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Abstract. We consider the problem of classifying business process
instances based on structural features derived from event logs. The main
motivation is to provide machine learning based techniques with quick
response times for interactive computer assisted root cause analysis. In
particular, we create structural features from process mining such as
activity and transition occurrence counts, and ordering of activities to
be evaluated as potential features for classification. We show that adding
such structural features increases the amount of information thus poten-
tially increasing classification accuracy. However, there is an inherent
trade-off as using too many features leads to too long run-times for
machine learning classification models. One way to improve the machine
learning algorithms’ run-time is to only select a small number of fea-
tures by a feature selection algorithm. However, the run-time required
by the feature selection algorithm must also be taken into account. Also,
the classification accuracy should not suffer too much from the feature
selection. The main contributions of this paper are as follows: First, we
propose and compare six different feature selection algorithms by means
of an experimental setup comparing their classification accuracy and
achievable response times. Second, we discuss the potential use of fea-
ture selection results for computer assisted root cause analysis as well as
the properties of different types of structural features in the context of
feature selection.
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1 Introduction

In Process Mining, unstructured event logs generated by systems in business
processes are used to automatically build real-life process definitions and as-is
models behind those event logs. There is a growing need to be able to predict
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properties of newly added event log cases, or process instances, based on case
data imported earlier into the system. In order to be able to predict properties
of the new cases, as much information as possible should be collected that is
related to the event log cases and relevant to the properties to be predicted.
Based on this information, a model of the system creating the event logs can
be created. In our approach, the model creation is performed using machine
learning techniques.

One good source of additional case related features is the information stored
into the sequence of activities visited by cases. This information includes, e.g.,
number of times an event log case has visited a certain activity and the number
of times a case has transitioned between two specific activities. Features collected
in this fashion are often highly dependent on each other. E.g., a patient whose
visit to hospital takes long time (outcome) has quite often been in surgery from
which he/she has moved into a ward. In this example, we already can easily find
three structural features of which any can be used to predict whether the visit
lasted long or not: visited surgery, transitioned from surgery to ward, visited
ward. However, depending on all the other patients in the data set, it may be
that there are no cases where only a subset of these three features occurs, thus
making it redundant to have all three features taken into account when building
a model for prediction purposes. Thus, one feature could well be enough to give
as accurate predictions as having them all.

Another important aspect in Process Mining is that it is often desired to be
able to show dependencies between features. Thus, selecting a feature selection
algorithm that produces also this information for minimal extra cost is often
tempting. For this purpose, the list of the most relevant features and the extent
of their contribution should somehow be returned. One example of this kind of
root cause analysis technique is influence analysis described in [13].

The primary motivation for this paper is the need to perform classification
based on structural features originating from activity sequences in event logs as
accurately as possible and using a minimum amount of computing resources and
maximizing the throughput in order to be able to use the method even in some
interactive scenarios. This motivation comes from the need to build a system
that can do classification and root cause analysis activities accurately on user
configurable phenomena based on huge event logs collected and analyzed, e.g.,
using Big Data processing frameworks and methods such as those discussed in
our earlier paper [12]. The response time of this classification system should
be good enough to be used as part of a web browser based interactive process
mining tool where user wants to perform classifications and expects classification
results to be shown within a couple of seconds.

The rest of this paper is structured as follows: Sect. 2 introduces main con-
cepts related to this paper. Section 3 discusses the feature selection concept and
gives brief introduction to the methods used in this paper. Section 4 will then
present a framework used for comparing performance of the selected feature
selection approaches. The results of the tests will be presented in Sect. 5 after
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which we will discuss related work in Sect. 6. Finally Sect. 7 draws the conclusions
from the test results.

2 Problem Setup

The concepts and terminology used throughout this paper follows the principles
used commonly in process mining community. For more detailed examples and
discussion about event logs, activities, cases, traces and other related terminol-
ogy, see, e.g., the book by van der Aalst [22].

2.1 Structural Features

As opposed to normal case attributes added to cases in event logs, structural fea-
ture term in this paper is used for representing properties of activity sequences
of cases. Thus, they can be derived directly from actual activity sequences with-
out need to include any additional custom properties. Having a case identifier,
activity identifier and order information such as a time stamp for each event
occurrence, is enough. In order to simplify the tests and keep requirements for
applying the results of this paper to its minimum, we decided to only concen-
trate on structural features as predictors in this paper. However, in real use
cases, the best results are achieved by including also all the available additional
case attributes such as duration, age, etc. into features from which the feature
selection is performed [14].

There are several different types of structural features to select from. In this
paper, we use notations similar to those used in regular expressions [20] com-
bined with notation commonly used for activity sequences [22]. The patterns
we focused in this paper are listed in Table 1 with examples of matches when
the sequence of activities is illustrated as 〈S, a, b, b, E〉. As we were interested in
minimizing the response time, we decided to consider only the listed patterns
because having more complex patterns, such as tandem repeats and maximal
repeats [2], would have made the combinations of different predictor types and
features to become too big to be able to perform exhaustive tests for and lead-
ing to the problem of curse of dimensionality [9]. Also, the extraction of all
the feature types presented in the literature would have required much more
computation time than the selected relatively simple features used in this work.

Table 1. Structural feature types

Pattern/predictor type Example sequences(s)

Activity 〈a〉, 〈b〉
Transition/2-grams 〈S, a〉, 〈a, b〉, 〈b, b〉, 〈b, E〉
Starter 〈S, a〉
Finisher 〈b, E〉
Ordering 〈a〉 → 〈b〉
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For every predictor type listed in the Table 1, there can be several possible
implementations. In this paper, we consider structural features of activity and
2-gram predictor types to be such that their values correspond to the number of
occurrences of that pattern within each activity sequence. Starter and finisher
predictor types however are boolean values indicating whether that pattern is
valid for an activity sequence. Order feature type is considered to be a boolean
value such that it is true only if the first occurrences of both ends of the order
relation are in the specified order.

The difference between 2-gram and order pattern is that order allows any
number of activities to be between the activities of the ordering relation, whereas
in 2-gram, the activities of the relation must be successive in the whole sequence
of activities. The importance of predictor types also depends very heavily on the
type of the data set and the scenario being predicted.

One more factor to take into account when selecting the actual features is how
to handle situations where a feature has more than two different values. E.g., a
patient may have visited surgery multiple times while visiting a hospital. In some
cases, depending on what we are trying to predict and what kind of prediction
models are to be built, it could be better to split these kinds of features into
several boolean features. Thus, e.g., we could have a feature for a patient having
visited surgery 4 times. However, one has to be careful when to split features
like this in order to avoid an explosion in the number of features created for each
original feature.

One final step before passing features to the actual model training is to
identify and remove any duplicate features that have behaved identically through
the whole training set. Some training methods do this automatically, but some
do not.

2.2 Classification

Since all the tests performed in this paper are performed on data sets consist-
ing of already completed cases, we are performing classification using machine
learning prediction algorithms. Classification in machine learning usually con-
sists of two phases: training a model and performing the actual classifications
using the trained model. In this paper, we concentrate on building the classi-
fication model using supervised learning methods, where algorithms are trained
using predictors, together with their outcomes. A core part of the model building
is the selection of features to be used as predictors. Often the more you have
independent features that may have effect in the outcome, the better. As shown
in Sect. 2.1, a lot of features can be created directly from the activity sequences
of the cases themselves.

Another important factor that has direct effect to the prediction performance
of the model is the algorithm that is used for building the model and making
the predictions. In this paper, we focus on the feature selection part. However,
we need to also validate the performance of the feature selection using a set of
algorithms. In order to minimize the skew in the results caused by the validation
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algorithm itself, we decided to compare the efficiency of the selected features
using two different approaches. First, for a given set of selected features, we
determined the prediction accuracy obtained by a particular supervised learning
method, i.e., the gradient boosting machine (GBM). GBM was selected due to
its good reputation [9,18] and performance in both accuracy and response times
in our own tests. The second method was to approximate the mutual information
score [16] between each of the selected set of features and two different data sets.
The first data set consisted of all the available predictors without any feature
selection. The second data set consisted only of the outcomes to be predicted.

As we are concentrating on features originating from process mining, at the
granularity level of a case, the prediction inputs that are usually used in the field
are actually custom case properties such as the customer name or an identifier of
the owner of the case. The outcomes that we want to predict are usually values
of some custom case properties or some calculated case content dependent values
such as durations, some kind of cost of the case or some other metrics measuring
the quality of the case. In this paper, we concentrate only in features inherent to
the activity sequences inside cases and measure how well certain outcomes can
be predicted only based on those features.

The used data set is split into two parts: training and test. Training data set
is used for two purposes. First, features are selected from the whole training data
set. After this, a model is trained using all the cases in the training data, but
only using the selected features as predictors. Finally, once the model has been
built, the model is tested against the test data and its performance is estimated
using accuracy and mutual information metrics.

3 Feature Selection Methods

The aim of feature selection is to reduce the dimensionality of the structural
features constructed from the raw data. Reducing the dimensionality not only
reduces the computational complexity of the subsequent prediction methods, it
may also lead to an improved prediction accuracy. Indeed, learning algorithms
based on a smaller set of features are less prone to overfitting, i.e., the effect of
erratic statistical variations of a particular observed dataset is reduced. Finally,
feature selection also enhances the interpretability (visualization) of the features
and understanding classifications based on them (e.g., if only two numerical
features are selected, we can illustrate them by means of a scatterplot).

Initially we also considered testing a couple of feature extraction algorithms.
Feature extraction differs from feature selection in that they create new features
that will be used instead of the original features. The newly created features
try to maximize the variance and expressive power of the features by combining
several original features into one new feature. This has a drawback that it hides
the original features and makes it harder to understand the properties of the
created model. E.g., in root cause analysis, it is often desirable to understand
how much the outcome depends of certain features and also to understand which
features have an effect to the outcome. Due to this shortcoming, we decided to
not include any feature extraction algorithms into this paper.
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No additional parallelization techniques were used, thus if the algorithm did
not support parallelism out of the box, it was not run in parallel. The following
subsections briefly describe the basics of each of the feature selection methods
tested in this paper including information on the used R programming language
packages and their configurations. We also briefly tested an algorithm based
on Support Vector Machine (SVM ) [1,25] using radial kernel, but decided to
leave it out of the paper due to very poor results and extremely long response
times, which were order of magnitude slower than with any of the other tested
algorithms. The following subsections will briefly describe the details of all the
remaining tested algorithms.

Random Selection. The most trivial of all the tested algorithms was a random-
ized selection where the desired number of features were just randomly selected
from all the available features. This method was used as a baseline in order to
gain a better understanding on the quality of other used selection algorithms
when compared with an algorithm that does not in any way take any properties
of the selected features themselves into account. This serves as a baseline selec-
tion algorithm. There should not be any algorithm that performs consistently
worse than this. In order to alleviate the effect of inherently noisy random selec-
tions, median of three separate test runs was used in the experiments. Thus, only
the test which yielded the median prediction accuracy was used as the actual
result. In the graphs and analysis below, this algorithm is labeled as Random.

Feature Clustering. This method is influenced by the idea provided by Covoes
et al. [5]. In the algorithm developed for this paper, the training data is first
clustered so that every structural feature in the training set constitutes one
clustering data point. Each activity sequence in the training data represents one
dimension for clustering data points with values equaling the number of times
that structural feature occurs within that activity sequence. K-means algorithm
is then used to generate K clusters using kmeans R-function which is based
on algorithm by Hartigan and Wonget [10]. For each K clusters, the feature
having the minimum distance to the mean of that cluster will be selected as the
representative for all the features in that cluster. It should be noted also that
as a side product of applying this method for feature selection, every selected
feature will actually represent all the features within the same cluster. Thus,
for every original feature, you have one cluster it belongs into and exactly one
feature that is representing that feature in that cluster. This could be useful,
e.g., in some root cause analysis scenarios.

Two different versions of this algorithm are tested in this paper. One that
first removed all the features having exactly the same occurrence pattern within
all the cases thus removing duplicate vectors before the actual clustering step.
The other variation of this algorithm does not perform this preprocessing step.
The results of different variations being nearly the same except for the processing
time, which was clearly faster with the algorithm that first dropped out all the
features having exactly the same values for all the cases in the training set. Thus,
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we decided to limit our tests only to this algorithm variant. In the graphs shown
below, this algorithm is labeled as Cluster.

Minimum Redundancy Maximum Relevancy. This is a mutual informa-
tion based approach [6], which uses mutual information as a proxy for comput-
ing relevance and redundancy among features. The implementation used in this
paper was provided by mRMRe -R package which claims to provide a highly
efficient implementation of the mRMR feature selection via parallelization and
lazy evaluation of mutual information matrix. We used ensemble method both
with solution count set to 1, which provides results resembling classic mRMR,
and also with 5, which does 5 separate runs and combines the results in the
end. This time the results were also otherwise quite the same, except the 5-run
version provided clearly better mutual information scores. Thus, in the graphs
and analysis below, we use only 5 run version labeled as mRMREns5.

Least Absolute Shrinkage and Selection Operator (LASSO). This is
a regression analysis method that can be used for feature selection [21]. It is
related to least squares regression where the solution minimizes the sum of the
squares of the errors made. The unique property for this regression technique is
the usage of additional regularization that enables discarding irrelevant features
and forces usage of simpler models that do not include them. Since the LASSO
implementation in glmnet R-package in itself did not provide means of sorting
features by their importance and since it was not possible to directly adjust the
desired number of target features, the actual used algorithm first performed 10
iterations of LASSO algorithm each yielding slightly different results. After this,
all the results were collected into a single list with each feature weighted by the
number of occurrences of that feature within all the LASSO results. Finally, this
list was sorted from the largest height to smallest and the desired number of fea-
tures were picked from the beginning of this sorted list. Two different variations
of this algorithm were tested: one using lambda.1se as the prediction penalty
parameter and the other using lambda.min. Due to the results being almost
identical in both the cases, we selected the one using lambda.1se prediction
penalty parameter. In the results below, this algorithm is labeled as LASSO1se.

Markov Blanket. Markov blanket of a variable X is a minimal variable sub-
set conditioned on which all other variables are probabilistically independent of
X. [26] For Bayesian networks, Markov blanket of X consists of the union of the
following three types of neighbors: the direct parents of X, the direct successors
of X, and all direct parents of X’s direct successors. Bayesian networks can be
inferred from the training data after which Markov blanket for the created net-
work is calculated by selecting the outcome as X. The result is the set of features
to select. bnlearn -R package was used to perform Markov Blanket based feature
selection. Hill-Climbing algorithm is first used to construct a Bayesian network
structure out of the training data. After this, Markov Blanket is extracted out
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of the network for the outcome feature. Finally, out of these results, the desired
number of features are selected from the beginning of the returned list, or if
the result does not have all the required features, only the returned features are
selected. In the results below, this algorithm is labeled as Blanket.

Variable Importance. In variable importance based feature selection, some
Machine learning algorithm capable of building variable importance informa-
tion, such as random forest [15], is first performed. After this, the results of the
algorithm are used to pick N variables having the greatest effect on the outcome.
These N variables are then used as the selected features. Since the performance
of variable importance algorithm itself was found to be very poor when using
predictor sets having hundreds of features we decided to use a hybrid approach
where we first use clustering to remove about 75% of all the features, after which
variable importance is calculated for each feature using random forest algorithm
and from there, the desired number of the most important target features is
picked. In this paper, randomForest -R package is first used to generate a model
after which varImp -R function in Caret-package is used to extract the most
important features based on the information gathered by the random forest
algorithm. This algorithm is labeled as ClusterImp in the graphs and analysis
below.

Recursive Feature Elimination. Recursive feature elimination [8] starts with
estimating the variable importances of all the features in the training data as
in the Variable Importance -technique. After this, a smaller subset of the most
important features is selected and variable importances are estimated again.
This is repeated until the desired feature subset size is reached after which the
resulting features can be picked. In this paper, three different variations of this
method were tested: a test with only one iteration, another with two iterations
and the third one with four iterations. Caret R-package’s rfe algorithm was used
for these tests, with the default method based on random forests. After the initial
tests, it was found out that while the accuracy and mutual information of all
the cases were very close to each other, the average processing time of the 2-step
algorithm was clearly better than the others. Thus, in the graphs and analysis
below, we only concentrate on this algorithm labeled as Rec2S.

4 Test Setup

Testing was performed on a single system using Microsoft R Open version 3.3,
Windows 10 operating system. The used hardware consisted of 3.5 GHz Intel
Core i5-6600K CPU with 8 GB of memory. Tests were performed using two
publicly available data sets. The first one from Rabobank Group ICT [24] that
was also used in BPI Challenge 2014. This data set contained total of 46617
cases of a real-life event log from Rabobank Group ICT company. The average
length of a case is nearly 10 events split into 39 different event types. The second
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used data set is a real-life data set from Dutch academic hospital [23] consisting
of 1143 cases. The average length of a case in this data set is slightly over 130
events split into 624 event types.

All the test runs were performed using an R function that ran all the desired
test runs in sequence. At the beginning of every test run, random seed was
initialized. Thus, the random case samples and other random values generated
within the used algorithms behaved the same way in every run, provided that the
algorithm used random -methods that support setting the seed using set.seed -R
function.

In the tests, the training data was first extracted so that 25% of the provided
data rows were randomly selected. This training data was first used by the
feature selection algorithm to be tested, after which it was used to build the
classification GBM model for predicting given phenomenon. This classification
model was then used for measuring the performance of the feature selection.
Mutual information metrics were approximated also at this final phase.

The first run of tests was performed using test data having 4000 cases
extracted from the full BPI Challenge 2014 data set. For this first run, all the
algorithms were tested so that the number of selected features were 5, 10 and
30. For each of these combinations, 13 different sets of feature patterns were
selected. The selected structural feature patterns were different combinations of
the following patterns described in Table 1: activity, starter and finisher, 2-grams
and ordering. Activity and 2-grams features included occurrence counts, while
the others were just boolean values indicating whether the feature occurs at
least once in a case. The combinations were created in a way that all the possi-
ble combinations of the patterns were tested where activity pattern was present,
thus generating 8 different combinations. In addition to these, we also tested
2-grams and ordering separately, as well as having both 2-grams and ordering.
Most emphasis was given for activity pattern since it is usually the easiest to
extract from event logs and also doesn’t yield that many features. Also, we did
not want to include any other patterns due to the number of potential new fea-
tures that would have been needed in order to cover all the possible cases. E.g.,
adding 3-grams would potentially have generated N3 additional features where
N equals the number of different activities in the training data, which in this
case is 39 yielding the maximum of 60000 new features. When using a case sam-
ple of 4000 cases, the numbers of features added were as follows: 39 features for
activity pattern, 20 features for starter and finisher, 772 features having 2-grams
and 1033 features were generated for ordering-pattern. Thus, the total maximum
number of features extracted from event logs when all the patterns are included
is 1864.

All the tests performed on the first data set were run to predict two different
outcomes, which are later in this paper referred to as scenarios. The first scenario
was whether the case duration is longer than 7 days. In this case, nearly 37%
of all the cases in the small test set had this outcome. This is an example of
a prediction that can be trained directly from the event information without
any need for additional case or event attributes. The second scenario that was
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tested is based on additional case-level information provided with the event data:
Does the case represent a “request for information” or something else such as an
“incident”? In this case, nearly 20% of all the test cases in the small sample had
this outcome. For all the tests performed on the same sample size, the actual
used cases and their predictors were always the same.

Finally, we compared the results achieved from these earlier tests to tests run
on the second Dutch academic hospital data set. In this case, we used all the
1143 cases in the data set in the tests. The number of features added by activity
patterns were as follows: 624 features for activity pattern, 36 features for starter
and finisher, 4272 features for 2-grams and 79571 features for ordering-pattern.

5 Test Results

We began the actual analysis of our first round of tests by estimating the aver-
age classification accuracy of all the tested algorithms for all the tested feature
counts and all the tested structural feature patterns using both the test scenarios
in 4000 case sample. The results of this analysis are shown in Fig. 1. The first col-
umn on the chart labeled None shows the accuracy achieved by not performing
any feature selection. Based on these results, we can see that the feature selec-
tion algorithms ordered in descending order of accuracy are: Recursive, Cluster,
Blanket, mRMR, Cluster Importance and LASSO. The rankings of three first
algorithms are not changed even with the tested bigger data set size.

65%
70%
75%
80%
85%

Fig. 1. Average accuracy of all the
tested algorithms.

0%
20%
40%
60%
80%

100%

Fig. 2. Average mutual information of
all the tested algorithms.

With the same test data, we also measured the average percentage of the
mutual information of a data set filtered using feature selection algorithm when
compared to the mutual information calculated when the feature selection is not
performed at all. This is shown in Fig. 2. The ranking of algorithms in the mutual
information case are: Cluster, Recursive, LASSO, Blanket, Cluster Importance
and mRMR. Also, in this case, the rankings of three first algorithms are not
changed even with the tested bigger data set sizes. It should be noted at this
point that identical rankings were obtained in the case the mutual information
was calculated between the result of the feature selection algorithm and only the
correct outcomes.
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After this, we analyzed the response times for all the tested feature selection
algorithms with the same test data. This time however, we did not include starter
and finisher predictor sets since they would have made the readability of the
figure much worse and also would not have provided much additional information
due to the small effect they have into the results in the tested scenarios.

As seen in the Fig. 3, the time required to perform feature selection for the
tested algorithms and predictor types varied very much. In the worst cases, the
difference between the slowest and the fastest algorithm was three orders of
magnitudes, with Cluster and mRMR usually performing much faster than all
the others.

The largest performance variations within one algorithm were measured using
Blanket algorithm which performed in the fastest predictor set case, almost as
fast as the two fastest algorithms, but in the slowest case, it performed almost
over four orders of magnitudes slower.

Both Clustering and mRMR performed so well in this analysis that they could
be incorporated without changes into some interactive process mining systems
preferring under ten second response times when the size of the event log used
for training is close to 1000 cases. Since we are especially interested in response
times, we took Clustering and mRMR algorithms for closer inspection.

First, we analyzed the classification accuracy of both the algorithms sepa-
rately for both the tested scenarios. Figure 4 shows this information for Cluster
algorithm and Fig. 5 for mRMR algorithm.

0,01 s
0,1 s
1,0 s

10,0 s
100,0 s

1000,0 s
10000,0 s

Cluster
mRMREns5
ClusterImp
Blanket
Rec2S
LASSO1se

Fig. 3. Average feature selection response time of all the tested algorithms.

From these results, it can be seen that there is a lot of variation between
the two tested scenarios. In both the cases, in almost all the predictor sets,
predicting case duration produced clearly worse results than in the categorization
scenario. It seems that mRMR algorithm was not able to get any additional
accuracy into its predictions by including any additional predictor types on top
of activity predictors, whereas Cluster algorithm managed in the categorization
case to get better accuracy even, e.g., by selecting only 2-gram or order type
predictors. Also, in duration scenario, it managed to get better accuracy when
adding order type predictors in addition to activities. Also, in almost all the
test cases, having order type predictors is more valuable than having 2-gram
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Category=request for information
duration>7d

Fig. 4. Average accuracy for cluster
algorithm separately for each scenario
and predictor types.

72%
74%
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78%
80%
82%
84%

Category=request for information
duration>7d

Fig. 5. Average accuracy for mRMR
algorithm separately for each scenario
and predictor types.

type predictors. Having them both is in most cases worse than having order
only. The number of features has slightly greater effect into the performance of
mRMR than for Cluster algorithm. However, for the data set size, the situation
is reversed and Cluster is affected clearly more than mRMR. The recommended
data size used for feature selection is in our experiments under 10000 cases in
order to maintain good response times.

It should be also noted that the time required for building a prediction model
with a feature selection algorithm selecting 10 features was only about 1%–3% of
the total time required when building the model with all the 1864 tested struc-
tural features without any feature selection. When using 3000 cases to build a
model, the total measured time difference in the test system was about 250 s.
During this time, it would have been possible to run the clustering feature selec-
tion several times. Thus, it is clear that having a feature selection performed
before model building, at least when GBM is used, is essential when trying to
improve the time required for model building.

Finally, we also performed similar tests with the Dutch academic hospital
dataset. Tests performed in this dataset indicated that it is absolutely criti-
cal to perform some kind of feature selection before training the model since
building the model without any selection failed when attempting to use all the
79571 ordering features valid in this event log. From the six tested feature selec-
tion finalists, only clustering and clustering with variable importance managed
to provide results for all the tested predictor combinations. Out of these two
algorithms, clustering with variable importance provided this time slightly more
accurate results while both of them still managing to provide relatively good
response time of 25–40 s. This result is caused by the fact that clustering itself
does not take the outcome into account at all, whereas variable importance
based feature selection does. In this case, clustering first filters out most of the
features but still tries to maintain as much of the original information content
in the predictors as possible. Applying variable importance after this with the
specified outcome will filter out all the clusters of original features that do not
have anything to do with the outcome.
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Thus, in order to fulfill all the requirements, we have for the algorithm, based
on the performed tests, the best option from the selected set of algorithms is
Cluster based feature selection with only activity type predictors with values
being the occurrence counts of the activity within a case. In our experiments,
it gave the best overall trade-off in performance considering mutual informa-
tion, classification accuracy and response time. If a slightly better classification
accuracy is required, we recommend adding order predictor types to the set of
features to pick the actual features from. For event logs having large number of
event types and relatively small amount of cases, mixing clustering with variable
importance provided better accuracy than performing only clustering.

6 Related Work

In recent years, several papers have been written on the subject of applying data
mining and machine learning techniques into predicting outcomes of the business
processes. In [3], the authors present a framework that is capable of automati-
cally detecting “signatures” that can be used to discriminate between desired and
undesired behavior within traces both seen or unseen. These signatures are essen-
tially combinations of structural features similar to those described in Sect. 2.1.
This paper does not in itself specify any automatic feature selection method.
Instead, the user is required to specify manually the desired activity sequence
patterns, referred to as sequence feature types. After this all the matching fea-
tures will be used for signature detection. Thus, our research complements the
research made in this paper by experimenting with different automatic feature
selection methods that could be applied before this signature detection phase
in order to reduce the computational cost of signature detection at the cost of
some prediction accuracy.

In [17], the authors evaluate the accuracy achieved with three different pre-
diction algorithms using several combinations of structural feature patterns for
three different datasets. As result, they find out that just having Activity fre-
quencies often yield, if not the best, then at least almost as good results as the
best tested structural feature pattern combination. This finding is visible also in
our tests as shown in Figs. 4 and 5.

In [7], the authors present a framework for predicting outcomes of user speci-
fied predicates for running cases using clustering based on activity sequence pre-
fixes and classification using attributes associated to events. In [14], the authors
have assessed the benefits of including case and event attributes when performing
predictions based on sequences of activities. In [19], the authors present a predic-
tive process monitoring framework that is also able to mine unstructured textual
information embedded into attributes related to events. In [4], the authors pro-
pose a recommendation system that automatically determines the risk that a
fault will occur if the input the user is giving to the system will be used to carry
on a process instance.

Until now there has not been systematic testing of applying automatic fea-
ture selection algorithms after selecting structural feature patterns to use and
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before building models used for classification. The aim of this feature selection
is to minimize the computational cost of the building of classification models.
Creating such an approach is crucial for obtaining predictions with interactive
response time requirements. This is the primary contribution of this paper.

7 Conclusions

In this paper, we have designed a system for assessing the performance and
response times of selected feature selection algorithms specifically tuned into the
context of selecting structural features extracted from properties of sequences
of activities derived from event logs. Using this system, we tested six feature
selection techniques using a total of twelve different algorithms.

Each algorithm was tested using a publicly available real-life Rabobank
Group ICT dataset and tuned for two different classification use cases: Pre-
dicting whether the duration of a case is longer than seven days, and classifying
whether a case is of type request for information. Most of the tests were also run
using two different sample sizes out of the full dataset. For sanity checking and
benchmarking purposes, we also added test runs without any feature selection
and also with randomized feature selection.

We also proposed a rough categorization method for some of the types of
structural features that can be extracted from event logs. In this paper, we
selected four of these types for closer inspection.

As summary for all the tests and their results, it can be clearly seen that
structural features can provide additional means for improving the precision to
classifications made for cases in event logs. When the number of selected fea-
tures is small, the most efficient source of features is activities. Increasing the
number of features improves the classification accuracy, but also while doing so,
best results are achieved by adding features from other structural feature types
such as event type orderings into the set of structural features from which the
feature selection is made. However, there is a drawback that having a bigger
pool of features to select from makes creating classification models as well as the
feature selection slower. As our goal was also to find an algorithm that could
perform feature selection and classification with interactive response times using
the sample sizes used in this paper, we found out that only one feature selec-
tion algorithm of the tested algorithms provided both the speed and accuracy
required for the task.

According to the tests, the most consistently well performing algorithm was
Cluster algorithm we developed for this paper which first used k-means algo-
rithm for clustering features into the desired number of clusters by having cases
as clustering dimensions, after which the features closest to the center of each
cluster were selected as the selected features. This algorithm was not in all the
tests as fast as mRMR, but it provided feature selections yielding more accurate
classifications and it worked without problems with all the tested data sets. Also,
it was not as accurate as some other algorithms, such as Recursive Feature Selec-
tion, in both the scenarios, but it consistently achieved very accurate results in
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all the tested scenarios within the response time requirements set in this paper.
For event logs having very large number of event types, mixing feature clustering
with variable importance provided more accurate results than clustering only.
For computer assisted root cause analysis, in addition to providing the list of the
most important features, Cluster algorithm provides a mapping from each of the
original structural features to one selected feature that most closely resembles
the original feature in the set of selected features.

All the gathered raw information from the performed test runs can be found
in the support materials [11].
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