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Abstract. Magnetic resonance imaging (MRI) is routinely employed
to assess muscular response and presence of inflammatory reactions in
patients treated with metal-on-metal hip arthroplasty, driving the deci-
sion for revision surgery. However, MRI is lacking contrast for bony struc-
tures and as a result orthopaedic surgical planning is mostly performed
on computed tomography images. In this paper, we combine the comple-
mentary information of both modalities into a novel framework for the
joint segmentation of healthy and pathological musculoskeletal struc-
tures as well as implants on all images. Our processing pipeline is fully
automated and was designed to handle the highly anisotropic resolu-
tion of clinical MR images by means of super resolution reconstruction.
The accuracy of the intra-subject multimodal registration was improved
by employing a non-linear registration algorithm with hard constraints
on the deformation of bony structures, while a multi-atlas segmentation
propagation approach provided robustness to the large shape variability
in the population. The suggested framework was evaluated in a leave-
one-out cross-validation study on 20 hip sides. The proposed pipeline has
potential for the extraction of clinically relevant imaging biomarkers for
implant failure detection.
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1 Introduction

In the past 20 years, metal-on-metal (MoM) hip arthroplasty has been one of
the most effective surgical interventions for improving life quality. However,
this implant type is associated with a non-negligible rate of failure (8% at
12 years from primary surgery [1]), due to adverse tissue inflammatory reactions
and increased muscle atrophy [2]. Routine assessment of periprosthetic muscle
response to the implant is performed on magnetic resonance (MR) images [3],
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whereas computed tomography (CT) imaging is preferred for surgical planning
and post-operative follow-up, thanks to its improved contrast for bone and
implant [4]. The two modalities provide complementary skeletal and muscular
information, which are presently assessed independently in clinical practice. In
this context, a single framework merging this information by means of joint auto-
mated segmentation could be beneficial for both early detection of implant fail-
ure and planning of revision surgery. By providing spatial relationship between
muscle, bone and implant simultaneously, the combination of the two imaging
modalities could help link implant position (not MR visible) with muscle damage
(estimated on MR) to better characterise pain origin. Moreover, it could favour
a patient-specific planning of surgical approach to minimise damage to healthy
bone and muscular tissue.

In the musculoskeletal clinical field, manual segmentation is still the most
frequently adopted solution in clinical routine for delineating regions of inter-
est [5], despite the variety of image-based anatomical models and segmenta-
tion techniques presented in the literature. Methods for automated segmen-
tation of hip bony structures in CT images are typically based on statistical
shape models [6,7], atlas-based segmentation propagation [8] or, more recently,
hybrid approaches [9]. Segmentation of muscles on MR images is more prob-
lematic, because of their large inter-subject shape variability and the lack of
image contrast between different muscular structures. A common approach for
thigh muscles is the incorporation of atlases as priors into conventional segmen-
tation techniques such as active contours or level-set algorithms [10,11]. Remark-
able results were also presented by Gilles et al. [12], who introduced a method
to automatically segment hip muscles and bones on MR images by means of
deformable multi-resolution simplex meshes. The performances of all discussed
methods are strongly reliant on the variability encompassed in the training data
set and they are often not suitable for pathological conditions. Klemt et al.
[13] addressed this issue by developing a robust automated segmentation frame-
work for abductor muscles on MR in both healthy subjects and patients with
MoM prostheses. However, little work combining multimodal imaging for the
segmentation of musculoskeletal structures has been proposed so far and it is
often limited only to spine applications. An example is the method presented by
Castro-Mateos et al. [14], which is based on a fast mesh-to-image registration to
extract a surface model of CT-derived vertebrae and MR-derived intervertebral
discs. Whilst being very suitable for bony structures, the applicability of this
method to patients with hip arthroplasty would be hindered by the presence
of metal artefact in the images and by the greater morphological and textural
variability of muscles.

Taking advantage of the complementary information derived from CT and
MR, we propose a fully automated joint segmentation framework of both modal-
ities from patients treated with MoM arthroplasty. Our processing pipeline was
designed to handle clinical data, characterised by highly anisotropic resolution
and presence of severe metal artefact induced noise, and allows for a three-
dimensional representation of patient-specific musculoskeletal hip anatomy.
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Key contributions of this work include the use of super resolution reconstruction
(SRR) to improve clinical MR image quality; moreover, the development of a
robust intra-subject multimodal registration allowed preservation of the rigid
structure of bones, while deforming the muscles. Finally, a multi-channel multi-
atlas based segmentation propagation guaranteed robustness to the large shape
variability in the population.

2 Materials and Methods

2.1 Dataset and Templates Creation

Our dataset includes retrospectively collected images of 11 MoM hip implanted
patients (7 females and 4 males, 10 unilateral and 1 bilateral replacement)
who had both a CT and an MR scan acquired on the same day. For the MR
acquisitions, a Siemens MAGNETON Avanto 1.5T scanner was employed for
all patients, using the MARS MRI protocol proposed in [15], which is char-
acterised by rapid 2D MRI acquisition but high voxel resolution anisotropy.
This includes the collection of two T1-weighted Turbo Spin Echo (TSE) images:
a high-resolution axial acquisition (TE= 8 ms, TR = 509 ms, typical imaging
resolution = 0.78 × 0.78 × 7.02 mm3) and a high-resolution coronal acquisition
(TE= 7.1 ms, TR = 627 ms, typical imaging resolution = 1.25×1.25×6.00 mm3).
Eight CT images were acquired on a Siemens SOMATOM Sensation 16 CT Scan-
ner, while three on a Siemens SOMATOM Definition AS machine (tube voltage
in [80, 120] kVp). The images were processed (see Sect. 2.2), split along the left-
right axis of symmetry and separated according to the presence of implant. Man-
ual segmentation of pelvic bones, femora and implant were performed on CT,
while Gluteus Maximus (GMAX), Gluteus Medius (GMED), Gluteus Minimus
(GMIN) and Tensor Fasciae Latae (TFL) were individually manually delineated
on the MR. As a result of these processes, we built two template data sets, com-
posed of 10 implanted and 10 non-implanted hip sides respectively - for the sake
of simplicity we will refer to the latter as the healthy data set despite the presence
of metal artefact generated by the implanted side. Each template includes a CT
image, a registered super-resolution reconstructed MR image and the respective
joint manual segmentation of bones, muscles and implant. Within each dataset,
the templates were robustly aligned onto the average space based on the method
proposed in [13].

2.2 Pipeline for Automated Segmentation

A schematic representation of our processing framework is presented in Fig. 1.
The pipeline was implemented in NiPype [16], combining registration and seg-
mentation utilities of NiftyReg1, NiftySeg2 and FSL3 software packages with

1 https://cmiclab.cs.ucl.ac.uk/mmodat/niftyreg.
2 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg.
3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.

https://cmiclab.cs.ucl.ac.uk/mmodat/niftyreg
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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Fig. 1. Proposed pipeline for joint automated segmentation of computed tomogra-
phy (CT) and magnetic resonance (MR) pelvic images. The two modalities are first
processed independently to enhance the image quality. Intra-subject multimodal reg-
istration is then performed to align them through a non-linear deformation with rigid
constraints in bony structures. The registered CT and MR are split along the axis of
symmetry and a multi-atlas based segmentation propagation approach is applied to
obtain the automated segmentations of each side, which are finally recombined into
the full field of view.

super-resolution reconstruction and the proposed novel multimodal registration
framework. Our method is composed of three main blocks which are performed
sequentially: image quality enhancement of each modality, intra-subject MR-to-
CT registration, and atlas-based segmentation.

Image Quality Enhancement. In the first block, we aim at improving the
quality of the clinical images for improved registration steps. The axial and the
coronal MR images are first corrected for bias field effects [17]. In order to com-
pensate for the highly anisotropic resolution of clinical MR images (up to a factor
of 10), we combine both MR acquisitions into a 1 × 1 × 1 mm3 resolution image
using the SRR algorithm presented in [18]. To ease the subsequent registration,
the CT is also resampled to the same resolution using a cubic interpolation
scheme. An initial estimate of bones segmentation on the CT is extracted by
registering the templates to the target space and consequently propagating and
fusing their segmentation, allowing the creation of masks for femur, pelvis and
implant to be used in the intra-subject registration.
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Intra-Subject MR-CT Registration with Bone Rigid Constraints. The
subsequent step in our processing pipeline is the registration of the SRR MR
image to the respective CT. Multimodal registration for hip musculoskeletal
structures is challenging and no standard method has been proposed yet. A
simple affine transformation is not sufficient to guarantee an accurate align-
ment of the images, due to differences in the patient’s pose in the scanners. On
the other hand, high frequency deformations should be curbed when dealing
with intra-subject registration to prevent non-physiological deformation. The
applied transformation should embed a rigid behaviour for bones to preserve
their shape, while allowing non-linear deformation of fat and muscular tissue.
To tackle the discussed issues, we designed a registration pipeline composed
of two steps. Firstly, the two images are affinely registered using a symmetric
block-matching algorithm [19], in order to provide an initial global alignment.
Subsequently, the non-linear registration is performed by imposing locally rigid
hard constraints directly on the transformation through the following method,
which we developed from the mathematical formulation proposed in [20]. Given
a reference space X with the associated intensities R(X) (i.e. a reference image
R), a set of masks Mj defined in the reference space labelling the rigid struc-
tures, and a floating image F defined in the floating space Y , we defined our
registration problem as the optimisation of the transformation φ : X → Y such
that:

max
φ

[
(1− α− β) D(F (φ(X)), R(X)) − αPL − βPB

]

subject to φ(x) − Ajx = 0 ∀x ∈ Mj ⊂ X,
(1)

D is a measure of similarity between the reference and the warped floating image,
while PL and PB represent the linear elasticity and the bending energy penalty
terms [21], whose contribution to the total cost function is weighted by α and
β respectively; Aj refers to a rigid transformation applied within the j-th mask.
In order to guarantee inverse-consistency and symmetry of the registration [22],
we exploit a scaling-and-squaring exponentiation of a stationary velocity field
encoded by a cubic B-spline parametrisation defined over a set of control points
{μ}. The transformation is optimised within a conjugate gradient scheme, and
the rigid behaviour in the mask areas is ensured through the following steps:

Algorithm 1. Apply rigid constraints
Compute the gradient G(μ) of the cost function ∀μ ∈ {μ},
for each mask Mj do

Least square regression of G(μ), ∀μ ∈ Mj to fit a rigid transformation Aj

Set the gradient to Aj(μ) ∀μ ∈ Mj

end for
Perform a line search along the direction of G.

Differently to current approaches such as [23] where a locally rigid behaviour
can be promoted by the addition of a penalty term to the cost function (soft
constraint), in our approach the rigid constraints are strictly embedded into
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the transformation model, not in the optimisation scheme (hard constraint).
Thus, chain rule provides an analytical formulation of the conjugate gradient
thereby avoiding constrained optimisation. Using the proposed method on a
coarse-to-fine pyramidal approach, smooth transitions in the deformation field
are maintained by the cubic B-spline parametrisation and the stationary velocity
field exponentiation, while forcing rigid behaviours within the masks. To reduce
the effect of undesired high-frequency components in the transformation, we set
one control point every five voxels, and the masks are dilated at each pyramidal
level to account for the local support of the control points. We underline that
we extract the robust range of the intensity distributions for both the reference
and the floating image, and we perform all the registration steps by flooring or
ceiling all intensities outside this range, so as to decrease the influence of metal
artefact induced noise.

Once registered with the proposed method, the CT and the MR are merged
into a single four-dimensional (4D) volume. In order to employ the appropriate
template dataset for the atlas-based segmentation – i.e. healthy or implanted –
we developed a symmetry and implant detection algorithm. Based on left-right
axis flip and rigid registration, it extracts the sagittal axis of symmetry from the
inertia tensor of the image intensities. The 4D volume is split along this axis and
each hip side is automatically classified according to the presence of implants.

Atlas-Based Segmentation. Each split hip side is segmented by means of
multi-atlas segmentation propagation and label fusion. All the templates are reg-
istered to the target 4D image in a three-step process (rigid, affine and non-linear
registration as implemented in NiftyReg). The transformation of the affine and
the non-linear steps is initialised as the least trimmed squares average affine from
all the template transformations estimated at the previous step. Since our tem-
plates were previously aligned to their mid-space (Sect. 2.1), this initialisation
provides robustness against global failed registration. Notably, the non-linear
step is a multi-channel registration, where both modalities contribute jointly and
equally to the optimisation of the transformation. Using the estimated transfor-
mation, the segmentation of each template is propagated onto the target space.
The candidate segmentations are then fused into a consensus through the STEPS
algorithm [24], specifically modified to manage a multi-channel local similarity
measure. The final segmentation is obtained by merging back the two hip sides
and their estimated segmentation, providing a multi-label image that highlights
different bones, muscles and implants on both the CT and the MR.

3 Validation and Experiments

3.1 Intra-Subject Registration Evaluation

The first set of experiments we performed aimed at identifying the optimal set of
regularisation parameters α and β as shown in (1) for the intra-subject registra-
tion. Normalised mutual information (NMI) was used as measure of similarity,
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Fig. 2. Example of qualitative registration assessment with default NiftyReg regular-
isation parameters. The same axial and coronal slices are reported for the reference
computed tomography, the super-resolution reconstructed magnetic resonance (MR)
after affine registration, the super resolution reconstruction (SRR) MR after rigidly
constrained non rigid registration and the SRR MR after standard non-linear regis-
tration. For these latter cases, the transformation Jacobian determinant maps are also
displayed, showing the effect of the rigid constraints. Yellow arrows indicate exem-
plary areas where the proposed approach visually recovers a better alignment than
the standard fully non-linear registration (e.g. in the femoral head size). (Color figure
online)

since it is best suited for multimodal registration. For the sake of comparison,
we performed the same study using the standard non-linear registration without
the application of the rigid constraints, while keeping all the other parameters
unchanged. Although this variant would assume non-rigid deformation of the
bones, which is neither anatomically nor clinically correct, such a comparison
allows us to verify whether our implementation also improved the registration
results compared to the classical approach.

The choice of the best parameters was based on both qualitative and quanti-
tative analysis. The former included visual assessment of the alignment between
the CT and the registered MR and of the transformation Jacobian maps. An
example of this comparison is reported in Fig. 2, where the Jacobian determinant
maps clearly show how the standard registration algorithm fails in recovering a
rigid behaviour within the bones, as opposed to the proposed method.
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Fig. 3. Target registration error (TRE) analysis. Top figure: comparison of TRE root
mean square error (RMSE) values obtained from the rigidly constrained non-linear
registration and the standard one with varying regularisation parameters α - linear
elasticity weight - and β - bending energy weight. TRE RMSE from affine registration
is shown as well. Table: highest RMSE for each set of parameters. Starred values
indicate the sets for which the rigidly constrained registration provided significantly
lower RMSE than the standard (Wilcoxon rank sum test, p < 0.05). Highlighted in
red are the results for the selected best set of parameters. Bottom figure: manual
selection reproducibility error for the 10 landmarks and for the two modalities. List of
landmarks abbreviations: greater trochanter (GT), tensor fasciae latae (TFL), anterior-
inferior iliac spine (AIS), gluteus maximus (GMAX), ischium (Isc). Each landmark is
identified in each side and it is categorized as healthy (H) or implanted (I) side. (Color
figure online)

A quantification of the registration accuracy was obtained through landmarks
analysis. Specifically, we labeled 5 landmarks (3 in bone, 2 in muscles) per hip
side which could be conveniently located in both modalities and which cover
the full field of view. The target registration error (TRE) was computed as the
distance between the CT and the respective warped MR landmark. In order to
limit the bias from the manual landmark choice, we repeated the selection twice
at different times, we estimated the TRE for each selection and then computed
the average TRE for each landmark and for each subject (reproducibility errors
for the manual selection are shown in the bottom-left panel of Fig. 3). For each
subject we extracted the root mean square error (RMSE) of the TRE across the
ten landmarks and we compared the distribution of the RMSE with respect to
the registration parameters. A summary of the obtained results is presented in
Fig. 3. Overall the proposed method not only provided clinically plausible regis-
tration results, but also produced a more accurate alignment of the considered
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Fig. 4. Example of automated segmentation obtained with the proposed automated
pipeline. Top row shows the central axial and coronal slices for one of the subjects for
both computed tomography and magnetic resonance, while the second row reports the
same images overlaid with the segmentation result. A three-dimensional rendering of
the full segmentation is also displayed on the bottom left for the same subject.

landmarks compared to a standard non-linear registration algorithm. The best
set of parameters was identified as the one minimising the highest TRE RMSE
among all the landmarks, so as to guarantee a reasonably good alignment across
the whole field of view. We therefore concluded that the optimal results for the
intra-subject registration resulted from the use of normalised mutual information
with α = 0.2 and β = 0.01.

3.2 Leave-One-Out Cross Validation

The proposed pipeline was validated through a leave-one-out cross-validation
(LOOCV) experiment on the template datasets, by calculating the Dice score
between the automated segmentation result and the corresponding manual
ground truth for each label and for each subject. The goal of the LOOCV was
to compare the achieved results using both modalities jointly to those obtained
using only the CT or only the MR images. We recall that the manual seg-
mentation of muscles was not available for the CT, and similarly bones and
implant labelling on the MR. Therefore only the available labels were consid-
ered in the single-modality experiments. For each analysed type – i.e. only CT,
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only MR, combined modalities for healthy and for implanted sides – the seg-
mentation propagation and label fusion parameters were tuned to maximise the
lowest average Dice Score across subjects and across labels. An example of the
obtained automated segmentation is shown in Fig. 4.

The median Dice score for bones, muscles and implant extracted from the
three LOOCV experiments are reported in Table 1. It can be observed that the
multimodal and the single-modality approaches perform similarly with compa-
rable Dice score values. Overall bone structures were better segmented than
muscular ones, due to their lower shape and texture variability. Although the
obtained results appear slightly lower with the proposed approach, the observed
differences were statistically significant only in one case – i.e. for muscular struc-
tures in the healthy side – while for all the other cases the null hypothesis of
same underlying distribution was accepted (Wilcoxon rank sum test with 5%
significance level). This difference could arise from the need of finding a trade-
off in the segmentation propagation and label fusion parameters to achieve a
good accuracy in both skeletal and muscular structures for the 4D case. This
might go at the expense of a slight reduction of performances with respect to
the single-modality case, where the parameters are tuned only for the bones and
implant (CT) or for the muscles (MR). Nonetheless, only the proposed frame-
work is able to provide consistent and unified solution to the segmentation of
both the CT and the MRI. The use of independent approaches to segment the
muscles in the MR images and the bones and implants in the CT image would
indeed not guarantee non-overlapping regions of interest. As an example, on our
dataset we evaluated that on average 2% of the voxels labeled as muscle on
the MR overlapped with CT-labeled bone voxels in our manual segmentation,
while the proposed method guarantees no overlap by design. Without the use of

Table 1. Median Dice score values and 95% confidence intervals for bones, implant and
muscles: comparison between single- and multimodality results. Wilcoxon rank sum test
was performed to test the null hypothesis of same distribution for the multimodality-
and the respective single-modality-derived Dice scores (obtained p-values are reported
and starred (*) are the cases of rejection of the null hypothesis with 5% significance
level). N.A. indicates cases where the manual segmentation was not available.

Healthy side

CT MR Multimodal p-value

Bones 0.95 [0.74, 0.97] N.A 0.94 [0.74, 0.96] 0.164

Muscles N.A 0.88 [0.74, 0.95] 0.85 [0.70, 0.92] 0.007∗

Implanted side

CT MR Multimodal p-value

Bones 0.87 [0.63, 0.93] N.A 0.85 [0.53, 0.90] 0.365

Muscles N.A 0.84 [0.60, 0.93] 0.77 [0.41, 0.90] 0.054

Implant 0.91 [0.77, 0.95] N.A 0.91 [0.69, 0.93] 0.970
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a registration framework able to deal with the rigid nature of the bones while
non-linearly deforming the surrounding soft tissue, it would be more challenging
to accurately highlight the muscles in the CT space or the bones in the MR
space, due to their poor contrast for these structures.

4 Conclusion

We presented a fully automated processing pipeline for the joint segmentation
of bones, abductor muscles and implant on CT and MR images from hip arthro-
plasty patients. The combination of the two modalities enables accurate joint
delineation of healthy and pathological musculoskeletal structures and of their
spatial relationship.

As for other atlas-based approaches, the performance of our method could be
improved by enlarging the template data sets to better encompass the popula-
tion variability. Moreover, the presence of metal artefact-induced noise strongly
affects the accuracy of both intra- and inter-subject registration; hence future
developments of the processing pipeline will introduce novel metal artefact reduc-
tion techniques as an image quality enhancement step for the CT. In conclusion,
the proposed pipeline is a promising tool towards patient-specific 3D visual-
isation of musculoskeletal structures, and towards the extraction of clinically
relevant imaging biomarkers to detect implant failure. Thanks to our processing
steps, the implant can be outlined also on the MR image, where it is typically
obscured by the metal artefact. This could help identify the muscles that are
at greater risk of developing atrophy due to the presence of the implant, and
therefore inform the decision-making process for revision surgery.
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