# Chapter 4 Storing a Digital Image



# 4.1 Storing an Image as a File

Each of the methods of creating a digital image described in Chap. 3, (and of transforming an image in Chaps. 5 and 7), concludes with a display of the image, usually in an editor such as Paint. To store an image, the option is as follows:

File
—Save as
—Filename
—Save as type.

The stored image is then accessible as a file with the chosen filename and extension.

# 4.2 Image File

Computer storage is organized as nested *directories* or folders, containing *files*, each with a *filename* and *extension*. The extension indicates the type of file, each of which has a specific *file format* [1]. We can access stored files by means of a file manager utility, such as Microsoft File Explorer, which opens, closes, copies, pastes or deletes files.

A file holds a sequence of *fields*; a field holds one or more *bytes*; and a byte holds eight *binary digits* 0 or 1. The file format defines the position of each field, and what each field represents. For example, Fig. 4.1 shows the .BMP image file format. For user convenience, a file is usually displayed in hexadecimal digits 0 to F [2], so a byte is written as two hex digits 00 to FF. For example, Fig. 4.2 shows a simple image and its .BMP file.

# 4.3 File Format .BMP

.BMP (for bitmap) is a venerable image file format developed by Microsoft for Windows operating systems, in successive versions [3]. It is an uncompressed format, and has large file size. It is a simple format, very widely available for ordinary use,

https://doi.org/10.1007/978-3-319-74076-8\_4

<sup>©</sup> Springer International Publishing AG, part of Springer Nature 2018

A. Parkin, Computing Colour Image Processing,

| Group      | Field           | Type    | dec.  | hex.         | Remarks                |
|------------|-----------------|---------|-------|--------------|------------------------|
| FileHeader |                 |         | 1-14  | 01-0E        | File type, properties  |
|            | bfType          | integer | 1-2   | 01-02        | Always 'BM'            |
|            | bfSize          | long    | 3-6   | 03-06        | File length, bytes     |
|            | bfReserved1     | integer | 7-8   | 07-08        | Always 0               |
|            | bfReserved2     | integer | 9-10  | 09-0A        | Always 0               |
|            | bfOffBits       | long    | 11-14 | <b>0B-0E</b> | Header length, bytes   |
| InfoHeader |                 |         | 15-54 | 0F-36        | Image size, propertie  |
|            | biSize          | long    | 15-18 | 0F-12        | Infoheader len., bytes |
|            | biWidth         | long    | 19-22 | 13-16        | Image width, pixels    |
|            | biHeight        | long    | 23-26 | 17-1A        | Image height, pixels   |
|            | biPlanes        | integer | 27-28 | 1B-1C        | Always 1               |
|            | biBitCount      | integer | 29-30 | 1D-1E        | Bits per pixel $= 24$  |
|            | biCompression   | long    | 31-34 | 1F-22        | Not compr. $= 0$       |
|            | biSizeImage     | long    | 35-38 | 23-26        | Image data len., byte  |
|            | biXPelsPerMeter | long    | 39-42 | 27-2A        | Printer p.p.m., horiz. |
|            | biYPelsPerMeter | long    | 43-46 | 2B-2E        | Printer p.p.m., vert.  |
|            | biClrUsed       | long    | 47-50 | 2F-32        | Always 0               |
|            | biClrImportant  | long    | 51-54 | 33-36        | Clrs considered imp.   |
| Image data |                 |         | 55-   | 37-          | In scan sequence       |
|            | aBitmapBits[0]  | byte    | 55    | 37           | Pixel 0, blue value    |
|            | aBitmapBits[1]  | byte    | 56    | 38           | Pixel 0, green value   |
|            | aBitmapBits[2]  | byte    | 57    | 39           | Pixel 0, red value     |
|            | aBitmapBits[3]  | byte    | 58    | 3A           | Pixel 1, blue value    |
|            | aBitmapBits[4]  | byte    | 59    | 3B           | Pixel 1, green value   |
|            | aBitmapBits[5]  | byte    | 60    | 3C           | Pixel 1, red value     |
|            | etc             |         |       |              |                        |

Fig. 4.1 The .BMP 24-bit format, with two headers and a body as long as it takes

though other formats with compression are often preferred. Figure 4.1 shows the structure. Figure 4.3 shows a typical camera image stored in .BMP format displayed in a Paint editor, at 100% size and magnified to 400% to show the pixel detail.

|                      |    | C        |    |            |    | C        |    | C  |    |    |    |    |    |    |    |    |
|----------------------|----|----------|----|------------|----|----------|----|----|----|----|----|----|----|----|----|----|
|                      | -  | _        |    | _          |    |          |    |    |    |    |    |    |    |    |    |    |
|                      |    |          |    |            |    |          |    |    |    |    |    |    |    |    |    |    |
|                      |    |          |    |            |    |          |    |    |    |    |    |    |    |    |    |    |
|                      |    |          |    |            |    |          |    |    |    |    |    |    |    |    |    |    |
|                      |    |          |    |            |    |          |    |    |    |    |    |    |    |    |    |    |
| Offset(h)            | 00 | 01       | 02 | 03         | 04 | 05       | 06 | 07 | 08 | 09 | OA | 0B | 0C | 0D | 0E | OF |
| 00000000             | 42 | 4D       | F6 | 00         | 00 | 00       | 00 | 00 | 00 | 00 | 36 | 00 | 00 | 00 | 28 | 00 |
| 00000010             | 00 | 00       | 08 | 00         | 00 | 00       | 08 | 00 | 00 | 00 | 01 | 00 | 18 | 00 | 00 | 00 |
| 00000020             | 00 | 00       | C0 | 00         | 00 | 00       | C3 | 0E | 00 | 00 | C3 | 0E | 00 | 00 | 00 | 00 |
| 00000030             | 00 | 00       | 00 | 00         | 00 | 00       | FF | FF | FF | 00 | 00 | 00 | FF | FF | FF | 00 |
| 00000040             | 00 | 00       | FF | FF         | FF | 00       | 00 | 00 | FF | FF | FF | FF | 00 | 00 | 00 | 00 |
| 00000050             | 00 | FF       | FF | FF         | 00 | 00       | 00 | FF | FF | FF | 00 | 00 | 00 | FF | FF | FF |
| 00000060             | 00 | 00       | 00 | FF         | FF | FF       | FF | FF | FF | 00 | 00 | 00 | FF | FF | FF | 00 |
| 00000070             | 00 | 00       | FF | FF         | FF | 00       | 00 | 00 | FF | FF | FF | 00 | 00 | 00 | 00 | 00 |
| 00000080             | 00 | FF       | FF | FF         | lD | E6       | B5 | lD | E6 | B5 | lD | E6 | B5 | FF | FF | FF |
| 00000090             | 00 | 00       | 00 | FF         | FF | FF       | FF | FF | FF | 00 | 00 | 00 | lD | E6 | B5 | 00 |
| 000000A0             | FF | 00       | 1D | E6         | B5 | 00       | 00 | 00 | FF | FF | FF | 00 | 00 | 00 | 00 | 00 |
| 000000B0             | 00 | FF       | FF | FF         | 1D | E6       | B5 | 1D | E6 | B5 | 1D | E6 | B5 | FF | FF | FF |
| 000000000            | 00 | 00       | 00 | FF         | FF | FF       | FF | FF | FF | 00 | 00 | 00 | FF | FF | FF | 00 |
| 000000D0             | 00 | 00       | FF | FF         | FF | 00       | 00 | 00 | FF | FF | FF | 00 | 00 | 00 | 00 | 00 |
| 000000E0<br>000000F0 | FF | FF<br>00 | FF | FF<br>FF   | 00 | 00<br>FF | 00 | FF | FF | FF | 00 | 00 | 00 | FF | FF | FF |
| 0000020              | 00 | 00       | 00 | <b>L L</b> | FF | 22       |    |    |    |    |    |    |    |    |    |    |

**Fig. 4.2** A simple image and its .BMP file in hexadecimal dump, two hex digits per byte. In multibyte fields, most-significant bytes are to the right, least-significant left. Header fields, above the thick line, are: two-byte "magic cookie" 42 4Dh = ASCII BM; four-byte file size F6h = 246d; two two-byte fields ignored; four-byte header length 36h = 54d; four-byte info header 28h = 40d; four-byte image width 08h = 8d; four-byte image height 08h = 8d; two-byte planes field 01h = 1d; two-byte bits per pixel 18h = 24d; four-byte compression 00h = 0d; image data length C0h = 192d; two four-byte pixels per meter C3 0Eh = 49934d; four-byte colors used 00h = 0d; and four-byte colors important 00h = 0d. After the thick line: sixty-four triples of one-byte fields showing the (B, G, R) values of the image pixels in scan-sequence starting at bottom left

#### 4.4 File Format .GIF

.GIF (for graphic interchange format) was developed in 1987 for 8-bit displays limited to 256 colours [4]. It has been largely replaced by .PNG, but is still widely available for website use. It has lossless compression, hence small file size. Figure 4.4 shows a typical camera image stored in .GIF format displayed in a Paint editor, at 100%

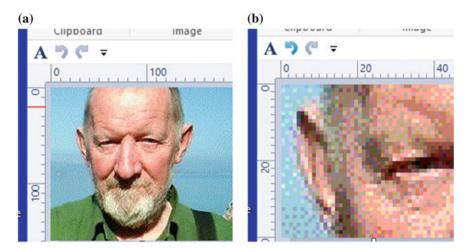



Fig. 4.3 BMP format. a Image  $190 \times 160$  px stored in .BMP format; file size 89 KB. b Magnified to 400%

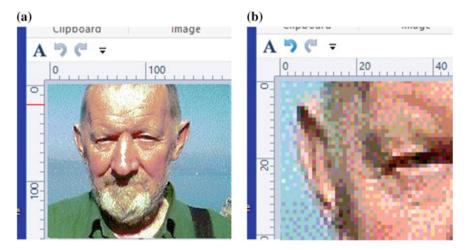



Fig. 4.4 GIF format. a Image 190  $\times$  160 px stored in .GIF format; file size 20 KB. b Magnified to 400%

size and magnified to 400% to show the pixel detail. The original sRGB colours are severely altered.

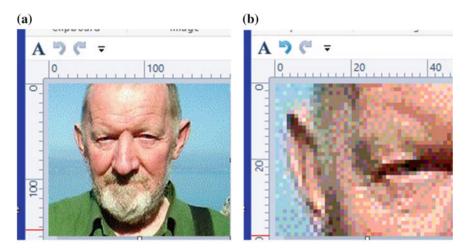



Fig. 4.5 PNG format. **a** Image  $190 \times 160$  px stored in .PNG format; file size 23 KB. **b** Magnified to 400%

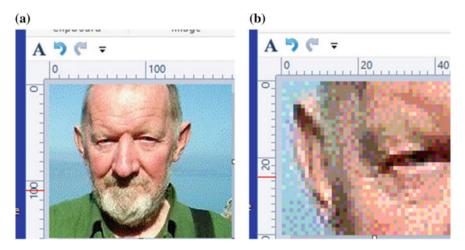
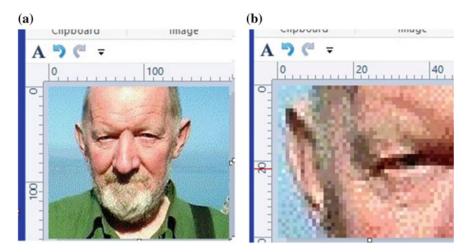




Fig. 4.6 TIF format. a Image  $190 \times 160$  px stored in .TIF format; file size 26 KB. b Magnified to 400%

## 4.5 File Format .PNG

.png (for portable network graphics) was developed in 1996 as a replacement for .BMP and .GIF [5]. It has lossless compression, hence small file size. Figure 4.5 shows a typical camera image stored in .png format displayed in a Paint editor, at 100% size and magnified to 400% to show the pixel detail.



**Fig. 4.7** JPG format, high quality. **a** Image  $190 \times 160$  px stored in .JPG format with 94% quality; file size 20KB. **b** Magnified to 400%

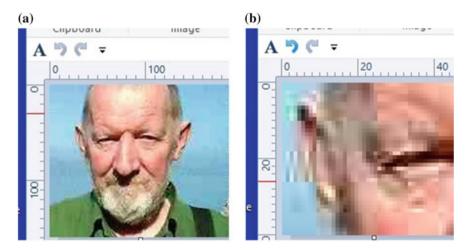



Fig. 4.8 JPG format, low quality a Image  $190 \times 160$  px stored in .JPGG format with 20% quality; file size 2 KB. b Magnified to 400%

## 4.6 File Format .TIF

.TIF (for tagged image file) was developed in 1986 for desktop and commercial printing, where it remains the preferred format [6]. It has lossless compression, hence small file size, and can contain additional image information. Figure 4.6 shows a typical camera image stored in .TIF format displayed in a Paint editor, at 100% size and magnified to 400% to show the pixel detail.

### 4.7 File Format .JPG

.JPG (for joint photographic experts group) was developed in 1992 for making adjustable-quality compressions of camera and scanner images by removing the least visually significant image data [7]. It is very widely used to store and transfer such images. Figure 4.7 shows a typical camera image stored in .JPG format with 94% quality, and Fig. 4.8 with 20% quality.

#### References

- 1. Image file formats. https://en.wikipedia.org/wiki/Image\_file\_formats
- 2. Hexadecimal number system. https://en.wikipedia.org/wiki/Hexadecimal
- 3. BMP file format. https://en.wikipedia.org/wiki/BMP\_file\_format
- 4. GIF file format. https://en.wikipedia.org/wiki/GIF
- 5. PNG file format. https://en.wikipedia.org/wiki/Portable\_Network\_Graphics
- 6. TIF file format. https://en.wikipedia.org/wiki/TIFF
- 7. JPEG file format. https://en.wikipedia.org/wiki/JPEG