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Abstract  Ascorbate peroxidases (APXs) are, in general, photosynthetic eukaryote-
specific enzymes, which catalyze the reduction of H2O2 using ascorbate as an elec-
tron donor. Considering the very low affinity of ascorbate with H2O2, the acquisition 
of APX was certainly an important event, allowing plants to use ascorbate for H2O2 
metabolism. This also provides a plausible explanation for why plants accumulate a 
massive amount of ascorbate because this substrate is also required for stabilizing 
fragile APX enzymes (particularly chloroplastic isoforms). In higher plants, APXs 
are distributed in the cytosol, mitochondria, chloroplasts (both stroma and thylakoid 
membrane), and peroxisomes to modulate organellar and cellular levels of H2O2. 
Despite its potential toxicity, H2O2 is a relatively stable form of a reactive oxygen 
species, and consequently it can act as a key signaling molecule for plant stress 
responses. From this point of view, APXs also have a dual role, being antioxidant 
enzymes and H2O2 signaling regulators, and their balance is crucial for fine-tuning 
stress responses. In this chapter, we describe the physiological roles of APX iso-
forms in plants by overviewing the findings of biochemical, physiological, and 
genetic studies.

Keywords  Ascorbate peroxidase · Oxidative stress · Oxidative signaling · Redox 
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1  �Introduction

Suboptimal growth conditions caused by environmental changes, such as light, 
drought, and temperature, lead to yield losses in crops. Under these environmental 
stresses, enhanced production of reactive oxygen species (ROS) originates from 
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photosynthesis, respiration, and photorespiration, or through several oxidases 
(Mittler et  al. 2004; Shigeoka and Maruta 2014). ROS are potentially cytotoxic 
molecules that can oxidize any cellular component, causing oxidative damage. 
Among ROS, H2O2 is a relatively stable form and poorly oxidizes cellular compo-
nents, such as nucleic acids, proteins, sugars, and lipids, with some exceptions (e.g., 
cysteine is a good target for this ROS). Thus, H2O2 itself is not very toxic for plants, 
as well as for other organisms (Mittler 2017). In the presence of free iron, however, 
the Fenton reaction occurs and converts H2O2 to a hydroxyl radical (OH•), which is 
the most reactive form of ROS and oxidizes any component randomly and rapidly 
(Mittler 2017). The very short half-life of OH• (approximately 1 ns) indicates that 
the selective scavenging of this ROS is impossible in cells. Strict control of H2O2 
levels is therefore essential in the prevention of oxidative damage from OH•.

It is well known that higher plants accumulate a large amount of ascorbate. The 
high accumulation occurs mainly in photosynthetic tissues, such as leaves. Because 
these tissues are the main targets of light-dependent oxidative stress (photooxidative 
stress) (Asada 1999), it is easy to imagine that ascorbate plays a key role in protect-
ing cells from photooxidative damage. Although ascorbate is indeed a powerful 
antioxidant, this chemical itself does not efficiently interact with H2O2. Acquisition 
of ascorbate peroxidases (APXs), which convert H2O2 to water using ascorbate as 
an electron donor, during evolution has allowed plants to use ascorbate for H2O2 
metabolism (Gest et al. 2013). In higher plants, APXs are distributed in the cytosol, 
chloroplasts, mitochondria, and peroxisomes (Mittler et  al. 2004; Maruta et  al. 
2016), together with several layers of the ascorbate recycling system that supplies 
ascorbate for the APX reaction (Gallie 2013). The antioxidant ability of ascorbate in 
plant cells has been maximized by the evolution of ascorbate metabolism (Gest 
et al. 2013).

For the last few decades, physiological function of APXs, as well as that of other 
antioxidant enzymes, was analyzed based only on the oxidative stress theory, in 
which ROS are only cytotoxic molecules. However, it is now widely accepted that 
ROS, especially H2O2, have another face, functioning as signaling molecules to con-
trol a diverse range of physiological processes, such as stress responses, growth, and 
development. From this point of view, APXs also play a dual role, being antioxidant 
enzymes and H2O2 signaling regulators, and their balance is crucial for fine-tuning 
stress responses. In this chapter, we describe the physiological roles of APX iso-
forms in plants by summarized the findings of biochemical, physiological, and 
genetic studies.

2  �Distribution of APX Isoforms in Plant Cells

APXs are heme peroxidases and members of Class I non-animal peroxidases, which 
also include cytochrome c peroxidases (CCPs) and bacterial catalase peroxidases 
(CPs) (Welinder 1992; Passardi et  al. 2007). APXs are only found in plastid-
containing organisms with some exceptions (Teixeira et  al. 2004; Passardi et  al. 
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2007; Nedelcu et al. 2008). As supported by genome-sequencing studies (Passardi 
et al. 2007), no APX gene has ever been found in cyanobacteria. In contrast, most 
eukaryotic algae analyzed possessed more than one APX gene (Maruta et al. 2016). 
Two types of hybrid peroxidases, atypical APX-CCP hybrid A1 and A2, were found 
in non-photosynthetic kinetoplastids and photosynthetic euglenids, respectively 
(Zámocký et al. 2014; Ishikawa et al. 2010). Mono-functional plant APXs are con-
sidered evolutionary descendants of hybrid A1, and they evolved in parallel with 
hybrid A2 (Zámocký et al. 2014).

All APX genes are nuclear encoded (Mittler et al. 2004). In higher plants, APX 
isoforms are distributed in the cytosol (cAPX), chloroplasts (chlAPX), mitochon-
dria (mitAPX), and peroxisomes (pAPX), which are key sites for H2O2 production 
and/or scavenging (Fig. 1) (Shigeoka et al. 2002). Two chloroplastic isoforms, stro-
mal sAPX and thylakoid membrane-bound tAPX, are found in chloroplasts of land 
plants (Maruta et al. 2016). They form the water–water cycle in a powerful ROS 
regulation system (see below; Asada 1999). The existence of an additional isoform 
in the chloroplast lumen (e.g., Arabidopsis At-APX4/TL29) was proposed in 
Arabidopsis (Kieselbach et al. 2000). The proposed isoform is highly conserved in 
other plant species, but the protein lacks some amino acid residues that are essential 
for APX activity. Indeed, its knockout has no effect on APX activity (Granlund et al. 
2009), indicating TL29 is not a functional APX. This is apparently supported by a 
structural analysis (Lundberg et al. 2011).

cytosol

chloroplast

peroxisome

mitochondrion

At-APX1

At-sAPX

At-tAPX
At-sAPX

At-APX3
At-APX5

At-APX2

Fig. 1  Distribution of APX isoforms in Arabidopsis leaf cells. At-APX1 and 2 are cytosolic iso-
forms, while At-APX3 and 5 are peroxisomal. At-sAPX is a dual-targeting protein in both the 
chloroplast stroma and mitochondrial matrix. At-tAPX is solely distributed in chloroplasts and 
attached to thylakoid membrane. Size of red circles indicate expression levels of the enzymes. 
Expression level of At-APX2 is very low under normal growth conditions, but highly induced by 
high light
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Previously, Arabidopsis was reported to have nine APX genes (Mittler et  al. 
2004), i.e., At-APX1–7, At-sAPX, and At-tAPX. Among them, At-APX6 and 
At-APX4 lack Arg-172, which is essential for the efficient use of ascorbate (Bursey 
and Poulos 2000), and At-APX6 is now annotated as an APX-related (APX-R) pro-
tein (Lazzarotto et al. 2011). In addition, At-APX7 (At1g33660) is described as a 
pseudogene in current databases, such as The Arabidopsis Information Resource 
(TAIR). Therefore, Arabidopsis has six functional APX genes. At-APX1 and 2 are 
cytosolic, whereas At-APX3 and 5 are peroxisomal (Mittler et al. 2004). At-tAPX is 
distributed throughout the thylakoid membrane although At-sAPX is a dual-
targeting protein in both the chloroplast stroma and mitochondrial matrix (Chew 
et al. 2003; Maruta et al. 2016). In contrast to Arabidopsis, rice plants have 8 APX 
isoforms (Teixeira et al. 2004, 2006). Os-APX5 and Os-APX6 are targeted solely to 
mitochondria, and Os-APX7 (sAPX) and Os-APX8 (tAPX) to chloroplasts (Xu 
et al. 2013). Our recent comprehensive mining of APX genes in plant species whose 
genomes are already sequenced indicated that all monocot plants may have APX 
isoform(s) solely targeted to the mitochondria (Maruta et  al. 2016). Although 
Physcomitrella patens APX (Pp-APX1), which is the most orthologous to 
Arabidopsis sAPX, is only targeted to chloroplasts, Picea glauca APX (Pg-APX1) 
is dual-targeted to both chloroplasts and mitochondria (Xu et al. 2013). Based on 
these findings, it was suggested that the dual-targeting ability of APX developed 
after the split between Physcomitrella patens and Picea glauca and was subse-
quently lost in rice following monocot divergence (Xu et al. 2013).

3  �Expression and Regulation

3.1  �Transcriptional Regulation

Cytosolic APXs are highly responsive to environmental stimuli, especially high 
irradiance, whereas other isoforms are not (Yoshimura et al. 2000). Expression of 
the Arabidopsis At-APX2 gene has been thoroughly analyzed, and it is the represen-
tative stress marker gene. The first important finding was that high light-induced 
At-APX2 is largely affected by the redox state of the photosynthetic electron trans-
port (PET) chain (Karpinski et al. 1997). The PET inhibitors, 3-(3,4-dichlorophenyl)-
1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone 
(DBMIB) block reduction and oxidation, respectively, of the plastoquinone pool. 
High light-induced At-APX2 expression is almost completely inhibited by DCMU, 
whereas its expression is enhanced by DBMIB. This is also the case in the tobacco 
cAPX gene (Yabuta et  al. 2004). These findings indicate that the plastoquinone 
redox state acts as a retrograde signal from chloroplasts to the nucleus for the regu-
lation of At-APX2 expression under high irradiance. Exogenous application of glu-
tathione also suppresses At-APX2 expression under high light intensity (Karpinski 
et  al. 1997). Identification of an Arabidopsis regulator of APX2 1–1 (rax1–1) 
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mutant, an allele of gamma-glutamylcysteine synthetase 1, consolidated the role of 
glutathione as a mediator of At-APX2 induction (Ball et al. 2004). These signals are 
associated with photoelectrophysiological signaling (PEPS) in a light wavelength-
specific manner (Szechyńska-Hebda et al. 2010).

Another Arabidopsis mutant, altered expression of APX2 (alx8), provides an 
alternative retrograde signal from chloroplasts (Rossel et al. 2006). The ALX8 gene 
encodes SAL1 that dephosphorylates 3′-phosphoadenosine 5′-phosphate (PAP) in 
chloroplasts. The PAP accumulated in chloroplasts of sal1 mutants can be trans-
ferred to the nucleus to inhibit 5′ to 3′ exoribonucleases (XRNs) that modulate 
thousands of mRNA expressions (Estavillo et al. 2011). This regulation is associ-
ated with the abscisic acid (ABA) pathway, and alx8 as well as other sal1 mutants 
accumulate ABA, being highly tolerant to drought stress (Rossel et  al. 2006). 
Considering the fact that ABA is essential for At-APX2 induction under high light 
intensity (Galvez-Valdivieso et al. 2009), a plausible explanation is that high irradi-
ance stimulates the SAL1-PAP pathway, which in turn, activates ABA signaling for 
the gene expression; however, whether the SAL1-PAP pathway is active in wild-
type plants exposed to high light intensity requires further validation.

H2O2 also acts as a signal for the regulation of At-APX2 expression. Pre-
infiltrating leaves with catalase, but not with superoxide dismutase, strongly inhibits 
the gene expression under high light intensity (Karpinski et al. 1999). Considering 
that catalase proteins cannot pass through the plasma membrane, the strong inhibi-
tion of At-APX2 expression must be caused by a decrease in extracellular H2O2 
levels. This is clearly supported by the finding that NADPH oxidases, which pro-
duce ROS in the apoplast, are essential for the full expression of At-APX2 under 
high light intensity (Bechtold et al. 2008). A recent pioneering work using HyPer2, 
a genetically encoded fluorescent H2O2 sensor, demonstrated that photosynthesis-
produced H2O2 is directly transferred from chloroplasts to nuclei and, then, induces 
tobacco cytosolic APX expression under high light stress (Exposito-Rodriguez et al. 
2017). Thus, both intracellular and extracellular H2O2 can activate cAPX expression, 
possibly through the redox modification of heat-shock transcription factors (Jung 
et al. 2013).

Taken together, a variety of signals have been found to regulate cytosolic APX 
expression under high light intensity although it is still unclear how these signals are 
integrated or coordinated to fine-tune the gene expression in plant cells.

3.2  �Post-transcriptional Regulation

In some plant species, sAPX and tAPX are encoded by a single gene, which pro-
duces both isoforms by alternative splicing in a tissue-specific manner. This regula-
tion occurs in tobacco, spinach, pumpkin, and ice plants (Ishikawa and Shigeoka 
2008). In the case of tobacco and spinach, chloroplastic APX pre-mRNA produces 
four types of mRNA variants, one tAPX and three sAPX forms (sAPX-I, -II, and -III). 
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The ratio of the level of sAPX mRNAs to tAPX is close to 1 in leaves, whereas the 
ratio in roots is largely elevated because of the increase in sAPX-III and decrease in 
tAPX (Yoshimura et al. 2002). The splicing regulatory cis element (SRE) sequence 
located between exons 12 and 13 of the chlAPX gene is required for tissue-specific 
splicing efficiency. Gel-shift assays revealed that SRE strongly interacts with 
nuclear protein(s) extracted from leaves, but not with those from roots (Yoshimura 
et al. 2002). Thus, SRE is anticipated to act as a splicing enhancer that regulates the 
tissue-specific alternative splicing of chloroplastic APX pre-mRNA.

3.3  �Post-transcriptional Regulation

In addition to transcriptional regulation, cytosolic APX is also regulated at the post-
translational level. This involves the redox modification of Cys-32, which is highly 
conserved in APXs. Nitric oxide and S-nitrosoglutathione react with Cys-32 of 
cytosolic APX to form S-nitrosylation. This modification has a positive effect on 
cytosolic APX activity in Arabidopsis (Yang et al. 2015), but an inhibitory effect in 
tobacco Bright Yellow-2 cells (de Pinto et al. 2013). S-nitrosylation also occurs in 
Cys-49 of At-APX1 although the modification has no effect on enzyme activity 
(Yang et al. 2015). Similarly, S-sulfhydration by hydrogen sulfide occurs at Cys-32 
and activates APX activity (Aroca et al. 2015). This cysteine is a target of thioredox-
ins (Trxs), which are ubiquitous small disulfide oxidoreductases. Reduction of cyto-
solic APX by Trxs, as well as by reducing chemicals (such as DTT and glutathione), 
inactivates the peroxidase activity (Gelhaye et al. 2006).

One of characteristics of chloroplastic APXs is that these enzymes are extremely 
sensitive to H2O2 under low ascorbate levels compared to cytosolic and peroxisomal 
isoforms (Chen and Asada 1989; Miyake and Asada 1996). The half-inactivation 
time of chloroplastic APXs is 15 s when the concentration of ascorbate is less than 
10 μM, whereas that of the cytosolic enzyme is more than 40 min (Kitajima 2008). 
The irreversible cross-linking of heme to the distal Trp-41 and radical formation in 
Cys-31 and Cys-125 are involved in this process. It should be noted that these amino 
acids are generally conserved in the stable cytosolic isoform (see Maruta et  al. 
2016). An insertion of amino acids specific to chloroplastic isoforms (chloroplastic 
domain 2) moves a loop structure, which is in the vicinity of the propionate side 
chains of heme, away from the propionate side chains. This structural property may 
facilitate the cross-linking process (Kitajima 2008). Triple mutations in the amino 
acids described above and deletion of the chloroplastic domain 2 have improved the 
H2O2 sensitivity of tobacco sAPX (Kitajima et  al. 2008, 2010). Consequently, a 
rapid inactivation of chloroplastic APXs is observed in plants exposed to photooxi-
dative stress (Miyake et al. 2006; Yoshimura et al. 2000). However, there have been 
difficulties with the elucidation of the exact relationship between the inactivation of 
these enzymes and ascorbate levels in vivo (see Maruta et al. 2016). It is possible 
that another unknown mechanism(s) may be involved in the inactivation process.
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tAPX activity in vivo was also recently shown to be inactivated through direct 
phosphorylation by a specific kinase in wheat during pathogen infections (Gou et al. 
2015). Indeed, phosphoproteomic studies have successfully identified Arabidopsis 
tAPX and sAPX as phosphorylated proteins (for example, Roitinger et al. 2015). A 
heme-containing APX-related (APX-R) protein (also referred to as At-APX6  in 
Arabidopsis) is located in chloroplasts and mitochondria, in which it physically 
interacts with APX, possibly to modulate its activity (Lazzarotto et al. 2011).

4  �Role as Antioxidant Enzymes

4.1  �Chloroplastic APXs

The APX reaction in chloroplasts is coupled with the photosynthetic electron trans-
port chain to form the water–water cycle (Fig. 2). In this cycle, electrons excised 
from water in photosystem II (PSII) are transferred to oxygen by PSI, resulting in 
the formation of O2

− (Asada 1999). Membrane-attached copper/zinc superoxide 
dismutase (Cu/Zn-SOD) converts O2

− into H2O2, which is further reduced into water 
by tAPX. Even if they escaped from this system, ROS would be attacked by the 
second layer of ROS scavenging, consisting of iron SOD (Fe-SOD) and sAPX in the 
stroma. The oxidized form of ascorbate generated by the APX reaction is reduced 
by ferredoxin-, glutathione-, and NAD(P)H-dependent pathways. The water–water 
cycle acts as both an antioxidant system and a system for dissipating excess elec-
trons from PET, i.e., an electron sink (Asada 1999).
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Fig. 2  The water–water cycle. Notes: CSD Cu/Zn-SOD, Cyt cytochrome, Fd ferredoxin, FNR 
Fd-NADP+ reductase, FSD Fe-SOD, PC plastocyanin, PQ plastoquinone, PS, photosystem
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Considering the fragile nature of chloroplastic APXs, it was a plausible hypoth-
esis that APX activity in chloroplasts is a bottleneck for plant stress tolerance. This 
has been clearly supported by a number of findings showing that overexpression of 
peroxidases or catalases within chloroplasts results in enhanced stress tolerance in 
plants (Foyer and Shigeoka 2011). For example, overexpression of Escherichia 
coli catalase (KatE) with a chloroplast-targeting signal protects thiol-modulated 
enzymes in the Calvin cycle in tobacco plants, thereby mitigating the inhibition of 
photosynthesis under photooxidative stress (Shikanai et al. 1998; Miyagawa et al. 
2000). One of the major causes of photoinhibition is the inhibition of D1 protein 
translation (Nishiyama et al. 2001). This inhibition is also alleviated in the KatE 
transgenic tobacco under a combination of salt and high light intensity (Al-Taweel 
et al. 2007). Overexpression of spinach tAPX has similar effects on tobacco stress 
tolerance (Yabuta et al. 2002). These lines of evidence strongly indicate that the 
inactivation of APXs is significant for photooxidative damage from abiotic stress 
in plant cells, and further suggested that the loss-of-function mutants of chloro-
plastic APXs should cause severe growth defects or lethality in plants under illumi-
nation (Yabuta et al. 2002).

Nevertheless, researchers have unexpectedly failed to find a “stress-sensitive 
phenotype” among loss-of-function mutants, at least in the laboratory conditions. In 
Arabidopsis mutants lacking sAPX and/or tAPX, the accumulation of H2O2 and 
decrease in PET activity are slightly  pronounced after short-term application of 
high light intensity (more than 1000 μmol photons/m2/s for up to 6 h) (Kangasjärvi 
et al. 2008; Maruta et al. 2010). However, no obvious phenotypic difference was 
found between these mutants and the wild type under short- and even long-term 
application of high irradiance (Giacomelli et  al. 2007; Kangasjärvi et  al. 2008; 
Maruta et al. 2010). A hexaploid wheat mutant S-SV8, which lacks one of three 
tAPX genes, was found to exhibit a growth retardation under mild light stress (Danna 
et al. 2003) although it is unclear whether tAPX-6B is the only gene absent in the 
mutant and responsible for its phenotype.

Compensation by other antioxidant enzyme(s) is a plausible explanation for 
the negligible phenotype of chloroplastic APX mutants under laboratory condi-
tions. A complete double mutant lacking 2CPA and 2CPB, which are chloro-
plastic 2-Cys peroxiredoxins, exhibits growth retardation under a light intensity 
of 160 μmol photons/m2/s, and this phenotype is further facilitated by an addi-
tional defect in At-tAPX (Awad et al. 2015). Arabidopsis chloroplastic glutathi-
one peroxidases (GPX1 and GPX7) also provide an alternative route for the 
scavenging of H2O2 in the water–water cycle (Chang et al. 2009). Other mecha-
nisms are also involved in regulating the production of ROS from photosynthe-
sis. In addition to linear electron transport, cyclic electron transport (CET) 
around PSI via the proton gradient regulation 5 (PGR5)- and chloroplast NADH 
dehydrogenase-like (NDH) complex-dependent pathways largely contribute to 
the formation of a proton gradient across the thylakoid membrane (i.e., low pH 
in the lumen), which activates the xanthophyll cycle to dissipate excess light 
energy as heat (Shikanai 2014).
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4.2  �Cytosolic APXs

The cytosol is not a major site for ROS production. However, from the viewpoint 
of stress sensitivity of knockout mutants, cytosolic APX is likely to play a key role 
in cellular redox regulation. An Arabidopsis apx1 mutant (ecotype Ws) exhibits a 
growth defect even under normal growth conditions, with an altered stomatal 
response and decreased photosynthetic activity because of cellular oxidative dam-
age (Pnueli et al. 2003). These phenotypes might occur in an ecotype-dependent 
manner because our apx1 mutant (ecotype Col-0) grows at wild-type levels under 
similar growth conditions (Maruta et al. 2012a). However, apx1 (Ws) exhibits a 
severe sensitivity to high light intensity, methyl viologen-induced oxidative stress, 
and a combination of drought and heat (Davletova et al. 2005; Koussevitzky et al. 
2008); apx1 (Col-0) is also very sensitive to wounding (Maruta et  al. 2012a). 
Thus, the lack of At-APX1 actually weakens plants against a wide range of 
stresses. Interestingly, oxidation of not only the cytosolic proteins, but also organ-
ellar ones is enhanced in the apx1 mutants during stress (Davletova et al. 2005; 
Maruta et al. 2012a). The cytosol is in cellular compartments across organelles, 
such as chloroplasts, mitochondria, peroxisomes, and the nucleus. Thus, cAPX 
can protect organelles from oxidative stress by preventing H2O2 from flowing into 
one organelle from another. This is known as cross-compartment protection 
(Davletova et al. 2005).

4.3  �Peroxisomal and Mitochondrial APXs

Peroxisomes are considered the most significant site for H2O2 production in C3 
leaves during photorespiration (Foyer and Noctor 2003) and therefore accumulate a 
large amount of catalase to scavenge and regulate H2O2 levels. Physiological impor-
tance of catalase has been demonstrated by knockout mutants of the Arabidopsis 
CAT2 gene, which exhibit a severe bleaching phenotype under photorespiratory 
conditions (i.e., ambient air with high light intensity) (Mhamdi et al. 2012; Queval 
et al. 2007; Vandenabeele et al. 2004). In addition to catalase, APXs are also distrib-
uted in peroxisomes (Yamaguchi et  al. 1995). These peroxisomal isoforms, for 
example, Arabidopsis At-APX3 and At-APX5, have a transmembrane domain with 
which they attach to the peroxisomal membrane, but their catalytic domain faces the 
cytosol (Ishikawa et al. 1998; Shen et al. 2010). Affinities for H2O2 are substantially 
different between catalase and APX, whose Km values for ROS are approximately 
40–600  mM and 10–100  μM, respectively (Mhamdi et  al. 2012; Shigeoka and 
Maruta 2014). Thus, peroxisomal APXs may react with a low concentration of 
H2O2, which escaped from the catalase reaction, to fine-tune the cellular H2O2 lev-
els. Overexpression of peroxisomal APX is likely to enhance plant stress tolerance 
(for example, Wang et al. 1999). In contrast, knockout of At-APX3 had no effect on 
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plant tolerance to various abiotic stresses (Narendra et al. 2006). This might have 
been caused by compensation by catalase or another isoform At-APX5. Physiological 
significance of ascorbate metabolism in peroxisomes was indicated by Eastmond 
(2007), who showed that peroxisomal At-MDAR4 (monodehydroascorbate reduc-
tase) is essential for autotrophic growth although it is unclear if the At-MDAR4 
function is coupled with the APX reaction. In contrast to that of peroxisomal APX, 
the catalytic domain of the MDAR isoform is in the peroxisomal matrix, which 
results in a question regarding how MDHA produced in the cytosol is reduced in the 
peroxisome matrix.

Mitochondria would be a significant site for H2O2 production, at least in non-
photosynthetic tissues, such as roots. Nevertheless, H2O2 metabolism in the organ-
elles and its physiological significance are poorly understood in plants. As 
described above, At-sAPX is a dual-targeting enzyme for both the chloroplast 
stroma and mitochondrial matrix (Chew et al. 2003). However, the knockout of 
the gene had little effect on plant tolerance for oxidative stress (Davletova et al. 
2005; Maruta et al. 2010). Other thiol-dependent peroxidases, such as peroxire-
doxin II F and glutathione peroxidase 6 in Arabidopsis, have been found to func-
tion in the mitochondria.

5  �Role as Redox Signaling Regulators

H2O2 is currently recognized to act as a signal for regulating a wide range of 
physiological processes, including abiotic and biotic stress responses (Apel and 
Hirt 2004; Foyer and Shigeoka 2011; Mittler et al. 2011). Accumulating transcrip-
tome data from plants subjected to oxidative stress or redox mutants, in which one 
or more antioxidant enzymes are knocked out/down, have revealed the existence 
of a production site- and type-specific pathways for ROS signaling (Gadjev et al. 
2006; Vaahtera et  al. 2014; Shigeoka and Maruta 2014; Willems et  al. 2016). 
Although the mode of action of each pathway remains largely unclear, the integra-
tion and crosstalk of multiple pathways in plants have been considered to fine-
tune stress responses. This must be based on the strict spatiotemporal control of 
ROS levels through a diverse set of antioxidant enzymes, including APXs, in vari-
ous cellular compartments.

Because of the dual face of ROS actions, some redox mutants are paradoxically 
more resistant to some circumstances compared to the wild type. One of the clearest 
examples is that the photorespiratory oxidative stress phenotype of the Arabidopsis 
cat2 mutant is largely mitigated by additional mutation in the cytosolic At-APX1 
gene (Vanderauwera et  al. 2011). Specific activation of DNA damage response 
occurs in the cat2 apx1 double mutant (Vanderauwera et al. 2011), probably through 
an interaction between cytosolic and peroxisomal H2O2 signals, leading to the 
stress-tolerant phenotype. A similar paradoxical phenotype is observed in the apx1 
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single mutants, which are highly tolerant to selenium and lead (Jiang et al. 2016, 
2017). These observations clearly show that cAPX plays a key role in balancing the 
dual faces of ROS actions.

cAPX is also involved in plant immunity. Expression of tobacco cAPX is post-
transcriptionally, but not transcriptionally, suppressed upon pathogen infection 
(Mittler et  al. 1998). This has a negative correlation with enhanced ion leakage 
(cell death) and pathogenesis-related 1 (PR1) gene expression. Hypersensitive 
response (HR) during pathogen attack is highly accelerated in transgenic tobacco 
plants with decreased cAPX expression (Mittler et al. 1999). There is also increas-
ing experimental evidence for the involvement of chloroplastic APXs in plant 
immunity. Phosphorylative inactivation of tAPX through protein kinase wheat 
kinase start 1.1 (WKS1.1) occurs in wheat upon pathogen attack, resulting in 
enhanced H2O2 levels (Gou et  al. 2015). In Arabidopsis, knockdown of tAPX 
enhances the accumulation of salicylic acid and subsequent transcriptional activa-
tion of defense-related genes without the application of any stress (Maruta et al. 
2012b). These findings clearly indicate that cytosolic and chloroplastic APXs regu-
late immune responses by regulating H2O2 levels.

To identify chloroplastic H2O2-responsive genes, a conditional system for 
tAPX silencing in Arabidopsis has been developed using an estrogen-inducible 
RNAi method (Maruta et al. 2012b). Although no obvious oxidative stress symp-
tom was observed in the tAPX-silenced plants, 365 and 409 genes were at least 
two-fold (P < 0.05) up- and down-regulated, respectively, in response to tAPX 
silencing. Interestingly, these genes rarely included typical marker genes for oxi-
dative stress, which have been identified by comparing the transcriptomic data of 
several ROS-related mutants and plants treated with ROS-producing agents. 
Indeed, these genes only slightly overlapped with genes whose expression was 
affected by cytosolic and peroxisomal H2O2 (i.e., in the apx1 and cat2 mutant, 
respectively) (Maruta et  al. 2012b: Queval and Foyer 2012). Classification and 
comprehensive analysis of these genes have indicated a regulatory role for tAPX 
in metabolic pathways related to abiotic stress acclimation in plants. For example, 
tAPX silencing enhances γ-amino aminobutyric acid (GABA) and anthocyanin 
metabolisms, which may protect chloroplastic APXs mutants from photooxida-
tive stress (Maruta et al. 2013, 2014).

How does chloroplast-produced H2O2 act as signal to modulate expression of 
nuclear genes? A recent finding using HyPer2 revealed the mode of action of 
chloroplastic H2O2 signaling  in Nicotiana benthamiana epidermal cells under 
high irradiation. Exposito-Rodriguez et  al. (2017) found that chloroplast-pro-
duced H2O2 is directly transferred to nuclei, avoiding the cytosol. Nuclear H2O2 
accumulation and subsequent high light-responsive gene expression were criti-
cally attenuated by sAPX overexpression or DCMU treatment, but not by cAPX 
overexpression. This clearly indicates the involvement of chloroplastic APXs in 
chloroplast-to-nucleus H2O2 signaling.
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6  �Conclusion and Future Perspectives

More than three decades have passed since the APX enzyme was first characterized 
in Euglena (Shigeoka et al. 1980). During this period, basic information on APX 
isoforms in higher plants has accumulated in the context of their enzymological 
properties, distribution, and functions as antioxidant enzymes. However, this is 
largely restricted to model plants, such as Arabidopsis and rice, and there are still 
more questions than answers. For example, the physiological significance of organ-
ellar isoforms in plant stress tolerance remains largely unclear. Furthermore, the 
validation of APXs as signaling modulators has just started. H2O2 has multiple sig-
naling roles in a production site-specific manner. Because their crosstalk is believed 
to fine-tune plant stress responses, it will be interesting to clarify how APX isoforms 
functionally interact with each other under stressful conditions to achieve spatio-
temporal tuning of H2O2 signaling pathways.
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