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Abstract In plants, l-ascorbic acid (AsA) is a functional enzyme cofactor, a major 
antioxidant, and a modulator of several biological processes including photosynthe-
sis, photo-protection, cell wall growth and expansion, tolerance to environmental 
stresses, and synthesis of other molecules. One of the major roles of AsA in plants 
is detoxifying reactive oxygen species (ROS) such as singlet oxygen or peroxide 
radicals. ROS are produced when plants undergo biotic or abiotic stresses and if 
accumulated in high concentrations, can cause damage to macromolecules such as 
nucleic acids, membrane lipids, and proteins. Until now, little study has been done 
on ascorbate metabolism in liverworts. Bryophytes (liverworts, hornworts, and 
mosses) comprise the earliest diverging land plant lineages that came about approx-
imately 360–450 million years ago between the Ordovician and Devonian periods. 
The ancient liverwort Marchantia polymorpha is an emergent model system specifi-
cally suited to use in the study of the evolution of different biosynthetic pathways. 
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In this chapter, basal levels of both reduced and oxidized AsA in M. polymorpha are 
reported. Comparative and functional genomics experiments in combination with 
precursor feeding experiment are also discussed in order to provide valuable insights 
on the evolution of the AsA biosynthetic pathways.

Keywords Marchantia · Liverworts · Vitamin C · Ascorbic acid · Ascorbate 
pathways · Pathway evolution

1  Introduction

There are many roles that l-ascorbic acid (AsA, a.k.a. vitamin C) plays in the bio-
chemistry of plants and of them, two are especially important to study in modern 
plant biotechnology: (1) The antioxidant properties of AsA and (2) AsA’s contribu-
tions as a modulator of biological processes including photosynthesis, photo- 
protection, cell wall growth and expansion, tolerance to environmental stresses, and 
synthesis of other molecules (Smirnoff and Wheeler 2000; Gest et al. 2013). The 
former of these important functions is in detoxifying reactive oxygen species (ROS), 
both in enzymatic and nonenzymatic detoxification.

Reactive oxygen species are produced in response to various stresses, biotic and 
abiotic alike, and serve as messengers for plants to indicate that a change in plant 
biochemistry is necessary. ROS play a key role in cell signaling processes such as 
growth, development, response to biotic and abiotic stresses, and apoptosis; how-
ever, increased levels cause excessive oxidative stress to macromolecules such as 
membrane lipids, proteins, and nucleic acids, eventually leading to cellular damage 
(Bailey-Serres and Mittler 2006). This role in cell signaling is especially apparent in 
periods with prevalent drought and salinity stress as ROS have a dual role in sensing 
cellular redox state and in retrograde signaling (Golldack et al. 2014). It has been 
proposed that different abiotic stresses result in different ROS signatures that deter-
mine the specificity of the acclimation response and help tailor the plant to the stress 
situation (Choudhury et al. 2017).

Liverworts, known collectively with hornworts and mosses as Bryophytes, are the 
earliest diverging land plant lineages arising approximately 360–450 million years 
ago between the Ordovician and Devonian periods (Bowman et al. 2016). Species of 
the genus Marchantia are liverworts that have recently emerged as excellent model 
systems specifically suited to study the evolution of different biosynthetic pathways, 
including the various routes to AsA. The genus Marchantia has been used as a model 
for almost two centuries (Bowman 2016) and was used in early genome sequencing 
of chloroplasts (Ohyama et al. 1986) and mitochondria (Oda et al. 1992). Marchantia 
has also been used for sex chromosome sequencing in plants with haploid systems, 
including gene organization of the Y chromosome (Yamato et al. 2007) and in the 
study of sex differentiation and determination (Oda et al. 1992).

The interest in Marchantia could be accredited in part to its relatively small 
genome size (230 Mb) with only 20,000 protein coding genes and the fact that gene 
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families present on it consist of mostly fundamental components (Berger et  al. 
2016). Liverworts are also being utilized as bioindicators in an increasing number 
of environmental monitoring programs due to their tolerance to abiotic stresses in 
different environments (Paciolla and Tommasi 2003). There is more than enough 
rationale warranting further study on the evolution of biosynthetic pathways in 
Marchantia polymorpha, especially in the context of abiotic stress on plants.

In this chapter, basal levels of both reduced and oxidized AsA were reported in 
M. polymorpha. Bioinformatics approaches to confirm the presence of genes and 
transcripts of ascorbate biosynthetic and recycling genes in the Marchantia genome 
and transcriptome are also reported. Precursor feeding studies in Marchantia in vitro 
cultures are discussed. We show evidences suggesting that l-galactose, myo- inositol, 
and l-gulono-1,4-lactone are precursors of ascorbate in Marchantia. Once com-
bined, this data indicates that Marchantia possesses the metabolic machinery to 
synthesize ascorbate using more than one pathway.

2  Effect of Exogenous Ascorbate in the Phenotype 
of Marchantia Cultures

Levels of ascorbate in plants and animals vary greatly over several orders of magni-
tude (Pauling 1970; Herrero-Martínez et al. 1998; Gest et al. 2013; Akram et al. 
2017). In plants, concentrations of AsA as low as 0.1–0.6 micromol per gram fresh 
weight (μmol/g FW) have been reported in the moss Hypnum plumaeforme (Sun 
et al. 2010) while levels as high as 170 μmol/g FW have been found in Camu Camu 
(Myrciaria dubia) fruits (Justi et al. 2000; Gest et al. 2013). Variation in AsA levels 
is also observed within members of the same genus or species. For example, 
Solanum pennellii contains five times more AsA than its domesticated relative 
Solanum lycopersicum (Stevens et al. 2007; Gest et al. 2013).

Information on the role of AsA in basal land plant lineages is very scarce and 
dominated mainly by reports on the determination of concentration levels for a 
reduced number of species. In the case of M. polymorpha, concentration levels of 
AsA fall within the low range 0.3  μmol/g FW (Paciolla and Tommasi 2003). 
Experimental evidence indicates that AsA in M. polymorpha is involved in the 
removal of hydrogen peroxide but the pool of AsA levels upon desiccation decline 
rapidly (Paciolla and Tommasi 2003). Interestingly, it has been reported that M. 
polymorpha methanol extracts exhibit antioxidant properties and can reduce the 
formation of free radicals, ROS, and oxidative stress in HEK293 human embryonic 
kidney cell lines exposed to lead (Saputra et al. 2016).

In order to characterize the effects of exogenous AsA on the development of 
M. polymorpha gametophytes, we established hydroponic cultures that allowed us 
to provide a constant supply of AsA over the course of the experiments. Gemmae 
from in vitro cultured M. polymorpha plants (accession Takaragaike-1) were grown 
in hydroponic cultures (half-strength Gamborg media supplemented with 1% sucrose, 
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1% agar, and different concentrations of AsA) in a growth chamber at 22 °C under 
an 18 h light/6 h dark photoperiod regime. First, gemmae were grown in hydroponic 
cultures without AsA for 7 days in order to allow for the establishment of the 
 dorsoventral pattern, the germination of rhizoids, and the proper development of 
thalli. On the eighth day after culture, the media was supplemented with different 
concentrations of AsA that were applied at the same time every 24 h. We docu-
mented the development of each individual plant upon exposure to five different 
concentrations (15, 30, 45, 60, and 75 μM) of AsA. Concentrations as low as 45 μM 
induced cell death as evidenced by the presence of brown patches located around 
the apical meristems of the gemmae (also known as apical notches) (Fig. 1). In addi-
tion to cell death, exposure to higher concentrations of AsA (from 60 μM to above) 
induces photo-bleaching and a reduction in growth rate. In sharp contrast, 15 and 
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Fig. 1 Exogenous AsA induces dramatic effects on Marchantia polymorpha development. 
Marchantia gemmae germinated in hydroponic cultures were grown for 7 days under optimal con-
ditions and then fed with increasing concentrations of AsA during (15, 30, 45, 60, and 75 μM) 
14 days (14D). AsA was added to the hydroponic cultures every 24 h and development of thalli was 
recorded every 24 h. Relevant phenotypes at 2 (D2), 4 (D4), 6 (D6), 8 (D8), 12 (D12), and 14 
(D14) days are shown. Phenotypically noticeable effects were observed in plants grown under 
45 μM of AsA for 4 days (D4) as evidenced by the arrest of growth, the presence of brown patches 
around the apical notches and subsequent chlorosis. In sharp contrast, plants exposed to 15 and 
30 μM showed increased growth relative to control plants grown under the same conditions but in 
the absence of AsA
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30 μM AsA treatments had positive effects on plant growth. We performed similar 
experiments on developing sporelings and observed that sporelings are more  tolerant 
to AsA (Fig. 2).

3  Interrogating the Marchantia polymorpha Genome 
to Identify Ascorbate Biosynthetic and Recycling Genes

In order to gain insight into the evolutionary history of the genetic machinery 
involved in the biosynthesis and recycling of AsA in land plants, we used the well- 
characterized genetic framework from Arabidopsis thaliana as a template to inter-
rogate publicly available Embryophyte genomes and transcriptomes from the 
Phytozome database (Goodstein et  al. 2012), including the recently released 
Marchantia polymorpha genome (phytozome.org) (Bowman et al. 2017). First, we 
used the repertoire of AsA-related genes from A. thaliana to screen the M. polymor-
pha genome and transcriptomes available from Phytozome, the Joint Genome 
Institute genome- sequencing project (http://www.jgi.doe.gov/) and the Sequence 
Read Archive (SRA) from the National Center for Biological Information (NCBI) 
(https://www.ncbi.nlm.nih.gov/sra), using a combination of reciprocal BLAST 
(Altschul et al. 1990; Gish and States 1993) and conserved domains-based sequence 
similarity searches using Pfam (Finn et al. 2016) and HMMER (Finn et al. 2011). 
For phylogenetic inference we employed the Maximum Likelihood (ML) criterion 
and selected the substitution model that best fit our data from the Akaike Information 
Criterion (AIC) given its close proximity to the ML method (Anisimova and Gascuel 
2001). The AIC estimates the expected distance between the model and the True 
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Fig. 2 Marchantia sporelings tolerate higher concentrations of exogenous AsA relative to devel-
oping thalli. Marchantia spores germinated directly in hydroponic cultures supplemented with 
increasing concentrations of AsA (30, 75, and 100 μM) during 4 weeks (4 W). Development of 
sporelings was recorded every 24 h and relevant phenotypes are shown after 2 (2 W) and 4 (4 W) 
weeks. Spores germinated in 75 μM show germination rates and growth patterns at 2 W and 4 W 
similar to that observed in control spores grown under the same conditions but in the absence of 
AsA. Similar to that observed in developing thalli, developing spores showed increased growth 
relative to control plants 2 W after exposure. Spores grown at 100 μM of AsA did germinate and 
develop for 2 W but ultimately turned chlorotic and died at 4 W
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Value (deLeeuw 1992) and therefore considers how well the model does fit to the 
data and its associated variance. The AIC value was calculated using the Prottest 
software (Darriba et al. 2011) which gave us the best phylogenetic model. With the 
smallest AIC, the best model of amino acid replacement to infer protein evolution 
of our data is Whelan and Goldman, which uses an approximate maximum- 
likelihood method. Branch support was calculated with the approximate Likelihood 
Ratio Test (aLRT) and the SH (Shimodaira–Hasegawa) correction (Shimodaira 
2002) with the software PhyML 3.0 (Guindon et al. 2010). While aLRT calculates 
verisimilitude logarithms almost as conventional LRT, the branch support made 
with aLRT-SH has the advantage of being faster and requiring less computational 
time relative to Bootstrap. The results could differ between both approaches as a 
consequence of small samples or different levels of divergence (Anisimova and 
Gascuel 2006). Manual inspection and editing of trees was performed with Geneious 
version 10.2.3. Based on our phylogenetic inferences, we found homologs for all 
Arabidopsis genes involved in the biogenesis and recycling of AsA except for two 
regulators of the pathway, namely ASCORBATE MANNOSE/GALACTOSE 
PATHWAY REGULATOR 1 (AMR1-AT1G65770) and ETHYLENE RESPONSE 
FACTOR 98 (ERF98-AT3G23230) (reviewed in Lisko et al. 2014) (Fig. 3).

Similar to what has been reported for other gene families, the great majority of homol-
ogous AsA-related gene families present in the Marchantia genome exhibit a reduced 
number of members per family relative to most of the sequenced genomes from land 
plants (Fig. 3). In order to explore the evolution of the AsA pathway in land plants, we 
used the incredible collection of genomic information deposited in Phytozome for the 
identification of homologous genes through BLAST and a subsequent analysis of the 
Family History and Gene Ancestry views that rely on the analysis of relationships through 
Inparanoid analysis and a combination of Smith–Watermann alignments (based on 
BLOSUM45, gap opening and extension penalty of −12 and −2, respectively, up to a gap 
length of 50 aa, with zero extension cost after), for each gene in the pathway (Goodstein 
et al. 2012). The presence and number of genes (including isoforms) are shown in Fig. 3.

3.1  The d-Mannose/l-Galactose (Man/Gal) Pathway

We identified single copy genes for all enzymes involved in the d-mannose/l- galactose 
(Man/Gal) pathway. Mapoly0082s0088: phosphomannose isomerase (PMI1-
At3g02570) and PMI2 (At1g67070); Mapoly0004s0121: phosphomannose mutase 
(PMM-At2g45790); Mapoly0034s0043: GDP-d-mannose pyrophosphorylase 
(VITAMIN C1-VTC1-At2g39770) and VTC1-like (At3g55590); Mapoly0101s0064: 
GDP-d-mannose-3,5-epimerase (GME-At5g28840); Mapolv31013666m: GDP-l-
galactose phosphorylase (VTC2-At4g26850 and VTC5-At5g55120); Mapoly0002s0010: 
l-galactose-1-phosphate phosphatase (VTC4-At3g02870); Mapoly0002s0285: l-galac-
tose dehydrogenase (GalDH- At4g33670); and Mapoly0077s0021: l-galactono-1,4-lac-
tone dehydrogenase (GLDH- At3g47930) (Fig. 4).
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3.2  The d-Galacturonate (GalUR) Pathway

For the GalU pathway, we identified 11 M. polymorpha genes (Mapolv31014624m, 
Mapolv31005742m, Mapolv31011830m, Mapolv31011827m, Mapolv31023497m, 
Mapolv31002560m, Mapolv31005838m, Mapolv31002670m, Mapolv31023489m, 
Mapolv31011434m, Mapolv31008564m, Mapolv31019915m, Mapolv31011412m, 
Mapolv31021855m, and Mapolv31004812m) homologous to both copies of the 
Arabidopsis d-galacturonate reductase (GalUR-At1g59950 and At1g59960). This is 
quite interesting as in this case the number of members in the family in Marchantia 
is higher than that present in Arabidopsis. Undergoing functional genomic approaches 

Fig. 3 Conservation of gene families involved in the biogenesis and recycling of AsA in land 
plants. Sequence similarity searches using BLAST, HMMER, and pfam combined with a phyloge-
netic analysis allowed us to identify homologous genes involved in the biogenesis and recycling of 
AsA in Marchantia. The number of homologous genes (including isoforms) for each gene family 
in land plants is indicated inside each colored box and was obtained from the gene ancestry and 
gene family analysis in phytozome.org. Absence of homologous sequences is represented by blank 
boxes without a number
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as part of a collaboration between the Lorence and the Arteaga laboratories through 
forward (genetic screens of mutant plants resistant and oversensitive to AsA) and 
reverse genetics (CRISPR-Cas based genome edition) will help us unravel the func-
tions and contributions of each member of the family to the pathway (Fig. 4).

Fig. 4 Pathways involved in the biogenesis and recycling of AsA in Arabidopsis thaliana and 
Marchantia polymorpha. The four tested metabolic paths leading to the production of AsA in 
Arabidopsis are depicted. Abbreviated loci names of experimentally identified components for 
each path are highlighted in red. Each path is shown with a different color. Arabidopsis and 
Marchantia loci identifiers are shown next to the abbreviated loci names.
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3.3  The myo-Inositol (MIOX) Pathway

In the case of the MIOX pathway, we identified a single homolog (Mapoly0061s0137) 
for the PAP15 (At3g07130) phytase. We were not able to find a homolog of the myo- 
inositol oxygenase gene in Marchantia in the publicly available version of the 
genome but we were able to identify a homolog in a publicly available transcriptome 
(Sharma et al. 2014) from immature antheridiophores and in an unpublished tran-
scriptome from mixed tissues (Bowman et al., unpublished). The deduced open read-
ing frame (ORF) from the composite transcriptional units (Locus47374v1rpkm0) is 
homolog to all four Arabidopsis myo-inositol oxygenase genes (MIOX1-At1g14520, 
MIOX2- At2g19800, MIOX4-At4g26260, and MIOX5-At5g56640).

The next enzyme in the inositol pathway to AsA is d-glucuronate reductase 
(GlcUR). The Lorence Laboratory has characterized the enzyme encoded by 
At5g01670 and confirmed that it is a functional reductase of uronic acids with no 
substrate preference between d-glucuronate and d-galacturonate. Arabidopsis plants 
overexpressing this gene possess enhanced ascorbate, while knockouts have dimin-
ished content of this antioxidant (Yactayo-Chang 2011). While the d-glucuronate 
reductase (GlcUR- At5g01670) family in Marchantia is also large with 11 members 
(Mapolv31005838m, Mapolv31008564m, Mapolv31023489m, Mapolv31002560m, 
Mapolv31002670m, Mapolv31011434m, Mapolv31005742m, Mapolv31011827m, 
Mapolv31011830m, Mapolv31023497m, Mapolv31014624m), the gluconolactonase 
(GNL-At1g08470, At1g56500, At1g74000, At1g74020, At2g01410, At2g16780, 
At2g24130, At2g41290, At2g41300, At3g51420, At3g51430, At3g51440, At3g51450, 
At3g57010, At3g57020, At3g57030, At3g59530, At5g22020) family in Marchantia 
shows a remarkable reduction with only three members (Mapoly0164s0010, 
Mapoly0009s0114, Mapoly0019s0152) (Fig. 4). The Lorence Laboratory has charac-
terized the enzyme encoded by At1g56500 and confirmed that it is functional gluco-
nolactonase (GNL). This GNL isoform is localized in chloroplasts. Knockouts on this 
gene have lower AsA content compared to wild- type controls. Arabidopsis over-
expressers and complemented lines (knockouts overexpressing the functional gene) 
have higher AsA than wild type, enhanced tolerance to high light stress, improved 
photosynthetic efficiency, and higher seed yield (Yactayo-Chang 2016; Yactayo-
Chang and Lorence 2016).

The last enzyme that participates in the intersect between the myo-inositol and the 
l-gulose pathways to ascorbate is l-gulono-1,4-lactone oxidase (GulLO). The GulLO 
gene family in Marchantia is composed by three members (Mapoly0097s0030, 
Mapoly0027s0065, Mapoly0011s0042) that correspond to seven members in 
Arabidopsis (GulLO1-At1g32300, GulLO2-At2g46750, GulLO3-At5g11540, GulLO4-
At5g56490, GulLO5-At2g46740, GulLO6-At2g46760, GulLO7- At5g56470). The 
Lorence Laboratory has recently characterized GulLO5 and has confirmed that this 
enzyme possesses oxidase activity towards l-GulL (Aboobucker et al. 2017).

Wheeler et al. proposed that GulLO was lost in all photosynthetic eukaryotes and 
functionally replaced with GLDH (Wheeler et  al. 2015). However, genetic and 
 biochemical evidence from different groups indicates that the Arabidopsis genome 
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does contain genes encoding GulLO enzymes (Maruta et  al. 2010; Aboobucker 
et al. 2017). Interestingly, overexpression of the rat GulLO enzyme in Arabidopsis 
can functionally rescue vitamin C (vtc) mutants with a concomitant increase in AsA 
levels (Radzio et al. 2003), and evidences from different groups have demonstrated 
the effective conversion of l-Gul into AsA in different plant species (Baig et al. 
1970; Davey et al. 1999; Pallanca and Smirnoff 1999; Jain and Nessler 2000; Radzio 
et al. 2003; Davey et al. 2004; Imai et al. 2009; Li et al. 2010; Mellidou et al. 2012; 
Aboobucker et  al. 2017). Based on these evidences and taking into account that 
irrespective of the considerations inherent to any overexpression experiment and to 
the potential substrate specificity, the data indicates that plants fed with a specific 
substrate for GulLO do produce AsA and that AsA levels are increased when 
increasing the expression of GulLO (reviewed in Lisko et al. 2014). Given there are 
seven GulLO genes in Arabidopsis, genetic redundancy is hard to overcome in order 
to functionally characterize the GulLO gene family in that model; however, taking 
into account there are only three GulLO genes in Marchantia and the feasibility of 
generating mutant edited alleles, we are focusing our efforts to functionally test the 
involvement of GulLO in the biosynthesis of AsA in Marchantia.

3.4  Ascorbate Recycling

The monodehydroascorbate reductase (MDHAR-At1g63940, At3g09940, 
At3g27820, At3g52880, At5g03630) and dehydroascorbate reductase (DHAR- 
At1g19550, At1g19570, At1wg75270, At5g16710, At5g36270) gene families that 
regulate the rapid regeneration of reduced AsA in plants are represented in 
Marchantia by three (Mapoly0057s0016, Mapoly0001s0099, Mapoly0006s0270) 
and two (Mapoly0082s0046 and Mapoly0085s0095) members, respectively (Fig. 4).

4  Precursor Feeding Studies as a Proxy to Test 
the Operation of Ascorbate Pathways in Marchantia

Based on the fact that we detected the presence of Marchantia genes and tran-
scripts with significant homology to the genes involved in AsA metabolism, next 
we interrogated the function of the various pathways to AsA by doing feeding stud-
ies with nonradioactive precursors. For this purpose, six ascorbate precursors were 
added to Marchantia cultures growing in B5 growth media (Fig. 5). The tissue with 
media supplemented with AsA showed the lowest in planta AsA concentration of 
any of the samples, followed by the control, which included no precursors added 
into the media. This result indicates that feedback inhibition took place, causing 
decreased AsA synthesis. d-Galacturonate and l-gulose feeding led to modest 
ascorbate increases but were not found to be significant when statistical analysis 
was done in comparison to the control. Three precursors, however, did cause 
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significant changes in ascorbate content after analysis using the one-way ANOVA 
and Tukey’s post hoc statistical tests. These precursors were l-galactose, myo-ino-
sitol, and l-gulono- 1,4-lactone. The precursor that resulted in the highest levels of 
AsA in the thalli was l-galactose, followed by myo-inositol and l-gulono-1,4-lac-
tone. These results indicate the operation of at least two of the proposed ascorbate 
pathways to AsA in Marchantia.

5  Conclusions

In summary, M. polymorpha, one of the earliest diverging land plants, contains 
homologous genes to both classical and alternative pathways for the biosynthesis 
and recycling of AsA and given its characteristics as a powerful model for func-
tional genomics it will surely help aid current efforts to understand how evolution 
has shaped the biosynthetic pathways of AsA and its role during plant development 
and responses to the environment in land plants.

Feeding studies with nonradioactive (a.k.a. cold) precursors indicate the func-
tionality in Marchantia of both the d-mannose/l-galactose and the myo-inositol 
pathways to ascorbate. Follow-up studies will shed light into the role of specific 
pools of AsA in the response and adaptation of basal plants to specific stresses.

Fig. 5 l-Galactose, myo-inositol, and l-gulono-1,4 lactone feeding significantly increased the 
ascorbate content in Marchantia. In vitro Marchantia cultures were grown on B5 media; once 
enough biomass was obtained, cultures were transferred to B5 media supplemented with various 
ascorbate precursors. Tissue samples were collected and flash frozen 48 h after feeding. Reduced, 
oxidized, and total ascorbate were determined using an enzyme-based spectrophotometric method. 
One-way ANOVA and Tukey’s post hoc test were performed at significance level of 0.05. 
p-value < 0.01 was indicated by **. Five biological replicates were used in these assays
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