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Foreword

L’esprit n’use de sa faculté créatrice que quand
l’expérience lui en impose la nécessité.

Henri Poincaré

The tremendous challenges that are faced by humanity as the 21st century unfolds
itself require a multidisciplinary approach. Now, more than ever before, the need
for exploring our creative capacities to solve relevant problems for society is crucial
for our very survival. However, this can only be done by a cross-cultural and
multidisciplinary networking effort.

Having a group of scientists from different areas networking and exchanging
experiences in a vibrant environment requires the correct environment. One can
safely say that such environment came about in the two opportunities connected to
the present volume of papers, namely in Berkeley, at the University of California,
during the month of March 2014, and in Madrid, at the Universidad Nacional de
Educatión a Distancia (UNED), during the month of June 2016.

In the first occasion, during the Seventh Berkeley Bioeconomy Conference, the
ideal environment of the San Francisco Bay Area, with its sunny days and foggy
afternoons, conjoined with the highly inquisitive and revolutionary tradition of the
Cal Berkeley Campus had as its central theme “Biofuels as part of a sustainable
strategy”. In this occasion, an array of leading experts under the coordination of
David Zilberman tackled topics ranging from global biofuel investments to the
future of Brazilian biofuels, passing through extreme weather, biotechnology and
agricultural productivity. In the present volume, the paper “Simulation and
Advanced Control of the Continuous Biodiesel Production Process” by Brásio et al.
and “Myopia of Governments and Optimality of Irreversible Pollution
Accumulation” by Policardo are good examples of a quantitative follow-up of the
conference themes. The paper by Mendes et al. deals with modelling by differential
equations the kinetic separation of hexane isomers when they flow through a
packed bed containing the micro-porous Metal-Organic Framework (MOF) ZIF-8
adsorbent. It is shown that a proper combination of two characteristic times can lead
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to very different dynamics of fixed bed adsorbers wherein a limiting case can give
rise to a spontaneous breakthrough curve of solutes.

In the second occasion, in the quiet Madrileño Summer and under the auspices
of the UNED, we had the “4th International Conference on Dynamics, Games and
Science” with the key topic being decision models in a complex economy. Here,
under the warm hospitality of our Spanish colleagues, I was pleased to witness a
broad plethora of distinguished speakers discussing topics ranging from human
decisions, from a game theoretical viewpoint, to the simulation of energy demand
and efficiency and passing through swarms of interacting agents in random envi-
ronments. The remaining papers that can be found in the present volume are in a
certain sense a written testimony of such diversity and effusiveness of interactions.
For instance, the article by dos Santos et al. studies the influence of human mobility
of dengue’s transmission in the state of Rio de Janeiro from a statistical viewpoint.
Still within the area of statistics, but from a broad theoretical perspective, the chapter
by Casaca discusses prior information in Bayesian linear multivariate regression.
The work of Nassif et al. presents a mathematical model for the tick life cycle based
on the McKendrick partial differential equation. The article of Balsa et al. proposes a
two-phase acceleration technique for the solution of symmetric and positive-definite
linear systems with multiple right-hand sides. The paper by Rüppel et al. presents a
constructive proof of the complete nonholonomy of the rolling ellipsoid. The two
articles by Lopes and collaborators deal with important theoretical aspects of
dynamical systems (such as the fat attractor) and quantum mechanics.

Summing up, the present volume displays a variety of works by leading
researchers in a broad range of subjects where mathematical models have a sub-
stantial role and impact in society.

Rio de Janeiro, Brasil
March 2017

Jorge P. Zubelli
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Optimal Regional Regulation of Animal
Waste

Antti Iho, Doug Parker and David Zilberman

Abstract Large animal facilities generatemanure in excess of their productionneeds
leading to excessive nutrient loading. Differences in manure contents of phosphorus
and nitrogen relative to crop requirements exacerbate loading of the more abun-
dant nutrient, frequently phosphorus. Current regulations that restrict manure uti-
lization and animal production, but not at crop lands leads to suboptimal resource
allocation and under utilization of manure in crop production. The transboundary
character of nutrient loading further complicates the management of manure phos-
phorus and nitrogen. Due to differences in environmental characteristics, upstream
and downstream regions may have differing objectives towards controlling nitro-
gen and phosphorus surpluses. We consider optimal management of manure in a
stylized two-agent, two-nutrient and two-region model. We show that trade-offs in
managingmanure phosphorus and nitrogen, inability to regulatemanure applications
outside animal farms’ field areas and regional differences in environmental targets
can severely impede the effectiveness of regulation. Depending on the environmen-
tal and economic characteristics, tightening upstream regulation with respect to the
loading of one nutrient might increase the downstream loading of the other andmight
even decrease the total welfare.

Keywords Manure · Phosphorus · Nitrogen · Regulation · Externality
Transboundary pollution
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2 A. Iho et al.

1 Introduction

Animalwaste is a poster child of the complexity of environmental regulation.Manure
is generated in animal farms as a by-product. Its storage and application to fields as
a fertilizer are linked to variety of air and water quality problems: odor, emissions of
fine particulates and greenhouse gases, elevated nitrate levels in groundwater aquifers
and eutrophication of surface waters [1].

Becausemanure influences a rangeof environmental attributes via differentmedia,
there are potential problems in focusing on a single problem at the time. Aillery et
al. [1], for instance, analyzes tradeoffs in manure nitrogen management in water and
air protection. For mitigating eutrophication of surface waters, the trade-off between
nitrogen and phosphorus surpluses becomes important. For a given animal and diet,
nitrogen and phosphorus in manure come in fixed proportions. The proportions of
agronomic requirements of crops for nitrogen and phosphorus are also approximately
fixed. Typically, manure applications are balanced to match crops nitrogen needs in
which case phosphorus is applied excessively, which increases the accumulation of
soil phosphorus [9]. Higher soil phosphorus is strongly linked to increase in the
loading of dissolved forms of phosphorus, readily and fully available for algae in
receiving waters [32]. This trade-off is important as we should be controlling the
loadingof both nutrients inmost of the eutrophied surfacewater areas:Gulf ofMexico
[50, 51], Chesapeake Bay [43] or the Baltic Sea [8]. It is particularly important
for Lake Erie where algae growth is determined almost solely by phosphorus and
where the loading of dissolved phosphorus forms has increased dramatically in the
recent decade [18]. Regulating nutrient surpluses frommanure applications is further
complicated by two aspects. First, the regulatory grip on manure applications on
animal farms’ owncropproduction regions ismuch stronger thanon surrounding crop
farms’ land. Animal farm can be made liable on its manure whereas the surrounding
crop farms enter the world of manure on voluntary basis. Second, transboundary
character of nutrient loading can create regional conflicts in regulatory emphasis of
one nutrient over the other.

In this paper, we postulate a simple theoretical model featuring two most compre-
hensive features ofmanuremanagement: physical coupling of nitrogen and phospho-
rus; and economic and regulatory division of animal and crop farms. We consider
regulation which de facto focuses on only the nutrient relatively more scarce in
manure with respect to crop’s agronomic needs, and which binds only manure appli-
cation on animal farm’s own crop production area. With a sequence of propositions,
we show that

i When faced with land constraints and discontinuities in benefits from manure
utilization, increased environmental pressure does not necessarily lead to increase
in manure utilization, even in social optimum

ii Single-nutrient approach may lead to increases in the surpluses of another via
various channels

iii If constraining only one nutrient, nutrient management plans are not always ben-
eficial for the environment. By extending the model we also show that
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iv When nutrient surpluses also affect downstream regions, single-nutrient regula-
tion may increase downstream externalities and even decrease the total welfare.

Freshwater ecosystems and coastal areas are often considered sensitive to phos-
phorus loading, and open sea areas to nitrogen [40]. Toxic mass blooms of blue
green algae are a symptom of eutrophication which have received a lot of public
attention. Their occurrence is linked to excessive phosphorus loading as their growth
is not limited by nitrogen: blue-green algae is able to utilize atmospheric nitrogen
[48]. Some consider phosphorus to be the most important long term driver of coastal
water eutrophication as the atmospheric nitrogen fixation tends to gradually elevate
the availability of nitrogen in the water ecosystem to the level where phosphorus
becomes the limiting factor for algae growth [7]. In addition to the occasional mass
blooms of blue-green algae, eutrophication has more persistent and equally econom-
ically severe symptoms such as permanent changes in fish stocks, increased turbidity
of water or emergence of large anoxic sediment areas, so called dead zones.

Agriculture is the dominant source of nutrient loading to most U.S. surface waters
[6]. It is estimated to contribute to 49 and 43% of nitrogen and phosphorus loading to
the Chesapeake Bay and about 70% of both nutrients to the Gulf of Mexico [3, 55].
Sustainable manure management is one of the key issues in improving the nations
water quality [22].

Large animal facilities tend to rely on imported feeds, i.e. imported nutrients [45].
Because high transportation costs erode its value as a fertilizer, manure generated in
the facility is typically applied only up to a certain distance [17, 41]. Over-application
of manure generates an immediate risk for nitrogen and phosphorus loading [46, 47].
It also gradually elevates the levels of phosphorus accumulated in the soil. Soil phos-
phorus is directly linked to loading of dissolved phosphorus, the fraction which has
the strongest effect on eutrophication of phosphorus limited water ecosystems [10,
20, 32, 42]. Furthermore, a difference in N-P ratios of manure and crop’s agronomic
needs leads to even greater over-application of the nutrient relatively more abundant
in manure. Applications are typically based on nitrogen content of manure and nitro-
gen need of the crops, leading to excessive phosphorus application even in fields
with precise nitrogen usage. This further aggravates the phosphorus accumulation
problem.

In the United States, regulation embodies the above division between farm types.
Large animal facilities (CAFOs) are considered point sources which fall under the
federal Clean Water Act whereas the crop farms as non-point sources are regulated
by the states.1 The difference in regulatory type and force is stark between the two
farm types. Manure can be applied on animal farm’s own fields (henceforth: on-
farm) and on the fields of the surrounding crop farms (henceforth: off-farm). CAFOs
on-farm applications must be planned and reported to match the needs of one of the
crop nutrients. But when manure crosses the border of animal and crop farm, it by
and large goes off the regulatory radar. Negative environmental effects, however, are
not restricted to farm borders. Both on- and off-farm, the negative externalities are

1However, the specific rules and limits applied to CAFOs’ manure management are state-specific.
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ultimately caused by the nutrient balance: the difference of phosphorus (nitrogen)
applied to the field and phosphorus (nitrogen) biologically uptaken by the crop.

Environmental regulation of animal agriculture is indeed focused on nutrient sur-
pluses, though typically on either nitrogen or phosphorus. Conservation measures
may lower both surpluses (e.g. having less animals or applying a given quantity of
manure on a larger area) or they may affect the surplus of one nutrient only (e.g.
altering the ratio of N and P in manure by feed choices, manure storage or applica-
tion methods or switching to a crop with a different N-P ratio). The latter measures
may increase or decrease the surplus of the other nutrient. The nutrient abatement
measures may thus be substitutes or complements as determined by [28].

The earliest papers on animal waste regulation didn’t differentiate between on-
farm and off-farm application (or regulation), but included an outside disposal area.
It was assumed to take care of manure with certain costs without environmental
externalities [15, 27]. The assumption of safe disposal areas has not held in practice.
The regional dairy management plan of San Jacinto, California, for instance, states
that dairy farmers cannot know whether the hauling contractors actually apply the
manure appropriately or whether they dump it illegally. The report also suggests
that illegal dumping indeed takes place [38]. Huang et al. [16] assume that livestock
farms lease the extra land needed for manure application, in which case they are
also covered by on-farm regulation. The models by [17, 41] quantify the excess
application of manure as a function of the number of animals and the distance from
the facility. They do not allow for outside disposal areas and assume that regulation
applies to on- and off-farm similarly.

The other alternative is to view on-farm and off-farm applications separately. Reg-
ulation applies to animal farmswhomay respond by altering their on-farm operations
or by increasing off-farm export of manure. The on-farm responses might include
changing the number of production animals, altering the nutrient composition of
manure or manure handling and application practices, or changing the crop. These
choices either alter the amount of nitrogen and phosphorus generated on-farm, the
amount made available to crops or the amount uptaken by crops. Implicitly or explic-
itly, all papers, to our knowledge, assume in these cases that off-farm applications
are done according to either agronomic needs of crops, as a perfect substitute for
chemical fertilizers (see, for example, [13, 19] or [4]). Hence, the economic decision
making for off-farm choices is not modeled explicitly.

We extend the literature by combining three elements intomanure regulationmod-
els: setting apart and being explicit about on-and off-farmmanure application choices
and regulation; having the farms’ choices simultaneously determine the phosphorus
and nitrogen surpluses; and making regions’ surface water quality partly dependent
on other regions’ choices. As seen above, each of these has been considered sepa-
rately. There are, however, no models that combine all three in the context of animal
manure and water quality regulation.

We develop a stylizedmodel comprising two adjacent farms animal and crop farm
and two pollutants phosphorus and nitrogen. The animal farm generates manure
which it applies on its own fields (on-farm), and/or exports to be applied at the
adjacent crop farm (off-farm) and/or dumps it. We solve for privately and socially
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optimal manure application, animal numbers and crop choices. We then extend the
model by acknowledging the transboundary character of water pollution. We include
an independent downstream region which receives part of the residual nutrients.
The damage caused by nitrogen and phosphorus loading is region-specific, i.e. the
partial derivatives of the two regions’ externality functionswith respect to phosphorus
and nitrogen are different. We examine two types of social optima: one focusing
only on source region’s externalities and the other taking into account both regions’
externalities.

We show that the lack of available land on-farm may lead to costly regulation that
has at its worst no environmental benefits; that focusing on nitrogen surpluses may
even increase phosphorus loading; and regional orientation in regulation in worst
cases may lead to an overall decline in social welfare. Furthermore, we show how
regionally defined nutrient management plans transmit these effects into regional
and global nutrient surpluses and welfare.

The rest of the paper is organized as follows. We first present the basic model and
derive the necessary optimality conditions and their key implications.We then extend
the model with the focus on regional and global welfare, regionally implemented
instruments and their welfare implications. The third section concludes and discusses
the policy implications.

2 The Model

Consider two representative farms: an animal farmwhich has its own feed production
area, and a crop farm. Their border is denoted by the horizontal line at distance d
in Fig. 1. Both farms’ fields are assumed rectangular and one unit wide. Manure is
generated at the facility located along the rear edge of the animal farm (along d = 0).
Manure can be applied on-farm and exported and applied off-farm.

We assume that on the entire acreage wheremanure is applied, it is applied exactly
according to crops’ agronomic needs for the relatively more scarce nutrient (phos-
phorus or nitrogen).2 With this assumption, hauling distance unambiguously deter-
mines the quantity of applied manure nutrients. We classify the excessive manure,
i.e. the difference of manure generated by production animals and manure applied
according to crops’ needs, as dumped.3 We thus assume that crop growth does not
respond to nutrient application exceeding the agronomic need. The underlying crop

2All crop farm’s fields are assumed to be suitable for manure application. Assuming a smaller
fraction to be suitable would change the link between the application distance and acreage. This
has trivial effects on the results and will thus not be further considered here.
3The counterpart of dumping in models by [17] or [41] is the excessive manure application which
is monotonically decreasing with the distance from the animal facility, until becoming zero at
the threshold distance. Their crop response functions are increasing and concave, ours is a linear
response and plateau, simplified to a fixed yield and fixed need of nutrients. Externalities in both
models are due to the sum of over application. Therefore, we do not need to define the exact location
for dumping, as long as it’s either on-farm or off-farm.
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Fig. 1 Conceptual model of the agricultural region

response function is linear response and plateau (LRP). With fixed input and output
prices, optimal fertilizer use leads to fixed, crop specific yields and associated nutri-
ent requirements. Therefore, the application distance, crop choice and the nutrient
content of manure together determine the quantity of manure applied.

Our model has two sources for residual nutrients from manure applications. First,
the N-P ratios in manure and the N-P ratios of crops’ agronomic needs differ. There-
fore, applying manure according to crops’ agronomic needs for the relatively more
scarce nutrient generates a surplus for the other one. Second, dumping adds to resid-
uals for both nutrients. To highlight the problems related to manure, we assume that
chemical fertilizers are applied precisely according to crops’ needs. Only manure
may thus be the source of residual nutrients which are defined as:

Definition 1 Residual nitrogen
(
rN

)
and phosphorus

(
rP

)
are given by

rN =
Nitrogen generated

︷︸︸︷
αqa −

Nitrogen uptake
︷ ︸︸ ︷
γ kdon − γ j

(
doff − d

)

rP =
Phosphorus generated

︷︸︸︷
βqa −

Phosphorus uptake
︷ ︸︸ ︷
δkdon − δj

(
doff − d

)

where α and β are the nitrogen and phosphorus concentrations of manure, q the
amount of manure generated by one animal in one year, a the number of animals,
γ and δ crop specific agronomic needs for nitrogen and phosphorus per acre, k and
j the crop choices on- and off-farm, and don and doff the hauling distances on- and
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off-farm.4 The application acreages are thus don and doff − d . Our model allows off-
farm manure application even if there were no or only some on-farm application.
That is, it is possible that doff > d even if don = 0.

Nutrient residuals impair water quality. The damages may take multiple forms:
elevated nitrate concentrations in ground water, mass blue-green algal blooms in
surface waters, etc. We express the externalities with a general damage function,
which has nitrogen and phosphorus residuals as arguments: E

(
rP, rN

)
. We assume

no cross-effects in damage: ∂E
∂ri > 0, ∂2E

(∂ri)
2 > 0, ∂2E

∂rP∂rN = 0.

Definition 2 The quantities of manue applied on-farm (Mon) and off-farm
(
Moff

)

are given by:

Mon = max
{
donγ k

α
, donδk

β

}

Moff = max
{

(doff −d)γ j

α
,
(doff −d)δj

β

}

The quantity of manure dumped on-farm (xon) and off-farm
(
xoff

)
are given by:

xon + xoff = qa − Mon − Moff

Dumping on-farm (xon) and off-farm
(
xoff

)
have identical environmental effects.

Because of transportation costs and theLRPcrop response function, privately optimal
dumping takes place onfarmwith zero costs (technically in ourmodel, on the shortest
distance possible d = 0). We include the possibility for off-farm dumping because
as we will see, it may be an optimal response to regulation.

We consider the optimal choices of (1) the animal farm, (2) the crop farm, (3) the
social planner. The social planner maximizes the sum of profits from farming net of
environmental damages, the crop and animal farms maximize profits.

Optimization Problem of the Crop Farm

The crop farm maximizes profits by choosing the crop and the amount of manure it
imports as a substitute to chemical fertilizers (the total quantity of nutrients needed
is fixed by the crop choice). It takes the price of manure as given.

Maxj,doff πoff =
Sales revenues

︷ ︸︸ ︷
yjpj

(
d̄ − d

) −
Fertilization costs

︷ ︸︸ ︷(
γ jpN + δjpP + g

) (
d̄ − doff

) −
Manure costs
︷ ︸︸ ︷
pMMoff (1)

s.t.doff ≥ d

4Agronomic nutrient needs may differ from nutrient uptake of crops. Soybeans, for instance, can
bind most of the nitrogen it needs from atmospheric nitrogen. We define residual nutrients as
differences between actual applications and application requirements.
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The crop is denoted by j and the amount of manure imported (or equally: the
distance of manure application) by doff .5 The per acre crop yield is yj, its net
price (including variable costs other than fertilization costs) , and the total field
acreage

(
d̄ − d

)
. Costs from chemical fertilizers are given by

(
γ jpN + δjpP + g

)
(
d̄ − doff

)
where pN and pP prices of nitrogen and phosphorus, and g is the per-acre

cost of application. The more manure applied, i.e. the longer the hauling distance
doff , the higher the savings from avoided chemical fertilization costs. With manure
applied on the entire crop land (i.e. doff = d̄ ), chemical fertilization costs would be
zero.

Crop Farm’s Optimal Manure Import and Crop Choice

Writing a Lagrangian and taking the first-order conditions yields

(
yjpN + δjpP + g

) = pMmax
{

γ j

α
, δj

β

}
+ λc (2)

λ ≥ 0,
(
doff − d

) ≥ 0, λc
(
doff − d

) = 0

For a given crop, all terms in (2) are exogenous for the crop farmer. For positive
manure import quantities (doff > d , λc = 0), a price the crop farmer is willing to pay
is

pM =
(
γ jpN + δjpP + g

)

max
{

γ j

α
, δj

β

} (3)

Given fertilizer prices, crop choice, and manure nutrient concentration, the price
(3) is constant. That is, the crop farmer is always willing to use manure for the entire
suitable crop land or not at all. The eventual amount of imported manure depends
on animal farm’s willingness to sell manure, which is driven by the hauling and
application costs.

The price (3) is increasing in nutrient concentration of the relatively scarce nutrient
and insensitive toward the other nutrient. However, the price is affected by prices
of both nutrients as chemical fertilizers. The numerator in (3) gives costs in dollars
per acre of chemical fertilization, which is influenced by both nutrients and the
application costs. The denominator gives the amount of manure one needs to cover
the nutrient requirements of an acre of land. Hence, the unit of (3) is dollars per unit
(e.g. gallon) of manure. There is a different threshold price for each crop.

Optimization Problem of the Animal Farm

The animal farm chooses the number of animals, manure application on own land,
manure export and the cultivated crop to maximize profits:

5Hauling distance is a common metric for crop and livestock farmer. For tractability, we denote
hauling distanceswith subscripts. That is, if the crop farm’s hauling distance is equal to the boundary
of the animal and crop farm (doff = d ), it does not import manure.
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Max
a,di,xoff ,k

πon =
Sales revenues

︷ ︸︸ ︷
paa + pMMoff −

Production costs
︷︸︸︷
f (a) −

Fertilization costs
︷ ︸︸ ︷(
γ kpN + δkpP + g

) (
d − don

)
(4)

−
Feed costs

︷ ︸︸ ︷
pk

(
ξ ka − ykd

)−
Hauling costs

︷ ︸︸ ︷
h (Mon, don) − h

(
Moff , doff

)−
Dumping costs

︷ ︸︸ ︷
c(xoff )

s.t.
(
qa − Mon − Moff

) ≥ 0; (
d − don

) ≥ 0; (
doff − d

) ≥ 0; (
d̄ − doff

) ≥ 0

Primarily, the revenues are obtained from production animals (a). Potentially,
there may also be revenues from selling manure and feed grown in animal facility’s
own fields (given production exceeds the needs of production animals). Substituting
fertilizers withmanure also creates savings. Life-cycle revenues from a single animal
are given by pa. Depending on the type of production animal, these may comprise
average per-unit revenues from selling milk, meat, eggs etc. Manure

(
Moff

)
is sold

with a price pM , which is determined in (3). Fertilizer savings from applying manure
on don are given by don

(
γ kpN + δkpP + g

)
.

Production costs (f ) comprise of annualized investment costs and operation costs
excluding feed costs. The cost function satisfies f ′(a) > 0 and f ′′(a) > 0.6 Feeding
(a) animals requires

(
ξ ka

)
units of forage. The forage requirement depends on the

animal and on the crop. Own crop production
(
ykd

)
may be higher or lower than this.

The needed (excess) units of feed will be bought (sold) at price pk . This, of course,
is a substantial simplification of the complex problem of how to feed the animals,
how much and what to import and how much and what to grow in farm’s own fields.
However, this is not a crucial part of the model for the insights we derive from it. For
us it is important that the crop is actively chosen and its N-P requirements together
with manure application and its N-P concentration make up the nutrient surpluses.

Hauling and application costs (h) depend on the distance and the quantity of
manure hauled. In our model, the latter is determined by distance and crop choice.
Following conventional assumptions (see, for instance [13]) we assume that the costs
of hauling a unit are increasing in distance and thus total hauling costs are increasing
and convex.7 The function is identical for on- and off-farm hauling, but off-farm
hauling starts from a distance d .

The costs of dumping (c) on own land are assumed to be zero and, on the crop farm,
c
(
xoff , d

) ≡ xoff
∂h(d)

∂d . Trivially, xoff = 0 without environmental regulation. The first
constraint in (4) limits the total amount of manure applied to manure generated(
qa − Mon − Moff

)
, associated with a shadow price λ1 in the constrained maximiza-

tion problem; the availability of on-farm land
(
d − don

)
, shadow price λ2; technical

constraint for off-farm hauling distance to be at least d , shadow price λ3 and the
availability of off-farm land for manure application

(
d̄ − doff

)
, shadow price λ4.

6Think of f as a simplification from a concave-convex cost function. The sufficient (second-order)
conditions tell that the relevant part of the curve must have a positive second derivative.
7We could also assume linear or even concave hauling costs. This would make the optima charac-
terized by some binding constraints. Qualitatively, the results would remain unchanged.
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Optimal Animal Numbers, Crop Choice, Manure Utilization and Export

The first-order conditions (excluding, for brevity, the standard non-negativity con-
straints) for the continuous choice variables are

pa + λ1q = f ′(a) + pkξ k (5)

∂h

∂don
= (

γ kpN + δkpP + g
) − λ1max

{
γ k

α
, δk

β

}
− λ2 (6)

∂h

∂doff
= pMmax

{
γ j

α
, δj

β

}
− λ1max

{
γ k

α
, δk

β

}
+ λ3 − λ4 (7)

λ1 ≥ 0,
(
qa − Mon − Moff

) ≥ 0, λ1
(
qa − Mon − Moff

) = 0

λ2 ≥ 0,
(
d − don

) ≥ 0, λ2
(
d − don

) = 0

The optimal number of animals (5) balances the marginal benefits and costs of
having one more animal. The marginal benefits consist of sales revenues (pa) and the
shadow value of manure (λ1q). If manure is scarce (λ1 > 0) it would be applied more
if available. Ifmanure is excessive, (λ1 = 0), benefits accrue fromsales revenues only.
The marginal costs consist of marginal production costs

(
f ′(a)

)
plus feed costs for

one animal
(
pkξ k

)
), i.e. a linear and decreasing function.8

The optimal hauling distance on-farm (6) balances themarginal savings inmineral
fertilizers

(
γ kpN + δkpP + g

)
and the marginal costs of hauling. If manure quantity

and area constraints are not binding (λ1 = λ2 = 0), marginal costs equal marginal
savings in chemical fertilizer use. If manure is applied on the entire farmland con-
trolled by the livestock farm, and more would be applied were the area larger, the
area constraint is binding: λ2 = (

γ kpN + δkpP + g
) − ∂h

∂don
> 0.

Conditions for optimal hauling distance off-farm (7) are similar except that the
marginal benefit is the price received from the crop farmer (3). If crop choices
on- and off-farm are identical, the shadow value of the land constraint is the negative
of the shadow value for the animal farm’s land (λ3 = −λ2).9 If the land constraint
on crop farm is binding (λ4), the entire agricultural region is not sufficiently large to
absorb generated manure nutrients. The opposite is not true however. Even though
the region would not be enough to absorb all generated nutrients, the land constraint
might not be binding.

Combinations of binding and non-binding manure and land constraints on- and
off-farmgenerate eight different cases. The optimality conditions simplify differently

8Note that the farmer marginally loses
(
pkξ k

)
whether the farmer is a net importer or exporter

of feed. If the farmer produces more than the production animals need, increasing the number of
animals reduces the sales revenues. If the farmer has to buy the additional feed needed, the input
costs increase by the same amount.
9This would be different if the animal farm did not retrieve the entire surplus from the crop farm in
selling manure: its gains from both land applications are identical.
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for each of them.We narrow our focus on the most policy relevant cases: The manure
is excessive (λ1 = 0), nitrogen is the relatively scarce nutrient, and the animal farm
utilizes at least some of the manure and may or may not export it to the crop farm.

Optimization Problem of the Social Planner

The social planner maximizes private profits from operations on- (πon) and off-farm(
πoff

)
net of externalities (E).

Max
a,di,xi,j,k

πon(a, k, di, xi) + πoff
(
j, doff

) − E
(
rN , rP

)
(8)

Optimal Animal Numbers, Crop Choices and Manure Utilization

denoting the shadow values with λE
i , social planner’s first order optimality conditions

are:

pa = f ′(a) + pkξ k + ∂rN∂E

∂a∂rN
+ ∂rP∂E

∂a∂rP
(9)

∂h

∂don
= (

γ kpN + δkpP + g
) − λE

2 − ∂rN∂E

∂don∂rN
− ∂rP∂E

∂don∂rP
(10)

∂h

∂doff
= (

γ jpN + δjpP + g
) − λE

3 − λE
4 − ∂rN∂E

∂doff ∂rN
− ∂rP∂E

∂doff ∂rP
(11)

xon ≥ 0, xoff = 0 (12)

Given that the social planner chooses the same crops as the private farmers, the
optimal number of animals decreases: the two last terms in (9) are positive, f ′(a) > 0
and other terms are constant. Changes in hauling distances, (10) and (11), are slightly
different as they are influenced by the border of crop and animal farms. This is one
of our inputs to traditional animal waste models:

Proposition 1 If the marginal social benefits from manure utilization at the crop
and animal farm’s border are below marginal hauling and application costs; and
if the animal farm fully utilizes its land application area in private optimum, social
planner’s solution does not increasemanure utilization. That is, if λE

3 > 0 and λ2 > 0
then don = d and Moff = 0 for both private and social optima.

Figure2 illustrates the proposition. The horizontal axis denotes the hauling dis-
tance, the marginal gains and costs from manure application are on the vertical axis.
The dotted vertical line at don = d denotes the border of the animal and crop farm.
The increasing curve denotes the marginal hauling costs. The lower horizontal line
on the left of the dotted vertical line denotes the private marginal benefits from
manure application on-farm

(
γ kpN + δkpP + g

)
. More manure would be spread on-

farm if more land was available. Hence, the shadow price for land on-farm (λ2 > 0)
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Fig. 2 Optimal hauling distances on- and off-farm

is positive. Introducing externalities (the upper horizontal line) puts more pressure
on utilizing manure on-farm, but as all land is already used for manure application,
the only effect is for the shadow price for on-farm land to increase

(
λE
2 > λ2

)
. Off-

farm, no manure is applied in the private optimum, i.e.
(
γ jpN + δjpP + g

)
< h′ and

λ3 > 0. The socially optimal shadow price of crop land
(
λE
3

)
decreases close to zero

but the actual utilization of manure does not change as the hauling distances remain
unchanged. Externalities thus increase the need for higher utilization ofmanure nutri-
ents, expressed in shadow prices, but the availability of on-farm land may result in
unchanged manure utilization levels. Of course, if the crop choices on- and off-farm
were the same, the marginal social benefits of manure application would be identical
on- and off-farm. Therefore, an increase in marginal damage would always lead to
longer hauling distances.

In our parsimonious model, there is no reason for the animal and crop farm to
choose their crops differently. In practice, however, this is often the case. Further-
more, there are other features that would be associated with differences in marginal
benefits from manure application on- and off-farm even if the crop choices were
identical. There might be discontinuities in hauling distances or crop farmers might
be unwilling to apply manure on (some of) their fields.

The externalities from dumping manure either on-farm or off-farm are identical.
Since the costs of dumping on-farm are assumed to be zero, the social planner chooses
trivially x∗

off ≥ 0. The amount dumped is defined by the other optimal choices: x∗
on =

qa∗ − M ∗
on − M ∗

off ≥ 0.
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3 Instrument Analysis

By definition, any global sub-optimality of rural planner’s policies will carry over
with first-best instruments imposed on farmers. The situation is differentwith second-
best instruments, of which we analyze Nutrient management plans (NMP) and a tax
on nitrogen fertilizer. NMPs are central in regulating CAFOs in the United States.
Similar, nutrient balance based approached are also widely used in other countries.
Tax on nitrogen fertilization is an economic instrument that could be considered for
nutrient regulation and it has been used in, for instance, Austria, Finland and Sweden
[37]. We analyze these from the rural social planner’s perspective and examine how
the unintended increase in phosphorus residuals is affected by the instruments.

Nutrient Management Plans

NMPs may be based either on nitrogen or phosphorus standard. In both cases, the
optimization problem for the animal farm changes. The manure application distance
is simply set either at dN

on = αqa
γ k (nitrogen standard), at dP

on = βqa
δk

(phosphorus stan-
dard) or atdon = d (not enoughon-farm land). Theoptimal responses toNMPsaswell
as the unregulated optima are summarized in the following Proposition. Assuming
that the animal farm does not respond to the NMP by switching crops, and denot-
ing the optimal choices under nitrogen standard with the superscript NMPN, under
phosphorus standard with NMPP and under private optimum with

(


)
we obtain:

Proposition 2 Under NMP, with nitrogen as the relatively scarce nutrient, it holds
for any given crop that

i aNMPP ≤ aNMPN < â

ii dNMPP
off = dNMPN

off = d̂off

iii d̂on < dNMPN
on ≤ dNMPP

on

iv xNMPN
off < xNMPP

off < x̂on

v πNMPP < πNMPN < π̂

Consider two cases for (i). If on-farm application area is fully utilized, the addi-

tional component to the right side of (5)
(
q

∂h(d)
∂d

)
is identical under both standards

and the optimal number of animals decreases equally under both standards. If on-
farm land is sufficient for manure application satisfying the NMP, the additional

component is
∂h(d)

∂d
qα
γ k under nitrogen standard and under phosphorus standard. As

we consider the case where nitrogen is the relatively scarce nutrient
(
i.e. γ

k

α
> δk

β

)
,

phosphorus standard adds a larger component to the right side of (5) and the opti-
mal number of animals is smaller. The intuition is clear: hauling costs are larger for
each additional manure unit under phosphorus standard and its negative effect on
profitability of animal husbandry is thus stronger.

The second point (ii) is almost trivial, yet powerful. Neither of the standards
changes the economic decisionmakingor the regulatory environment of the crop farm



14 A. Iho et al.

and does therefore not increase off-farm utilization of manure. This is a key intuition
of our model: Without regulatory grip of crop farms and with fixed manure handling
technologies, on-farmnutrient standards do not increase utilization ofmanure outside
animal farm’s borders. However, if the animal farm responds to NMPs by investing
in technologies decreasing hauling costs or promoting the demand off-farm, off-farm
utilization does increase. It would be essential to find out how animal farms have
actually been responding to constraints posed by NMP.

For (iii) consider two cases. If on-farm land is fully utilized, nutrient standard
cannot change the on-farm hauling distance

(
don = d for both standards

)
. If on-

farm land is only partly utilized, same reasoning as above holds: land-application of
manure increases more under P-standard. This is a familiar outcome. For instance [2]
show that under phosphorus standard the required land area for manure application
is substantially larger than under N-standard.

There are differences between the two standards in howmuch is dumped off-farm
as shown by (iv). It states that the amount of manure dumped off-farm under phos-
phorus standard is higher than under the nitrogen standard, both being lower than
dumping under no regulation. This is an important result concerning the differences
between the two standards. Recall that, even though the constraint of xon = 0 still
remains, the maximization problem changed slightly when moving to a phosphorus
standard. It turns out that less manure will be applied on-farm and as off-farm haul-
ing is unchanged, the number of animals is lowered identically by both standards,
off-farm dumping must increase. The costs increased with fertilization costs and
increased dumping to the farm border, the result referred to in (v) above.

There are two more features to be noted. First, NMPs incentivize switching to a
higher nitrogen or phosphorus uptaking crop, depending on the standard. Therefore,
insights of Proposition 2 apply also here. Second, even though the phosphorus stan-
dard will increase crop-specific dumping, we do not know its total environmental
or welfare effects: The crop switch affects these as well as parametrizations of the
relevant functions.

Proposition 2 contradicts with [19] who find that binding nutrient constraints
reduce phosphorus loading significantly. The difference stems from the modeling
assumptions: our model assumes that an animal farm follows either nitrogen or
phosphorus standard as is the case with actual CAFO regulation. Furthermore, our
model assumes that the animal farm may comply by exporting all surplus manure
off-farm, i.e. export and apply more than is paid for. In the partial equilibrium model
by [19], the crop farm accepts only the amount of manure required by crops. Hence,
the difference in how binding the regulation is on-farm and off-farm changes the
results drastically.

The substitution between phosphorus and nitrogen surpluses is similar to that of air
and water pollution in [1] In their model, applyingmanure without incorporating it to
soil reduces nitrogen surpluses contributing to ground water pollution but increases
air pollution, both topical problems in California. Effectively, this is the same effect
as that brought by switching the crops in our model in terms of phosphorus and
nitrogen surpluses. Also [4] consider cross-effects of air and ground-water pollution
but not those of phosphorus and nitrogen.
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Nitrogen Tax

We analyze a tax on mineral nitrogen fertilizer in the simplest possible setting: the
animal farmappliesmanure according to nitrogenneeds, it dumps someof themanure
it generates and it does not export any manure before or after the tax. Furthermore,
to gain analytically insightful results, we parametrize the hauling costs as h = Mφdi
where φ is some parameter. As nitrogen is the relatively scarce nutrient, hauling

costs are given by h = Mφdi = φd2
i γ l

α
, i.e. increasing and convex in distance and

decreasing in the concentration of the relatively scarce nutrient.
Because the model contains continuous and discrete variables, we analyze the

effects of a tax in two steps. First, we examine how it would change the animal
farmer’s optimal choices regarding the number of animals and hauling distance.
Then, we examine what kind of incentives it creates for crop choice.

Anitrogen tax increases the price of nitrogen fertilizers. Comparative statics reads:

[
f ′′ 0

0 −2φγ k

α

]
×

[ da
dp
ddon
dp

]

=
[

0
−γ

]

Yielding da
dp = 0 and ddon

dp = α
2φ > 0. An increase in the price of nitrogen increases

the hauling distance at the rate of the ratio of nitrogen concentration in manure and
marginal hauling costs. Hence, it decreases the residuals of both nutrients, given that
there are no changes in crop choice. What kind of incentives does a tax on nitrogen
create for crop choice?A tax increases the per-acre costs of chemical fertilization and,
therefore, makes it profitable to haul and apply manure on a larger area. The higher
the crop requirement for nitrogen, the higher the marginal effect of fertilizer price
increase on profits. That is, increasing nitrogen fertilizer prices creates incentives
to change the crops to those requiring less nitrogen. The rural social planner, trying
to lower the nitrogen residual, does not want to see the farmer to respond to τ by
switching to a crop that requires less nitrogen. This would increase the nitrogen
residuals from the given manure application (the effect on phosphorus residuals
depends on the phosphorus uptake of the new crop). The rural social planner is thus
willing to set a tax (τ ) on a range 0 ≤ τ < τk , where τk is given by the equality of
any alternative crop choice (s) such that

πk
τ − π s = 0 ⇔

(
γ k

(
pN + τk

)
+ δkpP + g

) (
d − don

) + pk
(
ξ ka − ykd

)
+ h

(
Mk

on, d
k
on

)

=
(
γ spN + δspP + g

) (
d − don

) + ps
(
ξ sa − ysd

) + h
(
Ms

on, d
s
on

)

That is, the tax is bound from above at the level where the farmer is indifferent
between switching the crops. For a given crop, a tax does not incentivize increasing
(or decreasing) the number of animals or encourage a transition to a crop with higher
nitrogen uptake crop. The effectiveness of the nitrogen tax is an empirical question.

Reference [41] suggest that an increase in fertilizer price increases both manure
application and the number of production animals. The difference with our model
stems from the crop response specification. They assume that marginal impact of
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increase in nutrients is always positive. In our model with fixed crop yields, a price
increase affects only the hauling distance (when manure is excessive). Contrasting
both these models, [49] find that a 56% increase in nitrogen price does not affect
manure utilization in crop production.

4 Transboundary Pollution Case of Two Regions

Nutrient pollution to surface waters is transboundary: Phosphorus and nitrogen emit-
ted upstreammay impair water quality at the source areas or at any location along the
river or at the sea. The environmental damage at affected locations depends on the
aquatic ecosystems, and on the distance between the source and the receptor area.
If regions have independent jurisdictions, downstream regions tend to suffer from
externalities excessively as upstream regions free ride.

We want to focus on a situation where the upstream region does internalize the
externalities in its own region but following from the interconnectedness of phos-
phorus and nitrogen surpluses in animal agriculture and differences in environmental
characteristics this has unintended welfare implications. Let us extend the model to
include a region located downstream from the agricultural region. The downstream
region has no polluting activities of its own but it receives a fraction 0 ≤ ωN ≤ 1 of
agricultural region’s nitrogen surplus

(
rN

)
and 0 ≤ ωP ≤ 1 of its phosphorus sur-

plus
(
rP

)
.10 There, they generate externalities according to a region-specific function

ED
(
ωN rN , ωPrP

)
. We consider three types of optima: Private optimum that does not

consider externalities, agricultural region’s optimum (henceforth rural optimum),
determined by the rural social planner solution to (8) that solves the inboundary
externality but ignores the transboundary pollution and the global planner’s opti-
mum that maximizes the agricultural region’s profits net of environmental damages
in both regions11:

Max
a,di,xi,j,k

πon(a, k, di, xi) + πoff
(
j, doff

) − E
(
rN , rP

) − ED
(
ωN r

N , ωPr
P
)

(13)

The globally optimal number of animals is given by:

pa = f ′(a) + pkξ k + ∂rN

∂a

(
∂E

∂rN
+ ωN

∂ED

∂rN

)
+ ∂rP

∂a

(
∂E

∂rP
+ ωP

∂ED

∂rP

)
(14)

10For simplicity, we assume the fractions exogenous. In reality, they reflect the amount of external-
ities in the agricultural region: algae growth, for instance, reduces the amount of nutrient residuals
that are eventually carried over to recreational region’s surface waters. Intensive algae growth in
the agricultural region would lower both ωN and ωP .
11As there are no polluting activities in downstream region, its optimum would be trivially: rN =
rP = 0.
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Conditions for globally optimal hauling distances on- and off-farm (not pre-
sented here) include the same partial derivatives of downstream region’s externalities,
weighted with the carry over fractions. If the environment in the downstream region
is sensitive towards a nutrient of which some fraction is carried downstream, globally
optimal solution differs from the rural planner’s optimum.

Proposition 1 and the ensuing discussion hold for the global planner. Looking
at Fig. 2, global planner’s solution, given ωi

∂ED

∂ri > 0 would shift the horizontal line
associated with crop j higher.

There would, however, still be cases where discontinuities in marginal benefits
from manure applications off-farm would cause the consideration of externalities in
no improvements in manure utilization.

Let us examine how rural planner’s intervention changes the amounts of residual
nutrients and environmental damages in both regions. Let us first make the following
notational definitions:

Definition 3 The differences in nitrogen and phosphorus residuals associated with
rural planner’s and private farmers’ optima are denoted by ΔrN = rN

∗ − r̂N and
ΔrP = rP

∗ − r̂P , respectively. The ensuing difference in environmental damage
downstream is denoted by ΔED.

Rural planner’s regulation always decreases the externalities in the agricultural
region, and hence the residual of at least the nutrient towards which its environment
is more sensitive to. The following two propositions establish the conflict between
the agricultural and downstream region.

Proposition 3 Assume that rural planner’s intervention reduces nitrogen residuals.
This may result in an increase in phosphorus residuals in which case ΔrNΔrP <

0.Then, for eachΔrN , there is someΔr̃P and some damage function parametrization
for which ΔED > 0.

Proposition 3 states that, if reductions in nitrogen residuals are associated with
increases in phosphorus residuals carried over to the recreational region, the external-
ities in the recreational region may increase as a result of rural planner’s intervention.
If there is a trade off in nitrogen and phosphorus residuals, and if the sensitivity of
the environment is different in the two regions, there is some threshold after which
rural regulation makes the downstream region worse off.

What are the conditions forΔrNΔrP < 0?First, the crop choices between the rural
planner and the private farmers must be different. If they are identical, the residuals
move in same directions. The rural planner always generates less (here) nitrogen
residuals than the private farmers. If the per-acre crop uptakes are unchanged, the
phosphorus residual has to decrease too.

Second, the differences in nitrogen and phosphorus uptakes of the crops must
be high enough to offset the potentially longer hauling distances and the potentially
decreasing number of production animals. It is thus not the absolute phosphorus
uptake that matters. If the rural social planner switches to a crop with a significantly
higher nitrogen uptake and with a slightly higher phosphorus uptake, the per-acre
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phosphorus residual increases in the manure application area. This increases the
phosphorus residual in both regions.

Whether residuals moving in opposite directions actually increase environmental
damage downstream depends on the ecological characteristics of the surface waters.
Phosphorus may be the only determinant of eutrophication or it might have no effect
on algae growth or anything between the extremes. Themore important it is relative to
nitrogen, themore likely it is that the rural social planner’s policieswill deteriorate the
environmental quality downstream. Also the ratio of carryover rates for phosphorus
and nitrogen affects the effect: the higher the ratio ωP

ωN , the stronger the negative effect
downstream.

The absolute levels of the coefficients are not important as long as they are nonzero.
The same does not hold for the following proposition:

Definition 4 Denote by Δπ = π̂ − π∗ the difference in profits associated with the
rural planner’s and private farmers’ optima and by the associated difference in envi-
ronmental damage in the agricultural region.

Proposition 4 If ΔrNΔrP < 0 and ΔED > 0 there is some threshold increase in
welfare in the agricultural region, ΔW̃ = Δπ − ΔE, that has to be achieved for
rural social planner’s intervention to increase global welfare.

Proposition 4 compares the cases of no intervention and rural intervention from the
global planner’s perspective. If the rural planner’s solution increases one of the nutri-
ent surpluses while decreasing the other

(
ΔrNΔrP < 0

)
; and if the environmental

sensitivity of the downstream region is such that the environmental quality decreases
as a consequence

(
ΔED > 0

)
, rural planner’s optimal solution may decrease global

welfare. In this case, the no intervention case outperforms the rural intervention,
from the global planner’s perspective. Note that the rural planner always increases
welfare and environmental quality in the agricultural region. But if it simultaneously
increases environmental damages downstream, the welfare improvement in agricul-
tural region must offset this effect. As the coefficients ωP and ωN become smaller, a
decrease in global welfare becomes less likely. For the individual elements of welfare
changes, discussion in Propositions 2 and 3 apply.

The results established in Propositions (2)–(4) bear similarities with [57]. Their
theoretical model considers a single product with multiple externalities during its
life cycle. The main outcome of their model is the need to consider all externali-
ties from a single product simultaneously. The results are also related to the game
theoretical model of [24] who illustrate a conflict between agricultural and ground
water managers, drawing from their differing definitions of externalities. And even
though we have not analyzed policy instruments so far, the results also hint towards
the Tinbergen rule [54] which states that economic policy must include as many
instruments as targets. After all, the ultimate reason for the regional conflict is the
different role of nutrients in the environmental damage in the two regions, which in
the extreme case is the complete lack of one of the externalities in the rural planner’s
optimization problem.
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5 Discussion and Policy Implications

We developed a two-agent, two-pollutant, two-region animal waste management
model, recognizing the difference between manure application on animal vs. crop
farms, and considering simultaneously phosphorus and nitrogen surpluses and iden-
tifying possibility of conflicts between farming and non-farming regions with shared
body of water. We assessed the implication of regulation using the popular nutrient
management plan in addition to financial incentives. We showed that governance
design crucially affects the outcomes of environmental regulation.

There are two insights provided by the on-farm off-farm division. Firstly, increas-
ing pressure to reduce nutrient surpluses does not always lead to more efficient
manure utilization. If the animal farm’s fields are already fully utilized, introducing
(or increasing) the environmental damage associated with nutrient surpluses does
not necessarily lead to increased hauling distances.

The second insight is related to Nutrient Management Plans (NMP) as a reg-
ulatory instrument. NMPs provide binding nutrient surplus constraints to on-farm
applications. The marginal incentives for manure utilization off-farm, however, do
not change. NMPs do foster record keeping and information guidance for crop farm-
ers utilizingmanure (see e.g., [31] andPennsylvaniaCode §83.343)The effectiveness
of education or information as a regulatory instrument, however, is questionable (see,
e.g., [36]). At its worst, NMPs might induce crop production areas to be used to get
rid of excessivemanure at application rates higher than agronomic recommendations.
Hence, excessive manure applications might be simply shifted from one region to
another, with minor benefits to environment but with increased hauling costs.

Our analysis indicates the existence of a trade off in nitrogen and phosphorus
surpluses. This is relevant in the U.S. where about 90% of hogs and pigs and about
66%ofmilk cows are in operations classifiable as CAFOs [56]. 12 Any regulation that
affects CAFOs’generation and application of manure has substantial consequences
on nutrient loading on nation’s surface and ground waters.

Our analysis has potential implications for regulating transboundary pollution
to the Gulf of Mexico. The Gulf suffers from a persistent hypoxia area caused by
eutrophication. During the last decades, its size has fluctuated around 15,000 square
kilometers [52]. It causes huge direct losses to fisheries but is also contributes to the
eutrophication itself by disallowing phosphorus to be trapped in bottom sediments.

Nutrients to the gulf are brought by the Mississippi, and Atchafalaya Rivers,
collecting waters from over thirty states. Previously, nitrogen was considered the
most important cause of eutrophication in the Gulf of Mexico (see, e.g., [34]. In
the first Action Plan of the Mississippi River/Gulf of Mexico Watershed Nutrient
Task force [50] it was explicitly stated that the excessive algal growth was primarily
driven by nitrogen. Even though phosphorus and local water quality concerns were
mentioned, the two priorities chosen to combat dead zones were linked to nitrogen

12CAFO definitions vary by state and do not match perfectly the classes of Agricultural Census
data; 90% of hogs and pigs are on farms that have more than 2000 heads and 66% of milk cows are
on farms with more than 200 heads.
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loading. This, in turn, might have influenced the nutrient management plans the
states in the basin adopted. Our results suggests that if NMP are based on a nitrogen
standard, phosphorus loading from large animal facilities may increase for a variety
of reasons.

Current understanding suggests that both nitrogen and phosphorus have important
roles in driving eutrophication in the gulf [33, 39]. This is also recognized in the action
plan: the latest version emphasizes both phosphorus and nitrogen abatement [51].
The 2013 progress report shows that the five year average nitrogen loading to the
Northern Gulf ofMexico has remained at its 1997 level, whereas phosphorus loading
has increased by about 30% [52]. Obviously, an increase of thismagnitude is bound to
have negative effects on the water quality of the Gulf ofMexico.We know that during
this period, point-sources have further curtailed their pollution, the sales of mineral
phosphorus fertilizers have not systematically increased and that the agglomeration
and intensification of animal operations has continued.13 It is plausible that manure
management practices as described in the current paper could partly explain the
increase. To empirically verify this, we would need an econometric analysis of crop
prices and choices, fertilizer prices, manure standards followed, amounts of imported
and exported manure, etc. A simple first step would be book keeping: how many of
the CAFOs in the basin are following nitrogen and phosphorus standards and how
has this changes over time as farm sizes have increased?

The third feature of our model was the regionally independently regulated, trans-
boundary pollution. In the United States, the Environmental Protection Agency
guides federal-level policies while the states have primacy in implementation and
enforcement of regulations, such as the CleanWater Act. [44] proposes that this
decentralization has, to some extent, lead to free riding by states. We show that reg-
ulation focusing on a single region and a single nutrient may lead to similar results
as free riding, even in first-best optimum.

Transboundary pollution is often analyzed under the framework of environmental
federalism. It analyzes benefits and drawbacks of local versus federal regulation. The
basic result suggests that regions with independent environmental regulation tend to
be driven toward overly lax environmental policies the race to the bottom hypothesis
(see, for instance [21, 30]. Distortion from efficient levels of environmental protec-
tion are typically a result of strategic reasoning (local level regulation) or the lack
of environmental precision and other informational shortcomings (federal level reg-
ulation). By introducing two tightly linked pollutants, our model generates similar
outcomes under full information and without strategic play between the regions. So
far, all theoretical frameworks on transboundary pollution and environmental feder-
alism, starting from [5, 53] as well as later developments, such as [12, 23] focus on a
single pollutant. This is hardly suitable for water quality issues driven by one macro
nutrient in one place and by a combination of both in the other.

There are obvious extensions to our analysis. We could explicitly assume only an
endogenous fraction of cropland suitable for manure application. There are technical
and crop-specific reasons for suitability but also reluctance of crop farmers to apply

13See, e.g., http://www2.epa.gov/nutrient-policy-data/commercial-fertilizer-purchasedtable2.

http://www2.epa.gov/nutrient-policy-data/commercial-fertilizer-purchasedtable2
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manure on their crops. An often cited reason for farmers’ unwillingness to accept
manure is their uncertainty regarding the nutrient concentration of manure and the
plant availability of these nutrients. Crop farmers’ willingness to accept manure
is often found to be crucial for livestock farmers’ compliance costs [19, 35]. An
interesting extension of the model would be to allow for heterogeneous beliefs about
the nutrient needs of crops. It would also be interesting to consider extending the
NMPs to cover the areas importing manure, and to allow this regulatory extension
to influence the willingness to accept manure.

We argue that allowing the farmer to alter the nutrient concentration of manure by
feed choices, manure storage, and application techniques would provide qualitatively
similar results as the crop choice in the current model. Empirically, however, it
would be interesting to analyze how the farmer would optimally increase or decrease
the nutrient concentration of manure within the feasible range for each production
animal. Increasing nutrient concentration reduces hauling costs of a nutrient unit and
makes it more competitive against mineral fertilizers.
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An Overview of Synchrony in Coupled Cell
Networks

Manuela A. D. Aguiar and Ana P. S. Dias

Abstract One of the key aspects in the theory of coupled cell networks concerns the
existence of synchrony subspaces. That is, subspaces defined in terms of equalities
between cell coordinates which are flow-invariant for all coupled cell systems that
respect a given coupled cell network structure. We review some recent concepts and
results concerning synchrony subspaces on coupled cell networks. The existence
of such subspaces naturally restricts the dynamics that can occur at the coupled cell
systems, as in general it is the case for any dynamical system admitting flow-invariant
spaces. We focus at some of the aspects that make important and special the existence
of synchrony subspaces for coupled cell systems. Namely, their existence depend on
the network structure and not on the specific form of the differential equations that are
chosen to govern the dynamics; the solutions of the restricted coupled cell systems
represent dynamics where groups of cells are dynamically behaving exactly in the
same way; the restricted coupled cell systems are again coupled cell systems that
are consistent with a network structure with a fewer cells. We review some results
on how synchrony changes, or it is combined, in evolving networks. More precisely,
in networks where their topology changes with time, either to a rewiring of a link,
appearance or removal of a link or a node, or by merging smaller networks into larger
ones. Finally, we consider the complement network of a network remarking that both
networks have the same set of synchrony subspaces.
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1 Introduction

Many real life phenomena can be dynamically modeled through differential equations
that can be interpreted as coupled cell systems – that is – equations consistent with
a network graph structure where nodes (the cells) symbolize dynamics of smaller
dynamical systems and edges represent interactions (the couplings) between those
nodes. The collective dynamics of the time evolution at nodes then gives the dynamics
on the network. In the analysis of the collective dynamics it is often crucial and of
interest to observe the dynamical behavior of the individual nodes, comparing and
finding features such as synchrony or specified phase-relations in periodic solutions.
We follow here the theory of coupled cell networks formalized by Stewart et al.
[28, 31, 44] and Field [23]. A key advantage of these formalisms is that it allows
theoretical deduction of collective dynamics based only on the network structure,
without referring to specific dynamics at every cell.

Different factors can contribute for the decision of modelling through network
equations. One such factor can be derived from the intrinsic form of the phenomena
that is is being modelled in the mathematical language. As an example, network
of symmetrically coupled cells can be used to model central pattern generators for
quadruped locomotion, see Golubitsky et al. [17, 29]. We are interested in networks
associated with directed graphs meaning that the interactions are directional. For
example, in a social network representing trade among nations, the interactions are
directional and the graph representing such interactions must be directed. More-
over, many interactions are valued, indicating for example the strength of interac-
tion between the social nodes or there can be more than one type of interaction
(multirelational networks). See for example Wasserman and Faust [45]. The theory
of coupled cell networks that we are following considers networks represented by
directed graphs that can have more than one edge type, multi-edges and self-loops.
Graphically, each edge type is represented by a different symbol.

Coupled Cell Networks and Coupled Cell Systems

A network is said to be regular if all cells are identical (have the same internal
dynamics), all edges are of the same type and all cells receive the same number
of input edges – the valency of the network. More generally, a network such that
each subnetwork formed by the network cells and the network edges of a given
type is regular, is said to be homogeneous. To each such subnetwork is associated
an adjacency matrix, with rows and columns indexed by the network cells, with
nonnegative integers entries, where the entry i j is m if there are m edges of that
given type from cell j to cell i . Thus an homogeneous network with k edges types
can be described through k (adjacency) matrices.

Example 1 The network N of Fig. 1 is an example of a five-cell regular network of
valency two with adjacency matrix
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Fig. 1 A five-cell network
N which is regular of
valency two: all the cells and
all the edges are represented
by the same cell and edge
symbol, respectively, since
the cells are identical and the
edges are of the same type;
all the cells receive two input
edges

2
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⎛
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0 1 0 1 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 0 1 0 0
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⎟⎟⎟⎟⎠

.

The associated coupled cell systems satisfy the following general form:

ẋ1 = f (x1, x2, x4)

ẋ2 = f (x2, x1, x4)

ẋ3 = f (x3, x1, x5)

ẋ4 = f (x4, x1, x2)

ẋ5 = f (x5, x1, x3)

where f : (Rk)3 → Rk , for k ∈ N, is a smooth function. The overbar indicates that
f is invariant under the permutation of the variables and translates the fact that all
the interactions (edges) between cells are of the same type. The same function f
is used to describe the time evolution of each cell state for two reasons: the same
symbol is used to represent all the cells which indicates that the cells are identical;
each cell receives two interactions and so the equations for each cell are identical up
to the input variables.

When studying the dynamics of coupled cell systems, obviously it has to be taken
into account the underlined network structure, which in particular, can force dynamics
that would be highly nongeneric in the context of general dynamical systems. One
such example is the occurrence of flow-invariant spaces.

Synchrony Subspaces

One widely observed and most studied collective dynamics in coupled dynamical
systems is the synchronization, where phase trajectories of two or more coupled units
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coincide over time. For importance of synchronization and its ubiquitous presence
in nature, we refer to [15, 41] and references therein. In [40], Pikovsky et al. propose
to study various synchronization phenomena using a common framework based on
modern nonlinear dynamics, where a variety of approaches using coupled periodic
and coupled chaotic systems is discussed. Restrepo et al. in [42] point out the cru-
cial effect of network structure on the emergence of collective synchronization in
heterogeneous systems, in terms of eigenvalues of network adjacency matrices.

Conditions for the occurrence of robust patterns of partial synchronization in terms
of network structure, have been established in Stewart et al. [44] and Golubitsky
et al. [31]. In the theory of coupled cell networks the synchronization of two or
more cells corresponds to the flow-invariance of the subspace of the total phase
space given by the identification of the phase space of those cells. These are called
synchrony subspaces and have the amazing property that their existence, implying
flow-invariance for the associated coupled cell systems, depends only on the network
structure. In fact, by [31, 44] synchrony subspaces are in one-to-one correspondence
with the equivalence relations on the network set of cells that satisfy certain properties
in which case they are called balanced. Equivalently, synchrony subspaces are in
one-to-one correspondence with the polydiagonals (subspaces of Rn , if the original
network has n cells, defined by equalities of coordinates) that are left invariant under
the network adjacency matrix, or the adjacency matrices if the network has more
than one edge type.

Example 2 Consider the five-cell regular network N of Fig. 1 with set of cells
C = {1, . . . , 5} and total phase space (Rk)5. The polydiagonal subspace Δ = {x ∈
(Rk)5 : x1 = x2, x3 = x5} is a synchrony subspace for the coupled cell systems
associated to N . This is easily verified using the general form of the equations of the
admissible vector fields for N , presented in Example 1. With the identification of x1

with x2 and of x3 with x5, the equations for ẋ1 and ẋ2 coincide and the equations for
ẋ3 and ẋ5 also coincide. Thus a trajectory with initial condition in Δ will remain in
Δ for all time. Equivalently, from the results of [31, 44], Δ is a synchrony subspace
since the polydiagonal subspace {x ∈ R5 : x1 = x2, x3 = x5} is left invariant under
the adjacency matrix of N , presented in Example 1.

Symmetry and Synchrony

Symmetric networks are a special class of networks. The symmetry groupof a network
is the group of the isomorphisms of the network graph. Equivalently, the symmetry
group of the network corresponds to the group of the n × n permutation matrices (if
the network has n cells) that commute with the adjacency matrix or the adjacency
matrices of the network. Coupled cell systems associated with symmetric networks
inherit the network symmetry – that is – they are equivariant under the network
symmetry group, considering the natural action by permutation of the network cell
coordinates. In this case, there are two main aspects that determine the form of



An Overview of Synchrony … 29

4

1 2

3

4

1 2

3

Fig. 2 (left) Network with exact S3-symmetry. (right) Network with S3-interior symmetry on the
set of cells {1, 2, 3}

the coupled cell systems - the network and the symmetry. That is, the coupled cell
systems are equivariant under the network symmetry group and are also constrained
by the network structure. For any isotropy subgroup for the action of the network
group of symmetries, the corresponding fixed-point subspace is flow-invariant and it
is a polydiagonal, since the action is by permutation of the network coordinates, thus
it is a synchrony subspace. But, there can be more additional synchrony subspaces
whose existence is not predicted by the symmetry. This comes from the fact that the
coupled cell systems are not only equivariant but they also have form consistent with
the network. More precisely, the linear space of smooth vector fields with structure
consistent with the symmetric network may form a proper subspace of the linear
space of the smooth equivariant vector fields. See Antoneli and Stewart [12–14]. It is
then possible that dynamics that are non-generic from the symmetric point of view,
are generic for a given symmetric network structure. That is, dynamics can occur
in a robust way for coupled cell systems that have form consistent with a specific
network structure, but that would not be expected if we were working in the context
of generic smooth equivariant vector fields. See for example Golubitsky et al. [25].
See also Dias and Lamb [19], Paiva [39, Chap. 7], Dias and Paiva [21] and Golubitsky
and Lauterbach [24].

An important class of non-symmetric networks that lies between the class of gen-
eral networks and the class of symmetric networks, where group theoretic methods
still apply, are the networks with interior symmetries. In this case, there is a group
of permutations of a subset S of the cells (and edges directed to S) that partially
preserves the network structure (including cell-types and edges-types) and its action
is again by permutation of the network cell coordinates. In other words, the cells in
S together with all the edges directed to them form a subnetwork which possesses a
non-trivial group of symmetry �S ⊆ Sn . For example, in Fig. 2, the network at the
left has exact S3-symmetry, whereas the network on the right has S3-interior sym-
metry on the set of cells S = {1, 2, 3}. This notion was introduced and investigated
by Golubitsky, Pivato and Stewart [26].

In coupled cell systems, the local bifurcations from a synchronous equilib-
rium can be classified into synchrony-breaking bifurcations or synchrony-preserving
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bifurcations. The synchrony-breaking bifurcations occur when a synchronous state
looses stability and bifurcates to a state with less synchrony. This is in parallel with
the concept of symmetry-breaking bifurcations in symmetric coupled cell systems,
see Golubitsky and Stewart [27]. In [26] it is obtained analogues of the Equivariant
Branching Lemma [30, Theorem XIII 3.3] and the Equivariant Hopf Theorem [30,
Theorem XVI 4.1] for coupled cell systems with interior symmetries.The analogue
of the Equivariant Branching Lemma is a natural generalization of the symmetric
case. However, in the Equivariant Hopf Theorem, it is proved the existence of states
whose linearizations on certain subsets of cells, near bifurcation, are superpositions
of synchronous states with states having ‘spatial symmetries’. (In the full symmetric
case, the Equivariant Hopf Theorem guarantees the existence of states with certain
spatio-temporal symmetries.) More recently, in Antoneli, Dias and Paiva [10, The-
orem 4.8], the Equivariant Hopf Theorem for networks with interior symmetries of
[26] is extended obtaining the full analogue of the Equivariant Hopf Theorem for
networks with symmetries. More precisely, it is guaranteed the existence of states
whose linearizations on certain subsets of cells, near bifurcation, are superpositions
of synchronous states with states having spatio-temporal symmetries, that is, corre-
sponding to “interiorly” C-axial subgroups of �S × S1. See also Antoneli, Dias and
Paiva [11].

Applying the Equivariant Hopf Theorem to a smooth one-parameter family of cou-
pled cell systems with structure consistent with the network at the left of Fig. 2 which
has exact S3-symmetry, assuming a codimension-one interior symmetry-breaking
Hopf bifurcation occurs at an equilibrium with S3-symmetry, then generically we
obtain three branches of small amplitude periodic solutions. One branch corresponds
to periodic solutions with exact spatial Z2-symmetry where two cells undergo oscil-
lations that are identical and in phase, and the third (from the set {1, 2, 3}) behaving
differently. There are two more branches of periodic solutions with spatio-temporal
symmetries Z̃3 and Z̃2: on one branch the oscillations have the same waveform for
each cell in the set {1, 2, 3}, but are phase-shifted by one third of the period; at the other
branch, two cells have identical waveforms but are one half of the period out of phase,
and the third cell (from the set {1, 2, 3}) has the double frequency. The three groups
Z2, Z̃3 and Z̃2 correspond to the three (conjugacy classes of) isotropy subgroups
of the standard action of S3 × S1 on C ⊕ C. For details see for example Golubit-
sky, Stewart and Schaeffer [30, Chaps. XVI, XVIII]. Applying the Equivariant Hopf
Theorem with Interior Symmetries of [10], now taking a smooth one-parameter fam-
ily of coupled cell systems with structure consistent with the network at the right of
Fig. 2 which has interior S3-symmetry on the set of cells S = {1, 2, 3}, assuming a
codimension-one interior symmetry-breaking Hopf bifurcation occurs at an equilib-
rium with S3-symmetry, then generically we obtain as well three branches of small
amplitude periodic solutions, corresponding to the three groups Z2, Z̃3 and Z̃2, but
now the linearizations of the periodic states on the subsets of cells, near bifurcation,
are superpositions of synchronous states with states having those spatio-temporal
symmetries. See the numerical simulations in [10, Sect. 4.4] illustrating the periodic
solutions guaranteed by the Equivariant Hopf Theorem with exact and interior S3-
symmetry in coupled cell systems of four cells with structure consistent with the
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Fig. 3 Solutions with Z̃2 (interior) symmetry. (left) Network with exact S3-symmetry. (right)
Network with S3-interior symmetry. Figure taken from [10]

networks of Fig. 2, respectively, choosing the internal phase space of all four cells to
be C ∼= R2. We reproduce here in Fig. 3 results of numerical simulations obtaining
periodic solutions with (interior) Z̃2-symmetry: it is superimposed the time series of
all four cells, which are identified by colours: cell 1 is blue, cell 2 is red, cell 3 is
green, and cell 4 is black. The upper panels show the first components and the lower
panels show the second components. The left panels refer to network with exact
S3-symmetry and the panels on the right refer to network with S3-interior symmetry.

Quotients and Inflations

Synchrony subspaces have a major impact at the dynamics of the coupled cell systems
associated with a given network. An important aspect of the existence of synchrony
subspaces is that the restriction of the coupled cell systems to a synchrony subspace
are again coupled cell systems in a lower-dimensional phase space, now associated
with a network with fewer cells – the quotient network of the given network by
the synchrony subspace. The fact that the restricted systems are consistent with
a network structure implies constrains at the dynamics that can occur for those
systems and thus for the initial coupled cell systems. Although, the restrictions to the
synchrony subspaces do not give all the dynamics for the original network, they give
full information concerning the dynamics of the original coupled cell systems at those
synchrony subspaces. See for example Aguiar et al. [4, 5]. Moreover, it can happen
that the quotient network has been already explored from the dynamical point of view
in several contexts. If that is the case, the known dynamics of the quotient network can
be lifted to the original network dynamics. Examples of specific structures than can
be explored are: existence of global (quotient) network symmetries implying that the
associated coupled cell systems are symmetric under a permutation symmetry group
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– these impose strong constrains at the dynamics that can occur, see for example
Golubitsky and Stewart [27, 28] and references therein; known classifications of
classes of networks with certain structures, see for example Leite and Golubitsky
[35].

It is known that flow-invariant spaces favour the existence of non-generic
dynamical behaviour like heteroclinic cycles and networks, which lead to compli-
cated dynamics. It follows that, knowing the set of all synchrony subspaces of a
coupled cell network, can help to detect the possibility of the associated coupled
cell systems to support heteroclinic behaviour. Besides this, in Aguiar et al. [1], it is
also explored the process reverse to the quotient of a network: coupled cell networks
supporting heteroclinic networks are constructed by lifting coupled cell dynamics
supporting heteroclinic behaviour and associated with smaller networks. That is,
networks with a few number of cells (and supporting heteroclinic connections) are
inflated and combined in a way that they are quotient networks of bigger networks
supporting heteroclinic networks.

Example 3 In Fig. 4 we show a six-cell network M for which the five-cell network
N of Fig. 1 is a quotient network by the synchrony subspace defined by the cell
coordinates equality x1 = x6. More precisely, the general form of the coupled cell
systems associated with M is:

ẋ1 = f (x1, x2, x4)

ẋ2 = f (x2, x6, x4)

ẋ3 = f (x3, x6, x5)

ẋ4 = f (x4, x1, x2)

ẋ5 = f (x5, x1, x3)

ẋ6 = f (x6, x2, x4)

where as before, f : (Rk)3 → Rk is any smooth function and the overbar indicates
that f is invariant under the permutation of the variables. Restricting these equations
to the synchrony subspace {x : x1 = x6}, we obtain the general form of the coupled
cell systems associated with the network N of Fig. 1 (see Example 1). Equivalently,
the network M in Fig. 4 is an inflation of the five-cell network N of Fig. 1 at cell 1,
where cell 1 is inflated to cells 1 and 6.

2 Enumeration of Inflations

In general, a given network can be the quotient network of many different networks.
In Aguiar et al. [4, 5] it is considered the inverse problem: given a network N provide
a systematic way of enumerating the networks that admit N as a quotient network.
Those networks are called inflations (Aguiar et al. [1]) or lifts (Dias and Moreira
[20]) of N .



An Overview of Synchrony … 33

Fig. 4 A network M which
has the network N of Fig. 1
as a quotient by the
synchrony subspace defined
by the cell coordinates
equality x1 = x6. We also
say that the six-cell network
M is a simple inflation of the
network N of Fig. 1 at cell 1,
where cell 1 is inflated to
cells 1 and 6
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2.1 Inflating (Lifting) a Network

An inflation (lift) M of N can be interpreted as enlarging the network N in the number
of cells, preserving the valency, where each cell of N corresponds to the identification
of a certain set of cells in the inflation M . In order that an n-cell network M is a lift
of N , given any two cells that were identified, they must receive the same number of
directed edges from cells of each class of identified cells.

An inflation is said to be a simple inflation if there is just one cell that is inflated.

Example 4 If we take the five-cell regular network in Fig. 1, then one of its six-cell
(simple) inflations is the network in Fig. 4 where cell 1 of N is inflated to cells 1 and
6 of M . Observe that in N , cell 1 receives two directed edges, one from cell 4 and
one from cell 2, and sends two directed edges to cells 5 and 3. The network in Fig. 4
is an inflation of N since: cells 1 and 6, both receive one directed edge from each of
the cells 4 and 2; there is a directed edge from one of the cells in the class {1, 6} to
both cells 5 and 3 – a directed edge from cell 1 to cell 5 and a directed edge from
cell 6 to cell 3.

Using the theory of coupled cell networks [31, 44], one way to enumerate all the
possible inflation networks M , for a fixed N and a fixed polydiagonal, is through the
construction of the possible n × n (adjacency) matrices leaving invariant the fixed
polydiagonal and whose restrictions to the polydiagonal are similar to the adjacency
matrix of the network N . The methods of enumeration presented by Aguiar et al.
[4, 5] explore precisely this approach and are developed for regular networks. (See
also Dias and Moreira [20].) In fact, these methods trivially extend to homogeneous
networks. Recall that an homogeneous network can be seen as a directed graph with
more than one edge type, where the subnetworks on the same network set of cells,
considered for each edge-type, are regular. Finding the set of synchrony subspaces
of an homogeneous network is equivalent to find the common synchrony subspaces
of all these subnetworks. Moreover, if the network is not homogeneous, now the
subnetworks to be considered are in some way homogeneous and then the question
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is again reduced to consider homogeneous networks, and then, regular networks, see
Aguiar and Dias [2].

2.2 Inflating (Lifting) a Bifurcation

Consider a coupled cell system with structure consistent with a regular network M ,
depending on a real bifurcation parameter and assume that a codimension-one steady-
state or Hopf bifurcation occurs at a full synchronous equilibrium X0 which, after an
affine change of coordinates, we can assume is the null steady-state solution X0. Note
that, the full diagonal space is always a synchrony subspace of a regular network. In
Aguiar et al. [5] it is addressed the problem of how a steady-state or Hopf bifurcation
occurring at a quotient network N of M lifts to M . Every bifurcating solution for
the quotient lifts to a bifurcation solution for the inflation network where cells that
were identified in the quotient are synchronized. But it can occur that new bifurcating
solutions appear for the inflation network M where cells that were identified in the
quotient are not synchronized. In Aguiar et al. [5], examples are given of five-cell
networks with the three-cell bidirectional ring as quotient, where bifurcations within
the ring dynamics lead to solutions that break synchrony in the five-cell network.
One of those is the network of Fig. 1.

Results in Leite and Golubitsky [35] and Golubitsky and Lauterbach [24] relate
the eigenvalues of the Jacobian JM of a coupled cell system consistent with a network
M at X0 with the eigenvalues of the adjacency matrix of M . In order for bifurcations
within the quotient network N to lead to nonsynchronous solutions in the larger
network M , the center subspace of JM must be larger than the center subspace of JN .
Results are presented in [5] that relate the eigenvalues of the adjacency matrix of the
network M with those of the adjacency matrix of the quotient N which provide an
easy way to identify networks M for which the dimension of the center subspaces
of JM and JN are the same. Each one-parameter steady-state (or Hopf) bifurcation
supported by the coupled cell systems for M (or for N ) is associated with a degeneracy
condition corresponding to a zero (or imaginary) eigenvalue of JM (or JN ) that
depends at the eigenvalues of the adjacency matrix of M (or N ). The eigenvalues of
the adjacency matrix of any inflation M of N are the eigenvalues of N plus other
eigenvalues, following the terminology [20], the extra eigenvalues. A degeneracy
condition implying a steady-state or Hopf bifurcation of M (or N ) is associated at
least with an eigenvalue of the adjacency matrix of the network M (or N ). That is, the
critical eigenvalues of JM (or JN ) are directly associated with the eigenvalues of the
adjacency matrix of M (or N ). It is then easy to see that if the real parts of the extra
eigenvalues of the adjacency matrix of an inflation M of N are distinct from the real
parts of the ‘critical’ eigenvalues of the adjacency matrix of N then the coupled cell
systems associated with the inflation network M will have no additional branches of
steady-state solutions (or periodic solutions in the Hopf case), for the fixed imposed
bifurcation degeneracy condition. As an example, in [5] it is proved that, up to
isomorphism, there are two four-cell and twelve five-cell networks admitting the
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three-cell bidirectional ring quotient network, and from these it is shown that only
two such networks can exhibit branches of steady-state solutions not predicted by
bifurcation in the three-cell bidirectional ring. In fact, generically, the coupled cell
systems associated with these two networks have additional branches, and one of
these two networks is precisely the network in Fig. 1. More recently some progress
has been achieved at this problem. See Dias and Moreira [20] and Moreira [37].

3 The Lattice of Synchrony Subspaces of a Network

As mentioned above, following Stewart et al. [44] and Golubitsky et al. [31], a
synchrony subspace of a network is a subspace given by the identification of the
phase space of groups of cells (polydiagonal) that is left invariant under any coupled
cell system that has form consistent with the network.

By Stewart [43] (see also Aldis [9]) the set of synchrony subspaces associated
with a network, taking the relation of inclusion ⊆, is a complete lattice. Recall that
a lattice is a partially ordered set such that every pair of elements has a unique
least upper bound or join, and a unique greatest lower bound or meet. Moreover, a
complete lattice X is a lattice where every subset Y ⊆ X has a unique least upper
bound or join, and a unique greatest lower bound or meet. We remark that for a regular
network there are always two trivial synchrony subspaces, the total asynchronous
and the full synchronous polydiagonal subspaces, corresponding, respectively, to the
top and bottom elements of the lattice.

In [2], Aguiar and Dias describe how to obtain the lattice of synchrony subspaces
of a given network. As shown, this reduces basically to the problem of how to
obtain the lattice of synchrony subspaces of regular networks, and more generally,
to identical-cell identical-edge coupled networks. For a regular network the lattice
of synchrony subspaces is obtained based on the eigenvalue structure of the network
adjacency matrix. It is presented an algorithm that generates the lattice of synchrony
subspaces for a regular network. See also the work of Kamei [33], on the class of
regular networks where the adjacency matrix has only simple eigenvalues, Kamei and
Cock [34] for a computer algorithm searching for all possible balanced equivalence
relations using symbolic matrix computations, and Moreira [38] where the lattice of
synchrony subspaces of a regular network is obtained using a special class of Jordan
subspaces of the network adjacency matrix.

Example 5 The lattice of synchrony subspaces of the network in Fig. 1 was obtained
by running the algorithm presented in [2]. The nontrivial synchrony subspaces
are listed in Table 1. The trivial synchrony subspaces for the network are the
total asynchronous polydiagonal space and full synchronous polydiagonal space
{x : x1 = x2 = x3 = x4 = x5}, that we will represent by P and Δ0, respectively. A
representation of the lattice is presented in Fig. 5.
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Table 1 Nontrivial synchrony subspaces for the network of Fig. 1. The trivial synchrony subspaces
for the network are the total asynchronous polydiagonal space and the full synchronous polydiagonal
space {x : x1 = x2 = x3 = x4 = x5}

Δ1 = {x : x1 = x2}
Δ2 = {x : x1 = x4}
Δ3 = {x : x2 = x4}
Δ4 = {x : x3 = x5}

Δ5 = {x : x1 = x2 = x4}
Δ6 = {x : x2 = x3, x4 = x5}
Δ7 = {x : x1 = x2, x3 = x5}
Δ8 = {x : x2 = x4, x3 = x5}
Δ9 = {x : x2 = x5, x3 = x4}
Δ10 = {x : x1 = x4, x3 = x5}

Δ11 = {x : x1 = x2 = x3, x4 = x5}
Δ12 = {x : x1 = x2 = x4, x3 = x5}
Δ13 = {x : x1 = x2 = x5, x3 = x4}
Δ14 = {x : x1 = x3 = x4, x2 = x5}
Δ15 = {x : x1 = x4 = x5, x2 = x3}
Δ16 = {x : x2 = x3 = x4 = x5}

Fig. 5 The lattice of
synchrony subspaces for the
five-cell regular network N
of Fig. 1: the nontrivial
synchrony subspaces Δi , for
i = 1, . . . , 16, are listed in
Table 1. The top element is
the total phase space P (the
total asynchronous
polydiagonal space) and the
bottom element Δ0 is the full
synchronous polydiagonal
space
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4 Evolution of Synchrony

Most real world networks are evolving networks, that is, their topology evolves with
time, either due to a rewiring of a link, the appearance or disappearance of a link or
node, or by a merging of small networks into a larger one. The dynamics of network
topology reflects frequent changes in the interactions among network components
and translates into a rich variety of evolutionary patterns. Evolution of network
topology can be described by a sequence of static networks and the topology of the
networks can be regarded as a discrete dynamical system. Evolving networks are
ubiquitous in nature and science. See Albert et al. [8] and Dorogovtsev et al. [22],
and references therein for examples in many diverse fields.

For the different definitions of synchronization, there is a vast literature on how
synchronizability varies with the changes of the network structure. As examples, we
refer to the works of Atay and Biyikoglu [16], Chen and Duan [18], Lu et al. [36],
Hagberg and Schult [32].

In the context of coupled cell systems, since, as mentioned earlier, the connecting
topology of a network dictates the lattice of synchrony subspaces, we expect changes
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at the corresponding lattice, if the underlying topology changes. In this perspective,
the work in Aguiar et al. [6] considers structural changes in the network topology
caused by unary network operations, such as deletion and addition of cells or edges,
and rewirings of edges, describing which synchrony subspaces are inherited by the
new network structure. The works in Aguiar and Ruan [7] and Aguiar and Dias [3]
focus on evolving networks where new networks are formed by combining existing
ones using binary network operations - the join and the coalescence operations and
the direct and tensor product operations, respectively. Results are obtained relating
the set of synchrony subspaces of the component networks and the resulting network.

4.1 Inflation

Equivalently to the definition seen before, an inflation (or lift) of a k-cell network N
is any network M with n > k cells such that M admits a synchrony subspace where
each coupled cell system associated with M restricted to the synchrony subspace is
a coupled cell system now consistent with the network N .

Example 6 The network M in Fig. 4 is a six-cell (simple) inflation of the five-cell
network in Fig. 1, where cell 1 of N is inflated to cells 1 and 6 of M . From the
definition of inflation, it follows that Δ̃0 = {x : x1 = x6} is a synchrony subspace
of M . Moreover, it follows also that there is a one-to-one correspondence between
the synchrony subspaces of network N and the synchrony subspaces of network M
that are contained in Δ̃0. More concretely, for every nontrivial synchrony subspace
Δi , i = 1, . . . , 16, for N (recall Table 1), the subspace Δ̃i , defined by the coordinate
equality conditions that define Δi together with the coordinate equality condition
x1 = x6, is a synchrony subspace of M . The nontrivial synchrony subspaces of M
are listed in Table 2.

Table 2 Nontrivial synchrony subspaces of the network M of Fig. 4. The network M is an inflation
of the five-cell network N of Fig. 1 where cell 1 is inflated to cells 1 and 6. The synchrony subspaces
of the network M that are contained in the synchrony subspace Δ̃0 are in one-to-one correspondence
with the synchrony subspaces of the network N that are listed in Table 1

Δ̃0 = {x : x1 = x6}
Δ̃1 = {x : x1 = x2 = x6}
Δ̃2 = {x : x1 = x4 = x6}
Δ̃3 = {x : x1 = x6, x2 = x4}
Δ̃4 = {x : x1 = x6, x3 = x5}
Δ̃17 = {x : x1 = x4}
Δ̃18 = {x : x2 = x6}

Δ̃5 = {x : x1 = x2 = x4 = x6}
Δ̃6 = {x : x1 = x6, x2 = x3, x4 = x5}
Δ̃7 = {x : x1 = x2 = x6, x3 = x5}
Δ̃8 = {x : x1 = x6, x2 = x4, x3 = x5}
Δ̃9 = {x : x1 = x6, x2 = x5, x3 = x4}
Δ̃10 = {x : x1 = x4 = x6, x3 = x5}
Δ̃19 = {x : x1 = x4, x2 = x6}
Δ̃20 = {x : x2 = x3, x4 = x5}

Δ̃11 = {x : x1 = x2 = x3 = x6, x4 = x5}
Δ̃12 = {x : x1 = x2 = x4 = x6, x3 = x5}
Δ̃13 = {x : x1 = x2 = x5 = x6, x3 = x4}
Δ̃14 = {x : x1 = x3 = x4 = x6, x2 = x5}
Δ̃15 = {x : x1 = x4 = x5 = x6, x2 = x3}
Δ̃16 = {x : x1 = x6, x2 = x3 = x4 = x5}
Δ̃21 = {x : x1 = x4 = x5, x2 = x3}
Δ̃22 = {x : x2 = x3 = x6, x4 = x5}
Δ̃23 = {x : x1 = x4 = x5, x2 = x3 = x6}
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Fig. 6 Network R is a
rewiring of network M of
Fig. 4, where the directed
edges, from cell 2 to cell 1
and from cell 4 to cell 6, are
replaced by the directed
edges, from cell 6 to cell 1
and from cell 1 to cell 6,
respectively
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4.2 Rewiring

A rewiring of a network occurs when at least one edge of a network is replaced by
another edge of the same type and with the same head cell.

Let R be the network obtained by rewiring a edge of a network N . Suppose the
rewiring operation replaces an input edge to a cell c from a cell d with one input edge
from a cell a. By Lemma 3.10 in Aguiar et al. [6], a polydiagonal Δ is simultaneously
a synchrony subspace of M and R if and only if, in the definition of Δ, either there is
the coordinate equality condition d = a or there is no coordinate equality condition
involving c.

Next we present an example with a rewiring of multiple edges.

Example 7 The network R of Fig. 6 is a rewiring of network M of Fig. 4, where the
directed edges, from cell 2 to cell 1 and from cell 4 to cell 6, are replaced by the
directed edges, from cell 6 to cell 1 and from cell 1 to cell 6, respectively. It follows
from Lemma 3.23 of [6] that the synchrony subspaces of R that are inherited from
M are such that in their definition one of the following three conditions holds:

• there is no coordinate equality condition involving x1 and x6;
• the only coordinate equality condition involving x1 and x6 is x1 = x6, and for all
i �= 1, 6 and j ∈ {2, 4}, if there is the coordinate equality condition x j = xi then
there is also the coordinate equality condition xk = xi for all k ∈ {2, 4} \ { j};

• for all i and for all j ∈ {1, 4} if there is the coordinate equality condition x j = xi
then there is also the coordinate equality condition xk = xi for all k ∈ {1, 4} \
{ j}. Moreover, for all i and for all j ∈ {2, 6} if there is the coordinate equality
condition x j = xi then there is also the coordinate equality condition xk = xi for all
k ∈ {2, 6} \ { j}.
We have then that the synchrony subspaces for R that are inherited from M are

the synchrony subspaces Δ̃3, Δ̃5, Δ̃8, Δ̃12, Δ̃16, Δ̃19, Δ̃20 and Δ̃23 from Table 2.
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4.3 Product

In [3], Aguiar and Dias consider two product operations on identical-edge networks:
the cartesian and the Kronecker (tensor) product.

Definition 1 Let N1 and N2 be two identical-edge networks. Assume that Ni has set
of cells Ci = {1, . . . , ri } and set of arrows Ei , for i = 1, 2. Consider the cartesian
product C1 × C2 and denote by i j the element (i, j) in C1 × C2.
(i) The cartesian product of N1 and N2, denoted by N1 � N2, is the network with set
of cells C1 × C2 and two edge types such that there is an edge from cell i j to cell kl
if and only if:

i = k and ( j, l) ∈ E2, or j = l and (i, k) ∈ E1 . (1)

The edge type of the edges from cells i j to cells il are of distinct type of the edge
type of the edges from cells i j to cell k j .
(ii) The Kronecker product of N1 and N2, denoted by N1 ⊗ N2, is the network with
set of cells C1 × C2 and such that there is an arrow from cell i j to cell kl if and only
if:

(i, k) ∈ E1 and ( j, l) ∈ E2 . (2)

See Fig. 7 for an example of two networks N1 and N2, and the product networks
N1 � N2, N1 ⊗ N2.

The results in [3] establish an inclusion relation between the lattices of synchrony
subspaces for the cartesian and Kronecker products of networks. Specifically, it is
proved, in Proposition 4.5, that, for any two identical-edge networks N1 and N2, every
synchrony subspace of the cartesian product N1 � N2 is a synchrony subspace of the
Kronecker product N1 ⊗ N2. For the case of regular synchrony subspaces, that is
synchrony subspaces of the tensor product P1 ⊗ P2, of the total phase spaces P1 and
P2 of N1 and N2, respectively, of the form S1 ⊗ S2, with Si a synchrony subspace
of Pi , i = 1, 2, the results in [3] show equality. That is, the lattice of the regular
synchrony subspaces of N1 � N2 is the lattice of the regular synchrony subspaces of
N1 ⊗ N2.

Moreover, in [3] it is shown how to obtain the lattice of regular synchrony sub-
spaces of a product network from the lattices of synchrony subspaces of the compo-
nent networks. Specifically, it is proved that a tensor of subspaces is of synchrony
of the product network if and only if the subspaces involved in the tensor are syn-
chrony subspaces for the component networks of the product. It is also shown that,
in general, there are (irregular) synchrony subspaces for the product network that are
not described by the synchrony subspaces for the component networks, concluding
that, in general, it is not possible to obtain the all synchrony lattice for the product
network from the corresponding lattices for the component networks.

Example 8 The network R of Fig. 6 is the cartesian product of networks R1 and R2

of Fig. 8, that is, R = R1 � R2. (Here we are assuming a slightly different definition
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Fig. 7 From left to right: (up) networks N1, N2, (down) the cartesian product N1 � N2 and the
Kronecker product N1 ⊗ N2

of the cartesian product presented in [3], since both edge types of R1 and R2 lead to
just one edge-type in R. However, Theorem 6.5 in [3] that we apply next still holds
in this case.) From [3, Theorem 6.5], the lattice of regular synchrony subspaces for
R is given by the tensor product of the lattice of synchrony subspaces for R1 and
the lattice of synchrony subspaces for R2. Given that the synchrony subspaces for
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Fig. 8 Networks R1 and R2
such that the network R of
Fig. 6 is the cartesian product
of R1 and R2
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d
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R1 are the trivial ones and that the two nontrivial synchrony subspaces for R2 are
defined by the coordinate equality condition d1 = d2 and d1 = d3, respectively, the
nontrivial regular synchrony subspaces for R are thus the subspaces Δ̃3, Δ̃8, Δ̃12,
Δ̃16, Δ̃19 and Δ̃23 from Table 2.

4.4 f -Join

The usual definition of join of graphs is given by the disjoint union of all graphs
together with additional arrows added between every two cells from distinct graphs.
In [7], Aguiar and Ruan introduce a generalized version of join on coupled cell
networks.

Recall that a multimap is a generalized notion of map, where an element from the
domain is assigned to a set of values from the range. Let C̃1 ⊂ C1 and C̃2 ⊂ C2 be
non-empty subsets of cells. Denote by P(C̃2) the set of all subsets of C̃2. Consider
a multimap f from C̃1 to C̃2 given by

f : C̃1 → P(C̃2)

c 
→ f (c) ⊂ C̃2.
(3)

In [7], the f -join of two networks is defined as follows.

Definition 2 Let N1 and N2 be two identical-edge networks with set of cells C1

and C2, respectively, such that the cells in C1 ∪ C2 are all of the same type and
C1 ∩ C2 = ∅. Let E1 and E2 be the set of edges of C1 and C2, respectively. A
network N is called the f -join of N1 and N2, denoted by N = N1 ∗ f N2, if

• the set of cells of N is given by C1 ∪ C2;
• the set of edges of N is given by E1 ∪ E2 ∪ F , where F = {(c, d), (d, c) : c ∈
C̃1 ∧ d ∈ f (c)} and f is defined by (3);

• if the edges in N1 and N2 are of the same type then any two edges e1 and e2 in N
are of the same type; otherwise two edges e1 and e2 in N are of the same type if
and only if they both are edges in E1, in E2 or in F .
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Fig. 9 The networks R3 and
R4 such that the network R
of Fig. 6 is the f -join of R3
and R4 where
f : {4, 1, 5} → P({2, 6, 3})
with f (4) = {2},
f (1) = {6}, and f (5) = {3}
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Note that, if C̃1 = C1, C̃2 = C2 and f (c) ≡ C2 for all c ∈ C1, then N1 ∗ f N2 is
the join of N1 and N2, as defined for graphs.

Example 9 The network R of Fig. 6 may be seen as the f -join of two copies, R3 and
R4, of the network R2 on the right of Fig. 8, see Fig. 9. That is, R = R3 ∗ f R4 where
f : {4, 1, 5} → P({2, 6, 3}) is the multimap such that f (4) = {2}, f (1) = {6}, and
f (5) = {3}.

According to Definition 4.6 in [7], we can classify the synchrony subspaces of R
into non-bipartite, pairing bipartite and non-pairing bipartite. A synchrony subspace
is non-bipartite if, in its definition, there is no coordinate equality condition involving
one cell in R3 and one cell in R4. A bipartite synchrony subspace is pairing bipartite
if, in its definition, every coordinate equality condition involves one cell of R3 and
one cell of R4 and for each cell there is at most one coordinate equality condition
involving that cell, otherwise the synchrony subspace is said non-pairing bipartite.

The results in Theorem 4.17 of [7] characterize all the synchrony subspaces of
R = R3 ∗ f R4. The non-bipartite and the pairing bipartite synchrony subspaces are
easily obtained from these results, the synchrony subspaces of R3 and R4 and the
interior symmetries of R.

The network R3 has only two nontrivial synchrony subspaces, defined by the
coordinate equality condition x1 = x4 and x4 = x5, respectively. Analogously, the
network R4 has only two nontrivial synchrony subspaces, defined by the coordinate
equality condition x2 = x6 and x2 = x3, respectively.

Given a synchrony subspace S1 for R3 and a synchrony subspace S2 for R4, con-
sider the polydiagonal of the total phase space of R defined by the conjunction of the
coordinate equality conditions that define S1 with the coordinate equality conditions
that define S2. From the results in Theorem 4.17 of [7], every non-bipartite synchrony
subspace of R is such a polydiagonal subspace with the additional condition that if
the coordinate equality conditions that define S1 include x1 = x4 then the coordinate
equality conditions that define S2 must include x2 = x6 and if the coordinate equal-
ity conditions that define S1 include x4 = x5 then the coordinate equality conditions
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that define S2 must include x2 = x3. We have then that the non-bipartite synchrony
subspaces for R are Δ̃6, Δ̃19 and Δ̃23 from Table 2.

From the results in Theorem 4.17 of [7], every pairing bipartite synchrony sub-
space of R is given by some interior symmetry σ of R, where σ is a product of dis-
joint transpositions τi = (ci , di ) for ci ∈ {4, 1, 5}, di ∈ {2, 6, 3}. There are five such
interior symmetries of R: σ1 = (12), σ2 = (46), σ3 = (12)(46), σ4 = (16)(24), and
σ5 = (16)(24)(35). We have then that the pairing bipartite synchrony subspaces for
R are {x : x1 = x2}, {x : x4 = x6} and {x : x1 = x2, x4 = x6} and the synchrony
subspaces Δ̃3 and Δ̃8 from Table 2.

5 Complement Network

Suppose that N is a directed graph with n nodes and just with one edge-type, no
multiarrows and no self loops. In graph theory, the usual definitions of the comple-
ment and converse graphs of G are the following:
(i) The complement of N is a directed graph N on the same set of nodes such that:
a directed edge from node i to node j is present in N if it does not exist at N ; a
directed edge from node i to node j is not present in N if it exists at N . Graphically,
if we take N and fill in all missing directed edges in order to obtain a complete graph
(a simple directed graph in which every pair of distinct nodes is connected by a unique
bidirectional edge), then N is obtained by removing the directed edges belonging
to N . The sum of the n × n adjacency matrices of N and N is the n × n matrix
with zero at the diagonal entries and 1 elsewhere and so it commutes with all n × n
permutation matrices.
(ii) The converse of N is the graph with the same set of nodes as N and obtained
from N by reversing the directions of all edges of N . The n × n adjacency matrix of
the converse of N is the transpose of the adjacency matrix of N and so the sum of
the two adjacency matrices, of N and its converse, is symmetric (it coincides with
its transpose).

As an example of possible interpretation of the complement and converse graphs
of a graph in the context of social networks is the following. The converse of a
directed graph might be helpful in thinking about relations that have “opposites”.
The complement of a directed graph might be used to represent the absence of a tie.
See for example Wasserman and Faust [45, p. 135].

Example 10 In Fig. 10 we show the complement (on the left) and the converse (on
the right) of the five-cell network of Fig. 1.

Motivated by this, we define now the complement network of a network with
n nodes that can have multiarrows, self-loops and more that one type of directed
edges, preserving the fact that the sum of the adjacency matrices of the network
and its complement, for each type of edges, is a matrix that commutes with all
n × n permutation matrices – it can be seen as the adjacency matrix of an all-to-all
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Fig. 10 The complement (on the left) and the converse (on the right) of the five-cell network of
Fig. 1
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Fig. 11 A regular three-cell network with multiarrows and self loops at the left and its complement
at the right

coupling n-cell network. In doing that, if the network corresponds to a directed graph
just with one type of edges, no multiarrows and no self loops, then we recover the
usual definition of the complement graph as just recalled above.

Definition 3 Let N be an identical-edge n-cell network with the set of cells C =
{1, . . . , n} and adjacency matrix MN = [ai j ]. Let l = max{aii : i = 1, . . . , n} and
m = max{ai j : i, j = 1, . . . , n; i �= j}. We define the complement network N to be
the network with the set of cells C and the adjacency matrix MN where MN + MN
has at the diagonal entries 2l and m elsewhere. Graphically, if we take N and fill in
all missing directed edges in order to obtain a graph where every cell has 2l self-
loops and every two distinct cells have m bidirectional edges, then N is obtained by
removing the directed edges belonging to G.

Example 11 In Fig. 11 we show a three-cell network with multiarrows and self loops
at the left and its complement at the right.
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As happens for the network N of Fig. 1 and its converse in Fig. 10, the converse of
an homogeneous (regular) network may not be an homogeneous (regular) network.
It follows, in particular, that, in general, a network N and its converse network do
not have the same lattice of synchrony subspaces. Nevertheless, a network N and its
converse have the same group of symmetries (but not necessarily the same group of
interior symmetries).

For the complement network, we have the following:

Theorem 1 Let N be an identical-edge network. Then, we have the following:
(i) If N is regular then the complement network N is regular.
(ii) The networks N and N have the same lattice of synchrony subspaces.
(iii) The networks N and Nhave the same group of symmetries.

Proof Let N be an identical-edge n-cell network with the set of cellsC = {1, . . . , n}
and adjacency matrix MN = [ai j ]. Let l = max{aii : i = 1, . . . , n} and
m = max{ai j : i, j = 1, . . . , n; i �= j}. As before denote by MN the adjacency
matrix of its complement. By definition MN + MN has at the diagonal entries 2l
and m elsewhere.
(i) Suppose N is regular of valency v. If MN = [bi j ] then for i, j = 1, . . . , n, we
have: bii = 2l − aii and if i �= j then bi j = m − ai j . It follows that for all i we have
that

∑n
j=1 bi j = 2l − aii + ∑

j �=i (m − ai j ) = 2l + (n − 1)m − ∑n
j=1 ai j = 2l +

(n − 1)m − v. That is, the complement network N is regular of valency 2l + (n −
1)m − v.
(ii) A polydiagonal Δ in Rn represents a synchrony subspace of N (resp. N ) if and
only if it is left invariant under MN (resp. MN ). Now the matrix MN + MN com-
mutes with all n × n permutation matrices and so leaves invariant any polydiagonal.
It follows then that a polydiagonal Δ is left invariant under MN if and only if it is
left invariant under MN . That is, Δ represents a synchrony space for N if and only
if it represents a synchrony space for N .
(iii) As the matrix MN + MN commutes with all n × n permutation matrices it fol-
lows then that a permutation matrix commutes with MN if and only if it commutes
with MN . �

We can generalize the above definition to homogeneous networks. Let N be an
n-cell homogeneous network with k types of edges. Denote by M1

N , . . . , Mk
N the

k adjacency matrices of N , one for each edge type. It follows that N has k regular
n-cell subnetworks, each with adjacency matrix Mi

N . Denote those by N1, . . . , Nk and
take N 1, . . . , Nk the corresponding complement networks. Then we can define the
complement network N of N as the network with adjacency matrices MN 1

, . . . , MNk
.

Example 12 In Fig. 12 we show an homogeneous five-cell network at the left and
its complement at the right.

Trivially, we have the following:

Corollary 1 (i) The complement network of an homogeneous network is homoge-
neous.
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Fig. 12 An homogeneous five-cell network at the left and its complement at the right

(ii) An identical-cell network and its complement have the same lattice of synchrony
subspaces.
(iii) An identical-cell network and its complement have the same group of symmetries.

Remark 1 (i) Note that, in case an n-cell network N is symmetric under a nontrivial
finite group Γ ⊆ Sn , the coupled cell systems associated with the network N and
its complement are Γ -symmetric. It follows then that it can happen that the corre-
sponding sets of dynamics supported by N and its complement are directly related,
in the situations where the linear vector space of smooth Γ -symmetric vector fields
coincide with both linear spaces of smooth vector fields with structure consistent
with N and its complement, respectively.
(ii) Note that, in general, the fact that two coupled cell systems associated with N
and N , taking the same cell phase spaces, have the same set of synchrony subspaces,
does not imply that the dynamics are closely related.
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Inexact Subspace Iteration for the
Consecutive Solution of Linear Systems with
Changing Right-Hand Sides

Carlos Balsa, Michel Daydé, José M. L. M. Palma and Daniel Ruiz

Abstract We propose a two-phase acceleration technique for the solution of Sym-
metric and Positive Definite linear systems with multiple right-hand sides. In the first
phase we compute some partial spectral information related to the ill conditioned
part of the given coefficient matrix and, in the second phase, we use this information
to improve the convergence of the Conjugate Gradient algorithm. This approach is
adequate for large scale problems, like the simulation of time dependent differential
equations, where it is necessary to solve consecutively several linear systems with
the same coefficient matrix (or with matrices that present very close spectral prop-
erties) but with changing right-hand sides. To compute the spectral information, in
the first phase, we combine the block Conjugate Gradient algorithm with the Inexact
Subspace Iteration to build a purely iterative algorithm, that we call BlockCGSI. We
proceed to an inner-outer convergence analysis and we show that it is possible to
determine when to stop the inner iteration in order to achieve the targeted invariance
in the outer iteration. The spectral information is used in a second phase to remove the
effect of the smallest eigenvalues in two different ways: either by building a Spectral
Low Rank Update preconditioner, or by performing a deflation of the initial residual
in order to remove part of the solution corresponding to the smallest eigenvalues.

Keywords Inexact inverse iteration · Subspace iteration · Block conjugate
gradient · Chebyshev filtering polynomials · Spectral projector

C. Balsa (B)
Instituto Politécnico de Bragança (IPB), Bragança, Portugal
e-mail: balsa@ipb.pt

M. Daydé · D. Ruiz
IRIT, Universitée de Toulouse, CNRS, INPT, Toulouse, France
e-mail: dayde@enseeiht.fr

D. Ruiz
e-mail: ruiz@enseeiht.fr

J. M. L. M. Palma
Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal
e-mail: jpalma@fe.up.pt

© Springer International Publishing AG, part of Springer Nature 2018
A. A. Pinto and D. Zilberman (eds.), Modeling, Dynamics, Optimization
and Bioeconomics III, Springer Proceedings in Mathematics & Statistics 224,
https://doi.org/10.1007/978-3-319-74086-7_3

49



50 C. Balsa et al.

1 Introduction

We are interested in the computation of a near-invariant subspace associated with
the smallest eigenvalues of a given symmetric and positive definite matrix, with a
type of inexact subspace iteration method that exploits only matrix vector products.
To this end, we exploit an algorithm, called BlockCGSI, which combines the inverse
subspace iteration (SI), see [1] for instance, with a stabilized version of the block
Conjugate Gradient algorithm (blockCG) [2, 3] to solve iteratively the set of mul-
tiple linear systems in each inverse iteration. The implicit use of the inverse of the
coefficient matrix by means of an iterative solution (inner iteration), is suitable for
large scale problems, where traditionally the factorization of the matrix is difficult
to achieve, or when the matrix itself is not explicitly available. However, it also
introduces an error - when computing the approximate solutions - that may affect
the linear convergence of the inverse iteration (the outer iteration). The difficulty
is to find an appropriate stopping threshold for the iterative method (in the inner
iteration) that enables a suitable convergence of the inverse iteration and, if possible,
that minimizes the computational work.

The central part in this work is to propose a way to monitor effectively the con-
vergence of this inner-outer type of iterative scheme. We therefore analyze, from a
geometrical point of view, the convergence of the inverse subspace iteration com-
bined with the blockCG inner solver, and we derive an expression that relates the two
residual norms used in the two iteration levels. From this, we can extract a residual
measure for the blockCG that is directly linked with the convergence of the outer
process toward the desired eigenvectors, and propose a stopping threshold parameter
that minimizes the total amount of computational work to achieve some targeted
accuracy.

In Sect. 2, we recall some important properties of the subspace iteration and of the
inexact inverse iteration that are the basic components of the BlockCGSI algorithm.
We also introduce some algorithmic techniques to improve the method. In particular,
we exploit Chebyshev polynomials as a spectral filtering tool when building the
starting vectors, and we introduce the concept of “sliding window” as an algorithmic
feature for the computation of a near-invariant subspace of any dimension. Section3
is dedicated to the analysis of the convergence properties. In particular, we explain
how one should monitor the convergence of the blockCG in conjunction with the
global convergence of the inverse iteration. The study presented in Sect. 3 follows on
from our initial work on the monitoring of BlockCGSI presented in [4]. We finish the
analysis of the BlockCGSI algorithm in Sect. 4, with a review of its main algebraic
operations and computational costs.

The combination of the inverse subspace iterationwith the blockConjugateGradi-
ent (BlockCGSI algorithm) was initially exploited in the experimental study by [5],
and used to deflate the initial residual in consecutive runs of the CG algorithm.
This is of particular interest in the simulation of time dependent partial differential
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equations, where at each global iteration (or time step) there are several systems with
the same spectral properties to be solved.

Following this work, and to illustrate the effectiveness of the monitoring that we
propose, we devote the last two sections to some numerical simulations where we
first perform some partial spectral decomposition, and exploit this information to
improve the convergence in the iterative solution of the following linear systems.
In the case of Symmetric Positive Definite (SPD) matrices, several solutions have
already been proposed to improve the convergence of Conjugate Gradient (CG) algo-
rithm (see [6], for instance). In Sect. 5, we highlight two of these techniques, namely
the deflation of the initial residual and the Spectral Low Rank Update (SLRU) pre-
conditioner [7]. Section6 is then concerned with the numerical results illustrating
the proposed monitoring strategy for the BlockCGSI Algorithm as well as the poten-
tial of the pre-computed spectral information to accelerate the convergence of the
Conjugate Gradient. We finish in Sect. 7 with some concluding remarks.

2 The Subspace (Inverse) Iteration

Subspace inverse iteration, or simply subspace iteration, is a generalization of the
inverse iteration, where a set of vectors is multiplied consecutively by the inverse o
a matrix instead of just one vector.

Consider the symmetric and positive definite matrices A and the matrix of the
wanted eigenvectors U = [u1, u2, . . . , us], where Au j = λ j u j , j = 1, . . . , s. Let Z
be a matrix whose columns generate a subspace of dimension s. If we multiply Z
successively by A−1 we will generate a sequence {A−k Z : k = 0, 1, 2, . . .} that con-
verges to U . Defining the error angle between the approximated subspace generated
by the columns of the matrix A−k Z and some specific eigenvector u j as

ϕ
(k)
j ≡ ∠(u j , A−k Z) ≡ min∠(u j , q) over q ∈ A−k Z , (1)

it is proved in [1, p. 333] that, under certain assumptions, each eigenvector u j , j ≤ s,
satisfies

tan
(
ϕ

(k)
j

)
≤

(
λ j

λs+1

)k

tan
(
ϕ

(0)
j

)
. (2)

Normally, after one (or several) multiplication by the matrix A−1, the column
vectors from the resulting matrix Q(k) = A−k Z are orthonormalized. This simplest
version of the subspace iteration is also called orthogonal iteration.

In order to get an optimal approximation to each individual eigenvector u j , using
all the information in the basis Q, the orthogonal iteration is normally followed
by the Ritz (or Rayleigh-Ritz) acceleration. The resulting Ritz values diag(Δ) =
δ1, . . . , δs and Ritz vectors V = [v1, v2, . . . , vs] are approximations to the eigenpairs
in A corresponding to the eigenvalues in the range ]0, λs ]. In [1, p. 334], it is indirectly
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proved that v(k)
j converges linearly to u j by proving that v(k)

j −→ q(k)
j at the same

asymptotic rate λ j/λs+1 that q(k)
j converges to v(k)

j .
By (2), we can see that the reduction of the error angle in the subspace iteration

is proportional to λ j/λs+1 instead of λs/λs+1 as it is the case in the inverse iteration.
This convergence property shows that if λ j is well separated from λs+1, we can have
a good estimation of the eigenvalue u j in a few number of inverse iterations. In some
cases, it can be useful to increase the block size s just to benefit from a better gap
between λ j and λs+1. This technique is also denoted as the use of “Guard Vectors”,
e.g. extra vectors that are incorporated just to increase the rate of convergence in (2).

Compared with other reliable Lanczos algorithms, the subspace iteration just
needs to store the current set of s approximated eigenvectors (Ritz Vectors). The
previous vectors of the Krylov sequence are discarded. This can be an important
advantage if we have to work with a lowmemory storage and with slow convergence.
The main difficulty in the subspace iteration is that we must set a priori the working
block size s. The block size defines the dimension of the targeted invariant subspace
and also, as we can verify by (2), the convergence rate. As we don’t know the
eigenvalue distribution, the chosen block size can lead to a very slow convergence
or, if the gap between the s wanted eigenvalues and the others is large, to a fast
convergence where only a few subspace iterations will be needed for convergence.
In this work we will also suggest a dynamical way to set up the block size s without
any information a priori about the spectrum of the matrix A.

In the subspace iteration the Ritz values δ j converge faster to their limit (the
eigenvalue λ j ) than the corresponding Ritz vectors v j to the eigenvector u j . This
means that one can have a converged Ritz value even if the corresponding Ritz
vector is far from the wanted eigenvector. We can determine how close a Ritz vector
v j is close from the corresponding eigenvector u j through the following error angle
measure given by [1]

| sin∠(v j , u j )| ≤ ||Av j − δ j v j ||2
gap

, (3)

where gap = min{|λ j−1 − λ j |, |λ j − λ j+1|}. In practice we can not use (3) to mon-
itor the convergence because the gap is unknown, but when the Ritz values have
converged, we can use the δ j ’s to approximate the gap and thus obtain a computable
estimate of the error angle. However, for clustered eigenvalues, the spectral residual
can be a bad measure because v j can approximate another eigenvector different from
u j , and the formula (3) will not be reliable (see [1]). The error measure (3) also
indicate that the angle between a Ritz vector v j and the corresponding eigenvalue u j

is directly proportional to the invariance measure ||Av j − δ j v j ||2.
In each subspace iteration a linear system with s right-hand sides is solved either

by factorizing the coefficient matriz A or with an iterative solver. If it is solved
iteratively, the error introduced by the inexact solution of the linear system may
affect the convergence rate of the subspace iteration given by (2). The difficulty
is to find an appropriate stopping threshold for the iterative method that enables
a suitable convergence of the inverse iteration and, if possible, that minimizes the
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global computational work. In the next section we proceed to an overview of the
main ideas about this problematic in the case of working with a single vector (block
size reduced to one), in which case the process is called inexact inverse iteration.

2.1 The Inexact Inverse Iteration

In the inverse iteration (subspace iterationwith block size s = 1), the system of linear
equation is traditionally solved through the factorization of the matrix A. This can be
expensive or impractical if A has large dimension. Alternatively, we can solve these
systemsbyan iterativemethod. Iterativemethods are attractive in large scale problems
because they requiremodestmemory storage and the coefficientmatrix does not need
to be known explicitly, but just the result of it multiplication with any vector.

The inexact inverse iteration (see for instance [8]) includes two levels of iterations.
One is the outer iteration, and corresponds to the main loop of the inverse iteration.
The other is the inner iteration and corresponds to the iterative solution of the linear
system in each outer iteration. The convergence of inexact inverse iteration is not yet
perfectly well understood in all details, but has nevertheless been analyzed in several
recentcontributions.InthisSection,wepresentashortsurveyofthemainideasexposed
in some of these papers.

In [8, 9], for instance, it is proved that inexact inverse iterationcanconverge linearly
at the same rate as the exact case even if the system is not solved accurately, and it is
given some practical ways to choose the inner stopping threshold.

More recently in [10], a general convergence analysis of the correlation between
the convergence rate and the threshold parameter is shown. It is proved that with some
specific error measure, that if the threshold parameter is larger or equal to the ratio
between the two smallest eigenvalues, the inexact inverse iteration converges linearly
with a convergence rate directly given by the threshold parameter.

In[11], it isprovedthat it isworthcontinuingtheinnerloopuntil thenormofthesolu-
tionvector stagnates.Thegrowthof this norm is indeeddirectly linked to the reduction
theeigenvalueresidualnormin the inverse iteration.Consequently, theauthorssuggest
a stopping criterion for the inner iteration based on the observation of the stagnation
of the normof approximate solution. Following this recommendation it is highlighted
in [12] that this strategy is quite sensitive to the choice of the tolerance that measures
this stagnation, as opposed to a strategy based on the measure of the standard relative
residual of the system.

Similarly, thecombinationof theJacobi–Davidsonmethodwith theConjugateGra-
dient method as the inner solver has also been studied in [13]. It is established, from
an analytical point of view, a relation between the reduction of the inner residual norm
and the convergence of the outer process that allows an optimal stopping criterion for
the inner iteration.

In most of these inexact inverse iteration analysis, the monitoring of the spectral
error, in the outer iteration, is performed through some type of invariance measure of
the approximated eigenvector v1, like for instance



54 C. Balsa et al.

||Av1 − δ1v1||2 ≤ ε, (4)

where δ1 is an approximation to the eigenvalue corresponding to v1, like for instance
the correspondingRitz value. By Eq. (3) we know that thismeasure enables to control
indirectly the error angle between v1 from the corresponding eigenvectoru1.Note also
that if v1 is not orthonormalized the error measure (4) must be divided by ||v1||2.

2.2 TheBlockCGSIAlgorithm

In this section, we present and detail partly the BlockCGSI algorithm (Algorithm 1)
used tocomputeanM-orthonormalbasis, representedbymatrixW , ofanear-invariant
subspaceassociatedwith thesmallesteigenvalues in thepreconditionedmatrixM−1 A,
where M and A are both symmetric and positive definite. If this eigenspace incorpo-
rates, for instance,all theeigenvaluesofM−1 A in therange ]0, μ[,wecanexpect,when
using it laterasasecond levelofpreconditioning, that theconditionnumberof thecoef-
ficientmatrixwillbereducedtoaboutκ = λmax/μ(whereλmax is thelargesteigenvalue
in M−1A). In Algorithm 1, λmax and μ are considered as input parameters. However
there is no specific need to knowexactly the largest eigenvalue, and someupper bound
on λmax is sufficient, provided it gives some rough estimation of the actual 2-norm of
M−1A. In our experiments, we simply set λmax = 1.

Anotherinputconcernsthechoiceoftheblocksizes thatdefinesthedimensionofthe
working subspace at each inverse iteration. In the basic versionof the inverse subspace
algorithm, this also sets the number of approximated eigenvalues and eigenvectors at
the end. Finally, it also gives the number of right-hand sides and solution vectors of the
multiple linear systems solved by the blockCGalgorithmat each inverse iteration, and
therefore the amount of memory required as working space.

As a starting point, the algorithm requires the generation of an M-orthonormal
matrix W of dimension s; the closer are these column vectors to the targeted near-
invariant subspace, the faster theconvergenceof the inverse iterationwillbe.Thescope
of steps 1 to 4, in Algorithm 1, is to generate an initial M-orthonormal set V (0) of s
vectors with eigencomponents corresponding to eigenvalues in the range [μ f , λmax]
below some predetermined value ξ � 1 (denoted as the filtering level). This filtering
technique is based on Chebyshev polynomials (step 3) and is detailed in Sect. 2.4.

Aswehave seen, the essenceof the inverse subspace iteration is the orthogonal iter-
ation. It consists in multiplying a set of vectors by A−1M and M-orthonormalizing it
in turn. If W (k−1) (initially empty) contains the set of vectors that have already con-
verged at inverse iteration (k − 1), the current subspace Q(k), in step iii, should con-
verge gradually to a near-invariant subspace that isM-orthogonal to W (k−1). In step i,
themultiplicationby A−1M isperformedimplicitly throughtheiterativesolutionofthe
system M−1AZ (k) = V (k−1) via the blockCG solver. In order to reduce the computa-
tionalcosts, thissystemissolvedwithanaccuracydeterminedbytheresidual threshold
ε. The appropriate choice of ε is detailed in Sect. 3.3.
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Algorithm 1: BlockCGSI with SlidingWindow

Inputs: A, M = RT R ∈ IRn×n, μ, λmax ∈ IR, s ∈ IN
Output: a near-invariant subspace W associated with all eigenvalues of

M−1A in the range ]0, μ]
Begin

Generate the initial subspace (with filtering)
1. Z (0) =RANDOM(n, s)

2. V (0) = Z (0)	 such that V (0)T
V (0) = Is×s

3. Q(0)=Chebyshev-Filter(V (0), ξ, [μ f , λmax], A, R)

4. V (0) = R−1Q(0)	 such that V (0)T
MV (0) = Is×s

5. W (0) = empty
6. For k = 1, ..., until converge Do:

Orthogonal iteration
i. Solve M−1 AZ (k) = V (k−1) with BlockCG

ii. P(k) = Z (k) − W (k−1)W (k−1)T
M Z (k)

iii. Q(k)	k = P(k) such that Q(k)T
M Q(k) = Is×s

iv. Q(k) = [W (k−1) Q(k)]

Ritz acceleration

v. βk = Q(k)T
AQ(k)

vi. Diagonalize βk = UkΔkU T
k

where U T
k = U−1

k
and Δk =Diag(δ1, ..., δp+s) (Ritz Values)

vii. V (k) = Q(k)Uk (Ritz Vectors)

“Sliding window”
viii. W (k) =converged columns of V (k)

ix. V (k) =non-converged columns of V (k)

x. (n, p) =size(W (k))

xi. Update the computational window (V (k))

xii. (n, s) =size(V (k))

7. EndDo
End

In step ii, the approximate solution vectors Z (k) are then projected onto the orthog-
onal complement of the converged vectors W (k−1), in order to remove the influence of
eigencomponents associated with the already converged eigenvalues. The set of pro-
jected vectors P (k) is then M-orthonormalized (step iii), and gathered together with
W (k−1) in thematrix Q(k).
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The orthogonal iteration is followed by the Ritz acceleration (steps v to vii). The
spectral informationcontainedinQ(k) is thusredistributedinthecolumnvectorsofV (k)

thatwill contain separatelybetter approximationsof each individual eigenvector in the
targetedinvariantsubspace.StepsvandvigivetheRitzvaluesdiag(Δ) = δ1, . . . , δp+s

ranged in increasing order, where p is the dimension of W (k−1), i.e. the number of
converged vectors in the inverse iteration (k − 1), and s is the current block size. The
Ritz values andRitz vectorsV = [v1, v2, . . . , vp, . . . , vp+s] are approximations to the
eigenpairs in M−1 A corresponding to the eigenvalues in the range ]0, λp+s ]. The con-
vergence rate of each individual non-convergedRitz vector is thenof orderλi /λp+s+1,
with p + 1 ≤ i ≤ p + s.

The endof theBlockCGSI algorithmconsists in testing the convergence andupdat-
ing the computational window. In step viii, all the Ritz vectors that are considered as
near-invariant, with respect to the given accuracy, are assigned to W (k). More details
about the monitoring of the convergence are given in Sect. 3.1. Step xi consists in the
updateof the current set of vectorsV (k). This algorithmic issue in theBlockCGSIalgo-
rithm is denoted as “sliding window” and detailed in Sect. 2.5.

2.3 Improvements of theBlockCGSIAlgorithm

In this section, we describe briefly the two techniques incorporated in the BlockCGSI
algorithm to improve the convergence: theChebyshevbasedfiltering technique at step
3 and the “sliding window” at step xi in Algorithm 1.

2.4 ChebyshevBasedFilteringTechnique

The purpose of the Chebyshev based filtering technique is to bring the randomly
generatedsetof s startingvectorscloser to theeigenvectorscorresponding tos smallest
eigenvalues. Chebyshev polynomials in M−1 A are used to damp the eigenfrequencies
associatedwithall theeigenvalues in therange [μ f , λmax ], in thesensethat thoseeigen-
components associated to all eigenvalues in this range are reduced to about 0, and the
other ones are left close to their original value. We summarize here the outline of this
technique, and for details, we refer to [6].

IntheBlockCGSIalgorithm,theapplicationoftheChebyshevpolynomial inM−1 A
to the set of starting vectors V is denoted as

Q = Chebyshev-Filter(V, ξ, [μ f , λmax], A, R),

with M = RT R. This step can also be expressed formally by

Q = Fm(M−1A)V,
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whereFm is a polynomial function of degreem given by

Fm(λ) = Tm(w(λ))

Tm(w(0))
,

with Tm the usual Chebyshev polynomial of degreem andw(λ) themapping function
that bringsμ f to 1 and λmax to−1.

After the filtering process, the vectors q j = Fm(M−1A)v j will have eigencompo-
nents equal toFm(λl)ζ j , with ζ j = 〈v j , ul〉, l = 1, . . . , n, and

Fm(λl) ∈
{

[−ξ, ξ ] if λl ∈ [μ f , λmax]
[ξ, 1] if λl ∈]0, μ f [,

where ξ , the filtering level, is chosen a priori much lower than 1 in order to make the
eigencomponents corresponding to the eigenvalues in the range [μ f , λmax] close to 0.

TheChebyshevpolynomialTm iscomputedimplicitlybyarecurrenceformulafrom
the two previous values Tm−1 and Tm−2 (m ≥ 2). At each update, it requires that a set
of s vectors bemultiplied by M−1A. For given values ofμ f , λmax and ξ , the degreem
depends on the ratio λmax/μ f and is inversely proportional to ξ .

The reasonbehind theuseof theseChebyshevfilters at the startingpoint is toput the
inversesubspaceiterationinthesituationofworkingdirectly intheorthogonalcomple-
ment of a large number of eigenvectors, e.g. all those associated with the eigenvalues
in the range [μ f , λmax]. Obviously, there is some compromise to achieve, in the sense
that a very small value of μ f will minimize the number of inverse iterations but will
increase strongly the computational efforts in the Chebyshev filtering step.

2.5 SlidingWindow

The original version of the BlockCGSI algorithm computes a fixed number s of
approximated eigenvectors associated to the s smallest eigenvalues in the iteration
matrix. The difficulty when choosing the parameter s is that we do not know a priori
the distribution of the eigenvalues, and consequently howmany eigenvalues we need
approximate to reduce substantially the condition number. A too small block size s
can lead to a non effective improvement in the convergence rate of the iterative solver
in the following runs, whereas a too large block size s may induce unnecessary extra
computational work. To circumvent this problem, we have included the possibility of
enlarging the size of the near-invariant subspace along with the inverse iterations, as
wellaschangingtheblocksizeswheneverappropriate.Theideais tostart thealgorithm
with a block size s determined only on the basis of computer aspects like, for instance,
the efficiencyofLevel-3BLAS [14] internal kernels (used in theBlockCGalgorithm),
or thememory requirements. Then, when computing theRitz values and checking the
invariance of the Ritz vectors, at the end of each inverse iteration, we can decide how
to adapt effectively the actual number of approximated eigenvectors.
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Inpractice,whenoneormoreof the s Ritzvectors in thecurrent setV (k) aredetected
as near-invariant, these vectors are moved to the set of converged vectors W (k) (step
viii of Algorithm 1), and there remains open the choice of incorporating new vectors
to replace these ones to form the current block of s working vectors V (k), or to reduce
the block size s (step xi ofAlgorithm1). Incorporating newvectors is appropriate until
the approximated eigenvalues cover a sufficiently large interval [0, μ] for an effective
reduction of the condition number.When this target ismet, it is then possible to reduce
theblocksizes untilall thetargetedRitzvectorshaveconverged.Howeverifwedetecta
gap in theactual rangeof theapproximatedeigenvalues, it canalsobeuseful tokeep the
blocksizeunchangedandtomakeuseof theextravectors toaccelerate theconvergence
of the targeted ones in the inverse iteration. Effectively, with the sliding window the
convergence rategivenby (2) is nowproportional toλ j/λp+s+1,where p is thenumber
of converged Ritz vectors.

Another issuein thisalgorithmcomesfromthefact that thesolutionof thelinearsys-
tems in each inverse iteration are not obtainedwith high accuracy. Indeed, our purpose
is to stop the blockCG as soon as possible. Consequently, it can happen that some of
the Ritz values converge first to internal eigenvalues, before the smaller ones are actu-
ally discovered. In this case, someof the already convergedRitz vectorsmay appear as
not enough invariant after the discovery of the extreme eigenvalues, and it may there-
fore be necessary to enlarge the block size s and refine furthermore these vectors. This
risk of seeing internal eigenvalues coming first is the reason why it is important to
systematically incorporate the assumed converged vectors W (k−1) when recomputing
the Ritz pairs (step iv of Algorithm 1). This is the only way to ensure the appropriate
redistributionof theeigencomponentswithineachapproximateeigenvector in the long
run.

The update of the computational window is mentioned at step xi of algorithm 1.
The operation that consists in introducing new vectors, after a set of �Ritz vectors has
converged, is detailed in Algorithm 2.

Algorithm 2: Incorporate New Vectors

Inputs: A, M = RT R ∈ IRn×n, V (k) ∈ IRn×(s−�)μ f , λmax ∈ IR, � ∈ IN
Begin

a) P =RANDOM(n, �)

b) P = Q	 such that QT Q = I�×�

c) P = Chebyshev-Filter(Q, ξ, [μ f , λmax], A, R)
d) Q = R−1P	 such that QT M Q = I�×�

e) P = Q − W (k)W (k)T
M Q

f) V (k) = [V (k) P]
End

Itbeginsbygeneratingrandomlythenewvectorsandfilteringthem,asinthestarting
stepsof theBlockCGSIalgorithm(steps a, b andc).After that thevectors areprojected
intheM-orthogonalcomplementoftheconvergedones(stepdande),inordertoremove
thecorrespondenteigencomponents.Theremainingoperations(stepf)adjusttheblock
size s with respect to the current set of working vectors V (k).
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3 Convergence Analysis

TheBlockCGSI algorithm involves two iterative loops: thefirst, thatwe also denote as
the outer iteration, at step 6 corresponds to the inverse iteration, and the second loop,
or inner iteration, is in the call to the blockCG algorithm (at step i in Algorithm 1) for
the iterative solution of the linear systemwithmultiple right-hand sides, M−1 AZ (k) =
V (k−1).Thesetwoiterationslevelsrequireeachsomespecificstoppingcriterioninorder
to monitor the convergence of the algorithm. Sections3.1 and 3.2 are devoted to and
analyze some properties associated with these aspects. In Sect. 3.3, we propose a way
to link the monitoring of the convergence in the inner loop with the measure of the
convergence in the outer loop.

3.1 Subspace Inverse Iteration (OuterLoop)

At each inverse iteration (k) inAlgorithm1, the blockCGalgorithm solves the s linear
systems M−1Az(k)

j = v(k−1)
j , j = 1, . . . , s, where thematrix A is preconditionedwith

asymmetricandpositivedefinitepreconditioner,M = RT R.Thesymmetrizedsystem
can be written as usual as

R−T AR−1Rz(k)
j = Rv(k−1)

j ⇐⇒ Ãz̃(k)
j = ṽ(k−1)

j , j = 1, . . . , s. (5)

where Ã = R−T AR−1R, z̃ j = Rz j and ṽ j = Rv j .Forsimplicitywewillomittorepeat
that j varies from 1 to s. We will consider that the subscript j refers to the position of
the correspondent eigenvalue in the current working set. The superscript (k) denotes
the inverse iteration number, and the tilde refers to the symmetrized system (5).

Theouter iterationproduces a sequenceofRitz vectors ṽ(1)
j , ṽ(2)

j , . . . , ṽ(k)
j , that con-

verge to the eigenvector ũ j = Ru j corresponding to the eigenvalue λ j of both matri-
ces Ã and A. At the outer iteration (k), the vectors ṽ(k)

j are orthonormal, while the

vectors v(k)
j (columns of matrix V (k), in step vii of Algorithm 1) are M-orthonormal.

The corresponding Ritz values (diagonal elements of the matrix Δ(k)) are given by
δ j

(k) = v j
(k)T

Av(k)
j = ṽ(k)T

j Ãṽ(k)
j .

As we have seen in Sect. 2, we can evaluate indirectly the error angle (between v j

and the corresponding eigenvector u j ) through themeasure

|| Ãṽ(k)
j − δ

(k)
j ṽ(k)

j ||2
||ṽ(k)

j ||2
= ||M−1Av(k)

j − δ
(k)
j v(k)

j ||M . (6)

Dividing(6)byδ
(k)
j (asanapproximationofλ j )weobtaina relative invariancemeasure

that is used in step viii of Algorithm 1 to decide if a Ritz vector v(k)
j has converged or

not, as for instance when
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||M−1Av(k)
j − δ

(k)
j v(k)

j ||M

δ
(k)
j

≤ εouter, (7)

if a certain toleranceεouter is enough.Since εouter is fixed, the error anglewill be smaller
for the Ritz vectors corresponding to the smallest eigenvalues because, in these cases,
the invariancemeasure (6) will be divided by a smaller values δ j .We use the stopping
criterion (7) because, as we will see in Sect. 5, the Ritz vectors are used to improve
the convergence of the CG algorithm, and this measure of near-invariance in the Ritz
vectors is indeed very appropriate in that respect. Note also that (7) is also used in the
same context by [11].

3.2 TheBlockCGIteration (InnerLoop)

The block Conjugate Gradient (blockCG) algorithm under concern is a numerically
stable variant [3] that avoids the numerical problems that can occur when some of the
s systems are about to converge. It solves simultaneously the s linear systems from
Eq. (5). For each system, j = 1, .., s, it produces a sequence of vectors z̃[i]

j , giving,

after convergence, the approximate solution z̃(k)
j used in the kth inverse iteration,

z̃[1]
j , z̃[2]

j , . . . , z̃[i]
j → z̃(k)

j , (8)

where the superscript [i] stands for the blockCG (inner) iteration number.
The residual vector associated with each iterate z̃[i]

j is

r̃ [i]
j = ṽ(k−1)

j − Ãz̃[i]
j . (9)

We also introduce another vector which we will use to measure the proximity of the
current iterate z̃[i]

j from the corresponding eigenvector ũ j ,

S̃[i]
j = Ãz̃[i]

j − δ̃
[i]
j z̃[i]

j = ṽ(k−1)
j − δ̃

[i]
j z̃[i]

j − r̃ [i]
j , (10)

where δ̃
[i]
j = z̃[i]T

j Ãz̃[i]
j /z̃[i]T

j z̃[i]
j = δ

[i]
j is the Rayleigh quotient corresponding to the

current iterate z̃[i]
j . The error measure (6) applied on the symmetrized system, at each

inner iteration [i], yields

||S̃[i]
j ||2

||z̃[i]
j ||2

= ||ṽ j
(k−1) − δ

[i]
j z̃[i]

j − r̃ [i]
j ||2

||z̃[i]
j ||2

. (11)

Additionally, ifwestart theblockCGiterationwith z̃[0]
j = 0,ateachiterationthecurrent

residual r̃ [i]
j remains orthogonal to both ṽ j

(k−1) (the right-hand side) and z̃[i]
j (linear
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combinationof the currentKrylovvectors). Thus, r̃ [i]T
j (ṽ j

(k−1) − δ
[i]
j z̃[i]

j ) = 0, andwe
canwrite

||ṽ j
(k−1) − δ

[i]
j z̃[i]

j − r̃ [i]
j ||22 = ||ṽ j

(k−1) − δ
[i]
j z̃[i]

j ||22 + ||r̃ [i]
j ||22. (12)

Finally, if we translate the previous properties to the non-symmetrized system,

||M−1Az[i]
j − δ

[i]
j z[i]

j ||M

||z[i]
j ||M

=
√√√√ ||v(k−1)

j − δ
[i]
j z[i]

j ||2M
||z[i]

j ||2M
+ ||r [i]

j ||2M
||z[i]

j ||2M
def=

√
φ

[i]
j

2 + ω
[i]
j
2
, (13)

wherewecansee that the reductionof the invarianceof each iterate z[i]
j during the inner

loopdependsontherelativeresidualmeasureω
[i]
j = ||r [i]

j ||M/||z[i]
j ||M andonthevalue

φ
[i]
j = ||v(k−1)

j − δ
[i]
j z[i]

j ||M/||z[i]
j ||M .

Even ifweexpect that thebackwarderrormeasureω
[i]
j will decreasedown toa level

ofsmallmagnitude, thevalueofφ[i]
j ismore likely tostagnateonahigher level,depend-

ing on the proximity of the right-hand side v(k−1)
j from the correspondent eigenvector

u j .Therefore,theboundin(13)canbedominatedbythevalueofφ[i]
j ,andlittleimprove-

ment on the global convergence of the algorithm can be expected by further iterations
in the blockCG.

Wenow investigate the asymptotic behavior ofφ[i]
j , assuming that z[i]

j actually con-

verges to z∗
j = A−1Mv(k−1)

j . Let us first introduce the asymptotic limit of theRayleigh

quotient δ[i]
j , δ∗

j = 〈z∗
j , v(k−1)

j 〉
M

/||z∗
j ||2M , and the angle θ j in the M-norm between z∗

j

and v(k−1)
j , whose cosine is given by

cos(θ j ) = 〈z∗
j , v(k−1)

j 〉
M

||z∗
j ||M ||v(k−1)

j ||M

= δ∗
j ||z∗

j ||M . (14)

As a consequence of theM-orthonormalization of v(k−1)
j , we can write

sin(θ j ) = ||v(k−1)
j − δ∗

j z∗
j ||M , (15)

which is also the asymptotic limit of ||v(k−1)
j − δ

[i]
j z[i]

j ||M . Consequently, the asym-

ptotic limit of the component φ[i]
j in (13) is

φ
[i]
j −−−→

i→∞
sin(θ j )

||z∗
j ||M

= δ∗
j tan(θ j ). (16)
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We can see that the asymptotic limit ofφ[i]
j depends only on the two vectors v(k−1)

j and

z∗
j = A−1Mv(k−1)

j . It is also clear that, if v(k−1)
j is close to an eigenvector, the angle θ j

shouldbeverysmall, aswellas thecorrespondingasymptotic limitofφ[i]
j .With respect

to the bound in (13), this allows more room for decreasing the backward error ω
[i]
j in

the blockCG iteration. The strategy suggested by this analysis is to decrease the value
of the stopping criterion in the blockCG(inner loop) alongwith the convergence of the
inverse iteration (outer loop). This basic idea is further developed in the next section.

3.3 StoppingCriterion for theBlockCG

The stopping criterion for the blockCG defines the approximation degree of z̃(k) ≈
Ã−1ṽ(k−1)

j orequivalentlyof z(k) ≈ A−1Mv(k−1)
j . Its choice iscrucialbecausedemand-

ing a high accuracy can lead to a great amount of unnecessary extra work, whereas an
insufficient level of accuracy in the solution may deteriorate the convergence rate of
the inverse iteration (given by (2)).

Wepropose tomonitoronly theconvergenceof the iterates z[i]
1 , corresponding to the

smallestRitzvalueδ
(k−1)
1 in theprevious inverse iteration. Ingeneral, this systemneeds

more computational efforts to be solved accurately. As we have seen in the previous
section, the relative residual in the inner loop is given by

ω
[i]
1 = ||v(k−1)

1 − M−1Az[i]
1 ||M

||z[i]
1 ||M

, (17)

and is readily available in the blockCG iteration (see [3]). Notice also thatω[i]
1 is very

close to the usual Rigal–Gaches [15] backward error measure

||v(k−1)
1 − M−1Az[i]

1 ||M

||z[i]
1 ||M + 1

,

using the fact that theM-normof thecurrent right-handsidev(k−1)
1 equals1, andassum-

ing that the 2-norm of the preconditionedmatrix M−1A is close to one.
Intheouter loop,wemonitor theaccuracyoftheapproximatedeigenvectors through

the relative invariance, as indicated in (6) and (7).At inverse iteration (k − 1), we con-
sider that a Ritz vector v(k−1)

j has converged when

||M−1Av(k−1)
j − δ

(k−1)
j v(k−1)

j ||M

δ
(k−1)
j

≤ εouter. (18)
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In order to satisfy (18) in the current inverse iteration (k), the stopping criterion in the
blockCG is set as

ω
[i]
1 ≤ εinner, with εinner = εouterδ

(k−1)
1 , (19)

where δ
(k−1)
1 is the smallest of the Ritz values corresponding to current set of non

converged Ritz vectors. This stopping criterion is based on the decomposition (13),
assuming thatφ[i]

1 is not dominant and that thevalueofw[i]
1 governs the absolute invari-

ancemeasure in the inner iteration.This is surely the casewhen theRitzvectorv(k−1)
1 is

close to an eigenvector because, in this case, the value of tan(θ1) should be small. This
can even occur at the first inverse iteration because the starting vectors are previously
filtered with Chebyshev based polynomials. A second assumption, implicit in (19), is
that the inner invariancemeasure,givenbyEq. (13),willbeclose to theouter invariance
measure,givenbyEq.(6).Thiscanbejustifiedfromthetheoreticalanalysisgivenin[1],
which shows that the Ritz vectors V (k) actually converge to the solution vectors Z (k)

at the same rate of convergence of these Z (k) vectors to the set of targeted eigenvectors
(see Sect. 2).

Under theseassumptions, the idea in (19) is toachieveagiven toleranceεouter in (18)
whileminimizing thenumberofblockCGiterations.Notealso that thestrategy(19) for
thestoppingcriterionisinagreementwithotheranalysisoftheinexactinverseiteration,
like for instance in [8, 10, 12], where it is suggested to use a decreasing value for the
inner tolerance εinner. This is the case, indeed, in (19) since the value of δ

(k)
1 decreases

gradually toward λ1 along with the convergence of the outer iteration.
As we have seen in Sect. 3.2, when φ

[i]
1 has reached its stagnation level defined

in(16), theboundin(13)isthendominatedbythisasymptoticvalue,andthereisnoneed
to decrease any further the value of ω

[i]
1 . No more improvements on v(k)

1 with respect
to u1 might be expected, and it is better to stop the blockCG iteration and to launch the
next inverse iteration. This strategy is very close to the one proposed in [13] and, in
some way, to the one also proposed in [11], because the stagnation of φ[i]

1 implies the
stagnation of ||z[i]

1 ||M which is the basic argument used in this article to monitor the
convergence.

The risk of havingω
[i]
1 much smaller thanφ

[i]
1 during the blockCG iterations is also

limitedwithacloser toleranceεouter not too small, like for instance10−1 or10−2.These
values are in general enough for the purpose of building a near-invariant subspace for
preconditioning the solution of consecutive linear systems with the same coefficient
matrix. However, if one is interested in computing an accurate invariant subspace,
the inner threshold parameter εinner in (19) should be set to the maximum between
εouterδ

(k−1)
1 and the asymptotic value of φ

[i]
1 in (16). From the analysis in 3.2, this is

indeed themaximum level of accuracy that it is reasonable to achieve in each blockCG
run. Do not forget also that alongwith the convergence of the Ritz vectors towards the
corresponding eigenvectors, the asymptotic value of φ[i]

1 in (16) tends to zero propor-
tionally to the tangent of the angle θ j . Because of that, it is ensured that after some
appropriate number of inverse (outer) iteration, themaximumbetween εouterδ

(k−1)
1 and

this asymptotic value of φ[i]
1 will always remain the first of these two, and the targeted

accuracy in the inverse iteration can then be expected to be achieved afterward.
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Table 1 Basic operations counts in BlockCGSI algorithm

Operation Size Flops Symbol BLAS level

x = RANDOM n 3n CR AN D –

y←yT x n 2n CDOT 1

y←y + σ x n 2n CAX PY 1

y = Ax n 2nnz(A) − n CA 2

x = M−1y n 4nnz(R) − 2n CM 2

C←C + σ V B n×s 2s2n CG E M M 3

P = Q R n×s 2s2n CO RT H O(s) 1

4 Operations Counts

The precomputation of the basis W of a near-invariant subspace with the BlockCGSI
algorithm,hasacostwhichwedenotebyCBCGSI .Forafixedaccuracy,thiscostdepends
essentially on thedimensionq of thebasisW andon someworkingparameters like the
block size s, the filtering level ξ and the cut-off filtering valueμ f . To be effective, the
gains obtained in the accelerationof the convergenceof the classicalConjugateGradi-
entalgorithmmustcover theextracost for thecomputationof this spectral information.
InTable1wepresent thecosts infloatingpoint operations (flops) associatedwith some
basic operations performed in theBlockCGSI algorithm, aswell as the corresponding
BLAS level. The computational cost of each part inAlgorithm1will be expressed as a
function of these basic operations.We denote the computational cost of one operation
O P by the symbolCO P , like for instanceCA that is the cost of on sparsematrix-vector
product, where the number of non-zeros elements of A is given by nnz(A). As men-
tioned before, a first level of left preconditioner M is also used, which purpose is to
cluster the spectrum of our iteration matrix. The cost of the multiplication of a vector
by M−1 is represented by CM . Since, M is constructed in our experiments by means
of the IncompleteCholesky factorization or Jacobi scaling, its cost can be estimated as
mentioned inTable1,where nnz(R) is the number of nonzero elements in the factor R
from the Incomplete Cholesky or Jacobi factorization.

In the beginning of the BlockCGSI algorithm, we apply the Chebyshev filtering
polynomial in A to bring the set of s randomgenerated vectors V (0) near the eigenvec-
tors corresponding to the smallest eigenvalues. The cost of one Chebyshev iteration is
CC H E BY ≈ sCA + sCM + 3sCAX PY .Additionally, the startingvectors are orthonor-
malized before the filtering step andM-orthonormalized after. The computation of the
starting vectors has a total cost given by

CSTART ≈ sCRAND + 2CORTHO(s) + s

2
CM + ChebIt × CCHEBY , (20)

where ChebIt is the total number of Chebyshev filtering iterations.
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TheQRiteration represents themostexpensivestep inAlgorithm1in termsofcom-
putational cost. It consists of the iterative solutionof the systemwith s right-hand sides
using the stabilized blockCGsolver. The cost of each inner iteration in the blockCG is:

CbCG ≈ sCA + sCM + 3CG E M M + 2CO RT H O(s). (21)

After the blockCG run, the solution vectors Z (k) are projected onto theM-orthogonal
complement of the converged Ritz vectors W (k−1) (of dimension p, that varies from 0
to q − 1), and are M-orthonormalized. The estimation of the operations count corre-
sponding to the steps included in theQR iteration at each inverse iteration resumes in:

CQ R ≈ bCGIt(k) × CbCG + sCP RO J (p) + CO RT H O(s) + CM , (22)

wherebCGIt(k) isthenumberofblockCGinneriterationsperformedatinverseitera-
tion (k), andwhereCP RO J (p) = CM + pCDOT + CAX PY .Thecostof theQRiteration
cannot be determined a priori, because the parametersbCGIt(k) and p change from
one inverse iteration to the other in a non-deterministic way. Therefore, we trace their
actual values as the algorithm progresses, andwe compute the total number of flops at
theend.Weproceed in thesameway in theRitzaccelerationwith thesizeof Q(k), given
by s + p. The cost of one Ritz acceleration is given by

CRI T Z ≈ (s + p)CA + 2(s + p)2CDOT + 5(s + p)3, (23)

where 5(s + p)3 is the cost corresponding to the spectral decomposition of thematrix
βk at step vi in Algorithm 1.

The amount of work to update the computational window is induced by the con-
vergence test, Eqs. (6) and (7), and by the incorporation of the new vectors (see Algo-
rithm 2). If we maintain the same block size s, the � converged vectors are replaced
in the computational window by � new vectors. After these new vectors are filtered
andM-orthonormalized, as donewith the initial set of starting vectors, they are finally
projected onto theM-orthogonal complement of the converged ones. The cost of these
steps is then given by

CU P D AT E ≈ CI N V + �CR AN D + ChebIt × CC H E BY +
2CO RT H O(�) + �

2
CM + �CP RO J (p),

(24)

where
CI N V ≈ 2(s + p)CM + (s + p)CAX PY + 2(s + p)CDOT (25)

is the cost spent when testing the invariance of all the Ritz vectors.
Finally, the estimate of the total number of floating point operations performed in

the BlockCGSI algorithm, over all the inverse iterations InvIt, is

CBCGSI ≈ CST ART + InvIt × (CQ R + CRI T Z + CU P D AT E ). (26)
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5 Exploiting the Spectral Information

Oncethenear-invariantsubspacelinkedtothesmallesteigenvaluesofthelinearsystem
isobtained,wecanuseit forsolvinganysystemwiththesamecoefficientmatrix, taking
advantage of this spectral information to remove the effect of the poor conditioning.
An overview of techniques that exploit this idea to improve the convergence of the
ConjugateGradient canbe found, for instance, in [6].Here,wesummarize twoof these
techniques based on the same approach, i.e. building a spectral projector that enables
to work in the orthogonal complement of the invariant subspace corresponding to the
smallest eigenvalues.

5.1 DeflatedStartingGuess

One of the possible methods is to compute a starting guess, by means of an oblique
projection of the initial residual (r (0) = M−1b − M−1Ax (0)) onto the near-invariant
subspace associated with the eigenvalues in the range ]0, μ[, to get the corresponding
eigencomponents in the system solution:

r (1) = r (0) − M−1AWΔ−1W T Mr (0),

and x (1) = x (0) + WΔ−1W T Mr (0),

whereW andΔare thematricesof theq convergedRitzvectorsandvalues,obtainedby
theBlockCGSIalgorithmonthepreconditionedmatrixM−1 A.Tocomputetheremain-
ing part x (2) of the exact solution vector x∗ = x (1) + x (2), we can solve M−1Ax (2) =
r (1) with the Conjugate Gradient algorithm.

In practice, as x (0) = 0 we run the Conjugate Gradient to solve M−1Ax = M−1b
starting from the deflated component of the solution

x (1) = WΔ−1W T b. (27)

With this initial starting guess, we expect that the CG will converge to the remaining
part of the solution very quickly, since the difficulties caused by the smallest eigen-
values have been swallowed, and the eigenvalues bounds are given by μ and λmax, as
explained in [16]. In thisway, theConjugateGradient should reach linear convergence
immediately [17].Forclarity,wewill call Init- CG thealgorithmcorresponding toCG
with a starting guess obtained with deflation.

5.2 Spectral LowRankUpdate (SLRU)Preconditioner

Anotherwayofexploitingspectralinformationfromthecoefficientmatrixistoperform
adeflationateachCGiteration,insteadofjustatthebeginning.Thisapproach,proposed
in [7], is called Spectral LowRankUpdate (SLRU) preconditioning.
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The computation of the solution of the preconditioned system M−1Ax = M−1b is
obtained bymeans of the CG algorithm applied to an equivalent system M̂ Ax = M̂b,
where the preconditioner M̂ is given by

M̂ = M−1 + WΔ−1W T . (28)

In this case M and M̂ are also called the first and second level of preconditioning. The
preconditioner M̂ will shift the smallest eigenvalues in the coefficient matrix M−1A
close to one (see [7]). In some cases, it can be useful to shift the smallest eigenvalues
close to some predetermined value λ (with λ = λmax , for instance), in which case the
spectral preconditioner should be set to

M̂ = M−1 + λWΔ−1W T .

This isnotuseful inour test problem,because the spectrumispreviouslyclusterednear
onewith the first level of preconditioning M . In the following,wewill callSLRU- CG
to the algorithm corresponding to the preconditioned Conjugate Gradient with SLRU
as preconditioner.

5.3 PraticalConsiderations

We first consider operations count. As in Sect. 4, we assume that q � n so that we
neglect terms not containing n, (q is the dimension of the near-invariant basis W ).

Inaddition to thesparsematrix-vectorproductwith A ateach iteration, theCGitera-
tion addmerely twodot-products,DOT, and three vector updates,AXPY(seeSect. 4).

The algorithms Init- CG andSLRU- CGperformboth an oblique projection of the
initial residualonto thenear-invariantbasisW ofsizeq, involvingthepre-computation
of WΔ−1W T b, where Δ = W T AW is the Ritz matrix computed on step vi of Algo-
rithm 1. The cost of its inversion is not significant becausewe consider it as a diagonal
matrix. We note that Δ−1 is stored jointly with the basis W . In the scheme SLRU-
CG, the multiplication with the preconditioner M̂ also implies an oblique projection
WΔ−1W T r (k) at each iteration (see Eq. (28)). This projection can be done using com-
mon level 2 BLAS operations [18] with a total cost roughly equal to

CProj ≈ 4 (p + 1) n. (29)

InTable2,we indicate the total cost infloating-point operations for each algorithm,
with an initial cost, andacost per iteration.Oneof themajordifferencesbetween Init-
CG and SLRU- CG is that SLRU- CG uses the projection operator WΔ−1W T at each
iteration, whereas Init- CG does exploit this only at the beginning (for computing a
startingvector x (1), seeformula(27)).Anyway, thisalsocontributes tobetternumerical
stability in the convergence process of SLRU- CG.
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Table 2 Cost in floating-point operations for different methods

The cost in floating-point operations

At the beginning At each iteration

CG CA + CM + − + − CA + CM + 3CAX PY + 2CDOT + −
Init- CG CA + CM + CProj + – CA + CM + 3CAX PY + 2CDOT + –

SLRU- CG CA + CM + CProj + – CA + CM + 3CAX PY + 2CDOT + CProj

Let us briefly examine the memory requirements of these two acceleration tech-
niques. In comparison with the CG algorithm, the Init- CG and SLRU- CG schemes
require about the sameamount of extra storage, of ordern(q + 1), to storeW , thebasis
ofthenear-invariantsubspace(Ritzvectors),anddiag(Δ) thecorrespondingRitzVec-
tors.

6 Numerical Experiments

In this section, we report on some numerical experiments concerning the computa-
tionof the spectral information associatedwith the smallest eigenvalues of a precondi-
tionedmatrix M−1A.Wealso include someexperiments concerning theuseof thepre-
computed spectral information to improve the consecutive solution of linear systems
with the same coefficientmatrix asmentioned in Sect. 5. Theses aspects are illustrated
on a test matrix coming from the 2D heterogeneous diffusion equation in a L shape
region, discretized by finite elements, with size n = 7969. Another application of the
BlockCGSI algorithm to a larger problem can be found in [19].

We also precondition the resulting linear system with Jacobi scaling or classical
Incomplete Cholesky (see Table3).

We divide the experiments in two parts, the first one concerns themonitoring of the
BlockCGSI algorithm discussed in Sect. 3 and the second concerns the improvement
of the convergence of the CG algorithmwith the pre-computed spectral information.

Table 3 Properties of the test matrix M−1A with two different preconditioners

Preconditioner λmin λmax # eigs. below μ = nnz nnz n

1e − 3 5e − 3 1e − 2 R A

Jacobi 3.07e − 09 2.08 2 9 18 7969 55131 7969

IC(0) 1.66e − 08 1.55 2 2 3 31550
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6.1 Monitoring theSubspace Iteration

In Fig. 1, we show the convergence behavior of the inner invariancemeasure

||M−1Az[i]
1 − δ

[i]
1 z[i]

1 ||M

||z[i]
1 ||M

, (30)

which isdirectly relatedwith thevaluesofω1 andφ1 asevidenced in (13).The twoplots
inFig. 1illustratethebehaviorofthesethreevaluesintheblockCGrunatthefirstinverse
iteration (k = 1). The first plot corresponds to the case of non filtered starting vectors,
and the second one to the case of starting vectors filteredwith a level ξ = 1e − 2 and a
cut-off valueμ f = 5e − 3.

We can observe the effect of the Chebyshev filtering of the starting vectors, which
helps tomake the value ofφ1 much smaller thanwhat it can bewith a randomly gener-
ated initial set of vectors. The direct consequence is thatω1 then becomes a goodmea-
sure of the inner invariancemeasure (30), even at the very beginning of the algorithm.
Additionally, the filtering of the starting vectors changes the convergence behavior of
the blockCG, because the filtered right-hand sides havemore favorable spectral prop-
erties. It also enables to decrease substantially the asymptotic value of φ1 in the first
inverse iteration, allowing a larger range of values for the choice of the threshold εinner
in the blockCG,which is a desirable feature for the algorithmas discussed in Sect. 3.3.

InFig. 2weplot the evolutionof the invariancemeasure (6) of theRitz vector v1 as a
function of the number of inverse iterations.We compare two different inner stopping
criteriawith the exact inverse iteration. The lozenge curve corresponds to the stopping
criteria (19), thecircles curvecorresponds to stop the inner iterationwhenω1 < φ1 and
thecirclescurvecorrespondstotheexactcase(performedbytheCholeskyfactorization
of the coefficient matrix). We can observe in Fig. 2 that the proposed inner stopping
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Fig. 1 Correlation between the inner invariancemeasure (30),ω1 andφ1, in the blockCGwith block
size 4, and at the first subspace iteration. The test matrix is preconditioned with Jacobi scaling
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Fig. 2 Invariance of the Ritz
vector v1 over the number of
outer iterations
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criteria force the invariance to decrease until the targeted tolerance is reached, which
occurat the4th inverse iteration.Stopping theblockCGwhenω1 < φ1 enables to reach
thesamebehaviorasintheexactcase,whichisinagreementwiththeanalysisdeveloped
in Sect. 3.2.

In Table4, we present both the total number of inner and outer iterations in the
BlockCGSI algorithm(seeAlgorithm1) to compute anear-invariant subspace associ-
atedwith all eigenvalues in the range ]0, μ[. The requested relative invariance in these
approximated eigenvectors was set to εouter = 10−1, with respect to the convergence
criterionfor theouter loopgivenbyEq. (18),and thestoppingcriterionfor theblockCG
setaccordinglyas in(19).The totalnumberof inverse iterations is indicatedbyInvIt,
and thevalueofbCGItdenotes the sumofall the iterationsperformedby theblockCG
solver in the given BlockCGSI run. The Chebyshev iterations count, ChebIt, incor-
porates all the Chebyshev iterations spent when filtering the starting vectors, as well
as when incorporating new vectors during update of the computational window (see
Algorithm 2). Finally, we also include the total number of floating point operations
performed by the BlockCGSI algorithm (CBCGSI ), in millions (Mflops), computed
as in (26).We varied the filtering level from ξ = 1e − 6 to ξ = 1e − 16, including the
case of no filtering. The block size was chosen to illustrate these cases, e.g. when it is
below, equal or greater than the targeted number of eigenvectors (q). The two cut-off
values of the filtering stepμ f correspond to the cases when it is greater or equal to the
principal cut-off valueμ in Algorithm 1.

Theresults inTable4showthat thealgorithmmanagestocomputethetargetedspec-
tral information independently of the choice of the block size s.Of course, it is optimal
when s is correlated to the actual number of eigenvalues (q) in the range ]0, μ[. In
this case, all the iterations counts are minimized as well as the total number of opera-
tions.With larger block sizes s, the algorithmbenefits from the“guard vectors” effect
(see Sect. 2), and the number of inverse iterations are reduced. A greater block size
also improves the convergence of the blockConjugateGradient. For these reasons, the
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Table 4 Iteration and operation counts as a function of the filtering level ξ

Filter level ξ μ = 1.0e − 3 (2 eigenvalues)

s = 2, μ f = 1.0e − 2 s = 5, μ f = 1.0e − 2

InvIt bCGIt ChebIt Mflops InvIt bCGIt ChebIt Mflops

– 6 240 – 138 2 177 – 469

1e − 6 2 170 105 131 2 98 105 347

1e − 8 2 139 138 125 2 67 138 294

1e − 10 2 109 171 119 2 50 171 278

1e − 12 2 80 205 114 2 26 205 245

1e − 14 2 53 238 110 2 10 238 230

1e − 16 2 35 275 120 2 9 275 256

Filter level ξ μ = 5.0e − 2 (9 eigenvalues)

s = 5, μ f = 1.0e − 2 s = 9, μ f = 1.0e − 2

InvIt bCGIt ChebIt Mflops InvIt bCGIt ChebIt Mflops

– 29 432 – 1347 14 247 – 2033

1e − 6 10 119 630 1333 2 65 105 661

1e − 8 4 69 414 777 2 41 138 530

1e − 10 3 51 342 572 2 23 171 444

1e − 12 3 27 410 595 2 6 205 367

1e − 14 3 11 476 636 2 3 238 387

1e − 16 3 10 542 715 1 3 271 436

Matrix preconditioned with Jacobi scaling

Filter level ξ μ = 1.0e − 2 (3 eigenvalues)

s = 3, μ f = 1.0e − 1 s = 5, μ f = 1.0e − 1

InvIt bCGIt ChebIt Mflops InvIt bCGIt ChebIt Mflops

– 6 96 – 148 4 73 – 243

1e − 6 6 75 28 143 2 44 28 180

1e − 8 6 63 37 134 2 35 37 165

1e − 10 6 53 46 127 2 27 46 153

1e − 12 3 35 55 99 2 19 55 140

1e − 14 3 27 64 96 2 12 64 128

1e − 16 2 19 75 88 1 10 73 130

Filter level ξ μ = 3.0e − 2 (9 eigenvalues)

s = 5, μ f = μ s = 9, μ f = μ

InvIt bCGIt ChebIt Mflops InvIt bCGIt ChebIt Mflops

– 30 191 – 907 17 118 – 1310

1e − 6 4 41 104 358 2 25 52 351

1e − 8 3 20 138 352 2 11 69 274

1e − 10 3 12 170 390 1 3 85 235

1e − 12 3 6 204 434 1 3 102 275

1e − 14 2 4 236 450 1 1 118 295

1e − 16 2 4 270 556 1 1 135 335

Matrix preconditioned with I C(0)
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increase of s does not necessarily imply an increase of the total amount ofwork.When
the block size is smaller than q, the “sliding window” feature enables to obtain at any
rate all the targeted vectors. Our experiments also show that the final number of con-
verged vectors can exceed the actual number of eigenvalues in the range ]0, μ[when
the block size is not equal to this number.

Aswe can observe in Table4, the filtering of the newvectorswithChebyshev poly-
nomialscanimprovequitealot theefficiencyoftheBlockCGSIalgorithm.Asthefilter-
ing level ξ decreases, the number of inverse iterations is reduced because the resulting
filtered vectors get closer to a near-invariant subspace, and the stagnation level of φ j

becomes much lower (see also Fig. 1). This also gives room for larger decrease of the
inner invariance (30) at each inverse iteration. When the block size s is equal to the
number q of eigenvalues in ]0, μ[, the convergence can be reached with a minimum
number of inverse iterations (InvIt = 1 for instance). The number of blockCG iter-
ations is also reduced because of the better spectral properties of the right-hand sides.
Obviously,decreasing thefiltering levelξ also increases thenumberofChebyshev iter-
ations in the filtering process. In that respect, there is a compromise to reach in terms
of total computational cost. The optimal value of ξ , thatminimizes this computational
work (Mflops), also depends on the other filtering parameterμ f , and on the number
oftargetedeigenvaluesq.Wehaveobservedthat it isbetter ingeneral totakethevalueof
the initial filtering parameterμ f not too largewith respect to the actual boundμon the
range of targeted eigenvalues, and also that when the number of targeted eigenvalues
is small, a good filtering level ξ is indicated.

6.2 Improving theCGConvergence

Based on the pre-computed spectral information, we can improve the convergence of
the CG algorithm. To illustrate this, we have solved the two tests systems with both
Init- CG or SLRU- CG. In Fig. 3, we plot the backward error

ρ(i) = ||M−1r (i)||M

||M−1r (0)||M
= ||R−T r (i)||2

||R−T r (0)||2 , (31)

normally used in the preconditioned Conjugate Gradient, where r (i) = b − Ax (i).
Theresultsshowtheeffectivenessof theuseof thespectral informationtoreducethe

total number of iterations.When the system is preconditionedwith Jacobi scaling (see
plotsonthetopofFig. 3), theinitialconditionnumber,oforder108,canevenbereduced
totheorderof103 ≈ λmax/μwiththeuseof thefirst twovectorsassociatedwiththetwo
smallest eigenvalues only.With the use of a larger number ofRitz vectors, the reduced
conditionnumberismaintainedtoaboutthesamelevel,andjustlittleimprovementscan
beexpectedintheconvergencerateof theCGalgorithm.WiththeIncompleteCholesky
preconditioner, the number of critical eigenvalues seems also to be 2 (see plots on the
bottom of Fig. 3).
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Fig. 3 Convergence behavior of Init- CG andSLRU- CGwith different sizesq of the pre-computed
near-invariant subspace.Thesystemis initiallypreconditionedeitherwithJacobiscaling(top)orwith
the standard Incomplete Cholesky (bottom)

Regarding the results inFig. 3, theSLRUpreconditioner is numericallymore stable
than the deflation technique. The SLRU- CG converges linearly while the Init- CG
loosesthelinearrateofconvergencewhenreachingsmallresidualvalues(say10−6with
Jacobi preconditioner and 10−8 with I C(0)). To maintain this linear rate all through
the iterations, the spectral information needs to bemore accurate, aswe can observe in
Fig. 4. Indeed,with largervaluesfor thenumberofcorrectdigits t (seeformula(18)) the
irregularities in the rate of convergence of Init- CG are smoothed gradually. However
the cost for computing amuchmore accurate near-invariant basis can be rather large,
and it can be preferable to simply use the SLRU- CG algorithm if solutions with high
precision are needed.
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Fig. 4 Effect of the accuracy of the spectral information on the convergence behavior of Init- CG

6.3 Cost-Benefit

Wehaveproposed a technique to improve the consecutive solutions of several systems
with the same coefficient matrix but with different right-hand sides. This technique is
based on a two phase approach: we first perform a partial spectral decomposition of
the coefficient matrix M−1A with the help of BlockCGSI algorithm, and we use this
information afterward to accelerate the CG through the deflation of the starting guess
orwith a second level of preconditioning.We illustrate how the gains obtained at each
solve can reduce substantially the total computational cost in the long run.

We begin by presenting the costs in floating-point operations involved in each CG
run(seeSect. 5.3). InFig. 5,weplot thehistoryof thebackwarderrorversus thenumber
offloating-pointoperations.InthecaseofSLRU- CGalgorithm,weobservethathigher
dimension q of the near-invariant subspace does not always bring an improvement in
theconvergence.Theobliqueprojection(28)performedateach iteration is responsible
for the growth of the computationalworkwhen the dimension q gets larger. Aswe can
see on the right of Fig. 5,when q varies from3 to 20 the rate of convergence decreases,
andnogainsareobtaineddespite theeffective reductionof thenumberofCGiterations
(see Fig. 3). As opposed to that, we can observe in the case of Init- CG algorithm (left
of Fig. 5) that we always get improvements with larger values of q.

As we have seen in Sect. 4, the pre-computation of the near-invariant subspace W
has a cost, that we denote byCBCGSI , depends on the dimension of this subspace and
on some working parameters in the BlockCGSI algorithm. To be effective, the gains
obtained in theaccelerationof theconvergenceof thegiven iterative solversmust com-
pensate, in some way, the extra cost for this spectral pre-computation. In Table5, we
present the computational costsCBCGSI (inmillions of operations,Mflops) for three
different cases that correspond to different choices for the cut-off value μ. For each
one,we have computed all the q Ritz vectors corresponding to the q eigenvalues in the
range ]0, μ[. The spectral information is computed with two correct digits (t = 2) in
the case of Jacobi preconditioner, and with one digit (t = 1) in the case of I C(0).
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Fig. 5 History of the backward error as a function of the computational cost, for different sizes q of
the near-invariant subspace. The case q = 0 corresponds to the CG algorithm, for comparison

To illustrate the cost-benefits, we stop the CG iterations when the relative resid-
ual norm ρ(i) (see Eq. (31)) is below 10−8. When preconditioned with Jacobi scaling,
the Conjugate Gradient performs 478 iterations with a cost of 95 Mflops, and when
preconditioned with I C(0), 187 iterations with a cost of 55 Mflops. In this table,
we indicate the number of CG iterations (Nit), the number of floating-point opera-
tions Mflops and the number of amortization right-hand sides (Amor. rhs.), i.e.,
the number of right-hand sides that have to be considered in consecutive solves before
the extra costCBCGSI is compensated. The number of amortization right-hand sides is
given by

Amor. rhs. =
⌊ CBCGSI

CCG − CaCG

⌋
+ 1,

where CCG is the cost of CG algorithm without acceleration, and CaCG is cost of the
acceleratedCG,eitherInit- CGorSLRU- CGalgorithm.Theseinformationsaregiven
foreachcut-offvalueμ.For instance, inTable5,withJacobiscalingandμ = 4.0e − 3,
211 Mflops are needed for the spectral pre-computation, out of which the Init- CG
algorithm achieves convergence in 190 iterations and 38 Mflops, i.e. a reduction of
60% compared to the runwhich does not use this spectral information. Consequently,
the 211 extra Mflops are paid back after four consecutive accelerated solves, com-
pared to four runs of the non-accelerated CG.

Table5 shows that Init-CGandSLRU-CGconverge, ingeneral, in the samenumber
of iterations if the spectral information enough accurate. The main difference is that
SLRUdemandsmoreMflopsas thesizeof thenear-invariant subspace (q) increases.
For this reason, the number of amortization vectors (Amor. rhs) is greater with the
SLRUpreconditioner. In thecaseof thechosenstoppingthreshold(10−8), the Init- CG
approach seems to be preferable.

Insummary, thenumerical resultsdemonstrate that,whenanaccuracyoforder10−8

is required to solve linear systems in sequencewith the samematrix butwith changing
right-hand sides, the cost of pre-computationof anear-invariant subspacewithBlock-
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Table 5 Cost-benefits of CG accelerated with the spectral information

Spectral fact. Deflated x (0) SLRU prec.

μ q C BCGSI CG Amor.
rhs.

CG Amor.
rhs.

Mflops Nit Mflops Nit Mflops

Jacobi
precond.

– 0 – 478 95 – 478 95 –

1.0e − 3 2 184 227 45 4 227 63 6

4.0e − 3 5 211 190 38 4 187 71 9

5.5e − 3 9 427 176 38 8 166 84 39

I C(0)
precond.

– 0 – 187 55 – 187 55 –

1.0e − 2 3 88 89 26 4 80 33 4

2.0e − 2 5 145 79 23 5 74 35 8

3.0e − 2 9 235 75 22 8 62 37 14

CGSIalgorithmislargelycompensatedbythegainsobtainedinthelongrun.Thisisstill
more effective if afirst level of preconditioning is applied to cluster better the spectrum
of the iterationmatrix.

7 Concluding Remarks

The BlockCGSI algorithm computes a near-invariant subspace, associated with the
smallest eigenvalues in M−1A, which combines the subspace inverse iteration and a
stabilized version of the block Conjugate Gradient algorithm. The main focus in this
workwas thecontrol of theaccuracywhensolving the systemwithmultiple right-hand
sides at each inverse iteration, and the good agreement of the stopping criterionused in
the blockCG iteration with the measure of convergence of the inverse iteration itself.
Similarlytootherinexactinverseiterationanalysis(forinstance[9, 11, 20]),weanalyze
the inner-outer iteration in the blockCGSI algorithm, and we propose to measure the
residuals of the system through a Rigal–Gaches type of backward error. Thismeasure
enables the control of the absolute eigenvalue error of the inverse iteration, at the same
time that the system is solved. The control is even more effective at the first inverse
iteration if thestartingvectorsarepreviouslyfilteredwithChebyshevpolynomials.We
alsoderive anexpression, linked to theproposed residualmeasure, that indicateswhen
the inner iterationmust be stopped ifwewant to recover the same type of convergence
as in the exact inverse iteration. Based on the asymptotic behavior of this expression,
we suggest how to avoid unnecessary extra computational work in the blockCG inner
iteration.

Wealso investigated someparticular techniques, like theChebyshevfilteringof the
random generated vectors, and a form of dynamic adjustment of the dimension of the
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current subspace at each inverse iteration. The experiments indicated that Chebyshev
filtering is useful to reduce the total number of inverse and blockCG iterations, and
consecutively to reduce the total amount of work. The “sliding window” technique
is helpful to make the algorithm flexible and robust. Some of the good features of the
BlockCGSI algorithm (see Algorithm 1) also yield in the easy control of the memory
requirements as well as the a priori control of the accuracy.

Oncewehavecomputedthespectral informationassociatedwiththesmallesteigen-
values,weexperimentdifferentstrategiesforimprovingtheconsecutivesolutionoflin-
ear systemswith theConjugateGradient algorithm. In that respect,wehave focusedon
two closely related approaches: (1) deflating the eigencomponents associatedwith the
smallest eigenvalueswith an appropriate startingguess, or (2) using theSLRUprecon-
ditioner that shifts theseeigenvalues away fromzero.The latter appeared tobenumeri-
callymore stable, achieving linear convergence, evenwhen the pre-computed spectral
information was obtained with low accuracy. Nevertheless, the first approach is less
expansive in terms of computational cost, and is a preferable option if the multiples
systems are solved with a not very small stopping criterion.

Theexperiments show that, if the spectrumispreviously clustered,with thehelp for
instance of afirst level of preconditioning, the strategy is very efficient in the reduction
of the total cost of solving consecutive linear systemswith changing right-hand sides.
The extrawork needed to compute the spectral information is payed back after a small
number of consecutive solutions.

The two-phase strategy is also very effective in other applications. In previous
work [19], were it was used to accelerate the simulation of the flow around an airplane
wing,wehaveverified that the reductionof the total amountofcomputational costs can
reach 70%.
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Location Around Big Cities as Central Places

Fernando Barreiro-Pereira

Abstract Space behaviour is very close to imperfect competition: agglomeration
economies lead to increasing returns to scale and physical distance between eco-
nomic agents and markets causes horizontal product differentiation and prices dis-
crimination in goods markets and in land as a good and as an input. An important
target in macroeconomics is the money market analysis, but money market is gen-
erally not considered in microeconomic models and hence neither in most spatial
models although it affects the location. The main aim of this paper is to introduce the
money market in a general equilibrium model to explain the location of consumers
and producers around a bigmonocentric city, where consumers choose optimal quan-
tities of consumption goods, money, land and transport, and households and firms
can rationally choose their location in relation to the central market. Results for firms
indicate that their locations are generally situated beyond those of households with
respect to the central business district, depending on their land needs.

Keywords Central places theory · New economic geography · Spatial general
equilibrium · Location theory · Demand for money · Socially efficient
transportation rates

1 Introduction

At the end of the XX Century, a great part of the global economic activity is mainly
developed around metropolitan areas, which are converting in big cities that enter in
some specialization and competition processes among them for the economic power.
The 600main cities produce 80 percent of global GDP in 2016. The last decades have
witnessed the emergence and the never seen growth of a number of big cities: while
in 1950 there were 2 mega-cities with more than 9 million inhabitants, in 2016 there
were 49, many of them being located in less developed countries. However it happens
that the size seems to be neither a necessary nor a sufficient condition for obtaining
the status of global city. A condition to be a global city is the access to the economic
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power, following the global city hypotheses re-elaborated by Sassen [35]. In most
cases the structure of these large cities is monocentric, although in other cases they
are composed of several centers forming a megalopolis. The causes of the increase in
the size of the cities are related to the levels of per capital income and employment,
accompanied by low transport costs. The approach proposed in this work to explain
the location of households and firms around bigmetropolitan areas is a spatial general
equilibriummodelwhich embodies consumption goods,money, inputs, transport and
land as in Isard [24], but in an imperfect competitive framework as in Thisse [39]
or Fujita et al. [16]. In the present research we assume the existence of a central
place with a central market in their central business district (CBD) immersed in a
metropolitan area without migration flows; the background of this research is related
to the works of von Thünen [41], Alonso [1], Muth [29] in relation to the location
theory, bid-rent and urban residential land use around a monocentric city; Herbert
and Stevens [21] for housing market analysis and Christaller [7], Lösch [27] for their
central place theory. The preliminary works on central place theory focused on the
identification of the geometric conditions that make possible an overlap of regular
structures, but with too few microeconomic foundations to explain the grouping
of households and firms. Early contributions that analyze spatial distribution from
powerful microeconomic foundations use partial equilibrium models. In this sense,
one of the first economic contributions to the theory of central places is due to
Eaton andLipsey [8]who, by assuming concurrence ofmultipurpose shoppingwhich
results in demand externalities, develop a model of spatial competition which gives
rise to the emergence of central places. They consider that firms occupy no space
along one-dimensional market. Quinzii and Thisse [33] consider that consumers are
distributed along a circle, but they use a similar approach to determine the location
of firms that maximizes well-being, demonstrating that without some government
intervention market equilibriummay be inefficient. Fujita [12] also considers a long-
narrow country represented by one-dimensional unbounded location space, where
the firms are inmonopolistic competition. The resultingmodel resemblesmore that of
Pred [31] as that of Chamberlin [5]. Spatial agglomeration is generated in this model
through the product variety in consumption goods. Considering an economy in a
boundless one-dimensional space where the firms have increasing returns, Mori [28]
shows that declines in transport costs of consumption goods promote the dispersion
of industrial activities, resulting in the formation of a megalopolis. In the same
sense and under a long narrow spatial economy, Fujita and Mori [14] extend the
monocentric spatial-economy model of Fujita and Krugman [11] to a multi-city
model whenever the population exceeds a critical value. In the long-run the spatial
system of the economy will approach a highly regular central place system. Later,
Hsu [22] analyzes the city size distribution along a linear segment by means of a
Bertrand oligopolistic competition model in partial equilibrium in which cities of
different sizes serve different functions in the economy, specifying the conditions
under which the central place hierarchy becomes a fractal structure. Hsu and Holmes
[23] used an approach similar to Quinzii and Thisse [33], but extending it to several
sectors. In relation to the spatial general equilibrium models, Fujita et al. [15] use
the framework of the new economic geography to generate a hierarchical city system
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by developing a general equilibrium model for a multi-industrial economy located
in an unlimited one-dimensional space, as an extension of the Krugman [26], Fujita
and Krugman [13] core-periphery model; in this model, as the population increases
a more or less regular hierarchical central place system emerges. Tabuchi and Thisse
[38] also use a model of general equilibrium with monopolistic competitive markets
for industrial sectors with firms that present increasing returns to scale. In the model
the spatial economy described by a circumference of length one and the number,
size and location of cities are determined endogenously as a result that the principle
of hierarchy of the central places theory is triggered by the fall of the transport
costs. Chen and Partridge [6] from Glaeser [17], apply a general equilibrium model
with firms that present constant returns to scale in a central place framework of
spread-backwash adapted toChina by incorporating elements from the neweconomic
geography. Results indicate that market potential in China’s mega-cities is inversely
related to growth for smaller cities and rural communities, that is, growth in the
mega-cities may reduce growth elsewhere.

The objective of the present research is not to verify that the principle of hierarchy
is fulfilled as it happens in most of the works on central places above mentioned
including those of Eaton and Lipsey [8], Stahl [37], although this could be deduced
from the model and its assumptions. The real purpose of this paper is to explain the
location of consumers and producers with respect to the center of a central place,
where we assume that the central market is located. Consumers maximize their
utility conditioned by two constraints: a budget and a temporary one, while producers
maximize profit. The results indicate that consumers are located at a distance from the
central market that depends on whether the land size of their home and their working
time are stipulated or not. If both situations occur, the consumerswill be placed inside
a circular crownwith center in the central market, whose radii are the two distances to
the center. Unlike Eaton and Lipsey [8], in the present research firms have increasing
returns to scale and occupy space. The location of producers depends on the amount
of land they need to produce consumer goods and they may also be located into the
circular ring area grouping together to maintain increasing returns to scale. This can
cause negative externalities that are likely to provoke consumers to cluster at nodes
opposed to firms, forming two inverted regular triangular networks around central
place when transport rates are efficient. Space is incorporated into this model from
three points of view: First, land is considered as a good for the consumers and as an
input to the firms and we suppose that the quantity of land around the central market
is unlimited. Second, consumers have to travel from their homes to the CBD in order
to purchase goods and producers must transport their goods from their factories
or warehouses to the CBD in order to sell them to consumers. Therefore our model
contemplates two kinds of transport: passenger and freight, and there are respectively
two kinds of unitary prices in the transport system. Third, a particular novelty of this
research is the consideration ofmoney in the consumer utility function,which implies
that the transaction money demand may have influence on the location decisions. We
assume in the model that money, transport and production factors markets are in
perfect competition, while the consumer goods and consumption of land markets
are in imperfect competition. The work is structured as follows: Sect. 2 describes
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some hypotheses about the economy. In Sect. 3 we present the consumers choice and
the effects of the money market on location. Section4 describes the case of socially
efficient tariffs for passenger transport. In Sect. 5 is presented the choice of firms and
their location. Section6 describes the distribution of the market areas and, finally,
Sect. 7 draws some relevant conclusions on this work.

2 The Economy

In our economy, we assume that F firms produce n consumption goods (X1, X2, . . . ,

Xn) usingm inputs (L1, L2, . . . , Lm), where labour and physical capital are included.
The vector of goods prices is P = (P1, P2, . . . , Pn), and the vector of inputs prices is
W = (W1,W2, . . . ,Wm). Consumption goods markets are in imperfect competition.
The quantity of input ( j) purchased by a firm ( f ) to all households is L f

j ; and X f
i

is the quantity of product (i) sold by the firm ( f ).The quantities of goods sold by a
firm ( f ) isX f = (X f

1 , X f
2 , . . . , X f

n ) and the quantities of inputs purchased by a firm
( f ) is L f = (L f

1 , L f
2 , . . . , L f

m). Moreover, in this economy there are H households
possessing all inputs and sell them to the firms. Each household provides in his/her
working time several quantities of all production factors Lh = (Lh

1, L
h
2, . . . , L

h
m) to

several firms and the income coming from selling it is applied by the households to
buy some goods, being Xh

i the quantity of good (i) purchased by a household (h). In
addition,we suppose that the households have some property rights on the firms (sh f ),
like profit sharing, for instance. In this economywe assume, to simplify, the existence
of one public firm which is the only land proprietary; land (Z ) is rented monthly to
the households and firms. Land market is in imperfect competition, either as a good
for consumers or as an input for firms, because land is horizontally differentiated by
means of the distance to central market. The unit price of land (q) is not constant
because its value depends on the distance to CBD. Following Muth [29] there is
a distance decay in land prices from the central market to the periphery because
land is scarcer in the center than in the periphery. Land causes non-convexities in
preferences and to avoid the difficulties that this causes, we will assume: (1) Agents
are unable to consume land at more than one location at a time; (2) The economy
has a large number of households. Apart from land, the other non-produced good in
this economy is money. The incorporation of money in a general equilibrium model
implies some problems because real money demand function is homogeneous of
degree one, whereas the demand functions of the consumption goods, consumption
of land and leisure are homogeneous of degree zero in prices and income. This is
related to the fact that in a general equilibrium model goods that transfer wealth over
time, such as money, cannot be mixed with goods that do no transfer it. That is,
we cannot mix goods as flows with goods as stock in a general equilibrium model.
This dichotomy is solved by Kuenne [25] by assuming two kinds of money: stock
and flow. Money as a flow (M) does not embody any utility; its market is perfect
and its price is unique and it makes the role of numerary in our general equilibrium
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model. We assume that the stock money market is exogenous to the model and its
price is the common nominal interest rate. Saving (S) is also considered as a good in
the consumer problem, whose price (r ) is the real interest rate. This economy has a
transport system. Firms transport their commodities contracting some transportation
companies, which only make journeys from the firms to the central market. By
simplicity, the transport of the raw materials from the origin to the factories is not
considered in this problem. We also suppose that the origins of raw materials are
outside the metropolitan area. Travel to work are not considered unless they are to
work in the central market. We assume that transport expenditure is linear according
to the distance covered although this may cause congestion. There are two kinds of
tariffs: One for freight transport (tm) and the other one for passengers transport (tp)
paid by the consumers who make trips to the center and return to home; we assume
that these tariffs are competitive. Apart from that, we assume that the representative
consumer has symmetrical preferences over all differentiated products, and hence
the H households have the same preferences and identical utility functions. This
fact causes identical demand functions. By assuming representative agents, the total
consumption made by the consumers will be nXi H quantities of goods. If an f firm
is representative, each firm will transport once a day to central market nXi (H/F)

quantities of commodities produced.
Every consumer will buy nXi quantities of goods that will be transported to home

from the central market once a day; following Small [36] the cost of this transport is
tpδh plus the cost of the journey from home to central market, that is, 2tpδh , being
δh the home-market distance for each consumer. The transport cost of each group
of nXi amounts of goods is tmδ f assuming that only travels from the firms to the
central market are paid but not their empty transport returns; δ f is the firm-market
distance and tm the rate for freight. Finally, we can assume as known the profits
sharing for consumers, sh f , and the initial quantity of flow money that consumers
own (Mh

s ), where the subscript “s” stands for supply. We also suppose that the sum
of the initial quantities of flow money should be identical to the final sum of flow
money demanded (Md ). Consumers can invest some previous savings (Sh) in the
actual period, but only in flow money form, and therefore, Mh

s = Mh∗ + r Sh , where
r is the saving price or real interest rate and Mh∗ the initial endowment of liquid
money without consider money coming from savings.

3 Consumers Choice and Location

Under the hypothesis above mentioned and taking a working day as a unit of time,
the budget constraint for a consumer h has the following form:

Y h ≡
m∑

j=1

(
Wj L

h
j

)
+

F∑

f =1

(
sh f B f

)
+ M∗

h + r Sh =
n∑

i=1

(
Pi X

h
i

)
+ qh(δh)Zh + Mh

d + 2tpδ
h

(1)
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or in matrix notation, the total income received by the consumer is Y h = WLh+
sh fB f + Mh

s and this total income is spent by the consumer in the purchase of all
goods, including transportation:

Y h ≡ WLh + sh fB f + Mh
s = PXh + qh(δh)Zh + Mh

d + 2tpδ
h (2)

Mh
d is the final quantity of flow money demanded, which contains the actual savings

to be invested it in future periods.W contains the input prices in monetary terms, and
B f are the firm’s profits; Y h is the nominal per capital income. In the Eq.2 the under-
lined terms sh fB f and Mh

s mean that they are known in advance. In the consumer
choice problem, the axiom of rationality implies the maximization of a particular
utility function. The need to avoid Say’s law, or the result that the supply of goods
produced by firms automatically generates its own demand, imply that the agents can
choose among several goods: in the standard macroeconomics model the choice is
between consumption and saving. In other models, the choice occurs between pro-
duced goods and a non-produced good, as in Hart [19]. Here, the consumer chooses
among consumption goods, land, money, and leisure. For a specific consumer, the
utility function may be: Uh = Uh(Xh

1 , X
h
2 , . . . , X

h
n , Z

h, Mh
d ,Ωh). Following Fujita

[10] in his time extended model, the consumer is also subjected to a temporary
constraint which explains the total time used by the consumer (T

¯
during a day, for

example) as the sum of leisure time (Ωh), plus the time of transport, plus the time to
work (labour) and for supplying directly or indirectly other production factors (Lh)
to the firms. Being δh the distance from the consumer to the central market, each
consumer travel this distance twice a day to purchase the Xh goods; if the average
speed of passengers transportation is V , then: V = 2δh/τ , where τ is the time for
transport; hence, we can express leisure as: Ωh =T

¯
−Lh − 2δh/V , being the time T

¯known and fixed.
On the other hand, money is directly incorporated into the utility function and in

a cash in advance constraint, according to the technology of transactions. In order
to warrant the correct aggregation of goods and agents, following Greenhut et al.
[18], the utility function must be quasi-concave, and homogeneous of degree one
in consumption, land, leisure and real money balances, as well as multiplicatively
separable in a per capital composite consumption good (C), consumption of land
(Z ), leisure (Ω) and real money balances (Md = DM/P), being DM the monetary
demand of money as flow and P an index that reflects the level of prices represented
by the average prices:

P =
(

1

1 + n + m + H + F

) (
q0 +

H∑

1

qh +
F∑

1

q f +
n∑

1

PXi +
m∑

1

Wj

)
(3)

where q0 is the land price in the city center; qh and q f are the land prices paid
respectively by consumers and producers; PXi are the prices of consumption goods
and Wj the prices of production factors.
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We consider C as a composite good of all consumption goods Xi , and we assume
that each consumer h demands n × i quantities of composite good Ch . We compute
the Ch index, as follows:

Ch = n
1

1−θ

(
n∑

i=1

(
Xh
i

) θ−1
θ

) θ
θ−1

(4)

where all goods have been placed in symmetrical form, being θ a parameter which
reflects the constant elasticity of substitution between consumption goods. If θ is
large then consumption good are closed substitutes. The value of θ must be θ > 1,
because it is necessary to warranty that the price-elasticity of individual demand
functions cannot be less than one, to obtain an equilibrium. We take the following
index as the price of the composite consumption good (PC ):

PC =
(
1

n

n∑

i=1

P1−θ
Xi

) 1
1−θ

(5)

3.1 Optimal Distance for Consumers: General Case

We assume that consumers in the economy are rational and efficient, that is, they
carry out a conditionalmaximization of utility. The utility function for each consumer
could then be as follows:

Uh = ZαCρ
(
Mh

d

)γ
Ωβ (6)

where the exponents of the arguments must be α + ρ + γ + β = 1. The two con-
straints of the consumer’s problem are:

(1) Budget constraint:
Y h = WLh+ sh fB f + Mh

s = PcCh + qh(δh)Zh + Mh
d + aδh , where aδh is the

transport cost (a = 2tp). All the terms of this budget constraint are measured in
monetary terms.

(2) Time constraint:
T = Lh + Ωh + bδh , that is, the consumer distributes his/her unit of time T (one

working day for example) as time dedicated to the work (Lh), more time dedicated to
the leisure (Ωh), more time dedicated to the transport (bδh),where bδh is the transport
time (b = 2/V ) and V is the average speed of passenger transport in the city. All the
terms of this time constraint are measured in time, including the vector of production
factors (Lh) employed by a household h. Being then Lh = T − Ωh − bδh and by
replacing Lh into Y h = WLh+ sh fB f + Mh

s , so-calling Yn the non- labour income

(Yn = sh fB f + Mh
s ), we will have the following composed constraint, whose terms

are in monetary units:
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Yn + WT − (Wb + a) δh = PCC
h + qh

(
δh

)
Zh + Mh

d + WΩh (7)

where the left side of the equation 7: Yn + WT − (Wb + a) δh is the available, or
disposable income net of transport costs, with which the consumer can buy all the
goods located on the right side of the equation, that is, all goods except transport. The
left side of the Eq.7 is called in the paper as I

(
δh

)
1, that is, I

(
δh

)
1 = Yn + WT −

(Wb + a) δh , which as we can see it is in principle dependent on the distance to the
central market (δh). In the Sects. 3.3 and 3.4, depending of the cases, this disposable
or net income has other different composition that here in Sect. 3.1, being then called
respectively I

(
δh

)
2 and I

(
δh

)
3. By solving themaximization of the utility submitted

to the constraint (7), we have:

Ch = ρ

PC
I
(
δh

)
1 ; Mh

d = γ I
(
δh

)
1 ; Zh = α

q
(
δh

) I
(
δh

)
1 ;Ωh = β

W
I
(
δh

)
1 (8)

These results are the Marshallian demand functions of the consumption goods,
land and leisure and all are homogeneous functions with degree zero, except for
money (degree one). By substituting the Marshallian demands into the direct utility
function, we obtain the indirect utility function:

v = Φ

(
I
(
δh

)
1[

q
(
δh

)]α

)
(9)

where Φ =
[
αα

(
ρ

PC

)ρ

γ γ
(

β

W

)β
]

�= 0. By equaling to zero the derivative of v with

respect to δh we can find the optimum value for δh whenever the indirect utility
function v is concave with respect to δh (v"δδ < 0):

v′
δh

= Φ

[q(δh)]2α
([
q

(
δh

)]α d I(δh)1
dδh

− α
[
q

(
δh

)]α−1 dq(δh)
dδh

I
(
δh

)
1

)
= 0, then,

[
q

(
δh

)]α d I(δh)1
dδh

= α
[
q

(
δh

)]α−1 dq(δh)
dδh

I
(
δh

)
1 , that is,

d I(δh)1
dδh

I(δh)1
= α

dq(δh)
dδh

q(δh)
, but

I
(
δh

)
1 = Yn + WT − (Wb + a) δh and

d I(δh)1
dδh

= −(Wb + a). Replacing it, we
have:

−(Wb+a)

I(δh)1
= α

dq(δh)
dδh

q(δh)
; and hence:

dq

q
= − (Wb + a)

α I
(
δh

)
1

dδh ⇒ α

∫
dq

(
δh

)

q
(
δh

) =
∫ −(Wb + a)

Yn + WT − (Wb + a) δh
dδh

(10)

Resolving integrals (10): α loge
[
q

(
δh

)] = loge[Yn + WT − (Wb + a) δh]
+ loge C



Location Around Big Cities as Central Places 87

where loge C is a constant to be determined next:Beingq0 the unit land price at central
market, when δh = 0 then q

(
δh

) = q0. Therefore: loge C = α loge(q0) − loge[Yn +
WT ]. Substituting loge C by its value:
α[loge

[
q

(
δh

)] − loge(q0)] = loge[Yn + WT − (Wb + a) δh] − loge[Yn + WT ].

And isolating δh from the last expressionwe can know the optimum radial distance
from home to central market (δh1 ):

δh1 = Yn + WT

Wb + a

[
1 −

(
q

(
δh

)

q0

)α]
= I

(
δh

)
1

Wb + a

[(
q0

q
(
δh

)
)α

− 1

]
(11)

where q
(
δh

)
is the unit land price at the distance δh1 in this case. The second part

of Eq. (11) comes from considering that Yn + WT − (Wb + a) δh = I
(
δh

)
1 and

replacing it in the first part of the Eq. (11):

(Wb + a) δh = I
(
δh

)
1

[
1 −

(
q(δh)
q0

)α]
+ (Wb + a) δh

[
1 −

(
q(δh)
q0

)α]
, isolating

δh , we have the second expression of the optimum distance consumer’s home-central
market (δh1 ), now in function of the net income I

(
δh

)
1.

By assuming that (q0/q)αcan tend to one, we can develop the term [(q0/q)α − 1]
by means of a McLaurin series (one term plus the residual) and the second part of
the formulation 11 could be then expressed as follows:

δh1 = α I
(
δh

)
1

Wb + a
loge

(
q0

q
(
δh

)
)

(12)

which is an implicit function that can be solved considering the existence of the
money market.

3.2 Money Market Effects on Location and Optimum Land
Size

From theMarshallian demand function of land as a good, we can see that the amount
of land demanded is dependent of the distance to the centralmarket. The bestmodel to
select the optimum amount of land is the Herbert and Stevens [21] model, which in a
competitive land market, maximizes the total surplus subject to land and population
constraints. However, our analysis considers that the land market is imperfectly
competitive and we also consider that the total amount of land around the central
market is unlimited; the city is expanded still land prices are zero (we assume that
there is not any agriculture land around central place). These facts invalidate the
strict application of the Herbert-Stevens model in our framework and its land and
population constraints to select the optimum land size.

To select the optimum size of land we suppose that the consumer, at least in the
short run, demands money to make his/her transactions according to the Baumol [2],
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Tobin [40] model. By assuming that there are two ways of storing wealth: money and
bonds and that the disposable income to buy consumption goods and land depends
of the distance to the central market, following the Baumol-Tobin model for trans-
actions money demand, the optimum amount of cash money demanded by a rational
consumer who minimizes the total cost of keeping money against bonds in a given
time interval, follows the square root rule:

Mh
d = γ I

(
δh

)
1 =

√
cI

(
δh

)
1

2i
(13)

where c is a fixed cost per transaction which is independent of the amount of bonds
exchanged by money as flow. The term I

(
δh

)
1 is the disposable income, and i is

the nominal interest rate; i is related with the real interest rate (r ) by means of the
Fisher [9] equation: i = r + π e, where π e is the expected inflation rate. Therefore,
the transaction money demand Mh

d increases when the fixed cost c and nominal net
income I

(
δh

)
1 increase, but it decreases when the interest rate i or the expected

inflation rate π e increase. From the above equation we can deduce the optimum
disposable net income:

I
(
δh

)
1 = c

2iγ 2
(14)

which now results independent of the distance. Like I
(
δh

)
1 = Yn + WT −

(Wb + a) δh , replacing I
(
δh

)
1by its value in Eq. (14) and isolating the distance,

we have:

δh = Yn + WT

Wb + a

[
1 − c

2iγ 2
(
Yn + WT

)
]

(15)

When this distance is optimal, Eqs. (12) and (15) must be equal and this means
that:

q(δh) = q0

[
c

2iγ 2
(
Yn + WT

)
] 1

α

(16)

By substituting both I
(
δh

)
1 and q(δh) in the Marshallian demand function of Zh

(Eq. 8), we will obtain the optimum land size at distance δh1 :

Zh
1 = α

q0

(
c

2iγ 2

)1− 1
α (

Yn + WT
) 1

α (17)

We can see that the optimal amount of land purchased by the consumer is increas-
ing with their incomes and wages, but it is inversely proportional to the unit land
price in the center and the nominal interest rate. The latter can be clearly seen in the
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case of mortgages. From the land demand function (Eq.8), we can also see that the
total expenses in land at the optimum distance result independent of the distance, but
it depends on the interest rate:

Zhq(δh) = α I
(
δh

)
1 = αc

2iγ 2
= @ (18)

where @ is a constant if the nominal interest rate (i) is constant. Replacing (18) in
the expression (12), we obtain the optimal distance between the consumer and the
central market:

δh1 = @

2(WV + tp)
ln

(
q0Zh

@

)
= @

2(WV + tp)
ln

(
q0
q1

)
(19)

because by Eq. (18) we know that @ = Zq; q1 is the unit land price at δh1 . We can
see that the optimal distance to which a rational consumer is located with respect
to the center tends to be greater the greater unit land price in the center, the amount
of land acquired and the speed of passenger transport; and the distance tends to be
smaller the higher the consumers wage, the passenger transport rates and the higher
the interest rate and the expected rate of inflation. The empirical verification of the
impact of the money market on space is outside this research. By Eqs. (12) and (19)
we can deduce the expression of the law of land prices from the central market to
the periphery, for a generic unit land price qh to be paid by a consumer h located at
distance δh from the CBD:

qh = q0e
−2( WV +tp )

@ δh = q0e
−2(Wb+a)

α I(δh)1
δh

(20)

On the other hand, by substituting the value of the leisure time selected at the
optimum distance (Eq.8) into the time constraint we can also deduce the optimum
labour time for each consumer, once considered the Eq. (18):

Lh
1 = T − c

2iγ 2

[
α

W + V tp
loge

(
2iγ 2q0Zh

1

αc

)
+ β

W

]
(21)

Here we can see that for a consumer the optimal amount of time devoted to work
tends to be greater the higher his/her wage and the interest rate.

3.3 Consumers Choice Under Fixed Labour Time and Land
Size

Normally the time of labour tends to be fixed depending of each job. For example,
a certain number of consumers work 35 hours a week. We can assume that, at least
for a part of the consumers, labour time keep fixed and its value is Lh = Lh . Besides
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that, as a result of urban housing construction plans, a large part of consumers end up
accepting a medium-sized home, so for these consumers we will assume that their
land size is fixed (Zh = Zh) whatever their distance from the CBD. This situation
is different from the previous general case where consumers-workers could freely
choose the optimal amounts of work and land.

With respect to the utility maximization in the general case (Eq.6), under these
two assumptions the problem of the consumer is now: tomaximize an utility function
whose arguments are only consumption goods and real money balances, because the
other goods are fixed, subject to a constraint where land and labour are fixed:

max〈U = (Ch)ρ(Mh
d )γ 〉 (22)

subject to: Yn + WLh = PCCh + qh
(
δh

)
Zh + Mh

d + αδh or rearranging the com-
posed consumer’s constraint:

I
(
δh

)
2 = Yn + WLh − [

αδh + qh
(
δh

)
Zh

] = PCC
h + Mh

d (23)

where now [I
(
δh

)
2] is the disposable income to buy theC andM goods. By assuming

that ρ + γ = 1, the indirect utility function is:

v = γ γ

(
ρ

Pc

)ρ

I
(
δh

)
2 = γ γ

(
ρ

Pc

)ρ (
Yn + WLh − [

αδh + qh
(
δh

)
Zh

])
(24)

The apparent result of maximizing v respect δh is:

∂
[
qh

(
δh

)]

∂δh
= −a

Zh
(
δh

) =⇒ qh
(
δh

) = q0 −
(

a

Zh

)
δh (25)

This is the land prices law in this particular case, which differs from that of the
general case. In any case, the radial land prices lawmust be unique around the central
place, since for each location there is only a single unit price of land and the highest
of them is q0, while the rest of the prices form circular level curves around the center.
One can discuss which of these two land prices law should prevail or whether the
final land prices law should be an average of the two laws weighted by the number of
corresponding consumers affected. In the absence of concrete data we have chosen in
this work to suppose that the prevailing land prices law is the one that was previously
established by the consumer behaviour in the general case (Eq.20), where there are
no restrictions in the amount of land neither in the working time, because we assume
that most consumers can choose affordable amounts of all goods.

Therefore, maximizing the indirect utility function (Eq.24) with respect to the
distance, i.e., deriving it and equating it to zero, we have:

(Zh)q0

(
Wb + a

@

)
e−( Wb+a

@ )δh2 = a (26)
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where δh2 is the optimal distance from home to the central market for the consumers
with restrictions in land and labour time. By taking natural logarithms in (26), we
will have a new relocation for these consumers:

δh2 = @

Wb + a
loge

(
(Wb + a) Zhq0

α@

)
(27)

At this distance, the consumer alsominimizes the transportation and land expenses
for a given land size. To prove this, we will operate following the minimum expen-
diture approach, knowing that in our problem a = 2tp and b = 2/V and assuming
that the land size obtained (Zh) by the consumer is a determined fixed amount that
satisfies the consumer’s tastes. The minimum expenses condition will be then:

min
δh

〈Zhq0e
−2[(W/V )+tp](δh/@) + 2tpδ

h〉 (28)

conditioned to the optimum land prices trajectory (Eq. 20). By deriving (28) with
respect to distance and equating it to zero, we have the following expression1:

− 2
(
Zhq0/@

) [
(W/V ) + tp

]
e−2[(W/V )+tp](δh/@) + 2tp = 0 (29)

and taking natural logarithms, we obtain the new optimum distance from these con-
sumers to the central market:

δh2 = @

2(WV + tp)
loge

[
Zhq0
@

(
1 + W

V tp

)]
= @

2(WV + tp)
loge

[
q0
q2

(
1 + W

V tp

)]

(30)
Expression identical to (27), where q2 is the unit land price at δh2 . It is very important
to observe now that if the consumer minimizes the land and transport costs, keeping
a fixed land size, he/she will be re-located farther from central market than in the
previous situation (general case), as we can see if we compare expressions (19)
and (30).

3.4 Transport Time as a Part of Leisure or Labour

On the other hand ,some consumers include the time spent in transport to the CBD
within the leisure time or also working time. That is to say, with respect to the
general case, the time devoted to transport is removed from the time constraint of
the consumer because that time is absorbed in leisure or also in the work time. The
rational choice of these consumers will then be:

1Expression called “Muth Condition”, from Muth [29]: At the equilibrium location the marginal
transport cost equals the marginal land cost saving.
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max〈Uh = (Zh)α(Ch)ρ(Mh
d )γ (Ωh)β〉 (31)

subject to T = Lh + Ωh and to:

Y h = WLh + sh fB f + Mh
s = PcCh + qh(δh)Zh + Mh

d + 2tpδh By introducing
the first in the second consumer’s constraint:

Yn + WT − aδh ≡ I
(
δh

)
3 = PCC

h + qh
(
δh

)
Zh + Mh

d + WΩh (32)

The indirect utility function in this problem is:

v =
[
αα

(
ρ

PC

)ρ

γ γ

(
β

W

)β
] (

I
(
δh

)
3[

q
(
δh

)]α

)
(33)

being I
(
δh

)
3 = Yn + WT − aδh . By maximizing v respect to the distance δh we

obtain a new optimal distance to central market for these consumers:

δh3 = I
(
δh

)
3

a

[(
q0

q
(
δh

)
)α

− 1

]
	 α I

(
δh

)
3

a
loge

(
q0Zh

q
(
δh

)
Zh

)
(34)

where I
(
δh

)
3is the disposable income in this case, which is different than I

(
δh

)
1:

I
(
δh

)
1 �= I

(
δh

)
2 �= I

(
δh

)
3. Following the Eqs. (7), (18) and (32): α I

(
δh

)
1 ≡ @ =

α I
(
δh

)
3 + αWbδh1 and hence α I

(
δh

)
3 �= @. The demand function of land in the

present case is Zhq(δh) = α I
(
δh

)
3 and calling α I

(
δh

)
3as � �= @, the Eq. (34) can

be written as follows:

δh3 = �
2tp

ln

(
q0Zh

�

)
(35)

Rearranging the Eq. (35), we have the following expression of the land prices law
in this case:

qh = q0e
−2tp
� δh (36)

which supplies one different land prices lawwith respect to the general law contained
in the Eq. (20), depending on the relationship between expenditures on land� and@.

3.5 Transport as Leisure or Work and General Land Prices
Law

We now assume that the consumers of the previous case are forced to accept the
general land prices law expressed in Eq. (20), instead of governing alone by the
specific law shown in Eq. (36). This is, as above mentioned, because when there are
coexistence of several possible radial laws of land prices, we assume the prevalence
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of the law that derives from the rational behaviour of the consumer when he/she has
no restrictions in land or in working time. So that around the central market there is
only one radial land prices law. The land price-radial distance gradient in our general
case can be calculated from the expressions (18) and (10) as follows:

dq

q
= − (Wb + a)

α I
(
δh

)
1

dδh = − (Wb + a)

Zhq
dδh =⇒ dq

dδh
= −2

(
W
V + tp

)

Zh
(37)

Equating the expression (37) to that obtained by differentiating the Eq. (36) with
respect to the distance, we have:

∂
[
qh

(
δh

)]

∂δh
= −2

(
W
V + tp

)

Zh
(
δh

) = −2

(
tpq0
�

)
e−2tp(δh/�) (38)

where � can be considered as constant because, being α I
(
δh

)
3 ≡ � = @ −

2α(W/V )δh where @ is a constant for a nominal interest rate given, we can also
consider for this case the term (W/V )δh as a constant for simplicity without loss of
rigor. Then, by solving the Eq. (38), we have the optimum distance to the center for
this class of consumers:

δh4 = �
2tp

ln

⎡

⎣ q0Zh

�
(
1 + W

V tp

)

⎤

⎦ (39)

This distance to central market is minor than the corresponding to the previous
case (δh3 ), but it does not minimize land expenses plus transport, something that did
happen in the case of the consumers with restrictions of land and time to work.

4 Socially Efficient Tariffs for Passenger Transport

If we presuppose the existence of a public sector or Government in this model, we
must think that it holds the possibility of Pareto efficiency in public transport prices.
Private transport, as a complementary good of public transport, cannot have too
different prices than public transport. Following Quinet [32], an efficient tariffication
can be applied to the transport sector, but it will have to be adapted to the existence
of non-tradeable goods as security and time used. In this case, the passenger tariff
must maximize the consumer welfare, and its value will be identical to the marginal
transport cost measured in opportunity cost.
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Knowing that the total time of consumer to make his/her total expenses is T =
Ωh + Lh + (2/V )δh , the time spent in transport will be (2/V )δh ; then the monetary
value of the opportunity cost to invest this time in doing this transport isW (2/V )δh ,
where W is the average price of the production factors unused during the time of
transport (opportunity cost).

On the other hand, from the consumer budget constraint we have that: Y h =
PcCh + qh(δh)Zh + Mh

d + 2tpδh . That is, the total price payed by the consumer in
transport expenses is: 2tpδh . The relevant price for the purpose of cost-benefit is the
price that reflects the opportunity cost. Therefore, the price that reflect the opportunity
cost of transporting a passenger must meet:W (2/V )δh = 2tpδh . Hence, the socially
efficient unit rate for passenger transport must be:

tp = W

V
(40)

Up to this point, we have considered the existence of two different land prices
laws. However, to each distance there is an only unitary price of land, and the land’s
price in the center of the city must be similar for these two laws, because it is unique.

Equating the land’s prices in these two laws defined in Eqs. (20) and (36), for the
same distance to central market, we will have:

qh = q0e
−2( WV +tp )

@ δh = q0e
−2tp
� δh (41)

By assuming a socially efficient tariffs system (W/V = tp), we can derive:

@/2 = � (42)

Therefore, under these conditions, the two land’s price laws (20) and (36) are
converted in one unique land’s price law, which we can write as follows:

qh = q0e
−4tp
@ δh (43)

Also, under this land prices law, the four optimal distances calculated in the above
cases, δh1 , δh2 , δh3 and δh4 once the socially efficient tariffs are replaced, they will be
transformed in only two optimal distances. In this manner, under socially efficient
tariffs for passenger transport, we have that:

δh1 = δh4 = @

4tp
loge

(
q0Zh

@

)
= @

4tp
loge

(
q0
q1

)
(44)

and:

δh2 = δh3 = @

4tp
loge

(
2q0Zh

@

)
= @

4tp
loge

(
q0
q2

)
(45)
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Fig. 1 Radial location of
consumers around a Central
Market (O) for land size:
Zh = 1. 1) Distance in the
general case (δh1 ). 2)
Distance when land size and
time to work are fixed (δh2 ).
Land expenses (GZ);
Transport expenses (T R)

being q1 and q2 the unitary land prices at distances δh1 and δh2 . The consumers who
choose the distances δh2 and δh3 minimize land plus transport expenses (see Fig. 1). As
can be seen by subtracting equation (44) from (45), the width of the circular crown
where the consumers are located depends positively on consumer expenditure on
land and negatively on the value of efficient rate of passenger transport in the city.

5 The Choice of Firms

The rational behavior of each producer is to maximize the benefit conditioned by
a production function as follows: ϕ f (X f ,L f , Z f ) = 0, where X f = (X f

1 , X f
2 , . . . ,

X f
n ) and L f = (L f

1 , L f
2 , . . . , L f

m). Land (Z f ) plays now the role of non-produced
input. Urban concentration entails the existence of agglomeration economies that
incorporate increasing returns to scale, as we see in Henderson [20], which could
generate endogenous growth. The production function of the commodities (X f

i )
could then be expressed as follows:

X f
i = ψ f (H, F) f

(
Z f ,L f

j

)
= X f

i

(
Z f ,L f

j

)
(46)

In this function there are two types of inputs: Land (Z f ), whose price results
differentiated by the distance to central market generating imperfect competition,
and the other inputs used by firm (L f

j ), whose markets are assumed to be perfectly
competitive. Following Sakashita [34], increasing returns are warranted by means
of a certain function (ψ f ) that is an indicator of the agglomeration which depends
on the consumers’ number (H ) and on the number of firms (F); it must fulfill the
following requirements: ψ ′

H > 0; ψ "
HH < 0; ψ ′

F > 0; ψ "
FF < 0. Then, for each firm

( f ), the profit function will be:
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B f =
n∑

i=1

[
Pi

(
X f
i

)
X f
i

]
−

m∑

j=1

(
Wj L

f
j

)
− (H/F) tmδ f − q f

(
δ f , Z f

)
Z f (47)

where
∑n

i=1

[
Pi

(
X f
i

)
X f
i

]
is the income coming from selling the X f

i goods; the

production costs are
∑m

j=1

(
Wj L

f
j

)
and the transport costs when final goods are

transported from the factory to the central market are (H/F) tmδ f . The fact that
in the benefit function (47) the unit price of land q f appears as dependent on the
proper land is due to that while in the problem of the optimal consumer choice the
prices of goods and income are given in the short term, in the profit maximization
problem under imperfect competition the cost of using an input, such as land, is
q f

(
δ f Z f

)
Z f , because in this case the land price is not constant: it is a generic

price on the land demand function as input. In both cases the unit price of the land
depends on the distance of the consumer or producers from the center. The demand
function of land as input is unknown but it must be derived from the producers’ profit
maximization. The producers’ rational behaviour is to maximize profit according to
a production function that guarantees technical efficiency:

max〈B f = P
(
X f

)
X f − WL f − (H/F) tmδ f − q f

(
δ f , Z f

)
Z f 〉 (48)

subject to: X f = X f
(
Z f ,L f

)
.

The Lagrangean function, in this case is:

L = P
(
X f

)
X f − WL f − (H/F) tmδ f − q f

(
δ f , Z f

)
Z f + μ f

[
X f − X f

(
Z f ,L f

j

)]

(49)

where μ f is the Lagrange multiplier. Once solved this maximization we can deduce
that the price paid by the producers for using land as an input (q f ), decreases when
the distance to the central market increases:

∂
[
q f

(
δ f

)]

∂δ f
= −Htm

FZ f
(50)

On the equilibrium in land and transportation markets we assume that the unitary
price of land shall be identical at same distance to CBD, for all economic agents. We
know the land prices trajectory paid by the consumers in the area around the central
market; but we do not know if this trajectory is the same to the producers. However,
if we substitute the production function into the profit function, then expression (47)
becomes in:

B f =
n∑

i=1

{Pi
[
X f
i

(
Z f ,L f

)]
X f
i

(
Z f ,L f

)
} −

m∑

j=1

(
Wj L

f
j

)
− (H/F) tmδ f − q f

(
δ f , Z f

)
Z f

(51)
And maximizing the profit function with respect to Z, we obtain:
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B ′
Z = P′

ZX
f + PX′ f

Z −
(
q

′ f
Z Z f + q f

)
= 0 (52)

rearranging this last expression, we have:

X′ f
Z

(
P′
XX

f + P
) =

(
q

′ f
Z Z f + q f

)
(53)

But the term (P ′
i X X

f
i + Pi ) is the marginal income corresponding to the goods

Xi when good markets are in imperfect competition. Knowing that Zhq(δh) =
α I

(
δh

)
1 = @, considering the Marshallian demand functions coming from Eq. (8)

when ρ = α the expenses in the composite good Ch is PcCh = @, and hence the
demand equation of the Xi goods will be Xi = @/Pi ; this demand function is a
rectangular hyperbola and its corresponding marginal income is always zero. Hence,
we can obtain:

q
′ f
Z Z f + q f = 0 (54)

But (q
′ f
Z Z f + q f ) is the marginal income corresponding to the land demand

function (Z f ) as input, whose market is in imperfect competition. Hence, we can
express the demand function of land as input, as follows:

Z f = ©/q f (55)

where in this case (©) is the value of the producer’s expenditures in land as input,
being q f the unitary price of land. Knowing the form of the demand function of
land as an input, we can establish some relations between land and transportation
markets. If we substitute the result (55) in the Eq. (50), we have:

d(q f )

q f
= −Htm

F©
d(δ f ) (56)

By integrating (56), considering © as a constant:

q f = q0e
−Htm
F©

δ f

(57)

this is the relationship between land prices and distance to the central market, from
the point of view of producers. Moreover, central land’s price q0 should be the same
price in the consumer problem than in the producer problem, and hence under socially
efficient tariffs for passenger transport q0 must be the same in the formulations (43)
and (57):

q0 = qhe
4tp
@ δh = q f e

Htm
F©

δ f

(58)

This relation will also fulfill the equivalence between land prices and distances
for both agents, consumers and producers. Hence, if δh = δ f , then qh = q f . By
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identifying coefficients in expression (58) we can obtain the value of the expenses
that each firm make in land as input (©):

© =
(

Htm
4Ftp

)
@ (59)

where as is known, @ is the expenditure that the consumer makes on land as a good.
By introducing the expression (59) into the expression (57), and taking logarithms,

we can know the optimal distance between the producer and the central market:

δ f = F©

Htm
loge

(
q0Z f

©

)
= @

4tp
loge

[(
4Ftp
Htm

) (
q0Z f

@

)]
(60)

Seeing this formulation, the question is how δ f can be related to the distances
δh1 or δh4 , and δh2 or δh3 . That is, what is the relationship between the distance from
the firms to the central market and the two different distances from the consumers
to the central market. On the other hand, if we minimize respect to δ f the total
spending on transportation and land for each producer, subject to the land prices
law of the present problem: minδh 〈(H/F) tmδ f + q f

(
δ f , Z f

)
Z f 〉 subject to q f =

q0e
−Htm
F©

δ f

, we have the same result than in Eq. (60), in this case, coming from the
profit maximization. That is, it is not equal that in the consumer’s case. An important
difference between consumer and producer cases is that we have assumed that the
consumer may have land restrictions while firms do not have them, which may
determine a different location. To the producers the optimumdistance toCBDcoming
from profit maximization is the same as minimizing land and transport costs.

6 Market Areas Distribution

The most important element of a metropolitan area is the central or main town which
has a market area with the highest density of population of the metropolitan area; this
is the city where all goods are traded. If it is a big city is likely to function as a mono-
centric city. Around this central market area there are other market areas with less
population density, where some secondary products aremarketed.We assume that all
market areas have a circular shape around their markets and have the same surface.
If the demand of consumption goods must be supplied throughout the space, then
the central market area should be fully surrounded by other circular areas tangents
as secondary markets. There are two ways to cover the entire space with circular
areas: a square distribution of market areas or a triangular distribution. The square
distribution embodies a loss of surface area covered 5.3 times that the triangular
distribution. Therefore triangular distribution is more efficient than the square. Tri-
angular expansion generates a hexagonal arrangement of the market areas enclosing
a central area where generally a central market is. In the absence of central markets
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market areas space can also be developed in rectangular or parallelogram forms. Due
to the high population density around a metropolitan area and hence the scarcity of
land, it is very likely that a metropolitan area develop its market areas approximately
in an hexagonal form. This form will tend to a hexagonal regular form in absence
of geographical roughness or proximity to a coast line, as mentioned in Christaller
[7], Lösch [27], Beckmann [4] or Parr [30] central place theory approach. Contigu-
ous to the basic hexagonal polygon which determine the central market area there
are other six secondary market areas. The centers of these secondary market areas
into the metropolitan area form other big hexagonal polygon, they have not identical
populations and normally do not fulfill the Zipf [42] law, as occur for example, in
the metropolitan area around Madrid, Spain, which is hexagonally developed. In the
case of Madrid metropolitan area, these sub-centers are: San Sebastian de los Reyes,
Torrejon, Arganda, Parla, Mostoles and Las Rozas.

Moreover beyond themetropolitan area, the hexagonal network can followextend-
ing if the central place has a gravitational force sufficiently powerful concerning to
the economic activity, trade, population or generation-attraction of travels, as there
are no geographical obstacles.

From the equations (44), (45) and (60), let us now see how much land size (Z f
1 )

must be leased by firms that are located at the same distance from the center as
consumers who have no working time or land restrictions (δ f

1 = δh1 ):

δh1 = @

4tp
loge

(
q0Zh

@

)
= @

4tp
loge

(
q0Z

f
1

©

)
= δ

f
1 (61)

so, the relationship between land sizes will be:

Zh

@
= Z f

1

©
(62)

In the same way, when producers are located at the same distance from the center
as consumers with land size and working time restrictions (δ f

2 = δh2 ), we have:

δh2 = @

4tp
loge

(
2q0Zh

@

)
= @

4tp
loge

(
q0Z

f
2

©

)
= δ

f
2 (63)

We can observe then that at distance δ
f
1 = δh1 the land size for the firm is Z f

1 =
(©/@)Zh , while at the distance δ

f
2 = δh2 it will be Z f

2 = 2(©/@)Zh , i.e. twice:
Z f
2 = 2Z f

1 . At the distance δh2 from the center producers and the consumers who
minimize land and transportation costs when land and labour time are fixed, could
coincide. These consumers and the producers will be situated over a circumference
with radius δ f = δh2 around the central market. Moreover, consumers and producers
will not be mixed along these circumferences because generally firms cause negative
externalities on consumers, whose would escape if possible away from the proximity
of the firms. Besides that, from the supply side, the concentration of this firms causes
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increasing returns to scale; these two reasons cause that firms will be concentrated
in a few points along both circumferences with radius δ

f
1 and δh2 .

Wewill see nowwhat are the value of the land pricesq1 andq2 corresponding to the
distances δ

f
1 = δh1 = δ1 and δ

f
2 = δh2 = δ2, regarding q0. By dividing the expression

(45) by (44), we have:

q1 = 2q2 (64)

That is, land price at distance δ1 from central market is double than at distance δ2.
Regarding the expressions (44) and (45) for the consumers’ location, the difference
between the efficient distance when land and labour time are fixed for consumers
(δ2) and the optimum distance (δ1), under an efficient system of passenger tariffs is:

δ2 − δ1 = @

4tp
loge 2 (65)

These two distances form two circumferences with radii δ1 and δ2 around the
central market, and the part of the population with labour time and land size fixed,
who minimizes land and transportation costs, will be located over the circumference
of radius δ2.

Other relevant question is to determine the value of the unitary land price at the
distance δ1, that is q1, relative to the land price al central market q0. For that we will
analyze the slopes m1 and m2 of the land prices law between the central market and
the distances δ1 and δ2, after replacing the results (64) and (65):

|m2|
|m1| =

q1 − q2
δ2 − δ1
q0 − q1

δ1

= e
4tp
@ (δ2−δ1) = 1

2
(66)

Replacing Eq. (65) into (66) we have that: δ1 = @
4tp

loge 2
(
q0
q1

−1
)

, and considering

that Eq. (44) can be written as δ1 = @
4tp

loge
(
q0
q1

)
, equating these two relationships

leads to the following expression:
(
q0
q1

)
= 2

(
q0
q1

−1
)

(67)

which solutions for (q0/q1) > 0 are (q0/q1) = 1, and (q0/q1) = 2. But (q0/q1) = 1
is not a valid solution because q0 > q1 since the unitary land price in central market
(q0) must be more high than at distance δ1. Hence:

q0 = 2q1 (68)
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Regarding from Eqs. (68) and (64) that q0 = 2q1 and q1 = 2q2, we have that
q0 = 4q2. By replacing these results in Eqs. (44) and (45) we obtain that:

δh2 = 2δh1 (69)

And following Eq. (65) these two distances are:

δ1 = @

4tp
loge 2 (70)

δ2 = @

4tp
loge 4 (71)

Equations (64), (69), (70) and (71) determine two concentric circles of radii δ1
and δ2 centered in the central market. These two circles have the property that an
equilateral triangle can be circumscribed to the circumference of radius δ1 while
being inscribed to the circle of radius δ2. This only happens under socially efficient
rates in passenger transport. Consumers are not distributed evenly over the two cir-
cumferences, but are grouped in several villages spread over them. Consumers with
restrictions in land size and in working time are located at the vertices of the triangle,
whose distance to the center is δ2, while consumers who maximize their utility sub-
ject to the budget and time constraints are located in the center of the sides triangle,
whose distance to center is δ1.

That is, consumers would be located in three nucleus on the circumference with
radius δ2 and in three other nucleus on the circle of radius δ1. This triangular arrange-
ment of space ensures the minimum linear distance between the two types of con-
sumers, because the equilateral triangle is the regular polygon with less perimeter.
Following the minimum distance principle, along each circumference consumers
will be concentrated in three nucleus forming an equilateral triangle because of the
externalities caused by firms. Following the principles of minimum distance among
producers and maximum distance among producers and consumers due to industrial
externalities, the producers will tend to be situated between each two nucleus of
firms, forming other three nucleus of industrial concentration with its corresponding
class neighborhoods, composing other equilateral triangle opposite to the triangle
formed by the consumers properly. The six nucleus build a basic hexagonal regular
polygon that will be reproduced through all metropolitan area.

To can develop a sequence based in regular hexagonal forms of market areas, the
optimal unit price socially efficient for passenger transport must reach the following
value, once considered the expressions (70) and (71):

tp = @loge 2

4δ1
= @loge 2

2δ2
= W

V
(72)

which can be compared to the result of Eq. (40).
The firms can also be located beyond the distance δ2, depending on the amount of

land size needed. The expansion of the hexagonal market areas provides new points
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Table 1 Land sizes and unit land prices for firms according to their distances to CBD

Distance to CBD Land size Unit land prices

δ
f
1 = δ1 Z f

1 = Z f
1 q1 = q0/2

δ
f
2 = 2δ1 Z f

2 = 2Z f
1 q2 = q0/4

δ
f
3 = 2δ2 Z f

3 = 8Z f
1 q3 = q0/16

δ
f
4 = √

7δ2 Z f
4 = 22

√
7−1Z f

1 = 19.58Z f
1 q4 = q0/39.16

δ
f
5 = √

13δ2 Z f
5 = 22

√
13−1Z f

1 = 74.08Z f
1 q5 = q0/148.16

δ
f
6 = 4δ2 Z f

6 = 27Z f
1 = 128Z f

1 q6 = q0/256

δ
f
7 = √

19δ2 Z f
7 = 22

√
19−1Z f

1 = 210.51Z f
1 q7 = q0/421.02

δ
f
8 = 5δ2 Z f

8 = 29Z f
1 = 512Z f

1 q8 = q0/1024

δ
f
9 = 2

√
7δ2 Z f

9 = 24
√
7−1Z f

1 = 776.95Z f
1 q9 = q0/1553.9

δ
f
10 = √

31δ2 Z f
10 = 22

√
31−1Z f

1 = 1124.85Z f
1 q10 = q0/2249.7

Source Own elaboration

of space where unit land prices are minimal (Fig. 2). So, the next point belong to an
adjoining hexagon and it will be at a distance δ

f
3 = 2δ2; considering equations (70)

and (62), we have: δ1 = @
4tp

loge 2 = @
4tp

loge
(
q0Z

f
1

©

)
= δ

f
1 . Therefore:

2 = q0Z
f
1

©
(73)

In the same form: δ3 = 2@
4tp

loge 4 = @
4tp

loge
(
q0Z

f
3

©

)
= δ

f
3 . Hence:

16 = q0Z
f
3

©
(74)

By dividing equation (74) into (73) we have that Z f
3 = 8Z f

1 . The next point of
the hexagonal network is located at the distance δ4 = δ2

√
7 from central market:

δ4 = @
4tp

loge 4
√
7 = @

4tp
loge

(
q0Z

f
4

©

)
. By dividing this expression into Eq. (73), we

have: Z f
4 = (4

√
7/2)Z f

1 = 19.58Z f
1 .

By reiterating this process of calculus for the different vertices of the hexagonal
network we can determine the relationship between some possible distances from
firms to the central market and its corresponding land sizes and unit land prices,
which are collected in Table1 and Fig. 2.

That is, under efficient passenger tariffs, if δ f = √
3n + 1δ2, then Z f = 22

√
3n+1−1

Z f
1 , where n must be a positive and entire real number. These last two laws are valid

in a regular hexagonal network if the ratio (n − 3)/4 is a positive, but non entire
real number. Conversely, if a firm needs to have a land size bigger than Z f

1 then the
ratio Z f /Z f

1 must be equal to 22
√
3n+1−1 and the firm must be located at the distance

δ f = √
3n + 1δ2 from the central market. We can also extract the value of the unit

land prices at different distances from CBD as in Table1 and Fig. 2. Under these
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Fig. 2 Unit land prices distribution around the main city in a metropolitan area extended in hexag-
onal form. Beyond δ2 firms are subject to a land prices law that collect the minimum unit land prices
corresponding to the intersections of the price cones of the sub-center cities

circumstances, if the cities system is an hexagonal regular system and by assuming
that each firm needs generally more land size than each optimizer consumer, firms
will be generally located farther than consumers with respect to the central market.
Finally, following Barreiro–Pereira [3], it can be shown that the total number of
equations of the model: (n + m + 4)(H + F + 1) + H + 2, is equal to the number
of unknowns.

7 Conclusions

This work represents a certain extension of the Herbert-Stevens and Alonso-Muth
locationmodels, by using Cobb-Douglas utility functions that generate unit elasticity
demand functions. The aimof thiswork is to achieve the rational and efficient location
of consumers and producers around a big central place, through a non-competitive
general equilibrium microeconomic model where socially efficient fares for passen-
ger transport are assumed. The difference with the models of the new economic
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geography is that the present model emphasizes the role of the central place concept,
crucial to explain the behaviour of large cities, trying to circumvent the importance
of competition among cities. Unlike Eaton and Lipsey [8], in the present research
firms have increasing returns to scale and occupy space. The present research explain
the location of consumers and producers with respect to the center of a central place,
where we assume that the central market is located. Agents are rational and efficient,
that is, consumers maximize their utility conditioned by two constraints: a budget
and a temporary one, while producers maximize profit. The model is closed by the
Baumol-Tobin rule for transaction money demand, which implies that the nominal
interest rate affects the location of consumers and firms in relation to the central
market. The theoretical conclusions of the model indicate that the optimum distance
to which a rational consumer is located with respect to the center tends to be greater
the greater unit land price in the center, the amount of land acquired and the speed
of passenger transport in the city; and the distance tends to be smaller the higher the
consumers wage and the passenger transport rates. More results indicate that con-
sumers are located at a distance from the central market that depends on whether the
land size of their home and their working time are fixed or not. Only the consumers
with time to work exogenously fixed and restrictions in their land size will minimize
jointly their expenses in land and transport costs. They will be located farther than
the consumers without restrictions, with respect to the CBD. When both situations
occur, the consumers will be placed inside a circular crown with center in the central
market, whose radii are the two distances to the center of the two types of consumers.
The width of the circular crown where the consumers are located depends positively
on consumer expenditure on land and negatively on the value of efficient rate of
passenger transport in the city. If this rate is less than the socially efficient then the
city expands. With respect to the optimal distance from the producers to the central
market it results directly proportional to the number of firms, to the unit price of land
in the CBD and to the amount of land purchased; and it results inversely proportional
to the total number of consumers, and to the freight transport rate. Other results of
the model indicate that the optimal amount of land purchased by the consumer is
increasing with their incomes and nominal wages, but it is inversely proportional to
the unit land price in the center and the nominal interest rate. The expenditure on
land of consumers and producers also depends inversely on the nominal interest rate
and therefore also on the expected rate of inflation. This makes the optimal distance
of consumers and producers to the city center tends to be inversely dependent on the
nominal interest rate and the expected inflation rate. Finally, it has also been shown
in this work that the relationship between freight and passenger tariffs should not
be arbitrarily established, because they should be related to the ratio between the
consumption of land by producers and consumers, all of which could be taken into
account by urban planners.
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Predicting Energy Demand in Spain and
Compliance with the Greenhouse Gas
Emissions Agreements

Diego J. Bodas-Sagi and José M. Labeaga

Abstract This paper aims to predict energy demand in Spain for the year 2020 and
analyzes whether this country will be able to meet the European Union’s greenhouse
gas emission reduction commitment. To this purpose, we use climatic data and some
variables tomeasure the economic activity in Spain. The simulated scenario considers
that Spain will begin a process of economic recovery which will result in an increase
in industrial activity with stable climatic conditions. Several techniques including
Simple Linear Regression, Support Vector Machines or Deep Learning have been
proposed to estimate and test the model. The EU agreements imply that by 2020
between 20 and 30% of the consumed energy will come from clean and renewable
energy sources. The conclusions for this paper show that Spain may be on track to
meet its commitments to Europe.

Keywords Energy demand · Greenhouse gas emission · Linear models

1 Introduction

This paper uses a very simple model to predict energy demand in Spain for the 2020
scenario. We based our prediction solely on climatic and some variables proxying
the economic activity. Our main research question is whether Spain can achieve
an energy-mix able to meet the EU commitments by 2020. In general, forecasting
the likely path of greenhouse gas emissions is essential to understanding the range
of possible effects of climate change. The European Commission (EC) and EU
governments agreed on the target of cutting greenhouse gases by at least 20% by
2020 [1], compared with 1990 levels. Hence, it is mandatory for all EU member
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countries to ensure that between 20 and 30% of the consumed energy comes from
clean renewable energy sources. This European action on climate change has its
antecedents inArticles 17, 18 and 19 of theDirective EU2009/28/CEof theEuropean
Parliament and Council of April 23, 2009, which was transferred to Spain by the RD
1597/2011 of November 4, 2011. The United Nations Climate Change Conference
(Paris, December 2015) ratified these agreements. They have been later approved by
the European Union Parliament on October 4, 2016.

The methodology used for forecasting energy demand is manifold. Our model is
parsimonious since we use a specification considering climatic variables (Heating
Degree Days or HDD, Cooling Degree Days or CDD, and volume of rainfall), and
economic variables (activity level proxied only by the Industrial Production Index
or IPI).1 The IPI measures the monthly development of industrial activity, including
extractive, manufacturing, and production and distribution of electricity, water and
gas. This indicator reflects the joint development of quantity and quality, independent
of the influence of prices. The Instituto Nacional de Estadística (INE) builds the IPI
through a survey concerning details of the production of activity branches compiling
monthly data for more than 11,500 establishments. According to [2], the industrial
sector is the largest consumer of electricity, close to 30% of the total amount.

A second objective of this paper is to compare different regression methods with
prediction purposes. We use a Mean Square Error (MSE) criterion to test Linear
Regression, Support Vector Machines for Regression (SVR) and Deep Learning
Neural Networks. Deep Learning usesmachine learning algorithms in order tomodel
high-level abstractions with multiple non-linear transformations. In addition, for
greater accuracy and sensitivity in the evaluation, we divide the original data into a
training set and a test set, as is explained in Sect. 3. The results show that models
based on neural networks significantly improve the MSE criterion when compared
to Linear Regression or SVR. On the other hand, if we consider a scenario for the
foreseeable future consisting of an increase of IPI similar to that given in previous
reporting periods (from November 2008 to December 2011), the simulations predict
an energy demand in December 2019 close to 23 thousand Gigawatt hours (GWh).
According to our data, this demand will contribute to more than 6 million tons of
CO2 emissions to the atmosphere. Considering historical data from Red Eléctrica de
España (REE) and the afore mentioned energy demand there is clear evidence that
this energy-mix will allow Spain to meet EU clean renewable energy agreements
and, that this will cover between 20 and 30% of total demand.

The remainder of the paper is organized as follows: Sect. 2 introduces and de-
scribes the data used for the empirical exercise; In Sect. 3, we explain the different
methods and the results obtained; Sect. 4 shows the results of the simulation of energy
demand at the end of 2019; Sect. 5 concludes.

1We try another economic indicators but since the industry is the largest consumer of energy, we
believe our parsimonious model can fit better and cover our prediction purposes.
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2 The Data

Our aim is to perform the analysis using a parsimonious model fed by as little infor-
mation as possible. This study only uses climatic variables, and a proxy for industrial
production. The model used has been tested against unrestricted models based on
demand specifications and this is our preferred model for prediction purposes based
on a battery of tests. According to a study published by the BBVA Foundation [3],
industry, historically, transfers purchasing power to other sectors. Company profits
evolve in linewith a yearly exchange ratewhich is linked to the IPI. Economic crashes
are likely to be reflected significantly in this index. The Spanish IPI (adjusted sea-
sonally) reached its lowest value since 2007 in April 2012, with an accumulated
depreciation close to 30% during this period [4]. Furthermore, annual series with
mean monthly IPI values for the period 2007–2014, are highly correlated with av-
erage annual expenditure of Spanish households during that period. It is therefore
assumed that the IPI provides an accurate proxy of the economic activity to be used
for estimating different scenarios for economic growth in Spain.

In addition we use climatic variables. Temperature data have been obtained from
several sources, including Agencia Estatal de Meteorología (AEMET) weather sta-
tions, Ministry of Agriculture, as well as data from Red Eléctrica Española (REE)
and from the National Climatic Data Center [5]. Weather stations are located in
different areas of Spain: the north; Cantabrian coast; the Meseta Central; the south
and Mediterranean Coast. Matching this data and taking daily averages, we built a
dataset with daily observations for the period March 1, 2007 to December 31, 2015,
with estimated maximum, minimum and average daily temperature. We obtain daily
rainfall (PREC) in the same way. Data from the islands (Balearic Islands and the Ca-
nary Islands), have not been considered in this paper. Based on these temperatures,
HDD and CDD have been calculated using the following formulas [6], using the first
one that matches:

HDDt =

⎧
⎪⎪⎪⎨
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0 tmint > tbaset
tbaset −tmint
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(1)

CDDt =
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where t represents the day. The results of Fig. 1 are taken as base temperature for
calculating HDD and CDD the value of 15.5 ◦C. In order to match climatic data to
economic data we take mean monthly values.
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Fig. 1 HDD and CDD evolution over the period 2007–2015

Fig. 2 IPI evolution for the period 2007–2015

We also need information about economic activity and prices. Several possibilities
are available such as theGrossDomestic Product (GDP), unemployment data, energy
prices, Consumer Price Index, etc. We have decided to use the Industrial Production
Index (IPI), a monthly time series collected by INE. Available data are shown in
Fig. 2.

For the purpose of comparison, quarterly GDP growth and unemployment data
for the period considered in the analysis are shown in Fig. 3. This data are produced
quarterly by the INE.

Figure 4 shows GDP adjusted taking into account unemployment.
The industrial sector is the largest consumer of electricity (30%),while the services

sector accounts for 13% of consumption [2].
Finally, monthly energy demand data in GWh (from REE and the Ministry of

Industry and Energy) are shown in Fig. 5.
As we observe all these figures it is difficult non-parametrically to decide upon the

best proxy for energy demand. We can assume that a model which rationalizes the
behavior of economic agents, and whose specification includes a proxy for income
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Fig. 3 GPD and unemployment evolution (2007–2015)

Fig. 4 GDP adjusted for unemployment (2007–2015)

Fig. 5 Energy demand in
Spain

(GDP) and proxy for prices of energy could provide an adequate alternative, i.e., a
proper model of demand. However, our main aim is to provide a parsimonious model
to obtain the best possible prediction.
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3 Methodology and Results

In this section we explain the different methods to adjust energy models, while also
processing and showing the results. As mentioned previously, our goal is to predict
energy demand (GWh.)2 in Spain to test whether EU commitments can be achieved.
The EU agreement forces countries to use between 20 and 30% of total energy using
renewable or clean sources. We like to test whether parsimonious models help us in
making accurate predictions of energy demand or energy consumption by only using
climatic variables and the IPI index. Reference [7] shows that the demand for energy
is absolutely inelastic with respect to the price for Spain in the considered period.

3.1 Estimation Methods

Taking into account the no free lunch theorems [8], we chose to evaluate different
methods in order to disentangle the particular preferred technique according to the
testing procedure. Tobemore precise, in this paperweuseLinearRegression, Support
Vector Machines and a Deep Learning algorithm. All these models are implemented
using the R Software [9].

3.1.1 Linear Regression

Linear regression is a simple approach for predicting a quantitative response Y on the
basis of a single regression variable X. It assumes that there is a linear relationship
between X and Y [10]. We can write this linear relationship as:

Y = β0 + β1X + ε (3)

whereβ0 andβ1 are two parameters that represent the intercept and slope. ε represents
the error and contains the variability of the dependent variable not explained by theX.

The regression coefficients β0 and β1 are unknown, and they are estimated on a
sample (β̂0 and β̂1). With these estimated coefficients, we can obtain predictions (Ŷ )
as follows:

Ŷ = β̂0 + β̂1X (4)

There are several approaches to obtain the parameters, one of most common
approaches involves minimizing a Least Squares Criterion (LSC) [11]. Ordinary
Least Squares (OLS) with heteroskedasticity-autocorrelation robust standard errors
[12] has been selected for this work. If Ŷ is a vector of T predictions and Y is the
vector of observed values corresponding to the inputs to the functionwhich generated
the predictions, we choose β̂0 and β̂1 to minimize the residual sum of squares (RSS):

2We denote energy models as we cannot characterize them as demand or supply models. In any
case, we acknowledge our interest in predicting energy consumption.
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RSS =
T∑

1

(Yi − Ŷi )
2 (5)

In practice, we often have more than one predictor, soMultiple Linear Regression
(MLR) is used. Suppose that we have k different predictors, the MLR model takes
the following form:

Y = β0 + β1X1 + β2X2 + β3X3 + . . . + βk Xk + ε (6)

In this case, k coefficients have to be estimated, let say β̂1, β̂2 and β̂k . In this case,
we can obtain predictions (Ŷ ) as follows:

Ŷ = β̂0 + β̂1X1 + β̂2X2 + β̂3X3 + . . . + β̂k Xk (7)

The values β̂0, β̂1, β̂2 and β̂k that minimize Eq.5 are the multiple (ordinary in our
case) least squares regression coefficient estimates [13].

3.1.2 Support Vector Machines

Support Vector Machines (SVM) has been widely used for function estimation [14,
15], known for our case Support Vector Regression (SVR). SVM is a generalization
of a classifier called the maximal margin classifier [16] in order to accommodate
non-linear class boundaries. SVM can be applied not only to classification problems
but also to the case of regression. It contains all the main features that characterize
maximum margin algorithm: a non-linear function is learned by linear learning ma-
chinemapping into a high dimensional kernel induced feature space and, the capacity
of the system is controlled by parameters that do not depend on the dimensionality of
the feature space. In SVR, the input X is first mapped onto a m-dimensional feature
space using some fixed (nonlinear) mapping, and then a linear model is constructed
in this feature space. Using mathematical notation, the linear model (in the feature
space) f (X,w) is given by:

f (X,w) =
k∑

1

wi gi (X) + b (8)

where gi (X) and i = 1 . . . k denotes a set of nonlinear transformations. b is known
as the bias term. The quality of estimation is measured by the loss function
L(y, f (X,w)). SVR uses a type of loss function called ε insensitive loss func-
tion [14]:

L(y, f (X,w)) =
{
0 |y − f (X,w)| ≤ ε

y − f (X,w)| − ε otherwise
(9)
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In addition to use an ε insensitive loss function, SVR tries to reduce model com-
plexity by minimizing ||w||2 (see [17], for additional details). SVR has been adjusted
using e1071 R package [18]. In our work, we have use a linear kernel and epsilon
support vector regression function.

By default, ε takes value of 0.1. But in order to improve the performance of the
support vector regression we have executed a grid search looking for the best value
for ε. There is also a cost parameter which we can change to avoid overfitting. The
process of choosing these parameters is called hyperparameter optimization [19], or
model selection. We do not have enough data to consider an extra validation set to
caliber these parameters.

3.1.3 Deep Learning Neural Networks

Some techniques try to replicate the efficiency and robustness by which the human
brain represents information and obtains knowledge. These works motivated the
emergence of the subfield of deepmachine learning, which focuses on computational
models for information representation that exhibit similar characteristics to the neo-
cortex [20]. Artificial Neural Networks (ANNs) are a family of deep learning models
inspired by biological neural networks and are used to estimate or approximate func-
tions that can depend on a large number of inputs and are generally unknown. ANNs
are generally presented as systems of interconnected neurons that exchange mes-
sages among them. The connections have numeric weights that can be tuned based
on experience, making neural nets adaptive to inputs and capable of learning. This
technique has been extensively used for forecasting tasks with some good results
[21]. As disadvantages we can quote its black box nature, its greater computational
burden, its proneness to over-fitting, and the empirical nature of model development.
A neural network can be thought of as a network of neurons organized in layers. The
predictors or input form the bottom layer, and the forecasts or output form the top
layer. Once we add and intermediate layer with hidden neurons, the neural network
becomes non-linear. Configuring the neural network, activating function, layers, etc.,
are not trivial tasks.

3.2 Empirical Results

For accurate assessment, we randomly divide the original data into two sets (getting
each set data from all the months), a training set and a test set. The test set contains
data from January 2008 to June 2008 and from July 2014 to December 2014. The
remaining data is used for training. We have randomly selected different months and
years to insert some variability in the data.
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Fig. 6 Results on test set using linear regression

As explained previously, our main objective is to estimate the parameters of the
model represented by the following equation:

ENERGY_DEMAND = β0 + β1HDD + β2CDD + β3PREC + β4 I P I
(10)

The following figures display results graphically, in each case, we first show
predicted values using test set, and subsequently, using training set. The following
2 figures refer to results using linear regression with ordinary least squares method
(Figs. 6 and 7):

Using SVM, we obtain the following graphics (Figs. 8 and 9):
As we show in the next section, SVR error (MSE) exceeds that of the classical

regression MSE.
In the case of Deep LearningNeural Networks, the architecturewe have employed

consists of two hidden layers with the same number of neurons. The neural network
is trained with stochastic gradient descent using back-propagation. This architecture
has been tested with 20, 50, 100 and 200 neurons in each layer. The results are shown
Table 1. These results consider a base temperature value of 15.5.

Table 1 shows a known problem of over-fitting exhibited by this method, which
may occur when using 100 and 200 neurons per layer. In these cases, the MSE
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Fig. 7 Results on training set using linear regression

using the training set drops significantly compared with those obtained by other
architectures. It becomes harder to avoid over-fitting with small-data and sometimes
simpler models are more appropriate. However, the MSE using the test set is greater
compared to those obtained using 50 neurons per layer. Figure 10 shows prediction
results using the training set and 50 neurons in each layer (using a base temperature
value of 15.5). The comparison of observed and predicted values in Fig. 10 indicates
that the model adjusted through Deep Learning Neural Networks shows a rather high
accuracy.

MSE using the training data is lower than using a simpler architecture, but it is
significantly higher when the test sample is considered. Therefore, we will work with
50 neurons in each layer according to the tests reported in Table 1. Results using this
architecture are shown in Fig. 11.

According to the graph, it may seem that this technique obtains a better approach.
This feeling is confirmed by the comparison we will carry out next.

3.2.1 Comparison of Different Methods

To compare the results obtained by different techniques, we show in Table 2 the
MSE on the test sample taking into account each technique and a base temperature.
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Fig. 8 Results on test set using SVR

This comparison of the three procedures used points toward the use of deep learning
results for predicting total energy demand. As we have previously explained, Linear
Regression uses Ordinary Least Squares Criterion.

We can also show results using the coefficient of determination (R2). An R2 of
1 indicates that the regression line perfectly fits the data. Table 3 illustrates that the
deep learning technique obtains the best value.

Coefficients for HDD, CDD, and intercept parameter are significant (p-value less
than 0.001). Tests do not find significance for PREC (precipitations) or IPI coef-
ficients. Despite the fact that industry sector is the largest consumer of electrical
energy taking into account other productive sectors such as services (it has been
mentioned in Sect. 2), models have not found significance for the IPI coefficients.
We tried again using GDP (quarterly GDP growth in percentage) instead of IPI. In
this case, and using linear model we found little significance for GDP coefficient
(p-value between 0.1 and 0.05, and no find significance using other models). But we
obtain worse results for MSE and R2 in all cases and with all the techniques. For
example, with a base temperature value of 14.5 the linear model using IPI obtains a
MSE value in test of 973,182.1, but using the GDP as input variable instead of the
IPI, the obtained value is 1,039,117. For this reason, we have chosen not to include
GDP in this model.
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Fig. 9 Results on training set using SVR

Table 1 Deep Learning Neural Network experiments

Neurons in layer MSE in test MSE in training

20 1,168,439 256.4161

50 346,196.6 365.0929

100 385,315 125.3764

200 479,269.1 229.5746

Regarding the execution time in seconds required for each technique, the linear
model obtains the results in 0.0017s, the SVR lasts 55 s and deep learning meth-
ods take 2.8min (on a laptop with 2,9 GHz Intel Core i5 and 8 GBs of RAM).
We can conclude that for the problem at hand the lower values of the MSE criterion
compensates for the longer execution time.

Tuning SVR parameters implies to increase execution time from 0.65 s to 46. Grid
search sets the ε value to 0.1 using 14.5 as base temperature, while 0.8 and 0.7 have
been the selected values for 15.5 and 16.5 base temperature values respectively.

Figure 12 shows results looking for ε best values, taking into account cost opti-
mization and a base temperature value of 16.5.
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Fig. 10 Deep Learning Neural Networks applied to training set

In addition to comparing the different methods, we validate our model doing an
analysis of variance (ANOVA) of monthly residuals. We do not detect evidence of
heteroscedasticity (p-value is 0.19 greater than the reference value 0.01). However,
when we are working with aggregated monthly data, the volume of information is
insufficient for a given year. If we join residuals from all the time period, the ANOVA
shows evidence of significant differences between the prediction errors generated for
each technique.

3.3 Adjusting a Rational Demand Model

The previous model has not properly derived from any optimization problem taking
into account behavior of economic agents. We postulate here a model that takes into
account energy demand as a function of income and prices. (see, for instance, [22]).
Some readers might find it strange that in the linear model, IPI coefficient shows



120 D. J. Bodas-Sagi and J. M. Labeaga

Fig. 11 Results on test set using Deep Learning Neural Networks

non statistical significance. In this context, we have tried other models to improve
the MSE and R2 results. The main difference is to consider the GDP deflator. The
GDP deflator is a measure of price inflation/deflation with respect to a specific base
year. Taking the nominal GDP (in millions of euros) and the GDP deflator we obtain
the real GDP, we express it in logs. Now, to estimate energy demand we use the
following equation:

ENERGY_DEMAND = β0 + β1HDD + β2CDD + β3PREC+
β4log(

nominalGDP

GDPde f lator
)

(11)

The obtained MSE and R2 values have been the following (Table4).
We can also show results using the coefficient of determination (R2) (Table5).
Analyzing significance for coefficient values, we can conclude that coefficients for

HDD, CDD, and intercept parameter are significant (p-value less than 0.001). Again,
tests do not find significance for PREC (precipitations) or nominalGDP

GDPde f lator coefficients.
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Table 2 MSE of different methods

Base temp Linear MSE test SVR MSE test Deep Learning MSE
test

14.5 973,182.1 1,027,007 511,557.6

15.5 970,816 1,017,013 346,196.6

16.5 968,461.8 1,007,333 358,933.9

Table 3 R2 of different methods

Base temp Linear R2 test SVR R2 test Deep Learning R2 test

14.5 0.439 0.392 0.748

15.5 0.440 0.392 0.801

16.5 0.442 0.374 0.708

Fig. 12 Tuning ε value for SVR and base temperature 16.5

We have also evaluate results applying natural logs to energy demand as next
equation shows:

log(ENERGY_DEMAND) = β0 + β1HDD + β2CDD + β3PREC+
β4log(

nominalGDP

GDPde f lator
)

(12)
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Table 4 MSE using nominal GDP and GDP deflator

Base temp Linear MSE test SVR MSE test Deep Learning MSE
test

14.5 1,120,323 1,084,567 2,849,661

15.5 1,118,067 1,081,096 1,238,948

16.5 1,115,824 1,077,402 1,979,832

Table 5 R2 using nominal GDP and GDP deflator

Base temp Linear R2 test SVR R2 test Deep Learning R2 test

14.5 0.35 0.37 Not applicable

15.5 0.36 0.38 0.29

16.5 0.36 0.38 Not applicable

Table 6 R2 using nominal GDP and GDP deflator - taking logs in energy demand

Base temp Linear R2 test SVR R2 test Deep Learning R2 test

14.5 0.35 0.27 Not applicable

15.5 0.36 0.36 Not applicable

16.5 0.36 0.32 Not applicable

In this case, R2 results (we cannot compareMSE values using different predicting
values) are shown in Table 6.

Analyzing these results we can conclude that inserting in the equation the real
GDP does not improve the predictive power of the model.

We can now add some extra information to the model taking into account the
energy prices (EP - index with base = 100) and the CPI (monthly). The goal is to
evaluate is this extra information is useful to improve the prediction. The Eq. 13
models this case:

ENERGY_DEMAND = β0 + β1HDD + β2CDD + β3PREC+
β4log(

nominalGDP

GDPde f lator
) + β5log(

EP

CP I
)

(13)

Tables 7 and 8 show the results. This model does not improve the first model MSE
or R2.

Interpreting the results, we can conclude that coefficients for HDD, CDD, and
intercept parameter are significants (p-value less than 0.001). We found slight signif-
icance for β5 coefficient (p-value between 0.1 and 0.05. We don’t find significance
for PREC (precipitations) or nominalGDP

GDPde f lator coefficients).
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Table 7 MSE adding information about energy prices and CPI

Base temp Linear MSE test SVR MSE test Deep Learning MSE
test

14.5 1,141,071 1,257,050 867,865.4

15.5 1,138,936 1,236,390 1,773,467

16.6 1,136,809 1,222,573 1,953,979

Table 8 R2 adding information about energy prices and CPI

Base temp Linear R2 test SVR R2 test Deep Learning R2 test

14.5 0.34 0.27 0.34

15.5 0.34 0.29 Not applicable

16.6 0.34 0.29 Not applicable

3.3.1 Taking into Account Nominal GDP and Population

Other option is to take into account nominal GDP and some regressors related to the
steady-state, such as the Spanish population growth rate, since the estimation period
falls within the long term. The following equation describes this case.

ENERGY_DEMANDt = β0 + β1HDDt + β2CDDt + β3PRECt+
β4nominalGDPt + β5log(

SpanishPopulationt
SpanishPopulationt−1

)
(14)

However, this model also does not improve the initial results as shown below
(Tables9 and 10).

Table 9 MSE adding information about nominal GDP and population growth rate

Base temp Linear MSE test SVR MSE test Deep Learning MSE
test

14.5 1,091,721 166,109,399 940,805

15.5 1,088,966 7,652,457 1,036,323

16.6 1,086,226 432,212,828 1,289,250

Table 10 R2 adding information about nominal GDP and population growth rate

Base temp Linear R2 test SVR R2 test Deep Learning R2 test

14.5 0.37 Not applicable 0.46

15.5 0.37 Not applicable 0.40

16.6 0.37 Not applicable 0.26
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Interpreting the results andusing the linearmodel and theNeuralNetworks,we can
conclude that coefficients for HDD, CDD, and intercept parameter are significants
(p-value less than 0.001). SVR obtain the worse results with this model. We do not
find additional relations.

4 Simulating Energy Demand for 2020

We simulated a scenario that assumes that the IPI in Spain will grow continuously in
the future, repeating previous growth rates. The simulation process takes into account
the following hypothetical scenario:

1. IPI: It is assumed that Spain began a process of economic activation resulting
in an increase in industrial activity. Therefore from January 2016 we will begin
repeating (backwards) the data we have fromDecember 2011 to November 2008.
This implies the assumption that, in December 2019, the value of IPI will be
127.39. Our assumption is based on the evolution of IPI over the last years. The
average annual growth rate for the period January 2014 to November 2016 (last
data available) has been 2.24. The average annual growth rates for 2015 and 2016
have been3.24 and 2.04, respectively. These values lead us to trust our assumption.

2. Climatological data: We have assumed that weather will not change over the
previous two years. Therefore, for eachmonth and for the HDD, CDD and rainfall
variables we take means of the corresponding month in the last two years. CDD
and HDD have been calculated with a base temperature value of 15.5 ◦C.

We are not assuming the direction of the time series relationship. We are just
assuming a counterfactual and we try to evaluate our assumptions using this coun-
terfactual.

Always according to the proposed scenario, the Deep Learning Model estimates
that energy demand in December 2019 will be 23,109.17 GWh. If we use a base tem-
perature of 14.5 ◦C the prediction for energy demand in December 2019 is 22,818.62
GWh while with a value of comfort of 16.5 for the base temperature, the expected
energy demand according to the model’s prediction will be 24,364.65 GWh.

The amount ofCO2 emitted is important for its environmental impact. Therefore,
this paper also includes a small exercise about this issue. According to the Electricity
Observatory data of World Wildlife Fund (WWF), in December 2015, Spain had
issued an average of 0.269kg of CO2 per KWh consumed. Thus, if we consider an
expected demand for December 2019 in the average scenario of 23,109.17 GWh,
and assuming that the ratio of CO2 emissions is maintained, Spain will emit into
the atmosphere more than 6.2 million tons of CO2. Introducing uncertainty in the
scenarios based on the temperature of comfort, the interval of emissions will move
from 6.1 to 6.5 million tons. Given that the Paris agreement on emissions will enter
into force by the end of 2016, there is place for technology, for the energy mix and
for efficiency to achieve our commitments.
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5 Conclusions

We can observe the following facts in the demand for energy in Spain in recent years:

1. Since March 2007, according to available data, the monthly energy demand has
been higher than the amount we simulated for December 2019 only 11 times.
But since January 2013, only in July 2015 energy demand exceeded this level,
reaching a value of 23,476 GWh.

2. According to a report by REE, in July 2015, generated of electricity from renew-
able energy sources reached 30.7% of the total energy produced. However, this
figure includes renewable thermal energy (1.8%), which is obtained by burning
waste and is thus a contaminant. In any case, there is a potential to reach the goal
of 30% energy produced from renewable sources.

In 2005 electricity demand in the Iberian Peninsula amounted to 246,187 GWh.
While electrical consumption in the islands was 14,517 GWh amounting to a total
of 260,704 GWh for the whole of Spain. On the other hand, we believe that the
ratio of CO2 emissions per KWh consumed in 2005 is higher than the ratio expected
for 2019. This is because electricity technologies continue evolving towards more
sustainable production methods, for example, increasing renewable energy sources.
If the emissions in 2019 is 0.269kg of CO2 per KWh consumed) we predict that the
volume of CO2 emissions at the end of 2019 will correspond to around 75 million
tons (between 6.1 and 6.5 million tons per month).

We think that this kind of exercise evidence illustrates the need for detailed,
downloadable, easily usable and validated open data about energy consumption and
emission that allows us to analyze whether the initial objectives about greenhouse
gas emissions are going to be achieved. As a preliminary conclusion, our evidence
suggests that Spain may be on track to meet its commitments to European Union.
These agreements imply that, by 2020 between 20 and 30% of the consumed energy
comes from clean and renewable energy sources. We have serious doubts about how
much could be achieved in reducing pollutant gases. However, the clean and renew-
able energy source development can be achieved by external factors to the regulation
itself or, by developing energy policies aimed at the introduction of a sustainable mix
(following the path initiated in the early 2000s), by the development of real sectors
energy-related where Spain was considered highly innovative in terms of technology
and by consumer awarenesswith improving energy efficiency. This productivemodel
should boost activity and employment in relation to energy efficiency and clean
energy production.
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Simulation and Advanced Control of the
Continuous Biodiesel Production Process

Ana S. R. Brásio, Andrey Romanenko and Natércia C. P. Fernandes

Abstract The biodiesel industry is characterized by high fluctuations of the prices
and a multiplicity of biological raw material sources. On the other hand, there exist
strict quality standards imposed on the final product. Because of these factors, it is
important for biodiesel plants to run their processes in the most efficient manner in
order to stay competitive. One of the ways to achieve this is the use of model based
approaches for design, operation, and control. In this work, that focuses on the latter
two areas, a first-principle dynamic model of the main units of a biodiesel plant
is developed and applied in two situations: for open-loop simulation as well as for
process optimization. The former demonstrates the response observed in the process
variables when the plant is subjected to a series of disturbances in the input variables.
The later is built in the context of nonlinear model predictive control that determines
the optimal profiles of the manipulated variables taking into account process and
quality constraints as well as the associated reactant and energy costs.

Keywords Continuous biodiesel production · Process modeling · Nonlinear
model predictive control

Nomenclature

c∗
p molar specific heat capacity J mol−1 ◦C−1

C molar concentration mol m−3

d vector of disturbances various
Ea activation energy J mol−1

F mass flow rate kg s−1

n molar amount of molecules mol
nd number of disturbance variables dimensionless
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nm number of control variables dimensionless
no number of output variables dimensionless
ns number of state variables dimensionless
nθ number of parameter variables dimensionless
k specific reaction rates constants m3 mol−1 s−1

k0 pre-exponential factor m3 mol−1 s−1

m control horizon length dimensionless
M molar mass kg mol−1

N molar flow rate mol s−1

N ′ molar flow rate of the final biodiesel stream mol s−1

p predictive horizon length dimensionless
r overall reactions rates mol m3 s−1

R the ideal gas constant J mol−1 ◦C−1

V total volume m3

t continuous time s
T temperature ◦C
u vector of manipulated variables various
u∗ vector of optimal manipulated variables various
U augmented vector of initial control profiles various
U∗ augmented vector of optimal initial control profiles various
x molar fraction mol mol−1 ∗
x ′ molar fraction of the final biodiesel stream mol mol−1

w weighting scalars various
y vector of output variables various
y∗ vector of optimal output variables various
y′ mass fraction of the final biodiesel stream kg kg−1 ∗
Y augmented vector of initial output profiles various
Ỹ augmented vector of output predictions various
z vector of state variables various
z∗ vector of optimal state variables various
Z augmented vector of initial state profiles various
Z∗ augmented vector of optimal initial state profiles various
Z̃ augmented vector of state predictions various
Z̃∗ augmented vector of optimal state predictions various
∗ When explicitly stated, the values of y′

E and of xlt,M might be expressed in %(m/m) and %(n/n), respectively

ΔHr heat of reaction J mol−1

Δt sampling time s
H Heaviside function dimensionless
ρ density kg m−3

Ψ cost function dimensionless
φ generation-reaction term mol m−3 s−1

θ vector of parameters various
ξ split fraction of the input component to the light phase dimensionless

Acronyms:

TG triglycerides
DG diglycerides
MG monoglycerides
E esters of fatty acids
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G glycerol
M methanol
O oil

Subscripts:

H heat exchanger
R reactor
D decanter
hv heavy phase in the decanter
lt light phase in the decanter
L lower bound
U upper bound
sp setpoint
ref reference

1 Introduction

The operational costs (which include raw materials, utilities, labour, supplies, and
general work) constitute a major part of overall biodiesel production costs [6]. This
fact is perhaps in the basis of the high fluctuations of biodiesel prices and in the
profitability margins.

In spite of the diversity and the high variability of the raw material that ranges
from virgin or waste vegetable oils to algae and even to animal fats [12], commercial
biodiesel has to comply with standard requirements in what concerns its composition
and characteristics. In particular, the standard EN14214 [7] specifies that aminimum
of 96.5% (m/m) of fatty acid methyl esters should be present in the final product.

In this context, the economic success of any biodiesel plant depends on its ability
to operate the production processes in the most efficient way. Although model based
solutions for operation and control of biodiesel plants are of importance in this regard,
the use of such tools in biodiesel industry is not widespread yet. Some contributions
in this area may be found in the literature [1, 3–5, 11, 15].

The present work provides a holistic model based approach for the operation of
a continuous biodiesel production line. A model of the line (constituted by the key
units reactor, heat exchanger, decanter, washer, and dryer) is developed taking into
account the specifics of the control and optimization context. A control strategy is
designed to ensure an efficient operation while complying with the stringent quality
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Fig. 1 Schematic representation of the system

requirements. A use case demonstration is developed to show the benefits of the
approach.

2 Mathematical Model

2.1 The System

The systemdepicted in Fig. 1 transforms a biological rawmaterial (oil) into biodiesel.
It consists on five operational units installed in series: a reactor, a heat exchanger, a
decanter, a washer, and a dryer, working in continuous mode.

Oil and methanol enter the reactor, where appropriate mixing ensures an effective
contact between oil triglycerides (TG) and methanol (M). Under convenient temper-
ature conditions and the action of a catalyst, the transesterification reaction between
TG and M occurs yielding esters of fatty acids (E) and the sub-product glycerol (G).
The overall reaction comprises three steps [13]:

TG + M
k1−⇀↽−
k2

DG + E

DG + M
k3−⇀↽−
k4

MG + E

MG + M
k5−⇀↽−
k6

G + E ,
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whereDGandMGstand for di andmonoglyceride, respectively. The reactingmixture
exits continuously the reactor at a flow rate that warranties a constant level in the unit.
Since a methanol to oil molar ratio around 6:1 is typically used (i.e., there is excess
of methanol), the mixture leaving the reactor contains mainly ester, glycerol, and
methanol together with residual amounts of not reacted tri, di, and monoglycerides.

The required separation between ester and glycerol is difficult at the relatively
high temperature of themixture that exits the reactor. Therefore, that stream is cooled
down in a heat exchanger before it enters the decanter, where the separation takes
place.

In the absence of mixing and under the action of gravity, the immiscible com-
pounds E and G tend to go apart forming two individualized phases: a light (less
dense) upper phase containing almost all the ester and a heavy (more dense) down
phase containing almost all the glycerol. Methanol splits over both phases while
virtually all residual glycerides migrate to the light phase because of their affinity
with ester molecules. The down heavy phase (hv) leaves the bottom of the decanter
at a flow rate that ensures a constant level of the heavy phase inside the unit. The
upper light phase (lt) exits the decanter by overflowing a baffle located near its end.

The crude biodiesel exiting the decanter as the light phase is then sent to the
washer to remove any remaining methanol, glycerol, or catalyst. Finally, the crude
biodiesel undergoes the process of drying that removes the remaining water to the
level that is compliant with the biodiesel quality specification.

2.2 The Model

Reactor

A mathematical model that describes the behavior of the reactor can be obtained
by applying mass and energy balances to the reaction unit. Such balances take into
consideration the chemical andphysical phenomenahappening in the reactor (pointed
out in Sect. 2.1).

With the purpose of writing the model equations in a more compact way, two sets
are defined as

S = {oil, methanol} = {O,M},
I = {M, TG, DG, MG, G, E},

which are the set of input streams in the reactor and the set of chemical species
involved, respectively.

Assuming that the mixture is perfect, the evolution of the liquid inside the reactor
in terms of its composition (expressed by the molar fractions of the six chemical
species) and temperature can be predicted by
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nR
dxR,i

dt
=

∑

s∈S
Ns (xs,i − xR,i ) + φi (i ∈ I) , (1a)

nR c
∗
p,R

dTR
dt

=
∑

s∈S
Ns c

∗
p,s (Ts − TR) +

3∑

j=1

(−ΔHr
)
j
r j VR , (1b)

with the total molar amount of molecules in the mixture that is inside the reactor, nR,
given by

nR = VR · ( ∑

i∈I

Mi

ρi
xR,i

)−1
,

and the generation-reaction terms, φi , defined as

φM = −(r1 + r2 + r3)VR , φTG = −r1VR ,

φDG = (r1 − r2)VR , φMG = (r2 − r3)VR ,

φG = r3VR , φE = (r1 + r2 + r3)VR .

The overall reactions rates associated to the three reaction steps, r j , are given by

r1 = k1CTGCM − k2CDGCE , r2 = k3CDGCM − k4CMGCE , r3 = k5CMGCM − k6CGCE ,

where kl represents the specific reaction rate constant of reaction l and Ci the molar
concentration of component i in the reactor mixture. The specific reactions rates
constants are calculated from the Arrhenius equation

kl = k0l exp(−Ea,l/(R TR)) (l = {l ∈ N : 1 � l � 6}) ,

where k0,l is the pre-exponential factor, Ea,l is the activation energy, R is the ideal
gas constant, and TR is the temperature of the mixture inside the reactor. The molar
concentration of chemical species i in the reactor can be expressed in terms of its
counterpart molar fraction according to

Ci = xR,i · ( ∑

i∈I

Mi

ρi
xR,i

)−1 = nR
VR

xR,i .

From a global mass balance, and in order to ensure the assumption of constant
height in the reactor, the molar flow leaving the reactor, NR, is

NR = 1

MR

∑

s∈S
MsNs −

VR
∑
i∈I

Mi
dxR,i

dt

MR
∑
i∈I

Mi
ρi
xR,i

+
VR

∑
i∈I

Mi
ρi

dxR,i

dt

(
∑
i∈I

Mi
ρi
xR,i )2

,
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Table 1 Thermo-physical properties of each component at 60 ◦C [5]

Units M TG DG MG E G

ρ kg/m3 757 954 983 1030 844 1340

c∗
p J/(mol ◦C) 2785 2110 2188 2381 2146 2556

M 10−3 kg/mol 32 853 600 346 286 92

Table 2 Heat of reaction at 60 ◦C [5]

Units
(
ΔHr

)
1

(
ΔHr

)
2

(
ΔHr

)
3

J/mol 15699 36899 −58906

with the average molar mass of a liquid mixture given by the weighted average of
the molar masses of its individual components, Mi (i ∈ I), that is,

M =
∑

i∈I
xi Mi .

The molar specific heat capacity of a liquid mixture can be obtained directly from
the specific heat capacity of the individual components of that mixture weighted by
their corresponding molar fractions. Therefore, for a generic mixture

c∗
p =

∑

i∈I
xi c

∗
p,i .

In what concerns TG, DG, MG, and E, a pseudo-component approach explained
somewhere else [3] was adopted to take into consideration the diversity of chemical
compounds present in the oil feed due its biological nature. Assuming an oil compo-
sition identical to that used in [5], the molar specific heat capacity, c∗

p, can be directly
obtained from the specific heat capacity and the molar mass also indicated in [5].
The values of these physical properties for each chemical species at a temperature
of 60 ◦C are indicated in Table 1.

Also, for the same oil composition, the heats of reaction were computed in [5].
These values are shown in Table 2.

Although these properties are somewhat dependent on temperature, such effect
is not perceptible in the overall system. Thus, all the mentioned parameters (ρ, c∗

p,
and (ΔHr)) were considered constant for the operating conditions range used in this
work.

Finally, the activation energies and the pre-exponential factors were estimated
based on the kinetic experimental studies of [9] for the palm oil. The Arrhenius
equation was adjusted to the experimental reaction rates constants obtained for tem-
peratures 40, 50 and 60 ◦C. Two experimental points were eliminated for lacking
physical meaning. According to the experimental data, the last reverse reaction rate
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constant (k6) for palm oil appears to be independent of temperature and the reaction
itself is practically inexistent, that is, the ester does not get converted into monoglyc-
eride. Thus, both parameters k0,6 and Ea were made zero. Table 3 contains the values
of the adjusted kinetic parameters.

Heat Exchanger

By withholding an appropriate amount of energy, the heat exchanger decreases the
temperature of the stream that leaves the reactor to the desired value. Simultaneously,
since there is no mass transfer inside the heat exchanger, the mass fractions of the
stream that leaves this unit are exactly the same as those of the input stream (i.e., the
stream that exits the reactor).

Decanter

A previous work on the modelling of a continuous decanter was presented in [5].
Since that work studied exclusively the decanter unit, it took into consideration
the three main chemical species from the point of view of this unit: E, G, and M.
However, the broader system under study in the present work requires to take other
components into consideration since they have a rather important role in the first unit
of the system (the reactor): TG, DG, and MG. Therefore, the first principle model
presented in [4] was extended from three to six chemical species. Therewas also need
to incorporate the temperature of the decanter as a variable, since the temperature of
its feed is dependent on the reactor unit that is now part of the considered system.
The extended dynamic model of the decanter can be written (for i ∈ I\{G}) as

nhv
dxhv,i
dt

=
∑

k∈I

(
(1 − ξk) xR,k

)
NR

⎛

⎜⎝
1 − ξi∑

k∈I

(
(1 − ξk) xR,k

) xR,i − xhv,i

⎞

⎟⎠ (2a)

nlt
dxlt,i
dt

=
∑

k∈I

(
ξk xR,k

)
NR

⎛

⎝ ξi∑
k∈I

(ξk xR,k)
xR,i − xlt,i

⎞

⎠ , (2b)

where nhv and nlt represent the molar amount of molecules in the heavy and light
phases, respectively. The composition of phase j (with j = {hv, lt}) in the remaining
component (G) is

x j,G = 1 −
∑

i∈I\{G}
x j,i . (3)

A mathematically equivalent alternative to (3) consists on applying (2) also for
the component glycerol.

The split fraction, ξi , quantifies the division of component i by the two phases.
It represents the fraction of the input component i that goes to the light phase and
complementary 1 − ξi indicates the fraction that goes to the heavy phase. The split
fractions depend on the instantaneous composition and temperature of the stream
that is continuously entering the decanter. The mechanistic models to quantify the
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liquid-liquid equilibrium are iterative and thus not appropriate in the context of the
present work, as discussed in [5]. A neural network model that is able to substitute
and avoid the iterative algorithm in calculating the split fractions for E, G, and M
was developed previously [5] for compounds E, G, and M and is adopted here in
order to compute ξM, ξG, and ξE. In what concerns the compounds TG, DG, andMG,
they are present only in residual amounts. Moreover, their strong affinity with ester
molecules makes virtually all of the glycerides migrate to the light phase. Based on
these circumstances, the split fractions for TG, DG, and MG were considered to be
equal to 1.

To ensure constant height of the heavy phase (and, therefore, constant height also
of the light phase since the total height of the overflowbaffle is constant), the variation
of the molar amount of molecules in phase j (with j = {hv, lt}) is

dn j

dt
= − 1

∑
i∈I

(Mi
ρi

x j,i )
n j

∑

i∈I
(
Mi

ρi

dx j,i

dt
) .

From an energy balance to the decanter unit, it is possible to write

(nlt + nhv) c
∗
p,D

dTD
dt

= NR c
∗
p,R (TH − TD) , (4)

neglecting the heat exchanges between the liquid inside the decanter and the envi-
ronment, since the operating temperature of the decanter is not very different from
room temperature.

Washer + Dryer

In higher capacity plants, crude biodiesel is typically purified using water. In fact,
the washer unit removes residual methanol and glycerol as well as remaining sodium
salts and soaps. Because of their affinity with water molecules, these impurities get
retained in the washing liquid and the resulting stream gets easily separated from
biodiesel due to the difference in the density. Severalwashing cyclesmight be needed.
After the washing process, the crude biodiesel is dried in order to bring the remain-
ing water and methanol concentration in accordance with the quality specification.
Assuming that the washing and the drying are perfect, all the methanol and residual
glycerol that exists in the upper stream that leaves the decanter are retained by the
washing water while all the other components (E, and residual TG, DG, and MG)
remain untouched and, also, all the remaining water is dried up. Therefore, the com-
position of the mixture after washing and drying (which constitutes the biodiesel) is
given by the molar mass fractions

x ′
i = xlt,i

xlt,TG + xlt,DG + xlt,MG + xlt,E
(i ∈ I\{M,G}) . (5)

The composition of the final biodiesel stream can be expressed in mass fraction
by
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y′
i = x ′

i Mi∑
j∈I\{M,G}

x ′
j M j

= xlt,i Mi∑
j∈I\{M,G}

xlt, j M j
(i ∈ I\{M,G}) . (6)

All the mass or molar fractions can be equivalently expressed as mass or molar
percentage, respectively, by simply multiplying the former by 100%.

Finally, a generic molar flow rate N can be expressed as a mass flow rate F using
the average molar mass of the stream it refers to, that is,

F = M N .

3 Control Problem Formulation

In order to produce biodiesel that complies with the standard quality requirement of
96.5% (mass percentage) in ester, the continuous system described above is subjected
to the action of an advanced control scheme in a holistic approach. Moreover, the
costs associated with the amount of water used in the purification of the raw biodiesel
and the subsequent methanol recovery make it preferable to redirect the non-reacted
methanol to the down phase in detriment of the light upper phase. Thus, the molar
fraction of M present in the decanter light phase is also controlled. The control of
the variables y′

E and xlt,M is achieved by manipulating the inlet flow rate of reactant
methanol, FM, the temperature of the oil feed, TO, and the output temperature of the
heat exchanger, TH. The objective of the nonlinear model predictive control (NMPC)
used is to determine, for a certain predictive horizon, the optimal profiles of the
manipulation variables that allow to satisfy the setpoints of the controlled variables
and the operating constraints.

The control problem is configured with 2 output variables (vector y) and 3 manip-
ulated variables (vector u) as listed in Table 4. The NMPC implemented relies on the

Table 4 NMPC configuration parameters

Variable Units LB UB RB Setpoint Reference Weight

L U Δuk ysp,k uref,k w

Controlled variables (y)

y′
E %(m/m) 96.5 100.0 – 97.6 – 104 (kg/kg)−2 10−4

xlt,M %(n/n) 0.0 30.0 – 24.4 – 101 (mol/mol)−210−4

Manipulated variables (u)

FM kg/h 0 657 ±100 – 657 10−2 h2 kg−2

TO ◦C 25 63 ±5 – Floating 10−2 ◦C−2

TH ◦C 25 60 ±5 – Floating 10−1 ◦C−2

LB – lower bound
UB – upper bound
RB – rate bound



138 A. S. R. Brásio et al.

process model described by Eqs. (1)–(5) and on the observation model given by (6)
which can be compactly represented by

ż = f (z, u, d, θ) , (7a)

y = g(z) , (7b)

with f and g twice continuously differentiable, where z ∈ R
ns is the vector of state

variables, u ∈ R
nm is the control vector, d ∈ R

nd is the disturbance vector, θ ∈ R
nθ

is the parameter vector, and y ∈ R
no is the vector of output variables.

The continuous time t is discretized via a sampling timeΔt and a time instant index
k (k ∈ N). At every time index k, the following NMPC problem is solved: knowing
the process and the observation models as well as the current state measurements
and/or estimations, zk , compute, based on apredictive horizonof length p, the optimal
control input sequence over a control horizon of length m for m � p, denoted by
{u∗

k , . . . , u
∗
k+m−1}, with u∗

k+i−1 = u∗
k+m−1 form < i � p. Such optimal control input

will lead to a sequence of state and output predictions over p that minimize the
objective cost function of the NMPC problem, the optimal sequences designated by
{z∗

k+1, . . . , z
∗
k+p} and {y∗

k+1, . . . , y
∗
k+p}, respectively.

The NMPC problem is formulated as the discrete-time constrained dynamic opti-
mization problem

min.
Xk ,Uk

Ψ
(
Ỹk,Uk

)
(8a)

s.t. z̃k+i = f(zk+i−1, uk+i−1, d, θ,Δt) (1 � i � p) (8b)

ỹk+i = g(z̃k+i ) (1 � i � p) (8c)

uk+i−1 = uk+m−1 (m < i � p) (8d)

zk+i − z̃k+i = 0 (1 � i < p) (8e)

Z̃L � Z̃k � Z̃U , ỸL � Ỹk � ỸU (8f)

ZL � Zk � ZU , UL � Uk � UU (8g)

where the augmented vectors of the output predictions, of the state predictions,
of the initial state profiles, and of the initial control profiles are defined by Ỹ T

k =[
ỹTk+1, · · · , ỹTk+p

]
, Z̃T

k =
[
z̃Tk+1, · · · , z̃Tk+p

]
, ZT

k =
[
zTk , · · · , zTk+p−1

]
, and

UT
k = [

uTk , · · · , uTk+m−1

]
, respectively.

In this formulation, a multiple shooting strategy similar to that in [14] is used to
perform the state predictions. This requires the set of equality constraints (8e) in order
to guarantee the continuity of the state variables profiles over the predictive horizon.
In (8e), z̃k+i is the state vector at k + i obtained through the integration of the dynamic
model inside each sampling time interval, with t ∈ [tk+i−1, tk+i ], using as initial
conditions the nominal states and controls, zk+i−1 anduk+i−1, respectively.Therefore,
the decision variables of problem (8) are both the state and control trajectories, Zk
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and Uk , respectively. The subscripts L and U in the nonlinear constraints (8f) and in
the decision variables bounds (8g) stand for lower and upper limit value, respectively.

This formulation can be interpreted as: at every time index k (correspondent to
the sampling time k Δt) determine the optimal solution, Z∗

k and U
∗
k , that minimizes

the cost function (8a), such that the Z∗
k and Z̃∗

k profiles match and are continuous
over the predictive horizon, while satisfying all the problem constraints. The cost
function is defined to be quadratic and involve the list of output variables to control
and of input variables to manipulate given in Table 4 according to

Ψ
(
Ỹk,Uk

)
=

2∑


=1

w


p∑

i=1

(
ysp,
,k+i − ỹ
,k+i

)2 +

+
3∑


=1

w2+


m∑

i=1

(
uref,
,k+i−1 − u
,k+i−1

)2
, (9)

where w
 (
 ∈ N : 1 � 
 � 5) are weighting scalars indicated in Table 4. Other
parameters of the control system configuration, such as the lower and upper bounds
for controlled and manipulated variables, the rate bounds of manipulated variables
(that is, the maximum change allowed for manipulated variables at each instant), the
setpoint values for the controlled variables as well as the reference values considered
for the manipulated variables, are listed in Table 4. It should be noted that other
critical biodiesel quality and production cost parameters may be taken into account
by the model predictive controller if the process model is extended to predict them.

In order to provide, at every time instant, the estimates of the state variables and
some of the model parameters, it is employed the unscented Kalman filter (UKF)
developed in [10]. The C++ based computational simulation framework Plantegrity®

that was applied in this work features three independent and synchronized modules:
the plant simulator module, the UKF module, and the NMPC module. The sim-
ulator and estimator modules use CVODES solver [8] for the solution of initial
value problem. The nonlinear model predictive controller implements both multiple
shooting [2] and simultaneous approaches for the solution of the underlying nonlin-
ear constrained optimization problem using IPOPT [16]. Amore detailed description
of this framework is given in [3].

4 Results and Discussion

In consequence of its biological nature, the raw material of the process presents a
rich diversity of components and, moreover, ordinary variations of its composition.
Also, the final commercial product must comply with strict specifications legally
imposed [7]. In order to ensure the minimum of 96.5% (m/m) required by the
standard, the methanol could be used in larger excess pushing the reaction equilibria
more to the right. However, the larger the excess of methanol used is, the bigger
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are the costs associated to its further recovery. Still from a process point of view,
the transesterification reaction is highly influenced by the reactor temperature. All
these facts affect the system and therefore should be taken into consideration by the
control mechanism to establish the way the system is run. The multivariable control
configuration allows to produce biodiesel that is conforming to the product quality
specification in what respects FAME content at the minimum specific cost related
to energy and reactant (MeOH) consumption. It is also worth emphasizing that the
kinetic model used in this work refers to the palm oil, which is a quite used raw
material in biodiesel industry.

This discussion is organized in two parts. The first part reveals the behavior of the
system in open-loop when stimulated by changes in its input variables. The second
part exhibits the behavior of the system under the action of the developed control
strategy.

4.1 Open-Loop Study

Figure2 condenses the response of the system in four different scenarios, conve-
niently labeled from 1 to 4 , characterized by different stimuli:

1 FM = 657 − 331H (t − 33.5) + 657H (t − 67.0) − 326H (t − 102.8);
2 TO = 60 − 3H (t − 167.0) + 6H (t − 202.7) − 3H (t − 235.0);
3 TH = 50 + 5H (t − 301.3) − 10H (t − 334.7) + 5H (t − 370.5);
5 FO = 3000 + 200H (t − 434.7) − 400H (t − 470.1) + 200H (t − 500.0),

with H representing the Heaviside function. In all of them, the temporary stimulus
consists of a pair of pulses (a negative followed by a positive or vice versa) so that
the stimulated variable ultimately returns to its original value, as easily seen in the
top graph of Fig. 2.

In response to the initial cut in the reactant methanol that occurs in scenario 1 ,
the system evolutes with an abrupt decrease of the mass percentage of ester in the
produced biodiesel, y′

E. In consequence, the final product rapidly falls in the off-
specifications range (shadow area in the middle graph of Fig. 2). It is worth mention-
ing that in these circumstances not all the oil (TG, DG, and MG) is transformed into
ester, as revealed by the top graph of Fig. 3. When the flow rate of methanol is later
suddenly increased (the positive pulse of the disturbance), the relative amounts of
glycerides and methanol in the reactor change significantly again, as the top graph
of Fig. 3 evinces. The more prominent excess of methanol forces an increase of the
extent of reactions leading to a practically complete transformation of the oil into
ester, reason why the molar fractions of TG, DG, and MG in the reactor tend virtu-
ally to zero. Although the amounts of ester and of glycerol produced are now bigger,
both the molar fractions of ester and of glycerol decrease because of the dilution
effect originated by the bigger amount of methanol in the reactor. These changes are
reflected ahead in the decanter, as shown by the middle and bottom graphs of Fig. 3.
In particular, the ester content of the light phase that leaves the decanter suffers an
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evident decrease, since the non-reacted excess of methanol in the light phase dis-
guises the real increase in the amount of ester in that stream. This disguising effect
is eliminated after the withdrawal of methanol in the washer (see the bottom graph
of Fig. 2). Thus, the mass percentage of ester in the final product increases (middle
graph of Fig. 2). Both variables the mass percentage of ester in the final product and
the molar percentage of methanol in the light phase are quite sensitive to changes
in methanol flow rate. Once the load is finished, the system evolutes to the initial
steady-state. It is noteworthy the nonlinear nature of the system, reflected by its asym-
metric responses to symmetric stimuli. Although both negative and positive pulses
in methanol flow rate have similar amplitudes, the amplitude of the corresponding
responses is not the same, as it can be easily observed in the middle and bottom
graphs of Figs. 2 and 4.

In scenarios 2 and 3 , the system is stimulated with changes in the temperature
of the input oil stream and in the energy exchanged in the heat exchanger which
ultimately corresponds to changes in the temperature of the stream that enters the
decanter, respectively. The responses obtained in both scenarios 2 and 3 are modest
when compared to that of scenario 1 . In spite of that, the stimuli were enough to
originate considerable variations of y′

E in scenario 2 and of xlt,M in scenario 3 .
Finally, in scenario 4 , the effect of the oil flow rate on the system is studied. By

analysing Figs. 2 and 3, it is possible to conclude that the system is rather sensitive
to this input variable: increasing FO pushes both y′

E and xlt,M down. An increase in
the input flow rate of oil affects the system in an opposite direction of an increase
in the input flow rate of methanol. The effect is less pronounced than that verified in
scenario 1 , but the amplitude of the stimulus used in scenario 4 was also smaller.
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4.2 Closed-Loop Study

The same system is now submitted to the action of the controller described in Sect. 3.
In a first stage (zone A ), the controller works in a servo mode taking the system
to the optimal operating point. Then (zone B ), the system undergoes a load which
is approximately the same as that performed in scenario 4 but now in closed-loop,
that is, with the controller taking action to reject the external disturbance. It is worth
referring that the time scale of the graphs of Sect. 4.2 is more spread than the one
used in the graphs of the open-loop study (Sect. 4.1).

All the results exhibited in this section were obtained with a predictive horizon
p = 20, a control horizon m = 10, and Δt = 5min.

Figure4 portrays the controller actions and their repercussions on the controlled
variables.

Zone A reveals the performance of the controller in a scenario of servo control
of variables y′

E and xlt,M. In order to perform this test, the values of the variables
presented in Table 4 were changed at t = 50.1h to: ysp,1 = 96.6%(m/m), ysp,2 =
20.0%(n/n), uref,1 = 326kg h−1, and w3 = 0.01h2 kg−2.

Taking into consideration the oil flow rate that one wants to process, the controller
manipulates the temperature of this feed stream, TO, the output temperature of the
heat exchanger, TH, and the flow rate of the other reactant (methanol) that also
feeds the reactor, FM. Pursuing the setpoint and reference values with the minimum
possible cost while fulfilling the restrictions imposed (defined by the lower and upper
bounds indicated in Table 4), the controller drives the system to a new steady-state.
By reducing FM (top graph of Fig. 4), it pushes the controlled variables down to their
setpoints (middle and bottom graphs of Fig. 4). In particular, y′

E gets close to the
limit of its acceptable range, which is a more profitable operating point. To attenuate
the effect of the reduction of the methanol to oil ratio in the extent of the reaction,
the controller indirectly increases the reactor temperature at the cost of a slight
increase of the pre-heating of the oil that enters the reactor (TO increases, as shown
by the top graph of Fig. 4). During the transient period (when the controller action
is reducing drastically y′

E and xlt,M), the controller increases the power extracted
at the heat exchanger, that is, reduces TH and thus the decanter temperature. Such
reduction moves the phase equilibrium between the heavy and the light phases in the
decanter. After that initial sudden decrease, TH is gradually increased towards a new
steady-state value which is smaller than that of the initial steady-state.

Figure5 depicts the evolution of the state variables that describe the composition
profiles of themixtures inside the reactor and the decanter. The action of the controller
in zone A indirectly decreases the fraction of methanol in the reacting mixture and
increase the molar fractions of E and G. Although several phenomena are involved in
the evolution of these variables (namely the reaction extent), the considerably smaller
amount of M present in the reacting mixture, makes the amounts of E and G more
representative and thereforewith highermolar fractions. Such effect is not perceptible
for TG, DG, andMG since their amounts are insignificant when compared with other
components. As revealed by the middle and the bottom graphs of Fig. 5, the action of
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the controller also interfereswith the composition of the streams leaving the decanter,
making the upper stream richer in E, the bottom stream richer in glycerol, and both
the upper and the down stream poorer in M, relatively to the original steady-state.

In zone B , the performance of the controller is accessed by analysing its ability to
handle the external disturbance FO = 3000+ 200H (t − 160.1)−400H (t − 195.8)
+ 200H (t − 225.1) that affects the system. The effect of such load in the system
in the absence of the controller was studied in scenario 4 of Sect. 4.1. Comparing
the evolution of the system in the appropriate sections of Figs. 4 and 2, it is clear
that the controller effectively keeps the controlled variables in their desirable values,
neutralizing the effect of the disturbance in FO. The deviation from the steady-
state that the system otherwise would suffer is completely avoided by the controller.
According to the top graph of Fig. 4, such result is achieved by manipulating slightly
FM and TH.

In what concerns the state variables that define the composition of the mixtures in
the reactor and in the decanter, it is possible to see in Fig. 5 that under the corrective
action of the controller they practically do not suffer any change.

5 Conclusions

The main contributions of this work are the development and a use case demonstra-
tion of a mechanistic dynamic model of a continuous biodiesel production line. In
order to contemplate the main phenomena occurring in each of the sections of the
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process as well as to take into account the existing interactions, the model includes a
reactor, a heat exchanger, a decanter, a washer, and a dryer units. The reactor model
describes the temperature and the composition of the main species involved in the
transesterification reaction. The computational burden of the decanter model was
contained with the use of a neural network that approximated the iterative calcula-
tions of the liquid-liquid equilibria. Finally, the washer and the dryer were modeled
considering an ideal operation.

One of the presented use cases is the open-loop simulation of the production line
that allows to predict the process dynamics and the final product quality. Such simu-
lation may be of interest for what-if analysis and for off-line training of the process
operation teams. This use case is followed by a closed-loop study in which a nonlin-
ear model predictive controller carries out multivariable control and optimization of
the production process taking into account the operational and quality constraints.
This control approach may render tangible economic results via the minimization of
the energy and the reactant specific consumption.

The model developed herein takes into account the main reactions that take place
in the system. Its predictive capabilitymaybe further improvedwith the incorporation
of the side reactions, such as the saponification due to water and high level of free
fatty acids in the oil, that reduce the yield of the process in the reaction unit and
hinder the phase separation in the decanter.
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Prior Information in Bayesian Linear
Multivariate Regression

J. Casaca

Abstract The paper introduces the Bayesian approach to multivariate regression
analysis, from a subjective point of view. A review of non-informative and infor-
mative priors adequate to practical situations is carried out. The marginal posteriors
of the regression coefficients and the variance factors corresponding to the Laplace,
Jeffreys and conjugate priors, as well as the respective modes, are presented. Of note
is the fact that Laplace and Jeffreys priors, as it would be expected of non-informative
priors, yield maximum posterior estimates of the regression coefficients identical to
the maximum likelihood estimate.

Keywords Elicitation ·Hyper-parameter · Likelihood · Posterior PDF · Prior PDF

1 Introduction

1.1 Invariance and Propriety

According to Christian Robert [13]: “..., the most critical and most criticized point
of Bayesian analysis deals with the choice of the prior distribution, since, once this
prior distribution is known, inference can be led in an almost mechanical way ...”.

A first general requirement for a prior distribution of the parameters is that it must
be invariant under transformation of variables. The most important transformations
correspond to changes in the units of the variables, which belong to the general
group of similarity transformations. However, sometimes other transformations of
the variables are necessary, such as in the case of beta regression, gamma regression,
Poisson regression etc. The necessity of objective (non-informative) invariant prior
distributions has led to the concept of reference prior distribution [4, 5], which, under
favourable mathematical conditions, reduces to the Jeffreys prior distribution [13].
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A second general requirement, that the prior distribution of the parameters is repre-
sented by a proper prior probability density function (PDF) is not really critical. With
the exception of the conjugate distribution families, which have proper PDF, most
of the theoretical prior distributions (Laplace, Jeffreys, maximum entropy, reference
etc.) are represented by improper prior PDF, that we will call prior pseudo-PDF. The
really critical requirement is that the integral of the product of the likelihood by the
prior pseudo-PDF is proper and, therefore, the joint posterior PDF of the parameters
is proper [3].

1.2 Objectivists Versus Subjectivists

In Bayesian analysis, there are two major attitudes, affiliated in different schools of
probability, towards the nature of the prior information and its representation by a
prior distribution [1, 12]: (i) the objectivists consider that any prior information other
than the restrictions on the mathematical models imposed by the Laws of Nature is
subjective and therefore not scientific [9]; (ii) the subjectivists mostly concernedwith
decision in practical situations, defend the validity of any prior information on the
distribution of the parameters in possession of the decision-maker [11, 14].

For an objectivist, the prior distribution of the parameters must be objective,
i.e., it must respect the constraints imposed by the Laws of Nature and provide
minimum information about the parameters [2, 9]. This requirement is satisfied by
the maximum entropy prior distributions [9]. More recently, an effort is being made
to construct reference priors that are invariant under groups of transformations and
objective in the sense of being non-informative [4].

For the subjectivists, the prior distribution should convey information on the
parameters and, preferably, should belong to the conjugate family of the sample
distribution. The so called prior conjugate is a prior distribution such that the pos-
terior distribution belongs to the same (conjugate) family of the prior [3]. Many
sampling distributions have conjugate families (the normal-inverted gamma family
is conjugate of the normal sample, the gamma family is conjugate of the Poisson
sample, the beta family is conjugate of the binomial sample etc.). In this case, an
additional problem, to be solved by the decision-maker, is the elicitation of the hyper-
parameters of the conjugate prior PDF, which may prove to be decisive in the further
inferences.

1.3 The Case of Regression Analysis

In regression analysis, as a rule, the decision-maker has some general ideas on
the basic functions he wants to use to model the relation between covariates
and responses. The two most common states of prior knowledge regarding the
regression parameters are: (i) total lack of information on the distribution of the
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regression parameters; (ii) a certain amount of prior experience on modelling the
relation between the same type of covariates and responses, such that the elicitation
of a prior distribution to the regression parameters is possible.

To face these two distinct situations, the decision-maker needs a non-informative
prior distribution and an informative prior distribution.When the regression problem
lies within the frame of the Gauss–Markov model: (i) the Laplace prior distribution,
since is invariant to similarity transformations and may be regarded as a mean to
“normalize” the likelihood, i.e., to transform the likelihood into a posterior PDF of
the parameters, may be considered as the best option; (ii) to convey prior information
on the distribution of the regression parameters, the best option is the conjugate
normal-inverted gamma proper prior distribution.

1.4 The Scope of the Paper

The paper is directed to the common users of multivariate linear regression anal-
ysis who are interested in upgrading their knowledge of Statistical Inference with
Bayesian concepts. The author is sympathetic to the subjective point of view and,
therefore, recommends the use of informative conjugate prior distributions, when-
ever data from prior experiences is available to elicitate the hyper-parameters of the
prior PDF.

The paper introduces briefly the Bayesian approach to multivariate linear regres-
sion analysis and then presents a synthesis of the Bayesian regression parameter
estimation formulae under the scenarios defined by: (i) the Laplace and Jeffreys
prior pseudo-PDF; (ii) the conjugate normal-inverted gamma prior PDF.

2 Multivariate Regression Analysis

2.1 Covariates, Responses and Basic Functions

The main objective of multivariate regression analysis is to identify an analytic
expression adequate to model the relation (regression) between a set of independent
variables (x1, . . . , xr ), the covariates, the regressor variables, the input variables etc.,
and a dependent variable (y), the response variable, the predicted variable, the output
variable etc. The unknown relation y = φ(x1, . . . , xr ) is approximated by a linear
relation [7]:

y = φ(x1, . . . , xr ) ≈
n∑

i=1

βiϕi (x1, . . . , xr ) + ε (1)

where: (i) the βi are the (n) unknown regression coefficients (including an inter-
cept); (ii) the ϕi are (n) basic functions of the covariates such as polynomial terms,
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trigonometric functions, logarithms etc.; (iii) ε is a noise component which expresses
simultaneously the approximation error of the model (epistemic error) and the obser-
vation error of the response (y). The covariates are supposed to be measured without
significant error.

2.2 The Gauss–Markov Model

If m responses y� = (y1, . . . , ym) are observed, the m linear relations (1) may be
expressed in matrix form:

y = Bβ + ε (2)

where: (i) y� = (y1, . . . , ym) is the vector of the responses; (ii) B(m, n) is the
matrix of the regression basic functions also called the design matrix [7]; (iii) β(n, 1)
is the vector of the regression coefficients; (iv) ε(m, 1) is the noise vector which
results from the response’s observation errors and the model’s lack of adequacy
(epistemic error).

If the noise vector has a Gaussian distribution with null mean vector (E(ε) = 0)
and variancematrix of the form V (ε) = σ I , where σ is an unknown positive variance
factor, and I is the identity matrix of orderm, the model is said to be a homoscedastic
Gauss–Markov model. In a Gauss–Markov model, the PDF of the responses vector
(y) is:

f (y|B, β, σ ) = (2πσ)−m/2 exp

(
(y − Bβ)�(y − Bβ)

2σ

)
(3)

Since the variance, and not the standard deviation, is the variable of interest, for a
question of commodity in differentiation and integration, the symbol σ is used to
represent the variance instead of the standard deviation as usual.

2.3 The Likelihood

The likelihood function of the responses vector (y) is the function with the same ana-
lytical expression of the PDF (3) but where the parameters (β, σ ) become variables
and the responses vector (y) becomes the parameter:

L(β, σ |B, y) = (2πσ)−m/2 exp

(
(y − Bβ)�(y − Bβ)

2σ

)
(4)

The maximum likelihood estimator of the unknown regression coefficients vector
(β) is:

βML = (B�B)−1B�y (5)
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The maximum likelihood estimator (σML) and the unbiased estimator (s) of the
unknown variance factor (σ ) are:

(i) σML = 1

m
v�v; (ii) s = 1

m − n
v�v (6)

where:
v = y − BβML (7)

is the vector of the residuals from βML . The maximum likelihood estimador (σML)

is a biased estimator that underestimates the variance factor (σ ). The estimator with
Bessel’s correction (s) is an unbiased estimator of the variance factor (σ ).

2.4 Fisher’s Information

The Fisher’s information is a measure of the information provided by the responses
vector (y) to the estimation of the regression parameters (β, σ ). The Fisher’s infor-
mation (F I ) is given by the determinant of the symmetric of the mathematical
expectation of the Hessian matrix of the log-likelihood (natural logarithm of the
likelihood):

F I (β, σ ) = m

2σ n+2
det(B�B) (8)

The Fisher’s information increases with the number of responses and the deter-
minant of the precision matrix (σ−n B�B) of the maximum likelihood estimator of
the regression coefficients (5).

3 Bayesian Estimation of the Regression Parameters

3.1 The Formula of Bayes-Laplace

InBayesian analysis, the unknown regression parameters (β, σ ) that regulate the PDF
of the observed responses (y) are regarded as the outcomes of two random variables
with a joint PDF h(β, σ ), which is called the joint prior PDF of the parameters. A
primary objective of Bayesian analysis is the estimation of the regression parameters,
taking into account both the likelihood L(β, σ |B, y) and the joint prior PDF of the
regression parameters h(β, σ ).

The formula of Bayes-Laplace relates the joint posterior PDF of the parameters
p(β, σ |B, y) to the likelihood L(β, σ |B, y) and the joint prior PDF h(β, σ ):



152 J. Casaca

p(β, σ |B, y) = L(β, σ |B, y)h(β, σ )
∫ +∞
0

∫
�n L(β, σ |B, y)h(β, σ ) dβdσ

(9)

where the integral:

p(y|B) =
∫ +∞

0

∫

�n

L(β, σ |B, y)h(β, σ ) dβdσ (10)

does not depend of the regression parameters (β, σ ) and is constant for every given
vector of responses (y). The integral (10) is called the prior predictive PDF of the
responses, given the model defined by the design matrix B. The prior predictive PDF
p(y|B) plays a central role in the Bayesian methodology used to compare different
models (Bayes factor).

3.2 The Mode of the Joint and the Marginal Posteriors

The frequentist school recommends the estimation of the regression parameters
(β, σ ) with the maxima (βML , σML) of the likelihood (4). In a similar way, the
orthodox Bayesian approach recommends the estimation of the regression parame-
ters with the maximum joint posterior PDF estimates (βMP , σMP).

In practice the regression parameters (β, σ ) are better estimated with the marginal
posterior PDFof the regression parameters. Themarginal posterior PDFof the regres-
sion coefficients vector (β) is obtained by marginalization of the variance factor (σ )

in the joint posterior PDF (9):

p(β|B, y) =
∫ +∞

0
L(β, σ |B, y)h(β, σ ) dσ (11)

The marginal posterior PDF of the variance factor (σ ) is obtained by marginal-
ization of the regression coefficients vector (β) in the joint posterior PDF (9):

p(σ |B, y) =
∫

�n

L(β, σ |B, y)h(β, σ ) dβ (12)

The modes (maxima) of the marginal posterior PDF (11) and (12) are orthodox
Bayesian estimates of the regression coefficients vector (β) and the variance factor
(σ ), respectively.
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3.3 Prior Information

Three prior distributions were referred as the object of this paper: the Laplace, the
Jeffreys and the conjugate prior distributions. The Laplace and the conjugate options
are not favoured by the objectivists. The Laplace prior distribution is criticized by
many objectivists mainly because there are many situations where it performs poorly
(beta-regression etc.). The conjugate prior distributions are criticized by the objec-
tivists because they are informative and, therefore, subjective. However, the fact that
the prior PDF and the posterior PDF of the parameters belong to the same family of
distributions brings a great formal consistency to the analysis.

In regression analysis, within the frame of the Gauss–Markov model, the Laplace
distribution has a good performance: (i) is invariant with regard to similarity transfor-
mations; (ii) originates proper joint and marginal posteriors of the regression param-
eters; (iii) is most adequate to model selection with the Bayes factor. With regard
to theoretical consistency, the Laplace prior distribution originates a joint posterior
that: (i) is an improper permissible prior [4] since it is the limit of a succession of
proper posteriors generated by proper uniform priors; (ii) the Laplace posterior may
be regarded as the normalized likelihood, i. e., the transformation of the likelihood
into a PDF (the Laplace estimates of the regression coefficients are identical to the
maximum likelihood estimates).

The Jeffreys prior distribution generates joint andmarginal posteriors that estimate
the regression coefficients as themaximum likelihoodmethods.However, the Jeffreys
estimates of the variance factor are biased. Although the Jeffreys prior PDF is more
adequate to situations where the responses suffer non-linear transformations (beta
regression etc.), there is not a decisive reason to use the Jeffreys prior in common
multivariate linear regression analysis.

4 Laplace Joint and Marginal Posterior PDF

The Laplace joint prior distribution of the regression parameters (β, σ ), is defined
by the constant pseudo-PDF:

{
hL(β, σ ) = κ (β ∈ �n ∧ σ > 0)

hL(β, σ ) = 0 (β ∈ �n ∧ σ ≤ 0)
(13)

which is the paradigm for an improper prior PDF, because the integral:

∫ +∞

0

∫

�n

κ dβdσ (14)
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is improper.However, inBayesianmultivariate regression analysis,within theGauss–
Markov model frame, the Laplace pseudo-prior PDF may be used as a regular PDF,
because the joint and the marginal PDF of the regression parameters are proper [3].

Taking κ = 1, the Laplace prior predictive PDF is given by:

pL(y|B) = Γ (a)
√
det(B�B)

ba
√

(2π)m−n
(15)

where Γ (·) stands for the gamma function [6], a is the shape parameter (18.iii) and
b is the scale parameter (18.iv) of the joint posterior PDF (16).

The joint posterior pL(β, σ |B, y) of the regression parameters is a proper normal-
inverted gamma PDF [8]:

pL(β, σ |B, y) = 1√
2π

exp

(
− Q

2σ

)
ba

Γ (a)σ a+1
exp

(
−v�v

2σ

)
(16)

where Q is the quadratic form:

Q = (β − βML)
�B�B(β − βML) (17)

The four parameters of the normal-inverted gamma joint posterior (16) are the mean
vector μL , the variance matrix VL , the shape parameter a, and the scale parameter
b:

(i)μL = βML; (ii) VL = σ(B�B)−1; (iii) a = m − n − 2

2
; (iv) b = v�v

2
(18)

The marginal posterior PDF of the regression coefficients pL(β|B, y) is a proper
multi-t PDF with vL degrees of freedom, mean vector μL (equal to the mode) and
variance matrix ΣL [13]:

(i) νL = m − n − 2; (ii)μL = βML; (iii)ΣL = v�v
m − n − 4

(B�B)−1 (19)

The Laplace maximum marginal posterior solution for the regression coefficients
is equal to the maximum likelihood solution. The variance matrix of the regression
coefficients is independent of the unknown variance factor (σ ).

The Laplace marginal posterior PDF of the variance factor pL(σ |B, y) is a proper
inverted gamma PDF with mode (ωL) different from the mean value (σL):

(i)ωL = v�v
m − n

; (ii) σL = v�v
m − n − 4

; (20)

The maximum of the Laplace marginal posterior of the variance factor is attained
at the mode ωL which is equal to the corrected unbiased estimator of the variance
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factor (s). The mean value (σL) of the Laplace marginal posterior of the variance
factor is identical to the variance factor of the variancematrix (19.iii) of the regression
coefficients estimator βML .

5 Jeffreys Joint and Marginal Posterior PDF

The Jeffreys prior pseudo-PDF is proportional to the square root of Fishers informa-
tion (8):

{
hJ (β, σ ) ∝ σ−(n+2)/2 (β ∈ �n ∧ σ > 0)

hJ (β, σ ) = 0 (β ∈ �n ∧ σ ≤ 0)
(21)

In Bayesianmultivariate regression analysis, within theGauss–Markovmodel frame,
the Jeffreys pseudo-prior PDF (21) may be used as a regular PDF, because the joint
andmarginal PDF of the regression parameters are proper. The Jeffreys prior pseudo-
PDF hJ (β, σ ), introduced byHarold Jeffreys [10] in view of its invariance properties,
does not provide information on the regression coefficients (β) but is informative
with regard to the variance factor (σ ).

The Jeffreys joint posterior pJ (β, σ |B, y) of the regression parameters is a proper
normal-inverted gamma PDF, witch parameters are the mean vectorμJ , the variance
matrix VJ , the shape parameter aJ , and the scale parameter bJ , given by:

(i)μJ = μL = βML ; (ii) VJ = VL = σ(B�B)−1; (iii) aJ = m

2
; (iv) bJ = bL = v�v

2
(22)

The Jeffreys marginal posterior PDF of the regression coefficients pL(β|B, y) is a
proper multi-t PDF with νJ degrees of freedom, mean vector μJ (equal to the mode
vector) and variance matrix ΣJ [13]:

(i) νJ = m; (ii)μJ = μL = βML; (iii)ΣJ = v�v
m − 2

(B�B)−1 (23)

The Jeffreys maximum marginal posterior solution for the regression coefficients is
equal to the Laplace solution and to the maximum likelihood solution. The variance
matrix of the regression coefficients (ΣJ ) is independent of the unknown variance
factor (σ ).

The Jeffreys marginal posterior PDF of the variance factor pJ (σ |B, y) is a proper
inverted gamma PDF with mode ωJ and mean value σJ :

(i)ωJ = v�v
m + 2

; (ii) σJ = v�v
m − 2

(24)
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Both the mode (ωJ ) and the mean value (σJ ) of the Jeffreys marginal posterior PDF
of the variance factor are biased estimators that underestimate the variance factor
(σ ). The mean value (σJ ) is the variance factor of the variance matrix (23.iii) of the
regression coefficients estimator βML .

6 The Conjugate Prior Distribution

In Bayesianmultivariate regression analysis, within theGauss–Markovmodel frame,
the conjugate family of the distribution of the responses is the normal-inverted gamma
family. The hyper-parameters of the conjugate joint prior PDF, which must be pre-
viously elicitated, are: (i) a mean vector μ0; (ii) a variance matrix of the form σΣ0;
(iii) a shape hyper-parameter a0; (iv) a scale hyper-parameter b0.

According to the concept of conjugate family, the conjugate joint posterior PDF
of the regression parameters belongs to the normal-inverted gamma family. The
conjugate marginal posterior PDF of the regression coefficients pC(β|B, y) is a
multi-t PDF with νC = 2a0 + m degrees of freedom, mean vector μC (equal to the
mode vector) and variance matrix ΣC [7]:

(i)μC = (Σ−1
0 + B�B)−1(Σ−1

0 μ0 + B�y); (ii)ΣC = QC + Q0 + 2b0
2a0 + m − 2

(Σ−1
0 + B�B)

(25)
where QC and Q0 are the quadratic forms:

(i) QC = (y − BμC )�(y − BμC ); (ii) Q0 = (μC − μ0)
�(Σ−1

0 + B�B)−1(μC − μ0)

(26)
The conjugatemaximummarginal posterior solution for the regression coefficients is
different from the maximum likelihood, Laplace and Jeffreys solution. The variance
matrix of the regression coefficients is also independent of the unknown variance
factor (σ ).The conjugate marginal posterior PDF of the variance factor pC(σ |B, y)
is an inverted gamma PDF with mode ωC and mean value σC :

(i)ωJ = QC + Q0 + 2b0
2a0 + m + 2

; (ii) σJ = QC + Q0 + 2b0
2a0 + m − 2

(27)

Both the mode (ωC) and the mean value (σC) of the conjugate marginal posterior
PDF of the variance factor are biased estimators of the variance factor (σ ).

7 Conclusions

A review of the joint and marginal posterior PDF of the regression coefficients and
the variance factor was carried out for the Laplace, Jeffreys and conjugate prior distri-
butions. The properties of these joint and marginal posterior PDF are very interesting
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since they belong to the same families of distributions: (i) the three joint posteriors
belong to the normal-inverted gamma family; (ii) the three marginal posteriors of
the regression coefficients belong to the multi-t family; (iii) the three marginal pos-
teriors of the variance factor belong to the inverted gamma family. The fact that
the joint and the marginal posteriors belong to known families of distributions pro-
vides closed formulae for the parameters of the posteriors which avoids the use of
the Monte Carlo simulation methods [12, 13], to obtain estimates of the regression
parameters. This fact also has a positive impact on the construction of credibility
regions for the parameters.

When there is no prior information on the distribution of the regression parame-
ters, the old Laplace non-informative prior pseudo-PDF is recommended because of
its simplicity and intimate relation to the likelihood. This pseudo-PDF is invariant
under changes of the units of covariates and responses. James Berger, an assumed
objectivist, says [3] about this prior: “Although this was routinely done by Laplace,
it came under severe (though unjustified) criticism because lack of invariance under
transformation”. Within the restricted universe of the Gauss–Markov model, the
Laplace prior distribution is the best noninformative option.

Whenever there is prior information on the distribution of the regression param-
eters, a conjugate normal-inverted gamma prior PDF is recommended. The corre-
spondent posterior PDF of the regression parameters (β, σ ) will belong to the same
family. In this case, the elicitation of the hyper-parameters (μ0,Σ0, a0, b0) of the
conjugate prior PDF is decisive to the construction of an adequate posterior PDF. It
is of note, that when the number of responses (m) and, consequently, the Fisher’s
information (8) is large, the influence of the likelihood supersedes the influence of
the prior on the posterior.
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Perceptions of True and Fair View: Effects
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Abstract This paper examines the effects that professional status and maturity have
on the understanding and perception of the true and fair view (TFV) and its True
and fair override in Spain. The effects were deduced by a survey conducted on
students and auditors. The results show that, while the goal of reaching the TFV
is fully integrated into the Spanish accounting system, the implications of such an
objective are far from what would be expected. The evidence suggests a practical
rejection of the overriding aspect associated with the TFV notion in the EU Directives
which is demonstrated by a preference to follow the accounting standards in all
cases rather than having to choose when not to apply them in order to achieve
this objective. This aversion is logical in a country whose legislation allows little
room for flexibility. Finally, the study identifies a pattern of change according to the
participant’s professional status and maturity. It is observed that the younger and
less professional participants are more concerned with obtaining the TFV than the
strict coherence with the accounting standards. However, as the participants evolve
according to age and professional status they prefer the TFV to be obtained by a
rigorous following of the standards without having to override them, they are also
more demanding for a detailed definition of TFV and are much less favourable to
the imposition of fines where the TFV is not achieved by following the accounting
standards.
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1 Introduction

This paper addresses some issues relating to the objective of True and Fair View
(TFV) for financial reporting, and the overriding principle on accounting standards
implied in reaching that objective. This is not a new theme but one which continues
to be topical and is a subject of continual debate in accounting research (see e.g.
Alexander and Eberhartinger [2]). However, here the issue is addressed to show the
effect that professional status and maturity have on the understanding and percep-
tion of the participants demonstrated with an empirical study. The reason for the
study is twofold, firstly, to discover how TFV is understood by professionals and
non-professional users and secondly to identify if a learning curve exists in the edu-
cation process. We understand that TFV is not an easy concept to assimilate and
that its understanding should change through academic formation and maturity. By
discovering more about the perception of TFV we can rectify the limitations in its
application and improve (principally through education material) the way that the
concept is transmitted to students and applied by auditors.

The TFV is an important issue which has not always received unanimous agree-
ment among accounting standard setters, auditors, professionals and academics over
the years. It has been of particular relevance over the last years with the convergence
project between International Financial Reporting Standards (IFRS) and US GAAP
whereby the US were extremely reluctant to accept the override principle due to the
fact that US GAAP became over time a more rules based philosophy and the idea
of the flexibility introduced by the TFV override caused uncertainty in a country
where detailed rules were now the norm. However, Van Hulle [20] reminds us that
accounting regulators are not perfect and even when rules and standards cater for
the majority of circumstances they can never cover all situations in practice. More-
over, Arden [3] mentions from a court justice point of view that whenever there
are rules there will always be problems that the rules cannot solve making the TFV
requirement necessary.

However, the European Union (EU) accepted the override principle in the Direc-
tives and therefore it is a legal obligation for all member states. The inclusion of the
override was initially promoted by the UK on its incorporation into the EU in 1971.
As mentioned by Alexander and Eberhartinger ([2], p. 571), the UK considered it
important to issue a new ‘opinion of Counsel’ (FRC, 2008) which clearly shows its
support and considers the continued importance of the TFV override. Interestingly
however, Livne and McNichols [12] find that UK firms invoking more costly over-
rides report weaker performance and have less informative financial statements and
lower earnings quality. In Spain, the override principle has been invoked in only a
few cases during the period of more than two decades of operation (see Cea and
Vidal [4]).

Despite the initial arguments against the inclusion of the TFV override by the
US, the IASB continues to include the override position in IAS 1. The term used in
IAS 1 is now Fair Presentation rather than TFV but we understand that the override
clause works in a similar way. It is clear however on reading IAS 1 that the override
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stipulation is not the favoured practice and should only be used in exceptional cir-
cumstances. This condition of exceptionality could be considered unfortunate due to
the fact that in practice it acts as a disincentive to surpass accounting standards and
rules which do not clearly offer a TFV of the financial position of the entity.

It is important to mention that the study of TFV has occupied a relevant position in
the accounting literature and has faced a number of criticisms due to the requirement
of giving a TFV in the financial statements (see e.g. Nobes and Parker [15], Alexander
and Jermakowick [1], Alexander and Eberhartinger [2]). Prior studies have explored
the different attempts to give TFV a definition (Low and Koh [13], Hamilton and
Ó’Hógartaigh [7], Garvey [5]), the application of TFV in practice and the under-
standing of the TFV by auditors (Nobes and Parker [15], Kosmala [10]), and the
perceptions of TFV by different groups (Houghton [8], Low and Koh [13], Kosmala
[10], Kirk [9], Garvey et al. [6]). This study updates the literature by re-examining
the perception of TFV using a sample of professional and non-professional users and
in a codified legal system.

The importance of the TFV concept in the codified legal systems used in Conti-
nental Europe and the differences with the common law systems used in countries
like the UK or US allow us to understand the results of the study. The accounting
system being examined follows the mentioned codified legal system and is unfamiliar
with a flexible thought like TFV. This TFV did not come with a definition explaining
how it should be achieved which makes its application more difficult in a country
where professionals are accustomed to applying the law by its wording and where
there is no room for interpretation. Clearly a very different form of interpreting the
law to the common law system and hence the difficulty of applying a very open
and flexible thought like TFV. The new procedure required a change in mentality
by the accounting practice but also by educators who were instructing those future
professionals.

Then, we focus on how the TFV was explained during Spanish accounting and
auditing courses and on the understanding that was obtained and transferred to those
in question. In reality we are observing what kind of TFV is inculcated to Spanish
students and what is finally understood by those in practice. Our results and observa-
tions come from a survey distributed to undergraduate and postgraduate accounting
students. In order to identify the application of TFV in practice, this survey was
also addressed to auditors in public practice. By comparing the results obtained by
students and auditors we appraise the evolution of the concept due to professional
status and maturity from the education period to the professional period. The results
clearly note differences in the understanding and perception of the principle of TFV
depending on the academic and professional advancement of the participant.

In order to remind us how the TFV stands at present, we include Fig. 1 which
demonstrates how financial statement preparers should act in order to obtain the
TFV. The override area is the most problematic and is the part that we understand
is not always understood correctly. By proceeding with the guidelines in graph 1, a
TFV would be obtained as presently required. The professional judgement used in
order to obtain this result however could vary from one professional to another.
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Complete financial statement 

preparation

No

No

Complete financial statement 

preparation with the 

corresponding information in 

the notes to the accounts

By following the accounting rules we obtain a TFV 

of the financial position of the company?

By giving additional information we obtain a TFV  

of the financial position of the company?

Then override the standards that prohibit the TFV 

presentation and explain the reasons and the financial 

effects of the override in the notes to the accounts

Yes

Yes

Fig. 1 Use of professional judgement required at each stage Source: Own

In this study we also focus on the importance of expertise, maturity and accounting
education in relation to this complex concept. Previous research shows that profes-
sional experience has an influence on auditors’ judgement (Quick and Sánchez [16]).
The expert novice theory also reinforces this. The areas of age and accounting edu-
cation or training are also examined and highlight differences between these groups
(Montoya et al. [14]). In any field there will be a normal evolution in the learning
process so perhaps that there are differences here would be naturally expected. How-
ever it is by observing the existence and location of differences that steps may be
taken to eliminate them when they are not appropriate and steps to assist the learning
process by enabling faster processing methods of understanding the concept correctly
and thus enabling its fitting application in practice.

Our results show the complete integration of the TFV in the Spanish account-
ing system through the acceptance of this objective after more than twenty years of
operation. Nevertheless, the version of TFV accepted in Spain could have differences
with that currently accepted in the common law accounting systems of other coun-
tries. For instance, the participants show their preference for a written definition of
TFV, i.e. an appeal for guidelines to help them in reaching the objective implied in
TFV. On the other hand, the more mature participants bid for relief in sanctions and
penalties in the case of non-compliance. The introduction of fair value (FV) is seen as
positive and favourable in achieving the TFV of the company’s situation and results.
We detect that the effect of individual maturity, experience and accountability due
to professional practice is very important in the process of opinion development of
TFV.

The results obtained were not entirely surprising due to the fact that Spain forms
part of the group of countries which has a codified legal base, a system whereby the
law is written in a lot of detail leaving little or no room for professional judgement.
For this reason we felt a necessity to question the surveyed groups about their under-
standing of the concept and whether they perceive that the TFV objective is achieved
by simply following the accounting standards in vigour at the time of application or
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whether the TFV objective requires something more. It is necessary to identify these
perceptions in order to make changes for its correct application according to the law.

The remainder of the study proceeds as follows. The next section presents the
literature review and hypotheses, the third section shows the research method (the
survey design) and the summary statistics, the fourth section discusses the results
and the final section provides our concluding remarks.

2 Literature Review and Hypotheses

This study examines the effects of professional status and maturity on the percep-
tion of TFV by observing the perception and understanding of different groups.
The literature has paid special attention to the auditor’s meaning and perception of
TFV (Nobes and Parker [15], Kosmala [10], Kirk [9], Garvey [5], Garvey et al. [6],
among others) and how the TFV is applied in practice (Nobes and Parker [15]). More
interestingly, previous studies that have analysed the different perceptions of TFV
between groups find mixed results. For example, Houghton [8] finds that accountants
and shareholders do not share the same meaning of TFV nor do they share similar
cognitive structures. Kirk [9] finds that the three group’s surveyed (auditors, finan-
cial directors and shareholders of listed companies in New Zealand) share similar
perceptions of the TFV; but perceive TFV to be quite different from ‘fairly presents’
and ‘fair presentation’. In contrast, Low and Koh [13], Laswad [11] and Kosmala
[10] generally do not find differences across groups.

The influence of professional experience on auditors’ judgment is a widely
analysed question in the audit field. Quick and Sánchez [16] examine the effect
of management explanation on the auditor decision process in analytical procedures.
They include the variable auditor’s experience in the study because prior evidence
shows that the results may be conditioned due to the level of auditor’s expertise. That
is, the problem solving methods used by expert auditors differs from that of more
novice auditors. However, the results do not confirm previous evidence in the field.
Montoya et al. [14] examine the application of materiality (permissive, moderate
and strict) on the financial information using a sample of 338 Spanish auditors. The
results show that in practice auditors apply different levels of materiality. Further-
more, they detect that variables such as age, academic training, firm turnover, and
number and kind of companies audited, influence the effective use of the qualitative
side of materiality.

Based on this literature, this study investigates the effects of professional status on
the perception of the TFV in two groups of interest: accounting students and auditors.
We believe this study is important because it gives an insight into the perception of
this complex accounting concept at different levels of professional status and maturity
which will allow standard setters’ and educators’ to focus on the ways to ensure that
the override condition is enforced and applied correctly in the future.

In order to define the hypothesis, we follow Kirk [9] who formulated the proposi-
tion in terms of a no difference perception in the concept of TFV using three groups
of participants (auditors, financial directors and shareholders of listed companies)
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and three areas of interest (the meaning of the concept in financial reporting, com-
pliance with GAAP and the law, and the requirement for financial reporting). We
extend this work examining the opinion of professionals and non-professional users
in four areas of interest or sub hypothesis: (i) the level of integration of the TFV
concept in the Spanish accounting process, (ii) the degree of distinction between the
strict compliance with accounting rules and the fulfilment of TFV, (iii) the need for
a written definition of TFV, and (iv) the relationship between the use of fair value
measurements and the achievement of the TFV.

If there are differences between both groups, the problem solving theory and
prior empirical studies in accounting and auditing (see e.g. Houghton [8], Kirk [9],
Montoya et al. [14], Hamilton and Ó’Hógartaigh [7]) can help to understand the
results. The problem solving theory explains that novices and experts deal with
different strategies when they have to solve a problem. Specifically, novices use a
means-end analysis suggesting that when novices have to solve a new problem they
need to process all the information for the first time because they do not have struc-
tured schemes to apply and solve the problem. In contrast, experts have structured
schemes which they have built up through past experience. When experts have to
deal with a new problem, they are able to apply the schemes to solve the new problem
(see e.g. Sweller [19]). More specifically, prior empirical studies in accounting and
audit have found differences in the TFV meaning and interpretation when different
groups are interviewed and also when each group has different characteristics in
terms of experience, age, maturity, academic training, etc. (see e.g. Houghton [8],
Kirk [9], Montoya et al. [14]). Although these previous studies deal with specific
context and audit dilemmas to test their hypothesis, we provide an explanation for
our sample represented by professional and non-professional participants as well as
our four areas of interest or sub hypothesis.

Then our first hypothesis is formulated as follows:

H1: There is no difference in the perception of the meaning of the concept ‘True and
Fair View’ due to professional status.

The survey gathered the age information and the education level frequently used
in archival research to consider conditioning effects of financial reporting practices.
For example, Rankin et al. ([17], p. 372) argue that ‘mature students and school
leavers are likely to differ in terms of preferences, attitudes towards study and self-
regulation’. The previous qualifications studied were considered to possibly affect
the comprehension of the TFV concept for students.

The age and maturity of the auditors could also affect their professional judgment.
The acquisition of an accounting habitus through a process of training in the company
and the inculcation of the culture of the firm could play an important role. Rich et al.
([18], p. 105) cite several studies which document that auditor judgment is shaped by
specific prior experiences of the audit process, of client misstatement and persuasion
and of the client or industry. Hamilton and Ó’Hógartaigh ([7], p. 916) explain that
auditors are social agents in the accounting field, whose habitus was formed and
acquired through the process of inculcation during their educational and training
period’.
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The difference in opinion between students and auditors is interesting because
we can observe the effect of the academic training received by this latter group in
order to obtain the title of auditor. As Hamilton and Ó’Hógartaigh ([7]: 916–917)
outline, in order to become an auditor an individual must undergo specific training
and education which is very often controlled by the accounting body to which they
wish to join. Accounting regulators can therefore guide the attitudes of future auditors
through the contents of the courses and the linguistics acquired by students. It takes
many years for an auditor to be admitted as a partner in an audit firm, during which
time they adapt to the firm’s culture. In these cases to comment on TFV not only
depends on technical knowledge but also on adherence to that culture which has been
inculcated over the years.

Consequently, our second hypothesis is formulated as follows:

H2: There is no difference in the perception of the concept ‘True and Fair View’ due
to the degree of maturity and accounting education of the participants.

3 Research Method

3.1 Survey Design

The survey consisted of 14 closed-form questions. The questions used a 5 point Likert
attitudinal scale, ranging from ‘strongly agree’ to ‘strongly disagree’, or ‘excellent’
to ‘poor’. The survey was pretested on a number of academics for face validity and
content. To capture the perceptions of the meaning of TFV between the groups and
the degree of maturity, four sections are defined. The first section deals with the level
of integration of the TFV concept in the Spanish accounting process (questions 1
and 2). The second section deals with the degree of distinction between the strict
compliance with accounting rules and the fulfilment of TFV (questions 3–7). The
third section investigates the need for a written definition of TFV (questions 8–11).
Finally, the forth section examines the relationship between the use of fair value
measurements and the achievement of the TFV (questions 12–14).

To capture perceptions of TFV emphasized in the course of accounting degrees,
the sample was drawn from various universities (undergraduate students) and an audit
master course (postgraduate students). In particular, the Auditing School of the ICJCE
(Instituto de Censores Jurados de Cuentas de España, the most important auditor
body) passed the survey to the postgraduates attending the tests for the preparation
of the Master in Auditing (distance learning program) at Alcalá University. This
Master Degree is followed by students as the first step of the exam to attaining the
qualification of auditor. The second and final step is a practical exam to be done
after the end of the practical experience period of three years. All postgraduates
were enrolled in the major auditing master course to access the auditor profession
in Spain. The participants of the master came from different regions of Spain, thus
avoiding bias due to geographical location.
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In the case of the auditors we obtained help from the AECA (Asociación Española
de Contabilidad y Administración de Empresas) who distributed the survey by email
to its members in audit practice. The members of AECA represent the principle
auditing firms in Spain, including the BIG 4 companies.

Furthermore, the profile of undergraduates is different from postgraduates because
the first are merely students but in the more advanced years of their studies and the
second are normally employees of auditors in public practice or audit firms. So, we
have three very different groups: pure students (undergraduate); students with some
experience in performing audits but without any responsibility to give an opinion
(postgraduate) and auditors fully engaged in performing audits and writing audit
reports.

The surveys were administered to classes between 2006 and 2008. It is noted
that there was a change in the legislation in 2007 but this should not affect our
participants opinions as they all began studies under the previous requirements and
the new additions in this area are not fundamental but more to clarify how to achieve
TFV. The students filled out a paper version of the survey that was placed on their
chairs. We used this approach in an attempt to obtain a large response rate. A total
of 324 usable responses were obtained.

3.2 Summary Statistics and Data Issues

Table 1 shows the sample characteristics. Of the 414 respondents, the position title
of respondents included students (n = 324), and auditors (n = 90). In terms of
students’ level of education, 54.63% were undergraduate and 45.37% postgraduate.
Table 1 also provides the age of participants. The respondents present ages between
17 and 25 (n = 200), between 25 and 45 (n = 164) and more than 45 (n = 50).

Table 1 Sample characteristics

Degree Obs.

Students Undergraduates 177

Postgraduates 147

Auditors 90

Total 414

Age Obs.

Between 17–25 200

Between 25–45 164

More than 45 50

Total 414
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4 Results and Discussions

4.1 Univariate Analysis

4.1.1 The Integration of the True and Fair View Concept in the Spanish
Accounting System

We conducted a set of questions that ask the participants if they consider the TFV
concept to be an integrated concept in the Spanish accounting process after more than
twenty years of mandatory application in companies accounting and auditing. In this
Section, we consider two questions and we predict that the participants endorse the
integration of TFV in Spanish accounting legislation:

The integration of the True and Fair View concept in the Spanish
accounting system

Expected Results

Q1. The true and fair view concept is foreign to Spanish accounting Disagree
Q2. The true and fair view should be abandoned in European accounting
due to the fact that it is not important

Disagree

Table 2, panel A shows that 78.08% (80.00%) of the students (auditors) surveyed
consider that the TFV is not foreign to Spanish accounting and 84.56% (92.22%)
consider that the TFV concept should not be abandoned in European accounting.
Both groups recognise the TFV as being part of Spanish accounting, the percentage
is slightly higher in the case of professionals, the same tendency is observed in the
case of whether TFV should be abandoned due to its lack of importance. In the
latter case, the difference is substantially higher in the case of professionals even
when both groups give a clear response to this question. We understand that these
higher rates in the case of professionals is due to them working with the concept on
a daily basis whereas students are applying what they have learnt in the lecture hall.
It is noted that the averages do not exceed the value of 1.83 and are significantly
different from 3. Table 2, panel B shows that there are no statistically significant
differences depending on the maturity of participants in these questions (p > 0.05).
The correlation of Pearson and Spearman (not reported) between both questions are
statically significant (p < 0.01). In sum, the evidence shows that the TFV is an
integrated concept in Spanish accounting legislation and there is no difference in
terms of professional status, maturity and accounting education. The two hypotheses
(H1 and H2) cannot be rejected in the area of interest of this Section.

As the TFV concept is incorporated into European legislation, it is obvious that
it forms part of Spanish legislation from the moment of the incorporation of Spain
into the European Union, and more precisely from the moment its national laws were
adapted to those of the European Union. The 1990 General Accounting Plan and the
reform of the accounting plan in 2007 are some of the attempts that comply with this
adaptation.
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The set of answers suggests that the TFV objective is definitively adopted and
forms part of the professional mentality of both, students and auditors, and that this
principle of accounting has been accepted as part of the Spanish accounting system
after almost twenty years of its incorporation into the Law. A possible interpretation
of this is that the former codified legal based accounting system is now already
transformed, thus acquiring features from common law systems converting it into a
mixed system in some ways.

4.1.2 Distinction Between the Strict Compliance with Accounting Rules
and the Fulfilment of True and Fair View

The next set of questions explores the distinction between the strict compliance with
accounting rules and the fulfilment of TFV. Specifically, we consider five questions:

Distinction between the strict compliance with accounting rules and the fulfilment
of True and Fair View

Expected results

Q3. The true and fair view is always obtained by following the accounting stan-
dards

Disagree

Q4. The true and fair view should sometimes include more than the compliance
with the accounting standards in vigour

Agree

Q5. In the case where more than one true and fair view can be obtained, the one
that is closer to the accounting standards is the one that should prevail

Disagree

Q6. In reality, the accounting standards would have to be abandoned only in
exceptional cases in order to show a true and fair view

Agree

Q7. The non-compliance with the true and fair view in cases where the accounting
standards have been strictly complied with should not be subject to a fine

Disagree

Question Q3 was expressly included to investigate whether there is an understand-
ing in Spain to override one or several accounting standards in order to show a TFV,
if by using them the TFV objective is not achieved. We expected that participants
would be in disagreement with the question because the TFV is not always reached
by strictly following the accounting standards.

Table 3, panel A, shows that 40.74% of students disagree (moderately or strongly)
and 47.53% agree (moderately or strongly) and that the mean is not statistically
different from 3. The evidence could be interpreted that there is not a prevalent
view among students on the way the accounting standards could operate in order
to draw the appropriate picture of transactions and other economic events through
financial reporting. This result is achieved at the expense of students knowing that the
accounting standards provide alternatives for the recognition of accounting events.
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The results obtained from auditor’s responses present a different perspective
on this issue: they are more comfortable following the accounting standards to
give the financial picture of companies. Table 3, panel A, shows that 30.00% of
auditors disagree (moderately or strongly) and 66.67% agree (moderately or strongly).
There are statistically significant differences depending on the professional status of
participants (p < 0.05 in mean and median) and on the maturity of the partici-
pants (p = 0.08) in this question (Table 3, panel B). Interestingly, the gap between
the agreement and disagreement for this item is higher in the more mature group,
showing that in line with their maturity, their opinion on the validity of accounting
standards as the way to reach TFV is stronger.

Question Q4 is related to the TFV in that it should sometimes include more than
the compliance with the accounting standards in force. Our result shows that 89.82%
of the students agree with the question and 91.11% of the auditors agree with the
question. No differences exist relating to the group and age of the participants. Also,
participants agree (moderately or strongly) with question Q5 that in the case where
more than one TFV can be obtained, the one that is closer to the accounting stan-
dards is the one that should prevail (63.89% for students, and 78.89% for auditors).
Interestingly, differences exist in relation to the professional level and maturity of
the participant (p < 0.05).

The set of responses to questions Q4 and Q5 suggest that future professionals and
auditors want to search for solutions to TFV problems by taking inspiration from
actual accounting standards. We expect that the best way of showing the TFV is not
always the one that complies more adequately with the accounting standards and
it would be necessary to examine each individual case. For this reason, the desired
answer would not be in agreement with this declaration but with the opposite (that
each case should be examined individually, because the best way of showing the TFV
is not necessarily the one that is closest to the accounting standards). The answer is
not surprising however given a more rational professional behaviour, which would
be to keep to the most secure, which is to follow closely the standards in force at
the time of the preparation of the financial statements. This is demonstrated by the
results obtained in question Q3.

Moreover, question Q6 suggests that the accounting standards would have to be
abandoned only in exceptional cases in order to show a TFV reaches an agreement of
58.34% for students and 66.67% for auditors. Although agreement with the question
is higher for auditors than students, the differences are not statistically significant.

The reply obtained here ties in with the legislation of the European Union and the
Spanish Accounting Plan in force at the time of the survey. However, this answer
differs to the one observed in question Q3, where students and auditors surveyed
agree, with a high percentage that the TFV is always achieved by following the
accounting standards.

Finally, question Q7 was included to observe the state of opinion on the enforce-
ment of the TFV that in some situations implies penalties, compensations or fines to
companies or auditors in the case of non-compliance with the objective of the TFV.
In this case the students disagree (53.90% that with the non-compliance of the TFV
in cases where the accounting standards have been strictly complied with should not
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be subject to a fine). The opposite response is found in the auditors’ sample (31.11%
of disagreement and 54.44% of agreement). In this question we find statistical
differences between participants depending on their professional status (p < 0.00)
and also according to their maturity (p < 0.00).

The intended reply here would be in disagreement with the question given that if
the financial information does not show a TFV it does not comply with the objective of
the law even when it follows the accounting standards strictly. This means that there
is an error which can provoke negative consequences for the users of the financial
statements and should therefore be fined.

On analysing the case further, it could be investigated if the fact of not showing
a TFV was provoked through bad faith or not. However, a company that conforms
to the accounting standards but does not obtain a TFV of the financial accounts does
not comply with the legal obligations corresponding to TFV. If a fine is not imposed
in this case then one could ask what the purpose of the overriding clause is in the law.
No company would take the risk of overriding the accounting standards to achieve
the TFV knowing that there would be no legal consequences of simply complying
with the standards.

The influence of maturity and accounting education are once again important, as
the Kruskal–Wallis test shows. The mean and the median figures tend to increase
towards the agreement with the declaration of lack of accountability in the case
of non-compliance as long as the participants age increases. We interpret this as a
product of the knowledge and experience in the (sometimes difficult) application of
accounting standards, as well as a form of self-protection against corrective measures
by the Spanish market authorities (in the case of companies) or by the Spanish
government (in the case of auditors).

The two hypotheses can be rejected because there are differences in the opin-
ion of compliance with accounting rules due to professional status, maturity and
accounting education. This part of the study which observes the distinction between
the strict compliance with accounting rules and the fulfilment of TFV gives some
important insights into the perceptions of students and auditors in the area. Auditors
reflected that a TFV is always obtained by following the accounting standards. The
students answer was not so clear here. This is an unexpected result for us taking
into account the override provision of TFV. In the other questions however it shows
that all participants at varying levels understand the override condition but the most
surprising here is that auditors reject the possibility of fines for non-compliance with
TFV where the accounting standards have been strictly adhered to.

4.1.3 A Need for a Written Definition of True and Fair View

The next set of questions explores the need for a written definition of TFV. There is
not a consensus on the precise definition and scope of the TFV objective, however
in a country where it is usual to have written laws and standards it could be desirable
to have a formal delimitation of TFV by means of a written definition. The profile of
the four questions related to the definition was designed to identify the opinion on
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the advantages the participants perceive in having a wording with the description of
the TFV.

A need for a written definition of True and Fair View Expected results
Q8. A detailed definition of the true and fair view would take away from
the efficiency in its application.

Agree

Q9. The creation of a definition of the true and fair view in relation to
the annual accounts is a very difficult task.

Agree

Q10. The true and fair view has an absolute quality that makes it unnec-
essary to define.

Agree

Q11. It is necessary to have a definition of the true and fair view. Disagree

The coefficients of Pearson and Spearman (not reported) between the four ques-
tions (Q8-Q11) are statically significant (p < 0.05). Question Q8 explores whether a
detailed definition of the TFV would take away from the efficiency in its application.
The expected answer here would be that the surveyed participants were in agreement
with the question given that the TFV is a concept that can vary due to socio-economic
and environmental changes, and a definition could constrict it too much. However,
the hypothesis was not fulfilled in this question for the student subsample. Table 4,
panel A, shows that 30.86% of students agree (moderately or strongly), 37.66%
disagree (moderately or strongly) and 31.48% are indifferent. We observe a high
dispersion in the responses to this question. In contrast, 25.56% of the auditors agree
(moderately or strongly) and 58.89% disagree (moderately or strongly). Again, we
find statistical differences depending on the professional status of participants and
also by the maturity of the participants.

Once again, the interpretation of the results is that knowledge and experience
determine the opinion of the group of auditors in favour of a written delimitation
for the TFV objective of financial reporting. The components of this group are more
comfortable with a detailed definition, because this could be helpful in performing
their job. Considering the responses to the following question, it is clear that most
auditors realised the difficulty of obtaining that desire.

Question Q9 looks into whether the creation of a definition of the TFV in relation
to the annual accounts is a very difficult task. As expected, 56.79% of students and
60.00% of auditors believe that it is difficult to create a definition of the TFV. It is
noted that the percentage of agreement is not high.

Question Q10 investigates if the TFV has an absolute quality that makes it unnec-
essary to define. We expected that participants would agree with the question. How-
ever, just 21.92% (30.00%) of students (auditors) agree (moderately or strongly) and
50.61% (50.00%) of students (auditors) disagree (moderately or strongly). No differ-
ences are found between groups and age of participants. After examining the answer
to this question it is evident that the underlying comprehension of the concept is low
and again the desire by the surveyed population to have a definition of the concept
that ties into the legal system in Spain.

Finally, question Q11 explores the need to have a definition of the TFV. We
expected participants to disagree with the question. That is, the reasoning for arriving
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at this hypothesis is the following: we understand that it is not possible to obtain an
adequate definition of this concept due to its open and flexible nature, and that it can
vary when there are techno-economic changes. For these reasons a definition would
take away from its flexibility and would make it less necessary to use professional
judgement to achieve a TFV. A possibility would be to consider guidelines that would
help to achieve a TFV of the financial information but a strict definition would not
operate correctly in this case in our opinion.

However, the results of the survey clearly show that most respondents believe it is
necessary to have a definition of the TFV (more than 60% of agreement). In contrast,
only around 12% of respondents disagreed with the question. No differences are
found depending on professional status or on the maturity of participants.

In summary, the groups participating in the survey show a clear preference for
a written definition of TFV even knowing the difficulty of this task. The group of
auditors declares that having a detailed definition would help to reach efficiency in
the application of the TFV objective in the financial reporting system.

4.1.4 The Use of Fair Value to Achieve the True and Fair View

In this section, we explore the understanding of Fair value and its relationship with the
TFV. After the introduction of the fair value procedures for Spanish listed companies
in applying IFRS from 2005, a broad discussion on the convenience of introducing
fair value in the General Accounting Plan followed during the years of the elaboration
of the 2007 reform. Finally, the fair value measures were introduced into the Plan,
but only for the cases where the IFRS’s do not allow for another accounting or
reporting option. Thus, most financial instruments, business combinations and items
initial recognition are measured at fair value. The three questions related to fair value
derived from the adoption of principles close to IFRS’s and TFV are as follows:

The use of Fair Value to achieve the True and Fair View Expected results
Q12. The annual accounts prepared according to fair value can show a
true and fair view.

Agree

Q13. The financial accounts prepared according to fair value show
better the true and fair view than those prepared according to historic
cost and other methods.

Disagree

Q14. With the introduction of IFRS (IASB), the true and fair view has
less importance.

Disagree

For question Q12, Table 5, panel A, shows that 66.98% (84.44%) of students
(auditors) agree (moderately or strongly) that the annual accounts prepared according
to fair value can also show a TFV. Interestingly, we find statistical differences between
both groups. The agreement of auditors is higher than the agreement obtained by
students.

Question Q13 asks for a comparison between historic cost procedures and those
from standards based on fair value according to IFRS’s. Around 50.31% of the
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students agree (moderately or strongly) with the fact that financial accounts prepared
according to fair value show more adequately the TFV than those prepared according
to historic cost and other methods. In contrast, a strong difference is found between
students and auditors when they are asked if the introduction of IFRS (IASB) implies
that the TFV has less importance (question Q14). Auditors reach a high level of
disagreement (70.00%) compared to students (48.77%). The hypotheses H1 and H2
can be rejected in the area of interest of this Section because there are differences of
opinion from the adoption of principles close to IFRS’s and TFV due to professional
status, maturity and accounting education.

4.2 The Multivariate Analysis

In an attempt to reinforce the previous results, the following part of Sect. 4 of the
paper outlines the findings for the variables in the model using a logistic regression
and a multinomial logistic regression. Our objective is to examine if the differences
found between the different perceptions of TFV can be used to predict the probability
of belonging to a specific group. To do that, we chose only one question from each
section, the Pearson and Spearman correlation show statistical correlations between
the questions from each section and thus the question chosen is intended to have
most of the information content of the section. The exception is provided by Sect. 2
called Compliance because question 3 related to whether there is an understanding
in Spain to override one or several accounting standards in order to show a TFV is
not associated with question 7 related to the enforcement of the TFV that in some
situations implies penalties, compensations or fines to companies or auditors in the
case of non-compliance with the objective of the TFV.

The estimation of the models takes the following expression:

p(x) = α0 + α1TFV -integrated (question Q2)+
+ α2Compliance-always(questionQ3)+
+ α3Compliance-non- f ined(questionQ7)+
+ α4Def ini tion(questionQ8)+
+ α5RelationT FV and FV (questionQ14) + et

In the logistic regression, the dependent variable is professional status. In the multino-
mial regression, the dependent variable is the age of participants (proxy for maturity
and accounting education). The α’s are the coefficients of the independent variables
in the regression model. The independent variables are the same for the logistic
regression and multinomial regression.

Table 6 (Panels A and B) displays the results of the logistic regression comprising
the main regression coefficients, level of significance, and odds ratio for the indepen-
dent variables. The odds ratio Exp(α) predict the change for a unit when increasing
in one independent variable, holding other variables constant.
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Table 6 Results of the logistic models

Panel A: Logistic model Panel B: Multinomial model

Auditors and StudentsAuditors and Postgrad Maturity and Accounting education

χ2 57.95 47.60 39.93

Sig. 0.00 0.00 00.00

R2 Cox y Snell 0.13 0.18 00.11

R2 Nagelkerke 0.21 0.25 00.05

Correctly
classified

81.13 69.66 51.00

Exp(B) Sig. Exp(B) Sig. Exp(B) Sig. Exp(B) Sig.

c 0.125 0.001 1.052 0.943 0.695 0.024

Q2: abandoned 0.826 0.254 0.700 0.046 0.960 0.726 0.843 0.432

Q3: always 1.413 0.004 1.369 0.016 1.021 0.819 1.308 0.070

Q7: fine 1.687 0.000 1.537 0.000 1.090 0.316 1.727 0.000

Q8: efficiency 0.808 0.072 0.666 0.003 0.961 0.678 0.773 0.086

Q14: important 0.616 0.000 0.615 0.001 0.953 0.627 0.606 0.004

The table presents estimation results from a logistic regression model. Panel A presents the results
from the logistic regression where the dependent variable is the professional status. In the first
column, the dependent variable takes the value ‘1’ for auditors and ‘0’ for students. In the second
column, the dependent variable takes the value ‘1’ for auditors and ‘0’ for postgraduates. Panel B
presents the results from the multinomial regression where the dependent variable is the maturity
of the participants. The variable takes the value 1, 2 or 3 for the range between 17–25, between
25–45, and more than 45, respectively. As the reference group is the youngest group (age between
17–25), the first column represents the position of middle maturity respect to the youngest group
and the last column represents the older group respect to the youngest group

The results of the models are acceptable looking at the chi squared significance
(p < 0.00) and the percentage of prediction (around 70%). The first estimation of the
logit model (Panel A, column 1) represents the probability of a participant being an
auditor or a student. That is the dependent variable of the logistic regression model is
the ‘group of reference’ which adopted the value ‘1’ for auditors and ‘0’ for students.

The results of Table 6 (Panel A, first column) show that there is no significant
difference (p > 0.05) between auditors and students for the question related to the
integrated concept of TFV in the accounting standards (Q2). The evidence suggests
that both share similar behavioural beliefs in terms of the TFV as an integrated
concept in Spain from the EU Directives.

There is statistical significant difference (p < 0.01) between auditors and students
for the rest of the variables included in the regression model. The results indicate
that the questions relating to whether the TFV is always obtained by following the
accounting standards (Q3) and the non-compliance with the TFV in cases where the
accounting standards have been strictly complied with should not be subject to a
fine (Q7) are more likely to influence the auditor group (odds ratio Exp(α2) 1.431,
Exp(α3) 1.687, respectively, Table 6, Panel A). That is, higher levels relating to the
compliance of TFV are presented for auditors compared to students. The findings
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support the univariate analysis as the percentage of agreement (and mean) in these
questions are higher for auditors than for students.

Also, there is statistical significant differences (p < 0.10) between both groups
for the questions related to Q8. A detailed definition of the TFV would take away from
the efficiency in its application. In this question it is more likely to influence students
(odds ratio Exp(α4) 0.808, Table 6, Panel A). The findings support the univariate
analysis as the percentage of agreement (and mean) in these questions is higher
for students than for auditors. Finally, the question related to if the TFV has less
importance with the introduction of IFRS (IASB) also presents differences between
both groups (p < 0.01).

The second estimation of the logit model (Panel A, column 2) considers only
postgraduate students against the auditor group in order to see the evolution and
the differences between the level of students’ degree and the auditors. As explained
before, postgraduate students present an advanced level of accounting and are more
proxy to the audit profession. Moreover, the students from these courses could have
experience in audit firms. As previous studies highlight that maturity and accounting
education may influence the perception of TFV (see e.g. Rich et al. [18] Rankin et
al. [17]), this segmentation allows us to see the evolution between a pre-professional
auditor and the auditor.

The dependent variable of the logistic regression model is the ‘group of reference’
which took the value ‘1’ for auditors and ‘0’ for postgraduate. The division of the
students into two groups according to the level of degree adds an interesting result.
Looking at the question related to the integrated concept of TFV in the accounting
standards (Q2), we find statistical differences between auditors and postgraduates
(p < 0.05). It seems that the level of studies and the maturity of the students have an
influence on the perception related to if the TFV should be abandoned in European
accounting due to the fact that it is not important. The significance of the rest of the
variables and the odds ratios are consistent with the estimation of model 1 and the
difference of opinion is especially significant between postgraduates and auditors in
the case of fines for non-compliance (p < 0.01).

Finally, Table 6, Panel B provides the results of the multinomial logistic model.
The dependent variable gathered maturity and accounting education and is coded as
one, two, or three according to the age of the participant (i.e., between 17–25, between
25–45, and more than 45). The reference group is the youngest group (age between
17–25). The evidence shows that the maturity of participants has an influence on the
perception of TFV. Interestingly, there were no statistical differences between the
first two groups (p > 0.05) but there are statistical differences between the first and
the third group. That is, we find that the level of maturity and accounting education of
participants affects the questions associated with compliance (p < 0.10), definition
(p < 0.10), and the relationship of TFV and FV (p < 0.05) when the participants
between 17–25 are compared with the participants older than 45. Furthermore, the
differences that we have found in the univariate analysis are driven mainly by the
differences between the youngest and the oldest participants.
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We can interpret these results as a logical learning curve in the education process of
accounting. The key to obtaining a qualitative assessment (such as the interpretation
of TFV, a complex concept) depends on their understanding of the concept and the
level of maturity in which the concept is studied.

4.3 Sensitivity Analysis

This study hypothesizes that there is a different perception of the meaning of TFV
between students and auditors. We also argue that age and accounting education
influence the perception of TFV. In this section we report the results from various
sensitivity and robustness tests. First, we repeated all tests using the three groups of
participants: undergraduates, postgraduates and auditors. Due to limited space, we
only show the questions examined in the multivariate analysis.

Briefly, we comment on the main results reported in Table 7. In question Q3
related to the compliance of TFV (whether there is an understanding in Spain to
override one or several accounting standards in order to show a TFV, if by using them
the TFV objective is not achieved), we observe statistically significant differences
depending on the group of participants (p < 0.05). We also find statistical differences
between the three groups of participants (p < 0.00) in question Q7 (opinion on the
enforcement of the TFV that in some situations implies penalties, compensations or
fines). Finally, we detect statistical differences (p < 0.00) in question Q8 relating
to whether a detailed definition of the TFV would take away from the efficiency in
its application (panel C) and in question Q14 relating to weather the introduction of
IFRS (IASB), give the TFV less importance. These results reinforce the evidence
found in this paper.

Second, we repeated all the tests using different age and accounting education
segmentation. We investigated the effects the difference in the perception of the con-
cept TFV has due to the degree of maturity of each group of participants (differences
intra-group). That is, the differences in maturity in the group of students and the
group of auditors. Results not reported. Also we use the three age groups used in the
previous test and examine the differences driven by professional status. The section
between 25–45 years provides special interest because it engages in a high represen-
tation from each group of participants (undergraduates, postgraduates and auditors).
Table 8 shows only the results of the questions examined in the multivariate analysis
due to limited space.

Table 8 shows that the degree of maturity and experience is important in the per-
ception of TFV. For example, in question Q2 related to if the TFV is a foreign
concept or should be abandoned in European accounting, we can see how the per-
centage decreases from undergraduates (12.00%) to auditors (0%) in question Q2.
Similar evidence is found in most of the remaining questions. These results reinforce
the evidence found in this paper.
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5 Conclusions

This research has been done primarily to evaluate the state of opinion of students and
auditors in our study on the TFV as a EU mandatory accounting principle included in
local accounting law since 1988, following the accounting Directives. For a codified
legal based accounting system it is valuable to know the level of implication of the
actual and future accounting agents in reaching the objective of giving a TFV in
financial reporting by companies. Besides this main goal, we try to identify if there
are differences, due to the effect of experience or the professional responsibilities
undertaken, between students (pre and postgraduates) and auditors in public practice.

The identification of differences is important in order to improve the application
of the concept in practice and its overall learning process. The EU Directives offer
a guide (as shown in graph 1) of how to proceed in applying the concept correctly.
The objective would be to minimise the differences between the actors but always in
the sense of obtaining the correct use of the concept according to the law. This may
mean incorporating changes for auditors or students depending on the questions
involved. As explained in the article we include the expected responses from the
participants to comply with EU legislation and deviations from these should be
eradicated. It is also our intention from the study to consider ways whereby students
may be brought nearer to the correct application of the concept during the learning
process. An incorrect application of this important accounting concept could have
important economic consequences should cases be taken to the courts or on the level
of dependence that users place on the accounting information when taking important
economic decisions.

One of the most interesting conclusions reached is the high level of acceptance
by students and auditors of the objective of the TFV as the main objective for finan-
cial reporting. This implies the conformity with the identification of TFV with the
principle of substance over form, which constitutes the guidance given in the last
accounting reform of the Code of Commerce (in 2007) to reach the TFV in practice.
There were no significant differences observed in the responses due to the maturity
or accounting education of the participants. Nevertheless, this interesting general
result needs to be considered in detail to explain the circumstances surrounding such
conformity.

A more important conclusion however is that auditors reflected that the TFV is
always obtained by following the accounting standards which would go against the
override provision. However in other questions they demonstrated that to show a
TFV required more than the accounting standards in vigour at the time which is a
contradiction. They also confided that where two or more TFV’s were possible the
one closest to the accounting standards would be the most correct. This shows that
auditors understand the process but clearly they are more comfortable following the
standards. This could indicate a practice that is not fully coherent with EU legislation
and by applying it in this way could have consequences on the financial information.

The non-professionals give similar answers but not to the same degree but did
not give a clear answer to whether the TFV is obtained always by following the
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accounting standards. The key conclusion here is that although the override provision
for complying with TFV is understood, both non-professionals and auditors would
prefer not to use the override provision and comply strictly with the accounting
standards. The influence of maturity and professional status of the participants were
important here. Once again in this case there would be a need to reinforce the correct
application of the TFV.

Another central conclusion is the plea by participants for a definition of TFV.
Although all the participants accept the TFV objective as part of the local accounting
system, and understand that the attainment of such an objective could imply more than
the mere compliance with the accounting standards in force, they appeal for a more
detailed definition of the TFV. This could be interpreted as a lack of conformity with
the actual situation, because most of the participants realise the difficulty to define
TFV but also the response would be more coherent in a codified legal system.

A further fundamental conclusion is the observation that less mature participants
support the imposition of penalties or fines for non-compliance with the TFV objec-
tive, the more mature participants reject this possibility. This is an interesting con-
clusion because it shows that auditors are not favourable of imposing a fine when
TFV has not been achieved but the accounting standards are complied with. This
is in line with auditors and more mature participants being in favour of following
only the standards in order to reach the TFV and their need for a definition of the
concept. However, if there is no fine for non-compliance then the override condition
is useless, it becomes compliance with standards irrelevant of whether the TFV is
obtained. This would not be in conformity with the correct application of the con-
cept and it would be interesting to understand why auditors are not in favour of fines
for incorrect practice. This is beyond the objectives of this study but could be an
interesting focus for future research.

The literature explains that more novice participants tend to be more justice ori-
entated, auditors on the other hand that are dealing with clients have no incentive if
their clients can be fined for non-compliance with TFV because it is a reflection on
their work and it is easier at the end of the day to follow the accounting standards
strictly because it doesn’t require any additional judgemental decisions.

Regarding the relation between TFV and the introduction of fair value as an
accounting measurement, the higher the professional level the more favourable the
reply. This finding is an indirect support to the changes announced, on the dates of
the survey, in the General Accounting Plan, adopting the main characteristics of the
philosophy of IFRS. It is interesting to see that both, students and auditors, consider
that the objective of TFV remains important even after the introduction of fair value
in the accounting system.

The study identifies a pattern of change according to the maturity of the partic-
ipants. The position concerning the TFV objective varies notably with the age of
the respondents showing a positive evolution according to age. The more mature
the participant the increase in the support that the simple application of accounting
standards give the TFV and reject the possibility to establish penalties or fines in
the case of non-compliance. On the other hand, the more mature group plead more
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strongly for a more detailed definition of TFV and deny the loss of importance of
the TFV problem after the introduction of the fair value measurement.

In summary, the two hypotheses formulated in this study cannot be rejected in
the area of the integration of the TFV concept in Spanish accounting legislation but
the hypotheses can be rejected for most of the questions formulated in the remaining
Sections. The effects of professional status and maturity on the perception of TFV
are clearly different between the groups of participants in the survey and the level of
maturity and accounting education play an important role in the process of perception
of this objective for financial reporting. We have no reason to initially believe that
this would be different if the study was performed elsewhere because the TFV is a
complex accounting concept that needs time to be processed in combination with
other learning concepts and through its application in practice. We believe that the
perception of the fair presentation override in IASB standards would work in a similar
way and would show similar differences between professional status and maturity.
We therefore believe that these findings can provide a pathway together with further
research in helping to minimise these differences between groups in the perception of
this concept and help to achieve a more adequate application of the concept by both
actors. This will require correction on the side of both groups of participants in order
to eliminate the differences from the required application of the concept according to
legislation. This objective must be of special importance firstly to standard setters’ but
also to professional accounting educators’ and to the companies required to show
TFV in their accounts’. If the accounting profession wishes to continue with the
override clause it must ensure that there is a similar perception on the issue between
groups and that this perception is in line with the legal obligation.

Future research in this area would be to examine the evolution of the actors
through their professional career. The evolution in the application of TFV as well as
other complex concepts after the adoption of IASB accounting rules in Spain could
introduce an interesting perspective. Also the relationship could be modelled by
variables relating to the accounting standards (specific instructions and requirements,
complexity of the accounting standard and amendment issues) and the characteristics
of the users. The increasing use of FV opens an area of investigation on whether
the changes incorporated in standards continue to provide a TFV of the financial
statements. It would also be extremely interesting to analyse participants’ ethical
intentions with their ethical actions.
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Topics of Disclosure on the Websites: An
Empirical Analysis for FinTech Companies

T.-C. Herrador-Alcaide and M. Hernández-Solís

Abstract This paper examines the disclosure of information provided by FinTech
companies (FTC) on the website in order to identify the main topics disclosed.
Furthermore, the study analyses if the type of service and the geographical area
could have some effect on the level of disclosure. The diversity of issues disclosed
on the Internet is categorized in items grouped in self-constructed indices in order
to identify the structure of the financial and non-financial information reported and
furthermore to quantify the volume of disclosure. The empirical study is based on the
analysis of the information reported by companies included in two FinTech top-list.
Thus, the sample includes 91 businesses from Europe, Asia and North America. The
results of the indices indicate that the total volume of information provided on the
website is less than the amount reported in other sectors and other type of businesses.
The findings also suggest that there are not any effects due to the type of service or
the geographical area, effects traditionally associated in the literature with a major
or a minor level of disclosure.

Keywords FinTech · FinTech disclosure · Digital financial services · Disclosure
indices · FinTech market · FinTech information

1 Introduction

FinTech is a business model which combines Finance and Technology to provide
financial solutions [14] by using of a new kind of financial software. Problems of the
Small businesses to access to external funding at reasonable rates and existence of a
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strong telecommunications market caused the development of the FinTech business.
The mobile phone links different economies in a capital global market and this
technological development has boosted innovative concepts of business, such as
FinTech. Services through the web are increasing more and more in the banking and
financial industry, covering FTC an important quantity of the world financing. For
these companies the Internet is the main channel of disclosure.

It is known that FTC are attracting new business ideas and stablishing technology
centres such as Silicon Valley or the “FinTechCity” in London. It is estimated that
$11 billion were invested in FTC in the global market during the last year in US [15],
and in a report about FinTech boom it is shown that these companies raised $8 billion
from venture capital in just six months. FTC are considered the new companies for
financial and banking services and, for this reason, governments are trying to promote
a favourable environment for the FinTech business (COM/2015/063 final).

Since the end of 20th century before this expansion of new financial services
companies, the use of the Internet by the companies as usual channel for reporting
has been studied. Websites are being used by companies to disclose financial and
non-financial information. The idea of greater disclosure is associated with greater
transparency and opportunities to take good economic decisions. However, too much
information or not structured information could cause a negative effect. Disclose data
is not the same as reporting. It is necessary to understand the type and the quantity
of information reported on the websites. Thereby, the main problem is the ignorance
about the structure of topics disclosed. The first step to homogenize the information
for a possible standardization is to knowwhat type of information is disclosed byFTC
and whether there are determining factors of it. The academic contribution to resolve
this problem has been focused on the analysis of disclosure through experimental
studies to quantify the disclosure for different topics [1, 19]. These academic studies
have added relevant findings about the optimal set of disclosures to make good
business decisions [24], by allowing companies and other stakeholders to know the
kind of useful information required. Consequently, the major objective of this article
is to examine the information that FTC disclose on the Internet.

Disclosure has been studied for large companies and listed companies, however
it can hardly be found studies for small and medium enterprises, generally less
regulated. FTC are not generally large listed companies, they usually are start-up
companies, and perhaps because of this reason there have not been studies about their
disclosure yet. Their customers are small businesses and individual savers who can
barely have access to other different information than provided by these companies
on their websites. Hence, the information on the website is an important objective
for stakeholders and for the society. The previous arguments have lead this paper to
improve the theoretical knowledge related to the structure of disclosure provided by
FTC on the websites. Beyond that, this paper wants to identify differences in FTC’s
disclosure by considering geographical areas and type of service in FinTech. Thus,
this study contributes to enhance the knowledge about the main topics of disclosure
on the website by FTC, the type of information reported in each one, the total volume
of information disclosed, and the determining factors for the amount of information
disclosed by FTC.
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In addition to contributing to fill this knowledge gap, this study points to new lines
of research about the adequacy of this information to the demand of the different
stakeholders of FTC. This work is important due to the fact that it analyses the issues
that the FTC wants to disclose on their website. These issues have not been cate-
gorised and thus there is a knowledge gap still unexplored. It should be noted that
FTC are developing a highly complex business with a very fast evolvement in recent
years and with a great effect on society. In addition, for the nature of the stakehold-
ers, mainly small and medium savers, the improvement of the knowledge about the
reporting that these companies make is an important academic and social advance.
Furthermore, there are few publications about the FTC, although every day do not
stop increasing news about this type of business. Specifically, there are no studies
focused on the analysis of the content and classification of the information disclosed
by the FTC on the websites. However, this topic has been very studied for other
sectors and types of business due to ability to synthesize informative approaches that
could be considered by stakeholders in their economic decisions. The structure of this
paper is as follows. Section2 presents the literature review and hypotheses. Section3
shows the sample. Section4 provides the research method. Section5 discusses the
results and Sect. 6 presents the conclusions.

2 Theoretical Framework and Hypotheses

FTC provide many type of services in a Peer to Peer manner (P2P) or Business to
Business manner (B2B), through financial institutions or directly to customers, but
in anyway FTC are providing financial services in an innovative form. The most of
FTC were born as start-up companies. The term “Start-up” means a sort of business
with a high potential of growing that can be developed in a phased manner. Other
feature is that FTC can be born under several legal form. Another important point to
define FTC is that workers who normally are entrepreneurs, usually they are also the
employees and the owners, at least in an initial phase. Moreover, the digital market
has the drawback of the intangible nature of their investment and thus the problems in
assessing the risk, arising the FTC as business angels between investors and financial
entrepreneurs. A problem underlying the FTC is that the Internet technology still
presents many gaps about cybersecurity and this is another feature of FTC. Thus, the
main features of FinTech Companies are shown in the Table1.

Considering previous arguments, this study can be framed within disclosure of
information. In this paper different empirical studies on disclosure have been con-
sidered which are shown in Table2.

According the literature, the empirical analysis of the disclosure provided by
FTC has been made by using of indices to quantify the amount of information on
the website and also to study the relationship of the amount of disclosure with some
determining factors of its extension. In this way, the objectives of this study have
been focused on the topics of disclosure provided by the FTC considering previous
studies for other economic sectors and other type of business, but also the research



190 T.-C. Herrador-Alcaide and M. Hernández-Solís

Table 1 Characteristics of FinTech companies

By the degree of Innovation • Entrepreneurship (in a first phase)
• Technology-based companies
• Start-up company
• IT companies (Internet Technology Companies)

By the legal form • Individual employer
• Company form

By the company structure • More flexible than traditional company
• Specialized staff
• Founders are entrepreneurs

By the type of services • Financial and banking services-Digital Technology
services
• Focus on a few banking services (no more than four)
• Easily-explained products

By its relationship with the
customers

• B2B versus P2P

By employers/workers • A few workers (small FT Companies in the first phase)
versus many workers (Large FT Companies)

Source Author’s development

is based on the main features of FTC discussed above due to that this is a complex
model of business. Such thus, the aims of this study are:

1. The identification of the different topics of information provided on the websites
by FTC.

2. To summarize these information in indices.
3. The analysis of two hypotheses about of the influence of FinTech service (H1) or

FinTech geographical area (H2) on the volume of disclosure, in order to examine
the existence of different disclosure cultures depending on each one of these both
two factors.

To reach the third objective, the following two hypotheses were tested:

• H1: There is a significant association between the FinTech Service (FinTech sub-
sector) and the amount of voluntary disclosure.

• H2: There is a significant association between the geographic area and the amount
of voluntary disclosure.

3 Sample

In this study the companies of two FinTech rankings (top-list) have been examined.
Thefirst one is fromLondon and it includesEuropeanFTC, the other is fromAustralia
and it includes FTC from several geographical areas. Thus, the sample collects FTC
from Europe, the North America and an important part of Asia-Africa. The top-lists



Topics of Disclosure on the Websites: An Empirical … 191

Table 2 Literature about disclosure

Authors Topics on disclosure

[1] Aksu, and Kosedag,
A. (2006)

Association between transparency and disclosure is studied. It is based
on the observance of the desirable attributes of the information
disclosed by companies listed

[2] Ashbaugh, Johnstone,
and Warfield (1999)

The cost and the benefits of IFR (International Financial Reporting).
Disclosure before and after of IFR

[4] Bonsón Ponte, and
Escobar Rodríguez (2002)

The disclosure on the Internet to goal the association between
transparency of disclosure and 3 variables: sector, country and size

[5] Craven, and Marston
(1999)

The relationship between Firm’s size and disclosure on internet

[6] Debreceny, and Rahman
(2005)

It is tested nine hypothesis about the frequency of disclosure
(continuous disclosure)

[7] Depoers, F. (2000) It is studied the effects of several economic determinants on the extent
of disclosure in the annual reports for French listed companies, by
using an index about financial and non-financial information, finding as
an significant factor for extension the size, property and abroad activity

[8] Eng, and Mak (2003) It is studied the impact of ownership structure and board composition
on voluntary disclosure, by using disclosure scores as a proxy to
quantify voluntary disclosure, finding a positive association between
the prior variables and the voluntary disclosure

[10] Firth (1984) It is tested whether the volume of disclosure can be linked to the
assessment of stock market risk, not finding relevant results between
both two variables

[12] Hossain, Tan, and
Adams, M. (1994)

Six variables are tested in order to determinate their association with
the voluntary disclosure in the annual reports of listed companies. The
independent variables tested are firm size, ownership structure,
leverage, assets-in-place, size of audit firm, and foreign listing status

[13] Igbal Khadaroo (2005) It is studied if the expected number of users is an important factor to
disclose financial information

[16] Larrán, García-Borbolla,
and López, R. (2009)

A temporary disclosure analysis is performed, applying indexes to
relate the volume of disclosure to a set of explanatory factors

[19] Nikolaj Bukh, Nielsen,
Gormsen, and Mouritsen,
J. (2005)

One objective of this article it is to test whether the amount of
disclosure could be associated to several factors such as size or age of
the company, focusing the study on the information about intellectual
capital provided through non-financial reporting

[21] Pérez (2004) It is studied significant factors for disclosure about competitive
advantage of companies through hypothesis on the association between
disclosure and size, profitability, company growth, sector, market share
and property, by peer

[22] Pirchegger, B.,
and Wagenhofer, A. (1999)

There is a higher score of free information in large companies than
small and medium companies

[25] Urquiza, Navarro,
and Trombetta (2009)

Measurement indices of the disclosure are analysed and how the
outcome of the measurement of disclosure influences

[26] Xiao et al. (2005) In this study it was made a survey focus on expert in Internet and
accounting variables

Source Author’s development
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Table 3 Information in the Top-List

The 50 best FinTech
innovators report

The FinTech50 2015

Authors AWI, KPM AUS and Financial
Service Council

Nine Partners. It is made by a
team formed by five persons

Objective The objective is to involve
FinTech industry for venture
capital invested as a measure
of innovation

The objective is to help
FinTech companies to raise
profile globally, to connect
with influencers, investors and
funders and generate business

Quantity of companies 50 50

Geographic scope World wide Europe

Criteria 4 Criteria:
• Total capital raised
• Rate of capital raising
• Degree of sub industry
disruption
• Degree of product, service,
customer experience and
business model innovation

Not specified except for the
information about the firm
regarding the business area and
some economic data about the
activity

Information • Income tax
• Revenue from financial
services
• Percentage that involves
financial services

• There are not economic data
• There are not template data
• A literal description of the
type of company. It can infer
the type of service, but it is not
classified

Source Author’s development

are “The FinTech50 2015” and “The 50 Best FinTech Innovators Report”. The main
characteristics for these rankings are shown in Table3.

Thus, the sample consists of 100 FinTech companies, 50 for each top-list. Thus,
free data provided on the websites are used for the empirical study, such as it is usual
in studies about reporting and disclosure on the Internet (See [2, 10, 23]). A total of
100 websites were visited, however, the sample consists of 91 companies because 8
were included in both top-lists and the other one was eliminated for the poor quality
of data. These websites were reviewed from July to December 2015.

4 Research Method

This section presents themethodological sequence followed in the empirical study of
this research. Thus, it is examined the methodological objectives, the instruments of
measurement, and the variables considered: Type of service and geographical area.
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4.1 Methodological Objectives

The overall objective of the empirical study of this research is to measure the total
volume of information reported by FTC on their website. This general methodolog-
ical objective has led to the establishment of specific methodological objectives for
the empirical work. In this way, the specific objectives have been:

• Disclosure topics identification.
• Establishment of indices to quantify the volume of information.
• Quantification of the information disclosed in each index.
• Testing of the hypotheses that relate to the effect that the FinTech type of service
and the geographical area could have extension of the disclosure.

4.2 Disclosure Topics

The top-lists include different types of FinTech business, such asmoney transfer, plat-
forms for online commerce, platforms for payments through smartphones, granting
of loans, as well as other subsectors, loans and payments, and even insurance. All of
them have as a common point the financial disintermediation but through the use of
high technology on the Internet. FTC of the sample provide several sort of FinTech
service (see Table4). It has been considered previous studies in order to group the
different types of FinTech services identified above.

Ashbaugh, Johnstone and Warfield [2] established eleven categories (indices) for
a similar research applied to other sector and Debreceny and Rahman [6] only four
topics. Regarding Park et al. [20] it is possible to categorize the services in FinTech
in four main parts: Banking andData Analytics, Payments, CapitalMarkets Tech and
Finance Management. The topics have been stablished ad hoc for this study because
there are not specific indices in the literature to apply to FTC disclosure, however
they were reduced or extended to consider features of FTC. Thus, the information
disclosed has been structured around six categories, one for each different topics.
Economic data and other information about company have already used in disclosure
indices in the most of previous studies [8]. Therefore, this research includes indices
about “Economic Data”, “Company data”, “Staff” and “Partners”. In this study two
new and specific indices were made, one to measure the information about “Service
in FinTech” and the other about the information about “Cybersecurity”, both topics
are closely linked to FinTech business. These two last indices are two important
contributions to improve the knowledge of information disclosed on the websites
by FTC.

4.3 Partial Indices and Global Index

The volume of information disclosed is measured by indices. In experimental studies
about disclosure many researchers have applied items grouped in indices [3, 9, 17].
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Table 4 Service in FinTech

The FinTech50 2015 Thew 50 best FinTech innovators report

Payments

Financial trading connections Credit decisions

To use the behavioural biometrics to verify
identity

To provide electronic payment

To trade on the stock market

To lead institutional investors to better manage To connect to the data sources with small
businesses

To offer low-cost loans to customers To provide loans to small business

Crowdfunding A peer-to-peer lending and crowdfunding

Management of risk Financial planning

FinTech consulting

Banking services

Insurance services To link start-ups with angel investors

Big Data finance company Big Data credit assessment platform

P2P lending

Video Banking, real time marketing, social
channels and mobile banking Cybersecurity

To use technology and algorithms to give
advice on a service to clients

Source Author’s development on Top-List Web

In accounting research these indices have beenmade as a proxy about the information
disclosed by companies [25]. Also the relationship between information disclosure
indices and several factors has been studied [4, 21]. This paper has not limited the
disclosure indices just to items related to financial aspect but also other non-financial
issues, because information demand is related to the total identity for the FinTech
business, and this one is extended a different parts and not only financial aspects.
The indices have been constructed ad hoc for this research as in other studies (see
[17]; and others above).

In the empirical study the items to conform the indices havebeen applied in order to
explain more the information disclosed on the Internet, specifically on each FinTech
website as in previous studies [18]. Unweighted indices have been used because it is
assumed that all of them are equally important [7, 12]. Therefore, neither the items
have been weighted nor the indices. Each item can get only value “1” or “0”.

The above arguments have led to the construction of a partial index for each
topic of disclosure. Thus, each partial index (Ii) measures the amount of voluntary
information in a specific topic. Thus, each one is determinate for this formula:

Ii =

n∑

j=1
Items

n∑

j=1
Max Items

.



Topics of Disclosure on the Websites: An Empirical … 195

Also a Total Index (TI) has been calculated. The TI has been calculated by the
quotient between all six partial indices and the maximum value that it could reach
for all. The mathematical expression is:

TI =

6∑

i=1
Ii

6∑

i=1
Max Ii

.

The partial indices (Ii) summary the level of information disclosed in each category
of information on each topic. The total index (TI) quantifies the total information
disclosed by FTC on the website. Also, the TI is applied to test the H1 and the H2.

4.4 The Incidence of Type of Service and Geographical Area

Once the TI has been calculated for each FTC, the hypotheses about of type of service
and the geographical area have been statistically calculated. Since the first studies on
disclosure, researchers have tried to specify if there are variables that can influence the
disclosure, such as the size of the company, the sector or subsector, the country, and
others. In this research has been analysed two variables as potential factors of a major
or minor volume of disclosure: The subsector in FinTech and geographical area.

In previous studies the industrial sector has been considered as an important
factor to disclose more or less information, because it is considered that there are
different practices for each sector [16]. The argument to study this variable is based
on that companies in the same industrial sector or service have similar practices in
disclosing information. In this study each FinTech service is a different sector into
FinTech Business.

Other studies have traditionally considered that the country is another important
factor of the amount of disclosure [5, 11], because in different countries could be
different cultures of disclosure. Thus, to analyse the influence of the country, the
countries have been grouped in geographical areas or regions. Four areas have been
stablished in this research: Europe, North America, World Wide and Asia-Pacific.

In summary, the objective is to check if the quantity of information disclosed on
the website depends on the FinTech service for the H1 or the geographical area for
the H2. The amount of information is measured by the total index for each company
(TI), which is the dependent variable, and the independent variables are the type of
service and the geographical area.

To evaluate the degree of association between a quantitative variable (TI in this
study) and a categorical variable1 (Sectors or geographic areas in this research), the
inferential statistical is used to compare the distributions of the quantitative variable

1A categorical variable classifies individuals into groups.
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in each different group established by the categorical variable. If it has three or
more categories for the categorical variable, this comparison of means among three
or more groups is analysed through a mathematical model that is the Analysis of
Variance (ANOVA). If p ≤ 0.05,2 then H0 (the null hypothesis) is rejected and thus
a dependent association between variables is accepted (H1 or H2 is accepted). The
Kruskall–Wallis test is used as a complementary analyse. This is a non-parametric
test to compare more than two groups of ranges (medians) and to determine that the
difference is random and it is not statistically significant. If p ≤ 0.05, then the null
hypothesis (H0) is rejected and thus a dependent association between variables is
accepted. Thismeans that the quantitative variable behaves differently in the different
groups established by the categorical variable.

Thus, in this empirical study the rejection of the null hypothesis would mean that
the total volume of information reported by the FTC on the website (TI) depends on
a different behaviour linked to each topic of FinTech service for the first hypothesis.
For the second hypothesis the rejection of the null hypothesis would mean that
the differences on the volume of information is caused by the existence of a specific
culture of disclosure linked to each geographical areas. This is statistically interpreted
as the existence of different disclosure behaviours, either by FinTech subsector of
service in FinTech or by geographical area.

5 Findings

Two types of findings can be distinguished as a result of this research, those related
to the disclosure topics identified, and those related to disclosure factors. The former
show descriptive results about the topics of disclosure identified, while the latter
show results of variables which can be determinants of the volume of information
disclosed by the different FTC groups.

5.1 Findings Relate to Topics

The results of the Table5 show that the majority of the disclosure is concentrated
around the service information (I1) and around general data about the company (I4).
These rates cover around 45% of the information. Next come the other three partial
indices covering around 39% information, such as about of the staff (I3), partners
(I5) and cybersecurity (I6). It must be noted that there is only a few of voluntary
disclosure on economic data (I2 takes barely a 12%).

The TI shows that the score from the majority of FTC is around 36.79%, some
minor than the findings for other type of industry.

2For social sciences this level of significance is usually accepted.
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Table 5 Indices of disclosure by FTC

% FIRMS Mean Sta. Dvt. Minimum Maximum

Service in
FinTech (I1)

25.00 0.4601 0.20874 0.00 1.00

Economic
data (I2)

12.00 0.1261 0.18920 0.00 0.80

Staff (I3) 10.00 0.3886 0.21726 0.00 0.75

Company (I4) 20.00 0.4438 0.20565 0.00 1.00

Partners (I5) 14.00 0.3949 0.43624 0.00 1.00

Cybersecurity
(I6)

19.00 0.3940 0.22000 0.00 1.00

Total Index
(TI)

100.00 0.3679 0.12670 0.00 0.80

Source Author’s Development own, SPSS

Table 6 Total Index for each FinTech Service (Subsector)

Service provided Mean N Std. Dev

1 Banking and data analytics 0.3754 22 0.12296

2 Payments 0.3678 22 0.10129

3 Capital markets technology 0.3765 21 0.16407

4 Financial managements 0.3545 26 0.11915

Total 0.3679 91 0.12670

Source Author’s development, SPSS

Regarding to the items contained in each index (see appendix), for I1 it should be
noted that all companies clearly identify the type of FinTech service provided, but
almost none offers online related education. Most FTC also identify the Key Staff or
executive team in I3, as well as the year of foundation and the scope in I4, and data
protection and IT support for I6. For all these items an information volume of more
than 50% is given.

5.2 Findings About the Association Between FinTech Service
and TI

Relate to the results about the association between of FinTech service and the quantity
of disclosure, it can be seen that there are almost no differences in the quantity of
information provided by FinTech Companies on the websites (Table6). The mean is
between 0.35 and 0.37 for each type of service provided for FTC, being the companies
which give services in capital markets who disclose more information (21 FTC who
provided a mean of 37.65%).

After the first descriptive analysis about the descriptive statistics of the TI for each
group of FTC classified by categorical variable “FinTech service”, the hypotheses
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Table 7 Levene and ANOVA -Total Index (Grouping variable: FinTech service)

LEVENE

Levene df1 df2 Sig.

1.166 3 88 0.327

ANOVA

Sum of squares Gl Mean
square

F Sig.

Between groups 0.008 3 0.003 0.152 0.928

Within groups 1.453 88 0.017

Total 1.461 91

Source Author’s development, SPSS

Table 8 Kruskal–Wallis test (Grouping variable: FinTech service subsector)

Total Index

Chi-Square 0.465

Gl 3

Asymp. Sig. 0.927

Source Author’s development, SPSS

have been tested by ANOVA and Kruskal–Wallis. The relationship between each
group of FTCby service and the volume of information disclosed is shown in Tables7
and 8.

The p-value in the ANOVA takes 0.928 > 0.05 (Sig. Level), then the null hypoth-
esis is accepted and the H1 is rejected. Thus, the means between groups are similar
in the TI. F-Statistic is not significant, thus the “FinTech Service” is not a determin-
ing factor of the total volume of disclosure (TI). Therefore, FinTech service has no
significant influence on the FTC disclosure. This is also confirmed by the Kruskal–
Wallis Test [sig (0.927) > 0.05]. These results suggest that FinTech service is not
a discriminant factor to disclose a different volume of information. Therefore, it
cannot be identified different disclosures among different subsector in FinTech. It is
not possible to identify different practices or cultures to provide information on the
website depending on each sub-industry of FinTech services.

5.3 Findings About the Association Between Geographical
Area of FTC and TI

The descriptive statistics about the association between geographical area and the
amount of disclosure is shown inTable9. It canbeobserved that themajors percentage
of FTC are located in Europe and North America, but the mean is not very different
among geographical areas, thus the mean takes values between 0.3386 ≤ Mean (TI)
≤ 0.4078, by providing the major volume of information for the FTC located in
Asia-Pacific.
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Table 9 Total Index by FinTech geographical area

Geographic area Description for the
area

Countries inside FinTech
companies

% Mean Standard
deviation

1 Europe FinTech companies
located in European
Union

Amsterdam
UK
Sweden
Netherlands
Germany
Finland
Czech. Republic
Ireland
Lithuania

44 48.35 0.3386 0.11047

2 North America FinTech companies
located in
North-America

USA
Canada

28 30.76 0.4066 0.11482

3 Worldwide Global companies
in FinTech with
offices in two or
more areas

Several countries 8 8.79 0.3847 0.09575

4 Asia-Pacific FinTech companies
located in
Asia-Pacific and
one company from
Africa

Hong Kong
Israel
Australia
Kenia
India
China

11 12.08 0.4078 0.16761

Source Author’s development

Table 10 Levene and ANOVA - Total Index (Grouping area: FinTech geographical area)

LEVENE

Levene df1 df2 Sig.

0.831 3 87 0.480

ANOVA

Sum of
squares

Gl Mean square F Sig.

Between
groups

0.098 3 0.003 2.319 0.081

Within groups 1.226 87 0.014

Total 1.324 90

Source Author’s development, SPSS

The H2 is tested by ANOVA and Kruskal–Wallis Test (see Tables10 and 11).
The p-value in theANOVA takes 0.08 > 0.05 (Sig. level), then the null hypothesis

is accepted and thus the H2 is rejected. Thus, geographical area has not a significant
effect on the FTC disclosure. The difference is not very high, but it is also refuted
by Kruskal–Wallis test (p-value is 0.064 > 0.05). Therefore, the findings suggest
that there is not statistical association among the geographical areas of FTC and the
amount of voluntary disclosure on the websites. Thus, it cannot be identified the
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Table 11 Kruskal–Wallis test (Grouping variable: geographical area)

Total Index

Chi-Square 7.274

Gl 3

Asymp. Sig. 0.064

Source Author’s development

existence of a different culture about voluntary disclosure by geographical areas.
However, it must be pointed that the rejection of the H2 is made only by a small
difference, thus it would be possible to find another results for other future studies.

6 Conclusions and Discussions

FTC do not seem to have a culture of disclosure yet. The findings show that FTC
provide just around 36% of the categorized information in the indices. It cannot
identify the existence of a homogeneous structure of disclosure and FTC show a lack
of habit in the voluntary disclosure of economic-financial data. This disclosure is
mainly directed to the promotion of the business. Thus, the information is focused
on services in FinTech and general data about the company. It must be emphasized
that FTC hardly offer any economic data on the websites, perhaps because they are
not so interested on the social reporting and because society does not require this type
of information for this business yet. This plus of information could be considered by
FTC more a competitive disadvantage in front of their potential competitors than a
positive signal for potential investors. As a reflection, it should say that is a concern
the fact that FinTech Companies provide just some economic data, because these
companies get a large volume of funds of the small businesses and small investors,
in general not overly protected by the legal and economic system.

Furthermore, it is possible to conclude that the total volume of disclosure of FTC
is not different in Asia, Europe or North America, reporting around 35% to 40% of
the usual items. None of these geographical areas showmuch more information than
the other regions. Neither there is a different level of disclosure considering the type
of service provided in opposition of the findings on other studies. Therefore, even
considering the own limitations of anywhere statistical analysis, it can be stated that
neither the type of service (subsector) nor the area are factors that affect the amount
of information disclosed by the FTC on the websites.

These findings could contribute to the improvement of the information provided
for the stakeholders of FTC extending the transparency of information. FTC should
consider the disclosure of a minimum of information in the indices with lower vol-
ume, in order to establish a better competitive position in the digital financial market.
If FTC from a geographical area provided a plus of information perhaps they would
take a better market position in a long term.
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Table 12 Items compliance frequency

Item Compliance freq. %

Service provided

Clearly identifies what type of service** 91 100.00**

Gives a free trial 27 29.35

Education and training online for usage 7 7.61

Economic data

There is a specific section for economic data 3 3.26

Revenue information 5 5.43

Financing information (rounds and important investors) 28 30.43

Audit information 19 20.65

Listed company information 0 0.00

Staff

Company size or number of employees 27 29.35

Difference between self-employed and employees 1 1.09

Identifies the Key Staff or executive team** 80 86.96**

Governance (People) 36 39.13

General data about the company

Year of Foundation** 87 94.57**

Offices across the planet 37 40.22

Offers numbers of customers 12 13.04

Worldwide scope** 66 71.74**

Business policy, SCR and transparency 16 17.39

Benefits (medical insurance, free snacks and drinks, casual
dress work environment, competitive salary)

28 30.43

Partners

Gives some information about the current partner 39 42.39

Offering on its web to became a partner 25 27.17

Offer information about important partners 43 46.74

Cybersecurity

Explains how data are protected when you are using the
FinTech platform**

62 67.39**

Ensures a services 24/7 (always there) 11 11.96

Informatics support information** 59 64.13**

Technological information about platform (programming
languages used and others)

13 14.13

Source Author’s development

Also it would be interesting to study other determining factors in the disclosure of
information from FinTech industry, such as the profile for the different stakeholders
in FinTech business. Furthermore, it could be interesting to know how the financial
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literacy is linked or not to the FTC’s customers and other stakeholders. This is a
reflection which could be considered in a future regulation for FTC.

One limitation of this research is that the conclusions from the empirical study are
not comparable because barely there are researches focused on the analysis of FTC’s
data, even less about disclosure on the Internet, so thus this research constitutes an
important first step in the knowledge of the FTC, under the approach of social role
of these companies in the financial system and their goal of equality to access to the
funding sources.

Acknowledgements The authors are grateful for the valuable comments and suggestions made
by the anonymous referees in the preparation of this article. The authors also want to thank the
suggestions made by several researchers in the design of the empirical study.

Appendix: Statistic Frequency for Each Item

The statistic frequency for each item is shown in Table12.
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On the Thin Boundary of the Fat Attractor

Artur O. Lopes and Elismar R. Oliveira

Abstract For, 0 < λ < 1, consider the transformation T (x) = dx (mod 1) on the
circle S1, a C1 function A : S1 → R, and, the map F(x, s) = (T (x), λ s + A(x)),
(x, s) ∈ S1 × R. We denoteB = Bλ the upper boundary of the attractor (known as
fat attractor). We are interested in the regularity of Bλ, and, also in what happens
in the limit when λ → 1. We also address the analysis of the following conjecture
which were proposed by R. Bamón, J. Kiwi, J. Rivera-Letelier and R. Urzúa: for
any fixed λ, C1 generically on the potential A, the upper boundary Bλ is formed
by a finite number of pieces of smooth unstable manifolds of periodic orbits for F .
We show the proof of the conjecture for the class of C2 potentials A(x) satisfying
the twist condition (plus a combinatorial condition). We do not need the generic
hypothesis for this result. We present explicit examples. On the other hand, when λ

is close to 1 and the potential A is generic a more precise description can be done. In
this case the finite number of pieces of C1 curves on the boundary have some special
properties. Having a finite number of pieces on this boundary is an important issue
in a problem related to semi-classical limits and micro-support. This was consider
in a recent published work by A. Lopes and J. Mohr. Finally, we present the general
analysis of the case where A is Lipschitz and its relation with Ergodic Transport.

Keywords Ergodic Optimization · Fat attractor · Maximizing probability ·
Subaction · Discounted method · Ergodic Transport

1 Introduction

Consider, 0 < λ < 1, the transformation T (x) = d x (mod 1), where d ∈ N, a Lip-
schitz function A : S1 → R, and, the map
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F(x, s) = (T (x), λ s + A(x)), (x, s) ∈ S1 × R. (1)

Note that Fn(x, s) = (T n(x), λn s + [λn−1A(x) + λn−2A(T (x)) + · · · + λ

A(T n−2(x)) + A(T n−1(x))]). Here we use sometimes the natural identification of S1

with the interval [0, 1). Wewill assume that A is at least Lipschitz. In this case results
obtained under such hypothesis could also apply to the shift case (in this setting the
potential A is defined in the Bernoulli space), that is, for σ instead of T . For certain
results in the paper we assume that A : S1 → R is of class C1 or sometimes C2.

The structure of the paper is the following: some results are of general nature and
related just to the concept of λ-calibrated subaction (to be defined later). In this case
you need just to assume that A is Lipschitz (see Sect. 9).

Other results are related to the dynamics of F and to the conjecture presented
in [7]. In this case we assume that the potential A satisfies some differentiability
assumptions and also the twist condition (to be defined later). The analysis of the
regularity of the boundary of the attractor requires the understanding of λ-calibrated
subactions. The twist condition assures some kind of transversality condition as we
will see.

Note that for x fixed the transformation F(x, .) is bijective over the fiber over
T (x). As an illustration we point out that in the case d = 2, given (x, z), with x ∈ S1

and z ∈ R, consider x1 and x2 the two preimages of x by T . Then, F
(
x1,

z−A(x1)
λ

)
=

(x, z) = F
(
x2,

z−A(x2)
λ

)
.

It is known that the non-wandering set Ωλ of F = Fλ is a global attractor of the
dynamics of F : the forward orbit of every point in S1 × R converges to Ωλ and F is
transitive on Ωλ. In fact, F is topologically semi-conjugate to a solenoidal map on
Ωλ (see Sect. 2 in [7]).

In Fig. 1 we show the points of the attractor in the case of T (x) = 2x (mod 1),
λ = 0.51 and A(x) = sin(2πx) (see p. 1013 in [37]). In this case the boundary of
the attractor is a finite union of smooth curves.

According to [7] Ωλ is the set of all (x, s) with a bounded infinite backward
orbit (i.e., there exists C > 0 and (xn, sn), n ∈ N, such that, Fn(xn, sn) = (x, s) and
|sn| < C , for all, n ∈ N).

This transformation F is not bijective. Anyway, the fiber over x goes in the fiber
over T (x). If s1 < s2 is such that (x, s1) and (x, s2) are in the attractor, then (x, s) is
in the attractor for any s1 < s < s2 (see Sect. 2.2 in [7]). Note that the iteration of F
preserves order on the fiber, that is, given x , if t > s, then λs + A(x) < λt + A(x).

We denoteB = Bλ the upper boundary of the attractor. We are interested in the
regularity of Bλ and also in what happens with this boundary in the limit when
λ → 1. The upper boundary is invariant by the action of F . The analysis of the lower
boundary is similar to the case of the upper boundary and will not be consider here.

We show in a rigorous form explicit examples where this boundary is the union of
a finite number of C∞ curves where the tangent angles are never zero (see Sect. 7.4).
We also present numerical simulations showing pictures of the boundary in several
different cases.

The study of the dimension of the boundary of strange attractors is a topic of
great relevance in non-linear physics [19, 34]. The papers [1, 2, 15, 20, 21] discuss
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Fig. 1 The fat attractor for
the case of
A(x) = sin(2πx), λ = 0.51,
and d = 2. The picture
indicates that the upper
boundary is piecewise
smooth. It is the envelope of
several smooth but non
periodic curves

somehow related questions. We want to analyze a case where this boundary may not
be a union of piecewise smooth curves.

In Fig. 2 we show de image of the fat attractor for the case of A(x) = −(x − 0.5)2,
λ = 0.51, and d = 2. In this case the boundary is the union of two piecewise smooth
curves as we will see.

We present in the end of the paper several pictures obtained from computer sim-
ulations which illustrate the mathematical results that we present here (see Sect. 8).

We believe that the terminology fat attractor used by M. Tsujii is due to the fact
that when d = 2, 0.5 < λ ≤ 0.51, and A(x) = sin(2πx), then, F is such that there
exist a SBR probability which is absolutely continuous with respect to the Lebesgue
measure on S1 × R (see Example 1 and Fig. 1 in [37]).

It is known that Bλ is the graph of a Lipschitz function bλ : S1 → R (see [7,
37]) if A is Lipschitz. We will give a proof of this fact later. bλ will be called the
λ-calibrated subaction.

One of our main motivations for the present work is the following conjecture (see
[7]): for any fixed λ, generically C1 on the potential A, the upper boundary Bλ is
formed by a finite number of pieces of unstable manifolds of periodic orbits of F .

Recently the paper [29] shows the importance of having a finite number of pieces
on this boundary in a problem related to semi-classical limits and micro-support.

Wewant to also analyze caseswhere this boundarymaynot be a union of piecewise
smooth curves.

We do not need here the generic hypothesis but we will require the twist condition
to be defined later. However, for a generic potential A more things can be said.

The twist hypothesis is natural in problems on Optimization (see [8]) and in
problems onGameTheory (see [36]). The twist property for a potential A is presented
in Definition 6 in Sect. 3.
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Fig. 2 The fat attractor for the case of A(x) = − (x − 0.5)2, λ = 0.51, and d = 2. The picture
indicates that the upper boundary is piecewise smooth. It is the envelop of two smooth but non
periodic curves

In the same spirit of [30] the idea here is to use an auxiliary family of functions
Ww(x) = W (x,w) indexed by w ∈ {1, 2, . . . , d}N such that for each w we have
Ww : (0, 1) → R is, at least C1 (it is C2 in the case we consider). This functionW of
the variable (x,w) is called involution kernel. Ww is not necessarily periodic on S1

(see pictures on Sect. 8 where a certain S replaces the above W ). A natural strategy
would be to assume that A satisfies a twist condition and to show that there exists a
finite number of points wj , j = 1, 2, . . . , k, and a corresponding set of real values
α1, α2, . . . , αk , such that, for each x ∈ S1 we have

bλ(x) = max
j=1,2,...,k

{α j + W (x,wj )}, (2)

where the graph of bλ isBλ.
In [31] the results assume, among other things, that an special point (the turning

point) was eventually periodic. Here we will just use the fact that A satisfies a twist
condition. We will show that the conjecture is true when A satisfies a twist condition
(see Corollary 2 and comments after Corollary 2 on Sect. 4). We point out that the
twist condition is an open property in theC2 topology. The main problemwe analyze
here could also be expressed in the C2 topology.

Expressions of the kind (2) appear in Ergodic Transport (see [28, 30, 31, 33]).
Equation (11) just after Theorem 6 describes relation (2) under certain general
hypothesis: the Lipschitz setting (see Sect. 9).
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We apply all the previous results to the case when A is quadratic in Sect. 7. The
main problem we analyze here could also be expressed in the C2 topology.

In Sect. 9 we describe some general properties related to Ergodic Transport for
the setting we consider here.

2 λ-Calibrated Subactions and λ-Maximizing Probabilities

Definition 1 Given a continuous function A : S1 → R and λ ∈ (0, 1), we say that a
continuous function bλ is a λ-calibrated subaction for A, if for all x ∈ S1, b(x) =
max
T (y)=x

{λ b(y) + A(y)}.

A similar concept can be consider when the dynamics is defined by the shift and
not T (see Sect. 9).

When A is Lipschitz for each λ ∈ (0, 1) the function bλ above exist, is Lipschitz
and it is unique (see [10, 32]). The existence of such bλ when A is Lipschitz is also
presented in the survey paper [27].

About the interest in such family bλ we can say that in Aubry-Mather theory and
also in Optimization a similar kind of problem is considered in problems related
to the so called infinite horizon discounted Hamilton-Jacobi equation. It provides
an alternative method for showing the existence of viscosity solutions (see [17,
18, 22]). Thanks to the formal association with Optimization and Economics the
analysis of such family bλ, which takes in account values λ ∈ (0, 1), can be called
the discounted problem for the potential A. If A is Lipschitz it is known (see [7])
that the upper boundary of the attractor is the graph of the Lipschitz λ-calibrated
subaction bλ : S1 → R.

The above result means that if the point (x, bλ(x)) is in the upper boundary of the
attractor, then, there is a point y such that T (y) = x , and F(y, bλ(y)) = (x, bλ(x)).
In this way the analysis of the dynamics of F on the boundary of the attractor is quite
related to the understanding of λ-calibrated subactions.

Note that if b is the λ-calibrated subaction for A, then, b + g
λ
is the λ-calibrated

subaction for A + g◦T
λ

− g. In order to obtain our main result on the boundary of
the attractor we have to investigate properties of λ-calibrated subactions. The three
keys elements on our reasoning are: probabilities with support in periodic orbits (see
Sect. 2), a relation of the kind (2) for the function b whose graph is the boundary of
the attractor (see Sect. 3) and the twist condition (see Sect. 4).

We will present now some general results on λ-calibrated subactions. We denote
by τi , i = 1, 2, . . . , d, the inverse branches of T . For each i the transformation τi has
domain [i − 1/d, i/d]. Given x , if i0 is such that b(x) = λb(τi0(x)) + A(τi0(x)),
we say τi0(x) realizes b(x) (or, realizes x). We can also say that i0 is a symbol
which realizes b(x). One can show that for d = 2, for any Holder A, there exist
x such that b(x) has two different τi0(x) realizers. In this way realizers are not
always unique. For fixed x0 ∈ S1 consider x1 such that b(x0) = λ b(x1) + A(x1),
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and T (x1) = x0. Then, there exist a realizer i0 such that τi0(x0) = x1. Now take x2
such that b(x1) = λ b(x2) + A(x2) and T (x2) = x1. In the same way as before, there
exist i1 such that τi1(x1) = x2. In this way get by induction a sequence xk ∈ S1 such
that T (xk) = xk−1. This also defines an element a = a(x0) = (i0, i1, . . . , in, . . .) ∈
Σ = {1, . . . , d}N, where τik (xk) = xk+1. This a depends of the choice of realizers
we choose in the sequence of preimages. We say (x0, a(x0)) ∈ S1 × {1, 2, . . . , d}N
is an optimal pair. Note that for each x0 ∈ S1 there exist at least one optimal pair. For
each x0 we consider a fixed choice a(x0), and, the corresponding sequence xk ∈ S1,
k ∈ N.

Consider the probabilityμn = ∑n−1
j=0

1
n δxn andμλ any weak limit of a convergent

subsequence μnk , k → ∞. The probability μλ on S1 is T invariant and satisfies

∫
(b(T (x)) − λ b(x) − A(x)) dμλ = 0.

Note that b(T (z)) − λb(z) − A(z) ≥ 0 for all z ∈ S1. In this way for z in the
support of μλ we get the λ-cohomological equation

b(T (z)) − λb(z) − A(z) = 0. (3)

Therefore, μλ is maximizing for the potential A(z) − b(T (z)) + λb(z). For z in the
support of μλ we have that F(z, b(z)) = (T (z), b(T (z)). Moreover, in this case

b(T (z)) = max
T (y)=T (z)

{λ b(y) + A(y)} = λ b(z) + A(z). (4)

Definition 2 Any probability which maximizes A(z) − b(T (z)) + λb(z) among
T -invariant probabilities, where b is the λ-calibrated subaction, will be called a
λ-maximizing probability for A.

Any μλ obtained from a point x0 and a family of realizers described by a certain
a = a(x0) as above is a λ-maximizing probability for A. Note that μλ is not maxi-
mizing for A but for the potential A(z) − b(T (z)) + λb(z). General references for
maximizing probabilities are [6, 9, 12, 16, 24, 27]. As we are maximizing among
invariant probabilities we can also say that μλ is maximizing for the potential

A(z) + (λ − 1)b(z) = A(z) − b(T (z)) + λb(z) + [b(T (z)) − b(z)].

Proposition 1 If z is a point in a periodic orbit of period k and moreover z is in
the support of the maximizing probability μλ, then the realizer a can be taken as a
periodic orbit of period k for the shift σ acting in the Bernoulli space. We call such
probability invariant for the shift of dual periodic probability.
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Proof In order to simplify the reasoning suppose k = 2. Note that T (z) is also in
the support of the maximizing probability μλ. In this case, from (3) we have that
b( T ( T (z) ) ) = λ b(T (z)) + A(T (z)) because T (z) is in the support of μλ. From
Eq. (4)

b(z) = b( T ( T (z) ) ) = max
T (y)=T 2(z)=z

{λ b(y) + A(y)} = λ b(T (z)) + A(T (z)).

Therefore, max
T (y)=z

{λ b(y) + A(y)} = λ b(T (z)) + A(T (z)). In this way we can take

the corresponding inverse branch, say a1, and then, say a2, and we repeat all
the way this choice again and again in order to define a = (a1, a2, a2, a4, . . .) =
(a1, a2, a1, a2, . . .). In this case a is an orbit of period two for σ and the claim
is true. In the case k = 3, note that if T 3(z) = z, we have that b( T 2( T (z) ) ) =
λ b(T 2(z)) + A(T 2(z)) and b( T ( T (z) ) ) = λ b(T (z)) + A(T (z)), because T (z)
and T 2(z) are in the support of μλ. In this way we follow a similar reasoning as
before and we get an a which is an orbit of period 3 for the shift. Same thing for a
periodic orbit with a general k.

As an example of the above, suppose k = 2, then there are two periodic orbits of
period 3. Take one of them, let us say {z1, z2, z3}. Suppose T (z1) = z2, T (z2) = z3
and T (z3) = z1. Given z1 there exists a1 such that τa1(z1) = z3. Given z3 there exists
a2 such that τa2(z3) = z2. Finally, given z2 there exists a3 such that τa3(z2) = z1.
Then, in this case, a = (a1, a2, a3, a1, a2, a3, a1, . . .) is in the support of the dual
periodic probability for {z1, z2, z3}. The set {a, σ (a), σ 2(a)} defines a periodic orbit
of period 3 for the shift σ .

Definition 3 We denote by R the function R = A − b ◦ T + λb ≥ 0 and call it the
rate function.

For fixed λ, by the fiber contraction theorem [35] (Sect. 5.12 p. 202 and Sect. 11.1 p.
433) we get that the λ-calibrated subaction b = bλ,A = bA is a continuous function
of A in the C0 topology. Moreover, the function b = bλ,A is a continuous function
of A and λ.

Taking λ → 1 will see now that we will get results which are useful for classical
Ergodic Optimization.

We denote m(A) = sup{∫ A d ν, among T -invariant probabilities ν }.
We call maximizing probability for A any ρ which attains the supremum m(A).

We denote any of these ρ by μA. A continuous function U : S1 → R is called a
calibrated subaction for A : S1 → R, if, for any y ∈ S1, we have

U (y) = max
T (x)=y

[A(x) +U (x) − m(A)]. (5)

If b&λ = bλ − max bλ, then, of course,μλ ismaximizing for the rate function potential
A(x) − b&λ (T (z)) + λb&λ (z). It is known (see [5, 10, 27, 32]) that bλ is equicontinu-
ous in λ, and, any convergent subsequence, λn → 1, satisfies b&λn

→ U , where U is
a calibrated subaction for A.
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Assuming the maximizing probability for A is unique (a generic property accord-
ing to [12]), it is known (see [16] Sect. 4), that when λ → 1, we get that b&λ → U ,
where U is a (the) calibrated subaction for A. In this way we can say that the family
b&λ → U selects the calibrated subaction U via the discounted method. Assuming
that the maximizing probability μA is unique, when λ → 1, we get that Bλ (after
the subtraction of max bλ) converges to the graph of the calibrated subaction for A
in the C0-topology (Fig. 3).

Even if the maximizing probability for A is not unique there exist anyway a
unique special limit subaction when λ → 1 (see [23]). That is, there exist a selection
on the discounted method for any Holder potential A (the potential do not have to
be generic). In other words, given the potential A, the limit of any sequence b&λn

,
n → ∞, λn → 1, will be a unique special subaction U for A (independent of the
sequence). is boundary Bλ, when λ → 1.

Note that in any case it is true the relation: for any z

b&(T (z)) − λb&(z) + (1 − λ)(max bλ) − A(z) ≥ 0.

We point out that in classical Ergodic Optimization, given a Lipschitz potential
A : S1 → R, in order to obtain examples where one can determine explicitly the
maximizing probability or a calibrated subaction, it is necessary to know the exact
value the maximal value m(A) (see Eq. (5)). In the general case this is not an easy
task and therefore any method of approximation of this maximal value or associated
subaction is helpful. The discounted method provides approximations bλ, λ ∈ (0, 1),
in theC0-topology, of calibrated subactions for A via the Banach fixed point theorem,
that is, via a contraction in the set of continuous functions in the C0-topology. You
take any function, iterate several times by the contraction and you will get a function
b̂λ which is very close to the λ-calibrated subaction. If λ is close to 1, then, the
corresponding b̂&λ is close to a classical calibrated subaction U . In all this is not
necessary to know the value m(A). However, when λ becomes close to the value 1
this contraction becomes weaker an weaker.

Theorem 1 claims that for a generic potential A the maximizing measure for A
is attained by a λ-maximizing probability for λ in an interval of the form [1 − ε, 1].
Thanks to all that one can apply our reasoning for a λ is fixed and close to 1. In the
discounted method taking λ ∼ 1 the procedure also provides a way to approximate
the value m(A) as we will see later.

It is known (see [27]) that (1 − λ)(max bλ) → m(A). Then, as we said before,
one can get an approximate value of m(A) by the discounted method.

It is easy to see that close by the periodic points the graph of b is a piece of unstable
manifold for F (see Fig. 4). We point out that for a generic Lipschitz potential A the
maximizing probability for A is a unique periodic orbit (see [11]).

Now we state a result which is new in the literature.

Theorem 1 If ν is a weak limit of a converging subsequence μλn → ν, λn → 1,
then, ν is a maximizing probability for A. For a generic Lipschitz potential A there
exist an ε, such that for all λ ∈ (1 − ε, 1], the λ-maximizing probability has support
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Fig. 3 A geometric picture
of the λ-calibrated property
of b. The graph of b
describes the upper boundary
of the attractor

Fig. 4 The unstable
manifolds of a point of
period two for F

in the periodic orbit which defines the maximizing probability for A. If the potential
A is of class C1 the same is true on the C1 topology.

Proof Consider a subsequence μλn → ν, λn → 1. Such ν is clearly invariant. Sup-
pose by contradiction that for some ε > 0 there exists an invariant μ such that∫
(A −U ◦ T +U ) dν + ε <

∫
(A −U ◦ T +U )dμ, then, for any n large enough
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we have
∫

(A − bλn ◦ T + λnbλn ) dμλn + ε/2 <

∫
(A − bλn ◦ T + λnbλn )dμ, and,

we reach a contradiction.
Now, for a generic potential it is known that the maximizing probability for A

is a unique periodic orbit (see [11]). Therefore, μλ → ν, when λ → 1. From the
continuous varying support (see [12]) if μλ → ν and ν is periodic orbit, then, there
exist an ε > 0 such that for λ ∈ (1 − ε, 1] the probabilityμλ = ν. If the potential A is
of classC1 one can do the following: sinceμλ ismaximizing for A + (1 − λb), which
is Lipschitz-close to A, then, when λ is close to the value 1, we apply the continuous
varying support property in order to get a Lipschitz subaction and perturb in the same
way as in [11] in order to get an approximation by another Lipschitz potential with
support in a unique periodic orbit. This potential can be approximated once more in
the C1 topology and again in his way by the continuous varying support we get C1

potential with support in a periodic orbit. Then, the same formalism as above can be
applied.

If μλ → μA, when λ → 1, we say that μλ selects the maximizing probability μA.
In the present case for a generic A there is a selection via the discounted method.

Remark 1 We point out the final conclusion: for a generic A we have that for λ close
to 1 the maximizing probability μλ is a periodic orbit. Moreover, by Proposition 1
the realizer a for a point x in the support of μλ can be taken as a periodic orbit (with
the same period) for the shift σ .

An interesting example is A(x) = −(x − 0.5)2 and T (x) = 2 x (mod 1), which has
a unique maximizing probability μA which is the one with support in the periodic
orbit of period 2 according to Corollary 1.11 in [25] (see also [26]). Therefore, the
corresponding λ-maximizing probability μλ converges to this one. In fact, there is
an ε such that if 1 − ε < λ < 1, then μλ has support in this periodic orbit. This
example will be carefully analyzed in the lasts sections of the paper.

3 The λ-Calibrated Subaction as an Envelope

Consider (as M. Tsujii in expression (3) p. 1014 [37]) the function S : (S1,Σ) → R,
where Σ = {1, 2, . . . , d}N, given by

Sλ,A(x, a) = S(x, a) =
∑
k=0

λk A(τk,ax ), (6)

where (τak−1 ◦ · · · ◦ τa0) (x) = τk,ax and a = (a0, a1, a2, . . .). For a fixed a the func-
tion Sλ,A(., a) is continuous up to the point 0 (see several computer simulations in
Sect. 8 and the explicit expression for the quadratic case in Sect. 7.4). Note that if A
is of class C2, then for a fixed a the function S(., a) is smooth up to the point 0 in
S1, if 1 > λ > 1

d (see in p. 1014 the claim between expressions (3) and (4) in [37]).
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Wepoint out that the upper boundary of the attractor is periodic but each individual
S(x, a) as a function of x is not (see worked examples in the end of the paper).
Note also that for λ and a fixed the function Sλ,A(, a) is linear in A. All x has
a corresponding a = a(x) such that b(x) = S(x, a). Indeed, for the given x take i0
such that b(x) = λb(τi0(x)) + A(τi0(x)), then, take i1 such that b(τi0(x)) = λb((τi1 ◦
τi0)(x)) + A((τi1 ◦ τi0(x)), and so on. In this way we get a = (i0, i1, i2, . . .). This a
is not necessarily unique. We call any such possible a(x) a realizer for x . Note that

b(x) = λ [ λu((τi1 ◦ τi0)(x)) + A((τi1 ◦ τi0(x)) ] + A(τi0(x)) =

λ2u((τi1 ◦ τi0)(x)) + λ A((τi1 ◦ τi0(x)) + A(τi0(x)) =

λnu((τin−1 ◦ · · · ◦ τi1 ◦ τi0)(x))+

λn−1 A((τin−1 ◦ · · · ◦ τi1 ◦ τi0)(x)) + · · · + λ A((τi1 ◦ τi0(x)) + A(τi0(x)).

Taking the limit when n → ∞ we get b(x) = S(x, a).
From the construction we claim that for any other c ∈ {1, 2, . . . , d}N we have

b(x) ≥ S(x, c). Indeed, consider z(x) = lim supn∈N{λn−1 A((τin−1 ◦ · · · ◦ τi1 ◦ τi0)

(x)) + · · · · · · + λ A((τi1 ◦ τi0(x)) + A(τi0(x)) | (i0, i1, . . . , in−1) ∈ {1, 2, . . . ,
d}n}, and, the operator Lλ(v)(x) = sup

i=1,2...,d
[A(τi (x)) + λv(τi (x))]. Then, Lλ(z) =

z. It is known that b is a fixed point for Lλ (see Sect. 3 in [27], or Sect. 2 in [5]).
From the uniqueness of the fixed point it follows the claim. Therefore, we get from
above the following result which we call the Envelope Theorem.

Theorem 2 b(x) = bλ,A(x) = sup
c∈{1,2,...,d}N

S(x, c) = S(x, a(x)), where a(x) is a

realizer for x.

As the supremum of convex functions is convex we get that for λ fixed the function
bλ,A varies in convex way with A.

Figure2 suggests that b(x) is obtained as sup{S(x,w1), S(x,w2)}, where, w1,w2,
is in Σ . Later we will show that in several interesting examples w1,w2 are in a
periodic orbit of period 2 for the shift σ . As we said before in the introduction we
point out again here (in a more precise way) that Fig. 1 in [37] suggests that b(x)
is obtained as sup{S(x,wi ), i = 1, 2, 3, 4}, where, wi , i = 1, 2, 3, 4, are in Σ . Note
that the potential A in that case is conjectured to have a maximizing probability in
an orbit of period 4 (see [14]).

Note that if A is of class C2, then, Sa : (0, 1) → R is of class C2. We define
π(x) = i , if x is in the image of τi (S1 − {0, 1}), i ∈ {1, 2, . . . , d}.

Note also (see (7) p. 1014 in [37]) that S(T (x), π(x)a) = A(x) + λ S(x, a).
Or, in another way, for any a = (a0, a1, . . .) we have that S(x, a) = A(τa0(x)) +
λS(τa0(x), σ (a)). This also means that φ(x, a) = (x, S(x, a)) is a change of coor-
dinates from F to T(x, a) = (T (x), π(x)a) [37]. T(x, a) is forward invariant in the
upper boundaryB of the attractor. Note also that T−1(x, a) = (τa0(x), σ (a)) (when
defined).
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Definition 4 Consider a fixed x ∈ S1 and variable x ∈ S1, a ∈ {1, 2}N, then we
define

W (x, a) = S(x, a) − S(x, a). (7)

We call such W the λ-involution kernel for A.

Note that for a fixed W (x, a) is smooth on x ∈ (0, 1). From the above definition we
get,

λW (τa0(x), σ (a)) − W (x, a) =

[λS(τa0(x), σ (a)) − λS(x, σ (a))] − [S(x, a) − S(x, a)] =

[λS(τa0(x), σ (a)) − S(x, a)] − [λS(x, σ (a)) − S(x, a)] =

−A(τa0(x)) + [λS(x, σ (a)) − S(x, a)].

Note that [λS(x, σ (a)) − S(x, a)] just depend on a (not on x).

Definition 5 If we denote A∗(a) = [λS(x, σ (a)) − S(x, a)], we get the
λ-coboundary equation: for any (x, a)

A∗(a) = A(τa0(x)) + [λW (τa0(x), σ (a)) − W (x, a)].

We say that A∗ is the λ-dual potential of A.

Note that A is defined for the variable x ∈ S1 and A∗ is defined for a which is in
the dual space Σ . The above definition is similar to the one presented in [4, 13, 31,
32]. Note that we have an explicit expression for the λ-involution kernel W which
appears in the above definition.

Below we consider the lexicographic order in {1, . . . , d}N.
Definition 6 We say that A satisfies the twist condition, if an (then, any) associated
involution kernel W , satisfies the property: for any a < b, we have

∂W

∂x
(x, a) − ∂W

∂x
(x, b) > 0.

Note that this condition does not imply that there is a uniform positive lower
bound for ∂W

∂x (x, a) − ∂W
∂x (x, b) when b > a.

It is equivalent to state the above relation for S or forW . An important issue is
described by Proposition 2.1 in [13] which basically says that (in our context) in the
caseW satisfies the twist property, then association x to a realizer a(x) is monotone,
where we use the lexicographic order in {1, . . . , d}N. See also Proposition 8 in the
last section. This is not exactly, but very close, of saying that the support of the
optimal plan probability for W is a graph. In [31] the question about the property of
cyclically monotonicity (in the support) is addressed.
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Fig. 5 Under the twist
condition the way the two
graphs cut is compatible with
the inequality b < a (see
Proposition 2)

4 Geometry, Combinatorics of the Graphs of S(., a)
and the Twist Condition

Remember that S(x, a) = ∑
k=0 λk A(τk,ax), and W (x, a) = S(x, a) − S(x, a).

Moreover, one can get the calibrated subaction via the superior envelope b(x) =
bλ,A(x) = supa∈Σ S(x, a) = S(x, a(x)). In this case a(x) ∈ Σ is called an optimal
symbolic element for x (possibly not unique). Under the twist condition, two graphs
cut one each other in a compatiblewaywith the inequality a < b. The envelope result,
assures that, if the family S(x, ·) is continuous in Σ , then ∂bλ,A

∂x (x, a) = ∂S
∂x (x, a), for

every optimal a. Thus, if A is twist the optimal symbolic element is unique in every
differentiable point of b(x) = bλ,A(x). The two graphs on the Fig.5 can not cut
twice by the twist property. This is the purpose of the next results. Note, how-
ever, that the graph of one S(., c) will be intersected by an infinite number of
other graphs of S(., d).

We will study now some additional properties of the family of maps S(x, a). The
first step is to consider some especial functions.

Definition 7 For a fixed pair a, b ∈ Σ we define Δ : S1 × Σ × Σ → R by
Δ(x, a, b) = S(x, a) − S(x, b), that is C2 smooth on x ∈ (0, 1).

Computing this derivatives we get Δ′(x, a, b) = S′(x, a) − S′(x, b) and
Δ′′(x, a, b) = S′′(x, a) − S′′(x, b), thus we get two consequences. The first: if A is
twist and a �= b then Δ′(x, a, b) �= 0, more precisely, if a < b then Δ′(x, a, b) > 0
else, if a > b then Δ′(x, a, b) < 0. The second consequence is for quadratic poten-
tials, if A is quadratic then A′′ = cte and this implies that Δ′′(x, a, b) = 0, thus
Δ(x, a, b) = Δ(0, a, b) + xΔ′(0, a, b), for x ∈ S1. The twist property give us a cer-
tain geometric structure on the family S(x, a). If we assume a is optimal for x = 0
and define a− = {w ∈ Σ, w < a} and a+ = {w ∈ Σ, w > a} we get the picture
described by Fig. 6.

Indeed, Δ(0, a, b) > 0 and Δ′(x, a, b) > 0 because b > a, thus Δ(x, a, b) is
increasing what means that S(x, a) and S(x, b) has no intersection. On the other
hand c ∈ a− which means that Δ′(x, a, b) < 0 thus S(x, c) can intersect S(x, a) in
just one point. Reciprocally, the twist property allow us to determinate the exact order
of every three members a, b and c from the geometrical position of S(x, a), S(x, b)
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Fig. 6 b ∈ a+ and c ∈ a−

Fig. 7 Triangle property

and S(x, c). We call this the triangle property; this means that if the corresponding
positions are as in the Fig. 7, then, we get that a > c > b.

Proposition 2 Suppose S satisfies the twist condition for some fixed a and b, the
positions of the graphs of S(., a) and S(., b) are described by Fig.5. We assume x0
is such that 0 = Δ(x0, a, b) = S(x0, a) − S(x0, b), then

∂S
∂x (x0, a) < ∂S

∂x (x0, b).

Proof The proof follows from the fact that ∂S
∂x (x0, a) − ∂S

∂x (x0, b) = Δ′(x0, a, b)
< 0.

The twist property assures a transversality condition on the intersections of the leaves
described by the different graphs of S(., a) (see beginning of Sect. 4 in [37]).We point
out that the twist condition was not explicitly considered in [37].

4.1 Invariance Properties of the Envelope

We already know that b(x) given by bλ,A(x) = supa∈Σ S(x, a) = S(x, a(x)), is the
upper envelope of the family S(x, a). We remind the reader that the map T

−1 is
defined by T

−1(x, a) = (τa0(x), σ (a)). It is also well defined
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S(x, a) = A(τa0(x)) + λS(τa0(x), σ (a)).

We will prove that the upper envelope of the family S(x, a) is invariant by T
−1.

Abusing of the notation we set a(x) as the set of such solutions for a given fixed x ;
a(x) is indeed a multi function, that is, b(x) = S(x, a), ∀a ∈ a(x). We are going to
prove that the first symbol in a(x) uniquely determined by the symbol i0 that turns
out to be the maximum b(x) = maxi {λ b(τi x) + A(τi x)}, more precisely, b(x) =
λ b(τi0x) + A(τi0x).

We begin with a technical and crucial lemma.

Lemma 1 If A is twist and a > b, with d(a, b) = 1
2N then the angle α between two

intersecting S(x, a) = S(x, b) satisfy

tan(α) = Δ′(x, a, b) ≤ ‖A′‖∞
(

λ

2

)N 2

2 − λ
.

Proof As A is twist S(x, a) and S(x, b) are transversal and the positive angle is
given by tan(α) = Δ′(x, a, b).

Δ′(x, a, b) = ∂S

∂x
(x, a) − ∂S

∂x
(x, b) =

∞∑
k=0

λk(A′(τk,ax) − A′(τk,bx))
1

2k+1

But
1

2

∞∑
k=n

(
λ

2

)k

|A′(τk,ax) − A′(τk,bx)| ≤ ‖A′‖∞
∞∑
k=n

(
λ

2

)k

=

= ‖A′‖∞
(

λ

2

)N 1

1 − λ
2

= ‖A′‖∞
(

λ

2

)N 2

2 − λ
.

We point out that we do not need to take λ close to 1 for the above result. Now, we
want to show that for any fixed λ, under the twist condition plus another technical
condition, there exist a finite number of points c j , j = 1, 2, . . . , k, such that

b(x) = sup
c∈{1,2,...,d}N

S(x, c) = sup
j=1,2,...,k

S(x, c j ).

A natural question is to ask about the nature of these points c j , j = 1, 2, . . . , k.
In the case the λ-maximizing probability is a unique periodic orbit and A is twist
we will be able to describe some properties (see Sect. 6). Some properties depend of
the combinatorics of the position of the orbits (see Theorem 4). It can happen (see
example below) that the λ-maximizing probability is a periodic orbit of period 2 and
we need to use 3 points c1, c2, c3 in the above equation (see Fig. 11).

Lemma 2 If b(x) = λ b(τi0x) + A(τi0x) then i0 ∗ a(τi0x) ∈ a(x), where ∗ means
the concatenation. Reciprocally, if b(x) = S(x, c), then, b(τc0x) = S(τc0x, σc), and
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b(x) = λ b(τc0x) + A(τc0x). In other words, if b(x) = S(x, c) then the first symbol
i = c0 of c attains the supremum b(x) = maxi {λ b(τi x) + A(τi x)}.

Proof Suppose that b(x) = λ b(τi0x) + A(τi0x) and c ∈ a(τi0x), then b(τi0x) =
S(τi0x, c). An easy computation shows that λ b(τi0x) + A(τi0x) = A(τi0x) + λ

S(τi0x, c) = S(x, i0 ∗ c), so b(x) = S(x, i0 ∗ c) which means that i0 ∗ c ∈ a(x).
For the reciprocal suppose b(x) = S(x, c) = A(τc0x) + λS(τc0x, σc). Since

b(x) = maxi {λ b(τi x) + A(τi x)} ≥ λ b(τc0x) + A(τc0x), we get,

A(τc0x) + λS(τc0x, σc) ≥ λ b(τc0x) + A(τc0x),

which is equivalent to b(τc0x) ≤ S(τc0x, σc), thus b(τc0x) = S(τc0x, σc). Substitut-
ing this in the previous equation we have that b(x) = S(x, c) = A(τc0x) + λb(τc0x)
(Fig. 8).

If we suppose additionally that W satisfies the twist condition then, if a(τi0x) is not
a single point, then by Proposition 2, the function b is not differentiable at x because
b(x) = S(x, i0 ∗ c) and b(x) = S(x, i0 ∗ d). However, S′(x, i0 ∗ c) �= S′(x, i0d), if
c �= d, where c, d ∈ a(τi0x).

Corollary 1 The set Ω = {(x, a) ∈ [0, 1] × Σ | b(x) = S(x, a)} is T−1-invariant.

Proof Indeed, if (x, a) ∈ Ω then b(x) = S(x, a) and byLemma2wehave b(τc0 x) =
S(τc0x, σc). Thus T

−1(x, a) ∈ Ω .

Definition 8 A crossing point x = xab is the single point x satisfying S(x, a) =
S(x, b) with a > b.

When A is twist, the crossing points are ordered according to the order of a, b and
c as in the above figure.

Definition 9 A turning point is a point x such that b(x) = λ b(τi0x) + A(τi0x) for
more than one symbol i0. The concept of turning point was introduced in [13, 30].
A turning point is simple if its forward orbit is finite.

Fig. 8 Invariance of the
boundary
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Fig. 9 Ordered
intersections between
different S(x, c)

Corollary 2 Assume A satisfies the twist condition and moreover that there exists
a finite number of turning points and that each one is simple, then the boundary of
the attractor is given by a finite number of C2 pieces (of unstable manifolds).

Proof Let x be a point on the boundary of the attractor where the optimal symbolic
changes, see Fig. 11. If S(x, a) = b(x) = S(x, c) and ai = ci for i = 0, . . . , N − 1
we get from Lemma 2 that b(x) = S(x, c), then, b(τc0x) = S(τc0x, σc) and b(x) =
S(x, a), then, b(τa0x) = S(τa0x, σa). Choosing x1 = τa0x we get S(x1, σa) = S(x1,
σc). Proceeding in this way we obtain S(xN−1, σ

N−1a) = S(xN−1, σ
N−1c). What

means that z = xN−1 is a turning point and T N (z) = x . In this way, we conclude that
any point x such that S(x, a) = b(x) = S(x, c) lies in the orbit of a turning point.
Since the number of turning points is finite and its orbits are finite, because they are
simple, we obtain that there is just a finite number of this points. Finally, by the twist
property we guarantee that �{x | S(x, a) = b(x) = S(x, c)} = 1 that is, the number
of pieces in the boundary is finite (Fig. 9).

We will present later examples where b is explicit and have a finite number o
realizers. Therefore the boundary of the attractor is given by a finite number of C2

pieces (see Sect. 7.4).
In general, explicit computations are very difficult to find, but we will present

some computational evidence to illustrate the conclusion of Corollary 2.

Example 1 Take ε = 0.005, λ = 0.51, dri f t = 0.05 and gap = 0.001, we use a
truncated version S(x, a) = ∑7

k=0 λk A( τk,ax) where A(x) := Aε(x) = − (1.010
x − 0.455)2 is a perturbation of − ( x − 0.5)2 by Aε(x) = − (x − 0.5 + εφ(x)+
dri f t)2 and φ(x) = 2x − 1. The figure below shows the maximum b(x) = maxa
S(x, a) in a grid of 25 divisions of [0, 1], and suggest the form of the graph of b in
the Fig. 10. This figure suggest that there is 3 pieces S(x, 10101....), S(x, 01010....)
and a unknown S(x, c0c1c2...). Since the perturbed potential still having the twist
property we get c0 = 0. Taking x in the right side of de second crossing point v
we get b(x) = S(x, c0 ∗ σc) and from Corollary 1 we get b(τc0x) = S(τc0x, σc), in
particular b(τc0x) = b(τ0x) lies in the right side of the first crossing point u because
the first symbol of the optimal sequences for points before u is 1. Therefore, σc
should be (0101...). From this hypothetic deductions we can suppose that, if u and
v are the crossing points, then the formula for the superior envelop b(x) should be
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Fig. 10 The graph of b(x)

Fig. 11 Iteration by 4000 times of F

b(x) :=
⎧⎨
⎩
S(x, 101010....) , 0 < x ≤ u
S(x, 010101....) , u < x ≤ v
S(x, 001010....) , v < x ≤ 1

This is exactly what the Fig. 11 shows, that is, we already know from Corollary 2
that there is only a finite number of pieces, we just deduce now what are the geo-
metric positions of these pieces. In the graph we plot b(x) + gap = b(x) + 0.001
in order to distinguish the difference between this and the picture computation-
ally obtained. If we iterate some orbits close to the attractor by the transformation
F(x, s) = (T (x), λs + A(x)), we can see that there is numerical evidence that our
claim is true in this particular case.
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Denote by T the set of turning points and Λ = ∪n≥0 T n(T ). In order to charac-
terize the turning points we follow a discounted version of the notation introduced
by [9] for Sturmian measures when the symbols are {0, 1}.
Definition 10 If b(x) = maxi {λ b(τi x) + A(τi x)}, we define the remainders asso-
ciated with the b and A as r(x, a) = b(x) − λ b(τa0x) − A(τa0x),

R(x) = r(x, 0 · · · ) − r(x, 1 · · · ) = (λ b(τ1x) + A(τ1x)) − (λ b(τ0x) + A(τ0x)).

So, r(x, a) ≥ 0 and attains zero with the right symbol a0. Also, R(x) = 0, if and
only if, x is a turning point that is, T = R−1(0).

Definition 11 A continuous potential A satisfy the k-Sturmian condition if �R−1(0)
= k. In particular, there is just k turning points.

In [9] Sturmian measures are that ones where k = 1. In a slightly different setting
the author shows that A(x) = cos(2π(x − ω)) satisfy the 1-Sturmian condition for
any ω ∈ R/Z.

Lemma 3 Λ contains the set of points x where a(x) is not a single point.

Proof Suppose that there is two different elements c, d ∈ a(x), where c and d are of
the form c = (i0, i1, . . . , in−1, 1, cn+1, ...), d = (i0, i1, . . . , in−1, 0, dn+1, . . .). Take
z = τin−1 · · · τi0x . Applying Corollary 1 we get:

c ∈ a(x) ⇒ b(x) = S(x, c) ⇒ b(τi0x) = S(τi0x, σc) · · ·

⇒ b(τi1τi0x) = S(τi1τi0x, σ
2c) · · · ⇒ b(z) = S(z, (1, cn+1, . . .)).

d ∈ a(x) ⇒ b(x) = S(x, d) ⇒ b(τi0x) = S(τi0x, σd) · · · ⇒

⇒ b(τi1τi0x) = S(τi1τi0x, σ
2d) · · · ⇒ b(z) = S(z, (0, dn+1, . . .)).

Thus, b(z) = λ b(τ0z) + A(τ0z) and b(z) = λ b(τ1z) + A(τ1z), by Lemma 2, that is,
z ∈ T . Since T n(z) = x we get x ∈ Λ.

If the turning points are finite (A satisfying k-Sturmian condition) and pre-periodic
points for T , then there exists finitely many points where the optimal symbolic
changes because �Λ < ∞.

Corollary 3 If �Λ is finite then the graph of b is a union of a finite number of S(x, a).

Proof The claim follows from Lemma 3.
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5 Symmetric Twist Potentials

In this section we exhibit some explicit examples.

Theorem 3 Let A be a symmetric potential, that is, A(1 − x) = A(x) for any x ∈
[0, 1]. In addition we assume that A is twist. Denote by b : [0, 1] → R the function
such that

b(x) =
{
S(x, (10)∞), 0 ≤ x ≤ 1/2;
S(x, (01)∞), 1/2 < x ≤ 1.

Then, b is a λ-calibrated subaction for A(x), that is, for any x ∈ [0, 1]

b(x) = max
i=0,1

{λ b(τi x) + A(τi x)}.

Proof As A is symmetric A(1/2 − t) = A(1/2 + t) for t ∈ [0, 1/2]. We claim that
S(x, (10)∞) = S((1 − x), (01)∞). Indeed

τ0(1 − x) = 1 − x

2
= 1/2 − x/2 and τ1(x) = 1 + x

2
= 1/2 + x/2,

then, A(τ0(1 − x)) = A(τ1(x)). Analogously, τ1τ0(1 − x) = 1/4 − x/4 + 1/2 and
τ0τ1(x) = 1+x

2 = 1/4 + x/4 = 1/2 − (1/4 − x/4), then A(τ1τ0(1 − x)) =
A(τ0τ1(x)), and so on. Thus

S(x, (10)∞) = A( τ1(x)) + λ A( τ0 ◦ τ1(x)) + λ2 A( τ1 ◦ τ0 ◦ τ1(x)) + · · · =
A( τ0(1 − x)) + λ A( τ1τ0(1 − x)) + λ2 A( τ0 ◦ τ1 ◦ τ0(1 − x)) + · · · = S((1 − x), (01)∞).

In particular, S(0, (10)∞) = S(1, (01)∞) and S(1/2, (10)∞) = S(1/2, (01)∞), that
isb(x) is continuous.By the twist property S(x, (10)∞) and S(x, (01)∞) are transver-
sal in x = 1/2, then, as can not exist two points of intersection we get

S(x, (10)∞) > S(x, (01)∞) if x < 1/2;
S(x, (10)∞) < S(x, (01)∞) if x > 1/2.

Now we will prove that the above b is a λ-calibrated subaction for A(x).
We divide the argument in two cases:

Case 1- x < 1/2
If i = 0 then

λb(τi x) + A(τi x) = A(τ0x) + λb(τ0x)
= A(τ0x) + λS(τ0x, (10)∞)

= S(x, (01)∞) < S(x, (10)∞)

because x < 1/2.
If i = 1 then
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λb(τi x) + A(τi x) = A(τ1x) + λb(τ1x)
= A(τ1x) + λS(τ1x, (01)∞)

= S(x, (10)∞)

because τ1x > 1/2.
Thus, maxi=0,1{λ b(τi x) + A(τi x)} = S(x, (10)∞) = b(x) if x < 1/2.
Case 2- x > 1/2
If i = 0 then

λb(τi x) + A(τi x) = A(τ0x) + λb(τ0x)
= A(τ0x) + λS(τ0x, (10)∞)

= S(x, (01)∞)

because τ0x < 1/2. If i = 1 then

λb(τi x) + A(τi x) = A(τ1x) + λb(τ1x)
= A(τ1x) + λS(τ1x, (01)∞)

= S(x, (10)∞) < S(x, (01)∞)

because x > 1/2. Thus, maxi=0,1{λ b(τi x) + A(τi x)} = S(x, (01)∞) = b(x) if x >

1/2.

It follows from above that in this case the λ-calibrated subaction is piecewise differ-
entiable if A is differentiable. It is piecewise analytic (two domains of analyticity) if
A is analytic.

6 A characterization of When the Boundary is Piecewise
Smooth in the Case of Period 2 and 3

We will present a characterization of when the boundary is piecewise smooth
in the case the λ-maximizing probability has period 2 and 3 (see Theorem 4).
As we know that a λ-calibrated subaction for A(x), that is, for any x ∈ [0, 1]
b(x) = maxi=0,1{λ b(τi x) + A(τi x)}, is unique and b̄(x) = sup

a∈{0,1}N
S(x, a), is also a

solution of this equation, we get that the superior envelope of {S(x, a) | a ∈ {0, 1}N}
is piecewise regular as much as A.

Lemma 4 If 0 < x < y < 1 and S(x, a′) = sup
a∈{0,1}N

S(x, a) and S(y, a′′) = sup
a∈{0,1}N

S(y, a) then there is x < z < y such that S(z, a′) = S(z, a′′). In particular, from the
twist property, a′ > a′′ and

S(x, a′) > S(x, a′′) if x < z;
S(x, a′) < S(x, a′′) if x > z.
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Fig. 12 Ordering the
intersections according to a
periodic orbit

We assume here that T (x) is the transformation 2 x (mod 1). Now we going to
consider the case where the maximizing measure is supported in a periodic orbit
of period 3. We know that if the minimum period is 3 there is just two possible
periodic sequences: (100100100...) = (100)∞ and (110110110...) = (110)∞. We
choose the case (110110110...) = (110)∞ with the correspondent periodic point
x0 = 3/7 < T 2(x0) = 5/7 < T (x0) = 6/7 (Fig. 12).

Theorem 4 Let A be a twist potential such that
S(x0, (110)∞) = sup

a∈{0,1}N
S(x0, a), S(T (x0), (011)

∞) = sup
a∈{0,1}N

S(T (x0), a),

S(T 2(x0), (101)∞) = sup
a∈{0,1}N

S(T 2(x0), a), where T 3(x0) = x0. Let u ∈ [x0, T 2(x0)]
and v ∈ [T 2(x0), T (x0)] given by Lemma 4, that is, S(u, (110)∞) = S(u, (101)∞)

and S(v, (101)∞) = S(v, (011)∞). Denote by b : [0, 1] → R the function such that

b(x) =
⎧⎨
⎩
S(x, (110)∞), 0 ≤ x ≤ u;
S(x, (101)∞), u ≤ x ≤ v;
S(x, (011)∞), v ≤ x ≤ 1.

Then, b is a λ-calibrated subaction for A(x), that is, for any x ∈ [0, 1] b(x) =
maxi=0,1{λ b(τi x) + A(τi x)}, if and only if, τ1[0, u] ⊆ [u, v], τ1[u, v] ⊆ [v, 1]
and τ0[v, 1] ⊆ [0, u].
Proof We must to divide in several cases.
Case 1: Consider 0 ≤ x ≤ u.
As τ0(x) = 1/2x < u thus

λb(τ0x) + A(τ0x) = λS(τ0x, (110)
∞) + A(τ0x) =

= λS(τ0x, (110)
∞) + A(τ0x) = S(x, 0(110)∞) =
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= S(x, (011)∞) < S(x, (110)∞) = b(x)

As τ1(x) = 1/2x + 1/2 > u we have two possibilities
(a) If τ1(x) ∈ (u, v] then

λb(τ1x) + A(τ1x) = λS(τ1x, (101)
∞) + A(τ1x) =

= λS(τ1x, (101)
∞) + A(τ1x) = S(x, 1(101)∞) =

= S(x, (110)∞) = b(x)

(b) If τ1(x) ∈ [v, 1] then

λb(τ1x) + A(τ1x) = λS(τ1x, (011)
∞) + A(τ1x) =

= λS(τ1x, (011)
∞) + A(τ1x) = S(x, 1(011)∞) =

= S(x, (101)∞) < S(x, (110)∞) = b(x).

Thus

b(x)

{= maxi=0,1{λ b(τi x) + A(τi x)}, if τ1[0, u] ⊆ [u, v]
< maxi=0,1{λ b(τi x) + A(τi x)}, otherwise.

for 0 ≤ x ≤ u.

Case 2: Consider u ≤ x ≤ v.

As τ0(x) = 1/2x < v we have two possibilities
(a) If τ0(x) ∈ [0, u] then

λb(τ0x) + A(τ0x) = λS(τ0x, (110)
∞) + A(τ0x) =

= λS(τ0x, (110)
∞) + A(τ0x) = S(x, 0(110)∞) =

= S(x, (011)∞) < S(x, (101)∞) = b(x)

(b) If τ0(x) ∈ [u, v] then

λb(τ0x) + A(τ0x) = λS(τ0x, (101)
∞) + A(τ0x) =

= λS(τ0x, (101)
∞) + A(τ0x) = S(x, 0(101)∞) =

= S(x, 0(101)∞) < S(x, (101)∞) = b(x),

because S(x, 0(101)∞) > S(x, (101)∞) contradicts the twist condition, as one can
see from the Fig. 13. As τ1(x) ∈ [5/7, 6/7] we have two possibilities
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Fig. 13 Avoiding the wrong
symbolic S(x, 0101...)

(a) If τ1(x) ∈ [u, v] then

λb(τ1x) + A(τ1x) = λS(τ1x, (101)
∞) + A(τ1x) =

= λS(τ1x, (101)
∞) + A(τ1x) = S(x, 1(101)∞) =

= S(x, (110)∞) < S(x, (101)∞) = b(x).

(b) If τ1(x) ∈ [v, 1] then

λb(τ1x) + A(τ1x) = λS(τ1x, (011)
∞) + A(τ1x) =

= λS(τ1x, (011)
∞) + A(τ1x) = S(x, 1(011)∞) =

= S(x, (101)∞) = b(x).

Thus

b(x)

{= maxi=0,1{λ b(τi x) + A(τi x)}, if τ1[u, v] ⊆ [v, 1]
< maxi=0,1{λ b(τi x) + A(τi x)}, otherwise.

for u ≤ x ≤ v.

Case 3: Consider v ≤ x ≤ 1.
As τ0(x) = 1/2x < 1/2 we have two possibilities
(a) If τ0(x) ∈ [0, u] then

λb(τ0x) + A(τ0x) = λS(τ0x, (110)
∞) + A(τ0x) =

= λS(τ0x, (110)
∞) + A(τ0x) = S(x, 0(110)∞) =
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= S(x, (011)∞) = b(x).

(b) If τ0(x) ∈ [u, v] then

λb(τ0x) + A(τ0x) = λS(τ0x, (101)
∞) + A(τ0x) =

= λS(τ0x, (101)
∞) + A(τ0x) = S(x, 0(101)∞) =

= S(x, 0(101)∞) < S(x, (011)∞) = b(x),

because S(x, 0(101)∞) > S(x, (011)∞) contradicts the twist (as one can see from
Fig. 13).

As τ1(x) ∈ [v, 1] we have

λb(τ1x) + A(τ1x) = λS(τ1x, (011)
∞) + A(τ1x) =

= λS(τ1x, (011)
∞) + A(τ1x) = S(x, 1(011)∞) =

= S(x, (101)∞) < S(x, (011)∞) = b(x).

Thus

b(x)

{= maxi=0,1{λ b(τi x) + A(τi x)}, if τ0[v, 1] ⊆ [0, u]
< maxi=0,1{λ b(τi x) + A(τi x)}, otherwise.

for v ≤ x ≤ 1.

The characterization in the case the maximizing measure has support in an orbit
of period n is similar. One needs to know the combinatorics of the position of the
different points of the orbit and then proceed in an analogous way as in the case of
period 3. We left this to the reader.

7 Twist Properties in the Case T (x) = 2x (mod 1)

Let us fix a = (a0, a1, ...) ∈ {0, 1}N. If A is differentiable we can differentiate S with
respect to x

∂S

∂x
(x, a) =

∞∑
k=0

λk A′(τk,ax)
∂

∂x
τk,ax .

We observe that τk,ax has an explicit expression: τk,ax = 1
2k+1 x + ψk(a), where

ψk(a) = a0
2k+1

+ a1
2k

+ · · · + ak
2

,
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satisfy the recurrence relation 2ψk+1(a) = ψk(a) + ak+1. Thus

∂S

∂x
(x, a) =

∞∑
k=0

λk A′(τk,ax)
1

2k+1
= 1

2

∞∑
k=0

(
λ

2

)k

A′(τk,ax).

Analogously,

∂2S

∂x2
(x, a) =

∞∑
k=0

λk A′′(τk,ax)
1

2k+1

2

= 1

4

∞∑
k=0

(
λ

4

)k

A′′(τk,ax),

in particular, if A′′ < 0 then ∂2S
∂x2 (x, a) < 0,∀a ∈ Σ . Even if A is not C2 we have the

concavity of S from A:

Lemma 5 Let A be a C0 potential in S1.
If A is concave (strictly) then S(x, a) is concave (strictly),∀a ∈ Σ .

Proof Fixed a ∈ Σ consider x < y and t ∈ [0, 1] then

S((1 − t)x + t y, a) =
∞∑
k=0

λk A(τk,a[(1 − t)x + t y]).

Since τk,a(1 − t)x + t y = 1
2k+1 [(1 − t)x + t y] + ψk(a) = (1 − t)τk,ax + tτk,a y,we

get

S((1 − t)x + t y, a) =
∞∑
k=0

λk A((1 − t)τk,ax + tτk,a y) ≥

≥
∞∑
k=0

λk[(1 − t)A(τk,ax) + t A(τk,a y)] = (1 − t)S(x, a) + t S(y, a).

7.1 Formal Computations

First we prove two technical lemmas about recursive sums.

Lemma 6 Let ψk(a) be the function defined above, then
∞∑
k=0

(
λ

2

)k

ψk(a) = 2

4 − λ

Z(a), where Z(a) =
∞∑
k=0

(
λ

2

)k

ak .

Proof Consider H = ∑∞
k=0

(
λ
2

)k
ψk(a) then



On the Thin Boundary of the Fat Attractor 231

2H = 2
∑∞

k=0

(
λ
2

)k
ψk (a) = 2ψ0(a) + ∑∞

k=1

(
λ
2

)k
2ψk (a)

= a0 + ∑∞
k=1

(
λ
2

)k [ψk−1(a) + ak ] = a0 + ∑∞
k=1

(
λ
2

)k
ψk−1(a) + ∑∞

k=1

(
λ
2

)k
ak

= λ
2

∑∞
k=1

(
λ
2

)k−1
ψk−1(a) + ∑∞

k=0

(
λ
2

)k
ak = λ

2
∑∞

k=0

(
λ
2

)k
ψk (a) + ∑∞

k=0

(
λ
2

)k
ak

= λ
2 H + Z(a).

Thus, H = 2
4−λ

Z(a), where Z(a) =
∞∑
k=0

(
λ

2

)k

ak is the expansion in the bases 2
λ
of

the number Z(a).

Lemma 7 If λ < 1 the function Z : Σ → [0, 1] given by Z(a) =
∞∑
k=0

(
λ

2

)k

ak is

strictly increasing with respect to the lexicographical order. In particular, if b > a
then

Z(b) − Z(a) ≥
(

λ

2

)n
(
1 − λ

1 − λ
2

)
,

where n is the first digit where a is different from b.

Proof Takea = (i0, . . . , in−1, 0, an+1, in+2, ....) < b = (i0, . . . , in−1, 1, bn+1, bn+2,

....), then,

Z(b) − Z(a) =
(

λ

2

)n

(1 − 0) +
∞∑

k=n+1

(
λ

2

)k

(bk − ak) ≥

≥
(

λ

2

)n

−
∞∑

k=n+1

(
λ

2

)k

=
(

λ

2

)n

− ( λ
2 )

n+1

1 − λ
2

=

(
λ

2

)n
(
1 −

λ
2

1 − λ
2

)
=

(
λ

2

)n
(
1 − λ

1 − λ
2

)
> 0

We are going now to compute ∂S
∂x (x, a) for xm for m = 0, 1, 2.1

(a) A(x) = 1
In that case, S1(x, a) = ∑∞

k=0 λk1 = 1
1−λ

, so ∂S
∂x (x, a) = 0.

(b) A(x) = x
In that case,

Sx (x, a) = ∑∞
k=0 λkτk,ax, so ∂S

∂x (x, a) = 1
2

∑∞
k=0

(
λ
2

)k = 1
2−λ

.
(c) A(x) = x2

In that case,
Sx2(x, a) = ∑∞

k=0 λk(τk,ax)2,

1This potentials are actually defined inR because they are not continuous functions on S1, but some
combination of 1, x, x2, ... allow us to build an 1-periodic function.
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so ∂S
∂x (x, a) = 1

2

∑∞
k=0

(
λ
2

)k
2(τk,ax) = ∑∞

k=0

(
λ
2

)k
(τk,ax). Thus,

∂S
∂x (x, a) = ∑∞

k=0

(
λ
2

)k [
1

2k+1 x + ψk(a)
]

= x
2

∑∞
k=0

(
λ
4

)k + ∑∞
k=0

(
λ
2

)k
ψk(a)

= 2
4−λ

x + ∑∞
k=0

(
λ
2

)k
ψk(a)

Applying Lemma 6 we have ∂Sx2
∂x (x, a) = 2

4−λ
x + 2

4−λ
Z(a).

Theorem 5 If A(x) = c0 + c1x + c2x2 is 1-periodic differentiable in S1 − {0} then
∂S

∂x
(x, a) =

(
c1

2 − λ
+ 2c2

4 − λ
x

)
+ 2c2

4 − λ
Z(a).

Moreover, A is twist if and only if c2 < 0.

Proof Using the notation SA(x, a) =
∞∑
k=0

λk A(τk,ax), one can easily show that S

depends linearly of A. So if we have, A(x) = c0 + c1x + c2x2, then

SA(x, a) = c0 · S1(x, a) + c1Sx (x, a) + c2Sx2(x, a).

We also can compute ∂S
∂x (x, a),

∂S

∂x
(x, a) = c0 · 0 + c1

1

2 − λ
+ c2

(
2

4 − λ
x + 2

4 − λ
Z(a)

)
,

or
∂S

∂x
(x, a) =

(
c1

2 − λ
+ 2c2

4 − λ
x

)
+ 2c2

4 − λ
Z(a).

Moreover,
∂S

∂x
(x, a) − ∂S

∂x
(x, a) = 2c2

4 − λ
(Z(a) − Z(b)).

Remember that, if a > b then Z(a) − Z(b) > 0 (by Lemma 7). In this way,
∂S
∂x (x, a) − ∂S

∂x (x, a) < 0, if and only, if c2 < 0.

Suppose that A is such that the λ-maximizing probability has period 2 and the
subaction bλ is the envelope of S(x, (0, 1, 0, 1, . . .)) and S(x, (1, 0, 1, 0 . . .)). In this
case, in order to get explicit examples of the associated bλ, it is quite useful to have
the explicit expression for the associated pre-orbits.

(a)The expression of the preimages using (0, 1, 0, 1 . . .). These are 1
2 , 1

4 , 5
8 , 5

16 ....
We say that 1

2 is the 0 level,
1
4 is the 1 level ,

5
8 is the 2 level, and so on. One can show

that, if m is even level, then 2m+2−1
3 2m+1 . If m is in odd level the value it is the last one

divided by 2.
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(b) The expression of the preimages using (1, 0, 1, 0, . . .). These are 1
2 , 3

4 , 3
8 ,

11
16 .... We say 1

2 is the 0 level, 3
4 is the 1 level , 3

8 is the 2 level, and so on. One can

show that, if m is in odd level, then 2m+2+1
3 2m+1 . If m is in even level the value it is the

next one multiplied by 2.

7.2 A Special Quadratic Case

As an example let us consider A(x) = −(x − 1/2)2 = −1/4 + x − x2, then in this
case c1 = 1 and c2 = −1

∂S

∂x
(x, a) =

(
1

2 − λ
− 2

4 − λ
x

)
− 2

4 − λ
Z(a),

in particular

S(x, a) = S(0, a) +
(

1

2 − λ
x − 1

4 − λ
x2

)
− 2x

4 − λ
Z(a).

Thus,

Δ(x, a, b) = S(x, a) − S(x, b) = Δ(0, a, b) − 2x

4 − λ
(Z(a) − Z(b))

Δ′(x, a, b) = S′(x, a) − S′(x, b) = − 2

4 − λ
(Z(a) − Z(b)).

This proves that A(x) = −(x − 1/2)2 = −1/4 + x − x2 is twist. Indeed, if a > b
then Z(a) > Z(b) and so Δ′(x, a, b) < 0. Note that when λ → 1 the angles remain
bounded away from zero.

7.3 Crossing Points for Quadratic Potentials

For the case A(x) = −(x − 1/2)2 we can compute explicitly the crossing points
xab = x or equivalently Δ(x, a, b) = 0, that is,

xab = 4 − λ

2

Δ(0, a, b)

Z(a) − Z(b)
.
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7.4 The Explicit λ-Calibrated Subaction for
A(x) = −(x − 1/2)2

Remember that Z(a) = ∑∞
k=0

(
λ
2

)k
ak . Note that Z( (01)∞) = 0 + λ

2 + 0 + ( λ
2 )

3 +
0 + · · · = λ

2
4

4−λ2 . Moreover, Z( (10)∞) = 1 + 0 + ( λ
2 )

2 + 0 + ( λ
2 )

4 + 0 + · · · =
4

4−λ2 . Note that

S(x, (01)∞) = S(0, (01)∞) +
(

1

2 − λ
x − 1

4 − λ
x2

)
− 2x

4 − λ
Z((01)∞) =

S(0, (01)∞) +
(

1

2 − λ
x − 1

4 − λ
x2

)
− 2x

4 − λ

λ

2

4

4 − λ2
=

S(0, (01)∞) +
(

1

2 − λ
x − 1

4 − λ
x2

)
− 4 λ x

(4 − λ) (4 − λ2)
=

S(0, (01)∞) + (8 − 2 λ − λ2) x

(4 − λ) (4 − λ2)
− 1

4 − λ
x2,

and

S(x, (10)∞) = S(0, (10)∞) +
(

1

2 − λ
x − 1

4 − λ
x2

)
− 2x

4 − λ
Z((10)∞) =

S(0, (10)∞) +
(

1

2 − λ
x − 1

4 − λ
x2

)
− 2x

4 − λ

4

4 − λ2
=

S(0, (10)∞) +
(

1

2 − λ
x − 1

4 − λ
x2

)
− 8 x

(4 − λ) (4 − λ2)
=

S(0, (10)∞) + (2 λ − λ2) x

(4 − λ) (4 − λ2)
− 1

4 − λ
x2.

The value S(0, (10)∞) will be explicitly obtained in the next proposition.
Observe that S(1, (01)∞) = S(0, (01)∞) + (4−2 λ)

(4−λ) (4−λ2)
, and S(1, (10)∞) =

S(0, (10)∞) + (2 λ−4)
(4−λ) (4−λ2)

. By symmetry (see next proposition) we have that S(1/2,
(10)∞) = S(1/2, (01)∞), and therefore

S(1/2, (01)∞) = S(0, (01)∞) + 6 + λ

4 (4 − λ) (2 + λ)
=

S(1/2, (10)∞) = S(0, (10)∞) − 2

4 (4 − λ) (2 + λ)
. (8)
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Fig. 14 The graph of b(x) as an upper envelope agree with max S(x, 1010...), S(x, 01010...)

In this way

S(0, (10)∞) = S(0, (01)∞) + 6 + λ + 2

4 (4 − λ) (2 + λ)
.

Example 2 Here we consider λ = 0.51 and a periodic and continuous standard twist
potential on the circle A(x) = −(x − 0.5)2 that has the maximizing measure in a
period two orbit, the superior envelope has two differentiable pieces since the unique
turning point u = 0.5 pre-periodic. In the figure above, the dots are the iteration of
F , the curves are S(x, 10101...) and S(x, 01010...) (Fig. 14). The curve dislocated
is the graph of b(x) computationally obtained as the superior envelope. The formal
proof is given in the next.

Proposition 3 Denote by b : S1 → R the function such that for 0 ≤ x ≤ 1/2, we
have b(x) = S(x, (10)∞), and for 1/2 ≤ x ≤ 1, we have b(x) = S(x, (01)∞). Then,
b is aλ-calibrated subaction for A(x) = −(x − 1/2)2, that is, for any x ∈ S1, b(x) =
maxi {λ b(τi x) + A(τi x)} =

max{λ b(x/2) + A(x/2), λ b(x/2 + 1/2) + A(x/2 + 1/2) }. (9)

Moreover, b(0) = 2 λ
4 (4−λ) (2+λ) (λ−1) and this provides the explicit expression of b.

Proof Note that for a given x we have

λ b(x/2) + A(x/2) = λS(x/2, (10)∞) + (−1/4 + x/2 − x2/4) =

λ [ S(0, (10)∞) + (2 λ − λ2) x

2 (4 − λ) (4 − λ2)
− 1

4(4 − λ)
x2] + (−1/4 + x/2 − x2/4) =
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λS(0, (10)∞) + λ
(2 λ − λ2) x

2 (4 − λ) (4 − λ2)
− λ

1

4(4 − λ)
x2 + (−1/4 + x/2 − x2/4) =

S(0, (01)∞) − A(0) + λ
(2 λ − λ2) x

2 (4 − λ) (4 − λ2)
−

λ
1

4(4 − λ)
x2 + (−1/4 + x/2 − x2/4) =

S(0, (01)∞) + λ
(2 λ − λ2) x

2 (4 − λ) (4 − λ2)
− λ

1

4(4 − λ)
x2 + x/2 − x2/4 =

S(0, (01)∞) + (− λ2 − 2 λ + 8) x

(4 − λ) (4 − λ2)
− x2

(4 − λ)
= S(x, (01)∞),

As A is symmetric we claim that S(x, (10)∞) = S((1 − x), (01)∞).
Indeed,

S(x, (10)∞) =
∑
k=0

λk A( τak ◦ τak−1 ◦ · · · ◦ τa0 (x) ) =

A( τ1(x)) + λ A( τ0 ◦ τ1(x)) + λ2 A( τ1 ◦ τ0 ◦ τ1(x)) + · · · =

A( (x + 1)/2) + λ A(
1

2
((x + 1)/2)) + λ2 A( τ1(

1

2
((x + 1)/2)))) + · · · =

A( (x + 1)/2) + λ A(
1

2
+ (x/4 − 1/4)) + λ2 A( τ1(

1

2
((x + 1)/2)))) + · · · =

A( 1/2 − x) + λ A(
1

2
− (x/4 − 1/4)) + λ2 A(

( 12 ((x + 1)/2)) + 1

2
)) + · · · =

A( τ0(1 − x)) + λ A( τ1 ◦ τ0(1 − x)) + λ2 A( τ0 ◦ τ1 ◦ τ0(1 − x)) + · · · =

S((1 − x), (01)∞). (10)

Therefore, b(x) = b(1 − x). Moreover, S(1/2, (10)∞) = S(1/2, (01)∞). Using
this symmetry we get λ b(x/2 + 1/2) + A(x/2 + 1/2) = S(x, (10)∞) from (10).
From the above it follows (9). Note that from (8) we have

b(0) = max{λ b(0) + A(0), λ b(1/2) + A(1/2)} =

max{λ b(0) − 1/4, , λ b(1/2)} =

max{λ S(0, (10)∞) − 1/4, λ S(1/2, (10)∞)} =
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max{λ S(0, (10)∞) − 1/4, λ S(0, (10)∞) − 2 λ

4 (4 − λ) (2 + λ)
} =

max{λ b(0) − 1/4, λ b(0) − 2 λ

4 (4 − λ) (2 + λ)
} = λ b(0) − 2 λ

4 (4 − λ) (2 + λ)
.

In this way S(0, (10)∞) = b(0) = 2 λ
4 (4−λ) (2+λ) (λ−1) .

8 Worked Examples and Computer Simulations

In the simulations we consider the function S : (S1, {1, 2, . . . , d}N) → R given
by S(x, a) = ∑

k=0 λk A( (τak ◦ τak−1 ◦ · · · ◦ τa0) (x) ), and, a = (a0, a1, a2, . . .). The
dynamics is defined by the inverse branches of 2xmod1, that is τ0 = 0.5x , τ1 =
0.5x + 0.5, A(x) is a potential and λ = 0.51. We will build examples where
a = (a0, a1, a2, . . .) is truncated in a7, and the dots represents the iteration of typical
orbits by F(x, s) = (T (x), λ s + A(x)), (x, s) ∈ S1 × R producing a picture of the
superior envelope of the attractor.

Example 3 Here we consider a periodic and continuous potential on the circle
A(x) = −(x − 0.5)2 + εψ(x) − dri f t for ε = 0.05,dri f t = 0.2 andψ(x) = (x −
x2)(1 + 3 x + 9/2 x2 + 9/2 x3 + 27

8 x4 + 81
40 x

5). Since,−(x − 0.5)2 is twist and has
the maximizing measure in a period two orbits the same is true for A, but in this case,
the superior envelope has three differentiable pieces and turning points u = 0.21...
and v = 0.60.... In the figure above, the dots are the iteration of F , the curves are
S(x, 11010...), S(x, 10101...) and S(x, 01010...) (Fig. 15). The curve dislocated is
the graph of b(x) computationally obtained as the superior envelope:

b(x) :=
⎧⎨
⎩
S(x, 110101....) , 0 < x ≤ u
S(x, 101010....) , u < x ≤ v
S(x, 010101....) , v < x ≤ 1

.

Example 4 Here we consider a periodic and continuous potential on the circle

A(x) =
{
6x − 3, x < 1/2
−6x + 3, x ≥ 1/2

that is not twist but in this case, the superior envelope has two differentiable pieces
since the unique turning point is pre-periodic according to Corollary 3. In the figure
above, the dots are obtained by the iteration of F in an initial point and the curves
are the graphs of S(x, 10101...) and S(x, 01010...) (Fig. 16). The curve slightly
dislocated is the graph of b(x) computationally obtained as the superior envelope.
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Fig. 15 Comparison between the upper envelope and b as union of graphs

Fig. 16 Comparison between the upper envelope and b as union of graphs
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Fig. 17 Comparison between the upper envelope and b as union of graphs

Example 5 Here we consider a periodic and differentiable potential on the circle
A(x) = −1/2 − 1/2 cos (2π x) that is not necessarily twist but in this case, the
superior envelope has two differentiable pieces since the unique turning point is pre-
periodic according to Corollary 3. In the figure above, the dots are the iteration of F
in an initial point and the curves are defined by S(x, 10101...) and S(x, 01010...).
The curve slightly dislocated is the graph of b(x) computationally obtained as the
superior envelope (Fig. 17).

9 Ergodic Transport

In this section A is assumed to be just Lipschitz. Following the notation of
Sect. 2 we point out that: given x = x0, there exists a sequence xk ∈ S1, k ∈ N,
such that b(xk−1) − λb(τik (xk)) − A(τik (xk)) = 0. One can consider the probability
mn = ∑n−1

j=0
1
n δσ j (a), where σ is the shift, and, a = a(x0) is optimal for x0.We define

the probability μ∗
λ in {1, 2, . . . , d}N, as any weak limit of a convergent subsequence

mnk , k → ∞ (which will be σ invariant).

Definition 12 We call μ∗
λ a λ-dual probability for A.

Note that from Proposition 1 if z is in the support of the λ-maximizing probability
μλ, then a(z) can be taken as periodic orbit for σ . In this case following the above
reasoning we can produce a certain μ∗

λ which has support in a periodic orbit.
Consider a fixed x ∈ S1. Remember that we denote
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A∗(a) = [λS(x, σ (a)) − S(x, a)],

and in this waywe get that for any (x, a) A∗(a) = A(τa0(x)) + [λW (τa0(x), σ (a)) −
W (x, a)], where W (x, a) = S(x, a) − S(x, a). We called such W the λ-involution
kernel for A. We called A∗ is the λ-dual potential of A. The main strategy is to get
results for A from properties of A∗. This is similar to the approach via primal and
dual problems in Linear Programming. Note that W depends on the x we choose.
Therefore, A∗ = A∗

x depends of the x . If we consider another base point x1 instead
x , in order to get a different W1(x, a) = S(x, a) − S(x1, a), then one can show that
the corresponding A∗

1 (to A and W1) satisfies A∗
1 = A∗ + λ (g ◦ σ) − g, for some

continuous g. Note that W − W1 just depends on a.
For the dual problem it will be necessary to consider the following problem:

finding a function b∗ = b∗
λ which satisfies for all a ∈ Σ

λb∗(a) = max
σ(c)=a

{ b∗(c) + A∗(c)}.

In fact one can do more, it is possible to find a continuous function b∗ that solves
λb∗(σ (c)) = b∗(c) + A∗(c), ∀c ∈ Σ.

Just take, as in [3], b∗(c) = −∑∞
j=0 λ j A∗(σ j (c)) = −∑∞

j=0 λ j [λS(x, σ j+1

(c)) − S(x, σ j (c))] = −S(x, c). In this case the corresponding rate function in the
dual problem R∗(c) = λb∗(σ (c)) − b∗(c) − A∗(c) is constant equal zero. This situ-
ation is quite different from the analogous dual problem in [30].

Definition 13 We call b∗
λ the dual λ-calibrated subaction.

We assume, without lost of generality, that A > 0. Then, b > 0. It is natural to
consider the sum

∑
R∗(σ n)(z) in the dual problem (see [4, 13, 30]) but now this

sum is zero. The role of the dual subactions V and V ∗ of [30] are now played by
b and b∗, which are, respectively, the λ-calibrated subactions for A and A∗. Note
that for all (x, a) (b∗ + b − W )(x, a) = −S(x, a) + b(x) + S(x, a) − S(x, a) =
b(x) − S(x, a) ≥ 0. If a is a realizer for x , then (b∗ + b − W )(x, a) = 0. Given
A (and, a certain choice of A∗ and W ) the next result claims that the dual of R
is R∗ (which is constant equal zero), and the corresponding involution kernel is
(b∗ + b − W ).

Proposition 4

R(τwx) = (b∗ + b − W )(x,w) − λ(b∗ + b − W )(τwx, σ (w)).

Proof We know that λb∗(σ (w)) − b∗(w) = A∗(w), and, now using x = T (τwx), we
get

b(x) − λb(τwx) = b(T (τwx)) − λb(τwx) =

−A(τwx) + A(τwx) = R(τwx) + A(τwx).

Substituting the above in the previous equation we get
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(b∗ + b − W )(x,w) − λ (b∗ + b − W )(τw(x), σ (w)) =

[b∗(w) − λ b∗(σ (w))] + [b(x) − λb(τwx)] − W (x,w) + λW (τwx, σ (w)) =

−A∗(w) + R(τw(x)) + A(τw(x)) + λW (τw(x), σ (w)) − W (x,w) = R(τw(x)),

because A∗(w) = A(τwx) + λW (τwx, σ (w)) − W (x,w). So the claim follows.

We present now a brief outline of Transport Theory (see [38, 39] as a general refer-
ence).

Definition 14 Wedenote byK (μ,μ∗) the set of probabilities η̂(x,w) on Σ̂ = S1 ×
Σ , such that π∗

x (η̂) = μ, and π∗
w(η̂) = μ∗ . Each element in K (μ,μ∗) is called a

plan.

In Transport Theory one is interested in plans which minimize the integral a given
lower semi-continuous cost c : Σ → R. The Classical Transport Theory is not a
Dynamical Theory. It is necessary to consider a dynamically defined cost in order to
be able to get some results such that the optimal plan is invariant for some dynamics.
Weare going to consider below the cost function c(x,w) = −W (x,w) = −Wλ(x,w)

whereW (x,w) is a λ-involution kernel of the Lipschitz potential A. TheKantorovich
Transport Problem: consider the minimization problem

C(μ,μ∗) = inf
η̂∈K (μ,μ∗)

∫ ∫
−W (x,w) d η̂.

Definition 15 A probability η̂ on Σ̂ which attains such infimum is called an optimal
transport probability, or, an optimal plan, for c = −W .

It is natural to consider the bijective transformation T which acts on Σ̂ = S1 ×
Σ in such way that T−1(x,w) = (τwx, σ (w)). We will show later that for μλ and
μ∗

λ there exists a T-invariant probability μ̂min which attains the optimal transport
cost. Dynamically defined costs can determine optimal plans which have dynamical
properties.

Definition 16 A pair of continuous functions f (x) and f #(w) will be called c-
admissible (or, just admissible for short) if

f #(w) = min
x∈S1

{− f (x) + c(x,w)}.

We denote by F the set of admissible pairs. The Kantorovich dual Problem: given
the cost c(x,w) consider the maximization problem

D(μ,μ∗) = max
( f, f #)∈F

(

∫
f dμ +

∫
f #dμ∗ ).
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In this problem one is interested in any pair (when exists) ( f, f #) ∈ F which realizes
the maximum in the right side of the above expression.

Definition 17 A pair of admissible ( f, f #) ∈ F which attains the maximum value
will be called an optimal Kantorovich pair.

Under quite general conditions [38] (which are satisfied here) D(μ,μ∗) = C(μ,μ∗).
We denote Γ = Γb = {(x,w) ∈ S1 × Σ | b(x) = (−b∗ + W )(x,w)}. A classical
result in Transport Theory [38]: if η̂ is a probability inK (μ,μ∗), ( f, f #) is an admis-
sible pair, and the support of η̂ is contained in the set { (x,w) ∈ Σ̂ | such that ( f (x) +
f #(w)) = c(x,w) }, then, η̂ in an optimal plan for c and ( f, f #) is an optimal pair
inF .

This is the so called slackness condition of Linear Programming (see [39] Remark
5.13 p. 59). This results allows one to get in some cases the solution of the primal
problem (which is looking for optimal plans) via de dual problem (which is looking
for optimal pairs of functions). If you have a good guess that a certain η̂ is the
optimal plan you can try to find an admissible pair satisfying the above condition on
the support of the plan. If you succeeded then you show that the plan η̂ is indeed the
solution of the transport problem. This is the power of the dual problem approach.

We will show that for the problem D(μλ, μ
∗
λ) the functions −b and −b∗ define

an optimal Kantorovich pair. From this fact becomes clear the importance of the set
Γ .

Our main result in this section is:

Theorem 6 For the probabilities μλ,μ
∗
λ and the cost −W, the associated transport

problem is such that the functions −b and −b∗ define an optimal Kantorovich pair,
and, the optimal plan is invariant by T.

Proof Weclaimfirst that−b and−b∗ are−W -admissible. Indeed, p(x,w) := (b∗ +
b − W )(x,w) ≥ 0. Moreover, for each x there exists a w which is a realizer and then
p(x,w) = 0. Therefore, for each x we have that

b(x) = max
w∈Σ

{−b∗(w) + W (x,w)} = max
w∈Σ

S(x,w). (11)

For each x we denote wx ∈ Σ the realizer for the above equation. We can say that
b is the W transform of −b∗ [38, 39]. Note that

Γ = {(x,w) ∈ S1 × Σ | p(x,w) = 0}.

We will show that the infimum of the cost −W , denoted c(A, λ), is equal to∫ −b∗ dμ∗
λ + ∫ −b dμλ.

The next proposition is similar to a result on [30]. Remember that R = −(A −
b ◦ T + λb) ≥ 0 is called the rate function.

Proposition 5 (Fundamental relation) For any (x,w)

R(τwx) = p(x,w) − λ p(τwx, σ (w)) (12)
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Moreover, if T−1(x,w) = (τwx, σ (w)), then

(a) p − λ p ◦ T
−1(x,w) = R(τwx) ≥ 0;

(b) Γ is invariant by the action of T−1;
(c) if a = (i0, i1, i2, ...) is optimal for x, then σ n(a) is optimal for (τin−1 ◦ · · · ◦ τi1 ◦

τi0)(x).

Proof The first claim (a) is a trivial consequence of the definition ofT−1. The second
one it is a consequence of: p ≥ 0, and

p − λ (p ◦ T
−1)(x,w) ≥ 0 ⇒ p(x,w) ≥ λ (p ◦ T

−1)(x,w).

From the above we get that in the case (x,w) is optimal, then, T−1(x,w) is also
optimal. Indeed, we have that p(x,w) = 0 → p(τw(x), σ (w)) = 0. Item (c) follows
by induction.

In this wayT−n spread optimal pairs. This is a nice property that has no counterpart
in the Classical Transport Theory.

Take now (z0,w0) ∈ ΓV and, for each n, μ̂n = 1
n

∑n−1
j=0 δT− j (z0,w0). Note that

T
− j (z0,w0) is optimal. The closure of the set {T− j (z0,w0), j ∈ N} is contained

in the support of the optimal transport plan.

Proposition 6 Weclaim that anyweak limit of convergent subsequence μ̂nk , k → ∞,
will define a probability μ̂ which is optimal for the transport problem for −W and
its marginals. In this way we will show the existence of a T-invariant probability on
S1 × Σ which is optimal for the associated transport problem.

Proof Indeed,we considered before a certain z0, its realizerw0, and then a convergent
subsequenceμnk (notation of last section), nk → ∞, in order to getμλ. Ifwe consider
above the corresponding subsequence T−nk (z0,w0) we get that the projection of μ̂

on the S1 coordinate is μλ.
In an analogous way, we consider as before a certain z0, its realizer w0, and then

a convergent subsequence mk to define μ∗
λ. If we consider above a subsequence

mk of the previous sequence nk (last paragraph) we get that the projection of μ̂ on
the Σ coordinate is μ∗

λ. As p(x,w) = (b∗ + b − W )(x,w) and p is zero on the
orbit T−nk (z0,w0) we get that g is also zero in the support of any associated weak
convergent subsequence. Then any probability μ̂ obtained in this way is such that
projects respectively on μλ and μ∗

λ, and, moreover, satisfies

∫
−Wdμ̂ =

∫
(−b∗)dμ∗ +

∫
(−b) dμλ.

Therefore, C(μ,μ∗) = ∫
(−b∗)dμ∗ + ∫

(−b)dμλ.

We point out that for the purpose of proving the conjecture the next proposition is
the key result. It is just a trivial consequence of Theorem 6 and expression (11).
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Proposition 7 Suppose that A is Lipschitz, the maximizing probability μλ has sup-
port in a unique periodic orbit of period k andμ∗

λ is a dual λ-maximizer with support
on the dual periodic orbit of period k for σ , then

b(x) = max
w∈Σ

{−b∗(w) + W (x,w)} = −b∗(a) + W (x, a) =

S(x, a) = maxw∈Σ S(x,w),where a = a(x) is the periodic realizer of x. In this case
a is in the support of μ∗

λ. Moreover, the procedure: given (z0, a(z0)) ∈ ΓV take ν̂

lim
n→∞

1

n

n−1∑
j=0

δT− j (z0,a(z0)) = ν̂,

is such that ν̂ is optimal and has support on a periodic orbit for T. In the support of
ν̂ we have b(x) + b∗(a(x)) = W (x, a(x)).

Proposition 8 Suppose W satisfies a twist condition. Denote by w : S1 → Σ the
function such that for a given x we have thatw(x) is a choice of the eventual possible
wx as defined above. Then,w is monotonous non-decreasing (using the lexicographic
order in Σ).

The proof of this proposition is the same as the one in Proposition 6.2 in [30] or
Proposition 2.1 in [13]. In [28] other kinds of results in Ergodic Transport Theory
are considered.

Consider 0 < λ < 1, and the map G(w, s) = (σ (w), λ s + A∗(w)), where G :
{1, 2, . . . , d}N × R → {1, 2, . . . , d}N × R, and A∗ : {1, 2, . . . , d}N → R is the dual
potential.

The dynamics of attractor for F has associated to it a dual repellor naturally
defined by G acting on {1, 2, . . . , d}N × R. The boundary of the repellor set is the
graph of b∗ : {1, 2, . . . , d}N → R which is the λ-dual calibrated subaction.
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Abstract In this mainly survey paper we consider the Lagrangian L(x, v) =
1
2 |v|2 − V (x), and a closed form w on the torus T

n . For the associated Hamiltonian
we consider the the Schrodinger operator Hβ = − 1

2β2 Δ + V where β is large real
parameter.Moreover, for the given formβ wweconsider the associated twist operator
Hw

β . We denote by (Hw
β )∗ the corresponding backward operator. We are interested in

the positive eigenfunctionψβ associated to the the eigenvalue Eβ for the operatorHw
β .

We denoteψ∗
β the positive eigenfunction associated to the eigenvalue Eβ for the oper-

ator (Hw
β )∗. Finally, we analyze the asymptotic limit of the probability νβ = ψβ ψ∗

β

on the torus when β → ∞. The limit probability is a Mather measure. We consider
Large deviations properties and we derive a result on Transport Theory. We denote
L−(x, v) = 1

2 |v|2 − V (x) − wx (v) and L+(x, v) = 1
2 |v|2 − V (x) + wx (v). We are

interest in the transport problem from μ− (the Mather measure for L−) to μ+ (the
Mather measure for L+) for some natural cost function. In the case the maximizing
probability is unique we use a Large Deviation Principle due to N. Anantharaman in
order to show that the conjugated sub-solutions u and u∗ define an admissible pair
which is optimal for the dual Kantorovich problem.
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1 Introduction and Basic Definitions

Given a closed formw on the torusT
n we consider the Lagrangian L(x, v) = 1

2 |v|2 −
V (x) + w, where L : TT

n → R and TT
n is the tangent bundle.

The infimum of
∫
L(x, v) dμ(x, v) among the invariant probabilities for the Euler

Lagrange flow on the tangent bundle TT
n is called the critical value of L . A proba-

bility which attains such infimum is called a Mather measure (see [5] for references
an general results).

We denote by H(x, p) = 1
2 |p|2 + V (x) the associated Hamiltonian for the

Lagrangian L(x, v) = 1
2 |v|2 − V (x) and for eachβ ∈ Rweconsider the correspond-

ing Schrodinger operator Hβ = − 1
2β2 Δ + V for such Hamiltonian.

For eachβ weconsider a certain associated quantumstate andquantumprobability
onL 2(Tn) (associated to an eigenvalue of Hβ) and we are interested in the limit of
such probability when β → ∞.

We call β the semiclassical parameter. In an alternative form we can take � = 1
β

and consider the limit when � → 0.
An interesting relation of such limit probabilities with Mather measures was

investigated by N. Anantharaman (see [1–3]).
We will present here some of these results which are related to transport and large

deviation properties.
Consider w(v) =< P, v > a closed form w in the torus T

n , where P is a vector
in R

n .
Suppose thatμ+ andμ− are respectively theMathermeasures for the Lagrangians

L+(x, v) = 1

2
|v|2 − V (x) + w(v) and L−(x, v) = 1

2
|v|2 − V (x) − w(v),

x ∈ T
n and V : T

n → R smooth.
We assume the Mather measure is unique in each problem (see [5, 10, 11]).
We will follow closely the notation of the nice exposition [1] (see also [2, 3]).

The results presented here in the future sections are inspired in [14]. The main tool
is the involution kernel introduced in [4] (see also [6, 12, 15–19]).

We will consider the Lax-Oleinik operator T−
t , t ≥ 0, given by

T−
t u1(x) = inf

γ (t)=x,γ :[0,t]→Tn
{u1(γ (0)) +

∫ t

0
L−(γ (s), γ ′(s))ds}.

Denote by u (Lipchitz), u : T
n → R, the unique (up to additive constant because

μ− is unique) solution of T−
t u = u + t E , for all t ≥ 0, and where E is constant.

Consider the Lax-Oleinik operator T+
t , t ≥ 0, given by

T+
t u2(x) = inf

γ (0)=x,γ :[0,t]→Tn
{u2(γ (t)) −

∫ t

0
L−(γ (s), γ ′(s))ds}.
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Denote by u∗ the Lipchitz function u∗ : T
n → R, such that, T+

t (−u∗) = −u∗ +
E t.

We assume that u and u∗ are such u + u∗ is zero in the support of μ−.
The function W (x, y) (which could be called the convolution kernel) is given by

the below expression

− inf
α ∈C1([0,1],Tn), α(0)=x, α(1)=y

{
∫ 1

0
[ − V (α(s) + w(α′(s)) ] ds +

∫ 1

0

1

2
||α′(t)||2}.

We denote by h(y, y) the Peierls barrier for the Lagrangian L−. In the present
case h(y, y) = u(y) + u∗(y).

Main references on Transport Theory are [20–22].
We denote byK (μ+, μ−) the set of probabilities μ̂ onT

n × T
n , such that respec-

tively μ+ = π#
1 (μ̂) and μ− = π#

2 (μ̂).

Give c(x, y) we say that f and g are c-admissible if, for any x, y ∈ R
n , we have

f (x) − g(y) ≤ c(x, y). We denote by F the set of such pairs ( f, g).
We will consider, for the cost function c(x, y) = −W (y, x), a c-Kantorovich

problem

inf
μ̂∈K (μ+,μ−)

∫ ∫
c(x, y) dμ̂(x, y).

We denote the minimizing probability by μ̂min. Note that this probability projects
on the second variable on μ−.

Note that the transport optimal probability for −W and for −W + I (where I is
the Peierl’s barrier) are the same.

We point out that the projected Mather measures μ+ and μ− are the same in the
present case.

We will show here that the dual problem for −W

max{
∫

f (x) dμ+(x) −
∫

g(y) dμ−(y) | f (x) − g(y) ≤ c(x, y) } =

max{
∫

f (x) dμ+(x) −
∫

g(y) dμ−(y) | ( f, g) ∈ F },

has a pair of optimal solutions (u, u∗) which are the viscosity solutions of the
Hamilton-Jacobi equations (fixed points of the corresponding Lax-Oleinik opera-
tors as defined above)

We can consider alternatively (the same problem)

inf
μ̂∈K (μ+,μ−)

∫ ∫
c̃(x, y) dμ̂(x, y),
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where c̃(x, y) = −W (y, x) + h(y, y). The introduction of a function on the variable
y which vanishes in the support of μ− does not change the minimizing measure.
However, this new problem have a different optimal pair.

We denote by W h
x the Brownian motion in R

n (with coefficient h, that is, at time
t = 1 the variance is

√
h) beginning at x , and W h

x,y,t its disintegration at the point y
and at the time t .

Consider the Schrodinger Hh = − h2

2 Δ + V (where V is the periodic extension
to R

n) which acts on real (periodic) functions defined in R
n . It is known that H has

pure point spectrum (see [7, 13]).
Note that

− 1

h
Hh = h

2
Δ − 1

h
V .

The Kernel K (x, y, t) of the extension of e− t
h H to an integral operator is (see

[1])

K (x, y, t) =
∫

e− 1
h

∫ t
0 V (α(s)) ds W h

x,y,t (d α).

Given

Lw(x, v) = 1

2
v2 − V (x) − w(v) = 1

2
v2 − V (x)− < P, v >,

the corresponding Hamiltonian Hw(x, p) via Legendre transform is

Hw(x, p) = ||p + P ||2
2

+ V (x).

In the same way, for

L+(x, v) = 1

2
v2 − V (x) + w(v) = 1

2
v2 − V (x)− < P, v >,

the corresponding Hamiltonian Hw∗
(x, p) is

Hw∗
(x, p) = ||p − P ||2

2
+ V (x).

Consider, a certain point x0 = O ∈ R
n fixed (on the universal cover of the torus).

As the form w on the torus is closed, it is exact on the lifting to the universal cover,
then, the value

∫ x
x0

w does not depend on the path we choose to connect x0 to x .
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2 Transport in the Configuration Space for the
Aubry-Mather Problem

For each real value β we consider the operator

Hw
β = e−β

∫ x
x0

w ◦ Hβ ◦ eβ
∫ x
x0

w = e−β
∫ x
x0

w ◦
(

− 1

2β2
Δ + V

)

◦ eβ
∫ x
x0

w
.

We can consider such operator acting on the torus or on R
n . When we consider

the Brownian motion we should consider, off course, its action on R
n .

The Kernel K (x, y, t) of the extension of e tβ Hw
β to an integral operator is given

by

Kβ(x, y, t) =
∫

e− β
∫ t
0 V (α(s)) ds +β < P , (y−x) > W β−1

x,y,t (d α).

Note that above we consider the integral

β

∫ t

0
[ − V (α(s)) + wα(s) (α′(s)) ] ds.

Hw
β is not self adjoint but has a real pure point spectrum.

We denote by Eβ the maximum eigenvalue of Hw
β (acting on real functions) and

ψβ is the corresponding normalized real eigenfunction inL 2(Tn, dx). The positive
eigenfunction ψβ is unique if we assume its norm is 1. It’s the only totally positive
eigenfunction ofHw

β (see [1] expression (3.15)). The eigenvalue is simple and isolated
(see Appendix on [2]).

For each real value β we consider the w-backward operator

Hw∗
β = eβ

∫ x
x0

w ◦ Hβ ◦ e−β
∫ x
x0

w = eβ
∫ x
x0

w ◦
(

− 1

2β2
Δ + V

)

◦ e−β
∫ x
x0

w
.

We will be interested in high values of β.
Eβ is the maximum eigenvalue of Hw∗

β and we denote by ψ∗
β the corresponding

real eigenfunction in L 2(Tn, dx). Similar properties to the case of ψβ are true for
such eigenfunction. We assume

∫
ψ∗

β(x) dx = 1 and also
∫

ψβ(x) ψ∗
β(x) dx = 1.

Hw∗
β ◦ Hw

β is self adjoint.
We will be interested here in the probabilities

νβ(dx) = ψβ(x) ψ∗
β(x) dx .

The probability νβ(dx) = ψβ(x) ψ∗
β(x) dx is stationary for the Markov operator

Qt ( f )(x) = e− t Ew ψβ(x)−1et H
w
β (ψβ f )(x)
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on the torus T
n (see [2]).

The correct point of view is to consider ψβ as an eigenfunction and
ρβ = ψ∗

β(x) dx as an eigen-probability for the semi-group t → et H
w
β .

Consider

uβ = − logψβ

β
and u∗

β = − logψ∗
β

β
.

It is known that the following equalities are true:

− 1

2 β
Δ uβ + Hw(x, dxuβ) = Eβ,

and

− 1

2 β
Δ u∗

β + Hw(x,−dxu
∗
β) = Eβ,

The β-families of functions uβ and u∗
β are equi-Lipschizians and we can obtain

from this fact convergent subsequences. We assume here the Mather measure is
unique, and therefore the limits exist in the uniform convergence topology, that is

lim
β→∞ uβ = u and lim

β→∞ u∗
β = u∗.

It is known that limβ→∞ Eβ exist and we denote this value by E .
By stability of the viscosity solutions, the limits u and u∗ are, respectively, vis-

cosity solutions of the equations

Hw(x, dx u) = E and Hw(x,−dx u
∗) = E

We assume also that the Mather measure μ for the lagrangian Lw is unique. In
this case it is known (see for instance [1, 2]) that in the weak topology

lim
β→∞ νβ = μ.

In Proposition 3.11 in [1] the following Large Deviation Principle is obtained (see
also [2, 3]):

Proposition 1 Suppose the Mather measure is unique. Suppose also that in the
uniform convergence topology

lim
β→∞ uβ = u and lim

β→∞ u∗
β = u∗.

Then, for I (x) = u(x) + u∗(x) (from the normalization we choose before
I (x) ≥ 0), we have

(1) for any open set O ⊂ T
n,
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lim inf
β→∞

1

β
log νβ(O) = − inf

x∈O {I (x)},

and,
(2) for any closed set F ⊂ T

n,

lim sup
β→∞

1

β
log νβ(F) = − inf

x∈F {I (x)}.

It follows from Varadhan’s Integral Lemma (Sect. 4.3 in [8]) that, for any C∞
function F(x),

lim
β→∞

1

β
log

∫
eβ F(x) d νβ(x) = sup

x∈Tn
{F(x) − I (x)}.

The Wt
β-Kernel is defined by

eW
t
β (y,x) =

∫
e− β

∫ t
0 V (α(s)) ds −β

∫ x
y w W β−1

y,x,t (d α) =
∫

e− β
∫ t
0 V (α(s)) ds −β < P , (x−y) > W β−1

y,x,t (d α).

Note the plus sign on V .
Note thatwe exchange x and y above (with respect to the previous considerations).
It is known (see [1]) that for any β and any t

ψβ(x) =
∫

eW
t
β (y,x) ψ∗

β(y) dy =
∫

eW
t
β (y,x) 1

ψβ(y)
dνβ(y)

Now from Schilder’s Theorem and Varadhan’s Integral Lemma (see [8] also
Theorem 4.3.9 in [2])

−W (y, x) := − lim
β→∞

1

β
log eW

1
β

β (y,x) =

inf
α ∈C1([0,1],Tn), α(0)=y, α(1)=x

{∫ 1

0
[ − V (α(s) + wα(s)(α

′(s)) ] ds +
∫ 1

0

1

2
||α′(t)||2

}

Note above the plus sign on w.
The function W (y, x) is the function −I (y, x) in the notation of [2].
For any β

1

β
log (ψβ(x)) = 1

β
log (

∫
eW

1
β

β (y,x) ψβ(y)−1 dνβ(y)).
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Taking limits as β → ∞ and using the Varadhan’s integral Lemma once more we
get

−u(x) = sup
z∈Tn

{W (z, x) + u(z) − I (z)}.

Therefore, for any x, y we get that

−u(y) − u(x) ≥ W (y, x) − I (y).

From this we get

Proposition 2

u(y) + u(x) ≤ −W (y, x) + I (y) = c(y, x).

and the pair (u, u) is (-W+I)-admissible.

In the same way the pair (u, u∗) is -W -admissible.

Proposition 3 If η̂ is an optimalminimizing transport probability for c and if ( f, f #)
is an optimal pair in F , then the support of η̂ is contained in the set

{ (x, y) ∈ M × M such that ( f (x) − f #(y)) = c(x, y) }.

Proof It follows from the primal and dual linear programming problem formulation.
The condition above is called the complementary slackness condition (see [9]). �

If one finds η̂ an an admissible pair ( f, f #) satisfying the above claim (for the
support) one solves the Kantorovich problem, that is, one finds the optimal transport
probability η̂.

From the above it follows.

Proposition 4 For (x, y) in the support of μ̂ we have

u(x) + u(y) = −W (y, x) + h(y, y) = c(x, y),

or

u(x) + u(y) = −W (y, x) + (u∗(y) + u(y)).

This means, for (x, y) in the support of μ̂

u(x) − u∗(y) = −W (y, x) .

In other words, for any x, y in the support of μ̂min we have that u(x) is given by

inf
α ∈C1([0,1],Tn), α(0)=y, α(1)=x

{∫ 1

0
[− V (α) + w(α′) ] ds +

∫ 1

0

1

2
||α′||2ds

}

+ u∗(y).
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Dynamics of a Fixed Bed Adsorption Column
in the Kinetic Separation of Hexane Isomers
in MOF ZIF-8

Patrícia A. P. Mendes, Alírio E. Rodrigues, João P. Almeida
and José A. C. Silva

Abstract A fixed bed adsorption mathematical model has been developed to de-
scribe the kinetic separation of hexane isomers when they flow through a packed
bed containing the microporous Metal-Organic Framework (MOF) ZIF-8 adsorbent.
The flow of inert and adsorbable species through the fixed bed is modeled with fun-
damental differential equations according to the mass and heat conservation laws,
a general isotherm to describe adsorption equilibrium and a lumped kinetic mass
transfer mechanism between bulk gas phase and the porous solid. It is shown that
a proper combination of two characteristic times (the residence time of the gas in
the fixed bed, τfb and the characteristic time of diffusion of solutes into the pores
τdif ) can lead to very different dynamics of fixed bed adsorbers where in a limiting
case can gives rise to a spontaneous breakthrough curves of solutes. The numerical
simulations of an experimental breakthrough curve with the developed mathemati-
cal model clearly explain the complete separation between linear n-Hexane (nHEX)
and the respective branched isomers: 3-Methyl-Pentane (3MP) and 2, 2-Dimethyl-
Butane (22DMB). The separation is due to significant differences in the diffusivity
parameters τdif between 3MP and 22DMB and the residence time of the gas mixture
τfb within the fixed bed. This work shows the importance of mathematical modelling
for the comprehension and design of adsorption separation processes.
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1 Introduction

The gasoline used by automotive cars has a high Research-Octane Number (RON
above 95) and is mainly obtained from a stream fraction of the crude distillation
column called Light Naphtha which in turn has a very low RON content (average
RONof 63). To be upgraded the Light Naphthamainly composed by n-pentane (RON
61.7) and n-hexane (RON 24.8) is treated in processes such as: Hysomer, TIP or
IPsorb [1-5] where a catalytic reactor isomerize the linear compounds into branched
oneswith amuchhigherRONcontent. Thefinal output streamofTIPprocesses (RON
around 88) needs to be further upgraded with additives. Some of these additives were
forbidden due to their toxicity (the case of lead) to make it usable by cars. Also they
increase significantly the final price of gasoline (MTBE and ETBE). Since this final
TIP output stream still contains compounds such as the linear nHEX (RON 24.8),
mono-branched 3MP (RON 74.5) and di-branched 22DMB (RON 94.0), there is
nowadays a significant effort to discover new adsorbents to separate in a clean way
the low from the high RON paraffins of the final TIP output stream (the separation by
distillation is very energy consuming due to the close boiling point of the isomers)
to reduce the use of additives.

Among the several adsorbents being discovered for the separation of close boil-
ing point compounds, the zinc methyl-imidazolate ZIF-8 [6] with the sodalite
(SOD) topology, which possesses a significant porosity (SBET ∼ 1800 m2g−1;Vp ∼
0.66 cm3g−1) involving large spherical cavities (11.4 Å) connected by a flexible six
members rings of free aperture of 3.4 Å, is of particular interest due to its chemi-
cal and thermal robustness. Regarding the separation of pentane/hexane isomers in
ZIF-8, the study of Luebbers et al. [13] showed a complete separation between the
linear n-pentane and the branched isopentane. More recently, a screening study of
Peralta et al. [17] proved that ZIF-8 is an interestingmaterial for the separation of lin-
ear nHEXand branched hexane isomers. However, under static conditions, Ferreira
et al. [7] showed that the linear and mono-branched hexane isomers were adsorbed
well, but 22DMB was totally excluded. A similar study was performed by Zhang
et al. [23] obtaining completely different results. All hexane isomers were adsorbed
in ZIF-8 especially the branched ones. However, they estimated diffusional param-
eters from the uptakes and found that the diffusion selectivities for nHEX/3MP,
nHEX/23DMB and 3MP/23DMBwere of 20, 54, and 3, respectively. They conclud-
ed that the separation linear/mono/di-branched hexane isomers could also be attained
by a kinetic selectivity.

Mathematical modelling is a valuable tool in the design and optimization of in-
dustrial processes. Most of the industrial adsorption processes occur in fixed beds
and it is the overall dynamics of this packed bed system, rather than the adsorption
equilibrium or the adsorption kinetics in a single particle, that determine the effi-
ciency of such process [11]. Fundamentals of mathematical modelling of fixed bed
adsorbers are presented by Ruthven [19] and Yang [22].

The aim of this work is the formulation of a mathematical model to simulate the
transient adsorption behavior of a mixture of hexane isomers (nHEX, 3MP, 22DM-
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B) flowing through a packed bed containing the microporous adsorbent ZIF-8. The
physical parameters of the model are determined on the basis of results of equilibri-
um and kinetics of adsorption and from correlations available in the literature. The
numerical solution of the coupled mass and heat balances partial differential equa-
tions is obtained by orthogonal collocation. Application of the model is illustrated
by a typical example, a so called breakthrough curve, which shows how the different
hexane isomers are separated from one another.

2 Simulation of Fixed Bed Adsorption Dynamics

2.1 Mathematical Model

Consider a fixed bed adsorption column of length L, void fraction εb, packed with
an adsorbent through which a fluid mixture of hexane isomers flows at a molar flow
rate F . Let C represent the total gas concentration of all species in the fluid mixture
and q̄i the average adsorbed concentration of absorbable species i in the solid phase.
The total material balance in a section between axial planes z and z + ΔZ from the
entrance of the bed over a period of time t to t + Δt yields, in the limit, the following
first order partial differential equation,

∂F

∂z
+ εb

∂C

∂t
+ (1 − εb)

ncp∑

i=1

∂ q̄i
∂t

= 0. (1)

The initial and boundary conditions for a clean column subjected to a step change
of adsorbable species at the inlet and at time zero are,

Boundary condition

z = 0; t > 0; F = Ff . (2)

Initial condition

t = 0,∀z; q̄i = 0; F = Ff ; C = Cf , (3)

where the subscript f represents the feed conditions.
The differential fluid phase mass balance for a solute species i represented by an

axially dispersed plug flow pattern is the second order partial differential equation,

− εbDax
∂

∂z

(
C

∂yi
∂z

)
+ ∂(Fyi)

∂z
+ εb

∂(Cyi)

∂t
+ (1 − εb)

∂ q̄i
∂t

= 0. (4)
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where yi is the molar gas fraction of solute i and Dax is the coefficient of axial
dispersion. The initial and boundary conditions (known as Danckwerts boundary
conditions [5]) are,

Initial condition

t = 0,∀z; yi = q̄i = 0. (5)

Boundary conditions

z = 0; t > 0; Fyif = Fyi − εbDaxC
∂yi
∂z

(6)

z = L; t > 0; ∂yi
∂z

= 0, (7)

where L is the length of the column.
Due to axial diffusion, the molar fraction of the adsorbable entering the bed is

different from the one in the entrance. Accordingly, Eq. (5) ensures that the mass
fed to the column is equal to the one that crosses the plane at z = 0. At the outlet
of the bed (z = L), Eq. (6) simply assumes that the concentration gradient ends and
the molar fraction of the absorbable just at the end of the bed is not affected by
counter-diffusion.

The mass transfer rate from bulk fluid phase to solid particles is mainly governed
by: (i) external fluidfilm resistance around the particles, and (ii) intraparticle diffusion
of solutes.A rigorous treatment of intraparticle diffusionof solutes leads to a diffusion
model with partial differential equations that incorporates several mechanisms and a
new radial coordinate (if adsorbents particles are spherical or cylindrical). To simplify
the solution, a linear rate model is generally used,

∂ q̄i
∂t

= kLDF(q∗ − q̄i), (8)

where q∗ is the adsorbed phase concentration of species i in equilibrium with gas
phase concentration, q̄i is the average adsorbed phase concentration of species i
within the particle and kLDF is called the Linear Driving Force (LDF) mass transfer
coefficient. Glueckauf [9] showed that the parameter kLDF for spherical particles is
equal to 15Dc/r2c where Dc is the diffusivity constant and rc the particle radius.

Adsorption is an exothermic phenomenum and the importance of heat effects
should also be considered in the modelling of an adsorption column. Consider a non-
isothermal, non-adiabatic columnwith axial heat dispersion. LetT be the temperature
in bulk gas phase, Ts the temperature of solid phase, Tw the temperature of the
surroundings, cpg the heat capacity per unit mol of gas, Kax the axial heat dispersion
coefficient, hp the heat transfer coefficient between gas and solid phase, hw the overall
heat transfer coefficient at the wall of the column, ac the specific area of the column
and ap the specific area of the particle. Then, the following differential energy balance
may be formulated to give the equation
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− Kax
∂2T

∂z2
+ Fcpg

∂T

∂z
+ εCcpg

∂T

∂t
+ (1 − εb)aphp(T − Ts) + achw(T − Tw) = 0. (9)

Boundary conditions

z = 0; t > 0; FcpgTf = FcpgT − Kax
∂T

∂z
(10)

z = L; t > 0; ∂T

∂z
= 0. (11)

Initial condition

t = 0,∀z; T = Ts = Tf . (12)

Since mass and heat transfer are similar mechanisms, the previous boundary
conditions are applied by analogy with the Danckwerts boundary conditions.

The existence of an interphase heat transfer mechanismwithin the column implies
that in certain cases the temperature of bulk fluid phase T is different from the solid
phase temperature Ts, under transient conditions. The energy balance for the solid
phase neglecting radial temperature gradients is

cps
∂Ts
∂t

= aphp(T − Ts) +
ncp∑

i=1

(−ΔHi)
∂ q̄i
∂t

, (13)

where, cps is the heat capacity per unit volume of solid and (−ΔHi) the heat of
adsorption per mole of solute species i or, in other words, the amount of heat that is
generated by adsorption within the particle.

2.2 Adsorption Isotherm

The equilibrium thermodynamic relation between adsorbed phase concentration of
solutes qi and the respective gas phase concentration ci can be represented by the
ideal localized model introduced by Langmuir [12]

qi = qmKici
1 + ∑ncp

j=1 Kjcj
, (14)

where qm is supposed to be constant and independent of temperature, in order to give
thermodynamic consistency to the model, and Ki a Langmuir isotherm constant. The
Langmuir isotherm constant Ki is strongly dependent upon temperature obeying the
Van’t Hoff dependence



262 P. A. P. Mendes et al.

Ki = K0
i e

−ΔHi/RT , (15)

where K0
i is the frequency factor of the Langmuir constant, R is the universal gas

constant and T is the temperature.

2.3 Numerical Solution of Model Equations

The fluid flow problem formulated above consist in a set of partial differential equa-
tions (PDES) subjected to boundary and initial value conditions that lead to parabolic
equations which are time dependent. Several numerical techniques have been devel-
oped to solve PDEs where the most widely used are the: (i) finite-difference (FD);
(ii) the method of lines (MOL) [20] and (iii) orthogonal collocation (OC) [8]. The
choice between the methods depends on the complexity, simplicity in setting-up the
numerical solution, accuracy, stability and computational effort [2, 18].

The classical finite difference method consists in replacing the derivatives in the
PDE by finite difference approximations using a uniform mesh. The method of lines
is similar to the finite-difference except we do not discretize the time variable. In
the orthogonal collocation technique trial functions are chosen as sets of orthogonal
polynomials and collocation points are the roots of these polynomials.

The numerical methods convert the PDES into a set of non-linear equations (FD)
or in set of ordinary’s differential equations (ODES) that must be solved by a proper
numerical technique. The diffusion-adsorption problem formulated above can give
rise to profiles very steep with the necessity to increase the mesh if we use the
FD or MOL methods or the roots of the polynomials in the OC method, to obtain
stability and accuracy. Consequently the numerical computation effort increase sig-
nificantly to obtain accuracy in such cases. The most widely used methods to handle
the diffusion-adsorption problems are the MOL and OC techniques. The flexibil-
ity of the OC technique in handle such problems, for example using orthogonal
polynomials [21], means that the solution error decreases faster as the polynomial
order increases. However, the selection of a method to handle the solution of a PDE
problem is in most cases a matter of experimentation since many factor have to be
considered [2].

Based on such experimentation (during past years) and given the collection of
subroutines by Villdasen and Michelsen [21] to help readers handle the solution of
PDE problems by using the accurate computation of collocation points obtained by
the zeros of an orthogonal polynomial, PN (α,β) (x), called Jacobi polynomial, are the
base to select theOC technique to obtain a solution for the problem formulated above.

In this work, the set of coupled partial differential equations was reduced first-
ly to a set of ordinary differential/algebraic equations (DAE’s) applying orthogonal
collocation technique to the spatial coordinate [16]. In this reduction, the first and
second order differential terms were replaced by collocation matrices A(i, j) and
B(i, j), respectively. The collocation points were given by the zeros of Jacobi poly-
nomialsPN (α,β) (x), withα = β = 0, calculated by subroutine JCOBI. The collocation
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matrices A(i, j) and B(i, j) were found by using subroutine DFOPR. A FORTRAN
code of both subroutines can be found in Villadsen and Michelsen’s book [21]. The
number of interior interpolation points N was chosen to give stability to the numer-
ical solution of discretized equations. The resulting system was solved using a fifth
order Runge-Kutta code (ODE’s) together with Gauss elimination for the algebra-
ic equations. Sixteen collocation points appeared to give satisfactory accuracy for
all calculations performed. For two adsorbable species, this results in 128 (64 × 2)
ODEs being integrated at the same time: 32 (16 × 2) from the Mass balance to ad-
sorbable species; 32 (16 × 2) from the equation representing the Mass transfer rate,
32 (16 × 2) from the energy balance in the gas phase and 32 (16 × 2) from the energy
balance for the solid phase. At the same time there are 32 (16 × 2) equations be-
ing solved by Gaussian elimination from the equation representing the overall mass
balance.

3 Experimental Framework

3.1 Adsorbent and Sorbates

ZIF-8 crystals were synthesized for the adsorption studies of hexane isomers. For
that, a solution of 5g of 2-methylimidazole (H-MeIM; 60.9mmol; Alfa Aesar,
97%) in 25mL of methanol (6.15mmol; VWR, 99.9%) was poured into a solu-
tion of 2.305g zinc nitrate hexahydrate, (Zn(NO3)2.6H2O; 7.5mmol; Aldrich, 99%)
in 25mL methanol (6.15mmol, VWR, 99.9%). The mixture was then putted into
a metallic PAAR digestion bomb at 100C during 16h. The resulting white pow-
der was filtered and washed with ethanol. This procedure was repeated five times
to finally obtain the enough ZIF-8 amount for the fixed bed experiments (∼2g).
The crystallinity of each batch was checked by XRPD before mixing all of them.
Thereafter the powder was characterized by X-ray powder diffraction patterns were
collected in a SIEMENS D5000 diffractometer (θ–2θ ), Thermogravimetric analysis
using a Perkin Elmer Diamond TGA/DTA STA 6000. The BET surface area was
1950 m2.g-1 with a total pore volume around 0.66 cm3.g-1. The hexane isomers used
in the experimental study were obtained from Merck (Germany) and are all above
99% purity.

3.2 Single and Multicomponent Fixed Bed Experiments

The experimental data were obtained in an apparatus developed for the measurement
of single andmulticomponent breakthrough curves consisting of threemain sections.
The preparation section includes a syringe pump used to introduce the adsorbable
species in the carrier gas followed by a heating chamber where this stream is com-
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pletely vaporized. The adsorption section consists in a 4.6mm i.d. stainless steel
column with 80mm in length containing the adsorbent and placed in a ventilated
chromatographic oven, as well as a heated collector to collect samples at the outlet
of the column. The third part is an analytical section composed by a chromatograph-
ic column and a flame ionization detector (FID). Complete information about the
experimental setup is reported in, for example, [1].

4 Results and Discussion

Themathematical model developed contains important time dependent group param-
eters that influence the overall dynamics of the fixed bed namely: (i) the residence
time (contact time or space time) measured by a characteristic time L/vi; and (ii) the
Linear Driving Force (LDF) mass transfer coefficient kLDF equal to 15Dc/r2c . Here,
L/vi has units of time and the group 15Dc/r2c has units of the reciprocal of time. The
term L/vi can be viewed as the residence time τfb of the gas in the column, that is, the
time that gas and the adsorbent within the fixed bed are in contact and the reciprocal
of 15Dc/r2c as the time τdif that the adsorbable species spent needs to diffuse into the
pores of the adsorbent. The importance of these parameters in the overall dynamics
of the fixed bed will be analyzed.

Figure1 shows the effect of changing τdif for a constant value of τfb = 1min under
isothermal conditions. The parameters of the model used in simulations are shown
in Table1. When τdif is 10 times lower (τdif = 0.1min) the diffusion limitations are
insignificant when compared to the residence time of the gas in the bed and the
breakthrough curve is a pure “shock wave”. When τdif is ten times higher (that is, the
time that solutes need to diffuse into the pores is much higher than the residence time
in the bed) the breakthrough curves become dispersive (e.g. τdif = 10min) indicating
strong mass transfer resistance. In the worst case presented (τdif = 100min), the
solute breakthroughs spontaneously at the residence time of the bed because the
time it spends in the bed is shorter than the time it needs to diffuse into the pores.
These results mean that a proper combination of τdif and τfb can lead to very different
dynamics and consequently breakthrough curves of fixed bed adsorbers.

Previous studies of hexane isomers adsorption in the microporous ZIF-8 are con-
troversial. Peralta et al. [17] show in a breakthrough apparatus that 3MP was kineti-
cally separated from 22DMB. In contrast, Chang et al. [3] and Luebbers et al. [13]
proved that branched alkanes can be totally sieved from the linear ones. Moreover,
results of Ferreira et al. [7], who studied the same system but in static conditions
(manometric system coupled with amicro calorimeter), are different from both of the
previously mentioned ones. They noticed that the linear and mono-branched isomers
were well adsorbed, but the di-branched 22DMB was totally excluded. Moreover,
the recent work of Zhang et al. [23] that studied the same system in static conditions
(uptake system), shows completely different results relatively to the results obtained
in the experiments of Ferreira et al. [7]. In this case [23], all isomers can enter in-
to the pores of ZIF-8 and the amounts adsorbed of the branched isomers are even
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Fig. 1 Effect of changing the characteristic time of diffusion τdif in the overall dynamics of an
isothermal fixed bed adsorber for a constant value of the residence time of the gas τfb equal to 1min

Table 1 Model parameters for the simulation of breakthrough curves shown in Fig. 1

Isotherm parameters (nHEX)

qm 1 mmol/g

Ki 0.01 kPa-1 at 313 K

Experimental conditions

Cf 40 mol/m3

Q 20 mL/min

Pc 101.3 kPa

Vc 40 cm3

yif 0.5

Model parameters

Pe 100

Greek letters

εb 0.5

ρb 0.7 g/cm3

higher than the linear ones. However, they estimated diffusional parameters from
the uptakes and found that the diffusion selectivities for nHEX/3MP, nHEX/23DMB
and 3MP/23DMB were of 20, 54, and 3 respectively in ZIF-8. This means that the
separation linear/ branched can be kinetically driven.

A convenient way to evaluate the performance of an adsorbent for a certain sep-
aration is to perform a set of experimental breakthrough curves in a packed column.
These response curves to a step change in solute concentration at inlet contain the



266 P. A. P. Mendes et al.

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

 nHEX
 3MP
 22DMB
 Blank RUN

F/
F 0 (

-)

Time, t (min)

T = 313 K
ppC6= 1.8 kPa

a1)

Fig. 2 Typical experimental breakthrough curve for sorption of an equimolar ternary mixture
nHEX/3MP/22DMB in ZIF-8. Experimental conditions: a1) pp = 1.8kPa, T = 313K; Red lines
represent blank runs at the same experimental conditions with the column filled with glass spheres

basic information of the underlying phenomena that governs the system. With such
data is it possible using a convenient mathematical model to identify which are the
controlling mechanisms of the process and thereafter to proceed to a convenient de-
sign of an industrial process. Moreover, it is generally the dynamics of the fixed bed
system, rather than the equilibrium conditions, and then kinetic mechanism in single
particles that control the adsorption separation process.

To clarify the discrepancies previously observed by several authors, we have
performed several breakthrough experiments with the mixture nHEX/3MP/22DMB
in commercial and home-made ZIF-8 [14]. Figure2 shows a typical breakthrough
curve where it can be seen that branched isomers 22DMB and 3MP practically
elute the column at the beginning of the experiment with no separation between
them, but they are completely separated from linear nHEX that elute much later.
This result indicates that 3MP and 22DMB leave the column practically with no
adsorption in ZIF-8 in contrast with nHEX that adsorbs significantly in the column.
These results are controversial since Zhang et al. [23] observed in a static system that
all hexane isomers adsorb on ZIF-8. However, they are in agreement with the ones
found by Chang et al. [3] and Luebers et al. [13] who studied the same system in a
chromatographic column.Apossible explanation could be the differentmethods used
to study the adsorption of hexane isomers in ZIF-8. Some studies were performed
in flow conditions and others in static conditions. However, that justification is not
totally satisfactory since Peralta et al. [17] performed also the study in a breakthrough
apparatus and found a certain degree of separation between 3MP and 22DMB. A
possibility concerning this discrepancy could be related to differences in residence
time of the gas mixture in the fixed bed column. In Peralta et al. experiments, the
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Fig. 3 Single component nHEX breakthrough at 313 K. The green line represents the simulation
of the experiment with a KLDF of 0.008 s-1. The other lines (red, blue and orange) show the effect of
decreasing the KLDF by 10, 50 and 100 times, respectively, in the breakthrough curve (or increasing
τdif ). Points are experimental data and lines are model predictions

contact time (residence time) measured by τfb = L/vi is around 20s, where vi is
the interstitial velocity. In our experiments, it ranges from 1 to 4s. Since 3MP and
22DMB are slow diffusing species [23], this could explain why 3MP enters partially
in the adsorbent in the case of Peralta’s experiments due to at least 5 times higher
residence time of the gas mixture if the fixed bed column. Apart from being slow
diffusion species, the ratio of diffusivities 3MP/23DMB is 3 which combined with
the ratio of diffusivities and residence time of the gas in the column could support
the separation observed in the breakthrough curves.

To prove that the separation between nHEX and the branched isomers 3MP and
22DMB observed in our experiments is kinetically driven, we use the mathemati-
cal model previously described to simulate a single component breakthrough. For
the study, we select an experimental single component breakthrough curve of n-
HEX since we do not have isotherm data for 3MP and 22DMB because they do
not adsorb in the packed column. Figure3 shows the experiment together with the
simulations performed by the mathematical model. The experimental conditions and
model parameters used for the simulation are shown in Table2. For the simula-
tion we use the corrected diffusivity D0 for nHEX reported by Zhang et al. [23]
which is 3.4 × 10−19 m2/s at 313 K. Since this value is a corrected diffusivity we
transform it to the Fickian diffusivity using the correction factor for the Langmuir
isotherm Dc = D0/(1 − q/qmax) (see [19]). Since the amount adsorbed in the ex-
periment is 2.94mmol/g and the total loading taken from the Langmuir isotherm is
3.13mmol/g (see [14]) we estimate a Fickian diffusivity Dc of 5.4 × 10−18 m2/s for
nHEX. If we use the LDF model for the mass transfer in the bed, the characteristic
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Table 2 Experimental conditions andmodel parameters for the simulation of the single component
(nHEX) breakthrough experiment shown in Fig. 3

Isotherm parameters (nHEX)

qm 3.13 mmol/g

Ki 1.73 kPa−1 at 313 K

Experimental conditions

Cf 57.6 mol/m3

Ff 1.33 mol/m2.s

ma 0.318 g

Pc 150 kPa

Tf 313 K

yif 0.0656

Model parameters

cpg 20 J/mol.K

cps 1.6 J/g.K

dp 0.2 × 10−6 m

dc 4.6 × 10−3 m

Dax 2.59 × 10−5 m2/s (see Note 1)

hp 42500 W/m2.K (see Note 2)

hw 0.38 W/m2.K (see Note 3)

kLDF 0.008 s2 (see Note 4)

Kax 0.030 W/m.K

L 0.08 m

Greek letters

εb 0.5

Note 1 Calculated by the correlation Dax = 0.7Dm + 0.5dpv, taken from Ruthven [19]. The axial
mass Peclet number is 179
Note 2 This value was estimated from the limit of Nu = 2 and it can be considered a very high
value, which means that the temperature between solid and bulk gas phase is in equilibrium
Note 3 This parameter was obtained through the fitting of the experimental breakthrough curve
Note 4 The LDF parameter was calculated by kLDF = 150Dc/r2c , with Dc calculated from the data
of Zhang et al. [23]

mass transfer coefficient will be KLDF = 15 × 5.4 × 10−18/(0.1 × 10−6)2 = 0.008
s-1 (we assume that the size of the crystals is similar to size of the commercial ones,
that is 0.2 μm [17]). The mean residence time or contact time τfb = L/vi for the
experiment is around 1.3 s. Figure3 shows the simulation of the breakthrough of
nHEX (green line) using the mass transfer parameter kLDF = 0.008 s-1. The experi-
mental conditions and model parameters are specified in Table2. To fit the curvature
of the breakthrough curve we also need to use a non-isothermal model due to the
slow approach of concentration to equilibrium. It is clear from Fig. 3 that it is possi-
ble to fit the profile of the nHEX curve with the diffusivity data reported by Zhang
et al. [23] and using an LDFmodel. To see what happens in the fixed bed by decreas-
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ing the diffusivity (or increasing τdif ) we simulate the same experiment using a value
of kLDF 10, 60 and 120 times lower (we note that Zhang et al. [23] report a diffusivity
20 times lower for 3MP and 147 times lower for 23 DMB at 313 K). Figure3 clearly
shows that if we decrease at least 10 times the diffusivity of the adsorbable species
in the bed the compound will come out of the column immediately at the residence
time τfb. This simulation clearly explains that the separation between normal and
branched paraffins is indeed kinetically driven and can be predicted with diffusivity
data already published using a convenient mathematical model.

These results also prove that the discrepancy between experiments in flow and
static systems are due to kinetic considerations proper of fixed bed adsorbers. In a
static system, the gas mixture of hexane isomers contact with the adsorbent ZIF-8 in
a completely different time scale compared to experiments that could occur for few
seconds. This means that an appropriate selection of the residence time of the gas
mixture τfb in the fixed bed could give rise to a separation of hexane isomers due to
their different diffusivities apart for being all adsorbed with identical amounts.

Figure3 also shows that to capture the profile of the breakthrough curve it is
necessary to use a non-isothermal model. Figure4 shows the simulation results for
the concentration and temperature profiles of the breakthrough curves in isothermal
and adiabatic cases. The experimental conditions andmodel parameters are specified
in Table2. It is clear that only using a non-isothermal model it is possible to capture
the profile of the experimental breakthrough curve. Moreover, the gas temperature
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Fig. 4 Simulation of the breakthrough curve shown in Fig. 3 with a non-isothermal, isothermal and
adiabatic models. The green lines represent the simulation with the non-isothermal model, the red
the adiabatic model, and the black the isothermal model. Points are experimental data and lines are
model predictions
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of nHEX can increase 50C at the outlet of the bed due to the large amount of
adsorbed nHEX. Figure4 also shows, for comparison, the profile of composition
and temperature in the bed for the limiting isothermal and adiabatic cases. In the
adiabatic case the temperature can increase around 70 ◦C.

5 Conclusions

Amathematical model has been developed to study the hexane isomers adsorption in
a fixed bed packed with the microporous adsorbent ZIF-8. Simulations of isothermal
breakthroughs show that a proper combination of residence time in the bed measured
by τfb and characteristic time of diffusion of the solutes into the pores of the adsorbent
measured by τdif can lead to very different dynamics of fixed bed adsorbers. It was
shown that a τdif 100 times higher than τfb leads to spontaneous breakthrough curves
of solutes in the fixed bed.

Ternary breakthrough experiments with mixtures of nHEX/3MP/22DMB flowing
through the packedbed showacomplete separation of linear nHEXfrom the branched
paraffins 3MP/22DMB which spontaneously come out of the bed at the beginning
of the experiment. These results contradict previously published works [7, 17, 23]
but are similar to other results obtained in chromatographic columns [3, 13].

To explain the uncommon experimental sorption behavior observed, the mathe-
matical model developed in this work was used to simulate an experimental break-
through curve. The parameters of the mathematical model were obtained from dif-
ferent sources. In particular, the diffusivity values of the hexane isomers were taken
from the work of Zhang et al. [13].

The simulations results show that the spontaneous breakthrough curves of the
branched hexane isomers 3MP and 22DMB are due to the very low diffusivity of
these compounds in ZIF-8when compared to the one in the linear nHEX.Moreover, a
proper combination of the residence time in the bed τfb = L/vi and the characteristic
time of diffusion τdif = 1/kLDF = r2c/15Dc of the hexane isomers in ZIF-8 can give
rise to a complete separation between normal and branched paraffins.

It can also be retained from this work that experimental results of hexane isomers
sorption in ZIF-8 measured under batch equilibrium conditions or flow systems can
be completely different. Indeed, it is noteworthy that it is possible to completely
separate linear from branched alkanes while equilibrium isotherms show similar
amounts adsorbed for all the compounds.

Finally, this work shows the importance ofmathematical modelling in the analysis
and interpretation of experimental data and the design of adsorption processes.
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A Simulation Model for the Physiological
Tick Life Cycle

Nabil Nassif, Dania Sheaib and Ghina El Jannoun

Abstract In this paper and following an approach used by two of the authors in
(Nassif, N.R., Sheaib, D. (2009) On spectral methods for scalar aged-structured
population models.) [5], we present a mathematical model for the tick life cycle
based on the McKendrick Partial Differential Equation (PDE). Putting this model
using a semi-variational formulation, we derive a Petrov–Galerkin approximation to
the solution of the McKendrick PDE, using finite element semi-discretizations that
lead to a system of ordinary differential equations in time which computations are
carried out using an Euler semi-implicit scheme. The resulting simulations allow us
to investigate and understand the dynamics of tick populations. Numerical results
are presented illustrating in a realistic way the basic features of the computational
model solutions.

Keywords McKendrick-von Foerster model · Deterministic tick life cycle
model · Petrov–Galerkin procedure · Finite element method

Background

Tick-borne diseases (theleriosis, re-lapsing fever, TBE (tick-borne encephalitis) are
serious health problems affecting humans as well as domestic animals in many parts
of the world. These infections are generally transmitted through a bite of an infected
tick, and it appears that most of these infections are widely present in some wildlife
species; hence, an understanding of tick population dynamics and its interaction
with hosts is essential to understand and control such diseases [3]. Several field
observations on tick biology show a huge polymorphism in their biology (prolificity,
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mortality rates, phenology). This polymorphism is enhanced during the parasitic
stages of the tick (during feeding stages) because of the interaction between the
tick and the host (immunity of the host, surface of exposure, biology of the host).
This degree of interaction is again more complicated when the tick-borne infections
are considered and describing this tick behavior can be made possible by monitoring
infested animals and presenting the observations as descriptive results. Nevertheless,
understanding and predicting the mechanisms leading to a determined phenology is
quite impossible as much as the prediction of the impact of different control actions.
For this reason, modeling represents a powerful tool offering the opportunity to
counter these difficulties. It simultaneously offers a dramatic decrease of the control
costs.

The objective of the present work is to develop a tick biology model specific
to Hyalomma detritum species based on field data that appeared in [1]. A variety
of approaches have been used to model the tick population with various degrees
of complexity. Models often describe in a discrete way the various stages of tick
development: egg-larvae-nymph-adult, whether the ticks are attached to hosts, and
if disease is part of the model, whether the ticks themselves are infected [2, 4, 10,
11]. Generally, models are written as systems of ordinary differential equations with
or without delay where the physiological structure is always modeled in a discrete
form. However, the development of the ticks between stages takes time and this time
delay cannot usually be ignored. Additionally, the time delay is weather and climate
dependent. So, the transition from one physiological stage to another has to be con-
sidered as a continuous process with continuous stage dependent parameter values.
That is why we propose in this work, to build a simple model for the dynamics of
tick populations where n(s, t), the tick population density at the tick physiological
parameter s and at time t , satisfies the McKendrick-Von Foerster PDE model. This
approach has been used in a recent work by two of the authors of this paper, specif-
ically in [5] for the case of age-structured infectious disease models, where u(x, t),
the density of individuals of age x at time t replaces the tick-life density n(s, t).
In both situations, the same McKendrick-Von Foerster model is being used, with
mainly the physiological parameter s of the tick replacing the age variable x of the
infectious disease model.

This paper is divided as follows. In Sect. 1, we describe the parameters that lead
to the McKendrick Von Forester model (1). Then in Sect. 2, following a technique
used in [5], the McKendrick Von Forester model (1) is put in the semi-variational
form (2) which is validated in Sect. 3 using as in [5] a Petrov–Galerkin discretiza-
tion based on a P1 finite-element approximation in s, followed by a semi-implicit
numerical discretization in time. The resulting discrete model is then tested using
the data from [8].

1 Model Description

The underlying parameters of the model are as follows:
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1. As introduced above, n(s, t) is the tick population density at the physiological
parameter s and at time t . We will assume that the host population densities are fixed
at a given density H .

2. smax
egg , smax

larvae, s
max
nymph and smax

adult are respectively the maximum of the physiological
parameter achieved by the tick in each stage. Furthermore, the maximum of s is
smax = smax

adult . Furthermore, the domain of s is divided into four consecutive stages:
Eggs: Ω1 = (smin, smax

egg ), Larva: Ω2 = (smax
egg , smax

larva), Nymph: Ω3 = (smax
larva, s

max
nymph)

and Adult: Ω4 = (smax
nymph, smax ) and the whole domain of s can be written as

Ω = Ω̄1
⋃

Ω̄2
⋃

Ω̄3
⋃

Ω̄4.
Also for k = 1, 2, 3, Ik is the interface between Ωk and Ωk+1. Thus, our interfaces
are I1 = smax

egg , I2 = smax
larva and I3 = smax

nymph .
3. Mortality Rate: μ(s, t) is the tick mortality rate which is host and density

dependent [10], given in [6, 9] by μ(s, t) = α + βln(1 + n(s,t)
H ), where α and β are

functions of the physiological parameter s.
Note that β depends on the stage and temperature, thus

β =
{

Linear decreasing function of temperature if s ≤ smax
egg

Constant otherwise

In our model, we consider α and β as piecewise continuous functions over Ω . In
other words, α and β are continuous functions within each stage Ωi for i = 1, 2, 3, 4
where for any interface I , αI− and βI− are the values of the parameters to the left
of the interface I and αI+ and βI+ , the values to the right of this interface. In a
continuous case, αI− = αI+ and βI− = βI+ .

4. Reproduction Rate: K (n(s, t)) is the reproduction rate (egg-laying) of ticks.
For any interface I , denote by KI− the value of the parameter to the left of the interface
I and by KI+ the value of the parameter to the right of this interface. Similarly, for
a continuous case, KI− = KI+ .

5.Seasonality andSomaticGrowthorTransitionRate:Givend(s), the maxima
difference function that depends on the physiological parameter s:

d(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

smax
egg if smin ≤ s ≤ smax

egg

smax
larva − smax

egg if smax
egg < s ≤ smax

larva

smax
nymph − smax

larva if smax
larva < s ≤ smax

nymph

smax − smax
nymph if smax

nymph < s ≤ smax

In [8], S. Randoph shows that, for R. appendiculatus in the laboratory or the field on
Burindi, the somatic growth rate or interstadial development rate g(s, t) depends on
the mean day temperature T and is given by:

g(s, T ) = d

ae−bT
,
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where d is the maxima difference and a and b are considered to be functions of the
physiological parameter s that are piecewise continuous over the whole domain Ω .
Thus, the somatic growth rate is a piecewise continuous function over Ω such that
for any interface I , gI−(T ) is the value of the parameter to the left of I and gI+(T ) is
the value of the parameter to the right of I . For a continuous case, gI−(T ) = gI+(T )
for any temperature T .

The relationship between temperature and time can be realistically represented
by a sinusoidal curve for each half of the day. Thus, the curve will take the forms

T =
{

( T1+T2
2 ) + ( T2−T1

2 )sin(2π t − π
2 ), 0 ≤ t ≤ 1

2

( T2+T3
2 ) + ( T2−T3

2 )sin(2π t − π
2 ), 1

2 ≤ t ≤ 1

where T1 is the minimum temperature at the beginning of the day at t = 0, T2 is
the maximum temperature achieved at the midday when t = 1

2 and T3 is the new
minimum at the end of the day when t = 1. The period between t1 and t2 represents
the proportion of the day during which the temperature is above the threshold Tr and
development takes place. The tick population density varies satisfying the following
model for all t ∈ [0,T ] and s ∈ [smin, smax ] given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂n(s, t)

∂t
+ ∂

∂s
[g(s, t)n(s, t)] = −μ(n(s, t))n(s, t)

g(smin, t)n(smin, t) =
smax∫

smin

K (n(s, t))n(s, t)ds

n(s, 0) = n0(s)

(1)

Let N be the maximum tick population density so that n(s, t) ≤ N , ∀s ∈ [smin,
smax ] and t ∈ [0,T ].

2 Variational Formulation of the Tick Life Cycle Model

In order to get the variational formulation of the tick life cycle model, we seek
a solution n(s, t) such that n(., t) ∈ H 1(smin, smax ) and nt (., t) ∈ L2(smin, smax )
∀ t ∈ [0,T ]. Let Γ = {φ(s) ∈ H 1(smin, smax )} be the set of test functions and let
φ(s) ∈ Γ . Multiplying the first equation in the tick life cycle model by φ(s) and
integrating from smin to smax , we get

< nt , φ > + < (gn)s, φ >= − < μn, φ >

Using the definition of the mortality rate, μ(n(s, t)) = α + βln(1 + n(s,t)
H ) followed

by integration by parts, noting the discontinuities of g on the interfaces, and using
g(smin, t)n(smin, t) =< K , n >, we get the term < (g(n))s, φ > to be equal to:
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gn(smax , t)φ(smax ) − < K , n > φ(smin) +
3∑

k=1

(gIk− (t) − gIk+ (t))n(Ik , t)φ(Ik ) − < gn, φs > .

Thus, by substitution, the variational formulation for this model becomes:

< nt , φ > +B(n, φ) =< G(n), φ >, (2)

where:

B(n, φ) =< αn, φ > − < gn, φs > +g(smax , t)n(smax , t)φ(smax )− < K , n > φ(smin) + ...

...

3∑

k=1

(gIk−(t) − gIk+(t))n(Ik, t)φ(Ik)

and

< G(n), φ >= − < βnln(1 + n(s, t)

H
), φ > .

3 Validation of the Deterministic Model

Petrov–Galerkin Procedure for the Variational Formulation of
the Tick Life Cycle Model

In this section, we apply the Petrov–Galerkin procedure in order to obtain a solution
of the variational formulation given by

< ut , φ > +B(u, φ) =< G(u), φ > ∀φ ∈ Γ (E)

where B(u, φ) =< αu, φ > − < gu, φs > +g(smax , t)u(smax , t)φ(smax)− < K ,
u > φ(smin) + ∑3

k=1(gIk−(t) − gIk+(t))u(Ik, t)φ(Ik)

and < G(u), φ >= − < βuln(1 + u
H ), φ >. Since in our case the set of test func-

tions Γ = H 1(smin, smax ), the problem reduces to finding u(., t) ∈ Γ such that prob-
lem (E) is satisfied.
At this stage, we apply the Petrov–Galerkin procedure on (E) based on

• Dividing the interval [smin, smax ] and [t0,T ] into N and M equal intervals with
length h and τ respectively, to get
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Ω̄h,τ = {(si , t j ), si = smin + i.h, t j = t0 + j.τ, 0 ≤ i ≤ N and 0 ≤ j ≤ M}

• Denoting by Nk the position of the interface Ik for k = 1, 2, 3. In other words,
sNk = Ik , for k = 1, 2, 3.

• Simplifying the notation of the values of the parameters at the nodes si , α(si ),
β(si ), K (si ) and g(si ), by αi , βi , Ki , and gi respectively. For any interface Ik at
the position Nk , denote by αNk

− , βNk
− , KNk

− and gNk
− the value of the parameters

to the left of the interface Ik and αNk
+ , βNk

+ , KNk
+ and gNk

+ the value of the
parameters to the right of the interface Ik .

• Using finite element functions on the domain [smin, smax ], namely,

φ1(s) =
{

s2−s
s2−s1

, s ∈ [s1, s2]
0, otherwise

, φN (s) =
{

s−sN−1

sN−sN−1
, s ∈ [sN−1, sN ]

0, otherwise

and φi=2,...,N−1(s) =

⎧
⎪⎨

⎪⎩

s−si−1

si−si−1
, s ∈ [si−1, si ]

si+1−s
si+1−si

, s ∈ [si , si+1]
0, otherwise

For any node si , denote the two parts of the finite element function φi ,
i = 2, 3, ..., N − 1, defined on [si−1, si+1] by

φi
−(s) = s − si−1

si − si−1
, s ∈ [si−1, si ] and φi

+(s) = si+1 − s

si+1 − si
, s ∈ [si , si+1]

• Taking ΓN = span{φ1, φ2, ..., φN }.
• Choosing Γ = ⋃

N≥1 ΓN which implies that for every u ∈ Γ , there exists at least
one uN ∈ ΓN such that limN→∞ ‖u − uN‖ = 0.

Therefore, under Petrov–Galerkin procedure, our problem reduces to finding a
sequence {uN } ∈ ΓN of the form uN (x, t) = ∑N

i=1 ci (t)φi (s) that satisfies < (uN )t ,
φ > +B(uN , φ) =< G(uN ), φ >, ∀φ ∈ ΓN . Thus, ∀φ ∈ ΓN , this is equivalent
to <

∑N
i=1 c

′
i (t)φi (s), φ > +B(

∑N
i=1 ci (t)φi (s), φ) = − <

∑N
i=1 βi ci (t)φi (s)ln(1

+
∑N

i=1 ci (t)φi (s)
H ), φ > . By the bilinearity of B(u, φ) and the inner product, we get

a linear system of N differential equations in N unknowns, i.e., ∀ j = 1, 2, ..., N ,
∑N

i=1 < φi , φ j > c′
i + ∑N

i=1[B(φi , φ j )+ < βiφi ln(1 +
∑N

i=1 ci (t)φi (s)
H ), φ j >]

ci = 0. This can be written in matrix form as M dc
dt = −F(c), where M = {<

φi , φ j >, 1 ≤ i, j ≤ N } ∈ R
N ,N ,

F(c) = {∑N
i=1[B(φi , φ j )+ < βiφi ln(1 +

∑N
i=1 ci (t)φi (s)

H ), φ j >]ci , 1 ≤ j ≤ N }

∈ R
N , and c =

⎛

⎜
⎜
⎜
⎜
⎝

c1(t)
c2(t)

.

.
cN (t)

⎞

⎟
⎟
⎟
⎟
⎠

∈ R
N .

Write F(c) as F(c) = [−Mα + Ag(t) + Γ0(t) − S(c)]c, where for l = ln(1 +
∑N

i=1 ciφi

H ), we can write
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Mα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

( s2−s1
3 )α1 ( s2−s1

6 )α1 00 ... 0
( s2−s1

6 )α2 ( s3−s1
3 )α2 ( s3−s2

6 )α2 0 ... 0
.
.
.

0 ... (
sNk

−sNk−1
6 )αNk

− (
sNk

−sNk−1
3 αNk

− ) + (
sNk+1−sNk

3 αNk
+ ) (

sNk+1−sNk
6 )αNk

+ ... 0
.
.
.

0 0 ... (0
sN −sN−1

6 )αN (
sN −sN−1

3 )αN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S(c) =

⎛
⎜⎜⎜⎜⎜⎜⎝

β1 < lφ1, φ1 > β1 < lφ1, φ2 > 0 ... 0
β2 < lφ2, φ1 > β2 < lφ2, φ2 β> 2 < lφ2, φ3 > 0 ...0

.

.

... β
N

−
k

< lφ−
Nk

, φ+
Nk−1 > β

N
−
k

< lφ−
Nk

, φ−
Nk

> +β
N

+
k

< lφ+
Nk

, φ+
Nk

> β
N

+
k

< lφ+
Nk

, φ−
Nk+1 > ...0

0 ... 0 βN < lφN , φN−1 > βN < lφN , φN >

⎞
⎟⎟⎟⎟⎟⎟⎠

By the midpoint rule, we have for i 
= Nk for k = 1, 2, 3,

βi < φi ln(1 +
∑N

i=1 ciφi
H

), φ j >=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

βi (
si−si−1

6 )ln(1 + ci−1+ci
2H ), for j = i − 1

βi [( si−si−1
3 )ln(1 + ci−1+ci

2H ) + (
si+1−si

3 )ln(1 + ci+ci+1
2H )], for j = i

βi (
si+1−si

6 )ln(1 + ci+ci+1
2H ), for j = i + 1

0, for j 
= i − 1, i, i + 1

For i = Nk , k = 1, 2, 3,

βi < φi ln(1 +
∑N

i=1 ciφi

H
), φ j >=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βN−
k

(
si−si−1

6 )ln(1 + ci−1+ci
2H ), for j = Nk − 1

βN−
k

(
si−si−1

3 )ln(1 + ci−1+ci
2H ) + βN+

k
(
si+1−si

3 )ln(1 + ci+ci+1
2H ), for j = Nk

βN+
k

(
si+1−si

6 ln(1 + ci+ci+1
2H ), for , j = Nk + 1

0, for j 
= Nk − 1, Nk , Nk + 1

Ag(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−g1(t)
2

g1(t)
2 0 0 ... ... 0

−g2(t)
2 0

g2(t)
2 0 ... ... 0

.

.

.

0 ...
−gNk

− (t)

2

gNk
− (t)

2 −
gNk

+ (t)

2

gNk
+ (t)

2 ... 0
.
.
.

0 ... 0 ... 0
−gN (t)

2
gN (t)

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Γ0(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
s2−s1

2 )K1 0 ... ... ... ... 0

(
s3−s1

2 )K2 0 ... ... ... ... 0
.
.

(
sN1

−s{N1−1}
2 )KN1

− 0 ... gN1
− (t) − gN1

+ (t) ... 0 0

.

.

(
sN2

−s{N2−1}
2 )KN2

− 0 ... 0 gN2
− (t) − gN2

+ (t) 0 0

.

.

(
sN3

−s{N3−1}
2 )KN3

− 0 ... 0 ... gN3
− (t) − gN3

+ (t) 0

.

.

(
sN−s{N−1}

2 )KN 0 ... ... ... 0 gN (t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Implicit Scheme

To obtain numerical results from the Petrov–Galerkin approximation applied to the
variational formulation of the tick life-cycle model, we state once again the matrix
form given by M dc

dt = [−Mα + Ag(t) + Γ0(t) − S(c)]c
In order to solve this system, we need to approximate dc

dt by the forward difference

formula, namely, c′(t j ) = c(t j+1)−c(t j )
τ

Under these approximations, we arrive at the following implicit scheme

{ [M + τ(Mα − Ag(t j ) + Γ0(t j ) − S(c j ))]c j = Mc j−1, for all 1 ≤ j ≤ M

Mc0 = F , where F = {< u0, φ j >, 1 ≤ j ≤ N }

In this stage, we use the following:

1. Data available on the tick population stated in [7].
2. Matlab sparse built-in function in order to generate the above matrices.
3. Mid-point rule to evaluate the nonlinear part S(c).
4. LU decompositions.

Numerical Results

We have carried out numerical experiments using a discontinuous initial population
size and piecewise constant parameters α, β, and K over a duration of 5 years
starting from the year 1990. The host population density H is kept constant for the
three test cases with a value of H = 1. In order to obtain our mesh grid, we divide
the physiological interval [smin, smax ] and the time interval [1990, 1995] using the
step sizes h = 0.1 and dt = h

3 respectively.
Using a strictly decreasing somatic growth rate g as shown in Fig. 1, we conducted

the first experiment for a population initially consisting strictly of 10 eggs with the
absence of ticks in the other stages. Concerning the other parameters, we used

(1) MortalityRate:μ = α + βln(1 + n
H ) with α(s) = [0, 0.5, 1, 2.1] and β(s) =

[0, 0, 0.3, 2.8].
(2) Reproduction Rate, K (s) = [0, 0, 10, 30].
Figure 2 allows us to notice the repetitive pattern followed by the population size over
a period of five years. In fact, the population density in one year will carry on in a
manner similar to those in the other years with a slight change in the initial population
density depending on the outcomes of the previous year. This indicates that the tick
population density n(s, t) pursues periodicity in the sense that n(s, t + 1) ∼ n(s, t)
where t is measured as a fraction of a year. This periodic property allows us to predict
the behavior of the tick life cycle each year with less accurate expectations of the
population density because of the continuous change of real life situations from one
year to another.

We notice in Fig. 3 an evidence of the development of ticks from one stage to
another. Initially, the constant number of eggs induced in the population starts to
decrease gradually accompanied by a gradual increase of the number of larvae.
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Fig. 1 Figure 1. Strictly
decreasing somatic growth
rate g
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Fig. 2 Evolution of the tick
population density over time
for the first test case

Fig. 3 Evolution of the
density of each category with
respect to time for the first
test case

Imposing zero mortality rate for eggs allows us to say that this decrease happened
when eggs developed into larvae. As the number of larvae increases, the number
of nymphs increases as well to produce ticks in other stages. When nymphs reach
smax
nymph , they change into adults that are able to reproduce and give off eggs. The

number of adults, as shown in the figure, remains constant over a long period of time
due to the high mortality rate imposed for adults. If that wasn’t the case, we would
have seen an exponential growth of the number of adults due to the development of
larvae and nymphs in the population.

For the second test case, the somatic growth rate presented in Fig. 4 shows a
relatively low egg development in comparison with development of ticks in the other
stages. We choose the same population initially consisting strictly of 10 eggs with
the absence of ticks in the other stages. Concerning the other parameters, we used

(1) Mortality Rate: μ = α + βln(1 + n
H ) with α(s) = [0, 0, 0, 2.1] and β(s) =

[0, 0, 0, 2.8].
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Fig. 4 Somatic growth rate
g for the second test case.

Fig. 5 Evolution of the tick
population density over time
for the second test case

Fig. 6 Evolution of the
density of each category with
respect to time for the second
test case

(2) Reproduction Rate, K (s) = [0, 0, 0, 100].
Figure 5 shows the evolution of the tick population density over the same period of
five years with less symmetry of the solution. As shown in the figure, the population
density at the year 1995 shows a peak in the number of nymphs while keeping the
number of adults constant over a period of 3 years.

In Fig. 6, we notice the same behavior seen in Fig. 3 in which the decrease in the
number of ticks in one stage results in the increase of the number of ticks in the
successive stage. However, in this case, due to the very slow development of eggs,
appearance of larvae and nymphs took more time than before and eggs persisted in
the population for a longer time. Development rates of larvae and nymphs allowed
the population to embrace adults whose relatively high reproduction rate produced a
large number of eggs as shown at the final time in the figure. Stability of the number
of adults goes back to the high mortality rate imposed for this type of ticks.
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Fig. 7 Evolution of the tick
population density over time
for the third test case in
which g(s, t) = 1 for all s
and t

Fig. 8 Evolution of the
density of each category with
respect to time for the third
case in which g(s, t) = 1 for
all s and t

For the last test case, take a constant somatic growth rate g(s, t) = 1 for all
s ∈ [smin, smax ] and t ∈ [1990, 1995]. As for other parameters, we keep them the
same as in the second test case.

Figure 7 shows again the periodicity of the population density n(s, t) in which we
can predict the behavior of the solution over any year. As we can see, Fig. 8 is quite
similar to Fig. 3 in the sense that the number of nymphs in the third case remains
constant over a range of time quite smaller than that obtained in the first case. Also,
the stability of the number of adults result from the relatively high mortality rate that
prevents the development of larvae and nymphs from producing adults that persist
in the population.

4 Conclusion and Future Tasks

In this paper, we have presented a simple and general finite element methodology
to solve the population dynamics. Sample numerical results to validate the scheme
are also presented. As for a future work, we intend to adapt the numerical method
developed for the tick life cycle model to study the borne-tick interactions represented
by correlated ODE-PDE equations in an attempt to test the impact of climate change
on the transmission of the tick disease. On the other hand, we wish to obtain extensive
additional data on tick populations interacting with hosts, in view of carrying out
simultaneously statistical analysis together with our deterministic PDE model.



284 N. Nassif et al.

References

1. Bouattour, A., Darghouth, M.A., Ben Miled, L.: Cattle infestation by Hyalomma ticks and
prevalence of Theileria in H. detritum species in Tunisia. Vet. Parasitol. 65, 233–245 (1996)

2. Ghosh, M., Pugliese, A.: Seasonal population dynamics of ticks, and its influence on infection
transmission: a semi-discrete approach. Bull. Math. Biol. 66(6), 1659–1684 (2004)

3. Hudson, P.J., Dobson, A.P., Cattadori, I.M., Newborn, D., Haydon, D.T., Shaw, D.J., Benton,
T.G., Grenfell, B.T.: Trophic interactions and population growth rates: describing patterns and
identifying mechanisms. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 357(1425), 1259–1271
(2002)

4. Mwambi, H.G.: Ticks and tick-borne diseases in Africa: a disease transmission model. IMA J.
Math. Appl. Med. Biol. 19(4), 275–292 (2002)

5. Nassif, N.R., Sheaib, D.: On spectral methods for scalar aged-structured population models.
In: Brock, F., Saleeb, E. (eds.) Analysis and Computational Mathematics, pp. 110–123 (2009)

6. Norman, R., Bowers, R.G., Begon, M., Hudson, P.J.: Persistence of tick-borne virus in the
presence of multiple host species: tick reservoirs and parasite mediated competition. J. Theor.
Biol. 200(1), 111–118 (1999)

7. Randolph, S.E.: Abiotic and biotic determinants of the seasonal dynamics of the tick Rhipi-
cephalus appendiculatus in South Africa. Med. Vet. Entomol. 11(1), 25–37 (1997)

8. Randolph, S.E.: Tick ecology: processes and patterns behind the epidemiological risk posed
by ixodid ticks as vectors. Parasitology 129(Suppl), S37–S65 (2004)

9. Randolph, S.E.: Dynamics of tick-borne disease systems: minor role of recent climate change.
Rev. Sci. Tech. 27(2), 367–381 (2008)

10. Rosà, R., Pugliese, A., Norman, R., Hudson, P.J.: Thresholds for disease persistence in mod-
els for tick-borne infections including non-viraemic transmission, extended feeding and tick
aggregation. J. Theor. Biol. 224(3), 359–376 (2003)

11. Rosà, R., Pugliese, A.: Effects of tick population dynamics and host densities on the persistence
of tick-borne infections. Math. Biosci. 208(1), 216–240 (2007)



Long-Term Value Creation in Mergers and
Acquisitions: Contribution to the Debate

Julio Navío-Marco and Marta Solórzano-García

Abstract In recent years multiple empirical works have been undertaken to analyze
the effect of mergers and acquisitions (M&A) on corporate performance, in order
to effectively confirm whether M&A are investment projects that are able to create
value for the shareholders. Nowadays, the analysis of the M&A value creation is still
subjected to a profound debate, especially when studying the implication of time
(short-term versus long-term value creation measurement) and the methodology to
evaluate the value creation in the long run. In this chapter we propose a comprehensiv
e review and in-depth analysis about these open debates, we evaluate the validity of
the differentmethodologies based in calculating the stock abnormal returns provoked
by the operation, and we include, as additional contribution, a short study of the
implications of this theoretical discussion in a concrete example of sectoral M&A in
the digital era, to illustrate the debate.

Keywords M&A · Value creation · Long-term · Short-term · Abnormal returns.

It was during the 20th century when the processes of corporate merger, acquisition
and spinoff experienced their fastest growth and when they started to be the subject
of in-depth, systematic studies from practically all the perspectives [36]. A review
of the current state of the theoretical and empirical knowledge of M&A will reveal
that the debate about their value creation evaluation still continues and there is still
a long way to go in the analysis of their potential for value generation, and in the
investigation of their impact on the different economic sectors.

In the next sections we propose an in-depth analysis about this open debate, espe-
cially studying the implication of time (short time versus long-term value creation
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measurement) and themethodology to evaluate the value creation. Finallywe include,
to illustrate the analysis, a short study of the implications of this theoretical discussion
in a concrete example of sectoral M&A in the telecommunication market.

1 Long-Term Versus Short-Term Value Creation

The need to measure the market reaction to different economic and financial events
creates the need to have sufficiently rigorous analytical tools to be able to defend
the validity of the results. The tools to be used and their ability to offer reliable
results depend on the time horizon being considered. In this section we will see the
reason for this differentiation between the short and long term as time horizons and
its implications for quantification of value creation.

The study of the characteristics of securities markets, their variations and the
operations carried out on these markets, including mergers and acquisitions, has in
recent years been very clearly associated with an attempt to quantify their evolution
over time. In this respect, two major groups can be distinguished [41]:

• Short-term market studies: they use the event study technique, which consists of
quantifying the significant abnormal movements that caused the occurrence of an
event (merger or acquisition) with a specific variable, which is the return on the
shares.

• Long-term studies: these analyze the firm performance after the M&A and over
several years, based on actual information available through the accounting books
and markets.

According with [14], an event study tries to analyze the price performance at the
time the event occurs and on the days before and after, in order to determine whether
the prices have been affected by the event under study (in this case a M&A). The
basis for such a study is therefore to estimate what return the market could expect to
obtain on the day of the event, if the latter had not occurred, and compare that with
what really occurred on that day and the days before and after.

In these studies, the first element that usually must be determined is the event
whose impact on the prices of securities is to be studied and its date of occurrence
or, otherwise, a window of days. The period over which the possible impact of the
event has to be analyzed also has to be determined.

We are thus talking about an analysis that is too focused on the specific fluctuations
around the date of the event, which are not always clear, that assumes a “perfect
market” since that would rapidly reflect the effects of the event and it does not seem
to concern itself with structural considerations or delve more deeply into the sector
in which the firms are operating.

These results only reflect the market reaction in a very limited period of time, by
way of fluctuations around the date of the event. It, therefore, does not appear that
value creation is broadly addressed from the structural and sectoral perspective. In
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this respect, some reasons why short-term movements of stock market prices do not
really reflect solid value creation (or destruction) for the acquirer and its industry
could include the following:

1. It is an accepted fact that short-term studies are typically limited to merger or
acquisition announcements around the date of the announcement and do not
address an actual situation of merger or acquisition with an effective date.

2. Short-term value changes may reflect ephemeral, speculative moves. In this
respect, the merger or acquisition may affect not only the acquirer but also its
competitive position, the situation of the rest of the industry and its rivals and
even the likelihood of other competitors being acquired [3, 27, 47].

3. A short-term analysis window may not pick up all the effects on stock markets.
There have been cases in which the shareholders of acquiring firms systematically
lose value in a 3- to 5-year period after the acquisition [2, 47].

4. If an analysis of the performance of mergers and acquisitions is supported by the
study of the short-term returns, this means considering that the investors fully
understand the determining factors of a successful acquisition and have sufficient
information to quite accurately predict how the process of integration is going to
affect the future cash flows of the acquiring firm. This assumption is not likely to
occur [44]. As [25] p. 129 say, “all value creation takes place after the acquisition”.

2 Long-Term Analysis of M&A: The Methodological
Debate

The long-term study ofmergers and acquisitions is strongly conditioned by amethod-
ological problem. The heated controversy among researchers regarding the methods
for assessing long-termvalue creation or destruction inM&A is still to a certain extent
unresolved. Therefore, to better understand the long-term perspective of mergers and
acquisitions, we must first understand how to study these operations, establishing
scenario in which to conduct any analysis.

We observe three major phases or eras in the research of long-term post-acquisi-
tion returns in the acquiring firms since the preliminary studies in the 1970s.

Reference [1] initially distinguished two main phases: the initial phase would
include the early works of the 1980s and early 1990s, and the second phase the later,
more advanced methodological research of the 1990s. However, we consider that the
research has continued in the methodological sphere and the more recent studies can
be included in a third phase. This third phase would begin in the late 1990s and run
to the present. Thus, we would distinguish the more current methodological findings
from those included in the second phase [31].

In the first phase, which primarily includes the early work between the 1970 and
1980s, the long-term analysis of returns was subordinate to short-term event stud-
ies and played a complementary role, as it was not the focal point of the research.
The original long-term studies included [34, 35]. Since the appearance of abnormal
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returns can indicate a contradiction with the “efficient market” assumption, the inter-
est in observing their performance increased in the 1980s.

Reference [22] could be cited as a point of inflection in the long-term analysis
of post-merger results, giving rise to what we call the second phase. They used
benchmark portfolios with different factors to resolve mean-variance inefficiencies
in traditional comparisons of a single factor, concluding that the findings of previous
studies that indicate poor returns after the acquisition owe more to errors in the
benchmark portfolios than to problems in the price at the time of the acquisition,
but their results are not significant. Therefore, a more advanced methodology was
introduced in this second phase in an attempt to calculate abnormal returns, and
models emerged that considered explanatory factors of the returns such as size, risk
and the ratio between the book value of the shareholders’ equity and the market value
(book-to-market ratio). It is common in the financial analysis literature [37] to list
the size and the shareholders’ equity book value to market value ratio as corporate
features linked to a systematic risk factor. Consequently, firms to which the market
assigns relatively poor expectations of wealth creation for the shareholders would
show a high book-to-market ratio, meaning they would be penalized with a high
capital cost, i.e. the expected return demanded to invest in them is sufficiently high
to offset the tolerated risk.

There was also a more in-depth focus on the comparison with benchmark portfo-
lios, with the relevant methodological contributions of [8, 18].

From that time to the late 1990s, the studies focused on the analysis, comparison
and improvement of the estimation methods that had emerged in the previous phase:

1. BHAR, buy-and-hold abnormal returns.
2. CAR, cumulative abnormal returns.
3. CTAR, Calendar-time portfolio approach

This would be what we call phase 3, which has lasted to the present and includes
new contributions, including those of [11, 16, 24, 29, 32, 33, 38, 46].

As we have indicated, there are three fundamental methodologies for analyzing
these returns. We will proceed to describe them below.

Buy-and-Hold Abnormal Returns (BHAR)

This long-term abnormal return calculation method consists of compounding the
short-term returns (on a monthly basis in most work) to obtain the return corre-
sponding to the time horizon or window to be studied, based on a strategy of buying
and holding during that period. Reference [43] was the first one to use this type of
strategy for a long-term purchase analysis. This is thus a measure of the return that
would result from investing in the securities involved in a merger or acquisition and
selling them at the end of a certain time horizon, as compared to investing in certain
benchmark securities.

The monthly return from the calendar month following the event to the end of the
considered horizon (s + τ) is estimated. In keepingwith the strategy of buy-and-hold
returns, the performance for a security (firm) i in a certain time horizon t , would be
calculated according to the following expression:
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BHRiτ =
[
s+τ∏
t=s

(1+ Rit )

]
− 1

where s is the calendar month of the event and Rit is the return of firm i in month t .
This M&A performance calculated for the sample firms is compared to a bench-

mark performance, thus obtaining the abnormal return (BHAR), where the cross-
sectional sample mean of this abnormal return is the estimator used to measure the
abnormal performance (related to the M&A solely) that could occur after the merger
or acquisition.

BHARiτ = BHRiτ − BHRCONTROL, τ

BHARτ =
N∑
i=1

wi · BHARiτ

where N is the number of events in the sample and wi is the weight assigned to
firm i . The null hypothesis to be confirmed would be that the cross-sectional mean
abnormal return is equal to zero for the sample of N firms.

Reference [8] defended the use of this method, first of all because, compared to
the CAR methodology, the cumulative abnormal return is a biased estimator of the
BHARs, and secondly because, even if the inference regarding cumulative abnormal
returns is correct, theBHARsmeasure “with precision” the experience of the investor,
who buys a security and holds it in portfolio during a certain period of time.

Cumulative Returns (CAR)

This method consists of calculating the excess returns with respect to a benchmark
index or to the theoretical returns obtained from a certain model:

ARt =
N∑
i=1

wi · ARit

and adding the calculated mean abnormal returns (daily or monthly) to obtain the
cumulative abnormal returns (CAR).

CARτ =
τ∑

t=1

ARt

It is then confirmed whether the mean abnormal return in each of the months that
form the study time horizon is significantly different from zero.

The work of [8] demonstrating that the CAR are biased estimators of BHARs
seriously undermines the reliability of using this methodology.
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Calendar-Time Portfolios

This long-term return analysis methodology, used for the first time by [26, 35],
consists of constructing a portfolio that each calendar month is composed of all
the firms that in the τ preceding months have experienced a specific event (merger
or acquisition in this case), where τ refers to the length of the event study period.
The portfolio is modified every month to eliminate the firms that reach the end of
the analysis period of τ months and to add firms that have undergone a merger or
acquisition in the preceding month. For month t , the performance of the calendar-
time portfolio is calculated as mean (or weighted mean) of the return of the sample
firms that have experienced the event in the twelve, eighteen, twenty-four or thirty-six
preceding months, depending on the considered time horizon.

With the obtained portfolio returns, the excess returns of the constructed portfolios
are calculated for each calendarmonthwith respect to the risk-free interest rate. Based
on these excess returns, a regression is estimated with the three-factor model of [18].

The three-factor model model sustains that the expected returns of a portfolio in
excess of the risk-free rate are explained by the sensitivity of its performance to three
factors:

1. The excess returns with respect to a broad market portfolio or market index
2. The difference between the returns of a small enterprise share portfolio and the

returns of a large enterprise share portfolio
3. The difference between the returns of a portfolio of shares with high book value

versus market value, and the returns of a portfolio of shares with low book value
versus market value.

The estimation of the regression model intercept is a measure of the average
monthly abnormal return of the portfolio, whichwould be zero under the null hypoth-
esis of absence of anomalous performance. The model is defined in the following
expression:

Rpt − R f t = ap + bp
(
Rmt − R f t

) + spSMBt + h pHMLt + ept

where Rpt is the return in the calendar month t of the portfolio of mergers and
acquisitions made in the τ preceding months, R f t is the risk-free interest rate, Rmt

is the market portfolio return, SMBt is the difference between the returns of port-
folios composed of small and large enterprises (small minus big), and HMLt is the
difference between returns of portfolios formed by enterprises with high and low
book-to-market ratios (high minus low), as indicated by [18]. With these ratios, the
aim is to construct two portfolios with real assets that can replicate the two non-
observable risk factors and that, to the greatest possible extent, are orthogonal to
each other.

If the observed abnormal returns are due to differences in risk, size and book-
to-market ratio, then the estimation of the intercept (ap) of the [18] should not be
statistically different from zero.
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2.1 Long-Term Mergers and Acquisitions: Main Empirical
Findings

We will now review the main empirical findings obtained in the various studies that
have quantitatively analyzed M&A with this long-term time horizon. This review
should necessarily begin by presenting the analysis of [1], who analyzed the data,
methodology and results of 22 studies of the long-term return on stock market prices
of firms that made mergers and acquisitions. Table1 includes the studies by those
authors who obtained statistically significant results.

The review of [1] covers up to the end of the 20th century. Therefore, new contri-
butions by the research community from 2000 to the present must be compiled. In
Table2 below, we include the leading studies with significant long-term results from
the beginning of the century to present.

It can be observed that there is an overwhelming majority of studies, regardless
of the methodology used, showing long-term negative abnormal returns in M&A,
although there are examples of opposite results.

It can also be observed that most of the work analyzes horizontal samples from
several sectors. It is quite unusual to find specific work on mergers and acquisitions
in specific sectors, and even more in the long term. Therefore, the work of [31] in the
automobile sector seems especially relevant; they find positive abnormal returns in
the short run, but negative in the long run. In other industries, [15] the banking sector,
which is the most active market in terms of acquisitions, yields significant positive
returns for the acquirer in a three-year period. In the insurance sector, [10] detect
significant long-term returns for a three-year period. In telecommunications, only
[20] have focused on a statistical study of long-term mergers and acquisitions; on
calculating the cumulative abnormal returns, theyobserve that they showsignificantly
negative values for the years following the merger.

The evidence rejects the equality of mean abnormal returns across industries at
significant levels. While a number of industries such as petroleum and natural gas,
insurance and machinery, experienced significantly positive abnormal performance,
others like business services and medical equipment have demonstrated significantly
negative long-term returns. Consistent with prior research findings, the results sug-
gest around zero long-term performance for acquisitions in the banking industry.
Reference [48].

2.2 Statistical Considerations Regarding the Possible
Methodologies

Once we have reviewed the different methodologies and the research literature that
have quantitatively analyzed M&A in the long-term run, we proceed to present a
comparative analysis of the different methods’ characteristics, to better determine
their explanatory capacity and robustness, for the purpose of determining which one
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Table 1 Studies of long-term mergers and acquisitions up to 2000 with significant results

Study Sample Methodology Date Results

Asquith [6] 196 successful
completed offers
and 87
unsuccessful
between
1962-1976

Beta control
portfolio

Completed –7.2% cummulative
abnormal returns for
the successful
proposals and –9.6%
for unsuccessful

Malatesta [34] 256 USA
acquirers
between 1969
and 1974

Beta control
portfolio

Announcement
date

Abnormal returns of
–5.4% for +1 to +6
months. Abnormal
returns of –2. 2% in
a period of +7 a
+12 months

Franks and
Harris [21]

1858 operations
between 1975
and 1984

Three methods 24 months after
closing

Values between
–0.126 a 0.048

Agrawal, Jaffe
and Manoflker
[2]

670 M&As
between 1966
and 1987

Size and ratio
accounting
value/market
value

Completed Meanful abnormal
returns of –1.026 for
60 months

Anderson and
Mandelker [5]

452 UK
companies
between 1984
and 1992

Six methods Completed Meanful abnormal
returns between
–0.0931 and –0.0956
for 60 months

Gregory [23] 452 UK
companies
between 1984
and 1992

Six methods Completed Meanful values
depending on
method between
–1.182 and –0.18 for
24 months

Loughran and
Vijh [32]

947 companies
(788 operations
and 135
proposals)

BHAR Completed Meanful abnormal
returns (–25%) for
60 months;
unmeanful results
for the offers

Rau and
Vermaelen [42]

2823 operations
and 316 offers
between 1980
and 1991

Control portfolio
with size and
ratio accounting
value/market
value

Completed Meanful abnormal
returns of –4% for
36 months; meanful
abnormal returns
+8.56% for the
offers

Mitchell and
Stafford (1998)
(*)

2767
acquisitions
between 1961
and 1993

Several methods:
BHAR, CTAR
(with Fama and
French
regression)

Completed Meanful results for
equally weighted
portfolios

Source Adapted by authors from [1].
(*) Early version of [38].
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Table 2 Studies of long-termmergers and acquisitions from 2000 to present with significant results

Study Sample Methodology Date Results

Mitchell and
Stafford [38]

2767 acquisitions
between 1961 and
1993

BHAR and
CTAR (with
Fama &
French
regression)

Completed Meanful results for
equally weighted
portfolios

Moeller,
Schlinge-
mann and
Stultz [39]

12023 US
acquisitions
between 1980 and
2001

BHAR;CTAR Completed BHAR: meanful
abnormal return of
–16.02% for 36 months;
CTAR: no meanful
abnormal returns

Sudarsanam
and Mahate
[45]

519 UK acquirers
between 1983 and
1995

Size and ratio
accounting
value/market
value

Completed Meanful abnormal
returns between –8.71%
and –21.89%

Delong [15] 54 acquirers from
banking between
1983 and 1995

BHAR Completed Meanful abnormal
returns of 1.1% for
3-years

Gregory and
McCorriston
[24]

197 UK
acquisitions in
USA, 97 of UK in
UE, and 39 of UK
in other countries

BHAR (and
CAR for
short-term)

Completed Meanful abnormal
returns of –9.36% and
–27.1% between +3 and
+5 years in US; no
meanful results for
Europa

Conn, Cosh,
Guest and
Hugues [12]

131 public
companies, private

CTAR;
BHAR

Completed Acquierers of public
companies lose
–19.78% on average in
36 months

Alexandridis,
Antoniou and
Petmezas [4]

179 acquirers CTAR and
CAMP

Completed Meanful abnormal loses
between –0.55% and
1.02% for both models

Kyriazis [30] 86 operations in
greek market

Fama and
French

Completed 2% monthly losses
during 3 years after
acquisition

Laab and
Schiereck
[31]

230 M&A between
1981 and 2007 en
automotion

CTAR;
BHAR

Announcement
date

Meanful value
destruction between
16% and 20% for three
years

Craninckx
and
Huyghebaert
[13]

267 public
operations and 336
private operations
between 1997 and
2006

CAR and
BHAR

Completed Define a fail ratio for the
acquisitions of almost
50%

Baker, Dutta,
Saadi and
Zhu [7]

1066 acquisitions CAR Announcement
date

Operating performance
falls meanfully for
acquirers that previously
showed higher operating
performance

Source Prepared by authors
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is more reliable. In this respect, a series of statistical considerations, that will help to
throw some light on the advantages and drawbacks of eachmethodology, is presented
in this section.

Poor Model Specification

One problem that affects the definition of long-term abnormal return assessment
models is the poormodel specification.Of the possible results obtained, it is advisable
to determine howmuch is really an abnormal return and howmuch is simply the result
of a poor model specification. However, the problem of poor model specification is,
in fact, a implicit difficulty in any statistical modeling exercise.

In this respect, in their studies on measuring long-term performance, [29] con-
cluded that the BHAR and CAR methods are conceptually erroneous and/or lead to
statistical contrasts with rejection rates exceeding the nominal values that are usually
used, as they tend to find a positive or negative abnormal return when in fact it does
not exist.

Furthermore, [38] indicate that BHARs give a false impression of the adjustment
speed. Abnormal returns appear to persist over a long period, although theymay only
occur for a much shorter time. Moreover, they argue that BHARs increase within
larger time horizons. As this horizon cannot be derived from theory but is chosen
arbitrarily by the researchers, “it is impossible to infer from the analysis of BHARs
over different holding periods how long an abnormal return actually persists.” [16].

On the other hand, [17] considers that the BHAR methodology is not very appro-
priate because the errors caused by incorrect specification of the model generating
expected returns are compounded by calculation of the long-term returns.

But it is actually the calendar-time portfolio method (CTAR) that is criticized
the most for poor model specification, as is also affected by the criticisms already
voiced against the three-factor model of [18] that it uses. If the factors introduced
by Fama and French (size, book-to-market ratio) are not able to fully explain the
returns, then the rejection or acceptance of the null hypothesis may be questionable
because it is not known if it corresponds to the abnormal returns or to the poor model
specification.

To evaluate a potential poor model specification problem in CTAR, [38] conduct
an experiment in order to have a clearer view of what effect the deficiencies of the
three-factor model have, and they break down the intercept into two components:
on one hand the expected abnormal performance in accordance with the sample
characteristics (size, book-to-market ratio and M&A frequency over time), and on
the other the amount of abnormal performance attributable to other sources, including
the M&A itself. The expected intercept, contingent on the sample composition, is
estimated as the mean of one thousand time series regressions of as many random
samples composed of firms similar to the event firms (i.e. the M&A) but that have
not had one. They use this calculation to determine the distribution mean under the
null hypothesis, not to measure the dispersion. Furthermore, they select samples with
a size, frequency and book-to-market ratio similar to those of the event benchmark
portfolio and calculate a new statistic t using the expected intercept and the original
intercept.
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Their results indicate that a third of the monthly mean abnormal returns estimated
for the samples results from the poor model specification and not from the event. In
any case, as [19], p. 70, emphasize, “although the amount and value of the associated
t decrease, the poor performance of acquisitions is still statistically significant after
making the mentioned adjustment”, thus accepting the relevance of the abnormal
results obtained.

Selection of the Benchmark in the Return’s calculation

As seen in all themethodologies described above, a key point is to appropriately select
the benchmark that serves as the basis for comparison of the cumulative returns. In
other words, we ask ourselves what would be the benchmark return against which our
firm or sample shows abnormal returns. An inadequate benchmark selection clearly
leads to obtain inaccurate or false abnormal returns.

The possible alternatives would be:

1. Use a benchmark firm that serves as the basis for comparison
2. Use a market index
3. Use a benchmark portfolio

The use of a single firm as benchmark of the long-term returns is problematic
and inappropriate. The length of the study intervals hinders the selection of the
benchmark firm and can introduce a survivorship bias. Furthermore, the definition of
the decision criteria for selecting this firm can also be difficult. Other disadvantages
are the possible emergence of idiosyncratic risk factors (i.e. inherent in the selected
firm) and the possibility of increases as the time horizon increases. This means that
the firm specific factors may be dominant, “reducing the calculation of the abnormal
returns to a lottery” [16], p.34.

Many authors use a market index as benchmark, but [33] recommend using a well
constructed benchmark portfolio.

Reference [38] criticize BHARs for being far from the null distribution and claim
that using a carefully structured benchmark portfolio may have little impact with
this method. Moreover, [8] acknowledge that the BHAR results are affected by the
periodic readjustment of the benchmark portfolio.

Biases

Barber and Lyon demonstrate that cumulative abnormal returns are biased estimators
of BHARs, especially when the market index is used as benchmark. This has been
one of the main arguments that have discouraged the use of CAR.

As for the BHAR methodology, [8, 29] identify three biases that affect the use
of statistical contracts when benchmarks such as market indexes or size-constructed
portfolios are used as benchmark. These biases appear as a result of:

1. Listing of new securities
2. Readjustment of the benchmark portfolio
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3. Asymmetry of the multi-period abnormal returns (the distribution appears as
deviated to the right and not centered on zero)

and they make statistical inferences more difficult [19].
Reference [8] propose a solutionmatching sample firms to control firms of similar

sizes and book-to-market ratios and specify this method to mitigate the three identi-
fied biases, but they recommend further research to progress with their solution. On
the other hand, to correct the asymmetry of the long-term abnormal returns obtained
by this method, [33] recommend, in order to obtain well specified contrasts, to use
resampling techniques with replacement (bootstrapping).

Reference [8] identify another potential bias that could affect the differentmethod-
ologies: depending on how the benchmark is calculated, a survivorship bias can arise
from considering strong benchmark firms that survive and endure in the market. The
impact of this possible bias is dismissed by these authors in [9], where they present
evidence that the survivorship bias in the databases they use does not significantly
affect the estimation.

Calendar-time portfolios can also present problems of bias; the fact that different
sectors have different parameter estimations leads to biased estimations when the
focus of the sample portfolio composition switches from one sector to another.

Cross-Sectional Dependence

Reference [33] proposed a robust BHAR estimation approach to the three biases
mentioned above, postulating appropriate benchmark portfolios that could mitigate
these undesired effects; but this method do not solve the biggest problem of the
BHAR method, and is the main reason for arguing against this methodology: it has
not been able to avoid the cross-sectional dependence.

Reference [33] define three potential sources of dependence in the abnormal
returns that affect the BHAR method: superimposition of the mean returns, clus-
tering by calendar time and clustering by industry.

The mean returns become superimposed when the first merger or acquisition of
the firm is followed by a second one during the period in which the annual returns of
the first are being measured. For example, estimating the BHARs three years after
two events that are only one year apart would cause a superimposition of twenty-four
month returns. It is obvious that the dependence problem cannot arise when a firm
is associated with only one event.

Clustering by calendar and clustering by industry would also introduce depen-
dence in the form of cross-correlation. According to [16], there is evidence that
samples are clustered by time and industry. Therefore, the returns in one period of
firms in the same industry would overlap. Intuitively, the problem of dependence
increases with the sample size and the time horizon to which the BHAR method is
applied. Under equivalent conditions, the possibility of superimposition increases
with the number of observations in a sample period. Likewise, the longer the esti-
mated period, the greater will the possibility be of another event occurring in the
same period.
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The problems associated with the cross-sectional correlation of BHARs in non-
random samples are hard to correct. Reference [11, 33, 38] present methodologies
that try to reduce the poor specification of the contrasts. However, these methods
suffer from two major problems: they are only well specified for random samples,
and the use of bootstrapping is not able to solve the problem of dependence, as
indicated by [38].

On the contrary, the calendar-date portfolio methodology manages to avoid the
problem of cross-sectional dependence. In this method, when the portfolio is con-
structed, the variance in each of the periods automatically incorporates the cross-
sectional correlation of the individual returns of the sample firms. According to [16],
establishing a portfolio of firms that have experienced the event in a certain month
is the most robust method to control cross-dependence. For instance, if a portfolio is
created with the firms that have undergone a merger or acquisition in the thirty-six
preceding months, it can be readjusted on a monthly basis to eliminate the mergers
and acquisitions that are more than thirty-six months old and add new ones. This
approach is a monthly portfolio readjustment. Consequently, the returns of the estab-
lished portfolio account for the cross-correlation because there is no inference based
on standard cross-sectional errors.

Reference [38] provide evidence to defend the calendar-time portfolio approach
versus the compounding of returns, claiming it is more a powerful way to detect the
poor performance of the first methodology versus the cross-sectional dependence
of the individual abnormal returns found in the second method. In this respect, the
calendar-time portfolio approach shows a clear advantage over BHARs.

Heteroskedasticity

Unfortunately, not everything is advantageous in the calendar-time portfolio
approach. The procedure of creating monthly portfolios automatically eliminates the
problem of cross-sectional dependence, but it introduces an additional complexity;
because the calendar-time portfolios contain a variable number of firms and they are
continually modified from one month to the next, a change occurs in the regression
residuals and the possibility of heteroskedasticity arises.

To solve this issue, Mitchell and Stafford require that at least ten firms be included
in each benchmark portfolio; “we mitigate the heteroskedasticity problem substan-
tially by requiring at least 10 firms in the event portfolio at each point in time,
which accounts for the majority of the diversification effect of the portfolio residual
variance.” Reference [38], p.316.

Other authors try to overcome this potential limitation by modeling the condi-
tional variance with the standard GARCH(1,1) model, but the results do not differ
substantially [16].

In spite of the aforementioned drawbacks, the calendar-time portfolio approach,
as compared to the previously analyzed methodologies (BHARs and CARs), offers
the tremendous advantage that, with the construction of the portfolio, the variance
in each of the periods automatically incorporates the cross-sectional correlation of
the individual returns of the sample firms. The use of large samples and the careful
construction of benchmark portfolios can partiallymitigate the negative effects of the
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BHAR methodology, according to citeLyo and [38], but it cannot solve the serious
problem of cross-sectional dependence.

Therefore, and even more importantly, because the serious statistical problems
commented above cannot be avoided, we clearly recommend the calendar-time port-
folio approachbecause, as [38], p. 296, say: “Since our objective is to reliablymeasure
abnormal returns, it is imperative that the methodology allows for reliable statistical
inferences.”

At any rate, it is common for some authors to choose to complete the calendar-
date portfolio calculations with the results provided by the other methodologies.
New improvements are also being introduced into the BHAR approach [19], to try
to resolve the aforementioned serious drawbacks, which will open up the field even
more for financial and econometric researchers.

Consequently, we also recommend to include in any research the results obtained
with the other mentioned methodologies for purposes of analysis completeness and
robustness because, as [17] had already anticipated, “it is recommendable to compare
the results obtained from different methods”.

3 Ilustrating the Theoretical Debate with an Empirical
Analysis of M&A

To conclude this study of long-term value creation evaluation, we include the results
of the analysis developed by the authors in [40] studying the long-term value creation
in the telecommunication sector from 1995–2010. This study is especially relevant
here to illustrate the different results obtained using the three described methodolo-
gies and the debate between long-term and short term approaches.

Based on this econometric analysis, this research found clear evidence of value
destruction (2000–2010) in the long run, when the sector is analysed as a whole, and
evidence of value creation when the companies involved use the same language.

The study analyses 4337M&Amade between operators, and prepares 720 bench-
mark portfolios for comparison. Although the chosenmethodologywas the calendar-
time portfolio approach, these authors include, for purposes of method completeness
and robustness, the values obtained using the other methodologies and calculate also
the calendar-time cumulative abnormal returns (Table3), which are defined as the
mean abnormal return calculated every month for each firm, subtracting from the
monthly portfolio returns of each firm the expected portfolio return [38].

CTARt = Rpt − E(Rpt )

In all the cases, with all the methodologies, there is evidence of the progressive
“negativization” of the sample mean. In other words, as we move towards long-term
time horizons, we evolve towards value destruction by mergers and acquisitions in
telecommunications. This result reinforces the concerns about short term studies that
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Table 3 Comparison of results of the different methodologies

CTAR BHAR CAR

3 months n 282 280 282

mean 0.0030221 0.0100773 –0.0017163

std. deviation 0.175769 0.175067 0.207724

t-statistic 0.288729 0.963205 –0.138751

p-value 0.773 0.3363 0.8897

6 months n 281 283 281

mean –0.0008868 –0.0056857 –0.0108269

std. deviation 0.228348 0.235013 0.2755

t-statistic –0.0651029 –0.406991 –0.658773

p-value 0.9481 0.6843 0.5106

12 months n 263 262 263

mean –0.0245416 –0.004326 –0.0549688

std. deviation –1.24107 –0.231845 –2.28785

t-statistic 0.2157 0.8168 0.02294

p-value 0.2157 0.8168 0.02294

24 months n 250 232 250

mean –0.053437 –0.0370553 –0.113869

std. deviation 0.420127 0.358437 0.54822

t-statistic –2.01109 –1.57464 –3.28414

p-value 0.04539 0.1167 0.00117

36 months n 195 191 194

mean –0.129255 –0.019915 –0.274171

std. deviation 1.01001 0.661473 1.24105

t-statistic –1.78707 –0.416088 –3.07705

p-value 0.07549 0.6778 0.002395

Source [40]

can conduct to inaccurate conclusions such as a positive impression of value creation
in the M&A; longer time horizon can demonstrate value destruction giving a more
complete and accurate view on the effects of the operation. This can be observed
graphically in Fig. 1.

Also in all the cases, with the different time horizons, when calendar-time portfo-
lios are used as benchmark the values are closest to zero (smallest values in absolute
value), which seems consistent with the perfect market hypothesis because it is not
possible to expect large abnormal returns. In this respect, the values with BHAR and
CAR are greater than with the calendar-time portfolio methodology showing con-
sistency with their indicated theoretical disadvantages. The same sign is obtained
with the three methods in each time frame. With all the methodologies, we observe
that after six months, value would already be destroyed as all the methods present
negative signs in the sample mean, although the results are significant with longer
horizons according to the methods.
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Fig. 1 Graphic representation of CTAR evolution. Source: Prepared by authors based in [40]
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Cournot Duopolies with Investment in R&D:
Regions of Nash Investment Equilibria

B. M. P. M. Oliveira, J. Becker Paulo and Alberto A. Pinto

Abstract We study a model of a Cournot duopoly where firms invest in R&D to
reduce their production costs. Depending on the parameters, we may find regions
with one, two or three Nash equilibria of the investment. Here, we study the effect
of the parameters in these regions, in particular, we study the effect of the possible
market saturation, the maximum relative cost reduction and the product differentia-
tion, giving special attention to regions with multiple Nash equilibria. We observed
that, in general, the competitive region, where both firms invest, is reduced as we
increase the possible market saturation and the differentiation of the products and is
enlarged when we increase the maximum relative cost reduction.

Keywords Nash equilibria · Cournot duopoly · Multiple equilibria · R&D
investment

1 Introduction

Weconsider a Cournot duopolywhere firms invest in R&D to reduce their production
costs, as described in [3, 4, 7, 11]. This competition is modeled, as usual, by a
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two stages game. In the first subgame, the two firms invest in R&D to reduce the
respective initial production costs. In the second subgame, the two firms are under
Cournot competition, with production costs equal to the reduced cost determined
by the R&D investment. We use the R&D cost reduction function introduced in
[7]. In [1, 5–10] we study the perfect Nash equilibria of this two stages game and
the economical effects of these equilibria. The second subgame, consisting of a
Cournot competition, has a unique perfect Nash equilibrium. For the first subgame,
consisting of an R&D cost reduction investment program, we exhibit four different
regions of Nash investment equilibria that we characterize as follows: a competitive
Nash investment region C where both firms invest, a single Nash investment region
S1 for firm F1, where just firm F1 invests, a single Nash investment region S2 for firm
F2, where just firm F2 invests, and a nil Nash investment region N , where neither of
the firms invest (see [7, 9]). These regions may intercept, and we observe, for some
parameter values, regions with one, two or three Nash investment equilibria.

2 R& D Investments on Costs

We consider an economy with a monopolistic sector with two firms, F1 and F2, each
one producing a differentiated good. The inverse demands pi are linear:

pi = α − βqi − γqj, (1)

with parameters: value to buyers α > 0, possible market saturation in monopoly
(market saturation) β > 0 and product differentiation γ. We assume that γ > 0 and
thus the goods are substitutes. Firm Fi may invest an ammount vi ≥ 0 in an R&D
program ai : R+

0 → [bi, ci] that reduces its production cost to

ai(vi) = ci − ε(ci − cL)vi
λi + vi

, (2)

with bi = ai(+∞) = ci − ε(ci − cL) and with parameters:minimum production cost
cL in (0,α), initial production cost ci in [cL,α], maximum relative cost reduction
(maximum reduction) ε in (0, 1) and inverse of the quality of the R&D investment
program λ > 0, see [7] for further details. Here we will consider that the firms will
only compete in one period of time. Furthermore, we assume that the two firms are
identical except, at most, in their production costs.

The profit πi(qi, qj) of firm Fi is given by

πi(qi, qj) = qi(α − βqi − γqj − ai) − vi, (3)

for i, j ∈ {1, 2} and i �= j. The Nash equilibrium output (q∗
1, q

∗
2) is given by
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q∗
i =

⎧
⎪⎨

⎪⎩

0, if Ri ≤ 0
Ri, if 0 < Ri <

α−aj
γ

α−ai
2β , if Ri ≥ α−aj

γ

, (4)

with Ri as defined in [5].
The new production costs region can be decomposed, at most, in three discon-

nected economical regions characterized by the optimal output level of the firms: the
monopoly region M1 of firm F1, the duopoly region D, and the monopoly region M2

of firm F2. For further details see, e.g., [5, 7]. The boundaries between the duopoly
region D and the monopoly region Mi are lMi with i ∈ {1, 2} and are presented,
explicitly in [7–9].

The profit function πi of firm Fi, is given by

πi(a1, a2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

πi,Mi , if (a1, a2) ∈ Mi

πi,D, if (a1, a2) ∈ D

−Wi(a1, a2), if (a1, a2) ∈ Mj

,

with πi,Mi , πi,D and Wi as defined in [5]. The best investment response function
Vi : R+

0 → R
+
0 of firm Fi is explicitly computed in [7]. This can be a multi-valued

function.
We study the effect of the normalized production differentiation (normalized dif-

ferentiation), γ̂ = γ/β, with γ̂ = 1 being its default value. The default values of the
other parameters are cL = 4, α = 10, β = 0.013, ε = 0.2 and λ = 10. In a neigh-
bourhood of these values, we found that the Nash investment equilibria consists of
a unique, or two, or three points, depending upon the pair of initial production costs
[7]. The set of all Nash investment equilibria form the Nash investment equilibrium
set, that can be divided in three types of regions: the competitive Nash investment
region C, the single Nash investment region Si, and the nil Nash investment region
N . For further details see e.g. [5, 7]. The nil Nash investment region can be further
decomposed into 4 regions: NLL, when the production costs of both firms are low;
NHH , when the costs of both firms are high;NLH , when the first firm has low produc-
tion cost and the second has high cost; and NHL, the symmetric of the previous case.
Moreover, the single investment region for each firm can also be decomposed into:
the single favorable region SF

i , when the only firm that invests is the one with the
lower production cost, thus enhancing its advantage; and the single recovery region
SR
i , when the only firm that invests is the one with the high production cost, thus
reducing its disadvantage. The region of multiple Nash investment equilibria are the
result of the interception of (at least two of) Si; Sj and C [5, 7].
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3 Nash Investment Equilibria

The regions of Nash investment equilibria depend on the initial production costs
and on the other parameters. We observe that multiple Nash investment equilibria
may be found in the region of high production costs. In this section, we study the
effect on the regions when we change the following parameters: market saturation β,
maximum reduction ε, and normalized production differentiation γ̂. Regarding the
coloring of Figs. 1, 2 and 4, the nil Nash investment region N is painted in grey if
the firms are in duopoly, and dark blue or dark red if one of the firms is in monopoly.
The single Nash investment regions S1 and S2 are colored blue and red, respectively,
using a slightly lighter tone if firms are in duopoly. The competitive Nash investment
region C is painted in green. The region where S1 and S2 intersect are colored pink,
the region where S1 and C intersect are painted in light blue and the region where
S2 and C intersect are colored yellow. The region where the regions S1, S2 and C
intersect are colored light grey.

We begin by studying the effect of an increase in the market saturation β, rep-
resenting a change in the outputs of the firms, from cases with higher quantity
output (β = 0.0002) through 0.0013 (its default value) to cases with lower output
(β = 0.0100), see Fig. 1. For the lower values of β we observe a large competitive
region C and very small nil investment regions NLL, NLH , and NHL. Furthermore,
the single favourable region SF

i present for both firms. We observe, for each firm,
the presence of a very thin single, recovery region SR

i . We could not observe regions
of multiple Nash investment equilibria with the numeric accuracy we used. When
we increase β, the competitive region is reduced and we observe an increase of the
area covered by the nil investment regions NLL, NLH , NHL and an increase of the
single recovery region SR

i for both firms. The presence the regions with multiple
Nash equilibria and the nil NHH region are observed in a neighborhood of the default
values of the parameters. When the value of β is further increased, we observe that
the nil investment regions are enlarged, eventually merging, while the single and the
competitive region shrink until they disappear. The last regions to disappear are the
single favourable regions inside the duopoly region. If β becomes large enough, the
profit of the firms is so small that it will not be worthy to invest.

We also study the effect of the maximum relative cost reduction ε, see Fig. 2.
For low values of ε, the firms do not invest, since the return from the investment is
insufficient. Hence, the nil investment region occupies the parameter space we are
analysing. As we increase ε to 0.03, we observe that the single favourable investment
regions SF

i and SF
j appear in the duopoly regions for intermediate costs, and in the

monopoly region, for costs near the boundary with the single investment regions
inside the duopoly region. As we further increase the maximum reduction ε, the
single favourable investment regions SF

i increase and we observe the appearance
of the competitive region (ε = 0.05) and the nil investment region is split. We also
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Fig. 1 Effect the market
saturation of β in the regions
of Nash investment
equilibria. Production costs
in [4, 10]. Zoom with
production costs in [9, 10],
ε = 0.2 and γ̂ = 1. See
Sect. 3 for details in coloring

observe the presence of two small single recovery regions SR
i . We find another split

in the nil investment regions, creating NLL, NLH , NHL and NHH for larger values
of ε. This occurs as the competitive region increases, pushing the also increasing
recovery regions into the boundaries. For the default value, ε = 0.20, all these regions
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Fig. 2 Effect maximum
reduction of ε in the regions
of Nash investment
equilibria. Production costs
in [4, 10]. Zoom with
production costs in [9, 10].
β = 0.0013 and γ̂ = 1. See
Sect. 3 for details in coloring

are visible, together with the regions with multiple Nash equilibria. Increasing the
maximum reduction ε to larger values (0.30 and 0.50), makes the investment more
effective. This causes the shrinkage of the single investment regions in duopoly,
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Fig. 3 Effect of the normalized product differentiation γ̂ = γ/β on the investment (left) and on the
profit (right). The investment decreases until γ̂ 	 0.7 and increases afterwards. The profit decreases
with γ̂. The initial costs for both firms are (ci, cj) = (6, 6). All other parameters are at their default
values

together with the multiple investment regions, while the competitive region increases
and the monopoly regions suffer little change.

Finally, we study the effect of the the normalized product differentiation γ̂, in
(0, 1], see Figs. 3 and 4. When we study the investment and the profits as a function
of the normalized product differentiation, we observe that the investment isminimum
for γ̂ 	 0.7, see Fig. 3. We also observe that the profit decreases monotonically with
γ̂. The decrease in the profit can be explained by the increased competition each firm
suffers when γ̂ is increased, thus decreasing its products selling price. Regarding
the investment, for low values of γ̂, close to 0 as the profit is reduced, so it is
reduced the amount invested. For large values of γ̂, close to 1, as γ̂ increases, the
competition increases and there is a more evident advantage to invest. A reduction
in the production cost of one firm will allow it to increase its output, while the other
firm may be forced to reduce its outputs. For our parameter values, the effect in the
investment of the decrease in the profit, while not having enough advantage in the
investment create the observed minimum of the investment when γ̂ 	 0.7.

We also studied how the regions change as γ̂ changes, see Fig. 4. If γ̂ = 0, the two
goods are considered to be independent and the market behaves like each firm is in
monopoly. When the products are substitutes for γ̂ > 0 we observe that there is an
interaction effect between the investment and the profits of the firms. This creates the
possibility of multiple Nash investment regions, that we find when γ̂ = 0.2. As we
increase γ̂, we observe that the competitive region decreases, as all single investment
region increase, in particular, the single favourable investment in monopoly. The
nil investment regions have different behaviour, while NLL, NLH and NHL increase,
in particular the latter two, NHH have a similar total size, although both monopoly
regions inside it increase with γ̂.
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Fig. 4 Effect normalized
differentiation of γ in the
regions of Nash investment
equilibria. Production costs
in [4, 10]. Zoom with
production costs in [9, 10].
β = 0.0013 and ε = 0.2. See
Sect. 3 for details in coloring

4 Conclusions

We studied the Cournot competition model with R&D programs, using the R&D
investment function introduced in [7]. In this chapter, we gave special attention to
the competitive, single and nil regions investment. In each region, the firms could
be in duopoly or in monopoly. We observed the effect on these regions of the Nash
investment equilibria when we changed the parameters: possible market saturation
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in monopoly β, maximum relative cost reduction ε and normalized product differen-
tiation γ̂. We found, as in [1, 5, 7–10], that there are regions in the parameter space
where the Nash investment equilibrium is not unique, in these regions two or three
equilibria can be found. In this article we observed the persistence of the regions of
each type and described how these regions change as we change the parameters β, ε
and γ̂ of the R&D programs of both firms. Overall, the competitive region decreases
as we increase the market saturation β and the normalized differentiation γ̂ and
increases as we increase the maximum reduction ε. The single investment regions
and the nil regions have opposite behaviour to the competitive region. Furthermore,
we also observed here that the regions with multiple Nash equilibria are present for
high production costs for both firms.
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A Stochastic Logistic Growth Model with
Predation: An Overview of the Dynamics
and Optimal Harvesting

S. Pinheiro

Abstract We consider a logistic growth model with predation and a stochastic
perturbation given by a diffusive term with power-type coefficient. The resulting
stochastic differential equation (SDE) has the particularity that the standard condi-
tions for the existence and uniqueness of solutions of SDEs do not hold for a large
subset of parameter space. Thus, we start by discussing the well posedness of the
problem at hand, leading to a detailed characterization for the existence and unique-
ness of solutions. We then provide criteria ensuring extinction and persistence of
such population. Additionally, we list subsets of parameter space where (absolutely
continuous) stationary measures for the SDE under consideration are guaranteed to
exist, providing a description for the corresponding densities. We conclude with an
application to the optimal management of resources.We consider a real asset such as,
for instance, a farm or an aquaculture facility, devoted to the exploration of a unique
culture or population whose growth follows a SDE such as described above, and look
for the optimal harvesting strategy associated with such culture or population.

Keywords Population dynamics · Stochastic differential equations · Optimal
control

1 Introduction

We provide an overview of the main results in the papers [27–29] and the PhD
thesis [26], concerning the asymptotic dynamics and an optimal harvesting problem
associated with a stochastic logistic growth model with a predation term given by
a Holling type-n functional, for some integer n ≥ 2, and a stochastic part driven by
a one-dimensional standard Brownian motion with a diffusion coefficient of power-
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type, i.e. proportional to xαdWt , where x is the population size, α is some positive
constant and W is a standard one-dimensional Brownian Motion.

We start by discussing the existence and uniqueness of global solutions for the
Stochastic Differential Equation (SDE)

dx(t) =
[
ρx(t)

(
1 − x(t)

K

)
− ε

(x(t))n−1

1 + (x(t))n−1

]
dt + σ(x(t))αdWt , (1)

with positive initial condition and up to the first instant of time where such solution
reaches zero. Given the setup under consideration here, the only meaningful and
relevant continuation for a solution reaching zero, is for such solution to remain
constant and equal to zero afterwards. There are two key difficulties to be addressed.
The first one is that the coefficients of (1) do not satisfy the linear growth condition,
so that solutions may explode in finite time. The second issue that needs to be
addressed is that whenever α < 1 the diffusion coefficient of (1) is not Lipschitz
continuous in any neighbourhood of zero, which may lead to problems concerning
uniqueness of solutions. We overcome such problems by introducing a modified
locally Lipschitz condition, which turns out to be particularly suitable for the problem
under consideration here. Moreover, we use Lyapunov functions techniques to prove
that solutions of (1) do not blow up to infinity in finite time.

Previous related work includes Roberts and Saha paper [31] concerning the
asymptotic behaviour of logistic epidemic models. We should also mention that
Gary et al. [15] extend the classical SIS epidemic model from a deterministic frame-
work to a stochastic one, yielding a stochastic perturbation of a logistic differential
equation whose diffusion coefficient is (a quadratic polynomial) proportional to the
population deterministic growth rate. In [17, 18] Jiang et al. consider a randomized
logistic equation with coefficients given by periodic functions and a diffusive coeffi-
cient depending linearly on the population size. In [16] Ji et al. consider a stochastic
logistic equation, but with no predation term and the additional assumption that the
parameter α is restricted to the interval (1, 3/2). In [8, 9] Braumann considers a
large family of stochastic differential equations modelling the growth of popula-
tions subjected to harvesting in a randomly fluctuating environments is considered.
Conditions for non-extinction and for the existence of stationary distributions are
provided for these models. However, the SDE under consideration here does not
fit into the assumptions used there. Similar results can be found in [3, 14, 24] and
the references therein, for specific density-dependent natural growth functions and
harvesting policies.

In what concerns the Optimal Harvesting Problem, early developments of the sub-
ject were related with deterministic population dynamics models, for both discrete-
time and continuous-time systems (see, e.g. [10] and references therein for further
details on the subject). Earlier approaches to this topic consisted in finding harvest-
ing strategies maximizing sustained yields [3, 24], under the working assumption
that a (absolutely continuous) stationary distribution exists for the population size,
ignoring the risk of population extinction. The combined influence of extinction from
demographic and environmental stochasticity, as well as from harvesting strategies,
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was studied in [20], where the criteria used to find the optimal harvesting strategies
was the maximization of the cumulative harvest subject to some prescribed risk of
extinction. Some more recent works on the topic of optimal harvesting have focused
mainly on the use of stochastic optimal control techniques to maximize the expected
total discounted amount of the harvested population under the assumption that the
population size evolves according to some form of the stochastic logistic growth
model [1, 21].

The approach followed in [26, 29] uses dynamic programming techniques to find
harvesting policies that jointly maximize the utility derived from continuously har-
vesting part of the population over a finite interval of time and the utility obtained
from reaching the final instant in that interval with the largest possible population
size. Thus, the problem surveyed here combines the point of view of maximizing
utility from harvesting, while also aiming at long-term population preservation. For
the sake of completeness we mention that Dynamic Programming was first devel-
oped by Bellman in the 1950s [4–7], and further extended by Florentin [12, 13] and
Kushner [19]. The key goal in the dynamic programming methodology is to obtain
a backwards recursive relation for the value function associated with a given opti-
mal control problem. If additional regularity conditions are satisfied, such recursive
relation can be written as a boundary value problem associated with a second order
partial differential equation known as theHamilton–Jacobi–Bellman (HJB) equation.
Rather complete discussions of this subject may be found in the monographs [11,
32]. It should be remarked that difficulties arise when trying to implement dynamic
programming techniques to address the optimal harvesting problem associated with
the stochastic logistic growth model described earlier. The main problems are caused
by the fact that the linear growth condition does not hold for the drift part of our
stochastic logistic growth SDE and the fact that the diffusion coefficient is not always
Lipschitz continuous. Nevertheless, under a weaker set of assumptions, we obtain
in [26, 29] a dynamic programming principle and the corresponding HJB equation
for the stochastic optimal control problem we are interested in. We then apply these
results to find the optimal harvesting strategies in feedback form and to provide a
couple of qualitative properties for the value function, namely in what concerns its
monotonicity with respect to the state variable and some relevant model parameters.

2 On a Stochastic Logistic Growth Model with Predation

Throughout this section we will consider the stochastic logistic growth model (1).
We start by noticing that (1) does not satisfy the standard assumptions for existence
and uniqueness of solutions. However, under a weak set of assumptions, we were
able to ensure that solutions with a positive initial condition exist and are unique
up to the first instant of time at which zero is reached. Moreover, we provide criteria
for population extinction, persistence and for the existence of a stationary measure.
Furthermore, we provide a detailed characterization for the asymptotic stationary
measure density in the former case. The contents of this section are part of [27, 28].
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2.1 The Stochastic Model

Let
(
Ω,F , {Ft }t≥0,P

)
be a complete probability space with a filtration {Ft }t≥0

satisfying the usual conditions, i.e. {Ft }t≥0 is increasing and right continuous while
F0 contains all P-null sets. Let {Wt }t≥0 be a standard one-dimensional Brownian
motion defined on the filtered probability space

(
Ω,F , {Ft }t≥0,P

)
. We will con-

sider stochastic perturbations of the logistic growth model with predation term of the
form

dx(t) = f (x(t))dt + g(x(t))dWt , (2)

where

f (x) = ρx
(
1 − x

K

)
− ε

xn−1

1 + xn−1
, (3)

and
g(x) = σ xα , (4)

for some positive real parameters ρ, K , ε, σ, α and integer n ≥ 2.
The additive stochastic termdrivenby theBrownianmotionW modelsfluctuations

in the size of the population caused by a number of external factors such as, for
instance, changes in weather and climate, as well as the influence of diseases and
competition with other species. In the following sections we will provide conditions
that guarantee the existence and uniqueness of relevant solutions of (2) and we will
discuss the asymptotic behaviour of such solutions by providing criteria ensuring
extinction of the population or persistence of the population, as well as the existence
of an absolutely continuous stationary measure.

2.2 Existence of Global Solutions

In this section we state the existence of a global non-negative solution of (2) for every
positive initial condition. There are two main difficulties to be addressed. The first
one is that the linear growth condition does not hold for the drift part of (2), which
could cause the solution to blow up in finite time. The second one is that for values
of α smaller than one, the diffusive part of (2) is not Lipschitz in a neighbourhood
of 0, which may disturb the existence of local solutions.

We say that a function f : R → R is locally Lipschitz in R
+ if for every integer

k ≥ 1 there exists hk > 0 such that for every x, y ∈ [
1
k , k

]
we have

| f (x) − f (y)| ≤ hk |x − y| .

We remark that the definition given above is not the standard definition for locally
Lipschitz functions, but rather an adjusted version addressing the issue caused by (4)
not being Lipschitz on any neighbourhood of zero if α < 1.
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We state next an abstract result implying the existence of local solutions of (2).
Its proof extends that of Theorem3.15 of [22] to the setup under consideration here.
See [26, 27] for further details.

Proposition 1 Fix T > 0 and let f, g : R → R be two locally Lipschitz functions
in R+. Then, the stochastic differential equation

dx(t) = f (x(t))dt + g(x(t))dWt

has a unique maximal local solution in R
+, {x(t)}0≤t≤σ∞ , for every positive initial

condition x0.

Thus, as a consequence of Proposition1 we obtain that for every T > 0 and for
every α > 0, the stochastic differential equation (2) admits a unique maximal local
solution in R

+, x(t), defined on [0, σ∞). If σ∞ = T , then x(t) is finite and strictly
positive for all t ∈ [0, T ]. Otherwise, x(t) becomes zero or blows up to infinity at the
instant σ∞ < T . We will see next that the solutions of (2) never blow up to infinity.
Moreover, if α ≥ 1 the solutions remain positive for every t ≥ 0. However, if α < 1
the solutions of (2) may reach zero in finite time. Nevertheless, from the point of
view of the problem under consideration here, the only meaningful continuation for
a solution reaching zero in finite time is to have it constant and equal to zero from
that instant of time onwards. More precisely, let τ0 be the stopping time defined as

τ0 = inf{t ≥ 0 : x(t) = 0} ,

and let x(t) be such that

x(t) =
{
x(0) + ∫ t∧τ0

0 f (x(s)) + ∫ t∧τ0
0 g(x(s))ds if t < τ0

0 if t ≥ τ0
. (5)

From now onwe restrict our attention to the setM of solutions of (2) of the form (5),
i.e. with the property that if there exists t∗ > 0 such that x(t∗) = 0, then x(t) = 0
for every t > t∗. We obtain the following result.

Theorem 1 For any given positive initial condition x(0) = x0 and any α > 0, the
SDE has a unique global non-negative solution x(t) in M . Moreover, if α ≥ 1 the
solution is strictly positive.

The following result follows as a consequence through the use of a stochastic
dominance argument.

Corollary 1 Consider the family of stochastic differential equations of the form

dx(t) = f (x(t))dt + σ(x(t))αdWt t ≥ 0 , (6)

where σ and α are positive constants. Assume that f is locally Lipschitz in R
+ and

that the following additional conditions hold:
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(i) f (0) = 0
(ii) there exist A, B > 0 such that f (x) ≤ Ax(B − x) for every x > 0.

Then, for any positive initial condition x(0) = x0, the SDE (6) has a unique non-
negative solution in M .

For a proof of the two statements above see [26, 27].

2.3 Criteria for Population Extinction

We will now give criteria ensuring extinction of populations whose size evolves
according to the logistic stochasticmodel with predation term (1).More precisely, we
provide conditions underwhich extinctionof the populationoccurs, respectively,with
positive probability and full probability. Additionally, we provide extra conditions
under which the population becomes extinct exponentially fast with full probability.
More importantly, in the special case where α < 1, we prove that extinction occurs in
finite timewith full probability. From an intuitive point of view, population extinction
with full probability when α < 1, regardless of every other parameter values, can
be explained by the combination of two factors. First, notice that in the absence of
any randomness the population size tends to be below the (finite) carrying capacity
of the drift term of (1). Second, the variance of the instantaneous rate of growth of
the population increases with decreasing population size, becoming arbitrarily large
when the population size approaches zero. Thus, since the population size can not
escape to infinity, the population eventually becomes extinct in finite time whenever
α < 1 due to the large variance of its instantaneous rate of growth.

The next theorem states that for every α < 1 the population will become extinct
with probability one. For its proof see [26, 27].

Theorem 2 If α < 1 and x0 > 0, then

P {∃t < ∞ : x(t) = 0} = 1 ,

that is, x(t) reaches zero a.s.. In other words, the population goes extinct with prob-
ability one.

Wewill now consider the case α ≥ 1. Very roughly, we obtain that the population
becomes extinct with positive probability for sufficiently small values of the natural
growth rate ρ.

Theorem 3 Assume that one of the following conditions holds:


 α = 1, n = 2 and ρ − ε < σ 2/2

 α = 1, n > 2 and ρ < σ 2/2

 α > 1, n = 2 and ρ < ε.
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Then, the trivial solution x(t) = 0 of (2) is stochastically asymptotically stable,
i.e. there exists a set of positive Lebesgue measure A ⊂ R

+ such that for any ini-
tial condition x0 ∈ A, the solution of (2) through x0 becomes extinct with positive
probability.

Wewill nowprovide conditions underwhich the trivial solution x(t) = 0 is almost
surely exponentially stable. Aswewill see below, such conditions are strongly related
with the existence of a negative upper bound for the infinitesimal generator associated
with the SDE (2) acting on the logarithm function ln x . To fix notation, let F : R+ →
R denote the aforementioned infinitesimal generator:

F(x) = ρ
(
1 − x

K

)
− ε

xn−2

1 + xn−1
− 1

2
σ 2x2α−2 . (7)

We note that, given some choice of parameters, exactly one of the following three
alternative descriptions holds for F :

(i) F is strictly decreasing for every x > 0;
(ii) there exists x∗ > 0 such that F is strictly increasing in [0, x∗) and strictly

decreasing for every x > x∗;
(iii) there exist 0 < x1 < x2 such that F is strictly decreasing in [0, x1), strictly

increasing in (x1, x2) and strictly decreasing for every x > x2.

Moreover, we remark that each one of the three alternative behaviours above holds
in a subset of parameter space with positive Lebesgue measure.

Theorem 4 Assume that one of the conditions of Theorem3 holds and that, addi-
tionally, the function F in (7) admits a strictly negative upper bound. Then, for any
given positive initial condition, the solution of the SDE (2) obeys

lim sup
t→∞

1

t
log(x(t)) < 0 a.s. ,

namely, the trivial solution x(t) = 0 is almost surely exponentially stable. In other
words, the population goes extinct with probability one, exponentially fast.

For a proof of the previous two theorems see [26, 27].

2.4 Persistence

We now shift our focus to the subject of population persistence and the existence
of a (absolutely continuous) stationary measure under the dynamics of the SDE (1).
Indeed, such measures play an analogue role to stable equilibria in the corresponding
deterministic models. Furthermore, under the same set of conditions as for persis-
tence, we state that a unique stationary distribution exists. Finally, we use the Forward
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Kolmogorov equation to provide a rather detailed characterization for the densities
of the stationary measures of (1), summarizing all the information in a “stochastic”
bifurcation diagram. We remark that such bifurcation diagram is complete in the
sense that the subset of parameter space where persistence of population occurs (and
an absolutely continuous stationary measure exists) is the complement in parameter
space of the subset where population extinction is guaranteed to occur (up to the
measure zero subset corresponding to the bifurcation thresholds).

Theorem 5 Assume that one of the following sets of conditions holds:


 α = 1, n = 2 and ρ − ε > σ 2/2

 α = 1, n > 2 and ρ > σ 2/2

 α > 1, n = 2 and ρ > ε


 α > 1 and n > 2.

Then, for any given positive initial condition x0 the solution of the SDE (2) satisfies

lim sup
t→+∞

x(t) ≥ ξ− a.s. (8)

and
lim inf
t→+∞ x(t) ≤ ξ+ a.s. , (9)

where ξ− and ξ+ are, respectively, the smaller and the larger positive roots of the
function F : R+ → R in (7). In other words, x(t) will rise to or above ξ− > 0
infinitely often with probability one.

For a proof of the preceding result see [26, 27].
The next theorem states that solutions of (2) with a positive initial condition define

a homogeneous Markov process. Its proof uses standard arguments in the stochastic
differential equations literature (see, e.g. [22, 25]).

Theorem 6 Let x(t) ∈ M be a solution with positive initial condition of the
stochastic differential equation

dx(t) = f (x(t))dt + σ(x(t))αdWt , t ≥ 0

where σ and α are positive constants and f satisfies the conditions of Corollary 1.
Then x(t) is a homogeneous Markov process, i.e. its transition probability

P(y, s; A, t) = P
{
xy,s(t) ∈ A

}
(10)

is such that
P(y, s; A, s + t) = P(y, 0; A, t) ,

where xy,s(t) is the solution of
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xy,s(t) = y +
∫ t

s
f
(
xy,s(u)

)
du +

∫ t

s
σ

(
xy,s(u)

)α
dWu, on t ≥ s .

Let Px0,t (·) denote the probability measure induced by a solution x(t) of (2) with
positive initial condition x(0) = x0, that is

Px0,t (A) = P(xx0,0(t) ∈ A), A ∈ B(R+) .

If there is a probability measure P∞(·) in (
R

+,B(R+)
)
such that

Px0,t (·) → P∞(·) in distribution for any x0 ∈ R
+ ,

we say that the SDE (2) has a stationary measure P∞(·).
Thenext theoremgives conditions underwhich theSDE (2) has a unique stationary

measure. For a proof see [26, 27].

Theorem 7 Assume that one of the following sets of conditions holds:


 α > 1 and n > 2

 α > 1, n = 2 and ρ > ε


 α = 1, n > 2 and ρ > σ 2/2

 α = 1, n = 2 and ρ > ε + σ 2/2.

Then, the SDE (2) has a unique stationary distribution P∞(·) in (
R

+,B(R+)
)
.

It should be noticed that the set of solutions for which there is a stationarymeasure
is the same that guarantees persistence of the population.

2.5 Asymptotic Behaviour and the Stochastic Bifurcation
Diagram

The evolution of the transition probability of our model is described by the Forward
Kolmogorov equation associated with the SDE (2), namely

∂

∂t
p(x, t) = − ∂

∂x
( f (x)p(x, t)) + 1

2

∂2

∂x2
(
g2(x)p(x, t)

)
, (11)

where f (x) and g(x) are as given in (3) and (4), respectively. As we have already
seen in the previous section, if P∞(·) is a stationary measure in

(
R

+,B(R+)
)
for

the Markov process defined by the solutions of (2), then its density with respect to
the Lebesgue measure in R+ is a steady state of (11).

Moreover, the unique steady state pstat (x) of (11) satisfying the constraints that
supp(pstat (x)) ⊆ R

+, pstat (x) ≥ 0 for every x ∈ R
+ and

∫
R+

pstat (x)dx = 1 ,
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is the density of the stationary measure P∞(·), whenever such measure exists.
Computing the steady states of the Kolmogorov equation we obtain that, up to a

multiplicative constant, these are given by

pε,n(x; ρ, σ, K , α) = p0(x; ρ, σ, K , α)e− 2ε
σ2

Eα,n(x) ,

where

p0(x; ρ, σ, K , α) = x−2α exp

(−2ρ

σ 2K

(
x3−2α

3 − 2α
− K

x2−2α

2 − 2α

))
,

for α ∈ (1, 3/2) ∪ (3/2,+∞),

p0(x; ρ, σ, K , 1) = x−(2−2ρ/σ 2) exp
(−2xρ/σ 2K

)
,

p0

(
x; ρ, σ, K ,

3

2

)
= x−(3+2ρ/σ 2K) exp

(−2ρ/σ 2x
)

and

Eα,n(x) =
∫ x

1

yn−1−2α

1 + yn−1
dy , x > 0 .

Although the expressions for pε,n given above may look rather complicated, they
are still amenable for analysis. Gathering the information provided by the explicit
knowledge of the steady states of (11) and the previous results concerning extinction
and persistence, we were able to construct a stochastic bifurcation diagram summa-
rizing all the possible asymptotic behaviours of (2).

Let us start by discussing how the stationary measures change while the param-
eter α > 0 changes (see Fig. 1). From Theorem2, we know that whenever α < 1,
the solutions of (2) reach zero in finite time with full probability. Thus, there can be
no absolutely continuous stationary measure when α < 1. Instead, the Dirac mea-
sure based at zero is the unique possible stationary measure. If α = 1, a very rich

Fig. 1 Bifurcation Diagram for varying values of α > 0
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Fig. 2 a Bifurcation Diagram for varying values of ρ and σ in the case where α = 1 and n > 2; b
Bifurcation Diagram for varying values of ρ and σ in the case where α = 1 and n = 2

picture containing several distinct qualitative behaviours emerges. We will discuss
this particular case with detail in a moment.

When α > 1, two distinct situations may occur, depending on whether n = 2 or
n > 2. If α > 1 and n > 2 there exists an absolutely continuous stationary measure
whose density is a unimodal map. On the other hand, if α > 1 and n = 2, then two
distinct behaviours may occur. If ρ < ε, then by Theorem3 the population becomes
extinct with positive probability for a set of initial conditions with positive Lebesgue
measure, i.e. an (eventual) stationary measure must contain a Dirac mass at zero. If
however ρ > ε, then there exists an absolutely continuous stationary measure with
an unimodal density.

Let us now consider the special case where α = 1, i.e. the diffusion coefficient
depends linearly on the population size (see Fig. 2). The cases n = 2 and n > 2 are
again somewhat different. If n > 2 (resp. n = 2) and ρ < σ 2/2 (resp. ρ < ε + σ 2/2)
then the population becomes extinct with positive probability for a set of initial
conditionswith positiveLebesguemeasure and an (eventual) stationarymeasuremust
contain aDiracmass at zero.At the bifurcation valueρ = σ 2/2 (resp.ρ = ε + σ 2/2),
based on the divergence of the integral of pε,n overR+, we conjecture that no absolute
continuous stationary measure exists. However, for ρ > σ 2/2 (resp. ρ > ε + σ 2/2)
an absolute continuous stationary measure exists. The stationary measure density
is a strictly decreasing function if σ 2/2 < ρ < σ 2 (resp. σ 2/2 < ρ − ε < σ 2) and
a unimodal function with limit zero when x tends to zero if ρ > σ 2 (resp. ρ >

ε + σ 2/2). Finally, at the bifurcation value ρ = σ 2 (resp. ρ = ε + σ 2) the density
pstatε,n is such that its limits as x tends to zero is finite and strictly positive.
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3 Optimal Harvesting for a Stochastic Logistic Growth
Model

We will now discuss the optimal harvesting policies associated with a population
whose size evolves according to the stochastic logistic growth model described in
Sect. 2 for the case where α ≥ 1 so that population extinction is not automatically
guaranteed. Since the stochastic differential equation associatedwith this model does
not always fit the standard assumptions in the stochastic optimal control literature,
namely sublinear growth, we develop a dynamic programming principle for the
stochastic optimal control problem we are interested in. We then use these results to
provide a description of the optimal harvesting policies, as well as some qualitative
properties of the corresponding value function.

3.1 Setup and Problem Formulation

Let T > 0 be some deterministic horizon. We will consider the random dynamical
system defined by the following controlled stochastic differential equation

dx(t) =
[
ρx(t)

(
1 − x(t)

K

)
− ε

(x(t))n−1

1 + (x(t))n−1
− h(t)x(t)

]
dt + σ(x(t))αdWt

x(0) = y , y ≥ 0 , (12)

corresponding to the stochastic logistic growth model with predation of the previous
section but with an extra term h(t)x(t) representing the amount of harvesting to
which the population is subjected to.

Our aim is to maximize the objective functional

J (y; h(·)) = E

[∫ T

0
U (t, h(t))dt + Ψ (T, x(T ))

]
(13)

subject to the stochastic dynamics determined by the SDE (12). The functionsU (t, ·)
and Ψ (T, ·) in the objective functional (13) are usually referred to as, respectively,
the “profit rate” function and the “bequest” function. These functions are assumed to
be strictly concave and increasing and represent, respectively, the utility derived from
harvesting the population at a rate h(t) throughout the interval [0, T ] and reaching
the final time horizon T with a population of size x(T ). We will assume that the
functions U : [0, T ] × R

+
0 × R

+
0 → R and Ψ : R+

0 → R are such that

• U and Ψ are uniformly continuous
• U and Ψ are Lipschitz continuous in x
• U (t, x, ·) is a C2 strictly increasing and strictly concave function for every t ∈

[0, T ] and x ≥ 0
• Ψ (·) is a C2 strictly increasing and strictly concave function.
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In the next section we will use dynamic programming techniques to study the
stochastic optimal harvesting problem (12) and (13). Afterwards, in Sect. 3.3, we
will provide a detailed description of the optimal strategies associated with (12) and
(13).

3.2 Dynamic Programming Principle and HJB Equation

The goal of this section is to obtain a dynamic programming principle for the stochas-
tic optimal control problem defined by (12) and (13) and to derive the associated
HJB equation.

Let x0,y(t; h(·))denotes the state trajectory, starting from ywhen t = 0, associated
with a control trajectory h(·). Denote byA s[0, T ] the set of strong admissible control
processes, i.e. measurable and {Ft }-adapted processes h : [0, T ] × Ω → R

+
0 such

that the stochastic differential equation (12) has a unique strong solution and the
following integrability conditions hold:

E

[∫ T

0

∣∣U (t, x0,y(t; h(·)), h(t))
∣∣ dt

]
< ∞, E

[|Ψ (x0,y(T ; h(·)))|] < ∞ .

The stochastic optimal control problem under consideration here amounts to find
h∗(·) ∈ A s[0, T ] maximizing the objective functional J (y; h(·)) subject to the state
equation (12) over the set of admissible controls A s[0, T ], that is

J (y; h∗(·)) = sup
h(·)∈A s [0,T ]

J (y; h(·)) . (14)

The Markovian property from Theorem6 makes the dynamic programming
method particularly suitable to address this problem. Indeed, it enables a reduction
of the initial optimal control problem to a two-parameter family of related problems,
from which it is possible to extract a recursive relation leading to Bellman’s opti-
mality principle and the HJB equation. In order to proceed, we need to consider the
weak formulation of the stochastic control problem, under consideration here as an
auxiliary tool.

For any (s, y) ∈ [0, T ) × R
+
0 , consider the stochastic differential equation:

{
dx(t) = f (x(t), h(t))dt + σ(x(t))αdWt , t ∈ [s, T ]
x(s) = y

(15)

together with the objective functional

J (s, y; h(·)) = E

[∫ T

s
U (t, xs,y(t; h(·)), h(t))d + Ψ

(
xs,y(T ; h(·)))

]
, (16)
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where f and g are as given in (3) and (4), and xs,y(t; h(·)) is the solution of (15)
associated with the control h(·) and starting from y when t = s.

Let A w[s, T ] denote the set of weak admissible controls and note that for any
(s, y) ∈ [0, T ) × R

+
0 and h(·) ∈ A w[s, T ], the SDE (15) admits a unique solution

x(·) = xs,y(·; h(·)). Hence, the objective functional (16) is well-defined. Moreover,
the value function V : [0, T ] × R

+
0 → R is well-defined as

{
V (s, y) = suph(·)∈A w[s,y] J (s, y; h(·))
V (T, y) = Ψ (y)

. (17)

The following two results provide implicit descriptions for the value function
V defined above: the dynamic programming principle and the corresponding HJB
equation. For further details and their proofs see [26, 29].

Theorem 8 (Bellman’s Optimality Principle)For any (s, y) ∈ [0, T ) × R
+
0 and s ≤

s ′ ≤ T we have that

V (s, y) = sup
h(·)∈A w[s,T ]

E

[
V (s ′, xs,y(s ′; h(·)))

+
∫ s ′

s
U (t, xs,y(t; h(·)), h(t))dt

]
.

This theorem gives a backwards recursive relation for the function V that can
be used to obtain a HJB equation, a partial differential equation whose solution,
whenever exists, is the value function of the optimal control problem under consid-
eration here. Let I ⊆ R be an interval and denote by C1,2

(
I × R

+
0 ;R)

the set of all
continuous functions V : I × R

+
0 → R such that Vt , Vx , and Vxx are all continuous

functions of (t, x) ∈ ◦
I ×R

+.

Theorem 9 (Hamilton Jacobi–Bellman equation) If the value function V is such
that V ∈ C1,2

([0, T ) × R
+
0 ;R)

, then it satisfies the boundary value problem

{
Vt + suph∈R+

0
H (t, x, h, Vx , Vxx ) = 0

V (T, x) = Ψ (T, x)
(18)

where the Hamiltonian function is given by

H (t, x, h, Vx , Vxx ) = U (t, x, h) + f (x, h)Vx + 1

2
σ 2x2αVxx , (19)

and f and g are given in (3) and (4), respectively.
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Fig. 3 Value Function V for
the set of parameters
(P) : T = 1, ρ = 1, K =
10, ε = 0.5, n = 3, σ =
0.1, α = 1.5, γ = 0.5, β =
0.5, θ = 0.04

3.3 The Optimal Harvesting Problem

In this section we will provide some qualitative properties of the value function
defined by (17). We also provide a characterization of the optimal strategy for the
particular case of Constant Absolute Risk Aversion Utilities.

Proposition 2 The value function V is strictly increasing with respect to x. Fur-
thermore, V is increasing with respect to the carrying capacity K and decreasing
with the predation size ε.

The proof of the previous result can be found in [26, 29]. For a plot of the value
function for a specific choice of model parameters see Fig. 3.

3.3.1 The Case of Constant Absolute Risk Aversion Utilities

We will now further specialize our discussion to the class of discounted exponential
utility functions

U (t, h) = e−θ t 1 − e−γ h

γ
, Ψ (T, x) = e−θT 1 − e−βx

β
, (20)

where the risk aversion parameters γ and β, as well as the discount rate θ , are strictly
positive constants.

The family of utility functions in (20) has the property of having a constant Arrow-
Pratt coefficient of absolute risk aversion (firstly introduced in [2, 30]), making these
utility functions key examples for the modelling of preference relations in Economic
Theory [23].

Combining the maximizer of the Hamiltonian function H given in (19) with (20),
we obtain that the optimal harvesting strategy is given by

h∗(t, x) = − 1

γ
(θ t + ln(xVx )) . (21)
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Substituting the optimal harvesting h∗(t, x) above in the HJB equation, we arrive at
the nonlinear second order partial differential equation

Vt + 1

γ

(
e−θ t − (1 − θ t − ln(xVx ))xVx

)
(22)

+
(

ρx
(
1 − x

K

)
− ε

xn−1

1 + xn−1

)
Vx + 1

2
σ 2x2αVxx = 0

with terminal condition given by

V (T, x) = e−θT 1 − e−βx

β
. (23)

We will now list the conclusions of a static analysis for the optimal harvesting
strategies associatedwith the optimal control problemunder consideration here. Such
analysis is based on small variations on the set of parameters used for the construction
of Fig. 3.

We start by noticing that the optimal harvesting is increasing as a function of both
t and x , being also convex with respect to time. See Fig. 4.

In what concerns the remaining model parameters, experiments performed by
numerical integration of the PDE (22) and (23) indicate that h∗ increases with:

(i) increasing values of natural growth rate ρ

(ii) decreasing values of the predation size ε and decreasing values of the Holling
functional parameter n

(iii) increasing values of the volatility coefficient σ and of the convexity parameter
α

(iv) decreasing values of the risk aversion parameters γ and β and of the discount
rate θ .

In what concerns the parameters σ , α and n, we should also add that these seem to
have very little influence on the feedback form of the optimal strategies.

Finally, we remark that the numerical results listed above seem to be robust with
respect to realistic changes in the parameters.

Fig. 4 Optimal harvesting
h∗ in feedback form for the
set of parameter values (P)
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4 Conclusion

We have provided a detailed description of the dynamics of a stochastic logistic
growth model with a predation term and a diffusion coefficient of power type.
The nonlinearity introduced by the diffusion coefficient leads to interesting distinct
asymptotic behaviours depending on the convexity of such coefficient. Another key
ingredient of the stochastic logistic growth model under consideration here is the
presence of a predation term given by a Holling type-n functional response. The
combined influence of the population natural growth rate and the size of the preda-
tion term turn out to be responsible for some of the different qualitative behaviours
described here.

Wehave also studied an optimal harvesting problemassociatedwith this stochastic
logistic growth model in the case where α ≥ 1. As a preliminary step, and since our
SDE model does not always fit the standard assumptions in the stochastic optimal
control literature (i.e. sublinear growth), we have provided a dynamic programming
principle for the stochastic optimal control problem we are interested in. We then
use such results to proceed with a static analysis of the optimal harvesting strategies
in the case where the utilities belong to the family of constant absolute risk aversion
utilities.
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Myopia of Governments and Optimality
of Irreversible Pollution Accumulation

Laura Policardo

Abstract In this paper I address the question of whether irreversible pollution
accumulation - in a global pollution problem - may be optimal or not. Based on
the Tahvonen and Withagen’s article (Tahvonen, Withagen, J Econ Dyn Control,
20:1775–1795, 1996), [16], I set up a model of economic growth where pollution
is a byproduct of production, and its natural decay function follows an inverted-U
shape, and becomes irreversible for high levels of pollution. Under some parameter’s
constellation, the model produces multiplicity of equilibria making local analysis of
little relevance. I therefore study the global dynamics of the system using a dynamic
programming algorithm, showing that irreversible pollution accumulation cannot be
an optimal strategy, unless it is guided by short-term objectives.

Keywords Economic growth · Irreversible pollution accumulation · Dynamic
programming · Global dynamics · Multiplicity of equilibria
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1 Introduction

Despite several effects of pollution - like global warming - have a global nature,
involving all the countries irrespective of who is responsible for producing wastes,
environmental policies are decided in autonomy by the single nations. The coordi-
nation problem underlying this “hot” topic is one of the main reasons of the steady
growth of greenhouse gases and other toxic substances, which the scientific consen-
sus believes they are the main causes leading to global warming.
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Hoping to make a contribution towards the awareness of the necessity of having
a unique, global, environmental policy, in this paper I study a model of economic
growth with pollution accumulation, where pollution has a nonlinear decay function
which follows an inverted-U shape and becomes irreversible when a given stock is
reached. In the analysis, I will focus on the case of an efficiently and infinitely lived
planned economy, with the aim at responding to the question of whether irreversible
pollution accumulation may be an optimal strategy or not.

The model I use in the paper is built on the basis of Tahvonen and Withagen’s
one, published on the JEDC in 1996 [16]. I generalise their model by introducing a
capital accumulation function and assuming a global pollution problem instead of a
local one. Globality of the problem is reflected in the introduction of the hypothesis
of a “subsistence” level of consumption. This assumption is crucial in determining
the dimensionality of the problem, since in my model the population cannot leave to
move in a cleaner and unpolluted area.

Since this problem produces multiplicity of stable solutions, local analysis gives
little insights since it does not allow to say what is the dynamics between different
equilibria, or far away from them. In order to fill this informational gap, I study the
global dynamics of the model using a dynamic programming algorithm (carefully
explained in the appendix, with codes also included), and comparing different paths
in terms of welfare they produce.

In the literature of economic growth and the environment, little attention has been
paid to the fact that the natural decay function of pollution might be endogenously
determined by the stock of pollution itself. Linearity has been a commonly assumed
hypothesis, and that allowed economists to find an unique stable stationary solution
of the system (Keeler E., Spence M., and Zeckhauser R. [9], Nancy Stokey [15]).
The main consequence of this hypothesis was that the insights one could learn from
these lessons were that in the long run, all the countries would have converged to
that unique equilibria, without realising that the hypothesis they implicitly made was
that the more polluted were the environment, the more it was able to clean itself up,
hypothesis quite unrealistic. Moreover, this prediction is clearly in sharp contrast
with the evidence today, where many countries still find the joining to international
protocols not worthwhile, and keep their emissions’ level unbounded. The prediction
of uniqueness of equilibria is a direct consequence of the choice of the decay function
of pollution, because using different function of pollution’s decay may lead to a
different solution specifications, even to a multiplicity of stationary solutions.

The choice of such inverted-U shaped decay function for pollution is duemainly to
the observation of natural phenomena, which suggest - contrary to what is commonly
assumed in the economic literature - that the natural self recreation capacity of the
environment certainly isn’t always increasingwith respect to the stock of pollution. A
sort of endogeneity of this ability of the environment was first noticed by Holling [8],
who, in an article published in 1972, wrote about the fact that nutrient enrichment of
lakes changed its biodiversity permanently, making the lake incapable of recovery its
original status even if emissionswere to be eliminated. Several authors, subsequently,
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raised the problem (Dasgupta [4], Forster [7]). Recently, in his highly debated report,
Stern [14] predicted future scenarios where, if emissions are kept at the “business as
usual” level, global warming may change dramatically the biodiversity of the planet
through desertification and the rise of sea levels, putting at serious risk people’s health
and lowering the probability of survival for some other populations, and therefore
suggesting a sort of inability of the environment to absorb pollution, for high pollution
levels. Despite all these contributions, this fact has gained very little relevance in the
economic literature.

The paper is organised as follows: Sect. 2 introduces the theoretical model and
describes its properties, Sect. 3 introduces the strategies to study the local and global
dynamics of this system and presents the results, and Sect. 4 concludes.

2 The Model

In this section, I introduce the model of economic growth where citizens’ utility
depends on both consumption and pollution, and technology is linear. The function
for pollution accumulation depends on both the level of production, and its nat-
ural rate of decay, which is endogenous to the stock of pollution and follows an
inverted-U shape. For simplicity, I describe an optimal solution dictated by a benev-
olent planner who acts in the interest of the citizens (in the following, I will use
interchangeably the words “citizen”, “household” and “representative agent” since
all these interpretations are correct and do not change the scope of this study). The
citizens’ instantaneous utility is a separable function of consumption,1 denoted by
C , and pollution,2 x , according to the following rule:

u(c, x) = v(C) − h(x) (1)

with v strictly increasing and strictly concave, and h strictly increasing and strictly
convex. C is composed by two arguments,

C(t) = c(t) + mc (2)

with c the level of consumption beyond the minimum subsistence level denoted by
mc, with mc > 0, that is kept constant at all the times. It follows that C is always
positive and lower bounded by mc.

1This is a special assumption since this formulation implies that the enjoyment of consumption
does not depend on pollution, and that the disutility of pollution is not affected by the level of
consumption.
2Pollution in this model is a public “bad”, so each individual experience its whole amount, while
consumption is considered in percapita terms.
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These four properties also hold:

lim
c→0

v′(c) = MUmc < ∞ (3)

lim
c→∞ v′(c) = 0 (4)

lim
x→0

h′(x) = 0 (5)

lim
x→∞ h′(x) = +∞ (6)

where Eq.3 represents the maximum achievable level of marginal utility from
consumption, that is to say, the level ofmarginal utility at the subsistence orminimum
level. Condition (4) indicates that the marginal utility from consumption decreases
as consumption increases, converging to zero for levels of consumption tending to
infinity, and conditions (5) and (6) indicate that at low levels of pollution, themarginal
disutility is low, but increases as the stock of pollution increases. The representative
agent discounts at the subjective discount rate all the future flows of utility, so his
total welfare is

U (C, x) =
∫ ∞

0
u(C, x)e−ρt dt (7)

Production is linear in the argument of capital, so capital’s productivity is constant
and equal to A:

y(t) = Ak(t) (8)

Capital is then a necessary factor of production, and in order to guarantee a mini-
mum subsistence level of consumption, it must be strictly positive, so as production.
Assume that k is the minimum level of capital which guarantees a production equal
to y. Theminimum level of production ymust be such that the amount of investments
is equal to the capital’s depreciation, and the amount of consumption in each period
is equal to mc. It follows that

k ∈ [k,∞), k > 0 (9)

y ∈ [y,∞), y > 0 (10)

The planner decides on behalf of the citizens how much production to consume
and to invest to accumulate further capital. The capital accumulation function of the
economy is represented by

k̇(t) = y(t) − δk(t) − C(t) (11)

with δ representing the constant rate of capital depreciation. Pollution is a byproduct
of production, and it is assumed to obey the following equation
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ẋ(t) = y(t) − η
(
x(t) − θ

η
x(t)2

)
if x(t) < η/θ (12)

ẋ(t) = y(t) if x(t) ≥ η/θ (13)

Equations12 and 13 represent the law of pollution accumulation. The term
η
(
x(t) − θ

η
x(t)2

)
is the pollution’s natural decay, and follows, as anticipated in the

introduction, an inverted-U shape. x̄ = η/θ represents the threshold beyond which
pollution becomes irreversible (so the decay is zero).

In order to write down the conditions for maximization, I will use the same utility
function used by Stokey [15] so the specification of the welfare function becomes:

v(C) = C(t)1−σ − 1

1 − σ
(14)

h(x) = Bx(t)γ

γ
(15)

with σ > 0, B > 0 and γ > 1. Moreover, I will assume in the following:

HP2.1. Themarginal product of capital net of the depreciation is positive, A − δ > 0.

HP 2.2. The marginal product of capital, net of the depreciation is greater that the
intertemporal rate of preferences, A − δ > ρ

HP 2.3. The sum of the intertemporal rate of preferences and the marginal rate
of decay of pollution is positive, ρ + η(1 − 2 · θ

η
x) > 0. As long as the marginal

decay function is positive, this hypothesis is always satisfied, but when it is negative,
this implies that the rate of impatience is greater than the marginal loss in the self
purification capacity of the environment.

Later, I will compare two possible outcomes of this model: a reversible solution and
an irreversible one. In the first case, I will study the reversible solution, assuming
that the planner will maximise utility in infinite time letting pollution to stay below
its threshold level forever. In the second case, I will study an irreversible solution,
and since the solution admits a point of non-differentiability, I will follow the same
approach used by Tahvonen and Withagen and I will split the problem into two
subproblems: a first period problem, where the planner maximises utility from zero
to T (finite time) letting pollution to reach the irreversibility threshold at T , followed
by a second period problem where the planner maximises utility from T to infinity
when the natural decay function for pollution is nil.

2.1 Reversible Pollution Accumulation

Let us assume that the planner wants to maximise the representative citizen’s welfare
having an infinite time horizon plan, and letting pollution not to reach x̄ . In this case,
the problem faced by the planner is:
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max
c(t)

W∞ =
∫ ∞

0
e−ρt

[
C(t)1−σ − 1

1 − σ
− Bx(t)γ

γ

]
dt (16)

subject to

k̇(t) = (A − δ)k(t) − C(t) (17)

ẋ(t) = Ak(t) − η
(
x(t) + θ

η
x(t)2

)
(18)

lim
t→∞ x(t) < x̄ (19)

Denote the solution of this first period problem by (c∞, k∞, x∞) and the respective
costate variables by λ∞

1 and λ∞
2 . Denote also the flow of utility yield by this optimal

plan W∞. The Hamiltonian for this problem is

H (t, k(t), x(t), c(t),Λ;Θ)
de f= λ0 ·

[
C(t)1−σ − 1

1 − σ
− Bx(t)γ

γ

]
+

+λ1(t)
[
(A − δ)k(t) − c(t)

]
+ λ2(t)

[
Ak(t) − η

(
x(t) + θ

η
x(t)2

)]
(20)

where Λ is the set of shadow prices, Λ = {λ0(t), λ1(t), λ2(t)} and Θ represents the
set of exogenous parameters of the model, Θ = {A, B, σ, ρ, δ, η, θ, γ,mc} and, in
more detail, λ1(t) represents the shadow price of capital, and λ2(t) the shadow price
of pollution.

The maximum principle asserts that there exists a λ0 and a continuous and piece-
wise continuously differentiable functions λ1(t) and λ2(t), such that for all t

(λ0, λ1(t), λ2(t)) �= (0, 0, 0) (21)

H (t, k∗(t), x∗(t), c∗(t),Λ;Θ) ≥ H (t, k∗(t), x∗(t), c(t),Λ;Θ) ∀t (22)

The necessary first order conditions are:

∂H

∂c
= 0 ⇒ λ1 = C−σ (23)

∂H

∂k
= ρλ1 − λ̇1 ⇒ λ̇1 = λ1(ρ + δ − A) − λ2A (24)

∂H

∂x
= ρλ2 − λ̇2 ⇒ λ̇2 = λ2 · [ρ + η

(
1 − 2θ

η
x
)] + Bxγ−1 (25)

λ0 = 1 or λ0 = 0 (26)

and sufficient conditions for maximisation are the following transversality condi-
tions:

lim
t→∞ e−ρtλ1(t) · k(t) = 0 (27)
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lim
t→∞ e−ρtλ2(t) · x(t) = 0 (28)

λ1(t) ≥ 0 (29)

λ2(t) ≤ 0 (30)

Since the terminal conditions for capital and pollution as time approaches infinity
are left free, it follows that limt→∞ λ1(t) = 0 and limt→∞ λ2(t) = 0 so necessarily,
because of condition (26), λ0 = 1.

The following system of four differential equations represents the conditions any
optimal path has to obey:

k̇ = (A − δ)k − λ
− 1

σ

1 (31)

ẋ = Ak − ηx + θx2 (32)

λ̇1 = λ1(ρ − (A − δ)) − λ2A (33)

λ̇2 = λ2(η − 2θx + ρ) + Bxγ−1 (34)

with Eqs. 33 and 34 representing the Euler equations. In equilibrium, all the variables
in the economy grow at a zero rate, so k̇ = ẋ = ψ̇ = λ̇ = 0.

I first start by analyzing the so-called corner solutions, that is to say solutions that
assume consumption equal to the minimum subsistence level. Assuming

HP 2.4. C∗(t) = mc

and also

HP 2.5.mc <
η2(A−δ)

4θ A (This condition is necessary to guarantee the level of pollution
be real)
it follows that there are two simultaneous steady states represented in the table below:

Equilibrium 1 Equilibrium 2
k∗ = mc/(A − δ) k∗ = mc/(A − δ)

x∗ = η−
√

η2− mc·4θ A
A−δ

2θ x∗ = η+
√

η2− mc·4θ A
A−δ

2θ
λ∗
1 = mc−σ λ∗

1 = mc−σ

λ∗
2 = − Bx∗γ−1

1
η−2θx∗

1+ρ
λ∗
2 = − Bx∗γ−1

1
η−2θx∗

1+ρ

Due to the inverse U-shaped function for the pollution decay, this corner solution
admits two stationary points, for each value of mc respecting condition 2.5.

Now, I consider interior solutions. FromEq.32, it is possible to see that considering
ẋ = 0 and rearranging I get

k = x(η − θx)

A
(35)
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and, combining equations31, 33, 34 and considering k̇ = ψ̇ = λ̇ = 0 I get

k = 1

(A − δ)
·
(

AB

A − δ − ρ

)− 1
σ

· x 1−γ

σ · (η − 2θx + ρ)
1
σ (36)

Any intersection between the two Eqs. 35 and 36 represents an equilibria.3 In general,
the existence of an equilibria (or multiplicity of equilibria) depends on the choice
of the parameters of the model. Equation36 is decreasing in all his domain, whilst
Eq. 35 has an inverted-U shape. Graphically, one may have the following cases:

The first graph represents a case where two interior solutions exist, and those
are represented by E1 and E2. At the same time, this picture shows that there
might exist two additional corner solutions, represented by the intersection between
the horizontal line (which identifies the minimum level of capital that is necessary
to guarantee a consumption equal to the subsistence level and to cover capital’s
depreciation). Those solutions are, respectively, E3 and E4.

The second picture depicts instead another case where there are still two interior
solutions, but one (represented by E2) cannot be considered a feasible equilibria
since its level of consumption is lower than the subsistence level. This case therefore
leads to only three feasible stable solutions.

Case three represents a different situation where only one interior solution exists,
with associated level of consumption higher than mc. Despite the fact that this solu-
tion requires a different parameter’s set with respect the previous case, the outcome
is similar since it generates three feasible steady solutions.

Case four happens whenmc is larger than the equilibrium levels of all the interior
solutions, but the two corner solutions still respect Proposition 2.3.Hence, the number
of feasible stable solutions is only two and those are the corner solutions.

Case five occurs when mc is equal to η2(A−δ)

4θ A . This situation leads to just one
stable solution, irrespective of the number of the existing interior solutions. This is
because if they existed, theywould have necessary a level of equilibriumconsumption
necessarily lower than the subsistence level. Case six shows, instead, that whatever
the number of interior solutions, if mc >

η2(A−δ)

4θ A , no feasible steady state can exist,
because of the reason above.

It follows that the next propositions hold:

Proposition 2.1 Necessary and sufficient condition to have one interior stable solu-
tion is η < ρ.

Proposition 2.2 Necessary and sufficient condition to have either two or zero inte-
rior stable solutions is ρ > η, sufficient condition to have two interior solutions is
ρ < Ψ · (η/θ)2σ+γ−1 with λ1 = (1/2)σ+γ−1 · (A − δ)σ · ( AB

A−δ−ρ
)

Proposition 2.3 Necessary and sufficient condition to have two (one) corner solu-
tion(s) is mc < (=)η2(A − δ)/(4Aθ).

3This rearrangement of Eqs. 31–34 is only aimed at expressing the two stationary solutions in the
k − x plane and Eqs. 35 and 36 do not have necessarily an economic interpretation.
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Fig. 1 Graphical representation of different cases, ranging from four to zero steady states. These
cases are not exhaustive.

The first two sets of graphs (case 1 and 2) have been obtained using the following set of parameters: B = 10, 000, 000, A = 0.8, ρ = 0.04, θ = 0.05,

η = 0.03, σ = 3, γ = 3, and δ = 0.1. The second two graphs (case 3 and 4) have instead been obtained using B = 10, 000, 000, A = 0.8, ρ = 0.02,

θ = 0.05, η = 0.03, σ = 3, γ = 3, and δ = 0.1. Irrespective of the set of parameters chosen, the last two graphs suggest that if the level of capital at the

minimum level of consumption is as high as the maximum level of capital corresponding to the turning point of the decay function for pollution, we can only have

one steady state, and if it is higher, no steady states at all. The last two graphs, instead, do not respect H.2.5 because, in graph 5, mc = η2(A−δ)
4θ A and in graph 6

mc >
η2(A−δ)

4θ A , with the consequence, respectively, of the existence of only one (or two equal) solutions for pollution, or zero
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Depending on the choice of the parameters, I can have up to a maximum of four
different equilibria. Consider for example case 1 in Fig. 1, and assume that k is lower
than the level of capital in equilibrium E2. This implies the existence of four non-
trivial stationary solutions. On the other hand, however, if the level of k is higher than
the level of capital in equilibrium at E2, E2 cannot be considered a valid solution
and therefore the number of equilibria are three.

In what follows, I will confine my analysis to the case where multiplicity of
steady states occurs because, from an economic point of view, I believe it is the most
interesting and the most realistic. It is not unusual indeed to see different countries
with characteristics that canbe representedby such a configurationof stable solutions.
For instance, it is generally agreed that the cleanest cities in the world are located in
developed and rich countries, like Canada, Finland, Norway etc. The worst polluted
countries are mainly in China and India, that although they are growing at very
high rate, they are not certainly rich countries. On the converse, there are natural
paradises in very poor countries, like still are in Africa. This to highlight the fact that
multiplicity of equilibria is the situation that more represents the actual state of the
world, and that is the reason why I decided to focus on it.

In the next section, I will discuss the stability properties of the equilibria, limiting
the analysis to a local level. Such a kind of analysis, is then deepened in Sect. 3 by
studying the global dynamics of themodel. Local analysis is indeed of little relevance
when multiplicity of equilibria arises, because it is only able to draw conclusions
only on a close neighbourhood of the equilibria, and it is silent about the dynamics
in between them.

The first interesting information one can extract from the study of the local dynam-
ics of the equilibria is the occurrence of an eventual poverty trap. From the pictures
displayed previously, some equilibria a characterised by low levels of consumption
and capital, and some by higher levels of consumption and capital. If more than one
equilibria is found to be (saddle) stable, and one provides a lower level of welfare
(either because consumption is lower and/or pollution is higher), we may talk about
poverty trap, that is to say an equilibria which is socially dominated but from which
is difficult to escape.

The second interesting information that will be analysed in the section concerning
the global dynamics, is the behaviour of the system in a generic point of the k − x
space, which represent the initial conditions, respectively, for capital and pollution.
The question I will try to answer is whether the social planner will bring pollution
to its irreversibility region or not, starting, as an example, in a neighbourhood of an
unstable equilibria or far enough from a stable equilibria.

Local dynamics of the equilibria. The study of the local dynamics of the system
around the steady states is usually carried on by linearising the model around them,
using a first order taylor expansion. The first order taylor expansion or Jacobian
matrix of the system (31)–(34) is therefore:

⎛
⎜⎜⎝

˙̃k
˙̃x
˙̃
λ1

˙̃
λ2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

A − δ 0 1
σ λ

∗− 1+σ
σ

1 0

A −η + 2θx∗ 0 0

0 0 ρ − (A − δ) −A

0 −2θλ∗
2 + B(γ − 1)x∗γ−2 0 η − 2θx∗ + ρ

⎞
⎟⎟⎠ ·

⎛
⎜⎝

k̃

x̃

λ̃1

λ̃2

⎞
⎟⎠
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The characteristic polynom of the matrix of coefficient can be written as

(μ2 − ρμ)2 + (μ2 − ρμ)z + s (37)

with

z = (A − δ)(ρ − (A − δ)) − (η − 2θx∗)(ρ + η − 2θx∗) (38)

s = (A − δ)(A − δ − ρ)(η − 2θx∗)(ρ + η − 2θx∗) +
+ 1

σ
λ

∗− 1+σ
σ

1

{
A2
[ − 2θλ∗

2 + B(γ − 1)x∗γ−2
]}

(39)

Equating the characteristic polynom to zero, and computing the eigenvalues, I
get:

μ1,2,3,4 = 1

2
ρ ±

√
(ρ/2)2 − 1

2
z ± 1

2

√
z2 − 4s (40)

and the following lemmas hold:

1. If z < 0, 0 < s ≤ (z/2)2 it is a nec. and suff. condition for all μ to be real, 2
positive and two negative.

2. If s > (z/2)2 and s − (z/2)2 − ρ2 · (z/2) > 0 it is a nec. and suff. condition for
all μ to be complex, two with negative real parts and two with positive real parts.

3. If s < 0 it is a nec. and suff. condition for one eig. to be negative and either 3 eig.
to be positive or one positive and two having positive real parts.

4. If s > (z/2)2 and s − (z/2)2 − ρ2 · (z/2) = 0 it is a nec. and suff. condition for
all μ to be complex and two having zero real part.

It follows from these lemmas that any equilibrium lying on the increasing locus of
the marginal rate of decay is saddle-stable (z < 0), while the equilibria lying on the
decreasing part of the natural rate of decay of pollution are stable if and only if
s > 0. Since s depends on equilibrium levels of λ1, λ2 and x , analytical conditions
determining the sign of s cannot be found and therefore we have to rely on numerical
simulations.

The next table presents two possible outcomes which are depicted in Fig. 1 above.
The first block is about the results obtained using the parameters of the first two
pictures (case 1 and 2) and considering a minimum level of consumption mc very
low (in particular, mc = 0.0005). It follows from those estimation that the model
exhibits two stationary and stable solutions out of four, implying that under the
set of parameters used, only the equilibria on the increasing locus of the decay
function of pollution are stable. However, the second block shows that, changing
just one parameter (in particular, bringing ρ from 0.04 to 0.02, which is the set of
parameters used in the third and fourth pictures above) the corner equilibria lying
on the decreasing locus of the function of the pollution’s decay is stable. This means
that lowering the level of impatience of the representative citizen, it is better to stay
in the (socially) dominated equilibria than deviating. Of course this result hold in a
close neighbourhood of the equilibria provided that capital respects the constraint
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of being greater than k. This result can already be an indicator of a non-optimality
of irreversible pollution accumulation since if the population has a “low enough”
rate of intertemporal preferences, the higher levels of utility they can achieve by
increasing capital and consumption are not big enough to compensate the losses due
to the growth of pollution.

E1 E2 E3 E4

Case k∗ = 0.2543 k∗ = 0.0025 k∗ = 0.0007 k∗ = 0.0007
1 x∗ = 0.5240 x∗ = 0.5240 x∗ = 0.0197 x∗ = 0.5803
mc = λ∗

1 = 0.1758e + 08 λ∗
1 = 1.8911e + 08 λ∗

1 = 4, 000, 000 λ∗
1 = 4, 000, 000

0.0005 λ∗
2 = −0.1450e + 08 λ∗

2 = −1.5602e + 08 λ∗
2 = −12965.5 λ∗

2 = −1.22e + 08
μ1 = 0.6995 μ1 = 0.6999 μ1 = −0.0280 μ1 = 0.0119
μ2 = 0.0556 μ2 = 0.0308 μ2 = −0.66 μ2 = −0.66
μ3 = −0.0156 μ3 = 0.0092 μ3 = 0.0680 μ3 = 0.0281
μ4 = −0.6595 μ3 = −0.6599 μ3 = 0.7 μ3 = 0.7

Case k∗ = 0.0052 k∗ = 0.0007 k∗ = 0.0007
3 x∗ = 0.5240 x∗ = 0.0197 x∗ = 0.5803
mc = λ∗

1 = 0.1758e + 08 λ∗
1 = 8e + 09 λ∗

1 = 8e + 09
0.0005 λ∗

2 = −0.1450e + 08 λ∗
2 = −129455.1 λ∗

2 = −1.17e + 08
μ1 = 0.6996 μ1 = −0.028 μ1 = −0.008
μ2 = 0.0386 μ2 = −0.68 μ2 = −0.68
μ3 = −0.0186 μ3 = 0.048 μ3 = 0.028
μ4 = −0.6796 μ3 = 0.7 μ3 = 0.7

Depending on the parameter’s set chosen, this model can predict two types of
poverty traps, one characterised by low levels of pollution, and one characterised
by high levels of pollution. This outcome is in line with the evidence on the envi-
ronmental quality in different poor countries. It is indeed not rare that very polluted
cities in the world are often situated in poor countries. According to the Time, for
instance, the most polluted places in the world are in China and India.4 The evidence
suggests moreover that the cleanest cities in the world5 are located in developed
(rich) countries, suggesting that those places are probably near the interior equilib-
ria characterised by relatively low levels of pollution and high levels of per capita
income.

The next section instead studies the existence of an optimal path conducing pol-
lution to its irreversibility region, and later the two solutions are compared through
simulation, using a dynamic programming algorithm.

4Linfen (China) is the first most polluted city in the world, where the amount of particulate matters
in the air is such that it makes the laundry black before it dries, followed by Sukinda (China) where
60% of the drinking water contains hexavalent chromium at levels more than double international
standards and Vapi (India), where levels of mercury in the city’s groundwater are reportedly 96
times higher than WHO safety levels, and heavy metals are present in the air and the local produce.
5Among the cleanest cities in the world we see Calgary (Canada), Honolulu (Hawaii), Helsinki
(Finland), and Ottawa (Canada).
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2.2 Irreversible Pollution Accumulation

This solution requires that pollution reaches its threshold level. The analysis of this
second option available to the planner has a point of non-differentiability (in x = x̄)
and therefore I use the same approach kept by Tahvonen andWhithagen and I split the
problem into two subproblems: the first - or first period problem - where the planner
maximises in finite time T the citizen’s discounted utility, with the constraint that
xT = x̄ , and the second period problem, where the maximisation goes from T to
infinity, with initial conditions xT = x̄ and kT equal to the final value of capital in
the first period. Of course, in the second period problem the natural decay function
for pollution is zero since it has reached the threshold of irreversibility.

The problem can be expressed, then, as follows6:

max
c(t)

WT =
∫ T

0
e−ρt

[
C(t)1−σ − 1

1 − σ
− Bx(t)γ

γ

]
dt (41)

subject to

k̇(t) = (A − δ)k(t) − C(t) (42)

ẋ(t) = Ak(t) − η
(
x(t) + θ

η
x(t)2

)
(43)

k(0) = k0 (44)

k(T ) ≥ k (45)

x(0) = x0, x0 < x̄ (46)

x(T ) = x̄, T < ∞ (47)

which represents the so-called “first period problem”,7 immediately followed by the
“second period problem” that is

max
c(t)

WT =
∫ ∞

T
e−ρt

[
C(t)1−σ − 1

1 − σ
− Bx(t)γ

γ

]
dt (48)

subject to the laws of motion of the two state variables and the initial conditions

k̇(t) = Ak(t) − δk(t) − C(t) (49)

ẋ(t) = Ak(t) (50)

6It is worthwhile here to make some clarifications: let T the number of periods the planner chooses
to let pollution reach its own threshold of irreversibility. It might be the case that (i) The planner
fixes an arbitrary T and set x(T ) = x̄ or (i i)The planner chooses the optimal T such that x(T ) = x̄ .
Both cases are admissible, however, in the second case further optimality conditions are required
and are explained in the text.
7Transversality conditions are not required in the first period problem.
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x(T ) = x̄ (51)

k(T ) = kT (52)

and that is also subject to the following sign and transversality conditions, which are
sufficient conditions for maximisation:

λ1(t) ≥ 0 (53)

lim
t→∞ e−ρtλ1(t)k(t) = 0 (54)

λ2(t) ≤ 0 (55)

lim
t→∞ e−ρtλ2(t)

(
x(t) − x̄

) = 0 (56)

It is possible to prove (proof provided in the appendix) that an optimal path for
the first period problem exists, because all the state variables are closed subset of R,
and the control C(t) ∈ C ⊆ R.

Let us denote the maximised welfare function for the first and second period,
respectively, Ŵ T and ŴT for T < ∞. The maximised utility function for the whole
period is then W = Ŵ T + ŴT . If T is considered fixed, nothing has to be added
to the problem, otherwise, if the planner wish to chose the optimal T , let’s say T ∗,
the maximum principle requires that in addition to the first order conditions and
transversality conditions, also this condition must be satisfied:

H (k∗(T ∗), x∗(T ∗), c∗(T ∗), λ1(T
∗), λ2(T

∗), T ∗) = 0 (57)

The existence of an optimal control with free final time is proved in the appendix
A, provided we modify the assumptions such that T ∗ is free to vary in [T1, T2] and
the theorem is satisfied on the interval [0, T2]. If the planner wishes to maximise the
utility by choosing the optimal terminal time T ∗, it must be the case that

∂W

∂T

∣∣∣∣
T ∗

= ∂Ŵ T

∂T

∣∣∣∣
T ∗

+ ∂ŴT

∂T

∣∣∣∣
T ∗

(58)

where

eρT ∂Ŵ T

∂T
= cT (T )1−σ − 1

1 − σ
− Bx̄γ

γ
+ λT

1 (T )[(A − δ)kT (T ) − cT (T )] +

+ λT
2 (T )[AkT (T ) − η(x̄ + θ

η
x̄2)

︸ ︷︷ ︸
=0

] (59)

−eρT ∂ŴT

∂T
= cT (T )1−σ − 1

1 − σ
− Bx̄γ

γ
+ λ1T (T )[(A − δ)kT (T ) − cT (T )] +

+ λ2T (T )[AkT (T )] (60)
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Equation58 is verified when CT (T ) = CT (T ) and kT (T ) = kT (T ), i.e. they are
continuous functions at T ∗. If instead it is not optimal to reach x̄ in finite time, it
must be the case that

lim
T→∞ sup

∂W

∂T
= lim

T→∞ sup
∂Ŵ T

∂T
+ lim

T→∞ sup
∂ŴT

∂T
≥ 0 (61)

so it is necessary that W does not decrease when T increases without limit.
For what concerns the first period problem, define the current value Hamiltonian

associated to the problem (41)–(47) as

H (t, k(t), x(t), c(t),Λ;Θ)
de f= ·

[
C(t)1−σ − 1

1 − σ
− Bx(t)γ

γ

]
+

+λ1(t)
[
(A − δ)k(t) − c(t)

]
+ λ2(t)

[
Ak(t) − η

(
x(t) + θ

η
x(t)2

)]
(62)

whereΛ is the set of shadow prices andΘ represents the set of exogenous parameters
of the model where, as before, Θ = {A, B, σ, ρ, δ, η, θ, γ,mc}.
The necessary first order conditions are:

∂H

∂c
= 0 ⇒ λ1 = C−σ (63)

∂H

∂k
= ρλ1 − λ̇1 ⇒ λ̇1 = λ1(ρ + δ − A) − λ2A (64)

∂H

∂x
= ρλ2 − λ̇2 ⇒ λ̇2 = λ2 · [ρ + η

(
1 − 2θ

η
x
)] + Bxγ−1 (65)

so the following system of four differential equations represents the conditions any
optimal path has to obey:

k̇ = (A − δ)k − λ
− 1

σ

1 (66)

ẋ = Ak − ηx + θx2 (67)

λ̇1 = λ1(ρ − (A − δ)) − λ2A (68)

λ̇2 = λ2(η − 2θx + ρ) + Bxγ−1 (69)

k(0) = k0 (70)

k(T ) ≥ k (71)

x(0) = x0, x0 < x̄ (72)

x(T ) = x̄, T < ∞ (73)

with Eqs. 68 and 69 representing the Euler equations.
For the second period problem, define the current value Hamiltonian associated

to the problem (48)–(52) as:
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H (t, k(t), x(t), c(t),Λ;Θ)
de f= λ0

[
C(t)1−σ − 1

1 − σ
− Bx(t)γ

γ

]
+

+λ1(t)
[
Ak(t) − δk(t) − C(t)

]
+ λ2(t) · Ak(t) (74)

where Λ is the set of shadow prices and, as before Λ = {λ0(t), λ1(t), λ2(t)} with
λ1 and λ2 representing, respectively, the shadow prices of capital and pollution and
Θ represents the set of exogenous parameters of the model where, as before, Θ =
{A, B, σ, ρ, δ, η, θ, γ,mc}.

The maximum principle asserts that there exists a λ0 and a continuous and piece-
wise continuously differentiable functions λ1(t) and λ2(t), such that for all t

(λ0, λ1(t), λ2(t)) �= (0, 0, 0) (75)

H (t, k∗(t), x∗(t), c∗(t),Λ;Θ) ≥ H (t, k∗(t), x∗(t), c(t),Λ;Θ) ∀t (76)

Moreover,8

∂H

∂c
= 0 ⇒ λ1 = C−σ (77)

∂H

∂k
= ρλ1 − λ̇1 ⇒ λ̇1 = λ1(ρ + δ − A) − λ2A (78)

∂H

∂x
= ρλ2 − λ̇2 ⇒ λ̇2 = λ2 · ρ + Bxγ−1 (79)

λ0 = 1 or λ0 = 0 (80)

Since the terminal conditions for capital and pollution as time approaches infinity
are left free, it follows that limt→∞ λ1(t) = 0 and limt→∞ λ2(t) = 0 so λ0 = 1.
Finally, (51) and (52) have to be satisfied.

Rearranging Eq.77 we get an expression for consumption in terms of the shadow
price of capital:

C = λ
− 1

σ

1 (81)

so the economic system can be represented by the following four differential equa-
tions

k̇ = (A − δ)k − λ
− 1

σ

1 (82)

ẋ = Ak (83)

λ̇1 = λ1(ρ + δ − A) − λ2A (84)

λ̇2 = λ2ρ + Bxγ−1 (85)

8For notational simplicity, in the following I will use interchangeably the generic variable z instead
of z(t) whenever this does not constitute ambiguity.
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From Eq.83 is straightforward to see that in order to keep pollution stable through
time (ẋ = 0) it is necessary to keep capital nil. This means that no production nor
consumption can occur in steady state, and since for hypothesis themodel guarantees
aminimum level of consumption, implying also a strictly positive capital and produc-
tion, no stationary solution can be found in this second period problem. In the long
run, the optimal path will converge to a consumption level equal to the subsistence
level mc, with a capital level constant and equal to k. This level of capital is such
that it produces a level of income which sustains a minimum level of consumption
and an investment level which is equal to the depreciation of capital.

The existence of a balanced growth path for capital, pollution and consumption
can be reasonably excluded because this would imply a constant and equal rate
of growth for all the variables involved, consumption, pollution and capital. Since
the marginal utility from consumption is an increasing and concave function of
consumption, and the marginal disutility from pollution is an increasing and convex
function of pollution (so it grows at a rate that is greater than the rate of growth of
the marginal utility from consumption), there will be a point on time t ′ ∈ [T,∞)

where an additional unit of pollution will produce a disutility higher than the utility
produced by an additional unit of consumption. At this point in time, the optimal
path will predict a consumption level equal to mc, production equal to y and a
minimum level of capital k that is necessary to guarantee a level of investments that
covers the depreciation, and a subsistence level of consumption. Pollution, from t ′
onward, will have an instantaneous variation ẋ = Ak, while the variation of capital
and consumption will be nil.

2.3 Paths Comparison

The model does not allow to say which of the paths gives higher utility, so direct
comparison is necessary. In particular, we are interested to seewhether an irreversible
solutionmay provide an higher level of discounted utility than an irreversible one. But
this requires first of all the computation of W∞ and W = Ŵ T + ŴT . The analysis
presented in paragraph 2.2.1 is only partial, because it is just able to say something
about the stability of the two steady states and their associated level of welfare W∞
if the system is in equilibrium and there are no shocks able to carry on the system
far away from them, but is is completely unable to say anything about the behaviour
of the system in between of the two fixed points, or in any point of the x − k plane.
In order to say something about the behaviour of this economy far away from the
equilibria, global analysis is needed. In the next section, I will use an algorithm of
dynamic programming to carry on this analysis.

As it was previously anticipated, the problem presented here has the peculiarity of
having, for each initial condition and in finite time horizon, two simultaneous optimal
paths which respect the first order conditions. In accordance to the possibilities
available to the planner, it may be optimal either to increase utility by reducing
pollution or, viceversa, by increasing consumption. The first choice takes the system
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in a path which is converging to the saddle stable equilibria introduced in Sect. 2.1
(so in this case a reversible solution is optimal), and the other choice takes the system
toward the irreversibility threshold for pollution. Whether it is optimal one or the
other, is a question I will try to answer below.

3 Global Analysis

In this section, I am interested to see whether - in case of multiple equilibria - the
system can, starting from a neighbourhood of the unstable equilibria, recover and
converge to the socially optimum steady state. Due to the lack of closed form solution
of this dynamic model, I need to use computational methods. I use the convenient
approachof dynamic programming,whichprovides the value function and the control
variable in feedback form. This allows to find the global dynamics of the state space
in the region restricted by arbitrary values of capital and pollution, using a fixed grid
size technique.

3.1 Discretisation

The first step to do that is to discretize the model identified by Eqs. 16–18

max
ct∈C t

Ut =
∞∑
t=0

β t

[
c1−σ
t − 1

1 − σ
− B

xγ
t

γ

]
(86)

subject to

xt+1 = Akt − xt (η − θxt − 1) (87)

kt+1 = (A − δ + 1)kt − ct (88)

β = (1 − ρ) (89)

k0 = k (90)

x0 = x (91)

HereCt denotes the set of discrete control sequencesC = (C1,C2, ...) forCi ∈ C
The optimal value function V is the unique solution of the discrete Hamilton-Jacobi-
Bellman’s equation

V (k, x) = max
c∈C

{
ut (kt , xt ,Ct ) + βV (kt+1, xt+1)

}
(92)
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with

ut (kt , xt ,Ct ) =
[
c1−σ
t − 1

1 − σ
− B

xγ
t

γ

]
(93)

If I define the dynamic programming operator T by

T (V )(k, x) = max
C∈C

{
ut (kt , xt ,Ct ) + βV (kt+1, xt+1)

}
(94)

then V can be characterised as the unique solution of the fixed point equation

V (k, x) = T (V )(k, x) for all x, k ∈ Rn (95)

3.2 Results

The study of dynamic decision models with multiple equilibria is intricate. Multiple
equilibria can arise in models with non-concave pay-off functions, externalities and
increasing returns. Recently multiple equilibria have been found also in concave
economies (for a survey on models with multiple equilibria, see Deissenberg et al.
[6]). In terms of dynamics, multiple equilibria are difficult to analyse, since the
domain of attraction might not coincide with the stable and unstable equilibria, and
multiple optimal paths may exist as well. In the context of my model, multiple (non-
trivial) equilibria arise from some parameter constellations. In the following, I will
consider only a set of parameterswhich givesmultiple steady states, because I believe
this case is the most interesting from a policy point of view. Consider the following
parameter set:

B = 10, 000, 000

A = 0.8

ρ = 0.04

θ = 0.05

η = 0.03

σ = 3

γ = 3

δ = 0.1

β = 1 − ρ = 0.96

Those parameters yield the following numerical solution for the two (non-trivial)
steady states:
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Variable Equilibrium 1 Equilibrium 2
k∗ 0.5494e-2 0.2489e-2
x∗ 0.2543 0.5240
λ∗
1 0.1758e+08 1.8911e+08

λ∗
2 -0.1450e+08 -1.5602e+08

The eigenvalues of the first equilibria are μ1 = 0.6995, μ2 = 0.0556, μ3 =
−0.0156 and μ4 = -0.6595 and for the second are μ1 = 0.6999, μ2 = 0.0308,
μ3 = 0.0092 and μ4 = −0.6599. This information allows us to say only that the
first equilibria is saddle stable (however, this conclusion holds only locally and what
happens between the two steady states is a black box), and that second is unstable.
Nothing can be said about the direction of the instability of this latter equilibria. In
other words, from the local analysis nothing can be inferred about whether - starting
from initial conditions close to the unstable equilibria - the system will converge
to the stable (and pareto dominant) equilibria or not. To this purpose, I studied the
global dynamics of this system using a dynamic programming algorithm. Dynamic
programming allows to draw the phase diagram of the system in terms of the states
variables and it is a convenient tool to study the global dynamics in case of multi-
plicity of equilibria. The algorithm is described in detail in appendix, and results are
depicted in Fig. 2.

The first thing is to check first of all if the system will converge to the socially
dominant equilibria or not, starting in proximity of the unstable one. Numerical simu-
lations show that, for example, assuming afixed plan horizon of 50 periods, there exist
two optimality candidates: one path that brings pollution toward the irreversibility
region and the other one that converges to the saddle stable (and socially domi-
nant) equilibria. Basically, an efficiently managed economy may choose to achieve
the objective of maximising the utility function by means of two instruments: (i)
increasing consumption or (ii) reducing pollution. The first policy implies that the
consumption profile of the first periods is left low, capital is allow to increase at a
very fast rate, and so also consumption in the subsequent periods. The second policy,
viceversa, is described by an high level of consumption in the first period (aimed
at reducing the level of capital, responsible for the production of pollution), and a
low profile (although increasing) of consumption in subsequent periods. The choice
between these two paths cannot be made a priori and the computation of the utility’s
present value is needed.

Figures2 and 3 show the phase diagrams in terms of the state variables and the
behaviour of the control variable for the two different paths. Numerical simulations
show that the utility’s present value for the first path (the path diverging towards the
irreversibility threshold of pollution, represented inFig. 2) is equal to−1.1427e + 07,
against a present value of −1.4796e + 07 for the second path in Fig. 3, the path
converging to the saddle stable equilibria. It is therefore worth increasing capital
and consumption up or close to the irreversibility threshold of pollution, if the time
horizon is sufficiently low.
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Fig. 2 Divergent path, T = 50, k0 = 0.0025, x0 = 0.5

Fig. 3 Convergent path, T = 50, k0 = 0.0025, x0 = 0.5

Things seem different, however, when the plan horizon is longer. As T grows,
hypothetically to infinity, numerical simulations suggest that the optimal path is no
longer to bring pollution close or up to the irreversibility region, as it is clearly high-
lighted in the figures below. Those pictures indeed show a tendency of the system to
converge to the stable and socially optimal interior equilibria.9 Thismay be explained
by the fact that the utility of having high levels of consumption for limited amounts
of periods followed by minimum levels of consumption and increasing levels of pol-
lution for infinite periods is definitely worse than having moderately high levels of
consumption and low levels of pollution forever, especially if the intertemporal rate
of preferences is not too high.

As it is possible to see in Fig. 4, for T = 200, the tendency is to keep capital at a
level which allows both strictly positive consumption and a reduction of pollution,
except for dramatically increase capital, consumption and pollution during the last
periods (but this is due to the fact that we are dealing with a routine that in order to
be ran has to set a finite time horizon).

9The minimum consumption level is assumed to be set at very low levels such that the solution
never hits it.
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Fig. 4 Optimal plan, T = 200, ρ = 0.04, k0 = 0.0025, x0 = 0.5

Fig. 5 Optimal plan, T = ∞, ρ = 0.04, k0 = 0.0025, x0 = 0.5

So, two identical countries may choose different environmental policies only if
they differ in the choice of their planning horizons. Governmentswho have short term
objectives will choose paths which imply a growing stock of pollution through time,
whilst governments with longer horizons will choose paths which imply a decrease
of pollution and a slower increase in consumption. This convergence to the interior
and stable equilibria is found irrespective of the set of initial conditions.

Figure7 displays a path leading pollution to reach its irreversibility threshold. As
predicted in the previous section, after pollution has become irreversible, it is optimal
for the planner to let capital and consumption to reach their “survival” levels set by
k and mc, respectively. The picture shows also that pollution grows steadily through
time.

In order to compare the two different environmental policies, it is necessary to
compute the present value of all the flows of utility provided in each period by the
two paths. The optimal path depicted in Fig. 5 provides a present value of utility
equal to −5.93e + 07, whilst the path depicted in Fig. 7 provides −2.09e + 08, with
a negative difference of −1.50e + 08.
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Fig. 6 Optimal plan, T = 1500, ρ = 0.04, k0 = 0.0022, x0 = 0.5

Fig. 7 Optimal plan, T = ∞, ρ = 0.04, k0 = 0.0025, x0 = 0.5, mc = 0.001

Contrary to Tahvonen and Withagen’s result, according to which optimality or
not of irreversible pollution accumulation depends on the initial condition for pollu-
tion (being optimal when the initial condition for pollution is higher than the level
determined by the unstable equilibria), my numerical simulations show a different
story. Figure6 provides a clear example. Initial condition for pollution is 0.53, which
is higher than 0.524 characterising the second equilibria. The time span necessary
to get into what they call “domain of attraction of the saddle stable equilibria” is
however very high, and increases as the initial pollution level increases. Consump-
tion also grows steadily but slowly in proximity of the equilibria: unfortunately the
accuracy of the picture is not enough to make it evident. What makes the difference
between their model and my model is not the set of initial condition (which is also a
poor explanation of the reasons why a country should prefer irreversibility), but the
fact that the marginal utility of consumption when consumption is zero, is nil. This
is an implication of the fact that they deal with a local pollution problem and not
with a global one. Being zero the marginal utility from consumption when there is
no consumption at all implies that the population can move elsewhere to satisfy their
needs. In my model it is not possible, and there survival (and consumption, although
at minimum levels) is always preferred to an additional unit of pollution (Fig. 7).
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Fig. 8 Optimal plan, T = 200, ρ = 0.09, k0 = 0.0025, x0 = 0.5

The simulations therefore are clear in highlighting the fact that irreversibility is
never optimal, if the planning horizon is infinite, and no matters the initial level
of pollution. Different environmental policies can therefore be explained only by
different planning horizon of the governments, all other parameters constant.

3.3 The Effect of ρ on the Global Dynamics of the System

The representative household’s level of impatience, represented by ρ, may play a
crucial role in determining the environmental policy chosen by the planner. Themore
impatient the people are, the more probable is a policy which implies a growing stock
of pollution through time. The effects are someway similar to a shortening of the
time horizon, and this is confirmed by the simulations. Figure8 represents the global
dynamics of the system assuming a time horizon of 200 periods, and an intertemporal
rate of preferences equal to 0.09. The only parameter that distinguishes Fig. 8 from
Fig. 4 is the level ofρ, but as it is possible to see the dynamics is dramatically different.
Convergency to the saddle stable equilibria is harder to find, since the high discount
rate and the finite horizon make worth for the planner choosing a path which implies
an high growth rate of consumption for the first periods, which are valued more than
future ones, especially because pollution - compared to consumption, grows at much
slower rate.

4 Conclusion

This paper contributes in the debate about the necessity of a unified global environ-
mental policy kept by all the nations. With a theoretical model of economic growth
with pollution accumulation and an endogenous function for the natural decay of
pollution, I show with numerical simulation that in an efficiently planned economy,
with infinite time horizon plan, irreversible pollution accumulation cannot be an
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optimal policy. Optimality of such a policy can occur only if the plan of government
is short-minded. Since utility depends on both consumption and the level of pollu-
tion, in principle the planner can choose to achieve the maximum level of welfare
by, alternatively, increasing consumption or reducing pollution. The second strategy
pays in the long run, while the first in short run.

It would be important to keep in mind that although each nation decides on its
own its environmental policy and it is free to join international agreement, we live in
the same planet and if all the countries would be one with the priority to safeguard
life, they would not engage in such production of pollution, in each form. So, despite
incentives are not enough to give up opportunities to grow in the short run, it would
be useful to ask whether such individual policy can be consistent with individual
long terms goal. Each country may decide to pollute a lake if there are others from
which he can extract utility, but what happens when all the lakes are polluted?

Unfortunately, populist policies and the fact that politicians stay in power for few
years and needs to be reelected can - someway - affect the environmental policies
undertaken by the countries. Special interests overcome in importance other issues
which are in general considered of marginal relevance, like the environment, because
a policy undertaken by a single country can onlymarginally affect it, especially when
it deals with global problems.

So, a deep study of the incentives taking a country to engage in global emission’s
reduction is needed and it can be part of future research.

5 Appendix

A. Proof of the Existence of an Optimal Path for the First Period Problem - T
Fixed

To prove the existence of an optimal path for the first period problem when the final
time T is fixed and the pollution at T is equal to its threshold, I use the Filippov
- Cesari theorem of existence of an optimal control (Seierstad and Sydsæter [13],
p. 132) which requires the convexity of the set

N (k, x,C , t) =
{
c1−σ − 1

1 − σ
− Bxγ

γ
+ ω, (A − δ)k − c, Ak − η

(
x + θ

η
x2
)}

(96)

where C ⊆ R represents the set of all admissible controls, and ω ≤ 0. The theorem
states: Consider the standard optimal control problem (41)–(47). Assume that:

• There exists an admissible triple (k(t), x(t), c(t)).
• N (k, x,C , t) is convex for each (k, x, t).
• C is closed and bounded.
• There exists two numbers k̄ and x̄ such that ‖k(t)‖ ≤ k̄ and ‖x(t)‖ ≤ x̄ for all
t ∈ [0, T ] and all admissible pairs (k(t), x(t), c(t)).



356 L. Policardo

Then, there exists an optimal pair (k∗(t), x∗(t), c∗(t)) (with c∗(t) measurable). In
order to prove the convexity of the set in (96), let us keep (k(t), x(t), t) fixed, so
k(t) = K and x(t) = X . Let y1, y2, y3 three arbitrary points in N (K , X,C , t), i.e.

y1 =
{(c1−σ

1 − 1

1 − σ
− BXγ

γ

)
e−ρt + ω1, (A − δ)K − c1, AK − η

(
X − θ

η
X2

)}

y2 =
{(c1−σ

2 − 1

1 − σ
− BXγ

γ

)
e−ρt + ω2, (A − δ)K − c2, AK − η

(
X − θ

η
X2

)}

y3 =
{(c1−σ

3 − 1

1 − σ
− BXγ

γ

)
e−ρt + ω3, (A − δ)K − c3, AK − η

(
X − θ

η
X2

)}

for some ω1, ω2, ω3 ≤ 0 and c1, c2, c3 ∈ C . Let λ1 and λ2 two positive constants
such that λ1 + λ2 ≤ 1. I need to prove that y4 = λ1y1 + λ2y2 + (1 − λ1 − λ2)y3 ∈
N (K , X,C , t). Put λ1y1 + λ2y2 + (1 − λ1 − λ2)y3 = (z1, z2, z3).

The first component z1 is:

z1 = λ1

(c1−σ
1 − 1

1 − σ
− BXγ

γ

)
e−ρt + λ1ω1 +

+ λ2

(c1−σ
2 − 1

1 − σ
− BXγ

γ

)
e−ρt + λ2ω2 +

+ (1 − λ1 − λ2)
(c1−σ

3 − 1

1 − σ
− BXγ

γ

)
e−ρt + (1 − λ1 − λ2)ω3 (97)

=
{
λ1

c1−σ
1 − 1

1 − σ
+ λ2

c1−σ
2 − 1

1 − σ
+ (1 − λ1 − λ2)

c1−σ
3 − 1

1 − σ

}
e−ρt +

− BXγ

γ
e−ρt + λ1ω1 + λ2ω2 + (1 − λ1 − λ2)ω3 (98)

Since it is known that WT is concave in c, so ∂2WT

∂c2 ≤ 0, we have

λ1
c1−σ
1 − 1

1 − σ
+ λ2

c1−σ
2 − 1

1 − σ
+ (1 − λ1 − λ2)

c1−σ
3 − 1

1 − σ

≤
[
λ1c1 + λ2c2 + (1 − λ1 − λ2)c3

]1−σ − 1

1 − σ

= c1−σ
4 − 1

1 − σ

with c4 = λ1c1 + λ2c2 + (1 − λ1 − λ2)c3. Then, c4 ∈ C . Using this result, from the
last inequality we see that

z1 ≤
(
c1−σ
4 − 1

1 − σ
− BXγ

γ

)
e−ρt + λ1ω1 + λ2ω2 + (1 − λ1 − λ2)ω3 (99)
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Define ω4 = z1 −
(

c1−σ
4 −1
1−σ

− BXγ

γ

)
e−ρt . Then, from (99),

ω4 ≤ λ1ω1 + λ2ω2 + (1 − λ1 − λ2)ω3 ≤ 0 since ω1, ω2, ω3 ≤ 0

The second and third components, z2 and z3 are found similarly to the first:

z2 = λ1[(A − δ)K − c1] + λ2[(A − δ)K − c2] + (1 − λ1 − λ2)[(A − δ)K − c3]
= (A − δ)K − (λ1c1 + λ2c2 + (1 − λ1 − λ2)c3)

= (A − δ)K − c4

z3 = λ1
[
AK − η

(
X − θ

η
X2

)] + λ2
[
AK − η

(
X − θ

η
X2

)] +

+(1 − λ1 − λ2)
[
AK − η

(
X − θ

η
X2

)]

= AK − η
(
X − θ

η
X2)

Piecing all this together, we see that we have found a c4 ∈ C and a ω4 ≤ 0 such

that λ1y1 + λ2y2 + (1 − λ1 − λ2)y3 = {( c1−σ
4 −1
1−σ

− BXγ

γ

)
e−ρt + ω4, (A − δ)K − c4,

AK − η
(
X − θ

η
X2

)}
. Hence, λ1y1 + λ2y2 + (1 − λ1 − λ2)y3 ∈ N (K , X,C , t) and

thus N (K , X,C , t) is convex.

B. The Dynamic Programming Algorithm

The algorithm approximates the solution on a grid Γ covering a compact subset Ω

of the state space. I pick a reasonable set Ω and consider only trajectories which
remain in Ω in all future times. I assume that for any point (k, x) ∈ Ω there exists at
least one control value c such that (kt+1, xt+1) ∈ Ω holds. Denoting the nodes of the
grid Γ by (ki , x j ), i = 1, . . . , n and j = 1, . . . ,m, the approximation V Γ satisfy

V Γ (ki , x j ) = T (V Γ )(ki , x j ) (100)

for all nodes (ki , x j ) of the grid, where the value of V Γ for points (k, x) which are
not grid points (these are needed for the evaluation of T ) is determined by bilinear
interpolation. Basically, the standard computational algorithm that is used here can
be summarised as follows (cite larson):

1. The first step is to set up a grid for the state variables. Each level of capital k and
each level of pollution x are quantised, respectively, to Nk and Nx equidistant
levels, from 0 to, respectively, k̄ and x̄ . In total, then, the grid points for the
state variables are Nk · Nx . The control variable c is quantised to Nc equidistant
levels, from 0 to c̄.

2. For each point in the grid (k(i), x( j)), i = 1, . . . , Nk and j = 1, . . . , Nx , each
control c(h), h = 1, . . . , Nc is applied, and the next state is computed according
to the formulas given by Eqs. 87 and 88. Let us call the next-state value of k and
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x , respectively, k1 and x1. Notice that k1 and x1 are tri-dimensional matrices
whose generic element is represented by k1(i, j, h) and x1(i, j, h) and whose
dimensions are Nk · Nx · Nc. Furthermore, the elements of k1 and x1 are, in
general, not grid points. I then check whether each element of k1 ∈ [0, k̄] and
x1 ∈ [0, x̄]. If they do not belong to those intervals, their values are replaced
with “missing”.

3. Define the number of periods T , and set up an index l = 1. Evaluate k0 and x0.
4. The procedure is backward. At the final time T , citizens consume what is left

in terms of capital, so cT = kT irrespective to the value of x . So, for each point
in the grid (k(i), x( j)), i = 1, . . . , Nk and j = 1, . . . , Nx I compute the value
function at time T which is nothing but

V Γ (k(i), x( j), T ) = k(i)(1−σ) − 1

1 − σ
− B

x( j)γ

γ

i = 1, . . . , Nk, j = 1, . . . , Nx (101)

I then store in memory V Γ (k(i), x( j), T ) and c(i, j, T ) = k(i) constant across
the j and the T -dimensions.

5. At time T − l, for each i = 1, . . . , Nk , j = 1, . . . , Nx and h = 1, . . . , Nc I
compute the next-period value function V 1(k1(i, j, h), x1(i, j, h)) interpolat-
ing the existing values of V Γ (k(i), x( j), T − l + 1) stored in memory. Of
course, if either x1(i, j, h) or k1(i, j, h) (or both) are “missing values”, also
V 1(k1(i, j, h), x1(i, j, h)) will be “missing”. I need to interpolate those val-
ues because in general k1(i, j, h) and x1(i, j, h) are not grid points, and I
know the value of V Γ (k(i), x( j), T − l + 1) only for grid points. Notice that
V 1(k1(i, j, h), x1(i, j, h)) is a tri-dimensional matrix whose dimensions are
Nk · Nx · Nc. The procedure is the following: the fact that in general k1(i, j, h)

and x1(i, j, h), i = 1, . . . , Nk , j = 1, . . . , Nx and h = 1, . . . , Nc do not lie on
the gridmeans that I am in the situation inwhich I have to compute the value func-
tionknowing its approximationon four equidistant points around it. Graphically,
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I want to approximate a function on the point P = (k, x) that represents my next
period values of the state variable once the control is applied, knowing the value
function in the points V 11, V 12, V 21 and V 22. The function in P is computed
according to the following formula:

V (P) = V 11

(ki+1 − ki )(x j+1 − x j )
· (ki+1 − k)(x j+1 − x)

V 21

(ki+1 − ki )(x j+1 − x j )
· (k − ki )(x j+1 − x)

V 12

(ki+1 − ki )(x j+1 − x j )
· (ki+1 − k)(x − x j )

V 22

(ki+1 − ki )(x j+1 − x j )
· (k − ki )(x − xi ) (102)

6. For each i = 1, . . . , Nk , j = 1, . . . , Nx and h = 1, . . . , Nc I compute

V ′(k(i), x( j), c(h), T − l) = c(h)1−σ − 1

1 − σ
− B

x( j)γ

γ
+

βV 1(k1(i, j, h), x1(i, j, h)) (103)

After that, for each i = 1, . . . , Nk , j = 1, . . . , Nx I chose the maximum variable
over the h-dimension (control), by direct comparison. Those values are stored
c(i, j, T − l) and V Γ (k(i), x( j), T − l)

7. The value of l takes l + 1.
8. I check whether l is equal to T . If it is not, I go back to point 5. If l = T , then
9. Define three vectors k∗(t), x∗(t) and c∗(t), t = 1, . . . , T which represent the

optimal trajectories of capital, pollution and consumption starting from the initial
conditions x0 and k0. Set k∗(1) = k0 and x∗(1) = x0.

10. Set time t = 1.
11. Find the i th and j th elements in the vectors of quantized k and x , which are closer

to the values k∗(t) and x∗(t). If (k(i), x( j)) = (k∗(t), x∗(t)) then the state is a
grid point, and c∗(t) is read directly as c(i, j, t). If (k(i), x( j)) �= (k∗(t), x∗(t)),
c∗(t) is computer through bilinear interpolation using values of c(i, j, t) at the
closest grid points for k and x .

12. Check whether t = T + 1. If this equality is satisfied, go to point 15. Else, go
to the next point.

13. Compute k∗
t+1 and x∗

t+1 according to the following equations:

k∗(t + 1) = (A + δ − 1)k∗(t) − c∗(t) (104)

x∗(t + 1) = Ak∗(t) − x∗(t)(η − θx∗(t) − 1) (105)

14. Time t takes value t + 1. Go to point 11.
15. The value function is computed as follows: set time t = T and an index l = 1. At

final time T , the value function is computed according to the following formula:



360 L. Policardo

V ∗(T ) = c∗(T )1−σ − 1

1 − σ
− B

x∗(T )γ

γ
(106)

16. Check whether t = 0. If so, end the program, otherwise go to the next point.
17. Time t takes values T − l.
18. The value function at time t is now

V ∗(t) = c∗(t)1−σ − 1

1 − σ
− B

x∗(t)γ

γ
+ βV ∗(t + 1) (107)

19. The index l takes value l + 1. Go to point 16.

This computational procedure is very appealing for a number of reasons. First,
because thorny questions about existence and uniqueness are avoided; as long as there
is at least one feasible control sequence, then the direct-search procedure guarantees
that the absolute maximum utility is achieved. Furthermore, extremely general types
of systems equations and constraints can be handled. Constraints actually reduce
the computational burden by decreasing the admissible sets of states and controls.
Finally, the optimal control is obtained as a true feedback solution in which the opti-
mal control for any admissible state and stage is determined. However, to the best of
my knowledge there is not any algorithm able to identify whether multiple solutions
exist, and this one makes no exception. Identify them may be difficult, because it
requires repeated simulation of the same routine, and a bit of luck. If indeed multiple
solutions exist, since in general they do not provide the same values of discounted
flows of utility, the path which provides the highest value is generally chosen by the
routine. So, most of the time, one does not even realise that multiple paths satisfying
the first order conditions exist. They can only be found choosing appropriate grids,
and this is a very difficult task because it requires first of all the knowledge about
the existence of multiple solutions, and a good guess about the direction of the two
paths. Finally, luck is always welcome.

Codes

In this section, I report the matlab codes that I used to draw the pictures and to
compute the present value of the flow of utilities, in order to compare the two paths.
The first program is the following, named

PROGRAM fp_main:

code:
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PROGRAM fp_parameters:

code:

PROGRAM fp_step1:

code:

PROGRAM fp_nextstates:

code:
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PROGRAM fp_interpolation:

code:



Myopia of Governments and Optimality of Irreversible … 363



364 L. Policardo

PROGRAM fp_submain:

code:

PROGRAM fp_initialconditions:

code:

PROGRAM fp_retrievekx:

code:
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PROGRAM fp_vstar:

code:

PROGRAM fp_plot:

code:
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Stochastic Modelling of Biochemical
Networks and Inference of Model
Parameters

Vilda Purutçuoğlu

Abstract There are many approaches to model the biochemical systems determin-
istically or stochastically. In deterministic approaches, we aim to describe the steady-
state behaviours of the system, whereas, under stochastic models, we present the ran-
dom nature of the system, for instance, during transcription or translation processes.
Here, we represent the stochastic modelling approaches of biological networks and
explain in details the inference of the model parameters within the Bayesian frame-
work.

Keywords Stochastic modelling · Bayesian inference · Diffusion bridge method
Particle filtering method

1 Introduction

A list of reactions which describes the biological process under different constrains
can bemodelled by distinct techniques [3, 17]. TheBoolean, differential equation and
the stochastic modelling are the major approaches. The Boolean approach denotes
the activation of the systemvia on, i.e., fully expressed, or off, i.e., not fully expressed,
positions. For a given state, the system passes to a next state deterministically assum-
ing that all genes simultaneously change their states. Since the state number is taken
as finite, it is useful to get a first impression for complex systems in a large state
space [3]. In the differential equation models, the states are indicated as continuous
concentrations changing by time according to nonlinear ordinary differential equa-
tions (ODEs) and rate of reactions. In order to estimate the model parameters which
are the rate of reactions, two main approaches are suggested. The first method is
based on solving the set of differential equations simultaneously by equating each
of them to zero under the assumption that one state is converted to another state
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without observing any net change. So the states are taken as equilibrium by setting
all derivatives to zero. As the underlying function is typically nonlinear, the unique
solution of the system is not solvable. Hence, the second approach assumes that
these derivatives, i.e., set of differential equations, can be approximated via different
methods such linear models, neural networks or recurrent artificial neural networks
models [3]. Finally in the stochastic models, the exact number of molecules is used
to describe the states of the systems, where the present number of molecules of each
type causing the system moves to the next state probabilistically. Hence, the reaction
type and its time are defined probabilistically.

In this chapter, we explain the stochastic models and the inference of model
parameters in details. The very general idea of stochastic models is to represent the
random feature of the biological processes by means of the number of molecules
of the species. Since these models apply very detailed information about the sys-
tems, the collected knowledge becomes more comprehensive than the outputs of the
models based on the ordinary differential equations, accordingly, boolean models. In
stochastic model, each biological event is shown via a chemical equation as below.

u1R1 + u2R2 + . . . + unr Rr
c−→ v1P1 + v2P2 + . . . + vnp Pp, (1)

where ui (i = 1, . . . , r ) and v j ( j = 1, . . . , p) stand for the stoichiometric coefficient
of the reactant R and the stoichiometric coefficient of the product P , respectively.
The stoichiometric coefficient indicates the necessary number of molecules either
consumed (if it is on the left-hand side of the equation) or produced (if it is on the
right-hand side of the equation) in a single reaction step. Therefore, the chemical
meaning of Eq.1 is that ui amount of Ri molecules collides with each other and
produces v j amount of Pj molecules when the molecules move by the Brownian
motion [3]. As a result, at the end of each reaction, there is a change in the system
with the amount of s = v − u that is also called as the net effect. Finally, c shows
the stochastic reaction rate constant which implies the speed of the reaction and the
model parameter in modelling of this reaction via different approaches.

Accordingly, if we represent the stoichiometric coefficient of each reaction as a
vector, resulting in a matrix for the set of reactions, also known as the reaction list,
the net effect matrix S can be denoted via S = V −U where V andU are the product
and the reactant matrix, respectively, the reaction rate constants can be denoted by a
vector Θ whose entries display the reaction rate constant for each reaction.

In order to model such reactions as in Eq.1, we can choose different models. In
this chapter, we merely focus on the stochastic modelling approaches and alternative
methods for the inference of model parameters.
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2 Stochastic Modelling Approaches

There are three main methods to stochastically model the biochemical system. The
first method is called as the Langevin model where a differential equation in concen-
trations is extended by adding a stochastic noise term. The second method defines
a model from a deterministic differential equation for the dynamics of a probabil-
ity distribution that are known as the Fokker–Plank equation and also the diffusion
approximation model. In these two models, the former is obtained from the exten-
sion of the differential equation and the latter is derived from the simplification of the
fully stochastic model so that for a given state, the derived differential equations of
the joint density for the number of molecules and time are only the functions of the
change in time [3]. Lastly, the third method is named as the inhomogeneous Poisson
process model, that is generated from the Gillespie algorithm [9, 12] in the calcu-
lation of the likelihood equations [26]. Below, we represent each of the alternative
models in details.

2.1 Langevin Model

The Langevin model can be considered as the extension of the differential equations
approach which includes a noise term as

d

dt
Y (t) = μ(Y,Θ) + W (t), (2)

where t stands for the time andW (t) indicates the time-dependent stochastic process
defined by the Brownian motion over time. Thereby, μ(Y,Θ) denotes the mean
changes in states as a function of the state Y and model parameters Θ . In Eq.2,
the calculations of the number of molecules are tractable for linear μ. But, if this
deterministic part is non-linear, it can be inferred by linear approximation techniques
[25] whose solutions are not unique. Furthermore, themodel in Eq.2 can be extended
by adding a noise term dependent on state into the last term, W (t). Under such
extended model, the equation is solved via the Itô or Stratonovich integrals [21, 25].

2.2 Diffusion Approximation Model

In a gene networkmodel, under the assumption of continuous number ofmolecules Y
at continuous time t , the probability distribution of states and time, i.e., P(number of
molecules, t), can be explained by differential equations models. Here, the Fokker–
Planck equation, also known as the Smoluchowki equation, the second Kolmogorov
equation, or the generalized diffusion equation, converts the stochastic expression to
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the differential equation by assuming a continuous density on the number of mole-
cules through time whose derivation is based on the following master equation [10,
11, 24].

∂P(Y, t)

∂t
=

r∑

j=1

{h j (Y − s j ;Θ)P(Y − s j , t) − h j (Y ;Θ)P(Y, t)} (3)

in which the n-dimensional vector Y = (Y1,Y2, . . . ,Yn) indicates the state of the
system at time t and r -dimensional vector Θ = (c1, c2, . . . , cr ) show the stochastic
reaction rate constants. Hereby, P(Y, t) in Eq.3 denotes the probability distribution
of states which is described by discrete number of molecules and continuous time t .
Finally, S and h j describe the net effect matrix as used previously, and the hazard
of the j th reaction for the total number of r reactions and n substrates, in order. The
hazard, also known as the rate law of reaction, represents the product of the number
of distinctmolecular reactant combinations available in the state Y for reaction j with
stochastic rate constant Θ . For instance, the hazard of the reaction given in Eq.3 at
time t can be computed by h(Y,Θ) = c × ([R1]

u1

)× . . . × ([Rr ]
ur

)
where

([Ri ]
ui

)
describes

the molecular combination while [Ri ] shows the number of present molecules of
the i th substrates and ui displays its associated stoichiometric coefficient as stated
previously.

Accordingly, h j (Y − s j ;Θ)P(Y − s j , t) in Eq.3 implies the probability of the
j th reaction over the time interval [t , t + dt] so that the system changes the states
from Y − s j to Y [24, 25] and the term h j (Y,Θ)P(Y, t) denotes the probability of
no reaction in the same time interval so that the system is in the same state. Then,
if Eq. 3 is defined in terms of jump sizes and the expression is approximated via the
second order Taylor series expansion and written in terms of jump moments, the
following equation, also called as the Fokker–Planck equation, is obtained.

∂P(Y, t)

∂t
= − ∂

∂Y

(∫
λh(Y ; Θ)dλ

)
P(Y, t) + 1

2

∂2

∂Y 2

(∫
λ2h(Y ; Θ)dλ

)
P(Y, t)

(4)

where λ is the jump size when the system has the starting point Y ′, i.e., λ = Y − Y ′.
Furthermore, in this equation, the first part on the right-hand side is known as the
transport, the convection, or the drift term and the second term on the same side is
named as the diffusion or the fluctuation term.

On the other hand, if Eq.4 is expressed under the infinitesimalmeansμi (Y,Θ) and
the second moments of the jump of states βi j (Y,Θ) for i, j = 1, . . . , n as the index
of substrates during the time change τ , Fokker–Planck equation can be defined as
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∂

∂t
P(Y, t) = −

n∑

i=1

∂

∂Y
{μi (Y,Θ)P(Y, t)} + 1

2

n∑

i=1

n∑

j=1

∂2

∂Yi ∂Y j
{βi j (Y,Θ)P(Y, t)}

(5)

where

μi (Y,Θ) = lim
τ→0

1

τ
E[{Yi (t + τ) − Yi (t)}|Y (t) = Y ],

and

βi j (Y,Θ) = lim
τ→0

1

τ
Cov[{Yi (t + τ) − Yi (t)}, {Y j (t + τ) − Y j (t)}|Y (t) = Y ]

by using the expectation E(.) and the covariance Cov(.) expressions. On the other
hand, if Eq.5 is presented by the Itô diffusion, then we can obtain the diffusion
approximation model of the system via

dY (t) = μ(Y,Θ)dt + β
1
2 (Y,Θ)dW (t) (6)

in which μ(Y,Θ) = S′h(Y,Θ) and β(Y,Θ) = S′diag{h(Y,Θ)}S show the mean,
or drift, and variance, or diffusionmatrices, respectively. Similar to previous expres-
sions, Y and Θ = (c1, c2, . . . , cr )′ denote the state and the parameter vector. dW (t)
is the change of a Brownian motion over time and S means the net effect matrix.
Finally, we set λ and τ to λ(Y ) = dY and τ = dt , in order [13].

However, in practice, a finitely observed sample path as defined in the diffusion
approximation in Eq.6, is intractable because of the missing states between observed
end points. Therefore, we need to implement the discretized version of the diffusion
model under the assumption of discrete jumps at a large set of discrete time points.
This discretized version of the diffusion approximation, shown in Eq.7, is called the
Euler–Maruyama approximation.

ΔYt = μ(Yt ,Θ)Δt + β
1
2 (Yt ,Θ)ΔWt (7)

where ΔWt implies an n-dimensional independent identically distributed Brownian
random vector generated by normal distribution with mean zero and covariance-
variance as the product of the identity matrix I and discrete time interval Δt , i.e.,
ΔWt ∼ N (0, IΔt). Y = (Y1, . . . ,Yn) presents the state of the system at time t and
Θ = (c1, . . . , cr )′ stands for the parameter vector while n and r are the total num-
ber of substrates and the total number of reactions in the system, respectively, as
used beforehand [26]. The Euler–Maruyama approximation enables us to derive a
complete-data likelihood for the sample path.
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2.3 Inhomogeneous Poisson Process Model

Under stochastic models, it is assumed that the sample path of each gene is observed
through time similar to the idea of the Gillespie algorithm which can exactly sim-
ulate the biological network stochastically [9]. Hereby, the inhomogeneous poisson
process is based on the application of the Gillespie algorithm that is derived from
the chemical master equation [9, 25]. Thus, if we perform the same sampling plan of
the Gillespie algorithm in a stochastic model, the complete data likelihood L(Θ, y)
can be expressed as below.

L(Θ,Y ) =
[

r∏

i=1

hi (yi−1(t), ci )

]
exp

{
−
∫ T

0
h0(y(t),Θ)dt

}
(8)

for a model between the time interval [0, T ]. In Eq.8, Y = (y1, . . . , yn) and Θ =
(c1 . . . , r) present the state and the reaction rate vector, respectively. Additionally,
hi and dt indicate the hazard and the change in time, in order. As a result, under the
assumption of the gamma distribution as the prior of reaction rates, we can derive
the posterior of the j th reaction rate ( j = 1, . . . , r ) as the following expression.

c j |y ∼ Γ

[
a j + r j , b j +

∫ T

0
g j (y(t))dt

]
(9)

in which a j and b j denote the given parameters of the gamma distribution Γ [., .]
and r j describes the number of the j th ( j = 1, . . . , r ) reaction in the sample path Y .
Furthermore, g j (y(t)) = h j (y(t), c j )/c j [26]. Hence, Eq.9 shows that for the given
state, the reaction rate constants have a known distribution, resulting in inference of
these model parameters via the Gibbs sampling. But, such calculation can be feasible
if we get the complete sample path. However, in practice, we can merely observe
it partially. Therefore, an approximate model which is based on the computation
of the end points of the correct sample path obtained from the Gillespie algorithm
in its likelihood expression can be applicable. Hereby, the underlying approximate
modelling is called as the inhomogeneous Poisson process model that can be also
described as the nonlinearly re-scaled homogeneous Poisson process by time [26].

This approach accepts that the states, which are the functions of hazards, are
known at the end points y(0) and y(1), and a possible true path can be constructed
by approximately simulating hazards from the independent inhomogeneous Poisson
processes with rates linear between the rates at the end points by

N ∼ Poi(λ) and Y |N ∼ B(N , p), then Y ∼ Poi(λp).
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In this sampling plan, λ and p denote the constant rate of the Poisson process and
the reaction probability in a small time interval, respectively. Additionally, N shows
the number of reactions and Y is the true sample path within this time [26]. Finally,
B(., .) implies the binomial distribution with the given parameters.

As a result, the complete-data likelihood under the inhomogeneous Poisson
process model can be described as

L A(Θ, y) =
⎡

⎣
r∏

j=1

λ j (t)

⎤

⎦ exp

{
−1

2
[h0(y0(t),Θ) + h0(y1(t),Θ)]

}
(10)

in which λ j (t) = (1 − t)h j (y0(t),Θ) + th j (y1(t),Θ) for j = 1, . . . , r and means
the Poisson rate of each j th reaction whose reaction rate is equal to c j under
Θ = (c1, . . . , cr ) for j = 1, . . . , r . Thus, if we are interested in inference of the
model parameters Θ = (c1, . . . , cr ) based on Eqs. 8 and 10, we can construct a
Bayesian sampling plan [26]. But since in the current literature, the estimation of
Θ = (c1, . . . , cr ) via the inhomogeneous Poisson process model is performed for
small systems, we will explain the calculation of the inference methods based on the
diffusion approximation, and accordingly, based on the Langevin model. Because,
these models can be applicable for both small and realistically large systems.

3 Inference of Model Parameters Based on Diffusion
Approximation Model

The major challenge in stochastic modelling is the application of the model in large
systems. There are three main approaches in order to estimate the model parameters
based on both the diffusion approximation and the Langevin models. As explained
previously, these two models indicate the same mathematical expressions and there-
fore, the inference of their model parameters is conducted via the same approaches.
The Metropolis-within-Gibbs algorithm by columnwise update, the modified diffu-
sion bridge method and the particle filtering technique, that are based on Bayesian
computations, are the underlying three main methods.

In the estimation of reaction rates in a biochemical system via these methods,
we use the following state matrix Y which consists of the observations at the given
time points ti = t0, . . . , tT . But for a realistic inference, [13] consider the partially
observed states, rather than fully observed Y . Hence, the matrix below is composed
of both unobserved Z and observed X parts so that Y = (X, Z). Here, X indicates
a (nx × tT )-dimensional observed sub-matrix with nx amount of observed species
and Z presents a (nz × tT )-dimensional unobserved sub-matrix with nz amount of
unobserved species. Accordingly, n = nx + nz shows the total number of substrates
in the system.
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Y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1(t0) X1(t1) X1(t2) . . . X1(tT )

X2(t0) X2(t1) X2(t2) . . . X2(tT )
...

...
...

...
...

Xnx (t0) Xnx (t1) Xnx (t2) . . . Xnx (tT )

Z1(t0) Z1(t1) Z1(t2) . . . Z1(tT )

Z2(t0) Z2(t1) Z2(t2) . . . Z2(tT )
...

...
...

...
...

Znz (t0) Znz (t1) Znz (t2) . . . Znz (tT )

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

On the other hand, since in practice, the diffusion approximation is performed via
its discretized version, called the Euler–Maruyama approximation, as explained in
Sect. 2.2, the time interval between the subsequent two observed time points needs
to be very small. But, as the data at hand are typically very limited, [6] proposes the
data augmentation technique for states Y in order to decrease the large biased due to
the discretization. This strategy is already used for univariate diffusion model within
an importance sampling [5] and a simulation-based approach [13, 18] implements it
for the inference of the multivariate diffusion model.

Thus, the following extended matrix of Y is generated by adding latent or aug-
mented states between each pair of observed time points of original Y .

Y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t0) X1(t1) . . . X1(tm−1) x1(tm) X1(tm+1) . . . X1(tmT−1) x1(tT )

x2(t0) X2(t1) . . . X2(tm−1) x2(tm) X2(tm+1) . . . X2(tmT−1) x2(tT )
...

...
...

...
...

...
...

...
...

xd1(t0) Xd1(t1) . . . Xd1(tm−1) xd1(tm) Xd1(tm+1) . . . Xd1(tmT−1) xd1(tT )

Z1(t0) Z1(t1) . . . Z1(tm−1) Z1(tm) Z1(tm+1) . . . Z1(tmT−1) Z1(tT )

Z2(t0) Z2(t1) . . . Z2(tm−1) Z2(tm) Z2(tm+1) . . . Z2(tmT−1) Z2(tT )
...

...
...

...
...

...
...

...
...

Zd2(t0) Zd2(t1) . . . Zd2(tm−1) Zd2(tm) Zd2(tm+1) . . . Zd2(tmT−1) Zd2(tT )

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where xi and Xi display the observed data and the augmented data, respectively,
by observed components. Thereby, each Yi = (Xi , Zi ) denotes the i th column of Y
assuming that the number of augmented statesm is the same in every pair of observed
time points.

Hence, the aim of all inference approaches is based on both estimating these
missing states and reaction rate constants, which are the main parameters of interest
in systems, via different schemes. Below, we present the details of the update of Y
and Θ , in details.
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3.1 Metropolis-Within-Gibbs Algorithm by Columnwise
Updates

In the update of the state matrix Y via this algorithm, the conditional posterior of
each state is described via the multivariate normal distribution. But, the candidate
generator of each state is simulated from distinct multivariate normal densities based
on whether the underlying state is partially observed as the first and the last columns,
i.e., Y0 and YT , as well as for the observed time points or fully unobserved as certain
middle columns such as Ym−1 or Ym+1. Accordingly the update of the states is com-
puted via the Metropolis-Hastings algorithm for all columns apart from the last one
and the last column is generated via the Gibbs sampling [7, 8].

For instance, if the next column i is partially observed but not equal to neither
0 nor T , we need to merely sample a candidate value for Zi conditional on Xi = xi .
Thus the candidate state Y ∗ is described as below.

Y ∗
i =

(
X∗
i

Z∗
i

)
∼ N

((
1
2 (Xi−1 + Xi+1)

1
2 (Zi−1 + Zi+1)

)
,

(
βxx
i−1 βxz

i−1

β zx
i−1 β zz

i−1

)
1

2
Δt

)
. (11)

In this matrix Z∗
i conditional on Xi = xi is given as

ηZ∗
i

= 1

2
(Zi−1 + Zi+1) + β zx

i−1(β
xx
i−1)

−1(xi − 1

2
[Xi−1 + Xi+1]) (12)

ΣZ∗
i

= 1

2
Δt (β zz

i−1 − β zx
i−1(β

xx
i−1)

−1βxz
i−1), (13)

where ηZ∗
i
and ΣZ∗

i
are the associated mean and covariance-variance matrix, respec-

tively. Here, β zx
i−1 = β(Y zx

i−1,Θ), βxx
i−1 = β(Y xx

i−1,Θ) has full rank, β zz
i−1 = β(Y zz

i−1,

Θ), and βxz
i−1 = β(Y xz

i−1,Θ). Then, we decide on accepting or rejecting step by com-
puting the probability as follows.

α(Z∗
i |Zi ) = min

{
1,

p(Z∗
i |xi ,Yi−1,Yi+1,Θ)q(Zi |xi ,Yi−1,Yi+1,Θ)

p(Zi |xi ,Yi−1,Yi+1,Θ)q(Z∗
i |xi ,Yi−1,Yi+1,Θ)

}
. (14)

for the transition kernels q(.) under the current and proposal states.
On the other hand, if the state is a latent state, then the candidate generator Y ∗

can be simulated from Eq.15 as follows.

Y ∗ ∼ N

(
1

2
(Yi−1 + Yi+1),

1

2
Δtβ(Yi−1,Θ)

)
(15)
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which implies q(.|Yi−1,Yi+1,Θ) and accordingly converges pointwise to π(.|Yi−1,

Yi+1,Θ) as long as Δt goes to 0 as stated beforehand. The algorithm updates the
columns regarding to the probability

α(Y ∗
i |Yi ) = min

{
1,

p(Y ∗
i |Yi−1,Yi+1,Θ)q(Yi |Yi−1,Yi+1,Θ)

p(Yi |Yi−1,Yi+1,Θ)q(Y ∗
i |Yi−1,Yi+1,Θ)

}
. (16)

similar to the acceptance probability given in Eq.14.
Finally to update Θ , the normal distribution can be chosen due to the simplicity

and the random walk algorithm can be performed for the inference of Θ . Hereby,
the conditional posterior is calculated by

π(Θ|Y ) ∝
T∏

i=1

f (Yi |Yi−1,Θ)π(Θ) (17)

in which π(Θ) implies to the prior distribution of the reaction rates. If there is no
biological knowledge about the possible values of these parameters apart from their
positivity condition, the prior can be uninformative, such as uniform, Jeffrey prior
[7] or exponential with small rate like 1 [19]. In our derivation, we prefer Exp(1) to
guarantee the positivity constraints of Θ . Accordingly, a candidate Θ∗ is accepted
with respect to the given acceptance probability below.

α(Θ,Θ∗|Y ) = min

{
1,

π(Θ∗|Y )

π(Θ|Y )

}
, (18)

where Θ∗ is produced from Θ∗ = Θ + w when w presents the r -dimensional vec-
tor of perturbations for Θ such that w = (w1, . . . , w j , . . . , wr ) ( j = 1, . . . , r ). In
the estimation, each w j can be generated from w j ∼ N (0, γ j ) in which γ j indi-
cates the variance ofw j for each reaction and implicitly controls the mixing property
of the MCMC algorithm. Therefore, γ j is also called as the tuning parameter of Θ .
For good mixing in randomwalk chains under the univariate case, an acceptance rate
of around 24% is optimal [7, 23]. But for large number of parameters, this value can
be decreased [19, 20].

In the update of Θ , the acceptance probability in Eq.18 is compared with a
standard uniform random value u. If u < α(Θ,Θ∗|Y ), the candidate reaction rates
are replaced by the current rates, otherwise, Θ∗ is rejected in that iteration. This
updating scheme continues until the convergence is achieved for all reaction rates.

On conclusion, even though the Metropolis-within-Gibbs algorithm is successful
in inference of the reaction rates under large missing values, the number of latent
states added between each pair of observed states in order to decrease the bias in
the discretized version of the diffusion process may cause high correlation. To solve
the underlying problem, different sampling plans can be applied as explained in the
following parts or a measurement error can be included in our diffusion model [16].
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3.2 Modified Diffusion Bridge Method

In order to unravel the challenge of high correlation between states, the sampling
plan can be extended by constructing a diffusion bridge between observed time points
[14, 15]. Briefly, the scheme of the diffusion bridge is still based on the Metropolis-
within-Gibbs algorithm in the updates of states. But different from the columnwise
method, it updates (2m + 1) states simultaneously where m is the number of latent
states between each pair of observed time points and every mth column shows a
partially observed column in the state matrix Y . With more details, in this estimation
method, the j th column of Y , Y j , is updated by using M and M+ terms. Here,
M = j + m and M+ = M + m. Furthermore, since each column of Y is described
by Y = (x, Z) when x and Z denote the observed and unobserved components, the
conditional posterior density of the sample path between j and M+ columns given
the observed time points (t �= 0 and t �= T ) and reaction rates Θ can be written as

π(Y j+1, . . . , ZM , . . . ,YM+−1|Y j , xM ,YM+ ,Θ) ∝
M+−1∏

i= j

π(Yi+1|Yi ,Θ) (19)

in which YM = (xM , ZM) and j = 0,m, . . . , T − 2m. T is the total time points after
adding the latent or augmented states. For instance, for the initial state, this density
can be simulated by taking the next (m − 1) columns via

π(Z0,Y1,Ym−1|x0,Ym,Θ) ∝
m−1∏

i=0

π(Yi+1|Y,Θ)

for the unobserved part Z0 inwhichY0 = (x0, Z0). Then, by including the conditional
density of the first and last columns within a discretized diffusion model, the states
can be generated from amultivariate normal distribution in two different ways. Here,
we present one of these methods. Because the second method is the extension of the
first approach by also adding Y M+

states in the calculation of this one and more
details are reported in Sect. 3.3 during the updating scheme of the states and reaction
rates in Eq.24.

Accordingly, in the first approach, each Yk+1 column is inferred from Yk , xM ,
and Θ where k = j, . . . , M − 2. Under this constraint, the density of Yk+1 can be
obtained by

π(Yk+1|Yk, xM ,Θ) ∼ N (Yk + μ∗
k ,Σ

∗
k ) (20)

where

μ∗
k =

(
(xM − Xk )/(M − k){

μ(Zk ,Θ)(M − k)Δt + β(Y zx
k ,Θ)β(Xk ,Θ)−1(xM − [Xk + μ(Xk ,Θ)(M − k − 1)Δt])} /(M − k)

)
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and

Σ∗
k = Δt

(M − k)

(
(M − k − 1)β(Xk,Θ) (M − k − 1)β(Y xz

k ,Θ)

(M − k − 1)β(Y zx
k ,Θ) C

)

while C = (M − k)β(Zk,Θ) − β(Y zx
k ,Θ)β(Xk,Θ)−1β(Y xz

k ,Θ). Moreover, we
simplify the notations ofY zx

k = (Zk, Xk) andY
xz
k = (Xk, Zk) byY

zx
k andY xz

k , respec-
tively. By this approach, a diffusion bridge can be constructed starting from Y j and
finishing at xM so that it can lie from Y j+1 to YM−1 and Eq.20 can be taken as the
candidate generator of the states within the Metropolis-within-Gibbs algorithm. In
these expressions, μ(.,Θ) and β(.,Θ) describe the mean and the diffusion matrix
of the associate components of Y given the reaction rates. Finally, the acceptance
probability for the update of state is computed via the unnormalized form of the
complete likelihood ratio as below.

α(Y j+1, . . . , ZM , . . . , YM+−1|Y ∗
j+1, . . . , Z

∗
M , . . . , Y ∗

M+−1) =

min

⎧
⎨

⎩1,
∏M+−1

k= j π(Y ∗
k+1|Y ∗

k ,Θ)
∏M+−1

k= j π(Yk+1|Yk ,Θ)

q(Y j+1, . . . , ZM , . . . , YM+−1|Y j , xM , YM+ ,Θ)

q(Y ∗
j+1, . . . , Z

∗
M , . . . , Y ∗

M+−1|Y j , xM , YM+ ,Θ)

⎫
⎬

⎭ (21)

in which q(.|.) displays the transition kernel density of the move. For the update of
the proposal state, as presented previously, a standard uniform random variable u is
generated and the proposal blocks of states is accepted if u < α(.|.) given in Eq.21
is satisfied. Otherwise, the current state is accepted. Lastly, the underlying procedure
is repeated until the convergence for all columns of Y is achieved.

On the other hand, for the estimation of the reaction rate constants Θ , we can still
perform the same random sampling plan as described in Eqs. 17 and 18 under the
Metropolis-within-Gibbs by columnwise updates.

If the performance of the diffusion bridge method is compared with the results of
the columnwise update of states that are both based on the Metropolis-within-Gibbs
sampling, it is seen that the former is more successful in decreasing the high correla-
tion between latent or augmented states. Therefore it can achieve better mixing based
on the same number of MCMC iterations. In Figs. 1 and 2, we present the plots of the
MCMC runs based on the same number of iterations computed by the columnwise
and the modified diffusion bridge updates, respectively, modelled by the diffusion
approximation. The results indicate that the graphs of the modified diffusion bridge
method reach its convergence faster than the columnise update, resulting in better
mixing properties. The same conclusion is also found when the estimates of the con-
ditional posteriors are compared with respect to their true values. The estimates of
the modified diffusion bridge method have higher accuracy than the estimates of the
columnwise updates.

However, as we keep the dependency between the model parameters Θ and the
latent states, the convergence rate can alter with respect to m, the number of aug-
mented states within every pair of observed time points, and the number of obser-
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Fig. 1 The trace plots of the MCMC outputs based on 1,000,000 MCMC runs for a toy set mod-
elled by the diffusion approximation and estimated by the Metropolis-within-Gibbs methods with
columnwise updates

vations in Y . If even one of these values is high, the mixing becomes slower [14].
Hereby, in order to solve this source of dependency, there are two major alternative
approaches. The first one is to use the reparametrization of the missing data whose
algorithm is based on the irreducibleMCMC (MarkovChainMonte Carlo) technique
for all values of m [22]. Although this method gives promising results to overcome
the dependency, its application is currently limited for univariate diffusion models
[2, 16, 22]. Whereas, the second approach suggests to update both the states and the
model parameters simultaneously and this approach is called as the particle filtering
method whose mathematical details are presented in the following part.

3.3 Particle Filtering Method

The particle filtering method is an alternative approach to unravel the problem of
dependency between the latent states Y and the model parameters Θ in the diffusion
approximation. This method has been performed by [1, 4] for unobserved state
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Fig. 2 The trace plots of the MCMC outputs based on 1,000,000 MCMC runs for a toy set
modelled by the diffusion approximation and estimated by the Metropolis-within-Gibbs methods
with the modified diffusion bridge method

variables in discrete time-course data. Then [14, 15] propose to implement it for
the partially observed and augmented datasets. In this approach, in addition of the
modified diffusion bridge method, the update of latent states is conducted with the
update of the partially observed states Z j+1, . . . , ZM−1, ZM and Θ simultaneously.
Here, j denotes the integer multiple ofm augmented states. Therefore each observed
value, denoted by xM (M = j + m), is seen at every tM after (m − 1) latent states,
i.e., X j+1, . . . , XM−1. Accordingly, to generate a joint candidate ofΘ and Z j at time
tM for observed xM , i.e., πM(Θ, Z j ), we can apply their joint posterior as shown in
Eq.22 within the time interval [t j , tM ).

πM(Θ, ZM) ∝ π j (Θ, Z j )

M−1∏

k= j

π(Yk+1|Yk,Θ) (22)

inwhich Z j ,Y j+1, . . . ,YM−1 are integratedout from this target distribution.Whereas,
as the first term on the right hand side in Eq.22 can not be derived explicitly, it is
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approximated by the set of points or particles (Θ(s), Z j (s)) where s = 1, . . . , r and
r is the total number of reaction rates. Hence, Θ(s) presents the s-dimensional block
update of Θ when originally each Θ = (c1, . . . , cr ) has such a vectorial form. In
this block update, each (Θ(s), Z j (s)) pair has a 1/r constant probability of selection
and when r → ∞, the particles can approximate the target density of π j (Θ j , Z j )

truly. Therefore, to produce this density, we can use different approaches. Here,
we perform the simulation filter algorithm which is based on the MCMC sampling
of (Z j ,Y j+1, . . . ,YM−1, ZM ,Θ) and marginalizing only (Θ, ZM ) [14, 15]. In the
simulation filter algorithm, the proposal value of (Θ∗, Z∗

j ) is produced from the
multivariate normal distribution as presented in Eq.23.

(Θ∗, Z∗
j ) ∼ N

{
(Θ(u), Z j (u))

′, γ 2ψ
}
. (23)

In the above expression, u stands for an integer selected from 1 to r with equal
probability 1/r . Furthermore, γ 2 means the smoothing parameter that can be thought
like the tuning parameter used in the update of the model parameters in all updating
schemes. ψ represents the Monte Carlo posterior variance.

Accordingly, if we generate candidateΘ and Z j , (Θ∗, Z∗
j ) from Eq.23, the candi-

date latent states, (Y ∗
j+1, . . . ,Y

∗
M−1, Z

∗
M ) is produced by using the modified diffusion

bridge method whose proposal is found by Eq.20. Then for given Y ∗
M−1, xM and

Θ∗, we can simulate Z∗
M from Z∗

M ∼ π(Z∗
M |Y ∗

M−1, xM ,Θ) from the following con-
ditional proposal.

π(Yk+1|YM+ ,Yk, xM ,Θ) ∼ N (Yk + μ∗∗
k ,Σ∗∗

k ) (24)

for

μ∗∗
k = μ(Yk,Θ)Δt + Δt (β(Yk,Θ),Ck) × Λ−1 ×

(
YM+ − [Yk + μ(Xk,Θ)Δ∼]
xM − [Xk + μ(Xk,Θ)Δ∼]

)

and

Σ∗∗
k = β(Yk,Θ)Δt − Δt (β(Yk,Θ),Ck) × Λ−1 ×

(
β(Yk,Θ)

C
′
k

)
× Δt

where Ck = (β(Xk,Θ), β(Y xz
k ,Θ))′. Here, (.)

′
denotes the transpose of the given

term and Δ∼ = (M+ − k)Δt . Finally,

Λ =
(

β(Yk,Θ)Δ∼ CkΔt
C

′
kΔt β(Xk,Θ)Δ∼

)
.
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In the end, the algorithm updates the system by the acceptance probability α given
below.

α =
∏M−1

k= j π(Y ∗
k+1|Y ∗

k ,Θ)
∏M−1

k= j π(Yk+1|Yk ,Θ)
× π(ZM |Ym−1, xM ,Θ)

∏M−2
k= j π̃(Yk+1|Yk , xM ,Θ)

π(Z∗
M |Y ∗

M−1, x
M ,Θ∗)

∏M−2
k= j π̃(Y ∗

k+1|Y ∗
k , xM ,Θ∗)

(25)

in which π̃(.|.) terms on the right hand side in Eq.25 indicates the transition kernel
density presented in Eq.20. Here, the move is accepted by putting Θ(s) = Θ∗

(s) and
Y(s) = Y ∗

(s) (s = 1, . . . , r ) with a probability min(1, α). Lastly, similar to previous
updating rules, the algorithm repeats this calculation for all j := j + m iteratively
until the convergence is obtained for both Θ and Y .

In general, from comparative analyses of this approach with the columnwise
updates and the modified diffusion bridge methods, the particle filtering algorithm
is more successful in decreasing the severity of the dependency between the model
parameters and the latent states in inference. Therefore, it can propose a bettermixing
properties in the MCMC scheme [14, 15].

4 Conclusion

In this chapter, we have presented an overview of methods for the stochastic mod-
elling and inference of the model parameters, i.e., stochastic reaction rate con-
stants, for the realistically complex biological systems. Among alternatives, we have
explained in details the diffusion approximation methods for modelling and the esti-
mation of the model parameters via this model. In the description of the inference
approaches, we have followed a plan from the less complex to more sophisticated
approaches in order to overcome the problem of dependency in the updates of par-
tially observed states and reaction rates. All the suggested methods are based on the
fully Bayesian inference by using the time-course dataset and the given inference
techniques are very general in the sense that they can be applicable for any other
stochastic modelling approaches with time-course data. Whereas, they are typically
very computationally demanding. But, the underlying computational cost can sig-
nificantly decrease if we can work on fully observed, rather than partially observed,
systems. In both cases, we consider that regarding the detailed information that they
can provide about the system, they are still worthy to perform.
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Complete Nonholonomy of the Rolling
Ellipsoid - A Constructive Proof

F. Rüppel, F. Silva Leite and R. C. Rodrigues

Abstract We present a constructive proof of the complete nonholonomy of the
rolling ellipsoid. The rolling motions are assumed to be over the affine tangent space
at a point of the n-ellipsoid and both manifolds are considered embedded in R

n+1,
equipped with a metric that results from a convenient deformation of the Euclidean
metric. The deformation is defined through a positive definite matrix D whose eigen-
values are the semi-axis of the ellipsoid. The rolling motion has the usual constraints
of non-slip and non-twist. Showing that the rolling ellipsoid is a complete nonholo-
nomic system reduces to showing that one canmovebetween twoarbitrary admissible
configurations by rolling without slipping and without twisting. We exhibit piece-
wise linear paths on the affine tangent space along which the ellipsoid rolls in order
to perform the forbidden motions, twists and slips.
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1 Introduction

This paper deals with controllability of a rolling system consisting of an ellipsoid
rolling on the affine tangent space at a point. This is a particular situation of amanifold
rolling, without slipping and twisting, on another manifold of equal dimension, so
that bothmanifolds are tangent at every point of contact. The first manifold is moving
(rolling manifold) while the second is static. By an admissible configuration of such
rolling system we mean any position of the rolling manifold in which it is tangent
to the static manifold. It is well known that the most classical of all rolling systems,
consisting of a sphere rolling over its tangent plane at a point, always with the
constraints of no-twist and no-slip, is a complete nonholonomic system, which is
the same as saying that the system is controllable. In other words, given any two
admissible configurations of the sphere, it is always possible to make it roll over the
tangent plane from one configuration to the other, without violating the constraints.
This controllability issue has been studied for other particular rolling motions and
even for general rolling manifolds, such as in [2]. These results, however, do not
tell us how to do it. For the Euclidean 2−sphere this problem has been studied
before in [1, 5], and the results have been extended to the Euclidean n-sphere in [6].
The objective of this article is to present a constructive proof for the controllability
of the rolling motion of the n-dimensional ellipsoid over the affine tangent space
at a point, assuming that both manifolds are embedded in R

n+1 equipped with a
left invariant metric that results from a deformation of the Euclidean metric. This
will be achieved by showing that the forbidden motions of twist and slip can be
alternatively performed by rolling without twist and without slip. The 2-dimensional
case serves as an inspiration and illustration. Before we reach the main results in
Sect. 6, we introduce the right geometry of the ellipsoid, the group of isometries of
the embedding space, and the kinematic equations for rolling the ellipsoid over the
affine tangent space at a point. These kinematic equations can be solved explicitly
when rolling along geodesics. This fact is particularly important and will be used
later in order to define the rolling path along which the ellipsoid has to roll in order
to perform the forbidden motions of twist and slip. Throughout the paper we deal
with the n-dimensional case, but the details and illustrations are presented for the
case n = 2.

2 Geometry of the Ellipsoid

Let d1, d2, . . . , dn+1 be positive real numbers. The n-dimensional ellipsoid associated
to these numbers is defined as

En :=
{
(x1, . . . , xn+1) ∈ R

n+1 : x
2
1

d2
1

+ · · · + x2n+1

d2
n+1

= 1

}
. (1)
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The positive definite matrix D = diag(d1, d2, . . . , dn+1) � 0 induces a metric on
R

n+1 defined by
(U, V ) �→ 〈U, V 〉D−2 := 〈U, D−2V 〉, (2)

where
〈·, ·〉 denotes the Euclidean metric in R

n+1. This metric space will be denoted
by M = (Rn+1, 〈·, ·〉D−2). Since

〈
DU , DV

〉
D−2 = 〈

DU , D−2DV
〉 = 〈

U, V
〉
,

the mapping
ϕ : (Rn+1, 〈·, ·〉) → M

x �→ Dx
, (3)

is an isometry. M is an example of a space equipped with a left-invariant metric.
Unlike the Euclidean space, groups of isometries acting on objects from the left
hand side is different than from the right. The main reason for introducing M is
that when the ellipsoid is embedded in Euclidean space even curves with a simple
geometry, such as geodesics, are very hard to compute. To avoid this problem, we
follow what has been done in [7, 8] and embed the ellipsoid En in the Riemannian
manifold M = (

R
n+1, 〈·, ·〉D−2

)
with 〈U, V 〉D−2 := 〈U, D−2V 〉, so that the ellipsoid

En behaves like the sphere in Euclidean space with its standard metric. With respect
to this Riemannian metric, the corresponding geodesics can be expressed in closed
form.

From now on, we consider the n-dimensional ellipsoid En and its affine tan-
gent space V ∼= T aff

p0 En at a particular point p0 ∈ En , both embedded in M =(
R

n+1, 〈·, ·〉D−2

)
. The ellipsoid En is allowed to roll along any path in V without

twisting and without slipping. To describe the rolling motions we need the action on
M of its group of isometries.

3 Group of Isometries of M = (
R
n+1, 〈·, ·〉D−2

)

Let Isom (M) denote the (Lie) group of isometries of M . If ϕ : M → M is an isom-
etry, then, for any p ∈ M and U, V ∈ TpM , the following equality holds, where ϕ∗
is the push-forward of ϕ.

〈
U, V

〉
D−2 = 〈

ϕ∗U ,ϕ∗V
〉
D−2

or, equivalently,

〈
U, D−2V

〉 = 〈
ϕ∗U , D−2ϕ∗V

〉 = 〈U,ϕT
∗ D

−2ϕ∗V 〉.
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So, it follows that D−2 = ϕT∗ D−2ϕ∗, that is, ϕ∗ ∈ GD−2 , where GD−2 is the matrix
quadratic Lie group defined as

GD−2 := {
X ∈ GL(n + 1) : XT D−2X = D−2

}
. (4)

The Lie algebra of GD−2 is defined as:

LD−2 := {A ∈ gl(n + 1) : AT D−2 = −D−2A}. (5)

It can be easily seen that, for any g ∈ GD−2 , there exists exactly one R ∈ SO(n + 1)
such that g = DRD−1. Therefore GD−2 = D SO(n + 1) D−1 and so the two groups
are isomorphic (GD−2 ∼= SO(n + 1)). Also, for any � ∈ LD−2 , there exists exactly
one A ∈ so(n + 1) such that � = DAD−1.

The Lie group of isometries of M is then

Isom(M) = GD−2 � R
n+1 ∼= SE(n + 1). (6)

In the reminder of this paper the elements of Isom(M) will be denoted, as usual, by
pairs (X, s), with X ∈ GD−2 and s ∈ R

n+1. The group operations in GD−2 � R
n+1 are

defined as: (X, s)−1 = (
X−1,−X−1s

)
and (X1, s1) · (X2, s2) = (X1X2, X1s2 + s1).

4 Rolling Maps

Rolling maps describe how two manifolds of the same dimension, both embedded in
a Riemannian space, roll on each other without twisting and without slipping. Such
a motion will be sometimes referred as “pure rolling”. A rolling map is a curve in
the group of isometries of the embedded manifold that satisfies certain constraints.
The first formal definition of a rolling map for Euclidean submanifolds appeared in
Sharpe [10], but in the meanwhile it has been extended to more general Riemannian
manifolds in [4]. In a general situation, there are two no-twist conditions (tangential
and normal conditions). But when the rolling manifold has co-dimension one, the
normal condition is always satisfied. We recall below the definition of rolling map in
the co-dimension one situation, since this is the particular case we are about to study.
In what follows I ⊂ R denotes a closed interval and N⊥ denotes the orthogonal
space of an embedded submanifold N ⊂ M , with respect to the Riemannian metric
on M .

Definition 1 Let M0 and M1 be two n-manifolds isometrically embedded in an
n + 1-dimensional Riemannian manifold M and σ1 : I → M1 a piecewise smooth
curve in M1. A rolling map of M1 on M0, without slipping or twisting, is a (piecewise
smooth) map χ : I → Isom(M) satisfying the following conditions:
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Rolling Conditions:
There exists a piecewise smooth curve σ1 : I : M1 (called the rolling curve)

satisfying:

1. χ(t)(σ1(t)) ∈ M0, for all t ∈ I ;
2. Tχ(t)(σ1(t))(χ(t)(M1)) = Tχ(t)(σ1(t))M0, for all t ∈ I .

The curve σ0 : I → M0 defined by σ0(t) := χ(t)(σ1(t)) is called the development
curve of σ1.

No-slip Condition:

σ̇0(t) = χ(t)∗(σ̇1(t)), for almost all t ∈ I ;

No-twist Condition:(
χ̇(t) ◦ χ(t)−1

)
∗ (Tσ0(t)M0) ⊂ (

Tσ0(t)M0
)⊥
, for almost all t ∈ I .

�

The no-slip and no-twist conditions are nonholonomic conditions, i.e. noninte-
grable constraints on velocities that must hold for any t ∈ I for which the deriva-
tives are defined. For rolling maps of general manifolds there is a second no twist
condition where the roles of Tσ0(t)M0 and

(
Tσ0(t)M0

)⊥
appear interchanged.

Remark 1 Using this definition and properties of isometries, one can easily prove
that rolling is invariant under the action of any isometry of the embedding space.More
precisely, if M1 rolls on M0 with rolling map χ, rolling curve σ1, and development
curve σ0, and if χ f ∈ Isom(M) is a fixed isometry, then χ f (M1) rolls on χ f (M0)

with rollingmapχ f · χ · χ f
−1, rolling curveχ f (σ1) and development curveχ f (σ0).

5 Kinematic Equations for the Rolling Ellipsoid

The kinematic equations for the rolling motion of the ellipsoid over the affine tangent
space at a point have been derived in [7], precisely for the situation when both mani-
folds have the metric induced by < ., . >D−2 . When the rolling motion is performed
along geodesics or broken geodesics and, consequently, the development curves are
piecewise linear, the kinematic equations are easy to solve. This is the situation that
we will explore later, and for that reason we include next the essentials about kine-
matic equations taken from [7], when the point of contact is p0 = (0, · · · , 0,−d3).
In this case, the skew-symmetric matrix A(t) = u(t)p0D−1 − D−1 p0u(t), with
u = (u1, · · · , un, 0), which appear in the next proposition, has the following
structure:

A(t) =

⎛
⎜⎜⎜⎝

0 . . . 0 −u1(t)
...

. . .
...

...

0 . . . 0 −un(t)
u1(t) . . . un(t) 0

⎞
⎟⎟⎟⎠ . (7)
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Proposition 1 ([7], Proposition 5.1) Let X : I → GD−2 and s : I → R
n+1 be the

solution of the following set of equations

⎧⎨
⎩
ṡ(t) = −DA(t)D−1 p0

Ẋ(t) = DA(t)D−1 X (t)
(8)

satisfying s(0) = 0 and X (0) = id, where A(t) is given by (7).
Then, χ = (X, s) : I → GD−2 � R

n+1 is the rolling map of the rolling motion of
the ellipsoid En over its affine tangent space at p0, with rolling curve
σ1(t) = (X (t))−1 p0 and development curve σ0(t) = s(t) + p0.

Corollary 1 ([7], Corollary 5.2) If A(t) = A is a constant matrix, the solution of
the kinematic equations (8) is given by

⎧⎨
⎩
s(t) = −t DAD−1 p0

X (t) = D exp (t A)D−1
, (9)

and the rolling curve and its development, given respectively by

σ1(t) = X−1
0 D exp (−t A)D−1 p0,

σ0(t) = −t DAD−1 p0 + p0, (10)

are geodesics on the ellipsoid En and on its affine tangent space T aff
p0 En, with respect

to the metric 〈·, ·〉D−2 .

Remark 2 It is clear from here that the rolling map t �→ (X (t), s(t)) is uniquely
determined if one chooses the development curve t �→ σ0(t).

It has been proven in [9] that, as a consequence of the positivity of the Gaussian
curvature of the ellipsoid, the rolling system consisting of the ellipsoid rolling on its
affine tangent space at a point is completely nonholonomic (or controllable). That
is, one can steer the ellipsoid from an admissible configuration (any configuration
in which the ellipsoid is tangent to the affine tangent space) to any other admissible
configuration, only by rolling without twist and without slip, that is by pure rolling
only. Interested reader is referred to [9] for more details. The interesting issue now is
to know how to do it. To answer this question, is it enough to show how to generate
the forbidden motions (twists and slips) using pure rolling only. The main objective
of this article is to address this problem. This will be done in the next section, starting
with the 2-dimensional case. There is a strong analogy between what we do here and
the ideas contained in [6], which in turn were inspired by [5].
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6 Realizing Twists and Slips by Pure Rolling

Let ei , i = 1, 2, 3 denote the standard basis vectors of R
3, here represented as row

matrices. Without loss of generality we might assume that p0 is the “south pole” of
E2, that is, p0 = −d3e

3 . Otherwise, we apply a GD−2 transformation to the ellipsoid
to bring the point p0 to that position.

When p0 = −d3e
3 , a twist is an element of GD−2 that fixes e

3 , while a slip is a
translation. The figures below illustrate the forbiddenmotions (twist and slip) (Figs. 1
and 2).

We will exhibit a piecewise linear closed path that the ellipsoid has to trace on
V ∼= T aff

p0 E2 in order to realize a twist, and a piecewise linear path that the ellipsoid
has to trace on V ∼= T aff

p0 E2 in order to realize a slip.
First, we introduce the following basis of the Lie algebra of GD−2 , where Ai, j :=

ei e
j − e j e

i .

{
AD
i j := Deie


j D

−1 − Deje

i D

−1 = DAi, j D
−1, 1 ≤ i < j ≤ 3

}
. (11)

Since GD−2 = DSO(3)D−1, it is immediate to conclude that a clockwise twist by an
angle ϕ is given by

zD(ϕ) := e−ϕAD
1,2 = D

⎡
⎣cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎤
⎦ D−1. (12)

Analogously, we can define the following elements in GD−2 that leave invariant either
e2 or e1:

Fig. 1 A forbidden motion: a twist around the vertical axis

Fig. 2 A forbidden motion: a slip
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yD(ϕ) := eϕAD
1,3 = D

⎡
⎣ cosϕ 0 sinϕ

0 1 0
− sinϕ 0 cosϕ

⎤
⎦ D−1,

xD(ϕ) : = e−ϕAD
2,3 = D

⎡
⎣1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

⎤
⎦ D−1.

(13)

Defining adA B := [A, B] = AB − BA and, recursively, ad j
A B := ad j−1

A [A, B], for
j = 2, 3, · · · , one has

et A B e−t A = etadA B = B + t[A, B] + · · · + t k

k! ad
k
A B + · · · ,

Also, taking into consideration the following identities

[
AD
1,2, A

D
2,3

] = AD
1,3,

[
AD
1,2, A

D
1,3

] = −AD
2,3,

[
AD
1,3, A

D
2,3

] = −AD
1,2,

it is straightforward to conclude that

zD(ϕ) = xD(± π
2 ) yD(±ϕ) xD(∓ π

2 ).

Therefore, decomposing zD(ϕ) as zD(ϕ) = zD(
ϕ
2 ) zD(

ϕ
2 ), it follows that any twist

can be written as:

zD(ϕ) = xD(− π
2 ) yD(−ϕ

2 ) xD(π) yD(
ϕ
2 ) xD(− π

2 ). (14)

Notice that the sum of the arguments for xD , and also for yD , in the last expression
add up to zero. We use this decomposition of zD(ϕ) to guarantee that the ellipsoid
will return to the initial position (with p0 being the point of contact with V ).

6.1 Realizing a Twist

Next, we exhibit a closed piecewise linear path α0(t), which is the development
curve on V for the rolling motion (without twisting and without slipping) of the
ellipsoid which realizes a clockwise twist of angle ϕ. This path is composed of
five line segments which form a rectangle in the tangent plane. As mentioned in
Remark2, the whole rolling motion is determined by this choice of the development
curve. Figure3 illustrates the realization of such twist, showing the rolling ellipsoid
at six different times, in particular, when it is touching the tangent plane V at the
vertices of the rectangle. For the sake of clarity, the picture shows two rectangles,
but in reality they overlap.
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This rolling motion occurs in the time interval [0, T ], with T = πd2 + ϕd1, par-
titioned as 0 = t0 < t1 < t2 < t3 < t4 < t5 = T , where

t1 = π

2
d2

t2 = t1 + ϕ

2
d1 = π

2
d2 + ϕ

2
d1

t3 = t2 + πd2 = 3π

2
d2 + ϕ

2
d1 (15)

t4 = t3 + ϕ

2
d1 = 3π

2
d2 + ϕd1

t5 = t4 + π

2
d2 = πd2 + ϕd1 ,

and the development curve is defined by:

σ0
(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, t,−d3), 0 ≤ t ≤ t1

(t − π
2 d2,

π
2 d2,−d3), t1 < t ≤ t2

(
ϕ
2 d1,−t + ϕ

2 d1 + πd2,−d3), t2 < t ≤ t3

(−t + ϕd1 + 3π
2 d2,−d3), t3 < t ≤ t4

(0, t − ϕd1 − 2πd2,−d3), t4 < t ≤ t5

. (16)

This is allwe need to define the sequence of rollingmotions along the broken geodesic
that performs the twist. These rolling motions can be written in terms of xD and
yD only. Next, we exhibit the equations of five manifolds, N1, · · · , N5, the first
four for the rolled ellipsoid when it is tangent to the plane at every corner of the
rectangle, and N5 which only differs from N0 =: E2 by a twist of angle ϕ. We
omit straightforward computations that enable the simplifications below. The six
manifolds, Ni , i = 0, · · · , 5, can be observed in Fig. 3, where the matrix that defines
the ellipsoid was chosen to be D = diag{4, 2, 1}. The sizes of all the surfaces Ni is
the same, although due to perspective they appear to be different.

N1 = xD(−π/2)E2 +
⎡
⎢⎣

0
π
2 d2
0

⎤
⎥⎦ ;

N2 = yD(ϕ/2)

⎛
⎜⎝N1 −

⎡
⎢⎣

0
π
2 d2
0

⎤
⎥⎦

⎞
⎟⎠ +

⎡
⎢⎣

ϕ
2 d1
π
2 d2
0

⎤
⎥⎦
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Fig. 3 Performing a twist, from N0 to N5
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= yD(ϕ/2) xD(−π/2) E2 +
⎡
⎢⎣

ϕ
2 d1
π
2 d2
0

⎤
⎥⎦ ;

N3 = xD(π)

⎛
⎜⎝N2 −

⎡
⎢⎣

ϕ
2 d1
π
2 d2
0

⎤
⎥⎦

⎞
⎟⎠ +

⎡
⎢⎣

ϕ
2 d1

− π
2 d2
0

⎤
⎥⎦

= xD(π) yD(ϕ/2) xD(−π/2) E2 +
⎡
⎢⎣

ϕ
2 d1

− π
2 d2
0

⎤
⎥⎦ ; (17)

N4 = yD(−ϕ

2
)

⎛
⎜⎝N3 −

⎡
⎢⎣

ϕ
2 d1

− π
2 d2
0

⎤
⎥⎦

⎞
⎟⎠ +

⎡
⎢⎣

0

− π
2 d2
0

⎤
⎥⎦

= yD(−ϕ

2
) xD(π) yD(ϕ/2) xD(−π/2) E2 +

⎡
⎢⎣

0

− π
2 d2
0

⎤
⎥⎦ ;

N5 = xD(−π

2
)

⎛
⎜⎝N4 −

⎡
⎢⎣

0

− π
2 d2
0

⎤
⎥⎦

⎞
⎟⎠ +

⎡
⎣0

0
0

⎤
⎦

= xD(−π

2
) yD(−ϕ

2
) xD(π) yD(ϕ/2) xD(−π/2) E2.

So, using (14), we conclude that

N5 = zD(ϕ) E2, (18)

that is, the rolling motion (without twist and without slip) of the ellipsoid along the
piecewise path given by (16) performs the required twist.

6.2 Realizing a Slip

A slip is a pure translation s(τ ) that takes a submanifold N to N + s(τ ), so without
changing the orientation of N . The objective here is to show how to realize a slip
from a point p0 to another point p2 in the tangent plane. Similarly to what has been
done in [1] for the Euclidean sphere, we will show that a slip can be realized with
pure rolling along at most two geodesic arcs.

Without loss of generality we assume that N0 := E2, p0 = (0, 0,−d3), p2 =
(x2, 0,−d3), for x2 > 0. In this case, τ = x2. While these assumptions simplify
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calculations, they do not destroy the essence of the problem. This is due to the
invariance of the rolling under the action of isometries of the embedding space
(Remark 1).

First Case: If distD−2(p0, p2) is a multiple of 2π, that is, if there exists a positive
integer k such that

distD−2(p0, p2) = √〈p2 − p0, p2 − p0〉D−2 = x2d1
−1 = 2πk, (19)

then a simple calculation shows that the pure rolling motion from t = 0 to t = τ ,
resulting from the action of the rolling map (X (t), s(t)) = (

yD(td1
−1), (t, 0, 0)

)
performs the slip. To see this, notice that knowing s(t) we can use (9) to obtain
the matrix A and, consequently, X (t). In this case, A = d1−1A1,3 and X (t) =
D exp (t A)D−1 = yD(td1

−1). But using the assumption (19), we may write X (τ ) =
yD(τd1

−1) = yD(x2d1
−1) = yD(2πk) = I3. So, X (τ )N0 + s(τ ) = N0 + s(τ ) as

required.

Second Case: If distD−2(p0, p2) is not a multiple of 2π, let l be any integer satisfying
distD−2(p0, p2) < 2πl. Then, there exist points p1 ∈ V such that distD−2(p0, p1) =
distD−2(p1, p2) = 2πl. These points are of the form p1 = ( x22 , y1,−d3), with y1 =
±

√
d2(4πl2 − d−2

1 x22/4). The points p0, p1 and p2 form the vertices of an isosceles
triangle. In this case, the slip from p0 to p2 is realized by pure rolling along a broken
geodesic that develops as two sides of this triangle, the ones joining p0 to p1 and p1
to p2. This clearly solves the problem since the distance between each pair of points
is a multiple of 2π. For the sake of completeness, we include here the two rolling
maps involved, (s1, X1) and (s2, X2). Since

σ0(t) =
⎧⎨
⎩

(t, t 2y1x2
,−d3), 0 ≤ t ≤ x2

2

(t,−t 2y1x2
+ 2y1,−d3), x2

2 < t ≤ x2

,

it then follows from (9) that

A1 =
⎡
⎢⎣

0 0 d1
−1

0 0 2y1
x2
d2−1

−d1
−1 − 2y1

x2
d2

−1 0

⎤
⎥⎦ , A2 =

⎡
⎢⎣

0 0 d1
−1

0 0 − 2y1
x2
d2−1

−d1
−1 2y1

x2
d2

−1 0

⎤
⎥⎦ ,

and, consequently,

s1(t) =
⎧⎨
⎩

(t, t 2y1x2
, 0), 0 ≤ t ≤ x2

2

(t,−t 2y1x2
+ 2y1, 0), x2

2 < t ≤ x2

.
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Fig. 4 Performing a slip, from p0 to p2

Rodrigues’ formula for rotations inR
3 tells us that if A = a1A1,2 + a2A1,3 + a3A1,3,

then

exp (t A) = I3 + A

k
sin(tk) + A2

k2
(1 − cos(tk)),

where k =
√
a21 + a22 + a23 . So, X1(t) and X2(t) can be easily obtained from A1 and

A2 above.
Figure. 4 illustrates how to perform a slip. The sizes of the three surfaces are the

same, although due to perspective they appear to be different.

6.3 A Glimpse at the General Case

For the n-dimensional case, the computations are more elaborate, but we can give
a glimpse of the general ideas that are behind the realization of twists and slips.
This is similar to what has been done in [6] for the Euclidean case and follows
from the fact that the isometry group GD−2 is related to the rotation group as GD−2 =
D SO(n + 1) D−1.

For the ellipsoid En , let p0 = (0, . . . , 0,−dn+1)
. Consider the following basis

for the Lie algebra of GD−2 :

{
AD
i, j = D(ei e

T
j − e j e

T
i )D−1 = DAi, j D

−1, 1 ≤ i < j ≤ n + 1
}
.

A twist at p0 is an element in GD−2 that keeps p0 invariant. It is easy to conclude that
twists are the elements in the Lie subgroup of GD−2 defined by K := exp k, where

k := span{AD
i,j, 1 ≤ i < j ≤ n} ∼= son.
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Hence, the realization of a twist by pure rolling is equivalent to the possibility of
expressing elements of exp k in terms of elements of exp p, where p is the vector
space

p := {AD
i,n+1, 1 ≤ i ≤ n}.

Note that, the Lie algebra LD−2 of GD−2 allows the direct sum decomposition

LD−2 = k
⊕

p,

which is a Cartan-like decomposition and induces a decomposition of GD−2 as

GD−2 = K AK ,

where K = exp k and A = exp a, with a a 1−dimensional Abelian subalgebra con-
tained in p. Details about these decompositions may be found in [3].

In order to be able to show how to realize a twist in higher dimensions, one needs
to keep decomposing k and K in a similar way until every element in K is written as a
product of a finite number of elements from the one-parameter subgroups exp(ϕAD

i, j ),
for 1 ≤ i < j ≤ n. This is the counterpart to the decomposition of a rotation as a
composition of Givens rotations, used in [6] for the case D = I .

Now, for each AD
i, j ∈ k, there exist elements AD

i,n+1 and AD
j,n+1 in p such that

[AD
i,n+1, A

D
i, j ] = AD

j,n+1, [AD
i, j , A

D
j,n+1] = AD

i,n+1,

[AD
j,n+1, A

D
i,n+1] = AD

i, j .
(20)

And analogously to the E2 case, we may write

e(ϕAD
i, j ) = e(± π

2 A
D
i,n+1) e(±ϕAD

j,n+1) e(∓ π
2 A

D
i,n+1) . (21)

Proceeding as for n = 2, the result is the decomposition of every twist into a product
of elements in exp p, so that all rotation angles corresponding to afixed axis AD

i,n+1 add
up to zero. So, any twist is realized by pure rolling along a closed broken geodesic.

Finally, due to the invariance of rolling with respect to the action of the isometry
group of the embedding space (Remark 1), the realization of a slip from a point
p0 to a point p2 in the affine tangent space at p0 is similar to the case n = 2. So,
we can assume, without loss of generality, that p0 = (0, · · · , 0,−dn+1))

 and p2 =
(x2, · · · , 0,−dn+1))

, for some x2 > 0, and repeat the procedure in Sect. 6.2 just
with the obvious adaptations. More precisely, if distD−2(p0, p2) = 2πk, the ellipsoid
has to roll along the geodesic arc that develops as p0 p2 in the affine tangent space,
otherwise it has to roll along a broken geodesic that develops as the equal sides of
any planar isosceles triangle with base p0 p2 and such that the length of the equal
sides is a multiple of 2π greater than distD−2(p0, p2).
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7 Conclusion

We have presented an alternative proof to the complete nonholonomy, or controlla-
bility property, of the system consisting of an n-dimensional ellipsoid rolling without
twist and without slip over its affine tangent space at a point. The main ingredients in
this construction consist in showing how to realize the forbiddenmotions of twist and
slip by rolling without twisting and without slipping. This forms the main contents
of Sect. 6.
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Abstract This paper aims to appraise the problem of financial exclusion in Spain
after the process of banking system restructuration. The paper proposes a theoretical
model for explaining the phenomenon of financial exclusion including both “access
difficulties” and “difficulties in the use of financial services” as two dimensions that
should be jointly considered. The main contribution of this paper is that it broadens
the scope of financial exclusion from a theoretical and empirical point of view, and
it also analyses the financial exclusion phenomenon at lower units of analysis that
have not been previously explored: urban districts andmunicipalities.We considered
Madrid and Barcelona as our scenarios of analysis. The methodological procedure
was carried out in two steps: we first validate our theoretical model by applying
canonical correlations, and secondly we carried out Quantile Regressions (QR) to
estimate the different impact of financial exclusion’s predictors at different points
of the empirical distribution. The empirical results indicate a trend towards low-cost
retail banking to serve the segment of less profitable customers and a pattern of branch
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Keywords Financial exclusion · Consumer vulnerability · Financial crisis
Geography and finance · Canonical correlation · Quantile regression · Inequality

C. Ruza-Paz-Curbera (B) · M. de la Cuesta-González
Facultad CC. Económicas y Empresariales, UNED, Paseo Senda del Rey 11,
28040 Madrid, Spain
e-mail: cruza@cee.uned.es

B. Fernández–Olit
Faculty of Business and Communication, International University of La Rioja, UNIR,
c/ Almansa 101, 28040 Madrid, Spain
e-mail: beatriz.fernandez@unir.net

M. de la Cuesta-González
e-mail: mcuesta@cee.uned.es

© Springer International Publishing AG, part of Springer Nature 2018
A. A. Pinto and D. Zilberman (eds.), Modeling, Dynamics, Optimization
and Bioeconomics III, Springer Proceedings in Mathematics & Statistics 224,
https://doi.org/10.1007/978-3-319-74086-7_20

403



404 C. R.-P. Curbera et al.

1 Introduction

Access to commercial banking services is a basic condition for social integration in
modern societies, and the quality of services provided by branches is still considered
an essential indicator of financial inclusion. However, the concept of financial exclu-
sion (FE) has evolved from the concept of financial exclusion as the lack of physical
access to banking products and services, to a broader concept of exclusion that also
considers the difficulties in the use of financial services.

Theories of geographical analysis initiated by Leyshon and Thrift [23] have
focused on financial access mainly from a geographical point of view and exclusion
was considered just a consequence of the lack or disappearance of bank branches in
a territory.

The liberalization of the banking markets during the 80s entails a new orientation
for the research of FE, considering also the impact of social and economic inequalities
affecting communities. In addition, as the financial crisis has confirmed, consumer
vulnerability in the financial market may involve a lack of control by the user (and
abuse by the entity) leading to an unhealthy dependence, irrational decisions (Hill
and Kozup [17]; De Meza et al. [8]) and to the general misuse of financial services.
Thus, the assessment of financial exclusion should not only consider the quantity of
financial services available, but also the use people make of the services provided.

On these grounds the paper evaluates the level of branch reduction and branch
saturation as proxies of financial exclusion in terms of access difficulties and use
difficulties, respectively. The main contribution of this paper is twofold. First, it
broadens the scope of financial exclusion from a theoretical and empirical point of
view, and secondly we focus on the financial exclusion phenomenon at lower units of
analysis that will provide us with new insights into the determinants of the problem,
that were not revealed by previous studies carried out at national or province levels.
In particular, we focus the attention on the two biggest urban areas in Spain, whose
banking network were severely reduced during the crisis.

The analysis of results will be especially relevant for policymakers interested in
preventing financial exclusion problems as well as for the whole banking industry in
designing new strategies in this scenario.

The paper is structured as follow: The first section describes the phenomenon of
financial exclusion from the perspective of use difficulties associated with the con-
sumption of financial services, and its relation with vulnerable consumption theory.
The second section focuses on defining and empirically appraising amodel of branch
closure and branch saturation based on a set of social and economic variables for
Madrid and Barcelona districts and municipalities. The third section presents the
sample, methodology and empirical results. Finally, the paper ends with some con-
clusions and lines for future research.
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2 Literature Review and Hypothesis Development

Leyshon and Thrift [24] defined financial exclusion as “those processes that serve
to prevent certain social groups and individuals from gaining access to the financial
system”. Previous FE literature has mainly focused on financial access from a geo-
graphical point of view, and exclusion was considered a consequence of the lack of
bank branches in a territory (Seaver and Fraser [26]; Evanoff [12]).

Kempson et al. [20] introduced the idea of FE as a product of diverse barriers
(access, conditions, price, marketing and self-exclusion), which produce difficulties
in accessing and using banking services (Devlin [9]; Anderloni and Carluccio [5]).

In this paper we adopt the term “difficulties of use” from Gloukoviezoff [15]. He
defines FE as the process whereby people encounter such great difficulties to either
access or use financial services that they can no longer lead a normal social life.
FE then refers to “the mismatch between the way products are sold to customers
or the characteristics of financial services and the needs of people”. This has been
especially important in the financial crisis, where both the lack of customer control
and the mis-selling of financial products have led to an increase in over-indebtedness
and, subsequently, financial and social exclusion (evictions, inequality and economic
marginalisation). Thus, the assessment of financial exclusion should not only con-
sider the quantity of financial services available, but also the use people do of the
services provided.

Devlin et al. [10] attempted to measure “fairness in financial services” and found
differences in customer care related to the type of customer considered.

People in a vulnerable situation need banking products and services with con-
ditions adapted to their particular needs. They face serious risks when they misuse
banking services, particularly elderly people, immigrants, and people who are unem-
ployed or in a situation of working precariousness or poverty. Gloukoviezoff [15]
emphasized their need for personal financial advice to avoid the pernicious effects of
inadequate product selection. This advice has traditionally been supported by bank
branches officers, which are crucial for those collectives. Nevertheless, the banking
restructuration has reduced the network and increased the number of people attended
in each branch, which potentially can lead to a reduction in the quality of services
delivered. We wonder if this relocation of branches has generated an even more
pronounced branch saturation in those areas with worse socioeconomic standards.
Although online banking could reduce this effect, experiences combining financial
and technologic literacy to promote the use of online banking among low-income
individuals have not produce positive results (Servon and Kaestner [27]). Moreover,
a recent EU survey showed that 72% of unbanked individuals (defined as those with-
out a bank account) were not interested in banking online (Mori [25]). As Hogg et
al. [18] stated, consumers who lack access to the information or technology required
to take part in the new “virtual” markets, like the financial market, are considered
the new kind of vulnerable consumer of the current knowledge-based economy.

Financial exclusion in terms of use difficulties is not a homogeneous problem
and it cannot be solved by the simple presence of bank branches or, alternatively,
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electronic banking. It seems necessary to analyse the problem focusing on the needs
of the different groups of population, and particularly on those facing the highest
risk of being financially excluded.

The most common factors of risk in terms of financial exclusion in developed
countries could be defined by the socioeconomic characteristics of population: Low
income households or individuals (Devlin [9]; Anderloni et al. [4]; Karp and Nash-
Stacey [19]; FDIC [13]); immigrants or minorities (Anderloni and Carluccio [5];
Devlin [9]; Karp and Nash-Stacey [19]; FDIC [13]); age - mainly youths- (Ander-
loni et al. [4]; Karp and Nash-Stacey [19]; FDIC [13]); unemployment, particularly
not belonging to the formal labor force (Anderloni and Carluccio [5]; Devlin [9];
Anderloni et al. [4]; Karp andNash-Stacey [19]; FDIC [13]); and single parent house-

Table 1 Variables and information sources included in analysis focused on Spain

Study Variable Determinants Method

Alamá et al. [2] Number of branches
per municipality
(Spain)

Unemployment (proxy
of income per capita)

Poisson regression
model within the
framework of a
GLMM (Generalised
linear mixed model)

Population density

Foreign population

Province and
municipality of origin
of banking entity

Number of branches
of other typology of
banking entities

Alamá and
Tortosa-Ausina [3]

Number of branches
per municipality
(Spain)

Low income Quantile regression
based on the database
of Anuario Economico
La Caixa

High unemployment

Social housing

General and retail
commercial activities

Construction activities

Tourism

Population density

Bernad et al. [6] Number of branches in
generally low-income
and high-income
municipalities (Spain)

Population Ordinary Least
Squares (OLS) based
on the model of
Lanzillotti and Saving
[22]

Population density

Income

Source Own elaboration
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holds (Anderloni et al. [4]; FDIC [13]). To a lesser extent, the low educational level
(Devlin [9]; FDIC [13]) and the low level of financial literacy (Anderloni and Car-
luccio [5]) have also been studied among the determinants of FE. Table1 resumes
the socio-economic factors included in studies, focused on Spain, regarding the risk
of financial exclusion due to irregular distribution of banking branches (at province
or national levels).

The settlement of branches in vulnerable urban areas is no longer considered
to be a duty to maintain the socio-economic equilibrium among neighbourhoods
(Dysmki, [11]; Leyshon and Thrift [23]). Thus, the analysis of urban territories is
proposed to identify discrimination in the quality of banking services attributed to
social inequalities and the restructuration of the banking sector. This restructuration
has reduced the diversity in the whole banking sector, with the nearly elimination
of saving banks in countries like Spain. As a consequence, the number of branches
has decreased and it have resulted in an “overloading” of remaining branches. The
research model is based on Fig. 1.

Community and context basedmodels integrate both individual and group factors,
as well as potential external shocks. This seems to be an appropriate framework to
analyse the complex nature of FE and underbanking processes which are phenomena
simultaneously affected by static facts (e.g. deprived communities) and dynamic ones
(e.g. diminishing of branch network, rise of unemployment and accelerated use of
new technologies).

Fig. 1 Assessment model Source Own elaboration
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We propose as hypotheses of analysis according to the model of Fig. 1 the
following:

H1: Rates of branch closure (access difficulties) have been higher in territories
with greater socio-economic vulnerability.

H2: The deterioration of the quality of banking services (use difficulties) has been
greater in territories with greater socio-economic vulnerability.

3 Sample, Methodology and Results

The analysis has addressed the districts and municipalities belonging to the two
largest Spanish Metropolitan Areas (MA), Madrid and Barcelona, and we use infor-
mation of 63municipalities and 31 districts. InMadrid, the covered territories include
27municipalities of theMA (2,351,430 inhabitants in 2013) and the 21 districts of the
city centre (3,215,633 inhabitants), following the definition of thisMA stated byGar-
cía and Sanz [14]. Regarding Barcelona, we include the 10 districts of Barcelona city
(1,611,822 inhabitants) and the 36 municipalities of its MA (1,645,887 inhabitants),
following the definition of Idescat1 We define three statistical models. First, we use
canonical correlations to appraise the correct definition of the underlying theoretical
model regarding causes and consequences of recent FE processes in Spain. The sec-
ond model assesses the determinants of ‘branch reduction’ (BRANCHREDUCT),
while the third model focuses on the difficulties of use defining ‘branch saturation’2

(INHABBRANCH), as a proxy of the quality of financial services. Second and third
models are analysed applying quantile regressions.

The dependent variables were obtained from the Historic Archive of the Banking
Guide of Ediban3 for the years 2008 and 2013. This database offers detailed infor-
mation about all bank branches in Spain, allowing us to classify them by district and
municipality using postal codes and addresses.

The independent variables included in the model were the socio-economic deter-
minants previously identified in the literature (see Table1).4 Population density
(POPDENS) is considered a classic determinant of market attractiveness for branch
settlement, as well as multicultural population, represented by the rate of immigrants
of the four main nationalities (IMMIGR). With regard to the labor and household
economic variables, unemployment rate (UNEMPLOY) was selected as a proxy

1Idescat is the Statistics Institute of Catalonia Autonomous Community.
2The relation between the number of inhabitants and the number of bank branches has previously
used in the study of FE in Spain by Alama et al. [2].
3www.maestre-ediban.com/.
4We have considered a broader number of factors included in Table1 as independent variables.
Nevertheless, after multicollinearity analysis we have selected the variables included in Table2.

www.maestre-ediban.com/
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Table 2 Variables and information sources included in the analysis

Type of variable Year Source

Dependent variables

Branch reduction 2008–2013 Historic Archive of the Banking Guide of
Ediban

Inhabitants per branch 2013 Historic Archive of the Banking Guide of
Ediban

Independent variables

Socio-demographic indicators

Population density 2013 Statistics Institutes of the Madrid and
Catalonia Autonomous Communities

Percentage of population over 65 2013 National Statistics Institute. Continuous
Municipal Register

Percentage of main immigrant
nationalities

2013 National Statistics Institute. Continuous
Municipal Register

Percentage of single-parent
households *

2013 National Statistics Institute. Population
and Housing Census

Socio-economic indicators

Rate of unemployment per 100
inhabitants

2013 Own elaboration with data from the
General Office of Statistics of Madrid and
Barcelona City Councils, and Statistics
Institutes of the Madrid and Catalonia
Autonomous Communities (i)

Hotels per 1000 inhabitants 2013 Idem (i)

Variation in housing price * 2008–2013 Historic Database of Idealista Real Estate
Agency. www.idealista.com

Rate of Internet access * 2011 National Statistics Institute. Population
and Housing Census

The number of observations in all territories is 94 (48 MAD+46 BCN), except in those with *:
SINGLEPAR - 90 (48 MAD+42 BCN); HOUSEPR - 82 (47 MAD+35 BCN) and INTERN 86 (48
MAD+38 BCN).
Source Own elaboration

of the profitability-risk combination (from the banking perspective), as well as the
dynamism of tourism (TOURDYNAM), and the rate of variation in housing prices
(HOUSEPR), considering that those territories more affected by depreciation have
increased their social vulnerability. This study includes new variables in the study
of financial exclusion in Spain, as they have become significant in other developed
countries like the European Union and the USA (Anderloni et al. [4]; FDIC [13]):
percentage of the population over 65 years of age (POP65), and rate of households
with single-parent (SINGLEPAR), which help to better represent the demographic
structure of territories.5 We have included an innovative variable, in order to repre-
sent the recent changes in the banking channels: the rate of households with Internet

5These collectives have also been defined to face a higher risk of use difficulties with banking
services (Anderloni and Carluccio [5]; Gloukoviezoff [15]; Devlin [9]).

www.idealista.com
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Table 3 Descriptive statistics of the variables

N observa-
tions

Mean Standard
deviation

Median Q25 Q75

Dependent variables

Branch
reduction (%)

94 (100%) 24.40 0.11 26.28 17.94 31.24

Inhabitants per
branch

94 (100%) 1477.56 435.79 1440.86 1239.80 1675.83

Independent variables

Population
density

94 (100%) 7561.87 8764.85 3705.44 1118.36 12255.35

Percentage of
population over
65 (%)

94 (100%) 15.22

0.05 14.89 11.68 18.34

Percentage of
main immigrant
nationalities (%)

94 (100%) 4.91 0.04 4.02 2.24 6.72

Percentage of
single-parent
households (%)

90 (95.7%) 5.03 0.01 5.04 4.48 5.77

Rate of
unemployment
per 100
inhabitants

94 (100%) 8.09 2.24 7.97 6.12 9.78

Hotels per 1000
inhabitants

94 (100%) 0.13 0.28 0.06 0.01 0.13

Variation in
housing price
(devaluation, %)

82 (87.2%) 26.13 0.07 31.14 25.74 35.80

Rate of internet
access (%)

86 (91.5%) 62.88 0.08 66.53 62.82 71.00

Source Own elaboration

access (INTERN) is a relevant factor to explore alternative services such as online
banking. Table3 summarizes the descriptive statistics of dependent and independent
variables.

Canonical Correlations

We can define canonical correlation analysis as a multivariate technique to identify
and measure the strength of association between two sets of variables; one can be
interpreted as the causes of a phenomenon and the other as the consequences. It is
particularly adequate when we are dealing with high number of variables that are
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grouped into two sets: one is composed by exogenous variables or predictors and the
second group is formed by the endogenous variables to be studied. This technique is
particularly suitable if it is observed the presence of high correlation among selected
variables.

Applying canonical correlation analysis is twofold. First, it permits to appraise if
the underlying theoretical model has been correctly defined, as long as it measures
the strength between a group of causes and consequences for a certain phenomenon,
when both groups are considered multidimensional. Secondly, if we have to reduce
the number of predictors of our selectedmodel due tomulticollinearitywewill be able
to determinewhich variables are contributing to a higher extent to the variability of the
exogenous or endogenous variables on thewhole. The use of canonical correlations is
innovative in the study of FE and reinforces its multi-causal character. The analysis is
focused on latent variables called canonical variates (which are not directly observed)
constructed in such a way that best explain the variability within the two sets of
variables (which are directly observed, i.e. our selected variables).

These canonical variates are sequentially constructed in pairs, so at each stage
of the procedure we will have a canonical variate for the set of explained variables
(set 1) and another variate for the set of predictors (set 2).

Let define for multiple x and y, two canonical variates: CVX1 and CVY1

CVX1 = a1x1 + a2x2 + a3x3 + . . . + anxn (1)

CVY1 = b1y1 + b2y2 + b3y3 + . . . + bm yn (2)

The process consists of estimating the canonical weights (a1 …an) for the first set
and (b1 …bn) for the second set, so that they maximise:

MaxCorrelation(CVX ,CVY ) (3)

And then repeat the process until we identify:

CVxm = am1xm1 + am2xm2 + am3xm3 + . . . + amnxn (4)

CVym = bm1ym1 + bm2ym2 + bm3ym3 + . . . + bmn yn (5)

that jointly verifies:

Cm correlation is maximum (6)

CVym = bm1ym1 + bm2ym2 + bm3ym3 + . . . + bmn yn (7)

Cor(CVx jCVxk) = 0 ∀ j �= k (8)

Cor(CVyjCVyk) = 0 ∀ j �= k (9)
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Table 4 Canonical correlation analysis

Variables Standardised coefficients

Root 1 Root 2

Set 1 (Problem)

Branch reduction (BRANCHRED) 0.3516 0.9992

Inhabitants per branch (INHABITBR) 1.0592 −0.0025

Set 2 (Predictors)

Population over 65 (POP65) 0.4068 1.2589

Population density (POPDENS) −0.0383 −0.0852

Immigrants (IMMIGR) 0.5635 −0.9023

Unemployment (UNEMPLOY) −0.0783 0.3397

Single-parent households (SINGLEPAR) 0.5132 0.1073

Price of housing (HOUSEPRICE) −0.2673 −0.0384

Internet access (INTERN) −0.2385 −0.0699

Touristic dynamism (TOURDYNAM) −0.0072 0.9268

Canonical correlation 0.9228 0.7518

Source Own elaboration

Table 5 Test of overall significance

Statistic F Prob > F

Wilkslambda 0.0645 7.7052 0.0000

Pillais trace 1.4166 6.6789 0.0000

Lawley–Hotelling trace 7.0336 8.7921 0.0000

Roys largest root 5.7338 15.768 0.0000

Source Own elaboration

The canonical root is defined as the smallest number of variables in each of the two
sets. In our case the canonical root or dimension is equal to the number of variables
in the smallest set: two. In Table4 we show the standardized coefficients.

The standardized canonical coefficients are interpreted in a manner analogous
to interpreting standardised regression coefficients. Under the first specification or
root 1 we see that the correlation between the set of causes and consequences of the
problem of financial exclusion is above 92%. Then we can argue that socioeconomic
characteristics of a territory are highly correlatedwith branching behavior. This result
gives support to the theoretical model under which we stated that FE problem should
be appraised from a broad dimension that simultaneously include physical access to
banking services (through the branch network) and also a qualitative access based
on customised personal support.

We test the general fit of themodel according toWilk’s, Pillai’s, Lawley–Hotelling
and Roy’s multivariate criteria and we find that all of these tests are significant at 5%
(Table5).



Methodological Approaches to Analyse Financial Exclusion from an Urban Perspective 413

Table 6 Test of coefficients significance

Coefficient St. Error t P > ItI h2 (%)

Root 1

Branch reduction 6.368 1.5141 4.21 0.000 1.0000

Inhabitant per branch 0.0018 0.0001 12.67 0.000 1.0000

Population over 65 0.0427 0.0163 2.61 0.000 0.7521

Population density 0.000 0.0001 −0.26 0.000 0.2099

Immigrants 20.6165 11.9674 1.72 0.000 0.5418

Unemployment −0.0425 0.1861 −0.23 0.000 0.7213

Single-parent households 69.8331 21.0973 3.31 0.000 0.1478

Price of housing −3.5657 2.5019 −1.43 0.000 0.5731

Internet access −4.2555 4.5892 −0.93 0.000 0.4377

Touristic dynamism −0.019 0.5307 −0.04 0.000 0.0656

Source Own elaboration

Because Wilks’s λ represents the variance unexplained by the model, the factor
1− λ yields the full model effect size in an r2 metric. In our model the whole r2

type effect size was 0.94. Following, we want to identify what raw coefficient for
each of the canonical variates is individually significant. For the first dimension
(root 1) “branch reduction” and “inhabitants per branch” share some variability with
one another, and are statistically significant. Within the second set of predictors,
“immigrants” and “single parent households” are statistically significant. The second
dimension is not significant and no attention will be paid to its coefficients or to the
Wald tests.

The last column of Table6 shows the communality coefficient h2 (%) as the
proportion of variance in each variable that is explained by the canonical function
that is interpreted. This statistic indicates how useful each observed variable was
for the entire analysis. The “causes” variables with a high explanatory power are
“population over 65” (h2 = 75.21%), “unemployment” (h2 = 72.13%), “price of
housing” (h2 = 57.31%) and “immigrants” (h2 = 54.18%), while consequences of
FE (access difficulties and use difficulties) are both fully relevant.

Once the theoretical specification of our model has been validated by canonical
correlation analysis, the next step is to perform two separated regressions of the
variables under study: “branch reduction” (access exclusion) and “inhabitants per
branch” (use difficulties).

Quantile Regressions

The two models to be estimated are:

Model 1:
(BRANCHREDUCT) = β1(POPDENS) + β2(POP65) + β3(IMMIGR) +

β4(UNEMPLOY)+ β5(SINGLEPAR)+ β6(HOUSEPRICE)+ β7(INTERN)
β8(TOURDYNAM)
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Model 2:
(INHABBRANCH)= β1(POPDENS) + β2(POP65) + β3(IMMIGR) +

β4(UNEMPLOY)+ β5(SINGLEPAR)+ β6(HOUSEPRICE)+ β7(INTERN)
β8(TOURDYNAM)

Following Alamá and Tortosa-Ausina [3] we apply quantile regressions (QR) to
estimate conditional quantile functions of the response variable given a dependent
variable defined as a linear function of the covariates. The underlying assumption of
QR is that impacts on the response variable should not be the same over the entire
conditional distribution (Koenker [21]).

QR has considerable appeal for various reasons: it is robust to the presence of
outliers; it estimates the impact of covariates on location (central and noncentral)
and scale parameters; it does not impose restrictions on the error term like OLS and
fits nonnormal and heteroscedastic data. Finally, QR also takes into account how
changes in the covariates might affect the underlying shape of the distribution of the
response variable (Hao and Naiman [16]), which is of great interest in our particular
case because the “financial exclusion” phenomenon is itself an extreme case of study.

Table 7 Determinants of branch reduction using quantile regression

OLS QRϑ = 5 QRϑ = 50 QRϑ = 80 QRϑ = 99

Constant 0.2905** 0.005* 0.3474* 0.9155 0.9215**

POP65 −0.0055 −0.0075** −0.0058 −0.0061 −0.0063**

(0.0014) (2.112 e-17) (0.0039) (0.0052) (2.99 e-19)

POPDENS 3.625e-07 −3.17 e-05** 1.53 e-05 2.74 e-06 7.864 e-07**

(1.29 e-06) (1.978 e-20) (3.332 e-06) (3.98 e-06) (2.787 e-22)

IMMIGR 1.3676 1.1929** 2.1166 4.2813** 2.3952**

(1.0432) (1.316 e-14) (2.75) (2.0846) (2.425 e-16)

UNEMPLOY −0.0076 0.0065** −0.0165 −0.0577* −0.0326**

(0.0162) (1.895 e-16) (0.0394) (0.0341) (3.901 e-18)

SINGLEPAR −0.6147 −7.2374** 1.2556 2.6636 −0.1291**

(1.8391) (2.57 e-13) (4.5024) (6.8099) (3.586 e-16)

HOUSEPRICE 0.0216 −0.1735** 0.0478 0.1804 0.1127**

(0.2181) (2.895 e-15) (0.5782) (0.5087) (4.69 e-17)

INTERN 0.0523 0.7923** −0.1234 −0.7047 −0.6272**

(0.4) (5.445 e-15) (1.033) (0.9977) (8.718 e-17)

TOURDYNAM −0.1013 −0.0868** −0.1265 −0.1871* −0.1701**

(0.0462) (6.338 e-16) (0.1087) (0.1011) (8.892 e-18)

R2 56.52 53.53 38.7 50.45 63.68

Source Own elaboration
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In Table7, coefficients appear more significant at the more extreme quantiles
(Q= 5 and 99%). The standard errors are higher for median regression (QR= 50%),
reflecting higher precision of estimation at the two extremes of the distribution. One
reason for coefficient differing across quantiles is the presence of heteroskedastic
errors. We run the Breusch–Pagan test and we could not reject the null hypothesis
of homoscedasticity. Moving now to quantile regressions at different points of the
distribution, we should precise that the higher quantile (QR99) corresponds to those
territories with higher branch abandonment. In those territories the variables that
contribute to a higher extent to bank‘s closure of branches is the presence of the
immigrant population (+2.39) and house price devaluation (+0.11). The rest of
variables show negative coefficients.

Next, we will analyse results for the second model based on the use difficulties
approach (Table8).

Some conclusions can be drawn from the empirical results. The main determinant
of branch saturation is the immigrant population that lives in a district ormunicipality
and the rate of single parents for QR 99. However, when we move to the lower tail
of the distribution we observe that higher level of saturation corresponds to a higher
presence of population over 65 years, higher unemployment and higher single parent
households. In addition, we can argue that saturation is more pronounced in the less
dynamic and prosperous territories where young people tend to settle, where house

Table 8 Determinants of branch saturation using quantile regression

OLS QRϑ = 5 QRϑ = 50 QRϑ = 80 QRϑ = 99

Constant 302.6147* −651.7435** 871.63 −819.7348 428.0389**

(2387.0301) (0.00006) (6481.656) (2709.15) (8.17 e-13)

POP65 2.4649 17.6248** −0.2186 1.9825 −6.6732**

(9.7471) (2.9 e-07) (28.419) (13.8452) (3.24 e-15)

POPDENS −0.0007 −0.02501** 0.0015 0.0091 0.0091**

(0.0088) (3.03 e-10) (0.0239) (0.0121) (2.90 e-18)

IMMIGR 15343.686** −11169.24** 22114.93 25996.12** 25923.28**

(7125.6771) (0.0002) (18002.74) (7659.39) (2.45 e-12)

UNEMPLOY −48.6741 265.3872** −182.2445 −221.427** −206.02**

(110.8163) (3.09 e-06) (258.9032). (109.1023) (4.08 e-14)

SINGLEPAR 33485* 22.0513** 37876.46 53998.84** 52702.23**

(12561.834) (0.0004) (30205.44) (12737.37) (3.89 e-12

HOUSEPRICE −1744.0273 −2788.339** −1900.244 −2702. 81* −1544.488**

(1489.7115) (0.0004) (4166.939). (2585.45) (5.38 e-13)

INTERN −1988.2449 −685.0755** −2105.529 −608.0628 −2004.248**

(2732.5591) (0.0007) (7202.686) (347.02) (9.16 e-13)

TOURDYNAM −366.7635* 668.8571** −565.6039 −0.1423* −815.9901**

(316.002) (9.54 e-06) (818.7199) (5.47 e-16) (9.63 e-14)

R2 82.00 60.22 61.87 70.22 76.54

Source Own elaboration
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prices variation tend to be lower, where houses have access to internet to a lesser
extent and finally where the economic dynamism is relatively lower compared to
other areas.

Our results partly agree with the conclusions of previous studies carried out in
Spain (Alamá et al. [2] immigrant population- ; Alamá and Tortosa-Ausina [3] low
income and economic activity- Bernad et al. [6] low income) as well as in other
European urban areas (Aalbers [1] ethnic diversity, low income and depreciation
of housing-). However most of these studies have widely applied OLS techniques,
which masks the different reality revealed at the tails of the empirical distribution.
As we have argued, predictors of financial exclusion are not the same when focusing
the attention on the areas with lower and higher rates of branch disappearance,
respectively, or branch saturation. By analysing these areas separately (applying
quantile regressions) we will be better able to capture how variables impact the
dependant variable in each case. This is one of the main contributions of the paper
in the financial exclusion arena.

4 Conclusions

From our assessment theoretical model we can highlight the main empirical findings
of this research as follows.

Empirical results atMadrid andBarcelona city level reveal that our first hypoth-
esis H1 (There have been higher rates of branch closure -access difficulties-
in those territories with higher socio-economic vulnerability) holds when con-
sidering immigrant population and variation of housing prices.

At the city areas of Madrid and Barcelona our empirical results support
H2 (There have been a higher quality deterioration of bank services -use
difficulties- in those territorieswith higher socio-economic vulnerability)when
considering immigrants and single parent households.

To conclude, debranching is creating inequalities in the distribution of resources
that reinforces the structural vulnerability of some areas. In highly bancarised coun-
tries like Spain FE is not only a problem of physical distance to the branch (Carbó
and Rodríguez [7]), but also a matter of growing inequality in the use of banking
services, our empirical results have demonstrated that causes and consequences of
FE are closely interrelated as we have analysed by applying canonical correlations.
Based on our results of quantile regressions, we can argue that the unequal pattern of
disappearance of branches in the two main Spanish cities of Madrid and Barcelona
reflects a banking reallocation of resources highly depending on the socioeconomic



Methodological Approaches to Analyse Financial Exclusion from an Urban Perspective 417

characteristics of the territories, revealing a trend towards “low-cost” retail banking to
serve the segment of less profitable customers and a pattern of branch disappearance
more pronounced in socioeconomic vulnerable territories.

Our empirical results confirm that low-cost business practices could be reaching
the banking sector in Spain. The immediate consequence is the aggravation of finan-
cial discrimination in the urban areas most severely damaged by the crisis. These
results are especially relevant for policymakers interested in preventing financial
exclusion problems and the misuse of financial products. It can be also interesting
for the whole Spanish banking industry, to alert them about the increase of less for-
mal financial providers as a feasible alternative for those excluded from traditional
banking.

Acknowledgements The authors acknowledge the financial support of Fundación de las Cajas de
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Prospective Study About the Influence
of Human Mobility in Dengue Transmission
in the State of Rio de Janeiro

Bruna C. dos Santos, Larissa M. Sartori, Claudia Peixoto,
Joyce S. Bevilacqua and Sergio M. Oliva

Abstract Dengue is a human arboviral disease transmitted by Aedes mosquitoes
and it is currently a major public health problem in which around 2–5 billion people
are at risk of infection each year. Climate changes and human mobility contribute
to increase the number of cases and to spread the disease all around the world. In
this work, the influence of human mobility is evaluated by analyzing a sequence of
correlations of dengue incidence between cities in southeastern Brazil. The metho-
dology initially identifies the cities were the epidemy begins, considered as focus for
that epidemic year. The strength of the linear association between all pairs of cities
were calculated identifying the cities which have high correlations with the focus-
cities. The correlations are also calculated between all pairs considering a time lag
of 1, 2 or 3 weeks ahead for all cities except the focus ones. Centred differences
of the notification number are used to detect the outbreaks. The tests were made
with DATASUS-SINAN data of the state of Rio de Janeiro, from January 2008 to
December 2013. Preliminary results indicate that the spread of dengue from one
city to another can be characterized by the development of the sequence of shifted
correlations. The proposal may be useful to consider control strategies against disease
transmission.
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1 Introduction

Dengue virus infects each year about 300 million people worldwide and nearly 90
million of them develop the classic symptoms of the disease, such as fever, headache
and nausea. Currently, dengue is endemic in more than 100 countries in Africa,
America, Asia and Oceania [9]. In Brazil, the first documented occurrence was in
Roraima, 1981–1982, and the first huge epidemic was in Rio de Janeiro city, 1986
[17]. The largest outbreak in Brazil occurred in 2013, accounting for around 1.5
million of notified cases [13]. Dengue is transmitted primarily by Aedes mosquitoes,
particularly Aedes aegypti. The disease manifests in tropical and subtropical areas,
which climatic conditions favor the development of eggs into larvae and mosquitoes.
In Brazil circulate four strains of the virus, known as DEN-1, DEN-2, DEN-3 and
DEN-4 of the family Flaviviridae, genus Flavivirus [3].

Factors such as population growth, global warming, rural-urban migration, envi-
ronmental deterioration and the quality of basic sanitation, are some of the causes
for the increase in infectious disease transmitted by vectors [12, 22]. Although there
are not a consensus about disease’s persistence, recent studies suggested the human
mobility may be responsable for the emergence and reemergence of some diseases,
in both the direct and indirectly transmitted [1, 17, 21]. Chikungunya and Zika out-
breaks in Brazil are examples of diseases that have emerged in the country lately, and
until recently, Chikungunya had only been detected in Africa, East Asia and India
[10, 15].

Adams and Kappan [1] indicate that the spread of influenza and SARS (Severe
Acute Respiratory Syndrome), from national to continental scale has been supported
by the growth of airline transport network. In both global and local scales exist a
daily traffic of people who move to work, tourism, etc. In the case of dengue, many
people are asymptomatic then this scenario may be even more pronounced, because
people may be spreading the disease to other places without even known they are
infected [1, 4, 21]. The study developed in [1] highlights the role of human movement
for the disease’s persistence by establishing a dynamic on a hypothetical network.
The authors observed that the understanding of human mobility can be used to map
risk areas and provide targets for intervention and prevention. Stoddard et al. [21]
investigated the relevance of human movement associated with vector behavior and
how these two factors can increase the risk of exposure to disease due to human
movement.

In general, most people have the same habit of daily mobility, in this work we
analyze if the spread from one city to another can be explained by human mobility.
Correlations between all pairs of cities were calculated considering that the beginning
of the disease in each pair may be synchronized or not. The methodology is applied
to a region composed by the municipalities of Rio de Janeiro State and all the border
cities of Sao Paulo, Minas Gerais e Espirito Santo.
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2 Materials and Methods

The state of Rio de Janeiro is located in southeastern Brazil, has a total population
of 16.627.880 inhabitants [16]. About 96% of its population live in urban areas. The
climate is tropical with an average temperature of 25 Celsius degrees throughout
the year. Rio de Janeiro is one of the most visited place in Brazil, receiving tourists
from all over the world during all seasons. These conditions, along with climate
changes and increasing urbanization, ensure the mosquitoes proliferation and the
disease maintenance [9].

Our analysis is based on data obtained from database of Notifiable Diseases Infor-
mation System (Sistema de Informação de Agravos de Notificação - SINAN) an entity
of Federal Government. In our study, the data considered were the weekly cases of
dengue incidence from 2008 to 2013 for all cities of Rio de Janeiro and also the
surrounding cities, totaling 130 cities [19]. The raw data were normalized by the
urban population of each city [16].

The incidence considered significant was based on epidemiological alert thresh-
olds defined by the Ministry of Health, therefore, there were excluded from the study,
cities with incidence below than 300 cases per 100.000 inhabitants [13].

Defining a period of 52 weeks the methodology initially identify the cities that
had outbreak, for instance, the cities which the number of notifications is equal or
greater than 300 cases per 100 thousand inhabitants. Among this subset of cities a
second cut is done excluding the cities which the total size of the population is less
than 50 thousand inhabitants. After these two filters we selected the cities that first
reach the incidence of 300 cases and define them as focus of the infection. Centred
differences of the notification numbers were used to detect the outbreaks.

The correlations between all pairs of cities were calculated for the whole region
with Pearson coefficient for two cases: Case 1: for all cities the period of analysis
is defined from week 1 to week 52; Case 2: except by the focus, the period for
the other cities is defined with a delay of 1, 2 or 3 weeks. A high correlation with
delays between two cities (C j ,Ck), j, k = 1, · · · ,m, where m is the total number
of cities being analyzed, suggests that the outbreaks have a time lag of n-weeks,
which may indicate that the disease migrates from city C j to city Ck . We define
that the correlation is significant if its value is greater than 0.8 and the significance
p − value is less than 0.05. Our hypothesis is that dengue spread from one city
to another and it could be verified by the evolution of the sequence of n time lag
calculated correlations.

We aimed to test essentially if the disease initiates at the same time all over the
state. We were inspired by the work of Saba et al. [18] that used the correlation
between the occurrences of cases of dengue between cities in the state of Bahia to
build a network of mobility [11, 14]. The authors considered that the existence of
correlation between cases of dengue in two cities corresponds to an edge of the graph.
It is possible to see through the graphs of incidence that there is a time lag between the
epidemic curves, then we considered reasonable to verify the hypothesis of human
mobility in the spread of the disease through the development of correlations.
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3 Results

The year 2008 was chosen for presentation of results due to the high incidence of
reported cases and by present a well-defined qualitative behavior compared to other
years, however, the whole period from 2008 to 2013 was analyzed. We defined the
epidemiological year considering the period from January to December, because we
are assuming that the disease is the same in the whole state.

Considering the two filters described by the methodology, among the 130 munic-
ipalities analyzed, 18 of these are part of the metropolitan area of Rio de Janeiro
(MARJ), 3 of these are part of Baixada Litorânea, 3 of these are part of the Médio
Parnaíba, 2 of these are part of the northwest region, 1 of northern region and one
of Região da Costa Verde. From the incidence data observed for this year, the cities
Angra dos Reis, Campos dos Goyatacazes, Niterói, Nova Iguaçu, Rio de Janeiro and
Seropédica, were chosen as focus of the disease because they were the first cities to
achieve 300 cases per 100.000 inhabitants.

Table 1 shows in the first column the pairs of cities with high correlation presented
without delay, the second and third columns are the correlations withn-weeks of delay
n = 1, 2. Correlation nn′, n′ >= n, n, n′ = 0, 1, 2, 3, means that the correlation is
evaluated between the time series of two cities shifted, respectively, by n and by
n′ weeks from the first week of the period of one year. If n = 0 and n′ > n, the
focus cities were fixed in the first position with no delay, and the other cities were
shifted by n-weeks, giving Correlation 00, 01, 02 and 03. Intermediate correlations
as Correlation 12, 13, 23 were calculated in order to try to explain some cases of
high-type correlations between cities that are geographically distant.

Table 1 Pairs of Cities in the Rio de Janeiro State with correlation above 0.8. Correlation 00 means
correlation between the cites C j and Ck without delay. Correlation 01 is the correlation between
the cities C j and Ck with the city Ck shifted by one week. Correlation 12 means the city C j shifted
by one week correlated with the city Ck shifted two weeks

Correlation 00 Correlation 01 Correlation 12

1 Nova Iguaçu - Niterói Niterói - Itaboraí Itaboraí - Cachoeiras de
Macacu

2 Seropédica - Duque de
Caxias

Duque de Caxias - Itaboraí Itaboraí - Cachoeiras de
Macacu

3 Rio de Janeiro - Duque de
Caxias

Duque de Caxias - Magé Magé - Rio Bonito

4 Niterói - Araruama Araruama - Saquarema

5 Niterói - Duque de Caxias Duque de Caxias - Magé Magé - São Pedro da Aldeia

6 Niterói - Rio de Janeiro Rio de Janeiro - Magé Magé - Rio Bonito

7 Campos dos Goyatacazes -
Araruama

Araruama - Saquarema

8 Cantagalo - Cordeiro Cordeiro - Sto Ant. de Padua Sto Ant. de Pádua -
Porciúncula
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From Table 1 is possible to observe that dengue begin simultaneously in the pairs
presented in the first column of the Table 1, because high correlation was found with
no delay. On the other hand, high correlations between nearby and distant cities with
delay of 1 or 2 weeks were found (second and third columns of the Table 1), when
one of the city of the pair is a focus.

Examples in which appear high correlation between dengue time series with
relatively distant cities, could be an indicative of the role of human mobility in
spreading the disease. According to Farias [6] is possible to highlight two types of
commuting in the state of Rio de Janeiro: daily flows of short distance and greater
frequency, mainly associated with trade and manufacturing industries (intra-regional
level); and not daily flow of great distance and low frequency, associated with mining
and construction industry inter-regional level.

In fact, such commutings may explain some of the correlations. The state has sig-
nificant flow rates primarily concentrated in the metropolitan area of Rio de Janeiro,
MARJ for short [7], explaining the high correlations independent of the existence of
the delay between the cities of MARJ region, respectively, lines 1, 2, 3 and 6 of the
Table 1.

On the other hand, intercensual analysis from 2000 to 2010 indicate a decen-
tralization of the pendulum movement inside MARJ. A significant growth of the
pendularyity outside MARJ was observed concentrated mainly between the nort-
hern regions and the coast. During the first decade of this century some urban centers
in the state, especially Macaé, expanded its area of influence to the northern region, in
particular to Itaperuna and to Baixada Litorânea. This movement could be observed
in the pairs presented in the lines 4 and 7 of the Table 1.

The correlation between Magé and São Pedro da Aldeia in the line 5, may not
necessarily be explained by human mobility, since there are few signs of mobility
between these two cities. In especial, we see a great migration from São Pedro da
Aldeia to Macaé and other cities that make up the region of OMPETRO [5]. As it is
generally known, dengue is influenced by several factors such as climate, tempera-
ture, basic sanitation or public health policy, and in these cases it is not ruled out the
hypothesis that the epidemic curves for these two cities have obtained correlation
because the events may have occurred simultaneously but in an isolated manner. For
these cases, we address that mobility is not responsible for high correlation.

In addition, for a more complete analysis, we also calculated the correlations
including those cities which had urban population smaller than 50000 and greater
than 10000, and that also reached more than 300 cases per 100 thousand inhabitants
in 2008. About 66 cities were selected, the focus was Cantagalo that reached more
than 300 cases in the fifth epidemiological week.

Cantagalo is characterized as an independent pole and correlates with other cities
of the mountainous region of north and northwest parts of Rio de Janeiro State
[2]. It has obtained correlation between Porciúncula and Santo Antônio de Padua
with one and two weeks delay showed in Table 1, line 8. Although the 2010 census
data indicates that exists considerable migration between metropolitan cities and
the mountainous northwestern region of Rio de Janeiro, we did not find sufficient
evidence to suggest that human mobility has been responsible for this association.
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Fig. 1 Incidences of dengue cases in 2008 for cities that have correlation with Nova Iguaçu
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Fig. 2 Incidences of dengue cases in 2008 for cities that have correlation with Niterói

Figures 1, 2, 3 and 4 show the incidence data of DATASUS-SINAN observed in
2008. In Fig. 1 is presented the correlations obtained in line 1 of the Table 1. Nova
Iguaçu was chosen as focus because this city was the first one to achieve the 300
cases (tenth epidemiological week). Nova Iguaçu and Niterói have high correlation
with no shift (line 1, column 2); Itaboraí has higher correlation with Niterói with a
shift of 1 week and finally Cachoeiras de Macacu has higher correlation with Itaboraí
with a shift of 2 weeks.

In Fig. 2 are presented the correlations obtained in line 5 of Table 1. Niterói was
chosen as focus because this city was the first one to achieve the 300 cases (tenth
epidemiological week). Niterói and Duque de Caxias have high correlation with no
shift (line 5, column 2); Magé has higher correlation with Duque de Caxias with a
shift of 1 week and finally São Pedro da Aldeia has higher correlation with Magé
with a shift of 2 weeks.

In Fig. 3 are presented the correlations obtained in line 3 of Table 1. Rio de Janeiro
was chosen as focus because this city was the first one to achieve the 300 cases (tenth
epidemiological week). Rio de Janeiro and Duque de Caxias have high correlation
with no shift (line 3, column 2); Magé has higher correlation with Duque de Caxias
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Fig. 3 Incidences of dengue cases in 2008 for cities that have correlation with Rio de Janeiro
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Fig. 4 Incidences of dengue cases in 2008 for cities that have correlation with Cantagalo

with a shift of 1 week and finally Rio Bonito has higher correlation with Magé with
a shift of 2 weeks.

In Fig. 4 are presented the correlations obtained in line 8 of Table 1. Cantagalo
was chosen as focus because this city was the first one to achieve the 300 cases (fifth
epidemiological week). Cantagalo and Cordeiro have high correlation with no shift
(line 8, column 2); Santo Antônio de Padua has higher correlation with Cordeiro with
a shift of 1 week and finally Porciúncula has higher correlation with Santo Antônio
de Padua with a shift of 2 weeks.

4 Conclusions

The hypothesis of an association between the occurrence of dengue cases between
different cities in the state of Rio de Janeiro and surrounding areas was tested. The
proposed methodology identified significant correlation between cities without delay,
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this results suggests that the dengue epidemic occurred simultaneously in both cities,
while correlations with delay may provide evidence that the mobility of people may
be responsible for the spread of the disease among the regions of the state.

Using the proposed methodology, we identified the cities: Nova Iguaçu, Niterói,
Rio de Janeiro, Seropédica, Campos dos Goytacazes and Cantagalo as focus of
the disease in the year 2008. Then we calculate the correlations with n-delay,
n = 0, 1, 2, 3 for the focus cities with the other cities that were selected. We were
able to justify part of the significant correlations between various cities through the
pendular mobility among regions of the state. The correlations that we can not explain
could be independent events or characterize one diffusive process.

This information could provide an efficient control framework to guide health
authorities in decision making. Once verified that dengue does not emerge at the
same time in all state, and that there exist cities with potential for further spread (due
to the concentration of industrial activities, market, turism, etc.) the control services
could concentrate resources in a more efficient way in cities that are potential sources
of spread.

Based on the identification of the propagation cascade of dengue from the focus
into the other municipalities, the next step is the construction of a topological network,
representing these spread dynamics coupled with human mobility data.
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The Impact of the Public-Private Investments
in Infrastructure on Agricultural Exports in
Latin American Countries

Bárbara Soriano and Amelia Pérez Zabaleta

Abstract Agricultural activity promotes poverty reduction. There is still an impor-
tant infrastructure investment gap to enhance agricultural productivity. The public-
private partnerships arise as a channel to cover it. This article analyzes the relation
between public-private investment in infrastructure and agricultural exports in Latin
American countries. We use a panel data sample composed by 14 countries observed
over the period of 17 years, from 1995 to 2011 to which we apply panel data tech-
niques. Results show that public-private investment in infrastructure has a positive
impact on agricultural exports. The impact of private investments more than doubles
the impact of public investments. The role of the public sector is crucial to guar-
antee the positive impacts of public-private investment on the recipient country by
providing solid institutions framework and the appropriate investment climate.

Keywords Public-private partnership · Agricultural exports · Infrastructure
Panel data

1 Introduction

Empirical evidence supports the view that agricultural development promotes poverty
reduction [11, 43]. The positive effect of increasing productivity on poverty reduction
materializes if agricultural productivity is enhanced through the integration of devel-
oping countries in global value chains [27]. Increasing productivity in agricultural
sector depends on infrastructure, well-functioning domestic markets, appropriate
institutions, and access to appropriate technology [31]. Physical infrastructure was
found to have the greatest impact on exports [32]. Adequate infrastructures in trans-
portation, energy and telecommunication enhance the domestic and international
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competitiveness in developing countries [10, 50, 52]. Investment in infrastructure
reduces the transaction costs in developing countries [55], it strengthens the links
between local producers and consumers and it facilitates access of farmers to local
and regional markets [46].

Developing countries still face large funding gaps to invest in infrastructure [44].
Infrastructure investment must rise between 1.8 and 2.3 trillion dollars per year by
2020 to meet the needs of developing countries, according to available estimates
by [44]. While traditional transnational corporations remain the largest investors in
infrastructure [48] new options have been settled to cover the investment needs in
developing countries. The last goal of the Sustainable Development Goal (SDGs)
provides for the revitalization of the global partnership for sustainable development,
arguing that complex challenges require global and integrated efforts from all the
stakeholders. This assessment opens new alliance opportunities for public and pri-
vate sectors. The private sector plays a fundamental role facilitating investment and
knowledge. The participation of the public sector is pivotal to attract the participation
of the private sector, by creating adequate investment climates [52] and promoting
public-private partnerships [45, 47, 48].

While the relationship between Foreign Direct Investment (FDI) and trade has
been the subject of several papers, the relationship between public-private partner-
ships and trade has yet to be analyzed. The aim of this article is to analyze the relation-
ship between public-private partnerships in infrastructure and the agricultural trade
in developing economies. It seeks to test the hypothesis that public-private invest-
ment in infrastructure is positively related to the volume of agricultural exports. We
focus the analysis on Latin American countries. Since the beginning of the century,
the public-private partnership in infrastructure investments have greatly increased in
Latin American countries, from 100 public-private projects in infrastructure in 2000
to more than 200 projects in 2014 [54].

The remainder of the paper is structured as follows. Section2 reviews the literature
on the relationship between investment and trade. In Sect. 3 we present the sample
of countries and descriptive analysis of public-private investments in infrastructures
and agricultural exports. In Sect. 4, we describe the empirical framework. The main
results and discussion are summarized in Sect. 5 and in Sect. 6we expose the principal
conclusions.

2 Literature Review

The relation between investment and trade has been analyzed by the research com-
munity from different points of view. One of the key issues assessed on the relation
between investment and trade is the direction of the causality relationship. There is
a greater consensus about the fact that private investment precedes to trade [3, 18,
26, 30, 33]. Otherwise, [8] conclude that trade leads to higher private investment.
Reference [1] suggest that there is a bidirectional relationship between trade and
investment, with no clear causality in either direction.
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Some authors have analyzed the positive or negative sign of the relationship
between FDI and trade. There exists a complementary relationship when the
private investment contributes positively to boost the exports of the recipient country.
On contrary, a substitution relationship takes place when private investment has a
negative impact on the exports of recipient country [14, 28].

Other authors have considered a sector based approach.Reference [41] analyze the
private investment broken down according to the type of product, industry and man-
ufacture production. They conclude that the relationship between trade and private
investment varies depending on the level of disaggregation. If the analysis focuses
on product and industry, investment and trade are substitutes. But, they are comple-
ments when the analysis is based on a higher disaggregation level. Reference [17,
34] study the relationship between private investment in agriculture and food trade in
Canada and Sub-Saharan countries, respectively. Both studies conclude that private
investment in the agricultural sector and food trade are complements.

Regarding investments in infrastructure, several studies have analyzed the role of
the infrastructure on trade. Reference [32] found that the impact of physical infras-
tructure on exports is higher than that of other indicators as border and transport effi-
ciency or business and regulatory environment. Reference [21] found that poor roads
and ports, poorly performing customs agencies and procedures, weakness in regula-
tory capacity, and limited access to finance and business services affected trade. Trade
facilitation by investing in physical infrastructure and regulatory reforms, improve
the export performance of developing countries. Indeed, this positive impact is far
important than variations in tariffs in explaining North-South trade [16]. According
to the World Bank (2013), lack of proper infrastructure pushes logistics costs to as
much as 25% of the food product value for Latin American countries, compared with
around 9% for OECD countries.

Existing empirical studies use different data and estimation techniques to study
de relationship between investment and trade. To analyze the direction and sign of
the potential causal relationship between investment and trade most of the authors
apply a Granger Causality test. They analyze if current and past performance of
investment explains current exports or the relationship follows the opposite direction
[3, 33]. Other studies use gravity models to explain bilateral trade analyzing the
variables that measure the weight of the countries involved in trade (population,
Gross Domestic Product –GDP– and FDI) and variables that measure the distance
between them (trade barriers and language) [8, 28]. Finally, some authors broaden
the sample size and analyze the relationship between investment and trade for a set
of countries using panel data. Gyfalson, 1997 proposed a theoretical model where
the determinants of exports are the population, GDP per capita, productive sector,
inflation, dependences on primary exports, investment and economic. Reference [17]
proposed that trade depends on the investment level, the exchange rate and theGDP. In
themodel proposed by [18] the determinants of the trade openness of a country are the
GDP per capita, the inflation rate, institutional quality, macroeconomic volatility and
financial openness. Reference [12] study how GDP and investment explain exports.

Finally there are several studies that analyze the factors facilitating a positive
impact of the foreign investment on developing countries: (1) It is required a
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minimum GDP per capita level and human capital [9, 24]; (2) a political and legal
framework has been built and supported by multilateral agencies, labor organiza-
tions, non-governmental organizations and civil society groups [29]; and (3) There
must exist a developed financial markets to transmit the impact of investments to
national incomes [2]. Reference [25] find that a legal and regulatory framework that
protects the rights and the obligations of the investors is decisive to target foreign
investment to developing countries. As institutions framework is more robust, the
foreign investments are greater [7, 37]. Reference [53] concludes that strengthening
regulations and institutions will be even more important to boost agricultural trade,
especially when compared to other sectors.

3 A First Look at the Data

The aim of the study is the analysis of the relationship between public-private part-
nerships in infrastructure and agricultural exports. With this purpose, we use data on
agricultural trade fromWorld Development Indicators Bank Database. The database
provides information about the agricultural rawmaterial exports expressed as percent
of merchandise exports and the merchandise exports expressed in current US$. We
obtain the agricultural raw material exports expressed in US$ by multiplying both
variables.

Concerning investments projects in infrastructure, we use the database of the
Public-Private Infrastructure Advisory Facility (PPIAF). This initiative gives sup-
port to developing countries to create adequate investment environments (policy
guidance, development of regulation, consolidation of institutions and governance)
that encourage foreign investors to invest in sectors not covered by the public sec-
tor. The projects cover investment in transport (roads, bridges, tunnels, terminals
and dredging of channels projects), telecommunications (investment in fixed access
network andmobile communications), energy (generation, transmission and distribu-
tion of electricity and natural gas) and water and sanitation (water transport systems,
water treatment and sewerage plants and water and sanitation services). The database
provides information about the public-private investments in infrastructure (current
US $). Furthermore, it splits the investment information into two parts: (1) private
investment and (2) public investment.

The sample of the study is made up of 14 Latin American countries (Table1),
over the period 1995–2011.

Regarding to the public-private investments in infrastructure Fig. 1 shows that
it stood at 50 billion dollars at current prices in period 1995–1999 in developing
countries. This figure has increased up to 140 billion dollars in real terms in 2010–
2012 [54]. There is a clear targeting of the public-private investment into the energy
sector, reaching more than half of total public-private investment during the whole
period.
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Table 1 Sample of Latin American countries

Countries of the sample Region

Bolivia Andean

Colombia Andean

Ecuador Andean

Peru Andean

Venezuela Andean

Brazil Brazil

Argentina South Cone

Chile South Cone

Paraguay South Cone

Costa Rica Mesoamerica

Guatemala Mesoamerica

Honduras Mesoamerica

Nicaragua Mesoamerica

Mexico Mexico

45% 35%
36%

48%30%
45%
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Fig. 1 Evolution of the public-private investment in infrastructure by investment sector.
Source [39]

Energy is a key element in the development process. It is required for food pro-
cessing, transportation, fertilizer production and use of industrial equipment, among
other multiple uses [40]. Investments in communications also contribute to develop-
ment by providing greater access to timely information (prices, clients, suppliers), by
enhancing the bargaining power of small farmers, and increasing trade and agriculture
production [22, 23]. The availability of adequate transportation infrastructure facil-
itates access of farmers to markets [51]. It is worth to mention, that public-private
investment in water and sanitation represents less than 5% of the public-private
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Fig. 2 Public-Private investments in infrastructure by region, period 1995–2009. Source Own
elaboration based on [38]

investment in infrastructure over the period of study. Concerning the structure of
the public-private partnerships, foreign private participation clearly leads the invest-
ment in infrastructures. It reaches more than 90% of total investment in 2012 [54].
Latin America is the region that accumulates greater investments in infrastructures,
reaching 52 billion dollars in 2009 (Fig. 2).

Regarding trade, the dollar value of world merchandising trade has increased by
more than 7% per year on average over the last twenty years (1980–2011). Food trade
shows similar trend. In last forty years, the number of calories exchanged through
the global food trade has multiplied fivefold [13].

Latin American countries have contributed highly to global agricultural produc-
tion and trade. While there are significant differences between countries, the region
is overall a net agricultural exporter. Exports of agricultural products have grown
at about 8% annually since the mid-90s. It represents 13% of agricultural trade, up
from 8% in the mid-90s [53].

Figure3 shows a first sight of the potential relationship between agricultural
exports and public-private investments in Latin American Countries. The agricul-
tural exports increased in all the Latin American regions, reaching between 2 and
5 billion dollars per year in the period 2006–2011. Brazil and the South Cone are
the largest exporters of agricultural products in Latin America. Public-private part-
nerships decreased between during the first five years of the period, except Mexico.
Since 2000, the public-private investments also increased in all the regions. It is worth
to highlight the public-private investment in infrastructure in Brazil. It is nearly ten
times the public-private investments in Andean Region or South Cone in the period
2006–2011.
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Fig. 3 Agricultural exports and public-private investments in infrastructure by areas of the Latin
American region, period 1995–2011. Source Own elaboration

4 Econometric Set-Up and Empirical Results

4.1 Methods

We build our model on the base of previous causality studies that suggest that the
investment precedes trade [3, 26, 30, 33]. Reference [18] explained why invest-
ment precedes trade by arguing that investment is often directed towards the sector
of traded goods. Investments in infrastructure also precede trade because it may
increase traded food output. Reference [42] concludes that one of the fundamental
economic factors affecting international trade is investment (considering technology
and energy). Investment in physical infrastructure can facilitate the integration of
fresh players into international supply chains. It can also contribute to a reduction of
transportation costs.

In our model, we explain agricultural exports using public and private investments
in infrastructure as explanatory variables. We consider the public-private investment
splits into two parts: (1) the private investment and (2) the public investment. So, we
consider that this split of investment constitutes a contribution of our paper to the
literature. So, we try to test the hypothesis that there is a positive relationship between
public and private investments in infrastructure and agricultural exports. As control
variables we consider in the model GDP per capita of the exporter country [12, 18]
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and the nominal exchange rate [17]. All are annual variables and are expressed in
logarithms.

The estimation of the baseline model (1) is as follows:

L_Agri_Xi t = α0 + α1L_Private_investi t + α2L_Public_investi t +
α3L_GDP_capi t + α4L_XRTi t + εi t

where,
i = 1 · · · 14 Latin American countries;
t = 1 · · · 17 years (period 1995–2011);
L_Agri_Xi t = Logarithm of agricultural exports, country i, year t ;
L_Private_Investi t = Logarithm of private investment in infrastructure, country i,
year t ;
L_GDP_capi t = Logarithm of GDP per capita, country i, year t ;
L_Public_Investi t = Logarithm of public investment in infrastructure, country i,
year t ;
L_XRTi t = Logarithm nominal annual exchange rate, country i, year t ;
εi t is the error term;

We apply panel data techniques to a sample with two dimensions (countries and
time) The main advantage of the panel data is the ability to control for unobserved
heterogeneity in cross-sectional models [5]. Applying panel data requires selecting
one of the following two specifications: (1) a model allowing each cross-sectional
unit (or group of cross-sectional units) to have its own intercept. It assumes that each
cross-sectional unit has a non-stochastic group-specific component. The unobserv-
able effects are controlled by including N dummy variables, one for each country.
It is known as the Fixed Effects model (FE). One potentially significant limitation
of fixed effects models is that they cannot be used to investigate the effects of time-
invariant dependent variables. (2) a model considering that each cross-sectional unit
has a stochastic unobserved effect. The unobservable effects are treated as a compo-
nent of the random error term. It is named Random Effects model (RE). There is a
common problem of bias in the estimates due to correlated effects [4].

We run the Hausman test where the null hypothesis is that the preferred model
is RE versus the alternative the FE [19, 20]. The RE estimates are consistent and
efficient under the null while the FE estimates are not efficient. Another way to look
at the results of the test is whether the errors are correlated with the regressors. The
null hypothesis is that they are not, i.e., the test does not reject the RE specification.
The Hausman test shows that we should base our inference on the results of the FE
specification (Table2).

We do so by introducing in the model a classification of the countries according
to the quality of the institutional framework (model 2), instead of a dummy for each
country. Improvements in institutional quality are a source of comparative advantage
and may promote trade [42]. Institutions refer to the social norms, ordinary laws,
political regimes or international treaties, within which policies are determined and
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Table 2 Categorization of countries according to the institutional quality and investment climate

Average value of
political regime over
the period

Stability indicator Description Countries

Lower/Equal to 6 1 Low institutional
quality and investment
climate

Peru and Venezuela

Higher than 6 and
lower/equal to 8

2 Medium institutional
quality and investment
climate

Argentina, Bolivia,
Brazil, Colombia,
Ecuador, Guatemala,
Honduras, México,
Nicaragua and
Paraguay

Higher than 8 and
lower/equal to 10

3 High institutional
quality and investment
climate

Chile and Costa Rica

Source Own elaboration

economic exchanges are structured. The political regimen has been proposed previ-
ously as a proxy variable by other authors [1, 18]. This variable ranges from −10
(autocracy) to 10 (full democracy). We assume that democratic countries provide
higher quality institutions and stable investment climates than autocratic countries.
Based on its values, we define a time-invariant indicator that ranges from 1 to 3,
by classifying countries according to the average value of political regime over the
period as follows:

We test the assumption of the stochastic disturbance term in model (1) and model
(2). We apply the Wooldridge test to identify the existence of serial correlation
in the errors [49]. The test result shows that there is serial correlation. We apply
Wald test revealing the existence of heteroskedasticity problems [15]. To correct
for correlation and heteroskedasticity, we apply the panel corrected standard errors
(PCSE) to models (1) and (2). PCSE assumes that the disturbances are by default
heteroskedastic and contemporaneously correlated across units [6].

The definition of the variables and descriptive statistics for the variables included
in the specifications are summarized in Table3.

5 Results and Discussion

The results of specification (1) are summarized inTable4.As it can be seen, the coeffi-
cient of the private investment in infrastructure is positive and statistically significant.
This result suggests that this factor enhances agricultural exports in developing coun-
tries. Our result agrees with previous results that find a positive relationship between
FDI and trade [3, 14]. The coefficient indicates that 1% increase in private investment
in infrastructure would generate an increment of 0.23% of the agricultural exports.
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Table 3 Measures and descriptive statistics

Variable Measure Source Obs Mean Std. dev. Min Max

Agri_
export

Current
million
US$

World
Develop-
ment
Indicators

234 773 1,310 9 9,044

GDP per
capita

Current
US$ per
habitant

World
Develop-
ment
Indicators

238 3,943 2,865 699 14,501

XRT Local
currency
per US$

World
Develop-
ment
Indicators

233 1,394 4,428 0 25,000

Private_
invest

Current
million
US$

PPI World
Bank

210 1,966 5,160 2 33,292

Public_
invest

Current
million
US$

PPI World
Bank

105 800 2,066 0 15,107

Stability Polity IV
Project
Database

238 2 1 1 3

Source Own elaboration

Reference [12] found that an increase in 1% of foreign direct investment will lead to
an increase of 0.64% on exports.

If we look at the coefficient of the public investment in infrastructure we can see
that it is positive and statistically significant. It means that an increment in public
investment in infrastructure generates an increment of the agricultural exports. This
result is in accordance with the results obtained by [35, 36]. They found a positive
impact of public investments in transport infrastructures. They conclude that provid-
ing key infrastructures, public sector can create synergies with private sector. Private
investments that were previously uneconomic become profitable and the countrymay
become a potential market for investment.

Comparing the coefficients of the private investments and public investment in
infrastructures we see that the coefficient of the private investment in infrastructure
triples the coefficient of the public investment in infrastructure. It implies that the
impact of private investment of agricultural exports is higher than the impact of public
investment.

The results of specification (2) show that the coefficients of the levels of the
quality of institutions and investment climate variable are positive and statistically
significant. It means that the investment climate promoted by governments channels
the impact of investment in infrastructure on agricultural exports. The better is the
investment climate, the higher is the impact of investments in infrastructures on
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Table 4 Results of the regression model

Dependent variable: agricultural exports

Variable Model 1 Model 2

Base model (PCSE) Base model stability fixed
effect (PCSE)

Private_ Invest 0.232*** 0.169***

(0.055) (0.047)

Public_ Invest 0.062* 0.068*

(0.029) (0.027)

GDP per capita 1.334*** 1.332***

(0.139) (0.147)

XRT 0.136*** 0.093***

(0.028) (0.025)

Stability investment climate

Medium 0.733*

(0.348)

High 0.977*

(0.397)

Intercept −0.077 −0.22

(0.93) (1.13)

N 102 102

R2 0.93 0.95

Hausman statistic 31.90 32.69

(0.00) (0.00)

Note: *, **, ***, denotes statistical significante level at 5, 1 and 0.1%
Figures in parentheses are the coefficients standard errors.
Source Own elaboration.

agricultural exports. This result is consistent with previous studies that concluded
that the investment climate is key to attract private investment [1, 7, 18, 37, 42, 53].

The coefficient of the private investment remains higher than the coefficient of
the public investment, although the gap is lower than in the in base specification.
These results show that government contributes to boost agricultural exports not
only by investing in infrastructures but also by making the investment scenarios
more attractive.

GDP per capita has the highest statically significant coefficient. As GPD per
capita grows, the export capacity of developing countries improves. Reference [12]
found that economic growth is elastic to exports. They found that an increase in
1% on GDP will lead to an increase in 1.37% on exports. Finally, the exchange rate
coefficient shows that the devaluation of the national currency contributes to increase
agricultural exports positively. These results are consistent with those of [1, 17].
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6 Conclusions

There is still an important infrastructure investment gap to boost agricultural activity
as the main source of livelihood for the poor population. The public-private partner-
ships arise as a channel to cover this gap.

The goal of the article was to analyze the relationship between public-private
investments in infrastructure and agricultural exports in developing countries. We
test the hypothesis that the public-private investment in infrastructure has a positive
impact on the agricultural exports, using a panel data sample of 14 Latin American
countries covering 17 years (1995–2011).

The results provide evidence, first, about the positive contribution of public-private
partnerships to boosting the agricultural exports in developing countries. Second, the
impact of the private investment in infrastructure more than doubles the impact of
the public investment. These results reinforce the relevance of the private sector in
reducing the investment gap. The role of the public sector in the public-private part-
nership is also pivotal. Governments provide the investment climate that guarantees
the positive impacts of the investment on the recipient country. As the investment
climate is more stable, the impact of the public-private partnership is higher.
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Major Simulation Tools for Biochemical
Networks

Gökçe Tuncer and Vilda Purutçuoğlu

Abstract As biochemical networks becomemore popular, the number of simulation
tools grows rapidly. Although most of the tools have similar functionality, they differ
in their algorithms and capabilities. Here, we present the major simulation tools
applied in biochemical networks and describe their supported algorithmswith details.
We consider that the capacities of each tool in terms of the simulation, inference or
visualization of the different types of biological networks, their supported algorithms
and the features of these algorithms as well as the mathematical background in all
these calculations can be helpful for the researchers when they choose the most
appropriate tool for their analyses.

Keywords Simulation tools · Biochemical systems · Deterministic simulation
methods · Stochastic simulation methods

1 Introduction

As the development of the technology for producing data, the researcher can getmore
information about the biological processes which constitute a network or system
in the end. All biological activations are directed by different networks which are
denoted by nodes, i.e., genes or species of interest, and the edges, i.e., interactions
between the species.

In laboratories, even though the capacities of the production of data increase day
by day, the researchers can prefer the simulation of the systems in advance of their
experiments due to the cost of these experiments and the complexity of the actual
biological processes. In fact, the simulation of the networks can detect biologically
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more interesting questions as it helps us to observe the plausible behaviour of the
system beforehand.

Hence, there are a number of tools developed for this purpose. In this study, we
choose Cellware, COPASI, Dizzy, Dynetica, E-CELL, GENESIS, Jarnac combined
with JDesigner, System Biology Toolbox and Virtual Cell due to their common
applications among their alternatives. All these tools are mainly designed for the
deterministic simulation. Whereas most of them can also support the stochastic sim-
ulation algorithms and some of them can infer the model parameters too. In the orga-
nization of the chapter, we initially explain each of these tools under certain criteria
and then present brief descriptions of all the supported deterministic and stochastic
methods within these tools. Finally, we summarize the findings in Conclusion part.

2 Simulation Tools

In the literature of system biology, there are many tools developed by distinct groups
or researchers in order to simulate the biological networks under various assumptions.
Some of these tools are designed and used by particular groups. Here, we choose
the most common ones among many alternatives. The selected tools are Cellware,
COPASI, Dizzy, Dynetica, E-CELL, GENESIS, Jarnac combined with JDesigner,
System Biology Toolbox and Virtual Cell. Below we explain them in details accord-
ing to their selected versions which are denoted by the parentheses in the associated
subtitles.

2.1 Cellware (3.0.1)

Cellware [1] is a multi-algorithmic environment for modeling and simulating bio-
chemical reactions in a cell. It presents an integrated environment for various mathe-
matical representations with a user-friendly graphical interface and a high capacity in
the application of the complex systems. This tool is also known as the first grid-based
modeling and simulation tool for cellular processes in systems biology.

On the other hand, this tool is written in Java and uses a proprietary file format
storing information compatible to the model and the simulation. Moreover, it sup-
ports the import and export of models from the System Biology Mark-up Language
(SBML)which is a free representative XML based format for interchanging different
biological processes [2].

Additionally, Cellware is an open source software for only academic users. Fur-
thermore, it has a diagrammatic interface enabling the users to draw diagrams in
place of writing chemical equations manually. Accordingly, the rate expressions and
parameters for the systems of interest can be entered by dialog boxes.

The main functionalities of this tool can be listed as follows [3] and the mathe-
matical details about its supported algorithms are given in the following parts.
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• Biologist - Friendly User Interface (UI): User interface ofCellware is designed in
the drag-and-drop format which enables the researchers to manipulate the system
elements within the same or different simulations.

• Grid Enabled: The grid environment of the tools helps the users to implement it
for large biological systems.

• Multi-platform: Cellware is amulti-platformsoftware developing in Java.Hereby,
the grid version implements the front-end in Java and the back-end in C++. It is
also supported by Windows, Linux/Unix and Mac OS X platforms.

• Extensive Algorithms Library for Simulation: Cellware has an extensive library
having both deterministic methods (Euler Forward and Backward method, Trape-
zoidal method, Explicit 4th order Runge–Kutta method, Rosenbrock method,
Advanced ODE Solver(Adams–Bashforth)) and stochastic methods (Gillespie’s
Direct method, Gibson Next Reaction method, Explicit Time-step (also called
τ -leap) method). The tool also offers the hybrid stochastic approach (StochODE
method) in simulation.

• Inference of Model Parameters: Cellware can perform the estimation of the
model parameters based on deterministic approaches by implementing the Particle
SWARM algorithm which is one of the well-known optimization approaches.

• Network Analysis: The user can easily extract topological information from the
model such as stoichiometry matrix, network statistics, independent cycles, paths,
transversal nodes and conserved pathways.

Lastly, Cellware has a detailed manual and tutorial which can be obtained from
its website that is regularly updated [4].

2.2 COPASI - A Complex Pathway Simulator
(4.14 -Build 89)

COPASI [5] is one of the popular user-friendly softwares for the simulation, analy-
sis and the parameter estimation of the biochemical networks. In general, this tool
offers diverse analyses’ methods to the researchers including the steady state, i.e.,
deterministic, stoichiometric state, metabolic control and the sensitivity analyses.

COPASI’s native file format is XML and the documentation of its schema is
available for other tools so that they can be read or written easily. COPASI also
reads GEPASI (First Version of COPASI) [6] files. Moreover, COPASI is SBML
[2] compatible in such a way that this software can read and write the SBML files
through the libsbml package.

Finally, COPASI is an open source software which is free for both academic
and commercial users. It has a dialog interface which eliminates the requirement
for writing kinetic equations explicitly. Hereby, the user only specifies the chemical
equations and rate expressions for each reaction and then states the compartments.
In the end, it can estimate the parameter of the system.
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On summary, the functionalities of COPASI can be listed as below [7]. The math-
ematical details about the associated algorithms are presented in the following parts.

• User Interface (UI): COPASI has a user-friendly graphical interface created with
a cross-platform application framework, called Qt, which is widely used for devel-
oping application software and allows implementing the software on all platforms
supported by Qt.

• Different Executable Versions: COPASI has two different executable versions,
namely, a graphical user interface, shortly GUI, via CopasiUI and a command line
version without a GUI for batch via CopasiSE. For instance, if the users do not
interact with the software, they can choose CopasiSE for their calculations.

• Multi-platform: The software is written in C++ to have a fast reliable simulation
and software supported by the platforms such as Windows, Linux, Mac OS X and
Sun Microsystems Solaris.

• Different Simulation Methods: COPASI uses Livermore Solver for the ordinary
differential equations (ODE) method which is a part of the ODEPACK library for
deterministic simulations and uses the Householder QR factorization for finding
conservation relations in order to reduce the dimension of the systems. For stochas-
tic simulations, the Next-Reaction method [8] is available. Furthermore, COPASI
can offer hybrid simulation methods which are the deterministic numerical inte-
grations of ODEs with the stochastic simulation algorithms. For this manner, it
applies the Runge–Kutta methods with different orders. Finally, to compute the
steady-state position of the systems in the ODE-based models, COPASI uses the
LAPACK library.

• Diverse Inference Methods: There are several methods to estimate and simu-
late the model parameters deterministically. These approaches define an objective
function based on the parameters and put constraints regarding the natural features
of these terms. Finally, the underlying objective function is either minimized or
maximized with respect to the rule of the selected optimization methods. In the
optimization, COPASI can implement different techniques such as the Evolution-
ary Programming, Evolutionary Strategies by using Stochastic Ranking, Genetic
Algorithm, Genetic Algorithm by using Stochastic Ranking, Hooke and Jeeves,
Levenberg–Marquardt, Nelder–Mead, Particle Swarm, Praxis, Random Search,
Simulated Annealing, Steepest Descent and the Truncated Newton methods.

• Diverse Computation Tasks: Besides simulation and optimization, the tool also
offers methods for the steady-state calculation, metabolic control analysis, Lya-
punov exponents calculation, sensitivity analysis and the time scale separation
computation.

Lastly, COPASI has a detailed manual and tutorial wizard which can be found on
its website regularly updated [9].
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2.3 Dizzy (1.11.4)

Dizzy [10] presents a software tool for modeling the homogeneous kinetics of inte-
grated large-scale genetic, metabolic and the signaling networks. The tool offers both
deterministic and stochastic simulation methods. Moreover, the features of Dizzy
include a modular simulation design, reusable modeling elements, complex kinetic
rate laws, multi-step reaction processes, steady-state noise estimation and the spatial
compartmentalization.

Dizzy is written in Java and a set of Java packages constitutes a Java application
programming interface (API) for the software. Dizzy is also SBML compatible and
can import/export files by using the SBMLReader package. It can also display
models graphically by using the Cytoscape software system.

Additionally,Dizzy is an open source softwarewhich is free for both academic and
commercial purposes. Furthermore, it has a simple textual interface which requires
the description of the model in the textual form.

Hereby, the functionalities of Dizzy can be listed as follows [11]:

• User Interface (UI): Dizzy has an intuitive and a friendly graphical user interface.
• Simple Syntax: The mathematically inclined users, who may want to write the
kinetic equations directly, can use Dizzy easily.

• Multi-platform: The software is written in Java and runs on many platforms such
as Windows, Linux, and Mac OS X.

• Different Simulation Methods: Dizzy provides a collection of deterministic (5th
Order Runge–Kutta with a Fixed Step-size or an Adaptive Step-size Controller,
5/4 Dormand-Prince ODE Solver with Adaptive Step-size Controller, Implicit-
Explicit ODE Solver with Step Doubling) and stochastic methods (Gibson–Bruck
method and Gillespie method as the exact stochastic simulation algorithms and
Gillespie time-step method as the approximate stochastic simulation algorithm)
for solving the dynamics of a model. The latest version of Dizzy also supports the
solver for stochastic differential equations.

• Modular Design: This structure enables the user to perform theODEbased solvers
for the optimization that models the systems deterministically.

Finally, Dizzy owns a detailed manual and tutorial which can be found on its
website [12].

2.4 Dynetica (1.2 Beta)

Dynetica [13] is a user-friendly modeling interface designed for the construction,
visualization and the analysis of kinetic models of biological systems as well as
genetic networks. It offers both deterministic and stochastic simulation methods as
well as the sensitivity analysis.
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Dynetica is written in Java and supports import and export of models from the
SBML file format providing exchangeability of mathematical models into the bio-
logical processes.

Furthermore, Dynetica is an open source software which is free for both aca-
demic and commercial users. It has a diagrammatic interface enabling the user to
draw diagrams in place of writing chemical equations manually. Accordingly, rate
expressions and parameters can be entered by dialog boxes.

Finally, the functionalities of this tool can be stated as follows [14]:

• Genetic Networks: Bymeans of Dynetica, it is easy to represent a genetic network
which is treated as a special reaction network containing one or more genomes.

• Multi-platform: Dynetica is a multi-platform software developing in Java. It is
also supported by the platforms such as, Windows, Linux, and Mac OS X.

• Different Simulation Methods: Dynetica provides the 4th Order Runge–Kutta
method for the deterministic simulations and uses theGillespiemethod for stochas-
tic simulations of biochemical networks.

Lastly, Dynetica has only a manual which can be found on its website [15] and
the mathematical details of the supported algorithms are shortly described in the
following parts.

2.5 E-CELL (3)

E-CELL [16] shows a modeling and simulation environment for biochemical and
genetic processes. Here, the users can define functions of proteins, their interactions
with DNA, and further cellular metabolism functions.

Moreover, E-CELL is an object-oriented programming language written in C++
for simulating molecular processes and fully compatible with SBML.

Furthermore, E-CELL is an open source software which is free for both academic
and commercial purposes. Finally, it has a dialog interface.

Main functionalities of E-CELL can be listed as follows [16–18]:

• Integrative Simulation: E-CELL represents an integrative environment for bio-
chemical and genetic simulations by linking the gaps betweenmetabolic pathways.

• Multi-platform: E-CELL is available in Windows and Linux.
• Different Simulation Methods: The users can select several ODE solvers (Euler
method and Runge–Kutta method), stochastic methods (Gillespie method and
Gibson–Bruck method), a discrete time simulator and a hybrid dynamic/static
pathway simulationmethod in their calculations. Furthermore, by using the parallel
computations, the tuning of parameters, metabolic control and the bifurcation
analyses can be conducted in this tool. Themathematical details of these algorithm
are represented in the following parts.

Finally, E-CELL has a manual and a tutorial which can be found on its regularly
updated website [19].
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2.6 GENESIS - The GEneral NEural SImulation System
(2.4 Beta)

GENESIS [20] is a simulator for biochemical networks and neuronal systems. More
specifically, it is designed for generating realistic models varying from subcellular
components andbiochemical reactions to complexmodels of single neurons and large
networks. Furthermore, it can perform systems-level models and conduct neuronal
analyses.

On the other side, the graphical user interface of GENESIS is the X-windows
Output and Display Utility for Simulations (XODUS) written in C. But, it is not
compatible with SBML.

Additionally, it is an open source software which is free for both academic and
commercial users. Moreover, it has a textual interface which requires the description
of the model in the textual form.

Finally, the major functionalities of GENESIS can be presented as below [20, 21]:

• Building-block Approach: The design of GENESIS and the interface are created
with a building-block approach.With the help of this object-oriented approach, the
users can easily exchange and reuse models and model components or can extend
the functionality of the tool by adding new commands or simulation components
to the simulator, without modifying the base code.

• Powerful Script Language: The script language of GENESIS is very powerful
in the sense that only few lines of script are required even for a complicated
simulation.

• Multi-platform: GENESIS runs under the UNIX-based systems with the
X-Window System, including Linux, OS/X and Windows with Cygwin.

• Inference of Model Parameters: This tool uses the Parallel Genetic Algorithms
[22] and the Parallel Simulated Annealing [23] method in the optimization when
the systems are deterministically generated. It also uses the stochastic parameter
search method for the stochastically generated systems.

• Using with Kinetikit (11): Kinetikit [21], which is an interface and a simulator for
biological signaling pathways, can be used to generate the behaviour of a system.
In Kinetikit, the Exponential Euler method or the Runge–Kutta method is offered
for deterministic modeling. Furthermore, it can implement the Mixed Stochastic
method, Gibson–Bruck method, Gillespie method and the First Reaction method
for the stochastic simulations.

In the end, GENESIS presents a detailed manual and tutorial which can be found
on its website [24]. But the short mathematical description of the supported algo-
rithms are given in the following parts.
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2.7 Jarnac/JDesigner (2/11)

Jarnac/JDesigner [25, 26] is a script language for describing and manipulating the
cellular system models. Here, Jarnac refers to a complicated script language and
JDesigner stands for the design tool which can control the graphical interface of
Jarnac in simulations of biochemical networks. By this way, Jarnac/JDesigner allows
the user to describemetabolic, signal transduction and gene networks, or any physical
system which can be represented in terms of a network and associated flows.

Additionally, Jarnac is written in Java and supports import and export of models
from the SBML file format providing exchangeability of mathematical models of
biological processes.

Furthermore, similar to previous tools, Jarnac is an open source software which is
free for both academic and commercial purposes. Moreover it has a textual interface
which requires the description of the model in the textual form. JDesigner, on the
other hand, adds a diagrammatic interface on Jarnac.

Hence, the functionalities of Jarnac/JDesigner can be stated as follows [27, 28]:

• Modeling Environment: Jarnac is amodeling environmentwhich is a better option
for large-scale models. However, it is an advanced scripting language.

• Windows Based: Jarnac/JDesigner is only available on the Windows platform.
• Built-in Computational Support: The dynamic simulation (LSODA or CVODE
integrator), steady-state analyses (NLEQ solver), simple stability analyses (eigen-
values analyses), matrix arithmetic (using the IMSL library), metabolic control
analyses (all steady-state control coefficients and elasticizes), metabolic structural
analyses (null space and conservation relation analyses with others to follow) and
the stochastic simulation (Gillespie method) can be performed by this tool.

Lastly, Jarnac/JDesigner has a detailed manual and tutorial which can be found
on its website [27, 28] and similar to the previous tools, the supported algorithms
via Jarnac/JDesigner are explained mathematically in the following parts.

2.8 Systems Biology Toolbox for MATLAB (2.1)

Systems Biology Toolbox [29] is a toolbox for MATLAB to model and simulate
biological and biochemical systems. This toolbox presents a user extensible context
where newmethods and applications aswell as the simulation can be built.Moreover,
it can provide the network identification, sensitivity and bifurcation analyses. On the
other side, it has no design tool. Thus, JDesigner can be used for this manner [26].

Systems Biology Toolbox supports import and export of models from the SBML
file format providing the exchangeability of mathematical models for biological
processes with the SBML Toolbox. The user can also import and export the CSV
data files and export to Maple or C/C++ files by writing the required codes.
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Furthermore, it is designed to be in the MATLAB environment. It has a textual
interface and allows twodifferent representations of equations such that the first one is
based on biochemical reaction equations, suitable for biochemists and biologists, and
the second one depends on differential equations. In this toolbox, both representations
are interchangeable.

Finally, its major functionalities can be listed as the following way [30].

• Flexible: By means of a textual interface, the users are not limited by the tool,
rather, they can extend the functionality of the tool according to their needs.

• Multi-platform: Systems Biology Toolbox is a multi-platform tool since it is
designed in MATLAB. Therefore, it is supported by other platforms such as Win-
dows, Unix/Linux, and Mac OS X. However, the stochastic simulation is only
available on the Microsoft Windows platform.

• Different Functions: SystemsBiology Toolbox offers the three types of functions,
namely, the auxiliary functions, information and editing functions and the analyses’
functions. The last functions include the functions for deterministic and stochastic
simulations and amore in silico experiment-oriented type of simulation.Moreover,
the user can choose one of the seven deterministic solvers (Runge–Kutta, Adams,
NDFs (BDFs), Rosenbrock, Trapezoidal Method, TR-BDF2, BDFs) and one of
the three common stochastic algorithms (Direct method for exact simulation and
Binomial τ -leap (also called asBinomial time-step) andPoisson τ -leap (also called
as Poisson time-step) algorithms for approximate simulation).

• Inference of Model Parameters: Systems Biology Toolbox applies several opti-
mization methods in the deterministic simulations and the estimation of the asso-
ciated model parameters. These methods can be listed as a nonlinear solver based
on the Newton iterations, local and global optimization functions based on the
Nelder–Mead downhill simplex and the simulated annealing approaches.

• Bifurcation Analysis: The toolbox also provides a function for performing the
bifurcation analysiswith the help of a third party softwareXPP (XPPAUT)which is
for free. The bifurcation happenswhen there is a parameter that causes a qualitative
change in the dynamics of the system.

In the end, Systems Biology Toolbox has a manual and detailed tutorial which
can be found on its website [30].

2.9 Virtual Cell (5.2 Beta)

Virtual Cell [31] indicates an internet simulation environment for the modeling and
simulation of the cell biology. It has been specifically designed to be a tool for a wide
range of scientists from experimental cell biologists to theoretical biophysicists [32].

VirtualCell uses aweb-based Java interface to specify the compartmental topology
and geometry, molecular characteristics, and relevant interaction parameters. On the
other side, the new users are supposed to be registered when they first run the Virtual
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Cell Software. Additionally, Virtual Cell is an open source software which is free
for both academic and commercial applications. It has a diagrammatic interface
enabling the user to draw diagrams in place of writing chemical equations manually.
Accordingly, the rate expressions and parameters of the selected systems can be
entered by dialog boxes.

Hence, the main functionalities of Virtual Cell can be itemized as below [32]:

• Collaborative Work: Since Virtual Cell is an internet simulation server, it allows
multiple researches at distant locations to collaborate in the development and
analysis of a model. It also enables them to reuse, update, publish and privately
share models amongst collaborating groups.

• Multi-platform: Virtual Cell is supported by all JAVA enabled platforms.
• Different Simulation Methods: Virtual Cell provides a collection of determinis-
tic (Forward Euler (First Order, Fixed Time Step), Runge–Kutta (Second Order,
FixedTimeStep),Runge–Kutta (FourthOrder, FixedTimeStep),Adams–Moulton
(Fifth Order, Fixed Time Step), Runge–Kutta–Fehlberg (Fifth Order, Variable
Time Step), IDA (Variable Order, Variable Time Step, ODE/ DAE), CVODE
(Variable Order, Variable Time Step), Combined stiff solver CVODE/ IDA) and
stochastic methods (Gibson (Next Reaction Stochastic method)) as well as hybrid
methods (Hybrid (Gibson and Milstein method), Hybrid (Adaptive Gibson and
Milstein method)) for solving the dynamics of a model. It also uses the CVODE
solver for the optimization in the calculation of the parameter estimations.

• Inference of Model Parameters: Virtual Cell implements the particle swarm
optimization algorithmwith a simulated annealing based on the local search engine
(LPEPSO-SA) in the calculations where necessary in the estimation of network
parameters deterministically.

Lastly, Virtual Cell offers a detailed manual and tutorial which can be detected
on its website [32] and the brief mathematical explanation about the supported algo-
rithms is given in the following parts.

3 Deterministic and Inference Algorithms

In this part, we briefly present all the supported deterministic and optimization meth-
ods in the simulation tools above to explain their limitations and advantages.

3.1 Deterministic Algorithms

In general, the deterministic description is mainly described by the systems of the
ordinary differential equations (ODEs) in biological systems in such a way that each
differential equation denotes the rate of change in the concentration of the species and
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consists of the concentration of these species. Therefore, they design numerical or
exact methods to solve ODEs and understand the dynamics of the biological systems.
Hereby, in this part, in order to define the capacity of each tool better, we represent
short mathematical contents of the ODE methods supported by our simulation tools.

3.1.1 Euler Methods

The ODE systems can be presented as a vector of ODE specifying the relationship
between a dependent variable y = y(t) and an independent variable x with an initial
condition which is mainly the initial amount for species (IVP) as in Eq. 1:

dy

dt
= f (y, t) , y(t = 0) = y(t0) = y0. (1)

In this expression, t denotes the time and y0 indicates the initial amount of y.
Then by using the slope or the derivative of y, at the given time step t = ti , by taking
a step h towards the future realization of a given system, the Euler method can be
formulated as

yi−1 = yi + h f (yi , ti ) (2)

where t = ti (i = 0, 1, . . .) and h stands for the step-size. The forward Euler method
comes from the truncated Taylor series expansion. Thereby, if y is extended in the
neighborhood of t = ti+1 = ti + h, the following equation can be obtained:

y(ti + h) ≡ yi+1 = y(t0) + h
dy

dt
|ti +O(h2) = yi + h f (yi , ti ) + O(h2), (3)

in which O(h2) is the local truncation error (LTE).
The local truncation error (LTE) is reduced with each time-step because of the

Taylor series expansion. In the forward Euler method, the LTE is denoted as O(h2).
Therefore, the method is considered as a first order method. On the other hand, the
global error gi is the absolute value of the difference between the true solution and
the computed solution, i.e., gi = |ye(ti ) − yi |. Sincemostly the exact solution cannot
be known, calculation of the global error is not possible. However, it can be assumed
that the global error at the i th time step is i times the LTE. So as i is proportional to
1/h, the global error, gi , is taken as proportional to LTE/h which means that for a
kth order method, the global error becomes hk [33, 34].

Furthermore, the forward Euler method is an explicit method, which is easy to
implement and can be comparable with the implicit method. However, the drawback
arises from the limitations on the time step size to ensure the numerical stability.
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Thereby, the implicit method, also known as the backward Euler method, is formu-
lated in order to obtain a numerically stable result as follows:

yi−1 = yi + h f (yi−1, ti+1), (4)

in which f (yi , ti ) is the derivative of the function at y = yi and t = ti (i = 0, 1, . . .)
and h shows the step-size as used previously. Accordingly,

yi ≡ y(ti+1 − h) = y(ti+1) − h
dy

dt
|ti+1 +O(h2), (5)

where O(h2) is the local truncation error (LTE). Among the listed simulation tools,
Cellware, E-CELL, GENESIS and Virtual Cell support this method in the determin-
istic simulations of the biochemical systems.

3.1.2 Runge–Kutta Methods

In order to increase the accuracy of the Euler method, the Runge–Kutta methods
are proposed by using the information on more than one point. The Runge–Kutta
methods are popular and supported by all of the listed simulation tools in this study.

The most common orders of these approaches can be presented as below [33]:

i. The Second-Order Runge–Kutta Method (Midpoint or Heun’s Method):
This method improves the Euler method by adding a midpoint in the step which
increases the accuracy by one order. In other words, a better slope can be obtained
by having the average of the two slopes coming from the Euler method as shown
below via k1 and k2:

k1 = h f (yi , ti ), (6)

k2 = h f (yi + k1, ti + h), (7)

where f (yi , ti ) shows the derivative of the function at y = yi and t = ti
(i = 0, 1, . . .). Furthermore, h denotes the step-size as given before. Hereby, the
function y can be approximated by

yi+1 = yi + (k1 + k2)/2 (8)

by using k1 and k2. Finally, the second order Runge–Kutta method is an explicit
method and is only conditionally stable in such a way that under that condition, the
local truncation error LTE is found as O(h3).
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ii. The Fourth-Order Runge–Kutta Method:
One of the most widely used deterministic methods is the fourth order Runge–Kutta
approach which applies a weighted average of four slopes denoted by k1, k2, k3 and
k4 as written below or the derivative of y:

k1 = h f (yi , ti ) (9)

k2 = h f (yi + k1/2, ti + h/2) (10)

k3 = h f (yi + k2/2, ti + h/2) (11)

k4 = h(yi + k3, ti + h) (12)

where f (yi , ti ) is the derivative of the function at y = yi and t = ti (i = 0, 1, . . .)
while h presents the step-size as previously described. Hence, the method can be
summarized by the following expression.

yi+1 = yi + (k1 + 2k2 + 2k3 + k4)/6. (13)

Finally, similar to the second-order Runge–Kutta method, the fourth-order Runge–
Kutta approach is an explicit method and is conditionally stable while LTE is O(h5).
More mathematical details about these methods can be found in [34].

3.1.3 Adams Methods

The Adams methods are based on approximating the integrand with a polynomial
within the interval (ti , ti+1) as shown in the formula below. There are both explicit
and implicit techniques within this method. The explicit technique is called as the
Adams–Bashforth (AB) approach while the implicit one is called as the Adams–
Moulton (AM) technique [33]:

yi+1 = yi +
∫ ti+1

ti

dy

dt
dt = yi +

∫ ti+1

ti

f (y, t)dt (14)

in which f (yi , ti ) describes the derivative of the function at y = yi and t = ti
(i = 0, 1, . . .).

The first order ABmethod is equivalent to the forward Eulermethodwhile theAM
method is equivalent to the backward Eulermethod. Themathematical details of both
approaches are presented below.On the other hand, among the given simulation tools,
Cellware, Jarnac/JDesigner, SystemsBiologyToolbox andVirtual Cell perform these
approaches in their deterministic calculations.
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i. Adams–Bashforth Method:
The AB method is an explicit technique which is conditionally stable. The popular
second order version is AB2 and is obtained by performing a linear interpolation.
Accordingly, it can be formulated as follows:

yi+1 = yi + h

2
(3 f (yi , ti ) − f (yi−1, ti−1)) , (15)

where f (yi , ti ) is the derivative of the function at y = yi and t = ti (i = 0, 1, . . .) as
well as t = ti−1. Finally, h stands for the step-size as used beforehand. Here, different
from the Euler method, the solution from the (i − 1)th and the i th steps are required
to find the solution at the (i + 1)th step.

ii. Adams–Moulton Method (Trapezoidal Rule):
The AMmethod is an implicit and stable method. The popular second order version
is AM2 and is given by the following equation.

yi+1 = yi + h

2
( f (yi+1, ti+1) + f (yi , ti )) , (16)

in which f (yi , ti ) shows the derivative of the function at y = yi and t = ti
(i = 0, 1, . . .) aswell as t = ti−1 when h implies the step-size. In general, thismethod
ismore costly in the computation as compared toAB.However, this is themain trade-
off between the stability and the computational cost since both AM2 and AB2 have
the second order accuracy.

3.1.4 Predictor - Corrector Methods

These methods combine the explicit and implicit deterministic techniques in order to
obtain a method with better convergence characteristics. The most well-known com-
bination is the combination of the forward Euler and the Adams–Moulton method.
In this method, the forward Euler equation is used as a predictor equation to get a
predictor for the (i + 1)th step, y p

i+1, and the AM2 equation is implemented as a cor-
rector equation in order to obtain the final solution for the (i + 1)th step, yi+1 [33].
This technique is called as the Euler-Trapezoidal method which can be computed as
follows [35]:

yi+1 = yi + h f (yi , ti ), (17)

yi+1 = yi + h

2

[
f (y p

i+1, ti+1) + f (yi , ti )
]
, (18)
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where f (yi , ti ) describes the derivative of the function at y = yi , t = ti
(i = 0, 1, . . .), t = ti−1 and h indicates the step-size. Among the listed simulators,
these methods are supported by Cellware, COPASI and Virtual Cell.

3.1.5 CVODE

CVODE [36] is a package for solving the initial value problems given in the explicit
form y′ = f (t, y). The package is written in C and can handle both stiff and non-stiff
systems. Specifically, when numerical methods for solving the differential equations
are numerically unstable and when the step-size is not extremely small, then it is
considered as a stiff case. Otherwise, the system is accepted as a non-stiff manner.
For the nonstiff cases, the Adams–Moulton method is performed with the possible
order varying between 1 and 12while for the stiff cases, the BackwardDifferentiation
Formulas (BDFs) with the possible order varying between 1 and 5 are applied. In
both methods, the system is solved at each integration step. To do this, CVODE
presents a functional iteration which is a good selection for only non-stiff systems
and the diverse method of the Newton iteration.

Among tools, Jarnac/JDesigner and Virtual Cell implement this method in their
computations.

3.1.6 LSODA

LSODE (Livermore Solver for Ordinary Differential Equations) is a package for
solving initial value problems given in an explicit form y′ = f (t, y). The package
is written in FORTRAN. For the non-stiff cases, the Adams–Moulton method is
implemented with the possible order varying between 1 and 12 while for the stiff
cases, theBackwardDifferentiation Formulas (BDFs)with the possible order varying
between 1 and 6 are computed. Moreover, with LSODA, the users do not have to
determine whether the problem is stiff or not. Hence, the solver can automatically
choose the appropriate method with starting from non-stiff methods [37].

Similarly, this package is supported by the Jarnac/JDesigner and Virtual Cell
simulation tools.

3.2 Inference Algorithms

In the concept of the biochemical modeling, the inference of the model parameters
supported by the simulation tools is performed deterministically via optimization
methods. The most widely used optimization approaches for the estimation in these
tools can be listed as follows.
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3.2.1 Evolutionary Algorithms (EA)

The evolutionary algorithm (EA) is a heuristic optimization algorithm hold on the
reproduction and selection mechanism to find an optimal solution for a biochemical
system having specific constraints. In this algorithm, each individual in the system
is a candidate solution to the problem and is represented by a genome in which
each gene subtends to a parameter. When generating the algorithm, each individual
reproduces two different individuals. One of them is the same with the parent and the
other is exposed to some mutations. Later, each individual is ranked by the number
of wins (i.e., the number of individuals representing worse solutions than it). In the
end, half of the individuals with the highest ranks is remained so that the population
again has the original number of the individuals [7].

This algorithm has three subcategories, namely, gene expression programming,
genetic algorithms and genetic programming. Among them, the genetic algorithm is
the most common approach. In this algorithm, at each generation, individuals again
reproduce two offsprings. However, these offsprings are produced by combining the
genomes of their parents [7].

In evolutionary algorithms, the stochastic ranking can also be used in place of the
usual ranking and here, it is specifically named as the evolutionary strategies with
stochastic ranking (SRES) and the genetic algorithm with stochastic ranking (SR).

Lastly, thanks to the availability of working parallel computers, the tools can
support parallel evolutionary algorithms [22] which helps the user to apply genetic
algorithms to large populations. As advantages of parallel algorithms, robustness,
easy customization for a new problem, and multiple-solution capabilities can be
listed.

Among the simulation tools, COPASI and GENESIS support these algorithms.

3.2.2 Particle SWARM Algorithm (PSA)

The particle SWARMalgorithm is a population based stochastic optimizationmethod
developed by Kennedy and Eberhart in 1995, inspired by social behavior of bird
flockings or fish schoolings [38].

In this algorithm, the particles having a position Xi and a velocity Vi in the
parameter space, remember their best achieved objective values O and positions Mi .
Given this information and the position of their best neighbor, which is a random
subset of particles of the swarm, a new velocity is calculated. Then, the position is
updated [7].

The particle SWARMAlgorithm is similar to the EvolutionaryAlgorithms such as
Genetic Algorithms. However, PSA has no evolution operators such as crossover and
mutation. Instead, the candidate solutions lie through the problem space by following
the current optimum particles.

Similarly, among tools, Cellware, COPASI and Virtual Cell offer this method for
the optimization.
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3.2.3 Simulated Annealing (SA)

The simulated annealing is a heuristic stochastic optimization method which can
converge to the global optimum of the objective function if the number of iterations
goes to infinity. This method is robust whereas, it is slow compared to the other
global optimization algorithms.

InSA, the objective function is kept constant.During each iteration, the parameters
are changes randomly within the parameter space and the new objective function
value is computed. If the computed value is less than the previous value, then the new
state is accepted. Otherwise, the new state is accepted with a probability coming from
the Boltzmann distribution. After a fixed number of iterations, the stopping criterion
of the algorithm is checked. If it is not maintained, then the system’s temperature is
reduced and the algorithm continues until the criterion is satisfied [7].

Lastly, since this method is a robust, but, a slow algorithm, parallel simulated
algorithms are also applicable in some tools such as COPASI, GENESIS, Systems
Biology Toolbox and Virtual Cell.

3.2.4 Hooke and Jeeves (Pattern Search - PS) Algorithm

This algorithm is a direct search optimization method which minimizes a nonlin-
ear function without using the derivative information. Hooke and Jeeves algorithm
is heuristic in the sense that it suggests a descent direction using the values of the
function calculated in a number of previous iterations. This algorithm is also con-
sidered as a derivative-free method since it can work with the functions that are not
continuous or differentiable [7]. Among tools, COPASI performs this method.

3.2.5 Levenberg–Marquardt Algorithm

This method is a combination of the steepest descent and the Newton methods.
Therefore, it is a gradient descent method. The Newton optimization method follows
descent directions computed from the first and the second partial derivatives and
minimizes a nonlinear function. On the other hand, the steepest descent method
only applies the first derivative of the function. However, it can guarantee to the
convergence unlike the Newton method [7]. Similarly, COPASI uses this approach
in the optimization.

3.2.6 Nelder–Mead Algorithm (Downhill Simplex Method)

The Nelder–Mead method is a nonlinear optimization algorithm proposed by Nelder
and Mead (1965) which minimize a nonlinear function of several variables without
needing the information of derivatives.
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In this method, when there are N variables, the simplex is a polytope of (N + 1)
vertices. To illustrate, when there are two variables, a simplex is a triangle and the
method is based on a pattern search comparing the values of the objective function
at each vertex. Later, the worst one is replaced with a point reflected through the
centroid of the other N points. If this point is better than the best current point,
then it is tried to stretch exponentially out along this line. If this new point is not
much better than the previous value, then it is stepped across a valley so that we can
shrink the simplex towards the best point [7]. Finally, it is supported by COPASI and
Systems Biology Toolbox among the listed simulation tools.

3.2.7 Random Search (RS) Algorithm

The random search algorithm is a numerical optimization method which can mini-
mize an objective function without needing the gradient. In this method, a series of
combinations of random values of the parameters is generated. Later, the generated
random values not satisfying the constraints are removed. As the number of iterations
becomes very large, then the global optimum of the objective function can be found
[7]. Finally, this method is used in the COPASI tool during the optimization.

4 Stochastic Algorithms

The dynamical behavior of biochemical systems can be also analyzed via stochastic
methods. Unlike the deterministic methods, these approaches consider a random
error term coming from the Brownian motion.

Mathematically, the main differences between the deterministic and stochastic
approaches are the role of reaction constants and the description of the amount
of species. Moreover, in the deterministic approach, the amounts of species are
the concentrations while it is the number of molecules in the stochastic approach.
Furthermore, in the stochastic approach, the dynamics of the system are governed
by the chemical master equation (CME) [39] which is dependent on the reaction
probabilities.

On the other hand, when all reactions are zero and the first-order mass action
kinetics, the deterministic solution of the system correctly describes the expected
value of the stochastic kinetic model. Hereby, in this part, the main exact and approx-
imate stochastic simulation algorithms are introduced and the supported tools are
listed in the associated parts [40].
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4.1 Exact Stochastic Algorithms

4.1.1 Gillespie Algorithm (Direct Method)

The Gillespie algorithm [41] is one of the exact algorithms presented for stochastic
simulations of biochemical systems. In the stochastic approach, since the reaction
hazards depend merely on the current state of the system, the time evaluation of the
state in the reaction systems becomes as a continuous time Markov process with a
discrete state space. In stochastic modelling, the hazard is also called as the rate law
of reaction and describes the product of the number of distinct molecular reactant
combinations available in the state x for reaction i (i = 1, . . . , v) with stochastic rate
constant ci . Hence, in a given reaction system with v reactions, the hazard for the i th
reaction can be denoted as hi (x, ci ). Accordingly, the total hazard h0(x, c) for the
system after the occurrence of a reaction is computed as

h0(x, c) =
v∑

i=1

hi (x, ci ). (19)

Therefore, the time for the next reaction can have a distribution coming from
the exponential with rate h0(x, c). Here, x and c denote the state, i.e. the number
of molecules, and the reaction rate constant, respectively. Moreover, the underly-
ing picked probabilities are proportional to hi (x, ci ) and independent on the time
of the next event. In other words, the reaction type is found by the probability
hi (x, ci )/h0(x, c). Then, by using the time to the next event and the event time,
the state of the system can be updated and the simulation continues [40].

Hence, the step of this algorithm can be stated as below:

(i) Initialize the system at time t = 0 with stochastic reaction rate constants
c1, c2 . . . , cv and the numbers of molecules for each species x1, x2 . . . , xu .

(ii) For each i = 1, . . . , v among a system with v reactions, update the hazard
function hi (x, ci ) based on the current state, x .

(iii) Calculate the total hazard via h0 = ∑v
i=1 hi (x, ci ).

(iv) Simulate the time of the next event by t ′ = − ln[U (0, 1)]/h0, where U (0, 1)
denotes the standard uniform random number and puts this in the update of the
current time via t ≡ t + t ′.

(v) Simulate the reaction index, j as a discrete random quantity with probabilities
hi (x, ci )/h0(x, c) where i = 1, . . . , v.

(vi) Update v according to the reaction j by putting the current state x by
x ≡ x + s( j), where s( j) denotes the j th column of the stoichiometry matrix s.

(vii) If the total simulation time T is exceeded after the update of the time, then stop.
Otherwise, go back to Step (i i).

Among tools, Cellware, Dizzy, Dynetica, GENESIS, Jarnac/JDesigner and Sys-
tems Biology Toolbox use this method for the stochastic simulations.
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4.1.2 First Reaction Method

This algorithm can be considered as the extension of the direct method in the sense
that it depends on the generation of the next time step via the shortest time hazard
from the exponential distribution, in place of the total hazard from the same density
[40]. Thereby, the step of the algorithm can be summarized as follows.

(i) Initialize the starting point of the simulation with the time t = 0, the reaction
rate constants c = (c1, c2, . . . , cv) for totally v reactions and the number of
molecules for each species x = (x1, x2, . . . , xu) for totallyu species in a system.

(ii) Calculate the reaction hazards hi (x, ci ), where i = 1, . . . , v.
(iii) Simulate a putative time to the next reaction from the exponential density with

a rate hi , i.e., ti ∼ exp(hi (x, ci ))
(iv) By denoting j as the index of the smallest ti , put the time t as t ≡ t + t j . Here

t j denotes the time step.
(v) Update the state according to the reaction with an index j and set the state x to

x ≡ x + s( j).
(vi) If the updated t is less than the total simulation time T , then return to Step (i i).

Otherwise, stop the simulation.

Among tools, GENESIS uses this method for stochastic simulations.

4.1.3 Gibson–Bruck Algorithm (Next Reaction Method)

Gibson and Bruck (2000) propose a new simulation approach in order to reduce
the computational cost of the Gillespie algorithms since Gillespie becomes very
demanding in terms of the calculational time under the simulation of large systems.
Accordingly, this method can be considered as a modification of the first reaction
method which is computationally more efficient [40]. Hereby, the step of this algo-
rithm can be summarized subsequently as below:

(i) Initialize the system at time t=0 with the rate constants c1, c2, . . . , cv and the
initial numbers of the molecules for each species x1, x2, . . . , xu for a system
with u species and v reactions. Then, calculate all of the initial hazards hi (x, ci )
where i = 1, . . . , v. These hazards are used to simulate the putative time for
the first reaction times ti from the exponential density with a rate hi (x, ci ).

(ii) Considering that j is the index of the smallest ti , set the time t to t = t j .
(iii) Update the state x according to the reaction with the index j .
(iv) Update the hazard under the state x and the rate constant c, i.e., h j (x, c j ),

according to the new state x . Then, simulate a new putative time t j via
t j = t + exp(h j (x, c j )) from an exponential increment with rate h j (x, c j ).

(v) For each reaction i �= j whose hazard is changed by the reaction j , update
the hazard and the time via h′

i = hi (x, ci ) and ti = t + (hi/h′
i )(ti − t), respec-

tively.
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(vi) If the updated time is less than the total simulation time, i.e., t < T , return to
Step (i i).

Different from the previous algorithms, the Gibson–Bruck method works with
absolute times (i.e. the time to the next event), rather than relative times (i.e. times
from now until the next event). By this way, it saves times during the simulation
of the new time steps for all of the reactions which are not affected by the putative
reaction. Moreover thanks to this idea, the times which are not affected by the most
recent reaction is reused by appropriately rescaling the old variable. Furthermore,
it is assumed that the algorithm knows which hazards are affected by each reaction
that can be done by creating a dependency graph for the system. Using this graph,
if a reaction of type j occurs, the set of all children of the node j in the graph gives
the set of hazards that needs to be updated. An interesting alternative to this graph
can be a direct implementation of the Petri net representation [40].

All in all, this algorithm is more efficient than the Gillespie’s direct method since
only one new random number needs to be simulated for each reaction, compared to
Gillespie in which two random numbers are required [8, 40].

Among tools, Cellware, COPASI, Dizzy, GENESIS and Virtual Cell use this
method for the stochastic simulations of the biochemical systems.

4.2 Approximate Stochastic Simulation Algorithms

If the user disregard the exactness of the simulation, then the computation cost for
the simulation of the system can be reduced significantly. In order to perform such
approximated generation of the systems,the followingmethods can be applied among
many alternatives in the literature of the approximate stochastic simulation methods.

4.2.1 Time Discretization Method (Poisson Time-Step Method)

In thismethod, the time axis is divided into the small discrete parts, and the underlying
kinetics are approximated so that the advancement of the state from the start of one
part to another can go on. In other words, it is assumed that the time intervals are
sufficiently small that the reaction hazards can be constant over the interval. This
condition is also known as the leap condition. Thus, in this approach, the number
of reactions occurring in a short time interval is assumed to come from the Poisson
distribution. Later, numbers of reaction events can be simulated and the system can
be updated [40].

As a result, for a fixed (small) time step Δt , we can represent an approximate
simulation algorithm as follows.

(i) Initialize the system at time t = 0 with the rate constants c1, c2, . . . , cv and
the initial numbers of the molecules for each species x1, x2, . . . , xu as well
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as the stoichiometry matrix S whose entry can be denoted by sr for the r th
(r = 1, . . . , v) reaction.

(ii) Calculate the hazard of each reaction hi (x, ci ) for i = 1, . . . , v and simulate
the u-dimensional reaction vector r , with the i th entry from a Poisson density
via Poi(hi (x, ci )Δt).

(iii) Update the state according to x ≡ x + sr .
(iv) Update the current time t via t ≡ t + Δt for the change of time Δt .
(v) If the current time is less than the predefined total time T , i.e., t < T , go back

to Step (i i).

In this approach, the crucial point is to choose a convenient time step Δt so that
the method is fast, but, also accurate enough. Because the smaller Δt , the more
accurate and the larger Δt , the faster simulation can be done. Moreover, suitability
of a specific Δt can change in each part of the simulation. Therefore, instead of
considering a constant Δt , τ -leap method is proposed which considers a variable
time-stepΔt [40, 42]. Among tools, E-CELL and Systems Biology Toolbox use this
method for the approximate stochastic simulations.

4.2.2 Gillespie’s Time-Step (τ -Leap) Method

The time step, also known as τ -leapmethod [42], is a version of the Poisson time-step
method which enables going forward by a variable amount τ , in which τ balancing
the trade-off between the accuracy and the speed. In this sense, τ is selected as large
as possible and satisfies some constraints for accuracy.

More specifically, the notion of this method is to choose τ in such a way that
the proportional change in all of the hazard, hi (x, ci ), is small. To achieve this, the
easiest method can be a post-leap check. In other words, after a leap τ , the expression
|hi (x ′, ci ) − hi (x, ci )| can be checked if it is sufficiently small or not. If it is large,
then the search for a smaller value of τ should continue [40].

On the other hand, a pre-leap method might be better if the expected new state
can be written as E(x ′) = x + E(r)A where the i th element of E(r) is hi (x, ci )τ .
Here, E(.) describes the expected value of the underlying random variable. Then,
to check whether the change in the hazard at this expected new state is sufficiently
small, the following inequality can be used:

|hi (x ′, ci ) − hi (x, ci )| ≤ εh0(x, c). (20)

In this expression, ε presents a small interval, hi and h0 stand for the hazard of the
i th reaction and the total hazard of the system, respectively. Here, Gillespie suggests
an approximate method for computing the largest τ satisfying this property, i.e. the
leap condition. Accordingly, if the resulting τ is as small as the expected time leap
associated with an exact single reaction update, then it is preferable to simulate the
system. Since the time of the first event is distributed as exponential with a rate
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h0(x, c), i.e., exp(h0(x, c)), which has the expectation 1/h0(x, c), we can always
prefer an exact update if the suggested τ is less than say 4/h0(x, c) for the total
hazard h0 under the state x and the reaction rate constants c [40].

Finally, among the major simulation tools, Cellware, Dizzy and Systems Biology
Toolbox can apply this approach in the approximate stochastic simulations.

5 Hybrid Algorithms

Depending on the nature of a biochemical system studied, it is sometimes convenient
to consider stochastic algorithms, especially, when the concentrations are low or
the randomness has an important role. Otherwise, the traditional methods, namely,
deterministic algorithms can be applied. However, it is also convenient to combine
these two algorithms under a hybrid approach.

Thereby, in order to apply a hybrid algorithm, the entire biochemical system is
divided into the two groups, called as deterministic and stochastic subnets. As it is
mentioned beforehand, the deterministic subnet covers the reactions with species
having high particle numbers. Accordingly, the hybrid method performs the deter-
ministic numerical integration of ordinary differential equations in order to combine
the deterministic method with a stochastic simulation algorithm. For our listed simu-
lation tools, Cellware, COPASI, E-CELL and Virtual Cell support these algorithms.

6 Conclusion

In this study, we have presented the most widely used simulation tools designed for
the biological networks. These tools can offer not only algorithms for simulation,
both also algorithms for the inference of model parameters based on deterministic
modelling. Furthermore, some of them can be able to make a variety of analyses
for metabolite structure and bifurcation of the systems. Regarding the variety of
the computational choices offered to the researchers, it can be seen that COPASI
and Virtual Cell are particularly more comprehensive and Cellware is relatively
comprehensive among alternatives.

As the extension of this study, we consider to define some criteria in order to
compare all these approaches formally and show the performance of the best choice
in a real-life example. Furthermore, all these tools support deterministic approaches.
Hereby, we think to investigate their capacities under stochastic and impulsive dif-
ferential equations as well. Moreover, we think to check whether these tools can be
also supported by recent approximation methods such as the secant and Kurchatov
methods [43] to solve the nonlinear expressions with high computational efficiency.
Finally, we investigate the capacity of all tools in terms ofmodelling such as themod-
elling based on the gene-environment networks [44] or complex regression models
[45, 46] which can deal with both stochastic and deterministic approaches.
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