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Abstract. Low signal-to-noise ratio, imaging artifacts and bone bound-
aries appearing several millimeters in thickness have hampered the suc-
cess of ultrasound (US) guided computer assisted orthopedic surgery
procedures. In this paper we propose a robust and accurate bone local-
ization method. The proposed approach is based on the enhancement of
bone surfaces using the combination of three different local image phase
features. The extracted local phase image features are used as an input
to an L1 norm-based contextual regularization method for the enhance-
ment of bone shadow regions. During the final stage the enhanced bone
features and shadow region information is combined into a dynamic pro-
gramming solution for the localization of the bone surface data. Qualita-
tive and quantitative validation was performed on 150 in vivo US scans
obtained from seven subjects by scanning femur, knee, distal radius and
vertebrae bones. Validation against expert segmentation achieved a mean
surface localization error of 0.26 mm a 67% improvement over state of
the art.
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1 Introduction

In order to decrease the total amount of radiation exposure, caused by intra-
operative fluoroscopy, and provide real-time three-dimensional (3D) guidance,
ultrasound (US) has been incorporated as an alternative imaging modality into
various computer assisted orthopedic surgery (CAOS) procedures [1]. Neverthe-
less, due to the continuing challenges faced during the extraction of relevant
anatomical information from US data, most of the proposed US-based CAOS
guidance systems have not succeeded in clinical settings. Ultrasound images
typically contain significant speckle and imaging artifacts, which do not cor-
respond to any specific anatomy, complicating image interpretation and auto-
matic processing. Furthermore, orientation of the US transducer with respect
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Fig. 1. Bone surface response appearance in ultrasound. (a), (b) High intensity soft tis-
sue interfaces above the bone surface with similar intensity profile as the bone surfaces
and reverberation artifacts inside the shadow region. (c) Separate low intensity spine
bone surfaces. (d) Low intensity bone surface obtained due to non-optimal orientation
of the US transducer.

to the imaged anatomy and the elevational beam width strongly influence bone
surface response profile and corresponding bone boundaries appear several mil-
limeters in thickness. In order to overcome some of these challenges bone seg-
mentation or enhancement methods have been proposed by various groups.
The previously proposed image-based segmentation or enhancement methods
can be classified into three groups: (i) methods using image intensity/gradient
information [2,3], (ii) methods based on local phase image features [4,5], and
(iii) hybrid approaches which combine the strengths of intensity and phase-based
methods [6–8]. Intensity-based approaches are not robust to low contrast bone
responses and high intensity soft tissue interfaces (Fig. 1). One of the distinct
features in bone US data is the shadow region. A large transition in acous-
tic impedance between the tissue and the bone causes most of the acoustic
signal to be reflected back creating a low intensity region extending from the
bone boundary to the bottom of the image. Incorporating this information into
their framework improved the accuracy and robustness of the proposed intensity-
and phase-based methods [3,6–8]. In [6], the percentage of overlapping surfaces
between the manual segmented and automatic method was 62.5%. The hybrid
approach proposed in [7] integrated machine learning into their framework. The
method was validated on 35 US scans obtained from a single subject achieving
an accuracy score of 86% for 1 mm tolerance with 0.59 mm localization error for
this tolerance. The computation time for the proposed method was 2 min. In [8],
computed tomography (CT) derived bone surfaces were registered to US derived
bone surfaces. The reported average surface fit error for the in vivo pelvis data
was close to 0.5 mm.

Although previously reported results provided promising outcomes, acqui-
sition of high quality US data in clinical settings continues to be and ongoing
challenge in US-based CAOS procedures effecting the accuracy and robustness of
the segmentation methods. In this work, we propose a bone localization method
which is accurate and robust to different US imaging artifacts. Local phase-based
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Fig. 2. Flowchart of the proposed bone localization method.

image features are utilized to enhance the bone surface response profile and sup-
press the soft tissue interfaces and imaging artifacts. The enhanced images are
used as an input to an L1 norm-based contextual regularization method which
emphasizes uncertainty in the shadow regions. The enhanced bone response and
shadow region images are incorporated into a dynamic programming solution
for localizing the bone surfaces. Qualitative and quantitative validation results
on scans collected from seven volunteers are presented. The proposed method is
also compared against previously developed intensity-based [3] and phase-based
[9] methods.

2 Methods

The flowchart of the proposed method is provided in Fig. 2 and is based on
our previous experience where local phase image features are used for bone
enhancement and/or segmentation.

2.1 Enhancement of Bone Surface Response

Bone surface response profile in US is highly affected by the orientation of the
beam with respect to the imaged bone boundary and the 3D anatomy of the
imaged surface. If the US beam is perfectly aligned and the attenuation from
soft tissue interface is low the bone response profile appears as a dominant ridge
edge along the scanline direction. However, while imaging complex shape bone
surfaces, such as spine, or if the attenuation from soft tissue interface is large the
bone response profile can be dominated by different edge profiles. The first step
in our framework involves the enhancement of the low intensity bone surfaces
by constructing a local phase enhancement metric, similar to [9], as:

USE(x, y) =
∑

r

∑
s �[ers(x, y) − ors(x, y)] − Tr�

∑
r

∑
s

√
e2rs(x, y) − o2rs(x, y) + ε

. (1)

Here o(x, y) and e(x, y) represent the even and odd symmetric filter response
and are obtained by filtering the B-mode US image, US(x, y), in the frequency
domain using Log-Gabor filter [10]. Since the first step in the proposed framework
is to provide an initial general ultrasound enhancement, in this new metric we are
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Fig. 3. Local phase image bone features. Top row shows the extracted local
phase image features where the enhanced USE(x, y) image was used to extract
LPT (x, y), LPE(x, y), LwPA(x, y), and LP (x, y) image features. Bottom row shows
the extracted local phase image features where the B-mode US(x, y) image was used
to extract LPT (x, y), LPE(x, y), LwPA(x, y), and LP (x, y) image features. Red arrows
point to bone surfaces and soft tissue interfaces where the improvement was achieved.
Distance map is shown on the far right. (Color figure online)

not using the absolute response values of the even and odd filter responses which
was done previously for enhancement of bone interfaces [9]. Filter orientations
and scale are represented with r and s respectively. ε is a small constant included
to avoid division by zero. Tr is a noise dependent threshold calculated as a
specified number of standard deviations above the mean of the local energy
distribution because of noise [11]. The standard deviation and mean of the local
energy is calculated for each orientation separately using the response of the
smallest scale filter [10].

Figure 3 shows that USE(x, y) results in the enhancement of low intensity
bone surfaces and soft tissue interfaces. Hacihaliloglu et al. [12] recently pro-
posed a tensor-based feature descriptor, called local phase tensor (LPT (x, y)),
for the enhancement of bone features while suppressing high intensity soft tissue
interfaces. The second step in the bone enhancement framework is to calculate
the LPT (x, y) image. LPT (x, y) is obtained using even and odd filter responses
which are defined as:

Teven = [H (USDB(x, y))] [H (USDB(x, y))]T ,

Todd = −0.5 × ([∇USDB(x, y)]
[∇∇2USDB(x, y)

]T

+
[∇∇2USDB(x, y)

]
[∇USDB(x, y)]T ).

(2)

Here Teven represents symmetric features and Todd represents the asymmetric
features. H , ∇ and ∇2 denote the Hessian, Gradient and Laplacian operations,
respectively. USDB(x, y) is obtained by masking the band-pass filtered USE(x, y)
image with a distance map which improves the enhancement of bone surfaces
located deeper in the image while masking out of soft tissue interfaces close to the
transducer. Band-pass filtering was performed using a Log-Gabor filter [12]. The
finalLPT (x, y) image is obtained usingLPT (x, y) =

√
T 2

even + T 2
odd×cos(ϕ). The

instantaneous phase obtained from the symmetric (Teven) and asymmetric (Todd )
features responses is represented with ϕ [12]. Investigating the obtained LPT (x, y)
image (Fig. 1) we can see that the descriptor enhances soft tissue interfaces close
the to bone surface as well. In order to provide an enhancement with less soft tissue
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interfaces and more compact bone representation, local phase energy (LPE(x, y))
and local weighted mean phase angle (LwPA(x, y)) image features are extracted
using monogenic signal theory where the monogenic signal image (USM (x,y)) is
formed by combining the bandpass filtered LPT (x, y) image (LPTB(x, y)) with
the Riesz filtered components as:

USM (x, y) =
[
USM1(x, y), USM2(x, y), USM3(x, y),

]

=
[
LPTB(x, y), LPTB(x, y)xh1(x, y), LPTB(x, y)xh2(x, y),

]
.

(3)

Here h1 and h2 represent the vector valued odd filter (Riesz filter) [13]. For band-
pass filtering α-scale space derivative quadrature filters (ASSD) are used which
are shown to produce produce improved edge detection results on simulated US
images [14]. The LPE(x, y) image is obtained by averaging the phase sum of the
response vectors over many scales using:

LPE(x, y) =
∑

sc

∣
∣USM1(x, y)

∣
∣ −

√
US2

M2(x, y) + US2
M3(x, y). (4)

In the above equation sc represents the number of scales. LPE(x, y) encodes the
underlying shape of the bone boundary by accumulating the local energy of the
image along several filter responses. LwPA(x, y) is calculated using:

LwPA(x, y) = arctan

( ∑
sc USM1(x, y)

√∑
sc US2

M1(x, y) +
∑

sc US2
M2(x, y)

)

(5)

during the calculation of the LwPA(x, y) feature map noise compensation is not
performed and the LwPA(x, y) image preserves all the structural details of the
US image such as the soft tissue interfaces and bone surface. The final improved
local phase bone image (LP (x, y)) is obtained using: LP (x, y) = LPT (x, y) ×
LPE(x, y)×LwPA(x, y). Figure 3 shows the obtained local phase feature images
(LPT (x, y), LPE(x, y), LwPA(x, y)). One common property of the extracted
local phase image feature images is that the enhanced bone surfaces are well
localized in all of the three images while soft tissue interfaces are not. Therefore,
the combination of these three phase feature images results in the suppression of
soft tissue interfaces while keeping the bone surfaces more compact and localized.
In Fig. 3 (bottom row) we also show the bone enhancement results obtained if
we used US(x, y) image as an input to the tensor-based phase descriptor. Red
arrows point to the enhanced soft tissue artifacts and missing bone boundaries
since. These are the locations in the B-mode US image (US(x, y)) where the bone
response is weaker compared to the soft tissue interfaces above the bone surface.
The obtained LP (x, y) image is used in the next section for the enhancement of
bone shadow region.

2.2 Enhancement of Shadow Region

Automatic identification of shadow regions is important since it can be used as an
additional feature to improve the robustness and accuracy of the segmentation
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(a) (b) (c) (d)

Fig. 4. (a) Enhanced bone shadow image BSE(x, y). (b) Bone probability image
obtained by masking LP (x, y) with BSE(x, y). (c) Bone localization presented as curve
BL(s). The curve BL(s) is overlaid on the actual bone surface for better representation.
(d) Localized bone surface is overlaid on the B-mode ultrasound image of in vivo knee.
(Color figure online)

or registration methods. The bone shadow enhancement is based on the mod-
ification of previously proposed US confidence map (CM) approach [15]. How-
ever, instead of using the US image intensity information we use LP (x, y) image
features. We achieve this by modeling the interaction of the US signal within
the tissue using scattering and attenuation information. The model, denoted as
US signal transmission map (USA(x, y)), maximizes the visibility of high inten-
sity features inside a local region and satisfies the constraint that the mean
intensity of the local region is less than the echogenicity of the tissue confin-
ing the bone. The scattering and attenuation effects in the tissue are combined
as: CMLP (x, y) = USA(x, y)BSE(x, y) + (1 − USA(x, y))ρ. Here CMLP (x, y)
represents CM image obtained from LP (x, y) using [15], ρ is a constant value
representative of echogenicity in the tissue surrounding the bone, and BSE(x, y)
is the enhanced bone shadow image which we are trying to calculate. In order
to calculate BSE(x, y), USA(x, y) is estimated first by minimizing the following
objective function [16]:

λ

2

∥
∥USA(x, y) − CMLP (x, y)

∥
∥2

2
+

∑

j∈χ

∥
∥Wj ◦ (Dj ∗ USA(x, y))

∥
∥
1
. (6)

Here ◦ represents element-wise multiplication, χ is an index set, and ∗ is con-
volution operator. Dj is calculated using a bank of high order differential filters
[17]. The filter bank results in the enhancement of bone features in the local
region while attenuating the image noise. Wj is a weighting matrix calculated
using: Wj(x, y) = exp(−|Dj(x, y) ∗ CMLP (x, y)|2). In (6), the first part mea-
sures the dependence of USA(x, y) on CMLP (x, y) and the second part models
the contextual constraints of USA(x, y). These two terms are balanced using a
regularization parameter λ [16]. After estimating USA(x, y), BSE(x, y) image is
obtained using: BSE(x, y) = [(CMLP (x, y) − ρ)/[max(USA(x, y), ε)]δ] + ρ. δ is
related to tissue attenuation coefficient (η), ρ is a constant value representative
of echogenicity in the tissue surrounding the bone, and ε is a small constant
used to avoid division by zero [16]. Figure 4 shows the enhanced bone shadow
image BSE(x, y) where the soft tissue interface above the bone surface is rep-
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resented with uniform intensity and the shadow region is represented with low
intensity values corresponding to a low probability value that the signal reach-
ing back to the transducer imaging array (high intensity denoted with dark red
and low intensity with blue color coding). Investigating the BSE(x, y) image we
can see that the transition from soft tissue interface to bone shadow region is
represented with a sharp intensity change clearly differentiating the two inter-
faces. The enhanced bone shadow region image (BSE(x, y)) and local phase
bone image (LP (x, y)) are used during the bone surface localization which is
explained in the next section.

2.3 Bone Surface Localization

The localization of the bone feature within a column s, denoted as BL(s),
is achieved by minimizing a cost function composed of two energy func-
tions denoted as internal energy (Eint(x, y)) and external energy (Eext(x, y)).
Eint(x, y) is obtained by masking the LP (x, y) image with the BSE(x, y)
image which provides a bone probability map (Fig. 4(b)). The external energy
(Eext(x, y)) is constructed by dividing the US image into three regions denotes
as bone region, boneless region and the jump region (the region between the first
two regions) (Fig. 4(c)). Eext(x, y) is constructed using these three regions as [3]:

Eext(i, j) =

⎧
⎪⎨

⎪⎩

ν||dBL
ds ||2 + ξ||d2BL

ds2 ||2 + ς; Bone region,

JumpCost; Jump region,

νD2
1 + ξD2

2; Boneless region.

(7)

Here ν and ξ are the weights of the smoothness (the first derivative of BL(s))
and the curvature (the second derivative of BL(s)), and ς is small negative scalar
ensuring larger connected bone regions to stay connected. Bone connectivity is
further maintained with the JumpCost constant which penalizes frequent jumps
between bone and boneless regions. As there is no bone information present
in the boneless region, first and second order derivatives are assigned constant
values D1 and D2. Dynamic programming optimization is used to solve:

BLmin(i, j) = Eint(i, j) + min
k

[
BLmin(k, j − 1) + Eext(k, j)

]
. (8)

BLmin(i, j) represents the minimum cost of moving from first column to
the pixel in ith row and j th column. Row index is represented with k.
The index of the pixel k, j with its minima is stored in Indexmin(i, j) =
argmink[BLmin(k, j − 1) + Eext(k, j)]. Dynamic programming provides a fast
optimization of the cost function. The final optimized bone localization if
obtained by tracing back from the last column of the US image using:

BLopt(s) =
{

NR + 1 s = NC;
Indexmin[s + 1, BLopt(s + 1)]; s = 1, . . . , (NC − 1). (9)

BLopt is the optimized segmentation path where the energy cost function is
minimized. The number of rows and columns are indicated with NR and NC of
the B-mode US image. NR and NC also indicate the last row and last column
in the US image. The final localized bone surfaces is shown in Fig. 4.
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2.4 Data Acquisition and Experiments

After obtaining the institutional review board (IRB) approval a total of 150
different US images, from seven healthy subjects, were collected using Sonix-
Touch US machine (Analogic Corporation, Peabody, MA, USA). Depending
on the anatomical region of interest two different transducers were used (C5-
2 curvilinear, L14-5 linear transducer). Depth settings and image resolutions
varied between 3–8 cm and 0.12–0.19 mm respectively. All the proposed image
enhancement and localization methods were implemented using MATLAB 2014a
software package and run on a 2.3 GHz Intel(R) CoreTM i5 CPU, 16 GB RAM
windows PC. The localized bone surfaces were compared to manual localiza-
tion results obtained from an expert user. The quality of the localization was
evaluated by computing average Euclidean distance (AED) between the two sur-
faces. We also compare the localization results against the methods proposed in
[3,9]. For bone shadow enhancement, λ = 2 and ρ, the constant related to tissue
echogenicity, was chosen as 90% of the maximum intensity value of CMLP (x, y).
LPT (x, y) images were calculated using the filter parameter values defined in
[12]. The CM(x, y) and CMLP (x, y) images were obtained using the constant
values as: η = 2, β = 90, γ = 0.03. For bone surface localization the constant
values were chosen as: ν = 50, ξ = 100, JumpCost= 0.8, ς = 0.15, D1 =D2 = 1.
These values were determined empirically and kept constant during qualitative
and quantitative analysis.

3 Results

Investigating the qualitative results we can see that the surfaces localized with
the proposed method have a good alignment with the expert manual localization
(Fig. 5). The combination of enhanced local phase bone features and shadow
region information provides a robust estimate even if (i) the shadow region had
intensity variations (Fig. 5; femur and spine), (ii) disconnected bone surfaces
(Fig. 5; spine), (iii) low intensity bone boundary (Fig. 5; radius, spine and femur),
and (iv) high intensity soft tissue interfaces (Fig. 5; femur, spine and radius).
The overall AED error for the proposed method was 0.26 mm (SD: 0.22). The
overall AED error for [9] and [3] were 0.78 mm (SD: 0.68) and 4.5 mm (SD:
4.39) respectively. The maximum AED was 1.36 mm for the proposed method,
and 19.08 mm for [3], and 4.2 mm for [9] (Table 1). Table 1 also shows the 95%
confidence level calculated for the localization results obtained for all the three
methods compared. We can see that the the proposed method outperforms [3,9].
The average computation time was 9.4 s.

4 Discussion and Conclusion

We have presented a method for accurate, robust and fully automatic local-
ization of bone surfaces in two-dimensional US data based on enhanced local
phase bone and shadow region information. The method was validated on 150
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Fig. 5. Qualitative results. First, third and fifth rows represent the B-mode ultrasound
image of in vivo radius, spine and femur respectively. Second, fourth and sixth rows
present the localization result. Green represents manual expert segmentation and red
is obtained using the proposed algorithm. (Color figure online)

in vivo US data, obtained from seven volunteers, and achieved an overall AED
error of 0.26 mm. We achieved a 67% improvement in terms of surface localiza-
tion over state of the art methods and 94% improvement compared to intensity-
based localization methods. Although we have not directly compared our method
to machine learning-based approaches [7] our reported localization results have
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Table 1. Comparative results of the proposed approach.

Proposed Phase symmetry [9] Dynamic programming [3]

Mean SD 95% CL Mean SD 95% CL Mean SD 95% CL

Femur 0.32 0.25 0.64 0.74 0.50 1.43 7.60 4.27 15.42

Radius 0.44 0.26 0.81 1.08 0.88 2.93 6.97 5.73 16.00

Tibia 0.22 0.24 0.56 0.68 0.42 1.58 6.69 0.41 11.20

Knee 0.19 0.16 0.42 0.83 0.88 2.5 3.29 4.23 11.96

Spine 0.34 0.17 0.53 0.73 0.65 1.95 1.77 1.61 5.25

Overall 0.26 0.22 0.63 0.78 0.68 2.21 4.50 4.39 13.79

(SD - standard deviation, CL - confidence level)

54% improved accuracy. However, the proposed shadow enhancement method
and local phase features extracted in the proposed work can also be incorpo-
rated into existing machine learning approaches as additional features which
could results in the improvement of the localization results reported for these
methods. The specific contributions include: (1) the use of α-scale filters for
extraction of bone phase features, (2) calculation of a new bone probability map
for improved bone surface localization, and (3) combination of enhanced bone
shadow features with three different image phase features for bone localization.
Previously, it was shown that by optimizing the filter parameter selection, using
information derived from the collected data, improvements can be achieved in
terms of surface localization and robustness to artifacts [9]. Therefore, the filter
parameter selection process should be automated. Another limitation of the pro-
posed method is the achieved mean computation time which was around 9.4 s.
This is a large computational cost considering that any intra-operative procedure
performed requires real time feedback. Future work will involve (i) improvement
of the computation speed, (ii) validation on more in vivo scans, and (iii) opti-
mization of the filter parameters. Finally, we would like to mention that although
there were no failed cases for the proposed method a more extensive validation is
required in order to fully address clinical challenges that can be faced during the
application of the method. Specifically, volunteers with high body mass index
will require a special investigation which we will be performing as part of our
future work.
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