
Improving Process Discovery Results
by Filtering Outliers Using Conditional

Behavioural Probabilities

Mohammadreza Fani Sani(B), Sebastiaan J. van Zelst,
and Wil M. P. van der Aalst

Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{m.fani.sani,s.j.v.zelst,w.m.p.v.d.aalst}@tue.nl

Abstract. Process discovery, one of the key challenges in process min-
ing, aims at discovering process models from process execution data stored
in event logs. Most discovery algorithms assume that all data in an event
log conform to correct execution of the process, and hence, incorporate
all behaviour in their resulting process model. However, in real event logs,
noise and irrelevant infrequent behaviour are often present. Incorporating
such behaviour results in complex, incomprehensible process models con-
cealing the correct and/or relevant behaviour of the underlying process.
In this paper, we propose a novel general purpose filtering method that
exploits observed conditional probabilities between sequences of activi-
ties. The method has been implemented in both the ProM toolkit and the
RapidProM framework. We evaluate our approach using real and synthetic
event data. The results show that the proposed method accurately removes
irrelevant behaviour and, indeed, improves process discovery results.

Keywords: Process mining · Process discovery · Noise filtering
Outlier detection

1 Introduction

Process mining is a research discipline that positioned at the intersection of
data driven methods like machine learning and data mining and Business Pro-
cess Modeling (BPM) [1]. There are three types of process mining; process dis-
covery, conformance checking and process enhancement. Process discovery aims
at discovering process models from event logs. Conformance checking aims at
assessing to what degree a process model and event log conform to one another
in terms of behaviour. Finally, process enhancement aims at improving process
model quality by enriching them with information gained from the event log.

Within process mining/process identification projects, process discovery
is often used to quickly get insights regarding the process under study [1].
A business process analyst simply applies a process discovery algorithm on the
c© Springer International Publishing AG 2018
E. Teniente and M. Weidlich (Eds.): BPM 2017 Workshops, LNBIP 308, pp. 216–229, 2018.
https://doi.org/10.1007/978-3-319-74030-0_16

Improving Process Discovery Results by Filtering Outliers 217

extracted event log and analyzes its result. Most process discovery algorithms
assume that event logs represent accurate behaviour. So, they are designed to
incorporate all of the event log’s behaviour in their resulting process model as
much as possible.

Real event logs contain both noise and infrequent behaviour [2]. In general,
noise refers to behaviour that does not conform to the process specification
and/or its correct execution. Examples of noise are, amongst others, incomplete
logging of process behaviour, duplicated logging of events and faulty execution of
the process. Infrequent behaviour relates to behaviour that is may be supposed
to happen, yet, in very exceptional cases of the process. For example, additional
checks may be required when a loan request exceeds $10.000.000. Incorporating
either noise and/or infrequent behaviour results in complex, incomprehensible
process models concealing the correct and/or relevant behaviour of the under-
lying process. As such, when using process discovery for the purpose of process
identification, we are often unable to gain any actionable knowledge by applying
process discovery algorithms directly.

In this paper, we focus on improving process discovery results by applying
general purpose event log filtering, i.e. filtering the event log prior to apply-
ing any arbitrary process discovery algorithm. Distinguishing between noise and
infrequent behaviour is a challenging task and is outside the scope of this paper.
Hence, we consider both noise and infrequent behaviour as outliers and aim
at identifying and removing such outliers from event logs. We propose a generic
filtering approach based on conditional probabilities between sequences of activi-
ties. The approach identifies whether certain activities are likely to happen based
on a number of its preceding activities. Using the ProM (http://promtools.org) [3]
based extension of RapidMiner (http://rapidminer.com), i.e. RapidProM [4], we
study the effectiveness of our approach, using synthetic and real event data. The
results of our experiments show that our approach adequately identifies and
removes outliers, and, as a consequence increases the overall quality of process
discovery results. Additionally we show that our filtering method outperforms
other general purpose filtering techniques in the process mining domain.

The remainder of this paper is structured as follows. Section 2 motivates the
need for general purpose event log filtering methods. In Section 3, we discuss
related work and after that, in Sect. 4, we explain our proposed method. Details
of the evaluation and corresponding results are given in Sect. 5. Finally, Sect. 6
concludes the paper and presents some future work in this domain.

2 Motivation

An interpretable process model helps business process analysts to understand
what is going on in an event data. However, often process discovery algorithms
return results that are complicated and not understandable, because of outliers
within the event logs used. In Fig. 1 we show how the application of filtering
greatly reduces the complexity in a real event log, i.e. the event log of the Business
Process Intelligence Challenge 2012 (BPIC 2012). Figure 1a shows a process

http://promtools.org
http://rapidminer.com

218 M. F. Sani et al.

(a) Result on whole event log. (b) Result on 80% of event log.

Fig. 1. Process models discovered by applying the ILP Miner [5] on the BPIC 2012 log.

model discovered using the ILP Miner of [5]1 for this event log, whereas Fig. 1b
shows the result of applying the same process discovery algorithm on 80% of the
most frequent original behaviour.

In process mining, two quality measures are defined for measuring the
behavioural quality of process models, i.e. fitness and precision [6]. Fitness com-
putes how much behaviour in the event log is also described by the process model.
On the other hand, precision measures the amount of behaviour described by
the model that is also present in the event log. The fitness values of Figs. 1a
and 1b are 0.57 and 0.46 whereas their precision values are 0.68 and 1.0 respec-
tively. This means that the model in Fig. 1a describes more behaviour that is
also presented in the event log, however, in order to do this it is greatly under-
fitting. Hence, it allows for much more behaviour compared to the model in
Fig. 1b. As a consequence, the model in Fig. 1a is more complex and ambigu-
ous. However, arbitrarily removing behaviour based on frequency is too ad-hoc
and does not work when there is a lot of variety present within an event log.
Therefore, we need more advanced filtering methods that take into account and
exploit the actual behaviour described by the event log. Clearly, by incorporating
all possible behaviour, the model in Fig. 1a is overly complex and conceals the
dominant/main-stream behaviour of the underlying process. The process model
in Fig. 1b, on the other hand, is much simpler while still covering 80% of the
observed behaviour allowed by the other model. At the same time, the model
describes less behaviour compared to the model in Fig. 1a, and is therefore less
under-fitting. Thus, by removing 20% of behaviour, we obtain a simpler model
that still accurately describes the underlying process.

3 Related Work

In recent years, many process discovery algorithms have been proposed [7–12].
The first algorithms where designed to incorporate all behaviour in the event

1 HybridILPMiner package in ProM.

Improving Process Discovery Results by Filtering Outliers 219

log [7,11,12]. However, later more algorithms have more recently been extended
to be able to handle outliers [13,14]. However, these extended filtering tech-
niques are tailored towards the internal working of the corresponding algorithm
and hence do not work as a general purpose filtering technique. Other algorithms
[8,10], are designed to cope with noisy and infrequent behaviour, however, these
algorithms do not result in process models with a clear semantics. Most of com-
mercial process mining tools using these algorithms and their filtering are based
on just frequency of activities and their direct relations. Moreover, the filters are
relatively ad-hoc and require significant user input.

In this paper, we propose to separate concerns, and thus develop a novel,
general purpose filtering technique that pre-processes event logs. In such way,
any process discovery algorithm is able to benefit from effective identification
and removal of outlier behaviour. In the remainder of this section, we focus on
techniques developed for general purpose filtering in the process mining domain.

Separating outliers from event logs and focusing just on them rather than
all behaviour also has been studied [15], however, a detailed treatment of such
work is outside the scope of this paper.

The vast majority of process mining research has an accompanying imple-
mentation in the process mining toolkit ProM. Most work on general purpose
event log filtering concerns ad-hoc filtering implementations within ProM. Many
of these implementations are useful when we aim at using specific subsets of
traces/events of an event log instead of the whole event log. In Table 1, the main
filtering plugins are listed, accompanied by a brief description of their applica-
tions and methods. All plugins take an event log as an input and return a filtered

Table 1. Overview of filtering plugins in ProM

Plug-in Applications Main method

Filter log using simple
heuristics

Helpful for removing traces
and activities based on
frequency of events or the
presence of certain start/end
events

Frequency/position of
events

Filter log on
event/trace attributes

Useful when we want to just
keep events/traces with
specific attribute values

Attribute values

Dotted chart Allows us to visually select
specific traces in event logs
(usually base on a time
frame)

Time window

Transition systems
miner

Helpful to project
traces/events on specific
transitions and/or states

Frequency of
transitions

Filter log using
prefix-closed language

Allows us to remove events
from traces

Rule based

220 M. F. Sani et al.

event log as an output. Moreover, they need some form of domain knowledge
to work properly. In addition, typically the user needs to set one or more (com-
plex) settings. However, they do not support generic outlier detection, i.e. in
cases where we possess no or little domain knowledge.

Surprisingly, little research has been done in the field of general purpose
filtering. In [16] a graph-based outlier detection method is proposed to detect
inaccurate data in an event log. In [17] a method is proposed that detects non-
fitting behaviour based on a given reference model and then repair event log.
As we want to improve process discovery results and, in general, we do not have
a reference model, this method is not useful for general purpose filtering. In
[18] the authors propose to provide training traces to the PRISM algorithm [19]
which returns rules for detecting outliers. However, in real event logs, providing
a set of training traces that covers all possible outliers is impractical. Also, in
this method, deciding about level of filtering is impossible.

The most relevant research in the area of general purpose log filtering is the
work in [20]. The authors propose to construct an Anomaly Free Automaton
(AFA) based on the whole event log and a given threshold. Subsequently, all
events that do not fit the AFA are removed from the filtered event log. Filtering
event logs using AFA indeed allows us to detect and remove noisy and/or infre-
quent behaviour. However, the technique does not allow us to detect all types of
outliers like incomplete traces, i.e. traces that fit the AFA perfectly yet do not
terminate properly. Incorporation of such behaviour can still lead to infeasible
process discovery results.

4 Filtering with Conditional Behavioural Probabilities

As indicated in Sect. 3, the most filtering approaches are not suitable for process
discovery because they need additional information like reference model or a set
of outlier traces. Furthermore, the AFA filter, which is the most suitable general
purpose event log filter, has trouble identifying irrelevant infrequent behaviour.
Therefore, we present a general purpose filtering method that is able to deal with
all types of outliers. The main purpose of the filter is to identify the likelihood
of the occurrence of an activity, based on its surrounding behaviour, e.g. how
likely is it that activity a follows the sequence of activities 〈b, c〉. To detect such
likelihood it uses the conditional probability of activity occurrences, given a
sequence of activities. As we just consider a sample of behaviour in the underlying
process, i.e. event log, all computed probabilities are estimation of behaviour that
are really happened. Prior to presenting the filtering method, we present some
basic notations used throughout the paper.

4.1 Basic Notation and Definitions

Given a set X, a multiset M over X is a function M : X → N≥0, i.e. it allows
certain elements of X to appear multiple times. We write a multiset as M =
[ek1

1 , ek2
2 , ..., ekn

n], where for 1 ≤ i ≤ n we have M(ei) = ki with ki ∈ N. If ki = 1,

Improving Process Discovery Results by Filtering Outliers 221

we omit its superscript, and if for some e ∈ X we have M(e) = 0, we omit it from
the multiset notation. Also, M = [] is an empty multi set if ∀e ∈ X, M(e) = 0.
We let M = {e ∈ X | M(e) > 0}, i.e. M ⊆ X. The set of all possible multisets
over a set X is written as M.

Let A denote the set of all possible activities and let A∗ denote the set of
all finite sequences over A. A finite sequence σ of length n over A is a function
σ : {1, 2, ..., n} → A, alternatively written as σ = 〈a1, a2, ..., an〉 where ai = σ(i)
for 1 ≤ i ≤ n. The empty sequence is written as ε. Concatenation of sequences σ
and σ′ is written as σ · σ′. We let hd : A∗ × N≥0 � A∗ with, given some σ ∈ A∗

and k ≤ |σ|, hd(σ, k) = 〈a1, a2, .., ak〉 , i.e., the sequence of the first k elements
of σ. Note that hd(σ, 0) = ε. Symmetrically tl : A∗ × N≥0 � A∗ is defined as
tl(σ, k) = 〈an−k+1, an−k+2, ..., an〉, i.e., the sequence of the last k elements of
σ. Again, tl(σ, 0) = ε. Finally, sequence σ′ = 〈a′

1, a
′
2, ..., a

′
k〉 is a subsequence of

sequence σ if and only if we are able to write σ as σ1 · 〈a′
1, a

′
2, ..., a

′
k〉 · σ2, where

both σ1 and σ2 are allowed to be ε, i.e. σ is a subsequence of itself.
Event logs describe sequences of executed business process activities, typi-

cally in context of some case, e.g. a customer or some order-id. The execution of
an activity in context of a case is referred to as an event. A sequence of events is
referred to as a trace. Thus, it is possible that multiple traces describe the same
sequence of activities, yet, each trace itself contains different events. An example
event log, adopted from [1], is presented in Table 2.

Table 2. Fragment of a fictional event log (each line corresponds to an event).

Case-id Activity Resource Time-stamp

...

1 register request (a) Sara 2017-04-08:08.10

1 examine thoroughly (b) Ali 2017-04-08:09.17

2 register request (a) Sara 2017-04-08:10.14

2 check ticket (d) William 2017-04-08:10.23

1 check ticket (d) William 2017-04-08:10.53

2 examine causally (b) Ava 2017-04-08:11.13

1 reject request (h) Ava 2017-04-08:13.05

...

Consider all activities related to Case-id 1. Sara registers a request, after
which Ali examines it thoroughly. William checks the ticket after which Ava
examine causally and reject the request. The execution of an activity in context
of a business process is referred to as an event. A sequence of events, e.g. the
sequence of events related to case 1, is referred to as a trace.

Definition 1 (Trace, Variant, Event Log). Let A be a set of activities. An
event log is a multiset of sequences over A, i.e. L ∈ M(A∗). σ ∈ A∗ is a trace
in L and σ ∈ L is a variant.

222 M. F. Sani et al.

Observe that each σ ∈ L describes a trace-variant whereas L(σ) describes
how many traces of the form σ are present.

Definition 2 (Subsequence Frequency). Let L be an event log over a set of
activities A and let σ′ ∈ A∗. The subsequence frequency of σ′ w.r.t L, written
as freq(σ′, L), denotes the number of times σ′ occurs as a subsequence of any
trace present in L.

Given a simple example event log L = [〈a, b, c, d〉5, 〈a, c, b, d〉3], we have
freq(〈a〉, L) = freq(ε, L) = 8, freq(〈a, b〉, L) = 5, etc.

Definition 3 (Conditional Occurrence Probability). Let L be an event
log over a set of activities A and let σ′ be a subsequence. Given some a ∈
A, the conditional probability of occurrence of activity a, given σ′ and L, i.e.
COP (a, σ′, L) is defined as:

COP (a, σ′, L) =

{
freq(σ′·〈a〉,L)

freq(σ′,L) if freq(σ′, L) 	= 0

0 otherwise

Clearly, the value of any COP (a, σ, L) is a real number in [0, 1]. A high value
of COP (a, σ, L) implies that after the occurrence of σ′, it is very probable that
activity a occurs. For example, COP (a, σ, L) = 1 implies that if σ occurs, a
always happens directly after it. Based on the previously used simple event log,
we have COP (b, 〈a〉, L) = 5

8 .

4.2 Outlier Detection

We aim to exploit conditional probabilities present within event logs for the
purpose of filtering event logs. Conceptually, after a given subsequence, activi-
ties that have a particularly low COP -value are unlikely to have happened and
therefore their occurrence may be seen as outlier. However, to account for depen-
dencies between activities and previously occurred activities at larger distances,
we compute COP -values for subsequences of increasing length.

In our proposed method, for each i ∈ {1, 2, ..., k} we construct a COP -Matrix.
Assume there are a total of m unique subsequences with length 1 ≤ l ≤ k in an
event log. A COP -Matrix Al

COP for length l is simply an m×|A|-matrix, where
Al

COP (σ′, a) = COP (a, σ′, L).
We additionally compute conditional probabilities for start and end subse-

quences relatively. We let Al
S denote a matrix describing the occurrence proba-

bility matrix of all subseqeunces σ′ = hd(σ) with |σ′| = l for σ ∈ L. We are able
to compute such probability by dividing the number of traces that start with σ′

over the total number of traces in the log. Similarly we define Al
E denote a matrix

describing the conditional probability matrix of all subseqeunces σ′ = tl(σ) with
|σ′| = l for σ ∈ L that is equal to a = ε in Al

COP . By doing so, we be able to
handle outliers which occur in the start and the end parts of trace.

Given our different COP -Matrix, and a user-defined threshold κ, we identify
each entry Al(σ′, a) < κ as an outlier. The pseudo-code of detecting outliers is

Improving Process Discovery Results by Filtering Outliers 223

present in Algorithm 1. In this fashion, it is possible to detect outliers that occur
in start, middle or end part of traces. There are two ways to handle detected
outliers. We are able to simply remove the corresponding event from the trace,
i.e. event-level filtering, or, remove the trace as a whole, i.e. trace-level filtering.
However, removing an improbable event in a trace may make the trace to have
more outlier behaviour. Hence, we just focus on trace-level filtering.

Algorithm 1. Outlier Detection Algorithm
procedure OutlierDtection(L, k, κ)
Computing Probabilities:

for (l ≤ k) do

Build Al
COP , Al

E and Al
S

FilteredEventLog ← EmptyEventLog
Filtering:

for (each Trace σ in the L) do
Outlier ← false
for (l = 1 : k) do

for (each subsequence σ′ with length l and its following activity a) do

Find corresponding COP (a, σ′, L) in Al
COP , Al

E and Al
S

if (κ > COP (a, σ′, L)) then
Outlier ← true

if (Outlier = false) then
FilteredEventLog ← Add(FilteredEventLog, σ)

return FilteredEventLog

With increasing value of k (maximum length of subsequences), the complexity
of the filtering method increases. The number of different strings we can gener-
ate over A with length k is (|A|)k and total possible subsequences for some k:∑k

i=1 Ai where |A| is the number of activities in the L. However, there is no need
to compute COP s of all possible subsequences. For subsequences with length
k + 1, it is sufficient to just consider σ′.〈a〉 in level k that κ ≤ COP (a, σ′, L).
For example, if at k = 1 COP (c, 〈b〉) ≤ κ, there is no need to consider 〈b, c〉 as
a subsequent at k = 2. Even the COP (a, 〈b, c〉) be higher than κ.

4.3 Implementation

To be able to combine the proposed filtering method with any process discovery
algorithm, we implemented the Matrix Filter plugin (MF) in the ProM frame-
work2. The plugin takes an event log as input and outputs a filtered event log.
Furthermore, the user is able to specify threshold κ and whether event-level or
trace-level filtering needs to be applied. The maximum subsequence length to be
considered also needs to be specified.

In addition, to apply our proposed method on various event logs with differ-
ent filtering thresholds and applying different process discovery algorithms with
different parameters, we ported the Matrix Filter (MF) plugin to RapidProM.
RapidProM is an extension of RapidMiner that combines scientific workflows [21]
with a range of (ProM-based) process mining algorithms.

2 MatrixFilter plugin svn.win.tue.nl/repos/prom/Packages/LogFiltering.

https://svn.win.tue.nl/repos/prom/Packages/LogFiltering

224 M. F. Sani et al.

5 Evaluation

To evaluate the usefulness of filtering outliers using our method, we have con-
ducted several experiments using both synthetic and real event data. The pur-
pose of these experiments is to answer the following questions:

1. Does MF help process discovery algorithms to return more precise models?
2. How does the performance of MF compare to AFA filtering method?

To evaluate discovered process models, we use fitness and precision (intro-
duced in Page 2). There is a trade off between these measures [22]. Sometimes,
putting aside little behaviour cause a few decrease in fitness value, however
more increasing in the precision value. To make a balance between fitness and
precision, we use the F-Measures metric that combines fitness and precision:
2×Precision×Fitness

Precision+Fitness . Also, filtering time and process model discovery time in
milliseconds have been measured. Note that in all experiments, filtered event
logs are only used in the process discovery part. Computing the F-Measure for
all process models is done using the corresponding raw, unfiltered event logs.
Furthermore, we only consider subsequences with length k in [0, 2].

In the first experiment we investigate the effect of changing the κ in the MF
threshold on the F-Measure w.r.t. different process discovery algorithms. We
use the Inductive Miner [12] (IM) and the ILP Miner (ILP) [11]. Additionally
we assess the interaction between our filtering technique and integrated filtering
within the Inductive Miner, i.e. we use the IMi variant [13] with noise thresholds
0.1 and 0.3. We apply these algorithms and filtering methods on the BPIC2012
log. The results for this experiment are shown in Fig. 2.

In this figure, each line corresponds to a discovery algorithm. The x-axis
represents the threshold level of MF, the y-axis represents the corresponding
F-Measure. Hence, for each technique, the data point x = 0 corresponds to not
applying behavioural conditional probability filtering. We thus aim at finding
out whether there exist regions of threshold values for which we are able to
increase the F-measure when applying filtering. The F-measure of IM on this
event log without using MF is 0.45. However, using the proposed filter increases
the F-Measure of the discovered model to 0.80. Even for IMi, which uses an
embedded filter, the MF increases the F-Measure from 0.69 and 0.7 to 0.81. As
the ILP miner is more sensitive to outliers, MF helps more and its enhancement
for this algorithm is higher. However, with increasing the threshold of MF, all
the traces in the filtered event log are removed and the fitness and F-Measure of
the discovered model will equal to 0. The best result, i.e. an F-measure of 0.81,
is achieved by IMi with threshold 0.1 and MF threshold of 0.09.

To illustrate the effect of filtering on the discovered process models, in Fig. 3,
we apply IMi with 11 internal thresholds ranging from 0.0 to 0.5 on the raw
BPIC2012 and the filtered event log using MF with threshold 0.09. Here, each
circle or square correspond to fitness and precision values related to one discov-
ered model. A circle is related to applying MF, whereas squares relate to using
the raw event log. As the results show, MF usually causes a little decrease in fit-
ness value, yet yields an increase in precision value. The average of F-Measures

Improving Process Discovery Results by Filtering Outliers 225

Fig. 2. Applying process discovery algo-
rithms on the BPIC2012 log with different
MF thresholds.

Fig. 3. Comparing process models dis-
covered by 11 noise thresholds on the
BPIC 2012 log with/without filtering.

when applying no filtering is 0.66 versus 0.77 in case of MF (with threshold
0.09). Thus, Figs. 2 and 3 indicate that MF improve process discovery results,
i.e. the process models have an overall higher F-Measure.

In next experiment, using the BPIC2012 and BPIC2017 event log we addi-
tionally assess what the maximal obtainable level of F-measure is for differ-
ent process discovery algorithms, using different levels of internal filtering. We
computed F-measures based on the unfiltered event log, and, maximized the
F-measure result for both MF and AFA. With a workflow in the RapidMiner,
for both filtering methods we filtered the event log using 40 different thresholds.
The results are presented in Fig. 4. This figure shows MF allows us to discover
process models with higher F-Measures.

(a) BPIC 2012 (b) BPIC 2017

Fig. 4. Effect of filtering on best F-Measure of discovered models.

In Fig. 5, we compare the average required time of applying the process dis-
covery algorithms with/without filtering methods. In this figure, the y-axis repre-
sents the time in milliseconds with logarithmic scale. According to this figure, fil-
tering methods reduce the required time for discovering process models, because
there are fewer traces in the filtered event logs. Although, in AF the discovery
time reduction is higher, the filtering time for this method is much higher than
MF method. Therefore, generally MF is faster than AF.

In the last experiment, to evaluate the ability of our proposed filtering method
in detecting traces that contain outliers and corresponding effects on quality of

226 M. F. Sani et al.

Fig. 5. Average of required time for process discovery with/without filtering.

process discovery algorithms, we use three synthetic event logs; a12f0n, a22f0n
and a32f0n. These event logs are artificially added by 0, 10, 20 and 50 percent
of different types of noise [2]. The last two characters of event log indicate the
percentage of noise added to it, for example, a22f0n20 correspond to a22f0n
that contains 20% noise. Here, noisy event logs are used for process discovery
and the original synthetic event logs (which contain no noise) use for computing
F-Measure. Similar to the experiment in Fig. 3, IMi algorithm with 11 various

(a) MF on a12f0n (b) AFA on a12f0n

(c) MF on a22f0n (d) AFA on a22f0n

(e) MF on a32f0n (f) AFA on a32f0n

Fig. 6. Effect of filtering thresholds on F-Measures of synthetic event logs. y-axises are
indicating values of best F-Measure and x -axises are showing the filtering thresholds.

Improving Process Discovery Results by Filtering Outliers 227

internal noise thresholds has been used, but we show results of best F-Measure.
The results of this experiment is presented in Fig. 6. According to this figure,
F-Measures of models improve when applying filtering methods. This improve-
ment is much more substantial for event logs that contain more percentage of
noise.

For a12f0n event log which has the simplest structure among these event
logs, both methods lead to similar results. However, for a22f0n, applying MF
results in better F-Measures. Finally, in a32f0n that corresponds to the most
complex model with lots of parallelism, AFA performs better than MF. This can
be explained by the fact that when a lot of paralelism is present, the conditional
probability of non-outlier behaviour is low as well, i.e. parallelism implies a lot
of variety in behaviour. In this situations it seems using short subsequences (e.g.
k = 1) or applying smaller κ value are better choices for MF.

These experiments indicate that the proposed filtering method is useful for
process discovery algorithms to have models with higher F-Measure and it
reduces their required discovery time. This way tends to outperform state-of-
the-art process mining filtering techniques.

6 Conclusion

Process discovery is used to extract process models from event logs. However,
real event logs contain noise and infrequent behaviour that make to discovery
process model from the whole event log problematic. Separating these outliers
from event logs is beneficial for process discovery techniques and helps to improve
process discovery results.

To address this problem, we propose a filtering method that takes an event
log as an input and returns a filtered event log based on a given threshold. It
usesn the conditional probability of occurrence of an activity after sequence of
activities. If this probability is lower than the given threshold, the activity is
considered as an outlier.

To evaluate the proposed filtering method we developed a plugin in the ProM
platform and also offer it through RapidProM. As presented, we have applied this
method on real event logs, and several process discovery algorithms. Addition-
ally, we use the proposed method on three synthetic event logs. The results indi-
cate that the proposed approach is able to help process discovery algorithms to
discover models that better balance between different behavioural quality mea-
sures. Furthermore, using these experiments we show that our filtering method
outperforms related state-of-the-art process mining filtering techniques.

We plan to evaluate the effect of using different values of k, i.e. length of sub-
sequences. Also, other metrics besides F-Measure like simplicity, generalization
and structuredness could be analyzed. we want to apply event-level filtering and
also assess different ways of using κ. The other approach in this domain will be
providing event-level filtering that we ignore it in this paper.

228 M. F. Sani et al.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016)

2. Maruster, L., Weijters, A.J.M.M., van der Aalst, W.M.P., van den Bosch, A.: A
rule-based approach for process discovery: dealing with noise and imbalance in
process logs. Data Min. Knowl. Discov. 13(1), 67–87 (2006)

3. Van der Aalst, W.M., van Dongen, B.F., Günther, C.W., Rozinat, A., Verbeek, E.,
Weijters, T.: Prom: The process mining toolkit. BPM (Demos) 489(31) (2009)

4. van der Aalst, W.M.P., Bolt, A., van Zelst, S.J.: RapidProM: Mine your processes
and not just your data. CoRR abs/1703.03740 (2017)

5. van Zelst, S., van Dongen, B., van der Aalst, W., Verbeek, H.: Discovering
Relaxed Sound Workflow Nets using Integer Linear Programming. arXiv preprint
arXiv:1703.06733 (2017)

6. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: Meersman, R.,
Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S.,
Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp.
305–322. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-
5 19

7. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

8. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). In: IEEE
Symposium on Computational Intelligence and Data Mining (CIDM). IEEE (2011)

9. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E.,
Günther, C.W.: Processmining: a two-step approach to balance between underfitting
and overfitting. Softw. Syst. Model. 9(1), 87–111 (2008)

10. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0 24

11. van der Werf, J.M.E.M., Dongen van Dongen, B.F., Hurkens, C.A.J.,
Serebrenik, A.: Process discovery using integer linear programming. Fundam.
Inform. 94(3–4), 387–412 (2009)

12. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

13. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06257-0 6

14. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Avoiding over-fitting in
ILP-based process discovery. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M.
(eds.) BPM 2015. LNCS, vol. 9253, pp. 163–171. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23063-4 10

15. Yang, W., Hwang, S.: A process-mining framework for the detection of healthcare
fraud and abuse. Expert Syst. Appl. 31(1), 56–68 (2006)

http://arxiv.org/abs/1703.06733
https://doi.org/10.1007/978-3-642-33606-5_19
https://doi.org/10.1007/978-3-642-33606-5_19
https://doi.org/10.1007/978-3-540-75183-0_24
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-23063-4_10
https://doi.org/10.1007/978-3-319-23063-4_10

Improving Process Discovery Results by Filtering Outliers 229

16. Ghionna, L., Greco, G., Guzzo, A., Pontieri, L.: Outlier detection techniques for
process mining applications. In: An, A., Matwin, S., Raś, Z.W., Ślȩzak, D. (eds.)
ISMIS 2008. LNCS (LNAI), vol. 4994, pp. 150–159. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68123-6 17

17. Wang, J., Song, S., Lin, X., Zhu, X., Pei, J.: Cleaning structured event logs: a graph
repair approach. In: IEEE 31st International Conference on Data Engineering,
ICDE, pp. 30–41 (2015)

18. Cheng, H.J., Kumar, A.: Process mining on noisy logs –can log sanitization help
to improve performance? Decis. Support Syst. 79, 138–149 (2015)

19. Cendrowska, J.: PRISM: An algorithm for inducing modular rules. Int. J. Man
Mach. Stud. 27(4), 349–370 (1987)

20. Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: Filtering out infrequent behavior
from business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300–314
(2017)

21. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: Scientific workflows for process min-
ing: building blocks, scenarios, and implementation. Int. J. Softw. Tools Technol.
Transfer. 18(6), 607–628 (2016). https://doi.org/10.1007/s10009-015-0399-5

22. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A robust F-measure for
evaluating discovered process models. In: Proceedings of the CIDM, pp. 148–155
(2011)

https://doi.org/10.1007/978-3-540-68123-6_17
https://doi.org/10.1007/s10009-015-0399-5

	Improving Process Discovery Results by Filtering Outliers Using Conditional Behavioural Probabilities
	1 Introduction
	2 Motivation
	3 Related Work
	4 Filtering with Conditional Behavioural Probabilities
	4.1 Basic Notation and Definitions
	4.2 Outlier Detection
	4.3 Implementation

	5 Evaluation
	6 Conclusion
	References

