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Preface

Online fault diagnosis is crucial to ensure safe operation of complex dynamic
systems in spite of faults affecting the system behaviors. Consequences of the
occurrence of faults can be severe and result in human casualties, environmentally
harmful emissions, high repair costs, and economic losses caused by unexpected
stops in production lines. Therefore, early detection and isolation of faults is the key
to maintaining system performance, ensuring system safety, and increasing system
life. The majority of real systems are hybrid dynamic systems (HDS). In HDS,
the dynamical behaviors evolve continuously with time according to the discrete
mode (configuration) in which the system is. Consequently, model-based diagnostic
approaches must take into account both discrete and continuous dynamics as well
as the interactions between them in order to perform correct fault diagnosis. In
addition, in HDS, two types of faults may occur: parametric and discrete faults.
Parametric faults occur as abnormal changes in the value of parameters describing
the continuous dynamics, while discrete faults are defined as unexpected, abnormal,
changes in the system discrete mode.

A key challenge of fault diagnosis of HDS is related to the state estimation
and tracking because of the cohabitation of continuous and discrete dynamics.
Therefore, the fault diagnosis requires distinguishing between healthy and faulty
states during mode changes for all hybrid trajectories generated by the system.
However, tracking all the possible trajectories of a hybrid system is computationally
intractable, in particular in the presence of faults. This is due to multiple reasons.
Firstly, faults cause unknown changes in the system model. Thus, it becomes
challenging to differentiate the change in behavior due to a fault from change in
behavior caused by a normal mode transition. Secondly, pre-enumerating all the
operation modes of a system is computationally intractable, in particular in the
presence of faults. Indeed computing the reachable set of states of HDS is an
undecidable problem due to the infinite state space of continuous systems.

Another challenge is related to the robustness of fault diagnosis and its time
processing to issue the decision (fault detection and isolation). Indeed, the diagnosis
engine must be able to manage out of order alarms and handle uncertainties
and issue the diagnosis decision fast enough in order to give ample time to
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vi Preface

human operators of supervision to implement corrective and maintenance actions.
Finally, the diagnosis engine (inference) must scale well to large systems with
multiple discrete modes. Indeed, a global model representing both the discrete and
continuous dynamics can be too huge to be physically constructed for systems with
large number of discrete modes.

This edited Springer book presents recent and advanced approaches and tech-
niques that address the complex problem of fault diagnosis of hybrid dynamic
and complex systems using different model-based and data-driven approaches in
different application domains (inductor motors, chemical process formed by tanks,
reactors and valves, ignition engine, sewer networks, mobile robots, planetary
rover prototype etc.). These approaches cover the different aspects of performing
single/multiple online/offline parametric/discrete abrupt/tear and wear fault diagno-
sis in incremental/nonincremental manner, using different modeling tools (hybrid
automata, hybrid Petri nets, hybrid bond graphs, extended Kalman filter etc.) for
different classes of hybrid dynamic and complex systems.

Finally, the editor is very grateful to all authors and reviewers for their very
valuable contribution allowing setting another corner stone in the research and
publication history of fault diagnosis of hybrid dynamic and complex systems. I
would like also to acknowledge Mrs. Mary E. James for establishing the contract
with Springer and supporting the editor in any organizational aspects. I hope that this
volume will be a useful basis for further fruitful investigations and fresh ideas for
researcher and engineers as well as a motivation and inspiration for newcomers to
address the problems related to this very important and promising field of research.

Douai, France Moamar Sayed-Mouchaweh
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Chapter 1
Prologue

Moamar Sayed-Mouchaweh

1.1 Hybrid Dynamic Systems: Definition, Classes,
and Modeling Tools

Most of the real systems, e.g., vehicles, planes, power electronic devices, manu-
facturing systems, are hybrid dynamic systems (HDS) [1] in which the discrete
and continuous dynamics cohabit. The discrete dynamics is described by discrete
state variables while the continuous dynamics is described by continuous state
variables. HDS exhibit different continuous dynamic behavior depending on the
current operation mode q as follows:

PX D A.q/ X C B.q/ u

where X is the state vector and u is the input vector. In the case of linear systems, A(q)

and B(q) are constant matrices of appropriate dimensions.
There are different classes of HDS, e.g., autonomous switching systems [2],

discretely controlled switching systems [1], pricewise affine systems [3], discretely
controlled jumping systems [4]. Many complex systems are embedded in the sense
that they consist of a physical plant with a discrete controller. Therefore, the system
has several discrete changes between different configuration modes through the
actions of the controller exercised on the system plant (e.g., actuators). This kind
of HDS is called discretely controlled continuous or switching systems (DCCS) [4].
Piecewise affine systems [3] are another important class of HDS where complex
nonlinearities are substituted by a sequence of simpler piecewise linear behaviors.
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2 M. Sayed-Mouchaweh

Fig. 1.1 Three-cell power converter as discretely controlled continuous system (DCCS) where
capacitors C1 and C2 represent the continuous components (Cc) and switches S1, S2, and S3 the
discrete components (Dc)

The three-cellular power converters [5], depicted in Fig. 1.1, present an example
of DCCS. The continuous dynamics of the system is described by state vector
X D [Vc1 Vc2 I]T , where Vc1 and Vc2 represent, respectively, the floating voltage
of capacitors C1 and C2 and I represents the load current flowing from source E
towards the load (R, L) through three elementary switching cells Sj, j 2 f1, 2, 3g.
The latter represent the system discrete dynamics. Each discrete switch Sj has two
discrete states: Sj opened or Sj closed. The control of this system has two main tasks:
(1) balancing the voltages between the switches and (2) regulating the load current to
a desired value. To accomplish that, the controller changes the switches’ states from
opened to closed or from closed to opened by applying discrete commands “CSj”
or “OSj” to each discrete switch Sj, j 2 f1, 2, 3g (see Fig. 1.1) where CSj refers to
“close switch Sj” and OSj to “open switch Sj.” Thus, the considered example is a
DCCS.

There are three major modeling tools widely used in the literature to model
HDS. These tools are hybrid Petri nets [6], hybrid bond graphs [7], and hybrid
automata [8].

Hybrid Petri nets (HPN) model HDS by combining discrete and continuous parts.
HPN is formally defined by the tuple:

HPN D fP;T; h;Pre;Postg

where P D Pd [ Pc is a finite, not empty, set of places partitioned into a set
of discrete places Pd, represented as circles, and a set of continuous places Pc,
represented as double circles. T D Td [ Tc is a finite, not empty, set of discrete
transitions Td and a set of continuous transitions Tc represented as double boxes.
h : P \ T ! fD, Cg, called “hybrid function,” indicates for every node whether it is
a discrete node (D) or a continuous node (C). Pre : PcxT ! R

C or Pre : PdxT ! N
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is a function that defines an arc from a place to a transition. Post : PixTj ! R
C or

Post : PdxT ! N is a function that defines an arc from a transition to a place.
Hybrid bond graph is a graphical description of physical dynamic systems with

discontinuities. The latter represent the transitions between discrete modes. Similar
to a regular bond graph, it is an energy-based technique. It is directed graphs
defined by a set of summits and a set of edges. Summits represent components.
The latter are: (1) passive components which transform energy into potential
energy (C-components), inertia energy (L-components), and dissipated energy (T-
components), (2) active components that can be source of effort or source pf flow.
The edges, called bonds (drawn as half arrows), represent ideal energy connections
between the components. The components interconnected by the edges construct the
model of the global system. This model is represented by 1 junction for components
having a common flow, 0 junction for common effort and transformers and gyrators
to connect different kinds of energy. In order to take into account the information
during the transitions between discrete modes, hybrid bond graph is extended by
adding controlled junctions (CJs). The latter allow considering the local changes in
individual component modes due to discrete transitions. The CJs may be switched
ON (activated) or OFF (deactivated). An activated CJ behaves like a conventional
bond graph junction. Deactivated CJs turn inactive the entire incident junction and
hence do not influence any part of the system.

Hybrid automata are a mathematical model for HDS, which combines, in a single
formalism, transitions for capturing discrete change with differential equations for
capturing continuous dynamics. A hybrid automaton is a finite state machine with
a finite set of continuous variables whose values are described by a set of ordinary
differential equations. A hybrid automaton is defined by the tuple:

G D .Q; †;X;flux; Init; ı/

where: Q is the set of states, † is the set of discrete events, X is a finite
set of continuous variables describing the continuous dynamics of the system,
flux : Q � X ! R

n is a function characterizing the continuous dynamics of X in
each state q of Q, Init D (q 2 Q, X(q), flux(q)) is the set of initial conditions and
ı : Q �†!Q is the state transition function. A transition ı(q, e)D qC corresponds
to a change from state q to state qC after the occurrence of discrete event e 2 †.

1.2 Fault Diagnosis of Hybrid Dynamic Systems: Problem
Formulation, Methods, and Challenges

A fault can be defined as a non-permitted deviation of at least one characteristic
property of a system or one of its components from its normal or intended
behavior. Fault diagnosis is the operation of detecting faults and determining
possible candidates that explain their occurrence. Online fault diagnosis is crucial
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to ensure safe operation of complex dynamic systems in spite of faults affecting
the system behaviors. Consequences of the occurrence of faults can be severe and
result in human casualties, environmentally harmful emissions, high repair costs,
and economical losses caused by unexpected stops in production lines. Therefore,
early detection and isolation of faults is the key to maintaining system performance,
ensuring system safety, and increasing system life.

Faults may manifest in different parts of the system, namely, the actuators (loss
of engine power, leakage in a cylinder, etc.), the system (e.g., leakage in the tank),
the sensors (e.g., reduction of the displayed value relative to the true value, or the
presence of a skew or increased noise preventing proper reading), and the controller
(i.e., the controller does not respond properly to its inputs sensor reading). Faults can
be abrupt (e.g., the failed-on or failed-off of the pump and the stuck opened or stuck
closed of the valve), intermittent or gradual (degradation of a component). Faults
also may occur in a single or a multiple scenario. In the former, one fault candidate
explains the observations (is responsible for the fault behavior). In the latter, several
fault candidates are responsible for the fault behavior.

In HDS, faults can occur as a change in the nominal values of parameters
characterizing the continuous dynamics, and are called parametric faults. Faults
can also occur in the form of abnormal or unpredicted mode-changing behavior
and are called discrete faults. Therefore, two types of faults should be considered
for HDS depending on the dynamics that is affected by faults (parametric or
discrete). Discrete faults are related to faults in actuators and usually exhibit great
discontinuities in system behavior, whilst parametric faults are related to tear
and wear and introduce faults with much slower dynamics. For parametric faults,
after the fault detection and isolation (determining the fault candidate), a fault
identification phase is required in order to estimate the amplitude (e.g., the section
of leakage of a tank) of the fault, its time of occurrence, its importance, etc.

For the example of three-cellular converters, eight faults can be considered for
the diagnosis [4] as it is depicted in Fig. 1.2. Parametric faults (abnormal deviation
of the nominal value of capacitors) are principally due to the effect of aging or
pollution. The discrete faults (switch stuck-on or stuck-off) are more frequent and
their consequences are more destructive. For instance, in open-circuit (stuck-off)

Fig. 1.2 Faults for the diagnosis of three-cell converters
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failure, the system operates in degraded performance. However, unstable load may
lead to further damage on the system. Therefore, the fault diagnosis of these faults
is necessary to ensure the system safety and quality.

The fault diagnosis task [9, 10] is generally performed by reasoning over
differences between desired or expected behavior, defined by a model, and observed
behavior provided by sensors. This task can be performed offline or online. Offline
diagnosis assumes that the system is not operating in normal conditions but it is in a
test bed, i.e., ready to be tested for possible prior failures. The test is based on inputs,
e.g. commands, and outputs, e.g. sensors readings, in order to observe a difference
between the resulting signals with the ones obtained in normal conditions. In online
diagnosis, the system is assumed to be operational and the diagnostic module is
designed in order to continuously monitor the system behavior, isolate and identify
failures. Within these methods, we can distinguish between active diagnosis that
uses both inputs and outputs, and passive diagnosis that uses only system outputs.
The diagnosis can also be non-incremental (i.e., the diagnosis inference engine
is built offline) or incremental (the diagnosis inference engine is built online in
response to the observation).

There are numerous methods in the literature that are used to perform fault
diagnosis in HDS. They can be divided into internal, or model-based, and external,
or data-driven, methods. The internal methods (see Fig. 1.3) use a mathematical
or/and structural model to represent the relationships between measurable variables
by exploiting the physical knowledge or/and experimental data about the system
dynamics. They can be categorized into residual-based and set-membership [11]
approaches. In residual-based approaches, the response of the mathematical model
is compared to the observed values of variables in order to generate indicators
used as a basis for the fault diagnosis. Generally, the model is used to estimate
the system state, its output, or its parameters. The difference between the system
and the model responses is monitored on the basis of residual generation. Then, the

Inputs
HDS

Measured outputs

Model for parameter or
state/output estimation 

Estimated
Parameters/outputs

Nominal
parameters/
Measured
outputs

Residuals

Disturbances Faults

+- Residual
evaluation

Fault
analysis

Fault
detection

Fault
isolation/

identificaion

Fig. 1.3 Internal methods for fault diagnosis
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Fig. 1.4 External methods for fault diagnosis

trend analysis of this difference can be used to detect changing characteristics of
the system resulting from a fault occurrence. Set-membership based fault diagnosis
techniques are used for the detection of some specific faults. Generally, they discard
models that are not compatible with observed data, in contrast to the residual-based
approaches which identify the most likely model.

The external methods [3, 12–15] (see Fig. 1.4) consider the system as a black
box, in other words, they do not need any mathematical model to describe the system
dynamical behaviors. They use exclusively a set of measurements or/and heuristic
knowledge about system dynamics to build a mapping from the measurement space
into a decision space. They include expert systems and machine learning and data
mining techniques.

A key challenge of fault diagnosis of HDS is related to the state estimation
and tracking because of the cohabitation of continuous and discrete dynamics.
Therefore, the fault diagnosis requires distinguishing between healthy and faulty
states during mode changes for all hybrid trajectories generated by the system.
However, tracking all the possible trajectories of a hybrid system is computationally
intractable, in particular in the presence of faults. This is due to multiple reasons.
Firstly, faults cause unknown changes in the system model. Thus, it becomes
challenging to differentiate the change in behavior due to a fault from change in
behavior caused by a normal mode transition. Secondly, pre-enumerating all the
operation modes of a system is computationally intractable, in particular in the
presence of faults. Indeed computing the reachable set of states of HDS is an
undecidable problem due to the infinite state space of continuous systems.

Another challenge is related to the robustness of fault diagnosis and its time
processing to issue the decision (fault detection and isolation). Indeed, the diagnosis
engine must be able to manage out of order alarms and handle uncertainties and
issue the diagnosis decision enough fast in order to give ample time to human
operators of supervision to implement corrective and maintenance actions.

Finally, the diagnosis engine (inference) must scale well to large systems with
multiple discrete modes. Indeed, a global model representing both the discrete and
continuous dynamics can be too huge to be physically constructed for systems with
large number of discrete modes.
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1.3 Contents of the Book

This edited Springer book presents recent and advanced approaches and tech-
niques that address the complex problem of fault diagnosis of hybrid dynamic
and complex systems using different model-based and data-driven approaches in
different application domains (inductor motors, chemical process formed by tanks,
reactors, and valves, ignition engine, sewer networks, mobile robots, planetary
rover prototype, etc.). These approaches cover the different aspects of performing
single/multiple online/offline parametric/discrete abrupt/tear and wear fault diagno-
sis in incremental/non-incremental manner, using different modeling tools (hybrid
automata, hybrid Petri nets, hybrid bond graphs, extended Kalman filter, etc.) for
different classes of hybrid dynamic and complex systems.

1.3.1 Chapter 2

This chapter proposes a model built by learning from historical data (available
sensor data) set in order to perform the fault diagnosis of induction motor. The con-
sidered faults are represented by five classes (normal, broken rotor bars, unbalanced
voltages, stator winding faults, and eccentricity problems). The proposed approach
exploits an evolving type-2 random vector functional link network (eT2RVFLN)
since it allows dealing with four issues common in industrial processes: temporal
system behavior, uncertainties in the data streams, a changing learning environment,
and a large number of features. The proposed approach is split into three phases:
(1) the what-to-learn phase allows to select a relevant subset of training samples,
(2) the how-to-learn phase prunes and generates nodes in the hidden layer of the
network, applies feature selection and parameter learning, and lastly (3) the when-
to-learn phase assigns samples to the reserved sample set which are not considered
for learning right away. The authors evaluated the method for diagnosis of induction
motors and compared the approach to five other classifiers on two data sets (one
with added noises and one without added noise). The obtained results show that the
proposed approach outperforms the other methods in regard to their classification
rate, learning time, and number of samples used during training.

1.3.2 Chapter 3

This chapter presents an approach to perform the fault detection and isolation of dis-
crete and parametric faults when they may occur together in a single fault scenario.
The proposed approach is based on the use of a hybrid bond graph that accounts
for parameter uncertainties (multiplicative) and measurement noises (additive). The
generated residuals from the hybrid bond graph are therefore robust against these
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uncertainties and noises and are sensitive for both discrete and parametric faults.
Indeed, these residuals take into account not only the magnitude of the deviation
from the system’s healthy conditions but also the direction (increase/decrease) of
this deviation. The goal is to improve the fault isolation in particular when the
behavior (fault signature) of parametric faults is similar to the discrete faults. In this
case, the fault isolation is much complicated in comparison to continuous dynamic
systems because the discrete mode fault may occur besides or together with a
parametric fault in hybrid dynamic systems. Therefore, when a fault is detected, the
cause of the residual inconsistency must be determined as a discrete mode fault or
due to a parametric fault. In the former, a reconfiguration/shutdown procedure may
be launched in response to the fault occurrence; while in the latter, parameter estima-
tion is required to estimate the magnitude of the suspected parameters with known
discrete mode information in order to calculate its severity. Then this information is
provided to the decision-making system for fault accommodation. The discrimina-
tion between parametric faults and discrete mode faults is based on the magnitude
of the residuals. The generated residuals are bounded within some time varying
thresholds and then are used to generate fault signatures for different parametric or
discrete mode faults. The proposed approach is applied for the fault diagnosis of dis-
crete and parametric faults of a hybrid two-tank system using numerical simulation.
The advantage of this method is its capacity to distinguish between discrete fault
(e.g., valve stuck-on/valve stuck-off) from a parametric fault (valve partially stuck-
on/valve partially stuck-off) based on the magnitudes of robust thresholds against
parameter uncertainties and measurements noises. However, its computation com-
plexity grows exponentially for large-scale systems with multiple discrete modes.

1.3.3 Chapter 4

This chapter presents an approach based on the use of max-plus algebra to perform
the parametric and discrete faults of hybrid dynamic systems, in particular switch-
ing linear systems without concurrency. The latter are equivalent to continuous
piecewise affine (PWA) systems where the state space is partitioned into a finite
number of polyhedral regions. Each one of the latter is associated with different
affine dynamics that the system switches between. The advantage of using max-plus
algebra is its capacity to transform inference (that are nonlinear in a conventional
algebra) on system timed dynamics to be linear in the max-plus algebra. The
max function models the synchronization between events: an event occurs once all
processes it depends on have finished. The C function models the process times:
the moment a process finishes must equal the sum of starting time and the time the
process takes to finish. The presented approach considers the switching behaviors
as stochastic in order to capture the stochastic nature of the faults. The proposed
approach is based on three steps. The first step is based on the use of an observer in
order to generate residuals that are used to detect fault occurrences. The second step
looks to estimate the most likely discrete modes in order to calculate the correspond-
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ing set of residuals. The third step aims at computing the most likely fault based on
the optimization of a cost function and a set of residuals. The diagnosis inference is
based on the time properties of the system: an event occurs too early, too late or does
not occur at all. These properties are modeled using a timed event graph which is a
subclass of time Petri nets. The proposed approach is illustrated and tested using an
example of chemical process formed by two tanks, two reactors and seven valves.
The evolution of the solvent level in the different tanks and reactors represents the
continuous dynamics, while opening and closing the different valves represent the
discrete dynamics (switching) of the system. The parametric faults are simulated
as leakages in the tanks or reactors or a partial stuck-on/stuck-off of the valves.
The discrete faults are represented by stuck-on/stuck-off faults. The main advantage
of the proposed approach is the linear computational complexity of its diagnosis
inference. However, its main drawback is its need to have information about each
discrete and parametric fault behavior. This may impact the scalability of the
proposed approach in the case of large-scale systems with multiple discrete modes.

1.3.4 Chapter 5

This chapter proposes a model-based approach in order to perform the simple and
multiple fault diagnosis of hybrid dynamic systems. The proposed approach is
based on three steps: residual generation, residual assessment, and fault localization.
The residual generation is achieved offline and online. In order to generate the
residuals offline, a hybrid dynamic simulator, called PrODHyS, is used to generate
the reference model. The latter represents the normal, fault-free, system behavior.
Then, faults are injected into the reference model in order to simulate the resulting
fault behaviors. Then, residuals sensitive to each of these simple and multiple faults
are generated and normalized in order to obtain the theoretical (simulated) fault sig-
natures. The residuals are generated online by comparing the state of the reference
model with the estimated one. The latter is obtained by using the extended Kalman
filter allowing to improve the robustness of the monitoring against noises and
uncertainties and therefore to avoid false alarms. The online generated residuals are
normalized in order to obtain the instantaneous fault signature. Then, the distance
between the latter and the offline fault signatures is calculated using an improved
version of Manhattan distance. This distance provides an indication about the
fault occurrence and its amplitude. The proposed approach was applied to perform
simple and multiple faults detection and isolation using a complex chemical system
composed by interconnected and shared resources (reactors/valves), in which a
continuous treatment is carried out. The main advantage of the proposed approach
is its capacity to diagnose simple and multiple faults as well as degradations in the
system performance (quality). However, it needs to build a reference model about
the system dynamics as well as to simulate the fault behaviors. This increases the
computational complexity of the proposed approach for large-scale systems with
multiple discrete models.
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1.3.5 Chapter 6

This chapter presents a model-based diagnosis framework in order to diagnose
both parametric and discrete faults of a class of hybrid dynamic systems (HDS).
This class of HDS has continuous behavior controlled by discrete events. In those
systems, the main source of hybrid behavior is discrete actuators, like valves or
switches in fluid or electrical systems. The used model is hybrid bond graphs
(HBGs) allowing providing a graphical description of the system’s dynamics (links
between its different variables). The diagnosis is performed based on the verification
of the consistency (or conflicts) of a set of hypotheses represented by algebraic or
differential equations. This verification allows generating fault hypotheses (resid-
uals) from observed measurement deviations. Then, fault signatures are derived
from residuals in order to isolate the fault source. This approach assumes that a
discrete fault exhibits great discontinuities in system behavior, while parametric
faults are related to tear and wear and introduce faults with much slower dynamics.
Two examples are used to illustrate and evaluate the proposed approach. The first
example is a simple electric circuit with two discrete switches, two batteries in
parallel and a load of a resistance and a capacity. The second example is a hybrid
four-tank system using on/off valves. The discrete faults are stuck-on/stuck-off of
the actuators (switches/valves) and the parametric faults are related to the abnormal
decrease/increase of the nominal value of resistance/capacity/fluid due to, as an
example, the aging or pollution effect. The main advantage of the proposed approach
is that the complete enumeration of the system operation modes (configurations)
is not necessary and it can model nonlinear behavior. However, it requires the
knowledge about the global model in order to build the algebraic or differential
equations between the system variables in each configuration. This may be a
handicap for the diagnosis of large-scale hybrid dynamic systems.

1.3.6 Chapter 7

This chapter proposes a model-based approach for online fault diagnosis for a
spark ignition automotive engine. The forward and backward motions of fluids,
the different strokes of the piston cycle, fuel injection, ignition and combustion,
etc., the transient dynamics of the automotive engine is best modeled as a hybrid
system with nonlinear continuous dynamics in its various discrete modes. The
proposed fault diagnosis scheme starts with a continuous state estimation stage from
inputs and measurements using a single extended Kalman filter (EKF) estimator.
This is followed by a residual prediction stage in order to predict a residual
vector corresponding to each fault hypothesized. Then, the hypothesis testing stage
generates fault detection functions for each fault using the predicted and actual
residuals. Each detection function is compared to its respective thresholds, which
are experimentally decided based on simulations, followed by the isolation stage
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that aims at isolating the fault source using predicate logic and knowledge of the
process, under the assumption that at most a single fault could occur. Once the
fault is isolated, the parameters (e.g., magnitude) of the isolated fault are identified
using a joint estimation in the nominal EKF itself, or dual estimation, or some other
separate estimators like particle filters. This approach is applied for the diagnosis
of parametric faults of ignition engine such as a leak in the manifolds, injector
block, cylinder valve wear, and sensor failures. The advantage of this approach
is its computational efficiency allowing it to be used for on-board fault diagnosis
implementations. However, it requires an additional computational computing in
order to refine the set of isolated fault candidates. This may handicap its capacity to
perform a precise fault diagnosis online.

1.3.7 Chapter 8

The chapter proposes a model-based, qualitative fault diagnosis framework for
hybrid dynamic systems which can diagnose both parametric and discrete faults,
and can handle observation delays. This approach is based on a structural model
decomposition in order to decompose the model into independent submodels. The
input and output variables are assigned locally to each submodel. Then, residuals
are generated according to each submodel as well as the different switching modes.
The residuals are transformed into qualitative 0 (no change), � (decrease), and C
(increase) changes for the magnitude and slope in the residual. Once a residual is
detected to deviate in a statistically significant manner from zero, symbols (0, �,
C) are generated for that residual, and fed into the fault isolation module. Since
local submodels are used, the residual generator will only contain the local modes
of that submodel which is less than the number of system modes. Thus, fewer modes
must be searched and the diagnosis efficiency is improved. The proposed approach
is applied to two examples. The first example is an electric circuit that includes
a voltage source, two capacitors, two inductors, two resistors and two switches,
connected through a set of serial and parallel connections. Sensors measure the
current or voltage in different locations. Each switch can be in one of two modes: on
and off. Thus, this circuit can be represented as a hybrid system, with four system-
level modes. The second example is the Advanced Diagnostics and Prognostics
Testbed (ADAPT). It is an electrical power distribution system developed at NASA
Ames Research Center and is used as a case study to demonstrate that the approach
can correctly isolate faults in hybrid systems even if the system transitions among
different modes and presents observation delays during the isolation process. It
comprises a battery, circuit breakers, relays, AC to DC inverter, DC load and AC
load. The structural model decomposition has the advantage to avoid the mode pre-
enumeration problem and to facilitate the reusability of component models and their
maintenance. In addition, it decreases the complexity of the hybrid system diagnosis
problem since each submodel is dependent on only a subset of the system faults as
well as a limited number of modes. However, the proposed approach is applied for
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single fault scenarios and considers that all mode change events are observable. In
addition, it assumes the feasibility of finding a structure decomposition allowing
obtaining independent submodels.

1.3.8 Chapter 9

This chapter proposes a model-based scheme to perform the online fault diagnosis
of hybrid dynamic systems. The proposed scheme is based on two phases: offline
and online. The offline phase comprises two steps. The first step aims at building
the model of the system using the hybrid particle Petri net (HPPN) framework. The
latter is built either from a multimode description of the system or directly from
expert knowledge. This model comprises the health modes of the hybrid system
(nominal, degraded, and failure modes). They are represented by combinations of
discrete states, continuous dynamics and degradation dynamics. Transitions aim at
modeling the changes of health modes from one health mode (one for each type)
to another health mode. The second offline step is the generation of the diagnoser
based on the HPPN model. In the online phase, the built diagnoser is used to perform
the diagnosis using the system consecutive observations (inputs and outputs). The
proposed diagnosis scheme is evaluated and illustrated using two examples. The first
example is a mobile robot with a motor commanded by on/off command. The second
example is the K11 planetary rover prototype. The K11 is a testbed developed by
NASA Ames Research Center to be used for diagnostics and prognostics purposes.
It is powered by 24 2:2 Ah lithium-ion single cell batteries. The battery charge
depletion, the motor overheating, the failed motor temperature sensors are examples
of the faults diagnosed by the proposed diagnosis scheme. The advantage of the
proposed diagnosis scheme is its capacity to take into account the uncertainty in the
system representation. However, the model is built intuitively. This may handicap
the flexibility of the proposed scheme for the diagnosis of complex hybrid systems
in particular the large-scale ones with multiple discrete modes.

1.3.9 Chapter 10

This chapter focuses on the use of the hybrid automaton framework to develop a
method for diagnosing both structural and non-structural faults in hybrid dynamic
systems. Diagnosis is directly performed by interpreting the events and measure-
ments issued by the physical system with respect to the hybrid automaton model.
The discrete event part of the hybrid automaton constrains the possible transitions
among modes and is referred to as the underlying discrete event system (DES).
Then, the residuals capturing the consistency of the continuous dynamics are defined
for each discrete mode. The abstraction of these residuals generates events, referred
to as signature events, and is used to enrich the underlying DES. This enrichment
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leads to obtain the so-called behavior automaton from which a diagnoser can be
built. The latter can operate in a non-incremental and an incremental manner. In
the non-incremental form, the diagnoser is built using the global model whereas in
the incremental form only the useful parts of the diagnoser are built, developing
the branches that are needed to explain the occurrence of incoming events. The
proposed approach is evaluated using a representative part of the Barcelona sewer
networks. The latter present several elements exhibiting numerous operating modes
depending on the sewer flows. The used part of the sewer networks comprises nine
virtual tanks, one real tank, three redirection gates, one retention gate, one four
rain gauges to measure the rain intensity, and ten limnmeters to measure the sewer
level. The control gates are commanded by a controller where actions are open or
close gate depending on the flow in the sewer. The structural faults are the stuck-
on and stuck-off faults while the non-structural faults are the faults in sensors. The
advantage of the proposed approach is its capacity to be used in incremental manner.
This allows to obtain a significant gain in terms of memory storage compared to
building offline the full diagnoser. However, the proposed approach is not adapted
to scale with large-scale systems with multiple discrete modes.
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Chapter 2
Motor Fault Detection and Diagnosis
Based on a Meta-cognitive Random
Vector Functional Link Network

Choiru Za’in, Mahardhika Pratama, Mukesh Prasad, Deepak Puthal,
Chee Peng Lim, and Manjeevan Seera

2.1 Introduction

2.1.1 Induction Motor

The induction motor, a type of electric motor, is widely used in industrial equipment
such as manufacturing machines, belt conveyors, cranes, lifts, compressors, trolleys,
electric vehicles, pumps, and fans [1]. Induction motors are complex devices
comprising electromechanical components that can convert electrical power into
mechanical movement. They use more than 60% of total electrical energy produced
for use in industrial processes [2]. This is a result of their benefits compared with
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direct-current motors: they are more cost-efficient, more rugged, more reliable, and
require less maintenance. In addition, induction motors have power ranging from
hundreds of watts to megawatts, which is crucial for most industrial production.

To maintain the conditions of an induction motor and to avoid catastrophic
failure of industrial processes, early diagnosis of any faults in an induction motor is
essential. These faults can occur as a result of electrical, thermal, and mechanical
stresses during motor operation. Sensors could be used to measure signals to detect
and diagnose motor faults. These sensors, installed at the motor, might measure
stator currents, voltage currents, air gaps, external magnetic flux densities, rotor
position, rotor speed, output torque, internal temperature, external temperature,
case vibrations, emissions, acoustic noise, electromagnetics, machine line, and case
vibration.

During motor operation, sensors generate signals that continuously generate an
unlimited total number of data. These signals can be analyzed to distinguish whether
signals are generated from the normal operating condition or from some failure
mode. In the case of a fault in induction motor operation, the values of variables
change. These changes, which coincide with the event (fault), can be used to analyze
the pattern of the system. Because values of induction motor system variables are
generated in continuous mode and an event operates in discrete mode, an induction
motor can be categorized as a hybrid system, wherein both continuous and discrete
dynamics coexist and interact with each other. In this chapter, faults in an induction
motor are detected and diagnosed to process both the discrete and the continuous
dynamics of the system. As a result, advanced models/approaches are required to
accurately describe the dynamic behavior of such a hybrid system and to detect and
diagnose the faults.

A low-cost and efficient method is required to effectively detect a fault in an
induction motor,. In terms of the components used in an induction motor, fault
detection and diagnosis schemes have concentrated on three in particular: the stator,
the rotor, and the bearing. Most recent research, however, has been directed toward
the use of only a stator current because it provides the most accurate indicator of
induction motor faults [3]. Motor current signature analysis (MCSA) is a common
and popular method to detect faults in induction motors. This method is convenient
because it uses information on only the stator currents, in comparison with the
high costs of a continuous monitoring system applied in expensive or load-critical
machines. The detailed method to detect and diagnose faults of induction motors is
discussed in Sect. 2.2.

Furthermore, more comprehensive discussions with regard to the induction motor
as a hybrid system and approaches used to analyze an induction motor’s signals are
described in Sects. 2.1.2 and 2.1.3, respectively.
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2.1.2 Hybrid Dynamic System

A hybrid dynamic system, also known as a hybrid system, can be defined as a system
driven by continuous and discrete dynamic interactions, emerging from a complex
industrial system such as mechatronic system, manufacturing system, automotive
engine control, or embedded control system. Hybrid systems are typically found in
the components of an industrial system and operate over time within the industrial
process.

Discretely controlled continuous systems (DCCSs), one class of hybrid system,
are widespread among processes used in industrial plants. A DCCS involves
continues and discrete dynamics and continuous and discrete control, switching
between several discrete modes in response to discrete control events at the
discretion of a discrete controller. For example, a converter system, one example
of a DCCS described by Toubakh and Sayed-Mouchaweh[4], is used to control the
amount of power required by a generator. This is done by supplying the load current
(I) by regulating the three elementary switches in the converter. In this system, the
converter controls the interaction between continuous dynamics and a discrete event
within the system. The system and its mechanisms are detailed as follows. The
generator, called a doubly fed induction generator (DFIG), has two converters: grid
side converters and rotor side converters. The first maintains the converter torque
and the blade angel of a wind turbine given the wind speed, based on the controller’s
reference power. The second maintains the power by controlling the current supplied
to the DFIG. Here we focus on the rotor side converter to investigate an element of
the system called the multicellular converter (MCCS), which controls the supply of
load current to the DFIG.

MCCS receives the reference output voltage (Vs) and the reference voltages of the
output capacitors (Vc) from the controller. The continuous dynamic of the converter
is described by a state variables vector: X D [Vc1, Vc2, I], where Vc1 and Vc2 are the
reference floating voltages of capacitors C1 and C2, respectively, and I represents the
current flowing toward the DFIG. The values of Vc1, Vc2, and I are adjusted given
the formula [4] that represents continues and discrete dynamic switching inside the
system. This mechanism allows output to be generated in response to the controller’s
reference output voltage (Vs). As a result, an optimal amount of power is supplied
to the DFIG. While the values of Vc1 and Vc2 represent the system’s continuous
dynamic, the value of I represents the system’s discrete dynamic. The discretely
controlled load current I is regulated by setting the three elementary switches Sj, j,
and 2 f1, 2, 3g in the three-cell converter of the MCCS, where each discrete switch Sj

has two discrete modes: open and closed. The dynamic evolution of the continuous
and discrete variables of the converter systems are further investigated elsewhere [4].

Fault detection and diagnosis in a hybrid system is challenging because the
continuous and discrete dynamics are mutually dependent and interact. Therefore,
both their discrete and continuous dynamics must be considered. The fault of this
converter system is considered to be related to the degradation of the MCCS’s
performance as a result of the chemical aging of its capacitors. This aging can be
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recognized by monitoring the rise of the equivalent serial resistance value in the
capacitor, which causes the output voltage (Vs) fed to the DFIG to drop.

According to a previous experiment [4], simple and multiple faults diagnosis
of the converter capacitor are designed. Nine drift scenarios are conducted, with
three drift speed variations applied in each capacitor to measure the change in the
equivalent serial resistance value in order to observe faults in the MCCS’s capacitor.
Three classes are defined, representing the types of faults related to the MCCS
capacitor: a simple fault in capacitor 1 (C1), a simple fault in capacitor 2 (C2), and
multiple faults in both C1 and C2. Six features are then derived from the residual
value (difference of real voltage and reference voltage related to each capacitor
[Vc]). Six feature spaces are generated from six discrete modes of the converters,
where each discrete mode describes the sensitivity of features to some events/fault
types, indicated by class label. In this experiment, MCCS faults are diagnosed by
analyzing the pattern between features and class label with the use of an auto-
adaptive dynamical clustering algorithm [5].

In general, faults in hybrid systems occur as a result of a gradual or abrupt
change in the values of variables that describe the system’s continuous dynamics
in a discrete mode. These changes can be regarded as a drift, which can be observed
in the system under operating conditions until the failure takes over completely. This
drift can help detect faults early, before the system halts. In the case of the converter
system described above, drift can be observed from the residual value (Vc). Because
of the dynamic nature of the hybrid system, the drift of the variables’ values can
be observed only in discrete modes while the continuous dynamics described by the
affected variables are active.

Because induction motors are categorized as hybrid systems, detecting and
diagnosing faults in induction motors in real time is challenging. This is because
of the dynamical behavior of induction motor operation, when signals are generated
continuously. The system evolves over time, describing a new pattern of the system.
Therefore, in a rapidly changing environment like that in an induction motor,
advanced machine learning can be a solution to endow the classifier with adaptive
capacity [6]. The next section describes our approach and the background of early
machine learning approaches in detecting and diagnosing the faults of induction
motors.

2.1.3 Our Approach

In the past two decades, many statistical and artificial intelligence techniques have
been developed to detect and diagnose faults in induction motors; these include
artificial neural networks (NNs) [7], fuzzy logic systems, genetic algorithms, and
support vector machines. These techniques use features extracted from stator-
current signals acquired during induction motor operation.

The vast majority of existing approaches characterize an offline learning prin-
ciple that requires a complete data set covering all possible conditions during
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the manufacturing operation. Furthermore, these approaches keep preceding data
samples and require multiple passes over all data; therefore they are hardly scalable
to be able to keep pace with the fast sampling rate of industrial processes. The
stator current signals (signatures) are extracted using machine learning or statistical
techniques to build an accurate model to predict motor conditions.

In an induction motor, signals acquired from sensors are continuously generated,
with an unknown total number of data. This phenomenon is well known as a
potential cause of “big data” with the famous “4 Vs” as characteristics [8, 9]:
volume, velocity, variety, and veracity. Because of its iterative nature, this situation
disqualifies conventional approaches and requires full access to all data before the
process runs. This phenomenon requires a simple and fast learning algorithm to
be practical for online real-time deployment. This issue [10] is also the underlying
reason why randomized NNs (RNNs), which have their roots in the 1990s, have
regained popularity. Some work has been done in this area to incorporate a random
method into an NN system [11, 12].

However, the use of RNNs for online processing – as is the case in most industrial
processes – deserves further investigation, at least for four issues: (1) The issue
of structural complexity remains an open issue to be resolved, especially in the
context of incremental learning. A hidden node pruning strategy has been designed
[13]. Nevertheless, this approach undermines the logic of online learning, because
they rely on a multistaged training mechanism. (2) Currently applied RNNs have
not adequately addressed the issue of uncertainty, because most RNNs are built
on the type 1 hidden nodes. Although the interval type 2 RNN has been proposed
[14], this algorithm constitutes a batched learning machine, which acts offline. (3)
Most RNNs adopt a static network topology that cannot adapt to changing learning
environments. The notion of a dynamic RNN was devised by Feng et al. [15].
Nevertheless, the structural learning scenario does not reflect real data distribution,
and therefore we are unable to discover the focal points of data streams. Another
seminal work was proposed that makes use of the ensemble approach along with
the drift detection method [16]. However, it possesses a demanding complexity
because it involves a combination of several base classifiers. (4) To the best of our
knowledge, RNNs still do not address the curse of dimensionality because of the
absence of an online feature selection. It is worth noting that because of the intricacy
of industrial process, RNNs often involve a large number of variables across several
measurements.

To correct these drawbacks, a novel random vector functional link (RVFL) net-
work, namely the evolving type 2 RVFL network (eT2RVFLN), has been proposed
[17] to resolve four issues: uncertainty, concept drift, temporal system behavior, and
high dimensionality. An eT2RVFLN applies the meta-cognitive learning principle,
which consists of three phases: what to learn, how to learn, when to learn [18].
The cognitive part is constructed under an interval type 2 recurrent fuzzy NN. The
what-to-learn phase applies a sample deletion mechanism, which selects important
data streams for model updates in the how-to-learn phase. The how-to-learn phase
actualizes the quickness of the RVFL learning theory combined with the evolving
learning principle. This scenario allows hidden nodes to be automatically generated,
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pruned, and recalled on the fly, with no tuning of hidden nodes while network
parameters except output weights are randomly generated. The when-to-learn phase
exploits a sample reserve strategy, which is useful to refine the network structure at
the end of the training process. All of these attributes allow the algorithm to process
the data stream, which has the 4 Vs as characteristics, online (to process every datum
in a single-pass mode), simply (to reduce the number of training data thanks to the
what-to-learn and how-to-learn methods), and quickly. Thus it able to cope with the
scalability issue.

This chapter proposes a novel method to detect and diagnose induction motor
faults online using the recently published eT2RVFLN. Real-world experiments
using a laboratory-scale test rig were carried out to diagnose motor conditions,
namely broken rotor bars, unbalanced voltages, stator winding faults, and eccentric-
ity problems. This work applies multiclass classification, extending from a condition
of only a two-class classification problem (healthy and faulty). It is worth noting
that multifault diagnoses in induction motors were not applied in this experiment.
However, some variables can be observed when some events occur. In this case,
multiple continuous variables are observed and analyzed when induction motor
operation experiences the multiple fault events, which can be assigned as new
classes. The algorithm then builds the model from previous events in order to
classify future data.

The eT2RVFLN was deployed to identify motor conditions in the online mode
relying only on sensor data streams. Fault diagnosis processes were carried out in the
main memory in only a one-pass learning scenario, with the absence of secondary
memory or archival storage. Another unique feature of our approach is the three
phases of meta-cognitive learning, namely what to learn, how to learn, and when
to learn. This approach result in better memory efficiency and less tedious labelling
effort than conventional online learners. Moreover, its interval type 2 hidden node
has a better degree of tolerance against uncertainty than the standard type 1 hidden
node and is appealing for most industrial applications because of noisy sensor
data, noisy measurement, and false sensor readings. The eT2RVFLN characterizes
a fully evolving characteristic whereby a hidden node can be generated, pruned,
and recalled on the fly; it also is equipped with an online feature selection to cope
with a high input dimension. Our rigorous experiments indicate that our approach
delivered predictive accuracies comparable to those of its counterparts in both clean
and noise-corrupted (20 dB) data. It also imposed lower complexities than other
algorithms in terms of hidden node, network parameter, execution time, and input
attribute. The meta-cognitive learning scenario contributed to bringing sample use
and labelling effort to a low level, which is appealing in practice.

In the rest of this chapter, Sect. 2.2 outlines a literature survey of fault detection
in induction motors; Sect. 2.3 discusses the details of the architecture of the
eT2RVFLN algorithm; Sect. 2.4 covers the experimental design; Sect. 2.5 elaborates
the experimental procedure; and Sect. 2.6 concludes the chapter.
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2.2 Fault Detection and Diagnosis in Induction Motors

This chapter discusses background knowledge related to general methods to detect
and diagnose faults in induction motors. Section 2.2.1 discusses the attributes related
to fault detection and diagnosis in induction motors, which includes the variables,
the type of faults, and the component(s) used to generate signals from an induction
motor. Section 2.2.2 discusses the source of signals used to monitor an induction
motor’s condition.

2.2.1 Fault Detection and Diagnosis Features in an Induction
Motor

The efficiency of induction motors comes from the variable speed that controls the
speed and torque of the motor. However, it suffers from common mechanical and
electrical problems. Unstable load changes and overloads are common causes of
mechanical issues, whereas electrical issues occur because of an unstable power
supply. This condition can lead to a catastrophic situation such as overheating,
harmonics, and a shorter operational life of the motor, which damages the security
of plant operations overall. Detection of an induction motor’s fault early, before it
occurs, is essential to reduce the costs for maintenance and for downtime within the
overall production process.

In general, motor condition is monitored by sensors placed in the load-critical
part of the machine; these sensors feed accurate and up-to-date data on the status of
the motor to be monitored online [19]. They also measure stator currents, voltage
currents, air gaps, external magnetic flux densities, rotor position, rotor speed,
output torque, internal temperature, external temperature, and case vibrations,
among other variables. These measurements are highly correlated to many types
of motor faults: conductor shorts and openings, bearing failures, cooling failures,
broken rotor bars, stator windings, eccentricity problems, and unbalanced voltages.
Figure 2.1 describes physical and electrical measurements taken from induction
motor operation to detect many failures in induction motor. Furthermore, Fig. 2.2
shows induction motor parts.

In this chapter, the signals used to monitor induction motor conditions are
derived only from stator motor component measurements, as highlighted in Fig. 2.1.
Because of the dynamical behavior of induction motors, the drift of variables are
observed to analyze the pattern of hybrid system behavior based on the observed
event (fault). To do this, some scenarios have been conducted to measure the
signals in several motor conditions in order to learn the pattern of the system. Five
events/fault types indicating a healthy motor, broken rotor bar problems, unbalanced
voltages, stator windings problems, and eccentricity problems are observed as class
labels. These labels represent the discrete mode of the induction motor condition.
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Fig. 2.1 Various induction motor measurements and its various types of faults

Fig. 2.2 Induction motor components and related measurements (source: http://www.
industrybuying.com)

Some features/variables are suggested to be sensitive to several events [20].
This means that the values of features/variables drift when events/faults occur.
These features are generated and derived from measurements of stator current
operation acquired from sensors. The correlation between observed features related
to the events/type of faults in induction motors is summarized in Table 2.1.
It can be seen that an induction motor is categorized as a hybrid system, and
its continuous dynamic values are described by variable drift, whereas “event”
represents the discrete dynamic of the system. To learn the pattern of the system,
some statistical learning or machine learning techniques can be used to identify the
system pattern and decide which features are particularly sensitive to some events.
Therefore, whenever feature/variable drift occurs, a degradation of the system can
be recognized as an early fault of induction motors.

http://www.industrybuying.com
http://www.industrybuying.com
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2.2.2 Fault Detection Methods from Single and Multiple
Sources

MCSA is widely known as an easy and effective method to detect and diag-
nose faults in induction motors. This is a nonintrusive method to detect faults
by investigating electrical signals/signatures. MCSA extracts discriminative input
features from signal harmonics as a discriminative data feature based on power
spectral density (PSD). These features are used to feed a machine-learning algorithm
featuring generalization capability, and then they detect and diagnose induction
motor faults on the fly.

Many low-cost and nonintrusive methods to detect and diagnose faults have
come into the picture [25–27]. For instance, fast Fourier transform (FFT) is used
to analyze the signals of the motor’s stator current. FFT detects and diagnoses many
induction motor faults under various load conditions. Rule extraction techniques
were used to detect and diagnose motor faults using pattern classification from
numerical input-output data [28]. A neuro fuzzy system was used to extract the
rules from unbalanced supply, unbalanced mechanical load, encoder, and voltmeter
failure features [29]. Decision trees and an adaptive neuro-fuzzy inference system
were also used to diagnose motor faults [30]. In other areas, a safety model based on
fuzzy logic was also developed [31] for maritime and offshore safety purposes. This
method provides information about the risk level of the system using Mamdani-type
inference systems to assess consequences related to personnel, the organization, and
the environment. Engine vibration has been analyzed using radial basis function
[32].

Detection and diagnosis of faults in an induction motor can be categorized based
the number of sources used to generate the data: a single source or multiple sources.
By contrast, faults can be classified as a single fault or as multiple faults. Intelligent
approaches have been developed in multiple-fault detection analysis. Detection of
faults in rotor bars in induction motors has been proposed using back propagation
for a feed-forward NN [26]. This method transfers current signals to magnitude
using FFT. Feed-forward NN classifies sideband frequency magnitudes to detect
broken rotor bars. A similar problem was also used by Sadeghian et al. [33] to detect
broken rotor bars using wavelet packet decomposition, which analyzes signals and
multiple frequency resolutions to be fed to a multilayer perceptron. Similar input
from stator-current signals were used using multiple discriminant analysis, which
classifies these signals to detect a broken rotor bar.

On the other hand, the same single source can be analyzed to diagnose multiple
faults. The predictive filter method [25] predicts broken rotor bars and inter-turn
stator winding faults by separating fundamental from harmonic components of
current signals using a predictive filter and fuzzy model. Lee et al. [34] used Fourier
and wavelet transforms to acquire the sideband and detail value characteristics
from many motor conditions. A dynamic polynomial classifies the detail value
characteristic of the motor into four categories: broken rotor bar, bowed rotor,
faulted bearing, and eccentricity faults.
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Liu et al. [35] proposed the detection of faults in induction motors using multiple
process variables to detect broken rotor bars. They use a combination of fuzzy
measures and fuzzy integrals to arrive at a single classification. Ondel et al. [36]
processed the current voltage measurement to extract the most relevant diagnostic
feature using k-nearest neighbors. The Kalman filter algorithm [36] was used to
classify broken rotor bars afterward.

Multiple inputs and the detection and diagnosis of multiple faults in induction
motors have been investigated in the current literature. Adjallah et al. [37] used
two sources of input (three-phase stator currents and vibration signals). A genetic
algorithm was then used to reduce the input dimension and training of neural
network. The next step, adaptive resonance theory, was used to detect unbalanced
phase and eccentricity problems of induction motors. Rotor faults, eccentricity, and
bearing faults from vibration and current signal have been predicted [30]. Features
have been selected using a decision tree that produces a crisp rule. The crisp rules
acquired from the decision tree were converted to fuzzy if–then rules to identify the
structure of an adaptive network–based fuzzy inference system [38].

2.3 eT2RVFLN Architecture

This section discusses the architecture of an eT2RVFLN, which exhibits three pillars
of meta-cognitive learning policies: what to learn, how to learn, and when to learn.
The what-to-learn phase selects training samples using a certainty-based learning
method. The how-to-learn phase of eT2RVFLN is where the cognitive components
are adjusted (learning module), whereas the when-to-learn phase controls when
the sample reserves are mined after all main training samples have been learned.
All learning policies of eT2RVFLN are discussed in Sects. 2.3.1 and 2.3.2, which
describe the what-to-learn, how-to-learn, and when-to-learn phases, respectively.

2.3.1 Cognitive Architecture of an eT2RVFLN

Multivariate Gaussian functions in the hidden layer and a nonlinear Chebyshev
polynomial form of a generalized interval type-2 functional NN topology put
forward the generalized interval type 2 Gaussian fuzzy rule. Type 2 fuzzy sets,
which were proposed by Zadeh, are extensions of ordinary fuzzy sets (namely type
1) to handle uncertainty. The eT2RVFLN’s fuzzy rule is defined as follows:

Ri W IF X is close to
�
Ri Then yo

i D xe�i;

where QRi D
�
Ri;Ri

�
represents an interval type 2 multidimensional kernel compiled

from a multidimensional kernel with uncertain means. yo
i Denotes the output of
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the ith rule in the oth class, and �i D R.2uC1/�m represents the output weight
vector. xe 2 R.2uC1/�m Stands for the expanded input vector. The interval-valued
multivariate Gaussian function is mathematically defined as follows:

�
Ri D exp

 

�
�

Xn �
�
Ci

�
†�1

�
Xn �

�
Ci

�T
!
�
Ci D ŒCi;1;Ci;2� (2.1)

where
�
Ci�R

l�u denotes uncertain centroids of the Gaussian function, where the
upper centroid Ci, 2 is set to be larger than the lower centroid Ci, 1 to form the
footprint of uncertainty and the number of hidden nodes is represented by u.
†�1�Ru�u Labels a nondiagonal inverse covariance matrix, which triggers non–axis
parallel ellipsoidal clusters arbitrarily rotated in any direction. Thus, this non–axis
parallel ellipsoidal cluster is capable of constructing a more reliable input space
partition.

However, the multivariate Gaussian function works in high-dimensional space
and is not able to be projected directly into single-dimensional space. Therefore,
it is not directly compatible with the interval type 2 fuzzy inference process. The
transformation strategy [27] is applied to construct a lower-dimensional representa-
tion of the multivariate Gaussian function. This strategy is selected because it offers
a fast mechanism to elicit a radius of a neuron from a non–axis parallel ellipsoidal
cluster, although it leads to too-small radii when processing an ellipsoidal cluster
being rotated 45ı. As an alternative, the radii can be derived from the eigenvalue and
eigenvector of the covariance matrix, but this scenario imposes a higher complexity
because the eigenvalue and eigenvector must be elicited in every observation. The
radius of the non–axis parallel ellipsoidal cluster is written as follows:

�i D rp
†ii
; (2.2)

where †ii denotes the diagonal element of the multivariate Gaussian function in the
ith coordinate. The Mahalanobis distance between the datum and the distribution’s
ith cluster is denoted by r. The Mahalanobis distance is a multidimensional gener-
alization measuring how many standard deviations of data form the mean of the ith
cluster. On the other hand, no transformation takes place at the neuron level because
the ellipsoidal cluster’s centroid is directly compatible without modification.

The expanded input vector xe 2 R1�.2uC1/ is used to improve the local mapping
ability of standard Takagi Sugeno Kang (TSK) output node using a nonlinear
mapping of the Chebyshev polynomial inspired by the expansion layer of the
functional link NN [39].

Standard TSK rule has two parts: the rule antecedent and the rule consequent. It
has two different types: zero order and first order. The zero-order TSK model is a
fuzzy system whose rule in the consequent part is constant, whereas the first-order
TSK model is a fuzzy system whose rule in the consequent part is a linear function.
It is worth noting that the zero-order or first-order TSK rule consequent does not
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exemplify a proper local approximation trait because it features a low degree of
freedom (a linear hyperplane in the output space). A nonlinear mapping of the
Chebyshev polynomial is written as follows:

TnC1.x/ D 2xjTn
�
xj
� � Tn�1

�
xj
�
; (2.3)

where T0(xj)D 1, T1(xj) D xj, T2(xj) D 2xj
2 � 1. For example, given that we have a

two-dimensional input pattern X D [x1, x2], the expanded input vector is generated
as xe D [1, x1, T2(x1), x2, T2(x2)]. It is worth noting that term 1 presents the output
node’s intercept to circumvent all local submodels from going through the origin,
which may result in nontypical gradients.

The Gaussian function with a fixed standard deviation and uncertain means
�
Ci Dh

Ci
j; 1;C

i
j; 2
i

is used to express an uncertain degree of membership, expressed as

follows:

�
�i;j D exp

0

@�
 

xj � �ci;j

�i:j

!21

A ;
�
ci D

�
Ci

j; 1;C
i
j; 2
�

(2.4)

�i;j D

8
ˆ̂<

ˆ̂:

N
�

ci
j;1; �i:jI xj

	
xj < ci

j;1

1; ci
j;1 � xjci

j;2�
ci

j;2; �i:jI xj

	
xj > ci

j;2

(2.5)

�
i;j
D

8
<̂

:̂

N
�

ci
j;2; �i:jI xj

	
xj �

�
ci

j;1Cci
j;2

	

2

N
�

ci
j;1; �i:jI xj

	
xj >

�
ci

j;1Cci
j;2

	

2

(2.6)

The t-norm operator generates the interval firing strength QRi D
�

Ri;Ri
�
, as

follows:

Ri D
uY

jD1
�

i;j
;Ri D

uY

jD1
�i;j: (2.7)

A type of reduced set expressing the crisp’s output from the interval’s set is
usually produced by a type reduction mechanism using the K-M iterative procedure.
This scenario, however, imposes a high computational cost as a result of the
requirement for a multipass iterative computation to obtain the lower (L) and upper
(R) end points. Therefore, the q 2 R1�m design coefficient is used to control the
proportion of R and L nodes. The design coefficient is written as follows:
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yo D
.1 � qo/

PP
iD1Riyi;o C qo

PP
iD1Riyi;o

PP
iD1 Ri C Ri

D .1 � qo/
PP

iD1Rixe�i;o C qo
PP

iD1Rixe�i;o
PP

iD1 Ri C Ri

;

(2.8)

where P is the number of hidden nodes. The design factor q 2 R1�m is randomly
generated without being adapted in the training process to adopt the spirit of RVFL
network. The classification decision is generated by taking a maximum operator
across all output nodes, as follows:

y D max
oD1;:::;mbyo (2.9)

where m is the number of class labels. An overview of the learning architecture of
the eT2RVFLN is shown in Fig. 2.3.

2.3.2 Meta-cognitive Learning Policy of the eT2RVFLN

This section outlines the meta-cognitive part of the eT2RVFLN. Section 2.3.2.1
elaborates the what-to-learn part, which actively selects relevant samples for the
training process. The training pattern extracted from the what-to-learn method
becomes the input for the how-to-learn part that controls the evolution of cognitive
component, which is elaborated in Sect. 2.3.2.2. The training samples that do
not meet the learning criteria of the how-to-learn phase are stored as reserved
samples. These samples are to be used after the main (selected) training samples
have been fully learned. The when-to-learn aspect is elaborated in Sect. 2.3.2.3. The
pseudocode of the eT2RVFLN learning policy is detailed in Fig. 2.4.

2.3.2.1 What to Learn

The what-to-learn part of an eT2RVFLN is controlled by a certainty-based active
learning scenario, which has a capability to extract relevant samples. This module
also affects to reduction of labelling efforts, because not all samples trigger the
annotation effort of the operators. This mechanism can be envisaged in strict sense
as a semisupervised mechanism. This method extends the what-to-learn of meta-
cognitive classifiers [18, 40], which happen to be a fully supervised mechanism.
Such a mechanism has no effect on labelling effort, although the number of
training samples can be reduced because the contributions of data streams is
evaluated with the presence of the ground truth of the class label. In the evolving
systems domain, active learning has been studied [41], but the studies still have
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Fig. 2.3 Learning architecture of the eT2RVFLN [17]

not taken into account possible concept changes in data distribution. It is evident
that labelling effort increases dramatically in the presence of concept drift because
this situation diminishes the degree of confidence of the model. We put forward a
Bayesian concept to perform the certainty-based active learning scenario in the input
and output space, where the Bayesian posterior probability quantifies the conflict
incurred by data streams. A substantial conflict in the output space happens when the
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Fig. 2.4 Learning policy of eT2RVFLN

datum lies in an adjacent proximity to the decision boundary, whereas the conflict
is apparent in the input space when a datum lies on a class-overlapping region as a
result of an unclean cluster.

In the output space, the conflict is investigated by the classifier’s truncated output
as follows:

p.byojX/output D min .max .conffinal; 0/ ; 1/ ; conffinal D by1
by1 Cby2 ; (2.10)

where p.byojX/output defines the output posterior probability. The most dominant and
second most dominant outputs are depicted byby1 andby2, respectively. The conflict
in the output space is related to the quality of the decision boundary to handle the
overlapping region. In the input space, a posterior probability is estimated using
joint-category and class probability p .byojRi/, as follows:

P .byojRi/ D
 PP

iD1 .byojRi/P.X j RiP .Ri/
Pm

oD1
PP

iD1 .byojRi/P.X j RiP .Ri/
C

PP
iD1 .byojRi/P

�
XjRi

�
P .Ri/

Pm
oD1

PP
iD1 .byojRi/P.X j RiP .Ri/

!

(2.11)

P .byojRi/ D
log

�
No

i C 1
�

Pm
oD1 log

�
No

i C 1
� ; (2.12)



2 Motor Fault Detection and Diagnosis Based on a Meta-cognitive Random. . . 31

where No
i represents the number of populations of the ith cluster falling into the oth

class, and p.byojX/input is the Bayesian class posterior probability in the input space.
This measures the degree of class overlap as a result of the use of the class posterior
probability P .byojRi/ in Eq. (2.11). A strong confusion is indicated, as follows:

p.byjX/output
< � or p.byjX/input

< �; (2.13)

where � represents the conflict threshold and is initialized as � D 1
m C 0:2

�
1
m

�

under the assumption that data are uniformly distributed. This condition triggers
the annotation effort of the operator and in turn the training process, because an
operator’s feedback is required in this condition to clear up the strong confusion.
The conflict threshold is adjusted adaptively to be well suited to dynamic data
streams �N C 1 D �N(1 ˙ s),; it increases whenever a sample is accepted for
a training process, whereas it decreases whenever a sample is ruled out from a
training process. Furthermore, a budget B is set during a training process and depicts
the maximum number of labelling processes in the training process. The training
process is terminated and a model is fixed when a budget has finished.

2.3.2.2 How to Learn

The how-to-learn mechanism updates the cognitive component using the passage
of a sample from the what-to-learn mechanism. This mechanism is constructed
by four learning strategies: hidden node growing mechanism, hidden node pruning
mechanism, feature selection mechanism, and parameter learning mechanism.

2.3.2.2.1 Hidden Node Growing Mechanism

This mechanism is equipped with a knowledge-exploratory module that automati-
cally controls the hidden node growth. The new hidden node grows when a sample
incurs sufficient novelty that allows the knowledge base to expand or when it
occupies the most populated region in the input space. The novelty of the datum
can be calculated by the firing strength in the interval type 2 functional NN because
it reflects the degree of compatibility with the current network structure:

FSPC1 D RPC1 C RPC1
2

; (2.14)

where Ri;Ri denote the lower and upper lower firing strengths, as shown in Eq.
(2.6). Nevertheless, the shortcoming of this method is that the outliers are prone to
sitting far away from the zone of influence of the existing hidden nodes because
the firing strength results from a point-to-point calculation without considering the
overall data distribution. To remedy this drawback, the conflict measure should
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encompass information of all historical data without formally keeping them in the
memory, which is impractical in the online learning setting. The firing strength of
the hypothetical rule (PC 1) for all samples is calculated as follows:

FSPC1 D
PN

nD1 RPC1 C RPC1
2N

; (2.15)

where N denotes the number of training sample observations. Eq. (2.15) triggers the
hypothetical cluster [42], which describes a focal point of training data. The inverse
quadratic function, a Gaussian-like function that enables global density, is used to
quantify sequentially. This function is used because of its capability to support
a recursive operation in Eq. (2.15), which could not be supported by a Gaussian
function.

A new hidden node is introduced if the following criterion is met:

FSPC1 > max
iD1;:::;P .FSi/ or FSPC1 < min

iD1;:::;P .FSi/ : (2.16)

The first term of Eq. (2.16), FSPC1 > max
iD1;:::;P .FSi/, shows that the newly created

hidden node lies in a dense region surrounded by most of the other samples. Such
a data point brings advantage to the summarization power of the network structure.
On the other hand, the second term of Eq. (2.16), FSPC1 < min

iD1;:::;P .FSi/, depicts

an input region beyond the coverage of the existing topology. This situation can be
regarded as a precursor to changing learning environments because a new sample
has a very low density. Thus, a datum should be crafted as a new hidden node to
improve the generalization potential of the network structure. The parameters of a
newly added neuron are set as follows:

�
CPC1 D XN ˙�X;

X�1
PC1 D rand.A/;A 2 Ru�u; (2.17)

where the new rule’s centroid is set as a new data sample CPC1 D XN C �X,
CPC1 D XN � �X, where 	X is the uncertainty factor to form the region of
uncertainty. A 2 Ru�u denotes the inverse covariance matrix, randomly generated as
with the RVFL network theory. The eT2RVFLN’s hidden node growing mechanism
is different from the drift detection method [16] because it still retains a single-
model architecture that demands fewer complexities than that of the ensemble
classifier. Furthermore, the hidden node growing mechanism is parameter free and
thus does not depend on a problem-specific threshold.

The new local submodel is set as the local submodel of the winning hidden node
to accelerate the training process, because it is supposed to have an adjacent rela-
tionship with the new node. A large, positive, definite covariance matrix is generated
to emulate the real solution provided by the batched learning scenario [43].

�PC1 D �win; ‰PC1 D !I; (2.18)
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where ¨ defines a large positive constant, set as ‚ D 105, and ‰PC 1 is the new
rule’s output covariance matrix. The local learning principle is applied in the
eT2RVFLN to adjust the local subsystems, each of which is loosely coupled and
has a unique covariance matrix. Therefore, the growth, pruning, and adaptation
of a particular node weakly influences the convergence of other hidden nodes.
Commitment of the structural learning mechanism does not require a special setting
of a global covariance matrix.

The Bayesian concept is used to select the winning hidden node, possessing the
maximum posterior probability as win D arg max

iD1;:::;P
bP .RijX/. The key characteristic

of the Bayesian concept in obtaining the winning hidden node is its prior probability,
where the winning hidden node is extracted in probabilistic fashion. This is practical
to determine the winning hidden node when candidates lie at similar distances from
the sample of interest.

2.3.2.2.2 Hidden Node Pruning Mechanism

The rule-pruning mechanism, namely type 2 relative mutual information (T2RMI),
is adopted in the eT2RVFLN to reduce structural complexity by removing inconse-
quential hidden nodes. This mechanism is based on a modified version of the relative
mutual information (RMI) work [44] to handle an interval type 2 hidden node.

T2RMI is used to recognize mutual information between the hidden node and
the class label. Even though the correlation between a neuron and the target variable
can be measured by both linear and nonlinear approaches, the nonlinear measure
is used in T2RMI because the interaction between two variables is often nonlinear
and cannot be accurately quantified by a linear measure [45]. This correlation is
computed by the symmetrical uncertainty method and carries at least three benefits:
(1) simplicity, (2) low bias for multivalued features, and (3) insensitivity to the order
of two variables [46].

The T2RMI method is defined as follows:

RMI
� QR;Y� D

 
.1 � q/ 2I

�
Ri;Y

�

H
�
Ri
�C H.Y/

C q2I
�
Ri;Y

�

H
�
Ri
�C H.Y/

!

; (2.19)

where I
�
Ri;Y

� D H
�
Ri
�CH.Y/�H

�
Ri;Y

�
is the information gain that represents

the mutual information between the hidden node and the class label. Entropy of
�
Ri
�

is denoted as H
�
Ri
�
; whereas the joint entropy of Ri;Y is denoted as H

�
Ri;Y

�
. This

symmetrical uncertainty computation hovers around [0,1], which shows dependence
between the Ri;Y values, where a value of 0 means that Ri;Y are uncorrelated.

The hidden node is discarded if the following criterion is met:

RMI < mean .RMI/ � 2std .RMI/ ; (2.20)
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where mean(RMI) is the empirical mean of RMI and std(RMI) is the standard
deviation of RMI.

2.3.2.2.3 Online Feature Selection Mechanism

In the concept of online learning, feature selection during preprocessing becomes
unfeasible because of the nature of online learning, which demands a fast and
autonomous process. In eT2RVFLN, an incremental input pruning mechanism is
applied to remove the inconsequential input attributes during the training process
without significantly reducing the generalization process. The incremental input
pruning strategy is built on the analysis of relevance and redundancy based on the
Markov blanket theory [47]. This strategy ensures that the input attribute will never
become important in the future when an input feature carries a Markov blanket to
another input attribute. In other words, it remedies the instability issue in traditional
input pruning methods, which happens as a result of discontinuity. In general,
the input attribute can be categorized by four criteria: irrelevant, weakly relevant,
weakly relevant but nonredundant, and strongly relevant.

The selection process is initialized by measuring the relevance of features by
examining the correlation between input features and the target class. The next phase
is to measure the feature redundancy. These two correlation measures, namely C-
correlation and F-correlation (Eq. [2.19]) are formulated as described just below.

Definition 1 (C-Correlation) [47] Feature xj and class T have a correlation termed
C-correlation and denoted by SU(xj, T). This measure concerns the analysis of
relevance of input attributes.

Definition 2 (F-Correlation) [47] F-correlation, which investigates the correlation
between a pair of features xj, xi(i ¤ j), is used to approximate redundancy and is
denoted as SU(xj, xi).

Note that SU(xj, T) and SU(xj, xi) can be calculated by following the same

formulas as RMI.
�
R;Y/ in Eq. (2.19). C-correlation is implemented to detect inactive

input features that are irrelevant or slightly relevant to the target concept. Irrelevant
features are discarded directly, whereas slightly relevant features are subject to
further investigation using the F-correlation test. That is, mutual information of
input features needs to be evaluated for those features coming through the C-
correlation test, SU(xj, T) � 
 . The value of 
 is set as 0.8, as in ref. 39. Redundant
features are indicated by SU(xj, T) < SU(xj, xi), and any features meeting this
condition are to be pruned without a substantial loss of accuracy. The two-step
strategy aims to alleviate computational cost, because irrelevant features captured
by the C-correlation test are removed without entering the F-correlation test. Both
tests are fully executed in the single-pass mode; this feature differentiates them from
that in the original work [48] and is scalable for online real-time deployment.
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2.3.2.2.4 RVFL Learning Mechanism

The theory of RVFLN was introduced by Huang et al. [49], and its universal
approximation condition was mathematically proven later by Mitra et al. [45]. The
RVFLN is founded under two solid concepts:

1. The RVFL is a universal approximator for continuous functions on a bounded
finite-dimensional set.

2. The RVFL is an efficient universal approximator with a rate of approximation

error convergence to zero of order O
�

C=
p

P
	

, where C is independent of P.

These two theorems hold under strict conditions of the hidden node as well as the
scope of random regions [50], where the hidden node must be absolutely integreable
and an interval of random parameters must be carefully selected—it is impossible
to satisfy universal approximation conditions with any hidden nodes and/or any
intervals. The compact form of the eT2RVFLN is formulated as:
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where ®# is the Moore-Penrose generalized inverse matrix. It is the most widely
known type of matrix pseudoinverse. This matrix is commonly used to find the
minimum (Euclidean) norm solution to a system of linear equations with multiple
solutions. Some methods can be used to calculate the Moore-Penrose generalized
inverse matrix. The orthogonal method can be formed (®T ,®)�1®T if ®T ® is not
singular. Otherwise, the regularization technique should be applied. Note that the
original RVFL network uses the steepest descent algorithm to adjust the output node,
but other research clearly mentioned that a closed-form solution can be applied as
an alternative whenever a matrix inversion is feasible [47].

The aforementioned learning method realizes the scheme of batch learning. This
method assumes that the complete data set is available and can be revisited in
multiple passes. For that reason, fuzzily weighted generalized recursive least squares
(FWGRLS) method is deployed to fine-tune the local subsystem analytically.
FWGRLS constitutes a local learning version of the generalized least squares
method [46]. The cost function of the FWGRLS method is formulated as:

E .�n/ D
NX

n�1

�
.tn � yn/

TR�1n .tn � yn/C 2$� .�n/C .�n ��0/P�10 .�n ��0/
�
;

(2.22)
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where Rn 2 R(2uC 1) � (2uC 1) is the covariance matrix of the modelling error, whereas
�0, !, and �(�n) represent the initial weight vector, regularization parameter, and
generalized decay function, respectively.

The adaptation formulas of FWGRLS are expressed as:

 .n/ D ‰ .n � 1/F.n/

�
R.n/

ƒi.n/
C F.n/‰ .n � 1/FT.n/

��1
(2.23)

‰.n/ D ‰ .n � 1/ �  .n/F.n/‰ .n � 1/ (2.24)

�i.n/ D �i .n � 1/ �$‰i.n/r� .�i .n � 1//C‰.n/ .t.n/ � y.n// (2.25)

y.n/ D xen�i.n/ and F.n/ D @y.n/

@�.n/
D xen; (2.26)

where r�(�i(n � 1)) represents the gradient of the generalized decay function
and ƒi.n/ DD .1 � qo/Ri C qoRi. The quadratic weight decay function is used
as �(�i(n � 1)) D 0.5�i(n � 1)2 to proportionally lower the weight vector to its
current value. The Hessian matrix Rn 2 R.2uC1/�.2uC1/ is used in generalized least
squares, and ! is set as ! D 10�15. This approach can be extended to the chunk-by-
chunk adaptation scheme with ease.

2.3.2.3 When to Learn

The training sample is assigned as a reserved sample (XSN , TSN), given that the
following criterion is observed:

min
iD1;:::;P .FSi/ � FSPC1 � max

iD1;:::;P .FSi/ and YN D tN : (2.27)

This condition shows that a datum does not carry urgent information to the
system and that the classifier is confident of its own prediction. Nevertheless, some
samples may be important in updating the model later to fill the gaps uncovered
by underlying training samples. Such samples are put into a buffer and are used
after fully depleting centric training samples. In practice, because of the nature of
data streams, which may be unbounded, reserved samples are consumed when the
system is in the idle mode, and the training process is terminated when the number
of reserved samples is constant.
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2.4 Experimental Design

Five motors comprise one healthy and four faulty motors, which have symptoms of
broken rotor bars, unbalanced voltage, stator windings, and eccentricity problems;
these are measured to record the stator currents’ signals. In all faulty motors,
various biasing values of unbalanced voltages, turn shorts, eccentricity, and load
were operated as described in Table 2.2.

The objective of this case study is to detect and classify five different induction
motor conditions using our eT2RVFLN algorithm. Because an induction motor is
characterized as a hybrid system and its signals are generated continuously, which
leads to a problem with big data and its famous 4 Vs, eT2RVFLN, which has the
capability to evolve and adapt to the new pattern, is proposed to solve this problem.
eT2RVFLN is designed to cope with four issues: complexity, uncertainty, concept
drift, and high dimensionality. It is an extremely fast training process with simple,
fast, and easy-to-use attributes. It is a meta-cognitive learning policy: the what-
to-learn, how-to-learn, and when-to-learn portions represent the effective online
process of machine learning. To compare algorithm performance, four classifiers,
namely eTS [51], simpl_eTS [52], DFNN [53], and FAOSPFNN [54], are compared
in our experiment.

Data are collected by acquiring current signals of three-phase stator currents from
five different induction motor conditions in the real experiment: healthy (or fault-
free), broken rotor bar, unbalanced voltage, stator winding fault, and eccentricity
problem. For comparison purposes, various scenarios are applied to the faulty
motors by biasing one of three-phase unbalanced voltages, turn shorts, eccentricity,
and load. The scenario of biasing values applied to each type of faulty motor is
described in Table 2.2. The data collection procedure is depicted in Fig. 2.5, which
based on the work of Seera et al. [20].

To acquire stator current signals, a three-phase power supply powers the induc-
tion motor and is connected to the oscilloscope using three current probes. This
oscilloscope captures signals and feeds the data in real time to a server in the station
room. Data are transformed to the frequency domain using the PSD technique.
The PSD method comprises the 1st to the 19th harmonic, each of which is formed
using a 1000-Hz frequency spectrum. To balance the three-phase system, the triple
harmonic voltages should be disabled. However, this condition depends on machine
supply and constructional imbalances.

Table 2.2 Biasing values
applied in the experiment to
each type of faulty motor
condition

Operation Value
Three-phase unbalanced
voltages 5% and 10%
Turn shorts 10%
Eccentricity 30% dynamic and 10% static
Load 25%, 50%, 75%, and 100%
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Fig. 2.5 Data collection procedure

Features were selected using expert knowledge to extract only 7 of 19 harmonics:
the 1st, 5th, 7th, 11th, 13th, 17th, and 19th harmonics from each phase current A,
B, and C, leading to 21 total input features. Data were normalized to ensure the
stability of the adaptation phase. The eT2RVFLN analyzed the data pattern using
these 21 input features and built the data model continuously to detect and diagnose
any faults of the induction motor by classifying the data into five different classes of
induction motor conditions: healthy, broken rotor bars, unbalanced voltages, stator
winding faults, and eccentricity problems.

2.5 Numerical Results

The experimental framework was carried out under the following computer
specifications: Intel Core i7-6700 CPU at 3.4 GHz and with a 16-GB memory.
All simulations were run under MATLAB R2016a win-64. Our algorithm
(eT2RVFLN) is benchmarked with four other algorithms—eTS, simpl_eTS, DFNN,
and FAOSPFNN—for the following reasons:

1. DFNN and FAOSPFNN are used because of their ability to automatically
generate rules but are semievolving classifiers because they still work under a
batched learning scenario.

2. eTS and simpl_eTS are used to compare against eT2RVFLN because of its
evolving characteristic. However, both of them still apply the type 1 hidden node
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featuring crisp and certain properties. Neither of them implement the three pillars
of meta-cognitive learning, namely what to learn, how to learn, and when to learn.

Data are randomly shuffled and partitioned into two parts: training (70%) and
testing (30%). Two types of data are used, namely clean data and noisy data, the
latter of which result from the addition of 20-dB noise. The algorithm performance
is measured against three criteria: learning time, number of rules, and classification
rate in the testing samples. In addition, 50-fold random permutations were also
carried out as another experimental procedure to examine the consistency of the
eT2RVFLN. Table 2.3 portrays the classifiers’ performance using clean and noisy
data without random permutation, whereas the numerical results with random
permutation are listed in Table 2.4. Both experiments in Tables 2.3 and 2.4 are
conducted with input pruning procedure. By contrast, Tables 2.5 and 2.6 show the
same steps of the experiments conducted in Tables 2.3 and 2.4, but without the input
pruning procedure.

Referring to Tables 2.3 and 2.4, eT2RVFLN obviously generates accuracy
comparable to that of the other algorithms and causes much lower complexity than
the other algorithms in both clean and noisy data, although this is only slightly

Table 2.3 Performance comparison of induction motor data set classification using the eT2RVFLN
with four other benchmarked algorithms without random permutation but with input pruning

eTS DFNN FAOSPFNN eT2RVFLN simpl_eTS
Performance of data test Clean Noisy Clean Noisy Clean Noisy Clean Noisy Clean Noisy

Classification rate
(testing)

1 0.71 1 0.7 0.55 0.217 0.978 0.637 1 0.643

Learning time 0.254 0.308 0.152 0.151 0.13 0.13 0.065 0.086 0.0375 0.0374
Training samples 140 140 140 140 140 140 93 94 140 140
Input attributes 21 21 21 21 21 21 20 19 21 21
Number of rules 9 9 1 1 8 12 1 1 1 1

Table 2.4 Performance comparison of induction motor data set classification using the
eT2RVFLN with four other benchmarked algorithms, with 50-fold random permutation and input
pruning

eTS DFNN FAOSPFNN eT2RVFLN simpl_eTS
Performance of
data test Clean Noisy Clean Noisy Clean Noisy Clean Noisy Clean Noisy
Classification rate
(testing) 0.996 0.834 0.998 0.702 0.563 0.273 0.97 0.836 0.979 0.702
Average learning
time (s) 0.234 0.235 0.151 0.152 0.61 0.86 0.08 0.073 0.039 0.039
Average training
samples 140 140 140 140 140 140 140 140 140 140
Average input
attributes 21 21 21 21 21 21 19.9 20.8 21 21
Average number
of rules 9.26 9.28 1 1 25.6 38 1.14 1.02 1 1
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Table 2.5 Performance comparison of induction motor data set classification using the
eT2RVFLN with four other benchmarked algorithms, without random permutation and without
input pruning

eTS DFNN FAOSPFNN eT2RVFLN simpl_eTS
Performance of
data test Clean Noisy Clean Noisy Clean Noisy Clean Noisy Clean Noisy
Classification rate
(testing) 1 0.817 1 0.6833 0.917 0.717 1 0.85 1 0.683
Learning time 0.254 0.308 0.221 0.159 0.056 0.134 0.0651 0.0697 0.0375 0.0374
Training samples 140 140 140 140 140 140 140 140 140 140
Input attributes 21 21 21 21 21 21 21 21 21 21
Number of rules 9 9 1 1 4 6 1 1 1 1

Table 2.6 Performance comparison of induction motor data set classification using the
eT2RVFLN with four other benchmarked algorithms, with 50-fold random permutation but without
input pruning

eTS DFNN FAOSPFNN eT2RVFLN simpl_eTS
Clean Noisy Clean Noisy Clean Noisy Clean Noisy Clean Noisy

Classification rate
(testing) 0.99.6 0.834 0.998 0.7020 0.943 0.823 1 0.838 0.979 0.7023
Average learning
time (s) 0.234 0.235 0.148 0.153 0.048 0.129 0.0694 0.078 0.039 0.039
Training samples 140 140 140 140 140 140 140 140 140 140
Input attribute 21 21 21 21 21 21 21 21 21 21
Average number
of rules 9.26 9.28 1 1 3.68 9.32 1 1.02 1 1

lower than that caused by simpl_eTS. It is worth noting that these experiments apply
an input pruning procedure for eT2RVFLN, which slightly decreases the accuracy.
In general, under the 50-fold random permutation procedure, the accuracy of the
eT2RVFLN, as well as that of the other algorithms, increases slightly.

The data used in the experiment without random permutation (Tables 2.3 and 2.5)
are original ordered data. This means that every class is trained in order, whereas
in other experiments (with random permutation; Tables 2.4 and 2.6), the rows are
shuffled, which generates better generalization.

Referring to Tables 2.5 and 2.6, eT2RVFLN obviously outperforms the other
algorithms in both experiments (under clean and noisy data) in terms of accuracy.
These experiments were carried out without sample deletion and input pruning.

In general, algorithms such DFNN and FAOSPFNN present a batched learning
scheme that is hardly scalable to cope with a fast sampling rate, although the
DFNN delivered the second highest classification rate (after eT2RVFLN; Table 2.6)
over its counterpart. The eT2RVFLN possesses online dimensionality reduction,
which is capable of substantially alleviating network complexity by deleting poor
input attributes. In addition, the eT2RVFLN also uses fewer samples during the
training process. This is shown in Table 2.3; it uses 20 and 19 attributes, and
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Table 2.7 Module complexity for four benchmarked algorithms

Algorithm Module complexity

eTS O(P(mC nC 1)C (mC n)C ¡(P(mC nC 2)))
Simpl_eTS O(P(mC nC 1)C 2(mC n)C ¡(P(mC nC 1))C P)
DFNN O(P(NmC m))
FAOSPFNN O(P(Nm))

93 and 94 samples, for the experiments using clean and noisy data, respectively.
This mechanism has a positive impact on the numerical results, where it attained
the lowest number of input features. Unlike other consolidated algorithms, the
eT2RVFLN imposed the lowest sample consumption because inconsequential data
streams can be detected and ruled out from the training process. This mechanism
is proven effective to speed up execution time, which is reflected in our numerical
results. In terms of speed, the eT2RVFLNN experienced the second best run times
in comparison with simpl_eTS. However, the execution times shown in both Tables
2.3 and 2.4 are the average running time for every single datum. The average
running time for learning the entire data set will be faster because of the deletion of
inconsequential data streams during learning.

The computational complexity of the eT2RVFLN can be obtained by analyzing
the computational cost of each learning module. In the what-to-learn module, the
computational burden of WTND O(mP). The how-to-learn module shows the com-
putational power of HTN D O(P C m C 2Pm C n2m C ((n C m) C P(n C 2m))),
whereas the when-to-learn module costs the computational complexity of
WETN D NS � HTN. The complexity of the eT2RVFLN with all modules
is WTN C ¡(HTN) C WETN, where ¡ represents the probability of data
streams admitted as training samples. The computational complexity for the other
benchmarked algorithms are summarized in Table 2.7.

P represents the number of rules, whereas N, n, and m represent the number of
historic data, the number of variable inputs, and the number of variable outputs,
respectively. Table 2.7 shows that, based on computational cost, the eTS and
simpl_eTS are more economical than the DFNN and FAOSPFNN. This is because
DFNN and FAOSPFNN retrain all data in every iteration, which causes higher
complexity in comparison with the learning procedure of eTS and Simpl_eTS,
which train incoming data in a single-pass mode.

2.6 Conclusion

This chapter proposes a new approach for detecting and diagnosing induction motor
faults online based on a recently developed meta-cognitive learning algorithm,
namely the eT2RVFLN. Real-time experiments using a laboratory-scale test bed
was undertaken; sensor data were collected and preprocessed while relevant features
were extracted. The advantage of the eT2RVFLN is obvious for online fault
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detection: it deploys three learning scenarios—what to learn, how to learn, and
when to learn—in the strictly online environment. The what-to-learn and when-
to-learn schemes make it possible for training samples to be significantly reduced
and for training samples to be effectively managed, which improves predictive
accuracy. The how-to-learn phase itself offers a combination between evolving and
random learning perspectives, leading to a fast, easy-to-use, and flexible model. The
advantage of our approach to detect faults was experimentally validated in the online
detection of induction motor faults, where it delivered convincing performance in
accuracy, scalability, and simplicity.
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Chapter 3
Optimal Adaptive Threshold and Mode
Fault Detection for Model-Based Fault
Diagnosis of Hybrid Dynamical Systems

Om Prakash, A. K. Samantaray, and R. Bhattacharyya

3.1 Introduction

Fault Detection and Isolation (FDI) plays a crucial part in the health monitoring
of engineering systems to ensure their safety, reliability and maintainability [1–3].
FDI of Hybrid Dynamical Systems (HDS) is complicated because the dynamical
behaviour of such systems includes family of continuous dynamics in which each
continuous dynamics is triggered by a specific combination of discrete modes
(supervisory controller mode or autonomous mode). Examples of HDS are embed-
ded systems, hydraulic systems with controlled actuators, pressure relief valves,
check valves, and switched electrical/electronic systems, etc.

In model-based quantitative FDI, residuals are the main indicators of any
inconsistency in the system’s operation. Generally, any non-zero value of residual
indicates a fault, but residual also shows a non-zero value due to modelling,
parameter and measurement uncertainties involved in the system. Thus, to dis-
tinguish a fault from the uncertainties effects, usually, interval model-based and
statistical testing-based methods are employed [4]. In the model-based quantitative
FDI, interval-based technique is widely preferred for the generation of residual
threshold. This technique is suitable for FDI when the uncertainties distribution of
the parameters and the measurements are unknown, but their bounds are known.
Thus, when a system operates according to its expected behaviour generated from
a model then the residuals also remain bounded within generated set of designed
thresholds. The thresholds are designed by accounting for the modelling errors,
parameter uncertainties and measurement noises. A robust diagnosis system design
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tries to strike a balance between the misdetection or delayed detection of fault and
false detection. Misdetection refers to inability to detect the presence of a fault
whereas false detection refers to detecting a fault where it is actually absent.

Usually, the residual thresholds for robust diagnosis are generated based on the
worst case conditions of the model, parameter and measurement uncertainties. Such
thresholds are called adaptive thresholds in which summation of absolute values
of the contributions from all parametric uncertainties is taken together with an
additional small static threshold needed to account for measurement noises. The
parametric uncertainties arise out of measurement of system parameter values either
directly or through parameter estimation. Also, parametric uncertainties can include
the unknown direction drifts of the parameter values after long time operation since
the last time when those parameter values were explicitly measured or estimated.
The adaptive threshold is robust because it considers that all parameters can have
maximum possible deviation in arbitrary direction, i.e. either higher or lower than
the corresponding estimated parameter values. This inflates the threshold and for
small faults, the residual may not cross the threshold. For larger faults, the time
taken to cross the threshold may be significant leading to detection delay.

In model-based quantitative FDI, various methods exist for residual genera-
tion like Analytical Redundancy Relations (ARRs)-based, observer-based, parity
relation-based and parameter estimation-based methods [5]. Among the various
existing methods, ARRs-based method is more popular for residuals and thresholds
generation. In fact, these can be easily derived using Bond Graph (BG) modelling
technique. BG is a multi-energy domain modelling tool [6–8] which is useful
for integrated system design and provides a common framework for modelling,
simulation, controller development and diagnosis system development. For HDS,
Global-ARRs (GARRs) are used in place of ARRs. GARRs are valid at any working
mode of the system and can be obtained from the Hybrid BG (HBG) model as
proposed in [5, 9–12]. ARRs or GARRs are expressions for model constraints and
residuals are their numerical values when those are evaluated using the measured
data and nominally known parameter values.

For the uncertain dynamical system, the existing approaches propose the adaptive
threshold as an uncertain part of ARR and decouple the certain/nominal part
of the ARR from its uncertain part. The numerical evaluation of nominal part
yields nominal residual and that of the uncertain part gives the numerical residual
thresholds. This kind of ARR and threshold partitioning is easily implemented in
BG modelling tool using the concept of Linear Fractional Transformation (LFT)
[13–15]. In fact, the dynamic model, its simulation, ARR and threshold equations
derivation can be done using the common BG modelling framework, which is used
in this chapter.

The fault isolation depends on the fault signatures observed due to a fault. A fault
signature is an encoding of the set of residuals which behave abnormally due to a
certain fault. If the fault signature due to a specific fault is different from all other
fault signatures due to other faults then the specific fault can be isolated. Thus, fault
isolation is possible only when a specific fault causes deviations in specific residuals
in some specific manner from which a reverse one-to-one mapping between the
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residual responses linking to faults can be uniquely established. Sensor placements
can be used to design residuals that are structured, i.e., all fault signatures are
different from each other. BG model-based approach is useful in designing the
sensor placements which give structured residuals.

In a HDS, isolation and identification of true faults are the other key issues
after detecting a fault. This is much more complicated in comparison to continuous
dynamic systems because the discrete mode fault may occur besides or together
with a parametric fault in such a system [16–18]. Examples of discrete mode faults
are switch failure, valve stuck on/off fault, control command communication fault,
mode transition failure, etc. Fault detection due to discrete mode fault is usually
easy since it produces significant changes in the system dynamics. But the fault
isolation is tricky since the discrete mode fault in a component shares the same fault
signature as the partial/full parametric fault associated with the same component.
This isolation task also gets more complicated when more than one components
share the same fault signature, i.e., there is no unique mapping between the observed
fault symptoms to the faults. Thus, a Set of Suspected Faults (SSF) is usually
generated. SSF includes the unknown actual faulty parameter along with some other
parameters whose faults give rise to the same fault signature as that by the actual
faulty parameter.

When the fault effects are indistinguishable from fault signatures alone, parame-
ter estimation of elements in SSF has been proposed for fault isolation [5, 19–22].
However, the inclusion of discrete mode faults in the SSF complicates the parameter
estimation task. For any fault occurring in the system, we need to first confirm
whether the residual inconsistency is due to a mode fault or due to a parametric fault.
If the inconsistency is due to a discrete mode fault then the parameter estimation
is irrelevant and the process needs to be reconfigured or shutdown. If the residual
inconsistency is confirmed to be not due to a discrete mode fault then it is assumed
to be due to a parametric fault and the discrete fault parameter can be removed
from the SSF. Then parameter estimation is required to estimate the magnitudes of
the remaining parameters in the SSF with known mode information. Thus, the core
objective of HDS fault diagnosis scheme is to discriminate between the discrete
mode fault and parametric fault and to isolate the true fault with estimation of
its severity so that the decisions regarding the fault accommodation or system
reconfiguration can be appropriately taken.

Some recent research based on BG approach which address the generation
of robust thresholds for improving fault diagnosis can be found in [23, 24]. In
[23], BG-LFT model along with Interval Extension Functions (IEF) technique is
used for the generation of robust optimized threshold. The method was tested and
demonstrated on a continuous dynamical system through simulation and showed
improved detectability. However, in [24], the problem of false detection due to all the
sensitive residuals remaining bounded within their respective threshold at the same
time in presence of a small fault is discussed. Therein, multi-thresholds generation
technique by using the residual sensitivity relations is proposed as a solution. Also,
in [25], a technique for the selection of a subset of most sensitive residuals to the
fault among many residual candidates based on sensitivity analysis is discussed
to improve fault detectability and isolatability with the objective of minimizing
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false alarms. But, this technique is valid only when more numbers of residuals
are sensitive to a particular fault. These approaches have focused on a parametric
fault in a continuous dynamical system only. Few works reported for improving
FDI for the HDS can be found in [16, 26–31]. In [16], ARR set obtained from
GARRs is used for mode tracking in the presence of parametric fault in the HDS. In
[26], incremental BG method and ARRs-based approach are used for the generation
of mode-dependent adaptive threshold and for mode identification, respectively. In
[27], sensitivity signature matrices for both discrete mode fault and parametric fault
are proposed for improving fault isolatability. In addition, a technique for residual
filtering is presented to account for various uncertainties involved in the uncertain
HDS. However, threshold generation scheme is not properly discussed. Moreover,
the proposed approach only provides the set of suspected discrete and parametric
faults after fault diagnosis, but how to isolate the true faults among suspected
candidates is not discussed there. In [28, 29], a notion of hybrid possible conflicts
is introduced for improving FDI of HDS. For this, HBG technique is utilized to
decompose the model into various sub-models and the respective sub-model is
used for the identification of a discrete or a parametric fault. In [30], parity space
method is used for the residual generation while the set-membership identification
approach based on zonotopes is used for the adaptive threshold generation. In
[31], worst case adaptive threshold is used for robust diagnosis and only additive
fault in the measurement is considered. Other approaches based on decentralized
diagnosis architecture and machine learning techniques to discriminate discrete and
parametric fault for HDS can be consulted in [32] and [33], respectively.

The primary objective of this chapter is to optimally select the adaptive thresholds
by using the residual from the known healthy system state to account for the real
uncertainties such as small drifts in parameter values in the running system. This
means, after offline design of the FDI system, training in the healthy state of the
real system is required. In addition, we propose to discriminate between parametric
faults and discrete mode faults by an initial hypothesis based on the magnitude of
the residuals. The hypothesis is then validated using further formal procedures. In
the present work, we assume that only single fault (parametric fault or discrete mode
fault) occurs in the system at any instant. In addition, we also assume that response
of residual due to any parametric fault is different from the any suspected discrete
mode fault in the system. This is the similar assumption considered in [16]. For
example, response of residual due to partial blockage fault in an on-off valve and
discrete mode fault like valve stuck-off fault should be different. The symptoms
uncertainties are not considered in this work. It is assumed that all the residuals
sensitive to the fault violate their thresholds and all fault symptoms are observed
in the residuals. Readers may refer [34–37] which consider symptoms uncertainties
effects during diagnosis of continuous dynamical systems.

The remaining parts of the chapter are organized as follows. In Sect. 3.2,
BG and HBG modelling techniques are briefly discussed. Section 3.3 introduces
the HBG-based residual, adaptive threshold generation and common terms used
in the FDI. Moreover, it also presents the techniques for optimal selection of
adaptive thresholds and discrete mode fault identification. Section 3.4 deals with
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application of the proposed diagnosis and thresholding techniques on a hybrid two-
tank system through numerical simulation. Finally, Sect. 3.5 gives main conclusions
and perspectives.

3.2 Bond Graph

Bond Graph (BG) is a unified multi-energy domain modelling approach for multi-
physics energetic systems [6, 8]. BG is a graphical language. A BG model is
an interconnected graph of different generic elements as nodes and the edges
between the nodes are called bonds. These generic elements and their definitions
are briefed in Table 3.1. The elements are used for representing the sources and

Table 3.1 Definitions of the generic BG elements
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the components associated with multi-energy domain system by using a lumped
parameter modelling framework. The generalized elements are two active sources
(Se, Sf ), three passive elements (R, C, I), four power conservation junctions (TF,
GY , 0-equal effort and 1-equal flow) and two detectors/sensors (De, Df ). Each
power bond is associated with two generalized power variables, i.e. effort (e) and
flow (f ) variables, and product (e � f ) of these variables gives power in the respective
bond. These power variables represent different variables in different domains.
For instance, in hydraulic domain, pressure and volume flow rate (or mass flow
rate, when density is constant) are represented as effort and flow power variables,
respectively.

In the causalled BG model, half arrow in a bond indicates an assumed direction
of power flow and perpendicular line at the end of a bond is a causal stroke which
describes the mathematical or computational causality. In the causalled power bond,
the effort (e) information is directed towards the causal stroke end whereas the
flow (f ) information is directed in the opposite direction. Also, the full arrow in
a bond indicates the signal/information transmitted by the element such as sensor,
integrator, etc. The causal and structural properties of BG allow a systematic way
of equations generation for study of system dynamics and rule development for
fault diagnosis of the system. The causal forms of various BG elements, their
corresponding causal equations and block diagrams, and the causality assignment
rules are given in Table 3.2. For example, computation form of an electric circuit
model which consists of voltage source Se:V and resistor R (shown in Fig. 3.1a) is
represented by the causal BG model in Fig. 3.1a1 and by block diagram in Fig. 3.1a2.
A fixed causality is used for voltage source Se, i.e. it gives the effort V to resistor R
and receives the current i D V=R which is the output of R. Likewise, computation
form of an electric circuit model which consists of current source Sf :i and resistor
R (shown in Fig. 3.1b) is represented by the causal BG model in Fig. 3.1b1 and by
block diagram in Fig. 3.1b2. A fixed causality is used for current source Sf , i.e. it
gives the flow i to resistor R and receives the effort V D iR which is the output of R.

Two passive elements (C and R, respectively) used for modelling hydraulic tank
and valve are shown in Fig. 3.2. The constitutive laws, respectively, for C and R are
stated as

ˆCWP D g

A

Z
. Pmin � Pmout/ � dt Š e D 1

C

Z
f � dt; (3.1)

where P is the pressure, A is cross section area of tank, g is acceleration due to
gravity, Pmin and Pmout are the rate of mass inflow and outflow, respectively.

ˆRW Pm D
(

Cd
0A�

q
2.P1�P2/

�
D Cd

p
�P for nonlinear case;

Cd
0A�.P1 � P2/ D Cd�P for linear case:

(3.2)

where C0d and Cd are the actual and equivalent discharge coefficient of the valve,
respectively, �P is the pressure drop across the valve and � is the density of liquid.
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Table 3.2 Causality assignment for BG elements
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Fig. 3.1 Causalities in BGs. (a) Effort is known for R. (b) Flow is known for R

Fig. 3.2 (a) Hydraulic tank. (b) BG model of hydraulic tank. (c) Hydraulic valve. (d) BG model
of hydraulic valve

3.2.1 Hybrid Bond Graph (HBG) Model

The extended form of BG technique, called HBG technique [12], is well-suited for
modelling of HDS by using the concept of assigning preferred causalities to all
energy storage elements and switched junction elements. Since HDS has different
dynamics in different modes, its model structure changes due to mode change.
However, using preferred causalities in HBG model, all active BG elements in
single global model remain active in any working mode without reassigning any
new causality to the model.

For example, consider the hybrid hydraulic system shown in Fig. 3.3. The system
consists of a hydraulic pump, tank T1, linear valve (V1) and drain pipeline (L1). The
valve V1 is controlled in open and closed state by a supervisory controller. The
water pressure in tank T1 is measured by the pressure sensor P1(t). The dynamics
of considered system includes the combination of both controlled and autonomous
discrete events that change the configuration of the system. The controlled discrete
event occurs due to the external command signal (aV1) given by the supervisory
controller to the valve V1. Autonomous discrete events occur due to change in
internal state or variable of the system. Here, the autonomous discrete event (aL1)
occurs at particular pre-set condition for drain pipeline L1, i.e. when pressure P1(t)
exceeds pressure �gHL1 corresponding to height HL1.
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Fig. 3.3 Schematic of hybrid
tank system
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Fig. 3.4 HBG model of
hybrid tank system
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The HBG model of the considered hybrid system (Fig. 3.3) is presented in
Fig. 3.4, where tank T1 capacity (CT1 D A=g, A is cross section area of tank),
and valve V1 with the connected pipe and drain pipeline L1 are modelled by one
C-element and two R-elements, respectively; and pump flow (QP) is modelled by
MSf -element. Output sensor P1(t) is modelled by effort detector De. In Fig. 3.4,
the C-element is assigned with preferred integral causality while the resistors (RV1

and RL1) at switched junctions are assigned with preferred conductive causalities. 1-
junctions with subscripts aV1 and aL1 are switched junctions related with discrete
events. The flow through the corresponding switched resistors (RV1 and RL1) is
activated only at their active modes (ai D 1), otherwise there is no flow through
these elements at their inactive modes (ai D 0). In any mode, the assigned
causalities of the model are always valid, and hence it is called the global model
of the HDS.

3.3 Diagnostic HBG Model for Uncertain System

Diagnostic Bond Graph (DBG) technique [38] is employed to directly derive the
ARRs from the model. In a DBG, the causalities of the sensor elements are inverted,
i.e., the measured data is assumed to be known and the constraint errors, i.e.,
ARRs, become the outputs of the model. Moreover, the storage elements in the
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Fig. 3.5 (a) Ideal flow detector in HBG. (b) Dualized flow detector in DHBG. (c) Ideal effort
detector in HBG. (d) Dualized effort detector in DHBG

model are assigned differential causality, i.e., the constitutive relations are written
in derivative form instead of integral form used in a normal BG for simulation.
An extended form of DBG adapted for HDS is called Diagnostic HBG (DHBG)
[39] and its outputs are the GARRs. DHBG is well-suited for HDS monitoring.
The uncertain system is always associated with both multiplicative (parametric) and
additive (sensor noise/measurement) uncertainties. For robust diagnosis, residuals
generated from the GARRs are bounded within some time varying thresholds, called
adaptive thresholds and are derived from DBG-LFT form model [13–15]. Also,
adaptive threshold varies with discrete mode transition in HDS as presented in [26].
Thus, DHBG-LFT form model is used here and it is generated by dualizing the
flow detector Df and effort detector De of HBG model into imaginary modulated
source of flow Msf 0 and modulated source of effort Mse0, respectively (as presented
in Fig. 3.5). This is equivalent to changing the causalities of the sensors. Also, all
the storage elements (C and I) are assigned with preferred derivative causalities
to eliminate the initial conditions of the states from the GARRs expressions. In
addition, the nominal parts of the parameters and measurements are decoupled from
their uncertain parts by using the BG elements in LFT form model.

3.3.1 Modelling Parameter Uncertainty

Generally, parameter uncertainties arise out of measurement of system parameter
values either directly or through parameter estimation. It may as well be considered
that deviations in parameter values may occur over long use of the components
and the relative limits on such deviations are known. Thus, the ideal parameter of
the system is unknown. It may be assumed that the measured/estimated parameter
lies within a known bounded interval around the ideal parameter value and can be
written as

�j D �jn ˙��j

or �j D �jn.1˙ ı�j/ (3.3)
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Fig. 3.6 BG-LFT model of uncertain � (a) receives flow and returns effort causal form (b) receives
effort and returns flow causal form

where ��j and ı�j D .��j=�jn/ denote absolute and relative deviations of nominal/
ideal parameter value �jn, respectively, �j 2 fI;C;R;TF;GYg.

DHBG-LFT form technique is used to model the parameter uncertainty of the
uncertain HDS system. In this technique, the ideal parameter �jn is decoupled from
its uncertain part ˙��j. The uncertain part is handled as a disturbance either in the
form of additional effort or flow which depends on the kind of BG element and its
causal structure in the model. In DHBG model, parameter �j 2 .I/ and �j 2 .C/
must take the causal structures as presented in Fig. 3.6a and b, respectively, while
�j 2 .R/ may take any form of causal structure as presented in Fig. 3.6a or b. In
Fig. 3.6, J 2 f1; 0; 1sw; 0swg denotes junction element which may be a normal or
switched junction element. According to causal form presented in Fig. 3.6a, the
additional disturbance in the form of modulated source of effort .MSe0W ˙ w��/

is brought to the junction-1 by multiplying the relative deviation .�ı��/ with the
nominal effort (e�n) measured by an imaginary effort detector .De0Wz��/. Likewise,
according to causal form presented in Fig. 3.6b, the additional disturbance in the
form of modulated source of flow .MSf 0W ˙ w��/ is brought to the junction-0 by
multiplying the relative deviation .�ı��/ with the nominal flow (f�n) measured
by an imaginary flow detector .Df 0Wz��/. Note that subscript �� depends on the
constitutive law of respective element. For instance, let us consider the �j 2 .R/ in
the conductive causality which is represented in form as presented in Fig. 3.6b. If
the true parameter value of a resistor R is not known exactly, it can be expressed
as Rn ˙ �R D Rn.1 ˙ ıR/, where Rn denotes nominal parameter value and
˙�R D ˙ıRRn is the uncertain part of R. The constitutive law of linear R-element
modelled in conductive causality is given as

fR D 1

Rn ˙�R
eR D 1

Rn

�
1� ı1=R

�
eR D eR

Rn
� w1=R D fRn � w1=R (3.4)
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where .�ı1=R=Rn/eR D � w1=R is the additional contribution of flow because of the
uncertain part of the parameter and may be treated as a disturbance. Note that ı1=R

is the uncertainty in estimating the value of conductance 1/R.
Likewise, other BG-elements (TF and GY) with uncertainties in the parameter

values can be modelled by using BG-LFT form [14].

3.3.2 Modelling Measurement Uncertainty

The ideal sensor measurement can also be assumed to lie within a known bounded
interval and can be written as

Yi D Yin ˙�Yi (3.5)

where Yin denotes nominal/ideal measurement of the sensor and �Yi denotes
measurement uncertainty. Yi 2 fMsf 0;Mse0g corresponds to detectors Df and De,
respectively, of the uncertain HBG model.

The uncertain flow measurement part ˙�f 0 and effort measurement part ˙�e0
are also decoupled from their nominal flow part f 0n and effort part e0n, respectively,
and are modelled with the imaginary flow source Msf 0 and effort source Mse0 at the
respective junctions [15] as shown in Fig. 3.7a and b, respectively. Note that flow
detector can be placed only at a common flow junction (1-junction) and the effort
detector can be placed at a common effort junction (0-junction). Thus, nominal Msf 0
and Mse0 occur at 1 and 0 junctions, respectively. According to Fig. 3.7a and b
with the measurement uncertainties in flow and effort sensors, respectively, flow
and effort in the bond numbers 1, 2 and 3 are obtained as f 0n ˙ �f 0 and e0n ˙ �e0,
respectively. These information are, likewise, propagated to the rest of connected
bonds at the respective junctions in the model. However, this is an unnecessary
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Fig. 3.7 (a) Uncertainty modelling of flow detector. (b) Uncertainty modelling of effort detector
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exercise to add uncertain flows and efforts to all bonds connected to the main
junction with the sensor; instead the uncertain part can be directly added to the
nominal measurement value as a separate parameter.

Readers may refer [14] and [15] for more details for modelling the multiplicative
(parametric) and additive (sensor noise/measurement) uncertainties by using BG
tools.

3.3.3 ARR/GARR and Adaptive Threshold

DHBG-LFT model is used here to derive the equations for the GARRs and adaptive
thresholds in the robust fault diagnosis. The general form of GARRi.U;Y;�;MD/
of an uncertain HDS may be expressed as

GARRni.U;Y;�;MD/˙ .i C Si/ D 0 (3.6)

where GARRni, i and Si represent the nominal residual (rni) (i D 1; 2; : : : ; n; n
is the number of residuals), uncertain part due to parameter uncertainties and small
static uncertain part needed to account for measurement uncertainties, respectively.
Also, U 2 fSen; Sfng denotes known nominal input vector, Y 2 fMsen;Msfng
denotes nominal measurements (dualized to sources due to causality inversion),
� D Œ�1; �2; : : : ; �j; : : : ; �p�

T denotes a known parameter vector comprising p
number of nominal parameters, MD = Œa1; a2; : : : ; ak; : : : ; am�

T denotes the switched
junction mode vector comprising m number of discrete parameters, ak 2 f0; 1g and
i 2 w�j , Si 2

˚
wMse0 ;wMsf 0



.

For example, the DHBG-LFT model of the hybrid tank system (Fig. 3.3) is
presented in Fig. 3.8, where the effort detector DeWP1 of HBG model (Fig. 3.4) is
dualized into Mse0WP1. Also, the nominal part of the parameters CT1, CdV1 and CdL1

are decoupled from their uncertain parts by using ˙ıCT1 , ˙ıCdV1 and ˙ıCdL1 as
multiplicative uncertainties, respectively [14]. In addition, nominal part of output
measurement .P1/ and input measurement .QP/ are decoupled from their uncertain
parts as additive uncertainties ˙�P1 and ˙�QP at the respective junctions [15].
The imaginary flow detector .Df �/ (corresponding to pressure sensor P1 in Fig. 3.8)
is used to derive a nominal GARR and an adaptive threshold as

Df � D f25 D f8 D f5�f6�f7�f9 D f2�.f16�f17/�.f22�f23/�.f14�f13/ D 0; (3.7)

where f2 D QP ˙ �QP; f16 D CT1
d
dt .P1 ˙ �P1/; f17 D �wCT1 D ˙CT1

d
dt .P1 ˙

�P1/ � ıCT1 D ˙ıCT1 CT1
d
dt .P1/; f22 D aV1CdV1.P1 ˙ �P1/; f23 D �wCdV1 D

˙aV1CdV1.P1 ˙ �P1/ � ıCdV1 D ˙aV1ıCdV1 CdV1P1; f14 D aL1CdL1f.P1 ˙ �P1/ �
�gHL1g; and f24 D �wCdL1 D ˙aL1CdL1f.P1 ˙ �P1/ � �gHL1g � ıCdL1 D
˙aL1ıCdL1 CdL1.P1 � �gHL1/:



58 O. Prakash et al.

dL1C

dV1C

0

Msf

1

Msf

1

0

VR:RT1C:C

0

:Mse
1P

0 1

:Msf
PQ

:Mse
1P

1

PMsf: Q
Df

T1Cz

:

T1C

:

T1Cw

Df
dV1Cz

:

dV1Cw

:

:Mse
1P

1

2 5 7 21

2043

6

16

19
18

24

22
2317

aV1

1

0 L1R:R1

Msf

8

9

: 1
1P(From Process)

Df*: 1 1 S1( )r

Mse

:Mse
1P

10

1112

13

14 15
aL1

25

dL1Cw

:
Df  : 

L1Se: gH

dL1Cz

Fig. 3.8 DHBG-LFT model of hybrid tank system

Thus, after putting all the known flow values in (3.7), we obtain the GARR1 in
the form presented in (3.6) in terms of nominal GARRn1 and uncertain parts 1 and
S1 of GARR1.

GARRn1 D
�

QP � CT1
d

dt
.P1/ � aV1CdV1P1 � aL1CdL1.P1 � �gHL1/

�
; (3.8)

1 D
ˇ̌
ˇ̌
�
ıCT1 CT1

d

dt
.P1/

�ˇ̌
ˇ̌C j.aV1ıCdV1 CdV1P1/j C j.aL1ıCdL1 CdL1.P1 � �gHL1//j ;

(3.9)

S1 D j.�QP/j C
ˇ
ˇ̌
ˇ

�
CT1

d

dt
.�P1/

�ˇˇ̌
ˇC j.aV1CdV1�P1/j C j.aL1CdL1�P1/j : (3.10)

The numerical evaluations of nominal part GARRni and the uncertain part .i C
Si/ of GARRi, as presented in (3.6), using U, Y, � and MD along with the different
known uncertainties bounds, provide the residual rni.t/ and adaptive threshold "i.t/,
respectively as

rni.t/ D Eval fGARRni.U;Y;�;MD/g and "i.t/ D ˙Eval f.i C Si/g : (3.11)

Note that the derivatives of noisy measurements and discrete mode transition
generally amplify the residual noise. So, usually a low-pass filter is used to filter
the noises in the residuals. Since the absolute values or magnitudes of different
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uncertain parts’ contribution is added in the adaptive threshold, the small Si part
may be neglected in comparison to i. Except in very fast rate transient situations,
the contribution of S1 due to measurement uncertainties is very small in comparison
to the parameter uncertainties 1 in the adaptive threshold and it may be neglected
to avoid more inflated threshold.

3.3.4 Fault Signature Matrix and Coherence Vector

GARRs are used for generating fault signatures for different parametric or discrete
mode faults. Fault signatures depend on the residual responses/sensitivities to
parameter deviations [5, 7, 12]. In the proposed work, dynamic fault signatures for
parametric and mode faults, termed as Global Fault Sensitivity Signature Matrix
(GFSSM) and Mode Change Sensitivity Signature Matrix (MCSSM) [27], are used.

GFSSM [27] is an extended form of GFSM (Global Fault Signature Matrix)
[39] which is dynamic in nature as every element of GFSSM is updated with
instantaneous direction of change of residual with the parameter variation. This
matrix includes sensitivity to fault direction, i.e. increasing .�j "/ and decreasing
.�j #/ trends of the faulty parameter. Its elements are obtained as

GFSSMji
" D

� �sign.@ri=@�j/; if ri is sensitive to increasing �j ";
0; otherwise;

(3.12)

GFSSMji
# D

�
sign.@ri=@�j/; if ri is sensitive to decreasing �j #;
0; otherwise;

(3.13)

where ri is the ith column residual, i 2 f1; 2; : : : ; ng, n is the number of residuals,
�j is the jth row parameter of the GFSSM, j 2 f1; 2; : : : ; pg, p is the number
of parameters. Thus, for each parameter, there are usually two rows in GFSSM.
However, some parameters can vary in one direction (such as leakage) and hence,
they have only one row entry in the GFSSM.

MCSSM [27] is an extended form of MCSM (Mode Change Signature Matrix)
[39], which is also dynamic in nature like GFSSM and it also has an ability to
distinguish between increasing (ak ", changes from 0 to 1) and decreasing (ak #,
changes from 1 to 0) trends of discrete mode fault. Its elements are obtained as

MCSSMki
" D

� �sign.@ri=@ak/; if ri is sensitive to increasing ak ";
0; otherwise;

(3.14)

MCSSMki
# D

�
sign.@ri=@ak/; if ri is sensitive to decreasing ak #;
0; otherwise;

(3.15)
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where ak is the kth row discrete parameter of the MCSSM, ak 2 f0; 1g, k 2
f1; 2; : : : ;mg and m is the number of discrete parameters.

A coherence vector .CV/, whose standard form is CVDŒcv1.t/; cv2.t/; : : : ; cvn.t/�,
where cvi.t/ 2 f0;C1;�1g, i D 1; 2; : : : ; n, is commonly used to generate the alarm
state of the supervised/monitored plant. The respective element, cvi.t/, of coherence
vector .CV/ depends on a decision procedure ‚.ri.t// and is obtained as

cvi.t/ D ‚.ri.t// D
8
<

:

0; if � "i.t/ � ri.t/ � "i.t/
C1; if ri.t/ � "i.t/
�1; otherwise:

(3.16)

During nominal working of the plant, all cvi.t/ are zero; otherwise any non-zero
value of cvi.t/ in the CV indicates that some inconsistency in the plant operation
and an alarm is raised. Once an alarm is raised, the generated CV is matched
with the GFSSM and MCSSM for fault isolation and the parameter which has a
unique match with the CV is isolated as the faulty parameter [27]. Detectability
index .Db/ and isolatability index .Ib/ are also included in the signature matrices
to indicate the detectability and isolatability condition of the faulty component by
assuming single fault occurrence in the system. For instance, if Db D 1 and Ib D 1

are mentioned for a particular component, then the fault in the component can be
detected and isolated. For fault detection of any component, Db must be 1. However,
if the Ib D 0 and Db D 1 then GFSSM/MCSSM generate the suspected set of faulty
parameters (which have common fault signature in the matrices) with the possible
fault directions. These fault directions can then be used in the parameter estimation
process.

3.3.5 Proposed Method for Optimal Threshold and Mode Fault
Detection

Sensitivity of residual to different faults and filtering out/countering uncertainties
are important aspects of robust FDI in a monitored system. Detecting discrete mode
fault is usually easier since it produces significant changes in the system dynamics
but its isolation may be a challenging task in the case of unstructured fault signature
matrix. On the other hand, detecting a small parametric fault requires an appropriate
selection of residual threshold with the objective of less misdetection, small time
delay in fault detection and low false alarm rate. Selection of an appropriate
threshold is not a trivial task, since quantification of uncertainties effect in residual
is difficult. In this regard, this section presents a method for optimal selection of
adaptive thresholds by using the residuals from the known healthy system states in
different working modes. This is supposed to be an experimental step. However,
here, we only aim to demonstrate the procedure with the help of measurements
generated from a will-fully disturbed model that replaces the real plant outputs. It
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is shown in (3.12) and (3.13) that the residual can deviate in different directions
according to increasing .�j "/ or decreasing .�j #/ variation of the parameters.
For residual evaluation, we use the measured or estimated parameter with the
assumption that it lies around the true value of the parameter of the system. We
propose to use the residual from the known healthy system state and try to estimate
the direction of deviation of the measured parameter value from its true value for
optimal threshold selection. In addition to this, a mode fault identification technique
is proposed in the case of unstructured fault signature matrix.

In case of a single parametric fault in jth parameter, GARRi equation may be
approximated as

GARRi.U;Y;�;MD/ '
ˇ̌
ˇ
ˇ̌
@GARRi

@� f
j

�� f
j

ˇ̌
ˇ
ˇ̌C "i (3.17)

and in case of a single discrete mode fault, GARRi equation may be approximated
as

GARRi.U;Y;�;MD/ '
ˇ̌
ˇ̌@GARRi

@af
k

�af
k

ˇ̌
ˇ̌C "i; (3.18)

where optimum adaptive threshold is defined as "i ' ˙
ˇ̌
ˇ
Pnu

lD1
�
˛l
@GARRi
@�u

l
��u

l

	ˇ̌
ˇ,

˛l 2 f0;C1;�1g is the deviation direction of the lth uncertain parameter �u
l , �� f

j

and ��u
l are the absolute deviations in the faulty parameter � f

j and the uncertain
parameter �u

l , respectively, nu is the number of uncertain parameters involved in the
ith GARRi,

ˇ̌
�af

k

ˇ̌ D 1 is the absolute deviation of discrete mode fault af
k either

changing from 0 to 1 or 1 to 0.
In the present work, we define three thresholds "wc

i , "opt
i and "afa

i where "wc
i

denotes threshold based on worst condition of parameter uncertainty variation, "opt
i

denotes the optimal threshold obtained from the proposed optimization technique
and "afa

i denotes envelope of the evaluated residual using real measurements of the
plant during known healthy state of the system. The envelope of a signal is a smooth
curve outlining its extremes obtained with the aid of Hilbert transform of signal.
Thus, residual signal has lower and upper envelopes. The upper envelope can be
obtained as

"afa
i .t/ D

q
r2i .t/C Or2i .t/ (3.19)

where ri.t/ is the ith residual and Ori.t/ is the Hilbert transform of ith residual.
For any real signal ri.t/, Hilbert transform Ori.t/ in the time interval�1 � t � 1

can be defined as [40]
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Ori.t/ D .p:v:/ 1
�

1Z

�1

ri.�/

t � � d� D ri.t/ � 1

� t
; (3.20)

where � denotes convolution operator and p.v. is the Cauchy principal value.
Usually, when the magnitude of a parameter value deviates outside its uncertainty

bound then it is considered as a fault. Selecting threshold based on worst condition
ensures no false alarm, but at the same time it reduces the detectability of small
magnitude parametric faults. Thus, in the present work, optimum threshold is used
for improving FDI. Then an optimal threshold "opt

i ."afa
i < "

opt
i � "wc

i / is selected
based on minimization of the following objective function with the constraint
condition that the threshold never intersects the envelope, "afa

i .t/, of the residual:

min
˛l

J.˛l/ D
nX

iD1

1

2

TZ

0

�
"i.t/ � "afa

i .t/

"i max

�2
dt;

subject to W "i.t/ � "afa
i .t/ > 0;

(3.21)

where T is time interval of nominal operation data of the system used in the
optimization process, "i max is the maximum threshold value, n is the number of
residuals and ˛l 2 f0;C1;�1g.

For (3.8), by optimally enveloping the residual with a tighter threshold, the
estimated threshold parameters are ˛1, ˛2 and ˛3, ˛l 2 f0;C1;�1g, l D 1; 2; 3.
The new threshold, "1 � .1 C S1/, is then defined as

"1 '
ˇ
ˇ̌
ˇ

�
�˛1ıCT1 CT1

d

dt
.P1/ � ˛2aV1ıCdV1 CdV1P1 � ˛3aL1ıCdL1 CdL1.P1 � �gHL1/

�ˇˇ̌
ˇ

(3.22)
Using (3.12)–(3.15) on GARRn1 (given in (3.8)), the fault signatures for paramet-

ric faults and discrete mode faults for the hybrid tank system (Fig. 3.3) as presented
in Tables 3.3 and 3.4, respectively, are obtained. Also, absolute values of residual
sensitivity to different parameters are presented in the last columns of Tables 3.3
and 3.4, respectively. Note that only the valve stuck-on fault (aV1 ") and stuck-off
fault (aV1 #) are taken into consideration as discrete mode faults for this system.

Table 3.3 GFSSM for the hybrid tank system

Parameter .�j/ GARR1.r1/

ˇ
ˇ̌ @GARR1

@�j

ˇ
ˇ̌

CdV1 " CaV1sign.P1.t// jaV1.P1.t//j
CdV1 # �aV1sign.P1.t// jaV1.P1.t//j
CdL1 " CaL1sign.P1.t/� �gHL1/ jaL1.P1.t/� �gHL1/j
CdL1 # �aL1sign.P1.t/� �gHL1/ jaL1.P1.t/� �gHL1/j
CT1 " C sign. d

dt .P1//
ˇ̌

d
dt .P1/

ˇ̌

CT2 # � sign. d
dt .P1//

ˇ
ˇ d

dt .P1/
ˇ
ˇ
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Table 3.4 MCSSM for the
hybrid tank system Parameter .ak/ GARR1.r1/

ˇ
ˇ̌ @GARR1

@ak

ˇ
ˇ̌

aV1 " Csign.CdV1P1.t// j.CdV1P1.t//j
aV1 # �sign.CdV1P1.t// j.CdV1P1.t//j

Autonomous mode (aL1) is not considered as a source of discrete mode fault since
it occurs due to internal changes in the states of the system and can be known by
using the measurements from the system and set condition for its activation.

Suppose a partial blockage fault occurs in the valve V1 .CdV1 #/ of the hybrid
tank system (Fig. 3.3) and residual r1 violates the adaptive threshold "1. Under
the single fault assumption, CdV1 # fault is not isolatable since residual GARR1
is sensitive to all faults .CdV1, CdL1, CT1, and aV1/ if mode aL1 D 1. Therefore,
parameter estimation is needed for the unique single fault isolation. However,
presence of the discrete mode fault .aV1/ in the SSF complicates the parameter
estimation task. In this regard, we propose to discriminate between parametric
faults and the discrete mode faults by an initial hypothesis based on the magnitude
of residual deviation after a fault. It is clear from the GFSSM and MCSSM
(Tables 3.3 and 3.4) that the magnitude of residual sensitivities with respect to
different parameters is not identical. A closer look at (3.8) shows that the residual
would exceed the threshold (also refer (3.18) and Table 3.4) by at least a certain
magnitude j.CdV1P1/j when there is discrete mode fault in valve V1, i.e., the value
of aV1 D 0 when it should have been 1 and vice versa.

Thus, in case of hypothesized discrete mode fault, we can rewrite (3.18) as

Dri
ak
D jGARRi.U;Y;�;MD/j �

ˇ̌
ˇ̌@GARRi

@af
k

�af
k

ˇ̌
ˇ̌ � "i; (3.23)

where Dri
ak

is the difference between absolute value of residual (ri) deviation after a
fault and sensitivity of residual with respect to suspected discrete parameter ak.

Also, the initial relative deviation ıf
�j

of each suspected parametric fault can
be roughly estimated by using the initial residual deviation after a fault and its
sensitivity with respect to parameter variation as presented in (3.17). Thus, the
magnitude of relative deviation ıf

�j
of the parametric fault � f

j can be roughly
estimated as

ıf
�j
D jGARRi.U;Y;�;MD/j

ˇ̌
ˇ
ˇ
@GARRi

@� f
j
� f

j

ˇ̌
ˇ
ˇ

;where 0 � ıf
�j
� 1: (3.24)

In an unstructured fault signature matrix, the initial estimated relative deviation
ıf
�j

of each suspected parameter can also be used to minimize the number of can-
didates in SSF. Such a minimization of elements in SSF reduces the computational
burden during the parameter estimation. For example, if the magnitude of residual
jGARR1j deviation after a blockage fault in the valve V1 .CdV1 #/ of the hybrid
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tank system (Fig. 3.3) is more than the absolute value j.P1.t/ � �gHL1/j at the
mode aL1 D 1 and aV1 D 1, then the estimated relative deviation ıf

CdL1
for a

suspected parameter is found to be more than one, which indicates CdL1 is faultless
parameter since 0 � ıf

CdL1
� 1 and therefore, it can be removed from the initial

hypothesized SSF. This way, the magnitude of residual sensitivities with respect to
other parameters in SSF can be tested to minimize the size of SSF.

Parameter estimation can be further improved by using the fault directions of
SSF candidates obtained from GFSSM. For this, constrained parameter estimation
technique is proposed for the suspected parametric faults by creating the proper
bounds on the suspected parameters according to their known fault directions.
These bounds are generated based on previous known nominal values of these
parameters and their possible maximum deviations after a fault in the system,
which are derived from the deep knowledge/understanding of the system and are
called technological specifications. To further speed up the parameter estimation
technique, a Sensitivity BG (SBG) approach [20] is used to supply the gradient
information of the objective function during the parameter estimation process.
Gradient projection method coupled with Gauss-Newton optimization technique
is a very efficient constraint optimization technique with simple bounds on the
parameters. The gradient projection method is more efficient, particularly, when
constraints include only bounds on the parameters [41]. The minimization of
objective function is expressed as:

min
�

J.�/ D 1

2

kX

jDk�q

rT.tj/ �W � r.tj/

subject to W �L � � � �U

(3.25)

where r.tj/ D y.tj;�/ � Oy.tj/ is a residual/error vector, y.tj;�/ is model’s output
vector and Oy.tj/ is sensor’s output vector at a time tj, k is the sampled data of current
instant, q � 0 is the sampled data of past time of fixed width, �L and �U are lower
and upper parameter bounds, respectively, and W 2 R

n�n is a positive semi-definite
weighting function which can be assumed as a unit matrix.

It is assumed here that there is no measurement error and all the states are directly
computable from the measurements. If the states cannot be computed, then the
model initial conditions cannot be specified. In such situation, the optimization can
be performed by minimizing the residuals obtained by evaluating the GARRs, which
are derived from the BG model in derivative causality (see [19] for details).

3.4 Case Study: Bench Mark Hybrid Two-Tank System

In this section, the proposed diagnosis and thresholding techniques are applied on
a two-tank benchmark example system shown in Fig. 3.9. The system consists of a
Proportional-Integral (PI) controlled pump, two water tanks (T1 and T2) connected
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Fig. 3.9 Schematic of hybrid two-tank system

by a main pipeline with the nonlinear valve (V1) and one main discharge pipeline
with a nonlinear valve (V2) from the tank T2. In addition, the system is equipped
with one auxiliary drain pipeline (L1) with linear valve (VL1) between tanks T1 and
T2 and one main drain pipeline (L2) with linear valve (VL2) from tank T2. The valve
V1 is controlled in open and closed state by a supervisory controller, whereas the
valves V2, VL1 and VL2 are by default always in open state for this system and can
be manually controlled by the user. The water level in tanks T1, T2 and pump flow to
tank T1 are measured by the installed sensors H1.t/, H2.t/ and QP.t/, respectively.

The considered system includes the combination of both controlled and
autonomous discrete events. For example, controlled discrete event occurs due
to the external command signal .aV1/ given by the supervisory controller to the
valve V1, while the two autonomous discrete events (aL1 and aL2, respectively, for
drainage of water from the upstream sides of VL1 and VL2) occur at particular pre-
set conditions (i.e., when level H1.t/ exceeds height HL1 and level H2.t/ exceeds
height HL2, respectively). In the conceptual benchmark system, two imaginary
nonlinear valves VLeak1 and VLeak2, respectively, are used to simulate the leakage
faults in tanks T1 and T2. The saturation characteristic of pump (ˆP) and output law
of PI-controller (ˆPI) are, respectively, stated as

QP D
8
<

:

UPI; 0 � UPI � fmax

0; UPI � 0
fmax; UPI � fmax

D ˆP .UPI/ ; (3.26)

UPI D KP.Spt � � � g � H1.t//C KI

Z
.Spt � � � g � H1.t//dt

D ˆPI .H1.t// ; (3.27)
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Fig. 3.10 HBG model of hybrid two-tank system

where fmax is the maximum pump flow, UPI is a controller output, Spt is a controller
set point, KP is the proportional and KI is the integral gain.

The HBG model of the considered hybrid system (Fig. 3.9) is shown in Fig. 3.10
where tank capacities for T1 and T2 (CTi D Ai=g, Ai is cross section area of tank,
Ti, i D 1; 2.) and valves (V1, V2, VL1, VL2, VLeak1 and VLeak2) with connected pipes
are modelled by two C-elements and six R-elements, respectively; and pump flow
(QP) is modelled by Msf -element. Output sensors H1.t/ and H2.t/ are modelled by
two De-elements. An imaginary detector Df 0 is also used to measure the flow .fL1/

through drain valve VL1 and provide the same flow by using an imaginary flow
source Msf 0 D fL1 to the other 0-junction corresponding to tank T2. In Fig. 3.10,
1-junctions with subscript aV1, aV2, aL1 and aL2 are switched junctions related with
discrete modes. The flow through any resistor (RV1, RV2, RL1 and RL2) at a switched
junction is activated only in the active mode (aVi D 1) and is zero or absent in the
inactive mode (aVi D 0).

3.4.1 ARRs/GARRs for Hybrid Two-Tank System

The DHBG-LFT model of the hybrid two-tank system is shown in Fig. 3.11 where
the two effort detectors DeWH1 and DeWH2 of HBG model (Fig. 3.10) are dualized
into two sources Mse0WH1 and Mse0WH2. In addition, the nominal part of each
parameter is also decoupled from its uncertain part and the different uncertain parts
of the parameters are fed into the model at the respective junction by using the
switched junction concept .1˛l/, where ˛l 2 f0;C1;�1g for generating the various
possible thresholds .3l/. Two imaginary flow detectors .Df �Wri˙i/ provide the two
global constraint relations, i.e., GARRi with their uncertain parts i (i D 1; 2).
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Fig. 3.11 DHBG-LFT form model of hybrid two-tank system

Established procedures for equation derivation from a causalled bond graph
model [11–14, 42] are used to obtain the following GARRs and their uncertain parts
for residuals and thresholds evaluation, respectively.

GARR1 W QP � CT1
d
dt .�gH1.t// � aV1CdV1

pj�g.H1.t/ � H2.t//j
� sign.H1.t/ � H2.t// � aL1CdL1�g.H1.t/ � HL1/

� CdLeak1

pj�gH1.t/j ˙ 1 D 0
(3.28)

GARR2 W aV1CdV1

pj�g.H1.t/ � H2.t//j � sign..H1.t/ � H2.t//

C aL1CdL1�g.H1.t/ � HL1/ � CT2
d
dt .�gH2.t// � aV2

� CdV2

pj�gH2.t/j � aL2CdL2�g.H2.t/ � HL2/ � CdLeak2

�pj�gH2.t/j ˙ 2 D 0

(3.29)

where aL1 D
�
0; ifH1.t/ � HL1

1; ifH1.t/ > HL1
; aL2 D

�
0; ifH2.t/ � HL2

1; ifH2.t/ > HL2
:

The general form of adaptive thresholds "1 and "2, respectively, for the residuals
r1 and r2 can be obtained by using uncertain parts 1 and 2 as

"1 D 1 D
ˇ̌
ˇ�˛1ıCT1 CT1

d
dt .�gH1.t// � ˛2aV1ıCdV1 CdV1

pj�g.H1.t/ � H2.t//j
�˛3aL1ıCdL1 CdL1�g.H1.t/ � HL1/

ˇ̌
ˇ

(3.30)
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"2 D 2 D
ˇ̌
ˇ˛2aV1ıCdV1 CdV1

pj�g.H1.t/ � H2.t//j C ˛3aL1ıCdL1 CdL1�g.H1.t/

�HL1/ � ˛4ıCT2 CT2
d
dt .�gH2.t// � ˛5aV2ıCdV2 CdV2

pj�gH2.t/j
� ˛6aL2ıCdL2 CdL2�g.H2.t/ � HL2/

ˇ̌
ˇ

(3.31)
where ˛l 2 f0;C1;�1g ; l D 1; 2; : : : ; 6:

In this study, we assume that sensors, actuators (pump) and the controllers
(PI-controller) are faultless. Sensor fault detection can be done using hardware
redundancy [7]. FDI of pump and PI-controller may be done separately by using
the following ARRs derived from their characteristics relationships

ARR3 W QP �ˆP .UPI/ D 0; (3.32)

ARR4 W UPI �ˆPI .H1.t// D 0: (3.33)

3.4.2 Optimum Adaptive Threshold for Hybrid Two-Tank
System

The objective function for the optimum threshold for hybrid two-tank system is
expressed as

min
˛l

J.˛l/ D
2X

iD1

1

2

TZ

0

�
"i.t/ � "afa

i .t/

"i max

�2
dt;

subject to W "i.t/ � "afa
i .t/ > 0;

(3.34)

where ˛l 2 f0;C1;�1g ; l D 1; 2; : : : ; 6; i D 1; 2:
For the selection of optimum thresholds, our main objective is to find the exact

deviation direction of the respective parameter from its true nominal value used
in the threshold evaluations as given in (3.30) and (3.31), respectively. For this,
the residuals evaluated using the measurements of the real healthy system (from
real experiment) are required so that the optimum thresholds out of many possible
thresholds .3l/ can be selected. However, in the present work, the measurements
have been generated from the simulation of a model in which the parameter values
have been purposefully perturbed a little (within the uncertainty limit) from the
corresponding nominal values. The HBG model is converted into the correspond-
ing Matlab-Simulink model for simulation and then the obtained measurements
are used in another simple Matlab-Simulink program to solve the optimization
problem (3.34). The nominal parameters used in the unperturbed Simulink model
are presented in Table 3.5. Furthermore, to realize parameter and measurement
uncertainty, each parameter and the measurement have been deviated within their
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Table 3.5 Parameters used in the simulation model

Symbol Description Parameter value

KP Proportional gain of controller 1 ms

KI Integral gain of controller 5� 10�2 m

Spt Set point of the PI-controller 0.5 m

fmax Maximum outflow from pump 1.5 kg/s

Ai Cross-sectional area of tank Ti (i D 1; 2) 2:16� 10�2 m2

CdVi
Discharge coefficient of valve Vi including connected
pipeline (i D 1; 2) 1:593� 10�2 kg1=2 m1=2

CdLi
Discharge coefficient of valve VLi including connected
drain pipeline (i D 1; 2) 1� 10�3 ms

CdLeaki Discharge coefficient of VLeaki (i D 1; 2) 0 kg1=2 m1=2

HL1 Height of the drain pipe L1 of tank T1 from datum 0.58 m

HL2 Height of the drain pipe L2 of tank T2 from datum 0.40 m

P0 Atmospheric pressure 0 N=m2

� Density of water 1000 kg=m3

g Acceleration due to gravity 9.81 m=s2

uncertainties bounds in the Simulink model as ıCT1 D ıCT2 D ıCdV1 D ıCdV2 D
ıCdL1 D ıCdL2 � j0:05j and maximum 2% sensor noise ıH1 D ıH2 D ıQP �
j0:02j, respectively. These changes are randomly effected and the following results
correspond to one such randomly perturbed case. Note that the parameter values
are perturbed for real plant measurement generation whereas the residuals and
thresholds are evaluated assuming the nominal parameter values. As per definition,
with all the small parameter deviations (uncertainties) effected to the plant model,
the system is supposedly in healthy state and the residuals are expected to remain
bounded within respective adaptive thresholds.

The system model is simulated in a faultless condition for a simulation time
duration of 300 s by using a fixed step size of 0.02 s and by assigning all initial
state values to zero. All the measured input .QP/ and outputs .H1 and H2/ values of
the healthy operating system along with the information of controlled mode (open
for 80 s and closed for 30 s periodically), autonomous modes and known parameter
values are fed into the developed threshold optimization program.

After optimization, deviation directions of the parameters are obtained as ˛1 D
C1, ˛2 D C1, ˛3 D C1, ˛4 D �1, ˛5 D 0 and ˛6 D 0 corresponding to optimal
thresholds out of 36 or 729 number of different generated thresholds (considering
all possible deviation directions of the parameters). The responses of residuals
r1 and r2 along with their envelopes "afa

1 and "afa
2 , obtained optimum adaptive

thresholds "opt
1 and "

opt
2 , different generated thresholds and the worst condition

adaptive thresholds "wc
1 and "wc

2 are plotted in Fig. 3.12 for the duration of 60–140 s
for better clarity. It is clear from Fig. 3.12 that the optimum thresholds "opt

1 and "opt
2

selected as per estimated variations of the residuals for the system provide better
detectability and avoid false alarms in corresponding modes as compared to the
classical worst condition based adaptive thresholds "wc

1 and "wc
2 . Thus, the obtained
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Fig. 3.12 Response of (a) residual r1 (b) residual r2 with optimum adaptive thresholds along with
the worst condition adaptive thresholds during nominal operation

Table 3.6 Injected fault cases in the simulation model

Case Parameter Description Nominal value Faulty value Start time (s) End time (s)

1 CdV2 # Blockage in V2 CdV2 0.93CdV2 150 300

2 aV1 # Stuck-off fault in V1 1 0 220 300

optimum thresholds "opt
1 and "opt

2 are finally selected for the FDI study of hybrid two-
tank system for detecting parametric faults or discrete mode faults in the system.
However, the other generated thresholds either give the false alarm in a particular
mode or may be wider than optimum thresholds resulting in mis-detection; thus,
the optimization algorithm does not select them for robust fault diagnosis. Since the
parameter values may deviate further in arbitrary directions after further long time
operation, it is advisable to update the thresholds regularly at pre-set time intervals,
say in few days or weeks, depending on the technological specifications.

3.4.3 FDI Study for Hybrid Two-Tank System Using Proposed
Technique

In this section, the proposed technique for discrete mode fault and parametric
fault identification is applied to the hybrid two-tank system. Two different fault
scenarios related to a parametric fault and a discrete mode fault, as presented
in Table 3.6, have been tested. Applying (3.12)–(3.15) on (3.28) and (3.29), the
GFSSM and MCSSM for the hybrid two-tank system, as given in Table 3.7, are
obtained. For the parameters CdLeak1 and CdLeak2 related to leakage fault in tank
T1 and T2, respectively, only increasing possibility is considered from a practical
viewpoint (technological specifications), whereas for the other parameters .i.e.,
CdV1, CdV2, CdL1, CdL2/, both increasing (i.e., leakage) and decreasing possibilities
(i.e., blockage) are considered. In order to demonstrate the discrete mode fault
identification based on magnitude of residual deviation after a fault, possibilities
of discrete mode faults in all the valves V1, V2, VL1 and VL2 are considered.
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Table 3.7 Dynamic fault signature matrices for the two-tank system

General case Specific case (0–300 s)

Parameter r1 r2 Db r1 r2 Db Ib

GFSSM CdV1 " CaV1sign.H1 � H2/ �aV1sign.H1 � H2/ aV1 CaV1 �aV1 aV1 0

CdV1 # �aV1sign.H1 � H2/ CaV1sign.H1 � H2/ aV1 �aV1 CaV1 aV1 0

CdV2 " 0 Csign.H2/ 1 0 C1 1 0

CdV2 # 0 �sign.H2/ 1 0 �1 1 0

CdL1 " CaL1 �aL1 aL1 CaL1 �aL1 aL1 0

CdL1 # �aL1 CaL1 aL1 �aL1 CaL1 aL1 0

CdL2 " 0 CaL2 aL2 0 CaL2 aL2 0

CdL2 # 0 �aL2 aL2 0 �aL2 aL2 0

CdLeak1 " C1 0 1 C1 0 1 0

CdLeak2 " 0 C1 1 0 C1 1 0

MCSSM aV1 " Csign.H1 � H2/ �sign.H1 � H2/ 1� aV1 C1 �1 1� aV1 0

aV1 # �sign.H1 � H2/ Csign.H1 � H2/ aV1 �1 C1 aV1 0

aV2 # 0 �sign.H2/ aV2 0 �1 aV2 0

aL1 # �sign.H1/ Csign.H1/ aL1 �1 C1 aL1 0

aL2 # 0 �sign.H2/ aL2 0 �1 aL2 0

For example, for the valve V1, both discrete stuck-on fault .aV1 "/ and stuck-off
fault .aV1 #/ possibilities are considered. For the other valves .V2, VL1 and VL2,
which are by default always open for this system/, we assume that the valve can
be mistakenly closed by the plant operator during operation and may be considered
as a fault in such a situation. All these possibilities considered in Table 3.7, called
technological specifications, are derived from the deep understanding of the system
and these possibilities can vary with the type of the system.

The responses of the residuals (r1, r2) and adaptive thresholds ."opt
1 , "opt

2 and
"wc
1 , "wc

2 / along with input .QP/, output measurements (H1, H2) and the known
modes information .aV1; aL1/ of the system in both the fault cases are presented
in Figs. 3.13 and 3.14, respectively. The predicted autonomous mode aL1 activation
using measurement H1.t/ according to pre-set condition for valve VL1 (i.e., when
H1.t/ > HL1 D 0:58m) for both the cases is shown in Figs. 3.13h and 3.14h.
However, no autonomous mode aL2 activation is noticed at pre-set condition for
drain valve VL2 .i.e., when H2.t/ > HL2 D 0:40m/ in both cases. Therefore,
aL2 D 0 throughout the observation period of 0–300 s. It is also observed from
Figs. 3.13 and 3.14 that the output measurement H1.t/ is always greater than the
measurement H2.t/ in both the fault cases in the observation period of 0–300 s.
Thus, the dynamic fault signature matrices (GFSSM and MCSSM) presented in
Table 3.7, as general case, can be represented by the static value, as specific case,
for the considered duration of observation. In the table, the detectability index Db

is a binary number whose values 1 and 0, respectively, indicate sensitivity and
insensitivity of at least one residual to the change in the parameter. The isolatability
index Ib is another binary number whose values 1 and 0, respectively, indicate
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Fig. 3.13 Response of (a) Residual r1. (b) Residual r2. (c) Difference, Dr2
aV2

using residual r2 and
its sensitivity with respect to aV2, after a blockage fault in valve V2. (d) Controlled mode aV1.
(e) Input QP. (f) Level H1. (g) Level H2. (h) Predicted autonomous mode aL1 activation using
measurement H1
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uniqueness and multiplicity (ambiguity) of the fault signature of the parameter.
Note that the absolute value of sensitivity fault signatures in GFSSM/MCSSM, as
presented in Table 3.7 (Specific case), provides the standard GFSM/MCSM in terms
of binary signatures without deviation sign. It can be seen that the GFSSM/MCSSM
provides better fault isolation as compared to standard GFSM/MCSM. For example,
the blockage fault in CdV2 # is distinguishable from leakage fault CdLeak2 " if
using GFSSM, but with standard GFSM, these faults (CdV2 # and CdLeak2 ") are
indistinguishable from each other.

In the fault case-1 (i.e. small fault in parameter CdV2), it is observed from
Fig. 3.13a, b that the residual r1 which is insensitive to this fault remains bounded
inside the adaptive thresholds "opt

1 and "wc
1 , whereas the residual r2 which is sensitive

to this fault deviates outside the optimum adaptive threshold "opt
2 . However, using

worst condition adaptive threshold "wc
2 in the same fault situation, this fault cannot

be detected by the diagnosis module and thus, it leads to a missed detection of
the small fault even-though the parameter has changed more than the uncertainty
limit. This missed detection is obvious, since the worst condition adaptive threshold
"wc
2 is broader as compared to optimum adaptive threshold "opt

2 . Thus, optimum
adaptive thresholds appear to provide better detectability of a fault as compared
to classical thresholds. After detecting a fault, the next step in the diagnosis
module is to isolate the true fault and estimate its severity (fault magnitude) so
that the decision regarding the fault accommodation or system reconfiguration can
be taken. Just after 150 s, the coherence vector CV D Œ0;�1� (see Fig. 3.13a, b
and residuals crossing the optimal thresholds). After matching the CV D Œ0;�1�
with the dynamic fault signature matrices in Table 3.7 (Specific Case), the SSF
is obtained as fCdV2 #; aV2 #g. Note that CdL2 # and aL2 # are not included in
SSF since measurements indicate aL2 D 0. According to obtained SSF, CdV2 #
is not directly isolatable by the diagnosis module as discrete mode fault aV2 #
shares the same signature as CdV2 #. Thus, before estimating the fault magnitude
of CdV2 #, we need to first confirm whether the residual inconsistency is due to
a discrete mode fault aV2 # or due to a parametric fault CdV2 #. For this, as

per (3.23), Dr2
aV2
D jr2j �

ˇ
ˇ̌
CdV2

pj�gH2.t/j
ˇ
ˇ̌ � "

opt
2 is tested with the optimum

adaptive threshold "opt
2 just after fault detection (see Fig. 3.13c). It is found that

Dr2
aV2
> "

opt
2 , thus, the hypothesis of discrete mode fault aV2 # is proved to be wrong.

This indicates that the CdV2 # is the actual fault. In order to estimate the severity
of CdV2 # fault, a constrained parameter estimation technique as proposed in (3.25)
is triggered with the parameter bound .0 < CdV2 < 0:01593/ and this quickly
estimates the fault magnitude of CdV2 as Cf

dV2 ' 0:93CdV2. If more fault candidates
remain in the SSF after discarding the mode fault from the initial hypothesis then
parameter estimation technique can be appropriately adapted [5, 20].

In the fault case-2 (i.e. valve V1 stuck-off fault, aV1 #), it is observed from
Fig. 3.14a, b that both the residuals r1 and r2, which are sensitive to this fault,
deviate outside their respective optimum adaptive thresholds ."opt

1 and "opt
2 / as well

as worst condition adaptive thresholds ."wc
1 and "wc

2 /. Just after 220 s, the coherence
vector CV D Œ�1;C1� (see Fig. 3.14a, b). After matching the CV D Œ�1;C1�
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with the dynamic fault signature matrices in Table 3.7 (Specific Case), the SSF is
obtained as fCdV1 #;CdL1 #; aV1 #; aL1 #g. Note that at the time of fault inception,
measurements indicate that mode aL1 should be 1 (see Fig. 3.14h), but it is still
possible that someone inadvertently closed the valve leading to aL1 #. According
to obtained SSF, aV1 # is not directly isolatable by the diagnosis module, since
all the SSF candidates share the common fault signature. However, the number
of SSF candidates can be minimized by roughly estimating the initial relative
deviation of each suspected parameter using (3.24). In this case, ıf

CdL1
is found

to be more than one. Since 0 � ıf
CdL1
� 1 is mandatory, CdL1 # is removed

from the SSF and the refined SSF can be written as fCdV1 #; aV1 #; aL1 #g. Again
a discrete mode fault identification technique as proposed in (3.23) is triggered

first, i.e. the differences Dr1
aV1
D jr1j �

ˇ̌
ˇCdV1

pj�g.H1.t/ � H2.t//j
ˇ̌
ˇ, Dr2

aV1
D

jr2j�
ˇ̌
ˇCdV1

pj�g.H1.t/ � H2.t//j
ˇ̌
ˇ and Dr1

aL1
D jr1j�jCdL1�g.H1.t/ � HL1/j, Dr2

aL1
D

jr2j � jCdL1�g.H1.t/ � HL1/j for the aV1 # and aL1 #, respectively, are tested with
the optimum adaptive thresholds just after fault detection (shown in Fig. 3.14c, d,
respectively). It is observed form Fig. 3.14c, d that Dr1

aV1
� "

opt
1 and Dr2

aV1
� "

opt
2 ,

which indicates that aV1 # is the faulty discrete parameter under the single fault
assumption. This discrete mode fault aV1 # has severe impact on the behaviour of
the system, which can be observed from the magnitude of residuals deviations after
this fault.

Thus, the proposed technique is shown to effectively detect and isolate both
discrete mode faults and parametric faults in the HDS under single fault situations.
Without loss of generality, the dynamically updated modes and parameters to
envelope residuals after occurrence of a fault as proposed in [43] can be applied to
extend the approach presented here to handle the case of multiple sequential faults.

3.5 Conclusions

In this chapter, a common bond graph modelling framework is used for hybrid
system modelling, its simulation, GARRs and thresholds equations derivation,
optimum adaptive threshold selection and the rule development for discrete and
parametric fault detection and isolation. Optimal adaptive thresholds are chosen
by estimating the deviation directions of the parameters or uncertainty direction
with aid of real plant measurement data and threshold equations generated from
DHBG-LFT form model. The selected optimal thresholds properly bound the real
uncertain residuals and thereby, avoid unnecessary false alarms and improve the
fault detectability in comparison to the classically used worst condition adaptive
thresholds. GFSSM and MCSSM, which have better fault discrimination capability,
are adopted for fault isolation [27]. Moreover, a new technique is proposed to
discriminate the parametric faults from the discrete mode faults by an initial
hypothesis based on magnitude of residual deviation after a fault. It is observed from
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the simulation results that different residual sensitivities with respect to different
parameter variations can be effectively utilized to discriminate one fault effect
from the other. It is also observed that the use of fault direction information from
GFSSM and imposition of proper bounds on the parameter deviations improves the
parameter estimation method by reducing the parameter search zone.
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Chapter 4
Diagnosing Hybrid Dynamical Systems
Using Max-Plus Algebraic Methods

Gregory Provan

4.1 Introduction

A hybrid system (HS) is a model whose evolution is governed by both continuous
and discrete dynamics. A key challenge of diagnosing hybrid systems is the
difficulty of performing inference (e.g,. tracking and state estimation) on the
continuous and discrete aspects, given that each aspect requires different underlying
mathematics, algorithms, and often inference tools. Faults might occur within the
continuous aspects (e.g., valve that is stuck partially shut) or the discrete aspect
(on/off actuator fails in the on state) [28]; these faults may evidence themselves as
gradual or abrupt faults. Some approaches (e.g., [4]) have aimed to combine the
two aspects, while other approaches map the aspects into a single framework, e.g.,
a probabilistic framework for which we can use particle filters or dynamic Bayesian
networks to compute diagnoses [17].

This article develops a computationally efficient diagnostics approach for solving
a class of hybrid systems that can be modeled using a Timed Event Graph (TEG)
[10], which is used for representing a broad range of timed systems such as process
control and manufacturing systems, transportation networks, and communications
systems. This restricted class of discrete-event system (DES) allows synchronization
without concurrency or selection. We model this class of DES with a max-plus linear
discrete-event system, in which inference is linear within the max-plus algebra [2,
7], and hence is computationally more efficient than traditional approaches [27].1

1For example, in the max-plus algebra exponentiation reduces to conventional multiplication.

G. Provan (�)
School of Computer Science, University College Cork, Cork, Ireland
e-mail: g.provan@cs.ucc.ie

© Springer International Publishing AG, part of Springer Nature 2018
M. Sayed-Mouchaweh (ed.), Fault Diagnosis of Hybrid Dynamic and Complex
Systems, https://doi.org/10.1007/978-3-319-74014-0_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74014-0_4&domain=pdf
mailto:g.provan@cs.ucc.ie
https://doi.org/10.1007/978-3-319-74014-0_4


80 G. Provan

Researchers have developed techniques for TEG control by integrating TEG and
a max-plus algebra. This framework has been successfully applied to solve control
problems that include scheduling, hybrid systems (switching) operations, and just-
in-time control [6, 25]. Given the wide use for modelling and control, these methods
have received limited attention for HS diagnostics inference.

This article proposes a max-plus algebraic framework for modeling and diagnos-
tic inference of a hybrid system (HS). We describe a discrete-time hybrid system
based on a .max;C/-linear (MPL) algebra defined over a set Z

C or Rmax D
R [ f�1g [11, 12]. A max-plus algebra is defined over the max-plus semi-
ring hRmax;˚;˝i, which is the set Rmax D R [ f�1g together with operations
x˚ y D max.x; y/ and x˝ y D xC y. The additive and multiplicative identities are
taken to be � D �1 and e D 0, respectively.

We adopt the max-plus algebra, one of many idempotent semi-rings used for
computational inference, not only because its operations are associative, commu-
tative and distributive (as in conventional algebra), but also because it transforms
inference on system timed dynamics (that are non-linear in a conventional algebra)
to be linear in the max-plus algebra [2].

We extend this model to a switching MPL (SMPL) framework [25], which
introduces modes that the system switches between. We further extend SMPL
systems with stochastic switching behaviours to capture the stochastic nature of
faults occurring. We introduce stochastic fault occurrence through a probability
distribution over mode transitions. The stochastic SMPL framework provides a rich
theoretical basis for describing a set of real-world systems, e.g., piece-wise-affine
(PWA) systems in the time-driven domain [26].

We employ a computationally efficient observer-based diagnostics approach to
monitor the system and isolate faults. Our diagnostics approach uses the max-plus
model for efficient inference, and also restricts the space of diagnoses considered
during fault isolation by computing only the most-likely system behaviours (rather
than using the space of all possible behaviours).

Our contributions are as follows:

– We model a HS using a switching .max;C/-linear (SMPL) algebra.
– We define a classical observer-based monitoring framework, and extend this for

fault isolation.
– We discuss the computational complexity aspects of inference.

4.2 Problem Statement

This section summarizes our objective and methodology.



4 Diagnosing Hybrid Dynamical Systems Using Max-Plus Algebraic Methods 81

4.2.1 Hybrid Systems Model

This section describes our formulation of the hybrid diagnosis problem. We first
define a hybrid system.

Definition 1 (Hybrid System) A hybrid system is a 5-tuple hx; �; F ; .u; �/i,
where

– x 	 R
n is the set of continuous state variables, where x D fx1; : : : ; xng.

– � D f
1; : : : ; 
kg is a finite set of system modes.
– F D ff
1 ; : : : ; f
kg is a finite set of functions and associated parameter values �

such that for each mode, 
i, f
1.t; �; x.t// W R�R� x! x defines the continuous
behaviour of the system in mode 
i.

– .u; �/ describes the discrete switching behaviour of the system, with u D
fu1; : : : ; umg a finite set of controls that transition the system between modes,
and � a switching (transition) function that maps an action, mode and system
state vector into a new mode and state vector, i.e., � W u � � � x! � � x.

A hybrid system creates a trajectory, which is a timed sequence of observations,
Y0;k D .y.0/; : : : ; y.k//. We assume that the corresponding state variable trajectory
X1;k is unobservable apart from the initial conditions x0. We further assume that
control inputs are observable events, but that fault transitions are unobservable
events.

Sections 4.4.2 and 4.4.3 describe the continuous and discrete dynamics for F and
.u; �/ in greater detail, respectively.

4.2.2 Objective

Consider a discrete-time affine system whose dynamics obeys one of � possible
models (known and observable), with each model corresponding to a system mode.
Our objective, given an anomalous output Oy.k/, is to determine the system mode

.k/ at time k that most closely generates the observed dynamics. To achieve this
goal, we look for the (shortest) sequence of inputs U0;k D .u.0/; : : : ;u.k// and
measurements Y0;k D .y.0/; : : : ; y.k// such that the output at time k is consistent
with only one mode 
.k/ 2 � . Since multiple input sequences of minimal length
l may satisfy this requirement, we select the mode that minimizes a given cost
function. In the following, we assume that only one model is active during each
discrete step in Œ0; : : : ;N�.

4.2.3 System Architecture

We address our task using the 3-step process shown in Fig. 4.1.
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Fig. 4.1 Architecture of approach. The three steps are monitoring and residual generation, mode
selection and fault isolation

1. Observer-based monitoring and residual generation: In this phase we use an
observer-based approach to detect anomalies, using a residual r

2. Mode selection: Given an anomaly, this phase computes the set �� 	 � of most-
likely modes, and runs a simulation (given input x.0/;U0;k) for each mode 
i 2
�� to estimate the corresponding residual value ri.

3. Fault isolation: In this phase we compute the most likely failure mode for the
system based on a cost function J .y; Oy/ and the set of ri.

In this figure, we adopt the state-space model (as presented in Definition 5), where
A; B are the state matrices, C the output matrix, and K the observation matrix.

4.3 Related Work

4.3.1 Algebraic Descriptions of Hybrid Systems

The class of switching MPL systems is related to (max,+) automata [12], which can
also be characterized as non-stationary autonomous max-plus-linear systems with
finitely valued dynamics (i.e. systems of the form x.kC 1/ D A.k/˝ x.k/; y.k/ D
C ˝ x.k/ where A.k/ takes its values in a finite set fA.1/; : : : ;A.N/g. The main
differences are that the class of systems considered here have an additional input
(u.k/), and that we define the switching mechanism completely and explicitly for
the switching max-plus-linear systems (which is not true for (max,+) automata).

We represent max-min-plus-scaling (MMPS) systems in state-space form using
the operations maximization, minimization, addition and scalar multiplication.
MMPS systems are equivalent to a particular class of hybrid systems, continuous
piecewise (PWA) systems [23]. PWA systems are defined by partitioning the state
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space of the system in a finite number of polyhedral regions and associating to
each region a different affine dynamic [18]. This relation between PWA and MMPS
systems enables the study of certain structural properties of PWA systems, such as
observability and controllability but also in designing controller schemes like model
predictive control (MPC) [5].

Our work differs from other modeling techniques for discrete-event systems,
such as Petri nets, extended state machines, event-graphs, formal languages,
generalized semi Markov processes, non-linear programming, automata, computer
simulation models (see, e.g., [15, 22]), in that we employ an algebraic approach with
observers.

4.3.2 Petri Net Models

Timed Petri nets include as a subclass timed event graphs (TEG), where we
represent places as “arcs” and transitions as “nodes” [16]. In this case, all places
have a single transition upstream (we remove competition in either consumption or
supply of tokens in TEG) and a single one downstream (we resolve all potential
conflicts in using tokens in places by some predefined policy). We gain compu-
tational advantage, although these limitations restrict some application domains;
the limitations can generally be satisfied by making some design and scheduling
decisions at an abstract (or hierarchical) level.

Diagnosis of Petri nets (e.g., [3]) has a rich history. What is different in
our approach is the use of state-space descriptions together with observer-based
monitoring, and computationally efficient methods based on the (max,+) algebra.

4.3.3 Diagnosing Hybrid Systems

Researchers have directed considerable attention to the monitoring and fault
diagnosis of hybrid systems, e.g., [1, 28, 29]. Our approach is the first to employ
a (max,+) algebra for this task. The (max,+) algebraic approach is computationally
more efficient than existing approaches, but may suffer from requiring longer time
delays for observations for fault isolation, and a limitation to a class of HS that can
be diagnosed based on timing anomalies.

4.4 Behaviour Modeling: Switching Max-Plus Linear
Systems

This section summarizes the models that we use for the continuous and discrete
behaviours of a hybrid system. We describe in turn a max-plus algebra, max-
plus linear (MPL) systems, and switching max-plus linear (SMPL) systems. MPL
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systems can be generalized to capture a broad range of hybrid systems. By
introducing modes we can capture switching behaviours [25]. We can introduce
different forms of uncertainty in the model to capture different types of stochastic
behaviours, e.g., see [24]. In this article we introduce uncertainty in mode switching,
in order to capture uncertainty in the onset of fault modes.

4.4.1 Max-Plus Algebra

This section outlines the basis for our algebraic frameworks. We first define � D
�1 and Rmax D R [ f�g.
Definition 2 (Max-Plus-Algebra [2, 8]) A max-plus-algebra hRmax;˚; ˝i, for
numbers x; y 2 Rmax defines addition (˚) and multiplication (˝) as follows:

x˚ y D max.x; y/ (4.1)

x˝ y D xC y; (4.2)

We extend these to matrix operations as follows:

ŒA˚ B�ij D aij ˚ bij D max.aij; bij/; (4.3)

ŒA˝ C�ij D
nM

kD1
aik ˝ ckj D max

kD1;:::;n.aik C ckj/ (4.4)

for matrices A;B 2 R
m�n
max and C 2 R

n�p
max.

4.4.2 Continuous Dynamics: Max-Plus Linear Systems

We define our continuous dynamics using a max-plus state space model (Eq. (4.5)).
Here, we define dynamics for a single mode, and we extend this to multiple modes
in Sect. 4.4.3.

Max-plus-linear (MPL) systems are a class of discrete-event system that allow
synchronization but no concurrency or choice [2]. We define MPL systems using
two operators, max and C. The max function models the synchronization between
events: an event occurs once all processes it depends on have finished. The C
function models the process times: the moment a process finishes must equal the
sum of starting time and the time the process takes to finish. MPL systems are called
max-plus-linear systems since the underlying temporal algebra has computational
complexity that is “linear” in the max-plus algebra [2].
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Definition 3 (Max-Plus Linear System)

x.k/ D A.k/˝ x.k � 1/˚ B.k/˝ u.k/; (4.5)

with A 2 R
n�n
max, B 2 R

n�m
max and C 2 R

m�n
max , with a number n of states and m of inputs.

The index k denotes the event counter. For MPL systems the state x.k/2 typically
contains the time instants at which the internal events occur for the kth time, the
input u.k/ contains the time instants at which the input events occur for the kth
time, the output y.k/ contains the time instants at which the output events occur for
the kth time.

4.4.3 Switching Max-Plus Linear Systems

We now extend our framework to cover systems that can switch between different
modes of operation [25]. We assume that a system operates in some mode 
 2 � ,
where j�j D 2� modes. We partition � into a subset �f of �f fault modes and �n of
�n nominal modes.

Definition 4 (Switching Max-Plus-Linear (SMPL) System) A switching max-
plus-linear state space model exists in mode 
.k/ 2 : : : ; nm for event step k as
governed by

Ox.kC 1/ D A.
.k// ˝ Ox.k/˚ B.
.k// ˝ u.k/ (4.6)

Oy.k/ D C.
.k// ˝ Ox.k/; (4.7)

in which the matrices A.
.k//;B.
.k//;C.
.k// are the system matrices for mode 
.k/.

Mode switching can take place due to continuous transitions and due to discrete
transitions (control inputs using a switching function �). We assume that fault
transitions are unobservable and occur due to the continuous dynamics of the
system. The continuous switching allows us to model mode changes over both
nominal and fault modes. Such mode switches include changes in the structure of
the system, such as breaking a synchronization or changing the order of events.
Each mode 
 corresponds to a set of required synchronizations and an event order
schedule, which leads to a model with system matrices .A.
.k//;B.
.k/// for the 
 th
model. The mode 
.k/ determines which max-plus linear model is valid during the
kth event.

2In this article, boldface variables denote vectors.
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The moments of discrete switching are determined by a switching mechanism �.
We partition R

nz
max into � subsets Z.i/; i D 1; : : : ; �. The mode 
.k/ is now obtained

by determining the set 
.k/ at event step k. So if 
.k/ 2 Z.i/, then 
.k/ D i. The
switching mechanism is application-dependent; in some systems, it will depend on
the state x.k � 1/ and input u.k/, while in other examples 
.k/ will be governed by
w.k/.

4.4.4 Stochastic SMPL Systems

In real-world scenarios, fault transitions are stochastic. We can capture that
behaviour in the SMPL framework using the mode transition behaviours (switching
mechanism) 
.k/. In our original definition, the functional form of 
.k/ was left
open. We can define stochastic failure-mode transitions, together with deterministic
nominal-mode transitions, using a Markov transition matrix [24].

In this article, we assume that faults occur randomly, inducing random mode
switches from a nominal mode to a fault mode. Once a fault occurs, it is persistent.
We capture this using a stochastic variable �ij, which defines the probability of
switching from mode 
i.k � 1/ at time k � 1 to mode 
j at time k:

�ij D PŒ
j.k/j
i.k � 1/�:

For example, we may have a stochastic switch from a nominal mode 
i.k � 1/ to a
failure mode 
j.k/, where the switching probability is 0.01.

We can define a switching probability matrix for the stochastic variable �ij over
� modes, with entries given by �ij, i; j D 1; : : : ; � as:

PS D

2

6
4

�11 � � � ��1
:::
: : :

:::

�1� � � � ���

3

7
5 (4.8)

4.4.5 Generality of Approach

Our algebraic approach is general and extensible, in that we can maintain the
problem structure and obtain a different problem by changing the semi-ring. For
example, we can maintain the problem structure of Definition 4, and simply by
changing to the semi-ring hŒ0; 1�; .C;�/i, we obtain an HS defined by a dynamic
Bayesian network [19]. Furthermore, we can still use the inference architecture of
Fig. 4.1 to solve this dynamic Bayesian network.
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We make this change by defining x, y and u as stochastic variables, matrices
A; B; C as Markov transition matrices. With this modification of the model repre-
sentation, we can apply the semi-ring operations over the semi-ring hŒ0; 1�; .C;�/i.

In an analogous fashion, we can substitute several different semi-rings into
Definition 4 to obtain different HS formulations, with no change in inference tools
other than the semi-ring operations. For example, [21] defines several types of
diagnostics inference that are possible by adopting different semi-ring operations.

4.5 Running Example

We illustrate our concepts using a three-tank system, as shown in Fig. 4.2.

4.5.1 Nominal Model

We denote the tanks as T1, T2 and T3. They all have the same area A1 D A2 D A3 D
3 Œm2�. We assume that g D 10 and the liquid is “pure” water with density � D 1.

Tank T1 is filled from a pipe q0 with a constant flow of 0:75 Œm3=s�. It drains
into T2 via a pipe q1. The liquid level is denoted as h1. There is a pressure sensor p1
connected to T1 that measures the pressure in Pascals [Pa]. The system has valves
V1;V2;V3 as shown in Fig. 4.2.

We can measure the tank pressure values, i.e., the measurement vector is y D
fp1; p2; p3g. Our control task is to maintain set-point heights in each of the tanks.
The diagnostic task is to compute faults in tanks T1 (leaks) and valves Vi, given pi,
for i D 1; 2; 3.

q0

p1
* p2

* p3
*

V1 V2 V3

Fig. 4.2 Diagram of the three-tank system
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We define our nominal model as follows. According to Torricelli’s Law, flow qi

out of tank i, with liquid level hi, into tank j, is given by:

qi D &sign.hi � hj/

q
2g.hi � hj/; (4.9)

where the coefficient & is used to model the area of the drainage hole and its friction
factor through the hole.

We can use Eq. (4.9) to derive the following equations:

Ph1 D q0 � c1
p

h1 � h2

Ph2 D c1
p

h1 � h2 � c2
p

h2 � h3;

Ph3 D c2
p

h2 � h3 � c3
p

h3; (4.10)

where the constants c1; c2; c3 summarize the system parameters representing cross-
sectional areas, friction factors, gravity, etc.

Finally, we can compute from the water level a pressure given by

pi D g hi A

A
D g hi (4.11)

where i is the tank index (i 2 f1; 2; 3g).
Our control objective is to achieve set-point heights hC1 and h�3 in tanks 1 and 3,

respectively: we want to maintain the level of h1 below its maximum, i.e., h1 � hC1 ,
and the level of h3 above its minimum, i.e., h3 � h�3 . We assume that we have a
constant inflow q0 and we modify only the setting of valve V3. We denote V3 D 0

to be closed, and V3 D 1 to be open, i.e., the valve can only be fully closed or fully
open. Our switching control engages when either h3 < h�3 or h1 > hC1 .

Figure 4.3 shows a typical simulation for this system. A cycle of the system
(covering times t D 0 to t D 5:8 s) is as follows. We start with the valve set open,
and we see that the fluid levels h1 and h3 are both falling. When the level h3 < h�3 ,
we close the valve. The levels h1 and h3 now rise, and we open the valve when
h1 > hC1 . The cycle then repeats.

4.5.2 Fault Model

In the following we define valve (actuator) faults; other faults, e.g., leaks or sensor
faults, can be defined analogously.

We assume an additive valve fault, where the actual valve position for valve i,
given commanded position �i and fault ��i , is

�i D
�

maxf0; �i C��ig if ��i � 0
minf1; �i C��ig if ��i > 0

(4.12)

where ��i 2 Œ�1; 1�.
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Fig. 4.3 Simulation of the three-tank system. (a) Height of liquid in tanks h1 and h3. (b) Setting
of valve V3

4.5.3 Max-Plus Model

We now derive a max-plus model from the ODE model. Our aim is to create
an event-based representation with timings between event. We use as events the
switches of valve V3. We set z2 as the time when a switch �2 occurs due to the
height in tank 1 being exceeded ( h1 > hC1 ), and z1 as the time when a switch �1
occurs due to the height in tank 3 going too low (h3 < h�3 ). We set t0 as our initial
time. We identify two time parameters, �1 and �2 for the nominal operation of the
system. �1 is the time interval between switch �1.k � 1/ and �1.k/. Analogously, �2
is the time interval between switch �2.k � 1/ and �2.k/.

As a consequence, we must have

z1.k/ � maxfz2.k � 1/C �1g
z2.k/ � maxfz1.k � 1/C �2g:

In the max-plus algebra we write this as

z1.k/ � �1 ˝ z2.k � 1/
z2.k/ � �2 ˝ z1.k � 1/;
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which in matrix notation is Z.k/ � A0Z.k/˚ A1Z.k � 1/, or

�
z1.k/
z2.k/


�
�
� �

�2 �

 �
z1.k/
z2.k/


˚
�
� �1
� �

 �
z1.k � 1/
z2.k � 1/


; (4.13)

such that Z.k/ D Œz1.k/ z2.k/�T , A0 D
�
� �

�2 �


and A1 D

�
� �1
� �


. By writing A D

A�0 ˝A1, where we apply the Kleene matrix product to obtain A�0 , we obtain Z.k/ D
A˝ Z.k � 1/, with A D

�
� �1

� �1 ˝ �2


.

4.6 Diagnosing Hybrid Systems Using SMPL Automata

This section introduces an observer framework for monitoring SMPL Automata; we
then extend this to isolate faults in these automata.

4.6.1 Observers

We now extend a max-plus-linear state space model that is in mode 
.k/ 2 1; : : : ; �
for event step k into a monitored system using a residual vector r.k/. We define our
state specification with observer as follows:

Definition 5 (Observer State Space Model)

Ox.kC 1/ D A.
.k// ˝ Ox.k/˚ B.
.k// ˝ u.k/

˚K.
.k// ˝ r.k/ (4.14)

Oy.k/ D C.
.k// ˝ Ox.k/ (4.15)

r.k/ D jOy.k/ � y.k/j; (4.16)

where variables with a hat (Ox; Oy) correspond to model predictions, and variable y
(without a hat) corresponds to the measured output.

In this description, K.
.k// is the observer gain matrix that we must tune. Further
details of observer-based control can be found in [13].

Given an observer, we can monitor our system and identify anomalous behaviour
using the residual as follows:

Definition 6 (Fault Detection) Given a non-negative threshold ı 2 R, an anomaly
(corresponding to a fault) exists if jr.k/j > ı.
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4.6.2 Isolating Faults

This section describes a method for fault isolation given an anomaly. In general,
we can isolate faults in this framework using a range of approaches, e.g., a bank of
residual generators, ARRs, etc. A classical approach for fault isolation is to use a
bank of residual generators, one for each fault to be diagnosed [27]. This approach
can be easily accommodated in our framework; however, it does not scale well to
the large number of possible multiple-fault combinations.3 As a consequence, it is
computationally prohibitive to search the entire space, and using a bank of residual
generators typically is limited to single-fault scenarios.

In the following we address the most-likely multiple-fault scenarios. In particular,
we use the fault-transition probabilities to focus inference on the most-likely fault
trajectories.

We need to introduce a few definitions to clarify our fault isolation procedure.
We are interested in multiple-fault diagnoses, where we allow each failure mode

 2 �f to take on a discrete set of values.

Definition 7 (Trajectory) A trajectory is a sequence of events and states.

Definition 8 (Observation Sequence) An observation sequence is a sequence of
observable events.

For a stochastic transition, we compute the probability of a future state.

Definition 9 (Stochastic State Estimation Task) Given a sequence Y of k observ-
able events and initial state x.0/, the stochastic state estimation task is to identify
P.x.k//, the probability of state x at time k.

We can use the switching probability matrix PS to compute P.
.k/jP.
.0///,
where 
.0/ is the initial mode. Pk

S denotes the probability distribution over arriving
at any mode after k steps. More precisely, the ijth entry denotes the probability of
moving from mode i to mode j after k steps. We can use this matrix to compute the
probability P.
.k/jP.
.0/// for any mode 
 2 � .

We adopt as our baseline diagnostic approach the use of multiple observers,
where we compute with each observer a residual tuned to a particular fault. We
assume that we compute just the single-fault diagnoses with each residual. We will
then compare this approach with a multiple-fault approach.

In this article we adopt an approximation-based approach for multiple-fault
isolation, where we investigate the most-likely sub-space of the diagnosis space.
To do this, we must compute the most-likely trajectories. Fortunately, these are
easily computed using algebraic techniques. Assume that we identify an anomaly
at k steps. Using a .max;�/-algebra where � is standard multiplication, we can
compute the probability of a fault occurring at k steps using Pk

S using the .max;�/-
algebra, which computes the probability of paths of length k [20]. The entry �ij in

3The diagnosis space is exponentially-growing in �f , the number of fault modes.
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Pk
S denotes the maximum probability of the k-step path from mode i to mode j. We

use a threshold ı� such that we consider fault occurrence for fault j only if �ij � ı� .
We consider the set �f of faults.

We identify the fault that minimizes the loss function J .Oy; y/:


�f D arg min

f2�f

J .Oy; y/ (4.17)

In this article, we use a probabilistic loss function, so we compute the highest-
probability fault.

4.7 Computational Complexity

The complexity of diagnostic inference in a switching max-plus system (Defini-
tion 4) depends on two factors:

Fault Detection To identify an anomaly, we must solve our system to compute r,
which requires solving a matrix relation of the form given by Eqs. (4.6) and (4.7).

Fault Isolation This phase of inference requires us to identify the failure mode
that “explains” the anomaly, i.e., that minimizes our diagnostics cost function.

We now define the complexity of each factor in turn.

4.7.1 Fault Detection

Given an observation y.k/ at time k, computing a residual r.k/ D jy.k/ � Oy.k/j
involves estimating the output using Oy.k/, which we can calculate from Eqs. (4.6)
and (4.7) as

Oy.k/ D C˝ Ox.k/ for k D 1; 2; : : :

D C˝
"

A˝k ˝ x.0/˚
kM

iD1
A˝k�i ˝ B˝ u.i/

#

Computing the kth power of a matrix, for k 2 N0, takes the form

.A˝k
/ij D max

i1;i2;:::;ik�1

.aii1 C ai1i2 C � � � C aik�1j/ 8i; j:

This is clearly linear in the size of the matrix. From this, we can see that computing
the residual is linear in the size of the matrices involved. This contrasts with
traditional matrix operations, which are O.n3/ for n � n matrices.
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4.7.2 Fault Isolation

Isolating faults is the computationally taxing part of the problem. Below, we
outline the worst-case complexity of this problem, and then show the approximation
technique that we adopt.

We can define our diagnostic problem as follows:

Definition 10 (SMPL Diagnosis) Given an SMPL system with initial condition
x.0/ and anomalous observation y, compute a switching sequence ending with a
persistent fault that generates an output Oy such that J .Oy; y/ is minimized over all
permutations of switching sequences.

We can use this problem formulation to prove a decision version of our
diagnostics task.

Proposition 1 (SMPL Diagnosis Complexity) Given an integer SMPL system
with initial condition x.0/ and anomalous observation y.k/ at time k, it is NP-
complete to compute if there exists a switching sequence ending with a persistent
fault that generates an output Oy.k/ D y.k/ at time k.

The full diagnosis problem (Definition 10) is an optimization version of the decision
problem, so is NP-hard. The problem is the exponential number of switching
sequences that must be analysed. It is important to note that, although the SMPL
approach solves an NP-hard diagnostics inference problem, this is a more tractable
task than using conventional HS diagnostics inference.

4.7.3 Approximation Algorithm

We use an approximation technique to explore a polynomial number of switching
sequences (trajectories), rather than the (worst-case) exponential number of switch-
ing sequences. We use the stochastic function governing fault transitions to assign
probabilities to the trajectories, and explore only the trajectories whose probability
is higher than a threshold '. By controlling the value of ' we can limit the number
of trajectories to be polynomial in jxj. This gives us a principal way to trade off
inference speed with fault isolation accuracy.

Alternatively, we could solve this problem as a mixed-integer linear program-
ming problem [9], for which a number of efficient solvers exist.

4.8 Diagnosis Scenarios

This section covers the diagnosis scenarios for our tank example. We will examine
three scenarios: (1) T3 leak; (2) V3 blockage; (3) T2 leak.
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We compute residuals for inter-event timings: R D z2.k/ � z2.k � 1/ and R3 D
z1.k/ � z2.k � 1/ D �1.

4.8.1 Scenario 1: T3 Leak

Our first scenario covers a large leak in T3 at t D 4. This causes the minimum
set-point h�3 to be achieved must faster than normal, which in turn causes a faster
switch of V3 at t D 6:5, as shown in Fig. 4.4. Our approach is able to isolate this fault
quickly, with the leak in T3 having the highest probability among fault candidates.

4.8.2 Scenario 2: V3 Blockage

Our second scenario covers a temporary blockage in V3 at t D 4. This causes the
minimum set-point h�3 to be achieved slower than normal, which in turn causes a
slower switch of V3 at t D 8:7 rather than t D 8, as shown in Fig. 4.5. Our approach
is able to isolate blockage in V3 as the highest-probability fault.

V3
0

1

(a)
t

V3
0

1

(b)
t

R3
0

1

(c)
t2 4 6 8 10 12

2 4 6 8 10 12

2 4 6 8 10 12

Fig. 4.4 Diagnosis scenario with leak in tank 3. (a) Normal setting of valve V3. (b) Faulty setting
of valve V3. (c) Residual setting valve V3
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Fig. 4.5 Diagnosis scenario with blockage in valve V3. (a) Normal setting of valve V3. (b) Faulty
setting of valve V3. (c) Residual setting valve V3

4.8.3 Scenario 3: V2 Blockage

Our third scenario covers a temporary leak in T2 at t D 4. This causes the minimum
set-point h�3 and the maximum set-point hC1 to be achieved slower than normal. Both
residuals R and R3 signal a problem, but the system cannot isolate the unique cause
of the problem. It computes the probabilities of a blockage in valves V2 and V3 as
equally likely.

4.9 Types of Hybrid Systems Covered

This section discusses the types of hybrid system to which our SMPL framework
is applicable. Our approach uses observers to minimize the error between the
actual and predicted output times, possibly subject to additional constraints on the
inputs and the outputs. In its most general sense, this approach is applicable to
hybrid systems that consist of piecewise affine (PWA) systems [23]. PWA systems
are well-known HS models since they capture a wide range of HS properties
yet have mathematically tractable descriptions. PWA systems are mathematically
tractable since they extend linear systems capable of modeling non-linear/non-
smooth phenomena with an arbitrary degree of precision. Moreover, PWA systems
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are expressive, in that they can represent key hybrid features such as linear-threshold
events and mode switching.

van den Boom and De Schutter [26] has shown the following equivalence result:

Proposition 2 (Equivalence) Every finite SMPL system can be written as a piece-
wise affine system.

In the following, we briefly review the notation necessary to establish this result,
and refer the reader to [26] for the full details.

van den Boom and De Schutter [26] use the results of [14] to show that an
SMPL system can be rewritten as a piecewise affine system, a max-min-plus-scaling
system, an (extended) linear complementarity (ELC/LC) system or as a mixed logic
dynamical (MLD) system, all of which are used in the field of hybrid systems. We
can use this equivalency to transfer properties of piecewise affine systems and max-
min-plus-scaling systems to SMPL systems.

We first introduce the class of finite SMPL and piecewise affine systems that we
consider. If we recall the definition of switching systems (SMPL), we have:

Definition 11 (Finite SMPL System) A finite SMPL system generates finite
x.k/; y.k/ given as input finite x.k � 1/; u.k/, for all 
.k � 1/ 2 f1; : : : : ; �g.
Our aim is to relate a finite SMPL system to a PWA system, which is based on a
notion of polyhedral partitioning:

Definition 12 (Polyhedral Partition) A polyhedral partition fƒigiD1;:::;ns of the
space R

n
w is defined as the partitioning of the space R

n
w into non-overlapping

polyhedra ƒi; i D 1; : : : ; ns of the form

ƒi D fw.k/jSiw.k/ 
i sig; for i D 1; : : : ; ns;

for some matrices Si 2 R
q�nw and vectors si 2 R

q, and with 
i a vector operator
where the entries stand for either � or < and there holds

ns[

iD1
ƒi D R

nw and ƒi \ƒj D ; for i ¤ j:

We now define a PWA system as follows:

Definition 13 (Piecewise Affine System) Piecewise affine systems are described
by

x.k/ D Aix.k � 1/C Biu.k/C fi (4.18)

y.k/ D Cix.k/C Diu.k/C gi (4.19)

for

2

4
x.k � 1/

u.k/
d.k/

3

5 2 �i;
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where fi 2 R
nx�1; gi 2 R

ny�1; Ai 2 R
nx�nx , Bi 2 R

nx�nu , Ci 2 R
ny�nx , Di 2 R

ny�nu ,
for i D 1; : : : ;N where the signal d.k/ 2 Œ0; 1] is a uniformly distributed stochastic
scalar signal and �iiD1;:::;N is a polyhedral partition of RnxCnuC1.

To show this equivalence, [26] rewrite the original Definition 4 of SMPL systems
in terms of piecewise affine polyhedral partitions:

Definition 14 (Stochastic SMPL System) Consider the system of [Definition 4]
with � possible modes and let the probability of switching to mode 
.k/ given

.k � 1/; x.k � 1/;u.k/;w.k/ be denoted by PŒ�.k/ D 
.k/j
.k � 1/; x.k �
1/;u.k/;w.k/�. This qualifies as a Switching Max-Plus-Linear (SMPL) system if
for any given 
.k/ 2 1; : : : ; �, PŒ�.k/ D 
.k/j�; �; �; �� is a probability function
that is piecewise affine on a polyhedral partition of the space of the variables

.k � 1/; x.k � 1/;u.k/;w.k/.

These results indicate the broad range of hybrid systems that can be modelled
using the max-plus framework. The advantage of a max-plus framework is general-
izability as well as efficiency with respect to other representations.

4.10 Summary

This article has proposed a max-plus algebraic approach for solving a class of PWA
hybrid systems. For this class of system the max-plus algebraic approach is com-
putationally faster than traditional methods. We have described an approximation
technique that is of complexity polynomial in the problem size, even though the
general diagnostic inference task is NP-hard. We have illustrated our approach on a
process-control example.

This approach provides a novel computational framework for diagnosing hybrid
systems. We build on a significant base of work on modeling and controlling systems
using the max-plus algebra. There are many avenues for future work, including
applying this approach to large systems to test scaling properties, studying the
impact of switching probabilities on fault isolation accuracy, and comparing our
approach to state-of-the-art methods.

We also plan to show the generalizability of this algebraic approach, namely
that just by changing the underlying algebraic operations we can define a range of
stochastic hybrid systems, such as Markov switching systems or even non-linear
systems whose dynamics typically are defined using particle filters [17]. We show
how all the above approaches use the same formulation, and differ only in the
underlying algebraic operations.
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Chapter 5
Monitoring of Hybrid Dynamic Systems:
Application to Chemical Process

Nelly Olivier-Maget and Gilles Hetreux

5.1 Introduction

In this chapter, a methodology of a fault detection and isolation for chemical
process is presented. This methodology, called SimAEM (Simulation Abnormal
Event Management) is particularly designed for the monitoring of batch and
semi-continuous processes. These processes are the prevalent production mode
for low volume of high added value products. Such processes are composed of
interconnected and shared resources, in which a continuous treatment is carried
out. For this reason, they are generally considered as hybrid systems where discrete
aspects mix with continuous ones. Otherwise, the recipe is more often described
with state events (temperature or composition threshold, etc.) than with fixed
processing times [1]. SimAEM methodology is a model-based approach. Model-
based diagnosis is widely discussed in the literature and many industrial applications
exploit this principle [2]. Most of the methods in this approach are designed in
three stages: residual generation, residual assessment and localization. In our study,
our approach is based on a hybrid dynamic simulator. This simulator provides a
reference model, which is supposed to be correct [3, 26]. The general architecture
of SimAEM monitoring system is shown in Fig. 5.1.

The sequence of the different steps of a failure diagnosis is highlighted.
Moreover, a distinction between the on-line and off-line steps is made. Our approach
is therefore divided into three steps:
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Fig. 5.1 SimAEM architecture

• The first step is the residual generation (in dotted motif in Fig. 5.1). It consists of
the comparison between the predicted model obtained by simulation and the real
system behaviour obtained by an observer. In our case, the extended Kalman filter
is implemented. The aim is to reconstruct the system outputs from measurements.

• The second step (the signature generation) aims to analyse the residuals (in wave
motif in Fig. 5.1). This is the detection step. It determines the presence or absence
of a failure. The “signature” notion is introduced.

• Finally, the last step (in hatched motif in Fig. 5.1) consists of fault diagnosis. This
step exploits the generated signatures in the previous step in order to determine
the fault type. To do this, an inline matching process has been made. This is a
pattern recognition problem. For this purpose, the instantaneous fault signature is
then compared with the theoretical fault signatures by the calculation of distances
in order to identify and localize the fault(s). These theoretical fault signatures are
listed in the incidence table. The latter is obtained by experiment or by the off-
line simulation of a faulty process.

5.2 Residual Generation by the Extended Kalman Filter

The initial step of a model-based diagnosis system generates fault indicators, called
residuals. The residuals contain information on the drift or failure of the monitored
system. The goal is to measure the difference between the system measurements
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and the so-called “theoretical” value obtained by a reference model. The generation
of residual is a critical step in the success of the diagnosis.

5.2.1 State Estimator: Extended Kalman Filter

Numerous works on Hybrid Dynamic Systems revolve around the axes of mod-
elling, stability and controllability [4]. In recent years, more particular efforts have
been made in the literature on observability. The high robustness and real-time
ability of observer is well-known for industrial applications [5]. Although the theory
of state observation has reached a certain degree of maturity in the domains of
continuous and discrete events, the observation of dynamic hybrid systems remain
a challenge.

The observation of state is particularly adapted to the studies of fault detection
and diagnosis. It provides more information to make decision. Thus, the residual
generation by a state estimation consists of rebuilding the state or, more generally,
the process output by using observers, and then using the error estimation as
residual. Clark was one of the first to use this concept [6]. If the problem of design of
observers for linear systems seems well overcome, this is not the case for nonlinear
systems: there is currently no satisfactory global solution.

In this study, extended Kalman filter has been chosen to rebuild the process state.
Indeed, this filter is inexpensive in computation time and gives good results for
moderate nonlinear systems [5, 7, 8, 26]. It should be noted that as soon as the
nonlinearities become too strong or if it is badly initialized, extended Kalman filter
is not efficient. In our work, this filter is based on the dynamic simulation of hybrid
dynamic systems. PrODHyS simulator [9] provides models, which characterize the
process behaviour, especially during the transient states. Thanks to the use of this
filter, the monitoring is robust with noises and process uncertainties. It avoids thus
false alarms.

The state reconstruction by the extended Kalman filter consists of making the
estimation error independent of the uncertainties of the system. A description of
this filter and of its implementation can be found in [9, 10].

5.2.2 Residual Generation

Next, residuals r(t) are generated. They result from the comparison between the
state vector reconstructed by the observer representing the estimated statebX.t/, and
the state vector X(t) obtained with the reference model:

r.t/ D bX.t/ � X.t/ (5.1)
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Fig. 5.2 Absolute residual

This residual is called “absolute” residual. Let us illustrate this concept through
a simple example (Fig. 5.2). Consider a reactor R1 heated by an energy source †1.

In order to determine the variables representative of the abnormal behaviour, it is
necessary to compare the residual of the temperature T and the output flowrate dout.
However, although similar in value, these residuals are not dimensionless. To be
able to compare them, they must be dimensionless: rT (t) D 1K and rdout.t/ D 1L=s.
For this, a relative residual is defined:

rr.t/ D
bX.t/ � X.t/

X.t/
(5.2)

Then, we obtain the following relative residuals.

rr
T.t/ D

bT.t/ � T.t/

T.t/
D 276:15 � 275:15

275:15
D 0:36%

rr
dout
.t/ D

bdout.t/ � dout.t/

dout.t/
D 2:6 � 1:6

1:6
D 62:5%

It is possible to conclude the output flowrate is a variable representative of the
abnormal state, while the temperature is under normal conditions.
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5.3 Residual Estimation: Signature Generation

Real-time operation is an important factor in fault detection. Indeed, an early
detection of a fault is an asset to avoid its consequences that can be disastrous for a
chemical process [2]. In addition, past information can help understand the current
behaviour. Then, the observations are collected, according to their availability.
Intuitively, we suspect that when the time horizon is large t � 1, the data of the
initial moment will have no influence on the residuals at the date t. So, it is not
necessary to collect all the data. An observation window of size T is then defined.
The system is observed during the period T. This window is representative of the
system state. Its size is a parameter chosen according to system dynamic. Figure
5.3 illustrates the concept of this sliding window.Next, the detection consists of
evaluating an instantaneous signature from the residual generation in the first step
(Fig. 5.1). We denote this instantaneous signature S. The instantaneous signature (S)
is a positive vector of dimension n (the size of the state vector). More specifically,
each component of this vector is a positive real which is the result of a threshold
test. An element of the signature is thus defined as follows:

Si.t/ D
�
0 if jri.t/j � "i.t/
˛i > 0 if jri.t/j > "i.t/

with i 2 Œ1I n� (5.3)

where ˛i is the result of the threshold violation test; ri(t) is the generated residual in
the first part of the diagnosis, "i(t) is the adaptive detection threshold.

S is an instantaneous default signature. A nonzero component of this vector
assumes the occurrence of a fault (Si(t) D ˛i > 0 with i 2 [1; n]). A null vector
means a priori a normal behaviour of the monitored system (Si(t)D 0 for iD 1 : : : n).
This signature vector could be a binary vector: if the residual exceeds the threshold
then the signature is equal to 1. Nevertheless, by defining the signature vector
in this way, there is a loss of information on the magnitude of the failure: how

Fig. 5.3 Sliding window
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much does it exceed? Is this excess not negligible? By not defining the signature
vector as a Boolean, false alarm is thus avoided and the cases of a deviation and
of a failure can be differentiated. Moreover, it is hard to detect drift-like fault in
early stage. A survey of a drift detection and handling can be found in Sayed-
Mouchaweh [11]. In this research work, with the use of a non-binary vector, we
have all the necessary information to visualize the effect of a drift on the state vector.
Furthermore, thanks to the use of the Kalman filter, it is possible to differentiate drift
and model/measurement noises [9].

The instantaneous fault signature S(t) at t is thus a vector function of the residual
r(t) and of the detection threshold "(t). Each component Si(t) is defined by the
following equation:

Si.t/ D Max Œ.jri.t/j � "i.t// I 0� with i 2 Œ1I n� (5.4)

In the previous point, the interest of relative residual is underlined. In the same way,
an instantaneous relative fault is defined and it is a function of the relative residual
rr(t), of the detection threshold "(t) and X the state vector:

Sr
i .t/ D Max

��ˇ̌
rr

i .t/
ˇ̌ � "0i.t/

� I 0� with i 2 Œ1I n� (5.5)

with rr
i .t/ D bXi.t/�Xi.t/

Xi.t/
and "0i.t/ D "i.t/

Xi.t/
.

Finally, it is interesting to normalize these signatures in order to see the
predominant variations. Thus, the normalized relative fault signature is defined by
the following equation:

SrN
i .t/ D

r
i .t/

nP

kD1

r

k

.t/
D Max

��ˇˇrr
i .t/

ˇ
ˇ � "0i.t/

� I 0�
nP

kD1
Max

��ˇ̌
rr

k.t/
ˇ̌ � "0k.t/

� I 0�
with i 2 Œ1I n� (5.6)

Therefore, the sum of all the components of the normalized relative fault
signature is 1. This translates the following heuristic: if a residual rr

i is sensitive
to a fault, then the others rr

k (with k ¤ i) are not.

5.4 Determination of the Incidence Matrix

Numerous works deal with the distance to the fault signatures or with the structural
properties of the incidence matrix in order to have a robustness fault isolation
[12–14]. A fault signature is characteristic of a particular residual and a particular
fault. This signature is commonly obtained by experiment (or in our case by
simulation). The approach consists of evaluating a signature by comparison between
the reference model and the experiment or the simulation of the faulty process
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(Fig. 5.1). More specifically, each component of this vector is the result of a
threshold test (see Eq. (5.6)).

For our approach, we simulate same fault at different times. We generate the
characteristic signature of this fault for the p simulations of the faulty process. The
goal is then to have an only representation of this fault. Two cases are envisaged:

• The signatures characterize the same state vector. That means that the p
simulations have the same importance: their occurrences are equally likely. The
characteristic signature corresponds to the centre of gravity of the p signatures
obtained by simulation. For complex systems, it is interesting to analyse the data
and to determine their main components. Then, an approximate representation of
the p simulations is a subspace of small size.

• The signatures don’t characterize the same state vector (different number of state
variables). It is then necessary to make a canonical analysis. Consider two sets
of simulation characterizing the same fault. The first one is represented by the
state vector 1 and the second one by the state vector 2. This analysis consists
of examining the links existing between these sets. It is based on a Principal
Component Analysis decomposition. This theory is described in [15]. Note that
if both spaces are confounded, this means that only one of both sets is necessary,
since they have the same power of description. Conversely, if these both sets are
orthogonal, both sets do not represent the same properties. It is then necessary to
consider two different fault signatures characterizing the same fault.

Let’s illustrate this initial learning phase. Consider a system characterized by the
state vector [x, y, z]. A set of simulations is performed by introducing the same fault
at different occurrence dates. Let’s represent the results on a graph (Fig. 5.4). We
thus obtain a pattern characterizing a fault. However, the fault signature may differ
according to system state. That is why we can have different theoretical signatures
of a fault for different state or we can have an only one (Fig. 5.4).

Once the global incidence matrix is obtained, it is important to rebuild an
incidence matrix adapted to the system state (Fig. 5.1). For this, the incidence matrix
is reduced: only the present residuals are used in the instantaneous fault signature.
Finally, each theoretical fault signature is normalized. Let’s do this on a simple
example (Fig. 5.5).

5.5 Fault Isolation

The isolation system is represented in Fig. 5.1. It consists of establishing the
diagnosis from measured information of the process (instantaneous fault signature)
and from information obtained by experiments or by simulation (theoretical fault
signatures).



108 N. Olivier-Maget and G. Hetreux

5.5.1 Principle

The columns of the incidence matrix T represent the fault signatures. The notation
adopted for the columns of the incidence matrix is the following: T•,j (j D 1 : : :m).
T•,j corresponds to the signature associated with the jth fault fj. Similarly, each line of
the incidence matrix, Ti,•, represents a signature of the ith residual. Figure 5.6 shows
an example of theoretical fault signatures and residual signatures of an incidence
matrix.

Our approach is similar to a pattern recognition problem. The form to be
classified is the instantaneous normalized relative fault signature SrN, generated in
the previous step (Fig. 5.1). It is then necessary to assign this pattern to the existent
classes. In our case, each class is represented by a theoretical fault signature T•,j

(jD 1 : : :m).
In the case of fault detection and diagnosis, the instantaneous normalized relative

fault signature SrN is therefore compared with the m theoretical fault signatures T•,j

(j D 1 : : :m). The signature SrN transcribes the symptoms of the physical system.
The vector T•,j represents the signature of the jth fault. The fineness of the correlation
between these both signatures is directly proportional to the occurrence probability
of the fault fj (j D 1 : : :m). So, if it exists j 2 [1; m] such as SrN Š T•, j, then the
diagnosis concludes at the occurrence of the fault fj.

Fig. 5.4 Example of an incidence matrix
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Fig. 5.5 Example of the
reduction of an incidence
matrix

Fig. 5.6 Fault signature and residual signature

In order to compare an instantaneous signature SrN(t) and a particular fault
signature T•,j, a similarity function or a distance can be used. In our case, the
classification is made thanks to a distance in the signature space.

Definition of a Distance Let S be the space of the instantaneous normalized relative
signatures and T the bounded space of the theoretical fault signatures (card (T)Dm,
m being the number of considered faults). A distance SrN(t) defines the correlation
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symptoms—faults. The distance between an instantaneous signature and a fault
signature T•,j is defined by the following expression:

D W S � T ! Œ0I 1�

�
SrN.t/IT�;j

�
˛Dj.t/ D D

�
SrN.t/IT�;j

�

The distance D verifies these following properties:
For X 2 S, Y 2 T,

1. D(X, Y)D 0) X D Y
2. D(X, Y)D D(Y, X)
3. For Z 2 S, D(X, Z) � D(X, Y)C D(Y, Z)

Then we define a fault indicator:

Definition of a Fault Indicator A fault indicator Ij 2 [0; 1] is specific to the fault
fj with j D 1 : : :m. It represents the occurrence probability of the fault. It is defined
by the following relation:

Ij.t/ D 1 � Dj.t/ D 1 � D
�
SrN.t/;T�;j

�
(5.7)

According to the property 1 of a distance, Ij(t) D 0 means that the fault fj is not
occurring. On the contrary, Ij(t) D 1 reflects the fact that the fault fj is detected and
localized.

In general, we will not have these strict equalities, but rather the relation of order:
0 < Ij(t) < 1.
This relationship triggers an alarm on the fault fj. If the fault indicator Ij is close

to zero, the occurrence of the fault is not proved. On the other hand, if Ij is close to
one, then the occurrence of the fault fj is demonstrated.

5.5.2 Distances

Generally, the distance used is Hamming distance [16, 17]. It is a mathematical
distance. It compares two binary vectors B1 and B2 of the same size. This distance is
equal to the sum of the absolute values of the differences, component by component
of the two vectors B1 and B2:

DH D
nX

iD1
jB1i � B2ij (5.8)

Figure 5.7 illustrates the calculation of the Hamming distance between two
binary vectors B1 and B2. In this example, the Hamming distance is equal to 1.
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Fig. 5.7 Example of a calculation of Hamming distance

That means that only one component is different between both vectors.In order to
standardize this distance for all signatures, the relative Hamming distance has been
defined [18]. This distance between two binary vectors B1 and B2 is defined by the
following expression [19]:

DHr.t/ D

nP

iD1
jB1i � B2ij

n
(5.9)

In the previous section, we underline the interest to work in the continuous space
[0;1]. Equation (5.8) can be generalized to non-binary vectors: in this case the
distance is called Manhattan distance. In the same way, we generalize Eq. (5.9)
to the non-binary case and thus define a new distance called: relative Manhattan
distance [1, 9, 10]. The demonstration of this definition can be found in [10].

Definition of Relative Manhattan Distance Let S be the space of the instanta-
neous normalized relative signatures and T the bounded space of the theoretical fault
signatures (card (T) D m, m being the number of considered faults). The relative
Manhattan distance between an instantaneous signature SrN(t) and a particular fault
signature T•,j (both of size n) is defined by the following relation:

DMr
j .t/ D

nP

iD1

ˇ̌
SrN

i .t/ � Tij

ˇ̌

n
(5.10)

One of the major problems of FDI systems is their ability to detect the occurrence
of multiple faults and to localize them. Indeed, the theoretical signatures character-
ize a particular fault. However, the occurrence of multiple fault is represented by
a new fault signature [20]. This signature is obtained by combining the theoretical
fault signatures [19]. This is illustrated in Fig. 5.8.

Taking into account all the linear combinations of the theoretical signatures is
not a satisfactory solution because of the combinatory explosion. It is therefore
necessary to use a method which avoids the combination tests. Thus, Theillol et
al. [18] have defined a modified Hamming indicator, which only takes into account
the nonzero elements of the theoretical fault signature in the comparison:
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Fig. 5.8 Signature of
multiple faults

DHa
j .t/ D

nP

iD1

ˇ
ˇSrN

i .t/ � Tij

ˇ
ˇ � Tij

n0
(5.11)

with n0 the number of nonzero elements of the theoretical fault signature T•,j.We
generalize this distance to the non-binary case by defining the improved Manhattan
distance DMa [10]:

DMa
j .t/ D

nP

iD1

ˇ̌
SrN

i .t/ � m0 � Tij � n0
ˇ̌ � Tij

n0
(5.12)

with n0 the number of nonzero elements of the theoretical fault signature T•,j., m0 the
number of nonzero elements of the instantaneous fault signature SrN.

Note
Improved Hamming and Manhattan distances are not mathematical distances [10].
Nevertheless, these indicators are called “distance”, since these both indicators
allow to make a comparison between the instantaneous signature SrN and a particular
fault signature T•,j in terms of similitude of abnormal symptoms.

Let’s apply the relative and improved Manhattan signatures to a concrete
example. Consider the case where the faults f1 and f2 take place simultaneously.
The instantaneous signature vector and the incidence matrix are shown in Fig. 5.9.
These distances (Eqs. (5.10) and (5.12)) and the corresponding fault indicators (Eq.
(5.7)) are calculated.

In this example, the calculation of the relative Manhattan fault indicators does
not allow us to conclude. The instantaneous fault signature does not correspond to
any theoretical fault signatures. The improved Manhattan distance is based on the
idea of finding in the instantaneous fault signature only the significant symptoms
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Fig. 5.9 Example of Manhattan distances and corresponding fault indicators

of faults (i.e. the nonzero elements). With the improved Manhattan indicator, both
faults f1 and f2 are detected and isolated.

5.5.3 Decision Making

The generated fault indicators are then transmitted to the decision step (Fig. 5.1).
This step consists of the discrimination of the most probable fault. Since both
distances are defined in the space interval [0;1], the fault indicators are defined as the
complement to 1 of these distances. An indicator can be viewed as the probability
of the occurrence of a particular fault. These indicators follow a reduced centred
normal law @(�, � ). This distribution is shown in Fig. 5.10.This is confirmed by
the well-known statistical test of Shapiro-Wilk [21, 27]. This test is used to verify
normality. According to the test value, we can accept or reject the hypothesis that the
corresponding distribution is normal. The Shapiro-Wilk W test is the most widely
used normality test because it is a powerful test compared to many alternative tests
[15].

The generated fault indicators are exploited to take a diagnosis of the system. To
make this decision, we formulated two postulates:
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Fig. 5.10 Reduced centred
normal law @(�, �)

• A minimum value of the indicator, for which the fault can be considered, is
defined. This threshold is equal to 0.68 and corresponds to the probability at
the standard deviation. This allows us to define a limit threshold corresponding
to the probability at the standard deviation, i.e. less than 0.68. Thus, the presence
of a fault is not valid if its indicator is less than 0.68.

• Then, in order to limit the choice of possible faults, the following hypothesis is
put forward: the number of faults, which can simultaneously take place, is limited
to three.

5.6 Monitoring of a Complex Chemical Process

In this example, the case study deals with a variant of a chemical process described
in [22]. The process is described in Fig. 5.11. The purpose of this installation is
to produce and package a product P whose molar purity must be equal to 98%.
The reaction considered is an endothermic balanced reaction, whose reaction is the
following:

R1C R2$ P (5.13)

In order to maximize the conversion rate of the reaction without penalizing the
cycle time of the process, the reaction is stopped as soon as the molar composition
of product P reaches the value of 0.8. Moreover, the reaction (R) speed increases
with temperature T. The selected temperature for the reaction must guarantee a
rapid reaction and maintain the components in the liquid state. A temperature of
383 K satisfies these two constraints. Discrete controller commands the valves (open
valve/close valve).



5 Monitoring of Hybrid Dynamic Systems: Application to Chemical Process 115

Fig. 5.11 Process flowsheet [22]

The production of P according to the reaction (5.13) in the reactor BR1 involves
the following steps:

• Introduction in the reactor with n/2 moles of product R1,
• Preheating to 383 K,
• Introduction of n/2 moles of product R2 in the reactor with a temperature control

with the set point 383 K,
• Reaction until the product composition P reaches the value of 0.8.

5.6.1 Simulation of the Reference Model

The models used in this simulation take into account global and partial material
balances, energy balance, liquid/vapor equilibria, reaction rates, and hydraulic
phenomena. Indeed, except the pipes with a pump, the transfers between tanks are
carried out by gravity. This implies that the outlet flows of the tanks are a function
of the hydraulic pressure and of the liquid level in the source tanks. The transfer
times therefore depend on the time evolution of the system state. The simulation
is made with the hybrid dynamic simulator PrODHyS. The reader can find more
information about PrODHyS in [23]. Figure 5.12 illustrates the time evolution of
the composition in the reactor.
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Fig. 5.12 Time evolution of the composition in the reactor

5.6.2 Detection

The proposed approach is illustrated using a chemical process. The fault studied
concerns a degradation: the flow rate in valve V2 is degraded. That means that valve
V2 is blocked off partially. It is very interesting to be able to detect and diagnosis
a drift in order to avoid the failure [24]. We can find in literature numerous works
dealing with this problem [11] .

For this case study, 17 signatures related to a physical quantity are considered:

• The signature s1 represents the flow rate in the valve V1,
• The signature s2 represents the flow rate in the valve V2,
• The signature s3 represents the R1 composition in the tank ST1,
• The signature s4 represents the R2 composition in the tank ST1,
• The signature s5 represents the P composition in the tank ST1,
• The signature s6 represents the liquid retention in the tank ST1,
• The signature s7 represents the R1 composition in the tank ST2,
• The signature s8 represents the R2 composition in the tank ST2,
• The signature s9 represents the P composition in the tank ST2,
• The signature s10 represents the liquid retention in the tank ST2,
• The signature s11 represents the liquid level in the tank BR1,
• The signature s12 represents the R1 composition in the tank BR1,
• The signature s13 represents the R2 composition in the tank BR1,
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Fig. 5.13 Detection of a drift

• The signature s14 represents the P composition in the tank BR1,
• The signature s15 represents the temperature in the tank BR1,
• The signature s16 represents the liquid retention in the tank ST1,
• And the signature s17 represents the heat provided by the power supply of the

tank BR1.

Figure 5.13 illustrates the detection step. The residual of the liquid retention
for the reactor BR1 is presented. A statistical analysis estimates the prediction
errors of the Kalman filter and determines a limit threshold of 150 moles. This
threshold corresponds, according to the normal law, to a probability of 98%: there
is a probability of 98% that the behaviour is normal in this interval. The obtained
residual remains in this confidence interval. That means that this threshold (98%)
is not adapted to detect degradation. The threshold must be changed for that and
must be lower than this one. A compromise is made to avoid false alarms. For this
goal, the same postulate as the fault indicators is formulated: the threshold is lower
to a probability of 68% (Fig. 5.10): the new threshold is then obtained at 50 moles.
From t D 2400 s, the residual is out of the normal operating area. The diagnosis is
launched at t D 3000 s.

The residual vector is then evaluated and the corresponding instantaneous fault
signature is obtained:
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5.6.3 Diagnosis

The considered faults in this example are chosen according to a risk assessment
study and lessons to learn from accident:

• Fault 1 corresponds to a fault on the power supply of the reactor BR1: the latter
supplies a degraded amount of energy.

• Similarly, fault 2 represents a fault in the cooling system of the reactor BR1
which provides a degraded amount of energy.

• Fault 3 is a composition fault on the tank ST1, which normally contains the pure
component R1. Here, traces of component R2 are found in this tank.

• Fault 4 characterizes the same fault but this time there are traces of the
constituent P.

• The same type of fault is also considered on the tank ST2 which normally
contains the pure component R2. Thus, fault 5 represents the fact that component
R1 exists in tank ST1.

• Fault 6 is the same fault but with component P.
• Fault 7 represents a fault in the reactor power supply which is not at the right

temperature.
• Next, actuator faults are considered with the fault 8 corresponding to the blocking

of the valve V1 in the open position,
• And with the fault 9 corresponding to a degraded state of the valve V1: the flow

rate of this valve is degraded.
• The fault 10 is identical to the fault 8 but for the valve V2.
• Similarly, fault 11 is the same fault as fault 9 but applies to valve V2.

The incidence matrix contains all the theoretical fault signatures. An off-line
Monte Carlo simulation provides the theoretical signatures. It consists of simulating
a fault with different occurrence date. The parameter of the faults change for each
simulation and the noises are simulated. For example, consider the fault 9. The flow
rate of valve V1 is degraded. The valve is blocked off partially due to fooling. The
value of the rate of fooling changes. This matrix is rebuilt on-line to match the state
vector. This stage has been developed in point 4.

The instantaneous fault signature (Table 5.1) is compared with the incidence
matrix by calculating the relative fault indicators for the relative Manhattan
distances (Eq. (5.10)) and the improved one (Eq. (5.12)). The obtained indicators
are presented in Table 5.2.

Table 5.1 Instantaneous fault signature

s1 0.21775356 s7 0 s13 0.16505573
s2 0 s8 0 s14 0.16505354
s3 0 s9 0 s15 0
s4 0 s10 0 s16 0.21909804
s5 0 s11 0.21952267 s17 0
s6 0.01182547 s12 0
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Table 5.2 Relative and improved Manhattan indicators

Relative Manhattan indicator Improved Manhattan indicator

Fault 1 0.92118933 0.84052179
Fault 2 0.92118933 0.86669003
Fault 3 0.90196728 0.15177246
Fault 4 0.90277453 0.19006373
Fault 5 0.88238145 0.0003779
Fault 6 0.88236707 0.00018733
Fault 7 0.92118933 0.86669003
Fault 8 0.92335219 0.67944269
Fault 9 0.98670897 0.95493963
Fault 10 0.92383701 0.84716655
Fault 11 0.99785443 0.99547681

The values 0.68 of the fault indicators do not allow us to avoid faults since all the
values are greater than 0.68. On the other hand, the improved fault indicator makes
it possible to eliminate faults 3, 5, 6 and 8. We therefore have 6 possible faults.
We then use the second hypothesis that we formulated (see point 5.3): there can be
no more than three simultaneous faults. Thus, only the indicators with the highest
values are kept:

• Fault 11 with a rate of more than 99%,
• Fault 9 with a 95% rate,
• And faults 2 and 7 which have indicator values equal to 98.7%.

By combining the results of both indicators, it is found that fault 11 is in both
cases with a rate of more than 99%, and in particular the fault which provides the
maximum indicators. We can therefore conclude on the most probable cause of the
failure: fault 11, which represents the degraded state of valve V2 (the flow rate is
lower than the normal one).

The value of the residual then reveals the magnitude of the deviation, i.e. about
0.1. A parametric estimate here would be profitable in order to more precisely
determine the opening coefficient of the valve. However, in view of the results, the
system is in degraded mode. It may be considered to leave it in this state. In this case,
it is interesting to take this degradation into account in the reference model. Finally,
we can conclude that the SimAEM methodology is able to detect and diagnose
degradation.

5.7 Conclusion

This chapter presents a model-based approach and this methodology is illustrated
with the simulation of a complex chemical process. The feasibility of using the
simulation as a tool for fault detection is described. The method developed in
this study relies on the hybrid dynamic simulator (PrODHyS). The fault detection
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and diagnosis approach, developed here, is a general method for the detection and
isolation of occurrence of a fault. Besides, this approach allows the detection of
numerous types of fault and has the ability to detect and isolate simultaneous
faults [1]. The works in progress aim at defining a recovery solution following
the diagnosis of fault. For this, the results of signatures will be exploited in order
to generate qualitative information. As shown by the example, it is possible to
distinguish a simple degradation from a failure. Finally, dynamic simulation of
faulty processes is a real asset for safety studies. It makes it possible to analysis the
drifts to evaluate their dynamic and their magnitude and thus to define the required
safety barriers. Moreover, the simulation results provide predictive information to
validate the nature and the sizing of barriers.
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Chapter 6
Hybrid Bond-Graph Possible Conflicts
for Hybrid Systems Fault Diagnosis

Carlos J. Alonso-González, Belarmino Pulido, and Anibal Bregon

6.1 Introduction

Hybrid systems are physical systems that exhibit continuous behavior which can be
modified due to changes in their configuration. Their presence in our everyday life
is pervasive: the anti-lock braking system (ABS) commonly found in the automotive
industry; heating, ventilation, and air conditioning (HVAC) systems that can provide
heat and/or cold air; and aircraft or factories that work in different operation modes
are well-known examples. Hybrid systems exhibit complex behavior, made up of a
mix of continuous and discrete dynamics, being extremely challenging to track its
current state, either nominal or faulty. Such tracking is an essential task in order to
keep the system working in a nominal and safe state.

The focus of this work is on the kind of hybrid systems that have continuous
behavior controlled by discrete events. In those systems, the main source of hybrid
behavior are discrete actuators, like valves or switches in fluid or electrical systems,
respectively. A fault in an actuator, named a discrete fault, affects system dynamics,
usually causing a mode change, thus modifying system behavior in a different way
than a parametric fault [1]. Fault detection and isolation not only must be fast, but
it must be performed among continuous mode changes. As a consequence, using a
unique diagnosis framework capable to cope with both types of faults would ease
the task. In this work we propose a model-based diagnosis framework capable to
diagnosis both parametric and discrete faults.
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Hybrid systems modelling and diagnosis have been approached by the Control
Theory and the Artificial Intelligence communities1 in the last 20 years. In the FDI
field several approaches have been developed to diagnose hybrid [2] or quantized
systems [3]. Meanwhile, in the DX field, different proposals have been made based
on hybrid modelling [4, 5], hybrid state estimation [6, 7], or combination of on-
line state tracking and residual evaluation [8, 9]. All these proposals have at least
one of the following difficulties: either it is necessary to pre-enumerate all possible
configurations or working modes in the system (and to provide models for all of
them), or they need to determine somehow the actual working mode, including the
actuators’ configuration and the continuous behavior. To overcome some of these
difficulties several authors have proposed Hybrid Bond Graphs (HBGs) [10, 11] as
an alternative modelling technique, because the enumeration of the whole set of
configurations is not required. HBG modelling is an extension for hybrid systems
of the well-known Bond-Graph (BG) modelling approach [12, 13], that provides a
graphical description of the system model. Hybrid behavior is introduced by means
of idealized switching junctions that connect or disconnect parts of the system.
Different kinds of numerical equations can be automatically derived from BG and
HBG graphical models, and these equations can be later used to simulate or to
diagnose system behavior.

Our proposal for hybrid systems diagnosis is an extension of consistency-based
diagnosis using Possible Conflicts (PCs) [14]. A PC is a minimal overdetermined
set of equations that can be used to check different diagnosis hypotheses. PCs
were defined as sets of algebraic or differential equations, but the concept was
later extended to work with BG models [15]. Initially PCs were computed from the
Temporal Causal Graph (TCG) associated with the BG once causality was assigned
using the Sequential Causal Assignment Process (SCAP) algorithm.2 Later on, we
proposed to derive PCs for hybrid systems using HBGs [16], that were named
Hybrid PCs (HPCs). Main assumption in that approach was that there was a valid
causal assignment (VCA)3 for any bond in the model in integral causality when
every switching junction was set to ON. The causality within the HPC models
could be changed using HSCAP, which is the extended version of SCAP for hybrid
systems, whenever a mode change was detected [17]. In this work we remove that
requirement and provide a formal characterization of HPCs in the HBG framework
that will be called Hybrid Bond-Graph Possible Conflict (HBG-PC). We achieve this
goal introducing the concept of Structural Hybrid Bond Graph Possible Conflict,
SHBG-PC.

Additionally, we provide a common framework for Fault Detection and Isolation
of discrete and parametric faults. Once a fault is detected, and it can be related to
a discrete fault, they will be preferred candidates instead of any parametric fault,

1Frequently known also as the FDI and the DX communities, respectively.
2Causality in a bond represents how the underlying equation is solved, i.e. which variable is
dependent upon the rest of variables in the equation.
3A VCA provides a causal assignment for every bond in the BG/HBG model.
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because they introduce highly non-linear behavior. Usually a discrete fault will
change the current state. We propose to track the residual for every possible new
state, and to reject those states whose residuals do not become zero. Only if discrete
faults are rejected, we start the parametric fault isolation stage. To achieve this
unifying solution we will use different structural and qualitative information derived
directly from the HBG-PC models: the Hybrid Fault Signature Matrix (HFSM), the
Reduced Qualitative Fault Signature Matrix (RQ-FSM), and the Hybrid Qualitative
Fault Signature Matrix (HQFSM). Each Fault Signature Matrix (FSM) will be used
at different stages to reduce the search space among potential state changes or
potential fault candidates, rejecting those states or modes that are not consistent
with current observations.

The organization of this work is as follows: first, we introduce concepts about
BG modelling, and the PC approach for consistency-based diagnosis in the BG
framework. Afterwards we extend PCs to HBG terminology, and provide the
algorithms to compute SHBG-PCs. Later on we introduce the common diagnosis
framework for both parametric and discrete faults, showing its performance on a
four tank simulation case study. We finish by discussing about related work and
drawing some conclusions.

6.2 Characterizing PCs in the BG Modelling Framework

In this section we briefly introduce the concept of hybrid bond-graphs for modeling
of hybrid systems and present the Possible Conflicts diagnosis approach from a
Bond-Graph perspective.

6.2.1 Hybrid Bond-Graphs for Hybrid Systems Modelling

Hybrid Bond Graphs extend Bond-Graphs by including idealized switching junc-
tions, SW for short, to allow configuration changes in the system. If a SW is set to
ON, it behaves as a regular junction. When it changes to OFF, all bonds incident on
the junction are deactivated forcing 0 flow (or effort) for 1 (or 0) junctions.

Figure 6.1a, b shows the two configurations of an ideal 1-SW with three bonds.
The associated bond graphs describe the casual assignment, with the usual graphical
notation that we will introduce in the next section. Note that the casual assignment
of the OFF configuration is mandatory. Transitions on an ideal SW are implemented
as a finite state machine control specification (CSPEC). Transitions between the
CSPEC states can be triggered by endogenous or exogenous variables, called
guards. CSPECs capture controlled and autonomous changes as described in [17].
Figure 6.1c shows the automata for a potential CSPEC being the SW SW1 set to ON,
represented as sw1, or OFF, represented as Šsw1.
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(a) ON configuration (b) OFF configuration (c)Automata com-
manding a sw

! sw1

sw1

ON
OFF

Fig. 6.1 Semantics of a 1 switching junction in (a) and (b). Automata associated with the
commanded transition for SW1 from ON to OFF and vice versa in (c)

6.2.2 Possible Conflicts from BG Models

The PC approach is a dependency-compilation technique from the DX commu-
nity [14] for consistency-based diagnosis in continuous systems. PCs compile
offline those minimal structurally overdetermined subsets of equations from the
system model capable of generating fault hypotheses from observed measurement
deviations, i.e. they are the basis to check the consistency between observed and
estimated variables in the system.

The structural and causal information required to compute the set of PCs can
be derived automatically from a set of equations, which can be a set of Algebraic
Differential Equations or a Bond-Graph model [15].

To extend the PCs approach for hybrid systems diagnosis, we chose the HBG
models, because it is not necessary to enumerate every working mode before-
hand [18]. Moreover, efficient proposals exist to automatically change the causality
in the model whenever a change in the system mode occurs [17].

We initially relied upon two main assumptions to compute the set of PCs: it was
possible to use integral causality to solve the underlying equations, and there was
a complete valid causal assignment for the system model when every SW was set
to ON. These subsystems were called Hybrid PCs [16]. Now we propose to remove
both assumptions and still compute the set of Hybrid PCs. Main reason is that some
systems do not have a VCA under integral causality when every SW is ON, because
such configuration will never be set. We will illustrate this phenomena with our
motivating example, that we will introduce in Sect. 6.4.

To avoid such requirement we propose to compute the set of Hybrid PCs without
initially considering causality. We will call these subsystems Structural Hybrid
Bond-Graph Possible Conflicts (SHBG-PCs). In order to define SHBG-PCs we
proceed first by defining PCs for BG modelling, and then extending them to HBG
models. To illustrate the intuitions behind these definitions we will use the Bond
Graph model example shown in Fig. 6.2.
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Fig. 6.2 Bond Graph model example

Definition 1 (Bond Graph (BG)) A BG is a connected graph made up of elements
and bonds: fE;Bg, where E D St [ M. M stands for measurements or sensors,
.De;Df /, and St, the set of structural elements, is made up of St D S [ PSV [ Jt.
S represents effort or flow Source elements (Se, Sf ). PSV contains passive elements
(resistors, R, capacitors, C, or inductance elements, I). Jt is the total set of junctions:
Jt D J [ T , where T are transformers, TF, or gyrators, GY , and J is the set of 0-
or/and 1-junctions.

In a BG elements are connected by means of bonds, defined by B � E � E, and
meaning that not every relation between elements ei, ej is allowed for each bond
bk 2 B. In fact, for each .ei; ej/ 2 B, ei 2 Jt or ej 2 Jt or fei; ejg � Jt.

Exceptionally there could be combinations of one source and one passive element
that would not respect that generic rule, but we do not consider those systems as
significant for fault diagnosis.

Moreover, BGs are usually extended by adding a number to each bond, in
order to facilitate the enumeration of each effort and flow variable. Each bond
bk 2 B represents a relation or equation among system (effort and flow) variables.
The elements in S [ PSV provide the behavioral model by means of the set of
its constituent equations. The elements of Jt provide the structural model of the
system. The set M determines which variables in the system can be observed (the
observational model).

In the BG model example of Fig. 6.2 we have two sensors, M D fDf1;De1g, one
flow source, S D fSf1g, four passive elements, PSV D fI1;R1;R2;C1g, five junctions
J D f01; 02; 03; 11; 12g, connected by means of nine bonds.

Causality expresses computational dependencies between effort and flow vari-
ables in a BG [17]. A BG with a valid global causal assignment and without sensors
defines a just-determined set of equations, where S elements are the exogenous
variables or inputs [19]. This kind of BG is known as a Causally Enhanced BG [18]
or Causal BG [19]:

Definition 2 (Causal BG) It is a BG D fE;Bg, where each bond, bi 2 B � E � E
is extended with a label causality D f“effort”;“flow”g, that signals which variable
(effort or flow) fixes the causality in the bond: bi D .ei; ej; causality/.
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Fig. 6.3 Bond Graph model example with a valid causal assignment

Causality in each bond is graphically depicted as a stroke (that indicates the
direction of the effort) in the edges. Once causality is assigned to the bonds in a
BG model, we know how to use the equations for behavior simulation. The SCAP
algorithm [12] has been used to assign causality automatically to the BG. Figure 6.3
shows a valid causal assignment, under integral causality assumption, for the BG
example in Fig. 6.2.

There are a set of rules that govern causality assignment in a BG model [19].
Usually, those rules do not prescribe a unique causal assignment and some arbitrary
choices have to be made to fix causality.

Adding sensors in a BG introduces analytical redundancy in the system model,
because we can at least estimate and observe each variable related to the sensor.
As it is the usual procedure in model-based fault diagnosis, sensors are the
potential source of discrepancies. This is the main idea behind building Analytical
Redundancy Relations (ARRs) or Diagnostic Bond-Graphs (DBGs) for FDI using
BGs [19]. PCs also rely on these concepts although they were not originally defined
on the BG framework. Extending the concept of PCs to BGs requires finding the set
of subsystems in a BG with minimal analytical redundancy, which in turn requires
introducing the three following definitions.

Definition 3 (Degenerated Junction (Jd)) A degenerated 1-j (equivalently 0-j) is
a one-port element that must be obtained from a valid 1-j (equiv. 0-j) in a BG that is
connected to a flow sensor Df (equiv. effort, De) or a flow source, Sf (equiv. effort,
Se). Given a bond, b, and a measurement Df1, the 1-degenerated junction (equiv. 0-j)
changes the junction behavioral model:

• fb WD Df1 (instead of the set of equalities fa D fc D fb for a 3-port 1-junction with
determining bond b). If b is linked to a source, the equation would be fb WD Sf1.

• there is no restriction for the conjugated variable, eb (instead of eb D ea C ec).

Degenerated junctions provide the value for exactly one variable, of exactly the
same type (effort/flow) of the adjacent measurement or source.
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Fig. 6.4 Structural sub Bond Graph model, st-sBG1, of the BG model example

Fig. 6.5 Structural sub Bond
Graph model, st-sBG2, of the
BG model example

Definition 4 (Structural Sub Bond Graph (st-sBG)) A structural sub Bond
Graph, st-sBG, derived from BG D fE;Bg, is a connected subgraph fE0;B0g
jE0 D St0 [M0 and St0 D S0 [ PSV 0 [ J0 with S0 	 S, PSV 0 	 PSV , M0 	 M and
B0 	 E0 � E0 � B. J0 D J0o [ J0d, J0o 	 Jt, and J0d is a set of zero or more degenerated
junctions. Additionally if jd 2 J0d was derived from jo 2 Jt then jo … J0.

A st-sBG defines a subgraph obtained from a BG because it is made out of
some of the constituent elements of BG together with a set of junctions Jo from
the original BG. However there is also a potentially empty set of degenerated 1-
and 0-junctions, Jd, not contained in the original BG, that will be used to split the
BG in terms of sources or measurements and they are used to determine the value of
flow/effort variables. If jd is a degenerated junction derived from an original junction
jo 2 J, then by definition jo … J0.

Degenerated junctions will be a key part in computing PCs from BGs, as it will
be shown below. The main idea is that degenerated junctions together with dualized
sensors allow to stop the search while computing PCs because they provide the value
of a measured effort/flow variable, which will act as input variables for the subgraph
defined by the PC. Figure 6.4 shows st-sBG1, a st-sBG obtained from the BG model
example with VCA of Fig. 6.3. st-sBG1 is derived replacing the 03 junction in the
BG model example by the degenerated junction 03d, deleting bonds 8 and 9, and
dualizing sensor De1. In a similar way, we can obtain st-sBG2, shown in Fig. 6.5, by
dualizing sensor Df1, creating a new degenerated junction 11d, and removing bond
number 3 and the rest of elements to its left in the original BG.

For diagnosis task, we are only interested in st-sBGs with analytical redundancy:

Definition 5 (Redundant Structural Sub Bond Graph (RBG)) A RBG is defined
as a st-sBG whose underlying model has analytical redundancy.
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In order to obtain a parsimonious representation of conflicts and diagnosis we
define the concept of minimal RBG:

Definition 6 (Minimal RBG) A RBG derived from a valid BG with a VCA is
minimal if 6 9 RBG0 also derived from BG such that RBG0 � RBG.

Now we have the necessary concepts to define a PC in the BG framework:

Definition 7 (Bond-Graph Possible Conflict (BG-PC)) Given a valid BG with a
VCA, a BG-PC is a minimal RBG derived from the BG.

The existence of a BG-PC derived from a BG requires that the BG has analytical
redundancy: there must exist d0 2 Mpc such that the VCA of BG-PC allows
estimation of d0 from dualized sensors and/or sources: d0 is the discrepancy node of
the BG-PC and it is unique (otherwise the analytical redundancy in BG-PC would
not be minimal).

Regarding our BG mode example, it is easy to check that both st-sBG1 and st-
sBG2 are minimal RBGs. Hence, both st-sBG1 and st-sBG2 are BG-PCs.

6.3 Characterizing HBG-PCs

HBG models have no genuine new elements w.r.t. a BG model. Figure 6.6 shows
a Hybrid Bond Graph model example, obtained from our former BG example,
replacing junction 12 by a SW 1sw. Only a SW changing its state can modify the
underlying set of equations. Consequently, using HBG models instead of BG models
makes little difference in the way PCs are defined. Hence, extending the concept for
hybrid systems is rather straightforward if every SW is set to ON. All the former
definitions extend naturally accepting the presence of SWs that are set to ON. Due to
its predominant role, we state the definition for HBG-PC:

Definition 8 (HBG-PC) It is a hybrid BG-PCD fE0;B0g j E0 D St0 [M0 and St0 D
S0 [ PSV 0 [ J0, derived from a valid HBG, where some elements Jsw � J0 are SWs,
and has a global VCA when every SW in Jsw is set to ON.

Fig. 6.6 Hybrid Bond Graph model example



6 Hybrid Bond-Graph Possible Conflicts for Hybrid Systems Fault Diagnosis 131

In [16, 20] it is discussed how the set of PCs in a HBG when every SW is set to
ON provides the smaller set of PCs, and any analytically redundant subsystem will
be part of one of these PCs.4 The reason is that a change in one SW going from ON to
OFF will neither introduce new measurements in the system nor increase the number
of state variables. Hence, it cannot be the source of new redundancy. Switching from
ON to OFF and vice versa will only connect or disconnect parts of the system.5

We now propose to remove the assumption that there is a VCA for the complete
system when every SW is set to ON: such configuration might have no valid causal
model. This is not surprising. Some systems have multiple structural configurations
and several are not compatible among them. These configurations are usually known
beforehand because they represent the limited set of valid operation modes in
the system. But a well-designed system must have at least one VCA for some
configuration of SWs set to ON and/or OFF.6 If we assume that a SW set to OFF

disconnect a part of the system, each one of these valid configurations represent
a subsystem where our assumption for BG-PCs holds: it must have a VCA when
every SW in that subsystem is set to ON. If we are able to find the maximal subsets
of SWs where our assumption holds, we can guarantee that there will be no new
genuine and smaller BG-PCs.

Definition 9 (maxJSW ) Given a RBG and its set of SW, Jsw, a maximal subset
maxJSW 	 Jsw, satisfies the following properties:

• RBG has a VCA when all the SW in maxJSW are set to ON

• 8sw0 2 fJsw nmaxJSWg, RBG has no VCA with all the SW in maxJSW [ fsw0g set
to ON

Since each BG-PC in a BG model is related to a sensor, and changing a SW

from ON to OFF does not introduce new redundancy, we can search for HBG-PCs
in two steps: first, we search for structural redundancy, assuming every SW is ON,
without considering causality. We call these new subsystems containing analytical
redundancy: Structural HBG-PCs, or SHBG-PCs for short. Second, we check for
those maximal SW configurations in each SHBG-PC for VCAs. Each one of these
valid configurations is a HBG-PC.

Definition 10 (Structural HBG-PC) It is a hybrid RBG such that 8 maxJSW 	
Jsw, each RBG0 	 RBG, obtained by means of the following operations, is a HBG-
PC (that is, each RBG0 generated is minimal):

• setting in RBG all the SW in fJsw n maxJSWg to OFF

• keeping in RBG0 all the SW in maxJSW to ON

4Exceptionally some degenerated subsystems can appear, but they had no interest for diagnosis
purposes.
5Exceptions to this behavior may happen if there are non-parametric flow or effort paths in the BG
from sources to sensors.
6Otherwise there would be parts of the system that will be never used, or there is no need for such
SW in the model.
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And subject to the following conditions:

• Jsw DSmaxJSW

• Structural HBG-PC is minimal in the sense that � RBG00 derived from the RBG
such that RBG00 	 RBG0 and RBG00 is a HBG-PC.

Each SHBG-PC defines the maximal set of elements in the HBG that can be a
part of a HBG-PC related to the discrepancy node in the SHBG-PC (which is the
sensor introducing the redundancy).

Searching for the sets maxJSW is a worst case exponential problem. However, the
way we compute SHBG-PCs help us with this problem because the SHBG-PC is a
subset of the complete system, hence reducing the search space.

For our HBG model example of Fig. 6.6, it is easy to check that we obtain two
hybrids st-sBGs, essentially the same as in Figs. 6.4 and 6.5, simply replacing the
junction 12 by the SW 1sw. Both of them have a VCA with the 1sw set to ON. Hence
maxJSW is the set f1swg in both cases. As a consequence we obtain two SHBG-PCs.

In this simple HBG model example the concept of SHBG-PC does not pay off,
because there is only one SW and there exists a VCA when the 1sw is set to ON.
Hence, we obtain the same results than using the BG-PC formalism. Therefore, we
introduce a motivating example to show the potential of SHBG-PCs.

6.4 SHBG-PCs Motivating Example

To illustrate the SHBG-PCs approach we will use a simple electric circuit that
exhibits the major feature of hybrid systems: a pair of physical switches that provide
the system with four potentially different working modes. This system is shown in
Fig. 6.7a.

This circuit includes two batteries connected in parallel. Although this is a
common configuration that poses no problems in real applications, it can create
computational difficulties in simulation. When the batteries are modeled as ideal
batteries with no internal resistance and both switches are set to ON, the resulting
simulation equations have no valid causal assignment, because each battery imposes
a different value for the voltage at the input of resistance R1.

Figure 6.7b shows the HBG model for our electric system. In that model there
are two 1-SWs, 1sw1 and 1sw2 , both of them set to ON. That HBG model has no causal
assignment to the bonds in the graph.

Figure 6.8 shows different configurations of the system when we set to OFF any
of these SWs. For the sake of clarity we turn the color to grey in the HBG schematic
for those SWs and their related bonds when they are switched to OFF. Each one of
them is a BG if we think that a SW set to ON is a regular junction. Configurations in
Fig. 6.8b–d have a VCA. Only configuration in Fig. 6.8a has no VCA, corresponding
to the two SWs set to ON.
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Fig. 6.7 An electric system fed with two power sources. Each power source can be selected using
a switch. (a) System schematic. (b) Hybrid Bond-Graph Model

Fig. 6.8 BGs for the running example under the four possible configurations. Configuration (a)
has no valid causal assignment. Configuration (d) has a valid causal assignment, but no redundancy
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6.5 Computing Structural HBG-PCs

In this section we present the new algorithms to compute the set of SHBG-PCs and
we will illustrate their performance on the electrical circuit of Fig. 6.7.

6.5.1 The Algorithms

Algorithm 1 assumes the original HBG model is correct, and that effort/flow sensors
will be only connected to 0/1 junctions, respectively. The HBG is modelled as a set
of nodes (elements) connected through bonds.

Computing SHBG-PCs from HBGs is straightforward: we must traverse the
HBG from sensors to sources and/or other sensors, collecting all its components,
except those of the degenerated junctions linked to dualized sensors. There is,
however, one exception to this rule, due to the presence of non-parametric paths:
paths of the HBG that allow propagating flow or effort from a source or sensor
independently of passive elements. These paths hence contain only sources, junction
elements, and/or sensors. Given that we are looking for minimal redundancy, the
passive elements of non-parametric paths should not be included in a SHBG-PC.
For that reason, the algorithm first will look for non-parametric paths in the HBG.
This can be done straightforward, using depth-first search from each source/sensor
through paths that contain only non-parametric or degenerated junctions.

It should be noticed that some non-parametric paths could be BG-PCs because
they can estimate the value of sensor from other sources or other sensors. These
paths can be regarded as degenerated BG-PCs because they can only detect faults in
sensors, but they cannot be used to diagnose parametric faults. For that reason, they
are not considered in this framework as regular BG-PCs.

Once the algorithm identifies nodes in non-parametric paths in the HBG, then it
performs depth-first search for minimal paths from every sensor available to source
or sensor elements. Each node in the so-called TentativePath is required to compute
the effort/flow variable in the sensor. Once the node is analyzed, it is included in the
TentativeSBGPC, which would be a SHBG-PC if the search succeeds.

Algorithm 2 extracts in each step a node from the TentativePath until this path
is empty. In that case the search stops and the set of nodes in TentativeSBGPC is a
new SHBG-PC.

Each element in TentativePath is analyzed by means of Algorithm 3. Depending
on the type of node, different actions are performed. If node is a junction, and there
is a source or sensor adjacent to node, the search will stop. Same happens if the
junction belongs to a non-parametric path linked to a sensor or source different
from the original discrepancy sensor. Otherwise, we collect any element—including
junctions—, not previously visited, adjacent to the junction, and store them in the
current TentativeSBGPC.
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Algorithm 1: SHBG-PC ALGORITHM

Input: Set of nodes in Bond Graph: nodeSet
Output: Set of SHBG-PCs

1 Mark nodes belonging to Non-Parametric Paths to sources/sensors;
2 for each sensor {De or Df} in nodeSet do
3 TentativeSBGPC WD fsensorgI TentativeSBGPC:discrepancyNode WD sensor;
4 TentativePath WD fg; nodeSet WD nodeSet�{sensor};
5 for any node in nodeSet adjacent to sensor do
6 TentativePath WD TentativePath[{node};

7 ŒTentativeSBGPC; ok� WD buildRBG.nodeSet;TentativeSBGPC;TentativePath/
8 if ok == 1 AND TentativeSBGPC is a non parametric BG-PC then
9 Insert TentativeSBGPC in SHBG-PCs;

Algorithm 2: BUILD RBG
Input: Set of nodes, nodeSet, current RBG, TentativeSBGPC, and current path,

TentativePath
Output: Updated TentativeSBGPC and TentativePath, and error code, ok

1 while TentativePath is not empty AND ok != -1 do
2 Extract node from TentativePath;
3 ŒTentativeSBGPC;TentativePath; ok� WD

analyzeEl.node;TentativeSBGPC;TentativePath/

Algorithm 3: ANALYZEEL

Input: Current node, current TentativeSBGPC, and current search path TentativePath
Output: Updated TentativeSBGPC and TentativePath, and error code ok

1 ok WD 0

2 if node is not in TentativeSBGPC then
3 Add node to TentativeSBGPC;
4 if node is a junction linked to sensor/source s AND s … TentativePath then
5 ok WD 1; Add s to TentativeSBGPC;

6 else if node is a junction in a Non-Parametric Path to s0 AND
7 s0!= TentativeSBGPC:DiscrepancyNode then
8 ok WD 1; Add nodes in Non-Parametric Path to s0 to TentativeSBGPC;

9 else if there is a non-empty subset of nodes adjacent to node then
10 Add every 1-Port element, E in subset to TentativeSBGPC
11 Add every junction in subset to TentativePath

12 else
13 ok WD �1
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Once we have found a SHBG-PC it is necessary to find the sets maxJSW to
determine if it defines a HBG-PC. As mentioned in the previous section this problem
has a worst case exponential complexity. However, finding first the SHBG-PCs
using structural information we reduce the complexity of the search, turning a
global search into a local search (within the SHBG-PC). Moreover, determining
the presence of a HBG-PC only needs to find a maximal set with at least one VCA.

6.5.2 SHBG-PCs Found in the Motivating Example

We will illustrate the performance of these algorithms in our motivating example.
The HBG model in Fig. 6.7 is correct and has redundancy (given by effort sensor
v1), but if we run HSCAP for “every SW set to ON” (see the configuration shown in
Fig. 6.8a) there is no VCA.

Algorithm 1 is run for the only available sensor v1, which will be the only
possible discrepancy node. The algorithm searches backwards from the adjacent
junction 02, adding adjacent elements C1 and R2 to the TentativePath. Each element
in TentativePath is analyzed and included in TentativeSBGPC.

Algorithms 2 and 3 proceed analyzing junction 12. This junction contains
element R1 which is added to TentativePath. The algorithm stops searching when
it reaches 01. Both paths arriving to 01 are non-parametric: fSe1; 1sw1 ; 01g, and
fSe2; 1sw2 ; 01g. Every element is added to TentativeSBGPC. The HBG is correctly
defined and both paths finish at two sources, each one of them capable to set a value
for the effort in junction 01.

Algorithm 1 has found a potential SHBG-PC that is made up of the whole
system. Since the whole structural model has no VCA, we start the search for
maximal subsets of SWs set to ON in a top-down manner: we alternatively switch
one SW to OFF: first 1sw2 , then 1sw1 . Both configurations have a VCA, hence it is
not necessary to search further. Consequently the TentativeSBGPC is a SHBG-PC
that has two sets of maxJSW : maxJ1SW and maxJ2SW , with maxJ1SW D f1sw1g and
maxJ2SW D f1sw2g. When we configure the SHBG-PC according to those maxJSW ,
we obtain two minimal hybrid RBGs: RBG1 and RBG2. Both are minimal HBG-PCs
too: namely HBG-PC1 and HBG-PC2. They only differ on the effort source (ideal
battery) and the SW that is set to ON.

These results are summarized in Table 6.1.

Table 6.1 HBG-PCs found
in the electric circuit for the
SHBG-PC containing the
whole system model

HBG-PC Sensor maxJsw Elements

HBG-PC1 v1 f1sw1g fSe1; 01; 11;R1; 02;C1;R2g
HBG-PC2 v1 f1sw2g fSe2; 01; 11;R1; 02;C1;R2g

These two configurations have VCA and redundancy
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Although it was not necessary to try the configuration where both SW were set
to OFF because it would not be maximal, looking at Fig. 6.8d it is clear that such
configuration has a VCA, but it is not a RBG. Hence, it does not affect our results
on the previous paragraph.

In Fig. 6.8 we could see the four configurations for the non-causal model in
Fig. 6.7b. HBG-PC1 and HBG-PC2 correspond to Fig. 6.8b and c respectively. The
HBG in Fig. 6.8a has no VCA and the HBG in Fig. 6.8d is not a RBG.

Summarizing, the SHBG-PC is the union of HBG-PC1 and HBG-PC2 and it
contains the whole system given its two valid maxJSW sets.

The SHBG-PC framework works searching for minimal HBG-PCs related to
every measured variable, independent of causality. Those HBG-PCs related to the
same discrepancy node made up the SHBG-PC. For each SHBG-PC we must try
causality assignments and find out every maxJSW .

We have tested the algorithms in larger systems with more complex HBG models
(such as a Reverse Osmosis System), finding the complete set of HBG-PCs that can
be found using previous approaches. Due to lack of space we can neither include the
description of the systems nor the results. The reader can find a complete description
of these tests in [21].

The next section shows how SHBG-PCs can be used to perform fault detection,
isolation and identification of both parametric and discrete faults for hybrid systems.

6.6 Common Framework for Discrete and Parametric Faults

In this section we extend the concepts of fault signature matrix and qualitative fault
signature matrix to the hybrid case. These extensions allow us to process in a similar
way discrete and parametric faults. Afterwards, we illustrate the diagnosis process
with a hypothetical scenario, and finally we discuss complexity issues.

6.6.1 Assumptions

Before we describe the architecture, we need to clarify several issues:

• The set of available measurements is fixed (otherwise we need to re-compute the
set of redundant subsystems).

• There are no structural faults: System models do not include faults capable of
changing the system structure.

• Model parameters can be used to model parametric faults behavior.
• Regarding faults profile, our current proposal works with single fault and abrupt

fault assumptions for parametric faults. Abrupt faults appear instantaneously and
their magnitudes do not change afterwards (can be modeled as a step function).
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• Discrete faults are related to faults in discrete actuators, i.e. commanded or
autonomous mode switchings associated to an actuator that does not perform
the correct action. We consider four different faulty situations for a SWi (where
SWi refers to switching junction i), depending on the current state of SWi—the
state can be ON, i.e. 1, or OFF, i.e. 0—and its response to a new command:

1. SWi.11/: SWi is ON (1) and remains stuck to ON, despite a command OFF (0).
2. SWi.00/: SWi is OFF (0) and remains stuck to OFF, despite a command ON (1).
3. SWi.01/: Non-commanded switch transition for SWi from OFF (0) to ON (1).
4. SWi.10/: Non-commanded switch transition for SWi from ON (1) to OFF (0).

By non-commanded transition we mean either a commanded switch changes
its state without a proper command (for instance, a commanded valve suddenly
closes) or an autonomous switch changes its state without the required condition
(for instance, a complete block of a pipe between two connecting tanks).

• This proposal assumes that the current state of the system is known, and it is
characterized by a given configuration of the set of SW in each SHBG-PC: J0 �
maxJSW � J. A change in the current mode will be related to a commanded or
non-commanded/autonomous transition in a SW or due to a discrete fault.

Hence, the continuous system state can be tracked, although full system
observability is not required, except for the commanded switches, that must be
observable.

• For every SHBG-PC, any of its maxJSWi defines a HBG-PCi, that is, a minimal
RBGi that includes all the junctions of maxJSWi set to ON and any other SW set to
OFF. Each HBG-PCi describes a set of equations that can be used for consistency
check or residual evaluation. If there is neither state change nor faults, that
residual “ideally” should be zero.

The main idea of the integration proposal is to consider always discrete faults
as preferred candidates for FDI, because of their potential catastrophic effects.
Additionally, since the current state is known, we know the current position for the
SWs in the SHBG-PC, thus limiting the search space of potential new faulty states.

6.6.2 Fault Signature Matrices for Fault Isolation

In our framework we use the structural and behavioral information for each SHBG-
PC to build three different Fault Signature Matrices. Looking at our electric system
example, the structural information is located in Table 6.1.

First, SWs in a SHBG-PC will be related to discrete faults. This information
is gathered in the Hybrid Fault Signature Matrix, HFSM [16]. In our example,
f1SW1 ; 1SW2g will be related to the only SHBG-PC.

Second, we can characterize the current state in terms of the value of SWs to
ON/OFF, representing each configuration by a binary number: SW=ON is translated
to 1, while SW=OFF is translated to 0. Hence, SHBG-PC< 1; 0 > and SHBG-
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Table 6.2 Fault Signature Matrices obtained for SHBG-PC in the electric circuit example

SW SHBG-PC
1SW1 1
1SW2 1

(a) HFSM for
SHBG-PC

qi ∈Q HBG-PC1
R+

1 0-
C+

1 -+
R+

2 0+

(b) RQ-FSM for
SHBG-PC< 1,0 >

SW HBG-PC1
1SW1 (11) +
1SW1 (10) -
1SW2 (00) Forbidden configuration
1SW2 (01) No VCA

(c) HQFSM for SHBG-PC< 1,0 >

PC< 0; 1 > are the two valid configurations leading to HBG-PC1 and HBG-PC2,
respectively, in Table 6.1. This information will be used to determine potential state
transitions due to discrete faults.

Third, Elements 	 S [ PSV [ Jt, i.e. subset Elements in the SHBG-PC belong
to the original HBG. But we are only interested in parametric faults, hence neither
sources, sensors nor junctions will be considered as fault candidates. For the electric
system example ‚ = {R1;C1;R2} is the set of potential parametric faults. This
information will be used to build the Reduced Qualitative Fault Signature Matrix,
RQ-FSM [16].

We can build three new Fault Signature Matrices using these pieces of
information:

1. The Hybrid Fault Signature Matrix (HFSM) [16] describes the relation between
each SHBG-PC and its SWs. If entry Hi;j is 1 means that swi is in SHBG-PCj,
being a potential discrete fault candidate.

For instance, the HFSM for the electric circuit can be seen in Table 6.2a. Since
SHBG-PC contains the whole electric circuit, it contains every SW. In general,
different SHBG-PCs will contain different subsets of SWs.

2. For each state, a subset swj 	 maxJSW will be set to ON, defining a HBG-
PCj, which is a minimal RBG. Hence, the qualitative influence of each fault
in the discrepancy node (only available output measurement for HBG-PCj) can
be computed from its associated Temporal Causal Graph [4] as described in the
TRANSCEND approach, except that using the PCs approach, the information
is minimal [15]. That qualitative information is the expected deviation in the
residual for each HBG-PC, obtained by comparing the real measurement against
the predicted value by its discrepancy node.

Such qualitative information is stored in the Reduced Qualitative Fault
Signature Matrix (RQ-FSM) [16] for each state. Entries RQi;j in the RQ-FSM
represents the qualitative influence of parametric fault �i 2 ‚ for HBG-PCj, if
any.

In our electric circuit example, there is only one sensor v1, and the RQ-FSM
for SHBG-PC< 1; 0 >, named HBG-PC1 in Table 6.1, can be seen in Table 6.2b.

3. Discrete faults will usually introduce significant deviations in residual signals.
Hence, using a similar approach as in the RQ-FSM, we can build the Hybrid
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Qualitative Fault Signature Matrix (HQFSM) [16] for the current mode, that
represents the expected qualitative deviation in the HBG-PC residual for the
current mode for each potential discrete fault configuration.

The reader should notice that under single-fault and known mode assump-
tions, there is a limited set of discrete faults configurations, that must comply
with the definition of discrete faults at the beginning of this section.

For instance, in the electric system example, if we are in the state where
1SW1 D ON and 1SW2 D OFF, that is we have SHBG-PC< 1; 0 > and we
are tracking the system with HBG-PC1, then we have the following potential
discrete faults: 1SW1 .10/, 1SW1 .11/, 1SW2 .01/, and 1SW2 .00/. The HQFSM for
HBG-PC1 can be seen in Table 6.2c, where the qualitative signatures represent
the expected influence of each potential discrete fault in HBG-PC1 residual. In
the next subsection we explain how they affect the diagnosis computation.

It seems rather obvious that we need to obtain correct qualitative information
from the analysis of residual evolution, because qualitative signatures play a
significant role in our reasoning process. Summarizing our methodology, robust
methods based on the Z-test are used for symbol generation [4]. The first symbol
is derived from the result of fault detection. The second symbol is calculated for
the direction of the slope of the residual, also using the Z-test, thus having a
robust approach to compute that symbol when the signals are noisy. No implicit
computation of the numerical value of the derivative is needed. The window used
to calculate the slope is increased until the symbol is successfully generated, or the
difference between the current time and the detection time becomes larger than a
user-specified limit, at which point the slope is reported as 0, implying that the true
slope is either zero or unknown, but very small.

Now we have all the elements required to describe our diagnosis framework.

6.6.3 The Diagnosis Framework

Our model-based diagnosis for both discrete and parametric faults is consistency-
based. Hence, we will always use the information in the previously defined fault
signature matrices to discard faults whose signatures are not consistent with the
hypothesized fault. Only when no fault candidate can be discarded we will start a
fault identification process, as described in [22, 23].

We will use Fig. 6.9 to explain the diagnosis process of our proposal. We
are representing a hypothetic system with three SHBG-PCs that share several
parameters and actuators, graphically depicted by the overlapping HBG-PCs.

Tracking of hybrid systems can be performed using SHBG-PCs. Each new state
(due to a new SW configuration) defines one HBG-PC for each SHBG-PC if there is
a VCA for the new mode. Such test requires running the HSCAP algorithm on the
SHBG-PC in the new mode. If there is a valid HBG-PC it can be used to track the
system and to compute a residual [16]. This is also true for the initial state.
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Fig. 6.9 State-tracking for a hypothetic diagnosis scenario

In case of fault appearance, residuals for HBG-PCs sensitive to the fault should
be activated. In our diagnosis scenario in Fig. 6.9, the system is in Current State and
the presence of a discrete fault produces two residual activations for HBG-PC1 and
HBG-PC3, while HBG-PC2 residual remains statistically close to zero.

Since discrete faults will be always preferred candidates, we first look at the
HFSM. If there is any SW related to the SHBG-PCs we then look for potential
discrete faults in the current state under single-fault assumption. These potential
discrete faults define a set of achievable states that are considered Hypothesized
States, for instance, State A and State B in Fig. 6.9.

These discrete faults must introduce qualitative deviations in the residuals
according to its HQFSM. We check current residual signatures against expected
fault signatures in the HQFSM and reject those that are inconsistent (in our example
in Fig. 6.9 this corresponds to State B). Actually, we do not even generate these
states, as they are inconsistent with current observations.

We then create a new Hypothesized State for each potential state that is consistent
with the current observations. In our example in Fig. 6.9, for the sake of clarity, we
have included only one new consistent Hypothesized State: State A.

Afterwards, we start tracking their residuals during a period �t. During that �t

period, the residuals of one of the consistent Hypothesized States should eventually
converge to zero, and the discrete fault would be identified.
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While that process happened, in parallel, the original HBG-PCs for the Current
State were still tracking the system to update the set of candidates in case new
activations were found.

Finally, we create a New State that includes the set of HBG-PCs whose residuals
are statistically null. This last New State is consistent with current observations and
describes the current set of discrete faults under the single fault hypothesis. In our
example in Fig. 6.9, the New State is made of HBG-PC2, not affected by the discrete
fault, plus HBG-PC1 A and HBG-PC3 A. This is the standard scenario for a single
discrete fault that is correctly isolated.

Nevertheless, it is possible that none of the residuals of the initially consistent
Hypothesized States converges to zero. Then all the Hypothesized States are tagged
as inconsistent, their set of HBG-PCs are deactivated, and the fault is assumed to
be parametric for the Current State. We then start the parametric fault detection and
isolation procedure using the RQ-FSM to obtain an isolation as accurate as possible
as described in [22], i.e. those qualitative signatures that do not match observed
signatures can be rejected. Only those fault candidates whose qualitative signatures
are consistent with the RQ-FSM will be used in the fault identification stage, as
described in [22, 23].

In our electric circuit example, there will be only one active HBG-PC for each
current or hypothesized state. Hence, the fault isolation will be straightforward. For
instance, if the current state is SHBG-PC< 1; 0 >, HBG-PC1 is used to track the
system. If the residual for HBG-PC1 is activated, we have four potential discrete
faults as mentioned above: 1SW1 .10/, 1SW1 .11/, 1SW2 .01/, and 1SW2 .00/.

• Discrete fault 1SW1 .11/ has an associated HBG-PC which we can use to track the
system. Depending on the qualitative signature of the residual it can be rejected
or confirmed.

• Fault 1SW1 .10/ generates a subsystem where the effort source is no longer
connected. The subsystem has no input, but we know the value of the state
variable before the fault occurrence and we still can track the evolution of its
residual.

• Fault 1SW2 .00/ should be forbidden due to safety considerations, because it would
introduce a non-valid configuration (the original command would try to connect
both sources at the same time).

• Finally fault 1SW2 .01/ will introduce a potential catastrophic configuration too,
SHBG-PC< 1; 1 >, that has no VCA and cannot be tracked. Model-based
diagnosis cannot cope directly with it because system behavior cannot be
predicted under this configuration. Hence, some kind of ad hoc solution should
be called for.

6.6.4 Complexity of the Approach

It should be clear by now that computing HBG-PCs is a system decomposition
method that splits the system model into smaller subsystems, thus allowing to
reason independently about each subsystem and lowering the inherent complexity
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of tracking hybrid systems states. Under multiple fault assumption, the problem
is clearly worst case exponential, but in our proposal with single-fault assumption
plus the reasoning at the HBG-PC level mitigates this problem. In fact, knowing
the current state before fault occurrence, the number of potential new states grows
linear with the number of components in each HBG-PC.

Additionally, for each HBG-PC subsystem we must consider different
scenarios:

• Mode changes due to nominal transitions, either commanded or autonomous
ones, will introduce changes in the model, possibly needing to run a HSCAP-
like algorithm, but will not introduce new states to be tracked. That happens just
if residuals activate a fault detection.

• In presence of discrete or parametric faults, residual activation will create new
state configurations; but due to the high dynamics introduced by discrete faults
in the residuals, these kind of faults should be confirmed or rejected very
fast. So, the only source for tracking several states in parallel will be due to
parametric faults, that will require the qualitative fault isolation and quantitative
fault parameter identification stages. Even in those cases we will be working with
reduced order fault signature matrices and parameter identification tasks [22]. In
case of correct fault identification we will be dealing again with tracking one
mode per HBG-PC. Only in the case of new mode changes during the fault
isolation and identification stages we could have branching to new states.

6.7 Case Study

In order to fully illustrate our proposal, we will use the hybrid four-tank system
shown in Fig. 6.10a. The system has an input flow that can be redirected either to
tank 1 or to tank 3 (or both) by using the on/off valves SW1 and SW3, respectively.
Once the liquid in tank 1 reaches given height h, tank 2 starts to fill. A symmetric
configuration occurs for tanks 3 and 4.

Figure 6.10b shows the HBG model of the four-tank system in Fig. 6.10a. The
system has four 1-SWs: 1SW1 , 1SW2 , 1SW3 and 1SW4 . 1SW1 and 1SW3 are controlled
ON/OFF transitions, while 1SW2 and 1SW4 are autonomous transitions. Both kind
of transitions are represented using a finite state machine. Figure 6.11 shows the
automata associated with both kind of transitions for 1SW1 and 1SW2 . Automata for
symmetric switches 1SW3 and 1SW4 are equivalent.

Using the algorithms presented in Sect. 6.5 we computed the SHBG-PCs for the
HBG model of the four-tank system. Figure 6.12 shows the four SHBG-PCs found,
where each one of them estimates one of the measured effort variables (p1, p2, p3,
p4). Each one of these SHBG-PCs defines an equivalent HBG-PC that can be used
for diagnosis purposes, because it has a VCA when every SW is ON.

For the set of SHBG-PCs we can compute the HFSM, shown in Table 6.3. Note
that faults in 1SW2 and 1SW4 are not considered as potential discrete faults because
profiles 1SW.01/ in both SWs are not physically possible—corresponding to a pipe
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Fig. 6.10 The four-tank hybrid system: schematic and associated Hybrid Bond-Graph model. (a)
Schematic. (b) HBG model

Fig. 6.11 Automata
associated with the
a) commanded transition for
SW1, and for the
b) autonomous transition in
SW2, respectively

suddenly producing flow without any input—, while profiles 1SW.10/ are equivalent
to blockages in the pipes and hence modelled as parametric faults.

For the mode where each SW is ON we can compute the RQ-FSM shown in
Table 6.4 and the HQFSM, which is only built for actuators modelled by 1SW1 and
1SW3 , shown in Table 6.5.

6.7.1 Results for the Case Study

Several scenarios have been tested in simulation to validate this approach: com-
manded and non-commanded transitions that must not be detected, and fault
injections (both discrete and parametric) that must be detected and isolated. We have
run several simulations with different mode configurations and faults—varying the
size, time of fault occurrence, even introducing faults immediately after the mode
change—obtaining satisfactory results in all of them. Due to space limitations, we
explain here the results on two of those scenarios. Both simulation experiments were
run during 700 s using a sampling period of 1 s; the noise level is set to 5%.
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Fig. 6.12 SHBG-PCs found for the four tank system

Table 6.3 Hybrid Fault Signature Matrix (HFSM) showing the relations between switching
junctions and each SHBG-PC for the four tank system

Sw-j SHBG-PC1<1110> SHBG-PC2<0100> SHBG-PC3<1011> SHBG-PC4<0001>

1SW1 1 0 1 0

1SW3 1 0 1 0

6.7.1.1 Discrete Fault in SW1

In this first experiment, the tanks, initially empty, start to fill in. Values for both
the commanded switches, SW1 and SW3, are set to ON. After 500 s, we introduce a
discrete fault in SW1: the switch moves to OFF without receiving a command to do
so (i.e. fault 1sw1 .10/). Figure 6.13a shows the evolution of pressure in tanks 1 and
3, and their residuals for HBG-PC1, and HBG-PC3 in the time window close to the
fault occurrence. Outside of that time window, the residuals are zero. Residuals for
tanks 2 and 4 are not affected by this fault. Fault detection occurs at t D 502 s, and
looking at Table 6.3, we see that every discrete fault is a potential candidate.

At t D 507 s, we compute the fault signatures: a 0� signature is derived
for HBG-PC1 residual and a 0C signature is derived for HBG-PC3 residual.
Looking at Table 6.5 and comparing with the actual fault signatures, we con-
clude that only four discrete faults are consistent with current observations:
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Table 6.4 Reduced
Qualitative Fault Signature
Matrix for mode 1SW1 D On,
1SW2 D On, 1SW3 D On,
1SW4 D On

‚ HBG-PC1 HBG-PC2 HBG-PC3 HBG-PC4

CC

1 –+

CC

2 –+

CC

3 –+

CC

4 –+

RC

01 0– 0+

RC

03 0+ 0–

RC

1 0+

RC

2 0+

RC

3 0+

RC

4 0+

RC

12 0– 0–

RC

34 0+ 0–

Table 6.5 Hybrid
Qualitative Fault Signature
Matrix for the four tank
system

Sw-j HBG-PC1 HBG-PC3

1SW1 .11/ + �
1SW1 .00/ � +

1SW1 .01/ + �
1SW1 .10/ � +

1SW3 .11/ � +

1SW3 .00/ + �
1SW3 .01/ � +

1SW3 .10/ + �

1SW1 .00/; 1SW1 .10/; 1SW3 .11/, and 1SW3 .01/. Since we know that in the current state
both switches are commanded set to ON, only two discrete faults are possible
(discrete faults with the form 1SWi.1X/, where X is either 0 or 1):

• A non-commanded transition to OFF in SW1: 1SW1 .10/

• A stuck ON in SW3: 1SW3 .11/

In the next step, our hybrid diagnosis framework creates two different instances
of the HBG-PCs in the system, one for each fault candidate. It quickly reassigns
causality by running Hybrid SCAP for the mode transitions, and tracks the system
for an empirically determined time interval �t (in this work, since the system
dynamics are quite fast we used �t D 20 s) to isolate the fault. This tracking can
be seen in Fig. 6.13b, c, for SW1 and SW3 fault candidates, respectively. As can be
seen, only the HBG-PC estimation for hypothesized non-commanded transition to
OFF in SW1 is able to track the current behavior (the residuals go to zero). Since
the other hypothesized fault cannot recover their residuals, it is rejected as a valid
candidate.
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Fig. 6.13 Measurements and estimations of HBG-PC1 and HBG-PC3, and their corresponding
residuals, for a non-commanded transition in SW1. (a) Non-commanded transition to OFF in SW1

in the system. HBG-PCs estimation and corresponding residuals. (b) Non-commanded transition
to OFF in SW1 in the system and such change is correctly hypothesized in a new state. (c) Non-
commanded transition to OFF in SW1 in the system, and SW3 stuck ON is hypothesized in a new
state
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6.7.1.2 Parametric Fault in R01

The second experiment corresponds to a 20% blockage fault in R01 for the same
initial configuration. The fault is introduced at time t D 500 s, leading to fault
detection by HBG-PC1 and HBG-PC3 residuals at t D 505 s. Looking at Table 6.3,
we see again that there are discrete fault candidates that we have to consider first.

At time t D 511 s a 0� signature is derived for HBG-PC1 residual, and a 0C
signature is derived for HBG-PC3 residual. These are the same signatures as in the
previous experiment, then the set of candidates is the same.

Similarly to the previous experiment, the hybrid diagnosis framework creates two
different instances of the HBG-PCs in the system. Hybrid SCAP reassigns causality
for the mode transitions, and tracks the system for the empirically determined time
interval of 20 s. However, for this scenario, none of the discrete fault candidates can
be confirmed as the true fault in the system (none of the residuals of the hypothesized
discrete fault scenarios converged to 0); as a result, the isolation algorithm discards
a discrete fault in the system. The next step in the algorithm is to hypothesize a
parametric fault. Looking at Table 6.4, we see that the fault signatures obtained for
HBG-PC1 and HBG-PC3 only match the fault in R01, thus confirming R01 as the true
fault in the system, without further calculations.

6.8 Conclusions

The main contribution of this work is the introduction of the Structural HBG-
PC, because it allows to find HBG-PCs for hybrid systems without imposing
any condition on the global causality of the system model [17], which is a main
difference with other approaches relying upon HBG models [18, 19].

This work provides an alternative characterization for HBG-PCs, based on
maximal sets of SWs set to ON with a VCA. This definition generalizes the former
one [16, 20] when the maximal set is the whole set of SWs. However, if the system
does not fulfill this requirement, the concept of SHBG-PC still helps us to deal
locally with invalid SW configurations, while containing the whole set of HBG-PCs
for every feasible configuration.

A SHBG-PC covers a set of maximal switching junctions. The actual HBG-
PCs must be obtained searching within the SHBG-PC, without further search in
the global model. Finding maximal sets of SWs has a worst case exponential
cost. However, it is not strictly needed to compute these sets, unless we want to
characterize offline the families of HBG-PCs for each valid configuration. It is
enough to check out that there is one VCA for anyone of the valid configurations.

As in previous works, structural HBG-PCs allow to track hybrid system behavior
with only local changes in the model, because a change in a SW is local to the
structural model. When a change in the system mode requires a change in a SW

from ON to OFF or vice versa, we only need to run a HSCAP-like algorithm within
the SHBG-PC to determine a new diagnosis model. This local way of reasoning is
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the big difference with respect to HyDe [5], which also allows different diagnosis
approaches, while we just use model-based diagnosis.

Recent works working with HBG models also have adopted the need for
integration of structural or behavioral information similar to HFSM and HRQSM
concepts[24, 25] for both model-based diagnosis and prognostics.

Thanks to HBGs and the concept of switching-junction it is not necessary to
enumerate the complete set of modes or to provide different models for all the
potential states, compared to ARR-based approaches for hybrid systems [2, 8].
Moreover, SHBG-PCs describe subsystems with minimal redundancy, capable to
track current and potentially new system states in parallel, similar to [9], but
different to DBGs [11, 19] or previous versions using HBGs and qualitative
information [4, 18].

Work required to find and build subsystem models and fault signature matrices
can be done off-line, thus reducing complexity and focusing automatically the
search for potential new state tracking by analyzing different dynamics in discrete
and parametric faults, instead of combining state estimation and tracking [6, 9].

Another difference, with these and similar proposals based on state estimation
or pure Discrete Event Systems approaches [26], is that before a fault happens,
we assume the current state is known for each SHBG-PC. On one hand, this
assumption does not require to specify every potential system mode, due to
the presence of HBGs, which allow us to generate dynamically different modes
just acting on the values of switching junctions. On the other hand, we require
observability of commanded switches. For autonomous switches, they might not be
directly measured but they must depend on continuous variables within the HBG-
PC, because Possible Conflicts define a strictly overdetermined set of equations,
corresponding to an observable subsystem when tracking a continuous process [27].
This fact allows us to compute any unknown variable in the subsystem required for
an autonomous transition to be triggered. In those systems that these constraints
do not hold, the approach could not be used. We don’t require the system to
be structurally observable. However, the non-observable part of the system won’t
be described by any SHBG-PC. Note, also, that under single-fault assumption,
if the system is capable to identify the precise discrete/parametric fault, this new
configuration can be immediately used as the new current state which will continue
tracking the system continuous behavior. We have recently shown that our approach
can perform fault identification under discrete mode changes [23].

The main difference between our approach and other works for hybrid systems
fault diagnosis using structural model decomposition and qualitative fault isola-
tion [28, 29] is that their models are composed from sets of user-defined components
using a compositional modeling approach, instead of using Bond-Graphs. There is
also a recent work using Possible Conflicts for hybrid systems diagnosis, but they
use different types of mode estimation techniques for mode tracking [30].

This work proposes a centralized approach for model-based diagnosis, but our
guess is that can be extended rather straightforward to a centralized version for
distributed systems following a similar approach to that proposed in [31] for
extending system decomposition methods for distributed systems diagnosis [32].
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The main difference with other proposals for hybrid systems diagnosis using
HBGs and qualitative fault signature matrices [24, 25] is that SHBG-PCs define
subsystems based on minimality alone, while their proposal is based on diagnos-
ability properties and residual sensitivity to faults.

While this work is focused on HBG-PC characterization and computation,
together with defining a diagnosis strategy for both discrete and parametric faults,
additional research is needed to analyze different notions of diagnosability [33–
35] at the SHBG-PC design stage. There would be additional ways to compute
PCs, such as merging minimal PCs to obtain non-minimal PCs, looking to improve
diagnosability results [23].

Further research is needed to integrate HBG-PCs that are completely non-
parametric with all theirs SWs set to ON. In this proposal we cover the case where
there are non-parametric paths close to a source. Additional research is needed to
extend this approach for distributed systems and multiple faults.
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Chapter 7
Hybrid System Model Based Fault
Diagnosis of Automotive Engines

E. P. Nadeer, S. Mukhopadhyay, and A. Patra

7.1 Introduction

Model based fault diagnosis typically involves three stages: Modelling, residual
generation and residual evaluation. Traditionally, due to the ease of development
and implementation, model based diagnosis schemes for automotive engines have
used Mean Value Models (MVMs) [1–4], where only the mean values of engine
variables over each engine cycle are considered. However, the automotive engine
is best modeled as a hybrid system with nonlinear continuous dynamics in its
various discrete modes, arising due to the forward and backward motions of fluids,
the different strokes of the piston cycle, fuel injection, ignition, combustion, etc.
We shall refer to such a system as Hybrid Nonlinear System (HNS). The system
dynamics or ‘mode’ changes depending on the inputs and/or continuous states
themselves. When the system is in one discrete mode, the states of the system follow
a continuous dynamics, represented by a set of differential equations describing
the state evolution within that particular mode. For improved fault detectability,
isolability and identifiability, the continuous dynamic model in each discrete mode
captures the within-cycle details of engine variables, including those under faults,
much more vividly than the so-called Mean Value Models which average signals
over a cycle and suppress fault signatures. Although the use of such Within-
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Cycle Models (WCMs) greatly enhances detection sensitivity and isolability, it also
increases the computational costs particularly for on-board applications. As a result,
hybrid model-based fault diagnosis schemes have not yet found acceptance in the
industry for on-board implementations.

The next stage in diagnosis, namely the residual generation, involves the use of
state estimators and observers. Estimation of the engine state is highly challenging
for hybrid nonlinear systems (HNS). Extensions of linear system techniques for
state estimation are often used in practice. Some examples are nonlinear observers
and the nonlinear extensions of the Kalman filter. The most common techniques in
use are the Extended Kalman Filter (EKF), the Unscented Kalman Filter (UKF) and
their variants. For HNS, the optimal estimation of discrete modes and continuous
states would mean that the number of modes to be estimated grows exponentially
with each time step. To reduce the complexity, in some techniques, N modes
with largest probability are kept and the rest are discarded, and probabilities
are renormalized to sum up to unity. The Generalized Pseudo-Bayesian (GPB)
approaches and Interacting Multiple Model (IMM) method [5] fall in this category.
The diagnosis schemes for an engine typically employ a bank of nonlinear state
estimators or observers which require the sets of engine dynamic continuous
variable models, one element of the set for each discrete mode, and one set each
corresponding either to the nominal or to a faulty system for the various faults under
consideration. Note that the number of estimators grows combinatorially with the
number of faults and the number of modes of the model.

Particle filters (PF) [6] belong to a class of numerical methods for the solution
of the optimal estimation problem in nonlinear non-Gaussian scenarios and come
under the generic category of Sequential Monte Carlo algorithms. The Rao-
Blackwell Particle Filter (RBPF) [7] is a special kind that reduces the variance
in estimates by partitioning the state vector into two sub-vectors so that one sub-
vector is updated with sampling whereas the other sub-vector is updated analytically
using a suboptimal estimator such as KF, EKF or UKF, that uses prior knowledge
of distributions.

Nonlinear observers have been used extensively for the state estimation of one
or more subsystems of the engine system. For instance, a nonlinear observer for
air mass flow to the cylinder on a turbocharged SI engine was proposed in [8].
Direct redundancy and nonlinear diagnostic observers were used for the diagnosis
of the air intake system of an SI engine in [9]. In [10], the cylinder pressure and
combustion heat release were estimated for SI engine diagnostic purposes from
the engine speed measurement using a nonlinear sliding mode observer. Discrete
nonlinear observers with convergence guarantee based on Lyapunov analysis and
Linear Matrix Inequality techniques were developed in [11, 12] for cycle-by-cycle
estimation of the in-cylinder air fraction in diesel engines, which can be used for
combustion control. A reduced order observer was employed in [13] for estimation
of exhaust manifold pressure and turbocharger speed in turbocharged gasoline
engines. An adaptive extended state observer was used in air-fuel ratio control of
gasoline engines in [14]. Sliding mode estimators were used in engine parameter
estimation in [15, 16]. In [17, 18], within cycle estimation of engine variables based
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on a hybrid automata model of the engine system from air intake to exhaust was
carried out and its effectiveness in fault diagnosis was demonstrated. However, note
that none of these works have reported a solution for estimating the state of the full
SI Engine, but rather only that of subsystem.

As for residual evaluation, techniques such as hypothesis testing [1, 2, 4], fixed
[3] and adaptive thresholding [19], Generalized Likelihood Ratio Test (GLRT)
[20], Dempster-Shafer Theory (DST) [21], Bayesian Networks [22], and Artificial
Neural Networks [23, 24] have been used in conjunction with one or more of the
modeling and estimation techniques. However, typically these evaluation techniques
only demonstrate a two-class classification problem of fault detection rather than a
multiple class problem of fault isolation.

In this chapter, we present a fault diagnosis scheme for a complete SI Gasoline
Engine, which requires only one instance of a nominal EKF estimator, followed by
a residual prediction stage, and a fault detection and isolation stage. The special
features are:

1. Use of a WCM as opposed to MVM for modeling. This enhances fault sensitivity.
2. Development of a hybrid state space model of the entire engine system from air

intake to exhaust, including EGR (Exhaust Gas Recirculation), as contrasted with
individual engine component models dealt with in most works in the literature.

3. Use of a single EKF estimator for fault detection, that uses an HNS correspond-
ing to the normal system, with approximate adaptive estimation of process and
measurement noise covariance matrices, as opposed to a bank of estimators, with
accuracy comparable to computationally more expensive nonlinear estimators
such as PF. This achieves significant reduction of complexity for real time
implementation.

4. A fault isolation scheme involving EKF residual prediction under hypothesis
for various faults. The residual prediction process reuses the Jacobian matrices
derived for EKF, thereby saving computational costs. This is followed by
Generalized Likelihood Ratio Test based isolation.

Fig. 7.1 shows the fault diagnosis scheme.
The rest of the chapter is organized as follows: In Sect. 7.2, the HNS model

is developed. Section 7.3 presents the adaptive EKF. In Sect. 7.4, the residual
prediction based fault detection, isolation and identification strategies are described.
Section 7.5 presents the simulation results for the modeling, estimation and fault
diagnosis schemes. Finally, conclusions are drawn and future directions are laid out
in Sect. 7.6.

7.2 HNS Modeling of an SI Engine

A naturally aspirated SI gasoline engine has the basic subsystems and components
shown in Fig. 7.2. The equations we develop here are from standard models
available in duly mentioned references, the novelty being only in the state space
formulation.
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Fig. 7.1 Hybrid model based fault diagnosis scheme using residual prediction

Fig. 7.2 Block diagram of the SI engine system

A full 4-stroke engine cycle corresponds to a crank shaft rotation of 0–720ı,
approximately 180ı each for intake, compression, expansion and exhaust strokes.
The WCM equations essentially describe two things: the continuous time dynamics
of the system state variables of interest—such as pressure, temperature and mass
flow rates—and the jump conditions, or events, which cause transition between
different modes of the hybrid system. These transitions between modes could be
triggered either by control actions or by the instantaneous state variable values
themselves (e.g., sub-sonic or sonic, positive or negative flow conditions), or by
the different strokes of the piston (upwards or downwards), etc.
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Table 7.1 Variable and subscript notations

Variables Subscripts

P Pressure in Variable in to control volume/flow element
V Volume out Variable out of control volume/flow element
m Mass th Throttle
R Specific gas constant im Intake manifold
T Temperature cyl Cylinder
Pm Mass flow rate em Exhaust manifold
Cp Specific heat at constant pressure egr Exhaust gas recirculation
Cv Specific heat at constant volume muf Muffler

 Ratio of specific heats i2c Intake manifold to cylinder
! Engine speed c2e Cylinder to exhaust manifold
� Crank angle a Air
H Enthalpy b Burnt gases
Q Internal energy f Fuel
U Heat energy cool Cooling (temperature)
W Work amb Ambient

A summary of main engine variable notations and subscripts used is given
in Table 7.1. Each variable on the left column appears with one or more of the
subscripts from the right column in the model equations.

Let all the gases in the engine obey the ideal gas law, i.e.,

PV D mRT (7.1)

R in above expression is the specific gas constant and mass m is in kg. Note that
all variables are functions of time t, although it is omitted for notational convenience.

Ignoring the changes in kinetic and potential energy in the flow, the transient
mass and energy balance equations involving the state variables can be written in
terms of the rates of mass m, the enthalpy H, the internal energy U, the heat energy
added to the system Q, and shaft work done on the system W, as [25]:

Pm DP
i
Pmi;in �P

i
Pmi;out

PU D PHin � PHout C PQC PW
(7.2)

where the subscripts in and out denote the variables moving in and out, respectively,
of the control volume, often termed as reservoir. The index i stands for different gas
species.

The flow equation for the valves can be written as [26]:

Pm D CdA
Pinp
RinTin

 

�
Pin

Pout

�
(7.3)
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where
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”in�1 Pin.
Note that in the above expression the subscripts in and out have been used

assuming a forward flow, with Pin being upstream and Pout downstream pressures.
They will be interchanged for reverse flow with a negative sign attached to the
equation. Also, ”in is the ratio of specific heats for the upstream gas species.

At each reservoir, the specific gas constant and specific heats can be expressed
as:

R D †miRi

m
;Cp D †miCp;i

m
;Cv D †miCv;i

m
; 
 D Cp=Cv (7.4)

where iD a, b, f (for air, burnt gases and fuel), and,

m D ma C mb C mf (7.5)

The time derivative of internal energy can be expressed in terms of masses,
specific heats and temperature at the reservoir as:

PU D mCv
PT C �m PCv C PmCv

�
T D mCv

PT C
 
X

i

PmiCv;i

!

T (7.6)

Substituting Eq. (7.6) in Eq. (7.2), the time derivative of temperature at each
reservoir could be obtained as:

PT D 1

mCv

 
X

i

Pmi;inCpi;in Tin �
X

i

Pmi;outCpi;out Tout C PQC PW �
X

i

PmiCv;iT

!

(7.7)

The net flow rates of enthalpy into and out of a reservoir are captured by the first
two terms in parenthesis above. Index i stands for individual species of air, burnt
gases, and fuel entering and leaving the reservoirs.
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7.2.1 Model Equations

We choose a minimal state vector as:

x D �mim;i;Tim;mcyl;i;Tcyl;i;mem;i;Tem
�T

(7.8)

where i D a, b, f, corresponding to air, burnt gases and fuel, respectively. mcyl, i and
Tcyl, i are vectors with elements denoting the mass and temperature for individual
cylinders. By this choice of state, it is possible to express the nonlinear engine
dynamical equations in the standard form Px D f .x; u; t/ where u is the input vector.

The model inputs are: Throttle position, Fuel control signal, EGR control signal,
speed and crank angle. The engine speed and crank-angle position signals, which
our model assumes as inputs, are usually not available as direct measurements, and
hence need to be extracted from the crank-shaft position sensor signal.

The mass and energy balance in Eq. (7.2) can now be applied at each reservoir,
the intake manifold, the cylinder and the exhaust manifold to obtain the state
variables. The mass (of air, burnt gases and fuel) variables are obtained from mass
balance and the temperature variables are obtained from energy balance in Eq. (7.7).

The mass balance at the intake manifold (IM) is given by:

Pmim D Pmth C Pmegr � Pmi2c (7.9)

where Pmth and Pmegr stand for the mass flow rates at throttle and EGR, respectively,
and Pmi2c is the flow rate of gas entering the cylinder from IM. These can be obtained
at every time instant by using Eq. (7.3). Replacing the pressures Pin and Pout in Eq.
(7.3) by Eq. (7.1), and the ratio of specific heats ”in from Eq. (7.4), it can be seen
that all the terms in Eq. (7.10) are expressed purely in terms of the states in Eq. (7.9).
The individual mass flow rates mi for air, burnt gases and fuel can be obtained from
the above relation by multiplying each of these flow rates by the individual fractions
from the previous time instant.

Substituting for terms in Eq. (7.7), the enthalpy balance gives

PTim D 1

mimCvim

0

BBBBB
@

Pmth
�
� Pmth Cpa Ta C

�
1 � � Pmth

�
Cpim Tim

�

C Pmegr
�
� Pmegr Cpem Tem C

�
1 � � Pmegr

�
Cpim Tim

�

�
NP

iD1
� Pmi2c;i

�
� Pmi2c;i Cpim Tim C

�
1 � � Pmi2c;i

�
Cpcyl;i Tcyl;i

��

� hc;imAc;im .Tim � Tcool;im/ � .
P Pmim;iCvim;i/Tim

1

CCCCC
A

(7.10)

where � Pm D
�
1CsgnŒ Pm�

2

	
, sgn(.) denoting the signum function and N is the number

of cylinders. The heat energy lost due to convection is also included in the above
equation with hc, im being the heat transfer coefficient, Ac, im the effective area of heat
transfer and Tcool, im the cooling temperature of the IM. Similar expressions hold for
the exhaust manifold:



160 E. P. Nadeer et al.

Pmem D Pmc2e � Pmegr � Pmmuf (7.11)

where Pmc2e is the cylinder-to-exhaust flow rate and Pmmuf is the muffler flow rate.

PTem D 1

memCvem

0

B
BBBB
@

NP

iD1
� Pmc2e;i

�
� Pmc2e;i Cpcyl;i Tcyl;i C

�
1 � � Pmc2e;i

�
Cpem Tem

��

� Pmmuf
�
� Pmmuf Cpem Tem C

�
1 � � Pmmuf

�
Cpa Ta

�

� Pmegr
�
� Pmegr Cpem Tem C

�
1 � � Pmegr

�
Cpim Tim

�

� hc;emAc;em .Tem � Tcool;em/ � .
P Pmem;iCvem;i/ Tem

1

C
CCCC
A

(7.12)

The mass balance equation for individual cylinders could be written as

Pmcyl D Pmi2c � Pmc2e C Pmf ; (7.13)

where Pmf is the fuel input flow rate. During combustion, the total mass flow rate
is zero, but the air and fuel get converted to burnt gases, changing individual
component rates. These rates can be calculated for the ith cylinder as

Pm.i/
cyl;a D Pm.i/

i2c

�
� Pm.i/i2c

mim;a
mim
C
�
1 � � Pm.i/i2c

	
m.i/cyl;a

m.i/cyl

	
�

Pm.i/
c2e

�
� Pm.i/c2e

m.i/cyl;a

m.i/cyl
C
�
1 � � Pm.i/c2e

	
mem;a
mem

	
� m

.i/
fb af!

��

Pm.i/
cyl;f D Pm.i/

i2c

�
� Pm.i/i2c

mim;f

mim
C
�
1 � � Pm.i/i2c

	
m.i/cyl;f

m.i/cyl

	
�

Pm.i/
c2e

�
� Pm.i/c2e

m.i/cyl;f

m.i/cyl
C
�
1 � � Pm.i/c2e

	
mem;f

mem

	
� m

.i/
fb !

��
C Pm.i/

f

Pm.i/
cyl;b D Pm.i/

cyl � Pm.i/
cyl;a � Pm.i/

cyl;f

(7.14)

where m.i/
fb is the mass of fuel accumulated in cylinder i before combustion, ! is

the engine angular speed, af is the stoichiometric air-fuel ratio and �� is the
combustion duration angle. The fuel flow rate into the cylinder, Pm.i/

f , could be
calculated from the fuel injector pulse width signal coming from the ECU. The terms
m
.i/
fb af!

��
and m

.i/
fb !

��
in the above expression appear only for the combustion duration.

In addition to the terms in enthalpy balance for IM and EM, the enthalpy balance
for cylinder i should include the rate of heat energy added during combustion
( PQcomb), which is approximated by the Wiebe function [27], and lost due to
convection and radiation ( PQheatloss) [28], given by,

PQ.i/
comb D �.i/c m.i/

fb Qlhv!
dx
.i/
b

d�

D �
.i/
c m

.i/
fb Qlhv!na
��

�
���.i/soc
��

	n�1
exp

�
�a
�
���.i/soc
��

	n


PQ.i/
heatloss D h.i/c A.i/c

�
T.i/cyl � T.i/cool

	
C "�

��
T.i/cyl

	4 �
�

T.i/cool

	4�
(7.15)
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where �c is the combustion efficiency, Qlhv the lower heating value of fuel, a, n the
Wiebe parameters, xb the burnt mass fraction, � soc the start of combustion angle, hc

the coefficient of convective heat transfer, Ac the effective area of convective heat
transfer, " is the emissivity of cylinder block material and � the Stefan-Boltzmann
constant.

At the cylinder, the enthalpy balance should also include the piston work, which
for the ith cylinder is given by Pcyl

.i/ PVcyl
.i/. Thus for the ith cylinder, the expression

for cylinder temperature derivative is

PTcyl
.i/ D 1

m.i/
cylCv

.i/
cyl

0

@
PQ.i/

comb � PQ.i/
heatloss C PH.i/

in � PH.i/
out

� Tcyl
.i/ �

�P Pm.i/
cyl;jCv

.i/
cyl;j

	
� Pcyl

.i/ PVcyl
.i/

1

A ; (7.16)

where the index j has been used for individual gas species. As before, all the terms
on the RHS above should be expressed in terms of inputs and state. To express the
time derivative of the cylinder volume PV.i/

cyl in terms of crank angle and speed input,
we consider the expression for cylinder volume [25], namely,

Vcyl D Vd

rc � 1 C
Vd

2

 
l

r
C 1 � cos � C

r
l2

r2
� sin2�

!

(7.17)

where Vd is the displacement volume, rc is the compression ratio, l is the connecting
rod length and r is the crank radius. Differentiating the above expression w.r.t. time,
we get

PVcyl D dVcyl

d�

d�

dt
D Vd

2

0

B
@sin � C sin 2�

2

q
l2

r2
� sin2�

1

C
A! (7.18)

where ! is the angular speed.
Equations (7.10)–(7.18) constitute the state space model, considering the speed

! and crank-angle � as inputs. If, however, the speed and crank-angle are considered
as states, and load torque as an input, an additional torque modelling is necessary.

As mentioned earlier, the developed model is a hybrid one, with many switching
transitions happening depending on the input and state conditions.

7.2.2 Model Parameters and Tuning

The parameters used in model development can be classified into three categories:
general parameters, environmental parameters and engine-specific parameters. Gen-
eral parameters include properties of gasoline, which was assumed to be the fuel for
the developed model, such as the lower heating value, and properties of gases such
as specific heats of air, burnt gases and fuel. These could be assumed to be the
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same over all gasoline engines for which the model is to be used. Environmental
parameters, which include the atmospheric temperature and pressure, may need to
be changed according to the outdoor conditions either based on prior knowledge
of environment or sensor measurements. Engine-specific parameters include all
parameters related to engine geometry, fuel injection timings, valve lifts, valve
timings and additional engine specific parameters such as the bypass valve area.

The engine specific parameters could either be plugged in by the user depending
on the particular vehicle model and type or be chosen from a list of parameter
sets available for an array of engines. If some of the engine parameters are not
known beforehand, they could either be found by experimentation or could be learnt
by online estimation during the model initialization phase assuming a non-faulty
engine. Minor deviations in parameter values are acceptable provided they do not
manifest as faults, since the estimator in which the model would be used could
correct these deviations.

7.2.3 Fault Modelling

To achieve fault detection, isolation and identification, additional fault modelling
needs to be carried out, thereby increasing the effective number of parameters in the
model. The fault parameters should be able to capture a wide range of faults that
could happen in the engine system. Table 7.2 shows how some of the engine faults
could be captured in the present modelling scheme.

The intake and exhaust manifold leaks could be modelled by additional areas
in respective flow elements. The valve faults in cylinder could also be modelled
in the same manner. Note that the valve faults could also manifest as misfire. For
the case of manifold fuel injection, the misfire and fuel injector faults could be
modelled separately, since the former affects only a particular cylinder while the
latter affects all.

7.3 Engine State Estimation

Noting that the engine model is time-invariant, the general form of state and
measurement equations for all the estimators that we are about to implement could
be formulated as:

Px D f .x; u;w/
yk D h .xk; uk; vk/

w.t/  .0;Q/
vk  .0;Rk/

(7.19)

where x is the state vector, y is the measurement vector, u is the input, w is the
process noise, v is the measurement noise, Q is the process noise covariance, R is the
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Table 7.2 Fault modelling for various faults in the engine system

Faults Modelling

Process and actuator
faults

Intake manifold leak Additional unknown area in the
throttle

Exhaust manifold leak Additional unknown area in the
muffler

Misfire, fuel injector fault Multiplicative factor on fuel
injection rate to individual
cylinders

Intake valve faults Multiplicative/additive factor on
intake valve area

Exhaust valve faults Multiplicative/additive factor on
exhaust valve area

Sensor faults Mass air flow (MAF)
sensor bias

Additive term in measurement
equation

MAF sensor calibration
fault

Multiplicative term in
measurement equation

Manifold pressure and
temperature (TMAP)
sensor bias

Additive term in measurement
equation

TMAP sensor calibration
fault

Multiplicative term in
measurement equation

Exhaust pressure sensor
bias

Additive term in measurement
equation

Exhaust pressure sensor
calibration fault

Multiplicative term in
measurement equation

measurement noise covariance and k is the sampling index. f (�) and h(�) indicate the
state transition and measurement functions, respectively. For simplicity, we further
assume that the noises w and v are additive and their elements are independent of
each other. The sampling rates for the sensors may be different for each sensor and
the integration time step for the model could be different from the sampling rates
for sensors.

Not all the measurements from the engine system qualify as measurements in
the measurement model, since the engine model assumes certain measurements as
inputs. Thus the speed and the crank angle signals, extracted from the crank position
sensor, are considered as inputs to the model. The throttle position measurement,
from which the throttle area is calculated, is also an input. For simulation, the
measurements that are assumed to be available to the estimator are: the mass air flow
rate (MAF), the intake manifold temperature (Tim), the intake manifold pressure
(Pim), the exhaust manifold temperature (Tem) and the exhaust manifold pressure
(Pem).

It should be noted that, of the various switching modes that the engine system
undergoes in one switching cycle, in some modes there may be partial loss of
observability of some state elements from the measured variables. For example,
during the combustion phase of the engine, since both the engine valves are
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closed, some engine variables are isolated from sensors, and therefore would not
be observable during this phase. An analysis of observability for such a nonlinear
switching system is complex and is not attempted here.

Despite the above caveats, due to the fact that the system visits observable modes
during every cycle, during observable modes the estimator corrects the error built-
up during unobservable modes. This is demonstrated by simulations. The nonlinear
estimators employed were the EKF, UKF and the RBPF. The latter two were used
only for comparison of EKF results. Only the equations for EKF are presented below
for brevity.

7.3.1 The Extended Kalman Filter

The Extended Kalman Filter (EKF) is based on linearizing the nonlinear system
about the nominal state trajectory. The EKF algorithm in continuous-discrete form,
adapted from [29, 30], is given below.

1. Initialization: Initialize the State x and the State Error Covariance P as

bxC0 D E Œx0�

PC0 D E
h�

x0 �bxC0
� �

x0 �bxC0
�T
i (7.20)

2. Prediction: For k D 1, 2, : : : , Integrate the Noise Free Model from (k � 1)C to
k� to Get x�k and P�k from xCk�1 and PCk�1.

Px D f .x; u; 0/
PP D JPC PJT C Q

(7.21)

where J is the Jacobian of f w.r.t. the state vector x. Q is the process noise
covariance. The integration of state equation required at every time step was carried
out using the Runge-Kutta fourth order method. The state error covariance matrix is
found out using matrix exponentiation.

3. Update: At each k, using measurement yk, update the state and state covariance
estimates as:

vk D yk � h
�
x�k ; uk; 0

�

Sk D HkP�k HT
k C Rk

Kk D P�k HT
k Sk
�1

xCk D x�k C Kkvk

PCk D P�k � KkSkKT
k

(7.22)



7 Hybrid System Model Based Fault Diagnosis of Automotive Engines 165

7.3.2 Estimators with Adaptive Q and/or R

EKF and UKF require the knowledge of process and measurement noise covariance
matrices, Q and R respectively, which need to be tuned for good results. A good
choice of R can often be determined from the sensor characteristics. Determining Q
is even more difficult since it represents the effects of unknown process disturbances
and unmodeled dynamics.

Over a window of length M, unbiased estimates of mean and covariance of the
measurement vector could be obtained as:

y D 1
M

kP

iDk�MC1
yi

Rk D 1
M�1

kP

iDk�MC1
.yi � y/ .yi � y/T

(7.23)

Note that in the above expressions, the window lengths for mean and variance have
been assumed to be the same. However, for large engine speeds, the local mean will
have to be evaluated with small window length so that the extracted noise value
is distinguished from genuine transitions in the engine variables. This, however,
might leave very few samples for variance calculation. If the noise is assumed to
be stationary, we can use a larger window size for variance calculation. Further, to
reduce the online computational requirements, the moving average filter could be
changed to an exponentially weighted one. Then:

yk D ˛:yk C .1 � ˛/ :yk�1
Rk D ˇ: .yk � yk/ .yk � yk/

T C .1 � ˇ/ :Rk�1; 0 < ˛; ˇ � 1 (7.24)

The coefficients ˛ and ˇ can now be independently tuned instead of the window
length M. A small value for ˛ and ˇ (close to 0) would be equivalent to a large
window, and vice versa. By choosing a large value for ˛ (say 0.1) we could ensure
that only the noise component, which is assumed to be having higher frequency
components than the actual measurement, would contribute to the calculation of Rk.
This also ensures that genuine transitions in measurements due to input changes are
not misclassified as noise. The coefficient ˇ, on the other hand, is chosen to be much
smaller than ˛, with the assumption that the noise would be stationary over a larger
window and its covariance would not change significantly.

To estimate the process noise covariance matrix Q, we modify the technique used
in [31], which used the estimated covariance Cvk of the innovation sequence�vk and
Kalman gain Kk, with the exponentially weighted averaging:

Cvk D ˇ: .�vk ��vk/ .�vk ��vk/
T C .1 � ˇ/ :Cvk�1

Qk D KkCvk KT
k

�vk D ˛:�vk C .1 � ˛/ :�vk�1 ; 0 < ˛; ˇ � 1
(7.25)
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The values of ˛ and ˇ are typically different from the R-estimation case since the
process disturbances have different characteristics than the measurement noise. A
smaller value of ˛ than that used in the R-estimation case was used here since
process disturbances are usually of lower frequency than measurement noises. For
faster convergence of the estimator, ˇ was chosen to be larger than the R-estimation
case.

7.4 Residual Prediction and Joint Estimation

Having developed the nominal estimator for engine state estimation, the next step
in fault diagnosis is the residual generation under different fault hypotheses. This
is typically done using a bank of estimators each one using a process model
corresponding to a fault. In contrast, in this section, we develop a residual prediction
scheme based on the nominal state estimate and Jacobian expressions from the
EKF using a normal process model referred to hereafter as the “normal EKF”. The
residual evaluation is then performed using the actual residuals obtained from the
normal EKF and the predicted residuals from the EKF estimators using a process
model for a given type of fault. The residual prediction based fault diagnosis scheme
(Fig. 7.1) involves the following steps:

1. Estimation of nominal state from inputs and measurements using the EKF:
From the nominal EKF, the instantaneous Kalman gain, actual residuals and the
Jacobian matrix of state transition and measurement transition functions used for
the state estimation are obtained.

2. Residual prediction stage: Using the Kalman gain and Jacobian matrix, the
residual prediction stage predicts the residuals from the nominal estimator under
each fault hypothesis. From this stage a residual vector corresponding to each
hypothesized fault is obtained for unit magnitude of the fault.

3. Hypothesis testing stage: This stage generates fault detection functions for
each fault using the predicted and actual residuals. The detection functions are
generated by the Generalized Likelihood Ratio Test (GLRT) on the residuals.
Each detection function should be compared to their respective thresholds, which
are manually decided based on simulations in this chapter.

4. Fault isolation stage: In this stage, based on the detection functions from the
hypothesis testing stage and on the indication whether they have exceeded
their respective thresholds or not, the fault is isolated using predicate logic and
knowledge of the process, under the assumption that at most a single fault could
occur.

5. Fault parameter identification stage: Once a fault is detected and isolated by
the previous steps, the parameter(s) associated with the particular fault could
be found out either by a joint estimation [32] in the nominal EKF itself, or dual
estimation, or some other separate estimators like particle filters.
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The first step has already been discussed in the previous section. The last step
involves well-known techniques as in [32]. The rest of the steps are explained next.

7.4.1 Residual Prediction

The residual prediction stage predicts the would-be residual from the nominal
estimator (EKF) under the single fault assumption. Each fault is captured by a
corresponding parameter. For example, the intake manifold leak can be captured
by an additional area in the throttle. By defining this area to be a parameter, it is
possible to predict the fault residuals in presence of IM leak. A similar method could
be adopted for EM leak with the muffler area. If wi is the parameter associated with
fault i, and�wi a small change in wi, indicating a fault, then from EKF equations in
Sect. 7.3, we can predict the sign-reversed residual for fault i as:

�vi
k D

�
@h

@x�k
dx�k
dwi
C @h

@wi

�
�wi (7.26)

Note that, @h
@x�

k
D Hk, which is already available from the nominal EKF routine.

Using the linearized process model, the term dx�

k
dwi in the above expression can be

expressed as:
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dx�

k
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	 (7.27)

K is the Kalman gain and �T is the sampling interval. Note that, @f
@xk
D J, which

is already available from the EKF routine. The effect of fault on Kalman gain
K is ignored. The above residual prediction is valid for both process and sensor
faults; however, it is possible to get simpler expressions for the latter category of
faults. The sensor faults could be modelled by additive or multiplicative terms in
the measurement equation and the partial derivative of the process map w.r.t. to the
fault parameter is zero. Eq. (7.27) then reduces to:

�vi
k D

�
@h

@wi

�
�wi: (7.28)

The fault detection process is described next.
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7.4.2 Fault Detection Based on Generalized Likelihood Ratio
Test (GLRT) on Predicted Residuals

In the nominal case, the innovation residual from EKF contains noise from
measurements, in addition to modelling and discretization errors. With the single
fault assumption, the problem of fault detection from EKF residual at kth time
instant could be posed as testing n binary hypotheses:

H0 W �vk D ek

Hi W �vk D �vi
k C ek; i D 1; 2; : : : ; n (7.29)

where ek is the error vector that captures measurement noise and model errors. As
the estimator converges, we could also assume that ek would be dominated by the
measurement noise. In general, for a nonlinear system, the elements of ek do not
necessarily have the same variance and could also be correlated. If �vi

k is known
from the model, for samples over a window of length M, assuming Gaussian ek, the
Neyman–Pearson (NP) test for these hypotheses is the likelihood ratio:
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(7.30)

where Cek is the covariance of ek and ıi is the test threshold for fault i. m is the
dimension of the residual vector. Taking logarithms, this transforms to the test
statistic [33]:

T
�
�vkI�vi

k

� D
kX

k�MC1
�vT

k C�1ek
�vi

k > ıi (7.31)

Note that the threshold here is different from Eq. (7.30), although we have used
the same notation. This test is suboptimal when the parameters Cek and �vi

k are
not known and their estimates are used instead, and is known as the Generalized
Likelihood Ratio Test (GLRT) [33]. The magnitude of the fault will not change
the test threshold, but changes the probability of detection. The threshold could
be decided based on the minimum fault magnitude that is needed to be detected.
However, this might introduce false alarms in case such a threshold is exceeded
even during the nominal case because of model errors. Note that in this test, the
absolute value of threshold need not be less than 1. To sum up, instead of the inner
product of actual residual signal with predicted residual we correlate it with the
residual modified by error covariance. The multiplication by C�1ek

is essentially a
normalization process equivalent to adaptive thresholding.
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From the residual prediction process, �vi
k is known only up to a constant.

Consequently, the test threshold has to be found out for some minimum fault
parameter magnitude to be detected for each fault. If �vi

k has more than one
elements, a threshold between 0 and 1 could be obtained by normalizing the
residuals:
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The covariance Cek could be estimated online the same manner in which R matrix
was estimated during EKF. The thresholds are determined by simulation under
different fault scenarios. When multiple fault thresholds are exceeded, an isolation
procedure is needed, that is described next.

7.4.3 Fault Isolation

Let the binary variable Fi denote the ith fault and Gi the associated binary (logistic)
detection function. The binary variable Gi is obtained from the continuous variable
gi, the fault detection function for ith fault, by comparing with the fault detection
threshold for the ith fault. If gi crosses its threshold, Gi is 1, otherwise it is 0. The
fault isolation could now proceed with the following assumptions.

1. No fault detection functions Gi are active (high) during normal operation, i.e.,

.8i:Fi/)
�8j:Gj

�
: (7.33)

2. Missed detections are possible; however, when the ith fault is present, if jth
detection function Gj(j¤ i) is active, Gi is also active, i.e.,

8i
�
Fi ^

�
Gjjj ¤ i

�) Gi
�
: (7.34)

The fault detection thresholds are chosen from simulations in such a way that
the above conditions are met. When multiple Gi are active, these conditions can be
used to resolve the conflict, whenever possible. This can be performed using a Fault
Incidence Matrix (FIM). This process is illustrated in the results section.

Certain ad-hoc methods might be employed when the above conditions cannot
isolate the fault. Firstly, because of our single fault assumption, for fault detection
functions associated with cylinder faults, if only one out of all cylinder fault
functions is triggered for a particular fault, most likely the fault is with the particular
cylinder. This eliminates the possibility of both faults in other cylinders and faults
in a non-cylinder component. For example, suppose for some unknown fault, the
injector 1 fault function for cylinder 1 is triggered and the EM leak function is also
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triggered, but the injector fault functions for other cylinders are not triggered. This
means that the fault is most likely the injector 1 fault, and not the EM leak fault.
Further, again from the single fault assumption, if all of the cylinder fault detection
functions are triggered for some unknown fault, and in addition a non-cylinder fault
function is triggered, the fault is most likely the non-cylinder fault.

The proposed fault diagnosis scheme obviates the need for multiple estimators.
It reuses the Jacobians from EKF estimators. Hence, overall computational cost
is reduced very much in comparison to a bank of estimators typically used in
diagnosis. In addition to the EKF terms, the terms and operations required for fault
diagnosis are the partial derivatives of state transition function and measurement
transition functions w.r.t. the fault parameters, and the multiplications of matrices
with vectors. The complexities of these operations are polynomial in both the
number of states and number of faults. When the system order and/or the number of
faults considered are large, it may be advisable to model each sub-system separately,
so that the order and number of faults considered in the individual sub-systems is
relatively small. The proposed scheme can then be employed in local diagnosis as
part of a decentralized global diagnosis structure, such as the one proposed in [34].

7.5 Results

The results are presented for the estimation and the fault diagnosis schemes.

7.5.1 Estimation Results

To validate the modelling and estimation, the estimation results are compared
against values generated from an AMESim model of the 4-cylinder engine (consid-
ered as the ‘True’ values). The simulation duration was 4 s in all cases. To compare
the nonlinear estimators for the engine, we use the normalized mean square error
(MSE) as the measure.

The estimation results with adaptive computation of Q and R matrices are shown
in Fig. 7.3. It was found that the UKF performance with adaptive Q matrix was
slightly poorer than the constant matrix case and hence only R was adapted. The
UKF estimation was carried out with filter parameters ˛ D 1, ˇ D 2, and � D 3.
The state dimension is 24, and hence the number of UKF weights is 49. Due to
the marginalization using EKF inside the PF, the RBPF does not require as many
particles as weights in UKF. It was found that increasing beyond a few particles does
not have much bearing on the estimator performance, and hence, only 4 particles
were used in the implementation to save the computational time. The EKF and
consequently RBPF performances were greatly enhanced by the adaptation of Q
and R, as indicated by the normalized MSEs for both the constant and adaptive
Q/R cases plotted in Fig. 7.4 and their sums tabulated in Table 7.3. The simulation
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Fig. 7.3 Engine state estimation results for different estimators with adaptive Q and R matrices:
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Fig. 7.4 Normalized MSE for estimators under (a) constant, and (b) adaptive Q/R matrices
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Table 7.3 Comparison of estimators under constant and adaptive Q and R

Constant Q and R case Adaptive Q and R case

Estimator Simulation time (s) Normalized MSE Simulation time (s) Normalized MSE
EKF 42 0.1058 43 0.0757
UKF 1167 0.0735 1182 0.0798
RBPF 244 0.0752 325 0.0750

Table 7.4 Fault magnitudes and detection thresholds for the simulation case

Fault no. Fault Fault magnitude
GLRT- normalized inner
product

F1 IM leak 50 mm2 0.6
F2 EM leak 50 mm2 0.06
F3 Injector 1 fault 0.5 (injector pulse

width halved)
0.15

F4 Injector 2 fault 0.5 0.15
F5 Pim sensor bias 1000 Pa 0.5
F6 Tim sensor bias 10 K 0.5
F7 Pem sensor bias 1000 Pa 0.5
F8 IV not closing (cylinder 1) 0.04 mm (lift) 0.5
F9 IV not closing (cylinder 2) 0.04 mm (lift) 0.5
F10 EV not closing (cylinder 1) 0.04 mm (lift) 0.5
F11 EV not closing (cylinder 2) 0.04 mm (lift) 0.5

times are also shown. It is seen than EKF with analytically evaluated Jacobian
matrices performs very well by adaptation of Q and R while being computationally
the least expensive, and hence could be a better choice for online implementation.
The simulation time for UKF is prohibitively high for online implementation.

7.5.2 Fault Diagnosis Results

The various faults that were inserted in the simulation model are shown in Table 7.4
along with their magnitudes.

The Fault Incidence Matrix (FIM), showing the response of detection functions
to different faults, is given in Table 7.5.

The fault detection process is explained with one of the faults, namely the intake
manifold leak. A leak fault of 50 mm2 area was introduced at 3 s in the AMESim™
model. The nominal estimator was run with data from AMESim™ simulation. Since
the intake manifold is usually at a pressure slightly less than atmospheric to let the
air in during the intake stroke, the leak causes an additional flow into the manifold.
This causes an increase in IM pressure. Further, the leak causes the ratio of EGR
flow to atmospheric air flow to be relatively lower than the case for no leak, because
now there is an additional air flow through the leak. Since the atmospheric air
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Table 7.5 Fault incidence matrix for GLRT based fault detection

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 Fault isolation

G1 � � � fF1g
G2 � � � � � � � � fF2g
G3 � � � � fF3g
G4 � � � � fF4g
G5 � � � � fF5g
G6 � fF6g
G7 � fF7g
G8 � � � � � fF8g
G9 � � � � � fF9g
G10 � fF10g
G11 � fF11g

Fig. 7.5 Predicted and actual residuals before and after IM leak fault insertion

temperature is lower than EGR air temperature, the IM temperature reduces during
the leak. Therefore, IM pressure and temperature are two mainly affected variables
by the leak. Since the residuals are results of differences between the actual and
the expected (under no fault) values, we expect that, under the IM leak fault, the
actual and predicted pressure residuals will be higher than zero, whereas the same
for temperature will be lower than zero.

The vectors for predicted and actual residuals for the inner product case before
and after the insertion of the fault are plotted in Fig. 7.5 and their values are plotted
in Fig. 7.6. Only the IM temperature and pressure residuals (mean values during
2–3 s for nominal case and 5–6 s for faulty case) were plotted here. It is clearly seen
that after the occurrence of the IM leak fault, the angle between predicted residual
for IM leak and actual residuals has decreased considerably, whereas the predicted
residual for EM leak is still at a large angle from the actual residual. It could be
seen from Fig. 7.6 that after the incidence of the fault, the residual patterns are very
similar, but their magnitudes differ because the residual prediction is carried out
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Fig. 7.6 Predicted and actual residuals for intake manifold leak fault. The detection process is
turned off until the estimator converges

for unit magnitude of the fault. The nominal estimator takes a while to converge as
seen from the temperature residual. Only after the trace of error covariance matrix
is below a threshold the fault detection process is initiated. It could also be seen
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Fig. 7.7 Fault detection functions gk for a) IM Leak, b) EM Leak, c) Injector 1 Fault, and d) Pim

Bias, with only the IM leak fault inserted, using the GLRT (normalized) on residuals

that the effect of leak is prominent only during low throttle values. During high
throttle, the leak flow rate is very small compared to the throttle flow and hence not
detectable. A small bias is also observed for the nominal estimation. These biases
could masquerade as faults unless the detection thresholds are appropriately chosen.

Some of the fault detection functions under IM leak fault are shown in Fig. 7.7
along with their thresholds (in red). From the FIM (Table 7.5), it is seen that G1,
G2, G5, G8 and G9 have been activated. Hence the fault could be from the set
fF1, F2, F5, F8, F9g. From the FIM, it is seen that only G2 is triggered for fault F2.
Hence the fault is not F2. Further, G1 is not triggered for F5, indicating that the
fault is not F5. The remaining fF8, F9g represent the IV faults for cylinders 1 and 2.
Since both are triggered, we infer that the fault is a common fault not particular to
any cylinder. Hence fF8, F9g is eliminated. We are left with F1, and hence the fault
is isolated. Similar procedure is followed for other faults.

7.6 Conclusions

For accurate fault detection, isolation and identification of faults in hybrid systems
such as engine, detailed physics based modelling is necessary. The computational
complexity of such a model in real time implementation could be compensated by
using a computationally less expensive EKF estimator with adaptive estimation of
process and noise covariance matrices. Further, by employing a residual prediction
based fault diagnosis scheme which reuses the intermediate terms generated during
EKF, despite the model complexity, the overall time complexity of the fault
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diagnosis scheme is reduced. Such a scheme could be employed for other hybrid
systems, provided they have no state resets. In addition to simulations, the results of
the fault diagnosis scheme have been verified on an experimental engine having no
EGR. The experimental results were omitted for brevity.

The sensitivity and certainty of fault detection is dictated by the detection
thresholds. In this chapter, the thresholds were manually chosen for the minimum
magnitude of faults to be detected. Ideally, the fault detection thresholds have to
be chosen by minimizing some risk functions associated with misclassification.
However, when there are many faults, analytical calculation and minimization
of such risk functions is cumbersome. A more practical approach to threshold
selection would be to run Monte Carlo simulations for many different thresholds
and plot the Receiver Operating Characteristics (ROC) graph [35] under different
fault magnitudes and noise conditions, and chose the thresholds which provide the
maximum true positive rate and minimum false positive rate.

Once a fault is detected, the fault parameter could be identified using well-
known parameter estimation techniques such as dual or joint estimation [32]. With
the newly estimated parameter value, the diagnoser is now ready for detecting
further faults. To handle cases where the drift pattern of fault parameter may be
complex, either a physical parameter drift model should be used, or some machine
learning techniques need to be applied on data streams [36]. Since the engine is
a hybrid dynamical system, the drift monitoring shall be performed only in those
discrete modes where the continuous dynamics is impacted by the fault parameter,
as proposed in [37].
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Chapter 8
Diagnosis of Hybrid Systems Using
Structural Model Decomposition

Matthew J. Daigle, Anibal Bregon, and Indranil Roychoudhury

8.1 Introduction

Automated fault diagnosis is critical for complete system autonomy. In order for
engineering systems to function in the real world, including extreme environments,
the ability to self-diagnose faults and failures and then mitigate them by control
or repair actions is crucial. Many engineering systems are hybrid in nature, i.e.,
they exhibit both continuous and discrete behaviors. The combination of continuous
and discrete dynamics makes the problem of robust and efficient fault diagnosis
significantly more challenging.

In a hybrid system, the system behavior is defined by a set of discrete modes. In
each of these modes, a different set of continuous dynamics governs the system
behavior. Discrete dynamics define how the system transitions from one mode
to another. For example, consider an electric circuit with ten switching elements.
If each switch can be in one of two states (the on state or the off state), then such
a system has 210 possible system-level modes. Therefore, a diagnosis algorithm, in
general, must consider all possible modes of such a system.
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Further, faults may manifest as direct changes in system parameters, called
parametric faults, or as changes in the system mode, called discrete faults. So
a diagnosis system must reason over different types of faults and possible mode
transitions during the fault isolation process. The effects of a fault are also mode-
dependent, and observation delays (e.g., due to delays in signal filtering within
a fault detection algorithm, or communication delays) may cause the observed
effects to be inconsistent with the current mode of the system, but consistent
with a previous mode. All of these complications can significantly complicate the
reasoning process [1].

Researchers have been intrigued by the fault diagnosis problem for hybrid
systems for many years, and many different proposals for hybrid systems diagnosis
exist in the literature. During the last decade or so, modeling and diagnosis for
hybrid systems has been an important topic of research from both Systems Dynam-
ics and Control Engineering (FDI) and the Artificial Intelligence Diagnosis (DX)
communities. In the FDI community, several hybrid system diagnosis approaches
have been developed, where parameterized ARRs are used [2, 3]. However, such
approaches are not suitable for systems with high nonlinearities or a large set of
modes. In the DX community, some approaches have used hybrid automata to model
the complete set of modes and transitions between them. In those cases, diagnosis
is viewed as a hybrid system state estimation problem, and approached through
probabilistic [4, 5] or set-theoric approaches [6]. Another solution has been to use an
automaton to track the system mode, and then use a different technique to diagnose
the continuous behavior (for example, using a set of ARRs for each mode [7], or
parameterized ARRs for the complete set of modes [8]). Nevertheless, one of the
main difficulties regarding state estimation using these techniques is the need to pre-
enumerate the set of all possible system-level modes and mode transitions, which
is difficult for complex systems. Another approach to fault diagnosis, as shown
in [1, 9, 10], qualitatively abstracts the transients in residual deviations and compares
them with predicted fault transients. The prediction of fault transients in different
modes of the system can also be computationally very expensive.

In order to address the challenges mentioned above, the techniques of com-
positional modeling and structural model decomposition have been developed.
Building and representing hybrid system models in a compositional manner solves
the mode pre-enumeration problem. In compositional modeling, the discrete modes
are defined at a local level (e.g., at the component level) such that the system-level
mode is defined implicitly by the local component-level modes. Since this allows
the modeler to focus on the discrete behavior only at the component level, the pre-
enumeration of all the system-level modes can be avoided [11, 12]. Additionally,
building models in a compositional way facilitates reusability and maintenance, and
allows the validation of the components individually before they are composed to
create the global hybrid system model.
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Structural model decomposition [13] offers another means to decrease the
complexity of the hybrid system diagnosis problem [14–16]. In continuous systems
diagnosis, structural model decomposition is a popular approach because it allows
a global model to be decomposed into local submodels, with each submodel
dependent on only a subset of the system faults [13]. As a result, the diagnosis
problem becomes much simpler. In hybrid systems, structural model decomposition
can significantly decrease the complexity of the problem as well. In addition to
minimizing the set of fault effects, each submodel has only a limited number of
modes. So instead of reasoning over the exponential number of system-level modes,
reasoning need only be performed over the significantly smaller set of submodel
modes. Further, structural model decomposition results in computationally inde-
pendent submodels, which lends itself naturally to a distributed implementation.

One solution for qualitative fault isolation using structural model decomposition
is presented in [17]. Within this approach, however, observation delays are not taken
into account and it is applicable only to systems that are modeled using hybrid bond
graphs (HBGs). A more efficient model-based methodology for diagnosis, which
integrates structural model decomposition within the Hybrid Diagnosis Engine
(HyDE), and uses a compositional modeling approach [11], is developed in [18].
The approach demonstrated how the integration of structural model decomposition
reduces the computational complexity associated with the fault diagnosis of hybrid
systems. The approach presented in this chapter is related to that in [19, 20], but
differs in two major ways. First, the former work was based on modeling using
HBGs, whereas the modeling framework used here is more general (in which HBGs
are a special case). Second, that work was based on a global system model, while
in this work, the approach is based on local submodels computed through structural
model decomposition.

This chapter presents a model-based, qualitative fault diagnosis framework
for hybrid systems, which can diagnose both parametric and discrete faults, and
can handle observation delays. The underlying system model is built using a
compositional modeling methodology, and structural model decomposition is used
to decompose the model into independent submodels, and thus decompose the diag-
nosis problem and significantly reduce the associated computational complexity.
The Advanced Diagnostics and Prognostics Testbed (ADAPT) [21], an electrical
power distribution system developed at NASA Ames Research Center, is used as
a case study to demonstrate that the approach can correctly isolate faults in hybrid
systems even if the system transitions among different mode changes and presents
observation delays during the isolation process.

The chapter is organized as follows. Section 8.2 presents the approach to
hybrid systems modeling. The diagnosis problem for hybrid systems is formulated
in Sect. 8.3 and the qualitative fault isolation approach is presented in Sect. 8.4.
Section 8.5 describes the ADAPT case study and presents the experimental results
of applying our hybrid fault diagnosis algorithm. Finally, Sect. 8.6 concludes the
chapter.
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8.2 Hybrid Systems Modeling

Most practical systems demonstrate mixed discrete and continuous dynamics,
termed hybrid dynamics, and hence, such systems are termed hybrid systems. Here,
the system can be thought of as inhabiting different operating modes, where in
each mode there is a specific set of continuous dynamics that governs the system
behavior within that mode. The discrete dynamics consist of the behavior governing
the transitions between modes.

A circuit example, shown in Fig. 8.1, will be used throughout the chapter to
illustrate the approach. The circuit includes a voltage source, V, two capacitors,
C1 and C2, two inductors, L1 and L2, two resistors, R1 and R2, and two switches,
Sw1 and Sw2, connected through a set of series and parallel connections. Sensors
measure the current or voltage in different locations (i3, v8, and i11, as indicated in
Fig. 8.1). Each switch can be in one of two modes: on and off. Thus, this circuit can
be represented as a hybrid system, with four system-level modes.

There are many different modeling formalisms to represent such a system, such
as hybrid automata [22] and hybrid bond graphs [23]. From a modeling perspective,
it is more convenient to follow a compositional modeling approach, where only
local, component-level modes are explicitly defined, and the system-level modes
are defined implicitly. In the following, the compositional modeling framework is
described, followed by a discussion on causality assignment, and then the structural
model decomposition approach.

8.2.1 Compositional Modeling

In a compositional modeling approach, the system is viewed as a set of connected
components. Each component is defined by a set of discrete modes, with a
different set of constraints describing the continuous dynamics of the component
in each mode.

Fig. 8.1 Electrical circuit example
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The fundamental building blocks of a hybrid system model are variables and
constraints among those variables. A constraint is defined as follows:

Definition 1 (Constraint) A constraint c is a tuple ."c;Vc/, where "c is an equation
involving variables Vc.

A component is defined by a set of constraints over a set of variables. The
constraints are partitioned into different sets, one for each component mode:

Definition 2 (Component) A component � with n discrete modes is a tuple � D
.V�;C�/, where V� is a set of variables and C� D fC1

�;C
2
�; : : : ;C

n
�g is a set of

constraints sets, where Cm
� refers to the set of constraints defining the continuous

dynamics in mode m.

Example 1 The components of the circuit are defined in Table 8.1.1 They include
V, C1, C2, L1, L2, R1, R2, Sw1, Sw2, as well as components for series and parallel
connections.

Example 2 Consider the component Sw2 (�10). It has two modes: off (represented
as mode 1 in Table 8.1) and on (represented as mode 2). In the off mode, it has three
constraints setting each of its currents (i9, i10, i11) to 0. In the on mode, it has also
three constraints, setting the three currents equal to each other and establishing that
the voltages sum up (it acts like a series connection when in the on mode).

A system model is defined as a set of components:

Definition 3 (Model) A model M D f�1; �2; : : : ; �kg is a finite set of k components
for k 2 N.

Example 3 The model of the electrical circuit is made up of all the components
detailed in Table 8.1, i.e., M D f�1, �2, . . . , �15g. For each component, the variables
and constraints are defined for each component mode.

The set of variables for a model M , VM , is the union of all the component
variable sets, i.e., for d components, VM D V�1[V�2[: : :[V�d . The interconnection
structure of the model is captured using shared variables between components, i.e.,
components �i and �j are connected if V�i \ V�j ¤ ∅.

Example 4 In the circuit model, component �5 (Series Connection1) is connected to
�3 (Parallel Connection1) through i4, to �6 (R1) through i5 and v5, to �7 (C1) through
i6 and v6, and �8 (Parallel Connection2) through i7 and v7.

The model constraints, CM , are a union of the component constraints over all
modes, i.e., CM D C�1 [C�2 [ : : :[C�d . Constraints are exclusive to components,
that is, a constraint c 2 CM belongs to exactly one C� for � 2M .

1Here, we denote derivatives using dot notation.
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Table 8.1 Components of
the electrical circuit

Component Mode Constraints

�1: V 1 v1 D uv
�2: Sw1 1 i1 D 0

i2 D 0

2 i1 D i2
v1 D v2

�3: parallel connection1 1 v2 D v3

v2 D v4

i2 D i3 C i4
�4: L1 1 Pf3 D v3

i3 D f3=L1
f3 D R t

t0
Pf3

�5: series connection1 1 i4 D i5
i4 D i6
i4 D i7
v4 D v5 C v6 C v7

�6: R1 1 v5 D i5 � R1
�7: C1 1 Pq6 D i6

v6 D q6=C1
q6 D R t

t0
Pq6

�8: parallel connection2 1 v7 D v8

v7 D v9

i7 D i8 C i9
�9: L2 1 Pf8 D v8

i8 D f8=L2
f8 D R t

t0
Pf8

�10: Sw2 1 i9 D 0

i10 D 0

i11 D 0

2 i9 D i10
i9 D i11
v9 D v10 C v11

�11: R2 1 v10 D i10 � R2
�12: C2 1 Pq11 D i11

v11 D q11=C2
q11 D R t

t0
Pq11

�13: current sensor11 1 i�11 D i11
�14: voltage sensor8 1 v�

8 D v8

�15: current sensor3 1 i�3 D i3

To refer to a particular mode of a model we use the concept of a mode vector.
A mode vector m specifies the current mode of each of the components of a model.
So, the constraints for a mode m are denoted as Cm

M .
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Example 5 Consider a model with five components, then if m D Œ1; 1; 3; 2; 1�, it
indicates that components �1, �2, and �5 use constraints of their mode 1, component
�3 uses constraints of its mode 3, and component �4 uses constraints of its mode 2.

For shorthand, the mode vector will refer to the modes only of the components
with multiple modes. So, for the circuit, it refers only to components �2 and �10,
resulting in four possible mode vectors, Œ1 1�; Œ1 2�; Œ2 1�; and Œ2 2�.

The switching behavior of each component can be defined using a finite state
machine or a similar type of control specification. For the purposes of this chapter,
the switching behavior is viewed as a black box where the mode change event
is given, and refer the reader to many of the approaches already proposed in the
literature for modeling the switching behavior [22, 23]. Although we do not consider
state resets explicitly in this paper, this may also be viewed as an output of the
switching behavior.

8.2.2 Fault Modeling

A fault is the cause of an unexpected, persistent deviation of the system behavior
from the acceptable nominal behavior. In the continuous dynamics, faults are
represented as parameter changes in ‚M � VM , and are termed parametric faults.

Definition 4 (Parametric Fault) A parametric fault f is a persistent constant
deviation of exactly one parameter � 2 ‚M of the system model M from its
nominal value.

For each parameter, both an increase and a decrease in the parameter value may
be considered as a fault. A fault that is an increase in the value of parameter � is
denoted as �C, and a fault that is a decrease is denoted as ��.

Example 6 In the circuit, ‚M D fC1;C2;L1;L2;R1;R2g. The complete set of
parametric faults is fCC1 ;C�1 ;CC2 ;C�2 ;LC1 ;L�1 ;LC2 ;L�2 ;RC1 ;R�1 ;RC2 ;R�2 g.

In the discrete dynamics, faults are represented through component mode
changes.

Definition 5 (Discrete Fault) A discrete fault f is a persistent change in the mode
of exactly one component � 2M from its nominal value.

Example 7 In the circuit, there are two switching components, Sw1 and Sw2, and
four associated discrete faults fSwoff

1 ;Swon
1 ;Swoff

2 ;Swon
2 g. Here, the off subscript

represents the fault where the component changes to the off mode when it should
be in the on mode, and the on subscript represents the fault where the component
changes to the on mode when it should be in the off mode.



186 M. J. Daigle et al.

8.2.3 Causality

A model is defined without consideration of computational causality, i.e., a
specification of the computational direction of its constituent constraints. Causality
must be considered in order to simulate a model and to study fault propagation.

Given a constraint c, which belongs to a specific mode of a specific component,
the notion of a causal assignment is used to specify a possible computational
direction, or causality, for the constraint c. The causality is indicated by specifying
which v 2 Vc is the dependent variable in equation "c.

Definition 6 (Causal Assignment) A causal assignment ˛c to a constraint c D
."c;Vc/ is a tuple ˛c D .c; vout

c /, where vout
c 2 Vc is assigned as the dependent

variable in "c. We use Vin
c to denote the independent variables in the constraint,

where Vin
c D Vc � fvout

c g.
In order to assign causality, we must first define which variables within a model

are exogenous, i.e., the input variables UM 	 VM . Such variables must always be
independent variables in any causal assignment to a constraint involving them, i.e.,
if a variable v is in UM , then for any constraint c in which v 2 Vc, it must always
be the case that v 2 Vin

c for any causal assignment.
Parameters that are associated with faults are associated with explicit variables

‚M 2 VM . They are a special kind of input variable, i.e., ‚M 	 UM .
In addition, it is useful to refer to a specific set of output variables, YM 	 VM ,

that are associated with measured outputs of the system.

Example 8 In the circuit, ‚M D fC1;C2;R1;R2;L1;L2g, UM D fuVg [‚M , and
YM D fi�3 ; v�8 ; i�11g.

In general, the set of possible causal assignments for a constraint c is as big
as Vc, because each variable in Vc can act as vout

c . However, in some cases some
causal assignments may not be possible, e.g., if Vc contains any input variables, or
if there are noninvertible nonlinear constraints. Also, assuming integral causality,
then state variables must always be computed via integration, and so the derivative
causality is not allowed. To denote this concept, Ac refers to the set of permissible
causal assignments of a constraint c. For example, for u 2 UM , if u 2 Vc for
some constraint c, .�c; u/ will never be in Ac.

For model M in mode m, A m
M denotes a complete set of causal assignments,

i.e., for every c 2 Cm
M , there is exactly one corresponding ˛c 2 A m

M . However, only
some A m

M are actually valid, and this is expressed through the notion of consistency:

Definition 7 (Consistent Causal Assignments) For model M in mode m, A m
M is

consistent if

(i) for every c 2 Cm
M , ˛c 2 Ac, i.e., the causal assignment must be permissible;

(ii) for all v 2 VM �UM , A m
M contains exactly one ˛ D .c; v/, i.e., every variable

that is not an input or parameter is computed by only one (causal) constraint.
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Algorithm 1: A  AssignCausality.M ;m;A/
1: A  ∅

2: V  UM [‚M

3: Q UM [‚M [ YM

4: for all c 2 Cm
M do

5: if jAcj D 1 then
6: .c; v/ Ac.1/
7: Q Q[ v
8: while jQj > 0 do
9: v pop.Q/

10: for all c 2 Cm
M .v/ do

11: if c … fc W .c; v/ 2 A g then
12: ˛�  ∅

13: for all ˛ 2 Ac do
14: if Vc � fv˛� g [ V ¤ ∅ then
15: ˛�  ˛
16: else if ˛v 2 Y then
17: ˛�  ˛
18: else if v˛� D v and jCm

M .v/j � jfc0 W .c0; v0/ 2 A ^ v 2 vcgj D 1 then
19: ˛�  ˛
20: if ˛� ¤ ∅ then
21: A  A [ f˛�g
22: Q Q[ .Vc � V/
23: V  V [ fv˛� g

Algorithm 1 describes the causality assignment process for a model given a
mode. Causal assignment works by propagating causal restrictions throughout the
model. The process starts at inputs, which must always be independent variables in
constraints; and outputs, which must always be the dependent variables in at least
one constraint. From these variables, we should be able to propagate throughout the
model and compute a valid causal assignment for the model in the given mode. For
the purposes of this paper, we assume integral causality and that the model possesses
no algebraic loops.2 In this case, there is only one valid causal assignment.

Specifically, the algorithm works as follows. It keeps queue of variables to
propagate causality restrictions, Q, and a set of variables that are computed in
the current causality, V . Initially, V is set to U, because these variables are not
to be computed by any constraint. Q is set to U and Y , since the causality of
constraints is restricted to U variables being independent variables and Y variables
being dependent variables. We add also to Q any variables involved in constraints
that have only one permissible causal assignment, because this will also restrict
other causal assignments. The set of causal assignments is maintained in A .

The algorithm goes through the queue, inspecting variables. For a given variable,
we obtain all constraints it is involved in, and for each one that does not yet have
a causal assignment (in A ), we go through all permissible causal assignments, and

2If algebraic loops exist, the algorithm will terminate before all constraints have been assigned
a causality. Extending the algorithm to handle algebraic loops is similar to that for bond graphs;
a constraint without a causality assignment is assigned one arbitrarily, and then effects of this
assignment are propagated until nothing more is forced. This process repeats until all constraints
have been assigned causality.
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determine if the causality is forced into one particular causal assignment, ˛�. If so,
we assign that causality and propagate by adding the involved variables to the queue.
A causal assignment ˛ D .c; v/ is forced in one of three cases: (i) v is in Y , (ii) all
variables other than v of the constraint are already in V , and (iii) v is not yet in V ,
and all but one of the constraints involving v have an assigned causality, in which
case no constraint is computing v and there is only one remaining constraint that
must compute v. The algorithm must visit all constraints and does not backtrack, so
the time complexity is linear in the size of the model.

Example 9 Consider the mode m D Œ1 2�. Here, A Œ1 2� is given in column 4 of
Table 8.1, denoted by the vout

c in the causal assignment. In this mode, the first switch
is off, so i1 and i2 act as inputs. Given the integral causality assumption, a unique
causal assignment to the model exists and is specified in the column.

Example 10 Consider the mode m D Œ2 1�. Here, A Œ2 1� is given in column 8 of
Table 8.1. In this mode, the second switch is off, so i9, i10, and i11 act as inputs.
Given the integral causality assumption, a unique causal assignment to the model
exists and is specified in the column. Note that some causal assignments are in the
same as in m D Œ1 2�, while others are different.

When the system mode changes, causality can be recomputed using Algorithm 1.
More efficient, incremental, causality assignment, based on the assignment of the
previous mode, can also be performed [14], however that is beyond the scope of this
chapter.

8.2.4 Structural Model Decomposition

Structural model decomposition creates local submodels given a system model.
For a hybrid system, the mode of the system must be specified. When the mode
changes, the derived submodels may also change, i.e., if they include constraints
of components that have changed mode. This section describes how submodels are
generated. Their application to diagnosis will be described in Sect. 8.4.

The procedure for generating a submodel from a causal model is given as
Algorithm 2 [13]. The following applies to a given mode, so in the remainder of
the section the mode superscript is dropped. Given a causal model M , and an
output variable to be computed y, the GenerateSubmodel algorithm derives
a causal submodel Mi that computes y using as local inputs only variables from
U� D U [ .Y � fyg/. We briefly summarize the algorithm below.

In Algorithm 2, the variables queue represents the set of variables that have
been added to the submodel but have not yet been resolved, i.e., they cannot yet be
computed by the submodel. This queue is initialized to fyg, and the algorithm then
iterates until this queue has been emptied, i.e., the submodel can compute y using
only variables in U�. For each variable v that must be resolved, we use Subroutine 3
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Algorithm 2: Mi D GenerateSubmodel.M ;U�;V�/
1: Vi  V�

2: Ci  ∅

3: Ai  ∅

4: variables V�

5: while variables ¤ ∅ do
6: v pop.variables/
7: c GetBestConstraint.v;Vi;U�;A /
8: Ci  Ci [ fcg
9: Ai  Ai [ f.c; v/g

10: for all v0 2 Vc do
11: if v0 … Vi and v0 … ‚ and v0 … U� then
12: variables variables[ fv0g
13: Vi  Vi [ fv0g
14: Mi  .Vi;Ci;Ai/

Algorithm 3: c D GetBestConstraint.v;Vi;U�;A /

1: C ∅

2: cv  find c where .c; v/ 2 A
3: if Vcv � Vi [ U� then
4: C C [ fcvg
5: for all y 2 Y \ U� do
6: cy  find c where .c; y/ 2 A
7: if v 2 Vcy and Vcy � Vi [ U� [‚ then
8: C C [ fcyg
9: for all y 2 Y \ U� do

10: cy  find c where .c; y/ 2 A
11: V 0  Vcy � fyg
12: for all v0 2 V 0 do
13: cv0  find c where .c; v0/ 2 A
14: if v 2 Vcv0

and Vcy � fvg [ U� [‚ then
15: C C [ fcv0 g
16: if C D ∅ then
17: c cv
18: else if cv 2 C then
19: c cv
20: else
21: C0  C
22: for all c1; c2 2 C where c1 ¤ c2 do
23: y1  find y where .c1; y1/ 2 A
24: y2  find y where .c2; y2/ 2 A
25: if .y1 G y2/ 2 P then
26: C0  C0 � fc1g
27: c first.C0/

(GetBestConstraint subroutine) to find the constraint that should be used to
resolve v in the minimal way.

The GetBestConstraint subroutine, given as Algorithm 3, (which has been
updated from [13]) tries to find a constraint that completely resolves the variable, i.e.,
resolves v without further backward propagation (all other variables involved in the
constraint are in Vi [ ‚ [ U�). Such a constraint may be the one that computes v
in the current causality, if all needed variables are already in the submodel (in Vi)
or are available local inputs (in U�); such a constraint may be one that computes a
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measured output y� 2 U�, in which case the causality will be modified such that y�
becomes an input, i.e., the constraint in the new causality will compute v rather than
y�; or such a constraint may be one that computes some y� through some v0 in an
algebraic relation. If no such constraint exists, then the constraint that computes v in
the current causal assignment is chosen, and further backward propagation will be
necessary. A preferences list, P, is used to break ties if multiple minimal constraints
exist to resolve v.

For a given causal model in a given mode, we have the equivalent of a continuous
systems model for the purpose of structural model decomposition, and we can
compute minimal submodels using the GenerateSubmodel algorithm described
in previous work [13]. The algorithm finds a submodel, which computes a set of
local outputs given a set of local inputs, by searching over the causal model. It
starts at the local inputs, and propagates backwards through the causal constraints,
finding which constraints and variables must be included in the submodel. When
possible, causal constraints are inverted in order to take advantage of local inputs.
In the worst case, the algorithm ends up with the global model, so would traverse
the entire causal structure. Additional information and the pseudocode are provided
in [13].

The local inputs for a submodel are selected from variables for which the values
will be known. This includes variables in UM , which are assumed to be known, but
could also include variables in YM , because the values of these are being provided
by sensors. On average, GenerateSubmodel will find a submodel that is a small
subset of the global model. In the worst case, if no decomposition is possible, it
will return the global model, minus the other outputs. However, in this case, this
submodel is still computationally independent of the others and can still be run in
parallel.

Example 11 Submodels can be represented visually using a graph notation, where
vertices correspond to variables, and edges correspond to constraints with causal
assignments, i.e., a directed edge from vi to vj means that vj is computed using vi.
Consider a submodel for which the local output is i�3 , and the available local inputs
are fv�8 ; i�11g [ UM . The submodel graphs for two modes are shown in Fig. 8.2.
If Sw1 is on with Sw2 off, for example, i�3 can be determined completely by uV (see
Fig. 8.2b). If Sw1 is off with Sw2 on, then it must be computed based on the value
of v�8 (see Fig. 8.2a).

The main advantage of structural model decomposition is that faults appear in
only a subset of the submodels. Following a model-based approach, in which the
submodels are used to compute the nominal system behavior, only a subset of the
submodels will be affected by a single fault. Thus, the reasoning becomes much
simpler.
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Fig. 8.2 Submodel graphs
for i�3 . (a) i�3 submodel graph
in the mode with the first
switch off and the second on.
(b) i�3 submodel graph in the
mode with the first switch on
and the second off

a

b

8.3 Problem Formulation

The diagnosis problem is one of mapping observations on a system to an explanation
for that set of observations, specifically, which faults may have occurred to produce
those observations. In general terms, a fault is a single change in the system. Here,
we make the single-fault assumption.

Assumption 1 Only single faults occur in the system.

That is, we assume that only a single change in the system has occurred and can
explain the given observations. Since faults are typically unlikely to occur in the first
place, when faults are independent of each other, the probability of multiple faults
is extremely low. So, the single-fault assumption is common in practical settings.
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As described in Sect. 8.2, faults may be either parametric (represented as
increases or decreases in system parameter values) or discrete (represented as
changes in the modes of components). Further, we assume that faults are persistent,
i.e., once a fault occurs, it remains.

Assumption 2 Faults are persistent.

Generally speaking, for the purposes of diagnosis, we consider an observation to
be an event observed at a particular time.

Definition 8 (Observation) An observation is a tuple .e; t/, where e is an observed
event and t is the time of observation.

Two kinds of events are considered, mode changes and fault signatures. We
define mode change events specific to components.

Definition 9 (Mode Change Event) An event .�;m/ represents component �
changing to its mode m.

For the purposes of this chapter, we assume these are known/observable, i.e., they
are considered an input to our system.

Assumption 3 (Mode Change Observability) All mode change events are
observable.

Following a qualitative fault isolation approach, the remaining events take the
form of qualitative symbols representing the transients caused by faults, termed fault
signatures.3 These symbols are computed from system residuals, i.e., the differences
between observed and model-predicted outputs.

Definition 10 (Residual) A residual r for output y as measured by a sensor is
computed as r D y � y�, where y� is the model-predicted output value.

Under the single-fault assumption, a diagnosis is simply a fault that is consistent
with a given observation sequence.

Definition 11 (Diagnosis) For a system with fault set F, and a sequence of
observations O, a diagnosis for O, dO is a fault f 2 F that is consistent with O.
The set of all diagnoses for O is denoted as DO.

The diagnosis problem can then be formally defined as follows.

Problem 1 For a system with fault set F, given a finite sequence of observations O,
find the set of diagnoses DO 	 F.

3Fault signatures will be defined formally in Sect. 8.4.
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Fig. 8.3 Diagnosis architecture

8.3.1 Architecture

To solve this problem, the architecture shown in Fig. 8.3 is used. The inputs, u.k/,
are fed into the system, and the system produces measured outputs, y.k/. These
signals are then decomposed into local input and outputs for the local submodels.
For each sensor, one submodel is defined where the corresponding output variable
is the single local output of the submodel, and all other output variables may
serve as local inputs along with UM . Thus, for a set of n sensors, there will be
n submodels. The mode change m is also fed into the system and the submodels.

If a mode change occurs, the system changes mode and the submodels also
change modes to reflect the new system mode. This requires regenerating the
submodels due to the change in causality, and this can be done efficiently using
the causality reassignment algorithm.

The actual system outputs, y.k/, along with the submodel-generated outputs,
y�.k/ are then fed to the symbol generation module. Following a qualitative fault
isolation approach, the residuals are transformed into qualitative 0 (no change), �
(decrease), and + (increase) changes for the magnitude and slope in the residual.
Once a residual is detected to deviate in a statistically significant manner from zero,
symbols are generated for that residual, and fed into the fault isolation module.

The fault isolation module reasons over the sequence of observations, consisting
of these qualitative symbols and mode change events, to isolate the fault. The
algorithms underlying the fault isolation module are described in the following
section.

8.4 Qualitative Fault Isolation for Hybrid Systems

As described in Sect. 8.3, the diagnosis problem is to map a sequence of fault
signatures and mode change events to single faults that are consistent with the
sequence. At the core of the qualitative fault isolation approach is the concept of a
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fault signature. In this section, we first describe fault signatures. The fault isolation
procedure is then described, followed by a discussion of scalability.

8.4.1 Fault Signatures

The basis of the qualitative fault isolation approach is the concept of a fault
signature [10].

Definition 12 (Fault Signature) A fault signature for a fault f and residual r in
mode m, denoted by �f ;r;m is a set of symbols representing changes in r caused by
f at the point of the occurrence of f in mode m. The set of all fault signatures for a
fault f over residuals R in mode m is denoted as †f ;R;m.

In this work, fault signatures are made up of a set of two symbols: the qualitative
change in residual magnitude, and the qualitative change in residual slope. Each one
of these symbols can take the values + (increase), � (decrease), and 0 (no change).
These symbols are based on the transient that is produced when a fault occurs [9].
We write always the magnitude symbol followed by the slope symbol, e.g., a
signature +� represents an increase in magnitude and a decrease in slope.

A fault signature provides a prediction of the observation that will be made
for a system in a particular mode when that fault happens. For the case of a
parametric fault, this is a straightforward concept and we refer the reader to previous
works [24]. For discrete faults, the interpretation of the fault signature remains the
same, although a discrete fault will change the mode. Specifically, if the system is
in mode m and a discrete fault f occurs (thus changing the mode), the signatures in
†f ;R;m will be those observations predicted for the fault occurring in mode m, and
not the mode in which the fault drives the system into. So, if we know the system
is in mode m and fault signatures are observed, we always look in †f ;R;m for every
f 2 F to reason about which fault has occurred.

Example 12 Table 8.2 shows the fault signatures for the circuit example for the two
modes considered for the local submodel residuals. Consider that fault L�1 occurs in
the system. In m D Œ2 1�, it affects only the residual for i�3 , as it is the only local
submodel where it appears (see Table 8.2). In m D Œ2 1�, it also affects i�3 . The fault
RC1 will also, but they can be distinguished by the specific change produced by the
fault. For L�1 , a +� is produced, whereas for RC1 , a 0� is produced.

Fault signatures can be derived from analysis of the system model [9, 19] or via
simulation. Here, we assume they are given as input.

Since we have a single submodel for each residual, fault isolation within a single
mode is straightforward. Given an observed sequence of fault signatures,† in mode
m, we determine which faults match all signatures in †.

Example 13 For the circuit, given m D Œ1 2� and † D frC�
v�

8
g, then D D fC�1 ;L�2 g.

Note that the * symbol may match either + or �.
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For the purposes of this paper, we assume that signatures are correctly observed.4

Assumption 4 (Correct Observation) If a fault f occurs in mode m, then if the
system does not change mode after the occurrence of the fault, the observed fault
signatures will belong to †f ;R;m.

8.4.2 Hybrid Systems Diagnosis

For hybrid systems, fault signatures are always given as a function of the system
mode. If there is no mode change occurring between the point of fault occurrence
and the diagnosis of the fault, then the problem reduces to the continuous systems
case. Otherwise, some combination of fault signatures from different modes may be
observed, depending on when the mode changes take place and how long it takes
for fault signatures to manifest.

Example 14 Consider the residuals in Table 8.2. Assume that the system starts in
m D Œ1 2� and RC1 occurs. Then we could observe r0�

i�3
. Now, assume that the system

moves to mode m D Œ2 1�, now we would observe rC�
v�

8
. This set of fault signatures

is not found in any single mode, so the reasoning must extend over the sequence of
mode changes.

As shown in the example, the first challenge of the approach for hybrid systems is
that now the observed fault signatures may correspond to different modes. Thus, the
fault isolation process must span over several potential mode changes. By knowing
the mode of the system, we can know which set of fault signatures corresponds to
the predicted observations for each fault.

The advantage of structural model decomposition here is that such combinations
are limited and easier to deal with compared to an approach using a single global
model, where potentially all residuals may be affected by every fault. In that case,

Table 8.2 Fault signatures
for minimal submodels of the
electrical system

Mode m D Œ1 2� m D Œ2 1�

Fault ri�11
ri�3

rv�

8
ri�11

ri�3
rv�

8

C�

1 00 0+ 00 00 00 �+
C�

2 00 00 �0 00 00 00

L�

1 00 +� 00 00 +0 00

L�

2 �0 00 00 00 00 �*
RC

1 00 0� 00 00 00 +�
RC

2 00 00 +0 00 00 00

4Relaxation of this assumption has been explored for continuous systems in [25].
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there are many potential combinations and increased ambiguity. The decoupling of
faults and residuals provided by structural model decomposition helps to reduce this
complexity.

As discussed in the previous section, in this work we assume that all commanded
mode change event are observable. However, even if we know the current mode of
the system, there is another related layer of complexity to consider, the observation
delay, which refers to the delayed observation of fault signatures. The difficulty
relies in that the system may be in one mode, but when the observation arrives
it might have moved to a different system mode, thus the mode in which the
observation was made may not be known exactly.

The observation delay can be manifested in different ways. For example, fault
detection in our framework is done by checking if the residual crosses a threshold.
Due to the presence of noise and in order to perform a robust fault detection, we use
a statistical test that computes the mean of the residual over a small time window and
check if that mean has crossed the threshold. In practice, this means that the signal
could actually cross the threshold in one mode, but the mean of the signal could
cross only in the next mode. Thus, the observation of this signature is delayed. In
this work we assume that the observation delay is finite and bounded.

Assumption 5 (Bounded Observation Delay) The delay of any observation is no
greater than �.

Given our assumptions, the algorithm for a single step of fault isolation for hybrid
systems is shown as Algorithm 4. Note that we reason through fault signatures the
same for discrete and for parametric faults, hence the algorithm presented is the
same for both situations. As inputs, the algorithm takes the current diagnosis, Di,
the previous sequence of fault signatures, i, the new fault signature, �iC1, and the
set of recent modes that falls within Œt��; t�, Mr;�, for the submodel that generates
residual r. The main difference of this algorithm against the previous version for
continuous systems is that we need to check signatures for each one of the recent
modes.

Another advantage here of structural model decomposition is that the set of recent
modes is dependent on the model used for fault isolation, and consequently is a
function of the residual associated with the signature. If a global model is used,
the residual generator will contain all system modes. However, if local submodels
are used, the residual generator will only contain the local modes of that submodel
(which is always less than the number of system modes). Thus, fewer modes must
be searched and efficiency is improved.

Algorithm 4: DiC1 D FaultIsolation.Di; i; �iC1;Mr;�/

1: DiC1 ∅

2: for all q 2 Mr;� do
3: for all f 2 Di \ Fr;q do
4: if �iC1 2 †f ;r�iC1

;m then
5: DiC1 ff g



8 Diagnosis of Hybrid Systems Using Structural Model Decomposition 197

If the signature is consistent in any of the modes, it must be added to DiC1. Here,
for a given mode m, we need to check only the subset of faults that are included in the
current diagnosis and can actually affect this residual in this mode, denoted as Fr;m.
An observed signature, �iC1, is consistent with a fault if the predicted signature for
its residual (r�iC1

) is included in the signature set for that fault and residual in the
given mode.

Algorithm 4 just presents a single reasoning step, when there is a new observed
signature, of the fault isolation process. When implemented, this algorithm would
be placed within a general progressive monitoring algorithm that keeps track of the
current diagnosis, and computes the set of recent modes based on the times events
are observed. In the worst case, it must check consistency with all faults and all
deviated residuals for all given mode changes, so in the worst case is O.jFjjRjjMrj/.
On average, it is much less, since the candidate set reduces with each newly
observed fault signature.

8.4.3 Scalability

The complexity of the fault isolation algorithm is dependent on the number of faults,
jFj, the number of residuals, jRj, and the number of modes, jMj. For the global
model case, all faults, residuals, and modes in Mr;� must be searched. Because r
is computed using the global model, it is a function of the system-level mode. For
an n-tank system, there are n � 1 switching components and so 2n�1 system-level
modes. Clearly, diagnosis in this case will not scale.

For the local submodel case, each residual is generated by a minimal submodel,
so it improves over the global model approach by simultaneously reducing both
the effective jRj and the effective jMj. The effective jRj is decreased because with
structural model decomposition each fault affects only a subset of the residuals,
so for each new residual deviation only a subset of faults needs to be checked for
consistency. The effective jMj is reduced because with structural model decompo-
sition each residual is reconfigured only based on a few local component modes,
whereas for the global model each residual is dependent on the system-level modes
(which increases exponentially with the number of switching components). Due
to these properties of structural model decomposition, the complexity grows at a
significantly smaller rate as the system size increases than with the global model
approach.

8.5 Case Study

The Advanced Diagnostics and Prognostics Testbed (ADAPT) is an electrical power
distribution system that was built to mimic the operation of such systems on
spacecraft [21]. Through the International Diagnostic Competition (DXC), it has
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Fig. 8.4 ADAPT-Lite schematic

Table 8.3 Components of
ADAPT-Lite and their failure
modes

Components Failure mode

AC483, DC485 Resistance offset

E240, E242, E265, E281, TE228, Offset

IT240, IT267, IT281, ST516

ESH244A, ISH236 Stuck

EY244, EY260, EY272, EY275, EY284 Stuck open

Stuck closed

FAN416 Underspeed

Overspeed

been established as a diagnostic benchmark system [26–28]. The diagnosis approach
is applied to a subset of ADAPT, called ADAPT-Lite.

Figure 8.4 provides a system schematic for ADAPT-Lite. A battery (BAT2)
supplies electrical power to several loads, passing through several circuit breakers
(CB236, CB262, CB266, and CB280), and controlled by relays (EY244, EY260,
EY281, EY272, and EY275). An inverter (INV2) converts dc to ac power. ADAPT-
Lite has one dc load (DC485) and two ac loads (AC483 and FAN416). Sensors
report electrical voltage (names beginning with “E”), electrical current (“IT”), and
the positions of relays and circuit breakers (“ESH” and “ISH”, respectively). There
is one sensor to report the operating state of a load (fan speed, ST516) and another
to report the battery temperature (TE228).

Table 8.3 summarizes component fault modes in ADAPT-Lite. The resistance
faults, fan speed faults, and sensor faults are modeled as parametric faults, and the
remaining faults are modeled as discrete faults.

8.5.1 System Modeling

Following the component-based modeling approach outlined in Sect. 8.2, each
component of the system is represented as a set of modes and constraints for each
mode. The components are one of the following types: battery, relay, inverter, dc
load, ac load, fan, and sensor. Since no faults are considered for the circuit breakers,
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they are omitted from the model. In the following, the component models are each
described in turn.

BAT2 consists of two 12V lead-acid batteries in series, which are lumped
together into a single battery model. A simplified electrical circuit equivalent model,
consisting of a single large capacitance, C0, in series with a capacitor-resistor pair,
Cs and Rs, that subtracts from the voltage provided by C0 (see Fig. 8.4), is used. The
battery may then be described as

Pv0 D 1

C0
.�iB/ ; (8.1)

v0 D
Z t

t0

Pv0dt; (8.2)

Pvs D 1

Cs
.iBRs � vs/ ; (8.3)

vs D
Z t

t0

Pvsdt; (8.4)

vB D v0 � vs; (8.5)

where iB is the battery current, vB is the battery voltage, v0 is the voltage across
C0, and vs is the voltage drop across Cs and Rs. The battery temperature is assumed
constant, i.e.,

PTB D 0; (8.6)

TB D
Z t

t0

PTBdt: (8.7)

The relays each have two modes, on and off. When off, the constraints are:

il D 0 (8.8)

vr D 0 (8.9)

p D 0; (8.10)

where il is the current on the left side of the relay, vr is the voltage on the right side,
and p is the position. When on, constraints are:

il D ir (8.11)

vl D vr (8.12)

p D 1; (8.13)
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where ir is the current on the right side, and vl is the voltage on the left side. When
on, the voltages and currents on either side of the relay must be equal. When off, the
current on the left side is set to zero, while the current on the right is determined by
the component on the right. Similarly, the voltage on the right is set to zero, while
the voltage on the left is determined by the component on the left. Following this
modeling convention, voltage is always determined by the component on the left,
and current by the component on the right, no matter which mode the system is in,
and with consistent causality assignment in each mode.

The dc load is a simple resistance:

vdc D idc � Rdc; (8.14)

where vdc is the voltage across the load, idc is the current through the load, and Rdc

is the load resistance. Similarly, the ac load is also a simple resistance:

vac D iac � Rac; (8.15)

however the corresponding voltage and current are rms values.
The fan current is a function of the applied voltage:

vfan D ifan � Rfan; (8.16)

where Rfan is the magnitude of the fan impedance, and vfan and ifan are the rms
voltage and current, respectively. The fan speed is expressed as a function of its
current

P! D 1

Jfan
.ifan � gfan � !/ ; (8.17)

! D
Z t

t0

P! dt; (8.18)

where Jfan is an inertia parameter and gfan is a gain parameter.
The inverter transforms dc power to ac power. When operating nominally, the

rms voltage vrms is controlled very close to 120V ac as long as the input voltage is
above 18V:

vrms D 120 � .vinv > 18/: (8.19)

From a power balance of the ac and dc sides of the inverter, it results that vinv � iinv D
e � vrms � irms, where e is the inverter efficiency, irms is the inverter rms current, vinv

is the inverter voltage on the dc side, and iinv is the input dc current to the inverter.
The inverter still draws a small amount of current even when irms D 0, and this
is captured as a dc resistance parallel to the inverter, Rinv. Hence, the following
equation is derived:
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iinv D vrms � irms

e � vinv
C vinv

Rinv
: (8.20)

The sensors are modeled using a bias term. For sensor s, the constraint is:

ys D ss C bs; (8.21)

where ss is the raw signal value, bs is the bias term, and ys is the sensor output.
Component models are instantiated and connected according to Fig. 8.4 through

series and parallel connections. With five relays, each with two modes, there are a
total of 25 D 32 system modes.

The three loads (dc, ac, and fan) each have a single parametric fault, represented
through their respective resistance parameters. Further, each of the eleven sensors
has an offset fault represented as a change in the bias parameter. Discrete faults
are also associated with each of the five relays. A relay can turn on/off without a
command, or fail to turn on/off in response to a command. So for a single system
mode, there are 19 potential faults that may occur.

8.5.2 Structural Model Decomposition

As described in Sect. 8.3, one submodel is defined for each sensor. In general, there
may be a different submodel for each system-level mode, however, many of these
submodels are the same for different system-level modes, because the behavior
of many of the switching components isolated from a given submodel due to the
decomposition.

Example 15 Consider the submodel for E281. It has only two modes: one in which
the voltage is determined by the measured value of IT281 (and EY281 is on), and
one in which is set to zero (and EY281 is off). Its mode depends only on the state of
relay EY281. When off, the submodel consists of the following constraints:

vr;EY260 D 0
vl;P1 D vr;EY260

vr;2;P1 D vl;P1

vl;CB280 D vr;2;P1

vr;CB280 D vl;CB280

vl;EY284 D vr;CB280

sE281 D vl;EY284

yE281 D bE281 C sE281;
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where P1 refers to a parallel connection with the 1 and 2 subscripts indicating the
connection. The only local input is bE281, which is assumed to be 0 in the nominal
case. When on, the submodel consists of the following constraints:

sE242 D �bE242 C yE242

vr;EY260 D sE242

vl;P1 D vr;EY260

vr;2;P1 D vl;P1

vl;CB280 D vr;2;P1

vr;CB280 D vl;CB280

vl;EY284 D vr;CB280

sE281 D vl;EY284

yE281 D bE281 C sE281:

The local inputs are bE281, which is assumed to be zero, bE242, which is assumed to
be zero, and yE242, which is the measured value of E242.

Over the whole system, each submode has between 1 and 4 modes. This greatly
simplifies the required diagnostic reasoning, since any given mode change will only
affect a minimal number of submodels.

8.5.3 Diagnosability

Given any mode of the system, fault signatures can be derived from any fault that
may occur within that mode through the qualitative fault propagation algorithms.
Signatures for the mode in which all relays are on are shown in Table 8.4. For
space, only the signature for parametric faults increasing in the positive direction is
shown (for the negative direction, the signature signs are flipped). For example, a
bias fault in E265 will produce a deviation in the residual for E265, along with those
for IT240, IT267, and ST516, because the value of E265 is used as a local input in
the submodels for those sensors. A fault in the resistance of AC483, in contrast,
will produce a change only in the residual of IT267, since it appears only in the
submodel for IT267. Note that a * symbol is used to denote an indeterminate effect
(i.e., the sign of the change depends on the system state).

It is important to note here that some ambiguity in the fault isolation results is
expected, i.e., the system is not fully diagnosable. For example, a resistance offset in
DC485 will result in a single change in the residual of IT281. A bias in that sensor
could result in the same signature, along with a bias in E281 and EY281 turning off.
So if the resistance fault occurs, the change in IT281 will be observed, resulting in all
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Table 8.4 Fault signatures for faults occurring in the mode with all relays on

Fault rE240 rE242 rE265 rE281 rESH244A rISH236 rIT240 rIT267 rIT281 rST516 rTE228

EY244off 00 �* 00 00 �0 00 �* 00 00 00 00

EY260off 00 �* �* �* 00 00 �* 00 00 00 00

EY272off 00 00 00 00 00 00 00 �* 00 00 00

EY275off 00 00 00 00 00 00 00 �* 00 0� 00

EY281off 00 00 00 00 00 00 �* 00 �* 00 00

RC

AC483 00 00 00 00 00 00 00 �0 00 00 00

RC

DC485 00 00 00 00 00 00 00 00 �0 00 00

RC

RFAN416 00 00 00 00 00 00 00 �0 00 0� 00

bC

E240 +0 �0 00 00 00 00 00 00 00 00 00

bC

E242 00 +0 �0 �0 00 00 *0 00 00 00 00

bC

E265 00 00 +0 00 00 00 *0 *0 00 0* 00

bC

E281 00 00 00 +0 00 00 00 00 *0 00 00

bC

ESH244A 00 00 00 00 +0 00 00 00 00 00 00

bC

ISH236 00 00 00 00 00 +0 00 00 00 00 00

bC

IT240 00 00 00 00 00 00 +0 00 00 00 00

bC

IT267 00 00 00 00 00 00 *0 +0 00 00 00

bC

IT281 00 00 00 00 00 00 �0 00 +0 00 00

bC

ST516 00 00 00 00 00 00 00 00 00 +0 00

bC

TE228 00 00 00 00 00 00 00 00 00 00 +0

those faults as diagnoses. No further residuals will deviate to further reduce the fault
set. If time limits are set for how long to wait to observe further deviations, then this
would improve the diagnosability and allow this fault to be uniquely isolated [24].

In general, the diagnosability results from using residuals from local submodels
generated from structural model decomposition may not be the same as using those
from a global model, as is proven in [29]. In practice, the diagnosability should be
compared to determine if there is any loss of diagnosability from using structural
model decomposition.

8.5.4 Results

As an example to illustrate the diagnosis process, consider the initial mode 11100
(here, the mode is designated by the sequence of relay states, for the relays in
alphabetical ordering), i.e., EY244, EY260, and EY275 are on, so power is sent
only to the ac load. The fault, EY244 turning off uncommanded, occurs at 120:0 s.
At 121:0 s, a decrease in the residuals for both yE242 and yESH244A is detected
(see Fig. 8.5). Considering the decrease first in yE242, the initial diagnoses are
fbCE240;EY260off ;EY244off ; b�E242g. Considering next the decrease in yESH244A, we
can reduce the diagnoses to EY244off , which is the true fault; only a fault in EY244
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Fig. 8.5 Measured and predicted values for E242 and ESH244A for EY244off

Fig. 8.6 Measured and predicted values for E281 and IT281 for bC

E281

or ESH244A can produce a change in the relay position sensor, so given the previous
information from E242, we can discover the true fault. In this case, no mode changes
occurred near the time of fault detection, so the reasoning is simplified.

As a second example, consider the initial mode 11001, i.e., EY244, EY260, and
EY281 are on, so power is sent only to the dc load. The fault, a positive bias in E281,
occurs at 120:0 s. At 121:0 s, an increase in the residual of yE281 and decrease in the
residual of yIT281 are detected (see Fig. 8.6). Considering first the increase in yE242,
the initial diagnoses are fbCE281;EY260off g. Considering next the decrease in yIT281,
we can reduce the diagnoses to fbCE281g, which is the true fault. A mode change also
occurs at 121:0 s, connecting the fan. This mode change does not change the modes
of the submodels of interest so does not affect the reasoning process or produce new
signatures.

A comprehensive set of experiments were performed in simulation to validate
the approach. The initial system mode, fault, and sequence of mode changes were
all selected randomly. For each experiment, we determined whether the true fault
was found within the final set of diagnoses, and the diagnostic accuracy, computed
as 1=jDj, where D is the final set of diagnoses.

In 129 total experiments, the true fault was found 97:67% of the time. The aver-
age accuracy was 69:49%. Note that 100% accuracy is not expected since the system
is not fully diagnosable in all modes, so in some cases there will be ambiguity based
on qualitative fault signatures only. For the small percentage of the time in which the
true fault was not found, this was due to false positives on some of the fault detectors
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for the different residuals. In most of these cases, the true fault is found initially, but
then eliminated because a false positive results in a signature inconsistent with the
true fault. With additional tuning, the performance could potentially be improved.

Comparing discrete and parametric faults, when a discrete fault was the true fault,
it was found 96:00% of the time, with an average accuracy of 67:67%. When a
parametric fault was the true fault, it was found 98:08% of the time, with an average
accuracy of 69:93%. Thus, performance was about equal for the two different fault
types.

8.6 Conclusions

This chapter described a qualitative fault isolation approach for hybrid systems
diagnosis. They key features are a compositional modeling approach and the use of
structural model decomposition. Structural model decomposition plays a significant
role in reducing the complexity of the hybrid systems diagnosis problem, by
minimizing the local effects of faults to only a subset of residuals, reducing the
number of mode changes to consider, and reducing the effects mode changes will
have on the reasoning process.

The approach was demonstrated on a complex electrical power system, consider-
ing both parametric and discrete faults. Faults were quickly and correctly diagnosed,
with some expected ambiguity due to the use of only qualitative information for
diagnosis. This can be followed by quantitative fault identification to uniquely
isolate the true fault.

Although only single faults are considered here, and all mode changes (except
for faults) are assumed to be observable, the approach can be extended to handle
multiple faults in the presence of unobservable mode changes. Preliminary work
in this area has been described in the literature [1, 5, 19, 30]. Unobservable mode
changes that are not tracked with nominal behavior will result in nonzero residuals,
and thus appear as faults. Our framework can be extended to handle this case simply
by considering fault signatures associated with these mode changes. As such, these
mode changes would be identified.
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Chapter 9
Diagnosis of Hybrid Systems Using
Hybrid Particle Petri Nets: Theory and
Application on a Planetary Rover

Quentin Gaudel, Elodie Chanthery, Pauline Ribot, and Matthew J. Daigle

9.1 Introduction

Real systems have become so complex that it is often impossible for humans to
capture and explain their behaviors as a whole, especially when they are exposed to
failures. System health management (SHM) or prognostics and health management
(PHM) aims at developing tools that can support maintenance and repair tasks,
reducing the global costs due to unavailability and repair actions, but also optimizing
the mission reward by replanning or reconfiguring the system [37]. An efficient
health monitoring technique has to be adopted to determine the health state of the
system at any time by using diagnostics and prognostics techniques. A diagnosis
method is used to determine the current health state and identify the possible causes
of failures that lead to this state by reasoning on observations. Prognosis is used to
predict the future health states and the times of the occurrences of the faults that lead
to these states. Hybrid systems have been defined by Henzinger [18] as follows.

Definition 9.1 (Hybrid System) A hybrid system exhibits both discrete and con-
tinuous dynamics.

Sensor data and commands are designated as continuous or discrete observations
on the system. Hybrid systems are usually described as a multi-mode system com-
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posed of an underlying discrete-event system (DES) representing the mode changes
and various underlying continuous dynamics associated with each mode [3].

Definition 9.2 (Discrete State, Continuous State) The system discrete state is
defined as the current discrete state of the DES. The evolution of the system
continuous state depends on continuous dynamics associated with the current
system mode.

In most industrial systems, if the degradation is not observable, it is estimated
as fault occurrence probabilities. The degradation thus depends on the stress level
of the current health mode of the system and, in some cases, also relies on the
current continuous state and also on the analysis of the events that occurred on
the system [16]. Because of these dependencies and its importance for PHM,
we choose to evaluate the degradation separately from the discrete state and the
continuous state of the system.

Definition 9.3 (Degradation State) The system degradation state is the current
value of the degradation whose evolution is represented by degradation dynamics.

We extend the multi-mode system by associating underlying degradation dynam-
ics (e.g. degradation laws) with each mode.

Definition 9.4 (Mode, Event, State) A mode is defined as a combination of a
discrete state of the DES with continuous dynamics and degradation dynamics.
The changes of modes are associated with occurrences of discrete events. The state
of the hybrid system is defined as the combination of its discrete, continuous and
degradation states.

Our previous works introduced a framework called Hybrid Particle Petri
Nets (HPPN). Gaudel et al. [15] proposed to use HPPN to model an uncertain
hybrid system and track its current health state by generating a diagnoser. The
methodology uses information about the system degradation that is a significant
advantage to compute a more accurate diagnosis and to perform prognosis. In [16],
we tested the proposed approach on a simulated three-tank system.

This chapter presents in detail the HPPN-based health monitoring method
exposed in [16] that has been improved concerning computation performance. The
method is hence recalled and new notions are precised, such as the definition of
discrete events, the calculation of mode scores or the choice of scale parameters
for the diagnoser process. This chapter then exposes results of the implemented
health monitoring method on the K11 planetary rover prototype. The K11 is a
testbed developed by NASA Ames Research Center which is used for diagnostics
and prognostics purposes [1, 7, 9, 37]. A hybrid model of the rover is proposed,
based on the discretization of its health evolution. Experimental results are given,
illustrating how the methodology is robust to real system data and constraints.

The chapter is organized as follows. Section 9.2 presents related works on
diagnosis of hybrid systems. Section 9.3 recalls and deepens the health monitoring
methodology based on the modeling of the hybrid system and the generation of
a diagnoser in the HPPN framework. Section 9.6 focuses on the application of
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the proposed methodology on the K11 planetary rover prototype. It provides the
K11 hybrid model and exposes the experimental results and performance metrics.
Conclusions and future works are discussed in the final section.

9.2 Related Work

Hybrid systems are a very important subject in many fields, such as modeling,
verification, control, and monitoring.

Some models, initially purely continuous have been extended with the integration
of events [30]. Similarly, discrete event models have been extended with some
continuous aspects, such as Continuous Petri Nets (CPN) [10] and Hybrid Petri
Nets (HPN) [12, 44], which introduce a new type of place (continuous place) with a
rational marking. Finally, some other hybrid models have been built by the explicit
combination of a discrete event model and a continuous model, such as Hybrid
Automaton [3, 19] or particle Petri nets [27]. All of these models have been widely
used and extended for monitoring hybrid systems.

Zhao et al. [45] propose an approach based on timed Petri nets and mode
estimation. The Petri nets use is justified by significant computational advantages
over concurrent automata. Fault detection and estimation are done sequentially.
Uncertainty about discrete events is not considered. Bayoudh et al. [3] model
the system with a hybrid automaton. The hybrid system is described as a multi-
mode system in which each mode is associated with a continuous dynamic. These
works then exploit the analytical redundancy relations of the continuous models
and the parity space approach to generate a DES diagnosis that recognizes the
signatures associated with each operational modes. Horton et al. [20] introduce
fluid stochastic Petri nets. The arcs of a fluid stochastic Petri net carry fluid flow
which limits the passage of tokens, and create continuous marking. However, the
continuous dynamics is limited to a speed and is not appropriate to represent
any hybrid system. Lesire and Tessier [27] combine a discrete event model (Petri
nets) and a continuous model (dynamic equations) in an extension of the hybrid
Petri nets called Particle Petri Nets (PPN). They propose to distribute the rational
marking of the continuous spaces in a set of particles. The tokens of the discrete
places (named configurations) and these particles are then used in a monitoring
mechanism combining the possibilistic firing [5] with a particle filter to manage
all the uncertainties relative to the system and discrete and continuous observations.
This work is oriented towards mission monitoring, not health monitoring.

The Modified Particle Petri Nets (MPPN) formalism [46] is proposed as an
extension of the PPN. The main advantage of MPPN is that they propose to use
transitions associated with conditions that deal with both the configuration and
particle values. The application is essentially oriented towards mission monitoring,
not health management. The different health states of the system are not considered.
Moreover, there is no correspondence with the diagnoser object defined in the
literature and the problem of ambiguity in the model is not addressed. The diagnoser
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approach was introduced in [34]. The diagnoser is basically a monitor that is able
to process any possible observable event that occurs in the system. It consists
in recording these observations and providing the set of possible faults whose
occurrence is consistent with the observations. However, this approach is restricted
to DES and does not manage uncertainty. Some approaches extend the diagnoser to
DES modelled by Petri nets. However, none of these approaches take into account
continuous aspects, nor consider uncertainty in the system. In [36], an approach
for the localization of intermittent faults by dealing with partial observability in
the discrete event framework is proposed. The method is based on Petri nets that
model the normal functioning of the system observable behavior. A localization
mechanism, based on the diagnoser approach, points out the set of events potentially
responsible for the faults.

Some studies are particularly focused on the diagnosis of systems with the
intention of using it for prognosis purposes. These approaches consider monitoring
the degradation of the system. This is called the advanced diagnosis.

In [41], the diagnosis method uses an extended Kalman filter and an Interactive
Multiple-Model (IMM) algorithm to monitor both the behavior of the system and
its degradation in order to obtain a better system state estimation as a starting point
for the prognosis process. However, the approach is limited to continuous systems.

Chanthery and Ribot [6] propose to extend the diagnosis approach proposed
in [3] by associating to each mode of the hybrid system a degradation dynamics.
However, dynamics are limited to aging laws which estimate the probabilities of
occurrences of anticipated faults. The approach does not take into account the
uncertainties on the system model and the observations, both for the continuous
and discrete part.

In [43], fault isolation is performed dynamically with a Hybrid Bond Graph
(HBG). The method proposes to use a fault signature matrix for each mode and
introduces a delay to allow each fault to express its symptoms on the residuals
(especially the only detectable faults with the continuous signals). However, no
indication of the waiting time is given. In parallel with the monitoring of the
evolution of these new faults, the degradations of each component depend on the
current operational mode and are estimated with a hybrid differential evolution
algorithm.

This paper focuses on the application of the health monitoring methodology on
the K11 rover, that is subject to inherent uncertainty of real systems.

Uncertainty has been widely studied for state estimation of continuous systems.
Concerning hybrid systems, Koutsoukos et al. [24] use a particle filtering technique
to estimate the state of a hybrid system modeled as a hybrid automaton. Uncertainty
related to discrete events is not taken into account and the system degradation is
not considered. In [32], a consistency-based approach combined with particle filters
is proposed. Noise and uncertainty are taken into account, but only discrete faults
are addressed. Biswas et al. [4] and Wang et al. [42] both propose a robust state
estimation and fault diagnosis for uncertain hybrid nonlinear systems, where the
discrete dynamics has unknown transition functions. However, they only consider
discrete faults. Ru and Hadjicostis [33] use partially observed Petri nets. Partially



9 Diagnosis of Hybrid Systems Using HPPN: Theory and Practice 213

observed Petri nets are transformed into an equivalent labelled Petri net and an
online monitor is built to diagnose faults and provide beliefs (degrees of confidence)
regarding the occurrences of faults. However, this approach is limited because it
only takes into account uncertainty in the diagnosis results, not about the model
or the event observations. Basile et al. [2] propose to reduce the explosion of
the state space by introducing generalized markings (negative tokens) to take into
account uncertainty about the firing of transitions. The stochastic Petri nets are used
by Jianxiong et al. [21] to build a formal model of each component of an integrated
modular avionics architecture. However, for all these approaches, no continuous
aspect in the model is taken into account.

In previous works, health monitoring and diagnosis was applied to the K11 rover.
In [29], two diagnosis algorithms were applied, Qualitative Event-based Diagnosis
(QED) [8], and the Hybrid Diagnosis Engine (HyDE) [31]. QED performs diagnosis
based on reasoning over symbols representing qualitative deviations of the sensor
signals with respect to model-predicted values. Sensor and process noise are handled
by using an observer to estimate the current system state, however no uncertainty in
the symbols computed for diagnosis is considered, and all diagnostic hypotheses
are viewed as equally likely. HyDE is a consistency-based diagnosis engine
that uses hybrid and stochastic models and reasoning. Reasoning is performed
by hypothesizing alternative system trajectories inferred from the transition and
behavior models of the system, and considers a priori fault probabilities and mode
transition probabilities. Both diagnosis algorithms were used to diagnose parasitic
load, motor friction, and voltage sensor faults in simulation. In [37], QED diagnosed
parasitic load faults and voltage sensor faults in real-world scenarios.

9.3 Health Monitoring Methodology for Hybrid Systems

This section details the methodology proposed in [16] to perform model-based
health monitoring of hybrid systems.

We are interested in modeling changes in system dynamics when one or several
anticipated faults occur.

Definition 9.5 (Health Modes) The health modes are the hybrid system modes
(a discrete state with continuous dynamics and degradation dynamics) and represent
different health conditions.

Definition 9.6 (Nominal Mode) As long as the system does not encounter any
fault, it is in a nominal mode.

Definition 9.7 (Degraded Mode) Tracked faults are assumed to be permanent, i.e.
once a fault happens, the system moves from a nominal mode to a degraded mode
or faulty mode.

Definition 9.8 (Failure Mode) Without repair, the system ends in a failure mode
in which it is not operational anymore.
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Fig. 9.1 Overview of the health monitoring methodology for hybrid systems

Algorithm 1: HPPN-based monitoring methodology
1: HPPNˆ CreateHPPNModel./
2: HPPN� GenerateHPPNDiagnoser.HPPNˆ/

3: for all k do
4: Ok  .US

k ; u
N
k ;Y

S
k ; y

N
k /

5: �k  Update.HPPN�; k;Ok/

6: end for

The set of health modes is the superset of nominal, degraded and failure modes.
An overview of the health monitoring method is illustrated in Fig. 9.1 and

described by Algorithm 1. Three different objects are defined in the HPPN
framework: a hybrid system model HPPNˆ, a HPPN-based diagnoser HPPN� and
a HPPN-based prognoser HPPN…. Note that the generation of the prognoser object
for prognosis purpose is not detailed in this chapter.

The first offline step is the modeling of the hybrid system (line 1) using the HPPN
framework, as described in Sect. 9.4. The system model HPPNˆ can be built either
from a multi-mode description of the system or directly from expert knowledge. The
second offline step (line 2) is the generation of a HPPN-based diagnoser HPPN�

from the system model HPPNˆ described in Sect. 9.5.2. Then the online diagnoser
process (lines 3–6) uses the system consecutive observations Ok (inputs and outputs)
to update the diagnoser result and compute the diagnosis �k (see Sect. 9.5).

Example 9.1 Throughout Sect. 9.3, an example of a mobile robot, described in
Fig. 9.2, is used to illustrate the definitions and concepts.

The system is described with an oriented graph, in which the nodes represent
the health modes and the arcs represent the mode changes. Variables that can be
observed or estimated with observations are in bold.

The robot mission is to move without encountering an obstacle or failure, until
it reaches a specific area and is turned off. The initial mode is Nominal1: the robot
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Fig. 9.2 Mobile robot description

is not degraded and is moving in a non-hostile zone. Its velocity v can be estimated
with continuous dynamics C1 and continuous observations, and is positive. Two
faults are expected and the robot degradation is estimated as fault occurrence
probabilities with degradation dynamics D1, in which the probabilities increase
with time.

When the (discrete and observable) on-off command turn off occurs, the robot
stops and its velocity decreases to 0. The robot enters mode Nominal2, where
its motor is turned off and its velocity thus stays 0 (continuous dynamics C2).
Because the robot is turned off, the fault occurrence probabilities stagnate, following
degradation dynamics D3.

Fault f2 represents a disconnection of the robot motor. Its occurrence leads the
system to the failure mode Failed1. The occurrence of f2 implies the robot stops, so
its velocity decreases to 0. Once the motor is disconnected, the robot has the same
continuous and degradation dynamics (C2 and D3) as if it was turned off.

Fault f1 represents the robot entrance in a hostile zone where it is degrading
faster due to environmental conditions. The robot is still moving at the same
velocity (C1). The physical conditions in mode Degraded1 imply that the probability
of f2 increases more significantly than in mode Nominal1. This is defined with
degradation dynamics D2.

From mode Degraded1, the robot can still enter in mode Failed1 with fault f2
occurrence but it does not match with any condition on the velocity in that case
(see arc between Degraded1 and Failed1). The velocity estimation is considered
less accurate in the hostile zone than in the non-hostile zone, indeed.

Finally, the hostile zone contains obstacles. The robot can encounter a wall,
that stops the robot but not its motor. In that case, the mission fails and the robot
enters in failure mode Failed2. This event wall is not predictable (not estimated
with probabilities) but is observable with an environmental on-off sensor. Even if
the mission is compromised and the robot is not moving anymore (C2), its motor is
still on so the degradation laws remain the same (D2).
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9.4 Hybrid System Modeling

We propose to model the system by using the Hybrid Particle Petri Nets (HPPN)
framework introduced in [15].

9.4.1 Hybrid Particle Petri Nets

The HPPN formalism is an extension of Petri nets. Definition 9.9 gives the complete
structure of a Hybrid Particle Petri Net before explaining each notation.

Definition 9.9 A HPPN is defined as a 11-tuple hP;T;A;A ;E;X;D;C ;D ; �;M0i
which describes discrete evolutions (with symbolic places), continuous evolutions
(with numerical places) and degradation evolutions (with degradation places) and
relations between them:

• P is the set of places, partitioned into numerical places PN , symbolic places PS

and degradation places PD, P D PS [ PN [ PD,
• T is the set of transitions,
• A 	 P � T [ T � P is the set of arcs,
• A is the set of arc annotations,
• E is the set of event labels,
• X 	 R

nN is the state space of the continuous state vector, with nN 2 NC the
number of continuous state variables,

• D 	 R
nD is the state space of the degradation state vector, with nD 2 NC the

number of degradation state variables,
• C is the set of dynamic equation sets associated with numerical places,
• D is the set of dynamic equation sets associated with degradation places,
• � is the set of conditions associated with transitions,
• M0 is the initial marking of the Petri net.

An example of a simple HPPN is illustrated in Fig. 9.3. Symbolic places
are represented by thin green circles, numerical places are represented by blue
circles and degradation places are represented by thick grey circles. Transitions
are represented by black lines. Arcs connecting transitions and symbolic places
(resp. numerical and degradation places) are represented by plain arrows (resp.
discontinuous and dotted arrows).

The set E D Eo [ Euo is the set of event labels that is partitioned into observable
event labels Eo and unobservable event labels Euo. For example, an anticipated fault
in the system model is represented by an unobservable event f 2 Euo � E. An event
e is a couple e D .v; k/ where v 2 E is an event label (or type) and k 2 R the time
of occurrence of e. For example, .z; 4/means an event type z has occurred at time 4.
An event .v; k/ is unobservable if for all k, v does not belong to the set of discrete
observations of the system.
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Fig. 9.3 Example of a
simple HPPN at time k D 0

The places of a HPPN are marked by tokens that carry different types of
information.

Symbolic places PS model the discrete states of the system and are marked
by symbolic tokens called configurations.The set of configurations at time k is
denoted MS

k . Each configuration in a HPPN carries the trace of events that occurred
on the system until time k. A configuration ık 2 MS

k is a token at time k whose value
is a set of events bk that occurred on the system until time k: bk D f.v; �/k� � kg.

Numerical places PN represent continuous dynamics of the system and related
uncertainty. Each numerical place pN 2 PN is associated to a set of dynamic
equations CpN 2 C modeling system continuous dynamic and its corresponding
model noise and measurement noise:

CpN D
�

xkC1 D f.xk; uk/ C v.xk; uk/

yk D h.xk; uk/ C w.xk; uk/
; (9.1)

where xk 2 X is the continuous state vector, uk 2 R
nu is the vector of nu continuous

input variables, f is the noise-free continuous evolution function, v is a noise
function, yk 2 R

ny is the vector of ny continuous output variables, h is the noise-free
output function and w is the noise function associated to observation. Functions
f, v, h and w depend on the considered place pN . Numerical places are marked
by numerical tokens called particles. The set of particles at time k is denoted MN

k .
More precisely, a particle �k 2 MN

k is a token whose value represents a possible
continuous state xk 2 X of the system at time k.

Degradation places PD represent degradation dynamic of the system and related
uncertainty. Each degradation place pD 2 PD is associated with a set of equations
DpD 2 D modeling system degradation dynamic:

DpD D ˚dkC1 D g.dk; bk; xk; uk/ C z.dk; bk; xk; uk/ ; (9.2)

where dk 2 D is the degradation state vector, g is the noise-free degradation
evolution function and z is a noise function. Functions g and z depend on the
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considered place pD. It has to be noticed that, as said earlier, the difference between
continuous and degradation places is that degradation system states are function of
the continuous state and the set of events bk that have occurred time k.

Degradation places are marked by degradation tokens. The set of degradation
tokens at time k is denoted MD

k . A degradation token dk 2 MD
k links a configuration

ık to a particle �k and its value is a possible degradation state dk 2 D of the system
at time k.

The set of places P of the HPPN is:

P D PS [ PN [ PD D fpS
1; : : : ; p

S
s g [ fpN

1 ; : : : ; p
N
n g [ fpD

1 ; : : : ; p
D
d g (9.3)

where s, n and d are respectively the number of symbolic, numerical and degradation
places. In Fig. 9.3, we have, for example, P D fpS

1; p
S
2; p

N
1 ; p

N
2 ; p

D
1 ; p

D
2 g.

Let Mk denote the set of tokens of the HPPN at time k:

Mk D MS
k [MN

k [MD
k ; (9.4)

where MS
k , MN

k and MD
k are respectively the set of configurations, particles and

degradation tokens at time k. In Fig. 9.3, we have, for example, M0 D fı0; �0; d0g.
The marking Mk of a HPPN at time k is the distribution of tokens in the different

places:

Mk D M
S
k [M

N
k [M

D
k ; (9.5)

where M
S
k 2 .2MS

k /s, MN
k 2 .2MN

k /n and M
D
k 2 .2MD

k /h are respectively symbolic,
numerical and degradation markings at time k. For the example illustrated in
Fig. 9.3:

M
S
0 D ŒŒı0� ;�;

M
N
0 D ŒŒ�0� ;�;

M
D
0 D ŒŒd0� ;�:

Initial marking M0 represents the initial conditions of the system (the initial
continuous and degradation states and the set of events that have occurred until
time 0).

Definition 9.10 (Hypothesis) A hypothesis on the system contains all knowledge
about the system state at time k and the events that have occurred on the system
until time k. A hypothesis fık; �

1
k ; : : : ; �

nk
k ; d

1
k ; : : : ; d

nk
k g at time k is composed of

a configuration ık, a set of particles f� i
kji 2 f1; : : : ; nkgg and a set of degradation

tokens fdi
kji 2 f1; : : : ; nkgg, where each degradation token di

k links the particle � i
k to

the configuration ık.

For example, if the event set is b0, the continuous state x0 and the degradation
state d0 are precisely known, the initial set of tokens M0 D fı0; �0; d0g, where d0
links ı0 and �0, is the unique hypothesis. A hypothesis at time k may contain several
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Fig. 9.4 Illustration of
particle clusters

Fig. 9.5 HPPN model of the mobile robot

particles and degradation tokens to represent imprecise knowledge on continuous
and degradation states, e.g. fı1k ; �1k ; : : : ; �nk

k ; d
1
k ; : : : ; d

nk
k g, where nk 2 NC is the

number of particles used to represent the continuous state, and where nk degradation
tokens links nk particles to the configuration ı1k . The number nk of particles and
degradation tokens is representative of the hypothesis precision at time k.

Definition 9.11 (Particle Cluster) The set of nk particles linked to the same
configuration with nk degradation tokens is called a particle cluster.

In Fig. 9.4, d1 and d2 links �1 and �2 to ı1, and d3 and d4 links �3 and �4

to ı2. Two hypotheses are represented fı1; �1; �2; d1; d2g and fı2; �3; �4; d3; d4g,
with two particle clusters f�1; �2g and f�3; �4g. At each time k, the set of particle
clusters defines a partition of the particle set MN

k of the HPPN.

9.4.2 Illustration Example

The HPPN model of the mobile robot is presented in Fig. 9.5. Symbolic places are
represented by places with regular thicknesses, while numerical and degradation
places are represented by places with medium and large thicknesses, respectively.
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Arcs that connect transitions and symbolic (numerical and degradation) places are
represented by solid (dashed and dotted) arrows.

Health modes of a hybrid system (nominal, degraded and failure modes) are rep-
resented by combinations of discrete states, continuous dynamics and degradation
dynamics. Transitions model changes of health modes, so any transition have three
places (one of each type) in its sets of input places and three places in its set of
output places. Two transitions cannot have both the same set of input places and the
same set of output places.

We decompose the five health modes of the robot into four symbolic places,
two numerical places and three degradation places. Four discrete health states are
identified from the robot description (Fig. 9.2). One nominal state, one degraded
state, and two different failure states are represented by the four symbolic places
pS
1, pS

2, pS
3 and pS

4, respectively. The two numerical places pN
5 and pN

6 represent
the continuous dynamics C1 and C2. The three degradation places pD

7 , pD
8 and pD

9

represent the degradation dynamics D1, D2 and D3, respectively. Five transitions
represent the health mode changes. For example, transition t4 represents the
change from mode Nominal1 to mode Nominal2 so °t4 D fpS

1; p
N
5 ; p

D
7 g and t4° D

fpS
1; p

N
6 ; p

D
9 g.

The initial mode is Nominal1 so the tokens ı0, �0 and d0 are in pS
1, pN

5 and pD
7 ,

respectively. At time k D 0, no event has occurred, b0 D fg. The only estimated state
is the velocity, x0 D Œv0�T with v0 > 0 because the velocity is initially positive. The
initial fault occurrence probabilities �f1

0 and �f2
0 are very low. Thus, d0 D Œ�

f1
0 ; �

f2
0 �

T

with �f1
0 D 0:01 and �f2

0 D 0:05.

9.4.3 Marking Evolution Rules in HPPN for Diagnosis

Firing rules in a HPPN may be different depending on the utilization for model
simulation, diagnosis or prognosis purposes. Semantics of transition firing are
proposed here only for diagnosis purpose.

The following assumptions are considered. The set of input places of a transition
is composed of at least one place of any type and at most a place of each type. The
set of output places of a transition is composed of at least as many places of each
type contained in its set of input places.

Let °t (resp. t°) denote the set of input (resp. output) places of t. The firing of a
transition t 2 T depends on its associated condition set �t 2 �. This condition set
�t contains as many conditions as there are input places in °t:

8t 2 T; j�tj D j°tj: (9.6)

For example, if t has a place of each type in °t, its condition set is �t D
h!S

t ; !
N
t ; !

D
t i. A condition ! W Mk ! B, with B D f>;?g (set of logic values

TRUE and FALSE), can be a test on the token value, always satisfied (>), or never
satisfied (?).
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A symbolic condition !S
t can be > or ?, or it can test the occurrence of an event

v 2 E (as fault, mission event, interaction with environment, etc.). In this case,
the condition !S

t .ık/ D occ.bk; v/ tests if the event set bk of the configuration ık

contains the event .v; k/.
A numerical condition !N

t (resp. degradation condition !D
t ) can be > or ? or it

can test a constraint on the continuous state (resp. degradation state) of the system.
In this case, the condition !N

t .�k/ D c.xk/ tests the value of the continuous state
vector xk of the particle �k.

Example 9.2 For the example of the mobile robot illustrated in Fig. 9.5, condition
�.t4/.ık; �k; dk/ D occ.bk; turn off /^.x0k � 0/ tests if an event labeled with turn off
occurred at time k and if vk is 0. We assume that a fault occurs if its probability of
occurrence is greater than a predefined threshold 0:9. Consequently, the condition
associated with transition t2 is �.t2/.ık; �k; dk/ D occ.bk; f1/ _ .d0k > 0:9/.
With the same reasoning, we have �.t1/.ık; �k; dk/ D occ.bk; f2/ _ .d1k > 0:9/,
�.t3/.ık; �k; dk/ D occ.bk; f2/ ^ .x0k � 0/ _ .d1k > 0:9/ and �.t5/.ık; �k; dk/ D
occ.bk;wall/.

The firing of a transition t at time k is illustrated in Fig. 9.6. A token is accepted
by the conditions �t at time k if it satisfies the condition of its type. Let Mk.p/ be
the set of tokens in the place p 2 P at time k. S t

k is the set of tokens in the input
places of the transition t that are accepted by the conditions �t at time k:

S t
k D f ık 2 Mk.pS/ j !S

t .ık/ D > g [
f �k 2 Mk.pN/ j !N

t .�k/ D > g [
f dk 2 Mk.pD/ j !D

t .dk/ D > g ;
(9.7)

Fig. 9.6 Illustration of a transition firing at time k
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where .pS; pN ; pD/ 2 .PS \ °t/ � .PN \ °t/ � .PD \ °t/ and !S
t 2 �t, !N

t 2 �t,
!D

t 2 �t.

Definition 9.12 (Fireable Transition) A transition t 2 T is fireable at time k if
it exists at least one token in each of its input places which are accepted by the
conditions �t:

8p 2 °t; jS t
k .p/j > 0: (9.8)

In Fig. 9.6, we suppose at time k that !S
t .ı

1/ D >, !N
t .�

1/ D >, !D
t .d

1/ D >,
!S

t .ı
2/ D ? and !N

t .�
2/ D ?, then the transition t is fireable.

Definition 9.13 (Transition Firing) The firing of a transition t 2 T at time k is
defined as follows: 8Po 2 fPS;PN ;PDg; p 2 Po \ °t; p0 2 Po \ t°,

MkC1.p/ D Mk.p/nS t
k .p/;

MkC1.p0/ D Mk.p0/ [S t
k .p/;

(9.9)

where S t
k .p/ is the set of tokens of S t

k which are in the place p.

In Fig. 9.6, after firing the transition t, the three accepted token are in the output
places of t. During the transition firing, accepted tokens are moved, their links are
conserved and their values are either conserved or updated. This property is the main
difference from ordinary Petri nets in which tokens are consumed and new tokens
are created in the output places of the transition. The conservation of token values
exists in some extensions of Petri nets, like in colored Petri nets for example but the
existence of links between tokens and their conservation during the transition firing
is specific to HPPN.

An arc a 2 A connecting a transition t to a symbolic place pS can be annotated
with an event label v 2 E. In this case, the set of event b of a configuration ı which
has moved in pS after the firing of t at time k is updated with the event .v; k/. The
values of configurations evolve with the annotations A � A�E during the firing of
transitions. In Fig. 9.6, we suppose that d1 links ı1 and �1 at time k. After the firing
of t, the value of ı1 is b1kC1 D b1k [ .v; k/, the value of �1 is x1kC1 D x1k , the value of
d1 is d1kC1 D d1k , and d1 still links ı1 and �1.

9.5 Hybrid System Diagnosis

Diagnosis aims at tracking the system current health state. The system health state
is the combination of its discrete, continuous and degradation states. We propose to
build a diagnoser from the HPPN model of a hybrid system [17]. The HPPN-based
diagnoser monitors both the system behavior and degradation under uncertainty. Its
online process takes as inputs the set of discrete and continuous observations on the
system. The output of the diagnoser process at any time k is an estimation of the
system health state that takes the form of the marking of the HPPN-based diagnoser
�k D OMk.
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9.5.1 Uncertainty

Several types of uncertainty are taken into account by using HPPN. Knowledge-
based uncertainty must be taken into account because the model does not reflect
perfectly reality, as for the symbolic part of the model than the numerical one. Due
to the inherent imprecision of sensors, we also consider uncertainty about obser-
vations. Two types of uncertainty are then considered: the symbolic uncertainty
dealing with the discrete model and observations; and the numerical uncertainty
dealing with the imprecision on the continuous model and numerical values.

Regarding the symbolic aspects, the discrete model of the system may include
symbolic uncertainty as impossible or incomplete event sequences. Concerning the
discrete observations, an event may occur without being observed: this is a missing
observation. Dually, an event may be observed whereas it has not really occurred:
we talk about false observation.

Symbolic uncertainty is managed at two levels in the HPPN-based diagnoser:

• Every symbolic condition of transitions is replaced by a TRUE condition during
the diagnoser generation. It means that pseudo-firing is used for these transitions
with modified symbolic conditions.

• During the prediction step of the online diagnoser process, the diagnoser uses
pseudo-firing of transitions [27, 46], introduced in [5] to consider the occurrences
of each event consistent with the discrete dynamic. Pseudo-firing creates new
hypotheses.

Transition pseudo-firing duplicates tokens: tokens in the input places of the
transition are not moved but duplicated and their duplicates are moved in the output
places of the transition.

Definition 9.14 (Transition Pseudo-Firing) Let t 2 T be an enabled transition.
For each type of input and output place of t, the pseudo-firing of t 2 T at time k � 1
is formally defined by: 8Po 2 fPS;PN ;PDg; p 2 Po \ °t; p0 2 Po \ t°,

Mk.p/ D Mk�1.p/;
Mk.p0/ D Mk�1.p0/ [S t

k�1.p/;
(9.10)

where S t
k�1.p/ is the token set of S t

k�1 that are in place p.

Example 9.3 Figure 9.7 illustrates the pseudo-firing of a transition t. At time k, d1 is
supposed to link ı1 and �1 and transition t is supposed to be enabled. After pseudo-
firing t, tokens ı1, �1 and d1 are not moved and tokens ı2, �2 and d2 are created
and moved in the output places of t. Moreover, d1 links ı1 and �1, and d2 links ı2

and �2.

Besides the intrinsic deviation between reality and continuous model of a system,
numerical uncertainty embodies the fact that the numerical values are imprecise.
This is an inevitable problem in real case studies. For example, in Fig. 9.8, we can
see the difference between the measured data of a battery voltage and its non-noisy
discharge model.
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Fig. 9.7 Pseudo-firing of a transition t at time k

Fig. 9.8 Comparison between measured data of a battery voltage and its non-noisy discharge
model

Numerical uncertainty is often dealt with through an estimator [11], that aims at
estimating the continuous state according to model noise and measurement noise.
We use particle filters [40] to estimate the continuous state through the set of par-
ticles of the HPPN. The use of particulate filters is relevant for estimating discrete,
continuous and degradation states since the representation of the continuous state
estimate is already discretized into particles.

For example, in this work, a particle filter is applied independently to each
cluster of particles thanks to the links between the configurations and the particles,
provided by the degradation tokens. During the diagnosis prediction step, the values
of the particles evolve as a function of the continuous dynamics associated with
the numerical places to which the particles belong. Then, during the correcting step
of the online diagnoser process, each particle cluster is resampled independently.
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The links between the configurations and the particles, provided by the degradation
tokens, are thus used to prevent the particle distribution to be disturbed by pseudo-
firing.

9.5.2 Diagnoser Generation

The system model HPPNˆ is a tuple hPˆ;Tˆ;Aˆ;Aˆ;Eˆ;Xˆ;Dˆ;Cˆ;Dˆ;�ˆ;

�M0ˆi as defined in Sect. 9.4. The diagnoser HPPN� is a tuple:

HPPN� D hP�;T�;A�;A�;E�;X�;D�;C�;D�;��;M0�i; (9.11)

which is generated from the system model HPPNˆ in six steps that are described
hereafter.

The diagnoser has to estimate the discrete, continuous and degradation states of
the system. Step 1 consists in copying the HPPN system model. Indeed, discrete,
continuous and degradation state spaces, as well as continuous and degradation
dynamics are the same as those of the model. As a result, all the places, event labels,
state spaces and diagnosis dynamics remain the same as those of the model HPPNˆ:

P� D Pˆ;E� D Eˆ;X� D Xˆ;D� D Dˆ;C� D Cˆ;D� D Dˆ: (9.12)

The initial marking M0� of the HPPN-based diagnoser HPPN� corresponds to
the initial marking M0ˆ of the system model, which contains knowledge about
mode, state and events that occurred on the system at time 0 (usually none):
M0� DM0ˆ.

Step 2 consists in separating the HPPN-based diagnoser into two levels: the
behavioral level manages the observable part of the system whereas the degradation
level includes the unobservable part. Thus, the behavioral level contains only the
symbolic and numerical places, while the degradation level contains the degradation
places.

Each transition t 2 Tˆ thus generates a pair of transitions .t0; t00/ during the
diagnoser generation. Transition t0 inherits arcs linking t to symbolic and numerical
places, as well as symbolic and numerical conditions. Transition t00 inherits arcs
linking t to the degradation places, as well as the degradation condition. t0 and t00 are
then defined by:

°t0 D °t \ .PS [ PN/; t0° D t° \ .PS [ PN/; (9.13)

and:

°t00 D °t \ PD; t00° D t° \ PD; (9.14)

with the following conditions �t0 and �t00 :

�t0 D h!S
t ; !

N
t i; �t00 D h!D

t i: (9.15)
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Fig. 9.9 Diagnoser generation of the mobile robot—Step 2: separation into two levels

The set of all transitions in the behavioral level and in the degradation level is
denoted T�.

Example 9.4 Figure 9.9 illustrates the second step of the diagnoser generation
HPPN�, the separation into two levels, for the example of the mobile robot.
Degradation places and associated transitions are put in the degradation level.

Step 3 consists in setting to TRUE all the symbolic conditions, in agreement with
the uncertainty management concerning the occurrences of events (see Sect. 9.5.1):

8t 2 T�; !S
t 2 �t ) !S

t  >: (9.16)

Thus, all configurations in the HPPN-based diagnoser satisfy the symbolic condi-
tions. This means that the diagnoser considers at any time the occurrence of each
event that can occur from the estimated current mode. The arc annotations remain
unchanged:

A� D Aˆ: (9.17)

Example 9.5 In the example of the mobile robot, conditions �.t1/ D �.t2/ D
�.t5/ D > because of the OR logical expression. Transitions t3 and t4 keep their
numerical conditions because of the AND logical expression.

Step 4 consists in removing degradation conditions in order to disconnect the
marking evolution of the degradation level from the degradation state:
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8t 2 T�; !D
t 2 �t ) �t  �tnf!D

t g: (9.18)

This step allows to manage computation performance and to keep focus on
observations during the diagnosis process.

Example 9.6 In the example of the mobile robot, condition�.t3/ D > after Step 4.

Step 5 also improves the computation performance by merging transitions having
the same sets of input and output places in order. It reduces the size of the possible
state space. As a consequence, in the behavioral level, hypotheses sharing the same
cluster of particles are created during the prediction step of the online diagnoser.
In other words, several hypotheses are monitored according to the same continuous
dynamics with a single cluster of particles instead of having as many clusters as
hypotheses.

In the degradation level, this step eliminates concurrent transitions which have
the same degradation place as input and the same degradation place as output.

Two transitions are mergeable if they represent the same change in continuous
dynamics (the same numerical places as input and as output, and the same numerical
condition) and have the same symbolic input place.

Definition 9.15 (Mergeable Transitions) Two transitions .t0; t00/ 2 T2 are merge-
able if and only if:

.°t0 D °t00/ ^ .t0° \ PN D t00° \ PD/ ^ .t0° \ PD D t00° \ PN/ ^ .�t0 D �t00/:

(9.19)

Step 5 of the diagnoser generation consists in merging every pair of mergeable
transitions as long as there are at least two mergeable transitions using the following
definition.

Definition 9.16 (Merging of Two Transitions) Merging two mergeable transitions
.t0; t00/ 2 .T/2 is defined by:

1. Create a new transition t such as:

°t °t0; t° t0° [ t00°; �t  �t0 : (9.20)

2. Update Tı:

Tı  .Tınft0; t00g/ [ ftg: (9.21)

Example 9.7 Figure 9.10 illustrates the merging step of the diagnoser generation for
the mobile robot. To simplify the reading, transitions of Fig. 9.9 have been renamed
according to the following correspondence table.
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Fig. 9.10 Diagnoser generation of the mobile robot—Step 5 : transition merging

Figure 9.9 t01 t02 t03 t04 t05 t001 t002 t003 t004 t005
Figure 9.10 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

In the behavioral level, transitions t1 and t3 (t4 and t5) are merged into t13
(respectively t45) as they have the same set of input places fpS

2; p
N
5 g (respectively

fpS
1; p

N
5 g) and the same numerical place pN

6 as output. In the degradation level, the
transitions t9 and t10 are merged into t910 as they were concurrent.

Step 6 consists in removing the transitions resulting in an elementary loop in the
degradation level (pure Petri net).

T�  T� n ftj°t \ PD D t° \ PDg: (9.22)

The goal is to improve the computational performance by avoiding the displacement
of the degradation tokens through a transition that loops on the same degradation
place. This step has no impact on the tracking quality of the degradation.

Example 9.8 Figure 9.11 shows the diagnoser of the mobile robot. Transition t8 is
removed because it formed an elementary loop with pD

8 .
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Fig. 9.11 HPPN-based diagnoser HPPN� for the mobile robot

9.5.3 Diagnoser Process

The initial marking M0 D fMS
0 ;M

N
0 ;M

D
0 g of the HPPN-based diagnoser represents

the system’s initial mode. It is composed of one configuration with value b0, nN
0

particles with value x0 and nN
0 degradation tokens with value d0, where nN

0 is the
initial number of particles. As long as only one hypothesis is considered in the
initial marking, two hypotheses cannot share the same configuration. However, two
hypotheses can share the same set of particles if they have the same continuous
dynamics but different discrete states (see Example 9.7). From the initial marking
and the initial commands, the diagnoser marking OMk evolves at time k according
to the observations Ok D OS

k [ ON
k , where OS and ON respectively represent the

observations corresponding to the symbolic part and the numerical part.
The estimated marking at time k, OMk D f OMS

k ;
OMN

k ;
OMD

k g where OMk D OMkjk,
represents all the possible hypotheses on the system mode at time k.

The marking evolution in the HPPN-based diagnoser is based on two steps,
prediction and correction, which combine the transition pseudo-firing, particle filters
and an algorithm called the Stochastic Scaling Algorithm (SSA).

In particle filtering, the number of particles defines the precision of the filter. The
goal of the SSA is to avoid the combinatory explosion and to limit the number of
tokens at each step of the algorithm. It dynamically adapts the hypotheses precision.
This algorithm is not described in this chapter, but the reader could refer to [13], [28]
or [14] to obtain more information about resampling methods for particle filtering.

The prediction step of the online diagnoser process aims at determining all
possible next states of the diagnoser OMkC1jk. It is based on the firing of the enabled
transitions and on the update of the token values. All the enabled transitions are
fired according to the rules described in Sect. 9.4.3. This implies the assumption
that a single event can occur at time k. The event set bk of a configuration ık
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moved through an arc a 2 A during the transition firing is updated according to the
annotation A .a/. The value x of a particle � is updated according to the continuous
dynamics associated to the numerical place pN 2 PN in which � belongs after the
transition firing. Noise is added during the particle value update to take into account
uncertainty about model continuous dynamics. The value d of a degradation token
d is updated according to the degradation dynamics associated to the degradation
place pD 2 PD in which d belongs after the transition firing.

The correction step of the online diagnoser process updates the predicted marking
OMkC1jk to the estimated marking OMkC1jkC1 according to new observations OkC1. It is

based on the computation of the scores of all hypotheses contained in the marking
and on the resampling of the tokens depending on the scores of the hypotheses
they represent. The scores of hypotheses are computed with PrS and PrN , the
probability distributions over the symbolic and the continuous states, respectively.
PrS gives the configuration weights. A configuration weight is computed as the
inverse of exponential of the distance between the configuration event set and
O�kC1 D fO� j� � k C 1g, the set of symbolic observations until k C 1. PrN gives
the normalized particle weights, calculated according to the distance between the
particle values and numerical observations ON

kC1. Then, the score of one hypothesis
is computed using a weighted function of the sum of its particle weights and its
configuration weight:

Score.ıi
k; f� j

kg; fdl
kg/ D ˛ � PrS.ıi

k/C .1 � ˛/ �
nN

kX

jD1
PrN.�

j
k/; (9.23)

where ˛ 2 Œ0; 1� is the coefficient indicating the global confidence of the symbolic
part relatively to the numerical part and nN

k D jf� j
kgj is the number of particles

considered for the hypothesis. The score of a hypothesis is always between 0 and 1.
A decision making process associates a new number of particles nN

kC1 to each set of
particles, according to the best score of all the possible modes it belongs and three
scale parameters, denoted nN

min, nN
suff and nN

max. Each set of particles is then resampled
with its associated nN

kC1 particles, like in classical particle filtering. Parameters nN
min

and nN
suff are respectively the minimum and the sufficient numbers of particles (but

also the number of degradation tokens) to monitor a hypothesis. It means that any
nN

kC1 is chosen to satisfy the predicate nN
min � nN

kC1 � nN
suff. Parameter nN

max is
the maximum number of particles (or degradation tokens) available to monitor all
hypotheses. It means the total number of particles after the resampling is always less
than or equal to nN

max. During the resampling, degradation tokens linked to duplicated
particles are duplicated while those linked to deleted particles are deleted. Finally,
configurations that are no longer linked with any degradation tokens are deleted.
The correction mechanism highlights that the degradation tokens, in addition to
estimate the degradation state, prevent the particle distribution of one hypothesis
to be disturbed by the particle distributions of the other hypotheses. In particle
filtering, the number of particles defines the precision of the filter but is also a
computational performance factor. The scale parameters of the diagnoser process
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thus compromise the number of hypotheses to monitor and the precision granted to
each one of them, relative to the available computational power (nN

max can be set up
to fulfill performance constraints).

The diagnosis �k is deduced from the marking of the HPPN-based diagnoser
HPPN� at time k:

�k D OMk D f OMS
k ;
OMN

k ;
OMD

k g: (9.24)

It represents all diagnosis hypotheses as a distribution of beliefs over the current
health mode and how this mode has been reached. In other words, the marking
OMk indicates the belief over the continuous state, the fault occurrences and the

degradation state. The HPPN-based diagnoser results include the results of a
classical diagnoser in terms of fault occurrences. In a classical diagnoser, however,
every diagnosis hypotheses has the same belief degree. A HPPN-based diagnoser
handles more uncertainty and evaluates the ambiguity according to the tokens places
and values.

9.6 Case Study

This section focuses on the application of the proposed methodology on the K11
planetary rover prototype. The K11 is a four-wheeled rover designed as a platform
for testing power-efficient rover architectures in Antarctic conditions [25]. The K11
has then been redesigned by NASA Ames Research Center for diagnostics and
Prognostics-enabled Decision Making research [1, 7, 37]. It has been transformed
into a testbed to simulate some fault occurrences and failures. In this work, it is
studied as a functional rover exposed to failures and executing missions.

9.6.1 Rover Description

The K11 rover is powered by twenty-four 2:2Ah lithium-ion single cell batteries.
A typical mission of the rover consists in visiting and performing desired science
functions at a set of waypoints, before joining its charging station. A decision
making module (DM) is responsible for determining the order in which to visit the
waypoints according to the terrain map, the waypoint positions and rewards, and
the rover conditions. The rover has four wheels, denominated by their location: the
front-left (FL) wheel, the front-right (FR) wheel, the back-left (BL) wheel and the
back-right (BR) wheel. Each wheel is driven by an independent 250W graphite-
brush motor, with control performed by a single-axis digital motion controller.
An onboard laptop computer runs the control and data acquisition software. The
rover is a skid-steered vehicle, meaning that the wheels cannot be steered and
the rover is rotated by commanding the wheel speeds on the left and right sides
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Table 9.1 Continuous commands, continuous measurements, and fault types on the K11

Command type Comments Units

Wheel speed Commanded speeds for wheels
on the same side are the same

rad/s

Measurement type Comments Units

Wheel speed One for each wheel rad/s

Total current A current sensor on the power
bus

A

Motor current One for each motor A

Motor temperature One for each motor °C

Battery temperature One for each battery cell °C

Battery voltage One for each battery cell V

Fault event labels Fault descriptions Effects

f1 Battery charge depletion Lead to failure

f2 Parasitic electric load Increase battery drain

f3; f4; f5; f6 Increased motor frictions Increase battery drain and motor
temperatures

f7; f8; f9; f10 Motor overheating Lead to failure

f11; f12; f13; f14 Failed motor temperature sensors Unable to sense motor temperatures

to different values. The battery management system provides battery charging and
load balancing capabilities. It also sends voltage and temperature measurements for
each of the individual cells to the onboard computer. The data acquisition module
collects current and motor temperature measurements and sends them to the onboard
computer. The motor controllers send back motion data such as commanded speeds
and actual speeds. More details on the rover can be found in [1].

All the continuous observations on the rover and the list of faults we consider
in this study are presented in Table 9.1. Four signals command the wheels with
a proportional-integral-derivative controller and the set of sensors returns 61
measurement signals. Several fault types have been implemented on the testbed and
are related to the power system (battery), the electro-mechanical system (motors,
controller), and the sensors (drift, bias, scaling or failure).

The K11 rover has no discrete actuator or discrete sensor and thus has mostly
been studied as a continuous system, where faults were defined as constraints on
the continuous state. We propose to abstract anticipated faults into unobservable
events. The multi-mode system that describes the rover health evolution is presented
in Fig. 9.12. To simplify the description, only a part of the multi-mode system is
shown. The modes corresponding to consecutive fault occurrences are not included
and only the front-left motor is considered.

The rover is in mode Nominal1 with continuous dynamics C1 as long as no
fault has occurred. Fault f1 occurrence represents the end of discharge (EOD) of
the battery, i.e. the date when the battery is too discharged to power the system.
This is assumed to occur when the battery voltage is lower than 3:25V and it
leads to the mission failure (mode Failed1 with continuous dynamics C5). Fault
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Fig. 9.12 Streamlined description of the rover health evolution

f2 represents the emergence of a parasitic battery load arising from an electrical
submodule continuously engaged, for example. The parasitic load increases the
total current and thus the battery drain (mode Degraded1 with continuous dynamics
C2), which causes the system to reach the EOD prematurely. Fault f3 (f4, f5 and f6)
represents an increased friction of the FL (FR, BL and BR) motor. The increased
friction induces the need for a larger amount of current to satisfy the same speed
(mode Degraded2 with continuous dynamics C3). Furthermore, the load demands
will be higher, raising the motor temperature. The most critical scenario for a motor
is an overheating. In such case, the heat will eventually destroy the insulation of the
windings, causing electrical shorts and leading to motor failure. The overheating
of the FL (FR, BL and BR) motor is represented by fault f7 (f8, f9 and f10). The
occurrence of any one of these faults leads to the rover failure (mode Failed2

with continuous dynamics C5) and thus represents the rover end of life (EOL).
A motor is assumed to overheat when its temperature exceeds 70 °C. The motor
temperatures are measured by four sensors. These sensors, however, are known to
fail unexpectedly, sending inconsistent values. These failures are represented by
faults f11 f12, f13 and f14. We consider that the temperature model is not accurate
enough without a correction step with observations. As a consequence, once f11 (f12,
f13 and f14) has occurred, the occurrence of fault f7 (f8, f9 and f10) does not match
with any condition on the FL (FR, BL and BR) motor temperature (see the arc
between Degraded3 and Failed2). In Fig. 9.12, mode Degraded3 with continuous
dynamics C4 represents the mode where the temperature sensor of the FL motor has
failed. The rover degradation state can be monitored with degradation dynamics D1,
which corresponds to the identity dynamics.
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9.6.2 Rover Modeling

Considering all the motors and the consecutive fault combinations, we identified 192
modes and 240 mode changes. The HPPN-based model of the rover has 241 places
(192 symbolic places, 48 numerical places, 1 degradation place) and 240 transitions.
The HPPN-based diagnoser has the same number of places and transitions because
the merging step of the diagnoser generation (Step 5) does not reduce the number
of transitions (it is specific to this case study). Actually, the merging step merges
transitions having exactly the same sets of input and output places. This kind of
transition does not exist in this real application, but it may be very useful in other
cases. The degradation place is removed from the transition inputs and outputs,
reducing the complexity of the net. Because there is only one degradation place,
all transitions in the degradation level are removed by Step 6 of the diagnoser
generation. The underlying DES of the multi-mode system and HPPN-based model
and diagnoser of the K11 rover are available at https://homepages.laas.fr/echanthe/
PetriNets2016.

The nominal continuous dynamics is represented as a set of differential equations
that unifies the battery model with the rover motion model and the temperature
models. It can be converted to a discrete-time representation and solved with a
sample time of 1=20 s, while continuous observation sampling is about 1 s. We
consider 30 state variables for the rover, including the rover three-dimensional
position, its relative angle position, the wheel control errors, the motor temperatures
and motor winding temperatures. The 24 batteries are lumped into a single one to
only consider 5 battery state variables (3 charges, the temperature and the voltage)
instead of 120. The battery model has been validated with experimental data in
previous works [7, 37]. Unifying the battery model with motion and temperatures,
however, increases uncertainty about the rover model.

Fault f2 occurrence and effect on the system behavior are modeled as a time
varying parameter. The parasitic battery load is captured as an additional current
reaching a value between 1.5 and 4.5 A from value 0 A in a few seconds after the
fault occurrence. First, two parameters are added to the continuous state vector to
monitor both the duration since the fault occurrence and the additional current value.
Then, the uncertain rise of the additional current is modeled by adding a Gaussian
noise, with a mean and standard deviation values starting respectively at 3 and 0.3,
and decreasing to 0 while the duration since the fault occurrence increases.

Finally, the temperature model is quite uncertain so temperature measurements
are assumed to be reliable when sensors are not failed. We model fault f11; f12; f13
and f14 by increasing significantly the motor temperature sensor noise because
failed sensors only send inconsistent large values with no pattern. Fault f3, f4, f5
and f6 and increased motor frictions can be modeled with time varying parameters
(as additional motor resistances) like f2 but are not monitored in this study.

https://homepages.laas.fr/echanthe/PetriNets2016
https://homepages.laas.fr/echanthe/PetriNets2016
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9.6.3 Simulation Results

The HPPN framework is implemented in Python 3:4. The tests were performed on
a 4 Intel(R) Core(TM) i5-4590 CPU at 3:30GHz with 16GB of RAM and running
GNU/Linux (Linux 3:13:0 � 74, x8664). In order to reduce computation time, the
token value update step is multithreaded on the four physical cores. The rest of this
implementation only uses one core.

Two scenarios studied in [37] are considered in this work. The rover mission
is to visit a maximum of 12 waypoints and to go back to its starting position. All
waypoints have different associated rewards. In nominal conditions, the rover DM
system returns a 5-waypoints path, starting and finishing at the same position. For
all scenarios, the K11 rover starts at 0 s with batteries fully charged and with all
components at the ambient temperature. The K11 rover currently has, however,
two motor temperature sensors (FL and BL) failed. These faults do affect the
monitoring but not the physical system, so the DM returns the same path as in
nominal conditions. These sensor faults are diagnosed in one sampling period by the
diagnoser if we consider the initial mode to be unknown, so we assume to know the
rover initial degraded mode, and we have only one hypothesis in the initial diagnoser
marking.

For the sake of clarity, in the rest of the paper, health modes are designated
with representative keywords of the rover state. For example, the initial mode is
designated as Sensor BL FL fault. The initial number of particles and degradation
tokens is nN

0 D 100. The scale parameters of the diagnoser process are set to
.nN

min; n
N
suff; n

N
max/ D .40; 80; 6000/.

9.6.3.1 Scenario 1

In Scenario 1, no fault occurs. The rover successfully executes its mission.
Figure 9.13 presents the diagnosis hypotheses as the distribution of beliefs over
the current health mode at any time.

The belief degree of a possible mode is the score computed for the related
hypothesis with Eq. (9.23) and ˛ set to 0.5. Any belief degree is between 0 and
1, this represents a score, so the sum of the belief degrees of all possible modes is
not 1. In Fig. 9.13, the maximum belief degree of a mode at any time is represented
by the thickness of the line and the highest belief degree of all the modes is plotted
in blue. The gap between 81 and 281 s corresponds to a break during the experiment.
The figure shows that the diagnoser keeps the real mode Sensor BL FL fault in its set
of hypotheses and assigns it the highest belief degree almost all along the scenario.
Other modes are also highly considered by the diagnoser at any time because of the
model-based uncertainty. The combination of continuous and discrete evolutions is
explained by the marking rules in the HPPN. As the diagnoser generation process
replaces every symbolic condition by a TRUE condition, the emphasis is put on
the continuous evolution of the system. It means that faults are essentially detected
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Fig. 9.13 Scenario 1: mode belief at any time

by continuous clues. Even if a discrete event occurs before the satisfaction of
the associated degradation condition, the evolution of the system will always be
followed thanks to the pseudo-firing process.

9.6.3.2 Scenario 2

In Scenario 2, a battery parasitic load occurs between 660 and 695 s, and the DM
system cancels the visit of the farthest waypoint. Fault f2 occurrence is immediately
detected by the diagnoser (Fig. 9.14). After 678 s, the possibility of being in mode
Sensor BL FL fault + Parasitic load is the highest until the end of the mission. The
fault load is estimated (most likely) at 1:39A at 678 s, 1:73A at 679 s, 2:16A at
683 s and 2:16A at 3906 s. A zoom between 570 and 760 s on the trajectories of the
modes that are still possible at 3906 s (Fig. 9.15) shows that fault f2 is believed to
occur between 631 and 694 s, and most likely between 677 and 689 s. These results
are consistent with our analysis of the measured total current.

Faults are always detected in one sampling period because the HPPN-based
diagnoser considers all hypotheses (including the hypotheses concerning faults
with slow degradation) during the prediction step due to pseudo-firing. Moreover
it keeps the matching marking during the correction step. However, the isolation
may be longer than one sampling period. The results show that the diagnoser
grants most of the time, but not always, the highest belief to the real mode. The
diagnosis, however, carries all the explanation of the observations as a distribution
of beliefs, and then the real mode is always considered in the set of diagnosis
hypotheses. This illustrates the robustness of the HPPN-based diagnoser to the rover
model and data. The average diagnosis computation time and token number are
13.3 s and 8801.4, respectively. These metrics point out the diagnosis computation
time remains acceptable compared to the system model computational complexity.
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Fig. 9.14 Scenario 2: mode belief at any time

Fig. 9.15 Scenario 2: trajectories of possible modes at time 3906 s

The maximum RAM used by Scenario 1 and 2 are 140.7 and 141.8 MB. More
extended performance analyses are proposed in the next section.

The case study results show that HPPN-based diagnosis is robust to real system
data and constraints and adaptable to systems without discrete observations nor
degradation knowledge.

9.6.3.3 Performance Analysis, Comparison with Other Approaches

Diagnosis computation times, and the maximum RAM used for different sets of
scaling parameters, are given in Table 9.2. Tests have been performed on three
scenarios (including the nominal and faulty scenarios presented above) and run 12
times. 54,403 diagnoses are computed.

These metrics point out that computation times with the initial scaling parameters
remain acceptable but do not respect real-time constraints; observations sampling is
about 1 s and the average diagnosis computation time is 3.35 s. This is mainly due
to that diagnosis process relies on parallel step-by-step simulations but it is also due
to the rover model computational complexity.

The methodology theoretical complexity is difficult to evaluate because it
depends on the continuous equations, the DES structure and the token number,
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Table 9.2 Computational performances of the HPPN-based diagnosis method for different
scaling parameters

Scaling parameters �k time (s) Max. RAM (MB)
.40; 80; 1500/� Minimum 0:28

Maximum 4:54

Average 3:35 126:73

.40; 80; 400/� Minimum 0:28

Maximum 1:00

Average 0:56 122:15

.20; 60; 400/� Minimum 0:22

Maximum 0:98

Average 0:74 112:18

among others. Moreover, software implementation, compilation optimization or
virtual machine execution are also other performance factors difficult to evaluate in
practice. This is why we propose in this work to approach performance constraints
by tuning the scaling parameters.

Other diagnosis works have been conducted on the rover [1], such as the QED
algorithm, described in [8] or the HyDe (Hybrid Diagnostic Engine) [31]. The main
advantage of our approach is that the diagnosis estimates are not presented as a set
of candidates, but as a distribution of candidates.

In case of decision making in a health management context, the operator may
take a more justified decision. In terms of detection delay, QED and HyDe detect
the fault in less than 1 s. QED isolates it in 26 s and has a good estimate of the
parasitic load (3% of relative error) in about 50 s. Our method detects the fault after
the first diagnosis. The estimation of the worse isolation time is about 18 s. The
estimation of the parasitic load is good (8% of relative error) after 23 s.

9.7 Conclusion

This work applies the approach of health monitoring based on Hybrid Particle Petri
Nets to a real case study, the K11 planetary rover prototype. The HPPN framework
is particularly useful to take into account knowledge-based and observation-based
uncertainty. The HPPN-based diagnoser deals with event occurrence possibility
and knowledge imprecision. It monitors both discrete and continuous dynamics,
as well as degradation evolution, in order to introduce concepts that will be useful
to perform prognosis and health management of hybrid systems under uncertainty.
In addition, diagnosis results can be used as probability distributions for decision
making.

Then, the methodology was applied on the K11 rover. A hybrid model of
the rover has been proposed by discretizing its health evolution and defining
fault events. The system model and diagnoser have been generated in the HPPN
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framework and two scenarios have been tested to illustrate the proposed method
advantages. The diagnoser results are consistent with the expected ones and show
that HPPN-based diagnosis is robust to real system data and constraints and
adaptable to systems without discrete observations nor degradation knowledge.

Other works aim at formalizing and developing a prognosis process that will
interleave diagnosis and prognosis methods to obtain more accurate results. The
HPPN-based prognostics methodology has been defined and tested on a three-tank
system as well as on the K11 rover.

This work has a lot of interesting perspectives. The first one is the extension
of the work to very large systems. To be applied on real large scale systems, the
proposed methodology could be adapted in the context of decentralized diagnosis
structures as the approaches developed in [35]. The second perspective deals with
the major hypothesis on the HPPN model-based approach: the system model is
assumed to be correct and complete. Machine learning techniques may be used to
adapt this predefined model with new collected data [23, 26]. Another perspective
is to use machine learning methods to improve the detection of small drift in the
system parameters. The combination of model-based and data-driven approaches
for diagnosis is under investigation [22, 38, 39].
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Chapter 10
Diagnosis of Hybrid Dynamic Systems
Based on the Behavior Automaton
Abstraction

Ramon Sarrate, Vicenç Puig, and Louise Travé-Massuyès

10.1 Introduction

The majority of real systems are controlled online and supervised by means of
automatic computer-based control systems. The behavior of these systems arises
from continuous plant dynamics that can be described by continuous state variables
and supervisory control that generates actuator signals at discrete-time points to
change regulator set-points or the plant configuration. Diagnosing these systems
is a real issue as they are subject to faults that may appear in any of the plant
components, in sensors or actuators [14, 24, 28, 30].

These complex systems are modeled using hybrid models that integrate con-
tinuous and discrete dynamics. These often take the form of hybrid automaton
models [19] or hybrid bond graph models [15, 24]. Then, this model can support
the monitoring of the system, fault diagnosis and control tasks. Model-based online
diagnosis requires quick and robust reconfiguration processes when a mode change
occurs, as well as the ability to keep the nominal behavior of the system on track
during transient states [11].

A hybrid automaton models the behavior of a hybrid system through a set
of operation modes and a set of transitions between modes which trigger upon
discrete events or based on continuous state conditions. Continuous dynamics
within each mode are described by a set of differential equations which constrain
the continuous state, input and output variables. Input and output variables are
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measured. Discrete events may be observable or unobservable. Observable events
may represent commands issued by the controller or changes in state variables
recorded by sensors (i.e., when a state variable crosses a threshold). Unobservable
events may represent failure events or other events that cause changes in the system
state not directly recorded by sensors.

This chapter focuses on the use of the hybrid automaton framework to develop a
method for diagnosing hybrid systems [14, 28, 30]. Diagnosis is directly performed
by interpreting the events and measurements issued by the physical system with
respect to the hybrid automaton model. The presented framework is the result of
a series of works related historically in Sect. 10.2.2 and it can cope with both
structural and non-structural faults. The idea is to consider a hybrid automaton
model as a twofold mathematical object. The discrete event part constrains the
possible transitions among modes and is referred to as the underlying DES. The
restriction of the hybrid system to the continuously-valued part of the model is
defined as the multimode system. The diagnosis method relies on abstracting the
continuous dynamics by defining a set of “distinguishability-aware” events, called
signature-events, capturing the consistency checks performed on the set of residuals
associated to every mode. Signature-events are used to enrich appropriately the
underlying DES to obtain the so-called behavior automaton (BA) from which a
diagnoser can be built following standard methods of the discrete event system field.

The proposed hybrid diagnosis method can operate in a non-incremental and an
incremental manner. In the non-incremental form, algorithms are executed taking
into account global models whereas in the incremental form only the useful parts
of the diagnoser are built, developing the branches that are needed to explain the
occurrence of incoming events.

Generally, a hybrid system operates in a small region compared to the entire
behavioral space defined by the hybrid automaton states. Thus, significant gain
can hence be expected from the incremental approach in terms of memory storage
compared to building the full diagnoser offline. The methodology is validated by
the application to a case study based on a representative part of the Barcelona sewer
network.

The structure of the paper is the following. In Sect. 10.2, a historical review of
the behavior automaton abstraction approach to diagnose hybrid systems and an
overview of the proposed method is provided. In Sect. 10.3, the principles of the
diagnosis method are explained and the method to build the behavior automaton and
the corresponding diagnoser is presented. Section 10.4 motivates the incremental
version of the diagnosis method and presents how it can be implemented in an
incremental framework. In Sect. 10.4, an application case study based on the sewer
network of the Barcelona city is used to illustrate the proposed approach. Finally,
conclusions are drawn in Sect. 10.6.
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10.2 Hybrid System Diagnosis Methodology Overview

10.2.1 Diagnosis Architecture

The architecture of the diagnosis approach based on the behavior automaton
abstraction to detect and isolate faults in hybrid systems is given in Fig. 10.1.
Compared to the classical FDI conceptual block, the architecture includes a mode
recognition block that adapts the FDI module online. Indeed, FDI algorithms must
take into account the current operation mode qi of the hybrid system to adapt the
model used to generate predictions. The diagnosis procedure includes an offline and
an online process.

In the offline process, the hybrid automaton model .HA/ is built through
the component parallel composition and the generation of a set of equations
which depend on the operation mode. Residuals for each mode are generated and
mode discernibility, also called distinguishability by other authors, is analyzed.
Discernibility analysis and observable events allow to build the behavior automaton
(B) which carries all the information about the hybrid system diagnosability. The
behavior automaton is turned into a diagnoser used to detect mode changes and
identify the current mode of the system.

In the online process, the tasks are carried out by the three blocks highlighted in
blue in Fig. 10.1. Mode recognition and fault diagnosis blocks cooperate to deal with
possible changes in the system operation mode based on consistency indicators and

Fig. 10.1 Conceptual block diagram of the hybrid diagnosis method
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observable event occurrences. The diagnoser decision block gives a final diagnosis
according to the information provided by the mode recognition and fault diagnosis
blocks.

The current diagnoser state .qD/ reports the set of possible modes of the hybrid
system at a given time. If more than one mode are in qD, those modes are
non-discernible. A mode change in HA implies a nominal, structural faulty or non-
structural faulty mode change.

Discernibility is used to predict if a mode change can be detected and identified
when the operation mode is described by a dynamic model [6, 14, 23]. In the
case of non-structural faults, discernibility properties are related to detectability
and isolability based on the fault signature matrix [23]. An abstract concept of
discernibility is defined which includes all the properties in a unique and general
form to predict whether a mode change has occurred according to the nature of the
mode (indicating properly when a fault is present).

The steps implied by the behavior automaton method are shown in Fig. 10.2.
Let us mention that in the online diagnosis process, the following assumptions

are made:

Assumption 1 Two mode changes do not occur at the same time.

Assumption 2 The residual dynamics have time to stabilize between two consecu-
tive mode switchings.

HYBRID MODEL
(component automata and
parametrized equations)

RESIDUALS
(input-output models)

BEHAVIOUR
AUTOMATON

(discernibility study and
observable discrete events)

DIAGNOSER
(propagation algorithms)

OFFLINE PROCESS ONLINE PROCESS

MEASUREMENTS
(sensors)

RESIDUALGENERATION
(consistency indicators)

EVENT GENERATION
(mode tracking logic)

DIAGNOSIS
(make decisions) new mode change?

stop diagnosis?

Fig. 10.2 Design methodology steps
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Assumption 2 implies that transitions between modes should be slower than the
residual generator dynamics. This concerns a dwell time requirement, i.e. the time
needed by the continuous dynamics to reach the steady state of a given operation
modes before another transition occurs.

Assumption 3 After a mode change occurrence, all the residuals sensitive to this
change must be activated at some time and persist during the whole mode change
isolation process.

Assumption 4 No mode change occurs after a non-structural fault.

The last assumption implies that once a non-structural fault is detected, the online
diagnosis process must stop. Indeed, the set of residuals and models must be adapted
to appropriately continue to perform diagnosis. In the case of a structural fault
occurrence, the diagnosis task can continue even if the system is not repaired.

10.2.2 Historical Review

Hybrid models are powerful formalisms able to represent multiple continuous
dynamics associated to several operation modes of a system. When used to support
the diagnosis task, these mathematical objects may include the representation of
normal and faulty modes. The modes of the system then represent a valuation of
the discrete state of the system whereas the continuous state is given by a subset
of the continuous variables defining the continuous dynamics. Discrete state and
continuous state form the hybrid state of the system.

For a while, the methods to diagnose hybrid systems were based on estimating
the full hybrid state with methods like multiple model filtering [10, 18] and particle
filtering [16] or other hybrid estimation schemes like [19] and [8]. Nevertheless,
diagnosis information is mainly carried by the discrete state. Based on this observa-
tion, hybrid diagnosis approaches based on estimating only the discrete state of the
system were then proposed. These are based on abstracting continuous dynamics
for each operation mode in the form of a set of residuals issued from analytical
redundancy relations (ARRs). ARRs are input–output relations obtained from the
continuous model by eliminating the state variables thanks to the elimination theory
[9]. In the diagnosis field targeting continuous systems, this approach is also known
as the parity-space approach.

Residuals provide a way to check the consistency of the measurements with
respect to the continuous dynamics associated to each mode and hence to eventually
identify the current mode of the system. For this to be possible, one must rely
on discernibility, concept introduced for the first time in [14], which defines
the property assessing whether or not two modes can be distinguished based on
continuous measurements.

In [14] and later in [30], the operation modes represent only nominal behavior
and diagnosis focuses on fault detection and isolation of non-structural faults, i.e.
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faults that do not change the structure of the model like sensor and actuator faults
which are additive faults. The impact of non-structural faults on the residuals of
every mode is assumed to be known and is captured by theoretical signatures
generated using the sensitivity concept [23]. Tracking the system mode involves
detecting the mode change, i.e. detecting that the set of residuals of the current
mode are not consistent with measurements, and identifying which successor mode
is the actual mode of the system by determining which set of residuals is consistent.

In the above works, the hybrid system evolution is viewed as a change of
continuous dynamics and assessed only from continuous measurements. In [4], the
authors elaborate on the concept of discernibility and propose for the first time to
account for discrete events that may be involved in the discrete dynamics, e.g. an
opening valve action or a generator switch off. The hybrid system is represented
by a hybrid automaton in which some transitions are labelled by such discrete
events, these being observable or not observable. Not observable events represent
the change of status of a guard, i.e. a condition about the continuous state, or
the occurrence of a fault. By doing so, operation modes may be nominal or
faulty, leading to the capability of detecting and isolating structural faults. Most
importantly, the bridge towards diagnosis methods for the discrete event systems
(DES) is thrown.

Following this idea, Bayoudh et al. [6] uses the residuals of each mode to define
mode signatures and proposes to capture the mode signature changes caused by
system transitions with so-called signature-events. A signature-event labeling a
transition between discernible modes is stamped observable whereas it is stamped
unobservable if the modes are not discernible. Signature-events are therefore used
as a way to abstract the continuous dynamics while preserving the information
useful for diagnosis. The behavior of the abstract hybrid system is then modeled by
the so-called behavior automaton that generates a prefix-closed language over the
original event alphabet enriched by these additional events. Based on this language,
diagnosis of the hybrid system is cast into a discrete-event framework. In particular,
the behavior automaton can be used to build a diagnoser [12, 27], which can support
diagnosis as well as diagnosability analysis [3, 5].

Thereafter, Vento et al. [31] proposed to extend the behavior automaton method
proposed in [6] so that it can account for non-structural faults. These are integrated
in the behavior automaton as operation modes with unknown continuous dynamics,
according to the idea introduced in [30]. The transition between a nominal and
a non-structural faulty mode may turn observable if discernibility is fulfilled.
As mentioned earlier, this property is determined through the analysis of a fault
signature matrix associated to each nominal mode, which is based on the sensitivity
concept [22].

Other extensions of the behavior automaton abstraction method have been pro-
posed to improve diagnosis performances. A method based on parameter uncertainty
using a passive robust strategy can be found in [32], where an adaptive threshold
for residual evaluation is generated using the equivalence between the parity-space
approach and input/output models. Another method proposed in [33] allows to
diagnose hybrid systems using a diagnoser that reasons on components, considering
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non-linear models and including multiple fault detection hypotheses. It has also
been shown that the idea of using RRAs can benefit full hybrid state estimation
schemas [26].

Despite the interest of the behavior automaton abstraction approach, its main
issue is twofold:

• the number of states of the diagnoser grows exponentially with the number of
states of the behavior automaton and it may require too much memory storage,

• generating the set of residuals for every mode is a tedious task that is generally
unnecessary because the system remains restricted to a limited number of modes.

The latter problem was identified early and some solutions were proposed for
specific cases [29]. The problem was considered as a whole later in [34, 35]
that proposed an incremental method to avoid the task of building the entire
behavior automaton and diagnoser offline. Diagnosis is performed by interpreting
the events and measurements issued by the physical system directly on the initial
hybrid automaton model. Mode tracking and diagnoser building are carried out
synchronously, considering the possible current modes of the system and its
successors. The idea is to build incrementally the behavior automaton and the
corresponding diagnoser when events occur. These are recalculated whenever the
system reaches a new operation mode. Everytime the diagnoser is updated, the set
of events linking the current diagnoser state with it successors are taken into account
to track the system mode. Assuming that the current mode is known, the set of
residuals for the current mode and their successors are generated.

This approach named the incremental behavior automaton abstraction allows
to construct the useful parts of the diagnoser developing only the branches that
are required to explain the occurrence of incoming events. The resulting diagnoser
adapts to the system operational life and is much less demanding in terms of memory
storage than the entire diagnoser.

10.3 Hybrid System Diagnosis Framework

10.3.1 The Hybrid Automaton Model

The system is composed by a set of components, denoted by COMP, connected
according to the system structure. We assume that the behavior of a component
Cj 2 COMP is governed by linear affine equations (algebraic or differential) and
parametrized with the mode. Model equations depend on a set of physical variables,
which are divided into two subsets, unknown and known variables. The discrete
event behavior of each component is represented by an automaton.

The hybrid automaton model results from the parallel composition of the com-
ponent automata and the parametrized linear equations of the system [3, 6, 21, 31].
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The hybrid automaton is given by HA D< Q;X ;U ;Y ;F ;G ;H ; †;T >,
where:

• Q is a set of modes. Each qi 2 Q with jQj D nq represents an operation mode,
which may be a nominal mode or a structural or non-structural faulty mode of
the system, i.e. Q D QN [QFs [QFns .

• q0 	 Q is a set of initial modes.
• X 	 Rnx defines the continuous state space. x.k/ 2X is the discrete-time state

vector and x0 the initial state vector.
• U 	 Rnu defines the continuous input space. u.k/ 2 U is the discrete-time

input vector.
• Y 	 Rny defines the continuous output space. y.k/ 2 Y is the discrete-time

output vector.
• F is the set of faults that can be partitioned into structural and non-structural

faults, i.e. F D Fs [ Fns. Every faulty mode qi 2 QFs or qi 2 QFns has
a corresponding fault fi 2 Fs or fi 2 Fns and is associated with a fault event
defined in the set †F . Modes associated with structural faults have a dynamic
model specifying their continuous behavior, whereas those associated with non-
structural faults have not. These faults are captured by the modification of the
system dynamics they imply. They are modeled by a vector fns impacting the
equations of the other modes.

• G defines a set of discrete-time state affine functions for each mode qi 2 QN

[QFs :

x.kC 1/ D Aix.k/C Biu.k/C Fxifns.k/C Exi (10.1)

where Ai 2 Rnx�nx , Bi 2 Rnx�nu and Exi 2 Rnx�1 are the state matrices in mode
qi, fns.k/ is the vector representing non-structural faults with Fxi being the fault
distribution matrix. The case fns.k/ D 0 corresponds to a nominal or structural
fault behavior.

• H defines a set of discrete-time output affine functions for each mode qi 2
QN [QFs :

y.k/ D Cix.k/C Diu.k/C Fyifns.k/C Eyi (10.2)

where Ci 2 Rny�nx , Di 2 Rny�nu and Eyi 2 Rny�1 are the output matrices in
mode qi and Fyi is the fault distribution matrix.

• † D †s [ †c [ †F is a set of events. Spontaneous mode switching events
(†s), input events (†c) and fault events (†F D †Fs [†Fns ) are considered. †
can be partitioned into †o [†uo where †o represents a set of observable events
and †uo represents a set of unobservable events. †F 	 †uo, †c 	 †o and
†s 	 †uo [†o.
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• T W Q�†! Q is the transition function. The transition from mode qi to mode
qj labeled with an event � 2 † is denoted by T .qi; �/ D qj or by �ij when the
event is of no interest.1

Alternatively, the model given by Eqs. (10.1)–(10.2) can be expressed in input–
output form using the delay operator which is denoted by p�1 and considering initial
conditions equal to zero, as follows:

y.k/ DMi.p
�1/u.k/C‡ i.p

�1/fns.k/C Emi.p
�1/ (10.3)

where:

Mi.p
�1/ D Ci.pI � Ai/

�1Bi C Di (10.4)

‡ i.p
�1/ D Ci.pI � Ai/

�1Fxi C Fyi (10.5)

Emi.p
�1/ D �

Ci.pI � Ai/
�1Exi C Eyi

� p

p � 1 (10.6)

considering that Mi.p�1/ represents the system input/output transfer function,
‡ i.p�1/ is the non-structural fault transfer function and Emi.p

�1/ is associated with
the terms Exi and Eyi in the state space model.

The automaton for a component C is defined by DAC D< QC ; †C ;TC ; �C >,
where QC is the set of discrete modes, †C is the set of events, TC is the
transition function and �C W QC ! 2†C is the active event function. Events
may be observable or unobservable like events corresponding to the occurrence of
a structural fault. The active event function contains the set of all possible events
�C 2 †C such that TC .qC ; �C / is defined.

In this work, the hybrid model is built by combining the operation modes of the
component models through the parallel composition of their automata [12]. Given
two automata DA1 and DA2, the parallel composition is defined as:

DAC1 jjDAC2 D Ac.QC1 �QC2 ; †1 [†2;TAc; �1jj2; .q01 ; q02//

TAc..q1 � q2/; �C / D

8
ˆ̂<

ˆ̂
:

.T1.q1; �C /;T2.q2; �C // if �C 2 �1.q1/ \ �2.q2/
.T1.q1; �C /; q2/ if �C 2 �1.q1/n†2
.q1;T2.q2; �C // if �C 2 �2.q2/n†1

undefined otherwise
(10.7)

where Ac.G/ is a unary operator that involves taking the accessible part of G from
its initial state.

On the other hand, the system model is given by the sets of equations describing
the component behaviors and their interconnections. The component equations are

1It is assumed that there is only one transition from a given mode qi to a given mode qj.
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Table 10.1 Transition
function defined for the HA

Destination modes

QN QFs QFns

Source modes QN †s [†c †Fs †Fns

QFs – – †Fns

QFns – – –

parametrized with the operation mode. The state space model of each mode in the
hybrid model is hence represented by (10.1)–(10.2), where state space matrices are
instantiated depending on the modes obtained through the composition [1, 7].

Table 10.1 summarizes when the transition function in HA is possibly defined.
The symbol ‘�’ indicates that the transition is not possible. Notice that transitions
between nominal modes and transitions from structural faulty modes to non-
structural faulty modes are possible. Nevertheless, transitions from faulty modes to
nominal modes are not possible neither transitions from non-structural faulty modes.

Another aspect to consider is that the composition of component automata is
done for operation modes that belong to QN [QFs . Non-structural faulty modes
are added a posteriori to the resulting hybrid automaton. Thus, the number of non-
structural modes associated with each mode in QN [QFs equals jFnsj.

10.3.2 Consistency Indicators

In the hybrid framework, diagnosis is achieved both from reported observable
discrete events†o and continuous measurements .y.k/;u.k//. Referring to the latter,
we adopt the common view of model-based diagnosis [9] and generate residuals for
each mode associated with a dynamic model. These residuals are used to obtain
consistency indicators.

Consider a mode qi 2 QN [QFs with dynamic model of the form (10.1)–(10.2),
then the set of residuals is given by:

ri.k/ D y.k/ �Gi.p
�1/u.k/ �Hi.p

�1/y.k/ � Ei.p
�1/ (10.8)

where Gi.p�1/, Hi.p�1/ and Ei.p�1/ represent the input–output dynamic model
for mode qi. These transfer functions can be calculated using observers [23], for
instance. Alternatively, the parity-space approach can also be used2[13]. In fact, the
equivalence between the two approaches has been proved under certain conditions
[17]. The observer model is given by:

Gi.p
�1/ D Ci.pI � Aoi/

�1Bi C Di (10.9)

Hi.p
�1/ D Ci.pI � Aoi/

�1Loi (10.10)

Ei.p
�1/ D �

Ci.pI � Aoi/
�1Exi C Eyi

� p

p � 1 (10.11)

2Any residual generation method available in the literature could be used. See, for example, [9, 20].
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where Aoi D Ai � LoiCi and Loi is the observer gain.
Once the residuals have been generated, they are evaluated with the measure-

ments against a threshold, providing consistency indicators of the following form:

' l
i.k/ D

�
0 if jrl

i.k/j � � l
i

1 if jrl
i.k/j > � l

i

(10.12)

where l 2 f1; : : : ; nrig, nri is the number of residuals for mode qi and � l
i is the

threshold3 associated with residual rl
i.k/. Consistency indicators are then gathered

in a vector ˆi.k/ D Œ'1i .k/; : : : ; 'nri
i .k/�.

To detect and isolate non-structural faults, a theoretical fault signature matrix FSi

for mode qi is generated using the concept of fault sensitivity, which is determined
by the expression:

ƒi.p
�1/ D .I �Hi.p

�1//‡ i.p
�1/ (10.13)

where ‡ i is given by Eq. (10.5). Given the fault sensitivity of the jth residual with
respect to the lth non-structural fault denoted asƒi.j; l/ (i.e., the element .j; l/ of the
sensitivity matrix ƒi), the element .j; l/ of FSi is determined as follows:

FSi.j; l/ D
�
1 if ƒi.j; l/ ¤ 0
0 if ƒi.j; l/ D 0 (10.14)

FSi.j; l/ is 1 if the jth residual of mode qi is sensitive to the lth fault, otherwise it
is 0. For completeness one more column with zero signature is added representing
the non-structural fault free case. If fl is the lth non-structural fault, the theoretical
fault signature of fl, denoted as FSfl

i , is then given by FSi.�; l/.

10.3.3 Mode Discernibility Analysis

Discernibility of two modes assesses whether these modes can be distinguished
based on continuous measurements. This property is key for hybrid system mode
tracking. In this section, we analyze discernibility for the general situation in which
modes may be nominal or faulty, structurally or non-structurally. Starting with the
definition proposed by Cocquempot et al. [14], we derive operational conditions
based on the continuous dynamic models of the modes or on the deviations that
they imply on the continuous dynamics of the hybrid system. A formal proof of all
the propositions stated in this section can be found in [34].

3The thresholds can be decided using any of the standard FDI threshold generation approaches [9].
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Definition 1 Two modes qi and qj are discernible iff there exists at least a couple
of signals .u.k/; y.k// consistent with mode qi that are not consistent with mode qj

and vice versa.

From the properties of residuals, we have the following result.

Proposition 1 Two modes qi and qj are non-discernible iff the consistency indi-
cators of the two modes satisfy ˚i.k/ D ˚j.k/ for any .u.k/; y.k// and any time
instant k.

We define the following function:

fdisc W Q �Q! f0; 1g (10.15)

where fdisc.qi; qj/ D 1 iff the two modes qi and qj are discernible, and fdisc.qi; qj/ D 0
otherwise. If two modes qi; qj are discernible, we also say that the pair of modes
.qi; qj/ is discernible.

The following definitions are related to discernibility.

Definition 2 Considering HA, a mode change qi ! qj is detectable at time instant
k if qi and qj are discernible according to Definition 1.

Definition 3 Considering HA, two mode changes, qi ! qj and qi ! ql, are isolable
if the following conditions are satisfied at time instant k.

1. Both mode changes are detectable according to Definition 2, or equivalently both
.qi; qj/ and .qi; ql/ are discernible.

2. The pair of modes .ql; qj/ is discernible according to Definition 1.

The conditions guarantying discernibility depend on the pair of modes consid-
ered in HA. Three cases can be outlined.

10.3.3.1 Case 1

Let us consider a pair of modes that have an associated continuous dynamic model
of the form (10.1)–(10.2), represented in input–output form (10.3). We have the
following result.

Proposition 2 Two modes fqi; qjg 	 QN [ QFs are non-discernible if the
following conditions are fulfilled:

Mi.p
�1/ D Mj.p

�1/ (10.16)

Emi.p
�1/ D Emj.p

�1/ (10.17)

where Mi, Emi, Mj and Emj correspond to the input/output model matrices given by
(10.4) and (10.6), respectively.
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Conditions (10.16) and (10.17) guarantee that consistency indicators of the two
modes satisfy ˆi.k/ D 0 and ˆj.k/ D 0 for any .u.k/; y.k// and any time instant k,
hence proving non-discernibility of the two modes with reference to Proposition 1.

The discernibility function can be evaluated using conditions (10.16) and (10.17),
which rely on the system model (10.1) and (10.2) represented in input–output form
(10.3).

10.3.3.2 Case 2

Let us consider a pair of modes corresponding to non-structural faults, that have a
common predecessor mode. These modes do not have a continuous dynamic model
but faults have a signature in the fault signature matrix.

The discernibility property involves comparing their corresponding fault signa-
tures.

Proposition 3 Two modes fqi1 ; qi2g 	 QFns associated to non-structural faults fns1
and fns2 respectively, such that T .qi; �fns1

/ D qi1 and T .qi; �fns2
/ D qi2 for a given

mode qi 2 QN [QFs and f�fns1
; �fns2

g 	 ˙Fns , are non-discernible if their residual
fault sensitivities satisfy

�
fns1
i .p�1/ D �fns2

i .p�1/ ¤ 0 (10.18)

10.3.3.3 Case 3

Let us consider a mode that has a continuous dynamic model and another one which
has not, with a common predecessor mode. We have the following result.

Proposition 4 A mode qj 2 QN [QFs and a mode qi˛ 2 QFns associated with
non-structural fault fns˛ , such that T .qi; �/ D qj and T .qi; �fns˛

/ D qi˛ for a given
mode qi 2 QN [QFs , � 2 ˙s [˙c [˙Fs and �fns˛

2 ˙Fns , are non-discernible
if the following conditions are fulfilled:

Mj.p
�1/ �Mi.p

�1/ D �fns˛
i .p�1/ (10.19)

Emi.p
�1/ D Emj.p

�1/ (10.20)

u.k/ D f ns˛ .k/ (10.21)

Notice that the discernibility condition makes use of the sensitivity function
of the non-structural faulty mode calculated through the dynamic model of its
predecessor mode.
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10.3.4 The Behaviour Automaton Abstraction

The behavior automaton is a finite state generator of the language L.HA/ resulting
from abstracting the continuous dynamics in terms of discrete signature-events [2,
6]. The behavior automaton is defined by B D< Q; †;T ; q0 >.

• Q D Q [Qt is a set of discrete states where:

– Q is the set of modes of HA;
– Qt is a set of transient modes.

• q0 is the initial state.
• † D † [†Sig is the set of events where:

– † is the set of events of HA;
– †Sig is a set of signature-events generated when two modes are discernible

according to (10.15).

• T W Q �† 7! Q is the partial transition function of the behavior automaton.

B is built following Algorithm 1 based on the discernibility properties presented
in Sect. 10.3.3. The algorithm previously requires the set of modes of HA to be
partitioned into subsets of non-discernible modes, i.e. Qdisc D fQ�1 ; : : : ;Q�N g.

To explore every mode qi 2 Q in HA the set SuccsHA.qi/ D fqj 2 Q W
9� 2 †;T.qi; �/ D qjg is defined. The transitions of HA are integrated into B and
the discernibility between the source and destination modes is studied whenever
necessary (see Sect. 10.3.3). If a transition in HA is labelled by an observable event
the transition is kept in B (see line 14). Otherwise, the discernibility property is
evaluated between the pair of modes .qi; qj/ (see line 16). If the two modes are
discernible then a transient mode4 is added between these modes (see lines 17–23).
The outgoing transition of the transient mode is associated with a signature-event
ı (see line 18) indicating that the mode change can be observed by means of
consistency indicators. This signature-event is indexed according to the case of
discernibility of the two modes. Otherwise, if the two modes are non-discernible
the original transition is kept in B labeled with its corresponding unobservable event
(see line 28).

ı D fSig_ev W Q �Q! †Sig (10.22)

4The transient mode is the way to account for the hybrid automaton HA dwell time requirement
[7].
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Algorithm 1: B_Builder(BA)
1: Lh D ;.
2: for all qi 2 Q do
3: Lh D Lh [ fqig
4: end for
5: while Lh ¤ ; do
6: Lh D Lh n fqig
7: for all qj 2 SuccsHA.qi/ do
8: if qj … Q \Q then
9: Q D fqjg [Q

10: end if
11: Let � is such as T .qi; �/ D qj W
12: switch (�)
13: case � 2 †o:
14: T .qi; �/ WD qj.
15: case � 2 †uo:
16: if qi and qj are discernible according to (10.15) then
17: Qt D fqt

i�jg [Qt.
18: ı WD fSig_ev.qi; qj/ according to (10.22).
19: if ı … † then
20: † D fıg [†
21: end if
22: T .qi; �/ WD qt

i�j.

23: T .qt
i�j; ı/ WD qj.

24: else
25: if qj 2 QN [QFs then
26: Lh D Lh [ fqjg
27: end if
28: T .qi; �/ WD qj.
29: end if
30: end switch
31: end for
32: end while

fSig_ev 7!

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂<

ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂
:

ı�i��j if fdisc.qi; qj/ D 1 according to
Proposition 2, where
qi 2 Q�i and qj 2 Q�j

with fQ�i ;Q�jg 	 Qdisc;

ıF �
�i

if fdisc.qi; qj/ D 1 according to

Proposition 3, where ıF �
�

is associated
to a non-structural fault fl belonging
to a subset F �

�i
with � 2 Z C;

ı if fdisc.qi; qj/ D 1 according to
Proposition 4.

(10.23)

The event label allows for distinguishing between the discernibility cases
analyzed in Sect. 10.3.3, so that the diagnoser can be properly built.
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10.3.5 The Hybrid Diagnoser

The hybrid diagnoser is a finite state machine D D< QD; †D;TD; qD0 >, where:

• qD0 D fq0;;g is the initial state of the hybrid diagnoser, which is assumed to
correspond to a nominal system mode;

• QD is a set of the hybrid diagnoser states. An element qD 2 QD is a set of the
form qD D f.q1; l1/; .q2; l2/; : : : .qn; ln/g, where qi 2 Q and li 2 �F where
�F defines the power set of fault labels �F D �Fs [ �Fns with �Fs D
ff1; : : : ; f
 ;;g, and �Fns D ff �1 ; : : : ; f �� g respectively, 
 C � is the total number
of fault combinations and 
; � 2 Z C. In�F , ; represents the nominal behavior;

• †D D †o is the set of all observable events in B;
• TD W QD �†o 7! QD is a partial transition function of the hybrid diagnoser.

The transition function TD can be calculated according to the procedure
described in [12, 27], from the behavior automaton B. According to this procedure,
a hybrid diagnoser is built like an observer automaton with the difference that labels
reporting whether fault events have occurred are attached to the hybrid diagnoser
states.

10.3.6 Mode Tracking Logic

At any time instant k, the current hybrid diagnoser state provides the set called
the belief mode and denoted by qD.k/. The hybrid system can be operating in any
of the modes in the current belief mode. Given a set of observations of the system, a
mode change can be expected if consistency indicators of the current mode have
changed. The minimal time to observe that change is given by the dwell time
requirement, which guarantees that residuals, and hence consistency indicators, can
be properly computed [3].

The following results provide conditions for transition detection and transition
identification. A formal proof of all the propositions stated in this section can be
found in [34].

Proposition 5 If ˚i.k � 1/ D 0 and ˚i.k/ ¤ 0, then a transition from qi 2 QN [
QFs to another mode is suspected at time instant k.

Proposition 5 is used to decide whether a mode change has occurred by
monitoring the set of consistency indicators of the possible current modes, i.e.
modes in the belief mode.

Proposition 6 Assuming that HA is in mode qi and a transition has been suspected
at time instant k according to Proposition 5, then:
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1. if ˚i.k/ D FSi.�; fj/, then a transition to qj 2 QFns is detected at time instant k.
2. if ˚j.k/ D 0 and T .qi; �ij/ D qj, then a transition to qj 2 QN [QFs is detected

at time instant k.

Let us notice that Proposition 6 does not necessarily identify a unique mode qj.
In particular, conditions (1) or (2) of Proposition 6 may be satisfied for more than
one index, which corresponds to the cases of ambiguous non-structural faulty modes
and ambiguous structural faulty modes, respectively. This logic is used to identify
the set of possible mode changes.

10.4 Incremental Hybrid System Diagnosis

10.4.1 Incremental Diagnosis Architecture

The methodology described in Sect. 10.3 requires building and storing offline the
entire hybrid automaton model, behavior automaton and hybrid diagnoser. This
section proposes an enhanced diagnoser that is built incrementally online. Indeed,
diagnosis is directly performed by interpreting the events and measurements issued
by the physical system on the hybrid automaton model. This interpretation allows
us to incrementally build the useful parts of the diagnoser, developing only the
branches that are required to explain the occurrence of incoming events. Generally,
a hybrid system operates in a small region compared to the entire behavioral
space defined by the hybrid automaton states. A significant gain can hence be
expected from the proposed approach. See [34] for an extended description of this
methodology, including its complexity analysis that proves its benefits under low
memory usage requirement at the expense of a negligible execution time penalty.

Mode tracking and diagnoser building are carried out synchronously, considering
the possible current modes of the system and their successors. The original idea
is to incrementally build the hybrid diagnoser when events occur. This includes
building the hybrid model incrementally through the composition of the automata
describing the system component behaviors. The set of linear equations constituting
the continuous model of the components are parameterized as a function of the
mode.

The hybrid model and the behavior automaton are recalculated whenever the
system reaches a new operation mode. Then, the diagnoser is updated and the set
of events linking the current diagnoser state with their successors are taken into
account to track the system mode. Assuming that the current mode is known, the
set of residuals for the current mode and their successors are generated. Next,
observable events (i.e. input events and signature-events) are detected and processed
by the hybrid diagnoser, that reports the current diagnoser state and the possible
occurrence of a fault.
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10.4.2 Incremental Hybrid System Diagnosis Framework

An incremental version of HA, B and D are defined and labelled as HAk, Bk and Dk.
The dependence on time is captured by indexing with the time instant k.

HAk is built by the parallel composition of component automata from (10.7)
along with parametrized equations which allow one to obtain the model equations in
(10.1) and (10.2) for the modes that are introduced. At any time instant k, the system
can be operating in one of the modes of the set called the belief mode and denoted by
qD.k/. Algorithm 2 takes qD.k/ as input and incrementally builds the hybrid model
whenever there is a change in the system, i.e. when the consistency indicators of one
of the modes in the belief state change value or when an observable event occurs.

Algorithm 2: Incremental_HA_Builder.qD.k//
1: Lh D ;
2: for all qi 2 qD.k/ such that qi 2 Qk

N [Qk
Fs

do
3: Lh D Lh [ fqig
4: end for
5: while Lh ¤ ; do
6: Lh D Lh n fqig
7: for all fw 2 Fns do
8: Qk WD fqfw ig [Qk�1.
9: T .qi; �fw / D qfw i.

10: end for
11: Update the model by incremental parallel composition.
12: for all �M 2 �Ac.qi/ do
13: T k.qi; �M / WD TAc.qi; �M /.
14: if �M … †k�1 then
15: †k WD �M [†k�1.
16: end if
17: if qj … Qk then
18: Qk WD fqjg [Qk�1.
19: Instantiate equations for this mode.
20: Compute residual expression for rj.�/.
21: Classify qj into Q Ndisc.
22: if qj creates a new element Q�j in Q Ndisc then
23: Compute FS�j .�/.
24: Update and store in knowledge-base.
25: end if
26: if �M 2 †uo then
27: if .qi; qj/ are non-discernible according to (10.15) then
28: Lh D Lh [ fqjg
29: end if
30: end if
31: end if
32: end for
33: end while
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As can be seen in Algorithm 2, the branches generation of HAk depends on the
discernibility property between the current mode and its successors. If some of them
are non-discernible it implies that the event labeling the transition is unobservable.
The iterations of the algorithm stop when HAk is such that all branches end with
an observable event avoiding uncertainty in the model. In the first iteration, HAk

initially must contain at least the initial mode and its successors, assuming they are
discernible.

Line 11 of Algorithm 2 updates the discrete part of HAk using parallel com-
position. The parallel composition given by (10.7) is adapted to generate only the
successor modes of a given mode qi. The function provides the set of successor
modes, the set of events and the transition function of this iteration. The elements
generated in every parallel composition are gathered in HAk. It is assumed that the
incremental initial mode (HAinit) is known and it is generated before the diagnosis
process starts.

In Algorithm 2, lines 7–10 add the successor non-structural faulty modes,
whereas lines 13–16 add the successor nominal and structural faulty modes using the
information provided by the incremental parallel composition. Lines 17–25 update
the knowledge-base whenever a new mode is generated. In order to verify whether
the branches of HAk should be extended one more level further, the discernibility
concerning the current mode and its successors is analyzed (see lines 26–30).

Algorithm 2 also examines conditions to recognize whether the current node has
been previously considered (see line 17). Since the states of the hybrid automaton
have a finite number of successor states, this algorithm is guaranteed to terminate in
a finite number of steps.

The system model parameterized as a function of the operation mode is com-
posed from the whole set of equations of the components and their interconnections
(see line 19 of Algorithm 2). The state space model of each mode can be represented
by (10.24) and (10.25). State space matrices depend on system parameters and they
are instantiated for the modes obtained in the incremental composition.

x.kC 1/ D Aix.k/C Biu.k/C Fxif.k/C Exi

C
nSiX

jD1
�j

xi
Sj

i.x.k/;u.k//C
nDiX

jD1
 j

xi
Dj

i.x.k/;u.k// (10.24)

y.k/ D Cix.k/C Diu.k/C Fyif.k/C Eyi

C
nSiX

jD1
�j

yi
Sj

i.x.k/;u.k//C
nDiX

jD1
 j

yi
Dj

i.x.k/;u.k// (10.25)

The Sj
i and Dj

i functions model the saturation and dead zone non-linearities that
appear in the evolution and observation equations following the methodology in
[7] (see Fig. 10.3). nSi and nDi denote the number of saturation and dead zone non-
linearities introduced by a subset of components, �j

yi
and  j

yi
2 Rny �R, �j

xi
and

 j
xi
2 Rnx �R.
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Fig. 10.3 Saturation and dead zone representation

Sj
i.x.k/;u.k// D

8
<̂

:̂

�Mj
i if Lj

ix.k/C Kj
iu.k/ < �Mj

i

Lj
ix.k/C Kj

iu.k/ if jLj
ix.k/C Kj

iu.k/j � Mj
i

Mj
i if Lj

ix.k/C Kj
iu.k/ > Mj

i

(10.26)

where Mj
i 2 R is a threshold, Lj

i 2 R�Rnx and Kj
i 2 R�Rnu are constant matrices.

Dj
i.x.k/;u.k// D

�
Fj

i x.k/C Zj
iu.k/ if jFj

ix.k/C Zj
iu.k/j � Nj

i

0 otherwise
(10.27)

where Nj
i 2 R is a threshold, Fj

i 2 R�Rnx and Zj
i 2 R�Rnu are constant matrices.

The incremental behavior automaton Bk is built following an incremental imple-
mentation of the method explained in Sect. 10.3.4. The new version of Algorithm 1
explores HAk assuming that the system can be operating in one of the modes
qi of the belief mode qD.k/. Then, an exploration of each successor mode qj 2
SuccsHA.qi/; qi 2 qD is carried out.

The incremental hybrid diagnoser Dk is also built from the incremental behavior
automaton Bk. Dk is updated after the occurrence of an observable event whenever
there are behavior automaton states to be introduced that have not been previously
visited. The part of the hybrid diagnoser obtained takes into account only the
possible successor states and transitions that may occur next.

10.5 Application Case Study

10.5.1 Barcelona Sewer Network

To illustrate the method, a representative part of the Barcelona sewer network
presented in [22] is used. Sewer networks present several elements exhibiting
numerous operating modes depending on the sewer flows. Sewer networks may be
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Fig. 10.4 A representative part of the sewer network

modeled using the virtual tank modeling approach. Therefore, the decomposition of
the sewer network in catchments looks like what is shown in Fig. 10.4. The elements
that appear in the sewer are: nine virtual tanks, one real tank, three redirection
gates, one retention gate, one four rain gauges to measure the rain intensity and
ten limnimeters to measure the sewer level. The control gates are commanded by a
controller where actions are open gate or close depending on the flow in the sewer.

10.5.2 Hybrid Modeling

A hybrid automaton model can be obtained to represent the hybrid phenomena
present in the network associated with the virtual tanks and the control gates.
As proposed by our incremental method, the hybrid model is obtained incrementally
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Fig. 10.5 Component Automata

from the automata for each component. The general automaton for a virtual tank is
given by two discrete states: overflow (o) and non-overflow (wo) as is shown in
Fig. 10.5 (left side). Regarding the control gates, there are four discrete states, the
nominal behaviors (open or closed) and the faulty behaviors (stuck open (so) or
stuck closed sc) such as shown in Fig. 10.5 (right side).

The elements of the sewer can be described by the set of equations below
according to the component configuration. The dynamic model of the virtual tank is
given by the following discrete-time equation representing the water volume:

Ti W vi.kC 1/ D vi.k/C�t.%in
i .k/ � %out

i .k/ � %des
i .k//

with i 2 f0; 1g. The overflow is given by:

%des
i .k/ D

�
%in

i .k/ � %out
i .k/ if vi.k/ � vi

0 otherwise
(10.28)

The input flow associated with a virtual tank is given by:

%in
i D %pluv

i .k/C
HX

hD1
%

outh
i .k/C

LX

lD1
%

desl
i .k/ (10.29)

where %pluv
i .k/ D Si�iui.k/ is associated with the rain intensity, %outh

i .k/ corresponds
to all the output flows of the other tanks pouring into the tank Ti and %desl

i .k/
corresponds to all overflows pouring into the tank Ti and h; l 2 Z C.
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The output flow for every tank is given by:

%out
i .k/ D

�
ˇivi.k/ if %in

i .k/ < %
out
i .k/

ˇivi if vi.k/ � vi
(10.30)

The relation between level and volume and the measurements provided by the
sensors are described by the equations below:

Li.k/ D ˇi
Mi
vi.k/ (10.31)

The input flow to a control gate is divided into two output flows where the values
depend on the position: open (˛j D 0) or closed (˛j D 1).

%out
Gj
.k/ D

(
%aGj

.k/ D .1 � ˛j/%
in
Gj
.k/

%bGj
.k/ D ˛j%

in
Gj
.k/

(10.32)

The composition is based on the automata of virtual tanks and control gates.

10.5.3 Hybrid System Diagnosis

10.5.3.1 Design

A small part of the sewer network considered as case study is used for illustrating
the proposed hybrid diagnosis approach in detail (see Fig. 10.6).

Fig. 10.6 Small part of the sewer network
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Table 10.2 Type of events in HA

Event Action Observable Type Code

uo1 v1 	 v2 Not Spontaneous 1

uo2 %in
1 < %

out
1 Not Spontaneous 2

uo3 v2 	 v2 Not Spontaneous 3

uo4 %in
2 < %

out
2 Not Spontaneous 4

o1 Close redirection gate Yes Controlled 5

o2 Open redirection gate Yes Controlled 6

f1 Stuck closed Not Structural fault event 7

f2 Stuck open Not Structural fault event 8

f3 Fault in sensor L39 Not Non-structural fault event 9

f4 Fault in sensor L47 Not Non-structural fault event 10

f5 Fault in sensor P19 Not Non-structural fault event 11

f6 Fault in sensor P16 Not Non-structural fault event 12

In all, there are three components that can be described by an automaton: the
two virtual tanks and the redirection gate. Structural faults are associated with
faults in the redirection gate (stuck open and stuck closed). Non-structural faults
are associated with faults in output and input sensors (L39;L41;P19;P16).

Events associated to the component automata and non-structural faults are
detailed in Table 10.2.

The entire hybrid automaton (see Fig. 10.7) is obtained from parallel composition
of the component automata. The hybrid automaton is composed by eight nominal
modes and eight faulty modes (related to structural faults).

The continuous dynamical model for each mode qi 2 QN [ QFs is provided
in Table 10.3. Notice that modes q1 and q9 have an equivalent dynamical model as
well as modes q5 and q10. In the three last rows, when an overflow is present in any
of both virtual tanks, model equations are equivalent even if the control gate is open
or closed.

The output function is given by

�
y1.k/
y2.k/


D
"

ˇ1
M39

0

0
ˇ2

M41

#�
x1.k/
x2.k/


(10.33)

where the matrix Ci is the same for all modes and Di D 0.
The sets of residuals for all modes are given in Table 10.4. There are two residuals

per operation mode and five non-discernible mode sets as shown in Table 10.5.
For online diagnosis, only the set of residuals corresponding to active sets are

computed. The active sets include modes in the belief mode and their successors
belong to.

The following fault distribution matrices are defined:

Fyi D
�

0 I
�

Fxi D
��Bi 0

�
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Fig. 10.7 Hybrid automaton model obtained using the component automata composition

These matrices are used to generate a fault signature matrix FS�i for every non-
discernible mode set, applying Eq. (10.13).

Following Algorithm 1 the behavior automaton B is obtained. The corresponding
automaton diagram has been omitted since it is too large: the number of modes is
jQj D 130 and the number of explored transitions is 194.

The diagnoser without silent closure is shown in Fig. 10.8. The number of
generated states is jQDj D 59 and the number of generated transitions is 188.
The diagnoser was generated using DIADES tool [25]. The initial state is assumed
known and nominal.
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Table 10.5 Non-discernible
mode sets, Qdisc

Groups Non-discernible modes

Q�1 f1; 9g
Q�2 f5; 10g�
Q�3 f2; 6; 11; 12g
Q�4 f3; 7; 13; 14g
Q�5 f4; 8; 15; 16g

10.5.4 Incremental Hybrid System Diagnosis

Applying Algorithm 2 for the first time, the initial incremental hybrid model HAinit

is obtained.
Next, applying the incremental implementation of Algorithm 1 to HAinit, the

initial incremental behavior automaton Binit is obtained (see Fig. 10.9). Modes in
dashed line correspond to the transient modes generated evaluating the discern-
ability property. The generated signature-events are ı13, ı14, ı12, ıF 1

�1
, ıF 2

�1
, ıF 3

�1
.

Transitions in dashed line show that the destination mode is a faulty mode. Modes
q1 and q5 are linked by an observable event. Modes q1 and q9 do not have a
transient mode between them because they are non-discernible. Modes labeled as
qj

i correspond to those non-structural faulty modes where i represents its path in
HAk and j is associated with the considered non-structural fault.

Note that Binit includes the events that may occur. The initial diagnoser (see
Fig. 10.10) is obtained applying the procedure mentioned in Sect. 10.3.4 to Binit.

10.5.5 Results

Considering the whole sewer, assume that system follows the mode sequence q1 !
q3 ! q214 ! q140 ! q211 ! q5 ! q885 with a sample time of �t D 300 s.

Mode q1 refers to the situation in which no tank is being overflowing. Mode q3
refers to T1 being overflowing. q214 refers to T2;T4;T5 and T12 being overflowing.
q140 refers to T2;T4 and T5 being overflowing. Mode q211 refers to T5 and T4
being overflowing and mode q5 refers to T5 being overflowing. The diagnoser must
track the right mode sequence and detect and isolate the possible faults from an
incrementally built behavior automaton Bk.

The set of residuals are only generated for modes that are visited in HAk. In this
way, the efficient use of memory is guaranteed. There is a set of ten residuals per
group using the expression given by (10.8).

Figure 10.11 shows the set of residuals for the concerned modes in the sequence.
Remark that the residuals of a given mode are consistent with measurements
whenever system remains in this mode. The signature-events identified during
the simulation are shown in black vertical dashed lines in Fig. 10.11. Events are
such that a virtual tank reaching an overflow situation, a virtual tank leaving an
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Fig. 10.8 Diagnoser without silent closure obtained using DIADES tool

overflow situation and a non-structural fault in a sensor. These events are reported
in Table 10.6. Notice, for instance, that when the system is in mode q3, ˆ67.k/ D 0
during the time interval [3600 s, 3900 s] whereas the remaining consistency relations
differ from zero.

Next, a non-structural fault occurs at 7800 s, that is detected by the diagnoser. The
set of consistency indicators of mode q5 are used to isolate the fault. The observed
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Fig. 10.9 Initial incremental behavior automaton Binit

Fig. 10.10 Initial incremental diagnoser Dinit



10 Diagnosis of Hybrid Dynamic Systems Based on the Behavior Automaton. . . 273

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ 57−58

mode q 54 T 4 ,T 5  O

Φ
57

(k
)

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ F2
63

mode q5 T 5  O

Φ
58

(k
)

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ 70−69

mode q 57  (T 2 ,T 4 ,T 5 ,T 12  O) 

Φ
70

(k
)

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ 69−57

mode q 38  T 2 ,T 4 ,T 5  O

Φ
69

(k
)

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ 56−67

mode q1 (T i WO)

Φ
56

(k
)

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ 67−70

mode q3 (T 2  O) 

Φ
67

(k
)

Fig. 10.11 Binary residuals

signature is Œ 0 1 1 0 0 0 0 0 0 �t which, according to FS58, corresponds to a fault
in sensor L41 (see Fig. 10.12). Finally, the hybrid diagnoser stops and reports the
diagnosis. Indeed, a non-structural faults needs to be repaired before the diagnoser
can resume.

The report given by the hybrid diagnoser is shown in Table 10.6. The first column
represents mode changes in HAk, the second one, the identified events. The third
column corresponds to the diagnoser state information and total number of states
generated, the fourth one shows the total number of residuals generated. The last two
columns show the occurrence time and the detection time of the identified events.

Table 10.7 shows in detail how the incremental automata HAk, Bk and Dk are
built when an incoming event is observed and identified. The first column shows
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Fig. 10.12 Residuals of mode q23 when fL41 is detected

Table 10.6 Hybrid diagnoser report for the simulation scenario

Occurrence Detection
Mode change Reported event Current diagnoser state time (s) time (s)

Initial mode q1 – .q1; fg/ – –

q1! q3 ı56�67 q3; fgq21; ff1bg 3600 3600

q36; ff2bgq50; ff3bg
q3! q214 ı67�70 q214; fgq238; ff1ag 3900 3900

q251; ff1bgq264; ff2bg
q274; ff3ag

q214! q140 �70�69 q140; fgq166; ff1ag 4200 4500

q179; ff1bg
q140! q211 �69�57 q211; fgq248; ff1bg 5100 5400

q261; ff2bgq271; ff3ag
q211! q5 �57�58 q5; fgq23; ff1bg 6600 6900

q38; ff2bgq52; ff3ag
q5! q885 ıF2

58
q885; ff8gq899; ff1bf8g 7800 7800

fault in L41 2 Fns q913; ff2bf8gq927; ff3af8g

the transitions that occur during the simulation scenario, which is described in
Table 10.2. The second column shows how the number of generated residuals
increases with every mode change. Notice that the average number of residuals is
130 per iteration. The remaining columns provide the average number of modes
and states for each automaton. Regarding Bk, the fourth column highlights the
number of transitions that the Sampath’s algorithm has to explore when building
the diagnoser. Between 10 and 61 modes belonging to QN and QFs are explored in
HAk per iteration. 140 modes belonging to QFns are generated in HAk per iteration.
Additionally, between 81 and 140 diagnoser states are computed per iteration.
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Table 10.7 Sewer network complexity for the considered scenario

HAk Bk Dk

Mode change jˆkj ,jQk
� j jQN [QFs j C jQFns j jQj.jTj/ jQDj

Initial mode q1 130, 13 61 +42 182 (199) 13

q1! q3 240, 24 137+70 437 (495) 32+13

q3! q214 340, 34 209+70 686 (791) 29+45 =74

q214! q140 540, 54 347+70 1180 (1383) 74+28=102

q140! q211 610, 61 386+42 1340 (1582) 102+28=130

q211! q5 690, 69 431 +42 1506 (1781) 130+26=156

q5! q885 690, 69 0 0 156

fault in L41 2 Fns

Total 690, 69 431C 266 D 697 1506 (1781) 156

Table 10.8 Comparison between incremental and non-incremental method for the simulation
scenario

Non-incremental method Incremental method

Number of modes to be
explored

32;768 697

Number of
non-structural faulty
modes to be generated

458;752 266

Number of diagnoser
states to be computed

232768 156

Number of residuals to
be computed

10 � 32768 D 327;680 690

Spatial computational
complexity

Exponential .O.2nq // Exponential .O.2nnom
q ///Linear

.O.nnom
q //

nq: number of global behavior
automaton states

nnom
q : number of nominal modes

Table 10.8 provides a comparison of the results obtained with the proposed
method and those obtained according to the non-incremental method of [6, 31],
standing out the benefits of the proposed method. As can be seen, the process com-
plexity increases with the number of operation modes. Hence, the non-incremental
method could have a very high cost.

As can be seen in Table 10.8, the complexity of the incremental method is much
lower than the complexity of the standard method. The number of explored and
generated modes remains quite tractable.

10.6 Conclusions

This chapter has presented a hybrid system diagnosis approach based on the
behavior automaton framework and the algorithms used to track the system mode.
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The proposed diagnosis approach is able to detect and isolate two types of
faults: structural and non-structural faults. A diagnoser executes the tasks of mode
recognition and identification using mode discernibility provided by consistency
indicators generated from a set of residuals for every mode. It has been shown
that the proposed hybrid diagnosis approach can operate in a non-incremental
and an incremental manner. In the non-incremental form, algorithms are executed
taking into account global models. In the incremental form, only the useful parts
of the diagnoser are built, developing the branches that are needed to explain the
occurrence of incoming events. Thus, the resulting diagnoser adapts to the system
operation mode and is less demanding in terms of memory storage than building the
full diagnoser offline. The incremental method is illustrated by the application to a
case study based on a representative part of the Barcelona sewer network and its
complexity is compared to the non-incremental method.

The proposed incremental approach could be accommodated by computing off-
line the part of the diagnoser corresponding to the modes with highest probability,
in particular the nominal modes, and building the rest of the diagnoser as proposed
whenever it is necessary. This would achieve even better space/time complexity.

The implementation used in the application presented in the paper is totally
software since the sampling time was large enough to allow real-time operation. In
case of a shorter sampling time, the use of a hardware or mixed hardware/software
implementation would be necessary. These alternative implementation architectures
will be part of future research work.
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discrete and parametric faults, 205
fault signatures, 202, 203
measured and predicted values, 204
structural model decomposition, 201–202
system modeling, 198
system schematics, 198
true fault, 204–205

Advanced Diagnostics and Prognostics Testbed
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AMESim™ model, 170, 172
Analytical redundancy relations (ARRs), 46,
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DBG technique, 57–59
FDI community, 180
two-tank benchmark, 61–68

Anti-lock braking system (ABS), 123
Artificial Intelligence Diagnosis (DX)
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Artificial neural networks (NNs), 18
Automated fault diagnosis, 179
Automotive engines, see Spark ignition

gasoline engine system
Autonomous discrete events, 52, 65

B
Barcelona sewer network, 262–263
Behavior automaton (BA)

ARRs, 247
Barcelona sewer network, 262–263
binary residuals, 270, 273
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consistency indicators, 252–253
diagnoser without silent closure, 270, 271
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definition, 246
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mode discernibility analysis, 253–255
transient mode, 256

hybrid diagnoser, 258
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incremental hybrid system diagnosis, 275
belief mode, 260
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incremental behavior automaton .Bk/,
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incremental hybrid diagnoser .Dk/, 262
incremental initial mode .HAinit/, 261
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.Dinit/
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Behavior automaton (BA) (cont.)
saturation and dead zone representation,

261, 262
state space matrices, 261

mode tracking logic, 258–259
non-incremental form, 244, 275
non-structural faults, 247–248, 252
parallel composition, 251
parameter uncertainty, 248
parity-space approach, 247
residuals of mode, 273, 274
sensitivity concept, 248
sewer network

continuous dynamical model, 266
DIADES tool, 267
fault distribution matrices, 266–267
input–output models, 269
network complexity, 273, 275
non-discernible mode sets, 270
non-structural faults, 266
output function, 266
state space matrices, 268
structural faults, 266
type of events, 266

signature-events, 248
state space model, 252
transition function, 252
virtual tanks and control gates, 263–265

Bond graph (BG) modelling
BG-LFT model, 47
causal and structural properties, 50
causality assignment, 50, 51
definition, 49–50, 127
HBG technique, 52–53
hydraulic tank and valve, 50, 52
modelling approach, 124
power variables, 50

C
Causal assignments, 186
Chemical process

detection, 116–117
diagnosis, 118–119
flowsheet, 114, 115
production, 115
reference model, 115–116

Coherence vector (CV), 59–60, 74
Component automata, 264, 267
Component-based modelling, 182–185
Conflict-driven diagnosis, see Possible

conflicts (PCs)
Consistency indicators, 252–253
Consistent causal assignments, 186–188

Continuous Petri nets (CPN), 211
Controlled discrete events, 52, 65
Controlled junctions (CJs), 3
Covariance estimation, 164–165, 169
Cylinder valve faults, 162

D
Degenerated junctions, 128–129
DES, see Discrete-event system (DES)
Detectability index .Db/, 60
DFNN algorithms, 40
DIADES tool, 267, 271
Diagnostic Bond Graph (DBG) technique

ARR/GARR and adaptive threshold, 57–59
coherence vector, 59–60
DHBG-LFT form model, 54
fault signatures, 59–60
measurement uncertainty, 56–57
optimal threshold and mode fault detection

definition, 61
discrete mode fault, 60, 61
GFSSM, 62
Hilbert transform, 62–63
initial relative deviation, 63
MCSSM, 62, 63
parameter estimation, 64
residual evaluation, 62
SBG approach, 64

parameter uncertainty, 54–56
Diagnostic HBG (DHBG), 54
Discernibility

definition, 246
mode discernibility analysis, 253–255

Discrete-event system (DES), 12–13, 79
advanced diagnosis, 212
changes of modes, 210
continuous state, 210
degradation state, 210
discrete state, 210
HPPN (see Hybrid particle petri nets

(HPPN))
Discrete faults, 4, 7–8

ADAPT-Lite, 205
fault modeling, 185
four-tank hybrid system, 145–148
HBG-PC, 124, 125
SHBG-PC, 137–138

Discretely controlled continuous systems
(DCCSs), 1, 2, 17

Discrete mode fault, 60, 61
Discrete nonlinear observers, 154
Doubly fed induction generator (DFIG), 17
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EKF, see Extended Kalman filter (EKF)
Electrical power systems, see ADAPT-Lite
Evolving type-2 random vector functional link

network (eT2RVFLN), 7, 19, 20
classification, 39–40
cognitive architecture

Chebyshev polynomial, 27
classification decision, 28
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fuzzy rule, 25–26
interval firing strength, 27
Mahalanobis distance, 26
multivariate Gaussian function, 26
TSK model, 26–27

complexity, 41
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meta-cognitive learning (see Meta-
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Extended Kalman filter (EKF), 10, 11,
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F
FAOSPFNN algorithms, 40
Fast Fourier transform (FFT), 24
Fault detection

SHBG-PCs approach
assumptions, 137–138
complexity, 142–143
diagnosis framework, 140–142
fault signature matrices, 138–140
four-tank hybrid system, 143–148

spark ignition gasoline engine system
diagnosis results, 172–175
estimation results, 170–172
isolation, 169–170
process, 168–169
thresholds, 176

Fault detection and isolation (FDI)
adaptive thresholds, 46
ARR, 46
BG modelling

BG-LFT model, 47
causal and structural properties, 50
causality assignment, 50, 51
definition, 49–50
HBG technique, 52–53
hydraulic tank and valve, 50, 52
power variables, 50

DBG technique (see Diagnostic Bond
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model-based quantitative, 45, 46
SSF, 47
two-tank benchmark

ARRs/GARRs, 66–68
autonomous discrete event, 65
coherence vector, 74
controlled discrete event, 65
GFSSM and MCSSM, 70, 71, 74
HBG model, 66
optimum adaptive threshold, 68–70
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fault, 70
PI-controller, 65
response of, 71–73
schematic diagram, 64, 65
SSF, 74–75

Fault incidence matrix (FIM), 172, 173, 175
Fault isolation

computational complexity, 93
decision making, 113–114
distance, 111–113
HPPN, 212
principle, 108–110
SMPL automata, 91–92

Fault signatures
ADAPT-Lite, 202, 203
qualitative fault isolation approach,

194–195
FDI, see Fault detection and isolation (FDI)
Feed-forward NN, 24
FIM, see Fault incidence matrix (FIM)
Four-tank hybrid system, 143–148
Fuzzily weighted generalized recursive least

squares (FWGRLS), 35–36
Fuzzy logic systems, 18

G
Generalized Likelihood Ratio Test (GLRT)

based fault detection
FIM, 173
IM leak fault, 175
residual prediction, 166, 168

Global-ARRs (GARRs), 46
DBG technique, 57–59
two-tank benchmark, 61–68

Global Fault Sensitivity Signature Matrix
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Grid side converters, 17
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HNS modeling, see Hybrid nonlinear system
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How-to-learn method, 19–20
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