
Chapter 8
Diagnosis of Hybrid Systems Using
Structural Model Decomposition

Matthew J. Daigle, Anibal Bregon, and Indranil Roychoudhury

8.1 Introduction

Automated fault diagnosis is critical for complete system autonomy. In order for
engineering systems to function in the real world, including extreme environments,
the ability to self-diagnose faults and failures and then mitigate them by control
or repair actions is crucial. Many engineering systems are hybrid in nature, i.e.,
they exhibit both continuous and discrete behaviors. The combination of continuous
and discrete dynamics makes the problem of robust and efficient fault diagnosis
significantly more challenging.

In a hybrid system, the system behavior is defined by a set of discrete modes. In
each of these modes, a different set of continuous dynamics governs the system
behavior. Discrete dynamics define how the system transitions from one mode
to another. For example, consider an electric circuit with ten switching elements.
If each switch can be in one of two states (the on state or the off state), then such
a system has 210 possible system-level modes. Therefore, a diagnosis algorithm, in
general, must consider all possible modes of such a system.
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Further, faults may manifest as direct changes in system parameters, called
parametric faults, or as changes in the system mode, called discrete faults. So
a diagnosis system must reason over different types of faults and possible mode
transitions during the fault isolation process. The effects of a fault are also mode-
dependent, and observation delays (e.g., due to delays in signal filtering within
a fault detection algorithm, or communication delays) may cause the observed
effects to be inconsistent with the current mode of the system, but consistent
with a previous mode. All of these complications can significantly complicate the
reasoning process [1].

Researchers have been intrigued by the fault diagnosis problem for hybrid
systems for many years, and many different proposals for hybrid systems diagnosis
exist in the literature. During the last decade or so, modeling and diagnosis for
hybrid systems has been an important topic of research from both Systems Dynam-
ics and Control Engineering (FDI) and the Artificial Intelligence Diagnosis (DX)
communities. In the FDI community, several hybrid system diagnosis approaches
have been developed, where parameterized ARRs are used [2, 3]. However, such
approaches are not suitable for systems with high nonlinearities or a large set of
modes. In the DX community, some approaches have used hybrid automata to model
the complete set of modes and transitions between them. In those cases, diagnosis
is viewed as a hybrid system state estimation problem, and approached through
probabilistic [4, 5] or set-theoric approaches [6]. Another solution has been to use an
automaton to track the system mode, and then use a different technique to diagnose
the continuous behavior (for example, using a set of ARRs for each mode [7], or
parameterized ARRs for the complete set of modes [8]). Nevertheless, one of the
main difficulties regarding state estimation using these techniques is the need to pre-
enumerate the set of all possible system-level modes and mode transitions, which
is difficult for complex systems. Another approach to fault diagnosis, as shown
in [1, 9, 10], qualitatively abstracts the transients in residual deviations and compares
them with predicted fault transients. The prediction of fault transients in different
modes of the system can also be computationally very expensive.

In order to address the challenges mentioned above, the techniques of com-
positional modeling and structural model decomposition have been developed.
Building and representing hybrid system models in a compositional manner solves
the mode pre-enumeration problem. In compositional modeling, the discrete modes
are defined at a local level (e.g., at the component level) such that the system-level
mode is defined implicitly by the local component-level modes. Since this allows
the modeler to focus on the discrete behavior only at the component level, the pre-
enumeration of all the system-level modes can be avoided [11, 12]. Additionally,
building models in a compositional way facilitates reusability and maintenance, and
allows the validation of the components individually before they are composed to
create the global hybrid system model.
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Structural model decomposition [13] offers another means to decrease the
complexity of the hybrid system diagnosis problem [14–16]. In continuous systems
diagnosis, structural model decomposition is a popular approach because it allows
a global model to be decomposed into local submodels, with each submodel
dependent on only a subset of the system faults [13]. As a result, the diagnosis
problem becomes much simpler. In hybrid systems, structural model decomposition
can significantly decrease the complexity of the problem as well. In addition to
minimizing the set of fault effects, each submodel has only a limited number of
modes. So instead of reasoning over the exponential number of system-level modes,
reasoning need only be performed over the significantly smaller set of submodel
modes. Further, structural model decomposition results in computationally inde-
pendent submodels, which lends itself naturally to a distributed implementation.

One solution for qualitative fault isolation using structural model decomposition
is presented in [17]. Within this approach, however, observation delays are not taken
into account and it is applicable only to systems that are modeled using hybrid bond
graphs (HBGs). A more efficient model-based methodology for diagnosis, which
integrates structural model decomposition within the Hybrid Diagnosis Engine
(HyDE), and uses a compositional modeling approach [11], is developed in [18].
The approach demonstrated how the integration of structural model decomposition
reduces the computational complexity associated with the fault diagnosis of hybrid
systems. The approach presented in this chapter is related to that in [19, 20], but
differs in two major ways. First, the former work was based on modeling using
HBGs, whereas the modeling framework used here is more general (in which HBGs
are a special case). Second, that work was based on a global system model, while
in this work, the approach is based on local submodels computed through structural
model decomposition.

This chapter presents a model-based, qualitative fault diagnosis framework
for hybrid systems, which can diagnose both parametric and discrete faults, and
can handle observation delays. The underlying system model is built using a
compositional modeling methodology, and structural model decomposition is used
to decompose the model into independent submodels, and thus decompose the diag-
nosis problem and significantly reduce the associated computational complexity.
The Advanced Diagnostics and Prognostics Testbed (ADAPT) [21], an electrical
power distribution system developed at NASA Ames Research Center, is used as
a case study to demonstrate that the approach can correctly isolate faults in hybrid
systems even if the system transitions among different mode changes and presents
observation delays during the isolation process.

The chapter is organized as follows. Section 8.2 presents the approach to
hybrid systems modeling. The diagnosis problem for hybrid systems is formulated
in Sect. 8.3 and the qualitative fault isolation approach is presented in Sect. 8.4.
Section 8.5 describes the ADAPT case study and presents the experimental results
of applying our hybrid fault diagnosis algorithm. Finally, Sect. 8.6 concludes the
chapter.
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8.2 Hybrid Systems Modeling

Most practical systems demonstrate mixed discrete and continuous dynamics,
termed hybrid dynamics, and hence, such systems are termed hybrid systems. Here,
the system can be thought of as inhabiting different operating modes, where in
each mode there is a specific set of continuous dynamics that governs the system
behavior within that mode. The discrete dynamics consist of the behavior governing
the transitions between modes.

A circuit example, shown in Fig. 8.1, will be used throughout the chapter to
illustrate the approach. The circuit includes a voltage source, V, two capacitors,
C1 and C2, two inductors, L1 and L2, two resistors, R1 and R2, and two switches,
Sw1 and Sw2, connected through a set of series and parallel connections. Sensors
measure the current or voltage in different locations (i3, v8, and i11, as indicated in
Fig. 8.1). Each switch can be in one of two modes: on and off. Thus, this circuit can
be represented as a hybrid system, with four system-level modes.

There are many different modeling formalisms to represent such a system, such
as hybrid automata [22] and hybrid bond graphs [23]. From a modeling perspective,
it is more convenient to follow a compositional modeling approach, where only
local, component-level modes are explicitly defined, and the system-level modes
are defined implicitly. In the following, the compositional modeling framework is
described, followed by a discussion on causality assignment, and then the structural
model decomposition approach.

8.2.1 Compositional Modeling

In a compositional modeling approach, the system is viewed as a set of connected
components. Each component is defined by a set of discrete modes, with a
different set of constraints describing the continuous dynamics of the component
in each mode.

Fig. 8.1 Electrical circuit example
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The fundamental building blocks of a hybrid system model are variables and
constraints among those variables. A constraint is defined as follows:

Definition 1 (Constraint) A constraint c is a tuple ."c; Vc/, where "c is an equation
involving variables Vc.

A component is defined by a set of constraints over a set of variables. The
constraints are partitioned into different sets, one for each component mode:

Definition 2 (Component) A component � with n discrete modes is a tuple
� D .V�;C�/, where V� is a set of variables and C� D fC1

�; C2
�; : : : ; Cn

�g is a set
of constraints sets, where Cm

� refers to the set of constraints defining the continuous
dynamics in mode m.

Example 1 The components of the circuit are defined in Table 8.1.1 They include
V, C1, C2, L1, L2, R1, R2, Sw1, Sw2, as well as components for series and parallel
connections.

Example 2 Consider the component Sw2 (�10). It has two modes: off (represented
as mode 1 in Table 8.1) and on (represented as mode 2). In the off mode, it has three
constraints setting each of its currents (i9, i10, i11) to 0. In the on mode, it has also
three constraints, setting the three currents equal to each other and establishing that
the voltages sum up (it acts like a series connection when in the on mode).

A system model is defined as a set of components:

Definition 3 (Model) A model M D f�1; �2; : : : ; �kg is a finite set of k compo-
nents for k 2 N.

Example 3 The model of the electrical circuit is made up of all the components
detailed in Table 8.1, i.e., M D f�1, �2, . . . , �15g. For each component, the variables
and constraints are defined for each component mode.

The set of variables for a model M , VM , is the union of all the component
variable sets, i.e., for d components, VM D V�1[V�2[: : :[V�d . The interconnection
structure of the model is captured using shared variables between components, i.e.,
components �i and �j are connected if V�i \ V�j ¤ ∅.

Example 4 In the circuit model, component �5 (Series Connection1) is connected to
�3 (Parallel Connection1) through i4, to �6 (R1) through i5 and v5, to �7 (C1) through
i6 and v6, and �8 (Parallel Connection2) through i7 and v7.

The model constraints, CM , are a union of the component constraints over all
modes, i.e., CM D C�1 [C�2 [ : : :[C�d . Constraints are exclusive to components,
that is, a constraint c 2 CM belongs to exactly one C� for � 2M .

1Here, we denote derivatives using dot notation.
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Table 8.1 Components of
the electrical circuit

Component Mode Constraints

�1: V 1 v1 D uv

�2: Sw1 1 i1 D 0

i2 D 0

2 i1 D i2
v1 D v2

�3: parallel connection1 1 v2 D v3

v2 D v4

i2 D i3 C i4
�4: L1 1 Pf3 D v3

i3 D f3=L1

f3 D R t
t0
Pf3

�5: series connection1 1 i4 D i5
i4 D i6
i4 D i7
v4 D v5 C v6 C v7

�6: R1 1 v5 D i5 � R1

�7: C1 1 Pq6 D i6
v6 D q6=C1

q6 D R t
t0
Pq6

�8: parallel connection2 1 v7 D v8

v7 D v9

i7 D i8 C i9
�9: L2 1 Pf8 D v8

i8 D f8=L2

f8 D R t
t0
Pf8

�10: Sw2 1 i9 D 0

i10 D 0

i11 D 0

2 i9 D i10

i9 D i11

v9 D v10 C v11

�11: R2 1 v10 D i10 � R2

�12: C2 1 Pq11 D i11

v11 D q11=C2

q11 D R t
t0
Pq11

�13: current sensor11 1 i�11 D i11

�14: voltage sensor8 1 v�

8 D v8

�15: current sensor3 1 i�3 D i3

To refer to a particular mode of a model we use the concept of a mode vector.
A mode vector m specifies the current mode of each of the components of a model.
So, the constraints for a mode m are denoted as Cm

M .
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Example 5 Consider a model with five components, then if m D Œ1; 1; 3; 2; 1�, it
indicates that components �1, �2, and �5 use constraints of their mode 1, component
�3 uses constraints of its mode 3, and component �4 uses constraints of its mode 2.

For shorthand, the mode vector will refer to the modes only of the components
with multiple modes. So, for the circuit, it refers only to components �2 and �10,
resulting in four possible mode vectors, Œ1 1�; Œ1 2�; Œ2 1�; and Œ2 2�.

The switching behavior of each component can be defined using a finite state
machine or a similar type of control specification. For the purposes of this chapter,
the switching behavior is viewed as a black box where the mode change event
is given, and refer the reader to many of the approaches already proposed in the
literature for modeling the switching behavior [22, 23]. Although we do not consider
state resets explicitly in this paper, this may also be viewed as an output of the
switching behavior.

8.2.2 Fault Modeling

A fault is the cause of an unexpected, persistent deviation of the system behavior
from the acceptable nominal behavior. In the continuous dynamics, faults are
represented as parameter changes in ‚M � VM , and are termed parametric faults.

Definition 4 (Parametric Fault) A parametric fault f is a persistent constant
deviation of exactly one parameter � 2 ‚M of the system model M from its
nominal value.

For each parameter, both an increase and a decrease in the parameter value may
be considered as a fault. A fault that is an increase in the value of parameter � is
denoted as �C, and a fault that is a decrease is denoted as ��.

Example 6 In the circuit, ‚M D fC1; C2; L1; L2; R1; R2g. The complete set of
parametric faults is fCC1 ; C�1 ; CC2 ; C�2 ; LC1 ; L�1 ; LC2 ; L�2 ; RC1 ; R�1 ; RC2 ; R�2 g.

In the discrete dynamics, faults are represented through component mode
changes.

Definition 5 (Discrete Fault) A discrete fault f is a persistent change in the mode
of exactly one component � 2M from its nominal value.

Example 7 In the circuit, there are two switching components, Sw1 and Sw2, and
four associated discrete faults fSwoff

1 ; Swon
1 ; Swoff

2 ; Swon
2 g. Here, the off subscript

represents the fault where the component changes to the off mode when it should
be in the on mode, and the on subscript represents the fault where the component
changes to the on mode when it should be in the off mode.
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8.2.3 Causality

A model is defined without consideration of computational causality, i.e., a
specification of the computational direction of its constituent constraints. Causality
must be considered in order to simulate a model and to study fault propagation.

Given a constraint c, which belongs to a specific mode of a specific component,
the notion of a causal assignment is used to specify a possible computational
direction, or causality, for the constraint c. The causality is indicated by specifying
which v 2 Vc is the dependent variable in equation "c.

Definition 6 (Causal Assignment) A causal assignment ˛c to a constraint c D
."c; Vc/ is a tuple ˛c D .c; vout

c /, where vout
c 2 Vc is assigned as the dependent

variable in "c. We use Vin
c to denote the independent variables in the constraint,

where Vin
c D Vc � fvout

c g.
In order to assign causality, we must first define which variables within a model

are exogenous, i.e., the input variables UM � VM . Such variables must always be
independent variables in any causal assignment to a constraint involving them, i.e.,
if a variable v is in UM , then for any constraint c in which v 2 Vc, it must always
be the case that v 2 Vin

c for any causal assignment.
Parameters that are associated with faults are associated with explicit variables

‚M 2 VM . They are a special kind of input variable, i.e., ‚M � UM .
In addition, it is useful to refer to a specific set of output variables, YM � VM ,

that are associated with measured outputs of the system.

Example 8 In the circuit, ‚M D fC1; C2; R1; R2; L1; L2g, UM D fuVg [‚M , and
YM D fi�3 ; v�8 ; i�11g.

In general, the set of possible causal assignments for a constraint c is as big
as Vc, because each variable in Vc can act as vout

c . However, in some cases some
causal assignments may not be possible, e.g., if Vc contains any input variables, or
if there are noninvertible nonlinear constraints. Also, assuming integral causality,
then state variables must always be computed via integration, and so the derivative
causality is not allowed. To denote this concept, Ac refers to the set of permissible
causal assignments of a constraint c. For example, for u 2 UM , if u 2 Vc for
some constraint c, .�c; u/ will never be in Ac.

For model M in mode m, A m
M denotes a complete set of causal assignments,

i.e., for every c 2 Cm
M , there is exactly one corresponding ˛c 2 A m

M . However, only
some A m

M are actually valid, and this is expressed through the notion of consistency:

Definition 7 (Consistent Causal Assignments) For model M in mode m, A m
M is

consistent if

(i) for every c 2 Cm
M , ˛c 2 Ac, i.e., the causal assignment must be permissible;

(ii) for all v 2 VM �UM , A m
M contains exactly one ˛ D .c; v/, i.e., every variable

that is not an input or parameter is computed by only one (causal) constraint.
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Algorithm 1: A  AssignCausality.M ; m;A/

1: A  ∅

2: V  UM [‚M

3: Q UM [‚M [ YM

4: for all c 2 Cm
M do

5: if jAcj D 1 then
6: .c; v/ Ac.1/
7: Q Q[ v
8: while jQj > 0 do
9: v pop.Q/

10: for all c 2 Cm
M .v/ do

11: if c … fc W .c; v/ 2 A g then
12: ˛�  ∅

13: for all ˛ 2 Ac do
14: if Vc � fv˛� g [ V ¤ ∅ then
15: ˛�  ˛
16: else if ˛v 2 Y then
17: ˛�  ˛
18: else if v˛� D v and jCm

M .v/j � jfc0 W .c0; v0/ 2 A ^ v 2 vcgj D 1 then
19: ˛�  ˛
20: if ˛� ¤ ∅ then
21: A  A [ f˛�g
22: Q Q[ .Vc � V/
23: V  V [ fv˛� g

Algorithm 1 describes the causality assignment process for a model given a
mode. Causal assignment works by propagating causal restrictions throughout the
model. The process starts at inputs, which must always be independent variables in
constraints; and outputs, which must always be the dependent variables in at least
one constraint. From these variables, we should be able to propagate throughout the
model and compute a valid causal assignment for the model in the given mode. For
the purposes of this paper, we assume integral causality and that the model possesses
no algebraic loops.2 In this case, there is only one valid causal assignment.

Specifically, the algorithm works as follows. It keeps queue of variables to
propagate causality restrictions, Q, and a set of variables that are computed in
the current causality, V . Initially, V is set to U, because these variables are not
to be computed by any constraint. Q is set to U and Y , since the causality of
constraints is restricted to U variables being independent variables and Y variables
being dependent variables. We add also to Q any variables involved in constraints
that have only one permissible causal assignment, because this will also restrict
other causal assignments. The set of causal assignments is maintained in A .

The algorithm goes through the queue, inspecting variables. For a given variable,
we obtain all constraints it is involved in, and for each one that does not yet have
a causal assignment (in A ), we go through all permissible causal assignments, and

2If algebraic loops exist, the algorithm will terminate before all constraints have been assigned
a causality. Extending the algorithm to handle algebraic loops is similar to that for bond graphs;
a constraint without a causality assignment is assigned one arbitrarily, and then effects of this
assignment are propagated until nothing more is forced. This process repeats until all constraints
have been assigned causality.
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determine if the causality is forced into one particular causal assignment, ˛�. If so,
we assign that causality and propagate by adding the involved variables to the queue.
A causal assignment ˛ D .c; v/ is forced in one of three cases: (i) v is in Y , (ii) all
variables other than v of the constraint are already in V , and (iii) v is not yet in V ,
and all but one of the constraints involving v have an assigned causality, in which
case no constraint is computing v and there is only one remaining constraint that
must compute v. The algorithm must visit all constraints and does not backtrack, so
the time complexity is linear in the size of the model.

Example 9 Consider the mode m D Œ1 2�. Here, A Œ1 2� is given in column 4 of
Table 8.1, denoted by the vout

c in the causal assignment. In this mode, the first switch
is off, so i1 and i2 act as inputs. Given the integral causality assumption, a unique
causal assignment to the model exists and is specified in the column.

Example 10 Consider the mode m D Œ2 1�. Here, A Œ2 1� is given in column 8 of
Table 8.1. In this mode, the second switch is off, so i9, i10, and i11 act as inputs.
Given the integral causality assumption, a unique causal assignment to the model
exists and is specified in the column. Note that some causal assignments are in the
same as in m D Œ1 2�, while others are different.

When the system mode changes, causality can be recomputed using Algorithm 1.
More efficient, incremental, causality assignment, based on the assignment of the
previous mode, can also be performed [14], however that is beyond the scope of this
chapter.

8.2.4 Structural Model Decomposition

Structural model decomposition creates local submodels given a system model.
For a hybrid system, the mode of the system must be specified. When the mode
changes, the derived submodels may also change, i.e., if they include constraints
of components that have changed mode. This section describes how submodels are
generated. Their application to diagnosis will be described in Sect. 8.4.

The procedure for generating a submodel from a causal model is given as
Algorithm 2 [13]. The following applies to a given mode, so in the remainder of
the section the mode superscript is dropped. Given a causal model M , and an
output variable to be computed y, the GenerateSubmodel algorithm derives
a causal submodel Mi that computes y using as local inputs only variables from
U� D U [ .Y � fyg/. We briefly summarize the algorithm below.

In Algorithm 2, the variables queue represents the set of variables that have
been added to the submodel but have not yet been resolved, i.e., they cannot yet be
computed by the submodel. This queue is initialized to fyg, and the algorithm then
iterates until this queue has been emptied, i.e., the submodel can compute y using
only variables in U�. For each variable v that must be resolved, we use Subroutine 3
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Algorithm 2: Mi D GenerateSubmodel.M ; U�; V�/
1: Vi  V�

2: Ci  ∅

3: Ai  ∅

4: variables V�

5: while variables ¤ ∅ do
6: v pop.variables/
7: c GetBestConstraint.v; Vi; U�;A /
8: Ci  Ci [ fcg
9: Ai  Ai [ f.c; v/g

10: for all v0 2 Vc do
11: if v0 … Vi and v0 … ‚ and v0 … U� then
12: variables variables[ fv0g
13: Vi  Vi [ fv0g
14: Mi  .Vi; Ci;Ai/

Algorithm 3: c D GetBestConstraint.v; Vi; U�;A /

1: C ∅

2: cv  find c where .c; v/ 2 A
3: if Vcv � Vi [ U� then
4: C C [ fcvg
5: for all y 2 Y \ U� do
6: cy  find c where .c; y/ 2 A
7: if v 2 Vcy and Vcy � Vi [ U� [‚ then
8: C C [ fcyg
9: for all y 2 Y \ U� do

10: cy  find c where .c; y/ 2 A
11: V 0  Vcy � fyg
12: for all v0 2 V 0 do
13: cv0  find c where .c; v0/ 2 A
14: if v 2 Vcv0

and Vcy � fvg [ U� [‚ then
15: C C [ fcv0 g
16: if C D ∅ then
17: c cv

18: else if cv 2 C then
19: c cv

20: else
21: C0  C
22: for all c1; c2 2 C where c1 ¤ c2 do
23: y1  find y where .c1; y1/ 2 A
24: y2  find y where .c2; y2/ 2 A
25: if .y1 G y2/ 2 P then
26: C0  C0 � fc1g
27: c first.C0/

(GetBestConstraint subroutine) to find the constraint that should be used to
resolve v in the minimal way.

The GetBestConstraint subroutine, given as Algorithm 3, (which has been
updated from [13]) tries to find a constraint that completely resolves the variable, i.e.,
resolves v without further backward propagation (all other variables involved in the
constraint are in Vi [ ‚ [ U�). Such a constraint may be the one that computes v

in the current causality, if all needed variables are already in the submodel (in Vi)
or are available local inputs (in U�); such a constraint may be one that computes a
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measured output y� 2 U�, in which case the causality will be modified such that y�
becomes an input, i.e., the constraint in the new causality will compute v rather than
y�; or such a constraint may be one that computes some y� through some v0 in an
algebraic relation. If no such constraint exists, then the constraint that computes v in
the current causal assignment is chosen, and further backward propagation will be
necessary. A preferences list, P, is used to break ties if multiple minimal constraints
exist to resolve v.

For a given causal model in a given mode, we have the equivalent of a continuous
systems model for the purpose of structural model decomposition, and we can
compute minimal submodels using the GenerateSubmodel algorithm described
in previous work [13]. The algorithm finds a submodel, which computes a set of
local outputs given a set of local inputs, by searching over the causal model. It
starts at the local inputs, and propagates backwards through the causal constraints,
finding which constraints and variables must be included in the submodel. When
possible, causal constraints are inverted in order to take advantage of local inputs.
In the worst case, the algorithm ends up with the global model, so would traverse
the entire causal structure. Additional information and the pseudocode are provided
in [13].

The local inputs for a submodel are selected from variables for which the values
will be known. This includes variables in UM , which are assumed to be known, but
could also include variables in YM , because the values of these are being provided
by sensors. On average, GenerateSubmodel will find a submodel that is a small
subset of the global model. In the worst case, if no decomposition is possible, it
will return the global model, minus the other outputs. However, in this case, this
submodel is still computationally independent of the others and can still be run in
parallel.

Example 11 Submodels can be represented visually using a graph notation, where
vertices correspond to variables, and edges correspond to constraints with causal
assignments, i.e., a directed edge from vi to vj means that vj is computed using vi.
Consider a submodel for which the local output is i�3 , and the available local inputs
are fv�8 ; i�11g [ UM . The submodel graphs for two modes are shown in Fig. 8.2.
If Sw1 is on with Sw2 off, for example, i�3 can be determined completely by uV (see
Fig. 8.2b). If Sw1 is off with Sw2 on, then it must be computed based on the value
of v�8 (see Fig. 8.2a).

The main advantage of structural model decomposition is that faults appear in
only a subset of the submodels. Following a model-based approach, in which the
submodels are used to compute the nominal system behavior, only a subset of the
submodels will be affected by a single fault. Thus, the reasoning becomes much
simpler.
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Fig. 8.2 Submodel graphs
for i�3 . (a) i�3 submodel graph
in the mode with the first
switch off and the second on.
(b) i�3 submodel graph in the
mode with the first switch on
and the second off

a

b

8.3 Problem Formulation

The diagnosis problem is one of mapping observations on a system to an explanation
for that set of observations, specifically, which faults may have occurred to produce
those observations. In general terms, a fault is a single change in the system. Here,
we make the single-fault assumption.

Assumption 1 Only single faults occur in the system.

That is, we assume that only a single change in the system has occurred and can
explain the given observations. Since faults are typically unlikely to occur in the first
place, when faults are independent of each other, the probability of multiple faults
is extremely low. So, the single-fault assumption is common in practical settings.
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As described in Sect. 8.2, faults may be either parametric (represented as
increases or decreases in system parameter values) or discrete (represented as
changes in the modes of components). Further, we assume that faults are persistent,
i.e., once a fault occurs, it remains.

Assumption 2 Faults are persistent.

Generally speaking, for the purposes of diagnosis, we consider an observation to
be an event observed at a particular time.

Definition 8 (Observation) An observation is a tuple .e; t/, where e is an observed
event and t is the time of observation.

Two kinds of events are considered, mode changes and fault signatures. We
define mode change events specific to components.

Definition 9 (Mode Change Event) An event .�; m/ represents component �

changing to its mode m.

For the purposes of this chapter, we assume these are known/observable, i.e., they
are considered an input to our system.

Assumption 3 (Mode Change Observability) All mode change events are
observable.

Following a qualitative fault isolation approach, the remaining events take the
form of qualitative symbols representing the transients caused by faults, termed fault
signatures.3 These symbols are computed from system residuals, i.e., the differences
between observed and model-predicted outputs.

Definition 10 (Residual) A residual r for output y as measured by a sensor is
computed as r D y � y�, where y� is the model-predicted output value.

Under the single-fault assumption, a diagnosis is simply a fault that is consistent
with a given observation sequence.

Definition 11 (Diagnosis) For a system with fault set F, and a sequence of
observations O, a diagnosis for O, dO is a fault f 2 F that is consistent with O.
The set of all diagnoses for O is denoted as DO.

The diagnosis problem can then be formally defined as follows.

Problem 1 For a system with fault set F, given a finite sequence of observations O,
find the set of diagnoses DO � F.

3Fault signatures will be defined formally in Sect. 8.4.
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Fig. 8.3 Diagnosis architecture

8.3.1 Architecture

To solve this problem, the architecture shown in Fig. 8.3 is used. The inputs, u.k/,
are fed into the system, and the system produces measured outputs, y.k/. These
signals are then decomposed into local input and outputs for the local submodels.
For each sensor, one submodel is defined where the corresponding output variable
is the single local output of the submodel, and all other output variables may
serve as local inputs along with UM . Thus, for a set of n sensors, there will be
n submodels. The mode change m is also fed into the system and the submodels.

If a mode change occurs, the system changes mode and the submodels also
change modes to reflect the new system mode. This requires regenerating the
submodels due to the change in causality, and this can be done efficiently using
the causality reassignment algorithm.

The actual system outputs, y.k/, along with the submodel-generated outputs,
y�.k/ are then fed to the symbol generation module. Following a qualitative fault
isolation approach, the residuals are transformed into qualitative 0 (no change), �
(decrease), and + (increase) changes for the magnitude and slope in the residual.
Once a residual is detected to deviate in a statistically significant manner from zero,
symbols are generated for that residual, and fed into the fault isolation module.

The fault isolation module reasons over the sequence of observations, consisting
of these qualitative symbols and mode change events, to isolate the fault. The
algorithms underlying the fault isolation module are described in the following
section.

8.4 Qualitative Fault Isolation for Hybrid Systems

As described in Sect. 8.3, the diagnosis problem is to map a sequence of fault
signatures and mode change events to single faults that are consistent with the
sequence. At the core of the qualitative fault isolation approach is the concept of a
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fault signature. In this section, we first describe fault signatures. The fault isolation
procedure is then described, followed by a discussion of scalability.

8.4.1 Fault Signatures

The basis of the qualitative fault isolation approach is the concept of a fault
signature [10].

Definition 12 (Fault Signature) A fault signature for a fault f and residual r in
mode m, denoted by �f ;r;m is a set of symbols representing changes in r caused by
f at the point of the occurrence of f in mode m. The set of all fault signatures for a
fault f over residuals R in mode m is denoted as †f ;R;m.

In this work, fault signatures are made up of a set of two symbols: the qualitative
change in residual magnitude, and the qualitative change in residual slope. Each one
of these symbols can take the values + (increase), � (decrease), and 0 (no change).
These symbols are based on the transient that is produced when a fault occurs [9].
We write always the magnitude symbol followed by the slope symbol, e.g., a
signature +� represents an increase in magnitude and a decrease in slope.

A fault signature provides a prediction of the observation that will be made
for a system in a particular mode when that fault happens. For the case of a
parametric fault, this is a straightforward concept and we refer the reader to previous
works [24]. For discrete faults, the interpretation of the fault signature remains the
same, although a discrete fault will change the mode. Specifically, if the system is
in mode m and a discrete fault f occurs (thus changing the mode), the signatures in
†f ;R;m will be those observations predicted for the fault occurring in mode m, and
not the mode in which the fault drives the system into. So, if we know the system
is in mode m and fault signatures are observed, we always look in †f ;R;m for every
f 2 F to reason about which fault has occurred.

Example 12 Table 8.2 shows the fault signatures for the circuit example for the two
modes considered for the local submodel residuals. Consider that fault L�1 occurs in
the system. In m D Œ2 1�, it affects only the residual for i�3 , as it is the only local
submodel where it appears (see Table 8.2). In m D Œ2 1�, it also affects i�3 . The fault
RC1 will also, but they can be distinguished by the specific change produced by the
fault. For L�1 , a +� is produced, whereas for RC1 , a 0� is produced.

Fault signatures can be derived from analysis of the system model [9, 19] or via
simulation. Here, we assume they are given as input.

Since we have a single submodel for each residual, fault isolation within a single
mode is straightforward. Given an observed sequence of fault signatures, † in mode
m, we determine which faults match all signatures in †.

Example 13 For the circuit, given m D Œ1 2� and † D frC�
v�

8
g, then D D fC�1 ; L�2 g.

Note that the * symbol may match either + or �.
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For the purposes of this paper, we assume that signatures are correctly observed.4

Assumption 4 (Correct Observation) If a fault f occurs in mode m, then if the
system does not change mode after the occurrence of the fault, the observed fault
signatures will belong to †f ;R;m.

8.4.2 Hybrid Systems Diagnosis

For hybrid systems, fault signatures are always given as a function of the system
mode. If there is no mode change occurring between the point of fault occurrence
and the diagnosis of the fault, then the problem reduces to the continuous systems
case. Otherwise, some combination of fault signatures from different modes may be
observed, depending on when the mode changes take place and how long it takes
for fault signatures to manifest.

Example 14 Consider the residuals in Table 8.2. Assume that the system starts in
m D Œ1 2� and RC1 occurs. Then we could observe r0�

i�3
. Now, assume that the system

moves to mode m D Œ2 1�, now we would observe rC�
v�

8
. This set of fault signatures

is not found in any single mode, so the reasoning must extend over the sequence of
mode changes.

As shown in the example, the first challenge of the approach for hybrid systems is
that now the observed fault signatures may correspond to different modes. Thus, the
fault isolation process must span over several potential mode changes. By knowing
the mode of the system, we can know which set of fault signatures corresponds to
the predicted observations for each fault.

The advantage of structural model decomposition here is that such combinations
are limited and easier to deal with compared to an approach using a single global
model, where potentially all residuals may be affected by every fault. In that case,

Table 8.2 Fault signatures
for minimal submodels of the
electrical system

Mode m D Œ1 2� m D Œ2 1�

Fault ri�11
ri�3

rv�

8
ri�11

ri�3
rv�

8

C�

1 00 0+ 00 00 00 �+
C�

2 00 00 �0 00 00 00

L�

1 00 +� 00 00 +0 00

L�

2 �0 00 00 00 00 �*
RC

1 00 0� 00 00 00 +�
RC

2 00 00 +0 00 00 00

4Relaxation of this assumption has been explored for continuous systems in [25].
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there are many potential combinations and increased ambiguity. The decoupling of
faults and residuals provided by structural model decomposition helps to reduce this
complexity.

As discussed in the previous section, in this work we assume that all commanded
mode change event are observable. However, even if we know the current mode of
the system, there is another related layer of complexity to consider, the observation
delay, which refers to the delayed observation of fault signatures. The difficulty
relies in that the system may be in one mode, but when the observation arrives
it might have moved to a different system mode, thus the mode in which the
observation was made may not be known exactly.

The observation delay can be manifested in different ways. For example, fault
detection in our framework is done by checking if the residual crosses a threshold.
Due to the presence of noise and in order to perform a robust fault detection, we use
a statistical test that computes the mean of the residual over a small time window and
check if that mean has crossed the threshold. In practice, this means that the signal
could actually cross the threshold in one mode, but the mean of the signal could
cross only in the next mode. Thus, the observation of this signature is delayed. In
this work we assume that the observation delay is finite and bounded.

Assumption 5 (Bounded Observation Delay) The delay of any observation is no
greater than �.

Given our assumptions, the algorithm for a single step of fault isolation for hybrid
systems is shown as Algorithm 4. Note that we reason through fault signatures the
same for discrete and for parametric faults, hence the algorithm presented is the
same for both situations. As inputs, the algorithm takes the current diagnosis, Di,
the previous sequence of fault signatures, �i, the new fault signature, �iC1, and the
set of recent modes that falls within Œt��; t�, Mr;�, for the submodel that generates
residual r. The main difference of this algorithm against the previous version for
continuous systems is that we need to check signatures for each one of the recent
modes.

Another advantage here of structural model decomposition is that the set of recent
modes is dependent on the model used for fault isolation, and consequently is a
function of the residual associated with the signature. If a global model is used,
the residual generator will contain all system modes. However, if local submodels
are used, the residual generator will only contain the local modes of that submodel
(which is always less than the number of system modes). Thus, fewer modes must
be searched and efficiency is improved.

Algorithm 4: DiC1 D FaultIsolation.Di; �i; �iC1; Mr;�/

1: DiC1  ∅

2: for all q 2 Mr;� do
3: for all f 2 Di \ Fr;q do
4: if �iC1 2 †f ;r�iC1

;m then
5: DiC1  ff g



8 Diagnosis of Hybrid Systems Using Structural Model Decomposition 197

If the signature is consistent in any of the modes, it must be added to DiC1. Here,
for a given mode m, we need to check only the subset of faults that are included in the
current diagnosis and can actually affect this residual in this mode, denoted as Fr;m.
An observed signature, �iC1, is consistent with a fault if the predicted signature for
its residual (r�iC1

) is included in the signature set for that fault and residual in the
given mode.

Algorithm 4 just presents a single reasoning step, when there is a new observed
signature, of the fault isolation process. When implemented, this algorithm would
be placed within a general progressive monitoring algorithm that keeps track of the
current diagnosis, and computes the set of recent modes based on the times events
are observed. In the worst case, it must check consistency with all faults and all
deviated residuals for all given mode changes, so in the worst case is O.jFjjRjjMrj/.
On average, it is much less, since the candidate set reduces with each newly
observed fault signature.

8.4.3 Scalability

The complexity of the fault isolation algorithm is dependent on the number of faults,
jFj, the number of residuals, jRj, and the number of modes, jMj. For the global
model case, all faults, residuals, and modes in Mr;� must be searched. Because r
is computed using the global model, it is a function of the system-level mode. For
an n-tank system, there are n � 1 switching components and so 2n�1 system-level
modes. Clearly, diagnosis in this case will not scale.

For the local submodel case, each residual is generated by a minimal submodel,
so it improves over the global model approach by simultaneously reducing both
the effective jRj and the effective jMj. The effective jRj is decreased because with
structural model decomposition each fault affects only a subset of the residuals,
so for each new residual deviation only a subset of faults needs to be checked for
consistency. The effective jMj is reduced because with structural model decompo-
sition each residual is reconfigured only based on a few local component modes,
whereas for the global model each residual is dependent on the system-level modes
(which increases exponentially with the number of switching components). Due
to these properties of structural model decomposition, the complexity grows at a
significantly smaller rate as the system size increases than with the global model
approach.

8.5 Case Study

The Advanced Diagnostics and Prognostics Testbed (ADAPT) is an electrical power
distribution system that was built to mimic the operation of such systems on
spacecraft [21]. Through the International Diagnostic Competition (DXC), it has
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Fig. 8.4 ADAPT-Lite schematic

Table 8.3 Components of
ADAPT-Lite and their failure
modes

Components Failure mode

AC483, DC485 Resistance offset

E240, E242, E265, E281, TE228, Offset

IT240, IT267, IT281, ST516

ESH244A, ISH236 Stuck

EY244, EY260, EY272, EY275, EY284 Stuck open

Stuck closed

FAN416 Underspeed

Overspeed

been established as a diagnostic benchmark system [26–28]. The diagnosis approach
is applied to a subset of ADAPT, called ADAPT-Lite.

Figure 8.4 provides a system schematic for ADAPT-Lite. A battery (BAT2)
supplies electrical power to several loads, passing through several circuit breakers
(CB236, CB262, CB266, and CB280), and controlled by relays (EY244, EY260,
EY281, EY272, and EY275). An inverter (INV2) converts dc to ac power. ADAPT-
Lite has one dc load (DC485) and two ac loads (AC483 and FAN416). Sensors
report electrical voltage (names beginning with “E”), electrical current (“IT”), and
the positions of relays and circuit breakers (“ESH” and “ISH”, respectively). There
is one sensor to report the operating state of a load (fan speed, ST516) and another
to report the battery temperature (TE228).

Table 8.3 summarizes component fault modes in ADAPT-Lite. The resistance
faults, fan speed faults, and sensor faults are modeled as parametric faults, and the
remaining faults are modeled as discrete faults.

8.5.1 System Modeling

Following the component-based modeling approach outlined in Sect. 8.2, each
component of the system is represented as a set of modes and constraints for each
mode. The components are one of the following types: battery, relay, inverter, dc
load, ac load, fan, and sensor. Since no faults are considered for the circuit breakers,
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they are omitted from the model. In the following, the component models are each
described in turn.

BAT2 consists of two 12 V lead-acid batteries in series, which are lumped
together into a single battery model. A simplified electrical circuit equivalent model,
consisting of a single large capacitance, C0, in series with a capacitor-resistor pair,
Cs and Rs, that subtracts from the voltage provided by C0 (see Fig. 8.4), is used. The
battery may then be described as

Pv0 D 1

C0

.�iB/ ; (8.1)

v0 D
Z t

t0

Pv0dt; (8.2)

Pvs D 1

Cs
.iBRs � vs/ ; (8.3)

vs D
Z t

t0

Pvsdt; (8.4)

vB D v0 � vs; (8.5)

where iB is the battery current, vB is the battery voltage, v0 is the voltage across
C0, and vs is the voltage drop across Cs and Rs. The battery temperature is assumed
constant, i.e.,

PTB D 0; (8.6)

TB D
Z t

t0

PTBdt: (8.7)

The relays each have two modes, on and off. When off, the constraints are:

il D 0 (8.8)

vr D 0 (8.9)

p D 0; (8.10)

where il is the current on the left side of the relay, vr is the voltage on the right side,
and p is the position. When on, constraints are:

il D ir (8.11)

vl D vr (8.12)

p D 1; (8.13)
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where ir is the current on the right side, and vl is the voltage on the left side. When
on, the voltages and currents on either side of the relay must be equal. When off, the
current on the left side is set to zero, while the current on the right is determined by
the component on the right. Similarly, the voltage on the right is set to zero, while
the voltage on the left is determined by the component on the left. Following this
modeling convention, voltage is always determined by the component on the left,
and current by the component on the right, no matter which mode the system is in,
and with consistent causality assignment in each mode.

The dc load is a simple resistance:

vdc D idc � Rdc; (8.14)

where vdc is the voltage across the load, idc is the current through the load, and Rdc

is the load resistance. Similarly, the ac load is also a simple resistance:

vac D iac � Rac; (8.15)

however the corresponding voltage and current are rms values.
The fan current is a function of the applied voltage:

vfan D ifan � Rfan; (8.16)

where Rfan is the magnitude of the fan impedance, and vfan and ifan are the rms
voltage and current, respectively. The fan speed is expressed as a function of its
current

P! D 1

Jfan
.ifan � gfan � !/ ; (8.17)

! D
Z t

t0

P! dt; (8.18)

where Jfan is an inertia parameter and gfan is a gain parameter.
The inverter transforms dc power to ac power. When operating nominally, the

rms voltage vrms is controlled very close to 120 V ac as long as the input voltage is
above 18 V:

vrms D 120 � .vinv > 18/: (8.19)

From a power balance of the ac and dc sides of the inverter, it results that vinv � iinv D
e � vrms � irms, where e is the inverter efficiency, irms is the inverter rms current, vinv

is the inverter voltage on the dc side, and iinv is the input dc current to the inverter.
The inverter still draws a small amount of current even when irms D 0, and this
is captured as a dc resistance parallel to the inverter, Rinv. Hence, the following
equation is derived:
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iinv D vrms � irms

e � vinv
C vinv

Rinv
: (8.20)

The sensors are modeled using a bias term. For sensor s, the constraint is:

ys D ss C bs; (8.21)

where ss is the raw signal value, bs is the bias term, and ys is the sensor output.
Component models are instantiated and connected according to Fig. 8.4 through

series and parallel connections. With five relays, each with two modes, there are a
total of 25 D 32 system modes.

The three loads (dc, ac, and fan) each have a single parametric fault, represented
through their respective resistance parameters. Further, each of the eleven sensors
has an offset fault represented as a change in the bias parameter. Discrete faults
are also associated with each of the five relays. A relay can turn on/off without a
command, or fail to turn on/off in response to a command. So for a single system
mode, there are 19 potential faults that may occur.

8.5.2 Structural Model Decomposition

As described in Sect. 8.3, one submodel is defined for each sensor. In general, there
may be a different submodel for each system-level mode, however, many of these
submodels are the same for different system-level modes, because the behavior
of many of the switching components isolated from a given submodel due to the
decomposition.

Example 15 Consider the submodel for E281. It has only two modes: one in which
the voltage is determined by the measured value of IT281 (and EY281 is on), and
one in which is set to zero (and EY281 is off). Its mode depends only on the state of
relay EY281. When off, the submodel consists of the following constraints:

vr;EY260 D 0

vl;P1 D vr;EY260

vr;2;P1 D vl;P1

vl;CB280 D vr;2;P1

vr;CB280 D vl;CB280

vl;EY284 D vr;CB280

sE281 D vl;EY284

yE281 D bE281 C sE281;
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where P1 refers to a parallel connection with the 1 and 2 subscripts indicating the
connection. The only local input is bE281, which is assumed to be 0 in the nominal
case. When on, the submodel consists of the following constraints:

sE242 D �bE242 C yE242

vr;EY260 D sE242

vl;P1 D vr;EY260

vr;2;P1 D vl;P1

vl;CB280 D vr;2;P1

vr;CB280 D vl;CB280

vl;EY284 D vr;CB280

sE281 D vl;EY284

yE281 D bE281 C sE281:

The local inputs are bE281, which is assumed to be zero, bE242, which is assumed to
be zero, and yE242, which is the measured value of E242.

Over the whole system, each submode has between 1 and 4 modes. This greatly
simplifies the required diagnostic reasoning, since any given mode change will only
affect a minimal number of submodels.

8.5.3 Diagnosability

Given any mode of the system, fault signatures can be derived from any fault that
may occur within that mode through the qualitative fault propagation algorithms.
Signatures for the mode in which all relays are on are shown in Table 8.4. For
space, only the signature for parametric faults increasing in the positive direction is
shown (for the negative direction, the signature signs are flipped). For example, a
bias fault in E265 will produce a deviation in the residual for E265, along with those
for IT240, IT267, and ST516, because the value of E265 is used as a local input in
the submodels for those sensors. A fault in the resistance of AC483, in contrast,
will produce a change only in the residual of IT267, since it appears only in the
submodel for IT267. Note that a * symbol is used to denote an indeterminate effect
(i.e., the sign of the change depends on the system state).

It is important to note here that some ambiguity in the fault isolation results is
expected, i.e., the system is not fully diagnosable. For example, a resistance offset in
DC485 will result in a single change in the residual of IT281. A bias in that sensor
could result in the same signature, along with a bias in E281 and EY281 turning off.
So if the resistance fault occurs, the change in IT281 will be observed, resulting in all
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Table 8.4 Fault signatures for faults occurring in the mode with all relays on

Fault rE240 rE242 rE265 rE281 rESH244A rISH236 rIT240 rIT267 rIT281 rST516 rTE228

EY244off 00 �* 00 00 �0 00 �* 00 00 00 00

EY260off 00 �* �* �* 00 00 �* 00 00 00 00

EY272off 00 00 00 00 00 00 00 �* 00 00 00

EY275off 00 00 00 00 00 00 00 �* 00 0� 00

EY281off 00 00 00 00 00 00 �* 00 �* 00 00

RC

AC483 00 00 00 00 00 00 00 �0 00 00 00

RC

DC485 00 00 00 00 00 00 00 00 �0 00 00

RC

RFAN416 00 00 00 00 00 00 00 �0 00 0� 00

bC

E240 +0 �0 00 00 00 00 00 00 00 00 00

bC

E242 00 +0 �0 �0 00 00 *0 00 00 00 00

bC

E265 00 00 +0 00 00 00 *0 *0 00 0* 00

bC

E281 00 00 00 +0 00 00 00 00 *0 00 00

bC

ESH244A 00 00 00 00 +0 00 00 00 00 00 00

bC

ISH236 00 00 00 00 00 +0 00 00 00 00 00

bC

IT240 00 00 00 00 00 00 +0 00 00 00 00

bC

IT267 00 00 00 00 00 00 *0 +0 00 00 00

bC

IT281 00 00 00 00 00 00 �0 00 +0 00 00

bC

ST516 00 00 00 00 00 00 00 00 00 +0 00

bC

TE228 00 00 00 00 00 00 00 00 00 00 +0

those faults as diagnoses. No further residuals will deviate to further reduce the fault
set. If time limits are set for how long to wait to observe further deviations, then this
would improve the diagnosability and allow this fault to be uniquely isolated [24].

In general, the diagnosability results from using residuals from local submodels
generated from structural model decomposition may not be the same as using those
from a global model, as is proven in [29]. In practice, the diagnosability should be
compared to determine if there is any loss of diagnosability from using structural
model decomposition.

8.5.4 Results

As an example to illustrate the diagnosis process, consider the initial mode 11100
(here, the mode is designated by the sequence of relay states, for the relays in
alphabetical ordering), i.e., EY244, EY260, and EY275 are on, so power is sent
only to the ac load. The fault, EY244 turning off uncommanded, occurs at 120:0 s.
At 121:0 s, a decrease in the residuals for both yE242 and yESH244A is detected
(see Fig. 8.5). Considering the decrease first in yE242, the initial diagnoses are
fbCE240; EY260off ; EY244off ; b�E242g. Considering next the decrease in yESH244A, we
can reduce the diagnoses to EY244off , which is the true fault; only a fault in EY244
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Fig. 8.5 Measured and predicted values for E242 and ESH244A for EY244off

Fig. 8.6 Measured and predicted values for E281 and IT281 for bC

E281

or ESH244A can produce a change in the relay position sensor, so given the previous
information from E242, we can discover the true fault. In this case, no mode changes
occurred near the time of fault detection, so the reasoning is simplified.

As a second example, consider the initial mode 11001, i.e., EY244, EY260, and
EY281 are on, so power is sent only to the dc load. The fault, a positive bias in E281,
occurs at 120:0 s. At 121:0 s, an increase in the residual of yE281 and decrease in the
residual of yIT281 are detected (see Fig. 8.6). Considering first the increase in yE242,
the initial diagnoses are fbCE281; EY260off g. Considering next the decrease in yIT281,
we can reduce the diagnoses to fbCE281g, which is the true fault. A mode change also
occurs at 121:0 s, connecting the fan. This mode change does not change the modes
of the submodels of interest so does not affect the reasoning process or produce new
signatures.

A comprehensive set of experiments were performed in simulation to validate
the approach. The initial system mode, fault, and sequence of mode changes were
all selected randomly. For each experiment, we determined whether the true fault
was found within the final set of diagnoses, and the diagnostic accuracy, computed
as 1=jDj, where D is the final set of diagnoses.

In 129 total experiments, the true fault was found 97:67% of the time. The aver-
age accuracy was 69:49%. Note that 100% accuracy is not expected since the system
is not fully diagnosable in all modes, so in some cases there will be ambiguity based
on qualitative fault signatures only. For the small percentage of the time in which the
true fault was not found, this was due to false positives on some of the fault detectors
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for the different residuals. In most of these cases, the true fault is found initially, but
then eliminated because a false positive results in a signature inconsistent with the
true fault. With additional tuning, the performance could potentially be improved.

Comparing discrete and parametric faults, when a discrete fault was the true fault,
it was found 96:00% of the time, with an average accuracy of 67:67%. When a
parametric fault was the true fault, it was found 98:08% of the time, with an average
accuracy of 69:93%. Thus, performance was about equal for the two different fault
types.

8.6 Conclusions

This chapter described a qualitative fault isolation approach for hybrid systems
diagnosis. They key features are a compositional modeling approach and the use of
structural model decomposition. Structural model decomposition plays a significant
role in reducing the complexity of the hybrid systems diagnosis problem, by
minimizing the local effects of faults to only a subset of residuals, reducing the
number of mode changes to consider, and reducing the effects mode changes will
have on the reasoning process.

The approach was demonstrated on a complex electrical power system, consider-
ing both parametric and discrete faults. Faults were quickly and correctly diagnosed,
with some expected ambiguity due to the use of only qualitative information for
diagnosis. This can be followed by quantitative fault identification to uniquely
isolate the true fault.

Although only single faults are considered here, and all mode changes (except
for faults) are assumed to be observable, the approach can be extended to handle
multiple faults in the presence of unobservable mode changes. Preliminary work
in this area has been described in the literature [1, 5, 19, 30]. Unobservable mode
changes that are not tracked with nominal behavior will result in nonzero residuals,
and thus appear as faults. Our framework can be extended to handle this case simply
by considering fault signatures associated with these mode changes. As such, these
mode changes would be identified.
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