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Abstract L-Ascorbic acid (AsA, ascorbate or vitamin C) is the most abundant
water-soluble antioxidant found in plants. Ascorbate is synthesized via four path-
ways involving b-mannose/L-galactose, D-galacturonate, L-gulose, and myo-inositol
as main precursors. In addition to protecting plant tissues from damage caused by
reactive oxygen species produced through normal oxygenic metabolism or those
generated from biotic and abiotic stresses, ascorbate is also an enzyme cofactor and
a modulator of cell division, cell expansion, flowering time, and gene regulation.
Plants that are deficient in ascorbate are affected in multiple ways including altera-
tions in cell division, cell expansion, seed germination, growth, floral induction, and
photosynthesis. Additionally, elevated ascorbate content in plants leads to an
increase in their nutritive value, lengthening of their shelf life, enhancement on their
growth rate and biomass accumulation, and to an increased tolerance to multiple
abiotic stresses including salt, cold, heat, and water deficit. Increasing the produc-
tivity of crops is imperative to satisfy the growing demand for food, feed, and fuels
in the world, and biotechnology can lead to the development of plants with higher
yields capable of thriving under adverse conditions. To this end, phenotype screen-
ing and characterization of a large number of plants experimentally obtained is time
consuming and requires a significant amount of resources, skills, and expertise. In
this chapter, we will present an overview of how the use of high-throughput pheno-
typing or phenomics is revolutionizing the way plant phenotypes are characterized
and will illustrate the power of digital phenotyping in the characterization of plants
overexpressing enzymes in the inositol pathway to ascorbate.
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1 Introduction

L-Ascorbic acid (ascorbate, AsA) is the most abundant water-soluble antioxidant
found in plants. Ascorbate content varies widely among species but in general AsA
concentration in plants is in the mM range (Noctor and Foyer 1998). Ascorbate has
a wide variety of physiological roles. It functions as an enzyme cofactor, as a modu-
lator of the cell cycle, and as a scavenger protecting tissues against damage caused
by reactive oxygen species (ROS) produced from a multitude of environmental
stresses including water deficit, soil salinity, cold, and heat, among others. Alteration
of the redox balance resulting in accumulation of ROS (e.g., singlet oxygen, super-
oxide, and hydrogen peroxide) is a feature common to multiple environmental
stresses. When the intensity of those stresses exceeds the antioxidant and repair
capacity of cells, ROS can accumulate and cause oxidative damage to all macromol-
ecules, promoting apoptosis and senescence. On the other hand, there is growing
evidence of the important role of low levels or ROS as signaling molecules in path-
ways that stimulate adaptive hormonal and metabolic responses. Therefore whether
ROS induce oxidative damage or trigger acclimation depends on the rate and site of
production and is controlled by the antioxidant system, of which ascorbate and glu-
tathione are central components (Foyer et al. 1994; Foyer and Noctor 2011).

A better understanding about how ascorbate is made in plants and the factors that
regulate its content is of chief importance because this molecule provides the dietary
source of vitamin C to humans, primates, and other animals. Mutations in the termi-
nal enzyme of the animal vitamin C pathway (L-gulono-1,4-lactone oxidase) are
what render its synthesis impossible for humans and make this an essential vitamin
that we must acquire through diet (Linster and Van Schaftingen 2007). Deficiency
of ascorbic acid is often associated with human health problems such as anemia,
infections, bleeding gums, scurvy, poor wound healing, capillary hemorrhage, mus-
cle degradation, atherosclerotic plaques, and neurotic disturbances (Chambial et al.
2013). Vitamin C deficiency is a common issue for malnourished people in develop-
ing countries, and also for various subpopulation groups in developed countries
including those who are incarcerated, smokers, widows, and people who suffer vari-
ous eating and nutrient absorption disorders (Beal et al. 2017).

Vitamin C is involved in essential physiological processes that impact the agro-
nomical value of crops and its physiology. The growth and the world population
present unique challenges to agriculture. We need to find ways to make crops more
productive with less inputs. One of the potential solutions to this great challenge is
the development of improved crops with enhanced nutritional value, higher toler-
ance to environmental insults, and superior yields.
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Fig. 1 The ascorbate metabolic network. There is a single biosynthetic pathway for L-ascorbic
acid (ascorbate, vitamin C) in some animals, while four distinct routes lead to its formation in
plants: MI (myo-inositol) pathway, Gul (L-gulose) pathway, Man/Gal (D-mannose/L-galactose)
pathway, and GalU (p-galacturonic acid) pathway. The enzymes involved in the four different
routes are: MI pathway: myo-inositol oxygenase (MIOX); glucuronate reductase (GlcUR); gluco-
nolactonase (GNL); and L-gulono-1,4-lactone oxidase (GulLO). Man/Gal pathway: phosphoman-
nose isomerase (PMI); phosphomannose mutase (PMM); GDP-mannose pyrophosphorylase
(VTC1); GDP-3'5"-epimerase (GME); L-galactose guanyltransferase (VTC2); L-galactose-1-
phosphate phosphatase (VTC4); L-galactose dehydrogenase (GalDH); L-galactono-1,4-lactone
dehydrogenase (GLDH). GalU pathway: D-galacturonate reductase (GalUR). The enzymes in the
recycling pathway are monodehydroascorbate reductase (MDHAR) and dehydroascorbate reduc-
tase (DHAR). Adapted from Suza et al. 2010

There are five routes for the production of AsA, one in animals and four in plants
(Fig. 1). The biosynthetic pathway for AsA in animals was elucidated in the early
1950s (Ishikawa et al. 2006). On the other hand, plants possess four possible ways
to make this key molecule. These are the D-mannose/L-galactose (Wheeler et al.
1998), L-gulose (Wolucka and Van Montagu 2003), p-galacturonate (Agius et al.
2003), and myo-inositol (Lorence et al. 2004) routes (Fig. 1). The best characterized
of these pathways is the D-mannose/L-galactose route. The degree of which the so
called “alternative routes” is operational in each plant species and the tissue and
temporal specificity of these alternative routes is currently unclear.

In this chapter, we present an overview of the successful strategies to metaboli-
cally engineer elevated AsA content in model plants and crops and summarize the
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studies in which the stress tolerance of those high ascorbate plants has been ana-
lyzed. We also discuss how the use of high-throughput phenotyping or phenomics is
revolutionizing the way plant phenotypes are characterized and illustrate the power
of digital phenotyping in the development of model plants with elevated AsA and
enhanced ability to withstand stresses.

2 Successful Metabolic Engineering Strategies to Enhance
Ascorbate Content in Plants

During the last 20 years, we have witnessed an unprecedented progress in the under-
standing of the multiple pathways leading to AsA formation in plants. Table 1 sum-
marizes the successful strategies that have been reported in the engineering of
elevated AsA content in plants.

All genes in the D-mannose/L-galactose pathway have been cloned and charac-
terized, and several of those have been used to increase AsA content in more than
one species. Overexpression of those genes has led to a 1.2-fold to 6-fold AsA
increase.

Phosphomannose mutase (PMM) is one of the key enzymes in the regulation of
the initial steps of the AsA synthesis via the D-mannose/L-galactose pathway
(Fig. 1). Badejo et al. (2009) developed transgenic tobacco (Nicotiana tabacum)
overexpressing PMM from acerola (Malpighia glabra), leading to a 2-fold AsA
increase compared to controls.

Overexpression of kiwifruit GDP-L-galactose phosphorylase increased AsA
content 6-fold in tomato fruits, while overexpression of this gene in potato increased
AsA content in the tubers (Bulley et al. 2012). This gene has also been expressed in
Arabidopsis (Zhou et al. 2012) and rice (Zhang et al. 2015).

The importance of GDP-galactose guanylyl transferase (GGT) as a rate-limiting
step in the production of AsA production was confirmed with the overexpression of
the GGT gene in Arabidopsis resulting in a 2.9-fold increase in AsA content (Zhou
et al. 2012).

The overexpression of tomato GME leads to an increase of 1.2-fold in the AsA
content of leaves and a boost of 1.6-fold in fruits (Zhang et al. 2011). This gene has
also been successfully expressed in Arabidopsis leaves (Zhou et al. 2012; Huang
et al. 2014) and alfalfa shoots (Ma et al. 2014).

GDP-p-Mannose pyrophosphorylase has been widely studied in a number of
plants including tobacco (Badejo et al. 2008), tomato (Cronje et al. 2012), and
Arabidopsis (Zhou et al. 2012; Sawake et al. 2015). The AsA content of trans-
genic tobacco plants expressing acerola GMP was 2-fold higher compared to
wild type (Badejo et al. 2008). Overexpression of L-galactose dehydrogenase
(GalDH) in Arabidopsis resulted in a modest increase (1.2-fold) in AsA content
(Zhou et al. 2012).
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L-Galactono-1,4-lactone dehydrogenase (GLDH) catalyzes the last step in the
D-mannose/L-galactose pathway to AsA (Fig. 1). Liu et al. (2011) showed that sup-
pression of GLDH expression resulted in a loss of chlorophyll, lower ribulose-1,5-
bisphosphate carboxylase (RUBISCO) protein content, and a lower rate of CO,
assimilation. As a consequence, a slower rate of plant growth and lower seed set
were observed. However, overexpression of this enzyme maintained high levels of
chlorophyll, RUBISCO protein, and a higher rate of net photosynthesis, resulting in
higher seed set. Also increased GLDH expression correlated with the reduced lipid
peroxidation, indicating that this enzyme functions protecting the plant against ROS
(Liu et al. 2011, 2013). GLDH has been overexpressed in multiple plants including
rice (Liu et al. 2011; Zhang et al. 2015), Arabidopsis (Zhou et al. 2012), tobacco
(Liu et al. 2013), and lettuce (Landi et al. 2015) leading to 1.3-fold to 2.1-fold AsA
content compared to controls.

Engineering increased AsA content using a combination of genes has been more
successful than using a single enzyme. Zhou et al. (2012) overexpressed the combi-
nation of GGT + GPP and GGT + GLDH separately in Arabidopsis. Their results
indicate that the GGT + GPP transgenic lines performed best leading to a 4.1-fold
ASA content.

Ripening strawberry has been reported to synthesize AsA from D-galacturonic
acid and its methyl ester (Mapson and Isherwood 1956; Loewus and Kelly 1961). In
2003, Agius et al., discovery of a D-galacturonic acid reductase (GalUR) gene from
strawberry, open the possibility to engineer AsA content using this new gene.
GalUR is the only enzyme identified in this pathway, which has been shown to be
cytosolic (Agius et al. 2003). GalUR overexpression has led to a 2- to 3-fold AsA
increase in Arabidopsis (Agius et al. 2003). In plant storage organs, possible sources
of AsA include in situ synthesis and long-distance transport of AsA synthesized in
other tissues. Hemavathi et al. (2009) developed transgenic potatoes via overexpres-
sion of GalUR. These resulting potato tubers had two times more AsA than controls.
Transgenic tomato hairy roots overexpressing GalUR had 2.5-fold AsA (Wevar
Oller et al. 2009) while overexpression of GalUR in fruits led to 1.4- to 2.5-fold
AsA increases (Amaya et al. 2014; Cai et al. 2014; Lim et al. 2016).

Biochemical and molecular data indicate that myo-inositol can also be a precur-
sor for the biosynthesis of AsA in Arabidopsis (Lorence et al. 2004; Zhang et al.
2008). This pathway involves four enzymes, starting from the oxidation of myo-
inositol to b-glucuronic acid and further reduction to L-gulonic acid and to L-gulono-
1,4-lactone, and further conversion to AsA. These reactions are catalyzed by
myo-inositol oxygenase (MIOX), glucuronate reductase (GlcUR), gluconolactonase
(GNL), and vr-gulono-1,4-lactone oxidase (GulLO, a.k.a. GLOase), respectively.
These four enzymes have been already characterized by the Lorence Laboratory
(Table 1). Arabidopsis lines overexpressing MIOX contained up to 3-fold ascorbate
in leaves and presented increased biomass accumulation, growth rate compared to
controls (Lorence et al. 2004). These results are similar with the findings by Kulkarni
(2012) that showed a 3-fold increase in AsA content after transient AtMIOX4 expres-
sion in tomato fruits. Glucuronate reductase (GlcUR) is the second enzyme in the
inositol pathway to AsA, and an isoform from Arabidopsis has been already
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characterized (Lorence and Nessler 2007; Yactayo-Chang 2011). The overexpres-
sion of GIcUR in Arabidopsis led to a 2-fold ascorbate content in leaves compared
to the wild-type controls (Yactayo-Chang 2011). The first two enzymes in the ino-
sitol pathway to AsA seem to be cytosolic. The Lorence Laboratory has evidence
indicating that some isoforms of the last two enzymes in this pathway reside in the
chloroplast (Yactayo-Chang 2016) and the endoplasmic reticulum (ER) (Aboobucker
2014; Aboobucker et al. 2017), respectively. Our group recently characterized a
GNL isoform that is localized in the plastids. When overexpressed in Arabidopsis,
transgenics GNL over-expressers have a 5-fold AsA content in leaves (Yactayo-
Chang 2016; Yactayo-Chang and Lorence 2016). The last enzyme in the inositol
pathway to AsA is L-gulono-1,4-lactone oxidase (GuILO). GuILO belongs to the
aldonolactone oxidoreductases protein family. GuIlLO participates in both the
L-gulose and inositol pathways to ascorbate. Transgenic tobacco and lettuce plants
expressing rat GuILO accumulated up to 7-fold more ascorbate than untransformed
plants (Jain and Nessler 2000), while Arabidopsis lines overexpressing the rat iso-
form were reported to contain a more modest AsA increase (Lisko et al. 2013).

Heick et al. (1972) reported that AsA has been found in a number of yeasts
including Saccharomyces cerevisiae. The arabino-1,4-lactone oxidase (ALO)
enzyme catalyzes the last step in the formation of D-erythroascorbate in yeast. This
enzyme uses L-galactono-1,4-lactone as efficiently as D-arabino-1,4-lactone to pro-
duce AsA. Overexpression of ALO resulted in elevated ascorbate (1.3-fold) in
tomato fruits and stylo leaves (3.1-fold) (Cronje et al. 2012; Bao et al. 2016).

Once oxidized, AsA can also be recycled back to its reduced form. The reduced
AsA is ready for its role again. Overexpression of dehydroascorbate reductase
(DHAR) and monodehydro ascorbate reductase (MDHAR) has been implemented
successfully to engineer plants with elevated AsA. Overexpression of DHAR has
led to 1.3-fold to 6-fold AsA increase in various plant species (Table 1). Constitutive
expression of MDHAR isoforms has also been successfully implemented to increase
AsA content in plants (Table 1).

The existence of four different pathways leading to AsA formation in plants indi-
cates the need of a complex regulatory mechanism for this network. Regulation
within and between pathways in the network is largely uncharacterized. Six master
regulators for AsA have been described in the literature. The ascorbic acid mannose
pathway regulator 1 (AMR1) is one of these regulators. AMR1 negatively regulates
the b-Man/L-Gal pathway (Zhang et al. 2009).

Another regulator of this network is the three KNOTTED-like homeobox gene
(HBK3). Homeobox genes encode a typical DNA-binding domain of 60 amino
acids, known as homeodomain that characterizes a large family of transcription fac-
tors. These genes encode transcription factors which regulate important events in
plant growth and development. The HBK3 gene from Norway spruce regulates
somatic embryo yield through alterations in glutathione and AsA metabolism,
which have been previously implicated in controlling development and maturation
both in vivo and in vitro (Belmonte and Stasolla 2009).

The size of the AsA pool in plants is controlled by a combination of its biosyn-
thesis, recycling, and transport and translocation. Some factors that regulate the
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AsA pool size by modulating biosynthesis are light, development, and environmental
stress conditions. The ethylene response factor (ERF98) is considered a positive
regulator of AsA. This regulator enhances tolerance to salt stress through direct
activation of AsA synthesis in Arabidopsis (Zhang et al. 2012). Arabidopsis ERF98
transcriptionally activates gene expression of VI'CI to improve AsA content and
tolerance to salt stress.

3 Effect of Ascorbate in the Ability of Plants
to Withstand Abiotic Stresses

3.1 Low AsA Plants Are Sensitive to Abiotic Stresses

Ascorbate plays vital role in maintaining the plant health status. Mutation of genes
involved in the D-mannose/L-galactose pathway led to the characterization of vita-
min C defective (vtc) mutants. The vtc 1-1, vtc 2-1, and vtc 3 mutants have 50-75%
lower AsA content than wild type. Plants with low AsA are sensitive to heat and light
stress compared to control plants (Pavet et al. 2005; Conklin et al. 2013). Interestingly,
the vtc 1-1 and vtc 2-1 lines are resistant to bacterial pathogen, Pseudomonas syringe
(Téth et al. 2011). The vfc mutant plants are sensitive to osmotic stress and oxidative
stress (Cho et al. 2016) as shown in Table 2. This table illustrates that lowering AsA
content makes plants more vulnerable to abiotic stresses.

3.2 High AsA Lines Are Tolerant to Abiotic Stresses

Table 3 presents a summary of the studies in which diverse research groups have
evaluated the tolerance to stresses of plants with enhanced AsA content. High AsA
plants overexpressing genes involved in the b-mannose/L-galactose pathway have
been found to be tolerant to salt stress (up to 100 mM NaCl), herbicide stress (up to
75 pM methyl viologen), cold stress (4 °C), and oxidative stress (wounding). Plant
biomass, plant height, shoot length, root length, leaf color, survival rate, and seed
germination rate are the most common readouts used to assess the tolerance to abi-
otic stresses in plants (Zhang et al. 2015, Zhang et al. 2011; Landi et al. 2015; Li
et al. 2012).

Similarly plants overexpressing D-galacturonate reductase were found to be tol-
erant to salt stress (up to 600 mM NaCl), herbicide stress (up to 75 pM methyl
viologen), cold stress (4 °C), and osmotic stress (up to 300 mM mannitol).
Chlorophyll content, root length/biomass and shoot length/biomass, germination
response, and malondialdehyde content have been the main readouts used to assess
the tolerance to abiotic stresses in these plants (Hemavathi et al. 2009; Cai et al.
2014; Lim et al. 2016).
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Plants overexpressing L-gulono-1,4-lactone oxidase (GulLO), the enzyme
involved in the L-gulose and the inositol pathway of AsA, have elevated AsA. When
subjected to abiotic stresses, those plants were tolerant to herbicide stress (up to
20 pM methyl viologen), osmotic stress (up to 300 mM mannitol), and salt stress
(up to 600 mM NaCl). Phenotypic changes, chlorophyll content, and malondialde-
hyde content were the variables used to assess the tolerance to stresses in these
plants (Hemavathi et al. 2009; Lim et al. 2016).

Our group and others have characterized the response to stresses of high AsA
Arabidopsis lines overexpressing MIOX4, one of the enzymes involved in the myo-
inositol pathway to AsA. Increased level of AsA in those plants correlates with tol-
erance to salt stress (up to 200 mM NaCl), cold stress (16 °C for 3 weeks), heat
stress (29 °C for 10 days/40 °C for 15 min), environmental pollutant (up to 200 ppb
pyrene), and light stress (up to 300 pmol m=2 s~!). Photosynthetic efficiency, root
growth, and shoot growth are the main readouts used to assess abiotic stress toler-
ance (Toth et al. 2011; Lisko et al. 2013).

Arabidopsis plants overexpressing a recently characterized GNL containing
5-fold AsA content were found to display enhanced growth rate, tolerance to light
stress, and improved photosynthetic efficiency and seed yield (Yactayo-Chang
2016; Yactayo-Chang and Lorence 2016).

Monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase
(DHAR) are the recycling enzymes for AsA in plants. MDHAR and DHAR help to
maintain redox status of AsA (Haroldsen et al. 2011). Overexpression of MDHAR
from Lycopersicum spp. and Malpighia spp. resulted in 1.2—1.8-fold elevated AsA
level in leaves compared to wild-type plants. Elevated AsA level correlated with
tolerance to herbicide stress (up to 100 pM methyl viologen), heat stress (40 °C for
24 h), cold stress (4 °C for 24 h), and salt stress (up to 300 mM NaCl) (Li et al. 2010;
Eltelib et al. 2012). Similarly, overexpression of DHAR resulted in 1.2—4.0-fold
increase in AsA level in leaves, fruits, and roots compared to controls. High AsA
plants were found to be tolerant to ozone stress (up to 0.2 ppm), drought stress (5%
polyethylene glycol), herbicide stress (up to 3 pM methyl viologen), aluminum
stress (up to 400 pM AICly), salt stress (up to 150 mM NaCl), light stress (up to
1000 pmol m=2 s7!), and cold stress (4 °C for 1 week). Photosynthetic efficiency,
plant height, number of leaves, plant growth, ion leakage, H,O, accumulation, tran-
spiration, CO, accumulation, and stomatal conductance were the parameters used to
assess the abiotic stress tolerance on these plants (Kwon et al. 2003, Chen and
Gallie 2005, Eltayeb et al. 2011, Li et al. 2012, Qin et al. 2015; Liu et al. 2011).

Overexpression of homologues of the plant GulLO enzymes from Saccharomyces
cerevisiae, o-arabiono-1,4 lactone oxidase and Stylosanthes guianensis 9-cis-
epoxycarotenoid deoxygenase, resulted in a boost of the AsA content in plants. These
transgenics showed tolerance to herbicide stress (up to 0.1 mM methyl viologen),
light stress (up to 1200 pmol m~2 s7"), aluminum stress (100 mM AICls), cold stress
(3 and 6 °C), and water limitation stress (Chen et al. 2005; Bao et al. 2016).

On the other hand, overexpression of master regulators of the AsA metabolic
network, ethylene response factor 8, SID 22, SIHZ24 and CSNS5B from Arabidopsis
thaliana and Solanum lycopersicum resulted in 1.2- to 2.0-fold increase in AsA
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content in leaves and fruits compared to controls. Plants with elevated AsA were
found to be tolerant to salt stress (300 mM NaCl), light stress, herbicide stress (up
to 50 mM methyl viologen), and oxidative stress. Shoot biomass, root biomass, alu-
minum accumulation, relative water content, ion leakage, chlorophyll content, and
malondialdehyde content were the parameters used to assess the abiotic stress toler-
ance in those studies (Zhang et al. 2012; Wang et al. 2013; Cai et al. 2016; Hu et al.
2016).

In summary, increased AsA level in plants is associated with enhanced abiotic
stresses tolerance, whereas decreasing AsA level has led to sensitivity to abiotic
stresses. Surprisingly, plants with low AsA level (vtc mutants) have been shown to
be resistant to some biotic stresses.

To date, the most common readouts of abiotic stress tolerance have been plant
size, plant shape, and color and photosynthesis parameters. In all published studies
to date research teams have relied on manual phenotyping to make these assess-
ments. Manual phenotyping is time consuming and sensitive to bias and is limited
to the resolution of the naked eye. Based on these drawbacks, it is important to
implement the use of more advanced tools to analyze the phenotype of high AsA
plants to fully realize the potential of these metabolic engineering strategies.

4 Plant Phenomics, a Modern Approach to Characterize
Plant Phenotypes

4.1 Closing the Gap Between Genomics and Phenomics

Understanding crop adaptation to abiotic and biotic stress is very important, espe-
cially now in the face of climate change and global population growth. Powered by
the advances in gene editing (Barrangou and Doudna 2016) and the study of natural
genetic variability (Nunes-Nesi et al. 2016), plant genomics has been growing to
select and improve crop adaptation and yield. This is why it is important to under-
stand plant plasticity using phenomics. Plant phenomics is defined as the applica-
tion and development of different methodologies to capture information related
with performance, function, and structure of a large number of plants (Houle et al.
2010; Tardieu et al. 2017). The main purpose of plant phenomics is to understand
plant behavior under a vast variety of scenarios and how exactly the genotypic traits
are expressed through the plant phenotype.

Scientists that have had the opportunity to work with manual plant phenotyping
understand how slow this process can be. Measuring plant area, plant height, seed
number, panicle number, fruit color, leaf number, and other traits of interest can be
time consuming and affected by human bias. Phenomics is a research area that is
moving fast due to the progress in the development of new sensors and imaging
techniques for several traits, plant organs, and responses (Furbank and Tester 2011).
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However, a major challenge that remains in this area is data handling and process-
ing when analyzing the sensor information and translating that information into
knowledge.

4.2 Plant High-Throughput Phenotyping

Being able to gather massive amounts of information based on high resolution
images is very convenient. The capability of eliminating destructive measurements
increases the capacity of adjusting the experimental design and allows gathering
information throughout the life cycle of plants. Plant high-throughput phenotyping
technology consists of taking images with different sensors using hundreds of plants
per day (Fahlgren et al. 2015). Data acquisition and analysis have become more
feasible due to advances in automation for plant phenotyping, specifically robotic
and sensor based technology (Rahaman et al. 2015). Currently, this technology has
expanded not only at the laboratory (controlled environment) and greenhouse levels
but also to the field scale.

The adaptability of this new technology is overwhelming, and it has made it pos-
sible to have platforms such as the Field Scanalyzer System at Rothamsted Research,
UK and the TERRA-REF (http://terraref.org/) project in Maricopa, AZ, examples of
large field crop analytic robots in the world. These robots take images by moving on
a surface of 100-200 m? using different sensors. This technology can also be used
on a smaller scale with options that are less expensive, such as taking images using
a digital camera, a tripod, and a light box attached (Chitwood et al. 2014). The data
gathered with this technology can then be analyzed using commercial software or
open source algorithms. A compilation of software options for plant phenomics can
be found in the online database plant-image-analysis.org/ (Lobet et al. 2013).

4.3 Key Sensors in Plant Phenomics

Plant plasticity is very complex. When a genomic trait is adjusted, plants show very
different architectures and phenotypic responses depending on the environmental
conditions they face. Here is where different sensors come into play to help under-
stand these behaviors. Sensor technology has improved since RGB images were
used for the first time to determine plant growth, where top view RGB images were
taken and correlated to obtain plant fresh weight (Leister et al. 1999).

The sensors available in the market work at different wavelength ranges of the
light spectrum (Fig. 2). Color cameras are restricted to the 400—700 nm range and
they have three colored sensors (red, green and blue) that are used to calculate the
true color of each pixel (Fahlgren et al. 2015). These sensors use pixel-based maps
to analyze several phenotypic characteristics such as biomass, area, diameter,


http://terraref.org/
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Fig. 2 Representative images acquired with the visible (VIS), near infrared (NIR), and fluores-
cence (FLUO) sensors. (a—c¢) Raw images. (d—f) Analyzed images where the different parameters
were quantified. (d) Shows geometrical parameters and color classification computed from VIS
images. (e) In planta water content values computed from NIR images. (f) In planta chlorophyll
fluorescence values computed from FLUO images. Values in E and F have been corrected to be
relative to plant area

flowering time, root architecture, plant height, and others. Although these sensors
are the most commonly used, there is a disadvantage to them since they cannot dis-
tinguish between overlapping leaves or soil background unless some segmentation
process is applied to the image (Li et al. 2014; Rahaman et al. 2015).

Due to global warming, scientists have focused their research in finding solutions
to reduce the negative effect of abiotic/biotic stresses in plant yield. When a plant is
affected by high temperature or soil water is depleted, plants tend to close the sto-
mata to avoid water loss. The physiology of plants is also affected due to the increase
in leaf temperature, and responses such as leaf tissue and enzyme damage, lower
photosynthetic rate, higher respiration rate, and others occur (Schauberger et al.
2017). For this reason, sensors that detect near-infrared (NIR) and infrared (IR)
light are very important for plant high-throughput phenotyping. These sensors use
pixel-based maps and are used to determine plant water content (900-1700 nm) and
canopy/leaf temperature (700—1000 nm), respectively (Fahlgren et al. 2015).

Plants under stress conditions are affected internally, specifically in their pho-
tosynthetic machinery, which will affect crop yield. The use of fluorescence
(FLUO) sensors allows for the quantification of chlorophyll molecules in photo-
system II by artificial excitation, and this information is used to measure how
efficient the plant is during photosynthesis (Jansen et al. 2009; Li et al. 2014). The
sensor corresponds to a charge-couple device (CCD) camera with sensitive fluorescent
signals. These signals occur when the sample is illuminated with visible or UV
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light (Rahaman et al. 2015). The FLUO sensors are pixel-based maps that are used
to detect disease, infestation, photosynthetic status, carbon assimilation, quantum
yield, non-photochemical quenching, and total chlorophyll content (Kuhlgert
et al. 2016).

Agronomical traits such as tiller, leaf, and panicle number are key for yield esti-
mation. This is why 3D sensors play an important role in plant phenomics. These
type of sensors use depth maps and allow acquiring noncontact and nondestructive
measurements. By combining a 3D camera with laser scanning, the amount of point
clouds detected enables a valid and accurate description of the plant geometry
(Paulus et al. 2013). Some of the phenotype parameters that can be detected with
this sensor include shoot structure, leaf angle, canopy health status, leaf growth,
coverage density, and panicle health (Li et al. 2014).

The latest sensor developed, and the most expensive one, corresponds to imaging
spectroscopy, also called hyperspectral imaging. This technology combines features
of RGB imaging based on pixel mapping and spectroscopy based on intensity from
different spectral bands. The most important feature about this sensor is that it
enables measuring plant chemical traits such as water, nutrients, lipids, sugars, and
others (Pandey et al. 2017). This sensor is currently the slowest of all, and the image
analysis requires additional computational knowledge due to the data dimensions
and complexity.

4.4 Phenomics to Understand Plant Abiotic/Biotic Stress
Response

The power of phenomics relies on the fact that it is possible to extract a great deal
of information from a single image. Figure 3 presents representative images of
Arabidopsis plants that have been phenotyped using RGB, FLUO, and NIR sensors
(panels A, B, and C). Once the images were analyzed through a commercial soft-
ware (panels D, E, and F), the information was plotted and analyzed. Each of the
sensors quantifies different phenotype parameters (Fig. 3). For example, from the
RGB sensor, data such as plant size, architecture, biomass and growth can be
obtained. From the NIR, quantification and localization of water can be obtained.
More information can be gathered and analyzed, that will help understand in a more
detailed manner plant adaptation to the new environment due to climate change.
Subtle changes that are not detectable with the naked eye can be measured and
quantified using sensors.

Figure 4 illustrates the use of plant phenomics approaches in the characterization
of high AsA Arabidopsis lines. As shown in this figure, AtMIOX4 over-expressers
are salt tolerant as indicated by their higher growth rate and biomass accumulation
compared to wild-type controls. Although not evident to the naked eye, but captured
by the RGB camera AtMIOX4 displayed less chlorosis than wild-type plants
exposed to NaCl stress.
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Fig. 3 Comparison of different cameras used in high-throughput plant phenotyping and the
parameters that can be measured with each of them. Each sensor captures signals from the vis-
ible and infrared spectrum of the light. The VIS (visible range) camera can quantify plant size,
shape, and color. The IR (infrared range) camera can quantify plant stress. The PSII (photosys-
tem II efficiency) sensor can quantify plant photosynthetic activity. The NIR/SWIR (near infra-
red and short-wave infrared) camera can detect plant relative water content. The TIR/LWIR
(thermal infrared and long-wave infrared) sensor can detect plant canopy or leaf temperature.
The hyperspectral camera can measure plant stress and chemical composition by detecting a
wide variety of spectral bands

4.5 Data Analysis and Handling

Plant high-throughput phenotyping studies generate large-scale, multidimensional
data sets that require proper analysis (Klukas et al. 2014). One of the main chal-
lenges in the field is standardization of the methodologies and data publication.
Storage and data collection needs to be consistent and linked with specific pheno-
types and genomic information (Krajewski et al. 2015).

Optimization of the experimental design is key to obtain good quality images
and, therefore, reproducible data. First, it is necessary to determine the objective of
the experiment before acquiring any information. Then, once the objective is deter-
mined, it is necessary to select the sensor/sensors to use. Moreover, having consis-
tency in how the images are acquired is imperative. Improving the quality of the
images facilitates the analysis. One simple example of this is adding a blue mesh as
a soil cover, in order to improve background/object contrast and to reduce evapora-
tion (Junker et al. 2014).

Plant development research has been positively affected by the advance in phe-
notyping technologies, which help to determine phenotypic traits that change
depending on genotype and environment. Further analysis that integrates several
sensors and overlaps the data collected is necessary to better understand plant plas-
ticity and adaptation.



The Role of Plant High-Throughput Phenotyping in the Characterization... 349

WT MIOX
A B
25 c WwWT
PN £100%
5V L
e E 80% Yellow
L 20 S 60% w Green
© _
o § 40%
<5 o 20%
8 5 o
S 0%
4 WT « 18 20 22 24 26 28 D
o 10
£ . i ——=MIOX | [s MIOX
2 " N B £ O
o 5 ' 1 1 g 80% Yellow
o = O 60% » Green
3 40%
0 T T ’ ' ' : ® 20%
2 20%
18 20 22 24 26 28 3 .
C Days After Germination 2 18 20 22 24 26 28 E

Fig.4 Characterization of the phenotype of a high ascorbate line compared to controls. Arabidopsis
seeds were sterilized, vernalized, and planted on Murashige and Skoog media. After germination
vigorous seedlings were transferred to soil and grown in an environment controlled chamber
(23 °C, 65% humidity, 16:8 h photoperiod, 200 pmol m~2 s~ light intensity). After acclimation to
soil, plants were subjected to salt stress (150 mM NaCl) 21 days after germination. (a, b) Raw
RGB images after segmentation. (¢) Projected leaf area of the Arabidopsis rosette; data are
means = SE, n = 15. (d, e) Color classification of the plants analyzed in (b). Values were corrected
relative to plant area. This parameter distinguishes yellow color (chlorosis) from green color
(healthy tissue). Chlorosis was not apparent by visual inspection, but detected by the RGB camera.
MIOX Myo-inositol oxygenase over-expresser, WT wild-type control

5 Conclusions

During the past two decades, we have significantly advanced our understanding
about the different pathways plants use to make AsA, a key molecule involved in the
modulation of plant growth and development, plant health, and stress tolerance. Full
realization of the potential that this knowledge represents for the development of
more nutritious and improved crops must involve the incorporation of novel
approaches to engineer crops and to characterize their phenotype. We propose that
gene editing (Barrangou and Doudna 2016) and plant phenomics are two approaches
that are likely to revolutionize the way high AsA crops are made and characterized
before some of them are able to reach widespread adoption.
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