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Abstract The discovery that the metabolism of cancer cells is different from
non-malignant cells is not new, this finding was described more than a century
ago by O. Warburg. Nevertheless, in the last decade the technologies such as
capillary electrophoresis, mass spectroscopy (MS), and proton nuclear magnetic
resonance spectroscopy (H-NMR) have allowed deciphering the complexity and
heterogeneity underlying the cancer metabolism. These high-performance tech-
nologies are generating a large amount of data that requires conceptual schemes
and approaches to efficiently extract and physiologically interpret the dynamic
spectrum of the metabolome data in cancer samples. Breast cancer is a disease that
highlights the need to develop computational schemes to systematically explore the
metabolic alterations that support the malignant phenotype in human cells. Hence,
systems biology approaches with capacities to integrate in silico modeling and high-
throughput data are very attractive for clinicians to make oncological treatment
decisions combined with static parameters such as clinical and histopathological
variables. In this chapter we present a cutting-edge review, perspectives and scope
of how metabolic approaches in breast cancer studies can be used not only to
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integrate the local and systemic response of the host, but also as a technique
to look for metabolic biomarkers by non-invasive and simpler sample procedure
in biofluids such as serum, saliva, urine, pleural fluid, breath, and ascites. We
discuss how the “metabolic phenotype” approach could contribute to developing a
personalized medicine by combining metabolome data and computational modeling
to evaluate some clinical variables such as detection of relapses, monitoring and
response prediction to treatment and toxicity prediction in patients. Even though
some advances have been accomplished, in practice there are many challenges
and limits that will have to be broken before the metabolomics can be integrated
into the day-to-day clinic. Despite this situation, it is evident that the translational
multidisciplinary approach combined with the rapid technological development and
the correct data interpretation will bring in the future tools for improving outcomes
in the clinical area.

Keywords Metabolism in cancer · Systems biology · Genome-scale metabolic
reconstructions · Metabolome · Precision medicine

Abbreviations

ABC Advanced breast cancer
AUC Area under curve
AUROC Area under the receiver operating characteristic curve
CE-TOF/MS Capillary electrophoresis time-of-flight mass spectrometry
CE Capillary electrophoresis
EBC Early breast cancer
GC-MS Gas chromatography-mass spectroscopy
HER2 Human epidermal growth factor receptor 2
H-NMR Proton nuclear magnetic resonance spectroscopy
HR-MAS High resolution magic angle spinning magnetic resonance

spectrometry
LBC Localized breast cancer
LC-MS Liquid chromatography-mass spectroscopy
LTNBC Localized triple negative breast cancer
LTPBC Localized triple positive breast cancer
MS Mass spectroscopy
NMR Nuclear magnetic resonance spectroscopy
no pCR No pathologic complete response
OPLS-DA Orthogonal least-squares discriminant analysis
OS Overall survival
pCR Pathologic complete response
PLS-DA Partial least squares discriminant analysis
TNBC Triple negative breast cancer
TNMc Clinical tumor/nodes/metastasis
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TNMp Pathological tumor/nodes/metastasis
TPBC Triple positive breast cancer
TT Treatment toxicity
TTP Time to disease progression

1 Introduction: A Brief Survey of Metabolic Alterations
in Cancer

Metabolic alteration is a hallmark in cancer cells whose characterization and
understanding have crucial implications to develop optimized drug design and
identify feasible biomarkers to improve the diagnosis and prognosis of the disease.
The most well-known metabolic alteration in cancer is the Warburg effect, which
represents an aerobic glycolysis in cancer cells given by an excessive consumption
of glucose and high rates of lactate production even at high concentrations of
oxygen available in the microenvironment [1]. Besides glycolysis, glutaminolysis
is another main pillar of tumor cells for energy production and an important source
of nitrogen for proteins [2]. Glutamine is an abundant metabolite in blood and
its consumption and degradation play an essential role to replenish a variety of
metabolic functions and consequently, its control has been suggested as a potential
metabolic therapeutical strategy again the uncontrolled proliferation in cancer [3].
For instance, glutamine is a fundamental piece in metabolism being responsible
for many cellular functions, like nitrogen donor for purines, pyrimidines, and non-
essential amino acids necessary for proliferation, also required in the generation
of antioxidants to remove reactive oxygen species, as well as carbon donor for
fatty acids synthesis [4]. Moreover, it is an indispensable piece in cell signaling,
apoptosis, and drug resistance, as well as epithelial-mesenchymal transition, a
considerable step in metastasis [5]. Furthermore, glutaminolysis contributes to
tumor growth in two distinct but connected ways, by promoting cell proliferation
and inhibiting cell death. Overall, both of these metabolic mechanisms, Warburg
effect and glutaminolysis, are paired in cancer cells for completing each other the
metabolic requirements for biomass production in cancer tissues [6, 7].

Despite these findings have been a milestone in cancer biology, currently there is
evidence that these effects can be the tip of the iceberg, and new complex metabolic
phenotypes can emerge due at least by two main factors: the genetic heterogeneity
in cancer evolution and the specific physiological conditions prevailing in human
tissues [8]. Thus, the understanding of how metabolic alterations emerge in different
types of cancer and how these can be associated with clinical variables for diagnosis
and prognosis is an active field that promises the development of precision medicine
based on the personalized description of the genetic background and clinical
history of the patients. In order to move toward this last direction, there will
be a more close and permanent communication between clinical knowledge in
oncology, data obtained from high-throughput technologies and systems biology
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schemes to interpret them. Notably, significative advances have been achieved
toward the integrative description of metabolome technologies and the development
of computational schemes to integrate and interpret data. Thus, recent advances
in technologies such as capillary electrophoresis (CE), mass spectroscopy (MS),
and proton nuclear magnetic resonance spectroscopy (H-NMR) have allowed to
characterize and differentiate the metabolic phenotype between patients with and
without cancer by monitoring invasive and non-invasive clinical samples such as
biopsies, urine, saliva, and plasma [9]. On the other hand, genome-scale metabolic
reconstructions and constraint-based modeling have been a proper paradigm in
systems biology to integrate high-throughput data, explore the metabolic phenotype,
and predict metabolic targets to reduce proliferation in cancer cells and explore
other strategies in human complex diseases. In this chapter, we present a deep
discussion of the advances, challenges, and perspectives of how systems biology
and metabolome technology is an appealing strategy to understand the metabolic
alterations in clinical stages for breast cancer, a disease with a strong impact at
worldwide scale. Given the different academic backgrounds between physicians
and computational scientists, one of our purposes is to build a line of communi-
cation between both areas. To this end we discuss recent clinical applications of
metabolome and systems biology in the study of breast cancer. With this idea in
mind, we organize the chapter as follows. Section 2 is devoted to present some
clinical applications of metabolome data to understand the metabolic alterations
in breast cancer. In Sect. 3 we present the main ideas and principles that drive
modeling in systems biology, mainly genome scale metabolic reconstructions. Here
we highlight the need of mathematical and computational formalisms to get three
aims: (1) integrate and interpret high-throughput data from a systemic point of view,
(2) construct a framework for systematically building biological hypotheses; and (3)
rational design of experiments to reduce the proliferative progress and malignancy
of cancer cells. Finally, the last section is focused to analyze and evaluate the current
limitations and challenges that we need to face in order to persuade and implement
future systems biology schemes in the health-care sector.

2 Clinical Applications of Metabolome: Studies in Breast
Cancer

For many years patients with breast cancer were treated with the concept that
one treatment would fit to all. Treatment criteria were based only on anatomical
and pathologic variables such as tumor, nodes, metastases (TNMc (clinical)/TNMp
(pathologic) stage), negative versus positive nodes, and hormone receptors status.
However, even though these variables are extremely relevant to determine a patient
diagnosis, the overwhelming heterogeneity of cancer has made evident that the drug
effectiveness depends on a set of factors such as the genetic context, treatment
tolerance, toxicity, HER2 overexpression, and patient metabolism. In the last years



System Biology, Metabolomics, and Breast Cancer: Where We Are and What. . . 173

after the omics revolution, the discovery of new biomarkers, receptors, and intra-
cellular mechanisms have allowed to treat in a personalized way and consequently
benefiting the patients with the concept of “less is better.” The correct selection of
the optimal treatment allows to have the most effective and less toxic treatment.
Personalized medicine from the therapeutic point of view is defined as a model
that uses molecular profiling technologies to tailoring the correct treatment for the
right person at the right time [10]. Breast cancer is one of the best cancer examples
in which high-throughput technologies have transferred genetic knowledge into
clinical practice through the association of different biological subtypes with differ-
entiated prognostic or treatment response [11]. Altered metabolism is a hallmark to
sustain the malignancy in cancer given that cancer cells simultaneously rewire their
metabolism to increase the production of biomass, and induce genetic profiles that
modify the checkpoint mechanism of the cell cycle. Uncovering and understanding
the molecular mechanism by which metabolism, cell cycle, and microenvironment
link together have important implications to explore the physiological responses that
can emerge inside the tumor and design strategies for optimal outcome in the clinical
field. The metabolic approach in breast cancer is attractive given that the genomic
and transcriptional approach cannot analyze the dynamic metabolites that could
be a key determinant of many malignant and non-malignant pivotal cell pathways
[12]. Another practical advantage for the clinician and patient is the easier sample
taking and the goodness of obtaining multiple samples during the disease evolution.
The breast cancer clinical scenarios where the metabolomic approaches have been
applied are summarized in Table 1.

2.1 Screening/Early Diagnosis

Despite human life expectancy has increased in the last century, the frequency
of chronic diseases, such as cancer, have increased due a variety of factors that
include the diet, the environmental and unhealthy lifestyles. Cancer is and will
be a common disease that will confront resource-limited health systems; derived
from this there is a great interest in screening susceptible population to detect in a
preclinical manner which would make the possible cancer cure or reduce treatment
costs. Cancer diagnosis in preclinical stages increases the possibilities of cure and
evidently has a less expense on health systems. Like any screening maneuver, there
is a possibility of damage finding false results (positives or negatives) or giving
overtreatment to tumors that do not impact the patient survival. That is why the
interest in developing fine diagnostic tools with great accuracy is a constant in
cancer screening. The metabolome is theoretically envisaged as a great screening
tool because of easiness in obtaining samples and their predictive accuracy. There
are several studies in which it has been possible to demonstrate that the metabolic
alterations differ markedly between malignant and non-malignant proliferative cells
[13].
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Table 1 Clinical applications of metabolome: studies in breast cancer

Clinical Scenario Author/n Study design Sample type Outcome(s)

Screening/early
diagnosis

Slupsky et
al./n D 38/67

Cases/controls Urine R2 D 0.75Q2 D 0.57

F-P7
METAcancer
consor-
tium/n D 289/15

Cases/controls Breast cancer
tissue/breast
non-malignant
tissue

Staging Oatman et
al./EBC
n D 44 ABC
n D 51

Prospective
cohort

Pre- and
post-surgery
serum

Sensitivity 75%
Specificity 69%
Accuracy 72%

Jobard et
al./validation
cohort EBC
n D 61 ABC
n D 51

Prospective
cohort

Pre-surgery
and pre-
chemotherapy
serum

AUC 0.91 Sensitivity
78.2–95.6%
Specificity
67.3–87.7%

Memorial
Sloan
Kettering
Cancer Center
Biobank LBC
n D 61 ABC
n D 51

Prospective
cohort

LBC
pre-surgery
and
post-surgery
ABC serum

Accuracy 84–87%
ER negative Relapse
AUC 0.82, sensitivity
82%, specificity 72%
Accuracy 75%

Hadi et
al./n D 152/155

Cases/controls Serum Cases
pre-surgery

Sensitivity 96%
specificity 100%

Classification by
biological
subtypes

Borgan et
al./n D 46

Retrospective
cohort

Breast cancer
tissue

3 luminal subgroups
identification
(p D 0.001)

Cao et
al./n D 75
LTNBC
LTPBC

Retrospective
cohort

Breast cancer
tissue

Accuracy 77%
(p D 0.001)

Predictive mark-
ers/neoadjuvant
context

Wei et
al./n D 28
LBC

Prospective
cohort

Serum pCR vs no pCR
Discrimination for no
pCR 80% AUROC
0.72

Prediction/early
detection of
toxicity

COMET
project
(consortium
for
Metabonomic
toxicology)

Murine model Serum and
urine

Sensitivity 41%
specificity 77–100%

Measurement of
residual disease

Asiago et
al./EBC
n D 56

Prospective
cohort

Serum
pre-surgery

Relapse prediction
13 months earlier
than clinical methods
in 55% of relapsed
patients

Oakman et
al./n D 44
EBC

Prospective
cohort

Pre- and
post-surgery
serum samples

Preoperative LBC
Sensitivity 75%,
specificity 69%
predictive accuracy
72%

(continued)
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Table 1 (continued)

Clinical Scenario Author/n Study design Sample type Outcome(s)

Prognosis/treatment
response prediction in
ABC

Tenori et al.
n D 579
ABC

Prospective
cohort

Subgroup
analysis
HER2
positive

TTP
accuracy
89.6% OS
predictive
accuracy
78%

EBC early breast cancer, LBC localized breast cancer, ABC advanced breast cancer, LTNBC
localized triple negative breast cancer, LTPBC localized triple positive breast cancer, pCR
pathologic complete response, no pCR no pathologic complete response

With the purpose to move toward early diagnosis methods studies have been
carried out on gastric, prostate, and pancreatic cancer [14–16]. For instance,
Slupsky et al. collected urine samples in breast and ovarian cancer patients at
different cTNM stages and in healthy women. They described 67 metabolites from
300 selected, 80% matched in the spectrum and could be dissected to the two
study cohorts; women with cancer versus healthy controls [17]. Furthermore, the
European FP7 METAcancer consortium analyzed 300 patients with breast tumor
and non-malignant breast tissue. As a result of this study, there were identified
600 metabolites as complex lipids, primary metabolites, and unidentified metabolic
signals. It was possible to identify significant differences in a heat map between no-
malignant breast tissue and breast cancer. Notably, 15 non-malignant breast tissue
and 289 breast cancer tissue were compared and the metabolites between the two
groups were different with very few outliers [18, 19].

In a recent publication by Zhou et al., H-NMR spectroscopy was performed
on urine and serum samples from patients with cancer and healthy controls; using
orthogonal least-squares discriminant analysis (OPLS-DA) allowed to discriminate
a metabolic profile for cancer. Nine serum metabolites and 3 metabolites in urine
were significantly different between the two groups. In OPLS-DA score plots
of serum sample there were significant biochemical differences between the two
groups (R2X D 0.39 y Q2 D 0.75) [20].

2.2 Staging

The classic canons of the cancer staging are based on anatomical data (tumor size,
node infiltration, and distant metastasis); however, it has been proven over time
that this classification is not always associated with the prognosis or treatment
benefit prediction because there are other variables in the equation. Thus, there are
metabolomic studies in renal and bladder cancer which have demonstrated that the
metabolomic profiles can differentiate between localized and advanced disease. In
breast cancer, Oakman et al. [21] showed significant differences in the metabolic
profiles between localized and advanced disease in 44 early breast cancer patients
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in whom serum was collected pre- and post-surgery and in serum of 51 advanced
breast cancer. The prediction of this metabolic profile for the advanced disease
had a sensitivity of 75%, specificity of 69%, and predictive accuracy of 72%. On
the other hand, Jobard et al. [22] described a metabolic fingerprint for metastatic
disease in women with localized breast cancer and advanced disease, in the training
cohort they used 46 preoperative samples in localized disease and 39 samples in
advanced disease. In the validation cohort 61 samples in localized disease and 51 in
metastatic disease showing a high power of discrimination between both entities.
In the Memorial Sloan Kettering Cancer Center (MSK) biobank, the metabolic
fingerprint was compared in 90 patients with advanced breast disease and 80 patients
with localized breast disease. Patients with localized disease had a basal sample and
another post-surgery. Clinical follow-up was 5 years and a training and validation
cohort was included in the study. A high predictive accuracy was demonstrated
between 84 and 87% to distinguish both entities and in localized disease where a risk
score for relapse was generated. This score was compared with conventional clinical
risk factors for relapse in ER negative disease and the metabolomic risk score was
obtained in the validation cohort AUC 0.82, 82% sensitivity, 72% specificity, and
75% predictive accuracy [23]. Hadi et al. in the serum of 152 pre-surgery breast
cancer patients and 155 controls compared by GC-MS (Gas chromatography-mass
spectrometry) the metabolic profile followed by chemometric analysis. Partial Least
Squares Discriminant Analysis (PLS-DA) model identified significant differences
between the groups, sensitivity 96% and specificity of 100% on external validation.
An increased lipogenesis and production of volatile organic metabolites indicates
key metabolic alteration in breast cancer patients [24].

2.3 Classification by Biological Subtypes

Since the metabolomics approach has the ability to capture the entire picture
of host–tumor interaction, it represents an attractive variable for their biological
classification. Thus, Borgan et al. analyzed 46 biopsies of breast cancer patients
with a combined transcriptomic (RNA extraction and microarray analysis) and
metabolomic approach (high resolution magic angle spinning magnetic resonance
spectroscopy) [25]. In 31 tumors classified as luminal A using unsupervised
hierarchical clustering, three luminal subgroups A1, A2, A3 were identified. The
major metabolites differed significantly between each of the profiles (p D <0.001)
including alpha-glucose, beta-glucose amino acids, myo-inositol, and alanine. In the
A2 subgroup were those samples with low glucose levels and high levels of alanine
and lactate which results in a greater Warburg effect.

In addition, metabolome studies have contributed to distinguishing different
subgroups in same cancer. For instance, the European FP7 METAcancer consortium
has reported metabolic heterogeneity in breast cancer biological subtypes (hormone
receptor positive and negative tumors) and between histological grade differenti-
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ation (grade 1–2 versus grade 3) [11, 12]. Furthermore, Cao et al. characterized
the metabolic profiles of triple negative breast cancer (TNBC) and hormonal
positive plus HER2 positive breast cancer called triple positive breast cancer
(TPBC positive). In order to explore the metabolic activity, high resolution magic
angle spinning (HR MAS) magnetic resonance spectroscopy (MRS) was performed
in 75 located infiltrating breast cancer tissues. Multivariate partial least squares
discriminant analysis (PLS-DA) modeling and relative metabolite quantification
were used. The PLS-DA showed high accuracy to separate TNBC and TPBC
(77.7%, p D 0.001). The concentration of choline was higher in TNBC than
TPBC (p D 0.008, q D 0.041), TNBC lower level of Glutamine (p D <0.001,
q D 0.001) and higher Glutamate (p D 0.002, q D 0.015) compared to TPBC.
In discrimination between HER2 positive and HER2 negative by PLS-DA CV
accuracy was 69.1% (p D <0.001). High Glycine was found in HER2 positive
(p D 0.002, q D 0.012) [26]. Even though these results represent good news for
characterizing the malignant phenotype through some key metabolites, it is needed
to study its clinical implications in the prognosis of the disease.

It has been previously described that breast cancer requires glutamine for cell
proliferation, in TNBC cell lines has recently been reported that the expression of
a Mucin 1 (MUC1). MUC1 is a glycoprotein that causes alterations in metabolic
pathways involved in tumor growth. Goode et al. observed a cellular dependence
of glutamine with MUC1 expression which facilitates metabolic reprogramming to
use glutamine and generate chemoresistance. MUC1 overexpression significantly
increased glucose and glutamine uptake in MDA-MB-231 cells and MUC1 knock-
down reduced glucose and glutamine uptake in MDA-MB-468 cells [27].

2.4 Predictive Markers/Neoadjuvant Context

The context of neoadjuvant treatment in breast cancer is for the clinician the perfect
scenario to test biologically sustainable hypotheses for the search of prognostic or
predictive markers that allow treating each patient in a personalized and precise
way [28]. Undoubtedly, this enterprise has strong impact in identifying early
markers of response to treatment in the understanding of taking better and more
dynamic therapeutic decisions. Even though studies evaluating metabolomics in the
neoadjuvant context of breast cancer treatment are very scarce, some breakthroughs
have been reported. For example, Wei et al. described in serum samples the
metabolic profile of 28 patients with non-metastatic breast cancer who received
sequential neoadjuvant chemotherapy (Epirubicin 990 mg/m2 C Cyclophosphamide
600 mg/m2, 4 three weekly cycles) followed by taxane (Docetaxel 100 mg/m2, 4
three weekly cycles) [29]. In HER2 positive tumors, trastuzumab was added. They
reported a complete pathological response (n D 8), partial response (n D 14), and
no response (n D 6) to chemotherapy. A prediction model with LC-MS and NMR
was used. Threonine, Isoleucine, Glutamine from NMR and linolenic acid from LC-
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MS were significantly different (p D <0.05) and (p D <0.01), respectively, between
the pathological response groups. Combining NMR and LC-MS analysis had the
capacity to discriminate up to 80% of the patients who would not have a complete
pathological response to neoadjuvant chemotherapy (AUROC D 0.72).

2.5 Prediction or Early Detection of Toxicity

For many years it has been known that the toxicity derived from the oncological
treatment varies from patient to patient. Because of this fact, there is a need to
identify metabolic biomarkers that help us to select the optimal treatment with
the adequade doses for each patient. With this purposes in mind, the COMET
project (Consortium for Metabonomic Toxicology) has studied murine models and
organ-specific toxicity (liver, kidney) in urine and serum samples with NMR-based
technology that has shown that the metabolomic signature can have a sensitivity of
41% and specificity of 77–100%, which is a practical tool for toxicity screening
[30].

2.6 Measurement of Residual Disease

Breast cancer, even when clinically appears to be localized to the breast and axillary
nodes, is a systemic disease at the time of diagnosis (micrometastatic disease).
Notably, the metabolomic profile would allow distinguishing patients with the
micrometastatic disease who are at increased risk of relapse. Asiago et al. analyzed
serum samples of women with early breast cancer in surveillance following surgical
resection to test if metabolomic profile could be used to predict relapse. 257 samples
from 56 breast cancer patients, 20 patients relapsed and 36 had no relapse evidence.
With a follow-up of at least 2 years Combination NMR (nuclear magnetic resonance
spectroscopy) and MS (mass spectroscopy) found a relevant metabolites panel to
discriminate relapse versus no relapse; the metabolites predict the relapse 13 months
earlier than clinical methods did in 55% of relapsed patients [29].

In another study, Oakman et al. in forty-four early breast cancer patients with
pre- and postoperative serum samples analyzed a metabolomic fingerprint by
NMR, fifty-one metastatic breast cancer patients were used as control group. This
fingerprint was contrasted with the Adjuvantonline calculator for relapse risk mea-
surement. Preoperative localized breast cancer was identified (75% sensitivity, 69%
specificity, and 72% predictive accuracy). The comparison with Adjuvantonline was
discordant, high risk by Adjuvantonline, pre- and post-metabolomic were 21, 10,
and 6 respectively [19].
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2.7 Prognosis/Prediction of Treatment Response in Advanced
Breast Cancer

579 patients with metastatic breast cancer were randomized to receive pacli-
taxel C lapatinib or placebo. Serum metabolomic profiles were analyzed using
NMR spectroscopy. The outcomes were time to progression (TTP), overall survival
(OS), and treatment toxicity (TT). In a subgroup analysis in HER2-positive
treated with paclitaxel C lapatinib, metabolomic profiles (in the upper and lower
thirds of dataset) showed significant differences for TTP (n D 22, predictive
accuracy D 89.6%) and OS (n D 16, predictive accuracy D 78%) [31]. This
work illustrates that the metabolomic profile can be used to predict the response
and prognosis in a specific type of anti-HER2 target drug (lapatinib) in a specific
subgroup of advanced breast cancer.

In summary, metabolome technology applied in cancer clearly opens a window
with opportunities to develop new methods of diagnosis and prognosis in breast
cancer with potential benefits to improve the outcomes of the treatments applied
to patients. However, in order to reach this practice in clinical stages, yet there
are challenges that should be overcome such as the proper biochemical interpre-
tation and the biological implications of metabolome measurements. Thus, having
obtained the data, a set of practical questions emerge such as what is the activity of
the metabolic network associated with the measurements, what are their biological
implications, and how this knowledge will be useful in diverse clinical scenarios.
These questions define one frontier in personalized medicine and in order to build
possible responses one should build computational schemes and methods capable to
analyze the data by taking into account the complex nature of the human metabolic
networks through a systems biology perspective. Given the inherent complexity of
the disease, understanding the mechanisms by which metabolism supports cancer
overcomes our intuition and in this context systems biology schemes supply with
computational frameworks to integrate the high-throughput data and build testable
hypothesis in a systematic and systemic fashion.

The next section is devoted to discussing a paradigm in systems biology
that has the capacities to contribute to tackling the previous questions by the
simultaneous combination between metabolome data and genome-scale metabolic
reconstructions.

3 Systems Biology. Integrative Schemes Between
Computational Modeling and High-Throughput Data

With the advent of high-throughput technologies the possibility to extend our molec-
ular knowledge of how human tissues maintain its functional capacities has been
significantly extended. Thus “omics” technologies have contributed to uncovering
a set of genes, proteins, or metabolites that simultaneously change together for
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sustaining the physiological states that we observe in multifactorial diseases such
as cancer. Thus, combining these technologies important breakthroughs have been
reported to uncover the genetic and epigenetic mechanisms in a variety of cancer
and distinguish their metabolic alterations in cancer cell lines and biopsies on human
tissues. However, the integrative description and biological interpretation of high-
throughput data are not easy and in order to complete this task we should develop
computational algorithms that let us to integrate, interpret, and hypothesize the
underlying biological mechanisms in the system of study, this latter point being
a central aim in Systems Biology [32]. Systems biology deals with the development
of computational methods to explore the relationship between the genotype and
the phenotype, and old question in biology, but now taking into account that living
systems are composed by biological entities such as genes, proteins, and metabolites
that interact simultaneously to sustain the phenotype. In the more fundamental
essence, the principle in this science is based on the fact that we are a system, it
means our body is integrated by a variety of components whose integration and
interaction induce states of wellness and disease such as cancer, in other words, seen
the physiological states as emergent properties. Thus, in the case of metabolism a
variety of breakthroughs have been reported to describe the phenotypic behavior
in microorganisms and human tissues in cancer [33]. Even though there is no
consensus on defining systems biology, we can highlight three properties in the
field: (1) an integrative scheme to integrate and interpret high-throughput data; (2)
a mathematical framework to explore and model biological networks, and (3) a
computational framework to build testable hypothesis for associating the genotype
and phenotype relationship. Thus, systems biology has become a proper description
to analyze and explore the biological mechanisms that guide a complex disease such
as cancer. An interesting field in this area has been the analysis of the metabolic
alterations that guide the phenotype in cancer [6, 34–36]. As we have described in
previous sections, metabolic alterations are a hallmark of cancer whose description
is currently an active line of research to design new strategies in the therapeutic
field [37]. In the next section, we present a mathematical framework to link the
metabolome data and the genome-scale metabolic reconstruction, a powerful tool to
analyze the metabolic phenotype in cancer [33].

3.1 K-cone: A Mathematical Scheme to Explore the Phenotype
from Metabolome Data

Living organisms orchestrate their functions through the constant activity of
biochemical reactions, these required to evolve and survive under external envi-
ronments. With the publication of the human metabolic reconstruction and the
high-throughput technologies, the association between the metabolic pathways and
the emergence of a disease have been an appealing activity in basic biomedical
research and potentially in translational medicine. In this scenery, the development
of computational methods for analyzing and interpreting the metabolic activity of a
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sample starting from their metabolome profile is one goal in systems biology. In this
section, we present one computational scheme that contributes this latter point, how
to interpret the different metabolic phenotypes obtained from two or more samples
associated with different physiological states. As we will see, the method can be
useful to identify the metabolic alterations in cancer studies by taking into account
genome-scale metabolic reconstructions and metabolome profile of the samples.
The scheme is based on the consideration that we have a metabolic reconstruction
defined by a certain number of metabolic reactions, see Fig. 1. Without loss of
generality, the dynamical behavior of the metabolites conforming the metabolic
network is entirely described by

dx

dt
D S� v (1)

where S is the stoichiometric matrix, x is the vector that contains the concentrations
of the metabolites included in the metabolic reconstruction, and v represents the
vector with the metabolic fluxes. Then, by considering that the metabolic fluxes for
each transformation are ruled by the mass action law, it means the metabolic flux is
the rate constant of the reaction multiplied by the concentrations of the substrates

vi D ki

mY

j

xSi;j (2)

By substituting Eq. (2) into Eq. (1) it is possible to show that Eq. (1) at the steady
state condition is written as:

S� � � k D 0 (3)

where � is a diagonal matrix whose entries contain the mass action terms for the
flux of each metabolic reaction (mass action matrix) and k is a vector with all the
rate constants.
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This equation now defines a space for all feasible kinetic constants in the
steady state, the k-cone. Hence, by assuming that the metabolic reactions follow
a mass action law, Eq. (1) at the steady-state condition allows us to write reduced
expression. Notably, Eq. (3) is built by three components: the stoichiometric matrix
which contains the specific metabolic capacities in the organisms; the matrix �

which depends only on the concentrations of the metabolites, and the vector k
which represents the set of parameters associated with the rate constant for each
metabolic reaction. Thus, having measured the metabolome profiles associated with
the concentrations of metabolites in a metabolic reconstruction, the solution of



Fig. 1 A possible pipeline to establish the relationship between clinic and metabolome data
through the pass of four levels. (a) The collection of biofluids (urine, blood, plasma, saliva, etc.) is
a central step to obtain the profile of concentrations of metabolites associated with the phenotype
among different biological conditions and patients. (b) The metaboloma analysis of the samples
through different techniques such as NMR and CE-TOF/MS. (c) Clinical studies and classification
of the samples to store and evaluate metabolome data in prevention, detection, diagnosis, and
prognosis. For prediction of a new hypothesis, one of the new approaches is systems biology,
specifically mathematical modeling. In this chapter, we describe a specific algorithm called k-
cone, developed to analyze differences in metabolic fluxes of metabolic networks in different
conditions. Panel (d) is depicted the implementation of computational model that contributes to
the classification and interpretation of the data at a genome-scale for each patient
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Eq. (3) supplies with information about the numerical range of the rate constants
that ensure that at steady state the system will reach the metabolic concentrations
experimentally measured. These numerical intervals for the kinetic parameters are
useful because contribute to define the feasible metabolic space of the reconstructed
network. The characterization of the metabolic phenotype is entirely specified by
Eq. (3) whose solution, in general, is not unique but it falls into a space of possible
solutions, the k-cone space [38, 39], given by the null space of the matrix resulted
by S � M, see Fig. 1. In general, as the metabolic reconstruction increases in number
of reactions, the solution of Eq. (3) is not unique and as the feasible space increases,
it represents the variety of metabolic mechanisms by which the network can ensure
a steady-state condition where the metabolites concentrations are the ones measured
experimentally. As shown in Fig. 1, this space of solutions is visually represented
as cones in the space of kinetic rate constants. Notably, this method supplies with
a pipeline to represent the metabolic capacities of a network based on a set of
metabolome measurements, and consequently, a corollary of the method is the study
of metabolic alterations that can guide the metabolic phenotype between two or
more samples [38, 40]. For instance, we focus our method on the analysis of two
physiological samples such as a cancer cell line and control cell line. In this case,
the profiles associated with each metabolic phenotype are mathematically specified
as follows:

S� Mn� kn D 0

S� Md� kd D 0
(5)

The solutions of the set of equations shown in (5) allow us to tacked a set
of questions that uncover the potential metabolic alterations that distinguish each
physiological condition. As shown in Fig. 1, the feasible space for each condition
has some differences, this indicates the metabolic alteration in kinetic parameters
required to ensure each physiological condition. In general terms, both k-cone
spaces are different and both can be seen as a linear transformation from one to
the other. Thus, writing Eq. (1) in vector notation for each set of metabolome data,
the kinetic feasible space in each case can be written as follows:

kd D M�1
d � Vd (6)

which can be rewritten as follows:

kd D M�1
d � diag

�
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�
� Vn

D M�1
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Concluding that each point in k-cone from disease space can be transformed to
the other k-cone space:

kd D T � W � kn (7)

with
T D M�1

d � Mn

W D diag
�

Vd
Vn

�

Equation (7) quantifies the metabolic transformation in the kinetic parameters
that guide the metabolic profiles measured experimentally in both conditions,
interestingly the difference between the normal and the disease state of the entire
space of steady-state kinetic parameters is completely defined by the mass-action
terms which can be obtained from metabolome data. The feasible space of kinetic
parameters, associated with normal and disease samples, help us to identify differ-
entiated enzymatic activity between both physiological states. This method recently
has been applied to explore the metabolic alterations between HaCat and the cancer
cell line HeLa, the most studied cell line for cervix cancer [36]. Applying the method
to the metabolome data obtained for HeLa cancer cell and HaCat independently, it
has been possible to uncover the metabolic differences that guide the malignancy
in HeLa with respect to a control system. By selecting the log2-fold between the
average of the range for each kinetic parameter, this study concludes that among the
enzymes with significative alterations are phosphofructokinase, phosphoglycerate
mutase, pyruvate kinase, 6-phosphogluconate dehydrogenase, pyruvate dehydroge-
nase, and aconitase. More importantly, these findings are in agreement with previous
reports [41–45]. In addition to these predictions obtained from our formalism, it has
capacities to identify global changes in classical pathways between the comparative
analysis of both physiological samples. For instance, the analysis with k-cone
predicts a strong dysregulation of TCA cycle enzyme activities as well as increased
ATP usage and lactate export in HeLa cells, all consistent with the Warburg effect
[46]. The set of necessary regulations for proliferation consisted of the up-regulation
of four glycolytic enzymes, the up-regulation of ATP synthesis, and the increased
export of lactate. Thus, the Warburg effect in HeLa cells seems to be a consequence
of maintaining a high proliferation rate. In general, the strongest regulation was
observed for phosphofructokinase, which showed an 8-fold increase in enzyme
activity in HeLa compared to the HaCaT cell line. Because phosphofructokinase
is allosterically regulated by ATP, citrate, and pH, this regulation is consistent with
the observed lower concentrations of ATP, citrate, and lactate.

Overall, this first study suggests that k-cone analysis can contribute to building
hypothesis around the regulatory and metabolic alterations that can support a
malignant phenotype such as cancer from metabolome profiles. In the case of cancer
cell lines, this method has proven to be a proper description to identify metabolic
alterations between control cells and cancer cell lines, this latter point is a valuable
goal to design metabolic strategies to control the malignant phenotype in cancer.
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Even though this approach represents an important breakthrough in modeling
metabolism, an immediate application of the method into samples more complex
such biopsies will claim for overcome some challenges such as the heterogeneity
of the samples, the physiological interpretation of the metabolome data, and the
experimental assessment for the application in precision medicine.

4 Metabolome and Cancer: Critics, Perspectives,
and Challenges in the Clinical Application

The advances in breast cancer prognosis and treatment in the last decades have
been just to recognize different biological phenotypes and it has allowed in the
present and in a near promising future to develop personalized and precision
medicine with a great clinical impact. Theoretically, the metabolic approach is
a great idea for clinicians who make oncological treatment decisions based on
static parameters (clinical and histopathological variables without considering the
interaction between tumor and host). However, some challenges should be overcome
before metabolome technologies can be utilized in the clinical practice. (Among
these challenges we can list the following: small cohorts, number, time and type of
sampling, definition lack of a reference standard, complex algorithms to interpret
the daunting amount of data, variability and reproducibility, external validation,
expensive and sophisticated technology not accessible around the whole world, a
clear superiority demonstration with regard to clinical-pathological parameters or
complementarity to other approaches like circulating tumor cells or identification of
tumor DNA in liquid biopsies, etc.) but the metabolic approach allows to integrate
the local and systemic response of the host (interaction between tumor and host).
From the clinical perspective, the metabolomic approach is extremely attractive not
only for obtaining a non-invasive and simpler sample (serum, saliva, urine, pleural
fluid, breath, ascites, etc.) but it allows what other technologies have not been able so
far, make possible integrate the local and systemic response of the host. In particular,
the characterization of the breast cancer “metabolic phenotype” approach could
contribute to an even more personalized and precise treatment which would allow
having fewer supra or infra-treated patients and toxicity saving. This aim is not an
easy task and will require to evaluate if some fundamental metabolic organizing
principles observed in more simple organisms could contribute to understand how
cancer acquires robustness under drug action [47–49]. Overall, many challenges
and limits will have to be broken before the metabolomics can be integrated
into the day-to-day clinic but it is evident that the translational multidisciplinary
approach combined with the rapid technological development and the correct dates
interpretation will in the future allow the metabolomics applications for precision
medicine [50].



186 A. Armengol-Alonso et al.

Acknowledgments This paper was supported by an internal grant from the Instituto Nacional de
Medicina Genomica, Mexico. Meztli L. Matadamas-Guzman is a doctoral student from Programa
de Doctorado en Ciencias Biomédicas, Universidad Nacional Autonoma de México (UNAM) and
received fellowship 595252 from CONACYT.

References

1. Resendis-Antonio O, González-Torres C, Jaime-Muñoz G, Hernandez-Patiño CE, Salgado-
Muñoz CF (2015) Modeling metabolism: a window toward a comprehensive interpretation of
networks in cancer. Semin Cancer Biol 30:79–87

2. Rajagopalan KN, DeBerardinis RJ (2011) Role of glutamine in cancer: therapeutic and imaging
implications. J Nucl Med 52:1005–1008

3. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer.
Trends Biochem Sci 35:427–433

4. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and
tumor cell growth. Curr Opin Genet Dev 18:54–61

5. Yang L, Venneti S, Nagrath D (2017) Glutaminolysis: a hallmark of cancer metabolism. Annu
Rev Biomed Eng 19:163–194

6. Resendis-Antonio O, Checa A, Encarnación S (2010) Modeling core metabolism in cancer
cells: surveying the topology underlying the Warburg effect. PLoS One 5:e12383

7. Hernández Patiño CE, Jaime-Muñoz G, Resendis-Antonio O (2012) Systems biology of
cancer: moving toward the integrative study of the metabolic alterations in cancer cells. Front
Physiol 3:481

8. McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present,
and the future. Cell 168:613–628

9. Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, Kaneko M et al (2016)
Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep 6:31520

10. Ocana A, Pandiella A (2010) Personalized therapies in the cancer “omics” era. Mol Cancer
9:202

11. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast
tumours. Nature 490:61–70

12. Claudino WM, Goncalves PH, di Leo A, Philip PA, Sarkar FH (2012) Metabolomics in cancer:
a bench-to-bedside inter\ion. Crit Rev Oncol Hematol 84:1–7

13. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s achilles’ heel. Cancer Cell
13:472–482

14. Wu H, Xue R, Tang Z, Deng C, Liu T, Zeng H et al (2010) Metabolomic investigation of gastric
cancer tissue using gas chromatography/mass spectrometry. Anal Bioanal Chem 396:1385–
1395

15. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J et al (2009) Metabolomic
profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–
914

16. OuYang D, Xu J, Huang H, Chen Z (2011) Metabolomic profiling of serum from human
pancreatic cancer patients using 1H NMR spectroscopy and principal component analysis.
Appl Biochem Biotechnol 165:148–154

17. Slupsky CM, Steed H, Wells TH, Dabbs K, Schepansky A, Capstick V et al (2010) Urine
metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin Cancer
Res 16:5835–5841

18. Denkert C, Bucher E, Hilvo M, Salek R, Orešič M, Griffin J et al (2012) Metabolomics of
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