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Abstract Homeostasis implies the approximate constancy of specific regulated
variables, where the independence of the internal from the external environment
is ensured by adaptive physiological responses carried out by other so-called
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effector variables. The loss of homeostasis is the basis to understand chronic-
degenerative disease and age-associated frailty. Technological advances presently
allow to monitor a large variety of physiological variables in a non-invasive and
continuous way and the statistics of the resulting physiological time series is
thought to reflect the dynamics of the underlying control mechanisms. Recent years
have seen an increased interest in the variability and/or complexity analysis of
physiological time series with possible applications in pathophysiology. However,
a general understanding is lacking for which variables variability is an indicator
of good health (e.g., heart rate variability) and when on the contrary variability
implies a risk factor (e.g., blood pressure variability). In the present contribution, we
argue that in optimal conditions of youth and health regulated variables and effector
variables necessarily exhibit very different statistics, with small and large variances,
respectively, and that under adverse circumstances such as ageing and/or chronic-
degenerative disease these statistics degenerate in opposite directions, i.e. towards
an increased variability in the case of regulated variables and towards a decreased
variability for effector variables. We demonstrate this hypothesis for a simple
mathematical model of a thermostat, and for blood pressure and body temperature
homeostasis for healthy controls and patients with metabolic disease, and suggest
that this scheme may explain the general phenomenology of physiological variables
of homeostatic regulatory mechanisms.

Keywords Homeostasis · Physiological regulation · Control theory · Control
systems · Continuous monitoring · Time series · Early-warning signals ·
Complexity · Fractal physiology · Variability · Heart rate variability · HRV ·
Blood pressure variability · BPV · Body temperature

1 Introduction

Homeostasis is one of the core concepts of physiology [1]. The origins of this
concept can be found with the French physiologist Claude Bernard (1813–1878)
who observed that living systems possess an internal stability that buffers and
protects the organism against a continuously changing external environment [2].
Although Bernard was highly honoured and was the most famous French scientist
during his lifetime, his hypothesis of a constant milieu intérieur, first proposed in
1854, was largely ignored for the next 50 years, one of the reasons being that the
technology necessary to measure the internal environment was not yet available
[3]. These ideas were expanded and popularized by the American physiologist,
Walter Cannon (1871–1945), who coined the term homeostasis from the Greek
words όμοιος [omoios] “similar” and στάσις [stasis] “standing still”, together to
mean “staying similar” (but not to be misunderstood as “staying the same”) [4].
Homeostasis thus describes the self-regulating processes by which a biological
system maintains internal stability while adapting to changing environmental
conditions [1, 4]. Homeostatic ideas are shared by the science of cybernetics,
from the Greek κυβερνητικός [kybernitikos] “steersman”, defined in 1948 by the
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Jewish American mathematician Norbert Wiener (1894–1964) in collaboration with
the Mexican physiologist Arturo Rosenblueth (1900–1976) as “the entire field of
control and communication theory, whether in the machine or in the animal” [5].
Negative feedback is a central homeostatic and cybernetic concept, referring to how
an organism or system automatically opposes any change imposed upon it that could
move it away from a predefined setpoint [6]. More recently, it has been proposed that
there may be other or additional mechanisms important for physiological regulation,
not explicitly contained within the original homeostatic concept, in particular antic-
ipatory regulation, behavioural homeostasis and feedforward or positive feedback,
such that numerous alternative explanatory models have been suggested in an
effort to address these apparent gaps in homeostatic thinking, as listed in Ref. [7]:
enantiostasis [8], predictive homeostasis [9], reactive homeostasis [9], homeorhesis
[10–13], homeorheusis [14], homeokinetics [15], rheostasis [16], homeodynamics
[17–19], teleophoresis [20, 21], poikilostasis [22], heterostasis [23], allodynamic
regulation [24, 25] and allostasis [26–28]. Others argue that it is not clear whether
these alternative concepts offer anything that was not already apparent, or at least
readily derivable, from the original concept of homeostasis, and—on the contrary—
criticize that these neologisms may unnecessarily complicate the understanding of
the unifying principles of physiological regulation [29, 30].

Recently, technological advances allow to monitor a great variety of physiolog-
ical variables in a non-invasive and continuous way and it came as a surprise that
most—if not all—of these variables spontaneously fluctuate in time, even when
the monitored subject is in rest. Often, these fluctuations behave in a stochastic
and fractal-like way and without obvious periodic patterns [31]. The variability
of these time series can be studied with various statistical techniques and is
conjectured to correlate with the health status of the organ, process or system
under study [32], as found, e.g., for the variability of blood oxygen saturation
(SpO2) [33], blood glucose variability [34], variability of gastro-esophageal acidity
[35], brain signal variability [36], gait variability [37], heart rate variability (HRV)
[38], blood pressure variability (BPV) [39], variability of breathing dynamics [40],
skin temperature variability [41, 42] and variability of core body temperature
[43, 44], variability of electrodermal activity (EDA) [45], variability of equilibrium
and balance function [46] and variability of physical activity (actigraphy) [47–
50]. Measurement devices capable of continuous physiological monitoring have
become ubiquitous, not only in the medical world but also in the consumer market
with a wide variety of activity trackers, smartphones, smartwatches and dedicated
applets for data collection, analysis and visualization [51]. These specialized and
commercial devices generate huge amounts of data, which are also continuous in
time. It is not always clear how to extract the useful information from this new type
of continuous data, which is exactly the quest of time series analysis [52] in the
so-called Big Data problem [53]. Also, the phenomenology of these physiological
time series is not always well understood, where curiously, for some variables a
high variability is interpreted an indication of good health, as in the case of HRV
[38], whereas in other cases—on the contrary—it has been suggested to imply a risk
factor, as in the case of BPV [39].
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In literature, at least two different theoretical frameworks have been proposed
to explain the variability of experimental time series in physiology and other
fields of knowledge. The loss of complexity hypothesis of Goldberger and Lipsitz
proposes that the geometrical patterns of anatomical organ structures and the time
series of the dynamics of physiological processes are inherently “complex” with
a large variability that is increasingly lost with ageing and/or chronic-degenerative
disease [31, 54–57]. In the same context, based on the empirical observation that
physiological time series tend to follow long-tailed distributions with rare but
large deviations away from the mean as opposed to a gaussian distribution with
frequent but small fluctuations around a setpoint, Bruce West suggested that the
ideas of homeostasis and normality are obstacles for the progress of medicine and
that a new paradigm, fractal physiology, is needed [58–60]. On the other hand,
the framework of early-warning signals of Scheffer, Carpenter and collaborators,
particularly popular in complex dynamical systems such as the climate, ecology and
finance, states that—on the contrary—variables of a system in a state of stability and
equilibrium behave in a gaussian way with low variability and little correlation or
memory of past events, whereas when the system approaches a critical threshold
at the brink of collapse, statistical parameters such as variability, non-gaussianity,
correlations and memory tend to increase, and—if they are detected early enough—
offer the opportunity to take countermeasures to avoid a catastrophe [61–65].

Homeostatic thinking divides physiological variables in two broad categories of
regulated variables as opposed to effector variables, see Table 1 and Ref. [1]. Regu-
lated variables, such as blood pressure (BP) or core body temperature, are variables
that are to be controlled and to be maintained within a very restricted homeostatic
range to ensure the stability of the milieu intérieur and they are anatomically
distinguishable because of the presence of specific sensors that measure the value
of these variables directly; an alternative name could be that of essential variables
[66]. On the other hand, effector variables and the corresponding physiological
responses, such as heart rate (HR) or skin temperature, have an adaptive function,
they oppose and thereby buffer against perturbations from the inner and outer
environment with an objective to maintain the regulated variables as constant as
possible; they do not have their own specific sensors,1 which may suggest that their
absolute values are not of primary importance but matter only because of the effect
they have on the regulated variables. In the present contribution, we hypothesize
that time series of regulated and effector variables can be expected to exhibit very
contrasting statistical properties given their different functions in a homeostatic
regulatory mechanism, which may explain the apparent contradictions between the
loss of complexity and early-warning paradigms. We test this hypothesis in various
systems, in Sect. 2 using a simple mathematical model of a thermostat, in Sect. 3

1The skin of course does have its own thermosensors, but they are part of a reflex loop and not of
a local homeostatic control loop: when touching something extremely warm or cold, there will be
an automatic reaction to move the fingers away, but not a physiological response to locally cool off
or warm up the skin to maintain a constant skin temperature.
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Table 1 As a first approximation, different homeostatic mechanisms may be considered to coexist
in a more or less independent way. The focus of each homeostatic mechanism is a specific regulated
variable that is to be maintained within a restricted homeostatic range, and therefore use is made
of one or more supporting effector variables and corresponding physiological responses whose
function it is to absorb or adapt to variations of the inner and outer environments, with as an
objective to safeguard the constancy of the regulated variable as much as possible, based on Refs.
[1, 67]. In the present contribution, we will focus on the first few mechanisms of which the variables
can be monitored in a continuous and non-invasive way

Homeostatic regulatory mechanisms

Regulated variable Effector variable(s) and physiological
response(s)

(specific sensors available for direct
measurement)

(indirect estimation by effect on regulated
variable)

Arterial blood pressure (BP) Cardiac output (heart rate, stroke volume)

(baroreceptors) Vasomotor (vasodilatation, vasoconstriction)

Core body temperature Vasomotor and superficial skin temperature

(thermoreceptors) Metabolism

Shivering vs. sudomotor

Behaviour and physical exercise

Blood oxygen saturation (SpO2) Respiration dynamics (rate, volume)

(chemosensors) Erythropoietin (EPO) increasing hematocrit
(Ht)

Blood oxygen PO2 and carbon dioxide Respiration dynamics (rate, volume)

partial pressure PCO2 (chemosensors) PCO2 closely related to extracellular fluid pH

Extracellular fluid pH Bicarbonate concentration [HCO3]

(chemosensors) Carbonic acid concentration [H2CO3]

Blood glucose Insulin

(chemosensors) Glucagon

Plasma ionized calcium concentration
[Ca2C]

Parathyroid hormone (PTH)

(chemosensors) Calcitonine

Extracellular sodium concentration [Na] Renin and related aldosterone

(chemosensors)

Extracellular potassium concentration [K] Aldosterone

(chemosensors)

Volume of body water and electrolyte-water
balance

Vasopressin or antidiuretic hormone (ADH)

osmolality or osmolarity Atrial natriuretic peptide (ANP)

(osmosensors) Thirst

analysing HR and BP time series of healthy controls and diabetic patients, in Sect. 4
focussing on time series of skin temperature as a function of body weight, while
in Sect. 5 we propose an intuitive scheme that may explain the phenomenology of
variability of physiological variables in general, and finally, in Sect. 6 we present
our conclusions.
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2 The Thermostat as a Paradigm for Homeostasis

The term thermostat is derived from the Greek words θερμός [thermos] “hot” and
στατός [statos] “standing, stationary” and refers to a controlling component which
senses a system’s temperature and allows for this temperature to be maintained near
a desired setpoint. In cybernetics and control theory, a setpoint is the desired or
target value for a specific regulated variable of a system. A thermostat can often
be the main control unit for a heating or cooling system, in applications such as
ambient air control and sometimes a thermostat combines both the sensing and
control action elements of a controlled system, such as in an automotive thermostat,
see Fig. 1. It is an example of a closed-loop control device and departure of a variable
from its setpoint is the basis for error-controlled regulation, that is, the use of
negative feedback to return the system to its norm, as in homeostasis. A thermostat
is most often an instance of a bang-bang controller where the heating system is
switched on and off as often as necessary. It works by sensing the air temperature,
switching on the heating when the air temperature falls below the thermostat setting,

Fig. 1 The control mechanism of a thermostat. The control mechanism is based on a negative
feedback loop which acts to maintain the regulated variable of the room temperature within a
narrow homeostatic range. The effector variables of the heater and/or the airconditioning allow for
the system to adapt to perturbations from the outside and inside environment. A negative feedback
loop necessarily consists of an odd number of inhibitory/negative couplings (dashed lines) where
connected components are inversely related (an increase in one component induces a decrease
in the other component and vice versa) and an arbitrary number of excitatory/positive couplings
(continuous lines) where connected components are directly related (an increase in one component
induces an increase in the other component and vice versa). Image based on Refs. [1] and [67]
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and switching it off once this set temperature has been reached. The heating
or cooling equipment runs at full capacity until the set temperature is reached,
then shuts off. Other, more advanced controller mechanisms include proportional
controllers, proportional–integral–derivative controllers (or PID controllers) and
optimal controllers. More advanced controllers will be more adaptive, will absorb
the perturbations of the inner and outer environment more effectively in the effector
variables, or will incorporate a memory of past events, to predict and anticipate
future perturbations, with a general objective to minimize more efficiently the error
signal between the expected and the obtained values of the regulated variable.

In what follows, in Figs. 2 and 3, we will show the numerical results for a
simple mathematical model of the thermostat of Refs. [68, 69], which includes a
heater but no airconditioning, to illustrate the statistical differences of time series
corresponding to a regulated variable (the inside air temperature) and an effector
variable (the heater). The model includes the following variables: outdoor air
temperature To, indoor air temperature Ti, water temperature of the radiators Tw

and a binary function �f that indicates whether the furnace of the boiler is active
(state 1) or not (state 0). The initial values at t D 0 are Ti.0/ D 13 ıC and
Tw.0/ D 10 ıC. The thermostat is fixed at the constant setpoint Ts D 20 ıC. Heat is
transferred between the radiators and the indoor air at a rate r1 D 0:03 proportional
to the temperature gradient, heat is lost from the indoor to the outdoor air at a rate
r2 D 0:01 due to imperfect insulation, heat is transferred between the indoor air and
the water of the boiler at a rate r3 D 0:02, and r4 D 1:0 is the rate at which the water
of the boiler heats up when the furnace is switched on. The system is controlled by
three coupled difference equations that update the values at time t C 1 depending on
the values at the previous time step t. We assume that the system updates its values
each minute.

�f .t C 1/ D
�

1 if Ti.t/ < Ts.t/
0 if Ti.t/ � Ts.t/

(1)

Ti.t C 1/ D Ti.t/ C r1

�
Tw.t/ � Ti.t/

�
C r2

�
To.t/ � Ti.t/

�
(2)

Tw.t C 1/ D Tw.t/ C r3

�
To.t/ � Tw.t/

�
C r4�f .t/ (3)

Figure 2 shows results for a numerical simulation of Eqs. (1)–(3) during three
successive hypothetical winter days. The variation of the outside air temperature To

was modelled using a slow linear trend and small random fluctuations superposed
on a 24-h periodic cycle, with day temperatures being higher than temperatures
during the night, but always lower than the thermostat setpoint To < Ts D 20 ıC,
such that the thermostat control system is always active. The thermostat controller
�f of Eq. (1) does not include memory of past events, it does not think ahead,
and the value for t C 1 is updated taking into account only the last known inside
air temperature Ti.t/. It can be appreciated that the thermostat switches on and
off at a faster rate during the night when it is cold outside, and at a slower rate
during the day when the outside air temperature is higher. The switching on and
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Fig. 2 Mathematical simulation of a simple thermostat based on Refs. [68, 69] for three successive
hypothetical winter days. The main figure shows the dynamics of the central heating �f switching
on and off (black curve, states 1 and 0, respectively), the water temperature in radiators Tw (blue
curve) and the inside air temperature Ti (red curve) in response to the outside temperature To

(grey curve of inset A). Shown are also the probability distributions P.T 0/ of the fluctuations T 0

of temperature time series Ti; Tw and To as a percentage of their respective average values (inset
B), the Fourier power spectrum P. f / for To (inset C) and for Tw and Ti (inset D). The horizontal
gridline indicates the temperature setpoint 20 ıC and vertical gridlines indicate midday of the three
successive days (main figure and inset A). Frequency f is in units of total number of oscillations
for the whole duration of the time series

off rate of the thermostat is reflected in small but rapid fluctuations of the water
temperature of the radiators, but also slower and larger periodic oscillations are
present because the water of the radiators will be heated up to a higher average
temperature during the night than during the day to offset the day-night difference
of the outside air temperature. As a result of the heating of the radiators, the inside
air temperature always stays very close and within very small rapid fluctuations from
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°C

°C

P P
P

Fig. 3 Similar to Fig. 2 but for three successive hypothetical spring days

the setpoint, Ti � Ts D 20 ıC. Indeed, when we compare the probability distribution
functions P.X0/ for the fluctuations X0 around the average value � of time series X.t/
expressed as a percentage of this average value,

X.t/0 D 100 � X.t/ � �

�
; (4)

for the inside air temperature Ti, the outside air temperature To and the water of
the radiators Tw, then it is clear that the variability of Ti is well controlled within
a restricted range and is much smaller than the variance of Tw and that both are
smaller than the variations of To. A Fourier spectral analysis of the corresponding
time series offers additional insight into how the control mechanism works. The
power spectrum P. f / of the time series for To shows a dominant peak at f D 3,
reflecting the periodic day-night cycle over three successive days, and is rather flat
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for higher frequencies indicating random white noise. The power spectrum P. f /

for Tw shows the same dominant peak at f D 3 and an additional broad peak at
higher frequencies 50 < f < 100 corresponding to the rapid cycles of heating and
cooling of the water in the radiators at multiple times during the day. On the other
hand, the power spectrum P. f / for Ti shows that the outside perturbation at f D 3 is
successfully suppressed with over 2 orders of magnitude and the dominant feature
of P. f / is the peak at 50 < f < 100 in response to the rapid heating and cooling
cycle of the radiators. In other words, it appears that the automatic thermostat system
creates its own intrinsic rhythms, which have small amplitude but high frequency,
and with which the larger but slower outside perturbations are canceled out. For
more advanced types of controllers, e.g., capable of incorporating memory about
past events, we can expect that more of the outside perturbations will be absorbed in
the effector variable Tw to keep the error signal e.t/ D Ti.t/�Ts closer to 0; in those
cases, the statistical differences between the time series of the effector variable Tw

and the regulated variable Ti will be even larger than in the present example.
Figure 3 shows the behaviour of the system during three successive hypothetical

days in spring time when the temperature during the night is still below the setpoint,
To < Ts, but the temperature during the day rises above the setpoint, To > Ts.
Therefore, the thermostat will be inactive for most of the daytime, during which the
system is incapable to influence neither the water temperature of the radiators Tw

nor the inside air temperature Ti, and both are subjected to the perturbations of the
outside air temperature To. Of course, a heating system can only correct for too-low
temperatures, and an extra cooling effector device would be needed to correct also
for too-high temperatures, as shown for the full climate control system of Fig. 1,
but here, we are interested in studying time series of a control system where the
control fails. The probability distributions functions P.T 0/ show that the fluctuations
T 0 of the would-be regulated variable Ti now exhibit a larger variability than the
fluctuations of the effector variable Tw. The power spectrum P. f / shows an almost
absence of intrinsic rhythms with which the outside perturbations were controlled
in Fig. 2 and consequently Ti and Tw follow here the same dynamics as To.

3 Arterial Blood Pressure and Heart Rate

Figure 4 shows the control mechanism for blood pressure homeostasis where blood
pressure (BP) is the regulated variable and with heart rate (HR), stroke volume
(SV) and total peripheral resistance (TPR) as physiological responses of the effector
variables, where

cardiac output D heart rate .HR/ � stroke volume .SV/ (5)

blood pressure .BP/ D total peripheral resistance .TPR/ � cardiac output: (6)
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Fig. 4 Similar as for Fig. 1 but for the control loop of arterial blood pressure. The control centrum
of the barostat is located in the central nervous system (CNS) which passes commands through the
sympathetic (SNS) and parasympathetic (PNS) branches of the autonomous nervous system to the
effector variables of heart rate (HR) and stroke volume (SV), whose product is the cardiac output,
and the total peripheral resistance (TPR), which together act to maintain blood pressure (BP) in a
restricted homeostatic range as measured by the baroreceptor. Image based on Refs. [1] and [67]

Of all the variables mentioned here, HR is easiest to measure on a continuous
(beat-to-beat) basis, using, e.g., a common electronic electrocardiographic (ECG)
registration. Also BP can be measured continuously, although in this case very
specialized (and expensive!) equipment is required, such as a Finapres®, Portapres®

or CNAP® device. Using a Portapres®, we collected 5-min HR and BP time series
in supine resting position in 30 control subjects, 30 asymptomatic subjects with
recently diagnosed type-2 diabetes (DMA) and 15 long-standing patients with
type-2 diabetes (DMB), see Refs. [70, 71]. Exclusion criteria included cardiac
arrhythmia, hypertension and having taken medication up to 48 h previous to the
study. Time series for individual subjects are shown in Fig. 5 (left-hand panels).
Average heart rate hHRi was similar for controls and the DMA group, but was
significantly higher for the DMB group, whereas hSBPi was comparable for the
three groups, see Fig. 6. Subtle group differences were found between the three
populations for the higher-order moments of the distributions of HR and BP, such
as standard deviation (SD), the coefficient of variation (CV=SD/mean) skewness
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Fig. 5 Time series of individual subjects (left-hand panels) and probability distributions for
populations (right-hand panels) for heart rate (HR) and blood pressure (BP) during 5min of supine
rest. Shown for (a-b) healthy control(s), (c-d) recently diagnosed patient(s) and (e-f) long-standing
patient(s). HR (continuous curves) is measured in beats per minute (bpm), BP (dashed curves) in
millimeters of mercury (mmHg) and time in units of beat number. In the case of the probability
distributions, in order to show both HR and BP in the same graph, fluctuations of both variables
are shown as a percentage of their average value according to Eq. (4). Data from Refs. [70, 71]

(Skew) and kurtosis (Kurt), but statistical significance was obtained only when
combining heart rate variability (HRV) and blood pressure variability (BPV) in a
single parameter,

˛ D HRV

BPV
; (7)
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Fig. 6 Box whisker charts of (a) average heart rate hHRi and (b) average systolic blood pressure
hBPi, for the control group (blue), recently diagnosed patients DMA (orange) and long-standing
patients DMB (red). According to a Kruskal-Wallis nonparametric test, there are significant
differences between the control-DMB and DMA-DMB pairs for hHRi at the p D 10�4 level,
but no significant group differences for hBPi. Data from Refs. [70, 71]

where ˛ is large for the control group and is found to decrease as a function of the
development of the disease [70]. The interpretation of ˛ is that HRV is a protective
factor whereas BPV is a risk factor and that there is a correlation between both.
Furthermore, it would seem that more than the absolute values of HRV or BPV
separately, it is the relative magnitude of HRV with respect to BPV that appears to
correlate with the health status of the populations considered here.

Figure 5 (right-hand panels) shows for each population the probability density
functions for the fluctuations of HRV and BPV, where positive values indicate
fluctuations above the average and negative values fluctuations below the average.
It can be appreciated that for the control group the distribution for HRV is wider
than for BPV, in particular, for HRV there is a long tail towards positive fluctuations
up to 40% whereas BPV is contained within the range from �20% to C20%. In
the case of the DMA group, the width of the HRV probability distribution is greatly
reduced and in particular the positive HRV fluctuations have decreased below 30%,
whereas now the probability distribution of BPV has become wider than that of
HRV towards the negative side. In the case of the DMB group, the probability
distribution of BPV has become wider than that of HRV, in particular, the positive
HRV fluctuations are now limited to 20%, whereas the negative BPV fluctuations
have increased up to 30%. It has been argued that 5-min HR registrations are
too short to contain modulations by the sympathetic nervous system (SNS) [72],
especially if the registrations are made in supine resting position. Therefore, in
the case of the controls, the large positive HRV fluctuations are most probably
due to vagal withdrawal (vagolysis) causing temporary HR accelerations, which
are probably necessary for the homeostatic control of BP. In the case of DMA,
vagolytic capacity is reduced, possibly resulting in a loss of BP control and episodes
of hypotension. In the case of DMB, vagolytic capacity is lost completely and BP
excursions towards hypotension dominate the probability distribution of BP. It is
possible that in the DMB group HR is significantly increased to counter this danger
of hypotensive episodes.
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4 Body Temperature

The regulation of body temperature depends on the species and the specific body
part under study, see Fig. 7. Reptiles, such as lizards, are called exotherms and their
core temperature adapts to the temperature of the outside environment. Mammals,
on the other hand, are endotherms, and their core temperature is—over a certain
range—approximately independent from the outside temperature. Humans achieve
a core temperature near a constant setpoint of about 36:5 ıC independent from the
outside circumstances by creating a dynamic balance between thermogenesis (heat
production) and thermolysis (heat dissipation), see Fig. 8. In striking this balance,
adaptive mechanisms play a very important role, such as cutaneous vasoconstriction
when it is cold outside and cutaneous vasodilatation when it is warm, which control
the amount of heat radiated from the body towards the outside environment, and
consequently skin temperature can be expected to exhibit a large variability in order
to keep core temperature constant.

We carried out a pilot study where we monitored skin temperature continuously
over seven successive days as a function of the body mass index (weight divided by
height squared, BMI D kg=m2). We considered three groups, a control group with
normal weight (ten subjects with 18 < BMI < 25), a group of overweight subjects
(ten subjects with 25 < BMI < 30), and a group with obese subjects (ten subjects
with BMI > 30) [42]. Skin temperature can be measured easily and continuously,
using, e.g., a thermochron iButton® fixed at the non-dominant wrist using medical
tape; core temperature is much more difficult to measure, because a probe should be
introduced in a body orifice (mouth, anal, etc.) which is uncomfortable, especially in

(a) (b)

Fig. 7 Schematic representation of body temperature vs. the temperature of the outside environ-
ment, (a) for endotherms (e.g., humans, continuous red curve) and exotherms (e.g., reptiles, dashed
orange curve), based on Ref. [73], and (b) for human core temperature (red continuous curve) and
human skin temperature (purple continuous curve), based on Ref. [74]
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Fig. 8 Similar as for Fig. 1 but for the control loop of core body temperature. The control centrum
of core temperature is located in the preoptic anterior hypothalamus (POAH) which activates
thermogenetic or thermolytic responses which together act to maintain core temperature in a
restricted homeostatic range. Physiological responses include vasomotor effects which determine
skin temperature. Behavioural responses include seeking shade when it is hot or putting on a
sweater when it is cold. Image based on Refs. [67] and [75]

an ambulatory setting on a long-term basis. In another study, in agreement with our
working hypothesis, we have found that skin temperature variability is much larger
than core temperature variability [51]. Here, we restrained to the monitoring of skin
temperature. Figure 9 shows an example of a continuous 7-day time series of skin
temperature in a control subject with normal weight, and the probability distribution
of skin temperature for the control group, the overweight group and the obese
group. It is clear that the probability distribution is wider for the controls, becomes
narrower for the overweight group, and is narrowest for the obese group. The box-
whisker plots of Fig. 10 show that there would seem to be a trend for average skin
temperature hTi to increase with body weight but without statistical significance,
possibly because of the small population sizes; on the other hand, variability as
measured with the standard deviation (SD) can be seen to decrease with body
weight, obtaining statistically significant differences between the control group and
the obese group at the p D 0:022 level; the skewness of the distribution increases
with body weight, but without statistical significance; the kurtosis increases with
body weight, from a platykurtic (Kurt < 3) distribution for the controls towards a
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Fig. 9 Continuous monitoring of skin temperature during seven successive days in controls with
normal weight, overweight and obese subjects, (a) example of a time series of a control subject
with vertical gridlines at midnight, and (b) probability distribution of the time series of the three
groups. Data from Ref. [42]

leptokurtic (Kurt > 3) distribution for the obese population, and in this case there
is again statistical significance in the difference between the control group and the
obese group at the p D 0:033 level.

5 Discussion

When studying a new physiological variable, it is not always clear a priori what
type of statistics to expect for the corresponding time series, how this statistics may
degenerate under adverse circumstances, and whether any physiological meaning
may be contributed to these fluctuations in a clinical context. Although it has been
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Fig. 10 Box-whisker plots of the moments of the distribution of the skin temperature time series
of the control group with normal weight, the overweight group and the obese group, (a) mean,
(b) standard deviation (SD), (c) skewness (Skew), and (d) kurtosis (Kurt). According to a Kruskal-
Wallis nonparametric test, there are significant differences between the control group and the obese
group for SD at the p D 0:022 level and for Kurt at the p D 0:033 level. Horizontal gridlines
indicate values for a normal distribution SkewD 0 and Kurt D 3. Data from Ref. [42]

proposed that blood pressure variability (BPV) is a risk factor [39] and heart rate
variability (HRV) an indicator of good health [38], it is not clear whether BPV
has diagnostic relevance for specific pathologies such as hypertension [76]. Core
body temperature time series have been analysed from the perspective of periodic
circadian rhythms, e.g. when studying the effect of body weight and obesity [77–
79], but without taking into account the ultradian fluctuations. Fluctuations of skin
temperature have been studied, e.g. in intensive care patients [41], but without an
interpretation of the physiological implications of the different statistics observed in
patients and healthy controls. The research question of the present contribution is
whether it is possible to propose a universal guiding principle that helps to explain
the statistical behaviour of time series of physiological variables in general, and
which can predict how this behaviour degenerates with adverse circumstances such
as ageing and/or chronic-degenerative disease.

In the present contribution, we focussed on control theory and the concept of
homeostasis, where it is common to distinguish between regulated variables and
effector variables, which perform very different functions in the corresponding
regulation mechanisms, see Table 1. We studied a variety of different homeo-
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static mechanisms: in Sect. 2, we investigated a simple mathematical model of
a thermostat, in Sect. 3 we focussed on blood pressure homeostasis in healthy
controls and diabetic patients, and in Sect. 4, we analysed time series related to
body temperature homeostasis as a function of body weight. Regulated variables
are explicitly controlled by the pre-programmed feedback loop, whereas the control
of effector variables is implicit and may self-organize [80] by interacting with
other effector variables and the associated regulated variable. In all the examples
that we studied, in optimal conditions, we found that effector variables are more
variable than the corresponding regulated variable, reflecting the adaptive function
of the former and the narrow homeostatic range to which the latter is confined. In
adverse conditions, these variables do not adequately play their distinctive roles in
the homeostatic regulation mechanism, i.e. effector variables become less adaptive
and the corresponding time series less variable, whereas control over regulated
variables is increasingly lost, and consequently the variability of their time series
increases. The appropriate framework to describe the degeneration of effector
variables would appear to be the loss of complexity paradigm [31, 54–57], whereas
regulated variables seem to degenerate according to the predictions of the early-
warning signals paradigm [61–65], see Table 2. This may be a universal principle
obeyed by all physiological variables of Table 1 and which may explain the rich
phenomenology observed in the statistics of physiological variables.

The field of fractal physiology was first proposed after technological advances
allowed to monitor physiological variables in a non-invasive and continuous way.
We noted that it is more difficult to monitor regulated variables (such as BP and core
temperature) than effector variables (such as HR and skin temperature), possibly
due to the fact that effector variables mediate between the internal and the external

Table 2 Hypothesis of a general guiding principle to interpret the statistics of experimental time
series of physiological variables depending on their role in the homeostatic control mechanism

Homeostatic regulatory mechanism

Regulated variable Effector variable(s)

Synonyms: controlled or essential
variable

Synonyms: supporting, non-regulated,
regulating or self-organized variables

e.g., blood pressure (BP) e.g., heart rate (HR)

Youth Properties: controlled, stable, confined Properties: adaptive, variable

health Framework: gaussian statistics Framework: fractal physiology

Small variance Large variance

Gaussian statistics Non-gaussian (fractal and long-tailed)
statistics

Non-correlated (no memory) Correlated (memory)

Ageing Framework: early-warning signals Framework: loss of complexity

disease Increased variance Decreased variance

Increased non-gaussianity Increased gaussianity
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environment and thus are more readily accessible from outside, whereas regulated
variables by definition are related to the milieu intérieur which is more difficult to
access. Because of these practical reasons, the best studied time series tend to be
effector-like variables, which might have introduced the bias that all physiological
variables are highly variable and fractal-like, and leading to the impression that
gaussian statistics and the concept of homeostasis are obstacles for the advancement
of medicine. The main conclusion of the present contribution is that health needs
both the fractal (adaptive) properties of effector variables and the gaussian (stability)
characteristics of regulated variables to survive.

6 Conclusions

Technological advances allow to monitor an ever larger variety of physiological
variables in a non-invasive and continuous way. It is not clear a priori how the
time series of newly measured variables should behave statistically, or why a large
variability of one variable represents a risk factor (e.g., blood pressure) whereas
a large variability of another variable could be an indication of health (e.g., heart
rate). In the present contribution, we argue that the role a particular variable plays
in the homeostatic control mechanism, a regulated variable vs. an effector variable,
determines the way the corresponding time series will behave statistically. With
youth and health, a regulated variable such as blood pressure is maintained within a
restricted homeostatic range with low variability, whereas effector variables and
the corresponding physiological responses that adapt to perturbations from the
inner and outer environment are characterized by a large variability. With ageing
and/or chronic-degenerative disease, the capacity of these variables to play their
respective roles is increasingly lost which is reflected by diminished statistical
differences of the corresponding time series, or the regulated variable can become
even more variable than the effectors variables. We demonstrated these concepts for
a mathematical model of a thermostat, for experimental data of heart rate and blood
pressure for healthy controls and diabetic patients, and for experimental data of skin
temperature as a function of body weight. We make the prediction that other pairs of
homeostatic variables, such as blood oxygen saturation vs. respiration dynamics, or
blood glucose vs. insulin and glucagon concentrations, will follow similar patterns.
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