
Chapter 5
Monitoring of Hybrid Dynamic Systems:
Application to Chemical Process

Nelly Olivier-Maget and Gilles Hetreux

5.1 Introduction

In this chapter, a methodology of a fault detection and isolation for chemical
process is presented. This methodology, called SimAEM (Simulation Abnormal
Event Management) is particularly designed for the monitoring of batch and
semi-continuous processes. These processes are the prevalent production mode
for low volume of high added value products. Such processes are composed of
interconnected and shared resources, in which a continuous treatment is carried
out. For this reason, they are generally considered as hybrid systems where discrete
aspects mix with continuous ones. Otherwise, the recipe is more often described
with state events (temperature or composition threshold, etc.) than with fixed
processing times [1]. SimAEM methodology is a model-based approach. Model-
based diagnosis is widely discussed in the literature and many industrial applications
exploit this principle [2]. Most of the methods in this approach are designed in
three stages: residual generation, residual assessment and localization. In our study,
our approach is based on a hybrid dynamic simulator. This simulator provides a
reference model, which is supposed to be correct [3, 26]. The general architecture
of SimAEM monitoring system is shown in Fig. 5.1.

The sequence of the different steps of a failure diagnosis is highlighted.
Moreover, a distinction between the on-line and off-line steps is made. Our approach
is therefore divided into three steps:
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Fig. 5.1 SimAEM architecture

• The first step is the residual generation (in dotted motif in Fig. 5.1). It consists of
the comparison between the predicted model obtained by simulation and the real
system behaviour obtained by an observer. In our case, the extended Kalman filter
is implemented. The aim is to reconstruct the system outputs from measurements.

• The second step (the signature generation) aims to analyse the residuals (in wave
motif in Fig. 5.1). This is the detection step. It determines the presence or absence
of a failure. The “signature” notion is introduced.

• Finally, the last step (in hatched motif in Fig. 5.1) consists of fault diagnosis. This
step exploits the generated signatures in the previous step in order to determine
the fault type. To do this, an inline matching process has been made. This is a
pattern recognition problem. For this purpose, the instantaneous fault signature is
then compared with the theoretical fault signatures by the calculation of distances
in order to identify and localize the fault(s). These theoretical fault signatures are
listed in the incidence table. The latter is obtained by experiment or by the off-
line simulation of a faulty process.

5.2 Residual Generation by the Extended Kalman Filter

The initial step of a model-based diagnosis system generates fault indicators, called
residuals. The residuals contain information on the drift or failure of the monitored
system. The goal is to measure the difference between the system measurements
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and the so-called “theoretical” value obtained by a reference model. The generation
of residual is a critical step in the success of the diagnosis.

5.2.1 State Estimator: Extended Kalman Filter

Numerous works on Hybrid Dynamic Systems revolve around the axes of mod-
elling, stability and controllability [4]. In recent years, more particular efforts have
been made in the literature on observability. The high robustness and real-time
ability of observer is well-known for industrial applications [5]. Although the theory
of state observation has reached a certain degree of maturity in the domains of
continuous and discrete events, the observation of dynamic hybrid systems remain
a challenge.

The observation of state is particularly adapted to the studies of fault detection
and diagnosis. It provides more information to make decision. Thus, the residual
generation by a state estimation consists of rebuilding the state or, more generally,
the process output by using observers, and then using the error estimation as
residual. Clark was one of the first to use this concept [6]. If the problem of design of
observers for linear systems seems well overcome, this is not the case for nonlinear
systems: there is currently no satisfactory global solution.

In this study, extended Kalman filter has been chosen to rebuild the process state.
Indeed, this filter is inexpensive in computation time and gives good results for
moderate nonlinear systems [5, 7, 8, 26]. It should be noted that as soon as the
nonlinearities become too strong or if it is badly initialized, extended Kalman filter
is not efficient. In our work, this filter is based on the dynamic simulation of hybrid
dynamic systems. PrODHyS simulator [9] provides models, which characterize the
process behaviour, especially during the transient states. Thanks to the use of this
filter, the monitoring is robust with noises and process uncertainties. It avoids thus
false alarms.

The state reconstruction by the extended Kalman filter consists of making the
estimation error independent of the uncertainties of the system. A description of
this filter and of its implementation can be found in [9, 10].

5.2.2 Residual Generation

Next, residuals r(t) are generated. They result from the comparison between the
state vector reconstructed by the observer representing the estimated state bX.t/, and
the state vector X(t) obtained with the reference model:

r.t/ D bX.t/ � X.t/ (5.1)
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Fig. 5.2 Absolute residual

This residual is called “absolute” residual. Let us illustrate this concept through
a simple example (Fig. 5.2). Consider a reactor R1 heated by an energy source †1.

In order to determine the variables representative of the abnormal behaviour, it is
necessary to compare the residual of the temperature T and the output flowrate dout.
However, although similar in value, these residuals are not dimensionless. To be
able to compare them, they must be dimensionless: rT (t) D 1K and rdout.t/ D 1L=s.
For this, a relative residual is defined:

rr.t/ D
bX.t/ � X.t/

X.t/
(5.2)

Then, we obtain the following relative residuals.

rr
T.t/ D

bT.t/ � T.t/

T.t/
D 276:15 � 275:15

275:15
D 0:36%

rr
dout

.t/ D
bdout.t/ � dout.t/

dout.t/
D 2:6 � 1:6

1:6
D 62:5%

It is possible to conclude the output flowrate is a variable representative of the
abnormal state, while the temperature is under normal conditions.
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5.3 Residual Estimation: Signature Generation

Real-time operation is an important factor in fault detection. Indeed, an early
detection of a fault is an asset to avoid its consequences that can be disastrous for a
chemical process [2]. In addition, past information can help understand the current
behaviour. Then, the observations are collected, according to their availability.
Intuitively, we suspect that when the time horizon is large t � 1, the data of the
initial moment will have no influence on the residuals at the date t. So, it is not
necessary to collect all the data. An observation window of size T is then defined.
The system is observed during the period T. This window is representative of the
system state. Its size is a parameter chosen according to system dynamic. Figure
5.3 illustrates the concept of this sliding window.Next, the detection consists of
evaluating an instantaneous signature from the residual generation in the first step
(Fig. 5.1). We denote this instantaneous signature S. The instantaneous signature (S)
is a positive vector of dimension n (the size of the state vector). More specifically,
each component of this vector is a positive real which is the result of a threshold
test. An element of the signature is thus defined as follows:

Si.t/ D
�

0 if jri.t/j � "i.t/
˛i > 0 if jri.t/j > "i.t/

with i 2 Œ1I n� (5.3)

where ˛i is the result of the threshold violation test; ri(t) is the generated residual in
the first part of the diagnosis, "i(t) is the adaptive detection threshold.

S is an instantaneous default signature. A nonzero component of this vector
assumes the occurrence of a fault (Si(t) D ˛i > 0 with i 2 [1; n]). A null vector
means a priori a normal behaviour of the monitored system (Si(t) D 0 for i D 1 : : : n).
This signature vector could be a binary vector: if the residual exceeds the threshold
then the signature is equal to 1. Nevertheless, by defining the signature vector
in this way, there is a loss of information on the magnitude of the failure: how

Fig. 5.3 Sliding window
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much does it exceed? Is this excess not negligible? By not defining the signature
vector as a Boolean, false alarm is thus avoided and the cases of a deviation and
of a failure can be differentiated. Moreover, it is hard to detect drift-like fault in
early stage. A survey of a drift detection and handling can be found in Sayed-
Mouchaweh [11]. In this research work, with the use of a non-binary vector, we
have all the necessary information to visualize the effect of a drift on the state vector.
Furthermore, thanks to the use of the Kalman filter, it is possible to differentiate drift
and model/measurement noises [9].

The instantaneous fault signature S(t) at t is thus a vector function of the residual
r(t) and of the detection threshold "(t). Each component Si(t) is defined by the
following equation:

Si.t/ D Max Œ.jri.t/j � "i.t// I 0� with i 2 Œ1I n� (5.4)

In the previous point, the interest of relative residual is underlined. In the same way,
an instantaneous relative fault is defined and it is a function of the relative residual
rr(t), of the detection threshold "(t) and X the state vector:

Sr
i .t/ D Max

��ˇ

ˇrr
i .t/

ˇ

ˇ � "0
i.t/

� I 0
�

with i 2 Œ1I n� (5.5)

with rr
i .t/ D bXi.t/�Xi.t/

Xi.t/
and "0

i.t/ D "i.t/
Xi.t/

.
Finally, it is interesting to normalize these signatures in order to see the

predominant variations. Thus, the normalized relative fault signature is defined by
the following equation:

SrN
i .t/ D

r
i .t/

n
P

kD1

r

k

.t/
D Max

��ˇ

ˇrr
i .t/

ˇ

ˇ � "0
i.t/

� I 0
�

n
P

kD1

Max
��ˇ

ˇrr
k.t/

ˇ

ˇ � "0
k.t/

� I 0
�

with i 2 Œ1I n� (5.6)

Therefore, the sum of all the components of the normalized relative fault
signature is 1. This translates the following heuristic: if a residual rr

i is sensitive
to a fault, then the others rr

k (with k ¤ i) are not.

5.4 Determination of the Incidence Matrix

Numerous works deal with the distance to the fault signatures or with the structural
properties of the incidence matrix in order to have a robustness fault isolation
[12–14]. A fault signature is characteristic of a particular residual and a particular
fault. This signature is commonly obtained by experiment (or in our case by
simulation). The approach consists of evaluating a signature by comparison between
the reference model and the experiment or the simulation of the faulty process
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(Fig. 5.1). More specifically, each component of this vector is the result of a
threshold test (see Eq. (5.6)).

For our approach, we simulate same fault at different times. We generate the
characteristic signature of this fault for the p simulations of the faulty process. The
goal is then to have an only representation of this fault. Two cases are envisaged:

• The signatures characterize the same state vector. That means that the p
simulations have the same importance: their occurrences are equally likely. The
characteristic signature corresponds to the centre of gravity of the p signatures
obtained by simulation. For complex systems, it is interesting to analyse the data
and to determine their main components. Then, an approximate representation of
the p simulations is a subspace of small size.

• The signatures don’t characterize the same state vector (different number of state
variables). It is then necessary to make a canonical analysis. Consider two sets
of simulation characterizing the same fault. The first one is represented by the
state vector 1 and the second one by the state vector 2. This analysis consists
of examining the links existing between these sets. It is based on a Principal
Component Analysis decomposition. This theory is described in [15]. Note that
if both spaces are confounded, this means that only one of both sets is necessary,
since they have the same power of description. Conversely, if these both sets are
orthogonal, both sets do not represent the same properties. It is then necessary to
consider two different fault signatures characterizing the same fault.

Let’s illustrate this initial learning phase. Consider a system characterized by the
state vector [x, y, z]. A set of simulations is performed by introducing the same fault
at different occurrence dates. Let’s represent the results on a graph (Fig. 5.4). We
thus obtain a pattern characterizing a fault. However, the fault signature may differ
according to system state. That is why we can have different theoretical signatures
of a fault for different state or we can have an only one (Fig. 5.4).

Once the global incidence matrix is obtained, it is important to rebuild an
incidence matrix adapted to the system state (Fig. 5.1). For this, the incidence matrix
is reduced: only the present residuals are used in the instantaneous fault signature.
Finally, each theoretical fault signature is normalized. Let’s do this on a simple
example (Fig. 5.5).

5.5 Fault Isolation

The isolation system is represented in Fig. 5.1. It consists of establishing the
diagnosis from measured information of the process (instantaneous fault signature)
and from information obtained by experiments or by simulation (theoretical fault
signatures).
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5.5.1 Principle

The columns of the incidence matrix T represent the fault signatures. The notation
adopted for the columns of the incidence matrix is the following: T•,j (j D 1 : : : m).
T•,j corresponds to the signature associated with the jth fault fj. Similarly, each line of
the incidence matrix, Ti,•, represents a signature of the ith residual. Figure 5.6 shows
an example of theoretical fault signatures and residual signatures of an incidence
matrix.

Our approach is similar to a pattern recognition problem. The form to be
classified is the instantaneous normalized relative fault signature SrN, generated in
the previous step (Fig. 5.1). It is then necessary to assign this pattern to the existent
classes. In our case, each class is represented by a theoretical fault signature T•,j

(j D 1 : : : m).
In the case of fault detection and diagnosis, the instantaneous normalized relative

fault signature SrN is therefore compared with the m theoretical fault signatures T•,j

(j D 1 : : : m). The signature SrN transcribes the symptoms of the physical system.
The vector T•,j represents the signature of the jth fault. The fineness of the correlation
between these both signatures is directly proportional to the occurrence probability
of the fault fj (j D 1 : : : m). So, if it exists j 2 [1; m] such as SrN Š T•, j, then the
diagnosis concludes at the occurrence of the fault fj.

Fig. 5.4 Example of an incidence matrix
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Fig. 5.5 Example of the
reduction of an incidence
matrix

Fig. 5.6 Fault signature and residual signature

In order to compare an instantaneous signature SrN(t) and a particular fault
signature T•,j, a similarity function or a distance can be used. In our case, the
classification is made thanks to a distance in the signature space.

Definition of a Distance Let S be the space of the instantaneous normalized relative
signatures and T the bounded space of the theoretical fault signatures (card (T) D m,
m being the number of considered faults). A distance SrN(t) defines the correlation
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symptoms—faults. The distance between an instantaneous signature and a fault
signature T•,j is defined by the following expression:

D W S � T ! Œ0I 1�

�

SrN.t/I T�;j
�

˛Dj.t/ D D
�

SrN.t/I T�;j
�

The distance D verifies these following properties:
For X 2 S, Y 2 T,

1. D(X, Y) D 0 ) X D Y
2. D(X, Y) D D(Y, X)
3. For Z 2 S, D(X, Z) � D(X, Y) C D(Y, Z)

Then we define a fault indicator:

Definition of a Fault Indicator A fault indicator Ij 2 [0; 1] is specific to the fault
fj with j D 1 : : : m. It represents the occurrence probability of the fault. It is defined
by the following relation:

Ij.t/ D 1 � Dj.t/ D 1 � D
�

SrN.t/; T�;j
�

(5.7)

According to the property 1 of a distance, Ij(t) D 0 means that the fault fj is not
occurring. On the contrary, Ij(t) D 1 reflects the fact that the fault fj is detected and
localized.

In general, we will not have these strict equalities, but rather the relation of order:
0 < Ij(t) < 1.
This relationship triggers an alarm on the fault fj. If the fault indicator Ij is close

to zero, the occurrence of the fault is not proved. On the other hand, if Ij is close to
one, then the occurrence of the fault fj is demonstrated.

5.5.2 Distances

Generally, the distance used is Hamming distance [16, 17]. It is a mathematical
distance. It compares two binary vectors B1 and B2 of the same size. This distance is
equal to the sum of the absolute values of the differences, component by component
of the two vectors B1 and B2:

DH D
n

X

iD1

jB1i � B2ij (5.8)

Figure 5.7 illustrates the calculation of the Hamming distance between two
binary vectors B1 and B2. In this example, the Hamming distance is equal to 1.
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Fig. 5.7 Example of a calculation of Hamming distance

That means that only one component is different between both vectors.In order to
standardize this distance for all signatures, the relative Hamming distance has been
defined [18]. This distance between two binary vectors B1 and B2 is defined by the
following expression [19]:

DHr.t/ D

n
P

iD1

jB1i � B2ij
n

(5.9)

In the previous section, we underline the interest to work in the continuous space
[0;1]. Equation (5.8) can be generalized to non-binary vectors: in this case the
distance is called Manhattan distance. In the same way, we generalize Eq. (5.9)
to the non-binary case and thus define a new distance called: relative Manhattan
distance [1, 9, 10]. The demonstration of this definition can be found in [10].

Definition of Relative Manhattan Distance Let S be the space of the instanta-
neous normalized relative signatures and T the bounded space of the theoretical fault
signatures (card (T) D m, m being the number of considered faults). The relative
Manhattan distance between an instantaneous signature SrN(t) and a particular fault
signature T•,j (both of size n) is defined by the following relation:

DMr
j .t/ D

n
P

iD1

ˇ

ˇSrN
i .t/ � Tij

ˇ

ˇ

n
(5.10)

One of the major problems of FDI systems is their ability to detect the occurrence
of multiple faults and to localize them. Indeed, the theoretical signatures character-
ize a particular fault. However, the occurrence of multiple fault is represented by
a new fault signature [20]. This signature is obtained by combining the theoretical
fault signatures [19]. This is illustrated in Fig. 5.8.

Taking into account all the linear combinations of the theoretical signatures is
not a satisfactory solution because of the combinatory explosion. It is therefore
necessary to use a method which avoids the combination tests. Thus, Theillol et
al. [18] have defined a modified Hamming indicator, which only takes into account
the nonzero elements of the theoretical fault signature in the comparison:
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Fig. 5.8 Signature of
multiple faults

DHa
j .t/ D

n
P

iD1

ˇ

ˇSrN
i .t/ � Tij

ˇ

ˇ � Tij

n0 (5.11)

with n0 the number of nonzero elements of the theoretical fault signature T•,j.We
generalize this distance to the non-binary case by defining the improved Manhattan
distance DMa [10]:

DMa
j .t/ D

n
P

iD1

ˇ

ˇSrN
i .t/ � m0 � Tij � n0ˇ

ˇ � Tij

n0 (5.12)

with n0 the number of nonzero elements of the theoretical fault signature T•,j., m0 the
number of nonzero elements of the instantaneous fault signature SrN.

Note
Improved Hamming and Manhattan distances are not mathematical distances [10].
Nevertheless, these indicators are called “distance”, since these both indicators
allow to make a comparison between the instantaneous signature SrN and a particular
fault signature T•,j in terms of similitude of abnormal symptoms.

Let’s apply the relative and improved Manhattan signatures to a concrete
example. Consider the case where the faults f1 and f2 take place simultaneously.
The instantaneous signature vector and the incidence matrix are shown in Fig. 5.9.
These distances (Eqs. (5.10) and (5.12)) and the corresponding fault indicators (Eq.
(5.7)) are calculated.

In this example, the calculation of the relative Manhattan fault indicators does
not allow us to conclude. The instantaneous fault signature does not correspond to
any theoretical fault signatures. The improved Manhattan distance is based on the
idea of finding in the instantaneous fault signature only the significant symptoms
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Fig. 5.9 Example of Manhattan distances and corresponding fault indicators

of faults (i.e. the nonzero elements). With the improved Manhattan indicator, both
faults f1 and f2 are detected and isolated.

5.5.3 Decision Making

The generated fault indicators are then transmitted to the decision step (Fig. 5.1).
This step consists of the discrimination of the most probable fault. Since both
distances are defined in the space interval [0;1], the fault indicators are defined as the
complement to 1 of these distances. An indicator can be viewed as the probability
of the occurrence of a particular fault. These indicators follow a reduced centred
normal law @(�, � ). This distribution is shown in Fig. 5.10.This is confirmed by
the well-known statistical test of Shapiro-Wilk [21, 27]. This test is used to verify
normality. According to the test value, we can accept or reject the hypothesis that the
corresponding distribution is normal. The Shapiro-Wilk W test is the most widely
used normality test because it is a powerful test compared to many alternative tests
[15].

The generated fault indicators are exploited to take a diagnosis of the system. To
make this decision, we formulated two postulates:
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Fig. 5.10 Reduced centred
normal law @(�, �)

• A minimum value of the indicator, for which the fault can be considered, is
defined. This threshold is equal to 0.68 and corresponds to the probability at
the standard deviation. This allows us to define a limit threshold corresponding
to the probability at the standard deviation, i.e. less than 0.68. Thus, the presence
of a fault is not valid if its indicator is less than 0.68.

• Then, in order to limit the choice of possible faults, the following hypothesis is
put forward: the number of faults, which can simultaneously take place, is limited
to three.

5.6 Monitoring of a Complex Chemical Process

In this example, the case study deals with a variant of a chemical process described
in [22]. The process is described in Fig. 5.11. The purpose of this installation is
to produce and package a product P whose molar purity must be equal to 98%.
The reaction considered is an endothermic balanced reaction, whose reaction is the
following:

R1 C R2 $ P (5.13)

In order to maximize the conversion rate of the reaction without penalizing the
cycle time of the process, the reaction is stopped as soon as the molar composition
of product P reaches the value of 0.8. Moreover, the reaction (R) speed increases
with temperature T. The selected temperature for the reaction must guarantee a
rapid reaction and maintain the components in the liquid state. A temperature of
383 K satisfies these two constraints. Discrete controller commands the valves (open
valve/close valve).
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Fig. 5.11 Process flowsheet [22]

The production of P according to the reaction (5.13) in the reactor BR1 involves
the following steps:

• Introduction in the reactor with n/2 moles of product R1,
• Preheating to 383 K,
• Introduction of n/2 moles of product R2 in the reactor with a temperature control

with the set point 383 K,
• Reaction until the product composition P reaches the value of 0.8.

5.6.1 Simulation of the Reference Model

The models used in this simulation take into account global and partial material
balances, energy balance, liquid/vapor equilibria, reaction rates, and hydraulic
phenomena. Indeed, except the pipes with a pump, the transfers between tanks are
carried out by gravity. This implies that the outlet flows of the tanks are a function
of the hydraulic pressure and of the liquid level in the source tanks. The transfer
times therefore depend on the time evolution of the system state. The simulation
is made with the hybrid dynamic simulator PrODHyS. The reader can find more
information about PrODHyS in [23]. Figure 5.12 illustrates the time evolution of
the composition in the reactor.
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Fig. 5.12 Time evolution of the composition in the reactor

5.6.2 Detection

The proposed approach is illustrated using a chemical process. The fault studied
concerns a degradation: the flow rate in valve V2 is degraded. That means that valve
V2 is blocked off partially. It is very interesting to be able to detect and diagnosis
a drift in order to avoid the failure [24]. We can find in literature numerous works
dealing with this problem [11] .

For this case study, 17 signatures related to a physical quantity are considered:

• The signature s1 represents the flow rate in the valve V1,
• The signature s2 represents the flow rate in the valve V2,
• The signature s3 represents the R1 composition in the tank ST1,
• The signature s4 represents the R2 composition in the tank ST1,
• The signature s5 represents the P composition in the tank ST1,
• The signature s6 represents the liquid retention in the tank ST1,
• The signature s7 represents the R1 composition in the tank ST2,
• The signature s8 represents the R2 composition in the tank ST2,
• The signature s9 represents the P composition in the tank ST2,
• The signature s10 represents the liquid retention in the tank ST2,
• The signature s11 represents the liquid level in the tank BR1,
• The signature s12 represents the R1 composition in the tank BR1,
• The signature s13 represents the R2 composition in the tank BR1,
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Fig. 5.13 Detection of a drift

• The signature s14 represents the P composition in the tank BR1,
• The signature s15 represents the temperature in the tank BR1,
• The signature s16 represents the liquid retention in the tank ST1,
• And the signature s17 represents the heat provided by the power supply of the

tank BR1.

Figure 5.13 illustrates the detection step. The residual of the liquid retention
for the reactor BR1 is presented. A statistical analysis estimates the prediction
errors of the Kalman filter and determines a limit threshold of 150 moles. This
threshold corresponds, according to the normal law, to a probability of 98%: there
is a probability of 98% that the behaviour is normal in this interval. The obtained
residual remains in this confidence interval. That means that this threshold (98%)
is not adapted to detect degradation. The threshold must be changed for that and
must be lower than this one. A compromise is made to avoid false alarms. For this
goal, the same postulate as the fault indicators is formulated: the threshold is lower
to a probability of 68% (Fig. 5.10): the new threshold is then obtained at 50 moles.
From t D 2400 s, the residual is out of the normal operating area. The diagnosis is
launched at t D 3000 s.

The residual vector is then evaluated and the corresponding instantaneous fault
signature is obtained:
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5.6.3 Diagnosis

The considered faults in this example are chosen according to a risk assessment
study and lessons to learn from accident:

• Fault 1 corresponds to a fault on the power supply of the reactor BR1: the latter
supplies a degraded amount of energy.

• Similarly, fault 2 represents a fault in the cooling system of the reactor BR1
which provides a degraded amount of energy.

• Fault 3 is a composition fault on the tank ST1, which normally contains the pure
component R1. Here, traces of component R2 are found in this tank.

• Fault 4 characterizes the same fault but this time there are traces of the
constituent P.

• The same type of fault is also considered on the tank ST2 which normally
contains the pure component R2. Thus, fault 5 represents the fact that component
R1 exists in tank ST1.

• Fault 6 is the same fault but with component P.
• Fault 7 represents a fault in the reactor power supply which is not at the right

temperature.
• Next, actuator faults are considered with the fault 8 corresponding to the blocking

of the valve V1 in the open position,
• And with the fault 9 corresponding to a degraded state of the valve V1: the flow

rate of this valve is degraded.
• The fault 10 is identical to the fault 8 but for the valve V2.
• Similarly, fault 11 is the same fault as fault 9 but applies to valve V2.

The incidence matrix contains all the theoretical fault signatures. An off-line
Monte Carlo simulation provides the theoretical signatures. It consists of simulating
a fault with different occurrence date. The parameter of the faults change for each
simulation and the noises are simulated. For example, consider the fault 9. The flow
rate of valve V1 is degraded. The valve is blocked off partially due to fooling. The
value of the rate of fooling changes. This matrix is rebuilt on-line to match the state
vector. This stage has been developed in point 4.

The instantaneous fault signature (Table 5.1) is compared with the incidence
matrix by calculating the relative fault indicators for the relative Manhattan
distances (Eq. (5.10)) and the improved one (Eq. (5.12)). The obtained indicators
are presented in Table 5.2.

Table 5.1 Instantaneous fault signature

s1 0.21775356 s7 0 s13 0.16505573
s2 0 s8 0 s14 0.16505354
s3 0 s9 0 s15 0
s4 0 s10 0 s16 0.21909804
s5 0 s11 0.21952267 s17 0
s6 0.01182547 s12 0
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Table 5.2 Relative and improved Manhattan indicators

Relative Manhattan indicator Improved Manhattan indicator

Fault 1 0.92118933 0.84052179
Fault 2 0.92118933 0.86669003
Fault 3 0.90196728 0.15177246
Fault 4 0.90277453 0.19006373
Fault 5 0.88238145 0.0003779
Fault 6 0.88236707 0.00018733
Fault 7 0.92118933 0.86669003
Fault 8 0.92335219 0.67944269
Fault 9 0.98670897 0.95493963
Fault 10 0.92383701 0.84716655
Fault 11 0.99785443 0.99547681

The values 0.68 of the fault indicators do not allow us to avoid faults since all the
values are greater than 0.68. On the other hand, the improved fault indicator makes
it possible to eliminate faults 3, 5, 6 and 8. We therefore have 6 possible faults.
We then use the second hypothesis that we formulated (see point 5.3): there can be
no more than three simultaneous faults. Thus, only the indicators with the highest
values are kept:

• Fault 11 with a rate of more than 99%,
• Fault 9 with a 95% rate,
• And faults 2 and 7 which have indicator values equal to 98.7%.

By combining the results of both indicators, it is found that fault 11 is in both
cases with a rate of more than 99%, and in particular the fault which provides the
maximum indicators. We can therefore conclude on the most probable cause of the
failure: fault 11, which represents the degraded state of valve V2 (the flow rate is
lower than the normal one).

The value of the residual then reveals the magnitude of the deviation, i.e. about
0.1. A parametric estimate here would be profitable in order to more precisely
determine the opening coefficient of the valve. However, in view of the results, the
system is in degraded mode. It may be considered to leave it in this state. In this case,
it is interesting to take this degradation into account in the reference model. Finally,
we can conclude that the SimAEM methodology is able to detect and diagnose
degradation.

5.7 Conclusion

This chapter presents a model-based approach and this methodology is illustrated
with the simulation of a complex chemical process. The feasibility of using the
simulation as a tool for fault detection is described. The method developed in
this study relies on the hybrid dynamic simulator (PrODHyS). The fault detection
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and diagnosis approach, developed here, is a general method for the detection and
isolation of occurrence of a fault. Besides, this approach allows the detection of
numerous types of fault and has the ability to detect and isolate simultaneous
faults [1]. The works in progress aim at defining a recovery solution following
the diagnosis of fault. For this, the results of signatures will be exploited in order
to generate qualitative information. As shown by the example, it is possible to
distinguish a simple degradation from a failure. Finally, dynamic simulation of
faulty processes is a real asset for safety studies. It makes it possible to analysis the
drifts to evaluate their dynamic and their magnitude and thus to define the required
safety barriers. Moreover, the simulation results provide predictive information to
validate the nature and the sizing of barriers.
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