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Abstract. The growing adoption of IT-systems for modeling and exe-
cuting (business) processes or services has thrust the scientific investi-
gation towards techniques and tools which support more complex forms
of process analysis. Many of them, such as conformance checking, pro-
cess alignment, mining and enhancement, rely on complete observation
of past (tracked and logged) executions. In many real cases, however,
the lack of human or IT-support on all the steps of process execution, as
well as information hiding and abstraction of model and data, result in
incomplete log information of both data and activities. This paper tack-
les the issue of automatically repairing traces with missing information
by notably considering not only activities but also data manipulated by
them. Our technique recasts such a problem in a reachability problem
and provides an encoding in an action language which allows to virtually
use any state-of-the-art planning to return solutions.

1 Introduction

The use of IT systems for supporting business activities has brought to a large
diffusion of process mining techniques and tools that offer business analysts the
possibility to observe the current process execution, identify deviations from
the model, perform individual and aggregated analysis on current and past
executions.

According to the process mining manifesto, all these techniques and tools
can be grouped in three basic types: process discovery, conformance checking
and process enhancement (see Fig. 1), and require in input an event log and,
for conformance checking and enhancement, a (process) model. A log, usually
described in the IEEE standard XES format1, is a set of execution traces (or
cases) each of which is an ordered sequence of events carrying a payload as a
set of attribute-value pairs. Process models instead provide a description of the
scenario at hand and can be constructed using one of the available Business
Process Modeling Languages, such as BPMN, YAWL and Declare.
1 http://www.xes-standard.org/.
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Fig. 1. The three types of process mining.

Event logs are therefore a crucial
ingredient to the accomplishment of
process mining. Unfortunately, a num-
ber of difficulties may hamper the
availability of event logs. Among these
are partial event logs, where the exe-
cution traces may bring only partial
information in terms of which pro-
cess activities have been executed and
what data or artefacts they produced.
Thus repairing incomplete execution traces by reconstructing the missing entries
becomes an important task to enable process mining in full, as noted in recent
works such as [6,14]. While these works deserve a praise for having motivated
the importance of trace repair and having provided some basic techniques for
reconstructing missing entries using the knowledge captured in process models,
they all focus on event logs (and process models) of limited expressiveness. In
fact, they all provide techniques for the reconstruction of control flows, thus
completely ignoring the data flow component. This is a serious limitation, given
the growing efforts to extend business process languages with the capability to
model complex data objects along with the fact that considering data in the
repair task allows, in general, for reducing the number of possible trace comple-
tions, as shown in Sect. 2.2.

In this paper we show how to exploit state-of-the-art planning techniques to
deal with the repair of data-aware event logs in the presence of imperative process
models. Specifically we will focus on the well established Workflow Nets [16], a
particular class of Petri nets that provides the formal foundations of several
process models, of the YAWL language and have become one of the standard
ways to model and analyze workflows. In particular we provide:

1. a modeling language DAW-net, an extension of the workflow nets with data
formalism introduced in [15] so to be able to deal with more expressive data
(Sect. 3);

2. a recast of data aware trace repair as a reachability problem in DAW-net
(Sect. 4);

3. a sound and complete encoding of reachability in DAW-net in a planning
problem so to be able to deal with trace repair using planning (Sect. 5).

The solution of the problem are all and only the repairs of the partial trace
compliant with the DAW-net model. The advantage of using automated plan-
ning techniques is that we can exploit the underlying logic language to ensure
that generated plans conform to the observed traces without resorting to ad
hoc algorithms for the specific repair problem. The theoretical investigation pre-
sented in this work provides an important step forward towards the exploitation
of planning techniques in data-aware processes.
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2 Preliminaries

2.1 The Workflow Nets Modeling Language

Petri Nets (PN) is a modeling language for the description of distributed systems
that has widely been applied to business processes. The classical PN is a directed
bipartite graph with two node types, called places and transitions, connected via
directed arcs. Connections between nodes of the same type are not allowed.

Definition 1 (Petri Net). A Petri Net is a triple 〈P,T, F〉 where P is a set
of places; T is a set of transitions; F ⊆ (P × T ) ∪ (T × P) is the flow relation
describing the arcs between places and transitions (and between transitions and
places).

The preset of a transition t is the set of its input places: •t = {p ∈ P | (p, t) ∈ F}.
The postset of t is the set of its output places: t• = {p ∈ P | (t, p) ∈ F}.
Definitions of pre- and postsets of places are analogous.

Places in a PN may contain a discrete number of tokens. Any distribution
of tokens over the places, formally represented by a total mapping M : P �→ N,
represents a configuration of the net called a marking.
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Fig. 2. A process as a Petri Net.

Process tasks are modeled in PNs as transitions while arcs and places con-
straint their ordering. Figure 2 exemplifies how PNs can be used to model parallel
and mutually exclusive choices: sequences T2;T4 -T3;T5 (transitions T6 -T7 -
T8 ) are placed on mutually exclusive paths, while transitions T10 and T11 are
placed on parallel paths. Finally, T9 prevents connections between nodes of the
same type.

The expressivity of PNs exceeds, in the general case, what is needed to model
business processes, which typically have a well-defined starting (ending) point.
This leads to the following definition of a workflow net (WF-net) [16].

Definition 2 (WF-net). A PN 〈P,T, F〉 is a WF-net if it has a single source
place start, a single sink place end, and every place and every transition is on a
path from start to end, i.e., for all n ∈ P ∪ T , (start, n) ∈ F∗ and (n, end) ∈ F∗,
where F∗ is the reflexive transitive closure of F.
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A marking in a WF-net represents the workflow state of a single case. The
semantics of a PN/WF-net, and in particular the notion of valid firing, defines
how transitions route tokens through the net so that they correspond to a process
execution.

Definition 3 (Valid Firing). A firing of a transition t ∈ T from M to M′ is
valid, in symbols M

t→ M′, iff

1. t is enabled in M, i.e., {p ∈ P | M(p) > 0} ⊇ •t; and
2. the marking M′ is such that for every p ∈ P:

M′(p) =

⎧
⎨

⎩

M(p) − 1 if p ∈ •t \ t•

M(p) + 1 if p ∈ t• \ •t

M(p) otherwise

Condition 1. states that a transition is enabled if all its input places contain at
least one token; 2. states that when t fires it consumes one token from each of
its input places and produces one token in each of its output places.

A case of a WF-Net is a sequence of valid firings M0
t1→ M1,M1

t2→ M2, . . . ,

Mk−1
tk→ Mk where M0 is the marking indicating that there is a single token in

start.

Definition 4 (k-safeness). A marking of a PN is k-safe if the number of tokens
in all places is at most k. A PN is k-safe if the initial marking is k-safe and the
marking of all cases is k-safe.

From now on we concentrate on 1-safe nets, which generalize the class of struc-
tured workflows and are the basis for best practices in process modeling [9]. We
also use safeness as a synonym of 1-safeness. It is important to notice that our
approach can be seamlessly generalized to other classes of PNs, as long as it is
guaranteed that they are k-safe. This reflects the fact that the process control-
flow is well-defined (see [8]).

Reachability on Petri Nets. The behavior of a PN can be described as a
transition system where states are markings and directed edges represent firings.
Intuitively, there is an edge from Mi to Mi+1 labeled by ti if Mi

t→ Mi+1 is a valid
firing. Given a “goal” marking Mg, the reachability problem amounts to check
if there is a path from the initial marking M0 to Mg. Reachability on PNs (WF-
nets) is of enormous importance in process verification as it allows for checking
natural behavioral properties, such as satisfiability and soundness in a natural
manner [1].

2.2 Trace Repair

One of the goals of process mining is to capture the as-is processes as accurately
as possible: this is done by examining event logs that can be then exploited
to perform the tasks in Fig. 1. In many cases, however, event logs are subject
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to data quality problems, resulting in incorrect or missing events in the log.
In this paper we focus on the latter issue addressing the problem of repairing
execution traces that contain missing entries (hereafter shortened in trace
repair).

The need for trace repair is motivated in depth in [14], where missing entities
are described as a frequent cause of low data quality in event logs, especially
when the definition of the business processes integrates activities that are not
supported by IT systems due either to their nature (e.g. they consist of human
interactions) or to the high level of abstraction of the description, detached
from the implementation. A further cause of missing events are special activities
(such as transition T9 in Fig. 2) that are introduced in the model to guarantee
properties concerning e.g., the structure of the workflow or syntactic constraints,
but are never executed in practice.

The starting point of trace repair are execution traces and the knowledge
captured in process models. Consider for instance the model in Fig. 2 and the
(partial) execution trace {T3, T7}. By aligning the trace to the model, techniques
such as the ones presented in [14] and [6] are able to exploit the events stored in
the trace and the control flow specified in the model to reconstruct two possible
repairs:

{T1,T3,T5,T7,T9,T10,T11,T12}
{T1,T3,T5,T7,T9,T11,T10,T12}

Consider now a different scenario in which the partial trace reduces to {T7}.
In this case, by using the control flow in Fig. 2 we are not able to reconstruct
whether the loan is a student loan or a worker loan. This increases the number
of possible repairs and therefore lowers the usefulness of trace repair. Assume
now that the event log conforms to the XES standard and stores some observed
data attached to T7:

{T7[request = 60k, loan = 50k]}

If the process model is able to specify how transitions can read and write vari-
ables, and furthermore some constraints on how they do it, the scenario changes
completely. Indeed, assume that transition T4 is empowered with the ability to
write the variable request with a value smaller or equal than 30k (the maximum
amount of a student loan). Using this fact, and the fact that the request exam-
ined by T7 is greater than 30k, we can understand that the execution trace has
chosen the path of the worker loan. Moreover, if the model specifies that vari-
able loanType is written during the execution of T1, when the applicant chooses
the type of loan she is interested in, we are able to infer that T1 sets vari-
able loanType to w. This example, besides illustrating the idea of trace repair,
also motivates why data are important to accomplish this task, and therefore
why extending repair techniques beyond the mere control flow is a significant
contribution to address data quality problems in event logs.
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2.3 The Planning Language K
The main elements of action languages are fluents and actions. The former rep-
resent the state of the system which may change by means of actions. Causation
statements describe the possible evolution of the states, and preconditions asso-
ciated to actions describe which action can be executed according to the current
state. A planning problem in K [7] is specified using a Datalog-like language
where fluents and actions are represented by literals (not necessarily ground).
The specification includes the list of fluents, actions, initial state and goal con-
ditions; also a set of statements specifies the dynamics of the planning domain
using causation rules and executability conditions. The semantics of K borrows
heavily from Answer Set Programming (ASP). In fact, the system enables the
reasoning with partial knowledge and provides both weak and strong negation.

A causation rule is a statement of the form
caused f if b1,. . ., bk, not bk+1, . . ., not b�

after a1,. . ., am, not am+1, . . ., not an.
The rule states that f is true in the new state reached by executing (simultane-
ously) some actions, provided that a1, . . . , am are known to hold while am+1, . . . , an
are not known to hold in the previous state (some of the aj might be actions
executed on it), and b1, . . . , bk are known to hold while bk+1, . . . , b� are not known
to hold in the new state. Rules without the after part are called static.
An executability condition is a statement of the form

executable a if b1,. . ., bk, not bk+1, . . ., not b�.
Informally, such a condition says that the action a is eligible for execution in a
state, if b1, . . . , bk are known to hold while bk+1, . . . , b� are not known to hold in
that state.

Terms in both kind of statements could include variables (starting with cap-
ital letter) and the statements must be safe in the usual Datalog meaning w.r.t.
the first fluent or action of the statements.

A planning domain PD is a pair 〈D,R〉 where D is a finite set of action and
fluent declarations, and R is a finite set of rules, initial state constraints, and
executability conditions.

The semantics of the language is provided in terms of a transition system
where the states are ASP models (sets of atoms) and actions transform the state
according to the rules. A state transition is a tuple t = 〈s, A, s′〉 where s, s′ are
states and A is a set of action instances. The transition is said to be legal if the
actions are executable in the first state and both states are the minimal ones
that satisfy all causation rules. Semantics of plans including default negation is
defined by means of a Gelfond-Lifschitz type reduction to a positive planning
domain. A sequence of state transitions 〈s0, A1, s1〉, . . . , 〈sn−1, An, sn〉, n ≥ 0, is a
trajectory for PD, if s0 is a legal initial state of PD and all 〈si−1, Ai, si〉, are legal
state transitions of PD.

A planning problem is a pair composed of a planning domain PD and a
ground goal g1, . . . , gm, not gm+1, . . ., not gn that has to be satisfied at the end
of the execution.
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3 Framework

In this section we suitably extend WF-nets to represent data and their evolution
as transitions are performed. In order for such an extension to be meaningful,
i.e., allowing reasoning on data, it has to provide: (i) a model for representing
data; (ii) a way to make decisions on actual data values; and (iii) a mechanism to
express modifications to data. We provide (i)–(iii) by enhancing WF-nets with
the following elements:

– a set of variables taking values from possibly different domains (provides(i));
– queries on such variables used as transitions preconditions (provides(ii));
– variables updates and deletion in the specification of net transitions (pro-

vides(iii)).

Our framework follows the approach of state-of-the-art WF-nets with data
[10,15], from which it borrows the above concepts, extending them by allow-
ing reasoning on actual data values as better explained in Sect. 6.

We make use of the WF-net in Fig. 2 extended with data as a running example.

3.1 Data Model

As our focus is on trace repair, we follow the data model of the IEEE XES
standard for describing logs, which represents data as a set of variables. Vari-
ables take values from specific sets on which a partial order can be defined. As
customary, we distinguish between the data model, namely the intensional level,
from a specific instance of data, i.e., the extensional level.

Definition 5 (Data model). A data model is a tuple D = (V , Δ, dm, ord)
where:

– V is a possibly infinite set of variables;
– Δ = {Δ1, Δ2, . . .} is a possibly infinite set of domains (not necessarily disjoint);
– dm : V → Δ is a total and surjective function which associates to each variable

v its domain Δi;
– ord is a partial function that, given a domain Δi, if ord(Δi) is defined, then it

returns a partial order (reflexive, antisymmetric and transitive) ≤Δi⊆ Δi ×Δi.
A data model for the loan example is V = {loanType, request, loan},

dm(loanType) = {w, s}, dm(request) = N, dm(loan) = N, with dm(loan) and
dm(request) being totally ordered by the natural ordering ≤ in N.

An actual instance of a data model is a partial function associating values to
variables.

Definition 6 (Assignment). Let D = 〈V , Δ, dm, ord〉 be a data model. An
assignment for variables in V is a partial function η : V → ⋃

i Δi such that
for each v ∈ V, if η(v) is defined, i.e., v ∈ img(η) where img is the image of η,
then we have η(v) ∈ dm(v).
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We now define our boolean query language, which notably allows for equality
and comparison. As will become clearer in Sect. 3.2, queries are used as guards,
i.e., preconditions for the execution of transitions.

Definition 7 (Query language - syntax). Given a data model, the language
L(D) is the set of formulas Φ inductively defined according to the following
grammar:

Φ := true | def(v) | t1 = t2 | t1 ≤ t2 | ¬Φ1 | Φ1 ∧Φ2

where v ∈ V and t1, t2 ∈ V ∪ ⋃
i Δi.

Examples of queries of the loan scenarios are request ≤ 5k or loanType = w.
Given a formula Φ and an assignment η, we write Φ[η] for the formula Φ where
each occurrence of variable v ∈ img(η) is replaced by η(v).

Definition 8 (Query language - semantics). Given a data model D, an
assignment η and a query Φ ∈ L(D) we say that D, η satisfies Φ, written D, η |= Φ
inductively on the structure of Φ as follows:

– D, η |= true;
– D, η |= def(v) iff v ∈ img(η);
– D, η |= t1 = t2 iff t1[η], t2[η] 
∈ V and t1[η] ≡ t2[η];
– D, η |= t1 ≤ t2 iff t1[η], t2[η] ∈ Δi for some i and ord(Δi) is defined and t1[η] ≤Δi

t2[η];
– D, η |= ¬Φ iff it is not the case that D, η |= Φ;
– D, η |= Φ1 ∧Φ2 iff D, η |= Φ1 and D, η |= Φ2.

Intuitively, def can be used to check if a variable has an associated value or
not (recall that assignment η is a partial function); equality has the intended
meaning and t1 ≤ t2 evaluates to true iff t1 and t2 are values belonging to the
same domain Δi, such a domain is ordered by a partial order ≤Δi and t1 is actually
less or equal than t2 according to ≤Δi .

3.2 Data-Aware Net

We now combine the data model with a WF-net and formally define how tran-
sitions are guarded by queries and how they update/delete data. The result is a
Data-AWare net (DAW-net) that incorporates aspects (i)–(iii) described at the
beginning of Sect. 3.

Definition 9 (DAW-net). A DAW-net is a tuple 〈D, N , wr, gd〉 where:

– N = 〈P,T, F〉 is a WF-net;
– D = 〈V , Δ, dm, ord〉 is a data model;
– wr : T �→ (V ′ �→ 2dm(V)), where V ′ ⊆ V, dm(V) =

⋃
v∈V dm(v) and wr(t)(v) ⊆

dm(v) for each v ∈ V ′, is a function that associates each transition to a
(partial) function mapping variables to a finite subset of their domain.

– gd : T �→ L(D) is a function that associates a guard to each transition.
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Function gd associates a guard, namely a query, to each transition. The
intuitive semantics is that a transition t can fire if its guard gd(t) evaluates to
true (given the current assignment of values to data). Examples are gd(T6) =
request ≤ 5k and gd(T8) = ¬(request ≤ 99999). Function wr is instead used
to express how a transition t modifies data: after the firing of t, each variable
v ∈ V ′ can take any value among a specific finite subset of dm(v). We have three
different cases:

– ∅ ⊂ wr(t)(v) ⊆ dm(v): t nondeterministically assigns a value from wr(t)(v) to
v;

– wr(t)(v) = ∅: t deletes the value of v (hence making v undefined);
– v 
∈ dom(wr(t)): value of v is not modified by t.

Notice that by allowing wr(t)(v) ⊆ dm(v) in the first bullet above we enable
the specification of restrictions for specific tasks. E.g., wr(T4) : {request} �→
{0 . . . 30k} says that T4 writes the request variable and intuitively that students
can request a maximum loan of 30k, while wr(T5) : {request} �→ {0 . . . 500k}
says that workers can request up to 500k.

The intuitive semantics of gd and wr is formalized next. We start from the
definition of DAW-net state, which includes both the state of the WF-net, namely
its marking, and the state of data, namely the assignment. We then extend the
notions of state transition and valid firing.

Definition 10 (DAW-net state). A state of a DAW-net 〈D,N ,wr, gd〉 is a
pair (M, η) where M is a marking for 〈P,T, F〉 and η is an assignment for D.

Definition 11 (DAW-net Valid Firing). Given a DAW-net 〈D,N ,wr, gd〉, a
firing of a transition t ∈ T is a valid firing from (M, η) to (M′, η′), written as
(M, η) t→ (M′, η′), iff conditions 1. and 2. of Def. 3 holds for M and M′, i.e., it
is a WF-Net valid firing, and

1. D, η |= gd(t),
2. assignment η′ is such that, if WR= {v |wr(t)(v) 
= ∅}, DEL= {v |wr(t)(v) = ∅}:

– its domain dom(η′) = dom(η)∪ WR \DEL;
– for each v ∈ dom(η′):

η′(v) =

{
d ∈ wr(t)(v) if v ∈ WR
η(v) otherwise.

Condition 1. and 2. extend the notion of valid firing of WF-nets imposing
additional pre- and postconditions on data, i.e., preconditions on η and postcon-
ditions on η′. Specifically, 1. says that for a transition t to be fired its guard gd(t)
must be satisfied by the current assignment η. Condition 2. constrains the new
state of data: the domain of η′ is defined as the union of the domain of η with
variables that are written (wr), minus the set of variables that must be deleted
(del). Variables in dom(η′) can indeed be grouped in three sets depending on the
effects of t: (i) old = dom(η)\wr: variables whose value is unchanged after t; (ii)
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new = wr \ dom(η): variables that were undefined but have a value after t; and
(iii) overwr = wr ∩ dom(η): variables that did have a value and are updated
with a new one after t. The final part of condition 2. says that each variable in
new ∪ overwr takes a value in wr(t)(v), while variables in old maintain the
old value η(v).

A case of a DAW-net is defined as a case of a WF-net, with the only difference
that the assignment η0 of the initial state (M0, η0) is empty, i.e., dom(η0) = ∅.

4 Trace Repair as Reachability

In this section we provide the intuition behind our technique for solving the trace
repair problem via reachability. Full details and proofs are contained in [5].

A trace is a sequence of observed events, each with a payload including the
transition it refers to and its effects on the data, i.e., the variables updated by its
execution. Intuitively, a DAW-net case is compliant w.r.t. a trace if it contains all
the occurrences of the transitions observed in the trace (with the corresponding
variable updates) in the right order.

As a first step, we assume without loss of generality that DAW-net models
start with a special transition startt and terminate with a special transition endt.
Every process can be reduced to such a structure as informally illustrated in the
left hand side of Fig. 3 by arrows labeled with (1). Note that this change would
not modify the behavior of the net: any sequence of firing valid for the original
net can be extended by the firing of the additional transitions and vice versa.

t

i_1

i_n

o_1

o_k
i_1

i_n

o_1

o_k

t

t_eend
start

e_1 e_l

endold_
end

old_
start

(1)(1)
(2)

startt endtstart

starttstart
endendt

Fig. 3. Outline of the trace “injection”

Next, we illustrate the main idea behind our approach by means of the right
hand side of Fig. 3: we consider the observed events as transitions (in red) and
we suitably “inject” them in the original DAW-net. By doing so, we obtain a
new model where, intuitively, tokens are forced to activate the red transitions
of DAW-net, when events are observed in the trace. When, instead, there is no
red counterpart, i.e., there is missing information in the trace, the tokens move
in the black part of the model. The objective is then to perform reachability for
the final marking (i.e., to have one token in the end place and all other places
empty) over such a new model in order to obtain all and only the possible repairs
for the partial trace.

More precisely, for each event e with a payload including transition t and
some effect on variables we introduce a new transition te in the model such that:
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– te is placed in parallel with the original transition t;
– te includes an additional input place connected to the preceding event and an

additional output place which connects it to the next event;
– gd(te) = gd(t) and
– wr(te) specifies exactly the variables and the corresponding values updated by

the event, i.e. if the event set the value of v to d, then wr(te)(v) = {d}; if the
event deletes the variable v, then wr(te)(v) = ∅.

Given a trace τ and a DAW-net W, it is easy to see that the resulting
trace workflow (indicated as Wτ) is a strict extension of W (only new nodes
are introduced) and, since all newly introduced nodes are in a path connect-
ing the start and sink places, it is a DAW-net, whenever the original one is a
DAW-net net.

We now prove the soundness and completeness of the approach by showing
that: (1) all cases of Wτ are compliant with τ; (2) each case of Wτ is also a case
of W and (3) if there is a case of W compliant with τ, then that is also a case for
Wτ.

Property (1) is ensured by construction. For (2) and (3) we need to relate
cases from Wτ to the original DAW-net W. We indeed introduce a projection
function Πτ that maps elements from cases of the enriched DAW-net to cases
of elements from the original DAW-net. Essentially, Πτ maps newly introduced
transitions te to the corresponding transitions in event e, i.e., t, and also projects
away the new places in the markings. Given that the structure of Wτ is essentially
the same as that of W with additional copies of transitions that are already in
W, it is not surprising that any case for Wτ can be replayed on W by mapping
the new transitions te into the original ones t, as shown by the following:

Lemma 1. If C is a case of Wτ then Πτ(C) is a case of W.

This lemma proves that whenever we find a case on Wτ, then it is an example
of a case on W that is compliant with τ, i.e., (2). However, to reduce the original
problem to reachability on DAW-net, we need to prove that all the W cases
compliant with τ can be replayed on Wτ, that is, (3). In order to do that, we can
build a case for Wτ starting from the compliant case for W, by substituting the
occurrences of firings corresponding to events in τ with the newly introduced
transitions. The above results pave the way to the following:

Theorem 1. Let W be a DAW-net and τ = (e1, . . . , en) a trace; then Wτ char-
acterises all and only the cases of W compatible with τ. That is

⇒ if C is a case of Wτ containing ten then Πτ(C) is compatible with τ; and
⇐ if C is a case of W compatible with τ, then there is a case C′ of Wτ s.t.
Πτ(C′) = C.

Theorem 1 provides the main result of this section and is the basis for the
reduction of the trace repair for W and τ to the reachability problem for Wτ.
In fact, by enumerating all the cases of Wτ reaching the final marking (i.e. a
token in end) we can provide all possible repairs for the partial observed trace.
Moreover, the transformation generating Wτ is preserving the safeness properties
of the original workflow:
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Lemma 2. Let W be a DAW-net and τ a trace of W. If W is k-safe then Wτ is
k-safe as well.

This is essential to guarantee the decidability of the reasoning techniques
described in the next section.

5 Reachability as a Planning Problem

In this section we exploit the similarity between workflows and planning domains
in order to describe the evolution of a DAW-net by means of a planning lan-
guage. Once the original workflow behaviour has been encoded into an equiva-
lent planning domain, we can use the automatic derivation of plans with specific
properties to solve the reachability problem. In our approach we introduce a new
action for each transition (to ease the description we will use the same names)
and represent the status of the workflow – marking and variable assignments –
by means of fluents. Although their representation as dynamic rules is concep-
tually similar we will separate the description of the encoding by considering
first the behavioural part (the WF-net) and then the encoding of data (variable
assignments and guards).

5.1 Encoding DAW-net Behaviour

Since we focus on 1-safe WF-nets the representation of markings is simplified
by the fact that each place can either contain 1 token or no tokens at all. This
information can be represented introducing a propositional fluent for each place,
true iff the corresponding place holds a token. Let us consider 〈P,T, F〉 the safe
WF-net component of a DAW-net system. The declaration part of the planning
domain will include:

– a fluent declaration p for each place p ∈ P;
– an action declaration t for each task t ∈ T .

Since each transition can be fired2 only if each input place contains a token, then
the corresponding action can be executed when place fluents are true: for each
task t ∈ T , given {it1, . . . , itn} = •t, we include the executability condition:

executable t if it1, . . . , i
t
n.

As valid firings are sequential, namely only one transition can be fired at each
step, we disable concurrency in the planning domain introducing the following
rule for each pair of tasks t1, t2 ∈ T3

caused false after t1, t2.

2 Guards will be introduced in the next section.
3 For efficiency reasons we can relax this constraint by disabling concurrency only

for transitions sharing places or updating the same variables. This would provide
shorter plans.
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Transitions transfer tokens from input to output places. Thus the corresponding
actions must clear the input places and set the output places to true. This is
enforced by including

caused −it1 after t. . . . caused −itn after t.
caused ot1 after t. . . . caused otk after t.

for each task t ∈ T and {it1, . . . , itn} = •t \ t•, {ot1, . . . , otk} = t•. Finally, place
fluents should be inertial since they preserve their value unless modified by an
action. This is enforced by adding for each p ∈ P

caused p if not −p after p.

Planning problem. Besides the domain described above, a planning problem
includes an initial state, and a goal. In the initial state the only place with a
token is the source:

initially: start.
The formulation of the goal depends on the actual instance of the reachability
problem we need to solve. The goal corresponding to the state in which the only
place with a token is end is written as:

goal: end, not p1, . . ., not pk?
where {p1, . . . , pk} = P \ {end}.

5.2 Encoding Data

For each variable v ∈ V we introduce a fluent unary predicate varv holding the
value of that variable. Clearly, varv predicates must be functional and have no
positive instantiation for undefined variables.

We also introduce auxiliary fluents to facilitate the writing of the rules. Fluent
defv indicates whether the v variable is not undefined – it is used both in tests and
to enforce models where the variable is assigned/unassigned. The fluent chngv
is used to inhibit inertia for the variable v when its value is updated because of
the execution of an action.

DAW-net includes the specification of the set of values that each transition
can write on a variable. This information is static, therefore it is included in the
background knowledge by means of a set of unary predicates domv,t as a set of
facts:

domv,t(e).

for each v ∈ V, t ∈ T , and e ∈ wr(t)(v).

Constraints on variables. For each variable v ∈ V:

– we impose functionality
caused false if varv(X), varv(Y), X != Y.

– we force its value to propagate to the next state unless it is modified by an
action (chngv)

caused varv(X) if not −varv(X), not chngv
after varv(X).

– the defined fluent is the projection of the argument



102 R. De Masellis et al.

caused defv if varv(X).

Variable updates. The value of a variable is updated by means of causation
rules that depend on the transition t that operates on the variable, and depends
on the value of wr(t). For each v in the domain of wr(t):

– wr(t)(v) = ∅: delete (undefine) a variable v
caused false if defv after t.
caused chngv after t.

– wr(t)(v) ⊆ dm(v): set v with a value nondeterministically chosen among a set
of elements from its domain

caused varv(V) if domv,t(V), not −varv(V) after t.
caused −varv(V) if domv,t(V), not varv(V) after t.
caused false if not defv after t.
caused chngv after t.

If wr(t)(v) contains a single element d, then the assignment is deterministic
and the first three rules above can be substituted with4

caused varv(d) after t.

Guards. To each subformula ϕ of transition guards is associated a fluent grdϕ
that is true when the corresponding formula is satisfied. To simplify the notation,
for any transition t, we will use grdt to indicate the fluent grdgd(t). Executability
of transitions is conditioned to the satisfiability of their guards; instead of mod-
ifying the executability rule including the grdt among the preconditions, we use
a constraint rule preventing executions of the action whenever its guard is not
satisfied:

caused false after t, not grdt.

Translation of atoms (ξ) is defined in terms of varv predicates. For instance
ξ(v = w) corresponds to varv(V), varw(W), V == W. That is ξ(v,T ) = vart(T)
for t ∈ V, and ξ(d,T ) = vartT == d for d ∈ ⋃

i Δi. For each subformula ϕ of
transition guards a static rule is included to “define” the fluent grdϕ:

true : caused grdϕ if true .
def(v) : caused grdϕ if defv .
t1 = t2 : caused grdϕ if ξ(t1,T1), ξ(t2,T2), T1 == T2 .
t1 ≤ t2 : caused grdϕ if ξ(t1,T1), ξ(t2,T2), ord(T1,T2) .

¬ϕ1 : caused grdϕ if not grdϕ1 .
ϕ1 ∧ . . . ∧ ϕn : caused grdϕ if grdϕ1 , . . . , grdϕn .

5.3 Correctness and Completeness

We provide a sketch of the correctness and completeness of the encoding. Proofs
can be found in [5].

4 The deterministic version is a specific case of the non-deterministic ones and equiv-
alent in the case that there is a single domv,t(d) fact.
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Planning states include all the information to reconstruct the original DAW-
net states. In fact, we can define a function Φ(·) mapping consistent planning
states into DAW-net states as following: Φ(s) = (M, η) with

∀p ∈ P, M(p) =

{
1 if p ∈ s

0 otherwise
η = {(v, d) | varv(d) ∈ s}

Φ(s) is well defined because s it cannot be the case that {varv(d), varv(d′)} ⊆ s
with d 
= d′, otherwise the static rule

caused false if varv(X), varv(Y), X != Y.

would not be satisfied. Moreover, 1-safeness implies that we can restrict to mark-
ings with range in {0, 1}. By looking at the static rules we can observe that those
defining the predicates defv and grdt are stratified. Therefore their truth assign-
ment depends only on the extension of varv(·) predicates. This implies that grdt
fluents are satisfied iff the variables assignment satisfies the corresponding guard
gd(t). Based on these observations, the correctness of the encoding is relatively
straightforward since we need to show that a legal transition in the planning
domain can be mapped to a valid firing. This is proved by inspecting the dynamic
rules.

Lemma 3 (Correctness). Let W be a DAW-net and Ω(W) the corresponding
planning problem. If 〈s, {t}, s′〉 is a legal transition in Ω(W), then Φ(s) t→ Φ(s′)
is a valid firing of W.

The proof of completeness is more complex because – given a valid firing –
we need to build a new planning state and show that it is minimal w.r.t. the
transition. Since the starting state s of 〈s, {t}, s′〉 does not require minimality we
just need to show its existence, while s′ must be carefully defined on the basis
of the rules in the planning domain.

Lemma 4 (Completeness). Let W be a DAW-net, Ω(W) the corresponding
planning problem and (M, η) t→ (M′, η′) be a valid firing of W. Then for each
consistent state s s.t. Φ(s) = M there is a consistent state s′ s.t. Φ(s′) = M′ and
〈s, {t}, s′〉 is a legal transition in Ω(W).

Lemmata 3 and 4 provide the basis for the inductive proof of the following
theorem:

Theorem 2. Let W be a safe WF-net and Ω(PN) the corresponding planning
problem. Let (M0, η0) be the initial state of W – i.e. with a single token in the
source and no assignments – and s0 the planning state satisfying the initial
condition.

(⇒) For any case ζ : (M0, η0)
t1→ (M1, η1) . . . (Mn−1, ηn−1)

tn→ (Mn, ηn) in W there is a
trajectory η : 〈s0, {t1}, s1〉, . . . , 〈sn−1, {tn}, sn〉 in Ω(W) such that (Mi, ηi) = Φ(si) for
each i ∈ {0 . . . n} and viceversa.

(⇐) For each trajectory η : 〈s0, {t1}, s1〉, . . . , 〈sn−1, {tn}, sn〉 in Ω(W), the sequence of

firings ζ : Φ(s0)
t1→ Φ(s1) . . . Φ(sn−1)

tn→ Φ(sn) is a case of W.
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Theorem 2 above enables the exploitation of planning techniques to solve the
reachability problem in DAW-net. Indeed, to verify whether the final marking
is reachable it is sufficient to encode it as a condition for the final state and
verify the existence of a trajectory terminating in a state where the condition
is satisfied. Decidability of the planning problem is guaranteed by the fact that
domains are effectively finite, as in Definition 9 the wr functions range over a
finite subset of the domain and by the fact that the planner takes as input the
maximum length of the plan to be returned (note that this allows for dealing
with loops).

6 Related Work and Conclusions

The key role of data in the context of business processes has been recently
recognized.

A number of variants of PNs have been enriched so as to make tokens able
to carry data and transitions aware of the data, as in the case of Workflow
nets enriched with data [10,15], the model adopted by the business process
community. In [15] Workflow Net transitions are enriched with information
about data (e.g., a variable request) and about how it is used by the activity
(for reading or writing purposes). Nevertheless, these nets do not consider data
values (e.g., in the example of Sect. 2.2 we would not be aware of the values
of the variable request that T4 is enabled to write). They only allow for the
identification of whether the value of the data element is defined or undefined,
thus limiting the reasoning capabilities that can be provided on top of them.
For instance, in the example of Sect. 2.2, we would not be able to discriminate
between the worker and the student loan for the trace in Sect. (2.2), as we would
only be aware that request is defined after T4.

The problem of incomplete traces has been investigated in a number of works
of trace alignment in the field of process mining, where it still represents one
of the challenges. Several works have addressed the problem of aligning event
logs and procedural models, without [2] and with [10,11] data. All these works,
however, explore the search space of possible moves in order to find the best one
aligning the log and the model. Differently from them, we assume that the model
is correct and we focus on the repair of incomplete execution traces. Moreover,
we exploit state-of-the-art planning techniques to reason on control and data
flow rather than solving an optimisation problem.

We can overall divide the approaches facing the problem of reconstructing
flows of model activities given a partial set of information in two groups: quanti-
tative and qualitative. The former rely on the availability of a probabilistic model
of execution and knowledge. For example, in [14], the authors exploit stochas-
tic PNs and Bayesian Networks to recover missing information (activities and
their durations). The latter stand on the idea of describing “possible outcomes”
regardless of likelihood; hence, knowledge about the world will consist of equally
likely “alternative worlds” given the available observations in time, as in this
work. For example, in [3] the same issue of reconstructing missing information
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has been tackled by reformulating it in terms of a Satisfiability(SAT) problem
rather than as a planning problem.

Planning techniques have already been used in the context of business
processes, e.g., for the construction and adaptation of autonomous process
models [13]. In [4] automated planning techniques have been applied for align-
ing execution traces and declarative models. As in this work, in [6], planning
techniques have been used for addressing the problem of incomplete execution
traces with respect to procedural models.

However, differently from the two approaches above, this work uses for the
first time planning techniques to target the problem of completing incomplete
execution traces with respect to a procedural model that also takes into account
data and the value they can assume.

Despite this work mainly focuses on the problem of trace completion, the
proposed automated planning approach can easily exploit reachability for model
satisfiability and trace compliance and furthermore can be easily extended also
for aligning data-aware procedural models and execution traces. Moreover, the
presented encoding in the planning language K, can be directly adapted to other
action languages with an expressiveness comparable to C [12]. In the future, we
would like to explore these extensions and implement the proposed approach
and its variants in a prototype.
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