Visual Analytics for Soundness Verification
of Process Models

Humberto S. Garcia Caballero®™), Michel A. Westenberg,
Henricus M. W. Verbeek, and Wil M. P. van der Aalst

Eindhoven University of Technology, Eindhoven, The Netherlands
h.s.garcia.caballero@tue.nl

Abstract. Soundness validation of process models is a complex task for
process modelers due to all the factors that must be taken into account.
Although there are tools to verify this property, they do not provide users
with easy information on where soundness starts breaking and under
which conditions. Providing insights such as states in which problems
occur, involved activities, or paths leading to those states, is crucial for
process modelers to better understand why the model is not sound. In
this paper we address the problem of validating the soundness property
of a process model by using a novel visual approach and a new tool called
PSVis (Petri net Soundness Visualization) supporting this approach. The
PSVis tool aims to guide expert users through the process models in order
to get insights into the problems that cause the process to be unsound.

Keywords: Petri nets - Soundness - Verification - Process models
Process mining - Visualization - Visual analytics

1 Introduction

The use of process models for workflows has been studied for some decades now.
It started back in 1979 with the work of Skip Ellis on office automation [9]. Still, it
took two decades until notions such as workflow nets and soundness were defined
[1] thus linking workflows to Petri nets. As a result of this link, a lot of existing
Petri net theory (like [7,14,16,18]) became instantly applicable to the workflow
process model domain. Nevertheless, some other approaches to the verification of
these models also still emerged, in which was used [19] another graph-like notation
for processes in combination with dedicated graph reduction rules.

The application of Petri nets to the workflow domain [2,3,12] triggered a
new line of research focussing on the soundness verification tool Woflan [28],
different variations on soundness [5,26], and extensions to the Petri net formalism
(like EPCs [11,24,25], BPEL [15], and YAWL [29,31]). Verbeek et al. [28] also
introduced the concepts of the problematic runs (called sequences in that paper),
which are used in this paper.

None of these approaches offered a comprehensive visualization of the
problems using the process model of choice (YAWL, EPC, Petri net, etc.).

© Springer International Publishing AG 2018
E. Teniente and M. Weidlich (Eds.): BPM 2017 Workshops, LNBIP 308, pp. 744-756, 2018.
https://doi.org/10.1007/978-3-319-74030-0_59

Visual Analytics for Soundness Verification of Process Models 745

For instance, the Woflan tool did not visualize the Petri net it was checking
soundness on, but just showed a series of messages that included the labels of
the nodes in the net. Nevertheless, the Woflan tool was later included in the
process mining framework ProM [21,25], which did allow this net to be visual-
ized. As a result of this inclusion, selected markings (like deadlock markings)
could be visualized by projecting them onto the net, and other Petri-net related
properties (like invariants) could also be visualized. However, such visualization
means are still limited and users struggle to diagnose real problems.

This paper takes this initial and rudimentary visualization of soundness prob-
lems in ProM some steps further by focusing on the visualization. Also, whereas
Woflan requires a unique final marking (which should be reached to achieve
success in the workflow), the approach in this paper allows for any collection
of such final markings. By visualizing any problem that prevents the workflow
from reaching any of these final markings, the user is guided towards correcting
the root cause of these problems.

The concept of runs as shown by the visualization is known in the Petri net
field, and originates from Desel [6]. An example tool that supports these runs is
VipTool [4,8]. VipTool can provide the user with information whether a given
scenario (say, a partial trace) fits the Petri net at hand. In this paper, we assume
that such a partial trace fits the net. If not, we can use alignments to find the
closest path in the model [22]. This is not supported by the VipTool, but is
supported by ProM. We are more interested in visualizing the execution of the
fitting partial trace in the net. Apart from this, VipTool can also synthesize a
Petri net from a collection of scenarios. This connects VipTool to the field of
process mining [21], which is the natural habitat of ProM. However, we do not
use that feature of the tool.

PSVis (Petri net Soundness Visualization) is a tool to spot problems in Petri
nets by means of visualization. The tool aims at guiding expert users through
the process models to get insight into the problems that cause the process model
to be unsound.

2 Problem Definition

In this section we give definitions of the core concepts that our visualization tool
needs to handle. We define the problem that we address, and present a set of
tasks. We designed our visualization tool accordingly.

2.1 Problem Analysis

Process modelers tend to ensure the soundness property of the process models.
However, it is fairly easy to break this property with only a small number of
changes on the model. In addition, models which are derived by discovery algo-
rithms do not always ensure this property. Well-known miners like the Alpha-
miner and the Heuristic-miner often produce models that are not sound (e.g.,
have deadlocks).

746 H. S. Garcia Caballero et al.

Because of the dynamic nature of the behavior of the Petri nets, understand-
ing where the problems occur and the context in which they happen plays a key
role for process modelers.

In order to address this problem, we define the following tasks, which form
the design basis of our tool:

T1 Obtain an overview of all or a subset of final states of a Petri net.

T2 Compare disjoint sets of transitions and /or places belonging to a specific area.
T3 Find problematic states.

T4 Explore paths that lead to a problematic state.

T5 Determine when the problem occurs for a specific problematic state.

T6 Analyze the runs for a selection of states.

T7 Examine concurrency, loops and causal order in runs.

This set of tasks has been composed in collaboration with experts in the area
of process mining and Petri nets in order to address the problem on soundness
validation. To support these tasks, we chose appropriate visual encodings and
made an interaction design.

2.2 Soundness Validation

We use an algorithm originally proposed by Verbeek [27] to compute the prob-
lematic states of a given Petri net. The output of the algorithm is used as input
in our tool. The algorithm computes three sets of states, referred to as Orange,
Green and Red areas. An abstraction of the resulting output of this algorithm
is shown in Fig. 1.

In our tool, we focus on the border states, that is, the states which depict a
transition from the Orange area to the either Green or Red area. In Fig. 1, the
border states are linked by black-dotted arrows. Notice that there may be cases

Orange area Green area Transiton ———>»
t4 Relevant Transition «..........3»
. State O
% o
o Initial State A
Final State .

Red area

Fig. 1. Abstract representation of the concept of areas outlined by Verbeek et al. [27].
The state space is divided into three areas: Orange, Green and Red. Circles and arrows
depict states of the state space and transitions, respectively. Two possible situations
can occur in the Red area: deadlocks and livelocks, which are represented by circles
without outgoing arrows and cycles. (Color figure online)

Visual Analytics for Soundness Verification of Process Models 747

in which the same transition leads to different areas depending on the source
state (e.g., t1 leads to Green and Red areas). These states correspond to parts
of the Petri net in which everything becomes right (henceforth, all reachable
states are Green) or everything becomes wrong (henceforth, all reachable states
are Red).

The Red area contains all those states from which is not possible to reach
any final state. Clearly, all reachable states from a Red state are Red states too.
Thus, states within this area are considered as wrong states. On the other hand,
the Green area represents those states from which a final state can always be
reached. Similar to the Red states, from a Green state only Green states can be
reached. Lastly, the Orange area comprises states from which some Red, Green
and Orange states can be reached.

Within the Red area, two major problems can be present: deadlocks and
livelocks. In Fig.1, two problems are indicated with circles. Deadlocks occur
when a state from which no transition can be fired is reached, and it is not a
final state. This can be seen in Fig. 1 as the state has no outgoing edges, that is,
no transition can be fired at that state. Livelocks happen when a cycle is found,
which means that it is possible to iterate between a subset of states forever.

3 PSVis

In this section we introduce PSVis (Petri net Soundness Visualization), its com-
ponents and how they interact in order to execute the tasks depicted in Sect. 2.1.
An overview of all components is given in Fig. 3. Every component enables to
perform a specific task or a set of tasks.

Our tool assumes that the state space is computable in a reasonable amount
of time. If the state space contains unbounded places, it is infinite in size and
cannot be computed. But even if all places are bounded, the state space may
still be too big to be constructed within reasonable time [28]. To avoid having to
spend unreasonable time in constructing the state space, our tool uses a threshold
that operates on the number of tokens in a state. If the threshold is set to b, then
only states where every place contains less than b tokens are expanded. This is
related to the notion of b-boundedness introduced earlier. Thus, if all places are
b-bounded in a net, then setting the threshold to b or higher does not change
the state space. If the threshold is reached at some state, we assume that state
is a problematic one.

3.1 Glyphs on the Petri Net

In order to support T1 (Obtain an overview of all or a subset of final states of a
Petri net), process modelers need to visualize the number of tokens of a specific
place, and the states that place belongs to. As a result, we introduce glyphs,
which decorate places in a Petri net. Glyphs are visual representations of a piece
of the data where visual attributes are dictated by data attributes [30].

748 H. S. Garcia Caballero et al.

The number of tokens in a place is represented as dot shapes contained
in the place, numbers, or a combination of both. The main problem of this
representation arises when we want to visualize more than one final state at the
same time. A final state according to the definition is a multiset of places. This
implies that a specific place can belong to more than one final state. With the
current way of presenting this information, expert users are not able to know the
number of tokens contained inside each place for each state and whether a place
belongs to more than one state. Therefore, we propose a new way to visually
encode this information. This new encode is shown in Fig. 4(b).

In our approach, the state with the highest number of unique places deter-
mines the color of the places. Glyphs are then colored with the remaining states.
The initial state constitutes an exception and the places that belong to it are
always colored accordingly. Figure2 shows an example of how our approach
works. When the user selects State 1, the two places that belong to it are colored
red. Next, the user selects State 2 which has three unique places. Therefore, all
the places are colored blue and two glyphs are created to present State 1. Lastly,
when the user selects the initial state, two places are colored green and glyphs
are created to show the remaining states.

If there is more than one token in a place, a label is attached to the glyph (or
to the place) indicating the number of tokens. This label is colored dynamically
depending on the brightness of the background color. Thus, labels can be colored
black or white to make them readable.

User sequentially
selects

. State 1: . State 2: O State 3: Olnitial State:

2 Places 3 Places 1 Place 2 Places
e ¢ ¢ ¢
O (4 o
=10 @ @
e [@

Fig. 2. Assignment of colors to places when selecting states. From left to right, the
evolution of the coloring of the places when a user selects states is shown. Glyphs
decorating the places of the Petri net are created on demand. (Color figure online)

3.2 Petri Net View

This is the main view of our tool. It presents the Petri net (see Fig. 3(1)) where
circles and rectangles depict places and transitions. We implement a version of
Sugiyama’s approach [20] to layout the Petri net since it gives a good under-
standing of the flow of the process. Some parameters of the layout algorithm
can be modified through the toolbar at the top of the view. In addition, users
can perform zooming, panning and dragging of elements directly on the view.

Visual Analytics for Soundness Verification of Process Models 749

Fig. 3. Overview of our tool. (1) displays a Petri net in which four places are colored:
two in red, indicating the last state reached in the Red area, one in blue, indicating
that token was consumed in order to reach the Red state, and one in golden, indicating
the final state of the Petri net, which was selected in (1b). (2) shows all the available
problematic states, some of them are highlighted indicating that the user selected those
ones. Lastly, 3) shows the corresponding runs. (Color figure online)

a) b) c)

Initial state
Final state 1
Final state 2

State space overview

O Additional e Green Red Cardinality * 1
@ states

0 v @t

O t24 —— Livelock
Final state 3 Place O ém_,zea:cc:m Jock
Number of v eadiock & lvelo

BE0O0

16 —) Final State

Final state 4

tokens

Fig. 4. Examples of the components of our tool: (a) component showing the initial and
final states and their colors; (b) four different final states that involve the same place;
(d) component showing a problematic state from which we can reach four different
types of problems depending on the transition we fire. (Color figure online)

Last but not least, nodes can be hovered in order to show the label of such
element by using a tooltip.

To the right of the Petri net view, there is a panel which shows the initial and
final states of the model. Each state is presented in the tool by two components:
a button and a colored rectangle, which are interactive. This component can be
seen in Fig. 4(a). The example shows one single initial and five final states. Users
can (de)select states with this component and change the assigned colors. When a

—~

750 H. S. Garcia Caballero et al.

state is selected, the Petri net view reacts by showing the current selection of
states. Given the fact that a single place can be present in multiple states, we use
a new approach to represent that a place belongs to several states (see Fig. 2).
This feature directly relates to task T1 (Obtain an overview of all or a subset of
final states of a Petri net).

The top part of this view (Fig. 3(1a)) shows two sets of buttons that are ded-
icated to perform a quick exploration of the problems that have been detected.
These buttons enable users to explore places or transitions that belong to just
one area. This is useful because it gives a quick overview of the parts of the Petri
net that belong to the Green/Red/Orange area. In order to do this, users can
select what they want to visualize (places/transitions) and which area they want
to explore (Green/Red/Orange). Once the user selects one of these options, the
Petri net view highlights those elements which belong to the selected area. This
feature relates to task T2 (Compare disjoint sets of transitions and/or places
belonging to a specific area).

3.3 States View

This component can be seen in more detail in Fig. 4(c) and it enables the explo-
ration of the most important problematic states within the state space of the
Petri net (T3 (Find problematic states)). Those states correspond to scenarios
in which the process can lead from an Orange state to either a Green or Red
state. This component only shows the border cases, which are derived from the
relevant transitions of the state space (see Fig.1).

Our approach uses a two-level tree to visualize the different states in which
the net experiences a problem. The first indicates the states in which an Orange-
to-Red or Orange-to-Green scenario was found, and the second level indicates
the transition that is involved in the detected scenarios. For each state, the user
can find a variable number of transitions that could trigger a step in the state
space leading from an Orange state to a Green state, or a Red state in which
two situations can ultimately happen: deadlock or livelock. This part relates to
T5 (Determine when the problem occurs for a specific problematic state) since
they show where (state and transition) problems occur.

In some cases, the algorithm that our tool uses detects a problem only because
of the threshold that it uses. In those cases, this component indicates that by
marking the problematic state with an asterisk. In this way, users can easily
differentiate those states that are always problematic from those that are prob-
lematic because the algorithm did not continue exploring.

We use icons to give a quick overview of the scenarios found by the algo-
rithm. They indicate the scenario for a specific state (aggregated view) and for
a specific transition (specific view). Therefore, the first level of the tree might
display multiple icons indicating all the possible scenarios that can be reached
through that state. Seven scenarios are possible: (1) reaching a Green state;
(2) a Red state that eventually leads to a deadlock is reached; (3) a Red state
that eventually leads to a livelock is reached; (4) a Red state from which a dead-
lock and livelock can be reached; (5) either a Green state or a Red deadlocking

Visual Analytics for Soundness Verification of Process Models 751

state can be reached; (6) either a Green or a Red livelocking state can be reached;
and (7) either a Green or Red dead/live-locking state can be reached.

The nodes of the tree can be sorted by three different criteria. By clicking
on the corresponding radio buttons, the view sorts the states by the criterion
chosen by the user. Thus, users can sort states by the type of scenario that they
represent (either Green or Red) and the cardinality of the states.

Next to the sorting functions there is a spinner, which is used to set the
threshold used by the algorithm that computes the state space. By default,
this parameter is set to 1. When the user interacts with the spinner, the tool
recomputes the state space, partitions the recomputed state space into Green,
Red and Orange, and recomputes all the relevant information related to them,
such as runs or disjoint sets of states and transitions.

Users can interact with the nodes of the tree to explore the different scenarios.
This way, the nodes can be selected to be displayed in the Petri net view. When
a node from the first level of the tree is selected, the main view shows all the
available scenarios for that specific state by coloring the nodes of the Petri net
that are involved in that specific state. In Fig. 3 state {p_ocancel, p4} is selected.
The places that define the selected state are colored blue, while the transitions
that can be triggered leading the process to a Green or Red state are colored
green and red.

Once users select a (set of) state(s), it is possible to interact with the main
view to explore the behavior of the net. This is done by enabling users to click
on the transitions that have been colored to show the paths that lead to the
selected state, and the final marking reached by triggering that transition. This
feature connects this view and the runs view, which is described below.

3.4 Runs View

This view helps users perform tasks T4 (Explore paths that lead to a problematic
state) and T6 (Analyze the runs for a selection of states). An example is shown
in Fig. 3(3). Runs are displayed as disconnected graphs, which can be projected
as paths in the Petri net view. When users select a state from the states view,
this component shows the runs that lead to the chosen states. Then, two major
interactions are provided: nodes hovering, and path selection. On the one hand,
the first interaction aids users in linking nodes of the runs to nodes of the Petri
net view. On the other hand, the second interaction assists in visualizing the path
that goes from the initial state to the selected state directly on the Petri net.

Through these two interactions, users can detect states that share similar
segments of path, helping users get insights into the problematic scenarios of the
model.

There is a third interaction which links directly with the Petri net view.
When the user clicks on a transition that is involved in the problematic scenario
that the user is exploring, the Petri net view takes the run that leads to the
ultimate state reachable from the current state, that is, a deadlock or livelock,
and shows the path. Providing the context in which the process ends up in a
Red state helps the user to understand how the process led to that problem.

752 H. S. Garcia Caballero et al.

3.5 Design Decisions

The design decisions made in this work support some basic notions on human
perception [13]. The usage of glyphs to represent the belonging of a place to dif-
ferent states is a natural way to show that type of information. They are located
next to the elements for which they provide information, and they use a basic
color code to show the state that they represent. We use this notation since it
is known that the color is a cognitively effective visual variable [13]. Also, we
use colors to display useful information on top of the Petri net. We consider
this approach to be acceptable since the usage of other ones (e.g., shapes) would
probably interfere with the Petri net notation itself. Even though color repre-
sentations are a limitation for our tool, we consider satisfactory for the purposes
of this work.

3.6 Implementation Details

Our tool is implemented as a plug-in within the ProM [23] framework using Java
v6. Prefuse [10] is used to manage the graph structures and the visual properties
of the visualization of the Petri net. The jBPT library [17] for Petri nets is used
to compute the runs.

4 Use Cases

In this section we demonstrate how our tool can be used to assess Petri nets.
We focus on two nets, which were designed by students who participated in
the study developed in [28]. These nets include information on initial and final
states.

The first case exposes an example in which no final state can be reached.
Figure 5 summarizes this use case. It shows an overview of the Petri net and an
area of interest in more detail. As can be seen, there are no problematic states
in the states view. However, we observe that some of the places are colored
red, which means that this place can contain tokens but that no final state can
be reached from any state in which this place contains tokens, and some are
not colored at all. The latter places do not appear in the state space, which
means they are not reachable since if they were reachable, they would be either
colored or present in the problematic states view. The final state is also not
colored, and therefore the process can never reach the final state. Observe that
all three input places of the book_hotel_... transition can contain tokens, but the
single output place cannot. Apparently, not all input places of this transition can
contain tokens at the same time. The source of this problem can be found in the
second place from the left in the overall net, which corresponds to a three-way
choice. If the highlighted path is chosen, then only one of the input places can
contain a token, otherwise only the other two can contain tokens.

Visual Analytics for Soundness Verification of Process Models 753

(Three-way choice

No
problematic |
states!

Fig. 5. Screenshots of the usage of the tool for a dataset. (Color figure online)

The second use case (Fig. 6) depicts a Petri net in which several problematic
scenarios have been found. Initially, we proceed by exploring the disjoint sets
of places and transitions. We can easily spot some straightforward paths that
lead to the final state as well as some paths that eventually finish in the Red
area (Fig.6(a)). Furthermore, we see some places and transitions that have not
been colored. We now focus on those elements in order to explore what occurs
there. By hovering on some of the places that have not been colored, we can
see their labels. One interesting place is the one labeled as Status7 since it is
present in three of the problematic states shown in the states view. We pick
one of those states to explore the runs that lead to that problematic state. The
tool shows two different runs (see Fig.6(a)). By looking at these, we can see

Fig. 6. Screenshots of the usage of the tool for a dataset. (Color figure online)

754 H. S. Garcia Caballero et al.

that they share some of the initial steps in the process, but that they divert at
some point. Clicking a run visualizes the paths that those runs represent in the
Petri net. If we compare the two runs in this way, we immediately see that they
finish in the same problematic state, although they followed different paths. We
can also see where the deadlock occurs by clicking on the transition colored red.
Figure 6(b) shows the two paths (edges colored blue) for the two runs, as well as
the deadlock that is reached (place colored red). The place colored blue indicates
that the token must be consumed by firing the red transition.

5 Conclusion

We have presented PSVis, a tool to visually assess the soundness of a Petri net.
We have formulated the most important analysis tasks, and have demonstrated
the usage of our tool through the exploration of two Petri nets. The first use
case showed a simple scenario in which we discovered why the final state was not
reachable. The second use case represented a more complex example in which
more actions were performed. Through different actions, we observed different
aspects of the Petri net such as deadlocks and common paths that lead to them.

One of the main limitations of our tool is that it relies on the state space,
which cannot not always be computed in reasonable time. Even though we have
some workarounds (setting a threshold to limit the computation of branches), it
may take a considerable amount of time to finish. We plan to study alternatives
to compute the parts of the state space that are used in the analysis. One
option might be to explore the state space incrementally by computing just
portions of it.

In future work we aim to perform experiments to compare different
approaches for displaying the runs since the current representation lacks of an
explicit way to display loops and concurrency, which would help to perform task
T7 (Examine concurrency, loops and causal order in runs).

Acknowledgment. This research was performed within the framework of the strate-
gic joint research program on Data Science between TU/e and Philips Electronics
Nederland B.V.

References

1. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407-426. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63139-9_48

2. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
Circ. Syst. Comput. 8(1), 21-66 (1998)

3. Adam, N.R., Atluri, V., Huang, W.K.: Modeling and analysis of workflows using
Petri nets. J. Intell. Inf. Syst. 10(2), 131-158 (1998)

4. Bergenthum, R., Desel, J., Juhds, G., Lorenz, R.: Can i execute my scenario in
your net? viptool tells you!. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN
2006. LNCS, vol. 4024, pp. 381-390. Springer, Heidelberg (2006). https://doi.org/
10.1007/11767589_21

https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/11767589_21
https://doi.org/10.1007/11767589_21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Visual Analytics for Soundness Verification of Process Models 755

Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAIiSE 2001. LNCS, vol. 2068, pp. 157—
170. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45341-5_11
Desel, J.: Validation of process models by construction of process nets. In: van der
Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS,
vol. 1806, pp. 110-128. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45594-9_8

Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

Desel, J., Juhés, G., Lorenz, R., Neumair, C.: Modelling and validation with vip-
tool. In: van der Aalst, W.M.P., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp.
380-389. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44895-0_26
Ellis, C.A.: Information control nets: a mathematical model of office information
flow. In: Proceedings of the Conference on Simulation, Measurement and Modeling
of Computer Systems, Boulder, Colorado, USA, pp. 225-240. ACM Press (1979)
Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information
visualization. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 421-430. ACM (2005)

Mendling, J., Verbeek, HM.W., van Dongen, B.F., van der Aalst, W.M.P., Neu-
mann, G.: Detection and prediction of errors in EPCs of the SAP reference model.
Data Knowl. Eng. 64(1), 312-329 (2008). Fourth International Conference on Busi-
ness Process Management (BPM 2006), 8th International Conference on Enterprise
Information Systems (ICEIS 2006), Four Selected and Extended Papers, Three
Selected and Extended Papers

De Michelis, G., Ellis, C., Memmi, G., (eds.): Modelling workflow management
systems with high-level Petri nets. In: Proceedings of the Second Workshop
on Computer-Supported Cooperative Work, Petri nets and Related Formalisms,
Zaragoza, Spain, June 1994

Moody, D.: The physics of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756—779
(2009)

Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541-580 (1989)

Ouyang, C., Verbeek, HM.W., van der Aalst, W.M.P., Breutel, S., Dumas, M.,
ter Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Sci. Comput. Program. 67(2), 162-198 (2007)

Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall,
Englewood Cliffs (1981)

Polyvyanyy, A., Weidlich, M.: Towards a compendium of process technologies:
the jBPT library for process model analysis. In: Proceedings of the CAiSE 2013
Forum at the 25th International Conference on Advanced Information Systems
Engineering (CAiSE), pp. 106-113. Sun SITE Central Europe (2013)

Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science, vol. 4. Springer, Heidelberg (1985)

Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Inf. Syst. 25(2), 117-134 (2000)

Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109-125 (1981)
van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin
(2016)

https://doi.org/10.1007/3-540-45341-5_11
https://doi.org/10.1007/3-540-45594-9_8
https://doi.org/10.1007/3-540-45594-9_8
https://doi.org/10.1007/3-540-44895-0_26

756

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

H. S. Garcia Caballero et al.

van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
discip. Rev. Data Min. Knowl. Discov. 2(2), 182-192 (2012)

van Dongen, B.F., de Medeiros, A.K.A., Verbeek, HM.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444-454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744 25

van Dongen, B.F., Jansen-Vullers, M.H., Verbeek, H.M.W., van der Aalst, W.M.P.:
Verification of the SAP reference models using EPC reduction, state-space analysis,
and invariants. Comput. Ind. 58(6), 578-601 (2007)

van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Verification of EPCs:
using reduction rules and Petri nets. In: Pastor, O., Falcao e Cunha, J. (eds.)
CAISE 2005. LNCS, vol. 3520, pp. 372-386. Springer, Heidelberg (2005). https://
doi.org/10.1007/11431855_26

van Hee, K., Sidorova, N., Voorhoeve, M.: Generalised soundness of workflow nets is
decidable. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp.
197-215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27793-
412

Verbeek, H.M.W.: Verification of WF-nets. Eindhoven University of Technology
Eindhoven, The Netherlands (2004)

Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing workflow pro-
cesses using Woflan. Comput. J. 44(4), 246-279 (2001)

Verbeek, HM.W., Wynn, M.T.: Verification. In: ter Hofstede, A.H.M., van der
Aalst, W.M.P., Adams, M., Russell, N. (eds.) Modern Business Process Automa-
tion: YAWL and its Support Environment, pp. 513-539. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-03121-2_20. Database Management &
Info Retrieval, Chap. 20

Ward, M.O.: Multivariate data glyphs: principles and practice. In: Chen, C.-H.,
Héardle, W., Unwin, A. (eds.) Handbook of Data Visualization. SHCS, pp. 179—
198. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-33037-0_8
Wynn, M.T., Verbeek, HM.W., van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Edmond, D.: Business process verification - finally a reality!. Bus. Process Manag.
J. 15(1), 74-92 (2009)

https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/11431855_26
https://doi.org/10.1007/11431855_26
https://doi.org/10.1007/978-3-540-27793-4_12
https://doi.org/10.1007/978-3-540-27793-4_12
https://doi.org/10.1007/978-3-642-03121-2_20
https://doi.org/10.1007/978-3-540-33037-0_8

	Visual Analytics for Soundness Verification of Process Models
	1 Introduction
	2 Problem Definition
	2.1 Problem Analysis
	2.2 Soundness Validation

	3 PSVis
	3.1 Glyphs on the Petri Net
	3.2 Petri Net View
	3.3 States View
	3.4 Runs View
	3.5 Design Decisions
	3.6 Implementation Details

	4 Use Cases
	5 Conclusion
	References

