident from the ref-
erences, [1–3,7]. For more on lexicographic products in general we recommend [10].

A 2-edge geodetic set of a graph G is a set S of vertices of G such that every
edge on G lies on some geodesic of length at most 2 joining two vertices in S
[14]. The minimum cardinality of a 2-edge geodetic set of G is its 2-edge geodetic
number eg2(G) [14]. A 2-edge geodetic set of cardinality eg2(G) is called eg2-set
of G. Notice that eg(G) ≤ eg2(G), since every 2-edge goedetic set is an edge
geodetic set. Certainly, the converse of these assertion is not far being true in
general, unless the graph has diameter 2.

The following result is a direct consequence of the definition of lexicographic
product.

Theorem 4.1. Let G and H be graphs. Then

1. The graph G ◦ H is connected if and only if G is connected.
2. The lexicographic product is associative but not commutative.
3. If G is connected, then dG◦H((g, h), (g′, h′)) = dG(g, g′) if g
= g′

dG◦H((g, h), (g, h′)) = 2 if hh′ /∈ E(H)
dG◦H((g, h), (g, h′)) = 1 if hh′ ∈ E(H)

Theorem 4.2. Let G and H be two connected graphs. Then

sxt(G ◦ H) =

{
(V (G) × sxt(H)) ∪ (sxt(G) × V (H)), if H contains full degree vertex;
V (G) × sxt(H), otherwise.

Proof. Case 1: H contains full degree vertices.
Let (x, y) ∈ sxt(G◦H) and let (u, v) be a neighbour of (x, y) such that (u, v)

is adjacent with all other neighbours of (x, y).
Assume the contrary that x /∈ sxt(G) and y /∈ sxt(H). First suppose that

x = u, then y
= v. Since y /∈ sxt(H), we can chose a neighbour v′ of y but v′

is not adjacent with v. This shows that (x, v′) is a neighbour of (x, y) which is
non-adjacent with (x, v). This is a contradiction.

Now consider the case that x
= u. Then x and u should be adjacent in G
and so all the vertices in the layer uH are neighbours of the vertex (x, y) in
G ◦ H. Hence it follows from the choice of the vertex (u, v) that it must be

150 B. S. Anand et al.

adjacent with all other vertices in the layer uH. Thus v must be a full degree
vertex in H. Since x /∈ sxt(G), we can chose a neighbour u′ of x such that u and
u′ are non-adjacent in G. But all the vertices of the layer u′

H are neighbours
of the vertex (x, y) and so (u, v) must be adjacent with all the vertices of the
layer u′

H, particularly the vertex (u′, v). This is possible only when u and u′ are
adjacent in G, a contradiction. This shows that x ∈ sxt(G) or y ∈ sxt(H) and
so sxt(G ◦ H) ⊆ (V (G) × sxt(H)) ∪ (sxt(G) × V (H)).

Conversely suppose that x ∈ sxt(G). We claim that (x, y) ∈ sxt(G ◦ H) for
all y ∈ V (H). Let v be a full degree vertex in H. Choose a neighbour u of x
such that u is adjacent with all other neighbours of x. Now let (s, t) be any
neighbour of (x, y) in G ◦ H different from (u, v). First suppose that s = x,
then (u, v) must be adjacent with (s, t). So let s
= x. Then s is a neighbour
of x in G. If s
= u, then it follows from the choice of u that s and u must be
adjacent in G. Thus (u, v) is adjacent with (s, t) in G ◦ H. Otherwise, if s = u,
then v
= t. since v is a full degree vertex, we have that v and t are adjacent
in H. Therefore in this case also the vertex (u, v) is adjacent with (s, t). Hence
(x, y) ∈ sxt(G◦H) and so sxt(G)×V (H) ⊆ sxt(G◦H). Now let y ∈ sxt(H). We
show that (x, y) ∈ sxt(G◦H), for all x ∈ V (G). Since y ∈ sxt(H), we can choose
a neighbour v of y such that v is adjacent with all other neighbours of y. Let
(s, t) be any neighbour of (x, y) such that (s, t)
= (x, v). If s = x, then t must
be adjacent with y and so the vertex v must be adjacent with t. Hence (s, t) is
adjacent with (x, v) in G ◦ H. Similarly if s
= x, then x and s are adjacent in G
and so (x, v) is adjacent with (s, t). This shows that (x, y) ∈ sxt(G ◦ H).
Case 2: H has no full degree vertices.

Let (x, y) ∈ sxt(G ◦ H). Choose a neighbour (u, v) of (x, y) such that (u, v)
must be adjacent with all other neighbours of (x, y). If u
= x, then all vertices
in the layer uH are the neighbours of (x, y) and so (u, v) must be adjacent to all
other vertices in the layer uH. This shows that v is a full degree vertex in H,
which is impossible. Hence we can assume that u = x. Now we claim that y is
a semi-extreme vertex in H. For let v′ be any neighbour of y different from v.
Then (x, v′) is a neighbour of (x, y) and so (x, v) must be adjacent with (x, v′)
in G ◦H. This is possible only when v is adjacent to v′ in H. Hence y ∈ sxt(H).

On the other hand, suppose that y ∈ sxt(H). we claim that (x, y) ∈ sxt(G ◦
H) for all x ∈ V (G). For, let v be any neighbour of y such that v is adjacent
to all other neighbours of y in H. Let (s, t) be any neighbour of (x, y) in G ◦ H
such that (s, t)
= (x, v). If s = x, then t is a neighbour of y and so v must be
adjacent with t in H. Hence the vertex (x, v) is adjacent to (s, t) in G ◦ H. So
assume that s
= x. Then x and s are adjacent in G and so (s, t) is adjacent with
(x, v) in G ◦ H. This shows that (x, y) ∈ sxt(G ◦ H).

Corollary 4.3. Let G and H be connected graphs of order n and m respectively.
Then eg(G ◦ H) ≥ n.sxt(H). Moreover, if H contains full degree vertices, then
eg(G ◦ H) ≥ nm − n + sxt(G).

Proof. By Theorem 4.2, we have that V (G) × sxt(H) ⊆ sxt(G ◦ H). Hence
eg(G◦H) ≥ sxt(G◦H) = n.sxt(H). Moreover, if H contains full degree vertices,

The Edge Geodetic Number of Product Graphs 151

then sxt(H) = m or sxt(H) = m−1. Hence we can assume that sxt(H) ≥ m−1.
Now the result follows from Theorem 4.2.

Corollary 4.4. Let G and H be connected graphs such that H has no full degree
vertices. Then G ◦H is semi-complete graph if and only if H is a semi-complete
graph.

Remark 4.5. If H contains full degree vertices, then Corollary 4.4 need not be
true. For consider G = Kn and H = K1,n. Then it follows from Theorem 4.2
that sxt(G ◦ H) = n(n + 1) and so G ◦ H is semi-complete, whereas H is not
semi-complete.

Proposition 4.6. Let G and H be connected graphs such that H has a unique
full degree vertex. Then G◦H is semi-complete if and only if G is semi-complete.

Proof. Let n and m be the order of G and H respectively. Since H has a unique
full degree vertex, we have that sxt(H) = m − 1. Hence by Theorem 4.2, we get
sxt(G ◦ H) = mn − n + sxt(G). This shows that G ◦ H is semi-complete if and
only if G is semi-complete.

Remark 4.7. If H contains more than one full degree vertices, then H is a
semi-complete graph and hence by Theorem 4.2, sxt(G◦H) = V (G)×sxt(H) =
V (G ◦ H) and so G ◦ H is semi-complete.

Remark 4.8. If H contains more than one full degree vertex, then the above
proposition need not be true. For, consider G = C4 and H = K3, then G ◦ H is
semi-complete, whenever G is not semi-complete.

Corollary 4.9. For any positive integer n ≥ 2, eg(G ◦ Kn) = n.|V (G)|
Corollary 4.10. For integers n ≥ 2 and m ≥ 3, eg(Kn ◦ W1,m) = n.(m + 1)

Lemma 4.11. Let G and H be connected graphs and let S be an edge geodetic
set in G ◦ H. Then for each x ∈ G, the set S ∩ V (xH) is a 2−edge geodetic set
in the induced subgraph of V (xH) in G ◦ H.

Proof. Let e = (x, y)(x, y′) be any edge in xH. Since S is an edge geode-
tic set in G ◦ H, we have that e lies on a (u, v) − (u′, v′) geodesic P with
(u, v), (u′, v′) ∈ S. Let the geodesic P be P : (u, v) = (u0, v0), . . . , (ui, vi) =
(x, y), (x, y′) = (ui+1, vi+1), . . . , (un, vn) = (u′, v′). If ui−1
= x, then ui−1 must
be adjacent with x and so (ui−1, vi−1) is adjacent with (x, y′) = (xi+1, vi+1),
which is impossible. Hence ui−1 = x. Continue this argument, we can prove
that u0 = u1 = . . . = ui = . . . = un = x and hence (u, v), (u′, v′) ∈x H. By
Theorem 4.1, d((u, v), (u′, v′)) = 1 or 2 and so S ∩ V (xH) is a 2-edge geodetic
set in the induced subgraph of xH.

Theorem 4.12. Let G and H be two connected graphs. Then
neg2(H) ≤ eg(G ◦ H) ≤ neg2(H) + eg(G)m − eg(G)eg2(H), where n and m are
the number of vertices of G and H respectively.

Moreover, both the bounds are tight.

152 B. S. Anand et al.

Proof. The lower bound is the direct consequence of Lemma 4.11. To show the
sharpness of lower bound take G = C6 and any graph H (see Theorem 4.14).
Now, we prove the upper bound. Let S1 be an edge geodesic set of G and S2

be a 2-edge geodesic set of H. We claim that the set S = (V (G) × S2) ∪ (S1 ×
V (H)) − (S1 × S2) is an edge geodesic set of G ◦ H. For, let e = (g1, h1)(g2, h2)
be an edge in G ◦ H.

Case 1: g1 = g2 = g and h1h2 ∈ E(H)
Since S2 is the 2-edge geodetic set of H, there exist two vertices h and h′ in
S2 such that h1h2 is in h − h′ geodesic of length atmost 2. It follows from
Theorem 4.1 that the corresponding path in the g-layer of H is a (g, h1)− (g, h2)
geodesic in G ◦ H containing the edge e.
Case 2: g1g2 ∈ E(G): Since S1 is the edge geodetic set of G, there exist
vertices g and g′ in S1 such that g1g2 is in a g − g′ geodesic in G, say
P : g = u0, u1, . . . , ui = g1, g2 = ui+1, . . . , un = g′. By Theorem 4.1, the path
Q : (g, h1) = (u0, h1), (u1, h1), . . . , (ui, h1) = (g1, h1), (g2, h2) = (ui+1, h2), . . . ,
(un, h2) = (g′, h2) is a (g, h1) − (g′, h2) geodesic in G ◦ H containing the edge e.
This shows that S is an edge geodetic set in G ◦ H. Hence the theorem.

To show the sharpness of this upper bound take G = C5 and H = C4 (see
Theorem 4.14).

Lemma 4.13. Let G and H be connected graphs and let e = uv be an extreme
edge in G. Then every edge geodetic set of G ◦ H contains all the vertices in the
u − layer of H or it contains all the vertices in the v − layer of H.

Proof. Let S be an edge geodetic set of G ◦ H. Let e = uv be an edge in
G. Suppose that V (uH) � S and V (vH) � S. Choose (u, u′) ∈ V (uH) and
(v, v′) ∈ V (vH) such that (u, u′), (v, v′) /∈ S, Since S is an edge geodetic set,
it follows that the edge in G ◦ H lies on a x − y geodesic P with x, y ∈ S.
We may assume that the geodesic P be P : x = (x0, y0), (x1, y1), . . . , (xi, yi) =
(u, u′), (v, v′) = (xi+1, yi+1), . . . (xn, yn) = y with 1 ≤ i ≤ n − 2 Since l(P) ≥
3, it follows from the definition of G ◦ H that xi = xj for all i
= j. Hence
πG(P) : x0, x1, . . . , xi = u, v = xi+1, . . . xn is a geodesic in G with 1 ≤ i ≤ n− 2.
This shows that uv is not an extreme edge in G, which is impossible. Hence
V (uH) ⊆ S or V (vH) ⊆ S.

Theorem 4.14. For any positive integer n ≥ 4,

eg(Cn ◦ H) =

⎧
⎨

⎩

2|V (H)| + 2eg2(H), ifn = 4;
3|V (H)| + 2eg2(H), ifn = 5;
n.eg2(H), ifn ≥ 6.

Proof. Let H be any connected graph of order m.
Case 1: n = 4.

Let the cycle C4 be C4 = x1, x2, x3, x4. Then diam(G) = 2 and so every edge in
C4 is an extreme edge. Hence it follows from Lemmas 4.11 and 4.13 that eg(C4 ◦
H) ≥ 2.|V (H)| + 2.eg2(H). On the other hand, let S = [x1 × V (H)] ∪ [x3 ×
V (H)] ∪ (x2 × T) ∪ (x4 × T), where T is a minimum 2-edge geodetic set in H.

The Edge Geodetic Number of Product Graphs 153

Then |S| = 2.|V (H)|+2eg2(H). We claim that S is an edge geodetic set of C4◦H.
For, let e = (x, y)(x′, y′) be any edge in G ◦ H. First suppose that x = x′. Then y
and y′ are adjacent in H. If x = x1 or x = x3, then (x, y)(x′, y) ∈ S. So assume
that x = x2. Since T is a 2-edge geodetic set, it follows that there exists vertices
v, v′ ∈ T such that the edge yy′ lies on a v − v′ geodetic set in T of length at most
2. This shows that the corresponding (x, v), (x, v′) path in the x− layer of H in
C4 ◦ H is a geodesic in C4 ◦ H containing the edge e with (x, v), (x′, v) ∈ S.

Next suppose that x
= x′. Then x and x′ should be adjacent in G. Without
loss of generality, we may assume that x = x1 and x′ = x2. Let v be any vertex
in H such that v ∈ T . Then the edge e = (x1, y)(x2, y

′) lies in the (x1, y)−(x3, v)
geodesic P : (x1, y)(x2, y

′)(x3, v) in G ◦ H with (x1, y), (x3, v) ∈ S. This shows
that S is an edge geodetic set in C4 ◦ H so eg(C4 ◦ H) = 2m + 2eg2(H).
Case 2: n = 5. Let C5 : x1, x2, x3, x4, x5, x1. Since diam(C5) = 2, we have
that every edge is an extreme edge. Then by Lemmas 4.11 and 4.13, we get
eg(C5 ◦ H) ≥ 3m + 2eg2(H).

Let S = {x1, x3, x5} × V (H) ∪ {x2, x5} × T , where T is a minimum 2-edge
geodetic set in H. Then as in the previous case, we can prove that S is an edge
geodetic set of C5 ◦ H and so eg(C5 ◦ H) = |S| = 3m + 2eg2(H).
Case 3: n ≥ 6.

In this case Cn has no extreme edges. Let Cn = x1, x2, . . . xn, x1. By
Lemma 4.11, we have that eg(Cn ◦ H) ≥ n.eg2(H). Now let S = V (Cn) × T ,
where T is any minimum 2-edge geodetic set of H. Then |S| = n.eg2(H). We
claim that S is an edge geodetic set in Cn◦H. For let (x, y)(x′, y′) be any edge in
Cn ◦ H. First suppose that x = x′, then y and y′ are adjacent in H. Since T is a
2-edge geodetic set in H, there exists vertices v, v′ ∈ T such that the edge yy′ lies
on v − v′ geodesic of length at most 2 in H. This implies that the corresponding
(x, v), (x, v′) geodesic in Cn ◦ H containing the edge e with (x, v), (x, v′) ∈ S.

Next assume that x
= x′. Then x and x′ are adjacent in Cn. Without loss of
generality, we may assume that x = x1 and x′ = x2. Then the edge x1x2 lies on
the xn −x3 geodesic P : xn, x1, x2, x3 of length 3 in Cn. Now let v be any vertex
in H such that v ∈ T . Then the edge e = (x1, y)(x2, y

′) lies on the (xn, v)−(x3, v)
geodesic P : (xn, v)(x1, y)(x2, y)(x3, v) in Cn ◦H with (xn, v), (x3, v) ∈ S. Hence
S is an edge geodetic set in Cn ◦ H and so eg(Cn ◦ H) = n.eg2(H).

Theorem 4.15. Let T be any tree of order n with k support vertices, then for
any connected graph H, eg(T ◦ H) = k.|V (H)| + (n − k)eg2(H).

Proof. Since the tree T has k support vertices, it follows that T contains
k independent end edges. Each end edge is an extreme edge. Thus T has k
independent extreme edges and so it follows from Lemmas 4.11 and 4.13 that
eg(T ◦H) ≥ k.|V (H)|+(n−k)eg2(H). Now let x1, x2, . . . , xk be the k support ver-
tices and let S′ = {x1, x2, . . . , xk}×V (H)∪[(V (T)−{x1, x2, . . . , xk})×S′], where
S is a minimum 2-edge geodetic set in H. Then |S′| = k.|V (H)|+(n−k)eg2(H).
Then as in the previous theorem, one can easily verify that S′ is an edge geodetic
set in T ◦ H.

154 B. S. Anand et al.

Theorem 4.16. Let H be any connected graph. Then for any positive integer
n
= 2, eg(Kn ◦ H) = (n − 1)|V (H)| + eg2(H)

Proof. Since diam(Kn) = 1, we have that each edge is extreme and so it follows
from Lemmas 4.11 and 4.13 that eg(Kn ◦ H) ≥ (n − 1)|V (H)| + eg2(H). Let
T be a minimum 2-edge geodetic set and let x ∈ V (Kn). Then one can easily
verify that the set S = (V (Kn − x)) × V (H) ∪ ({x} × T) is an edge geodetic set
of Kn ◦ H. Hence the result follows.

References

1. Anand, B.S., Changat, M., Klavžar, S., Peterin, I.: Convex sets in lexicographic
products of graphs. Graphs Comb. 28(1), 77–84 (2012)

2. Anand, B.S., Changat, M., Narasimha-Shenoi, P.G.: Helly and exchange numbers
of geodesic and steiner convexities in lexicographic product of graphs. Discret.
Math. Algorithms Appl. 7(04), 1550049 (2015)

3. Anand, B.S., Changat, M., Peterin, I., Narasimha-Shenoi, P.G.: Some steiner con-
cepts on lexicographic products of graphs. Discret. Math. Algorithms Appl. 6(04),
1450060 (2014)

4. Brešar, B., Klavžar, S., Horvat, A.T.: On the geodetic number and related metric
sets in cartesian product graphs. Discret. Math. 308(23), 5555–5561 (2008)

5. Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Redwood City (1990)
6. Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L.: On the geodetic

and the hull numbers in strong product graphs. Comput. Math. Appl. 60(11),
3020–3031 (2010)

7. Cagaanan, G.B., Canoy, S.: On the geodetic covers and geodetic bases of the com-
position g [km]. Ars Comb. 79, 33–45 (2006)

8. Chartrand, G., Harary, F., Zhang, P.: On the geodetic number of a graph. Networks
39(1), 1–6 (2002)

9. Chartrand, G., Zhang, P.: Introduction to Graph Theory. McGraw-Hill, New York
(2006)

10. Hammack, R.H., Imrich, W., Klavžar, S., Imrich, W., Klavžar, S.: Handbook of
Product Graphs. CRC Press, Boca Raton (2011)

11. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math.
Comput. Modell. 17(11), 89–95 (1993)

12. Manuel, P., Klavžar, S., Xavier, A., Arokiaraj, A., Thomas, E.: Strong edge geode-
tic problem in networks. Open Math. 15(1), 1225–1235 (2016)

13. Santhakumaran, A.P., Ullas Chandran, S.V.: The geodetic number of strong prod-
uct graphs. Discuss. Math. Graph Theory 30(4), 687–700 (2010)

14. Santhakumaran, A.P., Ullas Chandran, S.V.: The k-edge geodetic number of a
graph. Utilitas Math. 88, 119–137 (2012)

15. Santhakumaran, A.P., Ullas Chandran, S.V.: Comment on “Edge Geodetic Covers
in Graphs”. Proyecciones (Antofagasta) 34(4), 343–350 (2015)

16. Santhakumaran, A.P., John, J.: Edge geodetic number of a graph. J. Discret. Math.
Sci. Cryptogr. 10(3), 415–432 (2007)

17. Santhakumaran, A.P., Ullas Chandran, S.V.: The edge geodetic number and Carte-
sian product of graphs. Discuss. Math. Graph Theory 30(1), 55–73 (2010)

Burning Spiders

Sandip Das, Subhadeep Ranjan Dev(B), Arpan Sadhukhan, Uma kant Sahoo,
and Sagnik Sen

Indian Statistical Institute, Kolkata, India
info.subhadeep@gmail.com

Abstract. Graph burning is a graph process modeling the spread of
social contagion. Initially all the vertices of a graph G are unburned. At
each step an unburned vertex is put on fire and the fire from burned
vertices of the previous step spreads to their adjacent unburned vertices.
This process continues till all vertices are burned. The burning number
b(G) of the graph is the minimum number of steps required to burn all
the vertices in the graph. The burning number conjecture by Bonato
et al. states that for a connected graph G of order n, its burning number
b(G) ≤ �√n �. It is easy to observe that in order to burn a graph it is
enough to burn its spanning tree. Hence it suffices to prove that for any
tree T of order n, its burning number b(T) ≤ �√n �. A spider S is a tree
with one vertex of degree at least 3 and all other vertices with degree
at most 2. Here we prove that for any spider S of order n, its burning
number b(S) ≤ �√n �.

1 Introduction

Graph burning is a process that captures the spread of social contagion and was
introduced by Bonato et al. [1]. We first describe the process of burning a simple
graph G(V,E) of order n. Graph burning consists of discrete steps. Each vertex
is either burned or unburned, once a vertex is burned it remains burned till the
end. Initially all the vertices are unburned. In the first step we burn a vertex.
At each subsequent step, first, a new unburned vertex is burned; second, the fire
spreads from each burned vertex of the previous step to its neighboring unburned
vertices. The process ends when all the vertices are burned. The burning number,
denoted by b(G), is the minimum number of steps taken for this process to end.

The burning problem asks, given a graph G and an integer k ≥ 2, whether
b(G) ≤ k. Bonato et al. [2] proved that the burning problem is NP-complete
even for spider graphs and path-forests.

An intuitive way to look at this process is to cover the vertices of the graph
G by b(G) balls of radius 0, 1, . . . , b(G) − 1, placed at appropriate vertices.
A ball of radius r placed at a vertex v can cover vertices which are at a dis-
tance of at most r from v.

For m,n > 1, it is easy to see that b(Kn) = 2, b(Km,n) = 3. A slightly
complicated example is burning paths. For a path of n vertices, its burning
number b(Pn) = �√n � [1]. To see that b(Pn2) = n, observe that the appropriately
c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 155–163, 2018.
https://doi.org/10.1007/978-3-319-74180-2_13

156 S. Das et al.

chosen balls of radius 0, 1, . . . , n − 1 cover the path on n2 vertices. Each ball of
radius r covers exactly 2r + 1 vertices, so in the path, the balls individually
cover 1, 3, 5, . . . , 2n − 1 vertices whose sum equals n2. Observe that each vertex
here is covered by exactly one ball, so we cannot cover Pn2 by k balls of radius
0, 1, . . . , k − 1, with k < n; hence the bound is tight.

In order to burn a graph G it suffices to burn any of its spanning trees.
Also b(G) = min{b(T) | T is a spanning tree of G} [1]. The burning number
conjecture [1] states that for any connected graph G with order n, its burning
number b(G) ≤ �√n �. Any tree T on n vertices is a subgraph of a tree T ′ on
n + 1 vertices. By Corollary 2.8 of [1], b(T) ≤ b(T ′). So in order to settle this
conjecture observe that it suffices to prove that for any natural number n and
any tree of order n2, its burning number b(T) ≤ n. As a step in this direction,
we prove that the burning number conjecture holds for spiders. A spider S is
a tree with one vertex of degree at least 3 and the rest vertices with degree at
most 2.

Theorem 1. The burning number of a spider on n vertices is at most �√n �.
Bonato et al. [1] proved that for a graph G of order n, b(G) ≤ 2

√
n − 1.

Recently Land and Lu [3] improved it to b(G) ≤ �−3+
√
24n+33
4 �. Amongst other

works in this area, Mitsche et al. [4] gave bounds on burning number of various
graph products.

In the rest of this section we give some preliminary definitions. In Sect. 2, we
develop a technique to understand the burning process in certain disjoint paths.
In Sect. 3, we prove the burning number conjecture for spiders using the results
(Theorem 2 and Corollary 1) obtained in Sect. 2.

Preliminary Definitions. A path-forest is a disjoint union of a collection of paths.
In a spider, the vertex with degree at least 3 is called the head of the spider. The
disjoint paths obtained after deleting the head of the spider are called its arms.
The front vertex of each arm is adjacent to the head of the spider. The length
of each arm of the spider adds to n − 1, where n is the order of the spider. For
n ∈ N, let [n] = {1, 2, . . . , n}. We follow the standard notation of West [6].

For a graph G, let b(G) = k, so the vertices of G can be burnt in k steps by
placing fires at appropriate vertices. The first fire is represented by (k) as after
k steps it burns vertices within the ball of radius k − 1, centered at the location
of fire. So the process of burning by fires (k), (k − 1), . . . , (1) can be thought of
as covering by balls of radius {k − 1, k − 2, . . . , 0}, centered at the respective
locations of fire.

2 Covering Certain Path-Forests

In this section we develop a method to understand how many steps we require
to burn a specific type of path-forest which will help us in proving the burning
number conjecture for spider graphs. Although Roshanbin [5] proved that for a
path forest PF of order N and m components, b(PF) ≤ √

N + m − 1, we find

Burning Spiders 157

exact burning number for specific type of path forests. To be more specific we
need Theorem 2 and Corollary 1 presented in this section to prove the burning
number conjecture for spider graphs. We need the following definitions.

Let N,m, n be positive integers such that m ≤ n. The set P = {ai | i ∈ [m],
ai ∈ N} is an (m,n)-partition of N if

∑
i∈[m] ai = N and for j ∈ [m − 1], aj ≤ n.

But am can be greater than n. Let S = {1, 3, 5, . . . , 2n − 1}. An (m,n)-partition
P of N is solvable if for each element ai of P we can assign a set Si ⊆ S such that
ai ≤ ∑

s∈Si
s and the sets S1, S2, . . . , Sm are all disjoint and their union equals the

set S. We call set Si as the covering set of ai and the sets {S1, S2, . . . , Sm} together
as the set of covering sets with respect to the (m,n)-partition of N .

N is said to be solvable with respect to (m,n) if every (m,n)-partition of N
is solvable. In other words we can find a set of covering sets with respect to every
(m,n)-partition of N . We define Im,n to be the maximum natural number which
is solvable with respect to (m,n), for example I2,4 = 15, I3,3 = 5, I3,4 = 12 etc.
In the rest of this section we find a general formula for calculating Im,n (refer
Theorem 2). We begin with the following results.

Lemma 1. For all N ≤ Im,n, N is solvable with respect to (m,n).

Proof. For N < m, there is no (m,n)-partition of N , hence N is trivially solvable.
Now for m ≤ N ≤ Im,n, any (m,n)-partition P = {ai | ∀i ∈ [m], ai ∈ N} of N
can be reduced to an (m,n)-partition P ′ = {a′

i | ∀i ∈ [m], a′
i ∈ N} of Im,n by

setting a′
i = ai, for all i ∈ [m − 1] and setting a′

m = am + (Im,n − N). Since,
by definition, Im,n is solvable with respect to (m,n) therefore for each (m,n)-
partition P ′ of Im,n there is a set of covering sets S′ = {S1, S2, . . . , Sm} which
covers it. From the construction of P ′ the set S′ is also a set of covering sets for
the partition P. Therefore N is also solvable with respect to (m,n).
�
Lemma 2. Im,n ≤ n2 − (m − 1)2, ∀m ≤ n, n > 1, n,m ∈ N.

Proof. Consider an (m,n)-partition P = {2, 2, 2, . . . , 2, n2 − m2 + 2} of N =
n2 − (m − 1)2 + 1. We claim that this partition is not solvable with respect to
(m,n). We have S = {1, 3, 5, . . . , 2n − 1}. Notice that to cover ai = 2, for all
i ∈ [m− 1], we need at least one number from S \ {1}. In the best case we have
to use the numbers in {3, 5, 7, . . . , 2m − 1} to cover the ai’s, for all i ∈ [m − 1].
Therefore total sum of the numbers used to cover all ai, i ∈ [m − 1] is at least
m2 − 1. Our claim holds if am is greater than the sum of the remaining numbers
i.e. n2 − m2 + 2 > n2 − (m2 − 1). This holds trivially. So the given partition is
not solvable with respect to (m,n). Hence by Lemma 1, Im,n ≤ n2 − (m−1)2.
�
Lemma 3. Suppose for a particular (m,n)-partition {a1, a2 . . . , am} of N =
n2 − (m − 1)2, we can find a subset S′ = {s1, s2, . . . , sm−1} such that S′ ⊆ S =
{1, 3, 5 . . . , 2n−1} and ∀i ∈ [m−1], 0 ≤ si −ai ≤ 2i−1, then the corresponding
(m,n)-partition of n2 − (m − 1)2 is solvable.

158 S. Das et al.

Proof. Let P = {ai | i ∈ [m]} be any (m,n)-partition of N = n2 − (m − 1)2,
and the set S′ is as defined. As m ≤ n, S \ S′ is not empty. P is solvable if the
set S \ S′ acts as a covering set for am i.e. the sum of the elements in S \ S′ is
at least am as then the set of covering sets for the (m,n) partition of N will be
{S1 = {s1}, S2 = {s2}, . . . , Sm−1 = {sm−1}, Sm = S \ S′}. Let us denote this
sum of the elements in S \ S′ by Q and suppose, to the contrary, Q < am.
Now,

si − ai ≤ 2i − 1, ∀i ∈ [m − 1]

⇒
m−1∑

i=1

si ≤
m−1∑

i=1

ai +
m−1∑

i=1

(2i − 1),

⇒
m−1∑

i=1

si ≤
m−1∑

i=1

ai + (m − 1)2,

⇒
m−1∑

i=1

si + Q <

m−1∑

i=1

ai + (m − 1)2 + am,

⇒ n2 <
m∑

i=1

ai + (m − 1)2,

⇒ n2 − (m − 1)2 <

m∑

i=1

ai.

This is a contradiction as P = {ai | i ∈ [m]} is a (m,n)-partition of N =
n2 − (m − 1)2. Hence the (m,n)-partition of N is solvable.
�
Theorem 2. Im,n = n2 − (m − 1)2 for 1 ≤ m ≤ n, n > 1, n,m ∈ N.

Proof. For m = 1, the theorem trivially holds as
∑n

i=1(2i− 1) = n2; so suppose
m > 1. Let N = n2 − (m − 1)2 and P = {ai | i ∈ [m], ai ∈ N} be an arbitrary
(m,n)-partition of N with a1 ≤ a2 ≤ . . . ≤ am−1 ≤ n. From definition it follows
that, am can be greater than n and assume am−1 ≤ am. If we can prove that P
is solvable with respect to (m,n), then we are done. Let S = {1, 3, 5, . . . , 2n−1}.
Now we give an algorithm to partition set S into the covering sets Si for each
ai, i ∈ [m]; thereby proving that P is solvable with respect to (m,n). We define
S′
i = S1 ∪ . . . ∪ Si−1 for all 2 ≤ i ≤ m. Now we will construct the sets Si, for all

i ∈ [m].
Choose s1 to be the least odd number in S not less than a1. Since a1 < n such

a number always exists. Set S1 = {s1}. We continue this process and pick an
element si ∈ S \S′

i, such that 0 ≤ (si − ai) ≤ 2i− 1 and set Si = {si}. Let i∗ be
the first index such that we cannot pick si∗ ∈ S\S′

i∗ with 0 ≤ (si∗ −ai∗) ≤ 2i∗−1

Burning Spiders 159

and let M = {2i − 1 | n ≤ 2i − 1 ≤ 2n − 1}. If i∗ = m, then by Lemma 3, the
corresponding (m,n)-partition of N is solvable. So we assume i∗ < m and this
implies that ai∗ ≤ n.

Claim 1. M ⊆ S′
i∗ and hence i∗ > �n

2 �.
Proof of Claim 1: By definition of i∗ there are no odd numbers in [ai∗ , ai∗ +
2i∗ − 1] ∩ (S \ S′

i∗). But since the interval [ai∗ , ai∗ + 2i∗ − 1] has i∗ many
odd numbers and to form S \ S′

i∗ we have only removed i∗ − 1 odd numbers
from S, therefore there is at least one odd number in the interval [ai∗ , ai∗ +
2i∗ − 1] which does not belong to S. Hence ai∗ + 2i∗ − 1 > 2n − 1, for if
ai∗ + 2i∗ − 1 ≤ 2n− 1 then all odd numbers in the interval [ai∗ , ai∗ + 2i∗ − 1]
belongs to {1, 3, 5, . . . 2n − 1} = S. Now since i∗ < m, ai∗ ≤ n, also we have
ai∗ + 2i∗ − 1 > 2n − 1, so M ⊆ [ai∗ , ai∗ + 2i∗ − 1]. Hence all odd numbers in
the set M = {2i − 1 | n ≤ 2i − 1 ≤ 2n − 1} belongs to S′

i∗ . Otherwise, if c ∈ M
and c /∈ S′

i∗ then c ∈ [ai∗ , ai∗ + 2i∗ − 1] and c ∈ S \S′
i∗ , which is a contradiction

to the definition of i∗. Hence i∗ > |M | = �n
2 �. This concludes the proof of the

claim.

Now we give a strategy to find Sj ⊆ S \ S′
j for i∗ ≤ j ≤ m such that 0 ≤∑

s∈Sj
s− aj ≤ 2j − 1. To choose Sj , we first choose a subset Sj1 ⊆ S \ S′

j such
that 0 ≤ (

∑
s∈Sj1

)s− aj holds. If
∑

s∈Sj1
s− aj ≤ 2j − 1 we are done, therefore

assume (
∑

s∈Sj1
)s − aj > 2j − 1. From claim 1 it is clear that the numbers in

the set S \ S′
j are all at most n − 1 for all j′ ≥ i∗ Hence we claim that we can

delete some numbers from Sj1 such that the difference between sum of remaining
numbers in Sj1 and aj is at most 2j − 1 and greater than or equal to 0.

Recall that j ≥ i∗ > �n/2�, so 2j − 1 > n. Since 0 ≤ (
∑

s∈Sj1
)s − aj , we go

on deleting numbers from Sj1 , till the sum of remaining numbers in Sj1 is less
than aj . Let s∗ be the last number deleted and Sleft

j denote the set of remaining
numbers in Sj1 . Since (

∑
s∈Sleft

j
)s − aj < 0, s∗ ≤ n − 1 and 2j − 1 > n,

(
∑

s∈Sleft
j

)s − aj + s∗ < n < 2j − 1. This proves our claim.

Now fix Sj = Sleft
j ∪ {s∗}. So 0 ≤ (

∑
s∈Sj

s) − aj ≤ 2j − 1. This is how we
can choose Sj . If we can choose Sj for all j ≤ m, then this algorithm partitions
set S into Si’s, for i ∈ [m], such that ai ≤ ∑

s∈Si
s, where ai ∈ P; thereby

proving that P is solvable with respect to (m,n).
Otherwise, let j = j∗ ≤ m be the first index such that we cannot choose

Sj∗ ⊂ S \ S′
j∗ such that 0 ≤ (

∑
s∈Sj∗ s) − aj∗ ≤ 2j∗ − 1. (Notice that j∗ can

be equal to i∗ i.e. we cannot even choose subset Si∗ .) Let S′′ = S \ S′
j∗ and

Q =
∑

s∈S′′ s. Since we were unable to choose Sj∗ , we were also unable to

160 S. Das et al.

choose Sj∗1 . This implies Q < aj∗ . Notice that Q might also be 0. So we have
the following:

j∗−1∑

j=1

∑

s∈Sj

s ≤
j∗−1∑

i=1

ai +
j∗−1∑

i=1

(2i − 1),

⇒
j∗−1∑

j=1

∑

s∈Sj

s ≤
j∗−1∑

i=1

ai + (j∗ − 1)2,

⇒
j∗−1∑

j=1

∑

s∈Sj

s + Q <

j∗−1∑

i=1

ai + (j∗ − 1)2 + aj∗ ,

⇒
j∗−1∑

j=1

∑

s∈Sj

s + Q <

j∗
∑

i=1

ai + (j∗ − 1)2,

⇒ n2 <

j∗
∑

i=1

ai + (j∗ − 1)2,

⇒ n2 − (j∗ − 1)2 <

j∗
∑

i=1

ai.

So if we cannot choose Sj∗ for some i∗ ≤ j∗ ≤ m, we always have the
following,

n2 − (j∗ − 1)2 <

j∗
∑

i=1

ai.

Since
j∗
∑

i=1

ai ≤ N = n2 − (m − 1)2,

we have
n2 − (j∗ − 1)2 < n2 − (m − 1)2.

But this leads to a contradiction as j∗ ≤ m.
Therefore the algorithm will never fail. So it partitions set S into Si’s, for

i ∈ [m], such that ai ≤ ∑
s∈Si

s, where ai ∈ P, thereby proving that P is solvable
with respect to (m,n). Since P was an arbitrary partition of N , we conclude that
N is solvable with respect to (m,n).

Now using Lemma 2, we have Im,n = n2 − (m − 1)2.
�
Let m,n ∈ N such that m ≤ n and PFm,n be the set of path-forests of order

at most n2 − (m− 1)2 having m components of which m − 1 have order at most
n. Observe that we can visualize a path of order k as the natural number k. Note
that if we have n fires to burn a path then the first fire has the capacity of burning
2n − 1 vertices, similarly the ith fire has the capacity to burn 2i − 1 vertices,
so the set S = {1, 3, 5, . . . , 2n−1} represents the burning capacities if we have n

Burning Spiders 161

fires to be put on a path. So if we have m disjoint paths of length {a1, a2, . . . , am}
and n fires with m ≤ n, it is easy to see that if N =

∑m
i=1 ai ≤ Im,n then we can

burn it completely using at most n fires or steps. Covering an ai by some subset
Si of S, means burning the path of length ai with a specific sequence of burns.
So if we correlate the results we have obtained into a graph theoretic form, we
see that Theorem 2 implies any path-forest PFm,n can be burned using n steps
or fires. Recall that in Lemma 2, we had given a partition of n2 − (m − 1)2 + 1
that is not solvable with respect to (m,n). So we have the following corollary.

Corollary 1. For positive integers m ≤ n and PFm,n be a path-forest of order
at most n2 − (m− 1)2 having m components of which m− 1 have order at most
n, then b(PFm,n) ≤ n.

3 Proof of Theorem 1

Any spider S on |S| vertices is a subgraph of a spider S′ on |S| + 1 vertices. By
Corollary 2.8 of [1], b(S) ≤ b(S′). So in order to prove the theorem it suffices to
prove that burning number of a spider of order (n + 1)2 is at most n + 1.
We use induction on n. The spider of order 4 can be burnt in 2 steps by placing
fire (2) at its head and the fire (1) in the one remaining vertex. Now we assume
that for some natural number n ≥ 2 any spider of order n2 has burning number
at most n.

Consider a spider of order (n + 1)2. Let v0 be its head and P1, . . . , Pm, . . . , Pk

be its k arms and let pi denote the order of arm Pi. In each arm Pi the vertex
adjacent to v0 is called the front vertex of Pi, and the vertex at other end i.e.
whose degree is 1, is called the end vertex of Pi. Without loss of generality
P1, P2, . . . , Pm, . . . , Pk are arranged such that for i ∈ [m], pi > n and for j ∈
[k] \ [m], pj ≤ n. Also p1 ≤ p2 ≤ · · · ≤ pm. Clearly

∑m
i=1 pi ≤ n2 + 2n.

If pm ≥ 2n + 1, then we select a sub-path of order 2n + 1 from the end
vertex of Pm and place the fire (n + 1) at its center. After n + 1 steps it would
burn this subpath completely. The rest of the spider is connected and has order
(n + 1)2 − (2n + 1) = n2. By our hypothesis, this has burning number at most
n. So spiders of order (n + 1)2 with pm ≥ 2n + 1 will have burning number at
most n + 1.

Henceforth we deal with the case when pm ≤ 2n. First we claim that m ≤ n.
Suppose to the contrary m > n; since ∀i ∈ [m], pi > n, the number of vertices
in the spider is at least (n + 1)(n + 1) + 1 > (n + 1)2, which is a contradiction.
This implies m ≤ n.

Consider the case when m < n. We claim that burning number of such a
spider is at most n + 1. We place the (n + 1) fire on the head of the spider. It
burns the head of the spider, all paths Pj for j ∈ [k] \ [m], and n vertices of
each Pi for i ∈ [m]. The remaining unburned vertices induce a path-forest with
m paths each of which has order at most n. The order of this path-forest is at
most min(mn, (n + 1)2 − (mn + 1)) = min(mn,n2 − mn + 2n).

We claim that min(mn,n2 − mn + 2n) ≤ n2 − (m − 1)2 for all m < n.
For n = 2, 3 we can check the inequality by checking all pairs of m and n.

162 S. Das et al.

Now we consider n ≥ 4. If n ≥ 2m − 2, min(mn,n2 − mn + 2n) = mn. Then
mn ≤ (

n+2
2

)
n = n2

2 + n ≤ n2

2 + n2

4 = n2 − n2

4 ≤ n2 − (m − 1)2. If n <
2m − 2, min(mn,n2 − mn + 2n) = n2 − mn + 2n. Also n ≥ 4 implies m > 3.
Then m + 1

m−2 < m + 1 ≤ n. So n2 − mn + 2n = n2 − (m − 2)n <

n2 − (m − 2)
(
m + 1

m− 2

)
= n2 − m(m − 2) − 1 = n2 − (m − 1)2. So

min(mn,n2 − mn + 2n) ≤ n2 − (m − 1)2 for all m < n.
By Corollary 1, the burning number of this path-forest is at most n. Hence

the burning number of a spider of order (n + 1)2 with pm ≤ 2n and m < n, is
at most n + 1.

For the case when m = n,
∑m

i=1 pi ≥ n(n + 1). Therefore
∑k

j=m+1 pj ≤ n + 1
with pj ≤ n for j ∈ [k] \ [m]. So if we place fire (n + 1) at the head, it alone
burns at least n2 + 1 vertices after n + 1 steps. The remaining 2n vertices will
induce a path-forest of at most n components.

If
∑k

j=m+1 pj > 0, then there are at most 2n − 1 remaining vertices which
induce a path-forest of at most n paths. Since In,n = 2n− 1, Corollary 1 implies
that burning number of this path-forest is at most n, and hence burning number
of this spider is at most n + 1.

So it suffices to consider the cases where
∑k

j=n+1 pj = 0 i.e. k = m = n.
Observe that p1 ≯ n + 2, else the spider will have more than (n + 1)2 vertices.

If p1 = n+1, then we place fire (n + 1) at the head vertex of P1. After n + 1
steps this fire alone burns n + 1 + 1 + (n − 1)(n − 1) vertices. The remaining
3n − 2 vertices will induce a path-forest of at most n − 1 components, since P1

is completely burnt. In−1,n = 4n − 4 > 3n − 2, for n ≥ 2. We handle the case
n = 2 in our base case of this induction hypothesis. Corollary 1 implies that
burning number of this path-forest is at most n, and hence burning number of
this spider is at most n + 1.

If p1 = n + 2, then p1 = · · · = pm = n + 2. We place the fire (n + 1) at
the vertex in P1, adjacent to its head vertex. After n + 1 steps, this fire alone
burns n + 2 + 1 + (n − 2)(n − 1) vertices. The remaining 4n − 4 vertices will
induce a path-forest of at most n − 1 paths, since P1 is completely burnt. Since
In−1,n = 4n − 4, Corollary 1 implies that burning number of this path-forest is
at most n, and hence burning number of this spider is at most n + 1.

So burning number of a spider of order (n + 1)2 is at most n + 1. This
completes the proof of Theorem 1.
�

4 Conclusion

In this article we prove that the burning number conjecture is true for spiders.
To do so, we developed a method to cover certain disjoint paths of total order at
most Im,n, by intervals of odd lengths. We use this method several times in our
proof. Another conducive factor used in the proof is the structural properties of
spiders.

In case of trees once the vertices with degree at least three are burned,
the remaining unburned vertices induce a path forest. Hence this path covering
technique might be extendable to other classes of trees.

Burning Spiders 163

Acknowledgement. We thank the anonymous reviewers for their valuable comments
and suggestions to improve the clarity of the paper.

References

1. Bonato, A., Janssen, J.C.M., Roshanbin, E.: How to burn a graph. Internet Math.
12(1–2), 85–100 (2016)

2. Bonato, A., Janssen, J.C.M., Roshanbin, E.: Burning a graph is hard. ArXiv e-prints
arXiv:1507.06524 (2015)

3. Land, M.R., Lu, L.: An upper bound on the burning number of graphs. In: Bonato,
A., Graham, F.C., Pra�lat, P. (eds.) WAW 2016. LNCS, vol. 10088, pp. 1–8. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49787-7 1

4. Mitsche, D., Pralat, P., Roshanbin, E.: Burning graphs: a probabilistic perspective.
Graph. Comb. 33(2), 449–471 (2017)

5. Roshanbin, E.: Burning a graph as a model of social contagion. Ph.D. thesis,
Dalhousie University (2016)

6. West, D.B.: Introduction to Graph Theory, 2nd edn. Pearson Education, London
(2002)

http://arxiv.org/abs/1507.06524
https://arxiv.org/abs/1507.06524
https://doi.org/10.1007/978-3-319-49787-7_1

Drawing Graphs on Few Circles
and Few Spheres

Myroslav Kryven1(B), Alexander Ravsky2, and Alexander Wolff1

1 Universität Würzburg, Würzburg, Germany
myroslav.kryven@uni-wuerzburg.de

2 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Sciences of Ukraine, Lviv, Ukraine

alexander.ravsky@uni-wuerzburg.de

Abstract. Given a drawing of a graph, its visual complexity is defined
as the number of geometrical entities in the drawing, for example, the
number of segments in a straight-line drawing or the number of arcs in
a circular-arc drawing (in 2D). Recently, Chaplick et al. [4] introduced
a different measure for the visual complexity, the affine cover number,
which is the minimum number of lines (or planes) that together cover
a crossing-free straight-line drawing of a graph G in 2D (3D). In this
paper, we introduce the spherical cover number, which is the minimum
number of circles (or spheres) that together cover a crossing-free circular-
arc drawing in 2D (or 3D). It turns out that spherical covers are some-
times significantly smaller than affine covers. Moreover, there are highly
symmetric graphs that have symmetric optimum spherical covers but
apparently no symmetric optimum affine cover. For complete, complete
bipartite, and platonic graphs, we analyze their spherical cover numbers
and compare them to their affine cover numbers as well as their segment
and arc numbers. We also link the spherical cover number to other graph
parameters such as chromatic number, treewidth, and linear arboricity.

1 Introduction

A drawing of a given graph can be evaluated by many different quality measures
depending on the concrete purpose of the drawing. Classical examples are the
number of crossings, the ratio between the lengths of the shortest and the longest
edge, or the angular resolution. Clearly, different layouts (and layout algorithms)
optimize different measures. Hoffmann et al. [12] studied ratios between optimal
values of quality measures implied by different graph drawing styles. For some
pairs of styles, they proved constant ratios; for others, they showed that the ratio
is unbounded.

A few years ago, a new type of quality measure was introduced: the num-
ber of geometric objects that are needed to draw a graph given a certain style.
Schulz [20] termed this measure the visual complexity of a drawing. More con-
cretely, Dujmović et al. [6] defined the segment number seg(G) of a graph G to

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 164–178, 2018.
https://doi.org/10.1007/978-3-319-74180-2_14

http://orcid.org/0000-0001-5872-718X

Drawing Graphs on Few Circles and Few Spheres 165

be the minimum number of straight-line segments over all straight-line draw-
ings of G. Similarly, Schulz [20] defined the arc number arc(G) with respect to
circular-arc drawings of G and showed that circular-arc drawings are an improve-
ment over straight-line drawings not only in terms of visual complexity but also
in terms of area consumption. Mondal et al. [17] showed how to minimize the
number of segments in convex drawings of 3-connected planar graphs off and on
the grid. Igamberdiev et al. [13] fixed a bug in the algorithm of Mondal et al. and
compared the resulting algorithm to two other algorithms in terms of angular
resolution, edge length, and face aspect ratio. Recently, Kindermann et al. [14]
presented a user study showing that people without mathematical or computer
science background prefer drawings that consist of few line segments, that is,
drawings of low visual complexity (whereas people with such a background seem
to prefer drawings that are more symmetric).

For this paper, the most important precursor is the work of Chaplick et al. [4]
who introduced another measure for the visual complexity, namely the affine
cover number. Given a graph G, they defined ρl

d(G) to be the minimum number
of l-dimensional affine subspaces that together cover a crossing-free straight-line
drawing of G in d-dimensional space. It turned out that it suffices to investigate
the parameters ρ12(G), ρ13(G), and ρ23(G). Among others, Chaplick et al. showed
that the affine cover number can be asymptotically smaller than the segment
number, constructing an infinite family of triangulations (Tn)n>1 such that Tn

has n vertices and ρ12(Tn) = O(
√

n), but seg(Tn) = Ω(n). On the other hand,
they showed that seg(G) = O(ρ12(G)2) for any connected planar graph G.

Our contribution. Combining the approaches of Schulz and Chaplick et al., we
introduce the spherical cover number σl

d(G) of a graph G to be the minimum
number of l-dimensional spheres in R

d such that G has a crossing-free circular-
arc drawing that is contained in the union of these spheres. For σ1

2(G) we insist
that G is planar. Note that any drawing with straight-line segments and circular
arcs can be transformed into a drawing that uses circular arcs only.

Proposition 1. Given a graph G and a drawing Γ of G that represents edges
as straight-line segments or circular arcs on r l-dimensional planes or spheres
in R

d, there is a circular-arc drawing Γ ′ of G on r l-dimensional spheres in R
d.

In particular, σl
d(G) ≤ ρl

d(G) for any graph G and 1 ≤ l < d.

Proof. Take an arbitrary sphere S ⊂ R
d whose center is not contained in any of

the given spheres and which does not intersect any of the given planes. Invert
the drawing with respect to S by the map x �→ ρx/‖x‖, which assumes that S
has radius ρ and is centered at the origin. The resulting drawing is a circular-arc
drawing of G on r l-dimensional spheres in R

d. Indeed, using basic properties of
the inversion (see, for instance, [8] or [3, Chap. 5.1]), it can be proved that this
inversion transforms planes into spheres of the same dimension and preserves
spheres, in other words, the set of images of points on a sphere forms another
sphere of the same dimension. �	

166 M. Kryven et al.

Therefore, we may consider any line a “circle of infinite radius”, any plane a
“sphere of infinite radius”, and any affine cover a spherical cover. By “line” we
always mean a straight line.

Trivial bounds on σ1
3(G) follow from the fact that every circle is contained

in a plane and that we have more flexibility for drawing in 3D than in 2D.

Proposition 2. For any graph G, it holds that ρ23(G) ≤ σ1
3(G). If G is planar,

we additionally have σ1
3(G) ≤ σ1

2(G).

The spherical cover number σ2
3(G) can be considered a characteristic of a

graph G that lies between its thickness θ(G), which is the smallest number of
planar graphs whose union is G, and its book thickness bt(G), also called page
number, which is the minimum number of pages (halfplanes) needed to draw the
edges of G when the vertices lie on the spine of the book (the line that bounds
all halfplanes).

Proposition 3. For every graph G, it holds that θ(G) ≤ σ2
3(G) ≤
bt(G)/2�.

Proof. Each sphere covers a planar subgraph of G, so σ2
3(G) is bounded from

below by θ(G). On the other hand, given a book embedding of a graph G with
the minimum number of pages (equal to bt(G)), we put the vertices from the
spine along a circle which is the common intersection of
bt(G)/2� spheres. Then,
for each page, we draw all its edges as arcs onto a hemisphere. Thus, we obtain
a drawing witnessing σ2

3(G) ≤
bt(G)/2�. See Fig. 1 for an example. �	
We obtain bounds for the spherical cover number σ2

3 of the complete and
complete bipartite graphs which show that spherical covers can be asymptotically
smaller than affine covers; see Table 1 and Sect. 2.

Then we turn to platonic graphs, that is, to 1-skeletons of platonic solids;
see Sect. 3. These graphs possess several nice properties: they are regular, planar
and Hamiltonian. We use them as indicators to compare the above-mentioned
measures of visual complexity; we provide bounds for their segment and arc
numbers (see Table 2) as well as for their affine and spherical cover numbers (see
Table 3). For the lower bounds, we present straight-line drawings with (near-)
optimal affine cover number ρ12 and circular-arc drawings with optimal spherical
cover number σ1

2 ; see Figs. 3, 4 and 5. These illustrate another advantage of
optimal spherical covers with respect to affine covers: potentially, the former
better reflect the symmetry of the given graph.

For general graphs, we present lower bounds for the spherical cover num-
bers by means of many combinatorial graph characteristics, in particular, by
the chromatic number, treewidth, balanced separator size, linear arboricity, and
bisection width; see Sect. 4.

We decided to start with our more concrete (and partially stronger) results
and postpone the structural observations to Sect. 4, although this means that
we’ll sometimes have to use forward references to Theorem 3, our main result
in Sect. 4. Finally, we formulate an integer linear program that yields a lower
bound for the segment number of a given graph; see Sect. 5. For the platonic
solids, the lower bounds (see Table 4) turned out to be tight. We conclude with
a few open problems.

Drawing Graphs on Few Circles and Few Spheres 167

Table 1. Lower and upper bounds on the three-dimensional line, plane, circle, and
sphere cover numbers of Kn for any n ≥ 1 and of Kp,q for any p, q ≥ 3.

G ρ1
3(G) ρ2

3(G) σ1
3(G) σ2

3(G)

Kn

(
n
2

)
n2−n
12

...n2+5n+6
6

�n2

8
�...n2+5n+6

6
� (n+7)

6
�...�n

4
�

Kp,q pq − � p
2
� − � q

2
� �min{p,q}

2
� � pq

4
�...� p

2
�� q

2
� � pq

2(p+q−2)
�...�min{p,q}

2
�

Table 2. Bounds on seg(G) and arc(G). We obtained the lower bounds on seg(G) with
the help of an integer linear program; see Table 4 in Sect. 5.

G = (V, E) |V | |E| |F | seg(G) Upper bd. arc(G) Lower bd. Upper bd.

Tetrahedron 4 6 4 6 3

Octahedron 6 12 8 9 Fig. 2a 3 # int. pts Fig. 2c

Cube 8 12 6 7 Fig. 3a 4 [6, Lemma 5] Fig. 3d

Dodecahedron 20 30 12 13 Fig. 4a 10 [6, Lemma 5] Fig. 4d

Icosahedron 12 30 20 15 Fig. 5a 7 Theorem 3(a) Proposition 6

Table 3. Bounds on the affine cover numbers ρl
d and the spherical cover numbers σl

d

for platonic graphs. The lower bounds on σ1
2 and σ1

3 stem from Theorem 3(a).

G = (V, E) ρ12 ρ13 Lower bd. Upper bd. σ1
2 σ1

3 Upper bd.

Tetrahedron T 6 6 3 3

Octahedron O 9 9 Proposition 5(a) Fig. 2a 3 3 Fig. 2c

Cube C 7 7 Proposition 5(b) Fig. 3a 4 4 Fig. 3d

Dodecahedron D 9...10 9...10 Proposition 5(c) Fig. 4a 5 5 Fig. 4d

Icosahedron I 13...15 13...15 Proposition 5(d) Fig. 5a 7 7 Fig. 5c

2 Complete and Complete Bipartite Graphs

In this section we investigate the spherical cover numbers of complete graphs
and complete bipartite graphs.

Theorem 1.(a) For any n ≥ 3, it holds that (n + 7)/6� ≤ σ2
3(Kn) ≤
n/4�.

(b) For any 1 ≤ p ≤ q, it holds that pq/(2p + 2q − 4) ≤ σ2
3(Kp,q) ≤ p and, if

additionally q > p(p − 1), it holds that σ2
3(Kp,q) =
p/2�.

Proof. (a) By Proposition 3, θ(Kn) ≤ σ2
3(Kn) ≤
bt(Kn)/2�. It remains to

note that, e.g., Duncan [7] showed that θ(Kn) ≥ (n + 7)/6� and Bernhart and
Kainen [2] showed that bt(Kn) =
n/2�.

(b) Again, it suffices to bound the values of the graph’s thickness and book
thickness. It can be easily shown that bt(Kp,q) ≤ min{p, q}. On the other hand,
Harary [11, Sect. 7, Theorem 8] showed that θ(Kp,q) ≥ pq/(2p + 2q − 4). Due
to Proposition 3, θ(Kp,q) ≤ σ2

3(Kp,q) ≤ min{p, q} ≤ p. In particular, if q >
p(p − 1) then bt(Kp,q) = p, due to Bernhart and Kainen [2, Theorem 3.5] and

pq/(2p + 2q − 4)� =
p/2�, so in this case σ2

3(Kp,q) =
p/2�. �	

168 M. Kryven et al.

Theorem 1 implies that for any n-vertex graph G = (V,E), σ2
3(G) ≤
n/4�.

On the other hand, by Theorem 3(e), σ1
3(G) ≥ bw(G), where bw(G) is the

bisection width of G, that is, the minimum number of edges between the two
sets (W1,W2) of a bisection of V , that is, |W1| =
n/2� and |W2| = n/2�.
Proposition 4. For any n, p, and q, bw(Kn) = n2/4� and bw(Kp,q) =
pq/2�.
Proof. Let (W,W ′) be a bisection of V (Kn) with |W | = n/2�. Then the width
of this bisection is n2/4�. Now let (W,W ′) be a bisection of Kp,q that contains r1
vertices from the p-partition and r2 vertices from the q-partition (with r1 + r2 =
(p + q)/2�). Then the width of this bisection is r1(q − r2) + r2(p − r1). The
minimum of this value can be found by a routine calculation of the minimum of
an integer quadratic polynomial. �	
Theorem 2. For any n, p, q, and d ≥ 3, σ1

d(Kn) ≥ n2/8� and
pq/4� ≤
σ1

d(Kp,q) ≤
p/2�
q/2�.
Proof. The lower bounds follow from Theorem 3(e) and Proposition 4. The upper
bound for σ1

d(Kp,q) can be seen as follows. It suffices to consider the case d = 3.
Let p′ =
p/2� ≥ p/2 and q′ =
q/2� ≥ q/2. Draw a bipartite graph K2p′,2q′ ⊃
Kp,q in 3D as follows. Let V (K2p′,2q′) = P ∪ Q be the natural bipartition of
its vertices. Fix any family of p′ distinct spheres with a common intersection
circle. Place the 2q′ vertices of Q on q′ distinct pairs of antipodal points on the
circle. Consider a line going through the center of the circle and orthogonal to
its plane. Place the 2p′ vertices of P into p′ pairs of distinct intersection points
of the line with the circles of the family, the points from each pair belonging to
the same sphere. Now each pair of antipodal points in Q together with each pair
of cospheric points in P determines a unique circle that contains all these points
and provides a drawing of the four edges between them. The union of all these
circles is the desired drawing of K2p′,2q′ onto p′q′ circles. �	

By Propositions 1 and 2, ρ23(G) ≤ σ1
3(G) ≤ ρ13(G) for each graph G. For

σ1
3(Kn), we can improve the upper bound ρ13(Kn) =

(
n
2

)
by using a combinatorial

cover of Kn with copies of K3: the proof of [4, Theorem 13] immediately implies
that (n2 + 5n + 6)/6 copies suffice. Now we can simply place the vertices of Kn

in general position in 3D and draw each copy of K3 as a circle.
Table 1 summarizes the known bounds for the affine cover numbers [4] and

the new bounds for the spherical cover numbers of complete (bipartite) graphs.

3 Platonic Graphs

In this section we analyze the segment numbers, arc numbers, affine cover num-
bers, and spherical cover numbers of platonic graphs. We provide upper bounds
via the corresponding drawings; see Figs. 2, 3, 4 and 5, and, for the more com-
plicated icosahedron, in Proposition 6.

To lowerbound the spherical cover number σ1
2 of the platonic graphs, we use

a single combinatorial argument—Theorem 3(a); see Sect. 4. For the affine cover

Drawing Graphs on Few Circles and Few Spheres 169

number ρ12, a similar combinatorial arguments fails [4, Lemma 9(a)]. Therefore,
we lowerbound ρ13 (and, hence, also ρ12) for each platonic graph individually; see
Proposition 5. For an overview of our results, see Tables 2 and 3. The abbrevia-
tions that we use for the platonic graphs are listed in Table 3.

Fig. 1. σ2
3(K5) ≤ 2

(a) 9 segm. / lines (b) 4 arcs (c) 3 arcs

Fig. 2. Drawings of the octahedron

(a) 7 segm. / lines (b) 8 segm. / lines (c) 6 arcs / 4 circles (d) 4 arcs

Fig. 3. Drawings of the cube

(a)
13 segm. / 10 lines [19]

(b)
10 arcs / 10 circ. [20]

(c)
13 arcs / 8 circ. [19]

(d)
10 arcs / 5 circles

Fig. 4. Drawings of the dodecahedron

170 M. Kryven et al.

(a) 15 segments / lines (b) 10 arcs / 7 circles (c) 7 arcs / 7 circles

Fig. 5. Drawings of the icosahedron

Proposition 5. (a) ρ13(O) ≥ 9; (b) ρ13(C) ≥ 7; (c) ρ13(D) ≥ 9; (d) ρ13(I) ≥ 13.

Proof. (a) Consider a straight-line drawing of the octahedron O covered by a
family L of ρ lines. Observe that every vertex of the octahedron is adjacent to
every other except the opposite vertex. Therefore, no line in L can cover more
than three vertices, otherwise the edges on the line would overlap. Hence, every
line covers at most two edges, and these must be adjacent. Moreover, the two
end vertices of these length-2 paths cannot be adjacent. Since there are only
three pairs of such vertices, at most three lines cover two edges each. Since the
octahedron has twelve edges, ρ ≥ 9.

(b) Now consider a straight-line drawing of the cube C covered by a family L
of ρ lines. We distinguish two cases.

Assume first that the drawing of the cube lies in a single plane. Each embed-
ding of the cube contains two nested cycles, namely, the boundary of the outer
face and the innermost face. We consider three cases depending on the shape of
the outer face. (i) If the outer face is drawn as a convex quadrilateral, then none
of the lines covering its sides can be used to cover the edges of the innermost
cycle, therefore, it needs three additional lines. (ii) If the outer face is drawn as a
non-convex quadrilateral, then we need three additional lines to cover the three
edges going from its three convex angles to the innermost cycle. (iii) Now assume
that the outer cycle is drawn as a triangle. Then none of the lines covering its
sides can be used to cover the edges of the innermost cycle. If this cycle is drawn
as a quadrilateral, then we need four additional lines to cover its sides. If the
innermost cycle is drawn as a triangle, then we need three lines for the triangle
and an additional line to cover the edge incident to the vertex of the innermost
cycle which is not a vertex of the triangle. In each of the three cases (i)–(iii), we
need at least seven lines to cover the cube.

Now assume that the drawing of the cube is not contained in a single plane.
Then its convex hull has (at least) four extreme points. In order to cover the
cube, we need at least one pair of intersecting lines of L for each vertex of

Drawing Graphs on Few Circles and Few Spheres 171

the cube and at least three such pairs for each extreme point, that is, at least
4 + 4 · 3 = 16 pairs of intersecting straight lines in total. So,

(
ρ
2

) ≥ 16 and ρ ≥ 7.
(c) Consider a straight-line drawing of the dodecahedron D covered by a

family L of ρ lines. Again we distinguish two cases.
Assume first that the drawing of the dodecahedron lies in a single plane.

To cover the edges on the outer face, we need a family L0 consisting of at least
three lines. Again we make a case distinction depending on the shape of the outer
face. (i) If the outer face is convex then none of them covers any of 15 vertices
remaining in its interior. Thus each of these vertices is an intersection point of
two lines of L\L0. Since L\L0 ≤ ρ−3, this family of lines can generate at most(
ρ−3
2

)
intersection points. Therefore,

(
ρ−3
2

) ≥ 15 and, hence, ρ ≥ 9. (ii) Assume
that the outer face is drawn as a non-convex quadrilateral. Then the drawing is
contained in a convex angle opposite to the reflex angle. To cover the angle sides,
we need a family L0 consisting of at least two lines. None of them covers any of
the at least 15+1 vertices remaining in the interior of the angle. Similarly to the
previous paragraph, we obtain

(
ρ−2
2

) ≥ 16 and, hence, ρ ≥ 9. (iii) Assume that
the outer face is drawn as a pentagon P . Since the angle sum of a pentagon is 3π,
P has at most two reflex angles, and therefore, at least three convex angles. Each
vertex of D drawn as a vertex of a convex angle is an intersection point of (at
least) three covering lines, because it has degree 3. There exists an edge e of P
such that P is contained in one of the half-planes created by the line � spanned
by e (see, for instance, [18]). It is easy to check that � can cover only edge e of
the outer face of D. Then the family L \ {�} covers all edges of G but e. The
angles of P incident to e are convex. Let v be a vertex of D drawn as a vertex
of a convex angle not incident to e. In order to cover D, we need at least one
pair of intersecting lines from L \ {�} for each vertex of D different from v and
at least three such pairs for v, that is, at least 19 + 3 = 22 pairs of intersecting
lines in total. Therefore,

(
ρ−1
2

) ≥ 22 and, hence, ρ ≥ 9. Note that, in each of the
three cases (i)–(iii), we have ρ ≥ 9.

Now assume that the drawing of D is not contained in a single plane. Then
its convex hull has (at least) four extreme points. In order to cover D, we need
at least one pair of intersecting lines of L for each vertex of D and at least
three such pairs for each extreme point, that is, at least 16 + 4 · 3 = 28 pairs
of intersecting lines in total. Therefore,

(
ρ
2

) ≥ 28. But if we have equality then
any two lines of L intersect. So all of them share a common plane or a common
point. In the first case the drawing is contained in a single plane; in the second
case the family L cannot cover the drawing. Thus

(
ρ
2

)
> 28, and, hence, ρ ≥ 9.

(d) If the drawing of the icosahedron I is not contained in a single plane,
then we can pick four extreme points of the convex hull of the drawing. Each of
these points represents a vertex of degree 5, so we need five lines to cover edges
incident to this vertex, that is, 20 lines in total, but we have doublecounted the
lines that go through pairs of the extreme points that we picked. Of these, there
are at most

(
4
2

)
= 6. Thus we need at least 20−6 = 14 lines to cover the drawing.

Now assume that there exists a straight-line drawing of the icosahedron in a
single plane covered by a family L of twelve lines. Let u, v, w be the vertices of

172 M. Kryven et al.

Fig. 6. The families Lv and Lu

the outer face of I. Clearly, three distinct lines in L form the triangle uvw. For
s ∈ {u, v, w}, we denote by Ls the lines in L that go through s and do not cover
edges of the outer face. Since I is 5-regular, |Ls| = deg(s) − 2 = 3. Consider the
set P of intersection points between the line families Lu and Lv. The set P lies
in the triangle uvw and is bounded by the quadrilateral Q formed by the outer
pairs of lines in Lv and Lu; see Fig. 6.

The quadrilateral Q is convex and eight of the nine points in P lie on the
boundary of Q, hence, for any line � in Lw, we have |� ∩ P | ≤ 3. Observe that
|�∩P | = 3 implies that � goes through the only point of P that lies in the interior
of Q. Thus the lines in Lw can create at most seven triple intersection points
with the lines in Lu and Lv.

The icosahedron is 5-regular, so all vertices must be placed at the intersection
of at least three lines. We need at least nine triple intersection points in order
to place all 12 − 3 inner vertices of the icosahedron—a contradiction. �	

Proposition 6. arc(I) ≤ 7.

Proof. To construct the required drawing (see Fig. 7a), we first cover the edges
of the icosahedron by seven objects, grouped into a single cycle K and two
sets L = {L0, L1, L2} and M = {M0,M1,M2}, where K is a cycle of length 6
and all elements of L and M are simple paths of length 4; see Fig. 7a. We
identify the paths and cycles with their drawings as arcs and circles. For a
set S ∈ {{K}, L,M} and a number i ∈ {0, 1, 2}, let (dS , αSi

) be the polar
coordinates of the center c(Si) of the circle of radius rS that covers arc Si ∈ S
(see Fig. 7b). We set the coordinates and radii as follows:

αK = 0 dK = 0 rK = 1

αLi
= i · 2π/3 dL = (3 +

√
3)/2 rL =

√
5/2 +

√
3

αMi
= π/2 + i · 2π/3 dM = (3 −

√
3)/2 rM =

√
5/2 −

√
3

Drawing Graphs on Few Circles and Few Spheres 173

Fig. 7. Bounding the arc number of the icosahedron

Using the law of cosines, it is easy to compute the intersection points:

{Ai} := Li ∩ Li+1 ∩ Mi ⇒ Ai =
(
i · 2π/3, (1 +

√
3)/2

)
;

{Bi} := Li ∩ Li+1 ∩ K ⇒ Bi = (i · 2π/3, 1);
{Ci} := Mi ∩ Mi+2 ∩ K ⇒ Ci = (π/3 + i · 2π/3, 1);

{Di} := Li ∩ Mi ∩ Mi+1 ⇒ Di =
(
π/2 + i · 2π/3, (

√
3 − 1)/2

)
.

For i = 0, 1, 2, let Li be the larger arc of the covering circle between the points
Ai and Bi, let Mi be the larger arc of the covering circle between the points
Ci+1 and Di+2 (with indices modulo 3), and let K be the whole unit circle. �	

4 Lower Bounds for σ1
d

Given a graph G, we obtain lower bounds for σ1
d(G) via standard combinatorial

characteristics of G similarly to bounds for ρ1d(G) [4]. In particular, we prove a
general lower bound for σ1

d(G) in terms of the treewidth tw(G) of G, which fol-
lows from the fact that graphs with low parameter σ1

d(G) have small separators.
This fact is interesting by itself and has yet another consequence: graphs with
bounded vertex degree can have linearly large value of σ1

d(G) (hence, the factor
of n in the trivial bound σ1

d(G) ≤ m ≤ n · Δ(G)/2 is best possible).
We need the following definitions. The linear arboricity la(G) of a graph G is

the minimum number of linear forests that partition the edge set of G [10]. Let
W ⊆ V (G). A set of vertices S ⊂ V (G) is a balanced W-separator of the graph G
if |W ∩ C| ≤ |W |/2 for every connected component C of G − S. Moreover, S is

174 M. Kryven et al.

a strongly balanced W-separator if there is a partition W \ S = W1 ∪ W2 such
that |Wi| ≤ |W |/2 for both i = 1, 2 and there is no path between W1 and W2

that avoids S. Let sepW (G) (sep∗
W (G)) denote the minimum k such that G has

a (strongly) balanced W-separator S with |S| = k. Furthermore, let sep(G) =
sepV (G)(G) and sep∗(G) = sep∗

V (G)(G). Note that sepW (G) ≤ sep∗
W (G) for any

W ⊆ V (G) and, in particular, sep(G) ≤ sep∗(G).
It is known [9, Theorem 11.17] that sepW (G) ≤ tw(G)+1 for any W ⊆ V (G).

On the other hand, tw(G) ≤ 3k if sepW (G) ≤ k for every W with |W | = 2k + 1.
Recall that the bisection width bw(G) of a graph G = (V,E) is the minimum

number of edges between two sets of vertices W1 and W2 with |W1| =
n/2� and
|W2| = n/2� partitioning V . Note that sep∗(G) ≤ bw(G) + 1.

Now we use these graph parameters to lowerbound the spherical cover num-
ber. The proofs are similar to those regarding the affine cover number [4].

Theorem 3. For any integer d ≥ 1 and any graph G with n vertices and m
edges, the following bounds hold:

(a) σ1
d(G) ≥ 1

2

(
1 +

√
1 + 2

∑
v∈V (G)

⌈
deg v
2

⌉ (⌈
deg v
2

⌉
− 1

))
,

(b) σ1
d(G) ≥ 1

2

(
1 +

√
2m2/n − 2m + 1

)
for any graph G with m ≥ n ≥ 1.

(c) σ1
d(G) ≥ χ(G)/3, where χ(G) is the chromatic number of G;

(d)
 3
2σ1

d(G)� ≥ la(G);

(e) σ1
d(G) ≥ bw(G)/2;

(f) σ1
d(G) > n/10 for almost all cubic graphs with n vertices;

(g) σ1
d(G) ≥ sep∗

W (G)/2 for every W ⊆ V (G);

(h) σ1
d(G) ≥ tw(G)/6.

Proof. The proofs for (a), (b), (c), (e), (g), and (h) are similar to the proofs
of Lemma 9(a), Lemma 9(b), Theorem 8, Theorem 11(a), Theorem 11(c), and
Theorem 11(d) in [4], respectively.

(d) Given the drawing of the graph G on r = σ1
d(G) circles, we remove an

edge from each of the circles (provided such an edge exists), obtaining at (most)
r linear forests. The removed edges we group into (possible, degenerated) pairs,
obtaining at most
r/2� additional linear forests. So, la(G) ≤ r +
r/2�.

(f) The proof is similar to that of Theorem 11(b) in [4]; the claim follows
from (e) and from the fact that a random cubic graph on n vertices has bisection
width at least n/4.95 with probability 1 − o(1) [15]. �	
Corollary 1. σ1

d(G) cannot be bounded from above by a function of la(G) or
v≥3(G) or tw(G), where v≥3(G) is the number of vertices with degree at least 3.

Proof. la(G): Akiyama et al. [1] showed that, for any cubic graph G, la(G) = 2.
On the other hand, v≥3(G) = n, so σ1

3(G) >
√

n by Theorem 3(a). Theorem 3(f)
yields an even larger gap.

Drawing Graphs on Few Circles and Few Spheres 175

v≥3(G): Let G be the disjoint union of k cycles. Then v≥3(G) = 0. Clearly, an
arrangement A of � circles has at most �2 vertices. Each cycle of G “consumes”
at least two vertices of A or a whole circle, so σ1

d(G) = Ω(
√

k).
tw(G): Let G be a caterpillar with linearly many vertices of degree 3. Then,

tw(G) = 1. On the other hand, by Theorem 3(a), we have σ1
d(G) = Ω(

√
n). �	

Lemma 1. A circular-arc drawing Γ ⊂ R of a graph G that contains k nested
cycles cannot be covered by fewer than k circles.

Proof. Fix any point inside the closed Jordan curve in Γ that corresponds to
the innermost cycle of G. Let � be an arbitrary line through this point. Then �
crosses at least twice each of the j Jordan curves that correspond to the k nested
cycles in G. Hence, there are at least 2k points where � crosses Γ .

On the other hand, consider any set of r circles whose union covers Γ . Then
it is clear that � crosses each of these r circles in at most two points, so there
are at most 2r points where � crosses Γ . Putting together the two inequalities,
we get r ≥ k as desired. �	

At last we remark that σ1
3(G) is a lot smaller than σ1

2(G) for some graphs G.

Theorem 4. For infinitely many n there is a planar graph G on n vertices with
σ1
2(G) = Ω(n) and σ1

3(G) = O(n2/3).

Proof. We use the graph G of [4, Theorem 24(b)] with ρ12(G) = Ω(n) and
ρ13(G) = O(n2/3). The lower bound on σ1

2(G) follows from Lemma 1. The upper
bound on σ1

3(G) follows from Proposition 1 for l = 1 and d = 3. �	

5 ILP Formulation for Optimal Segment Drawing

To obtain lower bounds on the segment numbers of planar graphs, we formulate
an integer linear program (ILP). For the platonic graphs, it turns out that the
bounds are tight; see Tables 2 and 4. Our ILP determines a locally consistent
angle assignment [5] with the maximum number of π-angles between incident
edges. Note that such an angle assignment is not necessarily realizable with
straight-line edges in the plane. This is why the ILP yields only an upper bound
for the number of π-angles—and a lower bound for the segment number.

Let G = (V,E) be a 3-connected graph with fixed embedding given by a
set F of faces and an outer face f0. For any v ∈ V and f ∈ F , we introduce
a variable xv,f with 0 < xv,f ≤ 2 whose value is intended to be the angle of
vertex v in face f divided by π. Thus (π · xv,f)v∈V,f∈F is an angle assignment.
The following constraints guarantee that the assignment is locally consistent.

∑

f∼v

xv,f = 2 for each v ∈ V

∑

v∼f

xv,f = deg f − 2 for each f ∈ F \ {f0}
∑

v∼f0

xv,f0 = deg f0 + 2

176 M. Kryven et al.

For any vertex v, let Lv = 〈v1, . . . , vk〉 be the vertices adjacent to v, in
clockwise order as they appear in the embedding. Due to the 3-connectivity
of G, any two consecutive vertices vt, vt+1 adjacent to v uniquely define a face
f ∼ v, vt, vt+1 [16, Lemma 2]. We express the angle between two adjacent vertices
vi, vj , i < j of v as the sum of the angles assigned to the faces incident to v
between vi and vj :

∠(vivvj) = π ·
j−1∑

t=i

xv,f∼v,vt,vt+1 .

We want to maximize the number of π-angles between any two edges incident to
the same vertex. To this end, we introduce a 0–1 variable sv,vi,vj

for any vertex
v with two different neighbors vi and vj . The intended meaning of sv,vi,vj

= 1
is that ∠(vivvj) = π. We add the following constraints to the ILP:

∠(vivvj)

π
≤ 2 − sv,vi,vj for each v ∈ V ; vi, vj ∈ Lv with i < j (1)

sv,vi,vj ≤ ∠(vivvj)

π
for each v ∈ V ; vi, vj ∈ Lv with i < j (2)

If ∠(vivvj) > π, constraint (1) will force sv,vi,vj
to be 0 and constraint (2)

will not be effective. If ∠(vivvj) < π, constraint (2) will force sv,vi,vj
to be 0 and

constraint (1) will not be effective. Only if ∠(vivvj) = π, both constraints will
allow sv,vi,vj

to be 1.
To obtain a balanced angle assignment, we introduce the following additional

variables αl, αu ∈ (0, 2) which are intended to describe the smallest and the
largest angles in the angle assignment, respectively. This is achieved as follows.

xv,f ≥ αl for each v ∈ V and f ∈ F
xv,f ≤ αu for each v ∈ V and f ∈ F

Primarily, we want to maximize the number of π-angles between incident edges,
that is, angπ(G) :=

∑
v∈V

∑
vi,vj∈Lv,i<j sv,vi,vj

. As a secondary objective, we
want to maximize the angle resolution. The following linear objective function
achieves both the primary and secondary objective:

maximize angπ(G) + (αl − αu)/2

For every π-angle between incident edges, we can use an already drawn segment
to accommodate another edge; hence,

seg(G) = |E| − angπ(G). (3)

The ILP gives an upper bound on angπ(G), thus Eq. (3) provides a lower bound
for the segment number seg(G). The experimental results for the platonic graphs
are displayed in Table 4.

Drawing Graphs on Few Circles and Few Spheres 177

Table 4. Upper bounds on angπ(G) and corresponding lower bounds on seg(G)
obtained by the ILP and sizes of the ILP formulation. Runtimes where measured on a
64-bit machine with 7.7 GB main memory and four Intel i5 cores with 1.90 GHz, using
the ILP solver IBM ILOG CPLEX Optimization Studio 12.6.2.

Graph G Octahedron Cube Dodecahedron Icosahedron

angπ(G) ≤ 3 5 17 15

seg(G) ≥ 9 7 13 15

Variables 62 50 122 182

Constraints 185 162 387 515

Runtime [s] 0.2 0.2 0.2 2.8

6 Open Problems

What are optimal affine covers for the icosahedron and the dodecahedron? We
conjecture that ρ13(I) = 15 and ρ13(D) = 10.

We have already seen that σ2
3(Kn) grows asymptotically more slowly than

ρ23(Kn). Is there a family of planar graphs where σ1
2 grows asymptotically more

slowly than ρ12?
Chaplick et al. [4] showed that the affine hierarchy “collapses” in the sense

that, for any integers 1 ≤ l ≤ d, d ≥ 3, and for any graph G, it holds that
ρl

d(G) = ρl
3(G). Does the spherical hierarchy collapse, too?

References

1. Akiyama, J., Exoo, G., Harary, F.: Covering and packing ingraphs III: cyclic and
acyclic invariants. Math. Slovaca 30, 405–417 (1980)

2. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Combin. Theory
Ser. B 27(3), 320–331 (1979). http://www.sciencedirect.com/science/article/pii/
0095895679900212

3. Brannan, D.A.: Geometry. Cambridge University Press, Cambridge (1999)
4. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing

graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 166–180. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50106-2 14

5. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1999)

6. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. Theory Appl. 38, 194–212 (2007)

7. Duncan, C.A.: On graph thickness, geometric thickness, and separator theorems.
Comput. Geom. Theory Appl. 44(2), 95–99 (2011). http://www.sciencedirect.com/
science/article/pii/S0925772110000738

8. Edelsbrunner, H.: Lecture notes for Computational Topology (CPS296.1) (2006).
http://www.cs.duke.edu/courses/fall06/cps296.1/Lectures/sec-III-3.pdf

9. Flum, J., Grohe, M.: Parametrized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

http://www.sciencedirect.com/science/article/pii/0095895679900212
http://www.sciencedirect.com/science/article/pii/0095895679900212
https://doi.org/10.1007/978-3-319-50106-2_14
https://doi.org/10.1007/978-3-319-50106-2_14
http://www.sciencedirect.com/science/article/pii/S0925772110000738
http://www.sciencedirect.com/science/article/pii/S0925772110000738
http://www.cs.duke.edu/courses/fall06/cps296.1/Lectures/sec-III-3.pdf
https://doi.org/10.1007/3-540-29953-X

178 M. Kryven et al.

10. Harary, F.: Covering and packing in graphs I. Ann. N.Y. Acad. Sci. 175, 198–205
(1970)

11. Harary, F.: A Seminar on Graph Theory. Dover Publications, New York (2015)
12. Hoffmann, M., van Kreveld, M., Kusters, V., Rote, G.: Quality ratios of measures

for graph drawing styles. In: CCCG 2014, pp. 33–39 (2014). http://www.cccg.ca/
proceedings/2014/papers/paper05.pdf

13. Igamberdiev, A., Meulemans, W., Schulz, A.: Drawing planar cubic 3-connected
graphs with few segments: algorithms and experiments. In: Di Giacomo, E., Lubiw,
A. (eds.) GD 2015. LNCS, vol. 9411, pp. 113–124. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-27261-0 10

14. Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the acces-
sibility of drawings with few segments. In: Frati, F., Ma, K.L. (eds.) GD 2017.
LNCS, vol. 10692. Springer (to appear, 2018). arxiv.org/abs/1708.09815

15. Kostochka, A.V., Melnikov, L.S.: On a lower bound for the isoperimetric number of
cubic graphs. In: Proceedings of the 3rd International Petrozavodsk Conference on
Probabilistic Methods in Discrete Mathematics, pp. 251–265. TVP, VSP, Moskva,
Utrecht (1993)

16. Kryven, M., Ravsky, A., Wolff, A.: Drawing graphs on few circles and few spheres.
ArXiv e-print arxiv.org/abs/1709.06965 (2017)

17. Mondal, D., Nishat, R.I., Biswas, S., Rahman, M.S.: Minimum-segment convex
drawings of 3-connected cubic plane graphs. J. Comb. Opt. 25(3), 460–480 (2013).
https://doi.org/10.1007/s10878-011-9390-6

18. Moscow Mathematical Olympiad, problem no. 78223 (1960). http://www.
problems.ru/view problem details new.php?id=78223 (in Russian)

19. Scherm, U.: Minimale Überdeckung von Knoten und Kanten in Graphen durch
Geraden. Bachelor’s Thesis, Institut für Informatik, Universität Würzburg (2016)

20. Schulz, A.: Drawing graphs with few arcs. J. Graph Alg. Appl. 19(1), 393–412
(2015)

http://www.cccg.ca/proceedings/2014/papers/paper05.pdf
http://www.cccg.ca/proceedings/2014/papers/paper05.pdf
https://doi.org/10.1007/978-3-319-27261-0_10
https://doi.org/10.1007/978-3-319-27261-0_10
http://arxiv.org/abs/org/abs/1708.09815
http://arxiv.org/abs/org/abs/1709.06965
https://doi.org/10.1007/s10878-011-9390-6
http://www.problems.ru/view_problem_details_new.php?id=78223
http://www.problems.ru/view_problem_details_new.php?id=78223

On a Lower Bound for the Eccentric
Connectivity Index of Graphs

Devsi Bantva(B)

Lukhdhirji Engineering College, Morvi 363 642, Gujarat, India
devsi.bantva@gmail.com

Abstract. The eccentric connectivity index of a graph G, denoted by
ξc(G), defined as ξc(G) =

∑
v∈V (G) ε(v) · d(v), where ε(v) and d(v)

denotes the eccentricity and degree of a vertex v in a graph G, respec-
tively. The volcano graph Vn,d is a graph obtained from a path Pd+1 and
a set S of n − d − 1 vertices, by joining each vertex in S to a central ver-
tex/vertices of Pd+1. In [4], Morgan et al. proved that ξc(G) ≥ ξc(Vn,d)
for any graph of order n and diameter d ≥ 3. In this paper, we present
a short and simple proof of this result by considering the adjacency of
vertices in graphs.

Keywords: Eccentricity (in graph) · Eccentric connectivity index
Volcano graph

1 Introduction

Let G be a finite, connected and undirected graph without loops and multiple
edges. We denote the vertex set of G by V (G). The distance between two vertices
u and v of G, denoted by d(u, v), is the least length of a u, v−path in G. The
eccentricity of a vertex v in a graph G, denoted by ε(v), is the distance of a
vertex farthest from v in G. The degree of a vertex v in a graph G, denoted by
d(v), is the number of edges incident to it.

A topological index is a numerical graph invariants used for Quantitative
Structure-Activity Relationship (QSAR) and Quantitative Structure-Property
Relationship (QSPR) studies. The Wiener index, introduced in 1947 by Herold
Wiener [9], is the first non-trivial topological index in Chemistry. Then after
many topological indices have been defined such as Zagreb index, PI-index etc.
and successfully used to study the chemical, pharmaceutical and other proper-
ties of molecules. More recently, a new adjacent-cum-distance based topological
index, the eccentric connectivity index (or ECI for short) denoted by ξc(G) has
been introduced by Sharma et al. [7] which is defined as

ξc(G) =
∑

v∈V (G)

ε(v) · d(v) (1)

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 179–187, 2018.
https://doi.org/10.1007/978-3-319-74180-2_15

180 D. Bantva

The eccentric connectivity index has been employed successfully for the devel-
opment of numerous mathematical models for the prediction of biological activi-
ties of diverse nature. Recently, many results on the eccentric connectivity index
have been obtained and some of them have been applied as means for model-
ing chemical, pharmaceutical and other properties of molecules, for details see
[1,2,5–7,10].

The common trend of research for the topological indices and its variants is
to determine the extremal graphs for the given topological index or its variant.
Also the trend is to determine the extremal trees for the given topological index
or its variant. For most of introduced topological indices or its variants, the
extremal graphs or trees are determined except Wiener index; the origin of all
topological indices and its variants. The same approach is considered by Morgan
et al. for the eccentric connectivity index of graphs in [3,4].

In [3], Morgan et al. noted the eccentric connectivity index of some basic
graph families and determined the eccentric connectivity index of other three
classes of graphs namely broom graph Bn,d (a graph which consists a path Pd,
together with (n − d) end vertices all adjacent to the same end vertex of Pd),
lollipop graph Ln,d (a graph obtained from a complete graph Kn−d and a path
Pd, by joining one of the end vertices of Pd to all the vertices of Kn−d) and
volcano graph Vn,d (a graph obtained from a path Pd+1 and a set S of n − d − 1
vertices, by joining each vertex in S to a central vertex/vertices of Pd+1). Note
that for a fixed value of n, when d is even, the volcano graph Vn,d is unique;
whereas when d is odd, there may be several non-isomorphic volcano graphs
Vn,d. The readers are advised to see [3,4] for figures and details on these graph
families. The eccentric connectivity index of path Pd+1 and volcano graph Vn,d

is given as follows.

Proposition 1. Let n ≥ 2 be an integer. Then

ξc(Pn) =

{
1
2 (3n

2 − 6n + 4), for n even,

3
2 (n − 1)2, for n odd.

(2)

Proposition 2. Let n, d be non-negative integers. Then

ξc(Vn,d) =

{
nd + n + d2

2 − 2d − 1, for d even,

nd + 2n + d2

2 − 3d − 3
2 , for d odd.

(3)

In [3], Morgan et al. gave a lower bound for the eccentric connectivity index
of trees and proved that ξc(T) ≥ ξc(Vn,d) for any tree T of order n ≥ 3 and diam-
eter d. Later, in [4], Morgan et al. extended this lower bound for the eccentric
connectivity index to arbitrary connected graph of order n and diameter d ≥ 3
but we emphasize that the proof is lengthy and complicated. In this paper, we

On a Lower Bound for the Eccentric Connectivity Index of Graphs 181

give a short proof of this result by considering the connectivity of vertices in
graph which is a very simple approach. Moreover, this approach can also be
extend to prove similar types of results for other topological indices.

2 Preliminaries

We follow [8] for graph theoretic definition and notation. A tree T is a connected
graph that contains no cycle. A caterpillar is a tree in which all the vertices are
within distance one from central path. The diameter of a graph G, denoted by
diam(G) or simply d, is max{d(u, v) : u, v ∈ V (G)}. The degree of a vertex in a
graph G, denoted by d(v), is defined as the number of edges incident to it. Let
H ⊆ V (G) then for any v ∈ V (G), define d(v|H) is the degree of a vertex v in
a subgraph induced by H of G. Note that if H = V (G) then d(v|H) = d(v);
otherwise d(v|H) ≤ d(v). The center of a graph G, denoted by C(G), is the set
of vertices with minimum eccentricity. Note that for any v ∈ V (G), ε(v) ≥ �d/2�
and ε(v) = �d/2� if and only if v ∈ V (C(G)). We notice the following well known
results about center of graphs.

Proposition 3. The center C(G) of a graph G is contained in a block of G.

Proposition 4. The center C(T) of a tree T consists of a single vertex or two
adjacent vertices.

The following lemma characterize the vertices with minimum eccentricity in a
graph G which is useful for our main result.

Lemma 1. Let G be any graph and Pd+1 = v0 −v1 − ...−vd be a fixed diametral
path joining v0 and vd.

(a) If ε(v) = d/2 for v ∈ V (G \ Pd+1) then v is on other diametral path joining
v0 and vd, where C(Pd+1) = {w}.

(b) If ε(v) = (d + 1)/2 for v ∈ V (G \ Pd+1) then either v is on other diametral
path joining v0 and vd or v is adjacent to both w and w

′
, where C(Pd+1) =

{w,w
′}.

Proof. (a) Let G be any graph and Pd+1 = v0 − v1 − ... − vd be a diametral
path joining v0 and vd such that C(Pd+1) = {w}. Let v ∈ V (G \ Pd+1) such
that ε(v) = d/2. If possible then assume that v is not on any diametral path
joining v0 and vd. Then it is clear that either d(v, v0) > d/2 or d(v, vd) > d/2;
otherwise the shortest path P

′
= v0 − ... − v − ... − vd is a diametral path as

ε(v) = d/2, d(v0, vd) = d and ε(u) ≥ d/2 for any u ∈ V (G). But note that one
of d(v, v0) > d/2 or d(v, vd) > d/2 gives ε(v) > d/2, a contradiction. Hence v is
on diametral path joining v0 and vd.

182 D. Bantva

(b) Let G be any graph and Pd+1 = v0 − v1 − ... − vd be a diametral path
joining v0 and vd such that C(Pd+1) = {w,w

′}. It is clear that if v is adjacent
to both w and w

′
then ε(v) = (d + 1)/2. So assume that ε(v) = (d + 1)/2 for

some v ∈ V (G \ Pd+1) and v is not adjacent to both w and w
′
then as in case

(a) one can prove that v is on other diametral path joining v0 and vd.

Lemma 2. Let G be any graph and v ∈ V (G) such that ε(v) = �d/2� then
d(v) ≥ 2.

Proof. By Lemma1 if ε(v) = �d/2� then either v ∈ C(Pd+1) or v is on other
diametral path joining v0 and vd where Pd+1 = v0 − v1 − ... − vd is a diametral
path joining v0 and vd or v is adjacent to both w and w

′
in the case when

C(Pd+1) ={w,w
′}. Hence in any case d(v) ≥ 2.

3 Main Result

In this section, we continue to use the terminology and notation defined in
previous section. First we prove the following Theorem.

Theorem 1. Let G = (V,E) be a connected graph of order n, and diameter
d ≥ 3 such that every spanning tree T of G is a caterpillar of diameter d. Then

ξc(G) ≥ ξc(Vn,d). (4)

Proof. Let G be a connected graph of order n and diameter d ≥ 3 such that every
spanning tree T of G is a caterpillar of diameter d. Let Pd+1 = v0 − v1 − ... − vd
be a fixed diametral path of a graph G. It is clear that a caterpillar T contains
Pd+1 and it is the central path of T . Then define
P = {v ∈ V (G) : v ∈ V (Pd+1)};
P ′ = {v ∈ V (G) : v �∈ V (Pd+1)};
Pc = {v ∈ P : ε(v) = �d/2�};
Pc′ = {v ∈ P : ε(v) > �d/2�};
P ′
c = {v ∈ P ′ : ε(v) = �d/2�};

P ′
c′ = {v ∈ P ′ : ε(v) > �d/2�};

P ′
cc = {v ∈ P ′

c : v is adjacent to C(Pd+1)};
P ′
cc′ = {v ∈ P ′

c : v is not adjacent to C(Pd+1)};
P ′
c′c = {v ∈ P ′

c′ : v is adjacent to C(Pd+1)};
P ′
c′c′ = {v ∈ P ′

c′ : v is not adjacent to C(Pd+1)}.
Let |P ′

c| = n1 and |P ′
c′ | = n2, where 0 ≤ n1, n2 ≤ n − d − 1; |P ′

cc| = n11

and |P ′
cc′ | = n12, where 0 ≤ n11, n12 ≤ n1; |P ′

c′c| = n21 and |P ′
c′c′ | = n22, where

0 ≤ n21, n22 ≤ n2. Note that n1+n2 = n−d−1, n11+n12 = n1 and n21+n22 =
n2. Moreover, V (G) = P ∪P ′ = Pc∪Pc′ ∪P ′

c∪P ′
c′ = Pc∪Pc′ ∪P ′

cc∪P ′
cc′ ∪P ′

c′c∪P ′
c′c′ .

On a Lower Bound for the Eccentric Connectivity Index of Graphs 183

We consider the following two cases.
Case 1: d is even.

ξc(G) =
∑

v∈v(G)

ε(v)d(v)

=
∑

v∈P

ε(v)d(v) +
∑

v∈P ′
ε(v)d(v)

=
∑

v∈P

ε(v)(d(v|P) + d(v|P ′)) +
∑

v∈P ′
c

ε(v)d(v) +
∑

v∈P ′
c′

ε(v)d(v)

=
∑

v∈P

ε(v)d(v|P) +
∑

v∈P

ε(v)d(v|P ′) +
∑

v∈P ′
c

ε(v)d(v) +
∑

v∈P ′
c′c

ε(v)d(v)

+
∑

v∈P ′
c′c′

ε(v)d(v)

=
∑

v∈P

ε(v)d(v|P) +
∑

v∈Pc

ε(v)d(v|P ′) +
∑

v∈Pc′

ε(v)d(v|P ′) +
∑

v∈P ′
c

ε(v)d(v)

+
∑

v∈P ′
c′c

ε(v)d(v) +
∑

v∈P ′
c′c′

ε(v)d(v)

≥ 3
2
d2 + n21

(
d

2

)
(1) + (2n1 + n22)

(
d

2
+ 1

)
(1) + n1

(
d

2

)
(2)

+ n21

(
d

2
+ 1

)
(1) + n22

(
d

2
+ 1

)
(1)

≥ 3
2
d2 + n21

(
d

2

)
+ n1

(
d

2
+ 1

)
+ n22

(
d

2
+ 1

)
+ n1

(
d

2

)

+ n21

(
d

2
+ 1

)
+ n22

(
d

2
+ 1

)

≥ 3
2
d2 + n21

(
d

2

)
+ n1

(
d

2
+ 1

)
+ n22

(
d

2

)
+ n1

(
d

2

)
+ n21

(
d

2
+ 1

)

+ n22

(
d

2
+ 1

)

=
3
2
d2 + n1

(
d

2

)
+ n1

(
d

2
+ 1

)
+ n2

(
d

2

)
+ n2

(
d

2
+ 1

)

=
3
2
d2 + (n1 + n2)

(
d

2

)
+ (n1 + n2)

(
d

2
+ 1

)

=
3
2
d2 + (n − d − 1)

(
d

2

)
+ (n − d − 1)

(
d

2
+ 1

)

= nd + n +
d2

2
− 2d − 1

= ξc(Vn,d).

184 D. Bantva

Case 2: d is odd.

ξc(G) =
∑

v∈v(G)

ε(v)d(v)

=
∑

v∈P

ε(v)d(v) +
∑

v∈P ′
ε(v)d(v)

=
∑

v∈P

ε(v)(d(v|P) + d(v|P ′)) +
∑

v∈P ′
c

ε(v)d(v) +
∑

v∈P ′
c′

ε(v)d(v)

=
∑

v∈P

ε(v)d(v|P) +
∑

v∈P

ε(v)d(v|P ′) +
∑

v∈P ′
c

ε(v)d(v) +
∑

v∈P ′
c′c

ε(v)d(v)

+
∑

v∈P ′
c′c′

ε(v)d(v)

=
∑

v∈P

ε(v)d(v|P) +
∑

v∈Pc

ε(v)d(v|P ′) +
∑

v∈Pc′

ε(v)d(v|P ′) +
∑

v∈P ′
c

ε(v)d(v)

+
∑

v∈P ′
c′c

ε(v)d(v) +
∑

v∈P ′
c′c′

ε(v)d(v)

≥ 3
2
d2 +

1
2
+ (2n11 + n21)

(
d + 1
2

)
(1) + (2n12 + n22)

(
d + 3
2

)
(1)

+ n1

(
d

2

)
(2) + n21

(
d + 3
2

)
(1) + n22

(
d + 3
2

)
(1)

≥ 3
2
d2 +

1
2
+ n11

(
d + 3
2

)
+ n12

(
d + 3
2

)
+ n21

(
d + 1
2

)

+ n22

(
d + 3
2

)
+ n1

(
d + 1
2

)
+ (n21 + n22)

(
d + 3
2

)

=
3
2
d2 +

1
2
+ (n11 + n12)

(
d + 3
2

)
+ (n21 + n22)

(
d + 1
2

)

+ n1

(
d + 1
2

)
+ n2

(
d + 3
2

)

=
3
2
d2 +

1
2
+ n1

(
d + 3
2

)
+ n2

(
d + 1
2

)
+ n1

(
d + 1
2

)
+ n2

(
d + 3
2

)

=
3
2
d2 +

1
2
+ (n1 + n2)

(
d + 3
2

)
+ (n1 + n2)

(
d + 1
2

)

=
3
2
d2 +

1
2
+ (n − d − 1)

(
d + 3
2

)
+ (n − d − 1)

(
d + 1
2

)

=
3
2
d2 +

1
2
+ (n − d − 1) (d + 1) + (n − d − 1)

= nd + 2n − d2

2
− 3d − 3

2
= ξc(Vn,d).

On a Lower Bound for the Eccentric Connectivity Index of Graphs 185

Theorem 2. Let G be a connected graph of order n and diameter d ≥ 2. Then

ξc(G) ≥ ξc(Vn,d). (5)

Proof. Let G0 ⊆ G1 ⊆ . . . ⊆ Gk = G be a sequence of subgraphs such that G0

is a connected subgraph of G which contain a diametral path Pd+1 and every
spanning tree of G0 is a caterpillar of diameter d, and Gi+1 (0 ≤ i ≤ k − 1) is a
induced subgraph of G with vertex set V (Gi+1) = V (Gi) ∪ {v}, v ∈ V (G \ Gi).
Let the order of Gi is ni then |Gk| = nk = n. Then by Theorem1, we obtain
ξc(G0) ≥ Vn0,d. Now consider the graph G1 = G0 ∪ {v} where v ∈ V (G \ G0).
Note that for a newly added vertex v in G0, either ε(v) > �d/2� or ε(v) =
�d/2�. If ε(v) > �d/2� then it contribute one degree for some vertex of G0

and hence v contribute at least (�d/2�) (1) + (�d/2� + 1) (1) for ξc(G1) as G1

is connected and ε(u) ≥ d/2 for every u ∈ V (G0). Hence we obtain, ξc(G1) ≥
ξc(G0)+(�d/2�) (1)+(�d/2� + 1) (1) = ξc(Vn0,d)+(�d/2�) (1)+(�d/2� + 1) (1) =
ξc(Vn1,d). If ε(v) = �d/2� then by Lemma2, d(v) ≥ 2 and it adjacent to at least
two vertices of G0. Hence v contribute at least 4 (�d/2�) > (�d/2�)+ (�d/2� + 1)
for ξc(G1). Hence we obtain ξc(G1) ≥ ξc(G0)+4 (�d/2�) ≥ ξc(Vn0,d)+(�d/2�)+
(�d/2� + 1) = ξc(Vn1,d).

Continuing in this way, finally we obtain ξc(Gk)≥ ξc(Gk−1)+(�d/2� + 1) (1)+
(�d/2�) (1) = ξc(Vnk−1,d) + (�d/2� + 1) (1) + (�d/2�) (1) = ξc(Vnk,d) = ξc(Vn,d).

Note that equality holds if at each step of above procedure equality holds and
hence we obtain that volcano graph Vn,d attain a lower bound which completes
the proof.

Corollary 1. Let T be a tree of order n and diameter d ≥ 3. Then

ξc(T) ≥ ξc(Vn,d).

Example 1. The readers are advised to refer the following example for the pro-
cedure used in Theorems 1 and 2 to give a lower bound for the eccentric connec-
tivity index of graphs.

In Fig. 1, the graph G of order 19 and diameter 7 is shown in which P8 =
v0 −v1 − ...−v7 is a fixed diametral path and the vertices with circle are vertices
with minimum eccentricity.

In Fig. 2, a sequence of subgraphs G0 ⊂ G1 ⊂ G2 ⊂ G3 = G of G with
ordered pair whose first coordinate denote vertex degree and second coordinate
denote eccentricity of that vertex in Gi, 0 ≤ i ≤ 3 is shown. It is clear that G0

is a graph whose each spanning tree is a caterpillar of diameter 7 and Gi+1 =
Gi ∪ {v}(0 ≤ i ≤ 2) for some v ∈ G \ Gi. Moreover, |G0| = 16, |G1| = 17, |G2|
= 18, |G3| = |G| = 19 and diam(Gi) = 7 for 0 ≤ i ≤ 3. Note that ξc(G0) = 182,
ξc(G1) = 195, ξc(G2) = 204 and ξc(G3) = ξc(G) = 213 (The readers can calculate
it using the ordered pair at each vertex in Gi). Using (3), it is easy to calculate
that ξc(V16,7) = 146, ξc(V17,7) = 155, ξc(V18,7) = 164 and ξc(V19,7) = 173. It is
clear from above that ξc(G0) ≥ ξc(V16,7), ξc(G1) ≥ ξc(V17,7), ξc(G2) ≥ ξc(V18,7)
and ξc(G3) = ξc(G) ≥ ξc(V19,7).

186 D. Bantva

v

G

0 v1 v2 v3 v4 v5 v6 v7

Fig. 1. Graph G of order 19 and diameter 7.

(1,7) (4,6) (3,5) (3,4) (4,4)

(4,5)

(4,6) (1,7)

(1,6)(1,6)(1,7)

(1,7) (1,6) (2,4) (2,5)

(1,7)

G0

(1,7) (4,6) (3,5) (3,4) (4,4)

(4,5)

(4,6) (1,7)

(1,6)(2,4)(2,4)(2,5)

(1,7) (1,6) (2,4) (2,5)

(1,7)

G1

(1,7) (4,6) (3,5) (3,4) (4,4)

(4,5)

(4,6) (1,7)

(1,6)(2,4)(2,4)(2,5)

(1,7) (1,6) (1,5) (3,4) (2,5)

(1,7)

G2

(1,7) (4,6) (3,5) (3,4) (4,4)

(4,5)

(4,6) (1,7)

(1,6)(2,4)(2,4)(2,5)

(1,7) (1,6) (1,5) (4,4) (2,5)

(1,5)

(1,7)

G3

Fig. 2. Graphs G0 ⊂ G1 ⊂ G2 ⊂ G3 = G.

4 Concluding Remarks

The determination of extremal graphs for topological indices is remain interest of
many researchers due to its various application in chemical, pharmaceutical and
other properties of molecules. Various approaches are followed by researchers
to determine the extremal graphs for the topological indices and its variants.
In this work, we considered the adjacency relation of vertices to determine a
lower bound for the eccentric connectivity index of graphs. This approach can
also be useful to determine extremal graphs for other topological indices and its
variants.

Acknowledgements. I want to express my deep gratitude to anonymous referees for
kind comments and constructive suggestions.

On a Lower Bound for the Eccentric Connectivity Index of Graphs 187

References

1. Gupta, S., Singh, M.: Application of graph theory: relationship of eccentric con-
nectivity index and Wiener’s index with anti-inflammatory. J. Math. Anal. Appl.
266, 259–268 (2002)

2. Ilić, A., Gutman, I.: Eccentric connectivity index of chemical trees. MATCH Com-
mun. Math. Comput. Chem. 65, 731–744 (2011)

3. Morgan, M.J., Mukwembi, S., Swart, H.C.: On the eccentric connectivity index of
a graph. Discrete Math. 311, 1229–1234 (2011)

4. Morgan, M.J., Mukwembi, S., Swart, H.C.: A lower bound on the eccentric con-
nectivity index of a graph. Discrete Appl. Math. 160, 248–258 (2012)

5. Sardana, S., Madan, A.K.: Application of graph theory: relationship of antimy-
cobacterial activity of quinolone derivatives with eccentric connectivity index and
Zagreb group parameters. MATCH Commun. Math. Comput. Chem. 45, 35–53
(2002)

6. Sardana, S., Madan, A.K.: Application of graph theory: Relationship of molecular
connectivity index, Wiener’s index and Eccentric connectivity index with diuretic
activity. MATCH Commun. Math. Comput. Chem. 43, 85–98 (2000)

7. Sharma, V., Goswami, R., Madan, A.K.: Eccentric connectivity index: a novel
highly discriminating topological descriptor for structure-activity studies. J. Chem.
Inf. Comput. Sci. 37, 273–282 (1997)

8. West, D.B.: Introduction to Graph Theory. Prentice-Hall of India (2001)
9. Wiener, H.: Structural determination of parafin boiling points. J. Am. Chem. Soc.

69, 17–20 (1947)
10. Zhou, B., Du, Z.: On eccentric connectivity index. MATCH Commun. Math. Com-

put. Chem. 63, 181–198 (2010)

On the Tractability of (k, i)-Coloring

Saurabh Joshi, Subrahmanyam Kalyanasundaram(B), Anjeneya Swami Kare,
and Sriram Bhyravarapu

Department of Computer Science and Engineering,
IIT Hyderabad, Sangareddy, India

{sbjoshi,subruk,cs14resch01002,cs16resch11001}@iith.ac.in

Abstract. In an undirected graph, a proper (k, i)-coloring is an assign-
ment of a set of k colors to each vertex such that any two adjacent vertices
have at most i common colors. The (k, i)-coloring problem is to compute
the minimum number of colors required for a proper (k, i)-coloring. This
is a generalization of the classic graph coloring problem. Majumdar et al.
[CALDAM 2017] studied this problem and showed that the decision ver-
sion of the (k, i)-coloring problem is fixed parameter tractable (FPT)
with tree-width as the parameter. They asked if there exists an FPT
algorithm with the size of the feedback vertex set (FVS) as the parameter
without using tree-width machinery. We answer this in positive by giving
a parameterized algorithm with the size of the FVS as the parameter. We
also give a faster and simpler exact algorithm for (k, k− 1)-coloring, and
make progress on the NP-completeness of specific cases of (k, i)-coloring.

1 Introduction

In an undirected graph G = (V,E), |V | = n, a proper vertex coloring is to color
the vertices of the graph such that adjacent vertices get different colors. The
classic graph coloring problem asks to compute the minimum number of colors
required to properly color the graph. The minimum number of colors required
is called the chromatic number of the graph, denoted by χ(G). This is a well
known NP-hard problem and has been studied in multiple directions.

Many variants and generalizations of the graph coloring problem have been
studied in the past. In this paper we address a generalization of the graph coloring
problem called (k, i)-coloring problem. For a proper (k, i)-coloring, we need to
assign a set of k colors to each vertex such that the adjacent vertices share at
most i colors. The (k, i)-coloring problem asks to compute the minimum number
of colors required to properly (k, i)-color the graph. The minimum number of
colors required is called the (k, i)-chromatic number, denoted by χi

k(G). Note
that (1, 0)-coloring is the same as the classic graph coloring problem.

(k, i)-Coloring Problem

Instance: An undirected graph G = (V,E).
Output: The (k, i)-chromatic number of G, χi

k(G).

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 188–198, 2018.
https://doi.org/10.1007/978-3-319-74180-2_16

On the Tractability of (k, i)-Coloring 189

We also define below the (q, k, i)-coloring problem, the decision version of the
(k, i)-coloring problem.

(q, k, i)-Coloring Problem

Instance: An undirected graph G = (V,E).
Question: Does G have a proper (k, i)-coloring using at most q colors?

The (k, i)-coloring problem was first studied by Méndez-Dı́az and Zabala
in [1]. For arbitrary k and i, the (k, i)-coloring problem is NP-hard because
(1, 0)-coloring is NP-hard. Apart from studying the basic properties, they also
gave an integer linear programming formulation of the problem. Stahl [2] and
independently Bollobás and Thomason [3] introduced the (k, 0)-coloring problem
under the names of k-tuple coloring and k-set coloring respectively. The k-tuple
coloring problem has been studied in detail [4,5], and Irving [6] showed that
this problem is NP-hard as well. Some of the applications for the (k, 0)-coloring
problem include construction of pseudorandom number generators, randomness
extractors, secure password management schemes, aircraft scheduling, biproces-
sor tasks and frequency assignment to radio stations [7,8]. Brigham and Dutton
[9] studied another variant of the problem, where k colors have to be assigned
to each vertex such that the adjacent vertices share exactly i colors.

Bonomo et al. [10] studied the connection between the (k, i)-coloring problem
on cliques and the theory of error correcting codes. In coding theory, a (j, d, k)-
constant weight code represents a set of codewords of length j with exactly k ones
in each codeword, with Hamming distance at least d. Bonomo et al. observed a
direct connection between A(j, d, k), the largest possible size of a (j, d, k)-constant
weight code, and the (k, i)-colorability of cliques and used the existing results
from coding theory (such as the Johnson bound [11]) to infer results on the (k, i)-
colorability of cliques. Finding bounds on A(j, d, k) is a well-studied problem in
coding theory, and lots of questions on A(j, d, k) are still open. This indicates the
difficulty of the (k, i)-coloring problem even on graphs as simple as cliques.

Since the (k, i)-coloring problem is NP-hard in general, it is natural to study
the tractability for special classes of graphs. Polynomial time algorithms are
only known for a few of such classes namely bipartite graphs, cycles, cacti and
graphs with bounded vertex cover or tree-width [10,12]. From the NP-hardness
perspective, it is interesting to ask if the (k, i)-coloring problem is NP-hard for
specific values of i. Except for the cases i = k, where the problem is trivial, and
i = 0, where the problem is NP-hard [6], the NP-hardness remains open for all
other values of i.

Recently, Majumdar et al. [12] studied the (k, i)-coloring problem and gave
exact and parameterized algorithms for the problem. They showed that the prob-
lem is fixed parameter tractable (FPT) when parameterized by tree-width. As
the tree-width is at most (|S| + 1), where S is a feedback vertex set (FVS) of
the graph, their algorithm also implies that (k, i)-coloring is FPT when param-
eterized by the size of FVS. As an open question, they asked to devise an FPT
algorithm parameterized by the size of FVS, without going through tree-width.
In this paper we answer this question.

190 S. Joshi et al.

Our results are:

– An O((q
k)|S|+2nO(1)) time algorithm for the (q, k, i)-coloring problem that

does not use tree-width machinery. Here S is an FVS of the graph.
– We make progress on the NP-hardness of the (k, i)-coloring problem. We show

that (k, 1)-coloring and (k, k−1) coloring are NP-complete, in addition to other
NP-completeness results. This partially answers questions posed in [1,12].

– We give a 2nnO(1) time exact algorithm for the (k, k − 1)-coloring problem.
This is a direct improvement to the algorithm given in [12] for the same
problem.

2 Preliminaries

A parameterized problem is a language B ⊆ Σ∗ × N where Σ is a fixed, finite
alphabet. For example (x, �) ∈ Σ∗ ×N, here � is called the parameter. A param-
eterized problem B ⊆ Σ∗ × N is called fixed-parameter tractable (FPT) if there
is an algorithm A, a computable function f : N → N, and a constant c such that,
given (x, �) ∈ Σ∗ × N, the algorithm A correctly decides whether (x, �) ∈ B in
time bounded by f(�)|x|c.

We assume that the graph is simple and undirected. We use n to denote
|V |, the number of vertices of the graph. We say that the vertices u and v are
adjacent (neighbors) if {u, v} ∈ E. For v ∈ V , we let N(v) denote the set of
neighbors of v. For S ⊆ V , the sub graph induced by S is denoted by G[S]. We
use O∗(f(n)) to denote O(f(n)nO(1)). We use the set of natural numbers for
coloring the graph. We use the standard notations [q] = {1, 2, . . . , q} and

(
[q]
k

)

to denote the set of all k-sized subsets of [q]. In the rest of the paper, we use
the term coloring of a set X ⊆ V to denote a mapping h : X → (

[q]
k

)
. We say

that h is a proper (q, k, i)-coloring (or proper (k, i)-coloring) of X if any pair of
adjacent vertices in X have no more than i colors in common.

3 (q, k, i)-Coloring Parameterized by Size of FVS

In this section, we assume that q, k, i are fixed values and focus on the decision
problem of (q, k, i)-coloring. Let G = (V,E) be an undirected graph. Let G[V ′]
denote a subgraph of G induced by V ′ ⊆ V . A Feedback Vertex Set (FVS) is a set
of vertices S ⊆ V , removal of which from the graph G makes the remaining graph
(G[V \S]) acyclic. Many NP-hard problems have been shown to be tractable for
graphs with bounded FVS [13].

In [12], Majumdar et al., gave an algorithm for the (q, k, i)-coloring problem
in O((q

k)tw+1nO(1)) time1, where tw denotes the tree-width of the graph. Let S
be a smallest FVS of G. It is known that tw ≤ |S| + 1, see for instance [14].

1 Even though [12] claims a running time of O((qk)
twnO(1)) for their algorithm, there

is an additional factor of
(

q
k

)
that is omitted, presumably because

(
q
k

)
is treated as a

constant.

On the Tractability of (k, i)-Coloring 191

In this section, we present an algorithm for (q, k, i)-coloring that runs in
O((q

k)|S|+2nO(1)) time, where |S| is the size of the FVS of the graph. Our algorithm
does not use the tree-width machinery. Note that, FVS has a 2-approximation
algorithm [15], but there is no known polynomial time algorithm that approxi-
mates tree-width within a constant factor [16]. Computing the size of the smallest
FVS is also known to be FPT parameterized by |S|, the size of the smallest FVS.
There has been a series of results improving the running time, the fastest known
algorithm [17] runs in O(3.619|S|nO(1)) time.

A brief description of our algorithm follows. Let S be an FVS of G. We start
with a coloring of the vertices of S. Recall that G[V \S] is a forest. Each of
the connected components of G[V \S] is a tree. For each of these components,
we traverse the tree bottom-up and use a dynamic programming technique to
compute the list of k-colorings that each vertex w ∈ V \S can take. For each
C ∈ (

[q]
k

)
, we include C in w’s list if there is a coloring for the subtree rooted at

w, consistent with the coloring of S, such that w receives color set C. We repeat
this for all proper colorings of S.

Let Ψ =
(
[q]
k

)
denote the family of all k-sized subsets of [q]. For any pair

of sets C,C ′ ∈ Ψ , we say that (C,C ′) is legal if |C ∩ C ′| ≤ i, and illegal if
|C ∩ C ′| > i. Given two sets C,C ′ ∈ Ψ , it is easy to check if (C,C ′) is a legal
pair. Formally, we have:

Proposition 1. Given C,C ′ ∈ Ψ , it takes O(k log k) time to check if (C,C ′) is
a legal pair.

Definition 2. Consider a partial coloring h : S → Ψ where only the vertices of
the FVS S are colored. For a vertex w ∈ V \S and a set C ∈ Ψ , we say that
(w,C) is h-compatible if for all x ∈ S ∩ N(w), the pair (C, h(x)) is legal.

The set {C ∈ Ψ | (w,C) ish-compatible} is defined to be the set of h-
compatible colorings of w.

Proposition 3. Let h : S → Ψ be a coloring of the vertices in S. Let w ∈ V \S
and dS(w) = |N(w) ∩ S|. Then the set of h-compatible colorings of w can be
computed in time O

((
q
k

)
dS(w)k log k

)
.

Proof. For each C ∈ Ψ , we check if (w,C) is h-compatible. For this, we need to
check for all neighbors x of w in S, whether (C, h(x)) is legal. The total running
time is

(
q
k

) · dS(w) · O(k log k). ��
Definition 4. Given a graph G = (V,E) and a coloring h : X → Ψ for some
X ⊆ V , we say that the coloring h′ : V → Ψ is an extension of h, or extends h
if for all v ∈ X, we have h(v) = h′(v).

Lemma 5. Given a proper (q, k, i)-coloring h of the vertices in a feedback vertex
set S of the graph G = (V,E), we can determine if h can be extended to a proper
(q, k, i)-coloring of V in O(

(
q
k

)2
nO(1)) time.

Proof. The graph G[V \ S] is a forest because S is a feedback vertex set. There-
fore each connected component of G[V \ S] is a tree. Below, we describe an

192 S. Joshi et al.

algorithm that we can apply to each of these trees to yield a proper (q, k, i)-
coloring extending h for the trees. Combining the colorings, we get a proper
(q, k, i)-coloring of V , that is an extension of h.

Let T denote one of the trees in the forest. We will designate any one of the
vertices (say r) of T as root. Let Tw denote the subtree rooted at a node w ∈ T .

Our plan is to maintain a table at each vertex w, indexed with the elements
of Ψ . The entry at each color set C is denoted by Mw(C). The entry Mw(C)
indicates whether there is a proper (q, k, i)-coloring of Tw, with w assigned the
set C, consistent with the coloring h of S.

We will process T in a post order fashion as follows:

1. When w is a leaf in T : In this case, we set Mw(C) = 1 if (w,C) is h-
compatible. Otherwise, we set Mw(C) = 0.
For any leaf w, the values Mw(C) corresponding to all C ∈ Ψ can be computed
in time O(

(
q
k

)
dS(w)k log k) by Proposition 3. Here dS(w) denotes the number

of neighbors of w in S.
2. When w is an internal node in T : Let u1, u2, . . . be the children of w in

T . Recall that we process T in post order fashion. Before we process w, the
Muj

values for all the children of w would already have been computed. The
value Mw(C) is computed as follows:

• If (w,C) is not h-compatible, we set Mw(C) = 0.
• If (w,C) is h-compatible, we do the following:

– If for each child uj of w, there exists at least one coloring C ′ ∈ Ψ such
that Muj

(C ′) = 1 and (C,C ′) is a legal pair, then set Mw(C) = 1.
– Otherwise set Mw(C) = 0.

For each w and C, the h-compatibility check takes O(dS(w)k log k) time. If
(w,C) is h-compatible, we need to check all the children uj , and the table entries
Muj

(C ′) for all C ′ ∈ Ψ . Together with the check for (C,C ′) being a legal pair,
the computation takes dT (w) · (

q
k

) · O(k log k) time, where dT (w) is the number
of children of w in the tree T .

Adding all up, the computation of the table entries for w takes time

O

((
q

k

)
· k log k ·

[
dS(w) + dT (w)

(
q

k

)])
. (1)

If for some C ∈ Ψ , Mr(C) = 1, then we know that there exists a proper
(q, k, i)-coloring of T that is consistent with the coloring h of S.

The time complexity is obtained by adding the expression in (1) over
all the vertices w ∈ V \S. By using the bounds dS(w) ≤ n and∑

Trees T

∑
w∈V (T) dT (w) ≤ ∑

Trees T |V (T)| ≤ n, we get that the time com-
plexity is upper bounded by

O

((
q

k

)
· k log k ·

[
n2 + n

(
q

k

)])
,

which is at most O
((

q
k

)2 · n2
)
, by noting that k is a constant. ��

On the Tractability of (k, i)-Coloring 193

The correctness of the procedure explained in the above lemma can be proved
using an induction on the vertices of T according to its post order traversal. The
inductive claim says that Mw(C) = 1 if and only if there is a proper (q, k, i)-
coloring of Tw, with w assigned the set C, consistent with the given coloring
of S.

Lemma 6. Given a proper (q, k, i)-coloring h of the vertices in a feedback vertex
set S of the graph G = (V,E), we can determine if h can be extended to a proper
(q, k, i)-coloring of V with space complexity O(

(
q
k

)
n).

Proof. Recall the algorithm explained in Lemma5. At each vertex w in G[V \S],
we need O(

(
q
k

)
) space to store values Mw(C) for all C ∈ Ψ . ��

Theorem 7. The (q, k, i)-coloring problem can be solved in timeO((q
k)|S|+2nO(1))

and O(
(

q
k

)
n) space, where S is a feedback vertex set of G.

Proof. For each coloring assignment h of S, we first determine if h is a proper
(q, k, i)-coloring. This can be done in O(|S|2k log k) time. Then we determine
whether there exists a proper (q, k, i)-coloring that extends h in O((q

k)2.nO(1))
time by Lemma 5. Since there are at most (q

k)|S| many colorings of S, we can
determine whether there exists a proper (q, k, i)-coloring of G in O((q

k)|S|+2nO(1))
time.

We need O(|S|k log q) space to store the coloring h of S. And by Lemma 6,
we need O(

(
q
k

)
n) space to determine if h can be extended to a proper coloring of

G. The latter is the dominating term and determines the total space requirement
of the algorithm. ��
On generating a proper (q, k, i)-coloring. We observe that we can modify
Theorem 7 to obtain an algorithm that generates a proper (q, k, i)-coloring of G,
if one exists. After executing the steps of the algorithm corresponding to Theo-
rem 7, we traverse the tree in top-down fashion from the root, and find colorings
for each vertex w ∈ T , consistent with its parent, subtree Tw and coloring of S.
The latter two are already encoded in Mw(C) value. The asymptotic time and
space complexity are the same as that in Theorem 7.

We would like to observe a difference in the space usage of our FPT algorithm
to the FPT algorithm for (q, k, i)-coloring parameterized by tree-width in [12].
We note that the algorithm in [12] can also be modified similarly to obtain an
algorithm that generates a proper coloring. However, such an algorithm would
require to store all feasible colorings at each bag of the tree-decomposition,
resulting in a O((q

k)tw+1) space usage at each bag. Since there are O(n) bags,
total space required by the algorithm is O((q

k)tw+1n), which is significantly larger
than the O(

(
q
k

)
n) space required by our algorithm.

Decision vs. search problem. We note that we could run the algorithm for
(q, k, i)-coloring for q = 1, 2, 3, . . . till we reach χi

k(G), the smallest q for which the
graph has a proper (q, k, i)-coloring. The running time of this procedure would

be at most O

(
χi

k

(
χi
k

k

)|S|+2
nO(1)

)
. Thus an FPT algorithm parameterized by

194 S. Joshi et al.

the size of the FVS for the (q, k, i)-coloring problem implies an FPT algorithm
parameterized by combined parameters—the size of the FVS and the (k, i)-
chromatic number.

3.1 Counting All Proper (q, k, i)-Colorings

Here we show that we can modify the algorithm described in Lemma 5 to count
the number of proper (q, k, i)-colorings of G. Let a proper (q, k, i)-coloring h of
FVS S be given. Instead of maintaining Mw(C) for a vertex w in a rooted tree
T , we maintain another value M#

w (C).

M#
w (C) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if (w,C) is not h-compatible.

1

{
if w is a leaf,
and (w,C) is h-compatible.

∏

∀uj ∈ child(w)

∑

legal(C,C′)

M#
uj

(C ′)

{
if w is a non-leaf vertex,
and (w,C) is h-compatible.

At each vertex w, M#
w (C) maintains a count of the proper (q, k, i)-colorings

of Tw, consistent with the coloring h of S, where w gets assigned the set C. The
correctness can be verified by a straightforward induction on the tree vertices
in post order traversal. If r is the root of T , M#

r (C) gives the count of proper
(q, k, i)-colorings of T , where r is colored C, consistent with the coloring h of S.

The total number of proper (q, k, i)-colorings of G is therefore computed by
taking into account (i) all proper (q, k, i)-colorings h of S, (ii) all the trees Tj in
G[V \S], and (iii) all color sets C ∈ Ψ at the root of Tj . The full expression is as
follows:

No. of proper (q, k, i)-colorings =
∑

proper (q,k,i)-
colorings of S

⎛

⎝
∏

Tj in G[V \S]

(
∑

C∈Ψ

M#
root(Tj)

(C)

)⎞

⎠ .

The above expression implies the following theorem. The asymptotic time com-
plexity remains the same as Theorem 7, whereas the space complexity incurs a
blowup of nk log q, because of the maximum value M#

w (C) can take.

Theorem 8. There is an algorithm that computes the number of proper (q, k, i)-
colorings of G, in O((q

k)|S|+2nO(1)) time and O(
(

q
k

)
n2 log q) space, where S is a

feedback vertex set of G.

4 Faster Exact Algorithm for (k, k − 1)-Coloring

In [12], Majumdar et al. gave an O∗(4n) time exact algorithm for the (k, k − 1)-
coloring problem. Their algorithm was based on running an exact algorithm for a

On the Tractability of (k, i)-Coloring 195

set cover instance where the universe is the set of all the vertices V and the family
of sets F is the set of all independent sets of vertices of G. To show correctness
and running time, they used a claim (unnumbered) that relates χk−1

k (G) to the
size of solution of the set cover instance, an O(2n ·n·|F|) time exact algorithm for
the set cover problem [18] and an upper bound of 2n on the size of the family of
sets F . Hence, the time complexity of their algorithm is O(2n ·n ·2n) = O(4n ·n).

We first note that their algorithm also works when F is replaced by F ′, the
set of all maximal independent sets of G. This is because any independent set
A ∈ F is contained in a maximal independent set A′ ∈ F ′. In any set covering of
V using elements of F , each set A can be replaced by an A′ ∈ F ′, thus obtaining
a set cover of V using elements of only F ′. By using the 3n/3 upper bound of
Moon and Moser [19] on the number of maximal independent sets, the time
complexity improves to O(2n · n · 3n/3) = O(2.88n · n).

We now present a simpler and faster O∗(2n) algorithm to determine χk−1
k (G).

Lemma 9. For any graph G, χk−1
k (G) = q where q is the smallest integer such

that
(

q
k

) ≥ χ0
1(G). Thus there is a polynomial time reduction from the (k, k − 1)-

coloring problem to the (1, 0)-coloring problem.

Proof. The (k, k − 1)-coloring problem asks to assign sets of k colors to each
vertex, with the requirement that neighboring vertices must have distinct sets
assigned to them. We may view each of the k-sized subsets as a color, and the
(1, 0)-chromatic number χ0

1(G) is the number of distinct k-sized subsets required.
Thus χk−1

k (G) is the smallest q that will provide χ0
1(G) number of k-sized

subsets. The polynomial time reduction is immediate. ��
Combining the above lemma with the O∗(2n) time algorithm of Koivisto [20]

to compute χ0
1(G), we get the following theorem.

Theorem 10. There is an algorithm with O∗(2n) time complexity that computes
the (k, k − 1) chromatic number of a given graph.

Further, we can infer from Lemma 9 that for those graphs G where we can
compute χ0

1(G) in polynomial time, χk−1
k (G) can also be found in polynomial time.

For instance, χk−1
k (Kn) can be computed in polynomial time as χ0

1(Kn) = n.

5 NP-Completeness Results

Since the (k, i)-coloring problem is a generalization of the (1, 0)-coloring problem,
it follows that (k, i)-coloring is NP-hard. Méndez-Dı́az and Zabala [1] conjectured
that the (k, i)-coloring problem remains NP-hard even for specific values of i. In
this section, we show NP-completeness results for some specific cases of (k, i)-
coloring. We will only be proving the NP-hardness aspect of NP-completeness.
Given a coloring, we can easily verify that it is a proper (k, i)-coloring in poly-
nomial time.

Trivially, we have χk
k(G) = k for all graphs G. For the (k, 0)-coloring problem,

we have the following result by Irving.

196 S. Joshi et al.

Theorem 11 ((k, 0)-coloring is NP-complete [6]). The (2k+1, k, 0)-coloring
problem is NP-complete for all k ≥ 1.

The NP-completeness of the (k, k − 1)-coloring problem is claimed by [1].
However, we are unable to follow and verify the proof. We provide an alternate
NP-hardness proof as a consequence of the correspondence in Lemma 9.

Theorem 12. The (k, k − 1)-coloring problem is NP-complete for all k ≥ 1.

Proof. We use reductions from the (1, 0)-coloring problem, for each value of
k ≥ 2. We show that the (q, k, k − 1)-coloring problem is NP-complete for all
values of q > k ≥ 2. From the correspondence in Lemma 9, it follows that for
any given k ≥ 1, a graph G is (q, k, k −1)-colorable if and only if G is

((
q
k

)
, 1, 0

)
-

colorable. Since the (r, 1, 0)-coloring problems are NP-complete for all r ≥ 3,
it follows that (

(
q
k

)
, 1, 0)-coloring problems are NP-complete for all q > k ≥ 2,

and hence we get that the (q, k, k−1)-coloring problems are NP-complete for all
q > k ≥ 2. ��

The following lemmas will help us in proving further NP-completeness results.

Lemma 13 (Complement trick). For integers k, i ≥ 1, any graph G is (2k +
i, k + i, i)-colorable if and only if it is (2k + i, k, 0)-colorable.

Proof. Let f : V → (
[2k+i]

k

)
be a (2k+i, k, 0)-coloring of G. Consider the coloring

f ′ where each vertex v is assigned the complement set [2k+ i]\f(v). Notice that,
every vertex is assigned (k+i) colors, and any pair of adjacent vertices will share
exactly i colors in the coloring f ′. Thus we have a (2k + i, k + i, i)-coloring of G.

Similarly, if we start from a (2k + i, k + i, i)-coloring of G, we can get to a
(2k + i, k, 0)-coloring by taking the complement coloring. ��

Theorem 11 and the above lemma together imply the NP-completeness of
(k, 1)-coloring for all k ≥ 2.

Theorem 14 ((k, 1)-coloring is NP-complete). The (2k+1, k+1, 1)-coloring
problem is NP-complete for all k ≥ 1.

Now we introduce another simple gadget, the universal vertex. Given a graph
G, we can construct a graph G′ by adding a new vertex v that is adjacent to
all the vertices of G. It is straightforward to see that G has a (q, k, 0)-coloring
if and only if the new graph G′ has a (q + k, k, 0)-coloring. Thus we have the
following:

Lemma 15 (Universal vertex). There is a polynomial time reduction from
the (q, k, 0)-coloring problem to the (q + k, k, 0)-coloring problem. Therefore, the
(q + k, k, 0)-coloring problem is NP-complete when the (q, k, 0)-coloring problem
is NP-complete.

Combining Lemmas 13 and 15 yields a collection of NP-completeness results.

On the Tractability of (k, i)-Coloring 197

Theorem 16. For any integers p ≥ 2 and � ≥ 1, the (p� + 1, (p − 1)� + 1, (p −
2)� + 1)-coloring problem is NP-complete.

Proof. From Theorem 11, we have that the (2�+1, �, 0)-coloring problem is NP-
complete. By applying the universal vertex gadget of Lemma 15 a total of (p−2)
times, we get that the (p�+1, �, 0)-coloring problem is NP-complete for all p ≥ 2.
Now we can use the complement trick of Lemma 13 to infer the NP-completeness
of the (p� + 1, (p − 1)� + 1, (p − 2)� + 1)-coloring problem. ��
The above theorem gives us a collection of NP-completeness results. If we set
� = 2, we get that problems (5, 3, 1)-coloring, (7, 5, 3)-coloring, (9, 7, 5)-coloring
etc. are NP-complete. For other values of �, we get similar sequence of NP-
completeness results. But we cannot infer the NP-completeness of (k, 3)-coloring,
or (k, 5)-coloring from this because all values of k are not covered. To show
that (k, 3)-coloring is NP-hard, we need to exhibit for all relevant k, a value
q such that (q, k, 3)-coloring is NP-hard. As conjectured in [1], we believe that
the (k, i)-coloring problem is NP-complete for all values of i. As of now, the
NP-completeness of (k, i)-coloring is still open for 2 ≤ i ≤ k − 2.

Acknowledgment. The authors would like to thank the anonymous reviewer for
helpful comments, and pointing out a flaw in the proof of Theorem12 in an earlier
version of the paper.

References

1. Méndez-Dı́az, I., Zabala, P.: A generalization of the graph coloring problem. Inves-
tig. Oper. 8, 167–184 (1999)

2. Stahl, S.: n-tuple colorings and associated graphs. J. Comb. Theor. Ser. B 20(2),
185–203 (1976)

3. Bollobás, B., Thomason, A.: Set colourings of graphs. Discrete Math. 25(1), 21–26
(1979)

4. Klostermeyer, W., Zhang, C.Q.: n-tuple coloring of planar graphs with large odd
girth. Graphs Combinatorics 18(1), 119–132 (2002)

5. Šparl, P., Žerovnik, J.: A note on n-tuple colourings and circular colourings of
planar graphs with large odd girth. Int. J. Comput. Math. 84(12), 1743–1746
(2007)

6. Irving, R.W.: NP-completeness of a family of graph-colouring problems. Discrete
Appl. Math. 5(1), 111–117 (1983)

7. Marx, D.: Graph colouring problems and their applications in scheduling. Period.
Polytech. Electr. Eng. 48(1–2), 11–16 (2004)

8. Beideman, C., Blocki, J.: Set families with low pairwise intersection. arXiv preprint
arXiv:1404.4622 (2014)

9. Brigham, R.C., Dutton, R.D.: Generalized k-tuple colorings of cycles and other
graphs. J. Comb. Theor. Ser. B 32(1), 90–94 (1982)

10. Bonomo, F., Durán, G., Koch, I., Valencia-Pabon, M.: On the (k, i)-coloring of
cacti and complete graphs. In: Ars Combinatoria (2014)

11. Johnson, S.: A new upper bound for error-correcting codes. IRE Trans. Inf. Theor.
8(3), 203–207 (1962)

http://arxiv.org/abs/1404.4622

198 S. Joshi et al.

12. Majumdar, D., Neogi, R., Raman, V., Tale, P.: Exact and parameterized algorithms
for (k, i)-coloring. In: Third International Conference on Algorithms and Discrete
Applied Mathematics, CALDAM 2017, India, pp. 281–293 (2017)

13. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set
number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13731-0 9

14. Jansen, B.M., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex
set. Tsinghua Sci. Technol. 19(4), 387–409 (2014)

15. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

16. Wu, Y.L., Austrin, P., Pitassi, T., Liu, D.: Inapproximability of treewidth, one-shot
pebbling, and related layout problems. J. Artif. Intell. Res. 49(1), 569–600 (2014)

17. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Pro-
cess. Lett. 114(10), 556–560 (2014)

18. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16533-7

19. Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3(1), 23–28 (1965)
20. Koivisto, M.: An O∗(2n) algorithm for graph coloring and other partitioning prob-

lems via inclusion-exclusion. In: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science. FOCS 2006, Washington, D.C., pp. 583–590.
IEEE Computer Society (2006)

https://doi.org/10.1007/978-3-642-13731-0_9
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-642-16533-7

Window Queries for Problems on Intersecting
Objects and Maximal Points*

Farah Chanchary(B), Anil Maheshwari, and Michiel Smid

School of Computer Science, Carleton University,
Ottawa, ON K1S 5B6, Canada
farah.chanchary@carleton.ca,

{anil,michiel}@scs.carleton.ca

Abstract. We present data structures that can answer window queries
for a sequence of geometric objects, such as points, line segments, tri-
angles and convex c-gons. We first present data structures to solve win-
dowed intersection decision problems using line segments, triangles and
convex c-gons. We also present data structures to count points on max-
imal layer, to decide whether a given point belongs to a maximal layer,
and to count k-dominant points for a fixed integer k for a sequence of
points in R

d, d ≥ 2. All data structures presented in this paper answer
queries in polylogarithmic time and use subquadratic space.

Keywords: Intersection decision problem · Maximal point
Maximal layer · Window query

1 Introduction

We construct data structures for various geometric objects (e.g., points, line
segments, triangles and convex c-gons) to efficiently answer window queries. In a
window query we are given two positive integers i and j, with i < j, such that the
interval [i, j] represents a query window of width j−i+1. Let S = (s1, s2, . . . , sn)
be a sequence of n geometric objects. For 1 ≤ i < j ≤ n, let Si,j denote the
subsequence (si, si+1, . . . , sj). We want to preprocess S into some data structures
such that given a query interval q = [i, j] and a predicate P, we can answer
window queries using the objects in Si,j that match P.

Recently the same model of data structure has been considered in vari-
ous studies (see [1–3,5–7]), where the authors mapped a sequence of geometric
objects (or graph edges) to a sequence of timestamped events, where for each k,
with 1 ≤ k ≤ n, an object sk has a unique timestamp k.

In this paper, we present new results for windowed intersection decision prob-
lems and a variety of windowed reporting problems using points on maximal
layers. We define the windowed intersection decision problem as ‘Given a pair

This research work was supported by NSERC Research Grants and Ontario Graduate
Scholarship.

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 199–213, 2018.
https://doi.org/10.1007/978-3-319-74180-2_17

200 F. Chanchary et al.

of indices (i, j), where 1 ≤ i < j ≤ n, report whether there is any intersection
between objects in (si, . . . , sj)’. In [5], Chan and Pratt presented orthogonal
segment intersection decision problems, whereas our algorithms can preprocess
sequences of objects, i.e., line segments, triangles, and convex c-gons, with arbi-
trary orientations. For our second set of problems, we consider a sequence of n
points P = (p1, p2, . . . , pn) in R

d, where d ≥ 2, and we answer queries related
to maximal layers and dominance. More specifically we solve three types of win-
dowed queries of the following forms: Given a query interval [i, j] (i) count the
number of maximal points in Pi,j = (pi, pi+1, . . . , pj), (ii) given an integer k,
with i ≤ k ≤ j, decide if point pk is on the maximal layer Lγ of Pi,j , where
γ = 1, or 2, or ≥ 3, and (iii) for a fixed integer k ≥ 1, report all maximal points
in Pi,j such that each point dominates at least k points of Pi,j .

1.1 Previous Work

Bannister et al. [2] were the first to consider this window model for preprocess-
ing timestamped graph edges into data structures that can answer windowed
queries. Subsequently more results on windowed graph problems were presented
in [6,7]. Similar time window model for geometric objects was first studied in [1],
where the authors presented results for reporting the convex hull of points in
the plane, and skyline and proximity relations of point sets in R

d. They used a
hierarchical decomposition in time to construct binary decomposition trees on
given temporal points to answer windowed queries related to convex hull and
proximity relations in polylogarithmic time. However, their skyline queries use
a different preprocessing technique based on the rectangle stabbing data struc-
tures. Mouratidis et al. [12] considered problems of monitoring top-k maximal
layers (mentioned as k-skyband in [12]) using fixed width sliding query win-
dows. However, our results for points on maximal layers are different from those
of [1,12].

Later more results have been presented by Bokal et al. [3], and Chan and
Pratt [5]. In [3,5], the authors mainly focused on answering decision problems on
hereditary properties, such as the convex hull area decision problem (in 2D), the
diameter decision problem (in 2D and 3D), the width decision problem (in 2D)
and the orthogonal segment intersection detection problem. In [3], Bokal et al.
showed a sketch based general methodology for finding all maximal subsequences
for a set of n points in plane, i.e., for all i, with 1 ≤ i ≤ n, they find the largest
index of the maximal interval starting at i that holds some hereditary prop-
erty P. They solved problems for finding all maximal subsequences with unit
diameter, all maximal subsequences whose convex hull area is at most 1 and all
maximal subsequences that define monotone paths in some (subpath-dependent)
direction. Later, Chan and Pratt [5] improved some of their preprocessing times
including diameter decision problems and convex hull area decision problems.
In [5] the authors presented techniques to reduce the windowed problems into
range successor problems such that a query can be performed by standard range
searching techniques. The diameter decision problem in 2D and 3D, and the
orthogonal line segment intersection detection problems follow this strategy.

Window Queries for Geometric Problems 201

As a second approach, they used dynamic data structures and a first-in-first-
out sequence of processing geometric objects to find all maximal subsequences
of intervals that satisfies some property P. Authors named this process as FIFO
updates and used this technique to solve the 2D convex hull area decision prob-
lem and the 2D width decision problem.

1.2 New Results

The main contributions of this paper are listed below, and are also summarized
in Table 1.

1. Intersection decision problems: Given a sequence S of n geometric objects we
can preprocess S for the windowed intersection decision problem in O(n4/3·
polylog(n)) time using O(n4/3 · polylog(n)) space so that queries can be
answered in O(log n) time.

2. Problems on points on maximal layers: Given a sequence of n points P =
(p1, p2, . . . , pn) ⊆ R

d we can preprocess P into data structures to report the
following.

– Given a query interval [i, j] and a point pk with i ≤ k ≤ j, we can report
whether pk is on the maximal layer of the sequence of points Pi,j = (pi, . . . , pj)
in O(1) time. Preprocessing takes O(n logd−1 n) time using O(n logd−2 n)
space .

Table 1. Summary of results. n is the number of input objects, γ ≥ 2 is the number
of maximal layer, w is the output size, and k is a fixed parameter.

Problems Preprocessing time Space Query

Intersection decision

Segment, Bichromatic
segment, Triangle,
c-gon (c is constant)

O(n4/3polylog(n)) O(n4/3polylog(n)) O(log n)

Points on maximal layers

pk on maximal layer L1 O(n logd−1 n) O(n logd−2 n) O(1)

pk on max layer
Lγ , γ = 2, ≥3

O(n logd+1 n) O(n logd+1 n) O(logd+1 n)

Count maximal points:
d = 2, 3

O(n log2 n) O(n log2 n) O(log2 n)

Count maximal points:
d ≥ 4

O(n logd−1 n) O(n logd−2 n) O(log2 n)

k-dom points:
2 ≤ d ≤ 5

O(kn log4 n) O(kn log3 n) O(log4 n + kw)

k-dom points: d ≥ 6 O(kn logd−1 n) O(kn logd−2 n) O(log4 n + kw)

202 F. Chanchary et al.

– Given a query interval [i, j] and a point pk with i ≤ k ≤ j, we can report
whether pk is on layer 2 or ≥ 3 of the sequence Pi,j in O(logd+1 n) time.
Preprocessing takes O(n logd+1 n) time using O(n logd+1 n) space.

– We can count the total number of maximal points of Pi,j in O(log2 n) time.
Preprocessing takes O(n logd−1 n) time using O(n logd−2 n) space when d ≥
4. However, when d = 2 and 3, preprocessing takes O(n log2 n) time and
O(n log2 n) space.

– Given a fixed integer k, we can report all maximal points in Pi,j each dom-
inating at least k points (we call this the ‘k-dominant points’ problem) in
O(log4 n + kw) time, where w is the size of the output. Preprocessing takes
O(kn log4 n) time using O(kn log3 n) space when 2 ≤ d ≤ 5. For d ≥ 6,
preprocessing takes O(kn logd−1 n) time and O(kn logd−2 n) space.

1.3 Organization

This paper is organized as follows. In Sect. 2, we present algorithms for windowed
intersection decision problems using geometric objects. Section 3 presents more
results for windowed queries using points on maximal layers. Section 4 concludes
this paper.

2 Geometric Object Intersections

In this section, we discuss windowed intersection decision problems on a given
sequence of geometric objects (e.g., line segments, triangles, and constant size
polygons) within a query interval [i, j]. Input consists of a sequence of n geomet-
ric objects S = (s1, s2, . . . , sn). We will represent the sequence S in an array A,
where A[i] = si, for i = 1, 2, . . . , n. The windowed intersection decision problem
is ‘Given a pair of indices (i, j), where 1 ≤ i < j ≤ n, report whether there is
any intersection between objects in (si, . . . , sj)’.

2.1 Overview of Our Data Structure

Before we discuss our data structure, we define a valid pair of indices (α, β)
with 1 ≤ α < β ≤ n as follows: For each 1 ≤ α ≤ n, let β be the smallest index
larger than α such that the object A[β] intersects A[α]. If there is no A[β] that
intersects A[α] then β = ∞. Suppose, there exists a data structure that can find
all valid pairs (α, β). Then we can reduce the windowed intersection decision
problem into a range query problem as follows. For each valid pair (α, β), we
store a point (α, β) ∈ R

2 using a priority search tree (PST) data structure [10].
A PST takes linear space to store O(n) points in the plane and it can be built
in O(n log n) time. For a given query interval [i, j], we perform a range search
in PST with the query rectangle Rq = [i,∞) × (−∞, j]. Note that, there will
be an intersecting pair of objects (A[α], A[β]) in query interval [i, j] if and only
if there is a point (α, β) ∈ Rq. Hence, if the range searching query returns a
positive count of points in Rq, then we report that some objects intersect in the

Window Queries for Geometric Problems 203

interval [i, j]. This query can be answered in O(log n) time. Thus we obtain the
following lemma.

Lemma 1. Suppose a sequence of n geometric objects is stored in an array
A[1. . n], where i is the index of the object stored in A[i]. Given all valid pairs
(α, β) for every 1 ≤ α ≤ n in A, we can build a data structure of size O(n) that
can answer windowed intersection decision queries in O(log n) time.

Next we show how to find all the valid pairs. Suppose X is a set of n
geometric objects and we assume that we have a data structure DS(X) that
can find whether a query object q intersects any member of X. Furthermore,
DS(X) takes M(n) space, P (n) preprocessing time and Q(n) query time, where
M(n)/n, P (n)/n and Q(n) are all non-decreasing functions. To find all the valid
pairs, we maintain a tree T defined as follows. The leaves of T store objects
A[1], A[2], . . . , A[n] in order from left to right. For each internal node v of T , let
P [v] be the set of objects at the leaves of the subtree rooted at v. Each node v
of T stores all the objects in its subtree in a secondary data structure DS[P [v]].
Each level i of T has 2i nodes. So each node at level i requires M(n/2i) space. The
total space requirement is O(n)+

∑log n
i=0 2i·M(n/2i) = O(n)+

∑log n
i=0 n· M(n/2i)

n/2i ≤
O(n) +

∑log n
i=0 n · M(n)

n ≤ O(n) +
∑log n

i=0 M(n) = O(M(n) · log(n)).
The total preprocessing time can analogously be computed as O(P (n) log n).

Now for any 1 ≤ α ≤ n, we can find β in time O(Q(n) log n) as follows. To
identify a valid pair (α, β), we first search T to find the leaf v′ containing α. It
requires O(log n) time using a standard binary search. Then we move up from
v′ towards the root node and at every step perform the following search. Each
time we move from a child node v′ towards its parent node p(v′), we query the
secondary structure stored at the right child of p(v′) to decide whether it contains
an object β that intersects with α. If the search is unsuccessful we move upwards
one more level in T , and repeat the process. Otherwise, we find the node that
contains the intersecting object and we continue descending from p(v′) to locate
the leaf node containing β (see Fig. 1). In this way, the total time required to
find all valid pairs is O(n · Q(n) log n). From Lemma 1 we obtain the following
result.

Theorem 1. Given a sequence S of n geometric objects, we can preprocess S
into a data structure of size O(M(n) log n) in time O(P (n) log n+n ·Q(n) log n)
so that it can answer windowed intersection decision queries in O(log n) time.

Next, we discuss the construction of the secondary data structure DS(X) for
different problems.

Segment Intersections: Given a sequence of n line segments S = (s1, s2, . . . ,
sn) in the plane, we want to preprocess S to answer windowed queries for seg-
ment intersections. As we have described previously, our primary data struc-
ture T stores n input segments at the leaf nodes sorted in order from left to
right. At each node v of T we build a multi-level partition tree that answers the
queries of the form ‘Given a query segment sq, does sq intersect any segment of

204 F. Chanchary et al.

Fig. 1. Query path from α to β in our multilevel data structure.

{sa, sa+1, . . . , sb}, where 1 ≤ a < b ≤ n?’. For a sequence of n line segments
in the plane, we can obtain a data structure of O(n log3 n) preprocessing time
and O(n log2 n) space such that we can report whether a query line segment sq

intersects any input segment in O(
√

n log2 n) expected time by applying Corol-
lary 7.3(i) in [4] three times, where d = 2. Finally, by repeated applications
of Corollary 7.3(i) and Corollary 7.8 in [4] with d = 2, we can build a data
structure to answer above mentioned queries that requires preprocessing time
P (n) = O(m · polylog(n)) and query time Q(n) = O(n/

√
m · polylog(n)), where

m = n4/3. So by Theorem 1, the total time required for segment intersection
preprocessing is O(n4/3 ·polylog(n)+n ·n1/3 ·polylog(n)) = O(n4/3 ·polylog(n)).

Corollary 1. Given a sequence S of n segments, we can preprocess S for the
windowed segment intersection decision problem in O(n4/3 · polylog(n)) time
using O(n4/3 · polylog(n)) space.

Bichromatic Segment Intersection: Let S = (B ∪ R) be a sequence of bichro-
matic line segments, where B is a sequence of b pairwise disjoint blue segments,
R is a sequence of r pairwise disjoint red segments, and N = b + r. Our data
structure for segment intersection problem can be extended for reporting win-
dowed bichromatic segment intersection problem (intersections of red segments
with blue segments) using the same preprocessing time and space bound. We
assume that every segment in S has a unique timestamp. We build two sets of
the same data structure we presented in this section. Let TB be one structure
where we store b blue segments, make queries with r red segments, and find
valid pairs (sr, sb), where a red segment sr intersects with a blue segment sb. TR

is the analogous structure that gives us all valid pairs (sb, sr). The only minor
change occurs during searching the primary data structures with a query seg-
ment. For example, when we query TB with any red segment sr, first we have to
find the leaf node containing a blue segment with the smallest timestamp such
that t(sb) > t(sr). The rest of the search technique remains unchanged.

Corollary 2. Given a sequence S = (B ∪ R) of N bichromatic line segments,
where B is a sequence of b pairwise disjoint blue segments, R is a sequence

Window Queries for Geometric Problems 205

of r pairwise disjoint red segments, and N = b + r. We can preprocess S for
the windowed bichromatic segment intersection decision problem in O(N4/3 ·
polylog(N)) time using space O(N4/3 · polylog(N)).

Triangle Intersections: The input for this problem is a sequence of n trian-
gles T = (t1, t2, . . . , tn) and we want to preprocess them to answer queries for
windowed triangle intersections. First, we categorize all possible orientations of
triangle intersections. Figure 2 illustrates three orientations of a query triangle
tq that intersects with a triangle ti. We describe inputs and query types for each
of the cases.

Case (a): A sequence of triangles is stored and we ask the query: Given a point
p, is p contained in some triangle?
Case (b): A sequence of points (p1, p2, . . . , pn) (one vertex of each triangle in
(t1, t2, . . . , tn)) is stored and we ask the query: Given a triangle tq, does tq contain
some point pi?
Case (c): A sequence of triangles (t1, t2, . . . , tn) is stored and we ask the query:
Given a triangle tq, does tq overlap some triangle ti?

Fig. 2. Possible orientations of intersections of a query triangle tq (blue) with some
triangle ti (black). (Color figure online)

For cases (a) and (c), by repeated applications of Corollary 7.3(i) and Corollary
7.5 in [4] we can build a data structure that can answer such queries with pre-
processing time O(m · polylog(n)) and query time O(n/

√
m · polylog(n)), where

m = n4/3. For case (b), we build a data structure by applying Corollary 7.5
and Corollary 7.7(i) in [4], which also requires the same preprocessing and query
time as mentioned for the previous two cases. Finally, we put together all cases
in a single data structure DS(T) that we use as the secondary data structure
stored at each node of our main search tree.

Corollary 3. Given a sequence T of n triangles, we can preprocess T for the
windowed triangle intersection decision problem in O(n4/3 · polylog(n)) time
using O(n4/3 · polylog(n)) space.

We observe that our data structure for the windowed triangle intersection
problem can be extended to any convex polygon with c sides, where c is a con-
stant. Solving the windowed c-gon intersection decision problem will add some
extra levels to our structure, and thus increase the polylog factors in the prepro-
cessing time. Hence we obtain the following result.

206 F. Chanchary et al.

Corollary 4. For some constant c, given a sequence S of n convex c-gons (poly-
gons with c sides), we can preprocess S for the windowed c-gon intersection
decision problem in O(n4/3 · polylog(n)) time using O(n4/3 · polylog(n)) space.

3 Points on Maximal Layers

In this section, we present some results for windowed queries on points on max-
imal layers of a given sequence of points in R

d, d ≥ 2. Let P be a set of n
points in R

2. The first maximal layer L1 of P is defined to be the maximal
points under the dominance relation where a point p is said to be dominated
by a point p′ if p[x] ≤ p′[x] and p[y] ≤ p′[y], and p 	= p′. For γ > 1, the γ’th
maximal layer Lγ is the set of maximal points in P − ∪γ−1

l=1 Ll [8]. For a point
q = (q1, q2) ∈ R

2, we define NE(q) to be the set of points in R
2 that lie in the

North-East quadrant of q, i.e., NE(q) = {(a, b) ∈ R
2 : a > q1, and b > q2}, and

SW (q) to be the set of points in R
2 that lie in the South-West quadrant of q,

i.e., SW (q) = {(c, d) ∈ R
2 : c < q1, and d < q2} (see Fig. 3).

Fig. 3. A point (a, b) ∈ NE(q) and a point (c, d) ∈ SW (q).

We present results on windowed queries to count points on the maximal layer,
and to report whether a given point is on the layer γ = 1 or 2 or ≥ 3. We also
solve the problem of reporting all maximal points within a query window that
dominate at least k points, where k is a fixed integer. We call it the k-dominant
points problem. In this paper we present solutions to all problems in R

2. All
generalized solutions to R

d, where d ≥ 2 (see Table 1), can be found in the full
version of the paper.

3.1 pk on the Maximal Layer L1

Suppose P = (p1, p2, . . . , pn) is a sequence of n points in R
2. We want to

preprocess P into a data structure such that given a query interval [i, j] and
an integer k with i ≤ k ≤ j we can report whether the point pk is on the
maximal layer L1 of Pi,j = (pi, pi+1, . . . , pj). We assume that no two points
have the same x-coordinate or the same y-coordinate. Let p0 = (∞,∞) and
pn+1 = (∞,∞) be two new points added to P . Let A[0. . n + 1] be an array,

Window Queries for Geometric Problems 207

where A[i] = pi for all 0 ≤ i ≤ n + 1. For any k with 1 ≤ k ≤ n, we define the
following two functions: α(k) = min{i : i > k and pi ∈ NE(pk)} and β(k) =
max{i : i < k and pi ∈ NE(pk)}

A point pk is on the maximal layer L1 of a sequence of points Pi,j = (pi,
pi+1, . . . , pj) if none of these points dominates pk in [i, j]. We have the following
lemma.

Lemma 2. Suppose 1 ≤ i ≤ k ≤ j ≤ n. The point pk is on the maximal layer
L1 of Pi,j = (pi, pi+1, . . . , pj) if and only if α(k) > j and β(k) < i (Fig. 4).

0

pk

β(k) k α(k)

∈ NE(pk) ∈ NE(pk)

�∈ NE(pk) �∈ NE(pk)
n+1

Fig. 4. A[α(k)] and A[β(k)] of a point pk in array A[0. . n + 1].

Suppose,wehave adata structure that computesα(k) andβ(k) for eachpk ∈ P .
Now we augment array A such that every element A[k] stores two pointers pointing
to A[α(k)] and A[β(k)], respectively. This data structure requires O(n) space. Now
according to Lemma 2, we can answer the query whether a given point pk is on the
maximal layer of Pi,j with i ≤ k ≤ j in O(1) time by checking A[α(k)] and A[β(k)].

Lemma 3. Suppose a sequence of n points P = (p1, p2, . . . , pn) in R
2 is given

and there exists a data structure that computes α(k) and β(k) for each pk ∈ P
using S(n) space and T (n) time. P can be preprocessed into a data structure of
size O(n) in O(T (n)) time such that given a query interval [i, j] and a point pk

with i ≤ k ≤ j, we can report whether pk is on the maximal layer L1 of Pi,j in
O(1) time.

Data structure for computing α(.) and β(.) for points in R
2: Given a

sequence of n points P = (p1, p2, . . . , pn) in plane, we want to build a data struc-
ture to compute α(k) and β(k) for each pk, 1 ≤ k ≤ n. We present the technique
for computing α(k) here (see Algorithm 1). We initialize an empty priority search
tree (PST) T . For 1 ≤ i ≤ n, we query T with q = (−∞, pi,x] × (−∞, pi,y], and
find points that appear before pi in the sequence and are dominated by pi. Let
this set of points be S. According to the definition of α(.), i becomes the α(.)
value for all these points. For each pk ∈ S we set α(k) = i and delete pk from T .
Now we insert pi into T . More specifically we maintain the following invariant.

– For each k with 1 ≤ k ≤ i: if pk is in T , then α(k) ≥ i. If pk is not in T , then
α(k) < i and α(k) has been determined.

208 F. Chanchary et al.

Algorithm 1. SetAlpha(P)
Input : A sequence of n points P = (p1, p2, . . . , pn) ∈ R

2.
1 Initialize an empty PST T .
2 for i = 1 to n do
3 Query T with q = (−∞, pi,x] × (−∞, pi,y].
4 Let S be the output of this query.
5 for each pk ∈ S do
6 Set α(k) = i.
7 Delete pk from T .

8 Insert pi into T .

This data structure requires O(n) space and O(n log n) time to set α(k) for all
pk ∈ P , where 1 ≤ k ≤ n. Similarly we can compute β(k) for all pk by reversing
their order of insertion to T .

Lemma 4. Given a sequence of n points P = (p1, p2, . . . , pn) in R
2, we can

compute the values of α(k) and β(k) for all pk ∈ P , in O(n log n) total time
using O(n) space.

Remark: Bannister et al. [1] used a dynamic data structure for dominance queries
by Mortensen [11] to compute α(.) and β(.) values for all points in R

d. Our data
structure for computing all α(.) and β(.) improves the amount of time by a fac-
tor of O(log n) and the amount of space by a factor of O(log2 n).

Finally from Lemmas 3 and 4 we obtain the following theorem for points in R
2.

Theorem 2. A sequence of n points P = (p1, p2, . . . , pn) in R
2 can be prepro-

cessed into a data structure of size O(n) in O(n log n) time such that given a
query interval [i, j] and a point pk with i ≤ k ≤ j, we can report whether pk is
on the maximal layer L1 of points Pi,j in O(1) time.

3.2 Count Points on Maximal Layer L1

Given a sequence of n points P = (p1, p2, . . . , pn) in R
2, and a query interval

[i, j] with 1 ≤ i ≤ j ≤ n, we want to count the total number of points on the
maximal layer L1 of Pi,j = (pi, pi+1, . . . , pj).

Following Lemma 2, we transform each point pk = (pk,x, pk,y) ∈ P into a
point p′

k = (k, α(k), β(k)) ∈ R
3 for 1 ≤ k ≤ n. Now we have a set of n points

in R
3. We can compute all α(k) and β(k) in O(n log n) time by Lemma 4. We

build a standard 3-dimensional range tree [9], where the first level of the tree is
based on the time of the points. At the second level of the tree, for each canonical
node we build a range tree using the second (α(k)) and the third coordinates
(β(k)) of each point p′

k. The total space requirement is O(n log2 n) and this data
structure can be built in O(n log2 n) time [9].

Window Queries for Geometric Problems 209

We transform a given query interval [i, j] into a query box [i, j]×[j+1,+∞)×
(−∞, i − 1]. The first level of the range tree is queried using interval [i, j]. This
requires O(log n) query time. For each canonical subset in the second level, we
query using [j + i,+∞) × (−∞, i − 1]. This step requires O(log n) time for each
canonical node on the search path. Thus, given any query interval q = [i, j] we
can report the total number of maximal points in Pi,j in O(log2 n) time.

Theorem 3. A sequence of n points P = (p1, p2, . . . , pn) in R
2 can be prepro-

cessed into a data structure of size O(n log2 n) in O(n log2 n) time such that
given a query interval [i, j] we can report the total number of maximal points of
Pi,j in O(log2 n) time.

3.3 pk on Maximal Layer Lγ , Where γ = 2 or γ ≥ 3

Given a sequence of n points P = (p1, p2, . . . , pn) in R
2, a query interval [i, j]

and an integer k with 1 ≤ i ≤ k ≤ j ≤ n, we want to report if point pk is on
maximal layer Lγ , where γ = 2 or ≥ 3 of Pi,j = (pi, pi+1, . . . , pj). First we solve
the problem for γ ≥ 3 and then show that the result for γ = 2 follows.

pk

pl

pm

1st layer above pk

2nd layer above pk

Fig. 5. Point pk on some maximal layer ≥ 3 iff pl ∈ NE(pk) and pm ∈ NE(pl).

Lemma 5. Recall the definitions of α(.) and β(.) from Sect. 3.1. Suppose
1 ≤ i ≤ k ≤ j ≤ n. The point pk is on layer Lγ , where γ ≥ 3 of
Pi,j = (pi, pi+1, . . . , pj) if and only if at least one of the following is true.

1. There exists some l such that l ≥ i, pl ∈ NE(pk), and α(l) ≤ j
2. There exists some l such that l ≤ j, pl ∈ NE(pk), and β(l) ≥ i.

Proof (Lemma5). The ‘if’ part is obvious from the definitions of α(l) and β(l),
and by Lemma 2. To prove the converse, we assume pk to be a point on some
maximal layer Lγ , where γ ≥ 3, of points in Pi,j . Then there must exist some
l and m such that i ≤ l ≤ j, i ≤ m ≤ j, pl ∈ NE(pk) and pm ∈ NE(pl)
(see Fig. 5). Now, point pm can come at one of two positions with respect to pl.
Case 1 : Suppose pm comes after pl, i.e., m > l. Since α(l) ≤ m by the definition
of α(l), we obtain α(l) ≤ m ≤ j. Case 2 : Suppose pm comes before pl, i.e.,
m < l. By the similar argument since β(l) ≥ m by the definition of β(l), we
obtain β(l) ≥ m ≥ j.
�

210 F. Chanchary et al.

We map each point pl = (pl,x, pl,y) ∈ P , where 1 ≤ l ≤ n, to a point in R
4 as

follows. For part (1) of Lemma5, we define a function f(l) = (pl,x, pl,y, l, α(l)) ∈
R

4. We set S = {f(l) : 1 ≤ l ≤ n}. Similarly, for part (2) of Lemma5, we define
a function g(l) = (pl,x, pl,y, l, β(l)) ∈ R

4. We set T = {g(l) : 1 ≤ l ≤ n}. For
each 1 ≤ l ≤ n, α(l) and β(l) can be computed in O(n log n) time. Now we
have two sets S and T each having n points in R

4. We store S and T using
two 4-dimensional range trees. A standard 2-dimensional range tree requires
O(n log n) space and can be built in O(n log n) time. For each additional level
the required time and space increase by a logarithmic factor. Therefore our
4-dimensional range tree can be built using O(n log3 n) space in O(n log3 n)
time. Now to answer the query whether some point pk is on layer ≥3 in Pi,j ,
we define two functions to map our original query (i, j, k) to equivalent queries
in R

4 as follows. For 1 ≤ i ≤ k ≤ j ≤ n, let F (i, j, k) be a function such that
F (i, j, k) = [pk,x,∞) × [pk,y,∞) × [i,∞) × (−∞, j]. Similarly, let G(i, j, k) be a
function such that G(i, j, k) = [pk,x,∞) × [pk,y,∞) × (−∞, j] × [i,∞). It gives
us the following lemma.

Lemma 6

1. There exists some l such that l ≥ i, pl ∈ NE(pk), and α(l) ≤ j if and only if
F (i, j, k) ∩ S 	= ∅.

2. There exists some l such that l ≤ j, pl ∈ NE(pk), and β(l) ≥ i if and only if
G(i, j, k) ∩ T 	= ∅.
Combining Lemmas 5 and 6, the query of the form ‘Given 1 ≤ i ≤ k ≤ j ≤ n,

decide if pk is on maximal layer γ ≥ 3 of Pi,j ’ becomes an equivalent query of
the form ‘Given a set of points in R

4, count the number of points in the range
of 4-dimensional quadrants’. This new query can be answered by querying the
data structures on the point sets S and T using 4-dimensional quadrants defined
by F (i, j, k) and G(i, j, k), respectively. If at least one of these queries returns
some point (i.e., the range count is non-zero) then pk is on layer γ ≥ 3. Each
query takes O(log3 n) time. The following theorem summarizes the results.

Theorem 4. Suppose P = (p1, p2, . . . , pn) is a sequence of n points in R
2. P

can be preprocessed into a data structure of size O(n log3 n) in O(n log3 n) time
such that given a query interval [i, j] and k, where i ≤ k ≤ j, we can answer
whether pk is on some maximal layer Lγ , where γ ≥ 3, of Pi,j = (pi, pi+1, . . . , pj)
in O(log3 n) time.

Corollary 5 follows from the results of Theorems 2 and 4.

Corollary 5. Suppose P = (p1, p2, . . . , pn) is a sequence of n points in R
2. P

can be preprocessed into a data structure of size O(n log3 n) in O(n log3 n) time
such that given a query interval [i, j] and k, where i ≤ k ≤ j, we can answer
whether pk is on the second maximal layer L2 of Pi,j = (pi, pi+1, . . . , pj) in
O(log3 n) time.

Window Queries for Geometric Problems 211

3.4 Report k-Dominant Points

Given a sequence of n points P = (p1, p2, . . . , pn) in R
2, and a fixed constant k,

we want to report all k-dominant points in Pi,j in the query interval [i, j] (i.e.,
we want to report all maximal points of Pi,j = (pi, pi+1, . . . , pj) such that each
point dominates at least k other points of Pi,j). For any l with 1 ≤ l ≤ n, we
define the following. Let pl1 , pl2 , . . . , plk be the first k points that are dominated
by pl and come after l according to this sequence. Similarly, let pl′k , . . . , pl′2 , pl′1
be the last k points that are dominated by pl and come before l according to
the given sequence (see Fig. 6). Then each interval (l′k−a, la) with 0 ≤ a ≤ k
represents k points that are dominated by point pl. Here l′0 = l0 = l. There exist
at most k +1 such intervals for each point in P . We obtain the following lemma.

Lemma 7. Suppose 1 ≤ i < j ≤ n, and k is a fixed integer. A point pl ∈ Pi,j

dominates at least k points in Pi,j if and only if there exists some a such that
i ≤ l ≤ j, la ≤ j and l′k−a ≥ i, where 0 ≤ a ≤ k.

l

ji

β(l)

∈ NE(pl)

α(l)

∈ NE(pl)

1 nl′1l′k l′k−1 · · · lkl1 lk−1

Last K points ∈ SW (pl) First K points ∈ SW (pl)

· · · · · ·

· · ·

and < l and > l

Fig. 6. Proof of Lemma 8. For an example, the highlighted interval (l′k−1, l1) satisfies
the query interval [i, j].

Now for each 1 ≤ l ≤ n, we map each point pl to at most k + 1 points
(l, α(l), β(l), la, l′k−a) ∈ R

5, where 0 ≤ a ≤ k. This gives us a set of at most
(k + 1)n points. From Lemmas 2 and 7 we obtain the following.

Lemma 8. Suppose 1 ≤ i ≤ l ≤ j ≤ n and k is a fixed integer. The point pl is
a maximal point in Pi,j that dominates at least k points in Pi,j, if and only if
i ≤ l ≤ j, there are at least k points in SW (pl) and α(l) > j, β(l) < i.

We use our data structure presented in Algorithm 1 (see Sect. 3.1) to find the
points pl1 , pl2 , . . . , plk and pl′k , . . . , pl′2 , pl′1 for each pl. This time we only insert
points to the structure and no points are deleted from it. Starting with l = 1 we
insert point pl to T and store the last k points that are dominated by pl. Next
we repeat inserting points to T in the reverse order starting from pn to p1 and
store the first k points that are dominated by pl. This process takes O(n log n)
time and O(n) space (by Lemma 4).

212 F. Chanchary et al.

We build a 3-dimensional range tree for the first three coordinates of (k+1)n
points. At the last level, for each canonical node we add a PST that is built on
the last two coordinates of the points stored in that node. It takes O(kn log4 n)
time and O(kn log3 n) space in total. We next map our query interval q = [i, j]
to q′ = [i, j] × [j + 1,∞) × (−∞, i − 1] × (−∞, j] × [i,∞)). If we query our data
structure with q′, each point pl will be reported at most k + 1 times. To report
each point exactly once we build an array R[1. . n] initially storing 0 in all R[l],
1 ≤ l ≤ n. Each time a point pl is reported during query, we first check the value
stored in R[l]. If R[l] contains 0 then pl is seen for the first time; we report pl

and update R[l] ← 1. If R[l] contains 1 then pl is already reported before and
we do not report it this time. The entire query takes O(log4 n+kw) time, where
w is the output size.

Theorem 5. Suppose P = (p1, p2, . . . , pn) is a sequence of n points in R
2 and k

is a fixed integer. P can be preprocessed into a data structure of size O(kn log3 n)
in O(kn log4 n) time such that given a query interval [i, j] we can report all k-
dominant points in Pi,j in O(log4 n + kw) time, where w is the output size.

4 Conclusion

In this paper, we present data structures to solve a number of windowed problems
using geometric objects. Our window data structures can answer windowed inter-
section decision queries for line segments, triangles and convex c-gons in plane.
We also present solutions for windowed queries for counting maximal points, and
reporting whether a given point is on the maximal layers Lγ (γ = 1, 2,≥ 3) and
all k-dominant points in R

d, where d ≥ 2.

References

1. Bannister, M.J., Devanny, W.E., Goodrich, M.T., Simons, J.A., Trott, L.: Windows
into geometric events: data structures for time-windowed querying of temporal
point sets. In: Proceedings of the 26th Canadian Conference on Computational
Geometry (CCCG) (2014)

2. Bannister, M.J., DuBois, C., Eppstein, D., Smyth, P.: Windows into relational
events: data structures for contiguous subsequences of edges. In: Proceedings of
the 24th ACM-SIAM SODA, pp. 856–864. SIAM (2013)

3. Bokal, D., Cabello, S., Eppstein, D.: Finding all maximal subsequences with hered-
itary properties. In: 31st International Symposium on Computational Geometry,
SoCG 2015, pp. 240–254 (2015)

4. Chan, T.M.: Optimal partition trees. Discrete Comput. Geom. 47(4), 661–690
(2012)

5. Chan, T.M., Pratt, S.: Two approaches to building time-windowed geometric data
structures. In: 32nd International Symposium on Computational Geometry, SoCG
2016, pp. 28:1–28:15 (2016)

6. Chanchary, F., Maheshwari, A.: Counting subgraphs in relational event graphs. In:
Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 194–206.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6 16

https://doi.org/10.1007/978-3-319-30139-6_16

Window Queries for Geometric Problems 213

7. Chanchary, F., Maheshwari, A., Smid, M.: Querying relational event graphs using
colored range searching data structures. In: Gaur, D., Narayanaswamy, N.S. (eds.)
CALDAM 2017. LNCS, vol. 10156, pp. 83–95. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-53007-9 8

8. Cormen, T.H.: Introduction to Algorithms. MIT press, Cambridge (2009)
9. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational

Geometry. Springer, Heidelberg (2000)
10. McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)
11. Mortensen, C.W.: Fully dynamic orthogonal range reporting on RAM. SIAM J.

Comput. 35(6), 1494–1525 (2006)
12. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries

over sliding windows. In: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, pp. 635–646. ACM (2006)

https://doi.org/10.1007/978-3-319-53007-9_8
https://doi.org/10.1007/978-3-319-53007-9_8

Bounded Stub Resolution for Some
Maximal 1-Planar Graphs

Michael Kaufmann1, Jan Kratochv́ıl2, Fabian Lipp3(B),
Fabrizio Montecchiani4, Chrysanthi Raftopoulou5, and Pavel Valtr2

1 Universität Tübingen, Tübingen, Germany
mk@informatik.uni-tuebingen.de

2 Charles University, Prague, Czech Republic
honza@kam.mff.cuni.cz

3 Universität Würzburg, Würzburg, Germany
fabian.lipp@uni-wuerzburg.de

4 Università degli Studi di Perugia, Perugia, Italy
fabrizio.montecchiani@unipg.it

5 National Technical University of Athens, Athens, Greece
crisraft@mail.ntua.gr

Abstract. The resolution of a drawing plays a crucial role when defin-
ing criteria for its quality and readability. In the past, grid resolution,
edge-length resolution, angular resolution and crossing resolution have
been investigated. We continue the study of the recently introduced stub
resolution as an additional aesthetic criterion for nonplanar drawings of
graphs. A crossed edge is divided into parts, called stubs, which should
not be too short for the sake of readability. Thus, the stub resolution
of a drawing is defined as the minimum ratio between the length of a
stub and the length of the entire edge containing that stub, over all
the edges of the drawing. As a meaningful graph class, where crossings
are naturally involved, we consider 1-planar graphs (i.e., graphs that
allow planar drawings in which every edge is crossed at most once). In
an attempt to prove the conjecture that the stub resolution of 1-planar
graphs is bounded, we closely investigate a class of maximal 1-planar
graphs arising from double-wheels. We show that each such graph allows
a straight-line 1-planar drawing with stub resolution 1

5
.

1 Introduction

A straight-line drawing of an undirected graph G is a mapping of its vertices
to distinct points in the Euclidean plane, with edges being represented by

This research was initiated at the Bertinoro Workshop on Graph Drawing 2017.
Research by J. Kratochv́ıl and P. Valtr was supported by project CE-ITI no.
P202/12/G061 of the Czech Science Foundation (GAČR). F. Lipp was partially
supported by Cusanuswerk. Research of Fabrizio Montecchiani supported in part
by the project: “Algoritmi e sistemi di analisi visuale di reti complesse e di grandi
dimensioni”- Ricerca di Base 2017, Dipartimento di Ingegneria dell’Universita degli
Studi di Perugia”.

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 214–220, 2018.
https://doi.org/10.1007/978-3-319-74180-2_18

Bounded Stub Resolution for Some Maximal 1-Planar Graphs 215

straight-line segments connecting the points representing their end-vertices. We
will only consider drawings in which no edge passes through a vertex (other than
its end-points) and no three edges cross in the same point of the plane.

An edge e of a drawing Γ that is crossed k times is divided into k + 1 parts
called stubs. Let le and se be the length of e and of its shortest stub, respectively.
The stub resolution of e is sre = se

le
. The stub resolution of Γ is the minimum

stub resolution over all edges of Γ , i.e., srΓ = mine∈Γ sre.
A drawing is aesthetically pleasing if all stubs of an edge are as equal in length

as possible. That is, ideally, sre = 1
k+1 if e is crossed by k other edges. In this

paper we consider straight-line 1-planar graphs, i.e., graphs that allow straight-
line drawings in which every edge is crossed by at most one other edge. For such
graphs the optimal stub resolution might be 1

2 , but this cannot be always attained.
In a companion paper [2] we show that each straight-line drawing of the complete
graph on five vertices K5 has stub-resolution strictly smaller than 1

2 . A natural
question raised in [2] asks whether the stub-resolution of straight-line 1-planar
graphs is bounded from below, i.e., if there is a constant δ > 0 such that every
straight-line 1-planar graph allows a straight-line 1-planar drawing such that sre >
δ for every edge e of G.

Straight-line 1-planar graphs have been studied by Didimo in [1] who showed
that every straight-line 1-planar graph on n vertices has at most 4n − 9 edges
and that this bound is achieved by infinitely many graphs. A large class of these
optimal straight-line 1-planar graphs is obtained by deleting a single edge from
the (extended) double wheel, which is the graph obtained by taking the second
power of an even cycle Ck and adding a pair of vertices connected to all vertices
of Ck (see also the more formal definition at the beginning of the next section).
The main result of this paper is to show that these graphs have straight-line
1-planar drawings with stub resolution bounded (from below) by 1

5 . We find this
result quite surprising. It seems crucial for our construction that some edges in
it are much longer than others — the ratios between the lengths of some pairs
of edges are exponentially large.

Straight-line 1-planar graphs form an important proper subclass of the class
of 1-planar graphs which are graphs that allow (not necessarily straight-line)
drawings in which every edge is crossed by at most one other edge (see the
recent survey [3] on 1-planar graphs). In the above mentioned companion paper
[2] we show that 1-planar graphs have 1-planar drawings with stub resolution
bounded from below by a positive constant when we allow a bounded number
of bends on the edges.

2 Constructions with Large Stub Resolution

For k ≥ 3, we define the double-wheel DWk (frequently called the extended
double-wheel in the literature) as the graph obtained by taking the second power
(Ck)2 of a cycle Ck of an even length k and adding two special vertices connected
to all vertices of Ck. Thus, DWk has n := k + 2 vertices and 4n − 8 = 4k edges.

216 M. Kaufmann et al.

2.1 Semi-Double-Wheel

We first establish constant lower bounds on the stub resolution of certain
straight-line 1-planar drawings having almost as many edges as possible.

Theorem 1. For every n ≥ 4, there is a 1-plane straight-line drawing of a graph
on n vertices with 4n − 10 edges and with stub resolution 1/5.

Proof. Consider a double-wheel DWk with vertices along the k-cycle denoted by
a1, . . . , ak and with the two special vertices denoted s and t.

The semi-double-wheel SDWk is obtained in the same way as DWk with
the exception that we use the path Pk = a1a2 . . . ak instead of Ck during the
construction. Equivalently, SDWk is obtained from DWk by removing the three
edges a1ak, a1ak−1 and a2ak. The graph SDWk has n := k + 2 vertices and
4k − 3 = 4n − 11 edges.

To prove Theorem 1 we show that SDWk has a straight-line 1-plane drawing
with stub resolution 1/5, even after we add the edge st to it. We determine
the drawing by setting the coordinates of the vertices of SDWk (see Fig. 1).
For i := 1, . . . , k, we put ai := (2i, (−1)i+1). Further, we put s := (0,−9) and
t := (0, 9). For each odd i, 3 ≤ i ≤ k − 1, the edges ais and ai−1ai+1 cross in
the point ((4/5)2i,−1) and the stub resolution of each of them is exactly 1/5.
Similarly, for each even i, i ≤ k−1, the edges ait and ai−1ai+1 cross in the point
((4/5)2i, 1) and the stub resolution of each of them is also 1/5. All the other
pairs of edges do not intersect. This is true also for the additional edge st. This
finishes the proof of Theorem 1. ��

2.2 Double-Wheel Without an Edge

Here we show that there are arbitrarily large straight-line 1-planar drawings with
the maximal number of edges and with the stub resolution bounded from below
by a positive constant.

There are three types of edges in the double-wheel DWk for an even k ≥ 6.
The three types are:

C-edges: the k edges of the cycle Ck,
B-edges: the k edges of (Ck)2 not lying on the cycle Ck, and
A-edges: the 2k edges connecting the two special vertices with the k vertices

of Ck.

Theorem 2. If we remove from DWk an A-edge or a B-edge, the obtained
graph is a 1-planar graph with n vertices and 4n − 9 edges which has a 1-planar
straight-line drawing with stub resolution 1/5 for infinitely many values of k.

Proof. Case 1: Removing an A-edge from DWk:
We assume that k is equal to 2 (mod 4) and that it is at least 10. We use

vertices with the following coordinates (see Fig. 2):
ai := (2i, (−1)i+1 + 17 · 2i+1−k/2), for i = 1, 2, ..., k/2 − 1,
a0 := (0,−1),

Bounded Stub Resolution for Some Maximal 1-Planar Graphs 217

x

y

a5

a4

a3

a2

a1

s

t

Fig. 1. Drawing of SDW5 with stub resolution 1/5. The edges of P5 are drawn black,
the edges of (P5)

2 not in P5 are drawn blue, and the edges from a path vertex to a
special vertex are drawn red. Adding the dashed green edge st does not change the
stub resolution of the drawing. (Color figure online)

ai := (−2−i, (−1)−i+1 + 17 · 2−i+1−k/2), for i = 1 − k/2, 2 − k/2, ...,−2,−1,
[thus, ai and a−i are always reflections of each other along the y-axis]
z := (0, 15),
s := (0,−9),
t := (0, 9).
The vertices of the double wheel DWk are embedded in the plane such that

the k-cycle Ck is the cycle Ck = a1−k/2, a2−k/2, ..., a−1, a0, a1, ..., ak/2−1, z, and
the vertices s and t are the two special vertices of DWk.

Now, a straight-line graph DW−A
k with n = k + 2 vertices and 4n − 9 =

4k − 1 edges is obtained by drawing all the edges of DWk, except the A-edge
sz, as the straight-line segments between the corresponding pairs of vertices.

218 M. Kaufmann et al.

a5

a6

a−5

a−6

x

y

z

t

s

a−4

a−2
a0

a2

a3
a4

Fig. 2. Drawing of DW−A
14 with stub resolution 1/5. The graph has 16 vertices and

55 = 4 · 16− 9 edges. The fourteen C-edges are drawn black, the fourteen B-edges are
drawn blue, and the twenty-seven A-edges are drawn red. (Color figure online)

The stub resolution of DW−A
k is 1/5, which can be seen as follows. For most of

the pairs of crossing edges, we can use the same argument as in the construction
of the semi-double-wheel because the drawing is symmetric about the y-axis, and
on the right of the y-axis, the point/vertex set (including s and t, without a0 and
z) is just an affine transformation of the construction of the semi-double-wheel
with (k/2 − 1) + 2 vertices. [The affine transformation keeps the x-coordinates
fixed and for each point it adds a (small) constant multiple of the x-coordinate
to the y-coordinate. More precisely, it is the affine transformation which maps
(x, y) to (x, y + 17 · 21−k/2 · x).] Observe that affine transforms do not change
stub resolutions. Thus, we only have to look at two types of pairs of crossing
edges:

(i) those pairs where at least one of the edges properly crosses the y-axis,
(ii) those pairs which involve at least one of the vertices a0 and z.

There is one pair of both types (which is the only pair of type (i)):

ta0 vs. a−1a1.

Bounded Stub Resolution for Some Maximal 1-Planar Graphs 219

Additionally, there are the following four pairs of type (ii):

tak/2−1 vs. zak/2−2,

ta1−k/2 vs. za2−k/2,

a0a2 vs. sa1,

a0a−2 vs. sa−1.

In the first two pairs of type (ii), the stub resolution of each edge is 1/3 (due
to the choice of the y-coordinate of z). In the last two pairs of type (ii), the
stub resolution of the edge a0a2 (a0a−2, resp.) is bigger than 1/5 and the stub
resolution of the edge sa1 (sa−1, resp.) is exactly 1/5. In the pair of both types,
the edge a−1a1 has stub resolution 1/2 and the stub resolution of the other edge
is approaching 1/5 from above (for k large enough) as k goes to infinity. This
finishes the argument in Case 1 (double-wheel minus an A-edge).

a5

a6

a−5

x

y

t

s

a4a3

a2
a0

a−2

a−4

Fig. 3. Drawing of DW−B
12 with stub resolution 1/5. The graph has 14 vertices and 47

edges. The twelve C-edges are drawn black, the eleven B-edges are drawn blue, and
the twenty-four A-edges are drawn red. (Color figure online)

220 M. Kaufmann et al.

Case 2: Removing a B-edge from DWk:
We use almost the same construction as above with the constant 17 replaced

by 20. We remove the two points a1−k/2 and z from the cycle Ck and keep the
circular order of the remaining k−2 points unchanged (see Fig. 3). This gives us
a (k −2)-cycle. The points s and t have the same coordinates as above. Then we
consider the corresponding double-wheel DWk−2 on (k − 2)+2 = k vertices and
remove the B-edge a3−k/2ak/2−1. The constant 20 was chosen in such a way that
the stub resolution of the edges in the crossing pair tak/2−1 vs. a2−k/2ak/2−2 is
exactly 1/5 resp. 3/10. For k large enough, the stub resolution of other edges
is at least 1/5 by the reasoning as above. This finishes the argument in Case 2
(double-wheel minus a B-edge). This finishes the proof of the theorem. ��

3 Conclusion

In this paper we continued the study of the stub resolution as an aesthetic cri-
terion for drawings of nonplanar graphs, in particular of 1-planar graphs. We
showed that the stub resolution is bounded for a certain large class of optimal
straight-line 1-planar graphs arising from the double-wheel. The result may seem
somewhat isolated, but we feel that it is crucial for understanding the stub reso-
lution of 1-planar graphs and that it will shed light onto the general conjecture.

References

1. Didimo, W.: Density of straight-line 1-planar graph drawings. Inf. Process. Lett.
113(7), 236–240 (2013)

2. Kaufmann, M., Kratochv́ıl, J., Lipp, F., Montecchiani, F., Raftopoulou, C., Valtr, P.:
The stub resolution of 1-planar graphs (manuscript)

3. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. CoRR, abs/1703.02261 (2017)

On Structural Parameterizations of Firefighting

Bireswar Das, Murali Krishna Enduri, Neeldhara Misra,
and I. Vinod Reddy(B)

IIT Gandhinagar, Gandhinagar, India
{bireswar,endurimuralikrishna,neeldhara.m,reddy vinod}@iitgn.ac.in

Abstract. The Firefighting problem is defined as follows. At time
t = 0, a fire breaks out at a vertex of a graph. At each time step t � 0, a
firefighter permanently defends (protects) an unburned vertex, and the
fire then spread to all undefended neighbors from the vertices on fire.
This process stops when the fire cannot spread anymore. The goal is to
find a sequence of vertices for the firefighter that maximizes the number
of saved (non burned) vertices.

The Firefighting problem turns out to be NP-hard even when
restricted to bipartite graphs or trees of maximum degree three. We study
the parameterized complexity of the Firefighting problem for various
structural parameterizations. All our parameters measure the distance to
a graph class (in terms of vertex deletion) on which the Firefighting
problem admits a polynomial time algorithm. Specifically, for a graph
class F and a graph G, a vertex subset S is called a modulator to F if
G \ S belongs to F. The parameters we consider are the sizes of modula-
tors to graph classes such as threshold graphs, bounded diameter graphs,
disjoint unions of stars, and split graphs.

To begin with, we show that the problem is W[1]-hard when parame-
terized by the size of a modulator to diameter at most two graphs and
split graphs. In contrast to the above intractability results, we show that
Firefighting is fixed parameter tractable (FPT) when parameterized
by the size of a modulator to threshold graphs and disjoint unions of
stars, which are subclasses of diameter at most two graphs. We further
investigate the kernelization complexity of these problems to find that
Firefighting admits a polynomial kernel when parameterized by the
size of a modulator to a clique, while it is unlikely to admit a polynomial
kernel when parameterized by the size of a modulator to a disjoint union
of stars.

1 Introduction

The Firefighting problem was introduced by Hartnell [15] to model the spread
of diseases and computer viruses. It is a turn-based game between two players
(the “fire” and the “firefighter”), which is played on a graph G as follows. Initially,
at time t = 0, a fire starts at a vertex s, at each following time step the following

M. K. Enduri—Supported by Tata Consultancy Services (TCS) research fellowship.
N. Misra—Supported by a DST-INSPIRE Fellowship.

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 221–234, 2018.
https://doi.org/10.1007/978-3-319-74180-2_19

222 B. Das et al.

happens. A firefighter defends one vertex which is not on fire, and the fire then
spreads from each burning vertex to all its undefended neighbors. Once a vertex
is defended it remains so for all time intervals. The process stops when the fire can
no longer spread. The natural algorithmic question associated with this game is
to find a strategy that optimizes some desirable criteria, for instance, maximizing
the number of saved vertices [3], minimizing the number of rounds, the number
of firefighters per round [4], or the number of burned vertices [3,9], and so on.
These questions are well-studied in the literature, and while most variants are
NP-hard, approximation and parameterized algorithms have been proposed for
various scenarios. In this work, we will focus on the goal of finding a sequence of
defending vertices that maximizes the number of saved (not burned) vertices and
we refer to this as the Firefighting problem. We also use Saving k-Vertices
to refer to the decision version of this problem, where we are given a demand k

and the goal is to save at least k vertices.
We study the parameterized complexity of Firefighting with respect to

various structural parameters. In particular, our focus is on distance-to-triviality
parameterizations, wherein we identify classes of graphs on which the Fire-
fighting problem is solvable in polynomial time, and understand the parame-
terized complexity of the problem parameterized by the distance of a graph to
these graph classes. In this paper, our notion of distance to a graph class in the
vertex deletion distance. More precisely, for a class F of graphs, we say that X

is an F-modulator of a graph G if G \ X ∈ F. If the size of a smallest modulator
to F is k, we also say that the distance of G to the class F is k. Throughout this
paper, we will assume that a modulator is given to us as a part of the input. This
assumption is without loss of generality since such modulators can be computed
in FPT time. We are now ready to describe our results.

Our Contributions. The Firefighting problem is FPT when parameterized
by the vertex cover and distance to a clique parameterizations. On the other
hand, it is para-NP-hard when parameterized by feedback vertex set, tree-width
and clique-width [10]. However, the parameter vertex cover is very restrictive
and significantly large for dense graphs. This motivates us to consider parame-
ters that are intermediate between vertex cover and clique-width. In this spirit,
Ganian [14] studied the parameterized complexity of Firefighting problem for
parameter twin-cover which is a generalization of vertex cover and showed that
Firefighting is FPT with respect to twin-cover. Recently Chleb́ıková et al. [5]
showed that the problem is FPT parameterized by distance to cluster graphs
which is a generalization of twin-cover.

We study the parameterized complexity of the Firefighting problem with
respect to the distance from following graph classes: threshold graphs, disjoint
union of stars, disjoint union of graphs of diameter at most two, and split graphs.
Studying the parameterized complexity of Firefighting with respect to these
parameters improves the understanding of the boundary between tractable and
intractable parameterizations. For instance, the parameterization by distance to
cluster graphs (as studied by [5]) directly generalizes both vertex cover and dis-
tance to clique Fig. 1. Observe that cluster graphs are precisely the graphs whose

On Structural Parameterizations of Firefighting 223

FPT

W[1]-hardPara NP-hard

Poly-kernel

No Poly-kernel

Vertex cover

Distance to

threshold graphs *

Distance to

split graphs *

Twin cover

Distance

to cluster

Distance

to cographs

Distance

to clique *

Rank-width,

Clique-width

Feedback

vertex set

Tree-width

Distance

to stars*

Distance to

diameter ≤ 2 graphs*

Distance to

diameter ≤ 3 graphs*

Fig. 1. A schematic showing the parameterized complexity of Firefighting with
respect to various structural graph parameters. There is a line between two param-
eters if the parameter below is larger than the parameter above. Results shown in this
paper are marked by an asterisk (*).

connected components have diameter one, and a natural generalization to con-
sider is the class of graphs whose connected components have diameter two.
Here, we show that there is a transition in complexity: the problem becomes
W[1]-hard. As a natural intermediate problem, we consider the subclass of graphs
where every connected component is a star. Here, using ideas similar to the ones
that lead to the FPT algorithm for the distance to cluster parameter, we obtain
a FPT algorithm. The case analysis here is more delicate because we have to
distinguish between the central vertex and the leaves.

On the other hand, the distance to threshold graphs parameter directly gen-
eralizes the distance to clique parameter, while the distance to stars parameter
is a generalization of vertex cover. For both of these parameters, we establish
that Firefighting is FPT. These being smaller parameters, our results improve
several known algorithms. Note that the next “natural” parameter to consider
after distance to stars hierarchy is the feedback vertex number, or the distance to
forests; however here the problem is already NP-hard on trees, leading to para-
NP-hardness. Similarly, a natural next step from distance to threshold graphs is
the distance to split graphs, but here also we demonstrate W[1]-hardness. Finally,
a promising generalization from the distance to cluster graphs is the distance to
cographs, and here we leave the parameterized complexity of the problem open.

We also consider the kernelization complexity of the problem and make the
following advances: for the distance to clique parameterization, we demonstrate a

224 B. Das et al.

quadratic kernel, while for the distance to stars parameterization, we show that a
polynomial kernel is unlikely under standard complexity-theoretic assumptions.
The kernelization complexity of the problem relative to vertex cover, however,
remains an interesting open problem. We summarize our results below.

• We show that the problem is fixed parameter tractable (FPT) when param-
eterized by the size of a modulator to threshold graphs, cluster graphs and
disjoint unions of stars.

• We further investigate the kernelization complexity of these problems to find
that Firefighting admits a polynomial kernel when parameterized by the size
of a modulator to a clique, while it is unlikely to admit a polynomial kernel
when parameterized by the size of a modulator to a disjoint union of stars.

• Finally, in contrast to the tractability results, we show that Firefighting
is W[1]-hard when parameterized by the distance to split graphs. In fact, the
problem remains W[1]-hard with respect to the combined parameter involving
the size of the modulator and the number of vertices to be saved.

Methodology. By and large, we use a standard approach for the FPT algorithms:
we guess the behavior of the solution on the modulator and attempt to find a
solution consistent with the guessed behavior. The second part relies on exploit-
ing the structural properties of G \ X, which is the part of the graph outside
the modulator. Usually one is able to group the vertices of G \ X based on the
structure of their neighborhoods in the modulator, and argue that all vertices
of the same “type” have a similar behavior, which leads to a controlled search
space. In the case of threshold graphs, we are able to prove that simple greedy
techniques work within a particular type. On the other hand, for disjoint unions
of stars, we have to account for several scenarios, and the classification of G\X is
more intricate, and accordingly, we have to account for more cases in the analy-
sis. The hardness results follow from reductions using standard techniques, while
the kernelization algorithm uses the fact that when G \ X is a large clique, sev-
eral vertices behave in a similar fashion, and this observation allows us to replace
the large clique with a much smaller one—a careful argument is required, how-
ever, to demonstrate that the instance we constructed in this fashion is indeed
equivalent to the original.

Related Work. The Firefighting problem is known to be NP-hard even for spe-
cial classes of graphs, including bipartite graphs [18], trees of maximum degree
three [10] and cubic graphs [16]. The firefighter problem can be solved in lin-
ear time on split graphs and co-graphs [13]. From the parameterized complexity
point of view, the firefighting problem is W[1]-hard when parameterized by the
number of saved vertices for bipartite graphs [1]. Cai et al. [3] propose several
FPT algorithms and polynomial kernels, and they consider the following param-
eters: the number of saved vertices, the number of saved leaves, and the number
of protected vertices. Leung [17] use the random separation method to give FPT
algorithms on general graphs parameterized by the number of burnt vertices and
on degree bounded graphs and unicyclic graphs parameterized by the number of

On Structural Parameterizations of Firefighting 225

protected vertices. We refer the reader to the survey [11], as well as the references
within, for more details.

2 Preliminaries

In this section, we introduce the notation and the terminology that we will need
to describe our algorithms. Most of our notation is standard. We use [k] to
denote the set {1, 2, . . . , k}. All graphs we consider in this paper are undirected,
connected, finite and simple. For a graph G = (V, E), let V(G) and E(G) denote
the vertex set and edge set of G respectively. An edge in E between vertices x

and y is denoted as xy for simplicity. For a subset X ⊆ V(G), the graph G[X]

denotes the subgraph of G induced by vertices of X. Also, we abuse notation
and use G \ X to refer to the graph obtained from G after removing the vertex
set X. For a vertex v ∈ V(G), N(v) denotes the set of vertices adjacent to v and
N[v] = N(v) ∪ {v} is the closed neighborhood of v.

Graph Classes. We now define the graph classes that we will encounter fre-
quently.

• A graph is a split graph if its vertices can be partitioned into a clique and an
independent set. Split graphs are P5-free [12].

• The class of P4-free graphs are called co-graphs.
• A graph is a threshold graph if it can be constructed from the one-vertex

graph by repeatedly adding either an isolated vertex or a universal vertex.
• A cluster graph is a disjoint union of complete graphs. Cluster graphs are

also P3-free graphs.

It is easy to see that a graph that is both split and co-graph is a threshold
graph. We denote threshold graph (or a split graph) with G = (C, I) where C

and I denote a partition of G into a clique and an independent set. For any two
vertices x, y in a threshold graph G we have either N(x) ⊆ N[y] or N(y) ⊆ N[x].
For a class of graphs F, the distance to F of a graph G is the minimum number
of vertices to be deleted from G to get a graph in F.

Parameterized Complexity. A parameterized problem is a pair Q ⊆ Σ∗ × N,
where Σ is fixed finite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the
parameter. We say that a parameterized problem Q is fixed parameter tractable
(FPT) if there exists an algorithm and a computable function f : N → N such
that given (x, k) ∈ Σ∗ × N the algorithm correctly decides whether (x, k) ∈ Q in
f(k)|(x, k)|O(1) time. The function f is usually superpolynomial and only depends
on parameter k. The class XP contains the problems which are solvable in time
|(x, k)|f(k), the exponent of the running time depends on the parameter k. A
problem is para-NP-hard if it is NP-hard for some fixed values of the parameter.
The complexity class of parameterized intractability is called W[1] (see [8] for
the definition). A kernelization algorithm is a polynomial time algorithm that
takes an instance (x, k) of a parameterized problem Q as input and outputs

226 B. Das et al.

an equivalent instance (x ′, k ′) of P such that |x ′| � h(k) for some computable
function h and k ′ � k. If h is polynomial then we say that (x ′, k ′) is a polynomial
kernel. Let P and Q be two parameterized problems. A parameterized reduction
from P to Q is a mapping g : Σ∗ → Σ∗ such that (i) for all x ∈ Σ∗ we have x

is a yes instance of P ⇔ g(x) is a yes instance of Q. (ii) g can be computed in
f(k)|x|O(1) time, where f is computable function and k is the parameter of x. (iii)
k ′ � h(k) for some computable function h, where k and k ′ are parameters of x

and g(x) respectively. For more details on parameterized complexity the reader
is referred to [6,8].

We now briefly justify our assumption about the modulators being given as
a part of the input to our problems. Consider the following result.

Lemma 1 [2]. Let F be a graph class characterized by the finite forbidden
induced subgraphs H1, · · · , Hl. Given a graph G and integer k, there is an FPT
algorithm that finds a subset X ⊆ V(G) of size at most k such that G \ X ∈ F in
O(dknd), where d is the size of largest forbidden subgraph.

The class of cluster graphs, threshold graphs and split graphs are P3, P4 are
P5 free respectively. By using above lemma, Given a graph G and integer k, the
problem of deciding whether there exists a set X of vertices of size at most k

whose deletion results in a cluster graph, threshold graph and split graph is fixed
parameter tractable.

The Firefighting Problem. Finally, we formally define the problems that we con-
sider in this paper, where F is a class of graphs or a graph property.

Firefighting [F]
Input: A graph G, a vertex s, a modulator X ⊆ V(G) such

that G \ X ∈ F.
Parameter: The size k := |X| of the modulator to F.
Question: Find a strategy that maximizes the number of saved

vertices when a fire starts at s?

Saving k-Vertices[F]
Input: A graph G, a vertex s, a modulator X ⊆ V(G) such

that G \ X ∈ F, and an integer k.
Parameter: The size � := |X| of the modulator to F.
Question: Does there exists a strategy that saves at least k ver-

tices when a fire starts at s?

Whenever F is clear from the context, we drop the explicit mention of it in
the name of the problem. We also abuse notation and use k differently in the
two definitions, to retain consistency with standard notation when we present
reductions in the context of Saving k-Vertices.

On Structural Parameterizations of Firefighting 227

3 The Parameterized Complexity of Firefighting

Let (G, s) be an instance of Firefighting problem. The vertices that have
not been burned by the fire at the end of the process are called saved (including
defended vertices). A vertex is burned if it is on fire. A strategy for Firefighting
instance (G, s) is a sequence S of vertices {v1, · · · , vl} where vi represents the
position of the firefighter at time step i. We say that sequence S is a valid
strategy for (G, s) if vertex vi is not burning at the start of time step i and the
process stops at time step l. A strategy S is called minimal if no subset of S

yields a strategy that saves same number of vertices as S. A strategy is optimal
if it is minimal and saves maximum number of vertices.

The following results from the literature will be useful for our algorithms. We
give full proofs for the sake of completeness. The proofs of statements marked
with a (�) are deferred to the full version [7], due to lack of space.

Lemma 2 [13]. Let G be a graph and s be a vertex of G. Given an ordered set S

of vertices of G, we can verify whether S is a valid strategy for the Firefighting
problem on (G, s) and count the number of vertices saved by S in O(n+m) time,
where n and m denote the number of vertices and edges in G respectively.

Proof. Let S = {v1, · · · , vk} is strategy in this order. To verify whether the
sequence S is a valid strategy, we do BFS on the graph G starting from s. Find the
distance d(s, v) from the source s to each vertex v of S on graph G[(V(G)\S)∪{v}].
For i = 1 to k, If S is a valid strategy then distance from source s to the vertex
vi, d(s, vi) � i, otherwise vertex vi will be burned before time step i. Observe
that the number of vertices burned by S in G equal to the number of vertices
reachable from s in G \ S, which can be found by applying BFS on the graph
G \ S starting from s. ��

The proof of the following Lemma follows from the Lemma 2.

Lemma 3. Let S be an optimal strategy for the Firefighting problem on (G, s)

then the number of vertices burned by S in G is equal to the number of vertices
reachable from s in G \ S.

Lemma 4 [13]. Let (G, s) be an instance of the Firefighting problem, and let
l be the length of a longest induced path in G starting from s. Then any optimal
strategy can defend at most l vertices.

Proof. Let S = {v1, · · · , vt} be an optimal strategy defended in this order. Since
S is a valid strategy there is an induced path P from s to vt such that all the
vertices on P are burned except vt. Let P be a shortest such path, then P contains
at least t+1 vertices: otherwise vt will be burned before time t. Since the length
of longest induced path in G starting from s is l, we have t + 1 � l + 1 which
implies t � l. ��

Lemma 5 [13]. The Firefighting problem can be solved in O(nl) time on
graphs with length of longest induced path is at most l − 1.

228 B. Das et al.

Proof. Let (G, s) be an instance of firefighting problem. Since the length of the
longest induced path in G is at most l. From Lemma 4 any optimal strategy can
defend at most l vertices in G. We list out all possible subsets S of V(G) of size
at most l in O(nl) time. For each such subset S using Lemma 2 test whether
S is valid strategy and count the number of vertices saved by S. The optimal
strategy is the one which saves maximum number of vertices. ��

3.1 Parameterization by Distance to Threshold Graphs

In this section we give an FPT algorithm for the Firefighting problem parame-
terized by the distance to threshold graphs. Without loss of generality, we assume
that threshold graph is connected, otherwise all the connected components that
do not contain the source vertex are trivially saved.

Lemma 6. Let (G, s) be an instance of Firefighting problem. Then any opti-
mal strategy can defend at most 2k+2 vertices, where k is the distance to threshold
graphs.

Proof. We know that fire always spreads along an induced path in G. As the
length of the longest induced path in G is at most 2k + 2, from Lemma 4 any
optimal strategy can defend at most 2k + 2 vertices in G. ��

Let G be a graph and X ⊆ V(G) of size k such that G \ X = (C, I) is a
threshold graph. We partition the vertices of clique C and independent set I in
G \ X based on their neighborhoods in X. In particular, for every subset Y ⊆ X,
let: TC

Y := {x ∈ C | N(x) ∩ X = Y} and T I
Y := {x ∈ I | N(x) ∩ X = Y}.

Notice that in this way we can partition vertices of G \ X into at most 2k+1

subsets (called types), two for each Y ⊆ X. Observe that all vertices in a type
have same neighbors in X, where as they may have different neighbors inside
the threshold graph. The following result shows that when we need to choose
a defending vertex from a type the best strategy is to defend a highest degree
vertex in that type. For a strategy S, let sav(S) denote the number of vertices
saved by the strategy S.

Lemma 7. Let v1, v2 be two vertices in a type T such that N(v2) ⊆ N[v1]. Let S

be a strategy containing v2, which is defended at time step i. If v1 /∈ S and not
burning at the start of time step i then sav(S) � sav(S ′) where S ′ is obtained
from S by replacing v2 with v1 at time step i.

Proof. Using Lemma 3, the vertices burned by S in G are the vertices which are
reachable from s in G \ S. We show that every vertex u which is reachable from
s in G \ S ′ is also reachable from s in G \ S. Let P be a path between s and u

in G \ S ′. If v2 /∈ P then P is a path in G \ S. If v2 ∈ P, then using the fact that
N(v2) ⊆ N[v1], we can see that P ′ = P \ {v2} ∪ {v1} is a path between s and u in
G \ S. Therefore the number of vertices burned by S is at least the number of
vertices burned by S ′, which implies sav(S) � sav(S ′).

On Structural Parameterizations of Firefighting 229

Our FPT algorithm now follows by guessing, for each step in the defending
sequence, if the vertex is from the modulator or the type of the vertex from
G \ X. Then it simulates the sequence (by substituting for each guess of a type,
a greedily chosen vertex from that type) to check if it is a valid solution.

Theorem 1. The Firefighting problem can be solved in O((2k+1+k)2k+2(n+

m)) time when parameterized by size of modulator to threshold graphs.

Proof. Partition the vertices of G \X into at most 2k+1 sets. Each time when we
want to defend a vertex we only choose from 2k+1 (types) +k (size of X). From
Lemma 7 we know which vertex has to be defended in a given type.

From Lemma 6 it is clear that we only need to defend at most 2k + 2 times,
therefore there are at most (2k+1 + k)2k+2 possible firefighting strategies. For
each such strategy S, using Lemma 2, test whether S is valid strategy and count
the number of vertices saved by S. The strategy which saves maximum number
of vertices is the optimal strategy. Therefore this procedure takes O((2k+1 +

k)2k+2(n + m)) time. ��

3.2 Parameterization by Distance to Stars

In this section we design an FPT algorithm for the Firefighting problem
parameterized by the distance to stars. Recall that this is the minimum number
of vertices to be deleted from G to get a disjoint union of stars. Let X be a
k-sized modulator to disjoint union of stars. Our first observation follows easily
from the bound on the length of the longest induced path.

Lemma 8. Let (G, s) be an instance of Firefighting problem. Any optimal
strategy can defend at most 4k+ 2 vertices, where k is distance to disjoint union
of stars.

Proof. We know that fire always spreads along an induced path in G. As the
length of maximum induced path in G is at most 4k + 2, from Lemma 4 any
optimal strategy can defend at most 4k + 2 vertices in G. ��

We now define a notion of equivalent stars, which will lead us to partitioning of
the stars in G \ X into types as before. For a star S with center c in G \ X, we
use B(S) to denote the set of vertices in S that have a neighbor in X, and call
these the border vertices. Further, for a nonempty subset Y ⊆ X, we use BY(S) to
denote the set of vertices in S whose neighborhood in X is exactly Y.

Definition 1. Let X ⊆ V(G) such that G \ X is a disjoint union of stars. We
call two stars Si and Sj are equivalent if, (a) N(ci) = N(cj), where ci and cj are
the centers of stars Si and Sj respectively. (b) N(Si) = N(Sj), (c) |B(Si)| = |B(Sj)|

and (d) For every non-empty subset Y ⊆ X, we have that |BY(Si)| = |BY(Sj)|.

For an equivalence class T , we use bT to denote the size of the border for any
star in T . Our next result bounds the number of equivalence classes. The bound

230 B. Das et al.

follows roughly from the fact that one can associate a signature with an equiv-
alence class based on condition (c) in Definition 1, which, in turn, can be put
in one-one correspondence with strings of length 2k over an alphabet of size �,
where � is the maximum possible value of |B(S)| in G \ X.

Lemma 9. Let � be defined as above and let X ⊆ V(G) be a modulator to disjoint
union of stars of size k. Then, the stars of G \ X can be partitioned into at
most O(22k�2

k
) equivalence classes.

Proof. First, partition the stars in G \X into at most 22k sets such that all stars
in each set satisfies conditions (a) and (b) of Definition 1. Now each set of the
partition can be further divided based on the value of |B(Si)| for each star Si

in that set. As 1 � |B(Si)| � � for all Si ∈ G \ X, each set can be partitioned
into at most � sets. In order to satisfy condition (d) in Definition 1 each set
further partitioned into �2

k−1 sets. Combining all, there are at most O(22k�2
k
)

equivalent star partitions of stars in G \ X. ��
Our FPT algorithm begins by guessing the behavior of the solution on the

modulator, and builds on the fact that there are a bounded number of equivalence
classes. We defer the details of this algorithm to a full version because of space
constraints, and note that it is similar—in spirit—to the approach used for the
cluster vertex deletion parameter in [5].

Theorem 2. [�]. The Firefighting problem is FPT when parameterized by
the distance from the class of the disjoint union of stars.

3.3 Parameterization by Distance to Diameter Two Graphs

In this section, we show that Saving k-Vertices is W[1]-hard when parame-
terized by k and distance to diameter two graphs by giving a reduction from the
k-clique problem. The reduction is similar, in spirit, to the one used in [1].

Theorem 3 [�]. Saving k-Vertices is W[1]-hard parameterized by (k + l),
where l is the distance from the class of graphs with diameter two.

We can obtain the hardness of Saving k-Vertices by a reduction from the
k-clique problem as well, in fact by making minor changes to the reduction used
to prove Theorem 3.

Corollary 1 [�]. Saving k-Vertices is W[1]-hard parameterized by (k + l),
where l is distance to split graphs.

4 Kernelization Complexity

4.1 Parameterization by Distance to Clique

In this section, we give a polynomial kernel for Saving k-Vertices when param-
eterized by distance to clique, as summarized in the following theorem.

On Structural Parameterizations of Firefighting 231

Theorem 4. Saving k-Vertices admits a polynomial kernel of size at most
O(l2), where l is the distance to clique.

Let (G, s, k) be an instance of Saving k-Vertices and X ⊆ V(G) of size l

such that G \ X = C is a clique. With out loss of generality we assume that
s ∈ X, otherwise define X ′ = X ∪ {s} such that G \ X ′ is a clique with size of
modulator l + 1. Since the length of longest induced path in G is at most l + 1,
using Lemma 4 we get the following Corollary.

Corollary 2. Given an instance of Firefighting, then any optimal strategy
can defend at most l + 1 vertices, where l is size of the clique modulator X.

Let XL := {x ∈ X : |N(x) ∩ C| � l + 1}, XH = X \ XL. Let J := {y ∈ C | ∃x ∈
XL, y ∈ N(x)}, |J| � l(l+1). Our kernelization algorithm is based on the following
observation. We show that replacing the clique G[C \ J] with another clique of
small size does not affect the solution.

Lemma 10. Let S be a valid strategy containing a vertex v ∈ C \ J, then all the
vertices of N(v) \ S are burned.

Proof. Since S is a valid strategy, there is an induced path P from s to v such
that all vertices on P are burned, except v. Let Xv := N(v) ∩ X and for every
x ∈ Xv \ S, we have |N(x) ∩ C| > l + 1: suppose there is x ∈ N(v) ∩ X such that
|N(x) ∩ C| � l + 1 then v ∈ J, contradiction to v ∈ C \ J.

Let u be a burned neighbor of v on P. If u ∈ C then C \ S is burned and for
every x ∈ Xv \S, we have |N(x)∩C| > l+ 1. From Corollary 2 we can only defend
at most l + 1 vertices, therefore all vertices of Xv \ S are burned.

If u ∈ Xv \ S then |N(u) ∩ C| > l + 1, therefore all vertices C \ S are burned.
From the first case we can see that all vertices of Xv \ S are also burned. ��
Reduction rules

1. Delete vertices of C \ J from G. Add a clique K of size l + 2 and make each
vertex of K adjacent to all vertices in XH ∪ J.

2. Add another clique L of size min{l + 1, |C \ J|} and for each vertex u ∈ L, add
edges between u and J ∪ K.

Let H be the graph obtained after applying above reduction rules (see Fig. 2).
It is easy to see that X ⊆ V(H) such that H\X is a clique. The size of the reduced
instance H is at most l2 + 4l + 3 and the reduction can be done in polynomial
time.

Let C = G \X and C ′ = H \X. We may assume that |C \ J| > 2l+ 3; otherwise,
trivially we get a kernel of size at most l2 + 4l + 3.

Remark 1. Let G be a graph and S be a valid strategy. If S defends a subset S1

of vertices in C \ J, then defending any subset S2 of vertices in L instead of S1,
with |S1| = |S2| is also a valid strategy S ′ for H.

Conversely let S ′ be a strategy on H. If S ′ defends a subset S1 of vertices
in K ∪ L, then defending any subset S2 of vertices in C \ J instead of S1, with
|S1| = |S2| is also a valid strategy S for G.

232 B. Das et al.

X

Original instance G

J

−−−−−−−−−−−−−−−−−→polynomial time

X

XL XH

J K

L

Kernel H

Fig. 2. A schematic view of kernelization algorithm of Firefighting parameterized
by distance to a clique. A bold edge between two sets of vertices indicates the presence
of all possible edges between the two sets.

Lemma 11. Let G and H be graphs as defined above and S, S ′ be corresponding
valid strategies as defined in the above remark. At least one vertex of C is burned
in G by strategy S iff at least one vertex of C ′ is burned in H by strategy S ′.

Proof. Let u ∈ C ′ is burned by strategy S ′ in H. If u ∈ J, then u ∈ C will also
burned by S in G. If u ∈ K and no vertex of J burned by S ′ in H then, at least
one vertex x ∈ XH gets burned and |N(x)∩C| > l+1, therefore at least one vertex
in N(x) ∩ C gets burned by S in G.

Let u ∈ C is burned by strategy S in G. If u ∈ J then it will be burned by S ′

in H. If u ∈ C \ J and no vertex of J burned by S in G then there exists burned
vertex x ∈ XH. Since |N(x) ∩ C ′| > l + 1, at least one vertex of K gets burned. ��
Claim 1. If a strategy S saves at least 2l + 1 vertices in G then S saves entire
clique.

Proof. Let S be a valid strategy which saves at least 2l+1 vertices in G. Suppose
assume that there exists a vertex v ∈ C burned by strategy S, then no vertex in
C is saved except the defended vertices. The strategy S can save at most l − 1

vertices in X and l + 1 vertices in C, total S saves at most 2l vertices which is a
contradiction to the fact that S saves at least 2l + 1 vertices. ��
Claim 2. Saving one undefended vertex in C is equivalent to saving entire
clique.

Proof. Let v be an undefended saved vertex of C. If any vertex of C is burned
by S then v gets burned contradicting the fact that v is a saved vertex. ��
Lemma 12. Let G be a graph and H be the graph obtained after applying reduc-
tion rules. A strategy S saves at least k vertices in G if and only if there exists
a strategy S ′ that saves at least k ′ vertices in H.

Proof. Let S be any valid strategy on G then we can find a corresponding strategy
S ′ on H as follows. If S defends a vertex v in C \ J which is deleted in reduction

On Structural Parameterizations of Firefighting 233

procedure, then by Remark 1 instead of v we can defend any other non-defended
vertex in L. Since S can defend at most l+ 1 vertices in G and |L| = l+ 1, we can
always replace vertices of C \ J in S by applying Remark 1.

Conversely, let S ′ be any valid strategy on H then we can find its correspond-
ing strategy S on G as follows. If S ′ defends a vertex v in K ∪ L which is added
in reduction procedure, then by Remark 1 instead of v we can defend any other
non-defended vertex in C \ J. Since S ′ can defend at most l + 1 vertices in H

and |C \ J| > 2l + 3, we can always replace vertices of K ∪ J in 4S ′ by applying
Remark 1.

The parameter k ′ is defined as follows.

1. If k ∈ [|C|, |C|+ l − 1], then set k ′ = k − |C|+ |J|+ |K|+ |L| � l2 + 4l + 3.
2. If k ∈ [2l + 1, |C|− 1], then set k ′ = 2l + 1.
3. If k ∈ [1, 2l], then set k ′ = k.

Using Lemma 11, Claims 1 and 2 we can see that the strategy S saves at least
k vertices in G if and only if the strategy S ′ saves at least k ′ vertices in H. ��

4.2 Parameterization by Distance to Stars

Next, we show that Saving k-Vertices does not admit a polynomial kernel
parameterized by distance to stars unless NP ⊆ coNP/poly. We obtain this result
by a polynomial parameter transformation from the problem of finding a maxi-
mum clique parameterized by the size of the vertex cover.

Theorem 5 [�]. Saving k-Vertices parameterized by the distance to disjoint
union of stars does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

5 Conclusion

In this paper, we studied the parameterized complexity of Firefighting prob-
lem for various structural parameters. We considered the size of a modulator
to threshold graphs, cluster graphs and disjoint unions of stars as parameters,
and showed FPT algorithms in all cases. We also established that Firefighting
admits a polynomial kernel when parameterized by the size of a modulator to a
clique, while it is unlikely to admit a polynomial kernel when parameterized by
the size of a modulator to a disjoint union of stars. In contrast to the tractability
results, we found that Firefighting is W[1]-hard when parameterized by the
distance to split graphs. The following problems remain open.

• Does Saving k-Vertices admit a polynomial kernel when parameterized by
k and the size of a vertex cover?

• Is the Firefighting problem FPT when parameterized by distance to
cographs?

234 B. Das et al.

References

1. Bazgan, C., Chopin, M., Cygan, M., Fellows, M.R., Fomin, F.V., van Leeuwen,
E.J.: Parameterized complexity of firefighting. J. Comput. Syst. Sci. 80(7), 1285–
1297 (2014)

2. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

3. Cai, L., Verbin, E., Yang, L.: Firefighting on trees: (1–1/e)–approximation,
fixed parameter tractability and a subexponential algorithm. In: Hong, S.-H.,
Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0 25

4. Chalermsook, P., Chuzhoy, J.: Resource minimization for fire containment. In: Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1334–1349. Society for Industrial and Applied Mathematics (2010)

5. Chleb́ıková, J., Chopin, M.: The firefighter problem: further steps in understanding
its complexity. Theoret. Comput. Sci. 676, 42–51 (2017)

6. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

7. Das, B., Enduri, M.K., Misra, N., Reddy, I.V.: On structural parameterizations of
firefighting. arXiv preprint arXiv:1711.10227 (2017)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity, vol. 3. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-1-4612-0515-9

9. Finbow, S., Hartnell, B., Li, Q., Schmeisser, K.: On minimizing the effects of fire
or a virus on a network. J. Comb. Math. Comb. Comput. 33, 311–322 (2000)

10. Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs
of maximum degree three. Discrete Math. 307(16), 2094–2105 (2007)

11. Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions
and questions. Australas. J. Comb. 43, 57–77 (2009)

12. Foldes, S., Hammer, P.L.: Split graphs. Universität Bonn, Institut für Ökonometrie
und Operations Research (1976)

13. Fomin, F.V., Heggernes, P., van Leeuwen, E.J.: The firefighter problem on graph
classes. Theoret. Comput. Sci. 613, 38–50 (2016)

14. Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theor.
Comput. Sci. 17(2), 77–100 (2015)

15. Hartnell, B.: Firefighter! An application of domination. In: 25th Manitoba Confer-
ence on Combinatorial Mathematics and Computing (1995)

16. King, A., MacGillivray, G.: The firefighter problem for cubic graphs. Discrete Math.
310(3), 614–621 (2010)

17. Leung, M.L.: Fixed parameter tractable algorithm for firefighting problem. arXiv
preprint arXiv:1104.1044 (2011)

18. MacGillivray, G., Wang, P.: On the firefighter problem. J. Comb. Math. Comb.
Comput. 47, 83–96 (2003)

https://doi.org/10.1007/978-3-540-92182-0_25
https://doi.org/10.1007/978-3-319-21275-3
http://arxiv.org/abs/1711.10227
https://doi.org/10.1007/978-1-4612-0515-9
http://arxiv.org/abs/1104.1044

On the Simultaneous Minimum Spanning
Trees Problem

Matěj Konečný, Stanislav Kučera, Jana Novotná, Jakub Pekárek,
Martin Smoĺık, Jakub Tětek, and Martin Töpfer(B)

Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

matejkon@gmail.com, stanislav.kucera@outlook.com, janca@kam.mff.cuni.cz,

edalegos@gmail.com, smolik.ma@gmail.com, j.tetek@gmail.com,

mtopfer@gmail.com

Abstract. Simultaneous Embedding with Fixed Edges (SEFE) [1] is
a problem where given k planar graphs we ask whether they can be
simultaneously embedded so that the embedding of each graph is planar
and common edges are drawn the same. Problems of SEFE type have
inspired questions of Simultaneous Geometrical Representations and fur-
ther derivations. Based on this motivation we investigate the generaliza-
tion of the simultaneous paradigm on the classical combinatorial prob-
lem of minimum spanning trees. Given k graphs with weighted edges,
such that they have a common intersection, are there minimum span-
ning trees of the respective graphs such that they agree on the inter-
section? We show that the unweighted case is polynomial-time solvable
while the weighted case is only polynomial-time solvable for k = 2 and
it is NP-complete for k ≥ 3.

1 Introduction

The problem of finding a minimum spanning tree is one of the most important
and most well-studied problems in graph algorithms. We consider a variant of
this problem inspired by the following motivation.

In a Sunflower land, there is a capital city and several smaller cities around
it. In the past, there was a telecommunication company based in the capital
city, but it is now bankrupt. The inhabitants of each of the small cities want to
establish their own telecommunication company that would connect all of the
houses in their city as well as all of the houses in the capital. The representatives
of each city meet to coordinate their soon-to-be networks so that they all agree
on the capital and can split the cost of covering the capital evenly. However, all
of the companies are so afraid of bankruptcy that none of them would accept a
solution that would cost them a single dollar more than necessary. Is it always
possible to plan all of the networks so that all of the companies reach their goal
simultaneously while each of the individual costs is minimized? How hard is it
to find such a plan, if it exists, or recognize that it does not exist?

Supported by project CE-ITI P202/12/G061 of GA ČR and grant SVV-2017-260452.

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 235–248, 2018.
https://doi.org/10.1007/978-3-319-74180-2_20

236 M. Konečný et al.

Problem 1 (Simultaneous Minimum Spanning Trees). Let k be a positive integer
and let G1 = (V1, E1), G2 = (V2, E2), . . . , Gk = (Vk, Ek) be graphs and w a non-
negative weight function of all of their edges (w :

⋃k
i=1Ei → R

+
0) such that there

is a graph Ḡ satisfying that Ḡ = Gi[V̄] for any i from 1 to k, where V̄ = Vi ∩ Vj

for any i �= j from 1 to k (i.e. the graphs together form a “sunflower” shape
with no lateral edges). Find minimum spanning trees Ti ⊆ Gi, such that they
all coincide on Ḡ, or answer NO if there are no such spanning trees. We shall
abbreviate this problem as SMST .

Note that the Ti’s do not have to induce a spanning tree on Ḡ, nor does the
union of Ti’s have to be acyclic on the union of all of the Gi’s. Indeed both of
these situations necessarily happen in solutions of some instances of the SMST
problem. Unlike the minimum spanning tree problem, the SMST problem does
not always have a solution.

As an example, let G1 be a triangle xzy, let G2 be a triangle xwy and let
xy be the heavies edge. Although G1 ∩G2 induces a connected graph (edge xy),
we have a unique solution {xz, zy, yw,wx} which is not connected on G1 ∩ G2

and is not acyclic on G1 ∪G2. Furthermore, if we remove any light edge, e.g. xz,
then there is no solution.

We show that SMST is an NP-complete problem already for a fairly small
number of graphs (more than 2) and even when limited to simplified instances.
We present a scheme that allows us to solve any SMST for two graphs in
polynomial time using a tandem of reductions and multiple runs of matroid
intersection algorithm.

1.1 Preliminaries

The problem of finding a minimum spanning tree for a single graph has been
studied thoroughly since Bor̊uvka [2], Jarńık-Prim [3,4] and Kruskal [5]. See [6]
for more details. Currently, the optimal algorithm is known [7], but its asymp-
totics is still an open problem.

We do not distinguish instances where the input graph is connected from
instances where it is disconnected. The inclusion of disconnected instances is
natural as many constructions work just as well under such circumstances.
Furthermore, usual incremental and iterative approaches typically work on sub-
sets of the input graph and it is therefore not strictly clear whether they maintain
a spanning tree or a spanning forest. For convenience, we define the usual term
spanning tree as a maximal acyclic subgraph. In doing so we include the discon-
nected case, where the more proper term would be spanning forest.

We focus mainly on the Kruskal’s algorithm and use its known properties.
Kruskal’s algorithm starts by sorting the edges in a non-decreasing order (by
weight) or obtains the edges in a non-decreasing order on input. Then it processes
all the edges one by one in sorted order while greedily maintaining maximum
acyclic subgraph which we refer to as partial spanning tree.

Definition 1. Consider the run of Kruskal’s algorithm. A stage is a collection
of steps in which the algorithm processes edges of the same weight.

On the Simultaneous Minimum Spanning Trees Problem 237

Fact 1. Let G = (V,E,w) be a graph with weighted edges. Then all of the fol-
lowing holds for Kruskal’s algorithm applied to graph G and a non-decreasing
order of edges π:

– Kruskal’s algorithm is complete (finishes) and correct (answers correctly) for
any non-decreasing π, although the created spanning trees might be different.

– Let T be a minimum spanning tree of G and let πT be the non-decreasing order
such that all edges from T are ordered before all edges of the same weight that
are not from T . Then Kruskal’s algorithm using πT outputs exactly T .

– After every stage, components of the partial spanning tree span across the
same vertices for all non-decreasing π.

– Edges added to the partial spanning tree in each stage depend only on their
ordering, not on the edges chosen in the previous stages.

– Kruskal’s algorithm accesses π in a read-once fashion, accepting or refusing
each edge before accessing the next one.

2 Simultaneous Kruskal’s Algorithm

Consider a SMST task for a given k and graphs G1, G2, . . . , Gk. Let us denote
the union of all Gis as G and their intersection as Ḡ. Suppose we order all the
edges of G in a non-decreasing order π which we call a universal order and denote
π[E(Gi)] the restrictions of π to edges in Gi for every i. For a set of edges F , we
also say that a universal order is F-preferring if all the edges from F are ordered
before any other edges of the same weight.

Consider the following construction. First, we fix an arbitrary non-decreasing
universal order π. We simulate k independent instances of Kruskal’s algorithm,
K1,K2, ...,Kk where the job of each Ki is to find a minimum spanning tree Ti

of Gi using the order π[E(Gi)], not considering the other instances. In parallel
with the instances of the Kruskal’s algorithm we try to incrementally build a
simultaneous minimum spanning tree.

In the beginning, we start with an empty simultaneous spanning tree T and
process all the edges one by one according to the universal order. We present
each edge e to all instances Ki such that e ∈ Gi. If we assume a sunflower
intersection, we can rephrase this in the following way: if e ∈ Ḡ then we present
e to all instances and if e /∈ Ḡ then e ∈ Gj for some unique j and we present e
only to one instance Kj . If every invoked Ki adds e to its local Ti, we also add e
to T . If every invoked instance Ki refuses to add e to its local Ti, we also throw
e away. If the invoked instances do not agree, we fail. If the algorithm processes
all edges without failing, we output T as a solution.

We call this construction Simultaneous Kruskal’s algorithm or SKA in short.
There are two natural versions of the SKA. If SKA expects the universal order
π on input, then it is a deterministic algorithm. Alternatively, SKA may be
formulated as a non-deterministic algorithm which guesses a correct universal
order which avoids failure (if any such order exists), then we speak of a non-
deterministic simultaneous Kruskal’s algorithm or NSKA in short. We naturally
extend the definition of a stage from Kruskal’s algorithm to the (N)SKA as the
collection of steps in which the algorithm processes edges of the same weight.

238 M. Konečný et al.

Lemma 1. Let I be an instance of the SMST problem. Then all of the following
holds for simultaneous Kruskal’s algorithm:

– NSKA is complete (finishes) and correct (answers correctly).
– Let T be a solution of I and a let πT be a T -preferring universal order. Then

SKA using πT outputs exactly T .
– After every successful stage of SKA and NSKA, components of the partial

simultaneous spanning tree after restriction to any Gi span across the same
vertices for all choices of universal order π.

– Edges added to the partial simultaneous spanning tree in each stage depend
only on their ordering, not on the edges chosen in the previous stages.

– SKA accesses π in a read-once fashion, accepting or refusing each edge before
accessing the next one.

Proof. Let us first prove the second point. Suppose we run the SKA using the
T -preferring universal order. Let us analyze the behavior of an arbitrary Ki. Let
Ti denote the restriction of T to Gi. By definition Ti is a minimum spanning tree
of Gi and π[Gi] is a Ti-preferring order. From the properties of the Kruskal’s
algorithm (Fact 1) we know that Ki constructs exactly Ti. Since every Ki would
construct exactly Ti should it run on its own, we observe that all the invoked
instances Kj accept each edge if and only if it belongs to T , and the whole
algorithm never fails. At the end of the computation the algorithm gives exactly
T as a solution.

To prove correctness, let us first suppose that the NSKA terminates with
success. Then the set T on output is a union of the local spanning trees from
all Ki algorithms. Since each algorithm Kj processes all the edges from Gj in
a non-decreasing order of weight and Kruskal’s algorithm is sound, each of the
local spanning trees is a minimum spanning tree. Thus, T is a solution of the
SMST problem. If NSKA terminates with a failure, then from the second point
it follows that there was no solution T , as otherwise NSKA guesses a T -preferring
universal order and terminates successfully.

The last three points are simple observations extending the Fact 1 into simul-
taneous setting using the previous two points. �	

3 Cases and Variants

Lemma 2. Let I be a feasible instance of the SMST problem. Then any solution
T ′ of I restricted to edges of weight at most w can be extended to a solution T
of the whole I by adding some edges of weight greater than w. Furthermore, this
extension does not depend on T ′.

Proof. Let T be a solution of the SMST problem. We choose any w and split
the edges into a set of light edges L of weight at most w and a set of heavy edges
H with weight strictly greater than w.

Consider running SKA on the instance I restricted to edges from L using
any T -preferring universal order. Since SKA does not look ahead, it cannot

On the Simultaneous Minimum Spanning Trees Problem 239

distinguish whether it runs on a restricted instance or the full instance and
therefore it does not fail and outputs T restricted to L (denoted T [L]), which is
a solution of the restricted instance. Since T ′ is also a solution of the restricted
instance, both T ′ and T [L] define the same components on all individual graphs
and have the same weight. Let us define T̄ = T ′ ∪ T [H]. Clearly T̄ is acyclic on
each graph and has the same weight as T . Therefore T̄ is a solution of the full
instance, extending (any) T ′. �	
Observation 2. Let us have an SMST instance I where m(I) denotes the num-
ber of edges and R(I) denotes the maximum number of repeats of any weight. If
R(I)! ∈ m(I)O(1), in other words R(I) is asymptotically very small, then I can
be solved in a polynomial time.

Proof. Suppose we implement the NSKA deterministically and use backtracking
to guess the next edge in the universal order. The previous lemma shows that
it is sufficient to consider only backtracks within the current stage. If we ever
need to backtrack into the previous stage, then the solution of the previous stage
cannot be extended and therefore no solution exists.

If all of the weights in our instance of the SMST are either distinct, or the
number of repeats of each value is asymptotically very small, then we can try all
possible orders within each stage in polynomial time. More precisely whenever
R(I)! ∈ m(I)O(1) we have at most polynomially many orderings in each stage and
the algorithm finishes in polynomial time. If R(I) ∈ O(log log n) then there are
at most linearly many possible orderings and the algorithm’s running time differs
by only a factor of O(m) from the NSKA’s running time on a non-deterministic
machine. �	
Definition 2. A Simultaneous {0, 1} Minimum Spanning Tree problem, or
01-SMST in short, is an instance of SMST where we restrict all the edge
weights to be either 0 or 1.

We show an equivalence of the general SMST and 01-SMST up to a poly-
nomial factor of complexity.

Lemma 3. Any algorithm solving 01-SMST in polynomial time can be used to
solve general SMST problem in polynomial time.

Proof. First let us consider an instance of SMST using at most two distinct
values for weights. Then we can replace these by 0 and 1. From the point of view
of the individual graphs, each subset of edges is a minimum spanning tree after
the modification if and only if the same holds before the modification; and so
the same applies to the simultaneous minimum spanning trees.

We continue via induction. Let us have an algorithm based on any 01-SMST
algorithm that solves any SMST instance with at most k distinct values of
weight. We will extend this algorithm to k + 1 values. Let us have an instance
that uses k + 1 values and let w denote the highest one. We restrict G to G′ by
restricting to edges lighter than w. We already know how to solve SMST for G′,
acquiring a partial solution T ′ or showing that no solution exists in which case

240 M. Konečný et al.

the original SMST has no solution. If we have the solution T ′, then according
to Lemma 2 T ′ can be extended by some edges of weight w to a full solution.

We once again modify G into Ḡ as follows. We restrict G to edges from
T ′ and edges of weight w. We set the weight of all edges from T ′ to 0 and
the weight of the remaining edges to 1. We now have an instance of 01-SMST
such that any solution contains all the edges from T ′ as they form a partial
simultaneous spanning tree and the SKA would accept all of the edges regardless
of the universal order used. Let T̄ be a solution of the 01-SMST problem on
Ḡ, then T̄ is also a solution of the original SMST problem and the algorithm
outputs T̄ , otherwise we answer “no”.

To show completeness, suppose that there exists a solution T . Then we nec-
essarily obtain T ′ in the first step and T ′ can be extended to a solution of
the whole problem (not necessarily T) and thus the 01-SMST on Ḡ has a
solution T̄ . �	
Definition 3. An Intersection-Heavy Simultaneous {0, 1} Minimum Spanning
Tree problem, or ∩-01-SMST in short, is an instance of SMST where we
restrict all the edge weights to be either 0 or 1. Furthermore all the edges of
weight 1 are only in the intersection of all the individual graphs.

The motivation behind this restriction comes from a simple observation.

Observation 3. Let I be an instance of 01-SMST (for any number of graphs)
where no edges of weight 1 appear in the intersection. Then after solving the first
stage, the SKA algorithm always finishes for any universal order π.

Proof. This is easy to see as each edge of weight 1 will be presented by the SKA
to a single instance of the Kruskal’s algorithm and therefore in no step can the
algorithm fail (get two opposite answers). Furthermore, one can see that the
order of edges of weight 1 no longer matters, though different orders may give
different solutions. �	

This observation formalizes an intuition that it is in some sense harder to
deal with weight 1 edges in the intersection than in the exclusive parts.

It might therefore seem that to solve a 01-SMST problem, one might first
greedily find a subset of edges from the intersection and then extend it to the
exclusive parts. This approach fails on a simple example. Let us have exactly
four vertices a1, a2, b1, b2 in the intersection. Let G1 contain four weight 0 edges
a1c1, a2c2, b1d1, b2d2, and let G2 contain two weight 0 paths Pi connecting ai

and bi for both values of i. Finally let a1a2, b1b2 and c1c2 be weight 1 edges
where the last one is exclusive for G1. Clearly the only solution takes exactly
the weight-1 edges b1b2 and c1c2. However if the graphs contains d1d2 rather
than c1c2 then picking the edge b1b2 is not correct. Therefore an algorithm may
not be oblivious to the exclusive parts.

It seems logical to also consider the opposite approach, that is to first solve the
exclusive parts where the solution seems rather fixed and then exploit the infor-
mation from exclusive parts to extend the partial solution to the intersection.

On the Simultaneous Minimum Spanning Trees Problem 241

It is no surprise that this approach is flawed as well. As an example, let us have
two graphs G1 and G2 where G1 is only one edge xy and G2 is a triangle xyz. If
we were to first find a maximum acyclic set of each exclusive part, we would get
the subset {xz, yz}. However now we cannot extend this subset into a solution
as there are only two solutions {xy, yz} and {xy, xz}.

Both of these greedy approaches to a 01-SMST are flawed, even under the
assumption that we are able to solve the first stage correctly in polynomial time.
However according to the Observation 3 limiting all of the edges of weight 1 to the
intersection gives instances that are in some sense easier, as the hardness of the
problem is focused in the intersection which can be solved without considering
exclusive weight 1 edges, as there are none. Later we show that ∩-01-SMST
is actually equivalent to 01-SMST , which will be a key step in solving the
01-SMST problem.

Definition 4. A Simultaneous Spanning Tree problem, SST in short, is an
unweighted version of the SMST problem, in other words a SMST problem
using only one weight.

The SST is clearly at most as hard problem as all of the previous versions
of the SMST and is an interesting problem on its own. We use the SST as a
simple base case in our construction later on.

Observation 4. SST ⊆ ∩-01-SMST ⊆ 01-SMST ⊆ SMST

4 Case k ≥ 3 Is NP-complete

Problem 2 (3D matching). Let U, V,W be disjoint finite sets such that |U | =
|V | = |W | = k and let T be a subset of U × V × W . Is there a set M ⊂ T with
|M | = k, such that for any x ∈ U ∪V ∪W there is exactly one hyperedge e ∈ M
such that x ∈ e.

Fact 5 ([8]). 3D matching is NP-complete.

Theorem 6. The problem of 3D matching can be polynomially reduced to
∩-01-SMST problem for 3 graphs.

Proof. Without loss of generality we assume that every element of U, V and W
is element of at least one hyperedge in T , otherwise the original 3D matching
trivially has no solution.

We define graphs G1, G2, G3 and H where H = G1 ∩ G2 ∩ G3 forming a
“sunflower” intersection, that is H = Gi ∩ Gj for each i �= j. We associate G1

with U , G2 with V and G3 with W .
First put a central vertex c in H. For each hyperedge e ∈ T , put a vertex

ve ∈ H and connect it to c by an edge in H of weight 1. For each element x ∈ U ,
put a vertex vx into the exclusive part of G1 (G1\H) and for every e ∈ T such
that x ∈ e, connect ve and vx by an edge of weight 0. Do the same for V and

242 M. Konečný et al.

W with graphs G2 and G3 respectively. By construction these graphs form the
required “sunflower” configuration.

The structure of the graph H can be alternatively described as follows. The
intersection H contains exactly a star with center c and all edges of weight 1
where each ray represents a different element from T .

Let us focus on G1 and U , for the other graphs and sets the arguments
are symmetrical. The graph G1 is composed of the central star and exclusive
vertices representing elements of the associated set U . Every vertex representing
an element x is connected via edges of weight 0 to all vertices representing the
hyperedges that contain x. So for every element x, vx is a center of a weight-0
star in G1. All of these weight-0 stars are disjoint as in each hyperedge there
is at most one element from U . Since all the edges of weight 0 form an acyclic
subgraph of G1, every solution of this SMST instance must contain all of them.
Let S be a solution of the SMST problem. As for each x ∈ U , the vx is in the
same component as c in G1, it must also be in the same component of S[E(G1)]
and therefore at least one edge cve ∈ S for some hyperedge e such that x ∈ e.
If it happened that cvf ∈ S for some other hyperedge f with x ∈ f , then
cve, vevx, vxvf , vfc form a cycle in G1 and we get a contradiction.

This means that the hyperedges represented by the edges (where e is rep-
resented by edge cve) of weight 1 in S are a solution of the 3D-matching. This
is true as each x ∈ U belongs to exactly one of the hyperedges from S and the
same applies to every y ∈ V and every z ∈ W .

On the other hand, let M be a solution of the 3D-matching. Then we can
construct a solution of the SMST by simply picking all the edges of weight 0
and all the edges of weight 1 that represent the hyperedges edges from M . As
previously, we observe that everything in G1 is connected into a single compo-
nent. If we only consider the edges of weigh 0 on the other hand, then for each
x, y ∈ U the vertices vx and vy are in distinct components and can only be con-
nected via the central star. Therefore any solution must connect G1 into a single
component using at least |U | edges of weight 1. Since |U | = |M |, the solution of
the SMST constructed from M is clearly minimal. �	
Corollary 1. The problem SMST and its variants 01-SMST and ∩-01-SMST
are NP-complete for 3 and more graphs.

5 Case k = 2 Is in P

In this section we show that the general SMST problem is polynomially solv-
able. We progress via a tandem of reductions. We already know that the general
SMST can be solved using an algorithm for 01-SMST for a cost of some poly-
nomial factor. We further reduce instances of 01-SMST to tasks that are more
orderly and symmetrical in some sense. We then use this to reduce the task
to ∩-01-SMST . Finally, we show that solving ∩-01-SMST can be reduced to
a problem of intersection of two matroids, which is a polynomial problem for
two graphs. As an intermediate step, we will also solve the SST problem by
reduction to a matroid intersection problem.

On the Simultaneous Minimum Spanning Trees Problem 243

Definition 5. Let G1 and G2 be two graphs intersecting in a common induced
subgraph and let F be a subset of edges of G1 and G2. We say that F is simul-
taneously acyclic if F restricted to each of the two graphs G1 and G2 forms an
acyclic subgraph.

5.1 Reduction of 2-Graph 01-SMST to 2-Graph ∩-01-SMST

For technical reasons we first want to get rid of all edges of weight 1 that cross
the boundary in between the intersection and one of the exclusive parts.

Observation 7. Every 01-SMST instance can be transformed to an instance
where all of the edges of weight 1 have either both ends in the intersection or
both ends in an exclusive part of one graph. This transformation at most doubles
the number of edges and vertices.

Proof. This can be achieved by a simple operation that shifts the edges into
the exclusive parts. We take each edge xy of weight 1 such that x is in the
intersection and y in the exclusive part of one of the two graphs. We subdivide
xy into two edges xz and zy where the vertex z lies in the exclusive part of the
relevant graph. We set the weight of xz to 0 and the weight of zy to 1. Since the
vertex z has degree two, the 0-weight edge xz is an element of each solution of
the new 01-SMST . It is now easy to see that we can construct the solution of the
original 01-SMST instance from any solution of the new instance by removing
xz and substitution of zy with xy (if it is part of the solution). �	

Another issue is that each of the two graphs may require a different number
of edges of weight 1, while each edge from the intersection would increase the
size of both solutions.

Observation 8. Every instance of 01-SMST with two graphs G1 and G2 can be
transformed into an instance where every minimum spanning tree of G1 and every
minimum spanning tree of G2 contain the same number of edges of weight 1. This
transformation at most doubles the number of edges and vertices.

Proof. Let G denote the union of G1 and G2 and let Ḡ denote their intersection.
From the properties of the SKA (Lemma 1) we know that we can determine
beforehand the components of G1 and G2 after all the edges of weight 0 are
processed and after all the edges of weight 1 are processed. We also know that
in order to compute the restriction of the solution to the edges of weight 1 we
do not need to know the exact choice of edges of weight 0, they are in fact
independent. By considering the number of components of G1 and G2 just after
processing all the edges of weight 0 and after processing all edges, we deduce
how many edges of weight 1 must be added into the minimum spanning tree of
each graph, which is equal to the difference of the two values.

Suppose that the solution of 01-SMST must contain j1 edges of weight 1
from the graph G1 and j2 edges of weight 1 from the graph G2. If j1 = j2 then we
do not need to modify the instance, otherwise without loss of generality j1 > j2.

244 M. Konečný et al.

We pick an arbitrary vertex v from the exclusive part of G2 and extend G2 by
j1−j2 leaves attached to v. All the leaves are new vertices and lie in the exclusive
part of G2; and all of the new edges have weight 1. Every spanning tree of G2

must now contain all of these edges, while every solution of the original instance
can be extended by exactly these edges. After this modification, j1 = j′

2 where j′
2

denotes the new number of weight-one edges in the graph G2 after modification.
Note that this construction also works for the case j2 = 0, although this can be
solved directly using SKA. �	
Lemma 4. The 01-SMST problem for k = 2 is polynomially reducible to
∩-01-SMST problem for k = 2 of asymptotically at most quadratic size. Fur-
thermore if the set of edges of weight 0 of the original 01-SMST instance is
simultaneously acyclic, then the same is true for the new ∩-01-SMST instance.

Proof. Let us have an instance of 01-SMST and let G1, G2 denote the two
graphs and Ḡ their intersection. Using the previous observation we can assume
without loss of generality that all of the weight-1 edges have either both ends
contained in Ḡ or both ends contained in the exclusive part of one of the two
graphs; and that there exists a positive integer j such that every solution of the
01-SMST constrained to both G1 or G2 has exactly j edges of weight 1. This
increases the size of the problem by a small multiplicative constant.

We modify the problem so that all of the edges from the exclusive parts are
removed and equivalently modeled by gadgets that have edges of weight 1 only in
Ḡ. To do this, we consider all pairs e = (e1, e2), f = (f1, f2) of edges of weight 1
such that e is from the exclusive part of G1 and f is from the exclusive part of G2.
We create two new vertices xef

1 , xef
2 in Ḡ and add edges e1x

ef
1 , e2x

ef
2 , f1x

ef
1 , f2x

ef
2

of weight 0 and an edge xef
1 , xef

2 of weight 1. After processing all pairs, we delete
all the edges of weight 1 from the exclusive parts.

Let M be a solution of the modified instance of 01-SMST (which is in
fact ∩-01-SMST). First we observe that whenever xef

1 xef
2 ∈ M for some

removed edges e and f then xeg
1 xeg

2 /∈ M for any g �= f as otherwise
e1, x

ef
1 , xef

2 , e2, x
eg
2 , xeg

1 , e1 forms a cycle in M [G1]. To get a solution of the orig-
inal instance, we remove all the extra edges of weight 0 and replace each edge
xef
1 xef

2 by edges e and f . Let us denote the resulting set of edges M ′. Consider
the graph G1 and the components defined by M ′ restricted to G1. It is easy to
see that the components are the same as in M with the exception of the new
vertices which are now isolated. Also, the total weight of M ′ restricted to each
graph (of the original instance) is the same as the total weight of M restricted
to each graph (of the modified instance). We conclude that M ′ is a minimum
simultaneous spanning tree (Fig. 1).

On the other hand, let M̄ be a solution of the original instance. Since there
is the same amount of edges of weight 1 in M̄ restricted to G1 and G2, we can
pair all of the edges from M̄ of weight 1 that are in the exclusive parts of G1 and
G2. We can now replace each pair of edges e and f by xef

1 xef
2 . After adding all

the new edges of weight 0, we get a solution of the modified instance. Therefore
the total cost of M̄ is at most a total cost of the given solution.

On the Simultaneous Minimum Spanning Trees Problem 245

G1 G2

e f

Ḡ G2

fe

G1

e1

e2 e2

e1f1

f2f2

f1xef
1

xef
2

1 1

Ḡ

0

0

0

0

1

Fig. 1. Gadget replacing pairs of edges

Supposing that the original edges of weight 0 form a simultaneously acyclic
set, we observe that the same is true after the reduction, as each new cycle
contains an edge of weight 1. Furthermore we added at most a constant number
of edges and vertices for all of the pairs of original edges, obtaining a problem
of asymptotically at most quadratic size compared to the input problem. �	

5.2 Matroids

Definition 6. A matroid M is a pair (E, I) where E is a set of elements and I
is a family of independent sets (subsets of E) satisfying the following properties:

1. ∅ ∈ I
2. ∀X,Y s.t. X ∈ I and Y ⊂ X : Y ∈ I
3. ∀X,Y ∈ I s.t. |X| > |Y | : ∃x ∈ X \ Y s.t. Y ∪ {x} ∈ I

Definition 7. Let G be a graph with a set of edges E and I be a set of all acyclic
subsets of E. Then (E, I) is a graphic matroid of G.

Fact 9. For any graph G (possibly multiphase with loops), the graphic matroid
of G is a matroid and maximal independent sets of this matroid are exactly all
possible spanning trees of G.

Definition 8. A matroid intersection problem of two matroids (E, I1) and
(E, I2) on the same set of elements E is the problem of finding a maximum
subset of E s.t. it is independent in both matroids.

Fact 10 ([9]). For a set E and two matroids (E, I1) and (E, I2) given as inde-
pendence oracles, the matroid intersection problem is solvable in polynomial time
and polynomially many oracle queries.

Fact 11 ([10]). There are specialized algorithms for graphic matroid intersection
problem.

Lemma 5. Let G be a graph with edges divided into two disjoint subsets F and
Ē where F is acyclic and Ē = E(G)\F . Let I be a set of all subsets X of Ē
such that F ∪ X is an acyclic subgraph of G. Then (Ē, I) is a graphic matroid.

Proof. Let H denote G with all edges from F contracted; we keep all the parallel
edges and loops. We observe that the graphic matroid of H is exactly (Ē, I). �	

246 M. Konečný et al.

5.3 Polynomiality

Theorem 12. SST ∈ P for any number of graphs.

Proof. To solve SST , it suffices to use Kruskal’s algorithm (or any other MST
algorithm) to first take a minimum spanning tree of the intersection, and then
extend this partial solution to each individual graph using only exclusive edges.
Clearly each exclusive edge may only create a cycle in its respective graph. On
the other hand we are never forced to take an exclusive edge closing a cycle (in
fact, Kruskal’s algorithm refuses such edges by definition). �	
Lemma 6. Let I be an instance of ∩-01-SMST for two graphs such that the
edges of weight 0 form a simultaneously acyclic set. Then I can be solved in
polynomial time using a matroid intersection algorithm.

Proof. For each of the two graphs Gi for i ∈ {1, 2} we define Fi as the set
containing all edges of weight 0 and Ē the set of all edges of weight 1. Let Ii be
a set of all subsets X of Ē such that X ∪ Fi is acyclic in Gi and let Mi denote
the pair (Ē, Ii). According to Lemma 5 each Mi is a matroid. Furthermore, both
of the matroids are defined on the same ground set Ē.

Let F = F1∪F2 be all the edges of weight 0. By Lemma 2, F can be extended
to a solution of the ∩-01-SMST by a suitable subset of Ē. We can now use a
(graphic) matroid intersection algorithm to find a set X which is a maximum
subset of Ē independent in both matroids M1 and M2. Therefore X is the
maximum subset of Ē that extends F so that X ∪F is simultaneously acyclic. If
X∪F restricted to G1 and G2 spans all components, we output X∪F , otherwise
we answer “no”. This is the same as to compare the size of X ∪ F to the size it
should have.

Clearly if there exists a solution of the given ∩-01-SMST instance, then
according to Lemma 2 there exists a solution Y extending the set F . The set of
edges Y \F is an independent set in both matroids M1 and M2 and therefore X
exists and is of size |Y \F |. This means that X ∪ F is a simultaneous spanning
tree and the algorithm answers correctly. On the other hand, if no solution exists,
then the set X∪F restricted to either G1 or G2 is acyclic but does not connect all
the vertices connected in the original graph. We recognize this case and answer
“no” correctly. �	
Lemma 7. ∩-01-SMST ∈ P for two graphs.

Proof. Let I be an instance of the ∩-01-SMST problem. We show that we can
solve I using a (graphic) matroid intersection algorithm.

First suppose that the edges of weight 0 are not simultaneously acyclic. We
simply restrict I to edges of weight 0, which gives us an instance of SST . We
can solve this instance in polynomial time according to Theorem12. If we obtain
answer “no”, then according to Lemma2 there is no solution and we also answer
“no”.

Suppose we get a solution X. Then, by Lemma 2, we may delete all the
edges of weight 0 except the edges from X and further assume that the edges

On the Simultaneous Minimum Spanning Trees Problem 247

of weight 0 are simultaneously acyclic. We use Lemma 6 to solve this reduced
instance in polynomial time. �	
Theorem 13. SMST ∈ P for two graphs.

Proof. Let us have an instance of the SMST problem. According to Lemma 3,
every instance of SMST can be solved by solving at most O(m) 01-SMST
problems, where m denotes the number of edges on input.

Any 01-SMST can be polynomially reduced to ∩-01-SMST as shown in
Lemma 4; and according to Lemma 7, each ∩-01-SMST instance can be solved
in polynomial time. �	

5.4 Complexity

Let us have an instance of SMST and let n denote the number of vertices, m
the number of edges and w the number of weights in the given instance. We
proceed according to Theorem 13.

The SMST problem is first decomposed into (w−1) 01-SMST subproblems.
We observe that each edge in these subproblems is either already fixed as a part
of the solution of SMST or appears for the first time. The first kind of edges
can be bound as at most O(n) per 01-SMST subproblem, as they must form a
simultaneously acyclic set. The second kind can be bound as at most O(m) over
all of the 01-SMST subproblems.

Each of the 01-SMST subproblems is reduced to a ∩-01-SMST problem
of asymptotically at most quadratic size (by Lemma4). Using the simultaneous
acyclicity of edges of weight 0 we can use the approach of Lemma 6 in all but the
first subproblem, and use the Lemma 7 to solve the first subproblem. Therefore
we solve at most w (graphic) matroid intersection problems during the whole
process and one instance of SST problem. The final complexity depends on the
choice of algorithms used to solve the matroid intersection problems and the
SST .

Furthermore, if w asymptotically approaches m, then some weight values
have few representatives and more direct methods from Observations 2 and 3
using SKA may be applied to reduce the complexity.

Acknowledgements. This paper is the output of the 2017 Problem Seminar of
Charles University. At this seminar undergraduate students attempt to solve open prob-
lems and learn to do research. We would like to thank Jan Kratochv́ıl and Pavel Valtr
for their guidance, help and tea.

References

1. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs.
arXiv.org:1204.5853 (2015)

2. Bor̊uvka, O.: O jistém problému minimı́lńım (About a certain minimal problem)
(Czech, German summary). Práce mor. př́ırodověd. spol. v Brně III 3, 37–58 (1926)

http://arxiv.org/abs/org:1204.5853

248 M. Konečný et al.

3. Jarńık, V.: O jistém problému minimálńım. Práce Moravské Př́ırodovědecké
Společnosti 6, 57–63 (1930)

4. Prim, R.C.: Shortest connection networks and some generalizations. Bell Labs
Tech. J. 36(6), 1389–1401 (1957)

5. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

6. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem.
Ann. Hist. Comput. 7(1), 43–57 (1985)

7. Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. J.
ACM (JACM) 49(1), 16–34 (2002)

8. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, New York (1972).
https://doi.org/10.1007/978-1-4684-2001-2 9

9. Edmonds, J.: Submodular Functions, Matroids, and Certain Polyhedra. Combina-
torial Structures and their Applications, pp. 68–87. Gordon and Breach, New York
(1970)

10. Gabow, H.N., Stallmann, M.: Efficient algorithms for graphic matroid intersec-
tion and parity. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 210–220.
Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0015746

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/BFb0015746

Variations of Cops and Robbers Game on Grids

Sandip Das and Harmender Gahlawat(B)

Indian Statistical Institute, Kolkata, India
harmendergahlawat@gmail.com

Abstract. Cops and robber is a two player turn based game played on
a graph where the cops try to catch the robber. The cop number of a
graph is the minimum number of cops required to catch the robber. We
consider two variants of this game, namely cops and attacking robber, and
lazy cops and robber. In cops and attacking robber, the robber can attack
a cop and remove him from the game, whereas in lazy cops and robber
only one cop is allowed to move during the cop’s turn. We prove that
the cop number for both these variants in finite square grids is two. We
show that the cop number for cops and attacking robber in n-dimensional
hypercube is at most n, and the cop number in the same version of a
3-dimensional grid is three.

1 Introduction

Cops and robber is a two player game played on finite connected graphs. One
player controls the k cops and the other controls the robber. First the k cops
and then the robber occupy some vertices of the graph. More than one cop can
occupy a vertex. Then cops and robber make alternating moves. On cop’s turn,
any number of the k cops can move to their neighboring vertices, or can pass
by staying on the same vertex. On robber’s turn, he does the same. Each player
can see all the moves. If at least one of the cops succeed in occupying the same
vertex as the robber, we call it a capture. The cops win if they capture the robber
in finite time, otherwise the robber wins. The cop number of a graph G, denoted
by c(G), is the minimum number of cops required to capture the robber. The
cop number is well defined as the number of vertices of a graph is clearly an
upper bound.

The cops and robber game (for k = 1) was introduced by Nowakowski and
Winkler [7], and independently by Quillot [8]. Aigner and Fromme [1] general-
ized this game to k cops, as presented here, and introduced cop number. Gold-
stien and Reingold [9] proved that determining if k cops can catch a robber
is EXPTIME-complete if the initial positions are given. Later Fomin et al. [5]
proved that finding the minimal number of cops needed to catch the robber is
NP-hard. For further results, we refer the readers to the book by Bonato and
Nowakowski [10]. Here we consider finite square grids only, hence we simply call
them grids. Bhattacharya et al. [12], and recently Luccio and Pagli [6], proved
that cop number of a finite grid is 2.

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 249–259, 2018.
https://doi.org/10.1007/978-3-319-74180-2_21

250 S. Das and H. Gahlawat

Many variants of this game has been studied. Some versions allow cops and
robbers to have different speeds, some allow players to be on edges, some allow
cops and robber to move simultaneously etc. A brief survey can be found in [10,
see Chap. 8]. In this article we consider two variants of cops and robbers: cops
and attacking robber, and lazy cops and robber.

The game of Cops and attacking Robber was introduced by Bonato et al. [11].
In this variant, robber is able to strike back against the cops. If on a robber’s
turn, there is a cop in its neighborhood, then robber can attack the cop and
remove it from the game. However if more than one cops occupy the neighboring
vertex and the robber attacks them, then only one of the cops get eliminated,
and then the robber is captured. The cop number for capturing an attacking
robber on a graph G is represented as cc(G). Bonato et al. [11] proved that
c(G) ≤ cc(G) ≤ 2c(G). This can be easily verified as cc(G) cops can catch the
robber in the classical version, and if we play the classical version with 2c(G)
cops (two at each initial c(G) cop positions) we can catch the attacking robber.
Our result concerning the cop number for attacking robber on finite grids Gm,n

is as follows.

Theorem 1. For m ≥ 2 and n ≥ 2, cc(Gm,n) = 2.

The game of Lazy cops and robbers was introduced by Offner and Ojakian [2]
and they gave bounds for hypercubes. Later their results were improved by Bal
et al. [3]. Recently Sim et al. [4] gave bounds for the generalised hypercubes.
In this variant only one cop can move during the cop’s turn. This restricts the
ability of the cops with respect to the classical version. The cop number for lazy
cops to capture a robber in a graph G is denoted by lc(G). Clearly c(G) ≤ lc(G),
as lc(G) cops can capture a robber in the classical version. Our result concerning
the lazy cop number of finite grids Gm,n is as follows.

Theorem 2. For m,n ≥ 2, lc(Gm,n) = 2.

We revisit the game of cops and attacking robbers. We consider this game
played on n-dimension hypercubes Qn and give a strategy for n cops to capture
the attacking robber.

Theorem 3. For n > 0, cc(Qn) ≤ n.

We also consider the 3-dimensional grid Gm,n,p and use the strategy given in
proof of Theorem 2 to prove the following.

Theorem 4. For m,n, p ≥ 2, cc(Gm,n,p) = 3.

In the next section we present some notations and definitions required in
this article. Sections 3, 4, 5 and 6 contains the proofs of Theorems 1, 2, 3 and 4
respectively.

Variations of Cops and Robbers Game on Grids 251

2 Definitions

We follow the standard notation of West [13]. An m × n grid, Gm,n is the
Cartesian product of two paths, Pm and Pn. Similarly an m×n×p grid, Gm,n,p

is the Cartesian product of three paths, Pm, Pn and Pp. We use the following
alternate definition of a grid. An m × n grid is a graph whose vertex set is
{(i, j) | 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1} and vertex (i, j) is adjacent to (i −
1, j), (i + 1, j), (i, j − 1), (i, j + 1), whenever these coordinates stay inside the
closed interval [0,m − 1] and [0, n − 1] respectively. So the vertices of a grid are
arranged in m rows and n columns. We fix an orientation such that (0, 0) is the
bottommost left vertex of the m × n grid. A vertex is either a corner vertex,
boundary vertex or internal vertex if its degree is 2, 3 or 4 respectively. A grid
has the following 4 corner vertices (0, 0), (0, n− 1), (m− 1, n− 1) and (m− 1, 0),
which are arranged in clockwise order. The boundary vertices are top, bottom,
right or left if they belong to {(i, n−1) | 0 ≤ i ≤ m−1}, {(i, 0) | 0 ≤ i ≤ m−1},
{(m− 1, j) | 0 ≤ j ≤ m− 1} or {(0, j) | 0 ≤ j ≤ m− 1} respectively. In Fig. 1, c1
is in a corner vertex, c2 is in a boundary vertex and c3 is in an internal vertex.
We have similar definitions for the 3-dimensional grid Gm,n,p. In particular, in
a 3-dimensional grid, degree 3 vertices are corner vertices, degree 6 vertices are
internal vertices and rest are boundary vertices.

c3(2, 1)

c2(8, 4)

r(3, 6)

c3(8, 8)

Fig. 1. Cops and robber on a 8 × 8 grid. Here h = 1 and v = 2.

252 S. Das and H. Gahlawat

Now consider the grid Gm,n. Let cop ci be at vertex (xi, yi) and robber r be
at (xr, yr). Let hci =| xi − xr | and vci =| yi − yr |. Let h = minci∈C h(ci) and
v = minci∈C v(cj) (see Fig. 1). We say ci moves towards r if either hci or vci
decreases. Similarly r moves away from ci if either hci or vci increases. We also
define ci moves vertically (horizontally) towards r if hci (or vci) decreases, and
r moves vertically (horizontally) away from ci if hci (or vci) increases. Cop ci at
(xi, yi) moves towards a vertex (p, q) if | xi − p | or | yi − q | decreases. We have
similar definitions for the 3-dimensional grid Gm,n,p.

A round consists of a robber’s turn followed by the cop’s turn. In a round,
cop ci mirrors the move of the robber r if h(ci) and v(ci) do not change after
that round i.e. in this round ci moves exactly in the same direction as r.

In Gm,n, we say the robber r is in cop ci’s guard if hci = 1 and vci = 1.
Suppose ci guards r. The two vertices that are common neighbors of both ci and
r are called as coguard positions. If we draw the co-ordinate axes with origin at
ci it divides the grid in four quadrants each containing one corner point. Let C
denote the corner point of the grid that is in the same quadrant as r.

In Gm,n, the robber r is trapped by a cop ci when r is in a corner vertex
and ci guards r. When r is trapped it cannot make any move without getting
captured.

Each of our strategies are described in terms of rounds i.e. they say how the
cops will move depending on the robber’s move. So in order to avoid confusion,
unless mentioned otherwise, we fix the following. After the cops and robbers are
placed, the cops pass their first turn. So the first round begins with the first turn
of the robber.

The n-dimensional hypercube Qn is defined recursively in terms of cartesian
products of two graphs as follows: Q1 = K2 and Qn = Qn−1 × K2, where K2

is an edge and the symbol × refers to the cartesian product of two graphs (see
West [13]).

3 Proof of Theorem1

In the classical cops and robbers game, the cop number of finite grids is 2 as
proved in [12]. Since c(G) ≤ cc(G), in the cops and attacking robber version, the
cop number is at least 2. Now it suffices to give a strategy to catch the robber
using two cops.

We begin with an outline of such a strategy. Two cops c1 and c2 are initially
placed at (0, 0) and (1, 0). They remain on adjacent vertices for the rest of the
game, so that if robber attacks one of the cops, he gets caught in next move.
In further rounds, cops move such that neither h nor v ever increases. Then we
ensure that after a finite number of rounds either h or v or both decreases. So
after a finite number of rounds both h and v reduces to 0, which implies capture.
Now we give the detailed strategy.

Cops c1 and c2 are initially placed at (0, 0) and (1, 0). In each round cops
move trying to decrease either h or v or both, while ensuring that after their
move neither h nor v increases in that round. The following two cases can arise.

Variations of Cops and Robbers Game on Grids 253

1. h > 0 & v > 0: If the robber r moves such that h or v increases, the cops c1 and
c2 mirror r’s move, hence restoring the values of h and v at the beginning
of this round. Upon any other move of the r, c1 moves towards r and c2
mirrors c1’s move resulting in a decrease in the value of either h or v or both.
After each round either h > 0 & v > 0 or at least one of them is 0. Accordingly
the game continues in this case or enters case 2 respectively.

2. h = 0 or v = 0: Without loss of generality assume that h = 0. This case is
further divided into two sub-cases 2(a) and (b):
(a) h(c1) = h(c2) = 0: In this sub-case c1, c2 and r lie in one vertical line.

Without loss of generality assume c1 is closer to r. If r moves such that
v increases, then both c1 and c2 mirror r’s move. If r moves such that
h increases, then c2 moves to position of c1 and c1 mirrors r’s move,
resulting in case 2(b). Upon any other move of r, both c1 and c2 move
towards r resulting in decrease of value of v. After any round at least
one of h(c1) or h(c2) is zero. Hence when the game enters this sub-case,
it either remains in this sub-case i.e. 2(a) or enters the next sub-case
i.e. 2(b).

(b) h(c1) = 0 & h(c2) = 1: In this sub-case c1 and r lie in one vertical line. If
r moves such that v or h increases, then both c1 and c2 mirror r’s move.
Upon any other move of r, both c1 and c2 move vertically towards r. So
in this sub-case after any round h(c1) = 0 & h(c2) = 1. Hence once the
game enters this sub-case it remains in this sub-case until the robber is
caught.

In our strategy if initially h > 0 & v > 0, the cops move till one of them is 0
(i.e. case 2), then they move till the other is 0 (i.e. capture). It remains to prove
that in each of the above mentioned cases there cannot be infinite rounds where
h and v remains unchanged.

In each round in case 1, the value of h or v remains unchanged only if r’s
move results in an increase in h or v. In order to do so r has to move away
vertically or horizontally from any of c1 or c2 (since c1 and c2 are adjacent and
both h and v are positive, moving away from c1 is same as moving away from
c2). Once r reaches a boundary vertex, one of the values of h or v cannot be
further increased by r’s move. Upon reaching a corner vertex neither h or v can
be increased by r’s move. Hence, in case 1, the sequence of rounds where both
h and v remains unchanged is finite.

In any round in case 2(a) (without loss of generality assume h = 0), if r
moves to increase value of h, then r’s move results in case 2(b). So in each round
in case 2(a), the value of v remains unchanged only if r’s move results in an
increase in v. In order to do so r has to move away vertically from c1. Once it
reaches a top/bottom boundary vertex or a corner vertex, v cannot be further
increased by r’s move. Hence, in case 2(a), the sequence of rounds where both
h and v remains unchanged is finite.

The analysis in case 2(b) is similar to case 1 and it follows here also that
the sequence of rounds where both h and v remains unchanged is finite. This
completes the proof of Theorem 1.

254 S. Das and H. Gahlawat

4 Proof of Theorem2

Since lc(G) number of cops can catch the robber in the classical cops and robbers
game, c(G) ≤ lc(G). And since the cop number on finite grid is 2 as proved in [12],
lc(G) ≥ 2. So it suffices to give a strategy to catch the robber using two lazy
cops.

We begin with an outline of such a strategy. Let c1 and c2 be the two lazy
cops. If one traps the robber r, the other lazy cop can come and capture it in
finite time. Let c1 and c2 be initially placed at (0, 0) and (1, 0). Initially c1 follows
r till it takes him in its guard. In further rounds, c1 and c2 will force r to go
in a trap position such that r is trapped by c1. Then c2 moves towards r till it
captures r. The whole strategy relies on the following observation.

Observation 1. If robber r gets into trap position of a cop c1, r cannot move
without being captured.

Proof. This is because the two neighbors of r in the corner vertex are also neigh-
bors of c1. ��

Now we give the detailed strategy. Initially c1 moves trying to first guard the
robber r i.e. try to make h(c1) = 1 and v(c1) = 1. Depending on whether c1
guards r or not at the beginning of each round, we have the following cases.

1. h(c1) �= 1 or v(c1) �= 1: In this case c1 is not guarding r. But c1 moves
trying to guard r; once it reaches a guard position we move to the next case.
Depending on values of h(c1) and v(c1) at the beginning of each round, we
have the following two sub-cases.
(a) h(c1) > 0 & v(c1) > 0: In this sub-case, if r moves away from c1, then

c1 mirrors r’s move, hence restoring the values of h(c1) and v(c1) at the
beginning of this round. After r’s move if it is guarded by c1, then c1
passes his turn. Upon any other move of the robber, c1 moves towards
the robber such that max{h(c1), v(c1)} decreases. After each round, if c1
guards r we enter the next case, else either h(c1) > 0 & v(c1) > 0 or one
them is 0. Accordingly the game continues in this sub-case or moves to
the next sub-case 1(b) respectively.

(b) h(c1) = 0 or v(c1) = 0: If h(c1) = 0, c1 and r lie in one vertical line. If r
moves such that v(c1) increases, then c1 mirrors r’s move, hence restoring
the values of h(c1) and v(c1) at the beginning of the round. If r moves
such that h(c1) increases and c1 guards r, then c1 passes his move. If r
moves such that h(c1) increases and c1 doesn’t guard r, then c1 moves
vertically towards r, hence decreasing v(c1) and making h(c1) = 1. Upon
any other move of r, c1 moves towards r, decreasing the value of v(c1).
Similarly if v(c1) = 0, c1 and r lie in one horizontal line. If r moves such
that h(c1) increases, then c1 mirrors r’s move, hence restoring the values
of h(c1) and v(c1) at the beginning of the round. If r moves such that
v(c1) increases and c1 guards r, then c1 passes his turn. If r moves such
that v(c1) increases and c1 doesn’t guard r, then c1 moves horizontally

Variations of Cops and Robbers Game on Grids 255

towards r, hence decreasing h(c1) and making v(c1) = 1. Upon any other
move of r, c1 moves towards r, decreasing the value of h(c1).
In this sub-case, if h(c1) = 0, then c1 always moves vertically, and if
v(c1) = 0, then c1 always moves horizontally. After each round if c1
guards r we enter case 2, else either h(c1) > 0 & v(c1) > 0 or one them
is 0. Accordingly the game moves to the previous sub-case i.e. 1(a) or
continues in this sub-case respectively.

Notice that the game can move from case 1(a) to case 1(b) and vice versa.
When the game changes from case 1(a) to case 1(b) the value of h(c1)+ v(c1)
decreases. However when the game changes from case 1(b) to case 1(a) the
value of h(c1) + v(c1) remains same.

2. h(c1) = 1 & v(c1) = 1 : In this case c1 is guarding r. Once r is guarded but
not trapped, it can move to only two or one of its neighbors depending on
whether r is in an internal or boundary vertex, since its other neighbors are
adjacent to the cop.
Recall that once r moves, it gets closer to the corner point C which lies in
the same quadrant as r when origin is fixed at c1.
If r moves, c1 mirrors its move. So c1 always guards r. If r does not move, then
c2 moves towards the closest coguard position. Once c2 reaches the coguard
position, r is forced to move, and hence gets closer to C. Once r reaches C,
c1 traps it. Then c2 moves towards C and captures r.
Once c1 guards r, it always guards r irrespective of whether r moves or not.
Hence once the game enters this case it remains in this case till the end.

In our strategy if initially none of the cops guard the robber r, then c1 moves
till it guards r (enters case 2). Once c1 guards r, it traps r with the help of c2
and then c2 captures r. It remains to prove that the game does not continue
indefinitely.

Recall that the game can move from case 1(a) to case 1(b) and vice versa.
When the game changes from case 1(a) to case 1(b) the value of h(c1) + v(c1)
decreases. However when the game changes from case 1(b) to case 1(a) the value
of h(c1) + v(c1) remains same.

In each round in case 1(a), the value of h(c1) + v(c1) remains unchanged
only if r’s move increases h(c1) or v(c1). In order to do so r has to move away
horizontally or vertically from c1. It can keep on moving away from c1 till it
reaches a corner point which is in the same quadrant as r when origin is placed
at c1. Once r reaches this corner point h(c1) + v(c1) decreases. Also if it enters
case 1(b), then h(c1) + v(c1) decreases.

In each round in case 1(b), if h(c1) = 0, the value of h(c1) + v(c1) remains
unchanged only if r’s move increases h(c1) or v(c1). If r’s move increases h(c1),
then h(c1) + v(c1) remains unchanged but the game enters case 1(a), where we
saw that h(c1) + v(c1) decreases after finite rounds. If r’s move increases v(c1),
then h(c1) + v(c1) remains unchanged till it reaches a top or bottom boundary
vertex or a corner after which r’s move cannot increase v(c1) anymore.

Similarly in each round in case 1(b), if v(c1) = 0, the value of h(c1) + v(c1)
remains unchanged only if r’s move increases h(c1) or v(c1). If r’s move increases

256 S. Das and H. Gahlawat

v(c1), then h(c1)+v(c1) remains unchanged but the game enters case 1(a), where
we saw that h(c1)+v(c1) decreases after finite rounds. If r’s move increases h(c1),
then h(c1)+v(c1) remains unchanged till it reaches a left or right boundary vertex
or a corner after which r’s move cannot increase h(c1) anymore.

Hence after a finite number of rounds in case 1, value of h(c1) + v(c1)
decreases. So after a finite number of rounds h(c1) + v(c1) becomes 2 i.e.
h(c1) = 1, v(c1) = 1, or h(c1) = 0, v(c1) = 2 or h(c1) = 2, v(c1) = 0. Notice
that h(c1) = 1, v(c1) = 1 is the desired guard position. If h(c1) = 0, v(c1) = 2, r
moves such that either h(c1) increases in which case c1 moves vertically towards
r to a guard position; or v(c1) increases in which case it cannot increase when
it reaches a top or bottom boundary vertex or a corner vertex, after which it is
forced to move such that h(c1) increases and then c1 moves to a guard position.
Hence after a finite number of rounds c1 guards r.

Once r is guarded, each time it moves it gets closer to corner C. If it does
not move c2 reaches a coguard position after which it has to move. Hence in
finite number of rounds, r is trapped by c1, after which c2 captures r in a finite
number of rounds. Hence after a finite number of rounds r is captured. This
completes the proof of Theorem 2.

5 Proof of Theorem3

In this section the cop does not skip his first move, as assumed in Sect. 2 i.e.
after the robber is placed the cops move, else the robber might attack a suitable
cop.

We use induction to prove this theorem. But first we need the following
definitions. The hypercube Qn+1 is cartesian product of Qn and K2. So it is
union of two Qn’s with edges between the corresponding vertices in each Qn.
Let they be represented as An and Bn. If the robber is in Bn, then the vertex
in An adjacent to the vertex containing robber is called image of robber r and
is denoted by Ir. If a robber is in B and a cop ci is neighbour of Ir in A, then
robber cannot enter A and we say that ci is protecting A.

Since Q1 has only 2 vertices, and the cop occupies one of them in first move,
robber can enter only at other vertex and hence will be captured in next move
of cop. For Q2 also, if we place two cops at any two distinct positions, they will
capture the robber in next round as the other two vertices are in the neighbor-
hood of the cops. In Q3 all three of the cops start at one of the Q2’s, say A2.
Now, if robber enters A, he will be captured in next move of the cops. If robber
enters at a vertex on B, two of the cops will use their strategy to capture Ir.
Once, one of cops, say ci is at a neighboring vertex of Ir, that cop will move
such that it always remains adjacent to Ir. Now remaining cops will readjust
their positions such that every cop is adjacent to another cop, or two cops are in
the same vertex (if they are not already in such positions). Then they all move
to B, while the cop ci protecting A remains in A and will move only in such a
way that it keeps protecting A. So robber can’t enter A. The 2 cops in B will
capture the robber as cc(Q2) = 2.

Variations of Cops and Robbers Game on Grids 257

Now assume cc(Qn) ≤ n.
For Qn+1 we show that n+1 cops are sufficient. The hypercube Qn+1 is union

of two Qn: An and Bn with their corresponding vertices connected. Initially we
place all our cops in An where n cops are placed as per our strategy for Qn and
remaining one cop is placed with any of the cop and will move with that cop as
long as it is in An. If the robber is in An and never goes to Bn, then these n
cops will capture it (by our induction hypothesis). If robber is in Bn, or enters
Bn in some round from An, these n cops will move to capture Ir. Again by our
induction hypothesis they will be able to capture Ir in a finite number of steps.
When one of the cops, say ci, is at a neighbouring vertex of Ir, then it protects
An. In the further rounds it always stays in the neighborhood of Ir, and hence
protects An till the end of the game. So robber cannot enter An without being
captured.

The rest n cops will readjust their positions such that for every cop there is
at least one cop in its neighborhood or in its position (if they are not already
in such positions). Then they all move to B. Since cc(Qn) ≤ n, the cops in Bn

capture the robber.
So in Qn+1, we have a strategy to capture the attacking robber by n + 1

cops. This completes the proof of Theorem 3.

6 Outline of Proof of Theorem4

This proof is similar to proof of Theorem2. So we omit some of the details evident
from the proof of Theorem2. In the classical cops and robber game, the cop
number of 3-dimensional finite grids is 3 as proved in [12]. Since c(G) ≤ cc(G),
in the cops and attacking robber version, the cop number is at least 3. Now it
suffices to give a strategy to catch the robber using three cops.

We begin with a few definitions. In a guard configuration, the three cops
c1, c2 and c3 are at (x, y, z), (x + 1, y, z) and (x, y + 1, z) and the robber is at
(x+1, y+1, z+1). In a post-guard configuration, the three cops c1, c2 and c3 are at
(x, y+1, z), (x+1, y, z) and (x+1, y+1, z) and the robber is at (x+1, y+1, z+1).
In all these configurations, the cops are connected; so if the robber attacks one
of the cops, then he gets captured in the next move. Also in one round, the cops
can reach the post-guard configuration from the guard configuration. Let C be
the corner vertex (m − 1, n − 1, p − 1).

We define d1 = |xc1 − xr|, d2 = |yc1 − yr| and d3 = |zc1 − zr|. We also
extend the definitions of moves away from and moves towards given in Sect. 2,
to 3-dimensions.

We first give an outline of the strategy. Let c1, c2 and c3 be the three cops
positioned at (0, 0, 0), (1, 0, 0) and (0, 1, 0) respectively. First the cops move till
the guard configuration is reached.

Once the guard configuration is attained, if the robber is not in the corner
vertex C, the cops attain the post-guard configuration and then the robber
is forced to move. Once the post-guard configuration is attained, the cops just
mirror the robber’s move. So after every round they always attain the post-guard

258 S. Das and H. Gahlawat

configuration and force the robber to move further. Whenever the robber moves
(after a guard configuration is attained), it gets closer to the corner vertex C.
After some rounds the robber is forced to the corner vertex C and then captured
by the cops.

If the robber is in the corner vertex C, when the guard configuration is
reached, then the cops attain the post-guard configuration and capture the
robber.

We have the following trivial observations.

1. In the guard configuration, all the cops and robber lie in one cube i.e. Q3.
Every other vertex of this cube, except the position of robber is either a cop’s
position or is adjacent to some cop.

2. If the robber moves after a guard position is attained, then it moves towards
the corner vertex C. This is because if we fix origin at position of c1, then
the robber is in the same octant at the corner vertex C. Every time the cops
move, this octant this gets smaller. In the beginning of each round, the robber
and the cop c1 lie in the same cube with d1 = 1, d2 = 1 and d3 = 1. As the
octant gets smaller the robber moves closer to the corner vertex C.

3. In the post-guard configuration, the robber is forced to move, and it always
moves towards the corner vertex C (same reason as above).

4. Once the robber is in the corner vertex in a guard configuration, it cannot
move without being captured. Once the robber is in the corner vertex in a
post-guard configuration, it gets captured in the next cops turn.

Now we give the detailed strategy. Let c1, c2 and c3 be the three cops posi-
tioned at (0, 0, 0), (1, 0, 0) and (0, 1, 0) respectively. In this strategy, cop c1 is
placed such that whenever the robber moves away from the cop c1, it moves
towards the corner vertex C (similar to Observation 2 above). We have the fol-
lowing cases.

1. Robber is not in guard configuration: In a round, if the robber moves towards
the corner C, then the cops mirror its move. So d1 +d2 +d3 is same as at the
beginning of this round. For any other move of the robber, the cop c1 moves
towards the robber such that max{d1, d2, d3} decreases. The cops c2 and c3
mirror the move of c1.
Extending the arguments given in the proof of Theorem2, the value of
d1 + d2 + d3 eventually decreases after finitely many rounds. As d1 + d2 + d3
decreases and reaches 3, the cops attain the guard configuration if d1 = d2 =
d3 = 1. For all other cases of d1 + d2 + d3 = 3, by case analysis (using the
argument in proof of Theorem2), the robber will be forced to be in a guard
position. We discuss one such case below.
If the robber remains in the XY -plane (assuming the standard X,Y,Z ori-
entations) and does not leave the XY plane till it reaches the corner vertex
(m − 1, n − 1, 0). When d1 + d2 + d3 = 3, here either d1 = 2, d2 = 1, d3 = 0
or d1 = 1, d2 = 2, d3 = 0. Then if c1, c2 and c3 reach (m − 2, n − 2, 0),
(m−1, n−2, 0) and (m−2, n−1, 0), then d1 +d2 +d3 = 2. Hence the robber
is forced to move to (m − 1, n − 1, 1) there by attaining the guard position.

Variations of Cops and Robbers Game on Grids 259

2. Robber is in guard configuration: If the robber is in the corner vertex C, the
cops attain the post-guard configuration and then capture the robber. If the
robber is not in the corner vertex C, and it moves (towards the corner vertex
C), then the cops mirror its move. If the robber is not in the corner vertex
C, and it does not move, then the cops attain the post-guard configuration
and force the robber to move towards the corner C. After this the cops mir-
ror robber’s move, so they always stay in the post-guard configuration. This
continues till the robber reaches C, and then gets captured.

The finiteness of the game can be proved just by following the arguments in
the proof of Theorem 2. This completes the outline of proof of Theorem4.

7 Conclusion

We intend to calculate the cop number of n-dimensional grid in the cops and
attacking robber version. Notice that a n-dimensional hypercube, whose cop
number we have bounded, is a cell of a n-dimensional grid. We are working on
a strategy to force the robber to the corner and then capture it in that corner
hypercube.

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8,
1–12 (1984)

2. Offner, D., Okajian, K.: Variations of cops and robber on the hypercube. Aust. J.
Comb. 59(2), 229–250 (2014)

3. Bal, D., Bonato, A., Kinnersley, W.B., Pralat, P.: Lazy cops and robbers on hyper-
cubes. Comb. Probab. Comput. 24(6), 829–837 (2015)

4. Sim, K.A., Tan, T.S., Wong, K.B.: Lazy cops and robbers on generalized hyper-
cubes. Discrete Math. 340(7), 1693–1704 (2017)

5. Fomin, F., Golovach, P., Kratochvil, J., Nisse, N., Suchan, K.: Pursuing a fast
robber on a graph. Theor. Comput. Sci. 411, 1167–1181 (2010)

6. Luccio, F., Pagli, L.: Cops and robber on grids and tori. CoRR, abs/1708.08255
(2017)

7. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math.
43, 253–259 (1983)

8. Quillot, P.: A short note about pursuit games payed on a graph of given genus. J.
Comb. Theory Ser. B 38, 89–92 (1985)

9. Goldstein, A.S., Reingold, E.M.: The complexity of pursuit on a graph. Theor.
Comput. Sci. 143, 93–112 (1995)

10. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. American
Mathematical Society, Providence (2011)

11. Bonato, A., et al.: The robber strikes back. In: Krishnan, G.S.S., Anitha, R.,
Lekshmi, R.S., Kumar, M.S., Bonato, A., Graña, M. (eds.) Computational Intel-
ligence, Cyber Security and Computational Models. AISC, vol. 246, pp. 3–12.
Springer, New Delhi (2014). https://doi.org/10.1007/978-81-322-1680-3 1

12. Bhattacharya, S., Paul, G., Sanyal, S.: A cops and robber game in multidimensional
grids. Discrete Appl. Math. 58, 1745–1751 (2010)

13. West, D.B.: Introduction to Graph Theory, 2nd edn. Pearson Education, Essex
(2002)

https://doi.org/10.1007/978-81-322-1680-3_1

Alternation, Sparsity and Sensitivity:
Combinatorial Bounds and Exponential Gaps

Krishnamoorthy Dinesh(B) and Jayalal Sarma

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

{kdinesh,jayalal}@cse.iitm.ac.in

Abstract. The well-known Sensitivity Conjecture regarding com-
binatorial complexity measures on Boolean functions states that for any
Boolean function f : {0, 1}n → {0, 1}, block sensitivity of f is poly-
nomially related to sensitivity of f (denoted by s(f)). From the com-
plexity theory side, the Xor Log-Rank Conjecture states that for
any Boolean function, f : {0, 1}n → {0, 1} the communication complex-
ity of a related function f⊕ : {0, 1}n × {0, 1}n → {0, 1}, (defined as
f⊕(x, y) = f(x ⊕ y)) is bounded by polynomial in logarithm of the spar-
sity of f (the number of non-zero Fourier coefficients for f , denoted by
sparsity(f)). Both the conjectures play a central role in the domains in
which they are studied.

A recent result of Lin and Zhang (2017) implies that to confirm the
above two conjectures it suffices to upper bound alternation of f (denoted
alt(f)) for all Boolean functions f by polynomial in s(f) and logarithm
of sparsity(f), respectively. In this context, we show the following results:

– We show that there exists a family of Boolean functions for which
alt(f) is at least exponential in s(f) and alt(f) is at least exponential
in log sparsity(f). Enroute to the proof, we also show an exponential
gap between alt(f) and the decision tree complexity of f , which
might be of independent interest.

– As our main result, we show that, despite the above exponential
gap between alt(f) and log sparsity(f), the Xor Log-Rank Con-
jecture is true for functions with the alternation upper bounded
by poly(log n). It is easy to observe that the Sensitivity Conjec-
ture is also true for this class of functions.

– The starting point for the above result is the observation (derived
from Lin and Zhang (2017)) that for any Boolean function f ,
deg(f) ≤ alt(f)degF2(f)2 where deg(f) and degF2(f) are the degrees
of f over R and F2. We give two further applications of this bound:
(1) We show that Boolean functions with bounded alternation have
high sparsity (Ω(

√
deg(f))), thus partially answering a question of

Kulkarni and Santha (2013). (2) We observe that the above relation
improves the upper bound for influence to degF2(f)2·alt(f) improving
Guo and Komargodski (2017).

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 260–273, 2018.
https://doi.org/10.1007/978-3-319-74180-2_22

Bounds on Alternation, Sparsity and Sensitivity 261

1 Introduction

A central theme of research in Boolean function complexity is relating the com-
plexity measures of Boolean functions (see [5] for a survey). For a Boolean func-
tion f : {0, 1}n → {0, 1}, sensitivity of f on x ∈ {0, 1}n, is the maximum number
of indices i ∈ [n], such that f(x⊕ ei) �= f(x) where ei ∈ {0, 1}n with exactly the
ith bit as 1. The sensitivity of f (denoted by s(f)) is the maximum sensitivity
of f over all inputs. A related parameter is the block sensitivity of f (denoted
by bs(f)), where we allow disjoint blocks of indices to be flipped instead of a
single bit. Another parameter is the degree (denoted by deg(f)) of a multilinear
polynomial over reals that agrees with f on Boolean inputs. If the polynomial
is over F2, then the degree of the polynomial is denoted by degF2(f).

Nisan and Szegedy conjectured that for an arbitrary function f : {0, 1}n →
{0, 1}, bs(f) ≤ poly(s(f)) and this is popularly known as the Sensitivity
Conjecture [21]. Though the measures bs(f) and s(f) were introduced to
understand the Crew-Pram model of computation [8,20], subsequent works
[5,24] showed connection to other Boolean function parameters, in particular,√
bs(f) ≤ deg(f) ≤ bs(f)3. Hence the Sensitivity Conjecture can equiv-

alently be stated as: for any Boolean function f , deg(f) ≤ poly(s(f)). This
question has been extensively studied in [1,14,23] (see [12] for a survey) and
for various restricted classes of Boolean functions in [2,6,7,20,26]. There are
also recent approaches to settle the conjecture via a formulation in terms of a
communication game [9] and via a formulation in terms of distributions on the
Fourier spectrum of Boolean functions [10].

For an f : {0, 1}n → {−1, 1}, define f⊕(x, y) = f(x ⊕ y). From the com-
plexity theory side, the Xor Log-Rank Conjecture (proposed in [28]) says
that the deterministic communication complexity of f⊕ (denoted by CC⊕(f))
is polynomially upper bounded by the logarithm of sparsity of f (denoted by
sparsity(f)). The best known bound for any Boolean function f is due to Tsang
et al., [25] who showed that the CC⊕(f) is O(

√
sparsity(f) log sparsity(f)). The

conjecture was proved for restricted classes of Boolean functions like monotone
functions [19], symmetric functions [27], functions computable by constant depth
polynomial size circuits [15] and functions of small spectral norm [25].

Recently, Lin and Zhang [16] studied both the above stated conjectures in
connection to alternation, a measure of non-monotonicity of f (denoted by alt(f),
see Sect. 2 for definition), by proving that for any Boolean function f , bs(f) =
O(s(f)alt(f)2) and CC⊕(f) = O(log sparsity(f)alt(f)2). These results shows that
to settle the Sensitivity Conjecture, it suffices to show that for any Boolean
function f , alt(f) ≤ poly(s(f)) and to settle the Xor Log-Rank Conjecture,
it suffices to show that for any Boolean function f , alt(f) ≤ poly(log sparsity(f)).

Our Results: As a first step, we ask is it indeed true that for all Boolean
functions f , alt(f) = O(poly(s(f))) and for all Boolean functions f , alt(f) ≤
poly(log sparsity(f)). We answer both of these questions in the negative by
exhibiting a family of Boolean functions F = {fk | k ∈ N} (Definition 1) for

262 K. Dinesh and J. Sarma

which alt(fk) is at least exponential in s(fk) and alt(fk) is at least exponential
in log sparsity(fk).

Theorem 1. There exists a family of Boolean functions F = {fk : {0, 1}nk →
{0, 1} | k ∈ N} such that alt(fk) ≥ 2s(fk) − 1 and alt(fk) ≥ 2(log sparsity(fk))/2 − 1.

The main property of fk ∈ F which we exploit to prove Theorem 1 is that
alt(fk) = 2DT(fk) − 1 (Theorem 5) where DT(fk) is the depth of the optimal
decision tree computing fk (see Sect. 2 for definition). We also show an asymp-
totically matching upper bound for alternation of any Boolean function. More
precisely, for any f : {0, 1}n → {0, 1}, with DT(f) as the depth of an optimal
decision tree computing f , we show that alt(f) ≤ 2DT(f)+1 − 1 (Theorem 7).

Though the function family F rules out settling the Sensitivity Conjec-
ture (Xor Log-Rank Conjecture resp.) via upper bounding alternation by
a polynomial in sensitivity (polynomial in logarithm of sparsity resp.) for all
Boolean functions, it is partly unsatisfactory since it can be shown that both
the conjectures are true for all fk ∈ F .

In fact, any f : {0, 1}n → {0, 1} for which alt(f) = 2Ω(DT(f)), must satisfy
DT(f) = O(log n). In addition, if f depends on all the input variables, the
Sensitivity Conjecture is true for f . Notice that, for all fk ∈ F , DT(fk) =
log nk and fk depends on all the nk variables. Hence a natural question is, does
there exist another family of functions f where alt(f) is at least super-polynomial
in s(f), but DT(f) is not logarithmic in n. To this end, we exhibit a family of
Boolean functions G, such that for all g ∈ G, alt(g) is super-linear in s(g) and
DT(g) is ω(log n) where n is the number of variables in g.

Theorem 2. There exists a family of Boolean functions {gk : {0, 1}nk → {0, 1}
| k ∈ N} such that alt(gk) ≥ s(gk)log3 5 while DT(gk) is Ω(nlog6 3

k).

The main tool used in proving Theorem2 is a bound on the alternation of com-
posed Boolean functions (Lemma 1).

As mentioned before, Lin and Zhang [16] showed that Xor Log-Rank Con-
jecture is true for all Boolean functions satisfying alt(f) ≤ poly(log sparsity(f)).
As our main result, we further strengthen this when sparsity(f) < n.

Theorem 3 (Main). For large enough n, the Xor Log-Rank Conjecture
is true for all f : {0, 1}n → {0, 1}, such that alt(f) ≤ poly(log n) where f depends
on all its variables.

Our starting point in proving the above result is a relation connecting deg, degF2

and alt. For all Boolean functions f ,

deg(f) ≤ alt(f) · degF2(f)2 (1)

We remark that for special cases, Eq. 1 is known to be true. For instance, if f
is a monotone, it can be shown1 that deg(f) ≤ degF2(f)2. However, there are
1 When f is monotone, it is known that DT(f) ≤ s(f)2 and s(f) ≤ degF2(f) (Corollary

5 and Proposition 4 of [5]). Proposition 4 of [5] though states that s(f) ≤ deg(f) for
any monotone f , the argument is valid for degF2(f) also. Since, deg(f) ≤ DT(f)
(cf. [5]), deg(f) ≤ degF2(f)2.

Bounds on Alternation, Sparsity and Sensitivity 263

functions of large alternation where degF2(f) is constant while deg(f) is n (for
instance, parity on n bits). Hence we cannot upper bound degree by F2-degree
in general but Eq. 1 says that we can indeed upper bound deg(f) by degF2(f)
using alt(f). The result is implicit in [16].

We now give two further applications of Eq. 1. As our first application,
we show that Boolean functions with bounded alternation have high sparsity.
Kulkarni and Santha [15] had studied the relation between log sparsity(f) and
deg(f) in the case of a restricted families of monotone functions and asked if
they are linearly related in the case of monotone functions (see Sect. 5.1). In
this direction, we show the following lower bound for log2 sparsity(f) in terms of
deg(f).

Theorem 4. For Boolean functions f with alt(f) = O(1), log sparsity(f) =
Ω(

√
deg(f)).

As a second application, we observe that Eq. 1 implies an improved upper
bound for influence (denoted by I[f], see Sect. 2 for a definition) to degF2(f)2 ·
alt(f). This improves the result of Guo and Komargodski [11] who showed
that I[f] = O(alt(f)

√
n), thus giving faster learning algorithms for functions

of bounded alternation in the PAC learning model (see Sect. 5.2).

2 Preliminaries

We introduce the notations and definitions used in this paper. All logarithms are
to the base 2 unless otherwise stated. Let [n] def= {1, 2, . . . , n}. For i ∈ [n], define
ei to be an n bit Boolean string with one in ith location and zero elsewhere.

A Boolean function f : {0, 1}n → {0, 1} is monotone if ∀x, y ∈ {0, 1}n,
x ≺ y =⇒ f(x) ≤ f(y) where, x ≺ y iff ∀i ∈ [n], xi ≤ yi. The alternation of
a Boolean function is a measure of non-monotonicity of the Boolean function.
More precisely, if we define a collection of distinct inputs x0, x1, x2 . . . , xn ∈
{0, 1}n satisfying 0n = x0 ≺ x1 ≺ x2 ≺ · · · ≺ xn = 1n as a chain in the
Boolean hypercube Bn then, alternation of f (denoted by alt(f)) is defined as
max {alt(f, C) | C is a chain in Bn} where alt(f, C)) is |{i | f(xi−1) �= f(xi), xi ∈
C, i ∈ [n]}|. Indeed for a monotone f , alt(f) = 1.

Any chain C of a Boolean hypercube over {0, 1}n is uniquely determined by a
permutation σ ∈ Sn and vice versa. An x ∈ {0, 1}n belongs to a chain C defined
by σ ∈ Sn iff x = 0n or x =

∨wt(x)
i=1 eσ(i) where the OR is taken coordinate wise

and wt(x) is the number of ones in x. If a chain is defined using a permutation
σ, we use σ to denote the chain C.

For a Boolean function f on m variables and g on n variables, we denote
f ◦ g as a function on mn variables {x11, . . . , xmn} defined as f(g(x11, . . . , x1n),
g(x21, . . . , x2n), . . . , g(xm1, . . . , xmn)). We define g◦k as the Boolean function on
nk variables as g◦(k−1) ◦ g for k > 1 and g for k = 1.

Given a Boolean function, there always exists a unique n variable multilinear
polynomial over R[x1, . . . , xn] such that the evaluation agrees with the function

264 K. Dinesh and J. Sarma

on {0, 1}n. The degree of function f is the degree of such a polynomial (denoted
by deg(f)). If we consider the polynomial over F2[x1, . . . , xn] instead, we get the
F2-degree of f (denoted by degF2(f)).

A deterministic Boolean decision tree is a rooted tree where the leaves are
labeled 0 or 1 and non-leaf nodes labeled by a variable having two outgoing
edges (corresponding to the value taken by the variable). A decision tree is said
to compute a Boolean function f , if for all inputs x, the path from root to the
leaf determined by x is labeled f(x). Define DT(f) as the depth of the smallest
depth decision tree computing f .

For an x, y ∈ {0, 1}n, we denote by x⊕y, the input obtained by taking bitwise
parity of x and y. For B ⊆ [n], eB denotes the characteristic vector of B. For
f : {0, 1}n → {0, 1} and x ∈ {0, 1}n, define the sensitivity of f on x (denoted
by s(f, x)) as |{i | f(x ⊕ ei) �= f(x), i ∈ [n]}|. We define the block sensitivity of f
on x (denote by bs(f, x)) as the size of maximal collection of disjoint non-empty
sets {Bi} where each Bi ⊆ [n] in the collection satisfy f(x ⊕ eBi

) �= f(x). The
sensitivity of f (denoted by s(f)) is defined as maxx∈{0,1}n s(f, x). The influence
of a Boolean function f (denoted by I[f]) is defined as Ex∈{0,1}n [s(f, x)]. The
block sensitivity of f (denoted by bs(f)) is maxx∈{0,1}n bs(f, x). Note that I[f] ≤
s(f) ≤ bs(f). It is also known that I[f] ≤ deg(f) ≤ DT(f) (cf. [5]).

For x ∈ {0, 1}n and S ⊆ [n], define χS(x) = (−1)
∑

i∈S xi . Any f : {0, 1}n →
{−1, 1} can be uniquely expressed as

∑
S⊆[n] f̂(S)χS(x) where f̂(S) ∈ R, indexed

by S ⊆ [n], denotes the Fourier coefficients of f which is 1
2n

∑
x f(x)χS(x)

(see [22] for more details). The sparsity of a Boolean function f (denoted by
sparsity(f)) is the number of non-zero Fourier coefficients of f . For Boolean
functions f whose range is {0, 1}, we define sparsity of f to be the sparsity of
the function 1 − 2f in this paper.

3 Alternation Vs Sensitivity and Alternation
Vs Logarithm of Sparsity

In this section, we show that there exists a family of function F = {fk | k ∈ N}
with alt(fk) is at least exponential in s(fk), DT(fk) and log sparsity(fk) respec-
tively (Sect. 3.1). Complementing this, we show that for any Boolean function
f , alt(f) can be at most exponential in DT(f) (Sect. 3.2). We prove a bound on
the alternation of composed Boolean functions and use it to obtain a family of
functions with super-linear gap between alternation and sensitivity with large
decision tree depth unlike functions in F (Sect. 3.3).

3.1 Exponential Gaps : Alternation Vs Decision Tree Depth

We prove Theorem 1 in this section. We first show that there exists a family of
function F = {fk | k ∈ N} with alt(fk) equals 2DT(fk) − 1 (Theorem 5). Since for
any Boolean function f , s(f) ≤ DT(f) (cf. [5]), we have, alt(fk) = 2DT(fk) − 1 ≥
2s(fk) − 1 and since for any Boolean function f , log sparsity(f) ≤ 2deg(f) ≤

Bounds on Alternation, Sparsity and Sensitivity 265

2DT(f) (cf. [22]), we get that for fk, alt(fk) = 2DT(fk) − 1 ≥ 20.5 log sparsity(fk) − 1
thereby proving Theorem1.

Hence, one cannot hope to show that for all Boolean functions f , alternation
is upper bounded polynomially by sensitivity of f or polynomially by logarithm
of sparsity of f . We now define our family F of Boolean functions.

Definition 1. Let F = {fk | k ∈ N} be a family of Boolean functions where for
every k ∈ N, fk : {0, 1}2k−1 → {0, 1} is defined by the decision tree which is
a full binary tree of depth k with each of the 2k − 1 internal node querying a
distinct variable and each of the nodes at level k have left leaf child labeled 0 and
right leaf child labeled 1.

A Boolean function f3 ∈ F is described using a decision tree as in Fig. 1a.

x1

x2

x4

0 1

x5

0 1

x3

x6

0 1

x7

0 1

(a) Boolean function f3 ∈ F

Ω1xj Ω2

0

0

0

0

1

1

1

1
1

0 0 . . . 0 0 0 . . . 0

1 1 . . . 1 0 0 . . . 0

1 1 . . . 1 0 0 . . . 0

1 1 . . . 1 1 1 . . . 1

Chain σ1

Chain σ2

0 0 . . . 0

0 0 . . . 0

0 0 . . . 0

...

1 1 . . . 1

1 1 . . . 1

1 1 . . . 1

...

← y1

← y2

← ym

← ym+1

← ym+2

← yn

...

...

...

...

...
...

...
...

(b) The chain σ constructed in the proof
of Theorem 5. Note that Ω1 and Ω2 need
not be contiguous.

Fig. 1. (a) Boolean function f3 ∈ F . (b) The chain σ constructed in the proof of
Theorem 5. Note that Ω1 and Ω2 need not be contiguous.

Theorem 5. For every k ≥ 1, fk ∈ F , alt(fk) = 2DT(fk) − 1.

Proof. By definition, fk is computed by a decision tree of depth k. We show that
for k ≥ 1, alt(fk) ≥ 2k − 1. Since fk is defined on 2k − 1 variables, we get that
alt(fk) = 2k − 1 thereby completing the proof.

Since we need to work with functions whose variable set is not necessarily
numbered from 1 to n, we associate bijections (instead of permutations) with
chains. For any set Ω, let BΩ be defined as {σ : [|Ω|] → Ω | σ is a bijection}.
For a Boolean function f defined on the variables {xi1 , xi2 , . . . , xin}, var(f) be
defined as {i1, i2, . . . , in}.

266 K. Dinesh and J. Sarma

We now show that alt(fk) ≥ 2k − 1 by induction on k. For k = 1, since f
depends only on 1 variable the result holds.

Suppose that the result holds for fk ∈ F . For fk+1 ∈ F on n = 2k+1 − 1
variables {x1, x2, . . . , xn}, let T be the decision tree (as in Definition 1) com-
puting fk+1 of depth k + 1 with xj being the root variable for some j ∈ [n].
Let T1 and T2 be the left and right subtree of the root node xj . Consider the
Boolean function f1 (resp. f2) computed by the decision tree T1 (resp. T2). Note
that since T1 and T2 are obtained from T in this way, by Definition 1, f1 and
f2 belongs to F and computes the same function upto variable renaming. Also
note that both f1 and f2 are on m = 2k − 1 variables. Since both T1 and T2 are
of depth k, by inductive hypothesis, alt(f1) ≥ m and alt(f2) ≥ m. Using this, we
now construct a chain for fk+1 of alternation 2k+1 − 1.

Let Ω1 = var(f1), Ω2 = var(f2). Let σ1 ∈ BΩ1 and σ2 ∈ BΩ2 be such that
alt(f1, σ1) = 2k − 1 and alt(f2, σ2) = 2k − 1. We now define a σ ∈ Bvar(f) =
BΩ1∪Ω2∪{j} as σ(i) = σ1(i) if i ∈ {1, 2, . . . ,m}, σ(m+1) = j and σ(m+1+ i) =
σ2(i) if i ∈ {1, 2, . . . ,m}. By definition, σ is indeed a bijection. The σ obtained
is pictorially represented in Fig. 1b for clarity of exposition.

We now claim that alt(f, σ) = 2k+1 − 1. To show this, consider the chain
corresponding to σ given by 0n ≺ y1 ≺ . . . ym ≺ ym+1 ≺ . . . ≺ yn = 1n all
belonging to {0, 1}n. By definition of σ, for i ∈ [m] since jth bit of yi is 0,
f(yi) = f1(yi|Ω1) and for i ∈ {0}∪ [m], since jth bit of ym+1+i is 1, f(ym+1+i) =
f2(ym+1+i|Ω2). Again by definition of σ, for i ∈ [m], 0m along with the elements
yi|Ω1 for i ∈ [m] (in that order) is a chain witnessing f1 alternating m times and
ym+1+i|Ω2 for i ∈ {0}∪ [m] (in that order) is a chain witnessing f2 alternating m
times. Now observe that f(ym) �= f(ym+1). This is because f(ym) is f1 evaluated
on xi = 1 for all i ∈ Ω1 is the rightmost child of T1 which is 1 and f(ym+1)
is f2 evaluated on xi = 0 for all i ∈ Ω2 is the leftmost child of T2 which is 0.
Hence alt(f, σ) = alt(f1, σ1) + alt(f2, σ2) + 1 = 2m + 1 = 2k+1 − 1 completing
the induction. ��
In the next section, we show that for any Boolean function f , we can indeed
upper bound alternation of f by an exponential in decision tree depth of f .

3.2 Alternation is at most Exponential in Decision Tree Depth

In this section, we show that for all Boolean functions f , alt(f) ≤ 2DT(f)+1 − 1.
Markov [18] studied a parameter closely related to alt(f) defined as decrease
(denoted by dc(f)) where the definition is same as alternation except that
the flips in the chain from 1 to 0 (corresponding to a decrease in the func-
tion value) alone are counted. Hence for any Boolean function f , alt(f) ∈
{2dc(f) − 1, 2dc(f), 2dc(f) + 1}. Markov [18] showed the following tight connec-
tion between negations needed to compute a Boolean function and its decrease.

Theorem 6 (Markov [18]). Let negs(f) be the minimum number of negations
needed in any circuit computing f . Then, for an f : {0, 1}n → {0, 1}, negs(f) =
�log(1 + dc(f))�.

Bounds on Alternation, Sparsity and Sensitivity 267

We also use the notion of a connector for two Boolean functions which is a
crucial idea used by Markov in proving the above theorem. A connector of two
Boolean functions f0 and f1 is a function g(b0, b1, x) on n + 2 bits such that
g(0, 1, x) = f0(x) and g(1, 0, x) = f1(x). Markov showed the following remarkable
bound that negs(g) ≤ max{negs(f0), negs(f1)} (for a proof, see Jukna [13]). We
now prove our result which follows from an inductive application of Theorem6.

Theorem 7. For any f : {0, 1}n → {0, 1}, alt(f) ≤ 2DT(f)+1 − 1.

Proof. Since alt(f) ≤ 2dc(f) + 1, it suffices to show that dc(f) ≤ 2DT(f) − 1.
Proof is by induction on DT(f). For DT(f) = 1, the function depends on at
most 1 variable, giving dc(f) ≤ 1 = 2DT(f) − 1. For any f with DT(f) ≥ 2
computed by a decision tree T of depth k, let xi be the variable queried at
the root of T for some i ∈ [n]. Define f0 as f restricted to xi = 0 and f1
as f restricted to xi = 1. Removing the node xi from T gives two decision
trees which computes f0 and f1 (respectively) giving DT(f0) ≤ DT(f) − 1 and
DT(f1) ≤ DT(f) − 1. Hence by induction, dc(f0) ≤ 2DT(f0) − 1 ≤ 2DT(f)−1 − 1
and similarly, dc(f1) ≤ 2DT(f)−1 − 1.

Applying Theorem 6, we get, negs(f0) = �log(dc(f0) + 1)� (and similarly for
f1). Let g be the connector for f0 and f1. Since f(x) = xi ∧ f1(x)∨ ¬xi ∧ f0(x),
f(x) = g(¬xi, xi, x). Applying Markov’s result on the number of negations needed
in computing g, we get negs(f) ≤ negs(g) + 1 ≤ 1 + max{negs(f0), negs(f1)}.
Since, max{negs(f0), negs(f1)} ≤ ⌈

log(2DT(f)−1 − 1 + 1)
⌉

which is DT(f) − 1,
negs(f) ≤ DT(f). Applying Theorem6, on f completes the induction. ��
Note that for the family of functions F , Theorem 5 shows that the above result
is asymptotically tight.

3.3 Super Linear Gaps Between Alternation and Sensitivity

In this section, we ask the question whether there exists a family of func-
tions f where alt(f) grows faster than s(f) but DT(f) is not very small.
We exhibit a family of Boolean functions {gk : {0, 1}nk → {0, 1} | k ∈ N} with
alt(gk) = ω(s(gk)) and DT(gk) is Ω(nlog6 3

k).
Before proceeding, we show a lower bound on the alternation of composition

of two Boolean functions in terms of its alternation.

Lemma 1. For any g : {0, 1}n → {0, 1}, with g(0n) �= g(1n) and any f :
{0, 1}m → {0, 1}, alt(f ◦ g) ≥ alt(f) · alt(g).

Proof. Without loss of generality, assume g(0n) = 0 and g(1n) = 1 (otherwise
work with ¬g as alt(g) = alt(¬g)). Let A = (0n = z0 ≺ z1 ≺ · · · ≺ zn = 1n)
be a chain on {0, 1}n such that the alternation of g is maximum. Consider any
maximum alternation chain of f and let σ be the permutation associated with
the chain. We exhibit a chain B = (y0, y1, . . . , ynm) on {0, 1}nm with alt(f)·alt(g)
many alternations.

We divide the inputs in the chain B into m blocks of size n each. We say
that for a k ∈ [nm], the input yk ∈ {0, 1}nm belongs to the block b if b = � k

n�.

268 K. Dinesh and J. Sarma

We define the position of yk in its block, pos(k), as n if n | k and (k mod n)
otherwise. Let yk = (xk

1 , x
k
2 , . . . , x

k
m) where xk

i ∈ {0, 1}n. For k = 0, define
xk

i = 0n for all i ∈ [m] and for k = nm, define xk
i = 1n for all i ∈ [m]. For the

remaining values of k, xk
i for i ∈ [m] is defined as

xk
i =

⎧
⎪⎨

⎪⎩

zn = 1n if i ∈ {σ(1), σ(2), . . . , σ(b − 1)} and b ≥ 2
zpos(k) if i = σ(b)
z0 = 0n otherwise

We can see that y0 = 0nm and ynm = 1nm and for k ∈ [nm], from the
above definition, yk−1 ≺ yk as ∀i ∈ [m] xk−1

i ≺ xk
i . We now argue that

f ◦ g alternates at least alt(f) · alt(g) times in the chain B. Consider the input
(g(xk

1), g(xk
2), . . . , g(xk

m)) to the function f and let yk belong to the block b.
Consider the case when b = 1. In this case, all of xk

i except i = σ(b) is 0n. As
long as yk stays within the block b, the input the function f changes its value
only at xk

σ(b) = xk
σ(1). Since g(xk

σ(b)) changes its value alt(g) times, f ◦ g will also
alternate alt(g) times if value of f changes on flipping location σ(b) in its input.

For k such that b > 1, by definition of yk, xk
σ(1), . . . , x

k
σ(b−1) is 1n and

xk
σ(b+1) . . . , xk

σ(m) is 0n. Since g(0n) = 0 and g(1n) = 1, the input to f will be
either r1 = ∨b

i=1eσ(i) or r0 = ∨b−1
i=1eσ(i). Since g alternates alt(g) times thereby

changing the input to f between r0 and r1, f ◦ g will also alternate alt(g) times
if value of f changes on flipping location σ(b).

Thus in both cases, if f alternates once, f ◦ g alternates alt(g) in the chain
B. Since f alternates alt(f) times on σ, f ◦ g alternates alt(f) · alt(g) times in
the chain B. ��
For f = ∨n and g being a parity on m bits for any odd integer m, alt(f ◦ g) ≥
mn by Lemma 1 while alt(f) · alt(g) = m. Thus, in general, it is not true that
alt(f ◦ g) ≤ alt(f) · alt(g) and hence Lemma 1 is not tight. Using Lemma 1, we
can prove the following Corollary.

Corollary 1. For any h : {0, 1}n → {0, 1}, with h(0n) �= h(1n), for any k ≥ 2,
alt(h◦k) ≥ alt(h)k.

Super-linear Gap between Alternation and Sensitivity: We use
Corollary 1 to exhibit a family of Boolean functions for which alternation is
super-linear in sensitivity.

Theorem 2. There exists a family of Boolean functions {gk : {0, 1}nk → {0, 1}
| k ∈ N} such that alt(gk) ≥ s(gk)log3 5 while DT(gk) is Ω(nlog6 3

k).

Proof. Consider the address function ADDRt : {0, 1}t+2t → {0, 1} defined as
ADDRt(x1, x2, . . . , xt, y0y1, y2, . . . , y2t−1) = yint(x1x2...xt) where int(x) is the
integer corresponding to the binary string x. Consider the chain (000000, 001000,
101000, 101010, 111010, 111011, 111111). Since, ADDR2 changes value 5 times
along this chain, alt(ADDR2) ≥ 5 while s(ADDR2) = 3. We consider the family
of functions {gk | k ∈ N} obtained by composing ADDR2 k times. Since sen-
sitivity of composed function is at most the product of their sensitivity [24],

Bounds on Alternation, Sparsity and Sensitivity 269

s(gk) ≤ s(ADDR2)k = 3k. Since g1 = ADDR2 is 0 on all zero input and
1 on all ones input, applying Corollary 1, alt(gk) ≥ 5k ≥ s(gk)log3 5. Note
that DT(gk) = DT(ADDR2)k (as decision tree depth multiplies under compo-
sition [24]). Hence DT(gk) = 3k which is n

log6 3
k where nk is the number of

variables of gk and hence does not grows logarithmic in nk. ��

4 Xor Log-Rank Conjecture for Bounded Alternation
Boolean Functions

In this section, we prove the Xor Log-Rank Conjecture for f when alt(f)
is at most poly(log n). Before proceeding, we give a short proof for the fact that
for all Boolean functions f , deg(f) ≤ alt(f)degF2(f)2 (Eq. 1 from Introduction).

Proof (of Eq. 1). The statement directly follows from Theorem 14 of [16] where
it is shown that for a Boolean function f , DT(f) ≤ alt(f)degF2(f)2. Observing
that deg(f) ≤ DT(f) (cf. [5]) completes the argument. ��

As a first step towards showing alt(f) ≤ poly(log n) implies that the
Xor Log-Rank Conjecture holds for f , we prove the following bound on
the weighted average of the Fourier coefficients, weighted by the number of ele-
ments.

Proposition 1. For an f : {0, 1}n → {−1, 1} that depends on all its inputs,∑
S |f̂(S)||S| ≥ n.

Proof. It suffices to show that for every i ∈ [n],
∑

S:i∈S |f̂(S)| ≥ 1. Fix an i ∈ [n].
Since f(x) =

∑
S f̂(S)χS(x) =

∑
S⊆[n]\{i}(f̂(S)+f̂(S∪{i})(−1)xi)

∏
j∈S(−1)xj ,

for any S ⊆ [n] \ {i} and b ∈ {0, 1}, f̂ |xi=b(S) = f̂(S) + (−1)b · f̂(S ∪ {i}).
Hence we conclude that for any x, fxi=0(x) − fxi=1(x) =

∑
S⊆[n]\{i} 2f̂(S ∪

{i})
∏

j∈S(−1)xj . Now taking absolute values on both sides and applying triangle
inequality,

∣∣
∣∣
fxi=0 − fxi=1

2

∣∣
∣∣ =

∣∣∣
∣∣∣

∑

S⊆[n]\{i}
f̂(S ∪ {i})

∏

j∈S

(−1)xj

∣∣∣
∣∣∣
≤

∑

S⊆[n]\{i}

∣∣
∣f̂(S ∪ {i})

∣∣
∣

Since f is sensitive at i on some input a ∈ {0, 1}n, for the input a′ obtained by
removing ith bit from a, |fxi=0(a′) − fxi=1(a′)| = 2 implying

∑
S:i∈S |f̂(S)| ≥ 1

by the above equation which completes the proof. ��
We show that if alt(f) ≤ poly(log n), then deg(f) ≤ poly(log sparsity(f)).

This implies that the Xor Log-Rank Conjecture holds2 for f . As a first
step, using Proposition 1, we show that if deg(f) ≤ poly(log n), then deg(f) ≤
poly(log sparsity(f)) (Lemma 2). We then argue using Eq. 1 that alt(f) ≤
poly(log n) implies that deg(f) ≤ poly(log n) proving Theorem3.
2 Using the facts that CC⊕(f) ≤ 2DT(f) [19] and DT(f) ≤ deg(f)4 [5], CC⊕(f) =

O(deg(f)4) implying CC⊕(f) = O(poly(log sparsity(f)).

270 K. Dinesh and J. Sarma

Lemma 2. For an f : {0, 1}n → {0, 1} which depends on all its inputs and
for large enough n, if deg(f) ≤ (log n)c for some c > 0, then deg(f) ≤
(log sparsity(f))c.

Proof. Since the f depends on all the inputs, applying Proposition 1 to g(x) =
1 − 2f(x), n ≤ ∑

S |ĝ(S)||S| ≤ deg(f)
∑

S |ĝ(S)| ≤ deg(f)
√

sparsity(f). In con-
cluding this, we used the fact that maximum sized index |S| for which ĝ(S) �= 0
is deg(f) and

∑
S |ĝ(S)| ≤ √

sparsity(f) [22]. Thus,
√
sparsity(f) · deg(f) ≥ n.

Since deg(f) ≤ (log n)c, we have
√

sparsity(f) ≥ n
(log n)c ≥ √

n for large enough n.
Hence deg(f) ≤ (log n)c ≤ (log sparsity(f))c.

Theorem 3. For large enough n, the Xor Log-Rank Conjecture is true for
all f : {0, 1}n → {0, 1}, such that alt(f) ≤ poly(log n) where f depends on all its
variables.

Proof. If degF2(f) = 1, then f is a parity function and the Xor Log-Rank
Conjecture holds for f . Hence we can assume that degF2(f) > 1. If alt(f) ≤
degF2(f), then by Eq. 1, we have deg(f) ≤ degF2(f)3 ≤ log sparsity(f)3 (since
degF2(f) > 1, degF2(f) ≤ log sparsity(f) [3]). Hence the Xor Log-Rank Con-
jecture holds for f . If alt(f) > degF2(f), then by Eq. 1, deg(f) < alt(f)3. Since
alt(f) ≤ poly(log n), we have deg(f) ≤ poly(log n). Applying Lemma 2, we get
that deg(f) ≤ poly(log sparsity(f)). ��
Remark 1. It should be noted that for f satisfying conditions of Theorem3, the
Sensitivity Conjecture is true. This is because for f that depends on all
its inputs, s(f) = Ω(log n) [23] implying that alt(f) ≤ poly(log n) ≤ poly(s(f)).
Hence the Sensitivity Conjecture is true for f by the result of Lin and
Zhang [16].

5 Two Further Applications of the deg Vs degF2
Relation

We showed that for all Boolean functions f , deg(f) ≤ alt(f)degF2(f)2 (Eq. 1) in
Sect. 4. We now give two applications of this result. Firstly, we partially answer a
question raised by Kulkarni and Santha [15] on the sparsity of monotone Boolean
functions by show a variant of their statement. Secondly, we observe that Eq. 1
improves a bound on I[f] due to Guo and Komargodski [11].

5.1 Dense Fourier Spectrum for Bounded Alternation Functions

Kulkarni and Santha [15] studied certain special Boolean functions which are indi-
cator functions fM of a bridgeless matroids M on ground set [n]. While it is known
that for any f , log sparsity(f) ≤ 2 · deg(f) [22], Kulkarni and Santha showed that
this upper bound is asymptotically tight for f = fM. They observed that fM is a
monotone function (by virtue of the underlying support set being a matroid) and
asked if a similar statement holds for the general class of monotone Boolean func-
tions. More precisely, they asked whether log sparsity(f) = Ω(deg(f)) for every
monotone Boolean function f .

Bounds on Alternation, Sparsity and Sensitivity 271

We show that for functions of constant alternation (which includes monotone
functions), log sparsity(f) is relatively large. This can be seen as a variant of the
question posed by Kulkarni and Santha.

Theorem 4. For Boolean functions f with alt(f) = O(1), log sparsity(f) =
Ω(

√
deg(f)).

Proof. Observe that for degF2(f) = 1, f is parity of constant number of vari-
ables or its negation as alt(f) = O(1). Hence the result holds for this case.
For degF2(f) > 1, by Eq. 1 and the result that degF2(f) ≤ log sparsity(f) when
degF2(f) > 1 [3], we get that deg(f) = O(degF2(f)2) = O(log sparsity(f)2). ��

Note that Theorem 4 does show that logarithm of sparsity of monotone func-
tions is nearly close to the upper bound possible but does not completely settles
the question of Kulkarni and Santha.

5.2 Improved Upper Bound for I[f]

For an n bit Boolean function, the best known upper bound of I[f] in terms of
alt(f) is I[f] ≤ O(alt(f)

√
n) due to Guo and Komargodski [11] using a proba-

bilistic argument. Since I[f] ≤ deg(f) [22], Eq. 1 gives an improvement over the
known bound on I[f] when degF2(f) < 4

√
n.

Proposition 2. For any f : {0, 1}n → {0, 1}, I[f] ≤ alt(f) · degF2(f)2.

This immediately gives improved learning algorithms for functions of bounded
alternation in the PAC learning model.

Blais et al. [4] gave a uniform learning algorithm for the class of functions
Ct computable by circuits with at most t negations that can learn an f ∈ Ct

from random examples with error ε > 0 in time nO(2t
√

n)/ε where t ≤ O(log n).
In terms of alternation, the runtime is nO(alt(f)

√
n)/ε. The main tool used in this

area is the low degree learning algorithm due to Linial et al. [17] using which
the following result is derived in [22].

Lemma 3 (Corollary 3.22 and Theorem 3.36 [22]). For t ≥ 1, let At =
{f | f : {−1, 1}n → {−1, 1} , I[f] ≤ t} and Bt = {f | f : {−1, 1}n → {−1, 1} ,
deg(f) ≤ t} Then At can be learned from random examples with error ε in time
nO(t/ε) for any ε ∈ (0, 1) and Bt can be exactly learned from random examples
in time ntpoly(n, 2t).

The claimed result follows from Proposition 2. Applying Lemma 3, we obtain

– an exact learning algorithm from random examples with a runtime of
nO(alt(f)degF2 (f)

2)poly(n, 2(alt(f)degF2 (f)
2)) and

– an ε error learning algorithm from random examples with a runtime
nO(alt(f)degF2 (f)

2/ε)

thereby removing the dependence on the parameter n in the exponent and
improving the runtime for those f such that degF2(f) < 4

√
n.

272 K. Dinesh and J. Sarma

Acknowledgments. The authors would like to thank the anonymous reviewers for
constructive comments which improved the presentation of the paper.

References

1. Ambainis, A., Prūsis, K., Vihrovs, J.: Sensitivity versus certificate complexity of
Boolean functions. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS,
vol. 9691, pp. 16–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
34171-2 2

2. Bafna, M., Lokam, S.V., Tavenas, S., Velingker, A.: On the sensitivity conjecture for
read-k formulas. In: 41st International Symposium on Mathematical Foundations
of Computer Science, MFCS 2016 - Kraków, Poland, pp. 16:1–16:14 (2016)

3. Bernasconi, A., Codenotti, B.: Spectral analysis of Boolean functions as a graph
eigenvalue problem. IEEE Trans. Comput. 48(3), 345–351 (1999)

4. Blais, E., Canonne, C.L., Oliveira, I.C., Servedio, R.A., Tan, L.-Y.: Learning cir-
cuits with few negations. In: Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, 24–26
August 2015, Princeton, NJ, USA, pp. 512–527 (2015)

5. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci. 288(1), 21–43 (2002)

6. Karthik, C.S., Tavenas, S.: On the sensitivity conjecture for disjunctive normal
forms. In: 36th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2016, 13–15 December 2016, Chennai,
India, pp. 15:1–15:15 (2016)

7. Chakraborty, S.: On the sensitivity of cyclically-invariant Boolean functions. Dis-
crete Math. Theor. Comput. Sci. 13(4), 51–60 (2011)

8. Cook, S., Dwork, C., Reischuk, R.: Upper and lower time bounds for parallel ran-
dom access machines without simultaneous writes. SIAM J. Comput. 15(1), 87–97
(1986)

9. Gilmer, J., Koucký, M., Saks, M.E.: A new approach to the sensitivity conjecture.
In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ITCS 2015, pp. 247–254. ACM, New York (2015)

10. Gopalan, P., Servedio, R.A., Wigderson, A.: Degree and sensitivity: tails of two dis-
tributions. In: 31st Conference on Computational Complexity, CCC 2016, Tokyo,
Japan, pp. 13:1–13:23 (2016)

11. Guo, S., Komargodski, I.: Negation-limited formulas. Theor. Comput. Sci. 660,
75–85 (2017)

12. Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture.
Theor. Comput. Libr. Grad. Surv. 4, 1–27 (2011)

13. Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Algorithms and
Combinatorics. Springer, Heidelberg (2012)

14. Kenyon, C., Kutin, S.: Sensitivity, block sensitivity, and �-block sensitivity of
Boolean functions. Inf. Comput. 189(1), 43–53 (2004)

15. Kulkarni, R., Santha, M.: Query complexity of matroids. In: Spirakis, P.G., Serna,
M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 300–311. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38233-8 25

16. Lin, C., Zhang, S.: Sensitivity conjecture and log-rank conjecture for functions
with small alternating numbers. In: 44th International Colloquium on Automata,
Languages, and Programming (ICALP 2017), vol. 80, pp. 51:1–51:13, Dagstuhl,
Germany (2017)

https://doi.org/10.1007/978-3-319-34171-2_2
https://doi.org/10.1007/978-3-319-34171-2_2
https://doi.org/10.1007/978-3-642-38233-8_25

Bounds on Alternation, Sparsity and Sensitivity 273

17. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier transform, and
learnability. J. ACM 40(3), 607–620 (1993)

18. Markov, A.A.: On the inversion complexity of a system of functions. J. ACM 5(4),
331–334 (1958)

19. Montanaro, A., Osborne, T.: On the communication complexity of XOR functions.
CoRR abs/0909.3392 (2009)

20. Nisan, N.: CREW PRAMs and decision trees. SIAM J. Comput. 20(6), 999–1007
(1991)

21. Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials.
In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
STOC 1992, pp. 462–467. ACM, New York (1992)

22. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, New
York (2014)

23. Simon, H.-U.: A tight ω(loglog n)-bound on the time for parallel Ram’s to com-
pute nondegenerated boolean functions. In: Karpinski, M. (ed.) FCT 1983. LNCS,
vol. 158, pp. 439–444. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-
12689-9 124

24. Tal, A.: Properties and applications of Boolean function composition. In: Proceed-
ings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS
2013, pp. 441–454. ACM, New York (2013)

25. Tsang, H.Y., Wong, C.H., Xie, N., Zhang, S.: Fourier sparsity, spectral norm,
and the log-rank conjecture. In: 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2013, 26–29 October 2013, Berkeley, CA, USA, pp.
658–667 (2013)

26. Turán, G.: The critical complexity of graph properties. Inf. Process. Lett. 18(3),
151–153 (1984)

27. Zhang, Z., Shi, Y.: Communication complexities of symmetric XOR functions.
Quantum Inf. Comput. 9(3), 255–263 (2009)

28. Zhang, Z., Shi, Y.: On the parity complexity measures of Boolean functions. Theor.
Comput. Sci. 411(26–28), 2612–2618 (2010)

https://doi.org/10.1007/3-540-12689-9_124
https://doi.org/10.1007/3-540-12689-9_124

On Oriented L(p, 1)-labeling

Sandip Das1, Soumen Nandi1(B), and Sagnik Sen2

1 Indian Statistical Institute, Kolkata, India
sandipdas@isical.ac.in, soumen2004@gmail.com

2 Ramakrishna Mission Vivekananda University, Kolkata, India
sen007isi@gmail.com

Abstract. An oriented graph is a directed graph without any directed
cycle of length at most 2. In this article, we characterize the oriented

L(p, 1)-labeling span λo
p,1(

−→
G) of an oriented graph

−→
G using graph homo-

morphisms. Using this characterization and probabilistic techniques we
prove the upper bound of λo

p,1(GΔ) ≤ 2.Δ2.2Δ + (pΔ), where GΔ is the
family of graphs with maximum degree at most Δ. Moreover, by proving
a lower bound exponential in Δ for the same graph family we conclude
that the upper bound is not too far from being optimal. We also settle an
open problem given by Sen (DMGT 2014) for the family of outerplanar
graphs O by showing λo

2,1(O) = 10.

Keywords: Oriented graph · Graph homomorphism
Oriented l(p, 1)-labeling · Outerplanar graph · Maximum degree

1 Introduction

An oriented graph is a directed graph
−→
G having no directed cycle of length 1 or

2 with set of vertices V (
−→
G) and set of arcs A(

−→
G). The underlying undirected

graph of
−→
G is denoted by G and

−→
G is an orientation of G. The directed distance−→

d (u, v) between two vertices u and v is the length (number of edges) of a shortest
directed path connecting u and v (can be either from u to v, or from v to u).
The set of vertices and edges of an undirected graph G is denoted by V (G) and
E(G), respectively. The distance d(u, v) between two vertices u and v of a graph
G is the length of a shortest path connecting u and v.

Griggs and Yeh [8] introduced the L(2, 1)-labeling problem as a variation of
the channel assignment problem given by Hale [9]. Since then, the generalization,
L(p, q)-labeling problem has been studied by several researchers (see the survey
by Calamoneri [3] for details), with particular focus on L(p, 1)-labeling [6] and
L(2, 1)-labeling [4,11]. Aardal et al. [1] pointed out that the same problem,
modeled on directed or oriented graphs can potentially be better. After that two
different oriented versions of L(p, q)-labeling have been introduced and studied.

Chang et al. [5] introduced the 2-dipath L(p, q) labeling of oriented graphs.
A 2-dipath k-L(p, q)-labeling of an oriented graph

−→
G is a function l : V (

−→
G) →

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 274–282, 2018.
https://doi.org/10.1007/978-3-319-74180-2_23

On Oriented L(p, 1)-labeling 275

{0, 1, . . . , k} such that |l(u) − l(v)| ≥ p for
−→
d (u, v) = 1 and |l(u) − l(v)| ≥ q

for
−→
d (u, v) = 2. The 2-dipath span

−→
λ p,q(

−→
G) of an oriented graph

−→
G is the

minimum k such that
−→
G admits a 2-dipath k-L(p, q)-labeling.

Gonçalves et al. [7] introduced the oriented L(p, q)-labeling. An oriented k-
L(p, q)-labeling of an oriented graph

−→
G is a 2-dipath k-L(p, q) labeling l of

−→
G

such that any two arcs wx, yz ∈ A(
−→
G) with l(w) = l(z) implies l(x) �= l(y). The

oriented L(p, q)-labeling span λo
p,q(

−→
G) of an oriented graph

−→
G is the minimum

k such that
−→
G admits an oriented k-L(p, q)-labeling.

For an undirected graph G its 2-dipath L(p, q)-labeling span
−→
λ p,q(G) = max{−→λ p,q(

−→
G)|−→G is an orientation of G}

and oriented L(p, q)-labeling span

λo
p,q(G) = max{λo

p,q(
−→
G)|−→G is an orientation of G}.

Also for a family F of graphs its 2-dipath (resp. oriented) L(p, q)-labeling span
−→
λ p,q(F) = max{−→λ p,q(G)|G ∈ F} (resp. λo

p,q(F) = max{λo
p,q(G)|G ∈ F}).

Several works has been done on the parameters
−→
λ p,q(·) and λo

p,q(·), with a

particular focus on (p, q) = (2, 1). Chang et al. [5] studied
−→
λ p,q(·) for bipartite

and non-bipartite graphs. Calamoneri and Sinaimeri [4] studied
−→
λ 2,1(·) for the

families of prisms, halin graphs and cactus, whereas Calamoneri [2] studied the
same parameter for square, triangular and hexagonal grid graphs. Gonçalves
et al. [7] computed upper bounds of λo

p,q(
−→
G) on trees, bipartite graphs and

planar graphs as well as provided an upper bound of
−→
λ p,1(

−→
G) in terms of the

maximum degree of
−→
G . Sen [11] studied both the parameters

−→
λ p,q(·) and λo

p,q(·)
for complete multipartite graphs and provided close/tight bounds of

−→
λ 2,1(·) and

λo
2,1(·) for families of cactus, 2-trees, outerplanar, and planar graphs with girth

restrictions.
Our main focus is to study the oriented L(p, 1)-labeling of oriented graphs

with some of the results concerning the particular case p = 2. Gonçalves et al. [7]
proved a quadratic upper bound

−→
λ p,1(GΔ) ≤ �Δ2

2 � + pΔ where GΔ is the family
of graphs with maximum degree at most Δ. For λo

p,1(GΔ) no such bound has been

proved till date. However, using the relation λo
p,q(

−→
G) ≤ max{p, q} ·χo(

−→
G)−1 [4]

and the result χo(GΔ) ≤ 2.Δ2.2Δ [10] one can prove the trivial upper bound
λo

p,1(GΔ) ≤ 2p.Δ2.2Δ − 1.
In this article we formulate an equivalent definition of oriented L(p, 1)-

labeling and its span using the notion of graph homomorphism. Then, using
that alternative definition and probabilistic techniques we improve this upper
bound to λo

p,1(GΔ) ≤ 2.Δ2.2Δ + (pΔ). Moreover, by proving a lower bound
exponential in Δ we conclude that the upper bound is not too far from being
optimal. To be precise, we prove the following result.

276 S. Das et al.

Theorem 1. For the family of graphs GΔ with maximum degree Δ ≥ 2, we have
2

Δ
2 − 1 ≤ λo

p,1(GΔ) ≤ 2Δ22Δ + 2pΔ.

Sen [11] proved 9 ≤ λo
2,1(O) ≤ 10, where O is the family of outerplanar

graphs. Determining the exact value of λo
2,1(O) was left as an open problem [11].

In this article, we settle the open problem for outerplanar graphs by showing
the following result.

Theorem 2. For the family O of outerplanar graphs we have λo
2,1(O) = 10.

2 Homomorphism and Oriented L(p, 1)-labeling

The following two results have been used to prove lower and upper bounds of−→
λ p,q(·) and λo

p,q(·) in the previous works. The first one is regarding the obvious
relation between the two parameters.

Lemma 1 ([7]). For an oriented graph
−→
G we have

−→
λ p,q(

−→
G) ≤ λo

p,q(
−→
G).

The second result shows that both the parameters respects homomorphism
in the following sense.

Lemma 2 ([7]). If
−→
G → −→

H , then
−→
λ p,q(

−→
G) ≤ −→

λ p,q(
−→
H) and λo

p,q(
−→
G) ≤ λo

p,q(
−→
H).

Here we go one step further by providing an equivalent formulation of oriented
L(2, 1)-labeling span using the notion of homomorphisms.

The graph Lp,n is a graph with set of vertices V (Lp,n) = {0, 1, ..., n} and set
of edges E(Lp,n) = {uv such that |u − v| ≥ p}. Let

−→L p,n denote the family of
all orientations of Lp,n.

Theorem 3. For an oriented graph
−→
G we have λo

p,1(
−→
G) ≤ n if and only if there

exists an
−→
L p,n ∈ −→L p,n such that

−→
G → −→

L p,n.

Proof. First assume that λo
p,1(

−→
G) ≤ n. Let l be an oriented n-L(p, 1)-labeling

of
−→
G .
Now we will construct an oriented graph

−→
L with set of vertices V (

−→
L) =

{0, 1, ..., n}. If there exists an arc xy ∈ A(
−→
G) with l(x) = u and l(y) = v, then

include the arc uv ∈ A(
−→
L). Now add an arc between each pair {u, v} of non-

adjacent vertices such that |u − v| ≥ p. This will finish the construction of
−→
L .

Note that
−→
G → −→

L and
−→
L is an orientation of Lp,n.

For the converse, assume that there exists an orientation
−→
L p,n of Lp,n such

that l :
−→
G → −→

L p,n is a homomorphism. Therefore, note that l : V (
−→
G) →

V (
−→
L p,n) = {0, 1, ..., n}, as a function, is an oriented n-L(p, 1)-labeling of

−→
G .

Given two (oriented) graphs G,H their disjoint union graph G∪H is a graph
with set of vertices V (G ∪ H) = V (G) ∪ V (H) and set of edges E(G ∪ H) =
E(G) ∪ E(H). A family F of graphs is complete if G,H ∈ F implies that the
disjoint union graph G ∪ H ∈ F .

On Oriented L(p, 1)-labeling 277

Corollary 1. For a complete family F of graphs λo
p,1(F) ≤ n if and only if

there exists an
−→
L p,n ∈ −→L p,n such that

−→
G → −→

L p,n for all
−→
G ∈ F .

Proof. First we will prove the converse. Let there exist an
−→
L p,n ∈ −→L p,n such

that
−→
G → −→

L p,n for all
−→
G ∈ F . Then λo

p,1(
−→
G) ≤ n for all

−→
G ∈ F by Theorem 3.

Now we will prove the ‘if’ part by contradiction. Thus assume that, for each−→
L p,n ∈ −→L p,n there exists a

−→
G−→

L p,n
∈ F such that

−→
G−→

L p,n
does not admit a

homomorphism to
−→
L p,n. Let

−→
X be the disjoint union graph of

−→
G−→

L p,n
’s for all

−→
L p,n ∈ −→L p,n. Thus

−→
X does not admit a homomorphism to any

−→
L p,n ∈ F . This

implies λo
p,1(F) > n by Theorem 3, a contradiction.

In the following two sections we will deal with three complete family of
graphs, namely, the family of graphs with maximum degree Δ, the family of
planar graphs and the family of outerplanar graphs. We will use the above two
results to prove our bounds.

3 Proof of Theorem1

Let
−→
G be an oriented graph having the arc uv. Then v is a +-neighbor of

u and u is a −-neighbor of v. The set of all +-neighbors and −-neighbors of
v is denoted by N+(v) and N−(v), respectively. Let a = (a1, a2, ..., aj) be a
j-vector such that ai ∈ {+,−} where i ∈ {1, 2, ..., j}. Let J = (v1, v2, ..., vj)
be a j-tuple (without repetition) of vertices from

−→
G . Then we define the set

Na(J) = {v ∈ V |v ∈ Nai(vi) for all 1 ≤ i ≤ j}. Finally, we say that
−→
G has

property Qt,j
g(j) if for each j-vector a and each j-tuple J we have |Na(J)| ≥ g(j)

where j ∈ {0, 1, ..., t} and g : {0, 1, ..., t} → {0, 1, ...∞} is an integral function.
While proving χo(GΔ) ≤ 2.Δ2.2Δ Kostochka et al. [10] showed the following

(see the proof of Theorem 5 in [10]):

Lemma 3 ([10]). If
−→
L has property QΔ,j

1+(Δ−j)(Δ−1), then
−→
G → −→

L for all
−→
G ∈

GΔ.

Therefore, to prove the upper bound of Theorem1 it is enough to prove the
following lemma.

Lemma 4. There exists an
−→
L p,n ∈ −→L p,n having property Qt,j

1+(t−j)(t−1), where
n = 2t2.2t + 2pt and t ≥ 2.

Proof. Consider the graph Lp,n and let CJ = ∩j
i=1N(vi) for any j-tuple J = (v1,

v2, ..., vj). For a fixed vi, as |l(vi) − l(u)| ≥ p for
−→
d (vi, u) = 1, at most (2p − 1)

vertices labeled with l(vi), l(vi) ± 1, l(vi) ± 2, . . . , l(vi) ± (p − 1) cannot be the
neighbors of vi.

So, number of non-neighbors of a vertex vi is at most (2p− 1), which implies
that ⋃j

i=1
(V (Lp,n) − N(vi)) ≤ (2p − 1)j.

278 S. Das et al.

That means, |CJ | ≥ 2t2.2t +2pt−2pj+j ≥ 2t2.2t −j. Now, fix a set C ′
J ⊆ CJ for

each j-tuple J in such a way that |C ′
J | = 2t2.2t − j = m − j, where m = 2t2.2t.

We want to show that there exists an orientation
−→
L p,n ∈ −→L p,n such that for

each j-vector a and each j-tuple J we have |Na(J)| ≥ 1 + (t − j)(t − 1). This
will imply that

−→
L p,n has property Qt,j

1+(t−j)(t−1).
Thus let us take a random orientation of Lp,n where probability of the exis-

tence of an arc is 1
2 . We will show that the probability of

−→
L p,n not having

property Qt,j
1+(t−j)(t−1) is strictly less than 1 when |−→L p,n| = n = 2t2.2t +2pt. Let

P (J,a) denote the probability of the event |Na(J)| < 1 + (t − j)(t − 1) where
J is a j-tuple of

−→
L p,n and a is a j-vector for some j ∈ {0, 1, ..., t}. Call such an

event a bad event. Thus,

P (J,a) ≤
(t−j)(t−1)∑

i=0

(|C ′
J |
i

)
2−ij(1 − 2−j)|C′

J |−i

=
(t−j)(t−1)∑

i=0

(
m − j

i

)
2−ij(1 − 2−j)m−i−j .

(1)

So, from Eq. 1 we can write by [10] that P (J,a) < e−m2−j

m(t−j)(t−1)+1.
Let P (B) denote the probability of the occurrence of at least one bad event.

To prove this lemma it is enough to show that P (B) < 1. Let T j denote the
set of all j-tuples and W j denote the set of all j-vectors. Then by [10] we can
conclude that

P (B) =
t∑

j=0

∑

J∈T j

∑

a∈W j

P (J,a) <
t∑

j=0

(
m

j

)
2je−m2−j

m(t−j)(t−1)+1

< 1.

(2)

Hence, the result follows.

Finally, we are ready to prove Theorem1.

Proof of Theorem 1. We know that given any oriented graph
−→
G the following

inequality λo
p,1(

−→
G) ≥ χo(

−→
G) − 1 due to Gonçalves et al. [7] and χo(

−→
G) ≥ 2

Δ
2

due to Kostochka et al. [10]. These two inequalities together implies the lower
bound.

The upper bound follows from Lemmas 3 and 4. �

4 Proof of Theorem2

Before proving the theorem we will introduce some notations, definitions and
constructions to aid the proof. After that we will prove some lemmas, combining
which we will finally prove Theorem 2.

On Oriented L(p, 1)-labeling 279

x y x y x y x y
type-1 type-2 type-3 type-4

Fig. 1. The spikes.

The spikes: The four graphs depicted in Fig. 1 are called spikes. The names of
the spikes are as suggested in the pictures.

Merging a spike with an arc: Let G be a graph having an arc uv. Merging
a type-k spike with uv is to place a copy of a type-k spike by identifying the
vertices x and y with the vertices u and v, respectively.

A spiked oriented path: Let X = v0v1 · · · v4n be a path with an orientation−→
X . Let the arc in

−→
X corresponding to the edge vi−1vi of X be ai for all i ∈

{1, 2, · · · 4n}. Merge

– a type-1 spike with each of the first n arcs a1, a2, · · · , an of
−→
X ,

– a type-2 spike with each of the next n arcs an+1, an+2, · · · , a2n of
−→
X ,

– a type-3 spike with each of the next n arcs a2n+1, a2n+2, · · · , a3n of
−→
X ,

– a type-4 spike with each of the last n arcs a3n+1, a3n+2, · · · , a4n of
−→
X .

The so-obtained graph is the spiked oriented path of
−→
X . The operation by which

we obtain the spiked oriented path of
−→
X is called adding spikes on

−→
X . The new

arcs are the outer arcs and the oriented path induced by the outer arcs is the
outer oriented path of the spiked oriented path of

−→
X .

An i-spiked oriented path: Let X = v0v1 · · · v4in be a path with an orientation−→
X . First obtain the spiked oriented path

−→
X 1 of

−→
X and alternatively call it the

1-spiked oriented path of
−→
X . After that consider the outer oriented path of

−→
X 1

and add spikes on it. The so-obtained graph is the 2-spiked oriented path of
−→
X

with the outer oriented path being the path induced by the newly added arcs.
Finally we recursively define the i-spiked oriented path

−→
X i of

−→
X by the following:

the i-spiked oriented path
−→
X i of

−→
X is the graph obtained by adding spikes to the

outer oriented path
−→
X i−1 where the oriented path induced by the newly added

arcs is the outer oriented path of
−→
X i. Also the outer oriented path added in the

jth iteration is called the jth outer path for all j ≤ i. An arc of a jth outer path
for some j < i is a trendy arc.

The n-fan: Take two directed paths u−1u0u1 · · · unun+1 and v−1v0v1 · · · vnvn+1

on n vertices each and make them adjacent to a vertex v with such orientations
that N+(v) = {u−1, u0, u1, · · · , un+1} and N−(v) = {v−1, v0, v1, · · · , vn+1}.

The i-spiked fan: Let
−→
F be the 4i+1-fan where

−→
X = u0u1 · · · un and

−→
Y =

v0v1 · · · vn denotes the induced directed paths. Now construct i-spiked oriented
paths of

−→
X and

−→
Y to obtain the i-spiked fan.

280 S. Das et al.

Let l be an oriented n-labeling of an oriented graph
−→
G . Consider the label

graph
−→
T G,l of

−→
G and l with set of vertices V (

−→
T G,l) = {0, 1, · · · , n} and set of

arcs

A(
−→
T G,l) = {ij| there exists u, v ∈ A(

−→
G) with l(u) = i and l(v) = j}.

If two vertices i and j of
−→
T G,l have |Nα ∩ Nβ | ≥ 1 for any α, β ∈ {+,−}, then

we say that i and j are conjugates.

Lemma 5. If l is an oriented n-labeling of an oriented graph
−→
G , then l̄ given

by l̄(i) = n − l(i) is also an oriented n-labeling of
−→
G .

The above lemma suggests a symmetry between the labels i and n − i which
we will use inside our proofs.

Now we will describe our example to prove the lower bound. Start with a
0-fan

−→
F 0. After that we glue a copy of a 0-fan on each vertex x of

−→
F 0 by

identifying the vertex x with the vertex v of the corresponding 0-fan. Call this
so-obtained graph as

−→
F 1. Now glue a copy of a i-spiked fan on each vertex x of−→

F 1 by identifying the vertex x with the vertex v of the corresponding i-spiked
fan. Call this so-obtained graph as

−→
F 2. Note that

−→
F 2 is an outerplanar graph.

Thus we will be done if we can show that λo
2,1(

−→
F 2) ≥ 10.

We will assume the contrary, that is, suppose that λo
2,1(

−→
F 2) ≤ 9. Let l be

an oriented n-labeling of
−→
F 2. Now we will prove some structural properties of−→

T −→
F 2,l

and the labeling l.

Lemma 6. There exists a vertex x of
−→
F 1 in

−→
F 2 such that l(x) ∈ {4, 5}.

Proof. We know that
−→
F 0 has oriented chromatic number 7 due to Sopena [12].

Thus by pigeonhole principle there exists a vertex w of
−→
F 0 in

−→
F 2 such that

l(w) ∈ {1, 4, 5, 8}.
If l(w) ∈ {4, 5}, then we are done. Otherwise l(w) ∈ {1, 8}. Note that |N(w)∩

(V (
−→
F 1) \ V (

−→
F 0))| = 6 and thus, we need to use 6 labels from {0, 1, · · · , 9} \

{l(w)− 1, l(w), l(w)+1} on the vertices of N(w)∩ (V (
−→
F 1) \V (

−→
F 0)). Therefore,

we must need to use either 4 or 5 on a vertex of
−→
F 1.

Due to the above result, we know that there exists a vertex x of
−→
F 1 in

−→
F 2

such that either l(x) = 4 or l̄(x) = 4. Without loss of generality we may assume
that there exists a vertex x of

−→
F 1 in

−→
F 2 such that l(x) = 4.

An arc x1y1 ∈ A(
−→
F 2) is repeat of another arc xy ∈ A(

−→
F 2) if l(x) = l(w)

and l(y) = l(z). Moreover, if xy has at least 4 repeats, say, x1y1, x2, y2, x3y3 and
x4y4, such that xkyk has a type k-spike on it in

−→
F 2 for each k ∈ {1, 2, 3, 4}, then

the pair of labels {l(x), l(y)} is called a couple. If this happens, then we also say
that the couple {l(x), l(y)} has all types of repeatitions. If xy is a trendy arc,
then {l(x), l(y)} as above is a trendy couple.

On Oriented L(p, 1)-labeling 281

Lemma 7. If {i, j} is a trendy couple with 1 ≤ i, j ≤ 8 and |i − j| ≥ 3, then
{i, k} and {j, k} are also trendy couples for each k ∈ {0, 1, · · · , 9} \ {i − 1, i, i +
1, j − 1, j, j + 1}.

The following lemma directly follows from the above result.

Lemma 8. If λo
2,1(O) ≤ 9, then there exists a label graph TG,l on 10 vertices in

which each pair i, j ∈ {1, 2, · · · , 8} with |i − j| ≥ 3 are conjugates.

Now we are ready to prove our final lemma.

Lemma 9. There does not exist any label graph TG,l on 10 vertices in which
each pair i, j ∈ {1, 2, · · · , 8} with |i − j| ≥ 3 are conjugates.

Proof. Suppose the contrary. Without loss of generality assume that 6 ∈ Nγ(1)
for some {γ, γ̄} = {+,−}. As 1, 4 are conjugates having N(1) ∩ N(4) =
{6, 7, 8, 9}, we must have

|Nγ(1) ∩ {6, 7, 8, 9}| = |N γ̄(1){6, 7, 8, 9}| = 2.

Notice that as 1, 5 are conjugates having N(1) ∩ N(5) = {3, 7, 8, 9}, we must
have

|Nγ(1) ∩ {3, 7, 8, 9}| = |N γ̄(1){3, 7, 8, 9}| = 2.

This implies,
3 ∈ Nγ(1).

Furthermore, as 1, 8 are conjugates having N(1) ∩ N(8) = {3, 4, 5, 6}, we must
have

|Nγ(1) ∩ {3, 4, 5, 6}| = |N γ̄(1){3, 4, 5, 6}| = 2.

This implies,
4, 5 ∈ N γ̄(1) as 3, 6 ∈ Nγ(1).

Also as 1, 7 are conjugates having N(1) ∩ N(7) = {3, 4, 5, 9}, we must have

|Nγ(1) ∩ {3, 4, 5, 9}| = |N γ̄(1){3, 4, 5, 9}| = 2.

This implies,
9 ∈ Nγ(1) as 4, 5 ∈ N γ̄(1).

Moreover, as 1, 4 are conjugates having N(1)∩N(4) = {6, 7, 8, 9}, we must have

|Nγ(1) ∩ {6, 7, 8, 9}| = |N γ̄(1){6, 7, 8, 9}| = 2.

This implies,
7, 8 ∈ N γ̄(1) as 6, 9 ∈ Nγ(1).

Therefore, we have

3, 6, 9 ∈ Nγ(1) and 4, 5, 7, 8 ∈ N γ̄(1).

282 S. Das et al.

Similarly, if we assume that 3 ∈ Nμ(8) for some {μ, μ̄} = {+,−}, then we
can conclude that

0, 3, 6 ∈ Nμ(1) and 1, 2, 4, 5 ∈ N μ̄(1).

This will contradict the fact that 1, 8 are conjugates having common neighbors
N(1) ∩ N(8) = {3, 4, 5, 6} as

Nγ(1) ∩ Nμ(8) = {3, 6} and N γ̄(1) ∩ N μ̄(8) = {4, 5}.

This concludes the proof.

Finally, we are ready to prove Theorem 2.

Proof of Theorem 2. The proof directly follows from Lemmas 8 and 9. �

5 Conclusions

In this article, we considered oriented L(p, 1)-labeling of graphs having bounded
maximum degree and oriented L(p, 1)-labeling of outerplanar graphs. In partic-
ular we showed that Ω(2

Δ
2) = λo

p,1(GΔ) = O(Δ2.2Δ). We also settled an open
question left by Sen [11] by proving λo

2,1(O) = 10.

References

1. Aardal, K.I., Van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.:
Models and solution techniques for frequency assignment problems. Ann. Oper.
Res. 153(1), 79–129 (2007)

2. Calamoneri, T.: The L(2, 1)-labeling problem on oriented regular grids. Comput.
J. 54(11), 1869–1875 (2011)

3. Calamoneri, T.: The L(h, k)-labelling problem: an updated survey and annotated
bibliography. Comput. J. 54(8), 1344–1371 (2011)

4. Calamoneri, T., Sinaimeri, B.: L(2, 1)-labeling of oriented planar graphs. Discrete
Appl. Math. 161(12), 1719–1725 (2013)

5. Chang, G.J., Chen, J.J., Kuo, D., Liaw, S.C.: Distance-two labelings of digraphs.
Discrete Appl. Math. 155(8), 1007–1013 (2007)

6. Gonçalves, D.: On the L(p, 1)-labelling of graphs. Discrete Math. 308(8), 1405–
1414 (2008)

7. Gonçalves, D., Raspaud, A., Shalu, M.A.: On oriented labelling parameters. Ser.
Mach. Percept. Artif. Intell. 66, 33–45 (2006)

8. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J.
Discrete Math. 5(4), 586–595 (1992)

9. Hale, W.K.: Frequency assignment: theory and application. Proc. IEEE 68, 1497–
1516 (1980)

10. Kostochka, A.V., Sopena, É., Zhu, X.: Acyclic and oriented chromatic numbers of
graphs. J. Graph Theor. 24, 331–340 (1997)

11. Sen, S.: L(2, 1)-labelings of some families of oriented planar graphs. Discuss. Math.
Graph Theor. 34(1), 31–48 (2014)

12. Sopena, É.: The chromatic number of oriented graphs. J. Graph Theor. 25, 191–205
(1997)

Radius, Diameter, Incenter, Circumcenter,
Width and Minimum Enclosing Cylinder
for Some Polyhedral Distance Functions

Sandip Das1(B), Ayan Nandy1, and Swami Sarvottamananda2

1 Indian Statistical Institute, Kolkata, India
sandipdas@isical.ac.in, idaaning@gmail.com

2 Ramakrishna Mission Vivekananda Educational and Research Institute,
Howrah, India

sarvottamananda@rkmvu.ac.in

Abstract. In this paper we present some efficient and a few opti-
mal algorithms to compute the radius, diameter, incenter, circumcen-
ter, width and k-dimensional enclosing cylinder for convex polyhedral
and convex polyhedral offset distance functions in plane and in �d. The
radius, incenter and circumcenter of a convex polygon can be optimally
computed in linear time, i.e. O(n+m), in �2 and in time O(n+m+|R|), if
the incenter or circumcenter is additionally constrained in a convex poly-
gon R, where n is the size of input polygon and m is the size of polygon in
convex polygonal or convex polygonal offset distance functions. In �d, the
radius, incenter and circumcenter of a convex polyhedron as well as of a
set of convex polyhedra, unconstrained or constrained, can be computed
in O(nm) and O(nm+ |R|) time respectively, for convex constraint poly-
hedron R. The diameter of a convex polygon in plane can be computed in
O(n+m) time. The diameter of a polyhedron in �d can be computed in
O(nm) time by our methods. The width of a convex polyhedron can be
computed in O(n+m) time and O(nm) time, for �2 and �d, respectively.
The diameter and width of a set of convex polyhedra can be computed
in O(nm)-time. We also show how the k-dimensional minimum enclosing
cylinder can be computed in O(nd−k+1nm2) in �d and in O(ndm(n+m))
in �d for k = 1. The k-dimensional minimum enclosing cylinder for a set
of convex polyhedra in �d can be computed in O(nd−k+1nm2)-time. The
diameter and width problems can also be solved for a set of points in
�d, either in time O(nm) or in time O(mT (n)), where T (n) is the time
complexity of the best convex hull computation algorithm for the given
set of points. We also compute the minimum stabbing sphere for a set of
convex polyhedra, unconstrained or constrained, for the above mentioned
distance functions in O(nm)-time or O(nm + |R|)-time respectively for
convex constraint polyhedron R.

Keywords: Geometric optimization
Polyhedral distance function · Radius · Diameter · Incenter
Circumcenter · Width · Minimum enclosing cylinder

c© Springer International Publishing AG 2018
B. S. Panda and P. P. Goswami (Eds.): CALDAM 2018, LNCS 10743, pp. 283–300, 2018.
https://doi.org/10.1007/978-3-319-74180-2_24

284 S. Das et al.

1 Introduction

In this paper, we look at the familiar geometric problems of computing the
diameter, incenter, radius (or equivalently circumcenter), width and minimum
enclosing cylinders specifically for a convex polyhedra in the context of some
convex polyhedral distance functions in �d. In some cases we can generalize
the problem to a set of points and to a set of convex polyhedra. The results of
this paper are equally applicable to cases of other distance functions when (i)
these distance functions are linear, (ii) the hyperspheres in �d for these distance
functions are finite size polyhedron that are linear functions of distances and
(iii) the lemmas, mentioned in this paper, of convex polyhedral distance func-
tions are equally applicable to these distance functions. We can solve the related
problems even if the distance functions are known to be non-metric.

The authors in a previous result [4] had showed how the circumcenter of a set
of points in �d, which is also known as 1-center, for convex polyhedral distance
function, can be computed in linear time. In this paper we give an alternate
algorithm for the 1-center of a set of points in �d for convex polyhedral distance
function which not only improves the complexity in terms of m, the size of
polyhedron in the distance function, but also extends the result for other type of
convex polyhedral distance functions such as convex polyhedral offset distance
functions.

We solve the problems of the radius, diameter, incenter, circumcenter, width,
k-dimensional minimum enclosing cylinders and minimum stabbing sphere for
three types of polyhedral distance functions: (i) convex polyhedral distance func-
tion, (ii) real convex polyhedral offset distance function and (iii) normalized con-
vex polyhedral offset distance function. These functions are defined later. The
convex polyhedral distance function was previously studied by Chew et al. in
[3], and the normalized convex polyhedral offset distance function by Barequet
et al. in [1]. We define real convex polyhedral offset function as the real offset
from the polyhedra such that interior points are at a zero distance from origin
of reference. In this paper, we effectively use the fact that the spheres in the
case of convex polyhedral distance function and the two convex polyhedral off-
set distance functions are some convex polyhedra. This observation and that the
concerned distance functions are convex leads us to some elegant formulations
of the problems and some equally elegant solutions.

The distance functions mentioned in the following discussion is any one of
the three distance functions mentioned above. Also, the size of input polyhedron
is n and the size of convex polyhedron in distance function is m.

The radius of a polyhedron is defined as the radius of circumcircle or cir-
cumsphere which is the minimum radius circle or sphere that encloses or circum-
scribes the given polyhedron. We can define the circumcircle of a set of points
and a set of polyhedra in a similar fashion. The incircle or insphere of a polyhe-
dron is the maximum radius sphere that can be enclosed by or inscribed in the
given polyhedron. We can define the incircle of a set of polyhedra as maximum
radius sphere that is inscribed in all the polyhedra of the set. We solve both
the problems in linear time, O(n + m), in plane by suitably formulating the

Radius, Diameter, Incenter, Circumcenter, Width 285

problems as LPP. Moreover, we can solve the problems in O(nm) time in �d by
using solutions of similar LPP (see [2,6–8]). We can also solve the constrained
version of the problems in similar time complexities, where the incenter or cir-
cumcenter is constrained to lie inside a convex polyhedron. We also solve the
problem of circumsphere where we need to circumscribe a set of points in �d and
its generalization, where we compute minimum stabbing sphere that intersects a
given set of convex polyhedra by the sphere’s interior (which is actually a convex
polyhedron for our distance functions). We also show, how we can solve the con-
strained version of these two problems too, where the circumcenter or center of
minimum stabbing sphere lies in a constraint convex polyhedron. The minimum
stabbing sphere problem can be solved in O(nm) time and O(nm+ |R|)-time for
the constrained version, where the center of the stabbing sphere is constrained
to lie in the polyhedron R.

The diameter of a set is defined as the distance between the farthest pair
of points in the set for any given distance function. The computation of the
diameter is usually a different problem than the computation of the radius for a
non-Euclidean metric. The width of a polyhedron is the distance between nearest
pair of parallel hyperplanes that encloses the given set for any given distance
function. We compute the diameter and width of a convex polygon, by taking
advantage of the polyhedral spheres, in O(n + m) time in plane. We essentially
traverse simultaneously the two polygons, the given polygon and the polygon of
distance functions, keeping track of the distances between pair of vertices with
some additional conditions discussed in the paper. We further show how we can
compute the diameter and width of a convex polyhedron and a set of convex
polyhedra in �d in O(nm)-time.

The concept of Euclidean cylinders can be generalized for any given distance
function and for higher dimensions in �d such that we have axes as flats of
some fixed dimension from 1 to d − 1. Then the cylinder is the set of points at
a distance less than or equal to the fixed radius from the axis. We show how
we can compute the k-dimensional minimum enclosing cylinders of a convex
polyhedron and a set of convex polyhedra in O(nd−k+1nm2)-time if k �= 1 and
in O(ndm(n + m))-time if k = 1, by the concepts that we develop to solve some
problems mentioned above.

The paper is organized as follows. In Sect. 2 we present a few definitions,
ideas and concepts related to the problems that we solve. All the sections deal
with the three polyhedral distance functions mentioned earlier. In Sect. 3 we
formulate the problem of computing the radius, the circumcenter and the incen-
ter as LPP and give an algorithm to solve it optimally and efficiently. We also
solve constrained version of the problems as well as the problem of computing
the minimum stabbing sphere of a set of convex polyhedra. In Sect. 4 we give
an optimal algorithm to compute the diameter of a polyhedron and of a set of
convex polyhedra. In Sect. 5 we optimally compute the width of a polyhedron
and of a set of convex polyhedra. In Sect. 7 we give an algorithm to compute the
k-dimensional minimum enclosing cylinder. In Sect. 8 we develop the method of

286 S. Das et al.

traversing two convex polyhedra simultaneously and computing relevant tangent
hyperplanes used in the algorithms in the paper.

2 Ideas, Concepts and Definitions

Let P be a convex polyhedron of size n in �d for which we are computing radius,
diameter, incenter, circumcenter, width or k-dimensional minimum enclosing
cylinders. Let Q be a convex polyhedron of size m in �d used in the polyhedral
distance functions with the origin of reference in its interior. Let Pk and Qk

denote the set of k-dimensional subfaces of P and Q respectively. For example
P0 is set of vertices of P and Pd−1 is set of hyperfaces of P . We use these and
distance functions defined in this section throughout the paper.

Fig. 1. Convex polyhedral distance func-
tions dQ(p, p′), δQ(p, p′) and ΔQ(p, p′)

Fig. 2. Radius, diameter, incenter cin,
circumcenter cout, width and min 1-
dimensional enclosing cylinder of polygon
P for convex polygonal distance function
dQ for convex polygon Q in �2

Let S and S′ be two convex sets in �d (for example, points, lines, flats or
bounded convex regions) not necessarily of the same type.

The convex polyhedral distance function [3] from S to S′, denoted by
dQ(S, S′), is defined as dQ(S, S′) = infp∈S,p′∈S′{t ≥ 0 | p′ ∈ (tQ + p)}, where
tQ + p is the polyhedron Q translated to p and scaled by a factor t. See Fig. 1.

Let Q(t) denote the offset polyhedron of Q offset by the Euclidean distance
t as in [3]. The real convex polyhedral offset distance function [3] from S to S′,

Radius, Diameter, Incenter, Circumcenter, Width 287

denoted by δ(S, S′), is defined as δ(S, S′) = infp∈S,p′∈S′{t ≥ 0 | p′ ∈ p + Q(t)},
where p + Q(t) is the polyhedron Q(t) translated to p. See Fig. 1. The real
convex polyhedral offset distance function from point p is zero in the interior of
polyhedron p + Q.

Next we define normalized convex polyhedral offset distance function [3]. An
additional condition for this definition is that the fixed origin of reference must
be a medial center (a point on the medial axis that is farthest from the boundary
of Q). The normalized convex polyhedral offset distance function from S to S′,
denoted by Δ(S, S′), is defined as Δ(S, S′) = infp∈S,p′∈S′{1+t/tQ | ε ≥ 0, p′ ∈ p+
Q(t)}, where p+Q(t) is polyhedron Q(t) translated to p and tQ is the (minimum)
Euclidean distance from origin of reference to boundary of polyhedron Q. See
Fig. 1. The normalized convex polyhedral offset distance of point p to itself is 0
and of any point in boundary of Q from origin is 1.

Below, we formalize the definitions of radius, diameter, incenter, circum-
center, width and k-dimensional enclosing cylinders in the context for convex
polyhedral distance and convex polyhedral offset distance functions. See Fig. 2
for some examples. The distance function d() in the following definitions stands
for one of the distance functions dQ(), δQ() or ΔQ() depending on the context.

The radius, circumcenter and circumsphere are related to the minimum
sphere that contains the given set of objects in �d for a distance metric. We
use the following definition for the distance functions under consideration.

Definition 1 (Radius, Circumcenter and Circumsphere). The circumcir-
cle or circumsphere, Cout, of a convex polyhedron P is the minimum translated
and scaled polygon Q in case of dQ or translated and offset polygon Q in case of
δQ and ΔQ which encloses polyhedron P . The circumcenter, cout, is the trans-
lated origin of Cout. The radius or alternatively circumradius is the radius of
Cout. The radius of a set S of geometric objects is given by the expression:
Minc∈�dMaxs∈x,x∈S d(c, s).

The incenter, incircle and insphere are related to the maximum sphere that
is contained inside a continuous set in �d. We give the definition for our special
case.

Definition 2 (Incenter, Incircle and Insphere). The incircle or insphere,
Cin, of convex polyhedron P is the maximum translated and scaled polyhedron Q
in case of dQ or translated and offset polyhedron Q in case of δQ and ΔQ which
can be inscribed inside polyhedron P . The incenter, cin, is the translated origin
of Cin. The incenter of the polyhedron P is the optimal value of c in the opti-
mization problem: Maxc∈PMinp∈boundary(P)d(c, p). The incircle or insphere of a
set of convex polyhedra, S, is the maximum inscribed translated and scaled/offset
circle/sphere drawn inside all the polyhedra in the set S.

The diameter of a set is the distance between the farthest pair of points in
the set. We define the diameter as follows.

Definition 3 (Diameter of set of objects S). The diameter of set of geomet-
rical objects, S, is the distance between farthest points in the set S. The farthest
pair of points in polyhedron P is given by the expression: Maxp,p′∈P d(p, p′)

288 S. Das et al.

The width of a set is the minimum distance of all the pairs of parallel hyper-
planes that bounds the set between them. The width of a set of points is defined
below.

Definition 4 (Width). The width of a set of geometrical objects, S, is
defined as the minimum distance between parallel hyperplanes that enclose
the set S. The width of the polyhedron P is given by the expression:
Minh,h′{ d(h, h′) | P is contained in between parallel hyperplanes h and h′}

An affine set A, also called a flat, is a set of points such that any linear
combination of a (finite) subset of points in A also belongs to A. For example,
points, lines, hyperplanes are all affine sets. The dimension of an affine set A
is the size of minimum set of independent points in A, called a basis, such that
every point in A can be written as a linear combination of the basis. For example,
points have affine dimension 0 and lines have affine dimension 1.

The concept of enclosing cylinders is related to the concept of width and
is a generalization of concept of Euclidean cylinders in higher dimensions. An
affine cylinder of radius r with axis f , which is a flat, is defined as set {p ∈
�d | d(f, p) ≤ r}. For comparison, a Euclidean cylinder (infinite, not truncated)
of radius r in �3 has axis as flat of dimension 1 and contains all the points at a
distance less than or equal to r from the axis.

Definition 5 (Minimum enclosing cylinder of set S). The k-dimensional
minimum enclosing cylinder, Cenc, of set S is the smallest (minimum radius)
cylinder that contains set S. The minimum enclosing cylinder of polyhedron
P can be computed by solving the optimization problem: Mink-flat f{r | P ⊆
k-dimensional affine cylinder of radius r and axis f)}.

Below we mention some lemmas that allow us to compute the above men-
tioned entities efficiently.

Lemma 1. Let the farthest distance for distance functions dQ, δQ or ΔQ in a
given convex polyhedron P be d. Then there exists a pair of vertices of P such
that they are at distance d.

Proof. The farthest pair of points are in boundary of the convex polyhedron,
say P . Because if one of them is not we can extend the line connecting points
and take another point(s) which are at same or at a farther distance.

Now assume that one or both of the end points of farthest distance is on some
edge or face of the convex polyhedron, and there exist no pair of vertices with the
same distance. By convexity of the distance functions we can find another point
on the boundary of face with a distance that is at least the farthest distance.
This boundary face will have dimension one less than the dimension of the face
containing the end point. By continuing we can get to a vertex with a distance
that is at least the farthest distance, thus contradicting our assumption. Thus
there always exists a pair of vertices in a convex polyhedron that are farthest. �	

Radius, Diameter, Incenter, Circumcenter, Width 289

Lemma 1 ensures that there exists a pair of vertices in polyhedron P that
determines the diameter. The next lemma (Lemma 2) characterizes the candidate
pairs of vertices in polyhedron P for the diameter.

Lemma 2. Let p, p′ be the farthest vertices in convex polyhedron P for distance
functions dQ, δQ or ΔQ. Let f be the corresponding face of relevant p + tQ or
p + Q(ε) for farthest distance from p to p′. Then tangential hyperplanes of P
parallel to f touch P at p′.

Proof. Since p and p′ are farthest pair of points in convex polyhedron P , f will
have to be tangent at p′, otherwise p′ will not be farthest. �	

For the following lemma we assume non-degeneracy. No non-point face of P
is parallel to any non-point face of Q. This lemma characterizes Cin, Cout and
Cenc.

Lemma 3. Let Cin be the insphere polyhedron of polyhedron P . Let Cout be
the circumsphere polyhedron of polyhedron P . Let Cenc be the minimum k-
dimensional enclosing cylinder of P . Let there be no degeneracy. Then (d + 1)-
faces of P will be tangent to Cin, (d + 1)-faces of Cout will be tangent to P and
(d − k + 1)-faces of Cenc will be tangent to P . Moreover the sum of dimension
of subfaces of P on which Cenc is tangent is k.

Proof. Since there are no degeneracies, Cin, Cout and k-dimensional Cenc will
be determined by d + 1, d + 1 and d − k + 1 points respectively, similar to the
concepts of Euclidean spheres and cylinders. �	

Let P (d) be the polyhedron consisting of points that are at a distance less
than or equal to d from polyhedron P for polyhedral distance functions dQ, δQ,
or ΔQ, then following lemma holds. This lemma characterizes the polyhedral
space at a distance less than or equal to d from polyhedron P . This is used in
computing minimum stabbing sphere.

Lemma 4. Polyhedron P (d) will have faces parallel to tangential hyperplanes
on some subface f ∈ P that are parallel to some subface f ′ ∈ Q.

Proof. P (d) is simply either the polyhedron P +dQ or the polyhedron P +Q(d)
depending on the distance function. The faces will be parallel to faces of Q
tangential on faces of P . �	

We denote the tangential hyperplane passing through f that is parallel to
subfaces f ∈ P and f ′ ∈ Q of lemma 4, which is a flat, as f × f ′.

Let there be no degeneracies for the lemmas below. Consider the vertices of
polyhedra Q and the (d−1)-faces of polyhedron P . Let us mark the (d−1)-faces
of P with the vertices of Q, say the vertex p, such that the tangent hyperplanes
parallel to the (d − 1)-face touches p and Q is on the same side. Let us call the
resulting subdivision of subfaces of P as an f-division of P with Q and vice versa
(f for front). We get a similar subdivision for tangent hyperplanes such that P

290 S. Das et al.

and Q are on the opposite side. We call this subdivision as the b-division of P
with Q. The f -division and b-division of polyhedron P with Q is homeomorphic
to a polyhedron. We have the following lemma for the k-dimensional face of these
subdivisions.

Lemma 5. Every k-face of the subdivisions, f-division and b-division of convex
polyhedron P with convex polyhedron Q, is homeomorphic (can be continuously
mapped) to a k-dimensional sphere.

Proof. If two subfaces f and f ′ of P are part of same k-face of a subdivision,
corresponding to subface q of Q then (i) we can continuously tilt the tangent
hyperplane from f to f ′ suitably so that we get a sequence of k-faces all part of
the same subdivision, and (ii) any two paths on a k-face of the subdivision can
be continuously mapped from one to another so that every points remains inside
that k-face of the subdivision. Point (i) ensures that we have a k−1 dimensional
object at all times and point (ii) ensures homeomorphy. �	

By Lemma 4, Polyhedron P (d) will have faces parallel to f ×f ′ where f ∈ P ,
f ′ ∈ Q, subface f is in the f -division of P with respect to Q corresponding to
subface f ′.

Below, Lemma 6 characterizes the subdivisions in f−division and b−division
of polyhedron P with Q. Lemma 7 characterizes the parallel hyperplanes for the
width problem of polyhedron P .

Lemma 6. If a k-face S of the subdivision in P is paired with a k′-face S′ of
the subdivision in Q, for either f-division or b-division, then for every k-face f
in S and k′-face in S′, there will be a tangent hyperplane f ×f ′ on P and f ′ ×f
on Q.

Lemma 7. Let h and h′ be the hyperplanes corresponding to the width of a
polyhedron P . Let h and h′ will be tangent on faces f and f ′ of P . If there is
no degeneracy then sum of the dimensions of the subfaces f and f ′ on which h
and h′ are tangents is d− 1. Moreover, either h or h′ is parallel to either f × fQ
or f ′ × fQ respectively where fQ is the corresponding k-dimensional subface of
either f or f ′ respectively in a k-face of the f-division of P and Q respectively.

Proof. If the sum of dimensions of the subfaces f and f ′ is less than d − 1 then
there is a degree of freedom to rotate h and h′ which will reduce the width. Since
width is by definition minimum distance between h and h′, it cannot be reduced
further. Hence the sum of dimensions of the subfaces f and f ′ will be d − 1.
Furthermore, if the distance between h and h′ is t then either h′ is a face of
h + tQ or h + Q(t), depending on the distance function, or h is a face of h′ + tQ
or h′ + Q(t), depending on the distance function. �	

3 Radius, Incenter and Circumcenter of a Polyhedron

In the following sections the distance function d() stands for one of the distance
functions dQ(), δQ() or ΔQ() depending on the context, i.e., the expression is
common for all three types of distance functions under consideration unless
specified. We also assume non-degeneracy.

Radius, Diameter, Incenter, Circumcenter, Width 291

3.1 Circumcenter

In this section we compute circumcenter of a convex polyhedron P . We can
write an LPP for radius and circumcenter as follows. Let us denote a face, fj , of
polyhedron Q as hyperplane ĥj · x = dj (ĥj is the normal to hyperplane and dj
is the distance from origin) for each fj ∈ Qd−1. The interior of the polyhedron
will be given by ĥj · x ≤ dj , ∀fj ∈ Qd−1. Qd−1 is the set of (d − 1)-faces, i.e.
hyperfaces, of Q, as defined earlier. Let the vertex vi of polyhedron P be denoted
by vector pi. We can write an LPP for distance dQ(c,p) as follows.

Min t
subject to

ĥj · (p − c) ≤ tdj ∀fj ∈ Qd−1

where t ≥ 0

The term ĥj · (p − c) ≤ t represents the relevant face of polyhedron tQ + c. δQ
and ΔQ will have similar formulations. By the definition of radius, we can write
an LPP for radius of the polyhedron P for polyhedral distance functions dQ, δQ
and ΔQ as follows (P0 is the set of 0-faces, i.e. vertices, of P as defined earlier):

Min r
subject to

d(c,pi) ≤ r ∀vi ∈ P0

where c ∈ �d, r ≥ 0

We can rewrite above by substituting the LPP for distances as

Min r
subject to

ĥj · (pi − c) ≤ rdj ∀vi ∈ P0,∀fj ∈ Qd−1

where c ∈ �d, r ≥ 0

The above LPP is of d + 1 variables and O(nm) constraints. This LPP can be
further rewritten as

Min r
subject to

ĥj · c + rdj ≥ Max∀vi∈P0{hj · pi} ∀fj ∈ Qd−1

where c ∈ �d, r ≥ 0

The constraints in above LPP essentially need computation of all the tangent
hyperplanes parallel to faces of Q on vertices of P . We show in the Sect. 8 how we
can efficiently compute such tangents in linear time inplane andO(nm) in�d.Once
we compute all the tangents we only have m constraints in the above LPP which
can then be solved using any efficient linear time algorithm for fixed dimensions
[2,6–8]. This significantly improves the complexity of the algorithm from O(nm)
to O(n + m) in plane. The radius is the optimal solution of the LPP given above.
The circumcenter is the corresponding value of c in the optimal solution.

292 S. Das et al.

If we have a set of convex polyhedra, S, instead of a single polyhedron we
can use the last but one LPP for each polyhedron in the set S and then solve
the LPP. Thus we have the following theorem.

Theorem 1. The circumcenter of a convex polyhedron P for polyhedral distance
functions dQ, δQ and ΔQ can be calculated in O(|P | + |Q|)-time in �2 and
O(|P |·|Q|) in �d. The circumcenter of a set of convex polyhedra, S, for polyhedral
distance functions dQ, δQ and ΔQ can be calculated in O(|S| · |Q|) in �d.

3.2 Incenter

In this section we compute incenter of a convex polyhedron P . We assume that
the polyhedra P and Q are non-degenerate. We use following lemma for com-
puting incenter.

Lemma 8. If all the vertices of a convex polyhedron P ′ are inside convex poly-
hedra P then P ′ ⊆ P .

Proof. Every point of convex polyhedra can be written as a convex combination
of vertices. Since all vertices of P ′ are inside P , therefore any convex combination
of the vertices is also inside P (due to convexity of P). �	

Let Ĥ i · x = Di (Ĥ i is normal to the hyperplane passing through the face
and Di is the distance from origin) represent the (d − 1)-face fi of P , that is,
fi ∈ Pd−1, such that P lies in Ĥ i ·x ≤ Di. By Lemma 8 we only need to check if
each vertex of translated and scaled polyhedron c + rQ or translated and offset
polyhedron c+Q(r) is in P . For incenter of convex polyhedral distance function
dQ we will solve the following LPP. For distance functions δQ and ΔQ we can
do similar simplifications.

Max r
subject to

Ĥ i · (c + rq j) ≤ Di ∀fi ∈ Pd−1,∀vj ∈ Q0

where c ∈ �d, r ≥ 0

The LPP given above can be solved in O(nm) time. We can solve the incenter
problem more efficiently if we apply our improvements discussed in the Sect. 3.1.
The LPP above can be rewritten as

Max r
subject to

Di − Ĥ i · (c) ≤ r · Max∀vj∈Q0{Ĥ i · q j} ∀fi ∈ Pd−1

where c ∈ �d, r ≥ 0

In the LPP above the term Max∀vj∈Q0{Ĥ i · q j} for each fi ∈ Pd−1 denotes the
tangent hyperplane parallel to face fi ∈ Pd−1 that touches the polyhedron Q.
We compute all the tangent hyperplanes parallel to (d − 1)-faces of P on Q and

Radius, Diameter, Incenter, Circumcenter, Width 293

replace the term with the relevant computed value. Then we can solve the incenter
problem in O(n + m) time in plane and in O(nm) time in �d.

If we are given a set of convex polyhedra S, we can use the last but one
LPP to compute the maximum sphere that is inscribed inside all the convex
polyhedra in S. This leads us to the following theorem.

Theorem 2. The incenter of a convex polyhedron P for polyhedral distance func-
tions dQ, δQ and ΔQ can be calculated in O(|P | + |Q|)-time in plane and in
O(|P | · |Q|) time in �d. The incenter of a set of convex polyhedra, S, for polyhedral
distance functions dQ, δQ and ΔQ can be calculated in O(|S| · |Q|) in �d.

3.3 Constrained Radius, Incenter and Circumcenter

In this section we solve the constrained versions of radius, incenter and circum-
center problems. Suppose we are given an additional constraint that center of
incenter or circumcenter must lie inside a convex polyhedron and we need to
compute the circumcenter. We can solve this problem using the same LPP for-
mulation as in above section (see Sect. 3) along with additional linear constraints.
The case for circumcenter is given below.

Let R be the constraint polyhedron. Let the faces of the polyhedron R be
given as ĥr

k ·x ≤ drk for faces fr
k ∈ Rd−1. For convex polyhedral distance function

dQ we modify the LPP as follows. For distance functions δQ and ΔQ similar steps
can be taken.

Min r
subject to

ĥj · c + rdj ≥ Max∀vi∈P0(hj · pi) ∀fj ∈ Qd−1

ĥr
k · c ≤ drk ∀fr

k ∈ Rd−1

where c ∈ �d, r ≥ 0

Since there are O(m + |R|) constraints in the LPP above we can solve the
LPP in O(nm + m + |R|) time where O(nm)-time is needed to compute the
values of Max∀vi∈P0(hj · pi),∀fj ∈ Qd−1.

We can also apply our improvements and solve the above problem in time
O(n + m + |R|) in plane as follows. We observe that if incenter or circumcenter
does not lie inside the constraint polyhedron R then the constraint incenter or
circumcenter will lie on the boundary of constraint polyhedron R. The authors
proved this for the Euclidean 1-center in an earlier result. See [5]. The concepts
in [5] are applicable here too. Following earlier sections, we calculate all the
tangent hyperplanes parallel to (d−1)-faces of Q on P . This reduces the number
of constraints in the LPP to O(nm+ |R|) to only O(n+ |R|). Then we apply any
linear time solution for LPP in fixed dimension to solve the LPP [2,6–8]. This
reduces the time complexity of computing constrained incenter or circumcenter
to O(n + m + |R|) time in plane which is optimal. The worst case complexity in
�d will be O(nm + |R|). For a set of convex polyhedra we get the same results.

294 S. Das et al.

Theorem 3. The constrained radius, circumcenter and incenter of a convex
polyhedron P for polyhedral distance functions dQ, δQ and ΔQ can be calculated
in O(|P | + |Q| + |R|)-time in �2 and in O(|P | · |Q| + |R|)-time in �d, where R
is the constraint convex polyhedron. The constrained radius, circumcenter and
incenter of a set of convex polyhedra S for polyhedral distance functions dQ,
δQ and ΔQ can be calculated in O(|S| · |Q| + |R|)-time in �d, where R is the
constraint convex polyhedron.

3.4 Minimum Stabbing Sphere of a Set of Convex Polyhedra

We again assume non-degeneracy of P and Q. We compute the minimum stab-
bing sphere of a set of convex polyhedra in this section. Let S be a set of
convex polyhedra P i ∈ S, i ≤ N . We consider the problem of computing min-
imum stabbing sphere of this set for polyhedral distance functions dQ, δQ and
ΔQ. The distance from a point c to a convex set C is given by the expression
d(c, C) = Minp∈Cd(c, p). Let the faces of polyhedron P i be denoted by hyper-

planes ĥ i
j · x = dij , ∀fj ∈ P i

d−1. Again ĥ
i

j is the normal to hyperplane and dij is

the distance from origin. P i should be on the side ĥ i
j ·x ≤ dij . We can introduce

this expression in the LPP in Sect. 3.1 as follows.

Min r
subject to

d(c,pi) ≤ r ∀P i ∈ S

ĥ
i

j · pi ≤ dij ∀fj ∈ P i
d−1

where c ∈ �d,pi ∈ �d, 1 ≤ i ≤ N, r ≥ 0

Unfortunately, the number of variables in the LPP above is (N + 1)d + 1. We
cannot solve this LPP in deterministic linear time yet. So we rewrite the dis-
tance expression in a way that is amenable to efficiently solving of LPP. For the
convex polyhedral distance function dQ, we compute all the tangent hyperplanes
corresponding to faces of P i and Q (the f -divisions) for all P i ∈ S separately as
in Sect. 8. The distance function as above is then d(c, P i) = Minf∈P i{d(c, f)} for
any convex polyhedron P i such that f ∈ P i are subfaces of P i of any dimension.
The distance in the interior of the polyhedron is 0, we include the interior of Pc

as a d-face of Pc.
We compute the minimum stabbing sphere for distance function dQ. For

distance functions δQ and ΔQ the computations are similar. We observe that
for distance function dQ, the minimum distance from c to a polyhedron P i is
the distance from c to some tangent hyperplane which is parallel to a face of
P i and a face of Q. So we can rewrite the expression for d(c, P i) as d(c, P i) =
Maxf∈P i,f ′∈Q,f×f ′is tangent toP i{ĥf,f ′ · (pf − c)} where pf is any point in the
flat corresponding to subface f of P i and ĥf,f ′ is the normal perpendicular to
tangent hyperplane corresponding to face f of P i and f ′ of Q.

Radius, Diameter, Incenter, Circumcenter, Width 295

Now we can rewrite the LPP as

Min r
subject to

Maxf∈P i,f ′∈Q,f×f ′is tangent toP i{hf,f ′ · (pf − c)} ≤ r ∀P i ∈ S
where c ∈ �d, r ≥ 0

This computation can be done more efficiently if we rewrite it as

Min r
subject to
hf,f ′ · pf ≤ hf,f ′ · c + r ∀f ′ ∈ Q,∀P i ∈ S,∀f ∈ P i,

s.t.f × f ′ is tangent to P i

where c ∈ �d, r ≥ 0

In Sect. 8 we show how we can calculate all the tangents in linear time of
the size of any convex polyhedron P and convex polyhedron Q. Suppose the
N polyhedra have size s1, s2, . . . , sN respectively, then the time to compute all
required tangent hyperplanes would be

∑ |P i|m. The number of constraints in
the above LPP is

∑ |P i|m. Hence the time complexity to compute minimum
stabbing sphere of a set of convex polyhedra in O(nm), where n =

∑ |P i|, the
size of input. We can also solve the constrained version where the center of
minimum stabbing sphere lies inside a convex polyhedron R using the similar
method as earlier by adding suitable constraints in time O(nm + |R|)-time.

Theorem 4. The minimum stabbing sphere of a set S of convex polyhedra in �d

for polyhedral distance functions dQ, δQ and ΔQ can be calculated in O(|S| · |Q|)-
time, and in O(|S| · |Q| + |R|)-time for constrained version, where R is the
constraint convex polyhedron.

4 Diameter of a Polyhedron

We compute diameter of a convex polyhedron P in this section. The algorithm
to compute diameter for all three distance functions is similar. Let us assume
that there are no degeneracies, that is, no non-point subface of polyhedron P is
parallel to any non-point subface of polyhedron Q. We show the computation
for convex polyhedral distance function dQ. For δQ and ΔQ the computation is
similar.

Initially, for every d − 1 dimensional face f in Q, we compute the tangent
hyperplane on the both sides of P . Let these tangent hyperplanes touch P at
p′ such that P is on the same side as Q, and p such that P is on the other
side. We check if p lies inside the relevant face corresponding to f in p + tQ
for dQ and p + Q(ε) for δQ and ΔQ (see Lemma 1). If it lies inside then it is a
potential farthest distance pair, if not then we drop this pair. The diameter is
the farthest pair of points among all the faces f . To find out all the tangents
parallel to faces of Q on P we do a simultaneous traversal of both P and Q.
The simultaneous traversal of P and Q is detailed in Sect. 8. If we are given a

296 S. Das et al.

set of convex polyhedra then we have to do the computation for each convex
polyhedron in S, but the algorithm essentially remains same.

Theorem 5. The diameter of a convex polyhedron P for polyhedral distance
functions dQ, δQ and ΔQ can be calculated in O(|P | + |Q|)-time in plane and in
O(|P |·|Q|)-time in �d. The diameter of a set of convex polyhedra S for polyhedral
distance functions dQ, δQ and ΔQ can be calculated in O(|S| · |Q|)-time in �d.

5 Width of a Polyhedron

We present an algorithm to compute width of a convex polyhedron P for convex
polyhedral distance function dQ in this section. Again we assume non-degeneracy
and only show the computation for distance function dQ. The computation for
distance functions δQ and ΔQ are similar. The algorithm to compute width is
similar to diameter except we do not apply the check for p lying inside the
relevant face of p + tQ. We do the computation as follows.

Initially, we compute all the tangent hyperplanes of P parallel to faces of Q
as detailed in Sect. 8. For every face of Q we shall have two tangents on opposite
sides of P . We can compute the tangent hyperplane corresponding to f -division
as in Sect. 8. However, we also simultaneously pivot at the opposite side of poly-
hedron Q. Since we do not allow degeneracies, on the opposite side the tangent
hyperplane will only touch a vertex. While traversing we simultaneously calcu-
late the relevant distances between the tangent hyperplanes. Since the distance
functions are not symmetric, we take the smaller distance of the two. This can
be done in O(n+m) time in plane and in O(nm)-time in �d. For a set of convex
polyhedra S we can use the same technique as discussed in this section.

Theorem 6. The width of a convex polyhedron P for polyhedral distance func-
tions dQ, δQ and ΔQ can be calculated in O(|P | + |Q|)-time in plane and in
O(|P | · |Q|)-time in �d. The width of a set of convex polyhedra S for polyhedral
distance functions dQ, δQ and ΔQ can be calculated in O(|S| · |Q|)-time in �d.

6 Diameter and Width of a Set of Points

The diameter and width of a set of points, S, in �d for distance functions dQ, δQ
and ΔQ in this section. There are two ways to compute diameter and width of
the set of points S. First method is by first computing the convex hull and then
computing the diameter or width by the algorithms in Sects. 4 and 5. Second
method is by noticing that the diameter is the farthest pair of points and the
width is farthest pair of points from the center of the relevant sphere. Since we
do not have a precomputed convex hull of the set of points we need to calculate
the farthest pair that touch halfspaces parallel to faces of Q containing all the
points of S. This we can do taking faces of Q one at a time. In the plane first
method may be more efficient whereas in the higher dimensions second method
may be more efficient. Thus we have the following theorem.

Radius, Diameter, Incenter, Circumcenter, Width 297

Theorem 7. The diameter and width of a set of points, S, for polyhedral dis-
tance functions dQ, δQ and ΔQ can be calculated in O(|Q|+T (|S|))-time in plane
and in O(T (|S|) · |Q|)-time in �d, where T () is the complexity of best algorithm
to compute convex hulls in �d.

The diameter and width of a set of points, S, for polyhedral distance functions
dQ, δQ and ΔQ can also be calculated in O(|S| · |Q|)-time in �d.

7 Minimum Enclosing Cylinder of Dimension k in �d

In this section we give a method of computing minimum k-dimensional enclosing
cylinder. First we need to characterize f +tQ or f +Q(t) polyhedron for distance
functions. We need a stronger non-degeneracy condition which can be ensured
by perturbation techniques. We assume that after translation and scaling or
offsetting no three points are collinear, no four points are coplanar, etc. Then
the minimum enclosing cylinder, Cenc, will touch P at d − k + 1 subfaces and
sum of the dimensions of the subfaces of P on which faces of Cenc are tangent
will be k (see Lemma 3) (Fig. 3).

We choose d − k + 1 subfaces of P such that the sum of dimensions of the
subfaces is k. Then we choose a subface of Q among the related subdivision in
f -division of P and Q (related to the chosen subfaces of P , since the cylinder
will be tangent at these subfaces). The subfaces of P whose dimensions sum to
k determine the axis. We can project the polyhedra P and Q in the direction
of axis and compute the circumsphere and the radius by previous algorithm in
the projected space. If we inverse project the projected circumsphere we get
a k-dimensional enclosing cylinder. We choose the minimum radius enclosing
cylinder among all k-dimensional enclosing cylinder. This will be the required
k-dimensional minimum enclosing cylinder. The complexity of this algorithm is
O(nd−k+1m) · O(nm), i.e. O(nd−k+1nm2) if k �= 1 and O(ndm(n + m)) if k = 1.(

n
d−k+1

)
is the complexity of choosing d − k + 1 subfaces of P of total dimension

k, m is the maximum number of subfaces of Q, and the complexity of computing
circumsphere in projected space is O(nm), if k �= 1, and O(n + m), if k = 1.
If we are given a set S of convex polyhedra then the complexity of the algorithm
remains same, because the time complexity of the algorithm is dominated by
choosing of d − k + 1 faces (Fig. 4).

Theorem 8. The k-dimensional minimum enclosing cylinder in �d of a convex
polyhedron P for polyhedral distance functions dQ, δQ and ΔQ can be calculated
in O(nd−k+1nm2)-time if k �= 1 and in O(ndm(n + m))-time if k = 1, where
n = |P |, and m = |Q|. The k-dimensional minimum enclosing cylinder in �d

of a set S of convex polyhedra for polyhedral distance functions dQ, δQ and ΔQ

can be calculated in O(|S|d−k+1nm2)-time.

8 Computing Tangent Hyperplanes Parallel to Faces
of P and Q

In this section we show how we can compute tangent hyperplanes such that if
subface f ∈ P or subface f ′ ∈ Q is given then we can efficiently determine

298 S. Das et al.

tangent hyperplanes parallel to f on Q or to f ′ on P respectively. We are given
two convex polyhedra P and Q of size n and m respectively. We assume that
the polyhedra are represented by their incidence graphs with required informa-
tion (specially the flats and later in the algorithm pointers to f -divisions and
b-divisions) on each subface. We call a subface of dimension k of a polyhedron as
a k-face of the polyhedron. We assume in this section that there are no degen-
eracies. The degeneracies in our case are when some non-vertex subface of P is
parallel to another non-vertex subface of Q, not necessarily of same dimension.
We say two subfaces, a k-face of P and k′-face of Q, are parallel if the affine
combination of the two subfaces is of dimension less than k + k′. Vertices are
always parallel to any other subface since they are of dimension 0.

Fig. 3. A tentative subdivision of poly-
hedra P

Fig. 4. A bad example for subdivisions

Note that tangent hyperplanes on P parallel to (d− 1)-faces of Q are unique
on either side of P . We, for the time being, consider the tangent hyperplanes such
that P and Q are on the same side. The method remains same for the tangent
hyperplanes for which P and Q are on the opposite sides. Let us consider tangent
hyperplanes parallel to (d−1)-faces of Q on that are tangent on the same vertex
of P . We mark such (d − 1)-faces of Q to belong to same subdivision. We do
the same for d − 1-faces of P . Then we mark the boundaries of the subdivisions
of dimensions (d − 2), (d − 1),. . . ,1 in Q which will have tangent hyperplanes
parallel to same subfaces of dimensions 1, 2,. . . ,(d − 2) in P respectively. Then
the polyhedra P and Q will be subdivided. The subdivisions will be a geometric
structure of dimension d topologically equivalent to (homeomorphic to) a d-
dimensional sphere. Our task is to compute this subdivision as efficiently as
possible. The algorithm to subdivide polyhedra P and Q is as follows:

Radius, Diameter, Incenter, Circumcenter, Width 299

First we search for the hierarchy of subfaces of dimension 0, 1,. . . ,(d − 1) in
P and hierarchy of subfaces of dimension (d − 1), (d − 2),. . . ,0 in Q respectively
such that each face lies on the boundary of the subdivision of the same dimension
and the each k + 1-face is superface of k-face in the hierarchy. We can do this
by starting with an arbitrary (d − 1)-face of Q, finding the point of contact p on
P of the tangent hyperplane parallel to the face, and then rotating the tangent
hyperplanes and marking the faces, so that faces are not traversed twice, till we
reach a (d − 1)-face of Q which does not have tangent on p. Now we have got a
(d − 2)-face of Q on the (d − 2) dimensional boundary of the subdivision in Q.
In P we get a 1-face on the 1-boundary of the subdivision of P . Let the line of
contact of the corresponding tangent hyperplane be the 1-face l of P . We can
traverse along the (d − 2) dimensional boundary on Q till we get a (d − 2)-face
that has the tangent hyperplane with the different line of contact. This will fetch
us a (d − 3)-face of Q on the (d − 3) dimensional boundary of the subdivision
on Q. In P we will get a 2-face of P on the 2 dimensional boundary of the
subdivision on P . We repeat till we get the whole hierarchy on each polyhedra
P and Q. After we have initialized the sequence of faces of P and Q each on the
boundary of subdivision of same division, we proceed to completely subdivide
all of the polyhedra P and Q. The essential idea to compute all the tangents
efficiently is to simultaneously compute the f -subdivision on P and its dual on
Q. We individually complete k dimensional boundary of the subdivision of each
dimension before taking up another k dimensional boundary. We can traverse
the polyhedron using any kind of traversal that traverses the whole polyhedron.
Thus, we can compute f -divisions and b-divisions of the polyhedra P and Q,
with respect to each other, in O(|P | + |Q|)-time in �2, and in O(|P | · |Q|)-time
in �d.

References

1. Barequet, G., Dickerson, M.T., Goodrich, M.T.: Voronoi diagrams for polygon-offset
distance functions. In: Dehne, F., Rau-Chaplin, A., Sack, J.-R., Tamassia, R. (eds.)
WADS 1997. LNCS, vol. 1272, pp. 200–209. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63307-3 60

2. Chazelle, B., Matousek, J.: On linear-time deterministic algorithms for optimization
problems in fixed dimension. J. Algorithms 21(3), 579–597 (1996)

3. Chew, L.P., Drysdale III., R.L.S.: Voronoi diagrams based on convex distance func-
tions. In: O’Rourke, J. (ed.) Proceedings of the First Annual Symposium on Com-
putational Geometry, pp. 235–244. ACM, June 1985

4. Das, S., Nandy, A., Sarvottamananda, S.: Linear time algorithm for 1-center in
Rd under convex polyhedral distance function. In: Zhu, D., Bereg, S. (eds.) FAW
2016. LNCS, pp. 41–52. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39817-4 5

5. Das, S., Nandy, A., Sarvottamananda, S.: Linear time algorithms for euclidean 1-
center in Rd with non-linear convex constraints. In: Govindarajan, S., Maheshwari,
A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 126–138. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29221-2 11

https://doi.org/10.1007/3-540-63307-3_60
https://doi.org/10.1007/3-540-63307-3_60
https://doi.org/10.1007/978-3-319-39817-4_5
https://doi.org/10.1007/978-3-319-39817-4_5
https://doi.org/10.1007/978-3-319-29221-2_11

300 S. Das et al.

6. Dyer, M.E.: On a multidimensional search technique and its application to the
Euclidean one-centre problem. SIAM J. Comput. 15(3), 725–738 (1986)

7. Megiddo, N.: Linear-time algorithms for linear programming in �3 and related prob-
lems. SIAM J. Comput. 12(4), 759–776 (1983)

8. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J.
ACM 31(1), 114–127 (1984)

Author Index

Anand, Bijo S. 143

Banik, Aritra 93
Bantva, Devsi 179
Basappa, Manjanna 81
Bhyravarapu, Sriram 188
Brandstädt, Andreas 1

Caskurlu, Bugra 45
Chanchary, Farah 199
Changat, Manoj 143
Choudhary, Pratibha 93

Das, Ashok Kumar 15
Das, Bireswar 221
Das, Sandip 155, 249, 274, 283
Dev, Subhadeep Ranjan 155
Dinesh, Krishnamoorthy 260
Dutt, Sucheta 118

Enduri, Murali Krishna 221

Francis Raj, S. 73
Francis, P. 73

Gahlawat, Harmender 249
Garg, Arpana 118
Gokulnath, M. 73

Joshi, Saurabh 188

Kalyanasundaram, Subrahmanyam 105, 188
Kare, Anjeneya Swami 188
Kaufmann, Michael 214
Khodamoradi, Kamyar 131
Konečný, Matěj 235
Kratochvíl, Jan 214
Krishnamurti, Ramesh 131
Kryven, Myroslav 164
Kučera, Stanislav 235

Lipp, Fabian 214

Maheshwari, Anil 199
Manthey, Bodo 59
Misra, Neeldhara 221
Mkrtchyan, Vahan 45
Montecchiani, Fabrizio 214

Nandi, Soumen 274
Nandy, Ayan 283
Novotná, Jana 235

Pekárek, Jakub 235

Raftopoulou, Chrysanthi 214
Ravsky, Alexander 164
Reddy, I. Vinod 221
Regan, Kenneth W. 105
Reijnders, Victor M. J. J. 59
Renjith, Pazhaniappan 30
Roy, Bodhayan 131

Sadagopan, Narasimhan 30
Sadhukhan, Arpan 155
Sahoo, Uma kant 155
Sahu, Rajkamal 15
Sarma, Jayalal 260
Sarvottamananda, Swami 283
Sen, Sagnik 155, 274
Smid, Michiel 199
Smolík, Martin 235
Subramani, K. 45

Tětek, Jakub 235
Töpfer, Martin 235

Ullas Chandran, S. V. 143

Valtr, Pavel 214

Williamson, Matthew 45
Wojciechowski, Piotr 45
Wolff, Alexander 164

	Preface
	Organization
	Abstracts of Invited Talks
	Efficient Domination and Efficient Edge Domination: A Brief Survey
	The Use of Dynamic Programming in Intersection Graphs
	Extremal Graph Theory, Stability, and Anti-Ramsey Theorems
	Contents
	Efficient Domination and Efficient Edge Domination: A Brief Survey
	1 Exact Cover for Hypergraphs and Maximum Weight Independent Set for Graphs
	2 Efficient Domination and Efficient Edge Domination
	2.1 Efficient Domination
	2.2 Efficient Edge Domination

	3 Complexity of Efficient Domination
	3.1 A Dichotomy for H-free Graphs
	3.2 Further Polynomial Time Results for ED
	3.3 Solving Efficient Domination for G via MWIS for G2

	4 Complexity of Efficient Edge Domination
	4.1 Direct Approaches
	4.2 Solving Efficient Edge Domination for G via MWIS for L(G)2

	5 Conclusion
	References

	Mixed Unit Interval Bigraphs
	1 Introduction
	2 Preliminary Results
	3 Forbidden Induced Subgraphs of Mixed Unit Interval Bigraphs
	4 A Conjecture for Mixed Unit Interval Bigraphs
	5 Conclusion
	References

	Hamiltonian Path in K1,t-free Split Graphs- A Dichotomy
	1 Introduction
	2 Polynomial-Time Results
	2.1 Results on K1,3-free Split Graphs
	2.2 Results on K1,4-free Split Graphs

	3 Hardness Result
	References

	A Fully Polynomial Time Approximation Scheme for Refutations in Weighted Difference Constraint Systems
	1 Introduction
	2 Formal Problem Statement
	3 A Pseudo-Polynomial Time Algorithm
	3.1 Analysis
	3.2 Correctness

	4 A Fully Polynomial-Time Approximation Scheme
	4.1 Preprocessing Phase
	4.2 An FPTAS for WOLRR

	5 The WOLRR Problem in UTVPI Constraint Systems
	5.1 Constructing the Constraint Network
	5.2 Modifying the Pseudo-Polynomial Time Algorithm to Handle UTVPI Constraints
	5.3 Modifying the FPTAS for the WOLRR Problem

	References

	Probabilistic Properties of Highly Connected Random Geometric Graphs
	1 Introduction
	2 Definitions
	3 Related Work
	4 Properties of k-ECp
	4.1 Yukich's Framework
	4.2 Limit Theorems

	5 Partitioning Heuristics
	6 Extension to k-ECPA
	7 Conclusions and Open Problems
	References

	On Indicated Coloring of Some Classes of Graphs
	1 Introduction
	2 Structural Characterization of Some Free Graphs and Their Indicated Coloring
	3 Indicated Coloring of K[C5] and Some of its Consequences
	References

	Line Segment Disk Cover
	1 Introduction
	1.1 Related Work

	2 LSDC-H Problem
	2.1 Preliminaries
	2.2 (2+2)-Factor Approximation Algorithm
	2.3 (1+)-Factor Approximation Algorithm

	3 LSDC-A Problem
	4 LSDC-D Problem
	5 Conclusion
	References

	Fixed-Parameter Tractable Algorithms for Tracking Set Problems
	1 Introduction and Motivation
	2 Preliminaries
	2.1 Fixed-Parameter Tractability

	3 Tracking Set for Set System
	4 FPT Algorithm for TSPP
	4.1 Using Tracking Set for Set System
	4.2 Improved FPT Algorithm for TSPP

	5 Conclusions
	References

	Exact Computation of the Number of Accepting Paths of an NTM
	1 Introduction
	2 Preliminaries and the BFS Approach
	3 Block Trace Computation
	4 Main Theorem
	5 Implications and Possible Extensions
	5.1 Simulating Probabilistic Classes
	5.2 Polynomial Hierarchy and Alternating TMs

	References

	Determining Minimal Degree Polynomials of a Cyclic Code of Length 2k over Z8
	1 Introduction
	2 Preliminaries
	3 The Main Results
	4 Cyclic Codes of Length 4 over Z8
	References

	Consistent Subset Problem with Two Labels
	1 Introduction
	2 NP-completeness
	2.1 Rectilinear Planar Monotone 3-SAT
	2.2 Overview of the Reduction
	2.3 Construction for the Reduction
	2.4 Properties of the Constructed Point Set

	3 Concluding Remarks and Acknowledgments
	References

	The Edge Geodetic Number of Product Graphs
	1 Introduction
	2 Edge Geodetic Sets
	3 Edge Geodetic Sets in Strong Product Graphs
	4 Edge Geodetic Sets of Lexicographic Product of Graphs
	References

	Burning Spiders
	1 Introduction
	2 Covering Certain Path-Forests
	3 Proof of Theorem 1
	4 Conclusion
	References

	Drawing Graphs on Few Circles and Few Spheres
	1 Introduction
	2 Complete and Complete Bipartite Graphs
	3 Platonic Graphs
	4 Lower Bounds for 1d
	5 ILP Formulation for Optimal Segment Drawing
	6 Open Problems
	References

	On a Lower Bound for the Eccentric Connectivity Index of Graphs
	1 Introduction
	2 Preliminaries
	3 Main Result
	4 Concluding Remarks
	References

	On the Tractability of (k,i)-Coloring
	1 Introduction
	2 Preliminaries
	3 (q,k,i)-Coloring Parameterized by Size of FVS
	3.1 Counting All Proper (q,k,i)-Colorings

	4 Faster Exact Algorithm for (k,k-1)-Coloring
	5 NP-Completeness Results
	References

	Window Queries for Problems on Intersecting Objects and Maximal Points*
	1 Introduction
	1.1 Previous Work
	1.2 New Results
	1.3 Organization

	2 Geometric Object Intersections
	2.1 Overview of Our Data Structure

	3 Points on Maximal Layers
	3.1 pk on the Maximal Layer L1
	3.2 Count Points on Maximal Layer L1
	3.3 pk on Maximal Layer L, Where = 2 or 3
	3.4 Report k-Dominant Points

	4 Conclusion
	References

	Bounded Stub Resolution for Some Maximal 1-Planar Graphs
	1 Introduction
	2 Constructions with Large Stub Resolution
	2.1 Semi-Double-Wheel
	2.2 Double-Wheel Without an Edge

	3 Conclusion
	References

	On Structural Parameterizations of Firefighting
	1 Introduction
	2 Preliminaries
	3 The Parameterized Complexity of Firefighting
	3.1 Parameterization by Distance to Threshold Graphs
	3.2 Parameterization by Distance to Stars
	3.3 Parameterization by Distance to Diameter Two Graphs

	4 Kernelization Complexity
	4.1 Parameterization by Distance to Clique
	4.2 Parameterization by Distance to Stars

	5 Conclusion
	References

	On the Simultaneous Minimum Spanning Trees Problem
	1 Introduction
	1.1 Preliminaries

	2 Simultaneous Kruskal's Algorithm
	3 Cases and Variants
	4 Case k 3 Is NP-complete
	5 Case k = 2 Is in P
	5.1 Reduction of 2-Graph 01-SMST to 2-Graph -01-SMST
	5.2 Matroids
	5.3 Polynomiality
	5.4 Complexity

	References

	Variations of Cops and Robbers Game on Grids
	1 Introduction
	2 Definitions
	3 Proof of Theorem1
	4 Proof of Theorem2
	5 Proof of Theorem3
	6 Outline of Proof of Theorem4
	7 Conclusion
	References

	Alternation, Sparsity and Sensitivity: Combinatorial Bounds and Exponential Gaps
	1 Introduction
	2 Preliminaries
	3 Alternation Vs Sensitivity and Alternation Vs Logarithm of Sparsity
	3.1 Exponential Gaps : Alternation Vs Decision Tree Depth
	3.2 Alternation is at most Exponential in Decision Tree Depth
	3.3 Super Linear Gaps Between Alternation and Sensitivity

	4 Xor Log-Rank Conjecture for Bounded Alternation Boolean Functions
	5 Two Further Applications of the deg Vs degF2 Relation
	5.1 Dense Fourier Spectrum for Bounded Alternation Functions
	5.2 Improved Upper Bound for I[f]

	References

	On Oriented L(p,1)-labeling
	1 Introduction
	2 Homomorphism and Oriented L(p,1)-labeling
	3 Proof of Theorem1
	4 Proof of Theorem2
	5 Conclusions
	References

	Radius, Diameter, Incenter, Circumcenter, Width and Minimum Enclosing Cylinder for Some Polyhedral Distance Functions
	1 Introduction
	2 Ideas, Concepts and Definitions
	3 Radius, Incenter and Circumcenter of a Polyhedron
	3.1 Circumcenter
	3.2 Incenter
	3.3 Constrained Radius, Incenter and Circumcenter
	3.4 Minimum Stabbing Sphere of a Set of Convex Polyhedra

	4 Diameter of a Polyhedron
	5 Width of a Polyhedron
	6 Diameter and Width of a Set of Points
	7 Minimum Enclosing Cylinder of Dimension k in d
	8 Computing Tangent Hyperplanes Parallel to Faces of P and Q
	References

	Author Index

