
Computing
Colour Image
Processing

Alan Parkin

Digital Colour Primer

Computing Colour Image Processing

Alan Parkin

Computing Colour Image
Processing
Digital Colour Primer

123

Alan Parkin
London
UK

ISBN 978-3-319-74075-1 ISBN 978-3-319-74076-8 (eBook)
https://doi.org/10.1007/978-3-319-74076-8

Library of Congress Control Number: 2018933504

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

For Lily 1926–2008

Preface

This book is based on observations and opinions formed over many years of
professional practice in graphic design, commercial data processing and amateur
painting.

The first observation is that colour in digital imaging is a distinct field which
shares some of the knowledge and traditions of the vast spread of other colour
activities, and diverges from them in other ways.

The second observation is that sRGB colour standards, implemented in generally
available equipment, are a suitable environment for further study.

The third observation is that the complete numerical representation of colour in
any digital image brings radically new opportunities for processing colour by
program.

The fourth observation is that some of the formal properties of colour schemes
can be analysed and measured computationally, in ways not possible hitherto.

The fifth observation is that any digital image can be computationally brought to
a norm of neutral balance: an idea with good traditional antecedents.

The first opinion is that the general principles of economy of materials for
purposes, and fitness of means to ends, found in most traditional arts and crafts,
should be applied in digital imaging.

The second opinion is that digital images are often created and used at levels of
resolution of location and colour which are unnecessary and inconvenient. The
specific character and charm of digital images lie at the threshold where pixel
structure and colour gradation steps are just about visible at the intended viewing
distance.

The third opinion is that commonly available commercial software for colour
manipulation is inappropriately based on photographic conventions. Scripting in
Python offers a better way to explore and develop digital colour.

The fourth opinion is that digital imaging is an interesting field for the exercise
of curiosity, skill, luck, discrimination and taste, over and above its undoubted
usefulness in business, technology and science. It can move towards art and
connoisseurship.

vii

The fifth opinion is that preparing a digital image, simple or complex, is like
preparing food. It begins with growing and harvesting the ingredients (by GUI or
program), or hunting and killing (by camera or scanner or download). It proceeds
by peeling, skinning, chopping up and cooking the ingredients (by the transfor-
mations); and finally serving up the finished dish (as a display or printout).

This book is a second attempt to put these observations and opinions into
practice. The first attempt (Digital Imaging Primer, Parkin A., Springer, 2016) used
BASIC programming to explain and illustrate. This book uses Python scripting to
explain and illustrate some 20 elementary tools. For serious use, these scripts can be
freely improved and expanded, and can be wrapped into full GUI Tkinter
applications.

Let us honour the universities, institutions, commercial enterprises and inde-
pendent enthusiasts, many indicated in the chapter references, who have made
digital imaging available to all. Special thanks are due to Dr. Claus Ascheron and
his team at Springer for bringing this book into being, and for their personal
kindness throughout.

And may you, gentle reader, enjoy a happy lifetime among the coloured pixels.

London, UK and Hydra, Greece Alan Parkin

viii Preface

Contents

1 Colour Environments . 1
1.1 The Many Meanings of Colour . 1
1.2 Everyday Seeing . 1
1.3 The Science of Seeing . 3
1.4 Measuring Colour . 4
1.5 Manufacturing Colour Materials . 7
1.6 Ornamenting . 8
1.7 Picturing . 8
1.8 Photographing . 9
1.9 Printing . 11
1.10 Digital Imaging. 12
References . 14

2 Digital Imaging Fundamentals . 15
2.1 Digital Image . 15
2.2 sRGB Colour Space . 15
2.3 Numerical Representation . 17
2.4 Scan Sequence . 18
2.5 Computer Processing of Images . 19
2.6 Location Resolution . 20
2.7 Colour Resolution . 21
References . 22

3 Creating a Digital Image . 23
3.1 Creating by Image Editor . 23
3.2 Creating by Program . 23
3.3 Creating by Camera . 28
3.4 Creating by Scanner . 31

ix

3.5 Creating by Modelling . 31
3.6 Hijacking an Image Created Elsewhere 35
References . 35

4 Storing a Digital Image . 37
4.1 Storing an Image as a File . 37
4.2 Image File . 37
4.3 File Format .BMP . 37
4.4 File Format .GIF . 39
4.5 File Format .PNG . 41
4.6 File Format .TIF . 42
4.7 File Format .JPG . 43
References . 43

5 Transforming Image Locations . 45
5.1 Location Transformations . 45
5.2 Cropping . 46
5.3 Framing . 47
5.4 Dilating . 49
5.5 Translating . 53
5.6 Reflecting . 54
5.7 Rotating . 55
5.8 Shearing . 57
5.9 Inverting . 59
References . 62

6 Transforming Image Colours . 63
6.1 Colour Palettes . 63
6.2 Neutral Palettes . 68
6.3 Halftone Palettes . 73
6.4 General Colour Shifts . 76
6.5 Muting Colours . 81
6.6 Specific Colour Substitution . 84
References . 86

7 Displaying an Image . 87
7.1 Display Screen . 87
7.2 Display Location Resolution . 89
7.3 Display Colour Resolution . 89
7.4 Perceptually Equal-Step Scales . 90
7.5 Display Viewing Environment . 93
References . 95

x Contents

8 Printing an Image . 97
8.1 Subtractive Printing . 97
8.2 Location Resolution . 99
8.3 Colour Resolution . 100
8.4 Viewing Environment . 100
References . 101

9 Analysing Image Colour . 103
9.1 Image Colour Distribution . 103
9.2 Constructing a Colour Scheme Table . 103
9.3 Constructing a Colour Scheme Bar Graph 105
9.4 Conditioning the Colour Scheme . 106
9.5 Scripts for a Colour Scheme . 106
9.6 Colour Scheme Examples . 111
Reference . 117

10 Balancing Image Colour . 119
10.1 Neutral Colour Balance . 119
10.2 Balancing by Changing Colours . 119
10.3 Script for Balancing by Changing Image Colours 121
10.4 Examples of Balancing by Changing Colours 124
10.5 Balancing by Adjoining a Frame . 129
10.6 Examples of Balancing by Adjoining a Frame 133
10.7 Why Balance? . 138
References . 139

Index . 141

Contents xi

Chapter 1
Colour Environments

1.1 The Many Meanings of Colour

Colour has a vast spread of competing meanings and treatments. A preliminary task
is to articulate this spread, in order to identify the corner which wewish to investigate
further. One way to do this is by distinguishing typical environments in which colour
occurs.

1.2 Everyday Seeing

Figure1.1 shows the environment of everyday seeing. In this and the following
flowcharts:

A rectangular box shows a process.
An arrow shows a flow of something from one process to another.
A black/white inversion shows the boundary of an entity.
A sloped box shows an input or output process at an entity boundary.
A dished box shows storage of some kind.

Phenomenologically, as each of us moves about and looks around, we have a
continuously changing perception of the nearby external world. We know the differ-
ence between movement of objects out there and movement of ourselves. We can
articulate the continuous perception by turning our attention to various aspects of the
scene: what objects are there, how many, what shapes and colours they have and so
on. We can remember perceptions from the immediate past, and from further back.
Sometimes, we talk or write about what we see.

Philosophically, perception has been a contentious topic for centuries [1]. In recent
times, the treatment has often centred on language, language games and private
languages [2, 3].

© Springer International Publishing AG, part of Springer Nature 2018
A. Parkin, Computing Colour Image Processing,
https://doi.org/10.1007/978-3-319-74076-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74076-8_1&domain=pdf

2 1 Colour Environments

Fig. 1.1 The everyday seeing environment. In the world, a changing scene is available to those
that have eyes to see. Each waking self takes in a continuously changing stream of sights from its
continuously changing cone of view. This stream is processed in ways which are little understood,
to emerge in consciousness as perceptions of a stable outer world. Some aspects of these perceptions
pass through short-termmemory, and some sink into long-termmemory. Linguistic communication
with others is important in this environment

Fig. 1.2 The eleven colour names in common use in English: white, black, red, yellow, green, blue,
brown, purple, pink, orange and grey

Linguistically, the variety of basic colour terms in different natural languages has
attracted much interest. It is known that in English and many other languages about
eleven colour names are in common use [4, 5], together with a few modifiers such
as ‘light’, ‘dark’, ‘very’ and ‘-ish’. Figure1.2 shows the English eleven colours.

In the everyday seeing environment, we may say that colour means the competent
use of common colour terms in describing perceptions to oneself and to others.

1.3 The Science of Seeing 3

1.3 The Science of Seeing

Figure1.3 shows the scientific environment of seeing.
Scientifically, a great deal is known about the causal chain on the input side of

seeing [6, 7]. Physically, the behaviour of light sources and of objects reflecting,
transmitting and absorbing light is well understood. Physiologically, the forming
of an image on the retina of the eye and the transducing of the image to nerve
impulses are also well understood [8]. Neurophysiologically, there is steady progress

Fig. 1.3 The scientific seeing environment. In the world, light from various sources falling on
various objects constitutes a scene. Eyes receive light directly, or reflected or transmitted by objects,
form optical images on the retinas and transduce the momentary images to binary nerve impulses.
The brain somehow groups the nerve impulses to eventuate as stable perceptions of the scene, which
can be selectively stored in memory

Fig. 1.4 Physics of light. a Spectral power distributions of three light sources. b Spectral power
distributions of four reflecting surfaces

4 1 Colour Environments

in understanding the further brain processes in seeing. But the causal chain is so far
unable to cover the leap from nerve impulses to experiences of perception, attention
and memory [9].

Figure1.4 shows typical physical plots of colours as spectral power distributions
for some light sources and some reflecting objects.

In the scientific environment, colour means the spectral power distribution of light
in the external world.

1.4 Measuring Colour

Figure1.5 shows the main components of measuring colour.
Physically, radiometry [10] measures the very wide spectrum of electromagnetic

radiation (EMR). The fundamental measuring device is some form of bolometer
which converts heat energy to electrical energy. Light is the visible spectrum of
EMR, where the wavelengths are between 400 and 700nm.

Psychophysically, photometry [11] measures total light intensity arriving at and
leaving a surface, as sensed by a normal observer’s eye. The measuring device is
some form of photometer which brings a test sample of light up against an adjustable
calibrated standard light. An observer adjusts the standard to get a match by eye. A
photoelectric photometer responds to intensity like an eye and matches the sample
directly to a calibrated standard.

Psychophysically, colourimetry [12–14]measures variations in the spectral power
distribution (SPD) of wavelengths across the visible spectrum. It is based on the fact
that any sample light can be matched by some combination of three fixed single-
wavelength ‘primary’ lights. The matching is done by a standard observer (or an
equivalent sensor), using elaborate equipment to adjust a mixture of three calibrated
standard lights to match a test sample. A colour is then specified by three numbers,
the relative intensities of the three primary sources. In the CIE 1931 xyY system, the

Fig. 1.5 The measuring
environment. A self matches
a sample to a reference
standard, with or without
instrumental help

1.4 Measuring Colour 5

Fig. 1.6 CIE colourimetry. a The CIE 1931 xyY chromaticity chart. b Colour temperature of
various light sources

Fig. 1.7 a Munsell tree b NCS swatch

whole gamut of visible colours can be plotted on a horseshoe chromaticity chart, as
shown in Fig. 1.6a (with a further overall luminance value). In the 1976 LAB version,
the gamut is plotted on a red/green versus blue/yellow chromaticity chart.

The colour of light reflected or transmitted by a sample is of course dependent on
the colour of the illuminating source. Source colour is measured as the temperature
in degrees Kelvin of a standard black body, as shown in Fig. 1.6b.

A somewhat different approach to measuring colour is by providing a reference
atlas of standard surface colour patches, to which a sample is matched by direct
inspection. The Munsell system [15] arranges the visible gamut in three purported
psychological dimensions of hue (corresponding to CIE dominant wavelength),
chroma or saturation (CIE excitation purity) and value (CIE luminance). The Mun-
sell atlas has 1600 colours. It is presented in various forms, such as the tree shown

6 1 Colour Environments

in Fig. 1.7a. The more recent Natural Colour System (NCS) atlas [16] has 1950
colours, based on the purported Hering opponent pairs of black/white, red/green
and blue/yellow. It is also presented in various forms, such as the swatch shown in
Fig. 1.7b. Colour specifications in CIE, Munsell and NCS are interconvertible.

In this environment, colour means the physical tri-stimulus values, or the atlas
standard codes, which match the sample.

Fig. 1.8 The manufacturing environment. Raw materials are processed to colour materials, which
are made available to other manufacturers and end users

Fig. 1.9 Typical manufacturer’s swatch of paint colours available for interior decoration

1.5 Manufacturing Colour Materials 7

1.5 Manufacturing Colour Materials

Figure1.8 shows the main components of manufacturing colour materials.
Today, almost all colour materials are made by various industries and marketed to

other industries, thence to trade and end users. Technologically, a great variety of raw
materials, animal, vegetable and mineral are processed physically and chemically to
become colour materials as paints [17, 18], dyes [19], inks [20], powders and solids.

In this environment, colour means the material manufactured and available for
use. Available colours for various purposes are usually presented as colour swatches,
as shown in Fig. 1.9.

Fig. 1.10 The ornamenting environment. A self uses hands materials and tools to apply colours to
objects

Fig. 1.11 An exemplar from Owen Jones’ Grammar of Ornament

8 1 Colour Environments

1.6 Ornamenting

Figure1.10 shows the main components of ornamenting by colour.
Craftwise, we may often apply available colour materials to change the natural

colour of objects. For example, paints to walls, dyes to clothes, cosmetics to face hair
and nails, tattoos to bodies and so on. Each field of activity develops its ownmaterials
and fashions of ornament, varying widely with time and place, and often widely
published and emulated (Fig. 1.11) [21]. Available materials are variously specified
by swatches of reference patches, samples of dyed material and so on; to which
manufacturers and marketers often attach fanciful names [22]. In this environment,
colour means the available gamut of materials in the activity of interest.

1.7 Picturing

Figure1.12 shows the main components of picturing a scene.
From childhood onward, we make pictures of scenes, real or imagined. Some

develop high skills of picturing and may become professional in technical or artistic
fields, making diagrams, maps, engineering drawings, architectural plans, paintings
and so on. For example, Fig. 1.13 shows a painting (digitized, much-reduced, colour-
changed and here published as a display in the e-book or as a print in the printed
book).

A picture is essentially a projection from a three-dimensional scene to a two-
dimensional surface, marked in colour of some sort. The projecting may be done

Fig. 1.12 The picturing environment. A self views a scene and makes a representation of it, live
or from memory, using available paints and tools. The resulting picture can be seen by oneself and
by others

1.7 Picturing 9

Fig. 1.13 Oil painting Brighton pierrots by Walter Sickert,1915. Original 25 × 30 inches

mentally, or by progressive construction, possibly from measurements of the scene
objects. Picture colours are chosen from available materials. There are usually prac-
tical reasons to narrow the choice of picture colours, perhaps to the extreme of black
and white. In general, the gamut available for the picture cannot match the gamut of
the scene, so various compromises are always needed to get an acceptable overall
result [23].

The picture, rough or precise, is a convenient stand-in for the original scene and
is habitually used to communicate with oneself as time passes and with others.

In this environment, colour means the gamut of materials available for a cho-
sen technique. Casual amateurs may pay little attention to niceties of colour, while
professionals may have exacting requirements [24].

1.8 Photographing

Figure1.14 shows the main components of photographing a scene.

10 1 Colour Environments

Fig. 1.14 The photographing environment. A self chooses a scene and uses a photographic process
to make a representation of it. The self controls the process at various stages, making choices from
available materials and tools. The resulting photograph can be seen by oneself and by others

Photographing is a special case of picturing, where a photographer uses amechan-
ical process to project a scene and colour the resulting representation. The photog-
rapher chooses the original scene and sets a camera to make an optical image on a
light-sensitive surface. In a black-and-white photographic process [25], the materials
are based on silver salts which blacken proportionately with light intensity to form
a developable negative image. The negative can be stored and printed as a positive
photograph any number of times. Various colour processes [26, 27] (Fig. 1.15) use
three transparent dyes to filter the optical image and produce either a projectable
transparency (Kodachrome) or a printable negative (Kodacolor). Historically [28],
chemical photography had a wonderful run from the 1830s to around 2000 when
Kodak and most other manufacturers stopped supplying the materials, overwhelmed
by the success of digital photography.

In this environment, colour, broadly interpreted to include black and white, means
the gamut available in the finished photograph from the chosen manufacturer’s
process.

1.9 Printing 11

Fig. 1.15 a Autochrome by
an unknown photographer
about 1910. b Kodachrome
by Andreas Feininger 1942

1.9 Printing

Figure1.16 shows the main components of the printing environment.
Historically [29], mass reproduction of an original image by printing has been

done by several different processes: letterpress, engraving, photogravure, lithography
and today’s favourite offset lithography. The essential stages are to capture an original
as a master printing plate (formerly by hand, nowadays by photography), and then
use a press to print large numbers of reproductions for publication. Print reproduction
has been revolutionized by the advent of digital processes [30–32].

Technologically, a printing press can deposit either ink or no ink at each point of
an image: it cannot vary the intensity of its ink. Hence, reproducing a tonal image
depends on some form of halftoning, whereby a range of greys is got by denser or
sparser distributions of small dots or lines of solid black, in effect diluting the ink

Fig. 1.16 The printing environment. Technicians use devices to photograph an original object,
make plates and mass-print reproductions for publication

12 1 Colour Environments

Fig. 1.17 The spectral
power distributions of the
four printing inks, cyan,
magenta, yellow and black.
Overprinting of the
transparent inks filters
incident light, which reflects
from the white paper

with more or less of the white of the paper. In early printing, halftoning was done
in the original by hand stippling or cross-hatching; subsequently, it was done by
photographing a tonal original through a halftone screen; and today by digital means
[33].

Optically, printed inks are transparent films, acting as filters on the incident light,
unlike opaque paint coats. Thus, a red ink absorbs the red long wavelengths and
transmits the greenmiddlewavelengths and the blue short wavelengths. A reasonably
good gamut can be got using inks which are the inverses of red green and blue, that
is to say, cyan, magenta and yellow (CMY). Ideally, the overlaying of all three inks
should show as black; but unfortunately available inks do not do this. So a black ink
(K) is added.

Practically, reproducing a colour original is done by preparing a halftone plate
for each of the four CMYK inks, imposed in register on the paper by the press.
Figure1.17 shows the SDPs of a set of CMYK inks and their overprints.

1.10 Digital Imaging

Figure1.18 shows the main components of the digital imaging environment.
In digital imaging, a person uses a computer and various peripheral devices to

create, store, analyse, transform, display, print and communicate an image as an
array of coloured picture elements (pixels). The processes are open to user control
throughout [34].

Common methods of creating a digital image are by hand, using a graphic user
interface (GUI); by program, using a suitable programming language; by optical
projection from a scene, using a digital camera; by contact capture from a given
flat image, using a scanner; by capture from a remote source, using a downloaded
file; or by calculating a projection from a numerically specified three-dimensional
model. All these methods produce a machine-readable numerical representation of
an image.

Storing is done in various file structures, using standard read/write routines.

1.10 Digital Imaging 13

Fig. 1.18 The digital imaging environment. A self chooses a scene and uses a digital process to
make a representation of it. The self controls the process at various stages, making choices from
available materials and tools. The resulting image can be seen by oneself and by others, possibly
widely disseminated

Analysing and transforming is done by programs, either in commercially available
packages or own-written scripts.

Additive displaying uses a monitor screen, via a manufacturer’s driver software.
Subtractive printing uses a printer, via a manufacturer’s driver software.
Communicating uses a transducer to send a file to a remote address on the Internet.
In this environment, colour, broadly interpreted to include black and white, means

the gamut which survives the successive stages of imaging from input to output.
It is colour in this environment which we now wish to investigate.

14 1 Colour Environments

References

1. Scruton R (2004) Modern philosophy. Penguin, London
2. Wittgenstein L (2003) Remarks on colour. Blackwell, Oxford
3. Hardin CL (1988) Color for philosophers. Hackett Publishing Co, Cambridge
4. Berlin B, Kay P (1969) Basic color terms. Univ. Calif. Press, Berkeley
5. Hardin CL, Maffi L (2008) Color categories in thought and language. CUP, Cambridge
6. Judd DB,Wyszecki G (1975) Color in business science and industry, 3rd edn.Wiley, NewYork
7. Wyszecki G, Stiles WS (1988) Color science, 2nd edn. Wiley, New York
8. Bass M et al (2010) Handbook of optics vol III vision, 3rd edn. McGraw-Hill, New York
9. Dennett DC (1991) Consciousness explained. Allen Lane, London
10. Radiometry. https://en.wikipedia.org/wiki/Radiometry
11. Photometry. https://en.wikipedia.org/wiki/Photometry_(optics)
12. Colorimetry. https://en.wikipedia.org/wiki/Colorimetry
13. Wright WD (1944) The measurement of colour. Adam Hilger, London
14. Commission Internationale d’Eclairage. www.cie.co.at
15. Munsell Color System. https://en.wikipedia.org/wiki/Munsell_color_system
16. Natural Color System. https://en.wikipedia.org/wiki/Natural_Color_System
17. Lambourne R, Stevens TD (1999) Paint and surface coatings, 2nd edn. Woodhead, Cambridge
18. Talbert R (2007) Paint technology handbook. CRC Press, Boca Raton
19. Society of Dyers and Colourists (2017), Colour Index. https://colour-index.com
20. Leach R (2012) The printing ink manual, 4th edn. Springer, Heidelberg
21. Jones O (1856) The grammar of ornament. Day, London, p 1856
22. List of colors. https://en.wikipedia.org/wiki/List_of_colors_(compact)
23. Ruskin J (1843), Modern painters, vol I Pt II Sect II Chap I: Of truth of tone. https://www.

gutenberg.org/files/29907/29907-h/29907-h.htm
24. Handprint. www.handprint.com
25. Mees CEK (1942) The theory of the photographic process. Macmillan, New York
26. Autochrome Lumiere. https://en.wikipedia.org/wiki/Autochrome_Lumiere
27. Kodachrome. https://en.wikipedia.org/wiki/Kodachrome
28. Gernsheim H, Gernsheim A (1960) The history of photography. Thames and Hudson, London
29. Twyman M (1970) Printing 1770–1970. Eyre and Spottiswoode, London
30. Yule JAC (2001) Principles of color reproduction, 2nd edn. Wiley, NJ
31. Kipphan H (2001) Handbook of Print Media. Springer, Heidelberg
32. Hunt RWG (2004) The reproduction of color, 6th edn. Wiley, New York
33. Ulichney R (1987) Digital halftoning. MIT Press, Cambridge
34. Parkin A (2016) Digital imaging primer. Springer, Heidelberg

https://en.wikipedia.org/wiki/Radiometry
https://en.wikipedia.org/wiki/Photometry_(optics)
https://en.wikipedia.org/wiki/Colorimetry
www.cie.co.at
https://en.wikipedia.org/wiki/Munsell_color_system
https://en.wikipedia.org/wiki/Natural_Color_System
https://colour-index.com
https://en.wikipedia.org/wiki/List_of_colors_(compact)
https://www.gutenberg.org/files/29907/29907-h/29907-h.htm
https://www.gutenberg.org/files/29907/29907-h/29907-h.htm
www.handprint.com
https://en.wikipedia.org/wiki/Autochrome_Lumiere
https://en.wikipedia.org/wiki/Kodachrome

Chapter 2
Digital Imaging Fundamentals

2.1 Digital Image

Visually, a digital image is a rectangular array of (nominally) square elements called
pixels, each showing a colour. Figure2.1 shows a simple example, displayed on a
screen (if you are reading this as an e-book) or printed on paper (if you are reading
it as a print book).

2.2 sRGB Colour Space

sRGB is a standard [1] defining a colour space and viewing conditions for digital
images [2]. It is available in virtually all current personal computers, digital cameras,
scanners, displays and printers.

In brief, sRGB has:

Three variables: red, green and blue.
In each variable, a range of integer intensities R,G, B, where 0 ≤ R ≤ 255, 0
≤ G ≤ 255, 0 ≤ B ≤ 255.
In the whole space, 2563 = 16.7 million colours, where a colour is an additive
mixture of three intensities: (R,G, B).
A subset of 256 neutrals, colours where R = G = B.

The sRGB variables are defined as three primary light sources (the same as for
HDTV [4]), which have the CIExyY chromaticity coordinates [3]:

R: x = 0.64, y = 0.33.
G: x = 0.30, y = 0.60.
B: x = 0.15, y = 0.06.
White point: x = 0.3127, y = 0.3290.

Figure2.2a shows the three primary colours, which combine additively as white, and
(b) shows the sRGB gamut within the full CIE gamut. Thus, sRGB colour space is

© Springer International Publishing AG, part of Springer Nature 2018
A. Parkin, Computing Colour Image Processing,
https://doi.org/10.1007/978-3-319-74076-8_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74076-8_2&domain=pdf

16 2 Digital Imaging Fundamentals

Fig. 2.1 A simple digital image. The array has 8 columns and 8 rows, hence 64 pixels, which are
coloured white, black, red, green and blue

Fig. 2.2 a The three fundamental sRGB colours, which combine additively to show white. b The
gamut of sRGB colours lies within the triangle of the three fundamental colours, which lies within
the CIExyY chromaticity chart. (Notice that since this chromaticity chart is itself displayed here in
sRGB, the colours are merely indicative, not CIE-accurate)

a subspace of CIE colour space. Any sRGB colour has a CIE equivalent, and some
but not all CIE colours have an sRGB equivalent.

Visually, sRGB colour space is best modelled as a Cartesian cube, shown in
Fig. 2.3 in front and back views. One vertex of the cube is the origin (0 0 0) black.
The three edges from the origin are coordinate axes calibrated in integer steps of
intensity from 0 to 255. The R-axis goes from (0 0 0) black to (255 0 0) red, the
G-axis to (0 255 0) green and the B-axis to (0 0 255) blue. The other four vertices

2.2 sRGB Colour Space 17

(a) (b)

Fig. 2.3 SRGB cube model. a Front view. b Back view

are then (255 255 0) yellow, (255 255 255) white, (0 255 255) cyan and (255 0 255)
magenta. The four body diagonals of the cube meet in the centre at (127 127 127)
mid-grey. (Notice that in sRGB there is a systematic equivocation between intensity
values 127 and 128. The middle value between 0 and 255 is 127.5, which can be
arbitrarily rounded down or up without visual effect.)

2.3 Numerical Representation

Numerically, a digital image has:

Width W pixels.
Height H pixels.
Hence, Extent E = W × H pixels.

18 2 Digital Imaging Fundamentals

and a pixel has:

Location (X,Y), integers where 0 ≤ X < W − 1 and 0 ≤ Y < H − 1.
Colour (R,G, B), integers where 0 ≤ R < 255, 0 ≤ G < 255, 0 ≤ B < 255.

2.4 Scan Sequence

The conventional scan sequence of pixels in an image is shown in Fig. 2.4. Then,
the complete numerical representation of the image is W, H followed by a list of
(R,G, B) triples in scan sequence. For example, the simple image in Fig. 2.1 is
represented numerically by the sequence:

8,8,(255,0,0),(255,255,255),(0,0,0),(255,255,255),(0,0,0),

(255,255,255),(0,0,0)),(255,255,255),(0,0,0),(255,255,255),

(0,0,0),(255,255,255),(0,0,0)),(255,255,255),(0,0,0),

(255,255,255),(255,0,0),(255,255,255),(0,0,0),(255,255,255),

(0,0,0),(255,255,255),(0,0,0)),(255,255,255),(0,0,0),

(255,255,255),(0,0,0),(0,255,0),(0,0,0)),(255,255,255),

(0,0,0),(255,255,255),(255,0,0),(255,255,255),(0,0,0),

(255,255,255),(0,0,0),(255,255,255),(0,0,0)),(255,255,255),

(0,0,0),(255,255,255),(0,0,0),(255,255,255),(0,0,0)),

(255,255,255),(0,0,0),(255,255,255),(255,0,0),(255,255,255),

(0,0,0),(255,255,255),(0,0,0),(255,255,255),(0,0,0)),

(255,255,255),(0,0,0),(255,255,255),(0,0,0),(255,255,255),

(0,0,0)),(255,255,255),(0,0,0),(0,0,255)

Fig. 2.4 Scan sequence

2.5 Computer Processing of Images 19

2.5 Computer Processing of Images

Computationally, the numerical representation of an image can be created, stored,
transformed, displayed, printed and transmitted via a computer, using any suitable
programming language. Python [5] is particularly suitable, as a scripting language
with the associated Python Imaging Library (PIL) [6], Tkinter, numpy and scipy
languages. For example, the following Python script will select, open and display
any .bmp image in the current user directory:

pyopsh: Python script to open and show a .bmp image.

Written by Alan Parkin 2017.

from PIL import Image

import os, sys

Enter any .bmp filemame in working directory.

imagefilename = raw_input(‘‘Image filename?’’)

#Open it, print filename, W, H, E, and show it.

im = Image.open(imagefilename)

width = im.size[0]

height = im.size[1]

extent = width * height

print ‘‘filename’’, imagefilename

print ‘‘width W’’, width

print ‘‘height H’’, height

print ‘‘extent E’’, extent

im.show()

The Python output is:

Python 2.7.11 |Anaconda 2.4.1 (64-bit)| (default,

Jan 19 2016, 12:08:31) [MSC v.1500 64 bit (AMD64)]

on win32

Type ‘‘copyright’’, ‘‘credits’’ or ‘‘license()’’

for more information.

>>>

================ RESTART: C:\Users\Alan

Parkinalan\pyopsh.py ================

Image filename? sim8.bmp

filename sim8.bmp

width W 8

height H 8

extent E 64

>>>

20 2 Digital Imaging Fundamentals

Fig. 2.5 Simple image sim8.bmp opened and displayed in Paint (where it is magnified by a factor
of eight, as shown by the marginal rulers)

and the image displayed in the Microsoft Paint image editor, as shown in Fig. 2.5,
whence it can be saved to storage or otherwise disposed of.

2.6 Location Resolution

Numerically, the location resolution of an image is the smallest detail which it can
show. In a digital image, pixels are indivisible, so the smallest detail is one pixel
distinguished (by colour) from its neighbours. Numerically, the location resolution
limit LOCRES = 1/E , one pixel in E , where E is the extent, that is, width× height,
of the image.

Notice that pixels, extent and location resolution are of indefinite size: they take
on size only when displayed on a device which has a fixed pixel pitch of so many
pixels per inch (ppi) or pixels per millimetre (ppm). For example, the simple image
in Fig. 2.1 has width W = 8, height H = 8, extent E = 64 and location resolution
limit LOCRES = 1/64. The smallest detail it can show is 1/64 of the extent, at
whatever size it is displayed or printed.

A digital image with large extent E , such as a typical camera or scanner image,
has extremely fine location resolution: perhaps 1 in 10 million or more. Such fine
resolution is often unnecessary and inconvenient. It is common practice to reduce
location resolution to suit the purpose in hand, by resizingdownor by severe cropping.
For methods, see Chap.5.

2.7 Colour Resolution 21

2.7 Colour Resolution

Numerically, the colour resolution of an image is the least difference of colours
which it can show. In a digital image, the least difference is one step in the colour
space of the image. Numerically, the sRGB colour space has three axes, each with
S = 256 steps of intensity; hence, the cube contains S3 = 256 × 256 × 256 = 16.7
million colours, each different from its neighbours. Call this number the diversity D
of the sRGB colour space. We define the colour resolution limit COLRES as 1/D,
one colour in D.

A digital image with large colour diversity D, such as a typical sRGB camera or
scanner image, has an extremely fine colour resolution: 1 in 16.7 million. Such fine
resolution is often unnecessary and inconvenient: as when, for example, we want to
analyse colour distribution in an image, or discern essentials from inessentials, or
make systematic changes of colour. We can simplify an image by reducing colour
diversity to a subspace of sRGB, thus coarsening colour resolution.

We can define a series of subspaces, or restricted palettes, within sRGB by taking
fewer than S = 256 steps of intensity per axis of the sRGB cube. For example, a
minimal palette P2 has S = 2, hence diversity D = S3 = 8 colours, just those at the
vertices of the cube. Figure2.6 shows palette P2.

Fig. 2.6 Palette P2, a subset of sRGB, with S = 2 steps per cube axis

22 2 Digital Imaging Fundamentals

Fig. 2.7 Neutral palette N256, and subsets N2, N3, N4, N5, N6 with 2, 3, 4, 5 and 6 steps along
the axis

An important subspace of sRGB is the neutral palette or greyscale N256, where
(R = G = B). This has just one axis, the body diagonal of the cube from black
(0,0,0) to white (255,255,255). It has S = 256 steps of intensity I , and hence contains
just 256 neutrals, with diversity D = 256, and COLRES = 1/256, one grey in D.
A series of neutral greyscales can be made by taking fewer than S = 256 steps of
intensity on the diagonal axis. For example, a minimal neutral greyscale N2 has S =
2, hence diversity D = 2 colours, just black and white. Figure2.7 shows neutral
palettes N256, N2, N3, N4, N5 and N6.

For methods of reducing colour resolution, see Chap.6.

References

1. sRGB Color Space. https://webstore.iec.ch/publication/6168
2. sRGB Color Space. https://en.wikipedia.org/wiki/SRGB
3. CIE 1931 color space. https://en.wikipedia.org/wiki/CIE_1931_color_space
4. ITU Rec.709. https://en.wikipedia.org/wiki/Rec._709
5. Python Software Foundation. https://www.python.org
6. Fredrik Lundh effbot. http://effbot.org

https://webstore.iec.ch/publication/6168
https://en.wikipedia.org/wiki/SRGB
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/Rec._709
https://www.python.org
http://effbot.org

Chapter 3
Creating a Digital Image

3.1 Creating by Image Editor

To create an image by an image editor, such as Microsoft Paint [1], typical steps are
as follows:

Open the editor.
Open New image, setting width W , height H , background colour, filename and
storage format.
For comfort, adjust editor magnification for very small images, or diminution for
very large images.
Select colour for drawing and filling shapes.
Draw features, possibly with undo/redo.
Cut/paste/move/erase/redraw features.
Save image.

For example, Fig. 3.1 shows some of the steps for creating a simple image, in Paint.
Colours can be selected visually, and/or numerically by sRGB triple (R,G, B). The
image is saved numerically to storage in the usual scan-sequence.

Figure3.2 shows a 32× 32 pixel icon created in an editor. An editor is particularly
suitable for creating moderately complex images with multiple repetitions, as shown
in Fig. 3.3.

3.2 Creating by Program

To create an image by program, such as a Python script [2], typical steps are:

Open the script editor.
Create Open New image, setting widthW , height H , background colour, filename
and storage format.
Write code for the required operations, with progressive output messages.

© Springer International Publishing AG, part of Springer Nature 2018
A. Parkin, Computing Colour Image Processing,
https://doi.org/10.1007/978-3-319-74076-8_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74076-8_3&domain=pdf

24 3 Creating a Digital Image

Fig. 3.1 a Part of Paint screen with new 8 × 8 pixel white blank, tiny at actual size. b Image and
marginal rulers magnified to 800% for comfort. c Setting a colour. d Finished simple image, still
magnified

Debug code.
Remove superfluous output messages.
Save script.

A program can do anything that an image editor can do. For example, the following
Python [2] script creates the simple image in Sect. 1:

pycrsim: Create simple image, using xy coordinates.

Written by Alan Parkin 2017.

from PIL import Image

3.2 Creating by Program 25

(a)

(b)

Fig. 3.2 a Part of Paint screen with 32× 32 icon, magnified to 800% for comfort. b Icon at actual
size

import os, sys

Ask width and height, and create all-white array.

imwidth = int(raw_input("Width? "))

imheight = int(raw_input("Height? "))

imrgb = Image.new("RGB", (imwidth, imheight), ’white’)

imrgb.show()

Call PIL load to get pixy all-white xy array

of rgb tuples.

pixy = imrgb.load()

print "All-white loaded"

Set chequer in pixy.

for y in range(imheight):

for x in range(imwidth):

if y%2 == 0:

if x%2 == 0:

r = 0

g = 0

b = 0

else:

26 3 Creating a Digital Image

Fig. 3.3 An image editor is well suited to creating images of moderate complexity with repetitions,
such as this book illustration

r = 255

g = 255

b = 255

else:

if x%2 == 0:

r = 255

g = 255

b = 255

else:

r = 0

g = 0

b = 0

3.2 Creating by Program 27

pixy[x,y] = (r,g,b)

imrgb.show()

print "Chequer set"

Set red green and blue pixels.

pixy[0,0] = (255,0,0)

pixy[3,3] = (0,255,0)

pixy[7,7] = (0,0,255)

imrgb.show()

print "Red green blue set"

But a program can create images far beyond the reach of a GUI image editor. For
example, the following Python script creates one face of a CMYK colour space cube
model, 65 536 pixels created in a moment, as shown in Fig. 3.4.

Fig. 3.4 A complex image 256 × 256 pixels, created by the program pycu6 listed here

28 3 Creating a Digital Image

pycuf6: Create cmyk cube face 6 usng xy coordinates.

Written by Alan Parkin 2017

from PIL import Image

import os, sys

Create all-white array 256 x 256 pixels.

imrgb = Image.new("RGB", (256,256), ’white’)

Call PIL load to get pixy all-white xy array

of rgb tuples.

pixy = imrgb.load()

Generate pixel colours.

Scanning origin k, x coords to green, y coords

to blue.

for y in range(256):

for x in range(256):

r = 0

g = 0 + x

b = 0 + y

pixy[x,y] = (r,g,b)

imreflr = imrgb.transpose(0)

imreflr.show()

print "Face 6 done"

3.3 Creating by Camera

To create an image by camera typical steps are:

IN THE CAMERA:
Power-up the camera.
Set camera parameters.
Choose view of scene.
Shoot photo.
IN THE COMPUTER:
Transfer photo to computer storage.
Display original photo in image editor.

An sRGB digital camera [3] focuses an optical image onto a sensor array with
a very large count of pixels, typically E = 10 million or more. A mosaic of filters
on the array restricts each sensor pixel to red or green or blue light. Each pixel

3.3 Creating by Camera 29

emits an analogue voltage directly proportional to the light which falls on it. An
analogue-to-digital converter quantizes this to a digital intensity between 0 and 255.
A de-mosaicking process constructs an (R,G, B) triple per pixel. These raw intensity
values are encoded under the sRGB convention that subsequent display will be on
a device with decoding gamma γ = 2.2 [4–6] (see Chap.7).

sRGB incorporates theCIELAB scale of lightness L*,where perceptualmid-grey
L* = 52% is taken as the physical light intensity reflected by an 18% photographic
grey card [7]. sRGB applies exponent 1/2.2 = 0.4545 to counteract the assumed
display decoding. Thus, mid-grey codes to (0.18 0.4545 * 255) = 127. The encoding
formula is

File code 0 to 255 = ((camera sensor value normalized between 0 and 1)0.4545 *
255)

Figure3.5 plots the encoding calculation. (For the corresponding decoding see
Chap.7)

The coded image file is delivered to storage, usually in compressed .jpg file format,
or possibly in a proprietary uncompressed raw format (see Chap. 4).

After transferring to computer storage, a camera image can be displayed in an
image editor, such as Paint. The working window of an editor screen has a fixed

Fig. 3.5 Encoding a camera or scanner image. Encoder input is light intensity at each pixel,
normalized to range 0–1. sRGB mid-grey is a photographic grey card reflecting 18% of incident
light. Encoder output is code ((input0.4545) * 255), so that mid-grey is coded 127. The red curve is
the countervailing gamma = 2.2 used in decoding

30 3 Creating a Digital Image

Fig. 3.6 Displaying a camera image. a Paint screen displaying at most 1000× 500 px of a camera
image which is 4000 × 3000 px. The display window can be panned and scrolled to show other
parts of the image; or, as in (b), the image can be diminished (here to 12.5%)

array of pixels at a fixed pitch of around 100 pixels per inch (ppi); so the extent of the
window is, say, 1000 × 500 px. Since the camera image has, say, 4000 × 3000 px,
clearly it cannot be displayed whole in the editor window. The editor window can
be panned and scrolled across the image, or the image can be diminished to fewer
pixels, as shown in Fig. 3.6. Notice that this diminution is local to the editor, and
does not affect the stored image. For permanent resizing, see Chap. 6.

3.4 Creating by Scanner 31

3.4 Creating by Scanner

To create an image by scanner, typical steps are as follows:

Power-up the scanner.
Set scanning parameters.
Place original on platen.
Scan into storage.
Display scanner image in an image editor.

An sRGB scanner [8] has a platen, typically A4 size 11.75 × 8.25 in, on which
a flat or nearly flat object is placed. An optical mechanism containing a fixed light
source traverses the object at a settable pixel pitch, registering a very large count of
sensor pixels. Scanners are manufactured with maximum pixel pitch of 300 pixels
per inch (ppi), 600 ppi, 1200 ppi or more. The platen can be masked to less than its
whole area. A full-platen scan at 300 pixels per inch delivers an image with extent
E = 8.7 Mpx, comparable with a digital camera. Each pixel can register the very
large sRGB count of colours, D = 16.7 million.

The sensor has pixels filtered to receive red or green or blue light, and their
outputs are processed to sRGB triples (R,G, B) in much the same way as in a
camera, intended for an sRGB display device.

A scanner delivers an image in .bmp, or other chosen format such as .jpg.
A scanner image in storage can be displayed in an image editor, such as Paint. As

for a camera image, the editor window can be diminished, or, for close examination,
magnified. Figure3.7 shows a scanner image diminished andmagnified. Diminution
ormagnification in an editor does not affect the stored image. For permanent re-sizing,
see Chap.6.

3.5 Creating by Modelling

To create an image by modelling typical steps are as follows:

Get coordinates of salient vertices of the object, by measuring an actual object or
by assigning to an imagined object, in a suitable reference frame.
Enter the coordinate data to the computer.
Compute a chosen projection of the object vertices to a digital image.
Complete the image with edges between the vertices for a wire-frame representa-
tion, possibly with hidden line removal, possibly with lighting rendering
Store the image.
Display the modelled image in an image editor.

For example, Fig. 3.8 shows some steps of a simplemodelling [9].Much advanced
work goes into creating digital images from models of various kinds. In some fields
massive three-dimensional coordinate data sets are available in digital form, as in

32 3 Creating a Digital Image

Fig. 3.7 Scanner image displayed. Object scanned at 150 pixels per inch, extent E = 1256×1374
px = 1.7 Mpx. a Displayed in Paint window, diminished to 25% of native pitch. b Magnified to
800% of native pitch, with pixel grid marked

medical MRI scans, land surveys, etc. There are ongoing developments in three-
dimensional scanners, for small objects. The design specification of engineering and
architectural components and assemblies is increasingly available in digital form.

Computed projection from three to two dimensions is a well-developed field [9],
with many elaborations of renderings [10].

3.5 Creating by Modelling 33

Fig. 3.8 Creating by modelling. a Reference frame for model. b Coordinate data for cube model.
c Computed projections of cube model

34 3 Creating a Digital Image

Fig. 3.9 Images created elsewhere. a Capture by camera from a wall-painting: Billy Fury, by an
unknown artist, West Hampstead. b Capture by camera or scanner from a book: The Bride, painting
from a newspaper photograph, byWalter Sickert. c Capture by scanner from a 35mm film negative:
Michael Horovitz by Alan Parkin. d Capture by scanner from an A4 original: apartment plan. e
Capture by scanner from a book: Tenniel’s Carpenter from Through the Looking-glass. f Capture
by download from a website: Photograph of Degas and Sickert 1885

3.6 Hijacking an Image Created Elsewhere 35

3.6 Hijacking an Image Created Elsewhere

Any image created elsewhere and accessible here can be captured in digital form
by camera or scanner. And any image on the Web can be downloaded (subject to
copyright or other restrictions). Figure3.9 shows some typical cases.

References

1. Microsoft paint. https://en.wikipedia.org/wiki/Microsoft_Paint
2. Fredrik Lundh (effbot). http://effbot.org
3. Digital camera. https://en.wikipedia.org/wiki/Digital_camera
4. Gamma-correction. https://en.wikipedia.org/wiki/Gamma_correction
5. Poynton C, Frequently asked questions about gamma. www.poynton.ca/notes/color/

GammaFQA.html
6. Hoffmann G, The gamma question. www.docs-hoffmann.de/gamquest18102001.pdf
7. Middle-gray. https://en.wikipedia.org/wiki/Grayscale
8. Image Scanner. https://en.wikipedia.org/wiki/Image_scanner
9. Parkin A (2016) Digital imaging primer. Springer, Heidelberg
10. 3D Computer Graphics. https://en.wikipedia.org/wiki/3D_computer_graphics

https://en.wikipedia.org/wiki/Microsoft_Paint
http://effbot.org
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Gamma_correction
www.poynton.ca/notes/color/GammaFQA.html
www.poynton.ca/notes/color/GammaFQA.html
www.docs-hoffmann.de/gamquest18102001.pdf
https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/Image_scanner
https://en.wikipedia.org/wiki/3D_computer_graphics

Chapter 4
Storing a Digital Image

4.1 Storing an Image as a File

Each of the methods of creating a digital image described in Chap.3, (and of trans-
forming an image in Chaps. 5 and 7), concludes with a display of the image, usually
in an editor such as Paint. To store an image, the option is as follows:

File
—Save as
——Filename
———Save as type.

The stored image is then accessible as a file with the chosen filename and extension.

4.2 Image File

Computer storage is organized as nested directories or folders, containing files, each
with a filename and extension. The extension indicates the type of file, each of which
has a specific file format [1]. We can access stored files by means of a file manager
utility, such asMicrosoft File Explorer, which opens, closes, copies, pastes or deletes
files.

A file holds a sequence of fields; a field holds one or more bytes; and a byte holds
eight binary digits 0 or 1. The file format defines the position of each field, and what
each field represents. For example, Fig. 4.1 shows the .BMP image file format. For
user convenience, a file is usually displayed in hexadecimal digits 0 to F [2], so a
byte is written as two hex digits 00 to FF. For example, Fig. 4.2 shows a simple image
and its .BMP file.

4.3 File Format .BMP

.BMP (for bitmap) is a venerable image file format developed by Microsoft for
Windows operating systems, in successive versions [3]. It is an uncompressed format,
and has large file size. It is a simple format, very widely available for ordinary use,

© Springer International Publishing AG, part of Springer Nature 2018
A. Parkin, Computing Colour Image Processing,
https://doi.org/10.1007/978-3-319-74076-8_4

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74076-8_4&domain=pdf

38 4 Storing a Digital Image

Fig. 4.1 The .BMP 24-bit format, with two headers and a body as long as it takes

though other formats with compression are often preferred. Figure4.1 shows the
structure. Figure4.3 shows a typical camera image stored in .BMP format displayed
in a Paint editor, at 100% size and magnified to 400% to show the pixel detail.

4.4 File Format .GIF 39

Fig. 4.2 A simple image and its .BMP file in hexadecimal dump, two hex digits per byte. In multi-
byte fields, most-significant bytes are to the right, least-significant left. Header fields, above the
thick line, are: two-byte “magic cookie” 42 4Dh = ASCII BM; four-byte file size F6h = 246d;
two two-byte fields ignored; four-byte header length 36h = 54d; four-byte info header 28h = 40d;
four-byte image width 08h= 8d; four-byte image height 08h= 8d; two-byte planes field 01h= 1d;
two-byte bits per pixel 18h= 24d; four-byte compression 00h= 0d; image data length C0h= 192d;
two four-byte pixels per meter C3 0Eh = 49934d; four-byte colors used 00h = 0d; and four-byte
colors important 00h= 0d. After the thick line: sixty-four triples of one-byte fields showing the (B,
G, R) values of the image pixels in scan-sequence starting at bottom left

4.4 File Format .GIF

.GIF (for graphic interchange format)was developed in 1987 for 8-bit displays limited
to 256 colours [4]. It has been largely replaced by .PNG, but is still widely available
for website use. It has lossless compression, hence small file size. Figure4.4 shows
a typical camera image stored in .GIF format displayed in a Paint editor, at 100%

40 4 Storing a Digital Image

Fig. 4.3 BMP format. a Image 190× 160 px stored in .BMP format; file size 89KB. bMagnified
to 400%

Fig. 4.4 GIF format. a Image 190× 160 px stored in .GIF format; file size 20KB. bMagnified to
400%

size and magnified to 400% to show the pixel detail. The original sRGB colours are
severely altered.

4.5 File Format .PNG 41

Fig. 4.5 PNG format. a Image 190 × 160 px stored in .PNG format; file size 23KB. bMagnified
to 400%

Fig. 4.6 TIF format. a Image 190 × 160 px stored in .TIF format; file size 26KB. bMagnified to
400%

4.5 File Format .PNG

.png (for portable network graphics) was developed in 1996 as a replacement for

.BMP and .GIF [5]. It has lossless compression, hence small file size. Figure4.5
shows a typical camera image stored in .png format displayed in a Paint editor, at
100% size and magnified to 400% to show the pixel detail.

42 4 Storing a Digital Image

Fig. 4.7 JPG format, high quality. a Image 190 × 160 px stored in .JPG format with 94% quality;
file size 20KB. b Magnified to 400%

Fig. 4.8 JPG format, low quality a Image 190× 160 px stored in .JPGG format with 20% quality;
file size 2KB. bMagnified to 400%

4.6 File Format .TIF

.TIF (for tagged image file) was developed in 1986 for desktop and commercial
printing, where it remains the preferred format [6]. It has lossless compression,
hence small file size, and can contain additional image information. Figure4.6 shows
a typical camera image stored in .TIF format displayed in a Paint editor, at 100%
size and magnified to 400% to show the pixel detail.

4.7 File Format .JPG 43

4.7 File Format .JPG

.JPG (for joint photographic experts group) was developed in 1992 for making
adjustable-quality compressions of camera and scanner images by removing the
least visually significant image data [7]. It is very widely used to store and transfer
such images. Figure4.7 shows a typical camera image stored in .JPG format with
94% quality, and Fig. 4.8 with 20% quality.

References

1. Image file formats. https://en.wikipedia.org/wiki/Image_file_formats
2. Hexadecimal number system. https://en.wikipedia.org/wiki/Hexadecimal
3. BMP file format. https://en.wikipedia.org/wiki/BMP_file_format
4. GIF file format. https://en.wikipedia.org/wiki/GIF
5. PNG file format. https://en.wikipedia.org/wiki/Portable_Network_Graphics
6. TIF file format. https://en.wikipedia.org/wiki/TIFF
7. JPEG file format. https://en.wikipedia.org/wiki/JPEG

https://en.wikipedia.org/wiki/Image_file_formats
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/BMP_file_format
https://en.wikipedia.org/wiki/GIF
https://en.wikipedia.org/wiki/Portable_Network_Graphics
https://en.wikipedia.org/wiki/TIFF
https://en.wikipedia.org/wiki/JPEG

Chapter 5
Transforming Image Locations

5.1 Location Transformations

Numerically, a digital image has a width W px, a height H px and an extent E px.
Each pixel has a location (X,Y) within the extent and a colour (R,G, B) within
the colour space. A location transformation is a systematic change of all the pixel
locations of an image, without change of colour.

Elementary location transformations are as follows:

Cropping,
Framing,
Dilating,
Translating,
Reflecting,
Rotating,
Shearing and
Inverting.

Computationally, the preferred methods for dilating, translating, reflecting, rotating
and shearing are by matrix multiplication [2], Chap.7. Efficient implementations of
these methods are taken from the Python Imaging Library [3].

To do a location transformation, the steps are as follows:

Select the source image file in storage.
Open it.
Select the transformation wanted.
Set the transformation parameters.
Do the transformation.
Save the transformed image to storage.

© Springer International Publishing AG, part of Springer Nature 2018
A. Parkin, Computing Colour Image Processing,
https://doi.org/10.1007/978-3-319-74076-8_5

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74076-8_5&domain=pdf

46 5 Transforming Image Locations

5.2 Cropping

Cropping an image removes one or more pixels from left, top, right and bottom
of the array. We can do this in an image editor, such as Microsoft Paint, where the
options are Home - Select - Rectangular selection - (Set rectangle) - Cut to clipboard
- File - New - (Don’t save old) - Paste from clipboard - Save-as - (New filename and
extension).

Or we can write a script to do the same thing. The script is listed below, and
Fig. 5.1 shows a simple image before and after running this script:

pycrop: Python program to crop a .bmp image.

Written by Alan Parkin 2017.

from PIL import Image

import os, sys

Get source image and show it.

Enter any .bmp filemame in working directory.

imagefilename = raw_input("Image filename? ")

#Open it, show it, and print W H and E.

im = Image.open(imagefilename)

im.show()

width = im.size[0]

height = im.size[1]

extent = width * height

print "SOURCE IMAGE"

print "width W", width

print "height H", height

print "extent E", extent

print "--------"

Enter crop box wanted.

print "Enter left, top, right, bottom coordinates of box wanted, as px "

lefte = raw_input("Left edge? ")

tope = raw_input("Top edge? ")

righte = raw_input("Right edge? ")

bottome = raw_input("Bottom edge? ")

lint = int(lefte)

tint = int(tope)

rint = int(righte)

bint = int(bottome)

Do crop and show. Save under new filename in show.

imcropped = im.crop((lint, tint, rint, bint))

imcropped.show()

Figure5.2 shows a camera image cropped by this script.

5.3 Framing 47

Fig. 5.1 Cropping an image. a Simple image 8 × 8 px, magnified in a Paint window. b Image
cropped to 7 × 7 px, without interpolation

Fig. 5.2 Cropping an image. a Camera image 1280 × 960 px, with crop rectangle marked. b
Cropped image 180 × 240 px

5.3 Framing

Framing an image adjoins none or more pixels to left, top, right and bottom of the
array: the inverse of cropping. We can do this in an image editor, such as Microsoft
Paint, where the options are File - Open image (note width and height) - Image -
Select all - Clipboard - Copy - File - New - Edit colour (select frame colour) - Shapes
(select rectangle) - (draw rectangle of frame width and height) - Clipboard - Paste -

48 5 Transforming Image Locations

Fig. 5.3 Framing an image. a Simple image 8 × 8 px, magnified in a Paint window. b The imaged
framed, to 14 × 14 px

(move image within frame). For example, Fig. 5.3 shows a simple image before and
after framing.

Or we can write a script to do the same thing. The script is listed below, and
Fig. 5.3 shows a simple image before and after running this script:

pyframe: Python script to frame a .bmp image.

Written by Alan Parkin 2017.

from PIL import Image

import os, sys

Get source image and show it.

Enter any .bmp filemame in working directory.

imagefilename = raw_input("Image filename? ")

#Open it, show it, and print W H and E.

im = Image.open(imagefilename)

im.show()

width = im.size[0]

height = im.size[1]

extent = width * height

print "SOURCE IMAGE"

print "width W", width

print "height H", height

print "extent E", extent

print "--------"

Enter frame thicknesses wanted.

print "Enter top, left, right, bottom frame thicknesses wanted, in px "

topt = raw_input("Top thickness? ")

leftt = raw_input("Left thickness? ")

rightt = raw_input("Right thickness? ")

bottomt = raw_input("Bottom thickness? ")

lint = int(leftt)

tint = int(topt)

rint = int(rightt)

5.3 Framing 49

bint = int(bottomt)

framewidth = lint + width + rint

print "framewidth", framewidth

frameheight = tint + height + bint

print "frameheight", frameheight

Do frame and show. Save under new filename in show.

frame = Image.new("RGB", (framewidth, frameheight))

frame.paste(im, (lint, tint), 0)

frame.show()

5.4 Dilating

In dilating (often called resizing or stretching/shrinking) , an image multiplies the
width or height or both by a chosen factor F . Dilating down removes columns and
rows of pixels from an image. To dilate an image down fromW×H px toW ′×H ′ px
we removeW −W ′ columns and H −H ′ rows of pixels. For example, Fig. 5.4 shows
a simple image 8 × 8 px dilated down to 7 × 7 px by removing 8−7 = 1 column and
1 row. Much work has gone into introducing an interpolation process into simple
digital dilation, in pursuit of a smoothed “photographic” result (which we may think
is rather un-digital in spirit). Interpolation averages the colour of each pixel between
two or four neighbours. Figure5.4 shows dilations without interpolation, and with
three different interpolations.

Dilating up repeats columns and rows of pixels in an image: to dilate an image
up from W × H px to W ′ × H ′ px, we repeat W ′ − W columns and H ′ − H rows
of pixels. For example, Fig. 5.4 shows the simple image 8 × 8 px dilated up to 9 ×
9 px by repeating 9−8 = 1 column and 1 row without interpolation, and with three
interpolations.

Dilating can be applied in the X-direction or the Y-direction separately, or in both
directions together.

We can do a dilation in an image editor, such asMicrosoft Paint, where the options
are Home - Select - Rectangular selection - (Set rectangle) - Cut to clipboard - File
- New - (Don’t save old) - Paste from clipboard - Save-as - (New filename and
extension). Or we can write a script to do the same thing, as shown below:

pydilate: Python program to dilate a .bmp image.

Written by Alan Parkin 2017.

from PIL import Image

import os, sys

Get source image and show it.

Enter any .bmp filemame in working directory.

imagefilename = raw_input("Image filename? ")

#Open it, show it, and print W H and E.

im = Image.open(imagefilename)

im.show()

width = im.size[0]

height = im.size[1]

extent = width * height

print "SOURCE IMAGE"

50 5 Transforming Image Locations

print "width W", width

print "height H", height

print "extent E", extent

Enter dilations and filter wanted.

print "--------"

print "Enter dilations wanted, as percents"

xpc = raw_input("In the x-direction? ")

ypc = raw_input("In the y-direction? ")

rsfilter = raw_input("Enter 0 for no filter, 2 for bicubic, 3 for antialias? ")

xfloat = float(xpc)

xfactor = float(xfloat / 100)

xrecip = 1 / xfactor

a = xrecip

newwidth = int(width * xfactor)

yfloat = float(ypc)

yfactor = float(yfloat / 100)

yrecip = 1 / yfactor

e = yrecip

newheight = int(height * yfactor)

rsf = int(rsfilter)

Print new width and height.

print "--------"

print "new width ", newwidth

print "new height ", newheight

Do dilate and show. Save under new filename in show.

imdilate = im.transform((newwidth, newheight), 0, (a,0,0,0,e,0),rsf)

imdilate.show()

Unlike the temporary diminution and magnification provided in an image editor,
dilation makes a permanent change to the image, so it is usually returned to storage
under a new filename.

Dilating down from extent E to extent E ′, E > E ′, changes location resolution
LOCRES from 1/E to a coarser 1/E ′. Dilating up from extent E to extent E ′, E < E ′,
changes location resolution from 1/E to a coarser (E/E ′)/E ′, which appears as an
increase of pixel size relative to extent. For example, Fig. 5.5a shows a camera image
222 × 290 px, with location resolution 1/64380. (b) shows the image after dilating
down by a factor of 2–50 percent, then dilating up again by a factor of 2 to the original
100 percent. The apparent pixels are now the merge of four of the original pixels;
the apparent extent is 111 × 145 = 16095 px, and the apparent location resolution is
1/16095. (c) shows the image after dilating down by a factor of 4–25 percent, then
dilating up again by a factor of 4 to the original 100 percent. The apparent pixels are
now the merge of 16 of the original pixels; the apparent extent is 56 × 73 = 4032
px, and the apparent location resolution is 1/4032. (d) shows the image after dilating
down by a factor of 8–12.5 percent, then dilating up again by a factor of 8 to the
original 100 percent. The apparent pixels are now the merge of 64 of the original
pixels; the apparent extent is 28× 36 = 1008 px, and the apparent location resolution
is 1/1008.

The script pydownup listed below does a dilation down and a dilation up to the
original extent, using an interpolated resize:

5.4 Dilating 51

Fig. 5.4 Dilating an image. Top row: a Source image 8× 8 px, magnified in Paint window. Middle
row: b Dilated down to 7 × 7 px without interpolation. c With nearest neighbour interpolation. d
With bilinear 2 × 2 interpolation. e With bicubic 4 × 4 interpolation. Bottom row: f Dilated up to
9 × 9 px without interpolation. g–i With interpolation as above

pydownup: Python program to dilate a .bmp image

down then up.

Written by Alan Parkin 2017.

from PIL import Image

import os, sys

#Get filename of .bmp image which is in working directory

imagefilename = raw_input("Image filename? ")

#Open it and show it

im = Image.open(imagefilename)

im.show()

width = im.size[0]

height = im.size[1]

extent = width * height

print "SOURCE IMAGE"

print "width W", width

print "height H", height

print "extent E", extent

print "--------"

52 5 Transforming Image Locations

Fig. 5.5 Dilating down then up. a Source image 222 × 290 px (100 percent). b After dilating (a)
down by factor 2–50 percent, then dilating up again by factor 2–100 percent. c After dilating (a)
down by factor 4–25 percent, then dilating up again to 100 percent. d After dilating (a) down by
factor 8–12.5 percent, then dilating up again to 100 percent

5.4 Dilating 53

Enter factor to resize down then up.

downupfactor = raw_input("Factor to resize down and up (integer)? ")

dufac = int(downupfactor)

Do resize down.

downwidth = width/dufac

downheight = height/dufac

imdownsize = im.resize((downwidth, downheight), 0)

Do resize up.

imupsize = imdownsize.resize((width, height), 0)

imupsize.show()

5.5 Translating

Translating moves an image leftwards or upwards or rightwards or downwards,
without rotating, so that it lies partly orwholly outside its original frame. For example,
Fig. 5.6 shows a simple image translated rightwards and downwards, then leftwards
and upwards.

We can do a translation in an image editor, such as Microsoft Paint, where the
options are Home - Select - Rectangular selection - Move to new position - Save-as
- (New filename and extension).

Or we can write a script to do the translation, as shown below:

pytranslate: Python program to translate

a .bmp image.

#Written by Alan Parkin 2017.

from PIL import Image

#from PIL import ImageFilter

import os, sys

Get source image and show it.

Enter any .bmp filemame in working directory.

imagefilename = raw_input("Image filename? ")

#Open it, show it, and print W H and E.

im = Image.open(imagefilename)

im.show()

width = im.size[0]

height = im.size[1]

extent = width * height

print "width W", width

print "height H", height

print "extent E", extent

Enter matrix element c to move image to the right,

-c to the left. Enter f to move image down,

-f up. Original extent is the containing window.

matc = raw_input("Move image left/right by -c/+c pixels ? ")

matf = raw_input("Moveimage up/down by -f/+f pixels? ")

matcint = -int(matc)

print "matcint ", matcint

matfint = -int(matf)

print "matfint ", matfint

Do translate and show. Save under new filename in show.

imtranslate = im.transform((width, height), 0, (1,0,matcint,0,1,matfint))

imtranslate.show()

54 5 Transforming Image Locations

Fig. 5.6 Translating an image. a Simple image in original position. b Translated 1 px rightwards
and 2 px downwards. c Translated 3 px leftwards and 4 px upwards

5.6 Reflecting

Reflecting switches left and right in an image, as if in a vertical mirror through its
centre, or switches top and bottom, as if in a horizontal mirror through its centre. For
example, Fig. 5.7 shows the simple image fromFig. 5.6 reflected left/right, top/bottom
and both left/right and top/bottom (this last is the same as rotated 180 degrees).

We can do a reflection in an image editor, such as Microsoft Paint, where the
options are Home - Select - Select all - Rotate/flip - Flip vertical or Flip horizontal -
File - Save-as (New filename and extension).

Fig. 5.7 Reflecting an image. a The simple image from Fig. 5.6 reflected left/right. b Reflected
top/bottom. c Reflected left/right and top/bottom

5.6 Reflecting 55

Or we can write a script to do the reflection, as shown below:

pyreflect: Python program to reflect a .bmp image

left/right or top/bottom or both.

Written by Alan Parkin 2017.

from PIL import Image

import os, sys

Get source image and show it.

Enter any .bmp filemame in working directory.

imagefilename = raw_input("Image filename? ")

#Open it, show it, and print W H and E.

im = Image.open(imagefilename)

im.show()

width = im.size[0]

height = im.size[1]

extent = width * height

print "width W", width

print "height H", height

print "extent E", extent

Enter left-right or top-bottom flip.

xrefl = raw_input("Flip left-right (y/n) ? ")

yrefl = raw_input("Flip top-bottom (y/n) ? ")

Do left-right or top-bottom or both transposes.

Show result and save in Paint.

if xrefl == "y" and yrefl == "n":

imlr = im.transpose(0)

imlr.show()

elif xrefl == "n" and yrefl == "y":

imtb = im.transpose(1)

imtb.show()

elif xrefl == "y" and yrefl == "y":

imlr = im.transpose(0)

imboth = imlr.transpose(1)

imboth.show()

5.7 Rotating

Rotating turns an image clockwise or counterclockwise about a pole at its centre.
For example, Fig. 5.8 shows a simple image rotated counterclockwise by 15, 30 and
45 degrees, without and with interpolation. Rotating takes part of an image outside
its original rectangular frame: in these examples, the new frame contains the whole
rotated image. Figure5.9 shows a camera image rotated for pictorial reasons.

We can do 90-degree rotations in Microsoft Paint, where the options are Home
- Select - Select all - Rotate/flip - rotate left 90/right 90/1eft 90/rotate 180 - File
- Save-as (New filename and extension). Some editors such as Microsoft Paint.net
offer rotation by any degrees (Fig. 5.9).

56 5 Transforming Image Locations

Fig. 5.8 Rotating a simple image. Top row: a Simple image 8× 8 px.Middle row,without interpola-
tion.bRotated 15 degrees counterclockwise; frame expanded to 11× 10 px. c Rotated by 30 degrees
counterclockwise; frame expanded to 11× 11 px. d Rotated by 45 degrees counterclockwise; frame
expanded to 12 × 12 px. Bottom row: with interpolation: e Rotated by 15 degrees clockwise; frame
expanded to 10 × 11 px. d Rotated by 45 degrees counterclockwise; frame expanded to 12 × 12
px. e Rotated by 15 degrees clockwise; frame expanded to 10 × 11 px.f Rotated by 30 degrees
clockwise; frame expanded to 11 × 11 px. g Rotated by 45 degrees clockwise; frame expanded to
12 × 12 px

Or we can write a script to do rotating, as shown below:

pyrotate: Python program to rotate a .bmp image.

Written by Alan Parkin 2017.

from PIL import Image

from math import radians, cos, sin

import os, sys

5.7 Rotating 57

Fig. 5.9 Rotating a camera image. a Source image. b Rotated so that the double yellow line is
horizontal

Get source image and show it.

Enter any .bmp filemame in working directory.

imagefilename = raw_input("Image filename? ")

#Open it, show it, and print W H and E.

im = Image.open(imagefilename)

#im.show()

width = im.size[0]

height = im.size[1]

extent = width * height

print "width W", width

print "height H", height

print "extent E", extent

Enter degrees to rotate counter-clockwise about image centre.

deg = raw_input("Enter degrees to rotate counter-clockwise ? ")

filtercode = raw_input("Enter 0 for no interpolation, 2 for bicubic, 3 for lanczos ? ")

clipexpand = raw_input("Enter 0 to clip or 1 to expand the extent ? ")

degint = int(deg)

fico = int(filtercode)

clex = int(clipexpand)

Do rotate and show. Save image under new filemame in show.

imro = im.rotate(degint, fico, clex)

imro.show()

5.8 Shearing

Shearing (also called skewing) slants a rectangular image to a parallelogram, away
from the X-axis, or the Y-axis, or both. Figure5.10 shows a simple image sheared
away from the Y-axis, the X-axis and both axes, without and with interpolation.
Shearing takes part of an image outside its original rectangular frame: in these exam-
ples, the new frame contains the whole rotated image. Figure5.11 shows a camera
image sheared.

We can do shearing in Microsoft Paint, where the options are Home - Image -
Select For example, Fig. 5.10- Select all - Resize and Skew - Skew horizontal/vertical
degrees - File - Save-as (New filename and extension).

58 5 Transforming Image Locations

Fig. 5.10 Shearing a simple image. Top row, without interpolation: a Simple image 8 × 8 px
sheared away from the Y-axis by 15 degrees. b Sheared away from the X-axis by 15 degrees. c
Sheared away from both axes by 15 degrees. Bottom row: d As a with interpolation. e As b with
interpolation. f As c with interpolation. The new frames are all 12 × 12 px

Fig. 5.11 Shearing a camera image. a Camera image sheared away from the Y-axis by 15 degrees.
b Sheared away from both axes by 15 degrees

5.8 Shearing 59

Or we can write a script to do shearing, as shown below:

pyshear: Python program to shear a .bmp image.

Written by Alan Parkin 2017.

from PIL import Image

from math import radians, tan

import os, sys

Get source image and show it.

Enter any .bmp filemame in working directory.

imagefilename = raw_input("Image filename? ")

#Open it, show it, and print W H and E.

im = Image.open(imagefilename)

#im.show()

width = im.size[0]

height = im.size[1]

extent = width * height

print "width W", width

print "height H", height

print "extent E", extent

Enter degrees to shear from y-axis and x-axis.

xdeg = raw_input(" + degrees to shear left, - right, from y-axis ? ")

xdegint = int(xdeg)

xradangle = radians(xdegint)

xtanangle = tan(xradangle)

ydeg = raw_input("+ degrees to shear up, - down, from x-axis ? ")

ydegint = int(ydeg)

yradangle = radians(ydegint)

ytanangle = tan(yradangle)

interpol = raw_input("0 for no interpolation, 2 for bicubic ? ")

interp =int(interpol)

newwidth = int(width * 1.5)

newheight = int(height * 2.5)

Do shear and show. Save under new filename in show.

imshear = im.transform((newwidth,newheight),0,(1,xtanangle,0,ytanangle,1,0),interp)

imshear.show()

5.9 Inverting

Inverting reflects an image in a fixed circle [5]. Given a circle with centre C and
radius K , invertingmoves each pixel Q of an image inside the circle to a new location
Q’ outside the circle, and each Q’ to Q, so that

CQ ∗ CQ′ = K 2 (5.1)

as shown in Fig. 5.12. Centre C remains fixed; parallel straight lines become circles
through C; angles are preserved but sense is reversed. Inverting an image produces
a great range of results according to the placing and radius of the circle, and is well
worth careful investigation. For example, Fig. 5.13 shows a chequer image with five
inversions about various circles, and a camera image with two inversions.

60 5 Transforming Image Locations

Fig. 5.12 The geometry of
inverting. CQ * CQ’ = K2

Inversion is not offered by the ordinary image editors. We can write a script to do
inversions, as shown below:

pyinvert: Invert .bmp image in circle.

Written by Alan Parkin 2017.

from PIL import Image

from math import tan, atan, cos, sin

import os, sys

Get source image and show it: enter any .bmp

filemame in working directory.

imagefilename = raw_input("Image filename? ")

#Open it, show it, and print W H and E.

im = Image.open(imagefilename)

im.show()

width = im.size[0]

height = im.size[1]

extent = width * height

print "SOURCE IMAGE"

print "width W", width

print "height H", height

print "extent E", extent

Call PIL load to get source image as xy array.

souxy = im.load()

Create output xy array.

outim = Image.new("RGB", (width,height), "white")

outxy = outim.load()

Enter circle centre and radius.

x0str = raw_input("Enter circle centre x coord? ")

y0str = raw_input("Enter circle centre y coord? ")

kstr = raw_input("Enter circle radius in px? ")

x0 = float(x0str)

y0 = float(y0str)

k = float(kstr)

print "Centre x0", x0

print "Centre y0", y0

print "Radius k", k

for each source pixel P find inverse pixel Q.

for y in range(height):

for x in range(width):

a = x - x0

5.9 Inverting 61

Fig. 5.13 Inverting an image. Top row: a Source image 288 × 288 px. b C = (144, 144), K = 144.
c C = (144, 144), K = 72. Middle row: d C = (144, 144), K = 36. e C = (−144, 144), K = 288. f C
= (−288, 144), K = 576. Bottom row: g Camera source image 375 × 480 px. h C = (−375, 240),
K = 555 (compare e above). i C = (−3000, 240), K = 3187 (compare f above)

b = a * a

c = y - y0

d = c * c

e = b + d

f = (k * k) * a

if e == 0:

e = 0.0001

g = f / e

xinv = x0 + g

h = (k * k) * c

i = h / e

yinv = y0 + i

if xinv < 0:

xinv = 0

62 5 Transforming Image Locations

if xinv > width - 1:

xinv = width - 1

if yinv < 0:

yinv = 0

if yinv > height - 1:

yinv = height - 1

Set pixel Q with rgb of pixel P.

outxy[xinv, yinv] = souxy[x, y]

outim.show()

References

1. Microsoft paint. https://en.wikipedia.org/wiki/Microsoft_Paint
2. Parkin A (2016) Digital imaging primer. Springer, Heidelberg
3. Fredrik Lundh effbot. http://effbot.org
4. Digital camera. https://en.wikipedia.org/wiki/Digital_camera
5. Morley F, Morley F V (1933) Inversive Geometry. Ginn, BostonMA. Dover reprint: http://store.

doverpublications.com/0486493393.html

https://en.wikipedia.org/wiki/Microsoft_Paint
http://effbot.org
https://en.wikipedia.org/wiki/Digital_camera
http://store.doverpublications.com/0486493393.html
http://store.doverpublications.com/0486493393.html

Chapter 6
Transforming Image Colours

6.1 Colour Palettes

sRGBcolour space has S =256 steps of intensity on all three axes, hence diversityD =
S3 = 16.7 million distinct colours, and colour resolution COLRES = 1/16.7 million,
one colour in 16.7 million. But for many purposes, such fine colour resolution is
unnecessary and inconvenient. We can define a series of subspaces of sRGB, or
palettes, by setting fewer steps of intensity on the three axes, thus reducing the
diversity of colours and coarsening the colour resolution. We can then convert an
sRGB image to a smaller palette to give a simpler and more manageable result.

A subspace or palette of sRGB has S < 256 steps of intensity on each of the
R G B axes, and is here labelled P(S). For example, Fig. 6.1a shows the full sRGB
cube model; (b) the minimal palette P2 as a sparse cube, covering the same range
as sRGB but with only S = 2 steps of intensity on each axis. It has diversity D = 23

= 8 distinct colours. Figure6.1c shows the P3 palette with S = 3 steps of intensity
on each axis, hence diversity D = 33 = 27 distinct colours. Clearly, the series can be
continued as P4, P5, P6, ... up to P256, which is the full sRGB palette. In practice,
anything beyond P6 is rarely needed.

To convert an image to a restricted palette the steps are as follows:

Select the source image file from storage.
Open it.
Select the palette wanted.
Do the conversion.
Save the converted image to storage under a new filename.

Various image editors offer various conversions of images to various restricted
palettes. For example, Microsoft Paint offers Save-as .BMP Monochrome, .BMP
16-colour, .BMP 256-colour and .GIF 256-colour. We can write a script which will
perform conversions to the P-series of palettes, as listed below. For example, Fig. 6.2
shows original sRGB images (full gamut and camera image) and their conversions
to palettes P2–P6 by this script.

© Springer International Publishing AG, part of Springer Nature 2018
A. Parkin, Computing Colour Image Processing,
https://doi.org/10.1007/978-3-319-74076-8_6

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74076-8_6&domain=pdf

64 6 Transforming Image Colours

Fig. 6.1 Palette subsets of sRGB. a Full sRGB cube model, front and back. b Palette P2 sparse
cube model: it has S = 2 steps on each of the three axes, hence diversity D = 23 = 8 colours, the
vertices of the cube. c Palette P3, with S = 3 steps per axis, hence D = 33 = 27 colours. d Palette
P4, D = 43 = 64 colours. e Palette P5, D = 53 = 125 colours. f Palette P6, D = 63 = 216 colours

6.1 Colour Palettes 65

Fig. 6.2 Examples of images converted to restricted palettes. aOriginal images: above is the sRGB
gamut as displayed in the Paint colour selector; below is a typical camera image. b a converted
to palette P2. c a converted to palette P3. d converted to palette P4. e Converted to palette P5.
f Converted to palette P6

66 6 Transforming Image Colours

pypale: Change colour resolution from full sRGB

to palette P2 P3 P4 P5 or P7 P6. Use PIL to ask

.bmp image filename in working directory, open it,

show it, and get pix = xy array of rgb colour

tuples. Ask which palette wanted, and do the one

wanted. Apply reduced values to image, and show

in Paint, to be saved where wanted.

Written by Alan Parkin 2017.

from PIL import Image

import numpy as np

import os, sys

#Get filename of .bmp image which is in working directory

imagefilename = raw_input("Image filename? ")

#Open it and show it

imrgb = Image.open(imagefilename)

imrgb.show()

print "imrgb sizet34b.bmp", imrgb.size

width = imrgb.size[0]

height = imrgb.size[1]

extent = width * height

print "width", width

print "height", height

print "extent", extent

Call PIL load for this image, to get xy array of rgb tuples.

pix = imrgb.load()

Convert xy array of tuples to xy array of lists.

pixlist = []

for y in range(height):

for x in range(width):

for j in range(3):

thisval = pix[x,y][j]

pixlist.append(thisval)

Ask which colres to do.

palette = raw_input("Palette P2 P3 P4 P5 P6 ? ")

print "palette ", palette

Reduce pixlist values to palette.

if palette == ’P2’:

for i in range (extent * 3):

if pixlist[i] <= 127:

6.1 Colour Palettes 67

pixlist[i] = 0

if pixlist[i] >= 128:

pixlist[i] = 255

if palette == ’P3’:

for i in range (extent * 3):

if pixlist[i] <= 85:

pixlist[i] = 0

if pixlist[i] >= 86 and pixlist[i] <= 170:

pixlist[i] = 127

if pixlist[i] >= 171:

pixlist[i] = 255

if palette == ’P4’:

for i in range (extent * 3):

if pixlist[i] <= 64:

pixlist[i] = 0

if pixlist[i] >= 65 and pixlist[i] <= 127:

pixlist[i] = 85

if pixlist[i] >= 128 and pixlist[i] <= 191:

pixlist[i] = 170

if pixlist[i] >= 192:

pixlist[i] = 255

if palette == ’P5’:

for i in range (extent * 3):

if pixlist[i] <= 51:

pixlist[i] = 0

if pixlist[i] >= 52 and pixlist[i] <= 102:

pixlist[i] = 64

if pixlist[i] >= 103 and pixlist[i] <= 153:

pixlist[i] = 127

if pixlist[i] >= 154 and pixlist[i] <= 204:

pixlist[i] = 191

if pixlist[i] >= 205:

pixlist[i] = 255

if palette == ’P6’:

for i in range (extent * 3):

if pixlist[i] <= 42:

pixlist[i] = 0

if pixlist[i] >= 43 and pixlist[i] <= 85:

pixlist[i] = 51

if pixlist[i] >= 86 and pixlist[i] <= 127:

68 6 Transforming Image Colours

pixlist[i] = 102

if pixlist[i] >= 128 and pixlist[i] <= 170:

pixlist[i] = 153

if pixlist[i] >= 171 and pixlist[i] <= 212:

pixlist[i] = 204

if pixlist[i] >= 213:

pixlist[i] = 255

Apply reduced values to image.

m = width * 3

for y in range(height):

for x in range(width):

pix[x,y] = (pixlist[(3*x)+(m*y)], pixlist[(3*x)+(m*y)+1],

pixlist[(3*x)+(m*y)+2])

Show reduced image.

imrgb.show()

print "Done"

6.2 Neutral Palettes

A neutral palette or greyscale is one where (R = G = B). To convert an image to a
neutral palette, several somewhat different formulas have been used [1]. The Python
Imaging Library uses the ITU-R 6021-2 formula:

Grey (R’ = G’ = B’) = ((R * 299/1000) + (G * 587/1000) + (B * 114/1000))

Figure6.3 shows the sRGB cube model converted to neutral palette N256. It has
S = 256 steps of intensity I , diversity D = S = 256 and COLRES = 1/256, one grey
in 256. Indeed a neutral palette reduces the sRGB cube model to just one axis, the
body diagonal of the cube from (0,0,0) black to (255,255,255) white. A series of
neutral greyscales can be made by taking fewer than S = 256 steps of intensity on
the diagonal axis. For example, a minimal neutral greyscale N2 has S = 2, hence
diversity D = 2 colours, just black and white. Figure6.4 shows neutral greyscales
N256, N2, N3, N4, N5 and N6. Clearly, the series can be continued up to N256which
is the full greyscale.

We can write a script to convert any sRGB .bmp image to a neutral palette, as
listed below. Figure6.5 shows original gamut and camera images converted to neutral
palettes N256, N2, N3, N4, N5 and N6

pyneut: Change colour resolution from full sRGB to
neutral palette N2 N3 N4 N5 N6 or N256(= greyscale),
show it in Paint (to be saved if wanted).
Written by Alan Parkin 017.

6.2 Neutral Palettes 69

Fig. 6.3 sRGB cube model converted to neutral palette N256. a Front view b Back view

from PIL import Image
import numpy as np
import os, sys

#Get filename of .bmp image which is in working directory
imagefilename = raw_input("Image filename? ")
#Open it and show it
imrgb = Image.open(imagefilename)
imrgb.show()
print "imrgb size ", imrgb.size
width = imrgb.size[0]
height = imrgb.size[1]
extent = width * height
print "width", width
print "height", height
print "extent", extent

Call PIL load for this image, to get xy array of rgb tuples.
pix = imrgb.load()

Convert xy array of tuples to xy array of lists.
pixlist = []

70 6 Transforming Image Colours

Fig. 6.4 Neutral palette subsets of sRGB. a Neutral palette N256, the greyscale of sRGB, with S =
256 steps along the body diagonal of the sRGB cube model, from (0, 0, 0) black to (255, 255, 255)
white. Diversity D = S = 256. b Neutral palette N2, with D = S = 2 (c)–(f) Neutral palettes N2, N3,
N4, N5 and N6

for y in range(height):
for x in range(width):

thisval = pix[x,y]
pixlist.append(thisval)

Convert each rgb triple in pixlist to neutral, as
factors = (0.30r + 0.59g + 0.1b) then
neut = (factors, factors, factors)
pixnlist = []
for j in range(extent):

factors = int((pixlist[j][0]*0.30) +
(pixlist[j][1]*0.59) + (pixlist[j][2]*0.1))

pixnlist.append(factors)
pixnlist.append(factors)
pixnlist.append(factors)

Ask which neutral palette wanted.
palette = raw_input("Neutral palette N2 N3 N4 N5 N6 N256(greyscale) ? ")
print "neutral palette ", palette

Reduce pixlist values to palette.
if palette == ’N2’:

for i in range (extent * 3):
if pixnlist[i] <= 127:

pixnlist[i] = 27
if pixnlist[i] >= 128:

pixnlist[i] = 255

6.2 Neutral Palettes 71

Fig. 6.5 Examples of images converted to neutral palettes. a Images converted to N256 full
greyscale. bConverted to N2. cConverted to N3. dConverted to N4. eConverted to N5. f Converted
to N6

72 6 Transforming Image Colours

if palette == ’N3’:
for i in range (extent * 3):

if pixnlist[i] <= 64:
pixnlist[i] = 27

if pixnlist[i] >= 65 and pixnlist[i] <= 191:
pixnlist[i] = 127

if pixnlist[i] >= 1921:
pixnlist[i] = 255

if palette == ’N4’:
for i in range (extent * 3):

if pixnlist[i] <= 43:
pixnlist[i] = 27

if pixnlist[i] >= 44 and pixnlist[i] <= 127:
pixnlist[i] = 85

if pixnlist[i] >= 128 and pixnlist[i] <= 212:
pixnlist[i] = 171

if pixnlist[i] >= 212:
pixnlist[i] = 255

if palette == ’N5’:
for i in range (extent * 3):

if pixnlist[i] <= 32:
pixnlist[i] = 27

if pixnlist[i] >= 33 and pixnlist[i] <= 96:
pixnlist[i] = 64

if pixnlist[i] >= 97 and pixnlist[i] <= 160:
pixnlist[i] = 127

if pixnlist[i] >= 161 and pixnlist[i] <= 223:
pixnlist[i] = 191

if pixnlist[i] >= 224:
pixnlist[i] = 255

if palette == ’N6’:
for i in range (extent * 3):

if pixnlist[i] <= 92:
pixnlist[i] = 27

if pixnlist[i] >= 93 and pixnlist[i] <= 149:
pixnlist[i] = 124

if pixnlist[i] >= 150 and pixnlist[i] <= 187:
pixnlist[i] = 169

if pixnlist[i] >= 188 and pixnlist[i] <= 217:
pixnlist[i] = 203

if pixnlist[i] >= 218 and pixnlist[i] <= 243:
pixnlist[i] = 231

if pixnlist[i] >= 244:
pixnlist[i] = 255

Apply reduced values to image.
m = width * 3
for y in range(height):

for x in range(width):
pix[x,y] = (pixnlist[(3*x)+(m*y)], pixnlist[(3*x)+(m*y)+1],
pixnlist[(3*x)+(m*y)+2])

6.2 Neutral Palettes 73

Convert image to N256 (full greyscale).
if palette == ’N256’:

imL = imrgb.convert("L")
imL.show()

Show reduced image.
if palette != ’N256’:

imrgb.show()

6.3 Halftone Palettes

Halftoning is an ancient trick to overcome the limitations of subtractive printing,
which deposits ink or no-ink at each location of its paper or other sheet without grad-
uation of intensity (see Chap.8). Historically, halftoning has been done by hatching,
intaglio engraving,mezzotint engraving, lithographic dotting, screened photoengrav-
ing and screened litho-offset, in black-and-white and in colour [2].

Digital halftoning can be done by grouping image pixels into cells to create small
dots of varying size or spacing, which appear as graduation of intensity [3, 4].
Whereas a neutral palette converts an sRGB coloured image to a scale of greys, a
halftone palette further converts a neutral image to black-only pixels.

Any sRGB image can be converted to a black-only halftone palette by the fol-
lowing script, which uses the ingenious Floyd–Steinberg error-distributed formula
[5] in the Python Imaging Library:.

pyhalft: Change colour resolution from full

sRGB to halftone palette H256. Convert to

mode "1" with "dither=1" and show in PAINT

(save here if wanted).

Written by Alan Parkin 2017.

from PIL import Image

import numpy as np

import os, sys

#Get filename of .bmp image which is in working directory

imagefilename = raw_input("Image filename? ")

#Open it and show it

imrgb = Image.open(imagefilename)

imrgb.show()

print "imrgb size ", imrgb.size

width = imrgb.size[0]

height = imrgb.size[1]

extent = width * height

print "width", width

print "height", height

74 6 Transforming Image Colours

Fig. 6.6 sRGB cube model converted to halftone palette H256. Figure6.3 after halftoning from
varied intensity greys to black-only

Fig. 6.7 Halftone neutral palettes. aHalftone palette H256 is neutral palette N256 after halftoning,
with S = 256 steps along the body diagonal of the sRGB cube model, from (0, 0, 0) black K to
(255, 255, 255) white W, and diversity D = S = 256. b Halftone palette H2, with D = S = 2 (c)–(f)
Halftone palettes H3, H4, H5 and H6

6.3 Halftone Palettes 75

Fig. 6.8 Examples of images converted to halftone palettes: Figure6.5 halftoned. The palettes are
then: a H256. b H2. c H3. d H4. e H5. f H6

76 6 Transforming Image Colours

print "extent", extent

Convert image to halftone.

imht = imrgb.convert("1", dither = 1)

Show reduced image.

imht.show()

Figure6.6 shows the sRGB cube in a halftone palette Fig. 6.7 shows the neutral
axis in a halftone palette; and Fig. 6.8 shows some example images in halftone palette.
Notice that a halftone image is very sensitive to the pixel pitch of a display device,
and the dot pitch of a print device.

6.4 General Colour Shifts

In a digital image, each pixel has a location (X ,Y) and a colour (R,G,B). A general
colour transformation is a systematic change of all the pixel colours of an image,
without change of location. We can make such a transformation by increasing or

Fig. 6.9 Red-shift. The source images are in themiddle. On the left, all red intensities are decreased
by 64. On the right, all red intensities are increased by 64

6.4 General Colour Shifts 77

Fig. 6.10 Green-shift. The source images are in the middle. On the left, all green intensities are
decreased by 64. On the right, all green intensities are increased by 64

decreasing intensity values in one, two or all three of the fundamental red green and
blue variables.

Elementary general colour transformations are as follows:

Red-shift: change intensity of the R variable
Green-shift: change intensity of the G variable
Blue-shift: change intensity of the B variable
Yellow-shift: change intensity of the R and G variables
Magenta-shift: change intensity of the R and B variables
Cyan-shift: change intensity of the G and B variables
All-shift: change intensity of the R, G and B variables

Figures6.9, 6.10, 6.11, 6.12, 6.13, 6.14 and 6.15 show examples of each of the
general colour transformations. The source images for all the examples are an sRGB
gamut and a camera image.

To do a general colour transformation the steps are as follows:

Select the source image file in storage
Open it
Select the transformation wanted

78 6 Transforming Image Colours

Fig. 6.11 Blue-shift. The source images are in the middle. On the left, all blue intensities are
decreased by 64. On the right, all blue intensities are increased by 64

Set the transformation parameters
Do the transformation
Save the transformed image to storage under a new filename

We can write a script which will perform any of the R G B YM C A shifts, listed
below. Figures6.9, 6.10, 6.11, 6.12, 6.13, 6.14 and 6.15 show examples of each of
the general colour transformations. The source images for all the examples are an
sRGB gamut and a camera image.

pytrcog: transform colours (general)
in .bmp image in current directory.
Written by Alan Parkin 2017.

from PIL import Image
import os, sys
import StringIO

Get source image and show it: enter any .bmp
filemame in working directory.
print "SOURCE IMAGE"
imagefilename = raw_input("Image filename? ")

6.4 General Colour Shifts 79

Fig. 6.12 Yellow-shift. The source images are in themiddle. On the left, all red and green intensities
are decreased by 64. On the right, all red and green intensities are increased by 64

#Open it, show it, and print W H and E.
im = Image.open(imagefilename)
#im.show()
width = im.size[0]
height = im.size[1]
extent = width * height
print "width W", width
print "height H", height
print "extent E", extent

Create input and output xy arrays.
inxy = im.load()
outim = Image.new("RGB", (width,height), "white")
outxy = outim.load()

Enter menu choices.
print "--------"
print "MENU"
band = raw_input("Enter band(s) to transform R G B Y M C or A for all? ")
addsub = raw_input("Enter intensity to add/subtract as -255 to 255? ")
addsubi = int(addsub)
print "band", band
print "addsubi", addsubi

80 6 Transforming Image Colours

Fig. 6.13 Magenta-shift. The source images are in themiddle.On the left, all red and blue intensities
are decreased by 64. On the right, all red and blue intensities are increased by 64

For each source pixel in inxy calculate new colour into outxy.
Scan each row.
for y in range(height):

Scan each column.
for x in range(width):

rr = inxy[x, y][0]
gg = inxy[x, y][1]
bb = inxy[x, y][2]
if band == "R" or band == "Y" or band == "M" or band == "A":

rr = inxy[x, y][0] + addsubi
if rr > 255:

rr = 255

if rr < 0:
rr = 0

if band == "G" or band == "Y" or band == "C" or band == "A":
gg = inxy[x, y][1] + addsubi
if gg > 255:

gg = 255

if gg < 0:
gg = 0

6.4 General Colour Shifts 81

Fig. 6.14 Cyan-shift. The source images are in the middle. On the left, all green and blue intensities
are decreased by 64. On the right, all green and blue intensities are increased by 64

if band == "B" or band == "C" or band == "M" or band == "A":
bb = inxy[x, y][2] + addsubi
if bb > 255:

bb = 255

if bb < 0:
bb = 0

outxy[x, y] = (rr, gg, bb)

Show transformed image in Paint: save under new filename
outim.show()

6.5 Muting Colours

Amuting or neutral-shift changes all colours of an image towards their neutral equiv-
alent.

To do a muting towards neutral, a script is listed below. Figure6.16 shows exam-
ples of muting the source images.

82 6 Transforming Image Colours

Fig. 6.15 All-shift. The source images are in themiddle.On the left, all red green andblue intensities
are decreased by 64. On the right, all red green and blue intensities are increased by 64

pymute: using PIL to ask .bmg image filename, and

ask muting fraction 0 to 1. Load rgb image as

pix = xy array of rgb tuples. Calculate muted

R G B values and impose them on the image.

from PIL import Image

import numpy as np

import os, sys

#Get filename of .bmp image which is in working directory

imagefilename = raw_input("Image filename? ")

#Open it and show it

imrgb = Image.open(imagefilename)

imrgb.show()

print "imrgb sizet34b.bmp", imrgb.size

width = imrgb.size[0]

height = imrgb.size[1]

pixtot = width * height

print "width", width

6.5 Muting Colours 83

Fig. 6.16 Muting towards neutral. The source images are on the left (muting fraction = 0). In the
middle, all colours are halfway muted to neutrals (muting fraction = 0.5). On the right, all colours
are fully muted to neutral (muting fraction = 1.0)

print "height", height

print "pixtot", pixtot

Get muting fraction.

mi = raw_input("Muting fraction 0.0 to 1.0? ")

mf = float(mi)

print "muting fraction ", mf

Call PIL load for this image, to get xy array of rgb tuples.

pix = imrgb.load()

Process values of pix.

for y in range(height):

for x in range(width):

r = pix[x,y][0]

g = pix[x,y][1]

b = pix[x,y][2]

gsi = r * 299/1000 + g * 587/1000 + b * 114/1000

84 6 Transforming Image Colours

rr = r * (1 - mf) + gsi * mf

gg = g * (1 - mf) + gsi * mf

bb = b * (1 - mf) + gsi * mf

pix[x,y] = (int(rr), int(gg), int(bb))

Show muted image.

imrgb.show()

6.6 Specific Colour Substitution

A specific colour transformation is a change of all occurrences of a specified colour
to another specified colour, without change of location, throughout an image.

To do a specific colour transformation the steps are as follows:

Select the source image file in storage.
Open it.
Specify the old colour in the image, and the new colour wanted.
Do the transformation.
Save the transformed image to storage under a new filename.

An image editor such as Microsoft Paint has an option to replace one colour
by another; but only within one connected region at a time. If we want to change
a colour which has many occurrences in an image, we can write a script as listed
below. Figure6.17 shows examples of specific colour transformations done by the
this script. The original pattern (a) is changed step by step in (b) (c) and (d).

pytrsp: transforms one specific colour in image
to another specific colour. Ask any .bmp image
filename in current directory, open and show it.
Ask colour (RGB) from and colour (RGB) to.
Load image as pix = xy array of rgb tuples.
Scan pix to change specified pixels from-to.
Show changed image in Paint (save to new filename).
Written by Alan Parkin 2017.

from PIL import Image
import numpy as np
import os, sys

#Get filename of .bmp image which is in working directory
imagefilename = raw_input("Image filename? ")
#Open it and show it
imrgb = Image.open(imagefilename)
imrgb.show()
print "imrgb sizet34b.bmp", imrgb.size

6.6 Specific Colour Substitution 85

Fig. 6.17 Specific colour transformation. a Image is Plate 45 from Owen Jones’ Grammar of
Ornament, downloaded from the Internet in full sRGB, then converted to palette P3 to even out
the colours. b Colour (255, 255, 255) white changed to (0, 0, 0) black. c Colour (255, 255, 127)
dull yellow (border of bow ties) changed to (0, 255, 0) green. d Colour (255, 255, 0) bright yellow
(border of stars) changed to (255, 0, 255) magenta

width = imrgb.size[0]
height = imrgb.size[1]
pixtot = width * height
print "width", width
print "height", height
print "pixtot", pixtot
print "--------"

Ask colour from and colour to.
fromr = raw_input("Colour to change from, R-intensity 0-255 ? ")
fromg = raw_input("Colour to change from, G-intensity 0-255 ? ")
fromb = raw_input("Colour to change from, B-intensity 0-255 ? ")
ifromr = int(fromr)
ifromg = int(fromg)
ifromb = int(fromb)
tor = raw_input("Colour to change to, R-intensity 0-255 ? ")
tog = raw_input("Colour to change to, G-intensity 0-255 ? ")
tob = raw_input("Colour to change to, B-intensity 0-255 ? ")
itor = int(tor)
itog = int(tog)
itob = int(tob)
print "--------"

86 6 Transforming Image Colours

print "Change from (RGB) ", ifromr, ifromg, ifromb
print "Change to (RGB) ", itor, itog, itob
print "--------"

Call PIL load for this image, to get xy array of rgb tuples.
pix = imrgb.load()

Scan pix, changing each from pixel to a to pixel.
for y in range(height):

for x in range(width):
if pix[x,y] == (ifromr, ifromg, ifromb):

pix[x,y] = (itor, itog, itob)

Show changed image.
imrgb.show()

References

1. Grayscale. https://en.wikipedia.org/wiki/Grayscale
2. Twyman M (1970) Printing 1790–1970. Eyre and Spottiswoode, London
3. Ulichney R (1987) Digital halftoning. MIT Press, Cambridge
4. Parkin A (2016) Digital imaging primer. Springer, Heidelberg
5. Floyd-Steinberg dithering. https://en.wikipedia.org/wiki/Floyd-Steinberg_dithering

https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/Floyd-Steinberg_dithering

Chapter 7
Displaying an Image

7.1 Display Screen

A digital image is created, stored, processed and possibly transmitted, in numerical
representation. It can be presented visually at any stage by an additive display device
[1]. The standard such device is an sRGB computer screen [2].

Numerically, a computer screen has:

Fixed width W∗ pixels.
Fixed height H∗ pixels.
Fixed pixel pitch Q∗ pixels per inch (ppi) (or pixels per millimetre (ppmm)).
In each pixel, standard red green and blue light sources independently settable at
intensities 0–255.

The fixed width and height of a display screen vary widely. A typical laptop PC
might have something likeW∗ = 11 in, H∗ = 8 in, hence extent E∗ = 88 in 2, about
the same as an A4 sheet. Typical screens have pixel pitch around 100 ppi (though
high-end computer and smartphone screens may go up to 600 ppi or even more [3]).
Thus, a typical screen has fixed maximum extent around E∗ = 1100 × 800=880
000 px (Fig. 7.1).

A digital image has indeterminate size: a particular display of an image has a size
determined by the extent and pixel pitch of the display device. An image with small
extent, such as 8× 8 px, has a tiny display 8/100× 8/100 in (which can bemagnified),
while a camera image with large extent, such as 4000 × 3000 px, has a huge display
40× 30 in (which can be panned and scrolled, or diminished). Display magnification
repeats every pixel in width and height 2, 3, ..., 8 times, in effect halving, thirding,
..., eighth-ing the pixel pitch Q* ppi. Display diminution omits half, three-quarters,
seven-eighths, ... of the pixels in the image width and height. Figure7.2 shows an
example.

© Springer International Publishing AG, part of Springer Nature 2018
A. Parkin, Computing Colour Image Processing,
https://doi.org/10.1007/978-3-319-74076-8_7

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74076-8_7&domain=pdf

88 7 Displaying an Image

Fig. 7.1 Display screen showing an image editor application containing an image window

Fig. 7.2 Display diminution. a Part of a camera image 3970 × 2980 px, extent E approximately
12 Mpx, displayed in a Paint window 1000 × 450 px, extent E∗ = 0.45 Mpx. b Image diminished
to 25 %, 1000 × 750 px, E = 0.75 Mpx, displayed in same window. c Image diminished to 12.5 %,
500 × 375 px, E = 0.1875 Mpx, displayed in same window

7.2 Display Location Resolution 89

7.2 Display Location Resolution

The location resolving power of a display device is the smallest detail which it can
display, measured as 1/E∗. Thus, a typical display screen has a location resolving
power of (say) 1/880 000.

7.3 Display Colour Resolution

The colour resolving power of a display device is the smallest difference of colours
which it can show. An sRGB device has diversity D = 2563 = 16.7 million colours,
each different from its neighbours, so the colour resolving power is 1/16.7 million.
When displaying an image with a restricted colour space, the device uses only a
subset of the sRGB colours, so its effective colour resolving power is accordingly
restricted to 1/subset D.

Fig. 7.3 Decoding a stored file image. Decoder input per pixel is code 0–255, normalized to 0–1.
Decoder output is light intensity = ((input code) / 255)2.2. Thus, code 127 is displayed as mid-grey =
0.18 luminance, corresponding to a photographic 18 % test card. Code 187 is displayed as 0.5
luminance. (The black curve shows encoding gamma = 0.4545, symmetrical with 2.2 about the plot
diagonal (0,0)–(1,1), see Chap.3.)

90 7 Displaying an Image

A display device receives input as a per-pixel triple of numeric codes (R,G, B),
each in the range 0–255.A digital-to-analogue converter (DAC) passes this as a triple
of voltages to the three subpixel light sources. In an earlier generation, virtually all
displays were based on a cathode ray tube (CRT). An inherent physical characteristic
of a CRT is that

Output light = (input voltage)2.2

where 2.2 is the so-calleddecoding gammaγ of the device [7]. To counteract this non-
linear decoding gamma, the inverse encoding gamma = 1/2.2 = 0.4545 was routinely
applied to the driving signal. Today virtually all displays use liquid crystal technology
(LCD), which has no inherent gamma. But to maintain continuity, LCDs are given
a CRT-like decoding gamma of 2.2. It is a fundamental convention of sRGB that
cameras and other input devices have encoding gamma 0.4545, and display devices
have decoding gamma 2.2. Figure7.3 plots sRGB display decoding.

7.4 Perceptually Equal-Step Scales

sRGB also incorporates the CIELAB scale of lightness L* [8]. L* sets perceptual
mid-grey as the physical light intensity reflected by an 18 % photographic grey card
[9], and hence encodes mid-grey as (127, 127, 127) (as shown in the encoding plot
in Chap.3). It is claimed that this setting ‘recognizes the logarithmic nature of visual
perception’, stemming from the Weber–Fechner law that just-noticeable differences
are small for low light intensities and increasingly larger for higher intensities. It is
further claimed that this gives a good perceptual result for the average photographed
scene.

ButHoffmann’s cogent objection is: ‘All this cannot be applied to images, because
the Weber law is a result of variable adaptation (sitting in a dark room and observing
two large patches). For imaging, the adaptation is more or less fixed, the Weber law
is not valid. ... The resolution for dark greys is not generally better than for light
greys’ [10].

It turns out that a perceptually equal-step greyscale has a Stevens’ power-law [12]
exponent of 1, not the 0.33 used by L* [11, 13]. That is to say, we perceive a scale
of intensities pretty much as they physically are. To get such a scale, the sRGB scale
anchored at mid-grey = 18% reflection = code (127, 127, 127) should be re-anchored
at mid-grey = 50 % reflection = code (187, 187, 187) [9]. The re-anchoring is done
by applying power 0.45 to each intensity in the image file. The script below does just
this, for any stored sRGB image. Figure7.4 compares the standard sRGB greyscale
with the perceptually equal-step greyscale, and Fig. 7.5 compares the R G B scales.
‘Who you gonna believe, me or your own eyes?’ [14].

7.4 Perceptually Equal-Step Scales 91

Fig. 7.4 Perceptually equal-step greyscale. The top scale is a display of 256 greys from black (0,
0, 0) to white (255, 255, 255), under the sRGB L* standard anchored at mid-grey = (127, 127, 127).
The second scale separates the gradation into 11 steps which should be perceptually equal but are
clearly not. The third scale is a better set of 11 steps, separated from the bottom gradation. The
bottom scale is a display of 256 greys anchored at mid-grey = (187, 187, 187). The top image is
displayed using the first coding, and the bottom image using the second coding

pychagam: Change gamma in stored image file.

User picks .bmp file to change; computer shows it.

User enters new gamma to be applied. Computer

calculates new image and shows it (to be saved

where wanted).

Written by Alan Parkin 2017.

from PIL import Image

import os, sys

#Get filename of .bmp image which is in working directory

imagefilename = raw_input("Image filename? ")

#Open it and show it

imrgb = Image.open(imagefilename, ’r’)

imrgb.show()

width = imrgb.size[0]

height = imrgb.size[1]

92 7 Displaying an Image

Fig. 7.5 Perceptually equal-step RGB scales. The top triple is a display of 256 intensities from
black (0, 0, 0) to red (255, 0, 0), 256 from black to green (0, 255, 0) and 256 from black to blue
(0, 0, 255), under the sRGB L* standard anchored at mid-grey = (127, 127, 127). The second triple
separates the gradation into 11 steps which should be perceptually equal but are clearly not. The
third triple is a better set of 11 steps, separated from the bottom gradation. The bottom triple is a
display of the 256 intensities anchored at mid-grey = (187, 187, 187). The top image is displayed
using the first coding, and the bottom image using the second coding

extent = width * height

print imagefilename + " open"

Enter new gamma value wanted.

newgam = raw_input("Enter new gamma as float 1.0 etc) ? ")

7.4 Perceptually Equal-Step Scales 93

fnewgam = float(newgam)

print "new gamma ", fnewgam

Call PIL getdata for this image, and length.

gd = imrgb.getdata()

gdlist = list(gd)

lengdlist = len(gdlist)

Create input and output xy arrays.

inxy = imrgb.load()

outim = Image.new("RGB", (width,height), "white")

outxy = outim.load()

For each source pixel in inxy calculate new colour in outxy.

for y in range(height):

for x in range(width):

oldr = inxy[x, y][0]

oldg = inxy[x, y][1]

oldb = inxy[x, y][2]

newr = int(((oldr/255.) ** fnewgam) * 255.)

newg = int(((oldg/255.) ** fnewgam) * 255.)

newb = int(((oldb/255.) ** fnewgam) * 255.)

outxy[x, y] = (newr, newg, newb)

outim.show()

print "done"

7.5 Display Viewing Environment

The sRGB recommended viewing environment is shown in Fig. 7.6.
An LCD screen is highly sensitive to the precise viewing angle. When this is 90

degrees at the centre of the screen, the display shows a greyscale anchored atmid-grey
= code 127, giving poor resolution of darker colours, as shown in Fig. 7.5. But when
viewed from rather higher, it is as if the mid-grey anchor goes up towards code 187;
and from lower the anchor goes down towards code 0. We may on occasion prefer
to set an image file for a perceptually equal-step display anchored at mid-grey =
code 187 (or even another), using program pychgam listed above, to get always the
display shown in Fig. 7.5.

We view an image displayed on a screen at a suitable distance. Figure7.7 shows
the trigonometry of the situation. It is known that a normal Snellen 20/20 eye resolves
detail which subtends α = one minute of arc [15]. For a display screen with pixel

94 7 Displaying an Image

Fig. 7.6 sRGB viewing environment (taken from [5])

Fig. 7.7 Viewing a display screen. α is 1 arc-min, and A is the smallest detail resolved by a normal
Snellen 20/20 eye. β is 3 arc-min, the angle subtended at the eye by one pixel at near viewing
distance V = 10 in (equivalent to an eye with Snellen 20/65 acuity)

pitch 1/100 ppi, and near viewing distance V = 10 in = 1000 px, A = V * tan(α) =
1000 * 0.0002908 = 0.3 px. So to distinguish B = one pixel, we must have angle β =
about 3 arc-min, which is equivalent to an eye with Snellen 20/65 acuity.

References 95

References

1. Display device. https://en.wikipedia.org/wiki/Display_device
2. Computer monitor. https://en.wikipedia.org/wiki/Computer_monitor
3. Retina display. https://en.wikipedia.org/wiki/Retina_Display
4. Snellen chart. https://en.wikipedia.org/wiki/Snellen_chart
5. sRGB colour space. https://en.wikipedia.org/wiki/SRGB
6. Cathode ray tube. https://en.wikipedia.org/wiki/Cathode_ray_tube
7. Gamma-correction. https://en.wikipedia.org/wiki/Gamma_correction
8. Lab color space: CIELAB. https://en.wikipedia.org/wiki/Lab_color_space
9. Middle-gray. https://en.wikipedia.org/wiki/Middle_gray
10. Hoffmann G. The gamma question. http://docs-hoffmann.de/gamquest18102001.pdf
11. Parkin A (2016) Digital imaging primer, Chapter 17. Springer, Heidelberg
12. Stevens’s power law. https://en.wikipedia.org/wiki/Stevens’s_power_law
13. Hoffmann G. Optimized grayscale. http://docs-hoffmann.de/optigray06102001.pdf
14. Chico Marx playing Chicolini disguised as Rufus T Firefly in Duck Soup, Paramount pictures

(1933)
15. Visual acuity. http://webvision.med.utah.edu/book/part-viii-gabac-receptors/visual-acuity/

https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Computer_monitor
https://en.wikipedia.org/wiki/Retina_Display
https://en.wikipedia.org/wiki/Snellen_chart
https://en.wikipedia.org/wiki/SRGB
https://en.wikipedia.org/wiki/Cathode_ray_tube
https://en.wikipedia.org/wiki/Gamma_correction
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/Middle_gray
http://docs-hoffmann.de/gamquest18102001.pdf
https://en.wikipedia.org/wiki/Stevens's_power_law
http://docs-hoffmann.de/optigray06102001.pdf
http://webvision.med.utah.edu/book/part-viii-gabac-receptors/visual-acuity/

Chapter 8
Printing an Image

8.1 Subtractive Printing

To make permanent prints of digital images on paper, the technology is drawn from
the printing trades [1]. Optically, printing inks are transparent films, which act as
filters to subtract (absorb) bands of wavelengths from the incident light. Thus, a
cyan ‘not-red’ ink absorbs the red long wavelengths and transmits the green middle
and blue short wavelengths; a magenta ‘not-green’ ink absorbs green and transmits
red and blue; and a yellow ‘not-blue’ ink absorbs blue and transmits red and green
(see Chap.1, Section Printing). Available cyan magenta and yellow (CMY) inks are
deficient in various ways, particularly in not making a good black when all three
are overprinted. A black ink K, which absorbs all wavelengths and transmits none,
is used to replace equal densities of CMY overprints (‘undercolour-removal’). The
incident light which survives the filtering of the ink layers is reflected by the white
paper. Figure8.1 shows the subtractive combinations of CMYK inks when printed
solid.

But printing ink on paper is an essentially binary process. Each location of the
master plate can either deposit ink or leave the paper showing the intensity of the ink
deposit cannot be varied. Halftoning of one kind or another is the way around this
limitation that has been used since the beginning of printing (see Chap. 6, Section
Halftone Palettes). Hatched lines or small dots of solid ink are spaced out to appear as
a range of intensities, in effect diluting the inkwith thewhite paper. Digital halftoning
[2, 3] is an important aspect of printing digital images, by either four-colour or black-
only processes. A black-only halftone image can also be displayed on an additive
sRGB screen.

Thus, printing uses aCMYK colour space [4], which is inverse to the sRGB space:
instead of red we have cyan, instead of green magenta, instead of blue yellow and
instead of equal intensities of red green and bluewe have black. Figure8.2a shows the
four ink colours, and Fig. 8.2b shows the gamut of print colours, which is noticeably
different from the sRGB gamut. Figure8.3 shows a cube model of the CMYK space,
front and back.

© Springer International Publishing AG, part of Springer Nature 2018
A. Parkin, Computing Colour Image Processing,
https://doi.org/10.1007/978-3-319-74076-8_8

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74076-8_8&domain=pdf

98 8 Printing an Image

Fig. 8.1 Subtractive-colour filtering. Top row: a No ink passes all three wavelength bands of
incident light and stops none. b Yellow ink passes red and green, stops blue. c Magenta ink passes
red and blue, stops green. d Cyan ink passes green and blue, stops red. Bottom row: e Yellow and
magenta inks together pass red. f Magenta and cyan inks together pass blue. g Cyan and yellow
inks together pass green. h Ideal yellow magenta and cyan inks together would stop all light and
pass none, to show black. Practical inks need a black-ink booster to show a good black

Fig. 8.2 The CMYK inks and their gamut of CIE hues. a Cyan magenta yellow and black inks.
b The subtractive gamut of typical inks, compared to the sRGB additive gamut

8.2 Location Resolution 99

Fig. 8.3 CMYK colour space. Cube model, front and back, inverse to sRGB space. The origin is
W white, with axes Y yellow, M magenta and C cyan, each axis calibrated 0–100%. K black ink
replaces neutral combinations (C = M = Y)

8.2 Location Resolution

Numerically, an inkjet printer has:

Fixed line length L∗ in.
Fixed page length M∗ in.
Fixed dot pitch N∗ dots per inch (dpi) (or dots per millimetre (dpmm)).
In each pixel, cyan magenta yellow and black dot densities 0–100%.

A typical A4 printer has a fixed line length of 8 in and a fixed page length of
11 in. The fixed dot pitch is usually 600 dpi for an inkjet printer, or 600–1200 or
higher for a laser printer. So, an A4 600 dpi printer has a print extent of fixed width
W∗ = 8 × 600 = 4800 dots and a fixed height of H∗ = 11 × 600 = 6600 dots.
The printer software allocates a square of (say) 6 × 6 dots per pixel, so the extent of
the printed page is E∗ = 4800/6 × 6600/6 = 880000 px, about the same as an A4
display screen.

The computations for converting an sRGB image to CMYK colour space, and
for halftoning the colours, are supplied in the printer manufacturer’s driver software.
The basic calculations are described in [3].

100 8 Printing an Image

8.3 Colour Resolution

Compared to a screen display at 100pixels per inch, a printer can thus allocate 6
× 6 dots per pixel. Each dot is an unvaried intensity of yellow magenta cyan or
black ink. The dots are variably spaced by halftoning percentage from 0 to 100. At
normal viewing distance, the dots combine subtractively and additively to give an
approximate match to the additive display colours.

A CMYK printed image thus has four ink colours, each in 100% halftones, colour
diversity D = 1004 = 100 million apparent colours. Clearly, halftoning to say four
levels would provide D = 44 = 256 colours, COLRES = 1/256, sufficient for
most purposes.

8.4 Viewing Environment

We view an image printed on paper at a suitable distance and under suitable ambient
lighting. Figure8.4 shows the trigonometry of the situation. Best viewing distance
is usually reckoned as the diagonal of the image. As shown in Chap.7, a pixel can
easily be seen by a normal Snellen 20/20 eye. But in a printout, a pixel is formed of
(say) 6 × 6 dots, which are well below the threshold of normal visibility. A printout
thus appears as a continuous-tone image with no visible pixel structure.

Since a printout depends on filtering out some parts of the incident light, it will
always need bright incident light to match the 80–100cd/m2 recommended for an
additive screen [3]. But the eye is remarkably adaptive to lighting conditions, and
involuntarily compensates for differences of incident and reflected light [5].

Fig. 8.4 Viewing a printout. α is 1 arc-minute, and A is the smallest detail resolved by a normal
Snellen 20/20 eye. β is 3 arc-minutes, the angle subtended at the eye by one pixel at near viewing
distance V = 10 in. γ is 0.5 arc-minute, the angle subtended at the eye by a typical printer dot C:
too small to resolve

References 101

References

1. IdealallianceSWOP. https://en.wikipedia.org/wiki/Specifications_for_Web_Offset_Publications
2. Ulichney R (1987) Digital halftoning. MIT Press, Cambridge
3. Parkin A (2016) Digital imaging primer. Springer, Heidelberg
4. CMYK color model. https://en.wikipedia.org/wiki/CMYK_color_model
5. Bass M et al (2010) Handbook of optics, vol 3, 3rd edn. Vision. McGraw-Hill, New York

https://en.wikipedia.org/wiki/Specifications_for_Web_Offset_Publications
https://en.wikipedia.org/wiki/CMYK_color_model

Chapter 9
Analysing Image Colour

9.1 Image Colour Distribution

The distribution of colour in a digital image is complex: we are faced with an extent
of perhaps ten million pixels and a diversity of 16.7 million colours in each pixel.
A statistical approach is appropriate, to reduce this complexity to a manageable
summary [1]. Since a digital image is available in numerical representation, we can
use computational methods to analyse the distribution of colour in an image.

Statistically speaking, an sRGB image presents as a finite population of E pixels,
with three fundamental variables, the red green and blue light sources. A colour is a
triple of intensity values (R,G, B) of the fundamental variables. The colour space of
an image is the totality of possible intensity values, with a known diversity D. The
colour distribution of an image is the proportional occupation of the E pixels by the
D colours.

We wish to summarize this distribution and find its mean value. A procedure is
sketched below, using the very simple image shown in Fig. 9.1 as an example.

9.2 Constructing a Colour Scheme Table

First, scan the entire population and count the frequency of occurrence of each
distinct colour (R,G, B). Write a frequency table of N rows, one for each colour in
this image. Each row shows the colour identifier, the frequency count in pixels Epx
of that colour and the three intensity values of the fundamental variables (R,G, B):

Colour Epx (R G B)

[[0 1 255 0 0] (red)

[1 32 255 255 255] (white)

[2 29 0 0 0] (black)

© Springer International Publishing AG, part of Springer Nature 2018
A. Parkin, Computing Colour Image Processing,
https://doi.org/10.1007/978-3-319-74076-8_9

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74076-8_9&domain=pdf

104 9 Analysing Image Colour

[3 1 0 255 0] (green)

[4 1 0 0 255]] (blue)

5 64

Next, sort the rows by frequency Epx :

Colour Epx (R G B)

[[0 32 255 255 255]

[1 29 0 0 0]

[2 1 0 0 255]

[3 1 255 0 0]

[4 1 0 255 0]]

5 64

Next, calculate the percentage of E occupied by the colour of each row: Epc = (Epx
* 100)/E :

Colour Epx (R G B) Epc

[[0 32 255 255 255 50]

[1 29 0 0 0 45]

[2 1 0 0 255 1]

[3 1 255 0 0 1]

[4 1 0 255 0 1]]

5 64

For the final table, the Epx column is not needed, so replace it by the Epc column:

Colour Epc (R G B)

[[0 50 255 255 255]

[1 45 0 0 0]

[2 1 0 0 255]

[3 1 255 0 0]

[4 1 0 255 0]]

[5 100(130 130 130)]

Calculate the values at the foot of the table as shown below:

Clr Epc (R G B)

9.2 Constructing a Colour Scheme Table 105

Fig. 9.1 A simple digital
image. The image array has
width = 8, height = 8, hence
E = 64 pixels. The image
shows N = 5 colours: white,
black, red, green and blue

[[C0 Epc0 R0 G0 B0]

[C1 Epc1 R1 G1 B1]

[...]

[Ck Epck Rk Gk Bk]]

[N 100 Rav Gav Bav]

where in each row i :

Ci is the colour-row identifier,
Epci = ((Epxi * 100)/E) is the extent of this colour as a percentage of the whole
image extent E,
Ri,Gi, Bi are the intensities of the three variables in this colour,
N = Ck + 1 is the count of colours in this image,
100 = Σ(Epc) the checksum of the percentages column (rarely exact if percent-
ages are rounded to integer),
Rav = ((R0 * Epx0) + (R1 * Epx1) + (R2 * Epx2) + · · · + (Rk * Epxk))/100,
the weighted-average intensity of red in the whole image that is the contribution
of red from each colour weighted by the extent of that colour,
Gav ditto for green and
Bav ditto for blue.

9.3 Constructing a Colour Scheme Bar Graph

Having made a colour scheme table, we can show the distribution graphically by a
stack of bars, one for each colour, occupying their proportional percentages of the
extent. And we can show the mean value (Rav,Gav, Bav) of the whole image in
an adjoining bar. Figure9.2 shows the graph for the simple example.

106 9 Analysing Image Colour

Fig. 9.2 Colour scheme bar
graph for a simple digital
image. On the left, the stack
is 100pixels high, containing
50% white, 45% black and
1% each of blue, red and
green. On the right, the bar
shows the image mean
colour (130, 130, 130) a
neutral just lighter than
mid-grey (127, 127, 127)

9.4 Conditioning the Colour Scheme

sRGB colour space has huge diversity D = 16.7 million possible colours. An image
created by program, camera or scanner in sRGB colour space will typically contain
a very large count N of these colours and produce an impractically large colour
scheme table, where most of the colours will be far down the table, with very small
percentages Epc. Standard statistical practice in such circumstances is to group
variables and ignore outliers.

We can group the colour intensity values by converting the original image to a
restricted palette, as in Chap.6, thus radically reducing diversity and bringing out the
main structure of the colour distribution. Further, we can omit colours which occupy
very small percentage extents in the image.

9.5 Scripts for a Colour Scheme

A pair of scripts which deliver a colour scheme table and bar graph for any .bmp
image paletted to D ≤ 216 colours are listed below. They are run in tandem, pyanalyA
first to do the analysis and write two data files, then pyanalyB to read the data files
and produce the bar graph and table as a Tkinter image.

pyanalyA: Analyze .bmp image in current directory.

User sets threshold for colour counts to pass.

Computer counts colours and extents, and writes

file cstabl and file csbars.dat.

(Then run pyanalyB to show bars and table.)

Written by Alan Parkin 2017.

from PIL import Image

import numpy as np

import os, sys

9.5 Scripts for a Colour Scheme 107

#Get filename of .bmp image which is in working directory

imagefilename = raw_input("Image filename? ")

#Open it and show it

imrgb = Image.open(imagefilename)

imrgb.show()

width = imrgb.size[0]

height = imrgb.size[1]

extent = width * height

print imagefilename + " open"

Call PIL getcolors for this image, and length.

gc = imrgb.getcolors()

gclist = list(gc)

lengclist = len(gclist)

Ask count pass value 0 or 1,2,3,4,5 percent.

passval = raw_input("Pass counts above 0 or 1 or 2 or 3 or 4 or

5 percent ? ")

if passval == "0":

threshold = 0

if passval != "0":

intpassval = int(passval)

threshold = extent / (100. / intpassval)

print "Omitting counts below percent ", intpassval

Convert gclist to inlist, omitting items where

count of px is less than asked..

inlist = []

leninlist = 0

for i in range(lengclist):

count = gclist[i][0]

if count > threshold:

inlist.append(gclist[i][0])

leninlist = leninlist + 1

for j in range(3):

thistuple = gclist[i][1]

thisitem = thistuple[j]

inlist.append(thisitem)

#Create numpy array of one dimension.

narra = np.array(list(inlist))

Reshape as leninlist x 4.

narrb = narra.reshape((leninlist, 4))

108 9 Analysing Image Colour

Sort rows by column 0, ascending.

narrc = narrb[narrb[:,0].argsort()]

flip updown for descending..

narrd = np.flipud(narrc)

Create index list, then index column.

indlis = []

for i in range(leninlist):

indlis.append(i)

indarr = np.array(list(indlis))

indcol = indarr.reshape(leninlist, 1)

Create pc list, then pc column.

pclis =[]

for i in range(leninlist):

pc = (narrd[i][0] * 100) / extent

pclis.append(pc)

pcarr = np.array(list(pclis))

pccol = pcarr.reshape(leninlist, 1)

Delete col 0 from narrd.

narre = np.delete(narrd,0,1)

Concatenate indcol and pccol to narre.

x = indcol

y = pccol

z = narre

narrf = np.concatenate((x,y,z), axis=1)

Create weighted-average row.

rw = 0

gw = 0

bw = 0

for i in range(leninlist):

rw = rw + (narrf[i,1] * narrf[i,2])

gw = gw + (narrf[i,1] * narrf[i,3])

bw = bw + (narrf[i,1] * narrf[i,4])

rwa = rw / 100

gwa = gw / 100

bwa = bw / 100

wavrowlist = (leninlist, 100, rwa, gwa, bwa)

wavrow = np.array(wavrowlist)

9.5 Scripts for a Colour Scheme 109

Write to table data file cstabl.

f = open(’cstabl’, ’w’)

f.write(’COLOUR SCHEME FOR \n’)

f.write(’IMAGE ’ + imagefilename)

f.write(’\n’)

f.write(’Width px ’ + str(width))

f.write(’\n’)

f.write(’Height px ’ + str(height))

f.write(’\n’)

f.write(’Extent px ’ + str(extent))

f.write(’\n’)

f.write(’\n’)

f.write(’ Clr Epc (R G B)\n’)

f.write(’---------------------- \n’)

value = (narrf)

s = str(value)

f.write(s)

f.write(’\n’)

f.write(’---------------------- \n’)

s = str(wavrow)

f.write(s)

f.close()

Write to bars data file csbars.dat.

bf = open(’csbars.dat’, ’w’)

bf.write(imagefilename)

bf.write(’\n’)

bf.write(str(leninlist))

bf.write(’\n’)

for i in range(leninlist):

bf.write(str(narrf[i,0]))

bf.write(’\n’)

bf.write(str(narrf[i,1]))

bf.write(’\n’)

bf.write(str(narrf[i,2]))

bf.write(’\n’)

bf.write(str(narrf[i,3]))

bf.write(’\n’)

bf.write(str(narrf[i,4]))

bf.write(’\n’)

bf.write(str(rwa))

bf.write(’\n’)

bf.write(str(gwa))

110 9 Analysing Image Colour

bf.write(’\n’)

bf.write(str(bwa))

bf.write(’\n’)

bf.close()

print imagefilename + " done"

\index{Scripts!pyanalyB}

pyanalyB: (Follows pyanalyA). In Tkinter, read

file csbars.dat and create bars of colour scheme.

Then read file cstabl and create text table.

Written by Alan Parkin 2017.

from Tkinter import *

bf = open(’C:/Users/Alan Parkinalan/csbars.dat’, ’r’)

filename = bf.readline()

print "Filename = ", filename

leninlist = int(bf.readline())

root = Tk()

w = Canvas(root, width=200, height=120, background="gray")

w.pack()

epc = 0

sumepc = 0

for i in range (2, leninlist + 2):

xepc = epc

clrindex = int(bf.readline())

epc = int(bf.readline())

rin = int(bf.readline())

gin = int(bf.readline())

bin = int(bf.readline())

sumepc = sumepc + epc

tkrgb = "#%02x%02x%02x" % (rin, gin, bin)

w.create_rectangle(0, (sumepc - epc), 100, sumepc, outline=

tkrgb, fill=tkrgb)

Read image mean colours and create bar.

rwa = int(bf.readline())

gwa = int(bf.readline())

bwa = int(bf.readline())

tkrgb = "#%02x%02x%02x" % (rwa, gwa, bwa)

9.5 Scripts for a Colour Scheme 111

w.create_rectangle(100, 0, 200, 100, outline=tkrgb, fill=tkrgb)

Create caption below bars.

w.create_text(50,108, text="Colour percents")

w.create_text(150,108, text="Image mean")

Create text box below captions.

t = Text(root, width=24,height=33, background="white")

t.pack()

Open file cstabl and insert lines in text box

tf = open(’C:/Users/Alan Parkinalan/cstabl’, ’r’)

for j in range (leninlist + 10):

line = tf.readline()

t.insert(END, line,)

tf.close()

root.mainloop()

print filename + "done "

9.6 Colour Scheme Examples

Figures9.3, 9.4, 9.5, 9.6 and 9.7 show examples of various types of images with
colour schemes analysed by the scripts above.

Figure9.3a has 11 colours. Colour 0 Pink (255, 153, 204) dominates, with two
much smaller green extents 1 and 2. Colours 3 to 10 are tiny details. (b) has 11
colours in equal extents, so no significant ordering.

Figure9.4a has six colours with extents 1% or greater: black, four greys andwhite.
The red green and blue in the image occupy less than 1%. (b) has two colours, white
and black.

Figure9.5a is a camera imagewithmany colours, all in small extents. This analysis
is set to show just the top 12 colours with extents from 3% upwards. (b) is another
camera image with many colours, dominated by black and the rest in small extents.
This analysis is set to show just the colours occupying 1% or more.

Figure9.6a is a scanner image with many colours, dominated by the two greys,
with the rest in small extents. This analysis is set to show just the top 12 colours with
extents from 1 percent upwards. (b) is another scanner image, severely diminished in
extent,withmany colours,where the analysis is set to show just the colours occupying
1% or more.

112 9 Analysing Image Colour

Fig. 9.3 Colour scheme examples. a Repeating pattern created by GUI image editor, 223 × 221
px, converted to palette P6. b Stripes of the 11 colours with common English names (see Chap. 1),
created by GUI image editor, 223 × 220 px, converted to palette P6

9.6 Colour Scheme Examples 113

Fig. 9.4 Colour analysis examples. a Interpolated rotation created by program, 222 × 244 px,
converted to palette P6. b Inversion of chequer created by program, 223 × 288 px, converted to
palette P6

114 9 Analysing Image Colour

Fig. 9.5 Colour analysis examples. a Near camera image 223 × 291 px, converted to palette P6.
b Far camera image 223 × 297 px, converted to palette P6

9.6 Colour Scheme Examples 115

Fig. 9.6 Colour analysis examples. a Scanner image of watch 223 × 254 px, converted to palette
P6. b Scanner image of photographic test card 223 × 91 px, converted to palette P6

116 9 Analysing Image Colour

Fig. 9.7 Colour analysis examples. a Camera image of Walter Sickert by G.C.Beresford 1911,
downloaded from the Internet, diminished to 223 × 321 px, and converted to palette N6. b Image
(a) converted to halftone

9.6 Colour Scheme Examples 117

Figure9.7a is a camera image downloaded from the Internet, diminished and
converted to neutral palette N6. It has five greys, with near-black (27, 27, 27) heavily
dominant, and very pale (231, 231, 231) insignificant. (b) is (a) converted from
greyscale to black-and-white halftone.

Reference

1. Statistics. https://en.wikipedia.org/wiki/Statistics

https://en.wikipedia.org/wiki/Statistics

Chapter 10
Balancing Image Colour

10.1 Neutral Colour Balance

Doctrines of colour harmony, that is to say combinations of colourswhich are pleasing
in nature and art, aremanyandvaried [1].Anold andpersistent theme is that ofneutral
colour balance, that is to say a set of colours which are in some sense equilibrated
around a middle grey. From a distance, the effect is repose, where nothing should
be added nor anything taken away. From closer, the components emerge as a bloom
of varied intensities and extents, belonging to identifiable objects. The idea was
developed systematically with remarkable insight and taste by George Field [2] and
applied with vigour to the ornamental arts by Owen Jones [3]. Unfortunately, they
were working with pigments, and an unsatisfactory RYB subtractive primary model
(and even more unsatisfactory secondary and tertiary mixtures). However, with an
sRGB additive colour space and numerical methods, the principle of neutral balance
can be realized in a straightforward and precise way.

A balanced colour scheme is one where the mean colour of the whole image is
mid-grey (127 127 127). That is to say, the average value of the intensities in the R
channel, weighted by their respective extents, is 127; and likewise in the G channel
and in the B channel. The image has equal amounts of red, green and blue, and is
thus overall neutral in colour.

Given an unbalanced image, we can balance it in either of the following twoways:

Change some or all of the colours, to get a neutral balance.
Adjoin a coloured frame, to get a neutral ensemble image-plus-frame.

10.2 Balancing by Changing Colours

To balance the colours of a given sRGB image, the steps are as follows:

Analyse the colour scheme of given image IMIN.BMP.

© Springer International Publishing AG, part of Springer Nature 2018
A. Parkin, Computing Colour Image Processing,
https://doi.org/10.1007/978-3-319-74076-8_10

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74076-8_10&domain=pdf

120 10 Balancing Image Colour

Calculate changes needed for a balanced colour scheme.
Create balanced image IMOUT.BMP.

Computationally, a colour scheme table has the general form:

Clr Epc (R G B)

[[C0 Epc0 R0 G0 B0]

[C1 Epc1 R1 G1 B1]

[...]

[Ck Epck Rk Gk Bk]]

[N 100 Rwa Gwa Bwa]

as described in Chap.9. In this table, we have three equations relating the values:

(R0 ∗ Epc0/100) + (R1 ∗ Epc1/100) + . . . + (Rk ∗ Epck/100) = Rav (10.1)

(G0 ∗ Epc0/100) + (G1 ∗ Epc1/100) + . . . + (Gk ∗ Epck/100) = Gav (10.2)

(B0 ∗ Epc0/100) + (B1 ∗ Epc1/100) + . . . + (Bk ∗ Epck/100) = Bav (10.3)

We can use these equations to achieve a balanced colour scheme in the following
way:

Fig. 10.1 Balancing image colour. On the left, original image is 8× 8px. Colour 0 is white (40%),
1 is black (37%), 2 is red (14%), 3 is green (6%) and 4 is blue (1%). At the foot of the table, the
imagemean (137, 117, 104) is high in red, low in green and lower still in blue. On the right, balanced
image has colours in the same extents as the original, but the white is a little cyanish, the black is
also a bluer cyanish, the red is a little duller and the green and blue are unchanged. At the foot of
the table, the image mean (126, 126, 125) is balanced as middle grey (within the integer rounding
of the calculations)

10.2 Balancing by Changing Colours 121

In the R-equation, if the weighted average Rav < 127, there is too little red by
an additive term of (127 - Rav); so to get a balance, we can increase the major red
intensity R0 by (term/Epc0), keeping all percentage extents unchanged. If this would
result in an intensity greater than 255, we can apply the increase to the next-largest
red R1.

But if Rav> 127, there is toomuch red by a factor of (127/Rav); so to get a balance,
we can reduce all red intensities Ri by the same factor, keeping the percentage extents
unchanged. Since factor 127/Rav is less than 1, this cannot overshoot intensity 255
nor undershoot intensity 0.

And similarly in the G-equation and in the B-equation.
Figure10.1 shows a simple example of balancing a colour scheme: the imbalance

and adjustment is small.

10.3 Script for Balancing by Changing Image Colours

The following script balances a given colour scheme:

pybala: Converts a .bmp image with unbalanced

colour to balanced mean (127 127 127). First

analyzes the given image, exactly as

pyanalyz.py; then calculates balanced image

and shows it in Paint, to be saved where

wanted.

Written by Alan Parkin 2017.

from PIL import Image

import numpy as np

import os, sys

Get filename of .bmp image which is in working directory

imagefilename = raw_input("Image filename? ")

#Open it and show it

imrgb = Image.open(imagefilename, ’r’)

imrgb.show()

width = imrgb.size[0]

height = imrgb.size[1]

extent = width * height

print " "

print "Image file ",imagefilename

print "Width px ", width

print "Height px ", height

print "Extent px ", extent

Call PIL getcolors for this image, and length.

gc = imrgb.getcolors()

gclist = list(gc)

lengclist = len(gclist)

Convert gclist to inlist, omitting items where

count of px is less than 1 percent of extent..

inlist = []

leninlist = 0

for i in range(lengclist):

count = gclist[i][0]

if count > (extent /100.):

inlist.append(gclist[i][0])

122 10 Balancing Image Colour

leninlist = leninlist + 1

for j in range(3):

thistuple = gclist[i][1]

thisitem = thistuple[j]

inlist.append(thisitem)

#Create numpy array of one dimension.

narra = np.array(list(inlist))

Reshape as leninlist x 4.

narrb = narra.reshape((leninlist, 4))

Sort rows by column 0, ascending.

narrc = narrb[narrb[:,0].argsort()]

flip updown for descending..

narrd = np.flipud(narrc)

Create index list, then index column.

indlis = []

for i in range(leninlist):

indlis.append(i)

indarr = np.array(list(indlis))

indcol = indarr.reshape(leninlist, 1)

Create pc list, then pc column.

pclis =[]

for i in range(leninlist):

pc = (narrd[i][0] * 100) / extent

pclis.append(pc)

pcarr = np.array(list(pclis))

pccol = pcarr.reshape(leninlist, 1)

Delete col 0 from narrd.

narre = np.delete(narrd,0,1)

#flatten narre.

narreflat = list(narre.flatten())

Concatenate indcol and pccol to narre.

x = indcol

y = pccol

z = narre

narrf = np.concatenate((x,y,z), axis=1)

print "Unbalanced colour scheme "

print " Clr Epc R G B"

print " ------------------- "

print narrf

Create weighted-average row.

rw = 0

gw = 0

bw = 0

for i in range(leninlist):

rw = rw + (narrf[i,1] * narrf[i,2])

gw = gw + (narrf[i,1] * narrf[i,3])

bw = bw + (narrf[i,1] * narrf[i,4])

rwa = rw / 100

gwa = gw / 100

bwa = bw / 100

wavrowlist = (leninlist, 100, rwa, gwa, bwa)

wavrow = np.array(wavrowlist)

print " -------------------"

10.3 Script for Balancing by Changing Image Colours 123

print" ", wavrow

print " "

Create nnarre.

nnarre = narre

Calculate new R’ values in nnarre.

if rwa < 127:

addterm = (127 - rwa) * 100 / narrf[0,1]

if (nnarre[0,0] + addterm) <= 255:

nnarre[0,0] = nnarre[0,0] + addterm

else:

if (narre[1,0] + addterm) <= 255:

narre[i,0] = narre[i,0] + addterm

if rwa > 127:

mulfac = (12700 / rwa)

for i in range(leninlist):

nnarre[i,0] = (nnarre[i,0] * mulfac) / 100

Calculate new G’ values in nnarre.

if gwa < 127:

addterm = (127 - gwa) * 100 / narrf[0,1]

if (nnarre[0,1] + addterm) <= 255:

nnarre[0,1] = nnarre[0,1] + addterm

else:

nnarre[1,1] = nnarre[1,1] + addterm

if gwa > 127:

mulfac = (12700 / gwa)

for i in range(leninlist):

nnarre[i,1] = (nnarre[i,1] * mulfac) / 100

Calculate new B’ values in narrf.

if bwa < 127:

addterm = (127 - bwa) * 100 / narrf[0,1]

if (nnarre[0,2] + addterm) <= 255:

nnarre[0,2] = nnarre[0,2] + addterm

else:

nnarre[1,2] = nnarre[1,2] + addterm

if bwa > 127:

mulfac = (12700 / bwa)

for i in range(leninlist):

nnarre[i,2] = (nnarre[i,2] * mulfac) / 100

#flatten nnarre.

nnarreflat = list(nnarre.flatten())

Concatenate indcol and pccol to nnarre.

x = indcol

y = pccol

z = nnarre

nnarrf = np.concatenate((x,y,z), axis=1)

print "Balanced colour scheme "

print " Clr Epc R G B"

print " ------------------- "

print nnarrf

Create new weighted-average row.

nrw = 0

ngw = 0

nbw = 0

for i in range(leninlist):

nrw = nrw + (nnarrf[i,1] * nnarrf[i,2])

124 10 Balancing Image Colour

ngw = ngw + (nnarrf[i,1] * nnarrf[i,3])

nbw = nbw + (nnarrf[i,1] * nnarrf[i,4])

nrwa = nrw / 100

ngwa = ngw / 100

nbwa = nbw / 100

nwavrowlist = (leninlist, 100, nrwa, ngwa, nbwa)

nwavrow = np.array(nwavrowlist)

print " -------------------"

print" ",nwavrow

print " "

Call PIL load for this image, to get xy array of rgb tuples.

pix = imrgb.load()

Convert xy array of tuples to xy array of lists.

pixlist = []

for y in range(height):

for x in range(width):

for j in range(3):

thisval = pix[x,y][j]

pixlist.append(thisval)

Compare colour triples.

for i in range(extent):

for j in range(leninlist):

print "i j narreflat nnarreflat "

print i, j, narreflat[(j*3):((j*3)+3)], nnarreflat[(j*3):((j*3)+3)]

if pixlist[(i*3):((i*3)+3)] == narreflat[(j*3):((j*3)+3)]:

pixlist[(i*3):((i*3)+3)] = nnarreflat[(j*3):((j*3)+3)]

Apply reduced values to image.

m = width * 3

for y in range(height):

for x in range(width):

pix[x,y] = (pixlist[(3*x)+(m*y)], pixlist[(3*x)+(m*y)+1], pixlist[(3*x)+(m*y)+2])

Show reduced image in Paint, to be saved

where you will.

imrgb.show()

print "Balancing done "

10.4 Examples of Balancing by Changing Colours

Figures10.2, 10.3, 10.4, 10.5 and 10.6 show examples of various types of image
before and after balancing colour using the script listed above.

In Fig. 10.2a, the weighted mean (213, 151, 172) of the image is too high in
red green and blue. In (b), the intensity values in the R column have been reduced
proportionately to their extents, so that their weighted mean is 125; and similarly the
intensity values in the G column and the B column. The resulting image is balanced
around mid-grey (127, 127, 127) (allowing for rounding of integer values).

In Fig. 10.3a, the weighted mean (178, 178, 178) of the image is too high in red
green and blue. In (b), the intensity values of colour 0 have been reduced propor-

10.4 Examples of Balancing by Changing Colours 125

Fig. 10.2 Balancing a colour scheme. a Repeating pattern created by GUI image editor, 223 ×
221px, converted to palette P6. b After balancing

tionately to their extents, so that their weighted mean is 126. The resulting image is
balanced around mid-grey (127, 127, 127) (allowing for rounding to integer values).

In Fig. 10.4a, the camera image has 26 colours (some omitted here to fit in the
page), which are close in diversity and close in extent. The weighted mean (142, 143,
131) is almost balanced, but at a somewhat high intensity. In (b), the intensity values
of all the colours have been reduced proportionately to their extents, so that their
weighted mean is (126, 125, 125). The resulting image is of slightly lower intensity
throughout.

126 10 Balancing Image Colour

Fig. 10.3 Balancing a colour scheme. a Inversion of chequer created by program, 223 × 288px,
converted to palette P6. b After balancing

In Fig. 10.5a, the scanner image has 12 colours, with the top two greys dominant.
The weighted mean (97, 98, 99) is balanced, but at a rather low intensity. In (b),
the intensity values of the top grey have been increased proportionately to its their
extent, so that the weighted mean is now (127, 127, 127).

In Fig. 10.6a, the downloaded image has four greys, with the top near-black dom-
inant. The weighted mean (44, 44, 44) is balanced, but at a low intensity. In (b), the
intensity values of the near-black have been increased proportionately to its extent,
so that the weighted mean is now (127, 127, 127).

10.4 Examples of Balancing by Changing Colours 127

Fig. 10.4 Balancing a colour scheme. a Image created by camera, 223 × 288px, converted to
palette P6. b After balancing

128 10 Balancing Image Colour

Fig. 10.5 Balancing a colour scheme. a Image created by scanner, 223 × 254px, converted to
palette P6. b After balancing

10.5 Balancing by Adjoining a Frame 129

Fig. 10.6 Balancing a colour scheme. a Image downloaded from the Internet, 223 × 321px,
converted to palette P6. b After balancing (but perhaps not what was wanted!)

10.5 Balancing by Adjoining a Frame

There aremany circumstances inwhichwemightwant to keep an image in its original
colour scheme, yet achieve some kind of balanced norm. (For example, the image
may be an accurate representation of a scene, or an already carefully considered
arrangement by a painter.) In such cases, we can always adjoin a frame of a colour
which achieves an image-plus-frame mean of mid-grey (127, 127, 127).

130 10 Balancing Image Colour

Traditionally, frames of various materials and designs have been adjoined to im-
ages for several reasons. Paintings are framed for convenient attachment to walls, and
for visual separation from their surroundings. Water colours and prints are framed
with amat and glass for protection. Images in books are naturally framed by thewhite
page, which separates them from type matter and from their surroundings. There is
a long history of changing practice amongst artists, framers, printers and collectors
as to frames and margins [4].

A digital image is like an image in a book, in that it is naturally framed by awindow
which it shares with text matter, on a screen which it shares with other windows. An
additive display is temporary, soon giving way to other images and other windows. A
digital image for more permanent presentation can be made by subtractive printout.
It is then very like an image in a book, and indeed often becomes an image in a book.
It may sometimes be treated like a painting, and framed for attachment, protection
and visual separation from surroundings.

To balance the colours of a given sRGB image by adjoining a frame, the steps are
as follows:

Analyse the colour scheme of given image IMIN.BMP.
Calculate extent and colour of frame needed for a balanced colour scheme.
Create balanced image IMOUT.BMP.

To balance any image mean whatsoever, from (0, 0, 0) to (255, 255, 255), the
extent of the frame needs to be (at least) equal to the extent of the image, each 50%
of the ensemble. Setting:

xW * xH = 2(W * H)
x2 * (W * H) = 2 * (W * H)
x2 = 2
x = √

2

we see that the frame size should be as shown in Fig. 10.7. Furthermore, we can set
the margins of the frame around the image however we please; as, for example, in
the same figure consistent with classical canons [5].

Computationally, the script below analyses any .bmp image, calculates the mean
value of its colour scheme, calculates the balancing colour and adjoins a frame of that
colour. User can set margins as a centred arrangement, or as book-style recto/verso:

pyanbafr: Analyze .bmp image, calculate balancing

colour required, and adjoin frame of that colour.

Written by Alan Parkin 2017.

from PIL import Image

import numpy as np

import os, sys

Get filename of .bmp image which is in working directory

imagefilename = raw_input("Image filename? ")

#Open it and show it

imrgb = Image.open(imagefilename, ’r’)

imrgb.show()

width = imrgb.size[0]

height = imrgb.size[1]

extent = width * height

10.5 Balancing by Adjoining a Frame 131

Fig. 10.7 Frame geometry. a For a central frame, frame width is 1.41 × image width W, frame
height is 1.41 × image height H, top margin is 1/9 of frame height, and side margin is 1/6 of frame
width. b For a verso–recto page frame, gutter nmargin is 1/9 of frame width

Enter C for centred, R for recto, or V for verso page.

cenrecver = raw_input("Enter C for centred, R for recto, V for verso page? ")

print " "

Call PIL getcolors for this image, and length.

gc = imrgb.getcolors()

gclist = list(gc)

lengclist = len(gclist)

Convert gclist to inlist, omitting items where

count of px is less than 1 percent of extent..

inlist = []

leninlist = 0

for i in range(lengclist):

count = gclist[i][0]

if count > (extent / 100.):

inlist.append(gclist[i][0])

leninlist = leninlist + 1

for j in range(3):

thistuple = gclist[i][1]

thisitem = thistuple[j]

inlist.append(thisitem)

#Create numpy array of one dimension.

narra = np.array(list(inlist))

Reshape as leninlist x 4.

narrb = narra.reshape((leninlist, 4))

Sort rows by column 0, ascending.

narrc = narrb[narrb[:,0].argsort()]

132 10 Balancing Image Colour

flip updown for descending..

narrd = np.flipud(narrc)

Create index list, then index column.

indlis = []

for i in range(leninlist):

indlis.append(i)

indarr = np.array(list(indlis))

indcol = indarr.reshape(leninlist, 1)

Create pc list, then pc column.

pclis =[]

for i in range(leninlist):

pc = (narrd[i][0] * 100) / extent

pclis.append(pc)

pcarr = np.array(list(pclis))

pccol = pcarr.reshape(leninlist, 1)

Delete col 0 from narrd.

narre = np.delete(narrd,0,1)

Concatenate indcol and pccol to narre.

x = indcol

y = pccol

z = narre

narrf = np.concatenate((x,y,z), axis=1)

Create weighted-average row.

rw = 0

gw = 0

bw = 0

for i in range(leninlist):

rw = rw + (narrf[i,1] * narrf[i,2])

gw = gw + (narrf[i,1] * narrf[i,3])

bw = bw + (narrf[i,1] * narrf[i,4])

rwa = rw / 100

gwa = gw / 100

bwa = bw / 100

wavrowlist = (leninlist, 100, rwa, gwa, bwa)

wavrow = np.array(wavrowlist)

Calculate balancing colour for frame.

if rwa >= 128:

rexcess = rwa - 128

rbal = 128 - rexcess

if rwa <= 127:

rdeficit = 127 - rwa

rbal = 127 + rdeficit

if gwa >= 127:

gexcess = gwa - 127

gbal = 127 - gexcess

if gwa < 127:

gdeficit = 127 - gwa

gbal = 127 + gdeficit

if bwa >= 127:

bexcess = bwa - 127

bbal = 127 - bexcess

10.5 Balancing by Adjoining a Frame 133

if bwa < 127:

bdeficit = 127 - bwa

bbal = 127 + bdeficit

Calculate frame for centred or recto or verso.

framewidth = int(width * 1.414)

frameheight = int(height * 1.414)

imoffsety = frameheight // 9

if cenrecver == "C":

imoffsetx = (framewidth - width) // 2

if cenrecver == "R":

imoffsetx = framewidth // 9

if cenrecver == "V":

imoffsetx = ((framewidth - width) - framewidth // 9)

print "Image width px", width

print "Image height px", height

print "Image extent px", width * height

print "Frame width px", framewidth

print "Frame height px", frameheight

print "Frame extent px", framewidth * frameheight

print "Centred/recto/verso ", cenrecver

print "Image offset x, y ", imoffsetx, imoffsety

print "Image colour ",rwa,gwa,bwa

print "Frame colour ",rbal,gbal,bbal

Do frame, insert image, and show.

frame = Image.new("RGB", (framewidth,frameheight), (rbal, gbal, bbal))

frame. paste(imrgb, (imoffsetx, imoffsety), 0)

frame.show()

print " "

print "Framing done"

10.6 Examples of Balancing by Adjoining a Frame

Figures10.8, 10.9, 10.10, 10.11 and 10.12 show examples of various types of image
after balancing colour by a frame, using the script listed above.

In Fig. 10.8a, the incoming image is the repeating pattern shown in Fig. 10.2a,
dilated down to 1/

√
2 = 71% to allow for the subsequent frame. (Notice that the

extent percentages are unaffected by dilations.) The image has mean (211, 152,
170): too high in red green and blue. Script pyanbafr calculates a balancing frame
extent equal to the image extent, a balancing frame colour (45, 102, 84), and imposes
the image centred left/right in the frame. Figure10.8b is the colour scheme of the
balanced frame-plus-image ensemble, done by scripts pyanalyzA and pyanalyzB.
This shows the frame as the new top colour 0 occupying 50% of the ensemble.

In Fig. 10.9a, the incoming image is the inversion shown in Fig. 10.3a, dilated
down to 1/

√
2 = 71% to allow for the subsequent frame. The image has mean (178,

178, 178): too high in red green and blue. Script pyanbafr calculates a balancing
frame extent equal to the image extent, a balancing frame colour (78, 76, 76), and

134 10 Balancing Image Colour

Fig. 10.8 Balancing by framing. a Repeating pattern created by image editor 159 × 156px and
converted to P6, then balanced by frame. b Colour scheme of frame-plus-image

imposes the image centred in the frame. Figure10.9b is the colour scheme of the
balanced frame-plus-image ensemble, done by scripts pyanalyzA and pyanalyzB.
This shows the frame as the new top colour 0 occupying 50% of the ensemble.

In Fig. 10.10a, the incoming image is the camera image shown in Fig. 10.4a,
dilated down to 1/

√
2 = 71% to allow for the subsequent frame. The image has

mean (143,142,131): too high in red and green and less so in blue. Script pyanbafr
calculates a balancing frame extent equal to the image extent, a balancing frame
colour (113, 111, 123), and imposes the image centred in the frame. Figure10.10b
is the colour scheme of the balanced frame-plus-image ensemble, done by scripts

10.6 Examples of Balancing by Adjoining a Frame 135

Fig. 10.9 Balancing by framing. a Inversion of chequer created by program, 158 × 204px and
converted to P6, then balanced by frame. b Colour scheme of frame-plus-image

pyanalyzA and pyanalyzB. This shows the frame as the new top colour 0 occupying
50% of the ensemble.

In Fig. 10.11a, the incoming image is the scanner image shown in Fig. 10.5a,
dilated down to 1/

√
2 = 71% to allow for the subsequent frame. The image has mean

(97, 98, 99): too low in red green and blue. Script pyanbafr calculates a balancing
frame extent equal to the image extent, a balancing frame colour (157, 156, 155), and
imposes the image centred in the frame. Figure10.10b is the colour scheme of the
balanced frame-plus-image ensemble, done by scripts pyanalyzA and pyanalyzB.
This shows the frame as the new top colour 0 occupying 50% of the ensemble.

136 10 Balancing Image Colour

Fig. 10.10 Balancing by framing. aCamera image 158× 206px and converted to P6, then balanced
by frame. b Colour scheme of frame-plus-image

10.6 Examples of Balancing by Adjoining a Frame 137

Fig. 10.11 Balancing by framing. a Scanner image 158× 180px and converted to P6, then balanced
by frame. b Colour scheme of frame-plus-image

In Fig. 10.12a the incoming image is the greyscale image downloaded from the
Internet shown in Fig. 10.6a, dilated down to 1/

√
2 = 71% to allow for the subsequent

frame. The image has mean (44, 44, 44): very low in red green and blue. Script pyan-
bafr calculates a balancing frame extent equal to the image extent, a balancing frame
colour (210, 210, 210), and imposes the image centred in the frame. Figure10.12b
is the colour scheme of the balanced frame-plus-image ensemble, done by scripts
pyanalyzA and pyanalyzB. This shows the frame as the new top colour 0 occupying
50% of the ensemble.

138 10 Balancing Image Colour

Fig. 10.12 Balancing by framing. a Greyscale image downloaded from the internet 158 × 227px
and converted to P6, then balanced by frame. b Colour scheme of frame-plus-image

10.7 Why Balance?

A short answer is: because, in sRGB imaging, we computationally can. Balancing
gives a canonical normal form to any image which is worth it.

More generally, balancing is a powerful tool for training one’s understanding
of and sensitivity to colour harmony. The facts are often surprising and sometimes
useful, amongst the tangle of personal preferences and prejudices surrounding colour.

References 139

References

1. Gage J (1993) Colour and culture. Thames and Hudson, London
2. Field G (1835) Chromatography. Charles Tilt, London
3. Jones O (1856) The grammar of ornament. Day, London
4. Tschichold J (1991) The form of the book: essays on the moraity of good design. Hartley and

Marks, Point Roberts, WA
5. Canons of page construction. https://en.wikipedia.org/wiki/Canons_of_page_construction

https://en.wikipedia.org/wiki/Canons_of_page_construction

Index

A
Author’s observations, vii
Author’s opinions, vii

B
Balanced colour scheme, 119
Balancing by changing colours, 119
Balancing by changing colours, examples,

124
Balancing by framing, 130
Balancing by framing, examples, 133

C
Camera, 28
Canonical normal form, 138
CIE LAB, 29
CIE xyY, 4, 15
Colour

digital imaging environment, 12
everyday seeing environment, 1
manufacturing environment, 6
many meanings, 1
measuring environment, 4
ornamenting environment, 8
photographing environment, 10
picturing environment, 8
printing environment, 11
scientific environment, 3

Colour distribution analysis, 103
Colour harmony, 119
Colour scheme bar graph, 105
Colour scheme examples, 111
Colour scheme table, 103
Colour temperature, 5
Colours (R,G, B), 15

Computer, 12
Computer directory, 37
Computer file, 37
Computer file field, 37
Computer file format, 37
Computer storage, 37

D
Decoding gamma, 29
Digital image, 15
Diminishing, 30
Display

CRT, 90
decoding gamma, 90
diminution, 90
fixed height H∗, 87, 99
fixed pixel pitch Q∗, 87, 99
fixed width W∗, 87
LCD, 90, 93
light sources, 87, 99
lightness L∗, 90
perceptually equal-step, 90
re-anchoring, 90
viewing trigonometry, 93

E
Encoding gamma, 29
English colour names, 2

F
Flowchart conventions, 1
Frames, 130

© Springer International Publishing AG, part of Springer Nature 2018
A. Parkin, Computing Colour Image Processing,
https://doi.org/10.1007/978-3-319-74076-8

141

142 Index

G
General colour transformation

all-shift, 77
blue-shift, 77
cyan-shift, 77
green-shift, 77
magenta-shift, 77
muting, 81
red-shift, 77
yellow-shift, 77

H
Halftone palette H256, 73
Hexadecimal digits, 37
Hi-jacking images, 35

I
Image colour diversity D, 21
Image colour resolution COLRES, 21
Image extent E , 17
Image file format

.BMP, 37

.GIF, 39

.JPG, 43

.PNG, 41

.TIF, 42
Image height H , 16
Image location resolution LOCRES, 20
Image scan sequence, 18
Image width W , 17
Intensities, 15

L
Light sources, 15
Lightness L∗, 29
Location transformation

cropping, 46
dilating, 49
framing, 47
inverting, 59
reflecting, 54
rotating, 55
shearing, 57
translating, 53

M
Magnifying, 31
Microsoft Paint, 20, 23
Mid-grey, 29
Modelling objects, 31

Munsell, 5

N
Natural Colour System (NCS), 6
Neutral colour balance, 119
Neutral palette

N2, 68
N256, 68
N3, 68
N4, 68
N5, 68
N6, 68

Neutral palettes, 22
Neutrals (R = G = B), 15
Numpy, 19

P
Paints, 7
Palette

P2, 63
P3, 63
P4, 63
P5, 63
P6, 63

Palettes, 21
Perception, 1
Photographs, 10
Pictures, 8
Pixel colour, 17
Pixel location, 18
Pixel pitch, 20, 30, 31
Pixels, 15
Printing

CMYK colour space, 97
colour diversity, 100
colour resolution, 100
dot density 0-100 percent, 99
fixed dot pitch N∗, 99
fixed line length L∗, 99
fixed page length M∗, 99
halftoning, 97
inks, 97
location resolution, 99
subtractive filtering, 97
undercolour-removal, 97
viewing trigonometry, 100

Printing inks, 11
Projecting 3D to 2D, 32
Python, 19, 23
Python Imaging Library (PIL), 19

Index 143

S
Scanner, 31
Scipy, 19
Scripts

pyanalyA, 106
pyanbafr, 130
pybala, 121
pychagam, 90
pycrop, 46
pycrsim, 24
pycuf6, 27
pydilate, 49
pydownup, 50
pyframe, 48
pyhalft, 73
pyinvert, 60
pymute, 81
pyneut, 68
pyopsh, 19
pypale, 63
pyreflect, 55
pyrotate, 56
pyshear, 59

pytranslate, 53, 119
pytrcog, 78
pytrsp, 84

Snellen acuity, 93
Specific colour transformation, 84
Spectral Power Distribution (SPD), 4
sRGB, 15
sRGB cube model, 16
Statistical analysis of colour, 103
Step S in colour space, 21

T
Tkinter, 19

U
Unsatisfactory colour doctrines, 119

V
Variables red green blue, 15

	Preface
	Contents
	1 Colour Environments
	1.1 The Many Meanings of Colour
	1.2 Everyday Seeing
	1.3 The Science of Seeing
	1.4 Measuring Colour
	1.5 Manufacturing Colour Materials
	1.6 Ornamenting
	1.7 Picturing
	1.8 Photographing
	1.9 Printing
	1.10 Digital Imaging
	References

	2 Digital Imaging Fundamentals
	2.1 Digital Image
	2.2 sRGB Colour Space
	2.3 Numerical Representation
	2.4 Scan Sequence
	2.5 Computer Processing of Images
	2.6 Location Resolution
	2.7 Colour Resolution
	References

	3 Creating a Digital Image
	3.1 Creating by Image Editor
	3.2 Creating by Program
	3.3 Creating by Camera
	3.4 Creating by Scanner
	3.5 Creating by Modelling
	3.6 Hijacking an Image Created Elsewhere
	References

	4 Storing a Digital Image
	4.1 Storing an Image as a File
	4.2 Image File
	4.3 File Format .BMP
	4.4 File Format .GIF
	4.5 File Format .PNG
	4.6 File Format .TIF
	4.7 File Format .JPG
	References

	5 Transforming Image Locations
	5.1 Location Transformations
	5.2 Cropping
	5.3 Framing
	5.4 Dilating
	5.5 Translating
	5.6 Reflecting
	5.7 Rotating
	5.8 Shearing
	5.9 Inverting
	References

	6 Transforming Image Colours
	6.1 Colour Palettes
	6.2 Neutral Palettes
	6.3 Halftone Palettes
	6.4 General Colour Shifts
	6.5 Muting Colours
	6.6 Specific Colour Substitution
	References

	7 Displaying an Image
	7.1 Display Screen
	7.2 Display Location Resolution
	7.3 Display Colour Resolution
	7.4 Perceptually Equal-Step Scales
	7.5 Display Viewing Environment
	References

	8 Printing an Image
	8.1 Subtractive Printing
	8.2 Location Resolution
	8.3 Colour Resolution
	8.4 Viewing Environment
	References

	9 Analysing Image Colour
	9.1 Image Colour Distribution
	9.2 Constructing a Colour Scheme Table
	9.3 Constructing a Colour Scheme Bar Graph
	9.4 Conditioning the Colour Scheme
	9.5 Scripts for a Colour Scheme
	9.6 Colour Scheme Examples
	Reference

	10 Balancing Image Colour
	10.1 Neutral Colour Balance
	10.2 Balancing by Changing Colours
	10.3 Script for Balancing by Changing Image Colours
	10.4 Examples of Balancing by Changing Colours
	10.5 Balancing by Adjoining a Frame
	10.6 Examples of Balancing by Adjoining a Frame
	10.7 Why Balance?
	References

	Index

