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Abstract One of the key aspects in the theory of coupled cell networks concerns the
existence of synchrony subspaces. That is, subspaces defined in terms of equalities
between cell coordinates which are flow-invariant for all coupled cell systems that
respect a given coupled cell network structure. We review some recent concepts and
results concerning synchrony subspaces on coupled cell networks. The existence
of such subspaces naturally restricts the dynamics that can occur at the coupled cell
systems, as in general it is the case for any dynamical system admitting flow-invariant
spaces. We focus at some of the aspects that make important and special the existence
of synchrony subspaces for coupled cell systems. Namely, their existence depend on
the network structure and not on the specific form of the differential equations that are
chosen to govern the dynamics; the solutions of the restricted coupled cell systems
represent dynamics where groups of cells are dynamically behaving exactly in the
same way; the restricted coupled cell systems are again coupled cell systems that
are consistent with a network structure with a fewer cells. We review some results
on how synchrony changes, or it is combined, in evolving networks. More precisely,
in networks where their topology changes with time, either to a rewiring of a link,
appearance or removal of a link or a node, or by merging smaller networks into larger
ones. Finally, we consider the complement network of a network remarking that both
networks have the same set of synchrony subspaces.
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1 Introduction

Many real life phenomena can be dynamically modeled through differential equations
that can be interpreted as coupled cell systems – that is – equations consistent with
a network graph structure where nodes (the cells) symbolize dynamics of smaller
dynamical systems and edges represent interactions (the couplings) between those
nodes. The collective dynamics of the time evolution at nodes then gives the dynamics
on the network. In the analysis of the collective dynamics it is often crucial and of
interest to observe the dynamical behavior of the individual nodes, comparing and
finding features such as synchrony or specified phase-relations in periodic solutions.
We follow here the theory of coupled cell networks formalized by Stewart et al.
[28, 31, 44] and Field [23]. A key advantage of these formalisms is that it allows
theoretical deduction of collective dynamics based only on the network structure,
without referring to specific dynamics at every cell.

Different factors can contribute for the decision of modelling through network
equations. One such factor can be derived from the intrinsic form of the phenomena
that is is being modelled in the mathematical language. As an example, network
of symmetrically coupled cells can be used to model central pattern generators for
quadruped locomotion, see Golubitsky et al. [17, 29]. We are interested in networks
associated with directed graphs meaning that the interactions are directional. For
example, in a social network representing trade among nations, the interactions are
directional and the graph representing such interactions must be directed. More-
over, many interactions are valued, indicating for example the strength of interac-
tion between the social nodes or there can be more than one type of interaction
(multirelational networks). See for example Wasserman and Faust [45]. The theory
of coupled cell networks that we are following considers networks represented by
directed graphs that can have more than one edge type, multi-edges and self-loops.
Graphically, each edge type is represented by a different symbol.

Coupled Cell Networks and Coupled Cell Systems

A network is said to be regular if all cells are identical (have the same internal
dynamics), all edges are of the same type and all cells receive the same number
of input edges – the valency of the network. More generally, a network such that
each subnetwork formed by the network cells and the network edges of a given
type is regular, is said to be homogeneous. To each such subnetwork is associated
an adjacency matrix, with rows and columns indexed by the network cells, with
nonnegative integers entries, where the entry i j is m if there are m edges of that
given type from cell j to cell i . Thus an homogeneous network with k edges types
can be described through k (adjacency) matrices.

Example 1 The network N of Fig. 1 is an example of a five-cell regular network of
valency two with adjacency matrix
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Fig. 1 A five-cell network
N which is regular of
valency two: all the cells and
all the edges are represented
by the same cell and edge
symbol, respectively, since
the cells are identical and the
edges are of the same type;
all the cells receive two input
edges
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The associated coupled cell systems satisfy the following general form:

ẋ1 = f (x1, x2, x4)

ẋ2 = f (x2, x1, x4)

ẋ3 = f (x3, x1, x5)

ẋ4 = f (x4, x1, x2)

ẋ5 = f (x5, x1, x3)

where f : (Rk)3 → Rk , for k ∈ N, is a smooth function. The overbar indicates that
f is invariant under the permutation of the variables and translates the fact that all
the interactions (edges) between cells are of the same type. The same function f
is used to describe the time evolution of each cell state for two reasons: the same
symbol is used to represent all the cells which indicates that the cells are identical;
each cell receives two interactions and so the equations for each cell are identical up
to the input variables.

When studying the dynamics of coupled cell systems, obviously it has to be taken
into account the underlined network structure, which in particular, can force dynamics
that would be highly nongeneric in the context of general dynamical systems. One
such example is the occurrence of flow-invariant spaces.

Synchrony Subspaces

One widely observed and most studied collective dynamics in coupled dynamical
systems is the synchronization, where phase trajectories of two or more coupled units
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coincide over time. For importance of synchronization and its ubiquitous presence
in nature, we refer to [15, 41] and references therein. In [40], Pikovsky et al. propose
to study various synchronization phenomena using a common framework based on
modern nonlinear dynamics, where a variety of approaches using coupled periodic
and coupled chaotic systems is discussed. Restrepo et al. in [42] point out the cru-
cial effect of network structure on the emergence of collective synchronization in
heterogeneous systems, in terms of eigenvalues of network adjacency matrices.

Conditions for the occurrence of robust patterns of partial synchronization in terms
of network structure, have been established in Stewart et al. [44] and Golubitsky
et al. [31]. In the theory of coupled cell networks the synchronization of two or
more cells corresponds to the flow-invariance of the subspace of the total phase
space given by the identification of the phase space of those cells. These are called
synchrony subspaces and have the amazing property that their existence, implying
flow-invariance for the associated coupled cell systems, depends only on the network
structure. In fact, by [31, 44] synchrony subspaces are in one-to-one correspondence
with the equivalence relations on the network set of cells that satisfy certain properties
in which case they are called balanced. Equivalently, synchrony subspaces are in
one-to-one correspondence with the polydiagonals (subspaces of Rn , if the original
network has n cells, defined by equalities of coordinates) that are left invariant under
the network adjacency matrix, or the adjacency matrices if the network has more
than one edge type.

Example 2 Consider the five-cell regular network N of Fig. 1 with set of cells
C = {1, . . . , 5} and total phase space (Rk)5. The polydiagonal subspace Δ = {x ∈
(Rk)5 : x1 = x2, x3 = x5} is a synchrony subspace for the coupled cell systems
associated to N . This is easily verified using the general form of the equations of the
admissible vector fields for N , presented in Example 1. With the identification of x1

with x2 and of x3 with x5, the equations for ẋ1 and ẋ2 coincide and the equations for
ẋ3 and ẋ5 also coincide. Thus a trajectory with initial condition in Δ will remain in
Δ for all time. Equivalently, from the results of [31, 44], Δ is a synchrony subspace
since the polydiagonal subspace {x ∈ R5 : x1 = x2, x3 = x5} is left invariant under
the adjacency matrix of N , presented in Example 1.

Symmetry and Synchrony

Symmetric networks are a special class of networks. The symmetry groupof a network
is the group of the isomorphisms of the network graph. Equivalently, the symmetry
group of the network corresponds to the group of the n × n permutation matrices (if
the network has n cells) that commute with the adjacency matrix or the adjacency
matrices of the network. Coupled cell systems associated with symmetric networks
inherit the network symmetry – that is – they are equivariant under the network
symmetry group, considering the natural action by permutation of the network cell
coordinates. In this case, there are two main aspects that determine the form of
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Fig. 2 (left) Network with exact S3-symmetry. (right) Network with S3-interior symmetry on the
set of cells {1, 2, 3}

the coupled cell systems - the network and the symmetry. That is, the coupled cell
systems are equivariant under the network symmetry group and are also constrained
by the network structure. For any isotropy subgroup for the action of the network
group of symmetries, the corresponding fixed-point subspace is flow-invariant and it
is a polydiagonal, since the action is by permutation of the network coordinates, thus
it is a synchrony subspace. But, there can be more additional synchrony subspaces
whose existence is not predicted by the symmetry. This comes from the fact that the
coupled cell systems are not only equivariant but they also have form consistent with
the network. More precisely, the linear space of smooth vector fields with structure
consistent with the symmetric network may form a proper subspace of the linear
space of the smooth equivariant vector fields. See Antoneli and Stewart [12–14]. It is
then possible that dynamics that are non-generic from the symmetric point of view,
are generic for a given symmetric network structure. That is, dynamics can occur
in a robust way for coupled cell systems that have form consistent with a specific
network structure, but that would not be expected if we were working in the context
of generic smooth equivariant vector fields. See for example Golubitsky et al. [25].
See also Dias and Lamb [19], Paiva [39, Chap. 7], Dias and Paiva [21] and Golubitsky
and Lauterbach [24].

An important class of non-symmetric networks that lies between the class of gen-
eral networks and the class of symmetric networks, where group theoretic methods
still apply, are the networks with interior symmetries. In this case, there is a group
of permutations of a subset S of the cells (and edges directed to S) that partially
preserves the network structure (including cell-types and edges-types) and its action
is again by permutation of the network cell coordinates. In other words, the cells in
S together with all the edges directed to them form a subnetwork which possesses a
non-trivial group of symmetry �S ⊆ Sn . For example, in Fig. 2, the network at the
left has exact S3-symmetry, whereas the network on the right has S3-interior sym-
metry on the set of cells S = {1, 2, 3}. This notion was introduced and investigated
by Golubitsky, Pivato and Stewart [26].

In coupled cell systems, the local bifurcations from a synchronous equilib-
rium can be classified into synchrony-breaking bifurcations or synchrony-preserving
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bifurcations. The synchrony-breaking bifurcations occur when a synchronous state
looses stability and bifurcates to a state with less synchrony. This is in parallel with
the concept of symmetry-breaking bifurcations in symmetric coupled cell systems,
see Golubitsky and Stewart [27]. In [26] it is obtained analogues of the Equivariant
Branching Lemma [30, Theorem XIII 3.3] and the Equivariant Hopf Theorem [30,
Theorem XVI 4.1] for coupled cell systems with interior symmetries.The analogue
of the Equivariant Branching Lemma is a natural generalization of the symmetric
case. However, in the Equivariant Hopf Theorem, it is proved the existence of states
whose linearizations on certain subsets of cells, near bifurcation, are superpositions
of synchronous states with states having ‘spatial symmetries’. (In the full symmetric
case, the Equivariant Hopf Theorem guarantees the existence of states with certain
spatio-temporal symmetries.) More recently, in Antoneli, Dias and Paiva [10, The-
orem 4.8], the Equivariant Hopf Theorem for networks with interior symmetries of
[26] is extended obtaining the full analogue of the Equivariant Hopf Theorem for
networks with symmetries. More precisely, it is guaranteed the existence of states
whose linearizations on certain subsets of cells, near bifurcation, are superpositions
of synchronous states with states having spatio-temporal symmetries, that is, corre-
sponding to “interiorly” C-axial subgroups of �S × S1. See also Antoneli, Dias and
Paiva [11].

Applying the Equivariant Hopf Theorem to a smooth one-parameter family of cou-
pled cell systems with structure consistent with the network at the left of Fig. 2 which
has exact S3-symmetry, assuming a codimension-one interior symmetry-breaking
Hopf bifurcation occurs at an equilibrium with S3-symmetry, then generically we
obtain three branches of small amplitude periodic solutions. One branch corresponds
to periodic solutions with exact spatial Z2-symmetry where two cells undergo oscil-
lations that are identical and in phase, and the third (from the set {1, 2, 3}) behaving
differently. There are two more branches of periodic solutions with spatio-temporal
symmetries Z̃3 and Z̃2: on one branch the oscillations have the same waveform for
each cell in the set {1, 2, 3}, but are phase-shifted by one third of the period; at the other
branch, two cells have identical waveforms but are one half of the period out of phase,
and the third cell (from the set {1, 2, 3}) has the double frequency. The three groups
Z2, Z̃3 and Z̃2 correspond to the three (conjugacy classes of) isotropy subgroups
of the standard action of S3 × S1 on C ⊕ C. For details see for example Golubit-
sky, Stewart and Schaeffer [30, Chaps. XVI, XVIII]. Applying the Equivariant Hopf
Theorem with Interior Symmetries of [10], now taking a smooth one-parameter fam-
ily of coupled cell systems with structure consistent with the network at the right of
Fig. 2 which has interior S3-symmetry on the set of cells S = {1, 2, 3}, assuming a
codimension-one interior symmetry-breaking Hopf bifurcation occurs at an equilib-
rium with S3-symmetry, then generically we obtain as well three branches of small
amplitude periodic solutions, corresponding to the three groups Z2, Z̃3 and Z̃2, but
now the linearizations of the periodic states on the subsets of cells, near bifurcation,
are superpositions of synchronous states with states having those spatio-temporal
symmetries. See the numerical simulations in [10, Sect. 4.4] illustrating the periodic
solutions guaranteed by the Equivariant Hopf Theorem with exact and interior S3-
symmetry in coupled cell systems of four cells with structure consistent with the
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Fig. 3 Solutions with Z̃2 (interior) symmetry. (left) Network with exact S3-symmetry. (right)
Network with S3-interior symmetry. Figure taken from [10]

networks of Fig. 2, respectively, choosing the internal phase space of all four cells to
be C ∼= R2. We reproduce here in Fig. 3 results of numerical simulations obtaining
periodic solutions with (interior) Z̃2-symmetry: it is superimposed the time series of
all four cells, which are identified by colours: cell 1 is blue, cell 2 is red, cell 3 is
green, and cell 4 is black. The upper panels show the first components and the lower
panels show the second components. The left panels refer to network with exact
S3-symmetry and the panels on the right refer to network with S3-interior symmetry.

Quotients and Inflations

Synchrony subspaces have a major impact at the dynamics of the coupled cell systems
associated with a given network. An important aspect of the existence of synchrony
subspaces is that the restriction of the coupled cell systems to a synchrony subspace
are again coupled cell systems in a lower-dimensional phase space, now associated
with a network with fewer cells – the quotient network of the given network by
the synchrony subspace. The fact that the restricted systems are consistent with
a network structure implies constrains at the dynamics that can occur for those
systems and thus for the initial coupled cell systems. Although, the restrictions to the
synchrony subspaces do not give all the dynamics for the original network, they give
full information concerning the dynamics of the original coupled cell systems at those
synchrony subspaces. See for example Aguiar et al. [4, 5]. Moreover, it can happen
that the quotient network has been already explored from the dynamical point of view
in several contexts. If that is the case, the known dynamics of the quotient network can
be lifted to the original network dynamics. Examples of specific structures than can
be explored are: existence of global (quotient) network symmetries implying that the
associated coupled cell systems are symmetric under a permutation symmetry group
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– these impose strong constrains at the dynamics that can occur, see for example
Golubitsky and Stewart [27, 28] and references therein; known classifications of
classes of networks with certain structures, see for example Leite and Golubitsky
[35].

It is known that flow-invariant spaces favour the existence of non-generic
dynamical behaviour like heteroclinic cycles and networks, which lead to compli-
cated dynamics. It follows that, knowing the set of all synchrony subspaces of a
coupled cell network, can help to detect the possibility of the associated coupled
cell systems to support heteroclinic behaviour. Besides this, in Aguiar et al. [1], it is
also explored the process reverse to the quotient of a network: coupled cell networks
supporting heteroclinic networks are constructed by lifting coupled cell dynamics
supporting heteroclinic behaviour and associated with smaller networks. That is,
networks with a few number of cells (and supporting heteroclinic connections) are
inflated and combined in a way that they are quotient networks of bigger networks
supporting heteroclinic networks.

Example 3 In Fig. 4 we show a six-cell network M for which the five-cell network
N of Fig. 1 is a quotient network by the synchrony subspace defined by the cell
coordinates equality x1 = x6. More precisely, the general form of the coupled cell
systems associated with M is:

ẋ1 = f (x1, x2, x4)

ẋ2 = f (x2, x6, x4)

ẋ3 = f (x3, x6, x5)

ẋ4 = f (x4, x1, x2)

ẋ5 = f (x5, x1, x3)

ẋ6 = f (x6, x2, x4)

where as before, f : (Rk)3 → Rk is any smooth function and the overbar indicates
that f is invariant under the permutation of the variables. Restricting these equations
to the synchrony subspace {x : x1 = x6}, we obtain the general form of the coupled
cell systems associated with the network N of Fig. 1 (see Example 1). Equivalently,
the network M in Fig. 4 is an inflation of the five-cell network N of Fig. 1 at cell 1,
where cell 1 is inflated to cells 1 and 6.

2 Enumeration of Inflations

In general, a given network can be the quotient network of many different networks.
In Aguiar et al. [4, 5] it is considered the inverse problem: given a network N provide
a systematic way of enumerating the networks that admit N as a quotient network.
Those networks are called inflations (Aguiar et al. [1]) or lifts (Dias and Moreira
[20]) of N .
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Fig. 4 A network M which
has the network N of Fig. 1
as a quotient by the
synchrony subspace defined
by the cell coordinates
equality x1 = x6. We also
say that the six-cell network
M is a simple inflation of the
network N of Fig. 1 at cell 1,
where cell 1 is inflated to
cells 1 and 6
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2.1 Inflating (Lifting) a Network

An inflation (lift) M of N can be interpreted as enlarging the network N in the number
of cells, preserving the valency, where each cell of N corresponds to the identification
of a certain set of cells in the inflation M . In order that an n-cell network M is a lift
of N , given any two cells that were identified, they must receive the same number of
directed edges from cells of each class of identified cells.

An inflation is said to be a simple inflation if there is just one cell that is inflated.

Example 4 If we take the five-cell regular network in Fig. 1, then one of its six-cell
(simple) inflations is the network in Fig. 4 where cell 1 of N is inflated to cells 1 and
6 of M . Observe that in N , cell 1 receives two directed edges, one from cell 4 and
one from cell 2, and sends two directed edges to cells 5 and 3. The network in Fig. 4
is an inflation of N since: cells 1 and 6, both receive one directed edge from each of
the cells 4 and 2; there is a directed edge from one of the cells in the class {1, 6} to
both cells 5 and 3 – a directed edge from cell 1 to cell 5 and a directed edge from
cell 6 to cell 3.

Using the theory of coupled cell networks [31, 44], one way to enumerate all the
possible inflation networks M , for a fixed N and a fixed polydiagonal, is through the
construction of the possible n × n (adjacency) matrices leaving invariant the fixed
polydiagonal and whose restrictions to the polydiagonal are similar to the adjacency
matrix of the network N . The methods of enumeration presented by Aguiar et al.
[4, 5] explore precisely this approach and are developed for regular networks. (See
also Dias and Moreira [20].) In fact, these methods trivially extend to homogeneous
networks. Recall that an homogeneous network can be seen as a directed graph with
more than one edge type, where the subnetworks on the same network set of cells,
considered for each edge-type, are regular. Finding the set of synchrony subspaces
of an homogeneous network is equivalent to find the common synchrony subspaces
of all these subnetworks. Moreover, if the network is not homogeneous, now the
subnetworks to be considered are in some way homogeneous and then the question
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is again reduced to consider homogeneous networks, and then, regular networks, see
Aguiar and Dias [2].

2.2 Inflating (Lifting) a Bifurcation

Consider a coupled cell system with structure consistent with a regular network M ,
depending on a real bifurcation parameter and assume that a codimension-one steady-
state or Hopf bifurcation occurs at a full synchronous equilibrium X0 which, after an
affine change of coordinates, we can assume is the null steady-state solution X0. Note
that, the full diagonal space is always a synchrony subspace of a regular network. In
Aguiar et al. [5] it is addressed the problem of how a steady-state or Hopf bifurcation
occurring at a quotient network N of M lifts to M . Every bifurcating solution for
the quotient lifts to a bifurcation solution for the inflation network where cells that
were identified in the quotient are synchronized. But it can occur that new bifurcating
solutions appear for the inflation network M where cells that were identified in the
quotient are not synchronized. In Aguiar et al. [5], examples are given of five-cell
networks with the three-cell bidirectional ring as quotient, where bifurcations within
the ring dynamics lead to solutions that break synchrony in the five-cell network.
One of those is the network of Fig. 1.

Results in Leite and Golubitsky [35] and Golubitsky and Lauterbach [24] relate
the eigenvalues of the Jacobian JM of a coupled cell system consistent with a network
M at X0 with the eigenvalues of the adjacency matrix of M . In order for bifurcations
within the quotient network N to lead to nonsynchronous solutions in the larger
network M , the center subspace of JM must be larger than the center subspace of JN .
Results are presented in [5] that relate the eigenvalues of the adjacency matrix of the
network M with those of the adjacency matrix of the quotient N which provide an
easy way to identify networks M for which the dimension of the center subspaces
of JM and JN are the same. Each one-parameter steady-state (or Hopf) bifurcation
supported by the coupled cell systems for M (or for N ) is associated with a degeneracy
condition corresponding to a zero (or imaginary) eigenvalue of JM (or JN ) that
depends at the eigenvalues of the adjacency matrix of M (or N ). The eigenvalues of
the adjacency matrix of any inflation M of N are the eigenvalues of N plus other
eigenvalues, following the terminology [20], the extra eigenvalues. A degeneracy
condition implying a steady-state or Hopf bifurcation of M (or N ) is associated at
least with an eigenvalue of the adjacency matrix of the network M (or N ). That is, the
critical eigenvalues of JM (or JN ) are directly associated with the eigenvalues of the
adjacency matrix of M (or N ). It is then easy to see that if the real parts of the extra
eigenvalues of the adjacency matrix of an inflation M of N are distinct from the real
parts of the ‘critical’ eigenvalues of the adjacency matrix of N then the coupled cell
systems associated with the inflation network M will have no additional branches of
steady-state solutions (or periodic solutions in the Hopf case), for the fixed imposed
bifurcation degeneracy condition. As an example, in [5] it is proved that, up to
isomorphism, there are two four-cell and twelve five-cell networks admitting the
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three-cell bidirectional ring quotient network, and from these it is shown that only
two such networks can exhibit branches of steady-state solutions not predicted by
bifurcation in the three-cell bidirectional ring. In fact, generically, the coupled cell
systems associated with these two networks have additional branches, and one of
these two networks is precisely the network in Fig. 1. More recently some progress
has been achieved at this problem. See Dias and Moreira [20] and Moreira [37].

3 The Lattice of Synchrony Subspaces of a Network

As mentioned above, following Stewart et al. [44] and Golubitsky et al. [31], a
synchrony subspace of a network is a subspace given by the identification of the
phase space of groups of cells (polydiagonal) that is left invariant under any coupled
cell system that has form consistent with the network.

By Stewart [43] (see also Aldis [9]) the set of synchrony subspaces associated
with a network, taking the relation of inclusion ⊆, is a complete lattice. Recall that
a lattice is a partially ordered set such that every pair of elements has a unique
least upper bound or join, and a unique greatest lower bound or meet. Moreover, a
complete lattice X is a lattice where every subset Y ⊆ X has a unique least upper
bound or join, and a unique greatest lower bound or meet. We remark that for a regular
network there are always two trivial synchrony subspaces, the total asynchronous
and the full synchronous polydiagonal subspaces, corresponding, respectively, to the
top and bottom elements of the lattice.

In [2], Aguiar and Dias describe how to obtain the lattice of synchrony subspaces
of a given network. As shown, this reduces basically to the problem of how to
obtain the lattice of synchrony subspaces of regular networks, and more generally,
to identical-cell identical-edge coupled networks. For a regular network the lattice
of synchrony subspaces is obtained based on the eigenvalue structure of the network
adjacency matrix. It is presented an algorithm that generates the lattice of synchrony
subspaces for a regular network. See also the work of Kamei [33], on the class of
regular networks where the adjacency matrix has only simple eigenvalues, Kamei and
Cock [34] for a computer algorithm searching for all possible balanced equivalence
relations using symbolic matrix computations, and Moreira [38] where the lattice of
synchrony subspaces of a regular network is obtained using a special class of Jordan
subspaces of the network adjacency matrix.

Example 5 The lattice of synchrony subspaces of the network in Fig. 1 was obtained
by running the algorithm presented in [2]. The nontrivial synchrony subspaces
are listed in Table 1. The trivial synchrony subspaces for the network are the
total asynchronous polydiagonal space and full synchronous polydiagonal space
{x : x1 = x2 = x3 = x4 = x5}, that we will represent by P and Δ0, respectively. A
representation of the lattice is presented in Fig. 5.
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Table 1 Nontrivial synchrony subspaces for the network of Fig. 1. The trivial synchrony subspaces
for the network are the total asynchronous polydiagonal space and the full synchronous polydiagonal
space {x : x1 = x2 = x3 = x4 = x5}

Δ1 = {x : x1 = x2}
Δ2 = {x : x1 = x4}
Δ3 = {x : x2 = x4}
Δ4 = {x : x3 = x5}

Δ5 = {x : x1 = x2 = x4}
Δ6 = {x : x2 = x3, x4 = x5}
Δ7 = {x : x1 = x2, x3 = x5}
Δ8 = {x : x2 = x4, x3 = x5}
Δ9 = {x : x2 = x5, x3 = x4}
Δ10 = {x : x1 = x4, x3 = x5}

Δ11 = {x : x1 = x2 = x3, x4 = x5}
Δ12 = {x : x1 = x2 = x4, x3 = x5}
Δ13 = {x : x1 = x2 = x5, x3 = x4}
Δ14 = {x : x1 = x3 = x4, x2 = x5}
Δ15 = {x : x1 = x4 = x5, x2 = x3}
Δ16 = {x : x2 = x3 = x4 = x5}

Fig. 5 The lattice of
synchrony subspaces for the
five-cell regular network N
of Fig. 1: the nontrivial
synchrony subspaces Δi , for
i = 1, . . . , 16, are listed in
Table 1. The top element is
the total phase space P (the
total asynchronous
polydiagonal space) and the
bottom element Δ0 is the full
synchronous polydiagonal
space
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4 Evolution of Synchrony

Most real world networks are evolving networks, that is, their topology evolves with
time, either due to a rewiring of a link, the appearance or disappearance of a link or
node, or by a merging of small networks into a larger one. The dynamics of network
topology reflects frequent changes in the interactions among network components
and translates into a rich variety of evolutionary patterns. Evolution of network
topology can be described by a sequence of static networks and the topology of the
networks can be regarded as a discrete dynamical system. Evolving networks are
ubiquitous in nature and science. See Albert et al. [8] and Dorogovtsev et al. [22],
and references therein for examples in many diverse fields.

For the different definitions of synchronization, there is a vast literature on how
synchronizability varies with the changes of the network structure. As examples, we
refer to the works of Atay and Biyikoglu [16], Chen and Duan [18], Lu et al. [36],
Hagberg and Schult [32].

In the context of coupled cell systems, since, as mentioned earlier, the connecting
topology of a network dictates the lattice of synchrony subspaces, we expect changes
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at the corresponding lattice, if the underlying topology changes. In this perspective,
the work in Aguiar et al. [6] considers structural changes in the network topology
caused by unary network operations, such as deletion and addition of cells or edges,
and rewirings of edges, describing which synchrony subspaces are inherited by the
new network structure. The works in Aguiar and Ruan [7] and Aguiar and Dias [3]
focus on evolving networks where new networks are formed by combining existing
ones using binary network operations - the join and the coalescence operations and
the direct and tensor product operations, respectively. Results are obtained relating
the set of synchrony subspaces of the component networks and the resulting network.

4.1 Inflation

Equivalently to the definition seen before, an inflation (or lift) of a k-cell network N
is any network M with n > k cells such that M admits a synchrony subspace where
each coupled cell system associated with M restricted to the synchrony subspace is
a coupled cell system now consistent with the network N .

Example 6 The network M in Fig. 4 is a six-cell (simple) inflation of the five-cell
network in Fig. 1, where cell 1 of N is inflated to cells 1 and 6 of M . From the
definition of inflation, it follows that Δ̃0 = {x : x1 = x6} is a synchrony subspace
of M . Moreover, it follows also that there is a one-to-one correspondence between
the synchrony subspaces of network N and the synchrony subspaces of network M
that are contained in Δ̃0. More concretely, for every nontrivial synchrony subspace
Δi , i = 1, . . . , 16, for N (recall Table 1), the subspace Δ̃i , defined by the coordinate
equality conditions that define Δi together with the coordinate equality condition
x1 = x6, is a synchrony subspace of M . The nontrivial synchrony subspaces of M
are listed in Table 2.

Table 2 Nontrivial synchrony subspaces of the network M of Fig. 4. The network M is an inflation
of the five-cell network N of Fig. 1 where cell 1 is inflated to cells 1 and 6. The synchrony subspaces
of the network M that are contained in the synchrony subspace Δ̃0 are in one-to-one correspondence
with the synchrony subspaces of the network N that are listed in Table 1

Δ̃0 = {x : x1 = x6}
Δ̃1 = {x : x1 = x2 = x6}
Δ̃2 = {x : x1 = x4 = x6}
Δ̃3 = {x : x1 = x6, x2 = x4}
Δ̃4 = {x : x1 = x6, x3 = x5}
Δ̃17 = {x : x1 = x4}
Δ̃18 = {x : x2 = x6}

Δ̃5 = {x : x1 = x2 = x4 = x6}
Δ̃6 = {x : x1 = x6, x2 = x3, x4 = x5}
Δ̃7 = {x : x1 = x2 = x6, x3 = x5}
Δ̃8 = {x : x1 = x6, x2 = x4, x3 = x5}
Δ̃9 = {x : x1 = x6, x2 = x5, x3 = x4}
Δ̃10 = {x : x1 = x4 = x6, x3 = x5}
Δ̃19 = {x : x1 = x4, x2 = x6}
Δ̃20 = {x : x2 = x3, x4 = x5}

Δ̃11 = {x : x1 = x2 = x3 = x6, x4 = x5}
Δ̃12 = {x : x1 = x2 = x4 = x6, x3 = x5}
Δ̃13 = {x : x1 = x2 = x5 = x6, x3 = x4}
Δ̃14 = {x : x1 = x3 = x4 = x6, x2 = x5}
Δ̃15 = {x : x1 = x4 = x5 = x6, x2 = x3}
Δ̃16 = {x : x1 = x6, x2 = x3 = x4 = x5}
Δ̃21 = {x : x1 = x4 = x5, x2 = x3}
Δ̃22 = {x : x2 = x3 = x6, x4 = x5}
Δ̃23 = {x : x1 = x4 = x5, x2 = x3 = x6}
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Fig. 6 Network R is a
rewiring of network M of
Fig. 4, where the directed
edges, from cell 2 to cell 1
and from cell 4 to cell 6, are
replaced by the directed
edges, from cell 6 to cell 1
and from cell 1 to cell 6,
respectively

2

3

1

4

5

6

4.2 Rewiring

A rewiring of a network occurs when at least one edge of a network is replaced by
another edge of the same type and with the same head cell.

Let R be the network obtained by rewiring a edge of a network N . Suppose the
rewiring operation replaces an input edge to a cell c from a cell d with one input edge
from a cell a. By Lemma 3.10 in Aguiar et al. [6], a polydiagonal Δ is simultaneously
a synchrony subspace of M and R if and only if, in the definition of Δ, either there is
the coordinate equality condition d = a or there is no coordinate equality condition
involving c.

Next we present an example with a rewiring of multiple edges.

Example 7 The network R of Fig. 6 is a rewiring of network M of Fig. 4, where the
directed edges, from cell 2 to cell 1 and from cell 4 to cell 6, are replaced by the
directed edges, from cell 6 to cell 1 and from cell 1 to cell 6, respectively. It follows
from Lemma 3.23 of [6] that the synchrony subspaces of R that are inherited from
M are such that in their definition one of the following three conditions holds:

• there is no coordinate equality condition involving x1 and x6;
• the only coordinate equality condition involving x1 and x6 is x1 = x6, and for all
i �= 1, 6 and j ∈ {2, 4}, if there is the coordinate equality condition x j = xi then
there is also the coordinate equality condition xk = xi for all k ∈ {2, 4} \ { j};

• for all i and for all j ∈ {1, 4} if there is the coordinate equality condition x j = xi
then there is also the coordinate equality condition xk = xi for all k ∈ {1, 4} \
{ j}. Moreover, for all i and for all j ∈ {2, 6} if there is the coordinate equality
condition x j = xi then there is also the coordinate equality condition xk = xi for all
k ∈ {2, 6} \ { j}.
We have then that the synchrony subspaces for R that are inherited from M are

the synchrony subspaces Δ̃3, Δ̃5, Δ̃8, Δ̃12, Δ̃16, Δ̃19, Δ̃20 and Δ̃23 from Table 2.
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4.3 Product

In [3], Aguiar and Dias consider two product operations on identical-edge networks:
the cartesian and the Kronecker (tensor) product.

Definition 1 Let N1 and N2 be two identical-edge networks. Assume that Ni has set
of cells Ci = {1, . . . , ri } and set of arrows Ei , for i = 1, 2. Consider the cartesian
product C1 × C2 and denote by i j the element (i, j) in C1 × C2.
(i) The cartesian product of N1 and N2, denoted by N1 � N2, is the network with set
of cells C1 × C2 and two edge types such that there is an edge from cell i j to cell kl
if and only if:

i = k and ( j, l) ∈ E2, or j = l and (i, k) ∈ E1 . (1)

The edge type of the edges from cells i j to cells il are of distinct type of the edge
type of the edges from cells i j to cell k j .
(ii) The Kronecker product of N1 and N2, denoted by N1 ⊗ N2, is the network with
set of cells C1 × C2 and such that there is an arrow from cell i j to cell kl if and only
if:

(i, k) ∈ E1 and ( j, l) ∈ E2 . (2)

See Fig. 7 for an example of two networks N1 and N2, and the product networks
N1 � N2, N1 ⊗ N2.

The results in [3] establish an inclusion relation between the lattices of synchrony
subspaces for the cartesian and Kronecker products of networks. Specifically, it is
proved, in Proposition 4.5, that, for any two identical-edge networks N1 and N2, every
synchrony subspace of the cartesian product N1 � N2 is a synchrony subspace of the
Kronecker product N1 ⊗ N2. For the case of regular synchrony subspaces, that is
synchrony subspaces of the tensor product P1 ⊗ P2, of the total phase spaces P1 and
P2 of N1 and N2, respectively, of the form S1 ⊗ S2, with Si a synchrony subspace
of Pi , i = 1, 2, the results in [3] show equality. That is, the lattice of the regular
synchrony subspaces of N1 � N2 is the lattice of the regular synchrony subspaces of
N1 ⊗ N2.

Moreover, in [3] it is shown how to obtain the lattice of regular synchrony sub-
spaces of a product network from the lattices of synchrony subspaces of the compo-
nent networks. Specifically, it is proved that a tensor of subspaces is of synchrony
of the product network if and only if the subspaces involved in the tensor are syn-
chrony subspaces for the component networks of the product. It is also shown that,
in general, there are (irregular) synchrony subspaces for the product network that are
not described by the synchrony subspaces for the component networks, concluding
that, in general, it is not possible to obtain the all synchrony lattice for the product
network from the corresponding lattices for the component networks.

Example 8 The network R of Fig. 6 is the cartesian product of networks R1 and R2

of Fig. 8, that is, R = R1 � R2. (Here we are assuming a slightly different definition
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Fig. 7 From left to right: (up) networks N1, N2, (down) the cartesian product N1 � N2 and the
Kronecker product N1 ⊗ N2

of the cartesian product presented in [3], since both edge types of R1 and R2 lead to
just one edge-type in R. However, Theorem 6.5 in [3] that we apply next still holds
in this case.) From [3, Theorem 6.5], the lattice of regular synchrony subspaces for
R is given by the tensor product of the lattice of synchrony subspaces for R1 and
the lattice of synchrony subspaces for R2. Given that the synchrony subspaces for
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Fig. 8 Networks R1 and R2
such that the network R of
Fig. 6 is the cartesian product
of R1 and R2
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R1 are the trivial ones and that the two nontrivial synchrony subspaces for R2 are
defined by the coordinate equality condition d1 = d2 and d1 = d3, respectively, the
nontrivial regular synchrony subspaces for R are thus the subspaces Δ̃3, Δ̃8, Δ̃12,
Δ̃16, Δ̃19 and Δ̃23 from Table 2.

4.4 f -Join

The usual definition of join of graphs is given by the disjoint union of all graphs
together with additional arrows added between every two cells from distinct graphs.
In [7], Aguiar and Ruan introduce a generalized version of join on coupled cell
networks.

Recall that a multimap is a generalized notion of map, where an element from the
domain is assigned to a set of values from the range. Let C̃1 ⊂ C1 and C̃2 ⊂ C2 be
non-empty subsets of cells. Denote by P(C̃2) the set of all subsets of C̃2. Consider
a multimap f from C̃1 to C̃2 given by

f : C̃1 → P(C̃2)

c 
→ f (c) ⊂ C̃2.
(3)

In [7], the f -join of two networks is defined as follows.

Definition 2 Let N1 and N2 be two identical-edge networks with set of cells C1

and C2, respectively, such that the cells in C1 ∪ C2 are all of the same type and
C1 ∩ C2 = ∅. Let E1 and E2 be the set of edges of C1 and C2, respectively. A
network N is called the f -join of N1 and N2, denoted by N = N1 ∗ f N2, if

• the set of cells of N is given by C1 ∪ C2;
• the set of edges of N is given by E1 ∪ E2 ∪ F , where F = {(c, d), (d, c) : c ∈
C̃1 ∧ d ∈ f (c)} and f is defined by (3);

• if the edges in N1 and N2 are of the same type then any two edges e1 and e2 in N
are of the same type; otherwise two edges e1 and e2 in N are of the same type if
and only if they both are edges in E1, in E2 or in F .
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Fig. 9 The networks R3 and
R4 such that the network R
of Fig. 6 is the f -join of R3
and R4 where
f : {4, 1, 5} → P({2, 6, 3})
with f (4) = {2},
f (1) = {6}, and f (5) = {3}
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Note that, if C̃1 = C1, C̃2 = C2 and f (c) ≡ C2 for all c ∈ C1, then N1 ∗ f N2 is
the join of N1 and N2, as defined for graphs.

Example 9 The network R of Fig. 6 may be seen as the f -join of two copies, R3 and
R4, of the network R2 on the right of Fig. 8, see Fig. 9. That is, R = R3 ∗ f R4 where
f : {4, 1, 5} → P({2, 6, 3}) is the multimap such that f (4) = {2}, f (1) = {6}, and
f (5) = {3}.

According to Definition 4.6 in [7], we can classify the synchrony subspaces of R
into non-bipartite, pairing bipartite and non-pairing bipartite. A synchrony subspace
is non-bipartite if, in its definition, there is no coordinate equality condition involving
one cell in R3 and one cell in R4. A bipartite synchrony subspace is pairing bipartite
if, in its definition, every coordinate equality condition involves one cell of R3 and
one cell of R4 and for each cell there is at most one coordinate equality condition
involving that cell, otherwise the synchrony subspace is said non-pairing bipartite.

The results in Theorem 4.17 of [7] characterize all the synchrony subspaces of
R = R3 ∗ f R4. The non-bipartite and the pairing bipartite synchrony subspaces are
easily obtained from these results, the synchrony subspaces of R3 and R4 and the
interior symmetries of R.

The network R3 has only two nontrivial synchrony subspaces, defined by the
coordinate equality condition x1 = x4 and x4 = x5, respectively. Analogously, the
network R4 has only two nontrivial synchrony subspaces, defined by the coordinate
equality condition x2 = x6 and x2 = x3, respectively.

Given a synchrony subspace S1 for R3 and a synchrony subspace S2 for R4, con-
sider the polydiagonal of the total phase space of R defined by the conjunction of the
coordinate equality conditions that define S1 with the coordinate equality conditions
that define S2. From the results in Theorem 4.17 of [7], every non-bipartite synchrony
subspace of R is such a polydiagonal subspace with the additional condition that if
the coordinate equality conditions that define S1 include x1 = x4 then the coordinate
equality conditions that define S2 must include x2 = x6 and if the coordinate equal-
ity conditions that define S1 include x4 = x5 then the coordinate equality conditions
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that define S2 must include x2 = x3. We have then that the non-bipartite synchrony
subspaces for R are Δ̃6, Δ̃19 and Δ̃23 from Table 2.

From the results in Theorem 4.17 of [7], every pairing bipartite synchrony sub-
space of R is given by some interior symmetry σ of R, where σ is a product of dis-
joint transpositions τi = (ci , di ) for ci ∈ {4, 1, 5}, di ∈ {2, 6, 3}. There are five such
interior symmetries of R: σ1 = (12), σ2 = (46), σ3 = (12)(46), σ4 = (16)(24), and
σ5 = (16)(24)(35). We have then that the pairing bipartite synchrony subspaces for
R are {x : x1 = x2}, {x : x4 = x6} and {x : x1 = x2, x4 = x6} and the synchrony
subspaces Δ̃3 and Δ̃8 from Table 2.

5 Complement Network

Suppose that N is a directed graph with n nodes and just with one edge-type, no
multiarrows and no self loops. In graph theory, the usual definitions of the comple-
ment and converse graphs of G are the following:
(i) The complement of N is a directed graph N on the same set of nodes such that:
a directed edge from node i to node j is present in N if it does not exist at N ; a
directed edge from node i to node j is not present in N if it exists at N . Graphically,
if we take N and fill in all missing directed edges in order to obtain a complete graph
(a simple directed graph in which every pair of distinct nodes is connected by a unique
bidirectional edge), then N is obtained by removing the directed edges belonging
to N . The sum of the n × n adjacency matrices of N and N is the n × n matrix
with zero at the diagonal entries and 1 elsewhere and so it commutes with all n × n
permutation matrices.
(ii) The converse of N is the graph with the same set of nodes as N and obtained
from N by reversing the directions of all edges of N . The n × n adjacency matrix of
the converse of N is the transpose of the adjacency matrix of N and so the sum of
the two adjacency matrices, of N and its converse, is symmetric (it coincides with
its transpose).

As an example of possible interpretation of the complement and converse graphs
of a graph in the context of social networks is the following. The converse of a
directed graph might be helpful in thinking about relations that have “opposites”.
The complement of a directed graph might be used to represent the absence of a tie.
See for example Wasserman and Faust [45, p. 135].

Example 10 In Fig. 10 we show the complement (on the left) and the converse (on
the right) of the five-cell network of Fig. 1.

Motivated by this, we define now the complement network of a network with
n nodes that can have multiarrows, self-loops and more that one type of directed
edges, preserving the fact that the sum of the adjacency matrices of the network
and its complement, for each type of edges, is a matrix that commutes with all
n × n permutation matrices – it can be seen as the adjacency matrix of an all-to-all
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Fig. 10 The complement (on the left) and the converse (on the right) of the five-cell network of
Fig. 1
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Fig. 11 A regular three-cell network with multiarrows and self loops at the left and its complement
at the right

coupling n-cell network. In doing that, if the network corresponds to a directed graph
just with one type of edges, no multiarrows and no self loops, then we recover the
usual definition of the complement graph as just recalled above.

Definition 3 Let N be an identical-edge n-cell network with the set of cells C =
{1, . . . , n} and adjacency matrix MN = [ai j ]. Let l = max{aii : i = 1, . . . , n} and
m = max{ai j : i, j = 1, . . . , n; i �= j}. We define the complement network N to be
the network with the set of cells C and the adjacency matrix MN where MN + MN
has at the diagonal entries 2l and m elsewhere. Graphically, if we take N and fill in
all missing directed edges in order to obtain a graph where every cell has 2l self-
loops and every two distinct cells have m bidirectional edges, then N is obtained by
removing the directed edges belonging to G.

Example 11 In Fig. 11 we show a three-cell network with multiarrows and self loops
at the left and its complement at the right.
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As happens for the network N of Fig. 1 and its converse in Fig. 10, the converse of
an homogeneous (regular) network may not be an homogeneous (regular) network.
It follows, in particular, that, in general, a network N and its converse network do
not have the same lattice of synchrony subspaces. Nevertheless, a network N and its
converse have the same group of symmetries (but not necessarily the same group of
interior symmetries).

For the complement network, we have the following:

Theorem 1 Let N be an identical-edge network. Then, we have the following:
(i) If N is regular then the complement network N is regular.
(ii) The networks N and N have the same lattice of synchrony subspaces.
(iii) The networks N and Nhave the same group of symmetries.

Proof Let N be an identical-edge n-cell network with the set of cellsC = {1, . . . , n}
and adjacency matrix MN = [ai j ]. Let l = max{aii : i = 1, . . . , n} and
m = max{ai j : i, j = 1, . . . , n; i �= j}. As before denote by MN the adjacency
matrix of its complement. By definition MN + MN has at the diagonal entries 2l
and m elsewhere.
(i) Suppose N is regular of valency v. If MN = [bi j ] then for i, j = 1, . . . , n, we
have: bii = 2l − aii and if i �= j then bi j = m − ai j . It follows that for all i we have
that

∑n
j=1 bi j = 2l − aii + ∑

j �=i (m − ai j ) = 2l + (n − 1)m − ∑n
j=1 ai j = 2l +

(n − 1)m − v. That is, the complement network N is regular of valency 2l + (n −
1)m − v.
(ii) A polydiagonal Δ in Rn represents a synchrony subspace of N (resp. N ) if and
only if it is left invariant under MN (resp. MN ). Now the matrix MN + MN com-
mutes with all n × n permutation matrices and so leaves invariant any polydiagonal.
It follows then that a polydiagonal Δ is left invariant under MN if and only if it is
left invariant under MN . That is, Δ represents a synchrony space for N if and only
if it represents a synchrony space for N .
(iii) As the matrix MN + MN commutes with all n × n permutation matrices it fol-
lows then that a permutation matrix commutes with MN if and only if it commutes
with MN . �

We can generalize the above definition to homogeneous networks. Let N be an
n-cell homogeneous network with k types of edges. Denote by M1

N , . . . , Mk
N the

k adjacency matrices of N , one for each edge type. It follows that N has k regular
n-cell subnetworks, each with adjacency matrix Mi

N . Denote those by N1, . . . , Nk and
take N 1, . . . , Nk the corresponding complement networks. Then we can define the
complement network N of N as the network with adjacency matrices MN 1

, . . . , MNk
.

Example 12 In Fig. 12 we show an homogeneous five-cell network at the left and
its complement at the right.

Trivially, we have the following:

Corollary 1 (i) The complement network of an homogeneous network is homoge-
neous.
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Fig. 12 An homogeneous five-cell network at the left and its complement at the right

(ii) An identical-cell network and its complement have the same lattice of synchrony
subspaces.
(iii) An identical-cell network and its complement have the same group of symmetries.

Remark 1 (i) Note that, in case an n-cell network N is symmetric under a nontrivial
finite group Γ ⊆ Sn , the coupled cell systems associated with the network N and
its complement are Γ -symmetric. It follows then that it can happen that the corre-
sponding sets of dynamics supported by N and its complement are directly related,
in the situations where the linear vector space of smooth Γ -symmetric vector fields
coincide with both linear spaces of smooth vector fields with structure consistent
with N and its complement, respectively.
(ii) Note that, in general, the fact that two coupled cell systems associated with N
and N , taking the same cell phase spaces, have the same set of synchrony subspaces,
does not imply that the dynamics are closely related.
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