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Preface

The 13th International Congress on Mathematical Education (ICME-13) took
place in Hamburg, Germany, in July 2016. A major part of its scientific program
consisted of Topic Study Groups (TSGs). These are mini-conferences designed to
gather a group of the Congress participants, who are interested in a particular area
of Mathematics Education. During ICME-13, there were 54 TSGs in total, one
of them being TSG 25: The Role of History of Mathematics in Mathematics
Education. This TSG aimed to provide a forum for participants to share their
research interests and results, as well as their teaching ideas and classroom expe-
rience in connection with the integration of the History of Mathematics in
Mathematics Education. Special care was taken to have presented and promoted
ideas and research results of international interest, while still paying due attention to
the national aspects of research and teaching experience in this area. In total, 37
papers (regular presentations, short oral communications and posters) from 16
countries all over the world were presented during this TSG’s sessions.

On the initiative of ICME-13 Organizers, a post-congress monograph series was
announced, directed by ICME-13 Convenor, Prof. G. Kaiser, in order to provide the
possibility of producing a monograph for each TSG that will contain elaborated and
extended versions of selected contributions following a strict, peer-review proce-
dure. Each such volume is edited by members of the Organizing Team of the
corresponding TSG. Along these lines, the present volume consists of 17 papers
from 9 countries that were originally presented in a shorter form during the TSG 25
sessions. It is structured in five parts that roughly correspond to the main themes of
TSG 25 as they have been announced before ICME-13 and can be found in its
proceedings.1

1 Tzanakis, C., Wang, W., Clark, K., Kjeldsen, T. H., & Schorcht, S., (2017). Topic Study
Group 25: The role of history of mathematics in mathematics education. In G. Kaiser (Ed.),
Proceedings of the 13th International Congress on Mathematical Education (pp. 491–495). Cham:
Springer.
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The monograph aims to serve as a valuable contribution in exploring the role
of the History of Mathematics in Mathematics Education, by making available to
the international educational community reports on recent developments in this
field, with special attention to relevant research results since 2000, the year of
publication of a corresponding comprehensive ICMI Study.2 Much of the work
done and reported in the following chapters has been inspired by this highly col-
lective work that has been a landmark in this area, by motivating, stimulating,
orienting, encouraging, and supporting further research and its applications.

It is hoped that the effort of the authors and the editors will contribute both to
have the formulation of the main issues raised in this domain of Mathematics
Education sharpened and to have our understanding of them deepened.
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Chapter 1
Introduction: Integrating History
and Epistemology of Mathematics
in Mathematics Education

Kathleen M. Clark, Tinne Hoff Kjeldsen, Sebastian Schorcht
and Constantinos Tzanakis

Abstract This chapter serves as an introduction to the seventeen chapters of this col-
lective volume, by providing an outline of the key points that form the core and main
concern of the approaches adopted towards integrating History and Epistemology of
Mathematics in Mathematics Education (the HPM domain). After a brief outline of the
historical development of this domain, we address the key issues that have been central to
the research in this domain and the implementation of its results in educational practice.
Since these issues highlight the main points also addressed in the individual contributions
to this volume, our introduction ends with a brief description of each chapter.

Keywords History and pedagogy of mathematics � History of mathematics
Epistemology of mathematics � Original sources � Theoretical frameworks &
constructs � Interdisciplinary teaching � Teacher education �Cultures &mathematics

The fruitful and harmonious interplay among History, Education, and Mathematics
as three different, but complementary to each other dimensions, constitutes what is
potentially interesting, stimulating and beneficial for teaching and learning both
Mathematics and about Mathematics:
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• History points to the non-absolute nature of human knowledge: what is
acceptable as knowledge is “time-dependent” and is potentially subject to
changes. In other words, historicity is one of its ontological characteristics.

• Education stresses the fact that humans are different in several respects
depending on age, social conditions, cultural tradition, individual characteristics,
etc. In this way education helps to understand these differences and to become
more tolerant towards the learners’ and teachers’ views, preconceptions, mis-
conceptions and possibly idiosyncratic ways of self-expression.

• Mathematics above all sciences emphasizes most the need for logical, rational
and intellectual rigor and consistency in our endeavour to understand both the
mental and empirical aspects of the world around us.

Any attempt to explore the multifarious interrelations of these three dimensions,
explicitly, or implicitly addresses, illuminates, and/or provides insights on one or
more of the following general questions:

• Which history is suitable, pertinent, and relevant to Mathematics Education?
• Which role can the History of Mathematics play in Mathematics Education?
• To what extent has the History of Mathematics been integrated in Mathematics

Education (curricula, textbooks, educational aids and resource material, teacher
education)?

• How can this role be evaluated and assessed and to what extent does it con-
tribute to the teaching and learning of mathematics?

These are the key issues explicitly addressed in and/or implicitly underlying what
we detail below as the HPM (History—Pedagogy—Mathematics)1 perspective.

1.1 The HPM Perspective

Mathematics is a human intellectual enterprise with a long history and a vivid present.
Thus, mathematical knowledge is determined not only by the circumstances in which
it becomes a deductively structured theory, but also by the procedures that originally
led or may lead to it. Learning mathematics includes not only the “polished products”
of mathematical activity, but also the understanding of implicit motivations, the
sense-making actions and the reflective processes of mathematicians, which aim to
the construction of meaning. Teaching mathematics should give students the
opportunity to “domathematics.” In other words, although the “polished products” of
mathematics form the part of mathematical knowledge that is communicated, criti-
cized (in order to be finally accepted or rejected), and serve as the basis for new work,

1We use this acronym as terminus technicus, established within the educational community as the
abbreviation of the name of the International Study Group on the relations between the History
and Pedagogy of Mathematics, known as the HPM Group, one of the oldest study groups
affiliated to ICMI (International Commission on Mathematical Instruction).

2 K. M. Clark et al.



the process of producing mathematical knowledge is equally important, especially
from a didactical point of view. Perceiving mathematics both as a logically structured
collection of intellectual products and as processes of knowledge production should
be the core of the teaching of mathematics. At the same time, it should be also central
to the image of mathematics communicated to the outside world.

Along these lines, putting emphasis on integrating historical and epistemological
issues in mathematics teaching and learning constitutes a possible natural way for
exposingmathematics in themaking thatmay lead to a better understanding of specific
parts of mathematics and to a deeper awareness of what mathematics as a discipline is.
This is important for mathematics education, helping to realize that mathematics:

• is the result of contributions from many different cultures;
• has been in constant dialogue with other scientific disciplines, philosophy, the

arts and technology;
• has undergone changes over time; there have been shifting views of what

mathematics is;
• has constituted a constant force for stimulating and supporting scientific, tech-

nical, artistic and social development.

This helps to improve mathematics education at all levels and to realize that
although mathematics is central to our modern society and a mathematically literate
citizenry is essential to a country’s vitality, historical and epistemological issues of
mathematics are equally important. The harmony of mathematics with other
intellectual and cultural pursuits also makes the subject interesting, meaningful, and
worthwhile. In this wider context, history and epistemology of mathematics have an
additional important role to play in providing a fuller education of the community:
not being a natural science, but a formal science closer to logic—hence to phi-
losophy—mathematics has the ability inherent in itself to connect the humanities
with the sciences. Now that societies value and want young people educated in the
sciences—though it is difficult determining how to get people to “move” from
humanities to the sciences—integrating history and epistemology in mathematics
education can make this connection visible to students. This is most important,
especially today when there is much concern about the level of mathematics that
students are learning and about their decreasing interest in mathematics, at a time
when the need for both technical skills and a broader education is rising.

The rationale underlying this perspective has formed the core and main concern
of the approaches adopted towards integrating History and Epistemology of
Mathematics in Mathematics Education (what we call the HPM domain). In
Sect. 1.2 we briefly outline its historical development. In Sect. 1.3 we comment on
the four general questions mentioned at the beginning of this introduction, in
relation to some associated key issues that have been central to the research in this
domain and the implementation of its results in educational practice. As described
in Sect. 1.4, these key issues highlight the main points that in one or another form
are addressed in the individual contributions to this volume. At the same time they
constitute a concise description of the five parts into which these contributions have
been divided. Therefore, Sect. 1.4 ends with a brief description of the separate
chapters in each one of these five parts.

1 Introduction: Integrating History and Epistemology … 3



1.2 An Outline of the Historical Development
of the HPM Domain

Integrating the history of mathematics in mathematics education has been advocated
since the second half of the 19th century, when mathematicians like De Morgan,
Poincaré, Klein and others explicitly supported this path and historians like Tannery
and later Loria showed an active interest on the role history of mathematics can play
in mathematics education. At the beginning of the 20th century, this interest was
revived as a consequence of the debates on the foundations of mathematics. Later on,
history became a resource for various epistemological approaches; Bachelard’s
historical epistemology, Piaget’s genetic epistemology, and Freudenthal’s phe-
nomenological epistemology, at the same time stimulating the formulation of
specific ideas and conclusions on the learning process (Barbin and Tzanakis 2014,
p. 256 and references therein; Tzanakis et al. 2000, p. 202).

This interest became stronger and more competitive in the period 1960–1980 in
response to the New Math reform, when its proponents were strongly against “a
historical conception of mathematics education,” whereas for its critics, history of
mathematics appeared like a “therapy against dogmatism,” conceiving mathematics
not only as a language, but also as a human activity. In 1969, the National Council
of Teachers of Mathematics (NCTM) in USA devoted its 31st Yearbook to the
history of mathematics as a teaching tool (NCTM 1969) and in the 1970s a
widespread international movement began to take shape: Though the First
International Congress on Mathematical Education (ICME-1) that took place in
Lyon in 1969 mainly consisted of talks, the structure of ICME-2 that took place in
Exeter in 1972 was made more interactive through the creation of 38 Working
Groups (WGs) on main themes of mathematics education. WG 11 was entitled
“Relations between the history and pedagogy of mathematics.” The work of this
group was continued at ICME-3 that took place in Karlsruhe in 1976. Having
acknowledged the importance and the widespread interest in historical-pedagogical
studies in mathematics, a resolution was forwarded to secretary of the International
Commission on Mathematical Instruction (ICMI) proposing setting up a system to
ensure regular sessions at future ICMEs on this theme. The ICMI Executive
Committee approved the affiliation of the new Study Group, originally called
“International Study Group on Relations between History and Pedagogy of
Mathematics, cooperating with the International Commission on Mathematical
Instruction.” The establishment of this Group—now called the HPM Group2 and
the announcement of its scope in 1978 (HPM Group 1978) greatly stimulated and
supported interest and educational research in this area.

Thus, during the last 40 years, integrating the history of mathematics in math-
ematics education has evolved into a worldwide, intensively studied area of new
pedagogical practices and specific research activities and a gradually increasing

2cf. Footnote 1.
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awareness has emerged of what was described in Sect. 1.1 as the HPM perspective
(Fasanelli and Fauvel 2006 for a historical account and references prior to 2000; for
a concise outline of later developments see Barbin 2013; Barbin and Tzanakis 2014,
and references therein; Furinghetti 2012).

The rising international interest in the HPM perspective and the various activities
of the HPM Group worldwide, led to the approval by ICMI in 1996 of launching a
4-year ICMI Study on the relations between the history of mathematics and math-
ematics education. After a Discussion Document written by the Study co-chairs
(Fauvel and van Maanen 1997) and a Study Conference in 1998, at Luminy, France,
the Study culminated in the publication of a comprehensive volume written by 62
contributors working together in 11 groups (Fauvel and van Maanen 2000). This was
a landmark in establishing and making more widely visible theHPM perspective as a
research domain in the context of mathematics education and greatly stimulated and
enhanced the international interest of the educational community in this area.

Already before, but more intensively after this collective volume, research and
actual implementation in education have been realized and widely communicated in
various ways: Through the regular organization of conferences and meetings both at
an international and regional level, including Topic Study Groups (TSGs) at each
ICME, the ICME Satellite Meetings of the HPM Group, the European Summer
University on the History and Epistemology in Mathematics Education (ESU),
since 2009, a working group at each Congress of the European Society for
Research in Mathematics Education (CERME), etc.; launching and establishing
journals and newsletters, including the online journal Convergence,3 the Bulletin of
the British Society for the History of Mathematics (BSHM Bulletin),4 the HPM
Newsletter,5 etc.; the publication of numerous collective volumes,6 special issues of
journals,7 monographs,8 conference proceedings9 and individual papers in scientific
journals, as well as the production of a variety of resource material and educational
aids, and the writing of several doctoral theses in this domain. A comprehensive
annotated survey of the work done since 2000, as well as more details on the above
mentioned conferences, meetings and journals, can be found in Clark et al. (2016).

3http://www.maa.org/press/periodicals/convergence/about-convergence.
4http://www.tandfonline.com/toc/tbsh20/current.
5http://www.clab.edc.uoc.gr/hpm/NewsLetters.htm.
6E.g. Barbin (2010, 2012, 2015), Barbin and Bénard (2007), Bekken and Mosvold (2003), Biegel
et al. (2008), Boero (2007), Calinger (1996), Hanna et al. (2010), Katz (2000), Katz and Tzanakis
(2011), Shell-Gellasch (2008), Shell-Gellasch and Jardine (2005, 2011), Sriraman (2012) and
Swetz et al. (1995).
7E.g. Clark and Thoo (2014), Furinghetti et al. (2007), Karam (2015), Katz et al. (2014), Siu and
Tzanakis (2004) and Stedall (2010).
8E.g. Filloy et al. (2008), Knoebel et al. (2007), Ostermann and Wanner (2012), Schubring (2006),
Shell-Gellasch and Thoo (2015) and Stein (2010).
9E.g. Barbin et al. (2008, 2011a, 2015), Furinghetti et al. (2006b), Horng and Lin (2000) and
Radford et al. (2016).
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1.3 Comments on the General Questions and Key Issues
Related to the HPM Perspective

From what has been presented so far, it is clear that the last two decades have
generated considerable research activity related to the HPM perspective of great
variety: doing empirical research based on actual classroom implementations;
designing specific teaching units; developing various kinds of teaching aids;
exploring and understanding students’ response to the introduction of the history of
mathematics in teaching (including teacher education); designing, applying and
evaluating interdisciplinary teaching; drawing and/or criticizing parallels between
the historical development and learning in a modern classroom10; mutually profiting
from theoretical constructs and conceptual frameworks developed in the context of
other disciplines, especially philosophy, epistemology and cognitive science; and
evaluating the effectiveness of all this in practice.

The key issues mentioned at the beginning of this chapter permeate all these
activities as recurring themes that form the leitmotif of the HPM domain. Below a
few general ideas are outlined with reference to the literature for details.

Whether the history of mathematics is appropriate, or even relevant at all to the
teaching and/or learning of mathematics, is an issue that, despite the extensive
research and the many insightful and sophisticated applications in the last few
decades, has not reached universal acceptance even today. In fact, a number of
objections against the HPM perspective have been raised (Furinghetti 2012, §7; Siu
2006, pp. 268–269; Tzanakis and Thomaidis 2012, §3.4; Tzanakis et al. 2000,
p. 203; cf. Panasuk and Horton 2012, p. 12):

A Objections of an epistemological and methodological nature

(a) On the nature of mathematics

1. This is not mathematics! Teach the subject first; then its history.
2. Progress in mathematics is to make difficult problems routine, so why

bother to look back?
3. What really happened can be rather tortuous. Telling it as it was can

confuse rather than enlighten!

(b) On the difficulties inherent to this approach

1. Does it really help to read original texts, which is a very difficult and
time-consuming task?

2. Is it liable to breed cultural chauvinism and parochial nationalism?

10The old but still discussed issue of “historical parallelism”—if and to what extent “ontogenesis
recapitulates (aspects of) phylogenesis”; e.g. Furinghetti and Radford (2008), Radford et al.
(2000), Schubring (2006, 2011) and Thomaidis and Tzanakis (2007).
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3. Students may have an erratic historical sense of the past that makes
historical contextualization of mathematics impossible without having
a broader education in general history.

B Objections of a practical and didactical nature

(a) The background and attitude of teachers

1. Lack of didactical time: no time for it in class!
2. Teachers should be well educated in history: “I am not a professional

historian of mathematics. How can I be sure of the exposition’s
accuracy?”

3. Lack of teacher training.
4. Lack of appropriate didactical and resource material.

(b) The background and attitude of the students

1. They regard it as history and they dislike history class!
2. They regard it just as boring as mathematics itself.
3. They do not have enough general knowledge of culture to appreciate

it.

(c) Assessment issues

1. How can you set questions on it in a test or exam?
2. Is there any empirical evidence that students learn better when the

history of mathematics is made use of in the classroom?

Each of these objections addresses one or more of the four key issues mentioned
in the beginning of this chapter. Below we comment briefly on them in the light of
these objections.

1.3.1 Which History Is Suitable, Pertinent and Relevant
to Mathematics Education?

This has been a permanent issue of debate among historians and mathematics
educators with an interest in the HPM perspective. As early as 1984 at ICME 5,
d’Ambrosio stressed the need to develop three separate histories of mathematics:
history as taught in schools, history as developed through the creation of mathe-
matics, and the history of that mathematics which is used in the street and the
workplace. To deal with these differences he introduced the concept of ethno-
mathematics as compared to learned mathematics (Booker 1986).

In fact, implicit to the objections A(a1), A(a2), A(b1) is the idea that the term
“history” is the same, whether used by historians, mathematicians, or teachers and
mathematics educators. That this is not so lies at the heart of Grattan-Guinness’
early refutation of some of these arguments (Grattan-Guinness 1973; see also
Kjeldsen 2011a, pp. 1700–1701; Kjeldsen 2011b, pp. 166–167; Kjeldsen and
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Blomhøj 2012, §3, and references therein for a different recent approach). On the
other hand, it is undeniable that quite often the historical development was com-
plicated, followed a zig-zag path, led to dead ends, included notions, methods and
problems that are no longer used in mathematics as we know and work with today,
etc. (A(a2), A(a3)). Thus, its integration in mathematics education on the one hand
is nontrivial, and on the other hand poses the question why it must be done at all.
Therefore, integrating the history of mathematics in the teaching and learning of
mathematics, may force history “…to serve aims not only foreign to its own but
even antithetical to them” (Fried 2011, p. 13). In other words, the danger of either
unacceptably simplifying or/and distorting history to serve education as still another
of its tools is real by adopting what has been called a “Whig” (approach to) history,
in which “…the present is the measure of the past. Hence, what one considers
significant in history is precisely what leads to something deemed significant today”
(Fried 2001, p. 395).

In this connection, an important step was Grattan-Guinness’ distinction between
what he called History and Heritage trying to clarify existing conflicts and tensions
between a mathematician’s and a historian’s approach to mathematical knowledge,
and paying due attention to the relevance of the history of mathematics to math-
ematics education (Grattan-Guinness 2004a, b). In the context of the HPM per-
spective, this is a distinction close to similar ones between pairs of methodological
approaches; explicit & implicit use of history, direct & indirect genetic approach,
forward & backward heuristics (Tzanakis et al. 2000, pp. 209–210). Hence, this
distinction is potentially of great relevance to mathematics education (Rogers 2009,
2011; Tzanakis and Thomaidis 2012), serving, among other things, to contribute
towards answering the recurrent question “Why and which history is appropriate to
be used for educational purposes?” (Barbin 1997).

1.3.2 Which Role Can the History of Mathematics Play
in Mathematics Education?

Perhaps, this issue has been discussed and analyzed most on the basis of both a
priori theoretical and epistemological arguments and of empirical research. At least
implicitly, such analyses try to refute some of the above objections, especially those
concerning the barriers posed by the complexity of the historical development (A
(a2), A(a3), A(b1)) and/or by students’ predisposition to and general knowledge of
both mathematics and history as taught subjects (objections (B(b1), B(b2) and B
(b3), A(b3), respectively).

It is a question that has been extensively discussed from several points of view
quite early (see e.g. Grattan-Guinness 1978), and especially in relation to the
appropriateness and pertinence of original historical sources in mathematics edu-
cation. In this context, the history of mathematics can play three mutually

8 K. M. Clark et al.



complementary and supplementary roles or functions11 (Barbin 1997, 2006;
Furinghetti 2012, §5; Furinghetti et al. 2006a, pp. 1286–1287; Jahnke et al. 2000,
§9.1; Jankvist 2013, §7):

A replacement role: Replacing mathematics as usually understood (a corpus of
knowledge consisting of final results, of finished and polished intellectual products;
an externally given set of techniques for solving problems given from outside;
school units useful for exams etc.) by something different (not only final results, but
also mental processes that may lead to them; hence perception of mathematics both
as a collection of well-defined and deductively organized results, and as a vivid
intellectual activity).

A reorientation role12: Changing what is (supposed to be) familiar, to something
unfamiliar; thus challenging the learner’s and teacher’s conventional perception of
mathematical knowledge as something that has always been existing in its currently
established form we know it, into the deeper awareness that mathematical knowl-
edge was an invention based on a dialectical interplay between human mind’s
creativity and careful intelligent (mental and/or real) experimentation; an evolving
human intellectual activity.

A cultural role: Making possible to appreciate that the development of mathe-
matics takes place in a specific scientific, technological or societal context at a given
time and place; thus appreciating mathematical knowledge as an integral part of
human intellectual history in the development of society; hence, perceiving math-
ematics from perspectives that lie beyond its currently established boundaries as a
discipline.

Considered from the point of view of the objective of integrating the history of
mathematics in mathematics education, there are five main areas in which the HPM
perspective could be valuable:

• The learning of mathematics;
• The development of views on the nature of mathematics and mathematical

activity;
• The didactical background of teachers and their pedagogical repertoire;
• The affective predisposition towards mathematics; and
• The appreciation of mathematics as a cultural-human endeavor.

These are analyzed in detail into more specific arguments in Tzanakis et al.
(2000), §7.2, describing in this way the role of history in the educational process.

From the point of view of the way the history of mathematics is accommodated
into this perspective, a distinction was made by Jankvist (2009b; see also Jankvist
and Kjeldsen 2011); namely,

11In the French literature they are called respectively: fonction vicariante, dépaysante, culturelle
(see Barbin 1997).
12Called by some authors as epistemological disorientation (cf. Guillemette’s paper in this volume,
Chap. 3).
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• History serving as a tool for assisting the actual learning and teaching of
mathematics; and

• History serving as a goal in itself for the teaching and learning of the historical
development of mathematics.

A similar distinction between history for constructing mathematical objects and
history for reflecting on the nature of mathematics as a socio-cultural process was
made by Furinghetti (2004; 2012, §5).

In this way, a finer and more insightful categorization of the possible roles of the
history of mathematics in mathematics education resulted, reflecting the variety of
their possible implementations in practice.

A small selection appears below.

– Fauvel and van Maanen (2000): Chaps. 7 and 8 provide a variety of examples of
possible classroom implementations, for several mathematical subjects;
Chap. 9 gives examples of using original sources in the classroom and specific
didactical strategies to do so.

– Katz and Tzanakis (2011): Chaps. 9, 10, 13, 14, 16 and 19, and Sriraman
(2012), Chaps. 2, 7 and 14 provide particular examples, most of them empha-
sizing empirical results of actual implementations.

– Katz et al. (2014): Rich on recent work in the HPM domain, including a suf-
ficiently comprehensive old and recent bibliography in the editors’ introduction
and in its 12 papers. They concern theoretical issues on the history, philosophy
and epistemology of mathematics, and on empirical investigations both in
school and teacher education.

– Doctoral dissertations with considerable work on both the theoretical issues of
the HPM perspective and on empirical investigation and evaluation of actual
implementations: e.g. Clark (2006), Glaubitz (2010), Guevara Casanova (2015),
Jankvist (2009a), Su (2005) and van Amerom (2002).

1.3.3 To What Extent Has the History of Mathematics Been
Integrated in Mathematics Education?

Considerable work has been done over the last 15 years on understanding better
and formulating more sharply the methodological issues raised by the integration of
the history of mathematics in mathematics education, on producing appropriate
educational aids of various types (B(a4)), and on designing and implementing
teaching approaches to specific subjects and instructional levels in this context, with
special emphasis on teacher education (B(a2), B(a3)).

According to the classification of the various approaches to integrate the history
of mathematics in teaching and learning mathematics given in Tzanakis et al.
(2000), there are three broad ways that may be combined (thus complementing each
other), each one emphasizing a different aim:
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• To provide direct historical information, aiming to learn history;
• To implement a teaching approach inspired by history (explicitly or implicitly),

aiming to learn mathematics;
• To focus on mathematics as a discipline and the cultural and social context in

which it has been evolving, aiming to develop a deeper awareness of its evo-
lutionary character, its epistemological characteristics, its relation to other dis-
ciplines and the influence exerted by factors both intrinsic and extrinsic to it.

From a methodological point of view, Jankvist (2009b) classified the teaching
and learning approaches in three categories:

• Illumination approaches, in which teaching and learning is supplemented by
historical information of varying size and emphasis;

• Module approaches, in the form of instructional units devoted to history, often
based on specific cases;

• History-based approaches, in which history shapes the sequence and the way of
presentation, often without history appearing explicitly, but rather being inte-
grated into teaching.

Approaches may vary in size and scope, according to the specific didactical aim,
the mathematical subject matter, the level and orientation of the learners (A(b1),
B(b3)), the available didactical time (B(a1)), and external constraints (curriculum
regulations, number of learners in a classroom etc.).

The crucial role of teachers’ training for effectively following the HPM per-
spective has been stressed repeatedly (e.g. Alpaslan et al. 2014, pp. 160–162;
Barbin et al. 2000, p. 70; Barbin et al. 2011b; Furinghetti 2004, p. 4; Gazit 2013,
§4; Horton 2011; Huntley and Flores 2010, §1). In particular, it has been advocated
that beliefs and views about mathematics and its teaching may be positively affected
by history (Furinghetti 1997; Jankvist 2009b; Spies and Witzke, Chap. 14 of this
volume), though skepticism has been also expressed in this connection (see
Furinghetti 2007; Philippou and Christou 1998 and references therein). Similarly, it
has been stressed that availability of appropriate didactical resources is equally
crucial (e.g. Panasuk and Horton 2012, p. 16; Pengelley 2011, pp. 3–4; Percival
2004, p. iii; Tzanakis et al. 2000, pp. 212–213).

Though accommodating the HPM perspective in an essential way into the
official national curricula does not seem to have attained wide applicability,13

intensive efforts have been made to train teachers and explore changes in their
attitude and/or teaching, and to design, produce and make available didactically
appropriate resources, at the same time increasing the teachers’ interest and par-
ticipation in national and international events related to the HPM perspective. Some
indicative examples include:

13One exception is Denmark (see Jankvist 2013, §3; Kjeldsen 2011b, §15.2; Niss and Højgaard
2011, Chap. 4). For a recent discussion and survey see Boyé et al. (2011).
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Teacher education: Arcavi and Isoda (2007), Bruckheimer and Arcavi (2000),
Burns (2010), Clark (2011), Liu (2003), Mosvold et al. (2014), Povey (2014),
Smestad (2011) and Waldegg (2004).

Resource material and educational aids: The need for didactical resources
along the lines of the HPM perspective has been satisfied to a considerable extent in
the last 15 years, so that such material is available nowadays in a variety of forms.
Some examples:

– A wide spectrum of resource material can be found in the online journal
Convergence14; e.g. see the review of some examples in Beery (2015); or Clark
(2009) for the detailed description of a teaching module.

– Katz and Michalowicz (2005): didactical source material in 11 modules.
– Siu (2007): a useful survey of the literature and available resources.
– Pengelley et al. (2009): Didactical material for discrete mathematics based on

original sources.
– Pengelley and Laubenbacher (2014): A website with many references to pub-

lished work and material available online.
– Barnett et al. (2014): Extensive information on teaching with historical sources

and bibliography on its theoretical framework and available resource material.
– Books with material that can be used directly and/or inspire teaching; e.g. Barbin

(2015), Demattè (2006), Shell-Gellasch and Thoo (2015) and Stein (2010).

1.3.4 How Can This Role Be Evaluated and Assessed
and to What Extent It Contributes to Amend
the Teaching and Learning of Mathematics?

Evaluating the effectiveness of the HPM perspective on improving mathematics
education from the point of view of both teaching and learning mathematics is an
issue clearly stressed in objections B(c1), B(c2). Those who oppose, or are reserved
about the role of the history of mathematics in mathematics education rightly ask for
sufficient empirical evidence about its effectiveness. Quite early it has become clear
that this is a key issue (e.g. Jankvist 2007; Siu and Tzanakis 2004, p. 3), and that any
such evaluation is a complex process relying more on qualitative than quantitative
methodologies: to consider changes induced in teachers’ own perception of math-
ematics; to examine how this may influence the way they teach mathematics; and to
explore if and in which ways this affects students’ perception and understanding of
mathematics (Barbin et al. 2000, particularly Sects. 3.1 and 3.2).

Additionally, any such evaluation goes together with actual classroom imple-
mentations, in school teaching and teacher pre- and in-service education. Therefore,
many, if not all, works referring to such implementations necessarily address

14http://www.maa.org/publications/periodicals/convergence.
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evaluation issues about the effectiveness of the approach considered in each case
(e.g. those listed in Sects. 1.3.2 and 1.3.3 above).

This is an area of currently active research (see e.g. Bütüner 2015a, b; Kaye
2008; Leng 2006) with no established results of universal acceptance yet, because
of several reasons:

(a) Such a complex process is not expected to lead to spectacular changes in a short
time interval. Preconceptions, misconceptions, predispositions either of the
teachers or the students are too stable to be easily and/or quickly modified.
Therefore, one should expect to see such changes after a considerable time
exposure to an approach adopting the HPM perspective; often this time is not
available.

(b) There is strong dependence on the instructional level (primary, secondary,
tertiary) and orientation of the students, teacher-students included (science or
humanities; elementary or secondary school teachers etc.), as well as, on their
entire previous educational path, which has determined their knowledge of,
attitude towards, and preconceptions about mathematics.

(c) There is influence by external “technical” factors that may favor, enhance,
impede, or prevent the implementation of an approach based on the HPM
perspective: the curriculum and the corresponding regulations; the number of
students in the class (e.g. a small number facilitates group work and a teacher’s
effective supervision); the structure of the educational system (e.g. in a cen-
tralized system, teachers have less freedom, hence fewer possibilities to apply
an innovative teaching approach not necessarily falling into the official cur-
riculum regulations).

(d) Not all mathematical subjects are equally accessible or appropriate to be taught
and/or learned in a historically motivated or driven context.

All this constitutes a complex network of factors interfering with each other, so
that empirical findings of different research works are not easily comparable.
Therefore, despite many thoughtfully designed and carefully applied empirical
investigations, much work is still needed to evaluate the effectiveness of the role of
the history of mathematics in mathematics education in an undisputable way.

1.4 Structure and Content of the Present Volume

What has been presented in Sect. 1.3 reveals that in conducting research within the
HPM domain and implementing its results in educational practice, the following
issues have been central:

– To perform systematically, carefully designed and applied empirical research,
in order to examine in detail and evaluate convincingly the effectiveness of the
integration of the history and epistemology in mathematics education on
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improving the teaching and learning of mathematics, as well as students and
teachers’ awareness of mathematics as a discipline and their disposition towards
it.

– To put emphasis on pre- and in-service teacher education as a necessary pre-
requisite for the integration of the history and epistemology in mathematics
education to be possible at all.

– To design, produce, make available and disseminate a variety of didactical
material in the form of anthologies of original sources, annotated bibliography,
description of teaching sequences or modules as a source of inspiration and/or as
generic examples for classroom implementation, educational aids of various
types, appropriate websites etc.

– To acquire a deeper understanding of theoretical ideas put forward in integrating
history and epistemology in mathematics education and to carefully develop
them into coherent theoretical frameworks and methodological schemes that
will serve as a foundation for further research and applications.

The contributions to this volume are directly related to one or more of these
central issues:

Seen as a whole, they cover all levels of education; from primary school, to
tertiary education, with special focus on pre- and in-service teacher education.
Additionally, in one form or another they refer to and/or are based on empirical
research, in order to support, illuminate, clarify or evaluate key issues, main ques-
tions, or conjectured theses raised by the authors or in the literature on the basis of
historical-epistemological or didactical-cognitive arguments.

Seen individually, each contribution’s main focus and content falls in one of the
five areas as detailed below, though of course, these areas are strongly interrelated:

I. Theoretical and/or conceptual frameworks for integrating history and epis-
temology of mathematics in mathematics education;

II. Courses and/or didactical material: Design, implementation and evaluation;
III. Empirical investigations on implementing history and epistemology in

mathematics education;
IV. Original historical sources in teaching and learning of and about

mathematics;
V. History and epistemology of mathematics: Interdisciplinary teaching and

socio-cultural aspects.

These areas correspond to the five parts in which the remaining 17 chapters of this
volume are divided. In the rest of this section, the focus of each chapter is briefly
outlined, so that the reader gets a useful overviewof the content of each part of the book.

Part I consists of three papers, which address theoretical issues related to the
integration of the history and epistemology in mathematics education, often in
connection with relevant experimental evidence and results from empirical studies.

Having as a starting point the concept of a “cognitive artifact” and the thesis that
mathematical activities strongly depend on such artifacts, M. W. Johansen and
T. H. Kjeldsen from Denmark discuss how case studies on exploring the historical
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development of important cognitive artifacts can be useful resources in mathematics
education. To this end, they analyze three historical examples and develop what
they call an inquiry-reflective learning environment in mathematics for the use of
original sources, illustrating it by means of one of the examples.

In his paper, D. Guillemette from Canada attempts to clarify, enrich and deepen
the role of the history of mathematics in mathematics education as an “epistemo-
logical dis-orientation” through an empirical study with pre-service (secondary
school) teachers, who followed a course on the history of mathematics based on
reading several selected historical texts and performing various classroom activities.

K. Clark from the USA and I. Witzke, H. Struve, and G. Stoffels from
Germany report on the intensive seminar they have designed and taught to
undergraduate mathematics students, which addresses the well-known problem of
the transition from school to university, making aware of concept developments in
the history of mathematics. With the main hypothesis that the passage from an
empirical-object to a formal-abstract belief system of mathematics is a crucial
obstacle for this transition and that this passage played a similar role in history, they
proceed to analyze a variety of empirical data from their seminar.

The four papers of Part II refer to the design, implementation, and/or evaluation
of courses and didactical material (including textbooks), in which historical and
epistemological aspects have a dominant role.

K. Danielsen, E. Gertz, and H. K. Sørensen from Denmark present the
development of a multi-purpose teaching material centered on original historical
sources and based on an appropriately designed template, addressed to mathematics
teachers of the upper-secondary school. They also report on the actual development
of such material that was produced by dedicated teachers under the authors’
guidance and supervision.

P. Baggett and A. Ehrenfeucht from the USA describe the graduate course they
offer, in which students study original texts that have influenced the development of
mathematics education, and prepare major projects presented in a mini conference.
The authors give details about the content of the course, the students’ assignments
and the resources needed, as well as information about its actual implementation
and evaluation.

R. Kaenders and Y. Weiss from Germany describe some didactical material
they have developed and used with their students, in which geometrical develop-
ments and associated algebraic formulations are compared and contrasted, and the
role this may play in the acquisition of a deeper conceptual understanding of the
mathematics involved. The paper focuses on four projects from four different areas
of mathematics, embedded in different cultural traditions.

This part ends with a paper from Germany by S. Schorcht, in which a great
number of examples related to the history of mathematics in German mathematics
textbooks for the 1st to the 7th grade are analyzed and classified in five different
types of historical mathematical tasks. The theoretical and methodological frame-
work for this classification is presented, illustrative examples are given, and the
possibility to use this classification to create new tasks is further discussed.
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Part III consists of three papers on particular empirical studies about the use of
the history of mathematics in teaching specific mathematical subjects and/or
developing students’ awareness about the nature of mathematics.

Two of the papers come from Spain and concern empirical research on teaching
elementary mathematics by benefiting from the use of appropriately chosen his-
torical sources: Having as a starting point that teaching school algebra should start
in relation with geometry and problem-solving, and that going from arithmetic to
algebra by skipping geometry is a pedagogically and historically incorrect proce-
dure, I. Guevara-Casanova and C. Burgués-Flamarich in their paper report on
how this point of view was implemented in the classroom. More specifically, they
describe their teaching approach and the results obtained using excerpts from the
Chinese “Nine Chapters…” and Al Khwãrizmî’s treatise on algebra. M. T. Sanz
and B. Gómez used historically important—but nowadays forgotten—descriptive
problems on fractions, in their empirical study with prospective (elementary and
secondary school) mathematics teachers, as well as high school students. The
problems were chosen from a variety of primary and secondary sources and the
various solution methods adopted by the students are classified, aiming to assess to
what extent and in which ways such problems contribute positively to the teaching
of elementary mathematics.

Based on Sfard’s framework of thinking as communicating and Kjeldsen’s
theoretical arguments on the role of the history of mathematics in illuminating
meta-discursive rules of mathematical discourse, A. Bernardes and T. Roque from
Brazil describe in their paper their empirical research in the context of two teaching
modules on matrix algebra they designed. Specifically, they investigated how
original historical sources encourage reflections about such rules and what impact
these reflections may have on students’ conceptions about matrices and
determinants.

The significance of using original historical sources in the classroom is a subject
that attracted the interest of researchers, teachers, and educators quite early, and has
played a major role in the development of the HPM domain. Since then, a lot of
work has been done to produce valuable resource material and to assess the role of
such sources on improving the learning of mathematics. In Part IV, four papers
along these lines are included, reporting on research done from the elementary
school to the university level.

V. Tsiapou from Greece reports on a teaching experiment with elementary
school students (6th grade), using excerpts of texts from ancient Chinese mathe-
matics (“The Nine Chapters …” and Liu Hui’s commentaries on it) about the
calculation of the area of a circle, with a two-fold aim: to support learning a
mathematical subject, and to develop adequate views about mathematics and its
history.

In her paper, C. de Varent from France presents an empirical study with 10th
grade high school students, in which an original cuneiform text from Mesopotamia
was used in order to give insights and to acquire a deeper understanding of the area
concept. This study also points to and stresses the various methodological and
epistemological problems encountered in didactical interventions of this kind.
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In their paper, S. Spies and I. Witzke from Germany consider the role of
historical material to reveal the variety of individual beliefs of (pre-service)
teacher-students about a particular mathematical domain. Specifically, they report
on their empirical research with students—prospective mathematics teachers—in
the context of a seminar on the didactics of high school calculus, using original
historical sources and basing their analysis on a particular epistemologically-driven
classification of the individual beliefs into six categories (or orientations as they call
them).

Finally, J. Lodder from the USA describes the content of a university teaching
module on “Networks and Spanning Trees;” one out of several curricular modules
on discrete mathematics and computer science he and colleagues have developed.
The author presents the pioneering research papers on which this module is based,
and reports on the positive outcome of its implementation in the context of courses
on combinatorics for mathematics students and on algorithm design for computer
science students.

Finally, Part V includes three papers. They focus on the integration of historical
and socio-cultural aspects of mathematics in the context of interdisciplinary
teaching, and report on relevant empirical findings, while at the same time they rest
heavily on the use of original documents.

S. Schöneburg-Lehnert from Germany reports on an interdisciplinary school
project, in which students of grades 8–11 explored the interesting though ele-
mentary geometrical substratum of the “Pantograph,” a mechanical instrument
invented by C. Scheiner in the early 17th century as an aid to copy pictures. The
project was based on Scheiner’s original Latin text. The author describes the way it
can be implemented in different grades as a stimulating module that interconnects
mathematical, linguistic and handicraft issues, while giving detailed empirical data
on its actual implementation.

P. Kotarinou, C. Stathopoulou, and L. Gana from Greece present an inter-
disciplinary teaching project on Hellenistic Alexandria’s mathematics, designed and
implemented in a theatrical setting with/for 10th grade school students. Though
teaching focused on Eratosthenes’ measurement of the earth’s circumference, it
motivated discussion and exploration of other important mathematical issues. Thus,
the students were involved in experiential activities, also benefiting from their own
reading about history, mathematics, and mathematical literature under the super-
vision of their mathematics and Greek language teachers and the school librarian,
who collaborated closely all along this project.

In the last chapter, S. Lawrence from the UK describes a project, which resulted
by elaborating on the relation between mathematics and painting as a stimulating
source of inspiration for teachers. The paper describes how this project was
designed on the basis of famous paintings of the Renaissance, as well as pictures in
medieval copies of manuscripts of Adelard of Bath. Its focus is on the analysis of
the rationale underlying this project, while presenting data from the positive
response of mathematics teachers after its actual implementation.
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Part I
Theoretical and/or Conceptual

Frameworks for Integrating History
and Epistemology of Mathematics

in Mathematics Education



Chapter 2
Inquiry-Reflective Learning Environments
and the Use of the History of Artifacts
as a Resource in Mathematics Education

Mikkel Willum Johansen and Tinne Hoff Kjeldsen

Abstract In this paper we explore the possibility of using the historical develop-
ment of cognitive artifacts as a resource in mathematics education. We present three
examples where the introduction of new artifacts has played a role in the devel-
opment of a mathematical theory. Furthermore, we present a methodological
approach for using original sources in the classroom. The creation of an
inquiry-reflective learning environment in mathematics is a significant element of
this methodology. It functions as a mediating link between the theoretical analysis
of sources from the past and a classroom practice where the students are invited into
the workplace of past mathematicians through history. We illustrate our method-
ology by applying it to the use of artifacts in original sources, hereby introducing a
first version of such an inquiry-reflective learning environment in mathematics
through history.

Keywords Cognitive artifacts � Inquiry-based learning � Original sources
Mathematics education � History of mathematics � Reflective learning environment

2.1 Introduction

Today there is a growing awareness that human cognition cannot be understood
solely in terms of mental activity taking place in isolated brains, but also involves
interaction both with other humans and with various cognitive tools. Some of
these ideas can be traced back to C. S. Peirce, who considered perception and
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manipulation of external tokens of iconic diagrams to play a central role in rea-
soning processes. In a more modern, and more general, setting the dependency on
external resources has been explored within the theoretical framework of distributed
cognition. Here the basic unit of analysis is taken to be the cognitive system needed
to perform a specific task such as navigating a ship (Hutchins 1995; Zhang 2006).
In this perspective cognition is not confined to processes taking place within a
single human brain, but it can be distributed over several actors and over external
objects and instruments.

A central concept in the theory of distributed cognition is the concept of cog-
nitive artifacts, that is artifacts developed with the purpose of partaking in cognitive
systems and processes. Because cognitive artifacts are artifacts, they can be seen as
a culturally created resource that can be utilized by the cognitive agents that have
access to the artifacts. The abacus for instance is a cognitive artifact. It was
developed with a specific purpose in mind, but each individual mathematics user
does not have to develop it anew as long as she has access to the culturally created
cognitive resource consisting in the artifact and the instructions for its proper use.

Mathematical activities are strongly dependent on cognitive artifacts. Although
humans seem to have an inborn capacity to perform certain mathematical tasks,
such as comparing the relative size of two sets, this capacity is extremely limited,
and consequently the distribution of cognitive tasks over external artifacts seems to
be an important, if not necessary, prerequisite for most mathematical activities.
Mathematical cognition is thus culturally situated in the sense that the tasks and
activities a mathematician is able to perform at any point in history depends, among
other things, on the cultural resources made up by the cognitive artifacts that are
available to her. Focusing on this perspective of mathematical activities, the history
of the development of cognitive artifacts that have facilitated the development of
certain ideas and the performance of certain mathematical tasks becomes an
essential part of the history of mathematics. Modern mathematics is performed in
the context made up of both past mathematicians’ ideas and thoughts and the
cognitive artifacts they developed and have left for us to use.

The crucial role played by cognitive artifacts in the development of mathematics
has been explored in several historical case studies (Carter 2010; Johansen and
Kjeldsen 2015; Johansen and Misfeldt 2015; Steensen and Johansen 2016). In these
case studies, it is shown that cognitive artifacts in the form of representational
systems historically have played a vital part in the generalization of mathematical
theories to new domains, e.g. the generalization of the operation of exponentiation
from the domain of natural numbers to real numbers. Furthermore, the examples
show that in some cases the content and direction of development of certain
mathematical theories and of new theory development are highly influenced by the
development and choice of specific representational tools.

The use of historical case studies and original sources is already a
well-established theme in the mathematics education research.1 With this chapter

1For an account of the development since 2000, see Clark et al. (2016).
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we wish to add to this literature by discussing how case studies that explore the
introduction of cognitive artifacts can be used as a resource in mathematics edu-
cation. In some cases, the historical development of an artifact turned out to be a
development towards the artifact currently in use, that is, towards a modern rep-
resentational notation, and in other cases cognitive artifacts different from the
modern notation constituted a crucial step in the development of a mathematical
theory. In cases of the first type students can be invited to critically examine the
reasons and motivations leading to the introduction of a particular notation. We
claim that such experiences may serve to consolidate students’ understanding of the
artifact in question and to increase students’ awareness of its importance. In cases of
the second type, the encounter with the historical artifact will give the students the
opportunity to experience something that seems foreign to what they already know,
feel familiar with, consider as well-established or take for granted (Barbin 2011).
We claim that such experiences may help the students to expand their horizon of
understanding and increase their awareness of the function and importance of the
cognitive artifacts they normally use (Gadamer 1975, pp. 306, 374). We have
chosen three examples that illustrate various aspects of both of these two types of
cases. In the first example, we explore the transition from a foreign to a familiar
artifact, in the second we explore an unfamiliar artifact that was used in the
development of a familiar theory and in the third example we explore the intro-
duction of and motivation behind a familiar and taken-for-granted artifact.

Benefits of using original sources for the teaching and learning of mathematics
do not materialize automatically, but need to be promoted. We have developed a
methodological approach for using original sources for the teaching and learning of
mathematics within an epistemological framework, where we distinguish between
three types of considerations that go into the design and implementation of the
learning activity; we describe these in more detail later in this chapter. The creation
of an inquiry-reflective learning environment in mathematics is a significant ele-
ment of this methodology. It functions as a mediating link between the theoretical
analysis of sources from the past and a classroom practice where the students are
invited into the workplace of past mathematicians through history. We introduce a
first version of such an inquiry-reflective learning environment in mathematics for
the use of artifacts in original sources, concretized through one of our three
examples.

We have organized the paper in the following way: In Sect. 2.2 we present our
three examples and indicate what aspects of uses of artifacts each example can be
used to illustrate. In Sect. 2.3 we introduce the methodological approach we have
developed for using original sources in the teaching and learning of mathematics. In
Sect. 2.4 we illustrate the method by applying it to one of our three examples. In
Sect. 2.5 we conclude the paper and give ideas for future research.
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2.2 Cognitive Artifacts in the History of Mathematics

In the following we will present and discuss three examples where the development
of suitable artifacts played a scaffolding role in the development of mathematics.
The first example is the introduction of complex numbers by Girolamo Cardano2

(see also Johansen and Kjeldsen 2015; Steensen and Johansen 2016). The second
example is the formulation of the law of exponents by al-Samaw’al, and the third
example is John Wallis’ introduction of the number line and his attempt to give
negative and complex numbers a geometric interpretation. The presentation of the
examples will be rather brief and is mainly meant to illustrate the various ways in
which artifacts have been used to explore mathematical tasks, develop mathematical
notation and grasp mathematical concepts, and how working with these artifacts
may support educational goals.

In Ars Magna (1545) Cardano considered several problems of the following
type: To divide a given number into two parts such that the product of the parts is
equal to another given number. From a modern point of view these problems can be
considered as special cases of quadratic equations. Problems of this type have been
known since antiquity along with algorithms for constructing solutions to them
geometrically (such as Proposition VI.28 in Euclid’s The Elements). As was then
well known, the algorithm is limited since it presupposes that the square of half of
the given line is greater than or equal to the given product.3 In Ars Magna however,
Cardano deliberately considered a case where the algorithm breaks down. In this
case, a given line of length 10 must be divided into two parts such that their product
is 40. Although Cardano was well aware that the “case is impossible” (Cardano
2007, p. 219), he set out to apply the standard algorithm by constructing the square
of half of the given line and represented the result geometrically.

The next step in the geometric algorithm would be to subtract an area equal to
the given product from the constructed square and to find the square root of the
resulting area. As negative areas cannot be constructed geometrically, the algorithm
cannot be completed. Cardano however responded by replacing the geometric
representation with abstract algebraic symbols and then carried through with the
rest of the steps in the algorithm interpreted not as geometric constructions, but as
algebraic operations. This led him to the solutions 5þ ffiffiffiffiffiffiffiffiffi�15

p
and 5� ffiffiffiffiffiffiffiffiffi�15

p
. As

the sum of these two ‘numbers’ is 10 and their product 40, they ‘solve’ the problem.
In the solution of the problem, Cardano changed cognitive artifacts. Instead of

using geometric constructions (and the large catalog of standard techniques
developed for using these artifacts) he began to use abstract algebraic symbols. The
example illustrates how the choice of artifacts has consequences for the kind of
problems one can handle and ‘solve’, and it illustrates the trade-offs associated with

2We are indebted to Professor Jesper Lützen, University of Copenhagen, for bringing this example
to our attention in his talk at the Second Joint International Meeting of the Israel Mathematical
Union and the American Mathematical Society, IMU-AMS in Tel Aviv, Israel, June 16–19, 2014.
3Or, in modern terms, that the discriminant of the resulting quadratic equation is non-negative.

30 M. W. Johansen and T. H. Kjeldsen



the choice of artifacts. In the geometric representation, the problem cannot be
solved. By moving to an algebraic setting, other techniques and algorithms become
available and we can find ‘solutions’. However, we have to give up intuitions and
understandings that are specific to the conceptual framework that we already know
and operate within. The algorithm becomes a set of rules we simply follow, and the
solutions we find are in a sense meaningless (in the existing conceptual framework),
as Cardano made explicit. So why do they have any value to us? The example
makes a good starting point for discussing the different affordances various cog-
nitive artifacts available to us may have. Why do we prefer to use geometric
constructions in some cases and purely (meaningless in a concrete sense) algebraic
manipulations in others? For more advanced students the example furthermore
could be used to spark a discussion about the reasons for accepting a new math-
ematical entity. Here, the contrast between the use of complex numbers as the
solution to a problem and the use of complex numbers as part of the solution
process (for instance in solving cubic equations) could be introduced (see e.g. Bagni
2011, p. 51 for ideas and empirical results).

As our second example we will look at an episode in the development of the
modern theory of exponentiation. As a background for the example it should be
noted that in Greek mathematics, the theory of powers was limited due to the
demand for geometric interpretation. Consequently, only the exponents 2 and 3,
which could be interpreted as squares and cubes respectively, were considered. The
only exception to this rule was Diophantus’ development of a semi-symbolic
notation that allowed him to consider exponents of (small) natural numbers in some
settings (Heath 1921, p. 458; Katz 1998, p. 173; Thomaidis 2005). A major step
towards the modern theory of exponentiation was taken in the 12th century by the
Arab mathematician al-Samaw’al. Al-Samaw’al’s theoretical innovation hinged on
the introduction of a table of the powers of given numbers, where exponents are
represented by the positions of the columns (Table 2.1).4

Table 2.1 Excerpt of al-Samaw’al’s table, adapted and slightly modernized from Berggren (1986,
p. 114)

x�6 x�5 x�4 x�3 x�2 x�1 x0 x1 x2 x3 x4 x5 x6

F
pcc

E
pmc

D
pmm

C
pc

B
pm

A
pt

0
unit

A
t

B
M

C
C

D
mm

E
mc

F
cc

x = 2 1
64

1
32

1
16

1
8

1
4

1
2

1 2 4 8 16 32 64

x = 3 1
729

1
243

1
81

1
27

1
9

1
3

1 3 9 27 81 243 729

The columns are enumerated using Arabic alphabetic numerals (A = 1 etc.) but the medieval
notation is abbreviated such that e.g. “mal cube” (x5) is abbreviated by “mc” and “part of mal cube”
(x�5) is abbreviated “pmc”. The modern notation in the top row and leftmost column was added by
us. The table reproduced by Berggren has 19 columns (from x�9 to x9 in modern notation)

4The table comes from al-Samaw’al’s work Al-Bahir fi’l-Hisab (The Shining Book on
Calculation). As far as we know the book is not translated into English in its entirety. We here
consider the original source to consist of the table and of al-Samaw’al’s explanation of the law of
exponentials given below.

2 Inquiry-Reflective Learning Environments and the Use … 31



This table allows several steps towards a modern understanding of powers. It
illustrates the connection between powers with positive and negative exponents and
makes it clear that any integer can be used as an exponent; one can always add more
columns to the table in both directions.

The main achievement of al-Samaw’al in this connection however, was to for-
mulate the rule of exponents. In modern notation the rule states that the product of
two powers xm and xn with the same basis is given by xmþ n. Al-Samaw’al states the
rule in terms of movement in the table in the following way:

The distance of the order of the product of the two factors from the order of one of the two
factors is equal to the distance of the order of the other factor from the unit. If the factors are
in different directions then we count (the distance) from the order of the first factor towards
the unit; but if they are in the same direction, we count away from it. (as cited in Berggren
1986, p. 114)

The word “order” here translates into “power” and is represented by the columns
of the table. Al-Samaw’al thus tells us that the distance, i.e. the number of columns
between the cell holding the product and the cell holding one of the factors is equal
to the distance between the cell holding the other factor and the unit column. Or in
modern terms (using both the modern symbolism and the modern notion of neg-
ative numbers), if xm is located in the mth column from the unit and xn is located in
the nth column from the unit, we can find the power of the product xmxn by going to
the mth column and take n steps to the right if n is positive or n steps to the left if
n is negative. From this it follows in modern terms that xmxn equals xmþ n.

This example illustrates how the introduction of a new artifact—here,
al-Samaw’al’s table—can constitute an important step in the development of a
mathematical theory (see Johansen and Misfeldt 2015). In an educational context
the example may serve several important purposes.

Because the table differs from the modern notation and also has the ‘physical’
operation of ‘moving’ between the columns and counting ‘distances’, the table may
expand the students’ horizon of understanding and allow them to see well-known
modern notation pq in a different perspective (see Barbin 2011; Gadamer 1975,
p. 306). Students may realize that the modern notation is not something given, but
an invention—an artifact—just as much as al-Samaw’al’s table and they may ask
for its origin. The encounter with al-Samaw’al’s table may also inspire the students
to look for contrasts between the two notations. For instance, al-Samaw’al’s
notation allows only integer values of the exponents as there is no obvious way to
fit, say, fractional exponents in between the columns of the table, whereas the
modern notation pq will allow q to be any type of number. This contrast may inspire
questions about the modern notation. The modern notation is very permissive, but
does the fact that we can express a certain power with our notation automatically
make it meaningful or well-defined? Are fractional exponents for instance mean-
ingful for all base numbers p, and what about irrational exponents?

Furthermore, this example invites for an inductive approach to teaching and
learning the rule for multiplying exponentials. The artifact allows students to
explore calculating with exponentials by moving back and forth in the table, and by
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playing around with the artifact, students can discover a pattern that can lead them
to formulate the rule of exponents by themselves. This approach has successfully
been tried out in a high school class by a Master’s student supervised by one of us
(see Svensson 2016). In this teaching experiment, two high school classes were
taught the same mathematical content (involving calculation with exponents) using
respectively an inductive and a deductive approach. As part of the inductive
approach, students were presented with a table similar to the one used by
al-Samaw’al, and by exploring the properties of this table and by expanding the
table with more rows the students were able to discover the rule for multiplying
exponentials as well as the related rule concerning division with powers (Svensson
2016, pp. 153–154). The study showed that student motivation as well as retention
(measured six months after the teaching experiment) was better for the students who
had been taught following the inductive approach (Svensson 2016, p. 135). (It
should be noted that al-Samawar’al’s table only constituted part of the inductive
course.)

As our third example we will look at John Wallis’ defense of negative and
imaginary numbers from A Treatise of Algebra, Both Historical and Practical,
chapters LXVI and LXVII.5 In the text, Wallis begins by presenting the common
idea that negative numbers are impossible because it is “Impossible, that any
Quantity (though not a Supposed Square) can be Negative because it is not possible
that any Magnitude can be Less than Nothing, or any Number Fewer than None”
(Wallis 1685, p. 264). Wallis, however, claims that this position is wrong. When
rightly understood, negative numbers denote real physical quantities and are thus
not only meaningless algebraic signs. In order to bring about this change in con-
ception Wallis (1685) asks us to consider the following thought experiment:

Supposing a man to have advanced or moved forward, (from A to B,) 5 Yards; and then to
retreat (from B to C) 2 Yards: If it be asked, how much he had Advanced (upon the whole
march) when at C? or how many Yards he is now Forwarder than when he was at A? I find
(by Subducting 2 from 5,) that he is Advanced 3 Yards. (Because +5 − 2 = +3.)

But if, having Advanced 5 Yards to B, he thence Retreat 8 Yards to D; and it be then asked,
How much he is Advanced when at D, or how much Forwarder than when he was at A: I
say -3 Yards. (Because +5 – 8 = -3.) That is to say, he is advanced 3 Yards less than
nothing. […] And consequently -3 does as truly design the point D; as +3 designed the
Point C. Not forward, as was supposed, but backwards, from A. (p. 265; figure redrawn
from ibid)

What Wallis in effect has done here is to introduce the number line. Of course,
numbers and lengths had been associated before Wallis, for instance, through the
use of measuring sticks, but what Wallis is doing here seems to be something far
more complicated. Going through the physical activity of moving forwards and

5The relevant part of the text is also available in Smith (1959), pp. 46–54.
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backwards which makes perfect sense in everyday life, the algebraic operations of
subtraction and addition are mapped to movements left and right on the line. By
introducing a point of origin (A) on the line, we would say that he has established a
connection between the domain of numbers and the domain of geometry so that
numbers can be understood simultaneously as algebraic entities and as points on a
line. In other words, we could interpret his construction as the creation of what is
known in cognitive science to be a conceptual blend (Lakoff and Núñez 2000,
p. 278).

From an educational point of view, this example is interesting for several rea-
sons. Simply realizing that a familiar artifact such as the number line is not
something naturally given, but an artifact that was introduced and used by a specific
person (Wallis) at a specific time (late 17th century) in order to grasp “negative
squares and imaginary roots” which had shown up in connection with “the Solution
of some Quadratick and Cubick Equations,” as Wallis phrased it, can be used to
illustrate the evolving nature of mathematics to the students: mathematical
knowledge, ideas and artifacts can be criticized and new ideas and artifacts can be
introduced as a response to shortcomings of existing ways of doing and under-
standing mathematics. Furthermore, the number line is a central artifact in modern
primary school mathematics and it may be valuable for the students to get an
explicit introduction to an authentic historic context in which the idea and moti-
vation behind it surfaced, and to make this motivation an object for students’
discussions and reflections. Also, the example addresses a cognitive conflict the
students themselves may have experienced at some point in their education. On the
one hand numbers are considered and often introduced to children as cardinals; we
ascribe numbers to sets of objects and to other quantities. But, as Wallis noted,
quantities are positive, so how can we make sense of negative numbers? Wallis’
text gives one interpretation: In order to make sense of negative numbers we will
have to use another part of our basic experience as source domain for our inter-
pretation. Instead of understanding numbers as quantities and connecting them to
our experiences of handling the cardinality of small sets of objects, we can think of
numbers as locations on a directed path with a given starting point (the origin). The
number line understood as an actual physical representation is used to facilitate and
support this shift in interpretation. In this way, this example illustrates how cog-
nitive artifacts in the form of representations can facilitate the intuitive under-
standing of mathematical entities with an analogy that forms a bridge between a
mathematical domain and a domain of everyday experiences (in this case an
analogy between numbers and movement on a path). Furthermore, and more
importantly, the example illustrates how different artifacts can support analogies
with different domains of everyday experiences, and that these differences in the
analogies can have important mathematical consequences (here, whether or not
negative numbers are acceptable mathematical entities). This aspect of the example
can be strengthened for instance by contrasting the number line with the
Pythagorean dot-notation for numbers and ask the students to investigate what parts
of their everyday experience the different artifacts activate, and to explore the
consequences entailed by such shifts of interpretation (e.g. Steensen and Johansen
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2016). This might illustrate for the students that, in Wallis’ text, the negative
numbers in a sense are part and parcel of the artifact. Negative numbers do not
make sense in the Pythagorean dot-notation, so that an artifact cannot just be
replaced with another artifact.

So far, the Wallis original source has been analyzed mainly with respect to its
potential to strengthen students’ understanding of a well-known artifact, the number
line. The example, however, can also be used to introduce students to creative
inventive processes in mathematics. As previously noted, Wallis not only wanted to
defend negative, but also imaginary numbers. He did so by extending the reasoning
beyond the number line from one to two dimensions. So, instead of considering
movement backwards and forwards on a directed path, Wallis asked us to imagine
that we have a given amount of land and that the sea may either add to or subtract
from it (Wallis 1685, p. 265). If the reasoning behind the number line is applied to
this case the given amount of land is the origin, and land added to that can be
counted as positive area, whereas land subtracted from the origin must be seen as
negative area. And clearly, just as the positive area can be arranged into a square
that has a root, so must the negative area; consequently, we will have to accept
imaginary numbers.

This extension of the reasoning behind the number line may be an interesting
challenge for students who have been taught to accept negative numbers, but have
not yet been taught imaginary numbers. On the one hand, if Wallis’ reasoning is
accepted, the rule of thumb that one cannot take the square root of negative
numbers must be rejected; on the other hand, if Wallis’ reasoning concerning
imaginary numbers is rejected, so must the reasoning behind negative numbers and
consequently they should be rejected as well. In other words, Wallis presented
negative and imaginary numbers as two sides of the same coin and the students can
be invited to challenge this reasoning or to be challenged by it.

However, it must be emphasized at this point that there is at least one clear
difference between the case of negative numbers and the case of imaginary numbers
in Wallis’ text. With the number line Wallis was able to give a clear geometric
construction of negative numbers, whereas he did not have a similar construction
for imaginary numbers. In other words, he lacked an artifact similar to the number
line, and in the rest of the text he tried to provide one by combining the number line
with the catalogue of by-then standard geometric constructions. He took a step
towards the construction of the modern complex plane by realizing that imaginary
and complex numbers must be displaced from the number line (Wallis 1685,
p. 267), but apart from that, his attempts to provide a convincing construction of
imaginary numbers must be regarded as a failure. The modern complex plane is an
impressive cognitive artifact that both allows reasoning with complex numbers and
provides an intuitive geometric construction of them.6 Wallis’ failed attempt
illustrates how difficult it is to create such artifacts; although his intuitive reasoning

6Caspar Wessel’s work On the analytic representation of direction is another source that could be
used in this context.
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can easily be expanded from one to two dimensions (that is from movement on a
path to areas) the corresponding cognitive artifact is much harder to expand in a
similar way. Therefore, Wallis’ ‘failure’ can be didactically beneficial for the stu-
dents. When reading Wallis’ text students who are familiar with the complex plane
will be given a chance not only to see the complex plane as an artifact but also to
appreciate the ingenuity of its construction. Students who are not familiar with the
complex plane can be invited to make the expansion of the number line from one to
two dimensions themselves.

2.3 A Methodology for Using Original Sources
in Math Education

Thus far, we have identified and analyzed the use of cognitive artifacts in three
original sources from the history of mathematics, and we have made some claims
regarding the benefits of using these original sources for the teaching and learning
of mathematics. However, these benefits do not necessarily materialize by having
the students read the relevant original sources. We need to develop a mediating link
that can connect the theoretical considerations with the practice of teaching and
learning. In general, what we are dealing with are questions of why and how to use
original sources in the classroom for the teaching and learning of and about
mathematics (see Barnett et al. 2014). In the present context, we propose to use
history for students’ learning of some aspects of mathematics and for them to
develop some understanding of the nature of mathematics. Even though our focus
here is on the use of artifacts in sources from the past and not on the historical
development per se, it is important to be conscious about the underlying conception
of history beneath one’s particular approaches to history in using original sources in
the mathematics classroom. As explained in the introduction, we consider mathe-
matical cognition to be culturally situated and cognitive artifacts as cultural
resources. We are looking at mathematicians’ strategies and techniques in the
production of mathematical knowledge available to us in original sources from the
perspective of the significance of cognitive artifacts. This is consistent with a
multiple perspective approach to history of practices of mathematics where past
mathematicians’ development of mathematics in time and place is looked upon
from various perspectives depending on the historical and/or philosophical ques-
tions under consideration (see Kjeldsen 2012).

In science teaching, invoking such epistemological insights is often attempted
through inquiry-based teaching in which students become engaged in activities that
to some extent mimic what scientists do when they produce new knowledge.
However, it is extremely difficult to create learning situations in mathematics
teaching in which students can get first-hand experiences with mathematical
research; this is probably the reason why inquiry-based teaching in mathematics
seems to be almost entirely directed towards applications of mathematics and
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mathematical modeling. However, we argue that the history of mathematics can
serve as a means for implementing an inquiry-reflective learning environment
where students can gain insight into authentic research processes related to the
creation of new mathematics, that is accessible to them, and which are still relevant
for today’s research. On the other hand, as has been emphasized by Abd-El-Khalick
(2013) for science teaching:

It now is well understood and documented that while inquiry might serve as an ideal
context for helping students and teachers develop informed NOS [nature of science] views,
it does not follow that engagement with inquiry would necessarily result in improved
understandings. […] research also shows that engagement with HPS [history and/or phi-
losophy of science], absent [of] critical and structured reflection, also is not likely to
achieve desired NOS [Nature of Science] understandings. (pp. 2089–2090)

The key words here are “critical and structured reflections” the presence of
which, according to Abd-El-Khalick (2013, p. 2090), make inquiry and history of
science “ideal contexts for teaching and learning about NOS.” He found that what
he calls an ‘explicit-reflective framework’ is needed in order to integrate nature of
science with science education in such a way that students will develop informed
NOS understandings. By ‘explicit’, he refers to specific NOS learning outcomes
that should be part of the curriculum, whereas ‘reflective’ refers to instructions for
how students can be encouraged to reflect upon their experiences with learning
science from within an epistemological framework.

Analyses of intentionally designed implementations of history and philosophy of
mathematics in Danish upper secondary school have shown that, if issues of the
historical development of mathematics and the nature of mathematics are made
explicit objects of students’ reflections, learning possibilities such as the ones above
can be fulfilled in practice (see e.g. Jankvist 2010; Kjeldsen and Petersen 2014).

Here we focus on the history of cognitive artifacts as a resource for mathematics
teaching and learning, but other aspects of the history of mathematics and original
sources as a resource for promoting inquiry-reflective teaching in mathematics
could be the focus (Kjeldsen 2016). For instance, students could study the original
sources from the perspective of the use of such artifacts in the production of
mathematical knowledge with the purpose of becoming aware that choices
regarding techniques, interpretations and mathematical contexts are made in
mathematical research processes—and that these choices have an impact on our
understanding and our development of mathematical knowledge. Such insights will
enhance the students’ mathematical competency. In our three examples, the stu-
dents’ ability to follow mathematical reasoning and understand the use of repre-
sentations was especially relevant; in other cases, sources can be used to improve
the students’ ability to follow deductive proofs. Such competencies are generally
intrinsic in teaching and learning mathematics. Thus, historical sources and artifacts
from the past can be used for the teaching and learning of mathematics whether the
development of students’ historical awareness is part of the curriculum or not.

What we propose as a mediating link between the theoretical analysis of
sources from the past and classroom practice (see Fig. 2.1) is the creation of an
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inquiry-reflective learning environment in which the students are invited into the
workplace of past mathematicians through history. We are developing a method-
ological approach for using original sources for the teaching and learning of
mathematics within an epistemological framework, where we distinguish between
three types of considerations that go into design and implementation:

(1) Theoretical Analysis of historical Sources (TAS) from the perspective of
aspects of the nature of mathematics and historical insights and awareness;

(2) Creation and framing of an Inquiry-reflective Learning environment in
Mathematics (ILM); and

(3) Instructions for practice promoting Students’ situated Reflections (ISR).

Three processes combine the three considerations (see Fig. 2.1):

(a) designation of which aspects of mathematical research practices the teaching
episode should mimic, i.e. which part of a mathematical research ‘workplace’
should the students be invited into;

(b) design of teaching material that can promote students to reflect upon the aspects
chosen for inquiry; and

(c) evaluation of the development of students’ informed conception of the aspects
of the nature of mathematics, historical insights and awareness with respect to
the results of the theoretical analyses of the sources.

2.4 Putting the Method to Use: An Example

In the present chapter, the idea is to use sources from history of mathematics to
make students aware of the function, importance and limitations of cognitive
artifacts in the development of mathematics. As we claimed in the introduction, all
of our three examples can be used to consolidate students’ understanding of the
value of a particular notation, to understand the reasons underlying its creation, and
to make students experience something foreign, though each example puts a dif-
ferent emphasis on each one of these three aspects. In this section we will use the
Cardano example to illustrate our methodological approach.

c 
a

TAS

b ISRILM

Fig. 2.1 Methodological triangle for using original sources in mathematics education
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To set up an inquiry-reflective learning environment in mathematics, it should be
decided which of the aspects of the mathematical research processes, that have been
identified in the source, should be used to develop students’ understanding of how
mathematical knowledge is generated (process (a)). Cardano introduced the alge-
braic notation of the square root of a negative number in his exploration of the
‘impossible’ case of dividing a line of length 10 in two parts such that their product
is 40. Analyzed with respect to research processes in mathematics, Cardano’s text
illustrates at least two ‘strategies’ in mathematical research: (1) to try out things and
methods even though they have no solid mathematical foundation (hereby intro-
ducing and operating with the square root of a negative number), and (2) to use a
new method to investigate a known problem (here by switching domain from
geometry to algebra).

The cognitive artifact, the notion Cardano introduced, made it possible for him
to operate with square roots of negative numbers and enlarge the types of solvable
problems, whatever ‘solvable’ then might mean, by moving the method of solution
from the geometrical to the algebraic domain. For students, this will illustrate the
power of the modern, algebraic notation. The other part of Cardano’s approach, the
geometric conception that Cardano moved away from, is something foreign for
most students in secondary schools of today, as these students will perceive the
problems as equations (not as geometrical entities) and solve them algebraically.
This ‘foreign’ geometrical method of constructing solutions shows the students that
what can be considered as a solution (i.e. what it means to solve a problem) depends
on the domain of inquiry, the artifact in use, and the cultural and historical contexts.
The students finally may come to understand that the different artifacts have dif-
ferent advantages and disadvantages. The geometrical constructions speak to our
intuition whereas the algebraic symbols support a general technique that is not
limited to specific cases such as the geometrical procedure. Hence, by studying
Cardano’s text, the students should be able to: (1) identify the artifact and domains
that Cardano created and worked with in the source and compare it to our current
practice, and (2) discuss the function and importance of the cognitive artifact for
Cardano’s mathematical activities and argumentation in the source and compare it
to our current practice. If this can be accomplished, the students will have been in
an inquiry-reflective learning situation, in which they have gained insights into how
mathematical knowledge evolve and have experienced the significance of cognitive
artifacts in mathematics (process (c)).

As discussed in Sect. 2.3, in order for students to develop such informed con-
ceptions of the nature of mathematics and research processes, the reading of the
sources must be supported didactically. This can be done by designing a set
of instructions directed towards promoting the students’ situated reflections
(process (b)). In the present case, the task is to encourage students to reflect upon
their experiences with learning mathematics using the cognitive artifact in the
source, and the significance of the artifact for producing and establishing mathe-
matical knowledge. This can be done by preparing worksheets for the students,
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to guide them through their work with the sources, and in which requirements for
essay writing and/or group and project work are stated, depending on the choice of
student activities and pedagogical choices. Figure 2.2 displays such a worksheet. It
is designed to bring students’ attention to Cardano’s introduction and use of the
cognitive artifact, and to have them reflect upon its function in Cardano’s mathe-
matical activities as explained in the source—that is, to scaffold the students’
learning towards the development of the desired informed conception of the
nature of mathematics and mathematical research processes that were identified in
process (a).

Worksheet for the text of Cardano

Read Cardano’s text , “Rule II” (part of Ars Magna 
Negative) , and pay special attention to the 
rule. The text is available in an English translati on (Cardano2007, pp. 219–220) where modern symbolism 

has been used instead of Cardano’s original notation (e.g. 5p:Rm:15 is written as 155 −+

Chapter XXXVII: On the Rule for Postulating a 
‘tools’ and domains Cardano evoked in order  to explain his 

). His 

original notation can be seen in the original Latin text which is reproduced in the source book by Struik 
(1969, p. 68).

1. Which mathematical task/example was Cardano using to explain his “Rule II”?
2. Analyze Cardano’s demonstration of the rule. 

a. How did he proceed in order to demonstrate his rule? 
b. Which tool/artifact did he use to represent (parts of) the algorithm he used in the 

beginning of the text?
c. Which domain of mathematics was he working within?
d. How is this connected to Cardano’s statement about reaching a “true understanding”?
e. At some point Cardano asks us to operate with the square root of negative 15. What is 

the problem with that?
f. Why did he introduce this ‘imagined’ number/this cognitive artifact?
g. What was the benefit of introducing this cognitive artifact?

3. Cardano claimed in the presentation of the rule, that the example he used was an impossible 
case. 

a. Why was it an impossible case?
b. How is this impossibility reflected in/connected to the artifact and domain?
c. In what way did Cardano’s solution depend on his introduction of the cognitive artifact 

of the square root of negative numbers?
4. How would we formulate Cardano’s example today? To which domain of mathematics would 

we say it belongs?
5. Compare and contrast Cardano’s way of representing the mathematical task of the text with our 

current way of representing such tasks.
6. What are the benefits/disadvantages of Cardano’s way of dealing with such tasks?
7. What are the benefits/disadvantages of invoking the cognitive artifact of the square root of 

negative numbers?
8. What problems did the artifact solve?
9. What problems did the artifact create?
10. How are we dealing with problems such as the one Cardano attacked in our current practice? 
11. What are the benefits/disadvantages of how we usually deal with such tasks today? 
12. Compare and contrast Cardano’s solution algorithm with our current one.

Fig. 2.2 Worksheet for the text of Cardano
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2.5 Concluding Remarks and Future Research

We have illustrated how our methodological approach (depicted in Fig. 2.1) makes
it possible to use historical sources as a way to teach students aspects of the nature
of mathematics and some specific research strategies that have been used in
authentic inquiries in mathematics. A significant element of this methodology is the
creation of an inquiry-reflective learning environment in mathematics, that can
function as a mediating link between the theoretical analysis of sources from the
past and a classroom practice where the students are invited into the workplace of
past mathematicians through history and historical sources. Through the analyses of
our three examples, and the explicit design of how to use our methodology for
using original sources in the case of Cardano’s text, we have exemplified how
cognitive artifacts can be used as a resource in mathematics education to make
some aspects of the nature of mathematics and of research strategies in authentic
inquiries in mathematics explicit objects of students’ reflections within this
methodology.

The three examples we have presented here show that mathematical theories are
culturally and historically situated as a result of their interrelation with the devel-
opment of specific cognitive artifacts. This may serve as an important correction
and expansion of a naïve conception of mathematics as a contextless and purely
deductive discipline. And yet the situatedness of mathematical knowledge hardly
exhausts all that mathematics is. The examples, rather, illustrate only one aspect of
the nature of mathematics. This naturally leads to the question: what are the other
(important) aspects and how could they be taught? The two authors of this chapter
aim to address these questions in forthcoming research where we will (a) attempt to
give a more precise and detailed description of the nature of mathematics in relation
to teaching and (b) describe how the different aspects of this nature can be taught
using the methodology described above.
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Chapter 3
History of Mathematics and Teachers’
Education: On Otherness and Empathy

David Guillemette

Abstract In this chapter, I develop some major points from the results of an
empirical study searching to describe the dépaysement épistémologique (episte-
mological disorientation) lived by six secondary school pre-service teachers taking
part of a history of mathematics course. Following a phenomenological approach, a
description of the lived experience of the participants engaged in the reading of
historical texts was produced. This description takes the form of a polyphonic
narration (in a Bakhtinian dialogical perspective) that carries a plurality of points of
view responding to each other. Our reading of this narration leads us to important
reflections about otherness and empathy concerning the role of history of mathe-
matics in the context of teachers’ training.

Keywords History of mathematics � Teachers’ education �Mathematics education
Dépaysement épistémologique � Empathy

3.1 Introduction

In this chapter, I will quickly summarize an empirical study that has been imple-
mented during winter 2013 searching to describe lived experience of six secondary
school pre-service teachers taking part in a history of mathematics course.1 After
the presentation of the research problem, I will develop the epistemological
background of the study, particularly by describing Emmanuel Levinas’ and
Mikhail Bakhtin’s epistemology and human nature perspectives, which will lead us
to the research objective. After a quick presentation of the context of the study and
the methodology that was deployed, I will focus and develop, specifically for this
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contribution, on two major points that arose during the analysis: the notions of
otherness and empathy.

As we will see, the phenomenological analyses that have been conducted show,
on the one hand, that the students engaged in the reading of seven historical texts in
mathematics experienced empathic relation related to the mathematicians, which
the authors of these historical texts perceived in their own mathematical, historical
and cultural background. On the other hand, analyses show that this empathic
relation is also oriented toward their future pupils confronted with the learning of
mathematics, and these pupils are also perceived as subjects grounded in their own
mathematical, historical and cultural background trying to understand an encoded
object of culture. These elements bring new insights concerning the role of history
of mathematics in mathematics education, especially concerning mathematics
teachers’ education.

3.2 The Role of History of Mathematics in the Context
of Teachers’ Training

3.2.1 The Argument of dépaysement épistémologique

For decades, many researchers have explored the contribution of the study of the
history of mathematics in the context of teachers’ education. A more and more
recurring theme is that of dépaysement épistémologique2 (epistemological disori-
entation) (Barbin 1997, 2006; Jahnke et al. 2000). Indeed, researchers point out that
the history of mathematics stuns and shakes customary prospects of students on the
discipline by highlighting its historical and cultural dimension (Barbin 1997).
Overall, the study of history, above all the reading of historical texts, would bring a
critical look at social and cultural aspect of mathematics and push future teachers to
reconsider their view on the discipline and the classroom.

That said, numerous considerations about this dépaysement épistémologique
argument does not seem to have been the subject of a systematic field’s research
that truly gives voice to the actors in the training environments (Jankvist 2007).
However, many theoretical discourses have tried to think about the phenomenon in
their own epistemological perspective. Major instances are the French historical
epistemology (e.g. Barbin 1997, 2006), humanism related to the concept of self-
knowledge (e.g. Fried 2007) and sociocultural approaches to mathematics education
(e.g. Guillemette 2015b; Radford et al. 2007; Roth and Radford 2011). For a more
detailed analysis of these perspectives and an outline of dialogue between them, see
(Guillemette 2016).

2Dépaysement épistémologique is a French term that has been sometimes translated by reorien-
tation in English-language literature.
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3.2.2 Research Problems

As it is now classically seen in the domain, theoretical and empirical studies seem to
walk side by side, both types of research having difficulties to stimulate each other
(Gulikers and Blom 2001). On the one hand, we can find interesting theoretical
studies that bring brilliant conceptualization regarding history of mathematics in
mathematics education. On the other hand, we can find empirical studies3 that seem
to work on their own, without taking into consideration the theoretical development
in the field, and very few of them seem to present a complete research device and a
framework for data analyses (Guillemette 2011). The study evoked here has tried,
in its manner, to fill that gap between those two parts of research by going in the
field and taking account of theoretical consideration and bringing back new idea
from its empirical movement to enrich these theoretical reflections.

Another crucial aspect of the recent movement in the field is the need to better
reflect the contribution of the use of history in motivational and affective terms.
Some researchers (e.g. Barbin 2012; Fried 2014; Guillemette 2016) have high-
lighted a particular need to support research through the production of theoretical
and conceptual frameworks enabling these elements to be considered more thor-
oughly and more closely articulated with clear and solid epistemological
foundations.

This need has become conspicuous by the appearance in research of what is
called by many the “motivational theme” (Fried 2014; Fried et al. 2016; Gulikers
and Blom 2001). This expression refers to a form of leitmotif encountered in a large
number of studies that emphasize an “affective gain” or “motivational gain”
associated with the introduction of history and cultural elements in the classroom.
This instrumentalization of the historical and cultural dimension of mathematics for
the realization of objectives such as the motivation of learners or the dynamization
of the mathematics classroom makes it difficult for the field of research in its quest
for theoretical and conceptual frameworks. Indeed, as Fried et al. (2016) point out:

Assume that history truly has this motivational effect on students and that, further, it is not
merely the effect of novelty, that is, it persists even after it has become routine. For the
“motivational theme” to be the basis of a theoretical framework for teaching history of
mathematics in the mathematics classroom, one would have to ask what is it about history
that touches students and moves them? What part of their intellectual lives is touched by
history? Asking these questions is essential to the question of a theoretical framework;
however, if we obtain an answer to them or even if we manage to bring out the force of
them, it will be something quite different from a statement of the form, “history of math-
ematics increases students’ motivation”. The affective gain will, in this regard, be a kind of
epiphenomenon only. (p. 212)

3As shown by Jankvist (2007) the number of empirical studies has increased since the last ICMI
study on history of mathematics in mathematics education (Fauvel and van Maanen 2000). But
empirical study is still underrepresented in the field confronted with theoretical study, historical
analysis related to education motivation or presentations of classroom propositions based on the
history of mathematics.
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In other words, the purely instrumental role of the historico-cultural dimension
of mathematics, seeking to attain other goals than the historico-cultural dimension
of mathematics itself in the classroom, hampers the development of theoretical and
conceptual frameworks that are truly anchored in this dimension. Although, these
different objectives (motivational and emotional gains, classroom dynamization,
positive relation to discipline, etc.) are important and not insignificant, they just
cannot be used as a basis for research since they could not lead to a reflection where
the historico-cultural dimension of mathematics makes sense for learners, where the
very nature of mathematical activity is questioned.

The idea here is, not to disqualify any discourse that refers to this “motivational
theme” in research or to develop a catalogue of research or classroom practices and
options, or to target an ideal approach. Rather, this study tries in his very own
elaboration and in its conclusion to propose answers in the form of openings to
theoretical or conceptual wording that allow to think more precisely about these
questions, avoiding and going beyond, the “motivational theme”.

3.3 Theoretical Orientations and Research Objective

The study is rooted in the theory of objectification (Radford 2011, 2013; Roth and
Radford 2011), an emerging sociocultural theory in mathematics education that
problematizes teaching and learning from the notion of Alterity conceived by
Mikhail Bakhtin and Emmanuel Levinas. This perspective brings much importance
for both history and affect in the teaching and learning of mathematics. History in
the context of pre-service teacher training is perceived here as a place where stu-
dents can encounter other voices and way-of-being-in-mathematics, coming from
the past (Radford et al. 2007).

3.3.1 A Levinasian Perspective

More precisely, the notion of Alterity is taken, as Levinas put it in his multiple
phenomenological essays, as the central and the core of human being. In his theses,
Levinas overturned the traditional—from Plato to Heidegger—ontological way of
thinking human being. Indeed, for Levinas, the philosophical inquiry on human
being does not begin with and capitalize on the nature of human being (ontological
perspective) but on his relation to the Other (ethical perspective). In other words,
ethic here is not taken in as a “satellite” element of human existing; it is rather the
central and the determinant field of reflections. With Levinas, ethic is the
philosophie première instead of, classically, ontology. The complex and profound
philosophical reflections from Levinas provide basic elements and language to the
theory of objectivation. It provides, above all, a subject perceived primly and
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fundamentally in his ethical aspect, in its relation to the Other (peoples, objects,
concepts, ideas, history, sciences… everything that has a meaning).

In his latest work Levinas, in response to the famous critique of his early works
by Jacques Derrida in Violence et métaphysique, develop a notion of the subject
literally constituted of the Others. He then quit his traditional phenomenological
investigations on Alterity, based on the tradition inherited from his masters Husserl
and Heidegger, to open a very new perspective on human being which he no longer
perceived as an isolated subject being beset by phenomena, an ipseity thrown in the
reality as would have said Heidegger, but an ethical subject constituted and
revealing himself, in the relation to the Other.

3.3.2 A Bakhtinian Perspective

Concerning Bakhtin in his famous dialogical critic, the notion of Alterity is
incorporated in his sociolinguistical way of thinking human being. Just like
Levinas, Bakhtin tried to think human being by developing a fundamental reflection
on his relation to the Other, particularly here with other human being.
Consequently, in a very in-depth Marx lecture, his reflection is directed less to the
nature of human being than to his cultural productions and its essentiality in the
social.

More specifically, Bakhtin is doing so by putting in the front row linguistic,
social, aesthetic and ideological aspects of human life. In his perspective, no act of
meaning can be taken individually. It has to be taken with consideration to the acts
of meaning to which it responds and those that are made possible by it in a certain
sphere of communication, a certain ideological horizon and a certain aesthetic
space, three intimately related elements in his dialogical critic. Again, these con-
ceptual and philosophical considerations provide to the theory of objectivation
conceptual elements to think about learning as a social process of critical encounters
of other voices, aesthetic spaces and ideological horizons by the means of social
interaction and artefacts (Radford 2011, 2013).

3.3.3 Research Objective

Back to history in mathematics education, from the perspective of the theory of
objectivation, the dialogue that emerges from the encounters with the history of
mathematics brings a particular experience of otherness that could be related to
Barbin’s concept of dépaysement épistémologique. Indeed, the notion of Alterity,
philosophically and theoretically developed above, can help us to think about/of the
phenomenon. And in this way to elaborate on its social, cultural and, of course,
historical aspects, so that it can help us to build a consistent and coherent
methodological approach for a refined empirical investigation.
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Inhabited by those different theoretical discourses on history and the research
problem quickly summarized above, this study has given itself the objective to
describe the dépaysement épistémologique experienced by future secondary
mathematics teachers through training activities that involve history of mathemat-
ics, particularly the reading of historical texts.

After a brief presentation of the context of the study and the methodology that has
been deployed, instead of giving here an exhaustive description of the phenomena, I
will focus, as said in the introduction, on two interrelated elements that have been
major points of the results: the notion of otherness and the notion of empathy.

3.4 Context and Elements of Method: An Adapted
Phenomenological Approach

3.4.1 Setting the Scene

For this study, a phenomenological approach in human sciences was adopted and
adapted to the “dialogical Bakhtinian perspective” carried by the theory of objec-
tification. These choices help us to understand a priori the phenomenon of
dépaysement épistémologique and to highlight our own reflection as researchers on
the role of history in mathematics education. Phenomenology and dialogism, that
are in the core of the theory of objectivation, help us to develop a consistent
methodological framework with its epistemological background. Concerning the
phenomenological approach (Van Manen 1994), it aims to describe the intimate and
subjective experience of the participants and to clarify the meaning of their expe-
riences. Concerning Bakhtin’s dialogical perspective (Bakhtin 1929/1977, 2003), it
emphasizes that a scientific or literary work must be “polyphonic.” That is to say,
providing a plurality of discourses and understandings of the world, which are
echoing and responding to each other. In such polyphonic work, reality loses its
static aspect and its naturalism. It allows readers to grasp a lively world showing
tendencies and anticipations instead of linear and sterile discourse on reality.
Inhabited by this comprehensive and critical perspective in human sciences, this
study proposes a description of the lived experience of dépaysement
épistémologique that takes the form of a polyphonic narration.

The selection of the six participants for the study was done on a voluntary basis
from among future secondary school teachers enrolled in a history of mathematics
course offered at the Université du Québec à Montréal in Canada during winter
2013. Seven activities consisting in the reading of historical texts were experienced:

– A’hmosè: Rhind Papyrus, problem 24
– Euclid: Elements, proposition 14, book 2
– Archimedes: The Quadrature of the Parabola
– Al-Khwãrizmî: The Compendious Book on Calculation by Completion and Balancing

(Al-kitāb al-mukhtaṣar fī ḥisāb al-ğabr wa’l-muqābala), types 4 and 5
– Chuquet: Tripartys en sciences des nombres, problem 166
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– Roberval: Observations sur la composition des mouvements et sur le moyen de trouver
les touchantes des lignes courbes, problem 1

– Fermat: Méthode pour la recherche du minimum et du maximum, problems 1 to 5

These reading activities were conducted following Fried’s (2007, 2008) rec-
ommendations. For this author, just like many others, the reading of historical texts
appears to be the preferred approach when using history of mathematics in order to
create this dépaysement épistémologique, the very meeting with the mathematicians
from the past.

But Fried stresses that this reading should not be done in any way. He
emphasizes that, on the one hand, the historian’s goal is to immerse himself or
herself in the mathematician’s era, to perceive the idiosyncrasies of the latter and to
situate his or her work in a continuum of mathematical development related to the
social and historical background. On the other hand, the mathematician’s view tries
to decode the obsolete symbols, to restore them to the modern language and to
grasp, essentially, the mathematical aspect of the author’s words. He describes as
“diachronic” the reading of the historian and as “synchronic” the reading of the
mathematician, terms borrowed from the famous Swiss linguist, Ferdinand de
Saussure.

For Fried, the synchronous reading of mathematical texts is too often reinforced
by teachers and mathematicians. Also, the role of the teacher would be to switch
constantly with the learner between these two visions. The continuous back and
forth between the two perspectives on the text would allow the learner to develop a
certain awareness of his own conceptions of mathematics, his personal under-
standings and the possibility for him to confront them constructively with those of
the students other.

3.4.2 Data Sources and Analyses

Video recordings of classroom activities, individual interviews and group interview
were conducted and provide the study data. For video recordings, analysis allowed
us to describe the learning process that took place in the classroom. For individual
interviews, processing and analysis of data (Lamarre 2004; Van Manen 1994) led to
specific descriptions of the epistemological disorientation lived by each participant.
The polyphonic novel was then constructed from extracts of the interview group
and enhanced from video recordings and individual interviews analyses.

3.4.3 The Construction of a Polyphonic Novel

More precisely, in order to obtain this polyphonic novel, a first step was to construct
the transcript of the group interview with care. Then, several attentive readings of
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the transcript were made. These readings have revealed some extracts of dialogue
containing rich and profound reflections in relation to the lived experience of the
participants. Twelve extracts of the transcript were selected. Thereafter, a careful
reading of each of these extracts was made again and a list of various topics,
thematics, reflections or statements was created for each of these extracts. The
twelve extracts were then systematically treated individually. For each of them, four
writing phases succeeded each other.

The first step of writing was to rework the raw extract from the transcription of
the dialogue. The dialogue was then shaped so as to make it more readable with the
addition of paragraphs and spacing. Also, the author of each excerpt was more
clearly identified without duplication. The first traces of narration then appeared
with the addition of “incised” phrases like; “she said lightly,” “revived Aliocha
squirming on his chair” or “I thought.” These phrases highlighted the ways of being
and attitudes of the characters/participants.

The second writing step was to complete the extract, with the addition of
information on the participants. These additions allowed to “defend” each partici-
pant in the dialogue and to refine and highlight their thoughts and appreciative
orientations. Taking the form of paragraphs inserted into the dialogue, these
additions allow us to position ourselves as author/researcher as the agent of the
participants, as their spokesman. These intercessions were both fueled and justified
by the descriptions of reading activities and the specific descriptions of the expe-
rience of the participants obtained during previous phases of analysis.

In the third step of writing, personal reflections were added so as to be heard
more as an author/researcher in the narrative. Usually at the beginning of the
extract, one or more paragraphs were added. These provided space to express our
thoughts that were emerging at the time of writing.

The fourth and final step of writing was to refine the narrative by emphasizing
the theme of the extract and the polyphonic style exercised.

These four writing steps were repeated for each of the twelve extracts released
initially. These were then combined to form the final polyphonic novel describing
the dépaysement épistémologique experienced by future teachers of mathematics.
This narration of the collective experience takes its density from fine description of
each character/participant from previous analyses. It has led to the emergence of
tensions, viewpoints moving away and approaching each other, viewpoints that
overlap and influence each other, a sort of siphonophore, both singular and plural.

The description provides multiple looks, which, in tension, carries fruitful dis-
courses on the lived experience of participants. As Bakhtin put it in its dialogical
critic explained above, it is in the tension between discourses coming from different
spheres of communication, different ideological horizons and different aesthetic
spaces that one could grasp the reality of human life.
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Globally, the form of a polyphonic narration for this description is a method-
ological response to an epistemological challenge that underpinned this research.
Indeed, this discursive strategy allows the production of a description that, first, can
respect the phenomenological requirement and stringency to keep alive the sub-
jectivity of the participants without objectivizing it in any manner and, second,
embrace a conception of teaching and learning in mathematics education, which
claims that learning is necessarily “learning-with-others” (Radford 2011, 2013).4

3.5 A Comprehensive and Interpretative Paradigm

Before going any further, it seems important to mention that this qualitative
research is obviously anchored in an interpretative/comprehensive paradigm. It
means that it is rather exploratory than “confirmatory.” That is to say that it fails
completely and in advance, in the project of formulating generalizable, predictable
or falsifiable statements. These are not the objective here. The study brings a
description of a specific, contextualized and particular event that can be generalized
with huge difficulties and dangers. That said, the description obtained can provide
space for reflection concerning theoretical and/or conceptual frameworks for inte-
grating history in mathematics education and concerning practices in this context.

This is why the study cannot provide any clue concerning the way one could
provoke “systematically” dépaysement épistémologique in his classroom, and
above all, in the same way that happened in this particular study or in any “positive”
way. This study has much more humble objectives. It is simply based on a fact that
something happens when pre-service teachers are engaged in the reading of his-
torical text; some have already thought about it and have brought theoretical
considerations calling this phenomenon dépaysement épistémologique. This
research tried, in an empirical manner, not to “confirm” or “infirm” these theoretical
considerations, but to enrich and deepen them by a reflection that is “co-emerging”
from the contact with the participants.

On the contrary, a systematic method or a pedagogical recipe that provokes
dépaysement épistémologique in the classroom could not draw on and recognize the
situated, contextualized and organic aspects of a classroom. Searching for such
elements could only lead to disembodied, procedural and superficial ways of being
in the classroom.

This said, the next remarks and commentaries constituted a specific, but privi-
leged reading of the polyphonic narration. But now, ad rem.

4The entire description, and also the phenomenological descriptions (French version), can be
obtained from the author.

3 History of Mathematics and Teachers’ Education … 51



3.6 On Otherness and Empathy

3.6.1 Making Sense of the Lived Experience
of the Participants

The description obtained points out two major interrelated elements: the experience
of otherness as well as empathy. It reveals that the future teachers make serious
efforts to understand the texts without uprooting them from the context in which
they were produced. This interpretative work is hindered by numerous difficulties
associated with various elements; language, notations, implicit theorems, odd
styles, unknown definitions, unusual arguments, unusual typography, etc. Literally,
the students “suffer” the texts. In the context of teachers’ training, these reading
activities appear as precarious and risky hermeneutics exercises. Indeed, the
experience of otherness in mathematics seems brutal from a cognitive and emo-
tional point of view.

More specifically, their testimonies are quite clear concerning the adversity that
they have lived. “Suffering the text” means that their difficulties in the interpretation
of the texts and the misunderstanding of the author’s culture and way of doing
mathematics often lead to frustration and to a sentiment of being awkward and
clumsy. Those elements appear clearly and recurrently in the specific description of
each participant and were one of the main themes that comes through the poly-
phonic novel. This supports Barbin’s (2006) discourse on dépaysement
épistémologique which is there associated to a sentiment that one can feel in a
foreign country or in a foreign context: disoriented and confused.

That said, in this otherness experience related to what we can call dépaysement
épistémologique, the students can sometimes answer violently. In this section, I will
explore the notion of “empathy” and “violence” as it is developed in phe-
nomenological literature in order to clarify our position concerning the lived
experience of dépaysemnent épistémologique and to make sense of the participants’
testimonies. A few excerpts will be presented and commented afterwards.

Phenomenologically, as Levinas (1971/2010, 1979/2011) put it, violence is a
“thematization of the Other,” a reification of the Other, a way to make the Other a
Mine. This is where the concepts of otherness and empathy join together. Again
with Levinas, and also with Bakhtin (1986/2003), empathy can be understood as an
effort of the establishment of a nonviolent relation with the Other. Within the
experience of otherness, empathy is this modality of being tends to keep the Other’s
subjectivity free and alive, to keep it mysterious and indefinite. Levinas developed
that this nonviolent and empathic relation “[is] not an idyllic and harmonious
relation of communion, nor a sympathy that, by putting ourselves in its place, we
recognize him as similar, but external to us, the relation with the Other is a relation
with a Mystery” (1979/2011, p. 63; author’s translation).

Classically, empathy is defined as the ability of putting ourselves intuitively “in
the place of the Other,” to feel the same way as the other or to identify ourselves
to the other. Thus, empathy implies a particular relation with the other.
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Furthermore, empathy is not an experience received in passivity. It is a possible
answer to the experience of otherness. Bakhtin notices about this the following:

I actively identify with individuality and consequently, not a single moment do I get lost
nor do I lose ground outside of it. It is not the object, which, in an unexpected way, takes
possession of me, passive, but it is me who identify actively to it. The act of empathy is my
act and that is where its productivity and newness lies. (1986/2003, pp. 35–36; author’s
translation)

In this way, if the empathic movement towards the Other is a participative act, if
it is actively inaugurated in the peculiarity of any moment of the human existence
and if it is not passively received, it can then be requested and encouraged, and it
can be maintained.

Back to the participants’ lived experience, violence, as developed above, occurs
during the reading of historical texts. Indeed, the subjectivity of the authors is
arduously preserved, as it is possible to read it in the specific description and in the
polyphonic novel. The students hardly maintain an empathic relation with the
authors. In the suffering of the dépaysement épistémologique, the answer is often
violent. This violent answer is the disappearance of the empathic relation. The
authors are dispossessed of their lively peculiarity; they are transformed, summa-
rized and reified. There is a violence of the synchronization thinking.

Indeed, students have a strong tendency or a natural propensity to simply
translate and report on the author’s mathematical activities in modern language. In
this manner, the author is hardly considered in his mathematical and in his socio-
historical context. Then, the authors see themselves dispossessed of their unique-
ness; they are often translated and summarized in modern mathematical language.

Furthermore, concerning teachers’ training, the need to keep students main-
taining an empathic, nonviolent relation with the author seems crucial now.
Consequently, it seems necessary to accompany future teachers in the dépaysement
épistémologique, so that they maintain a nonviolent relation with the authors. The
reason is, on the one hand, as the description obtained shows it, this empathy allows
the welcoming of the mathematician and implies an epistemological reflection on
mathematics and a new relationship with the discipline; on the other hand, it
appears that this empathy can move towards the classroom. Indeed, through an
empathic answer to the otherness experience that characterizes the dépaysement
épistémologique, another which is the students’ subjectivity reveals itself. Here
students direct their reflections on their awkward experiences towards their future
mathematics classrooms.

This small excerpt of the narration can illustrate a few reflections towards the
future mathematics classroom of the participants:

– What fascinated me is the way to see things. I was like, “Wow!,” began Katia.
She was referring to Archimedes whose style and efforts had particularly impressed her.
In this text, Archimedes uses with virtuosity principles of physics to solve mathematical
problems. She saw then a completely original thought, and was profoundly shaken by it.
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– And, indeed, she continued, what we said earlier about all the reasoning that we
imposed to students… well not imposed, but…

– Guided, proposed Martha.
– They are clearly imposed, threw Grouchenka abruptly.
– Personally, continued Katia, that course has allowed me to be more open to different

possibilities of mathematical reasoning. When I’ll be confronted with a student saying:
“Yes, no… but I did the same with the center of gravity of a triangle…” I’ m not going
to say: “No, you’re wrong!”, I’ll be like: “Wait a minute!” You know, I’m going to
check.

Actually, the polyphonic narration shows that the students perceived their future
pupils as also being confronted with mathematical texts to be interpreted. Aware of
the possibility of engaging in violence with the authors in reaction to the
dépaysement épistémologique, the students give themselves new responsibilities
concerning the mathematical activity which will take place in their classrooms, that
of welcoming their learners and their reasoning in a nonviolent way, as the next
excerpt shows:

– Like I told you before, I thought, “Oh, my God, my students, when I’m teaching to
them, that’s how they feel!” I mean… you see it in their face… continued Ninotchka
which seemed illuminated. Because it touches you, not to understand, for every pupil,
when you’re not able to make the connection, it’s infuriating and it’s frustrating. That is
what I get, for me anyway, from these experiences. I really see the class and the
different types of pupils in my class, and I say, “OK, yes, he probably felt this when I
taught him that…” Then, you know, you can play on these feelings, too. It helps here to
debate together; I think it helps in order to understand.

– That’s it! Katia agreed so much that she was not able to speak.
– Then it helps to have a better background to be able to work and then help them make

these links, ended Ninotchka.
– Aliocha, who proudly smiled and nodded, was looking at the group.

The readings can thus support and encourage this participative act among the
students that is the empathic movement towards the Other in the classroom.

More specifically, an empathic response to the experience of otherness, which is
intrinsically linked to the dépaysement épistémologique, seems to lead to a val-
orization of creativity, marginality and originality in the mathematical activity.
Indeed, in the dépaysement épistémologique the pre-service teachers make this
perspective of mathematics “in the making,” fragile and precarious. Fragility of
mathematics, adversity in the meeting of the authors and empathy are three central
and interconnected themes in the polyphonic narration.

That is why I would like to suggest that the readings of historical texts, through
the dépaysement épistémologique they generate, support a nonviolent mathematical
education. Furthermore, the polyphonic narration leads to predict that this nonvi-
olent mathematical education can take place in the future students’ classrooms.5

5For a more in-depth discussion about this question of nonviolent mathematics education see
Guillemette (2015a, in press).
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Thus, the meeting with the author perceived in his socio-historical and mathe-
matical context is not done easily. This empathic reading of the historical text
demands a considerable effort for students and these difficulties could be explained
by the academic culture of mathematics and the context of teacher training that
makes the students animated by a pragmatic concern for the development of
directly useful teaching tools.

The difficulties therefore seem not solely to come from the teacher or trainer who
would guide the learners in a sterile translation process. Of course, the teacher or
trainer can only accompany the learners in their search for meaning, which cannot
be done without the support of their academic knowledge, their academic experi-
ence and their other mathematical background. In this perspective, we feel some
resistance from the students to deploy an empathic reading.

3.6.2 Dépaysement épistémologique: Empathy
and Self-knowledge

Cognitive empathy in turn makes possible the moral emotions of sympathy and
compassion, in which we feel genuine concern for the other. These emotions
require certain cognitive abilities and a well developed, “sense of self.” The results
of the study about empathy join up with the theoretical point of view of Barbin
(1997, 2012) and Michael Fried (2001, 2007, 2008).

Indeed, from a practical point of view, history may allow prospective teachers to
“understand the difficulties of students who are not like teachers, in a well-known
country” and “better hear their questions or to better interpret their mistakes”
(Barbin 2012, p. 548). More specifically, the “exotic aspects” of the history of
mathematics can be a good way to “start thinking about the content taught and
programs,” “to sketch students’ answers and questions about the status of mathe-
matical knowledge,” to “avoid the fake concrete-abstract debate and finally allow
the teachers to change the way they teach, but also their educational relations”
(Barbin 1997, p. 24; author’s translation).

As Fried (2007, 2008) mentions, history of mathematics, in general, should be
playing a central role in this quest of self-knowledge. For him it is a special contact
with the history of the discipline that could make emerge in the learner some
awareness of his own ideas, his individuality and his ability to confront construc-
tively with those of others. Fried considers history, when it is taken as history and
not as a means for something else, to be able to contribute to the personal growth of
individuals through the discovery of their own individuality. This individuality
would not lead to a form of isolation, but on the contrary, on the openness and the
possibility to the exchange with the others and to understand the others. In this
sense, mathematics education, through history, must aim at mutual enrichment
between knowledge, self-knowledge and knowledge of others.
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Indeed, Fried stressed that the back-and-forth movement between the current
understanding of mathematical objects and understandings from other eras brings
learning to a deeper understanding of himself: “a movement towards self-knowledge,
a knowledge of ourselves as a kind of creature who does mathematics, a kind of
mathematical being” (Fried 2007, p. 218). He proposes that this self-knowledge, that
is to say, the knowledge of ourselves as a “mathematical-being,” should be the
primary objective thatmust give itself all forms ofmathematics education based on the
history of the discipline. Fried does not hesitate to emphasize the background of his
thinking around these considerations by stating that: “[Education], in general, is
directed towards thewhole human being, and, accordingly,mathematics education, as
opposed to, say, professional mathematical training, ought to contribute to students’
growing into whole human beings” (id. p. 219).

In this perspective, the experience associated with the encounter with history of
mathematics would be accompanied by an awareness and a growing movement.
This would be a personal experience involving relation to ourselves (introspective
element) through the history of mathematics, experience that supports the move-
ment of growth, which is that of the learner. This “humanistic” perspective on the
history of mathematics is also present, and developed, in many other speculative
works in the field (e.g. Bidwell 1993; Brown 1996; Tang 2007).

3.6.3 Dépaysement épistémologique:
Empathy and Learning-to-Listen

It has been claimed that one of the main roles of the history of mathematics is to
“disorient.” Indeed, history of mathematics, in a classroom or teachers’ training
context, surprises and astonishes with the diversity of the mathematical activity
across cultures and the history of societies, which involves many considerations as
to the form and use of mathematical objects. For many, these experiences could
lead to a more cultural understanding of mathematics and invite to a
historical-anthropological reflection on mathematical activity by repositioning the
discipline as “human activity” (D’Enfer et al. 2012).

As Barbin put it many times, history could bring a “culture shock” in “imme-
diately immersing the history of mathematics in history itself” (2012, p. 552;
author’s translation). Therefore, the objective is not to read historical texts simply
related to our (modern) knowledge, but rather in the context of the one who wrote
them. This is when history can become a source of “epistemological astonishment”
by questioning knowledge and procedures typically taken as “self-evident” (ibid.).
For Barbin, as history invites the learners (especially here the pre-service teachers)
to stand out in that tone of “epistemological astonishment,” it may also invite them
to investigate the following questions: “Why contemporaries did not understand
such a novelty?” and “Why students do not understand?” (ibid.).
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The question of understanding the students is not new, and our reflection on
empathy join here the theoretical discourses and the position of Jahnke (1994,
2014) around the idea of learning-to-listen with the history of mathematics. For
Jahnke—starting from a hermeneutic approach that can be related to the work of the
German philosopher, Hans-Georg Gadamer—the reading of a historical text in
mathematics brings two interrelated forms of reflections.

First, there is the experience of “dissonance” or “alienation,” just like the feeling
of being in a foreign country. The students learn something about their own
mathematics by experiencing and “reflecting on the contrast between modern
concepts and their historical counterparts” (Fried et al. 2016, p. 218). And the point
of the “hermeneutic circle”—a concept borrowed from Gadamer—understood as a
process in which a hypothesis is put up related to what the student is confronted,
tested against the source by confronting it with other parts of the text, modified,
tested again and so on, and so on, until the reader arrives at a satisfying result after a
kind of saturation of meaning. This reflection goes in both directions, so that the
students deepen both their understanding of history and of their own set of modern
conceptualizations regarding mathematics and mathematical objects.

Second and equally important for Jahnke, is the fact that in reading a source
(modern) mathematics itself is applied as a tool (Jankvist 2009). The task is now to
think about the situation of the mathematicians living in the past. This task requires
being able to argue from the assumptions of these persons, to use their symbols and
methods. This poses completely new demands on the students’ abilities in their
mathematical activities. Thus, “reading a source deepens the mathematical under-
standing on both levels, on that of doing mathematics and on that of reflecting about
mathematics” (Fried et al. 2016, p. 219).

According to the hermeneutics perspective, a text consists in the merging of
different horizons, the horizon of the reader and the horizon of the author. This
means of course, that different readers embedded in their different backgrounds
arrive at different interpretations. The texts here are the problems and the things that
students are confronted with. As Jahnke put it, “this might cause a feeling of
participation or solidarity” (ibid., p. 220), a feeling of being with the others, in a
community. This can join up with the result of our study concerning empathy,
because empathy, as we have seen with Bakhtin, is not received in passivity, but
could be heard as a participative act.

Jahnke goes deeper by claiming that this feeling of participation or solidarity can
engage prospective teachers to a more attentive relation to their future pupils.
Jahnke summon the thesis of Arcavi and Isoda (2007) in order to support his point
of view:

History of mathematics can provide many solution approaches (to problems) which are
very different from what is common nowadays. Such solution processes may conceal the
thinking behind them. Thus, one has to engage in a ‘deciphering’ exercise in order to
understand what was done, what could have been the reasoning behind it and what is the
mathematical substrate that makes an unusual method/approach valid and possibly general.
Engaging in such an exercise bears some similarities to the process of grasping what lies
behind our students’ thinking and actions. We do not claim that there may be parallels
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between the mathematics underlying primary sources and that of our students. What we do
claim is that experiencing the process of understanding the mathematical approach of a
primary historical source can be a sound preparation towards listening to students.
(pp. 115–116, as cited in Fried et al. 2016, p. 221)

Back to the result of our study, it is possible to ask what is happening precisely
during this process of “hermeneutic circle”? What lies beneath this preparation
towards the listening to students by the means of history? What is the very lived
experience, in a phenomenological sense, that is related to this phenomenon? We
can argue now that one of the main lived experiences here is one of empathy, an
empathy directed at the author of the historical text or the primary sources. What I
do claim is that history can be a preparation towards listening to students, but also a
preparation in order to look at the pupils and perceive them as confronted with the
learning of mathematics and also perceived as subjects grounded in their own
mathematical, historical and cultural background trying to understand an encoded
object of culture.

3.7 Conclusion and Research Perspectives

To summarize, in this contribution I have tried to develop two interrelated major
points of the results of an empirical study that has given itself the objective to
describe the dépaysement épistémologique (epistemological disorientation) lived by
six secondary school pre-service teachers taking part in a history of mathematics
course. Trying to play the role of Hermes, the study tried to fill the gap or to create a
dialogue between empirical and theoretical studies in the field. Following a phe-
nomenological approach in human sciences, and borrowing important concepts
from the Bakhtinian dialogical perspective, a polyphonic narration has been con-
structed in order to grasp the lived experience of the participants engaged in the
reading of historical texts.

This description of dépaysement épistémologique leads, as we have seen to
important reflections about the two notions of otherness and empathy concerning
the role of history of mathematics in the context of teachers’ training. Otherness and
empathy characterize the lived experience of the student, but, above all, these
experiences have a particular meaning in the context of teachers’ education. Indeed,
for the pre-service teachers these experiences are related to their future pupils
confronted with the learning of mathematics that are perceived, just as the math-
ematicians—authors of the historical texts that have been encountered—subjects
grounded in their own mathematical, historical and cultural background trying to
understand an encoded object of culture.

Moreover, I provided explicit links between these observations and remarks on
otherness and empathy and different theoretical discourses in the field, and in
particular theoretical discourses grounded in a different paradigm or epistemology:
Évelyne Barbin’s notion of dépaysement épistémologique grounded in a historical
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epistemology, Michael Fried’s notion of self-knowledge, grounded in a humanist
perspective and Hans Niels Jahnke’s discourse grounded in a hermeneutic
perspective.

Despite its limited scope, this study raises decisive questions concerning history
of mathematics in mathematics education. First, how to accompany students in the
difficult experience of dépaysement épistémologique? It might be interesting to
rethink the role of the teachers’ educators in the context of reading historical texts.
Indeed, it seems important to clarify different ways of intervening in the classroom
to accompany the students, but also to highlight different ways of conducting the
readings.

Another important question is, how can we help the students maintain an
empathic relationship with the author? A more refined investigation of the modality
of the apparition of this empathy appears now crucial.
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Chapter 4
Addressing the Transition from School
to University

Evolution of a Seminar Emphasizing Historical
Sources and Student Reflections

Ingo Witzke, Kathleen M. Clark, Horst Struve and Gero Stoffels

Abstract Beginning in 2015 we designed and taught an intensive seminar, which
addressed the transition from school to university by making students aware of
concept changes in the history of geometry. This paper focuses on the design of a
pilot study and its development into a semester-long seminar. We use the case of
one participant, Inga, to highlight the data and results emerging from the pilot
seminar. Inga’s case indicated that the seminar raised explicit awareness of the
transition from school to university mathematics and was worth expanding into a
semester-long seminar. Additionally, students’ experiences in this seminar can also
support their transition back to school from university as teachers, paving the way
for teacher students to overcome Klein’s well-known double discontinuity.
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4.1 Introduction

The first ideas for the seminar and its possible basic structure were introduced by
Witzke in (2015), and which were prompted by experiences of an exploratory study
with 250 German pre-service mathematics teachers that he conducted in 2013.
Compared with the results of other studies (e.g. Gruenwald et al. 2004; Hoyles et al.
2001) Witzke concluded from the empirical data that the pre-service teachers
clearly distinguished between school and university mathematics regarding the
nature of mathematics. The exploratory study showed the necessity for further
research regarding questions about the ways in which beliefs on the nature of
mathematics held by students play a crucial role for mastering the transition from
school to university. The research-seminar, “Addressing the Transition Problem
from School to University Mathematics” (which we refer to as the ÜberPro
Seminar, from the German, ÜbergangsProblematik, “transition problem”), was
designed to serve these needs. It was developed, implemented, and revised by
Clark, Stoffels, Struve, and Witzke several times since 2015. A deeper look at the
activities and the content of the pilot seminar is available (Witzke et al. 2016).

Based on the needs for further research, we developed a hypothesis for designing
and evaluating the seminar based on a theoretical framework, which is focused on
the learners’ own experiences with mathematics and the beliefs about mathematics
brought forth by their experiences. Of course, not only university students develop
beliefs about mathematics. If we focus on the strong connection of mathematical
knowledge and beliefs about mathematics, people who have done mathematics in
the past have created their own experiences while shaping their beliefs about
mathematics.

Based on these preliminary considerations our hypothesis for describing the
transition from school to university and for supporting students during their indi-
vidual transition is:

The change from an empirical-object oriented to a formal-abstract belief system of math-
ematics constitutes a crucial obstacle for the transition from school to university.

And, on epistemological grounds, similar changes regarding different natures of mathe-
matics can be described for the history of mathematics. The explicit analysis of the his-
torical genesis provides support for students dealing with their individual transition
processes.

We clarify two major assumptions made in this hypothesis:

1. The transition problem cannot be easily “smoothed out” (as discussed in
Gueudet et al. 2016) and probably should not be smoothed out, because it gives
the opportunity to reflect on one’s own beliefs, knowledge, and affect in
mathematics during the transition (cf. Sierpinska 1987).

2. With respect to our theoretical framework, especially regarding the concept of
subjective domains of experience (Bauersfeld 1983), students can overcome the
transition only on their own—with impulses from historical sources or the
course instructor.
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4.2 Theoretical Framework

The transition problem from school to university has many complex facets and an
important one concerns necessary changes in beliefs of learners. Recent literature
and results of empirical surveys broach the issue of beliefs/belief systems about
mathematics (Grigutsch et al. 1998; Liljedahl et al. 2007; Rolka 2006). Schoenfeld
(1985), a strong advocate for the importance of beliefs regarding mathematical
behavior, introduced the term “empirical belief system” to describe an archetype of
pupils relying solely on argumentation based on empirical objects (e.g. precisely
drawn figures in geometry).

Following this approach, we focused on belief systems concerning the ontology
of mathematical objects. For our study we extended Schoenfeld’s terminology by
distinguishing between an empirical-object oriented belief system (empirical
bonding is necessary) for school and a formal-abstract belief system (logical con-
sistency only) as they are held by many professional researchers in mathematics
(Davis et al. 2012; Hempel 1945; Tall 2013). A deeper epistemological perspective
on mathematics shows that there are more than just these two views on mathematics
and mathematical entities. Girnat (2011) identified on the basis of categories from
possible ontologies of mathematical objects four views on mathematics: the for-
malistic, the idealistic, the rationalistic, and the empiristic view on mathematical
objects. In our work we are interested in the views on mathematics that draw a
distinction regarding the intended applications of a mathematical theory. The for-
malistic view on mathematics is distinct from the other views on mathematics
because of its conscious loss of intended applications. We believe that pupils who
want to be successful in university mathematics need to advance to a
formal-abstract belief system, in the sense that they are aware of the conscious loss
of intended applications in the communication of mathematics. However, this does
not mean that modern mathematics cannot be applied in real contexts.

In addition, our hypothesis claims that the necessary development of belief
systems during the transition from school to university has, on epistemological
grounds, paralleled the historical development of nature of mathematics. Witzke
(2009) and Burscheid and Struve (2001) showed that the work of relevant historical
figures (e.g. mathematicians) could be reconstructed as empirical theory. Such
figures reconstructed, for example, the calculus of Leibniz as an empirical theory by
the means of structuralism, a concept of philosophy of science (Balzer et al. 1987;
Burscheid and Struve 2001). Finally, it was Hilbert who cut mathematics’ “bond to
reality” with the famous work, Foundations of Geometry, in 1899 (cf. Freudenthal
1961), giving post-Hilbertian mathematicians the opportunity to do mathematics in
a formalistic way—disregarding questions of empirical truth.
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4.3 The Pilot Seminar (Spring 2015)

On the basis of the hypothesis formulated above, we designed the ÜberPro
Seminar, which was organized as a three-day intensive course, comprising 18 h of
instructional time with 20 pre-service teachers. This pilot seminar was taught and
evaluated for the first time in spring 2015 in Germany.

The aim of the seminar was to make students aware of the changes regarding the
nature of mathematics from school to university (by discussing transcripts, text-
books, standards, historical sources, etc). The conceptual design of the course drew
upon positive experience with explicit approaches regarding changes in the belief
systems of students from science education (Abd-El-Khalick and Lederman 2001).
Geometry was used as the topic of the seminar’s mathematical content. That is, with
geometry we discussed a mathematical field that served as a prototype of
empirical-object oriented mathematics and developed into what is referred to today
as formal-abstract mathematics. Questions connected to this development are: Why
did this change in thinking about mathematics happen? What were reasons for this
development? How does it affect us today? Throughout the study, we remained
connected to the idea that students would link their individual learning biography to
the emergence of different views of mathematics present in the historical devel-
opment of geometry. Moreover, we posited that history would help to explain the
“abstraction shock” encountered by so many students when facing university
mathematics by the means of its historical origin.

4.3.1 Overview of the Pilot Seminar’s Content

The seminar was organized in four parts.1 Part I was designed to raise attention to
the importance of beliefs about and philosophies of mathematics. We began with
individual reflections and work with authentic material such as transcripts from
Schoenfeld’s (1985) research that clearly showed the meaning and relevance of the
concept of an empirical belief system. Afterwards students compared different types
of textbooks: university course textbooks, school textbooks, and historical
textbooks.

Part II focused on a historical case study, in which geometry from Euclid to
Hilbert was investigated. The overall aim of the historical case study used as the
content of the pilot seminar was to make students aware of how the nature of
mathematics changed throughout history. In doing so, readings from numerous
sources were used in the seminar. Students worked with examples from Euclid’s
Elements (in particular, the Pythagorean Theorem), projective geometry, and
non-Euclidean geometry. Regarding our theoretical framework, we endeavored to

1Additional details about seminar content for the pilot seminar are provided in Witzke et al. (2016).
Similarly, content for the expanded seminar is displayed in Fig. 4.1.
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make explicit how geometry—which for hundreds of years seemed to be the pro-
totype of empirical mathematics, describing physical space2—developed into the
prototype of a formalistic mathematics as formulated in Hilbert’s Foundations of
Geometry in 1899 (Fig. 4.1).

The question, “What characterizes modern formalistic mathematics?” guided
Part III of the seminar. Hilbert actually gave an answer to this problem—not only in
a philosophical and programmatic way but also by formulating a geometry “ex-
empla trahunt” (Freudenthal 1961, p. 24). Mathematics was seen for ages as the
natural description of physical space, and after Hilbert can be characterized in a
formalistic sense and characterized by a modern axiomatic structure. The estab-
lished axioms are fully detached and independent from the empirical world, which
leads to an absolute notion of truth: mathematical certainty in the sense of con-
sistency. Thus, with Hilbert the bond of geometry to reality is cut. This came to life
in the seminar when students read Hilbert’s Foundations of Geometry (1899/1902)
in detail.

The final session, Part IV of the seminar, entailed a whole-group discussion
(facilitated by the first author) in which we sought to connect insights gained from
the historical perspectives with the individual participants’ mathematical

Fig. 4.1 The historical and philosophical development of mathematics along four key historical
points in the development of geometry (cf. Witzke et al. 2016)

2Struve reconstructed Euclid’s geometry as empirical theory using the methods of structuralism
(Balzer et al. 1987) in his foundations of a didactics of geometry (Struve 1990). A hint for favoring
an empirical interpretation is given in the way of defining the concepts. Thus, there is no need, for
example, to think about “infinite lines.” The lines need only to be potentially infinite by requiring
the construction for extending them. Another argument for this reconstruction is Euclid’s (via
Heath) formulation of the parallel postulate: “That if a straight line falling on two straight lines
make the interior angles on the same side less than two right angles, the two straight lines, if
produced indefinitely, meet on that side on which are angles less than the two right angles” (Heath
and Heiberg 1926). Davis and Hersh gave a similar description of Euclidean geometry: “Since the
Greeks, geometry has had a dual aspect. It is claimed to be an accurate description of the space in
which we live and it is also an intellectual discipline, a deductive structure” (2012, p. 241).

4 Addressing the Transition from School to University 65



biographies. We first reminded students about the preliminary discussions regarding
different personal belief systems that occurred in the first session of the seminar.
The intention was that the transparency on the historical problems that led to a
modern abstract understanding of mathematics can therefore lead to an under-
standing of what happens if students live through this revolution on epistemological
grounds as individuals, thus opening differentiated views on the transition problem.

4.3.2 Overview of the Pilot Seminar’s Instructional Methods

The pilot seminar used various methods, especially for structuring the students’
work phases. We used common instructional methods, i.e. jigsaw-group work,
written discussions between students, and Think-Pair-Share, but we also employed
non-traditional methods like using Metaplan™ cards and gallery walks, which
included inspiring pictures and quotations to provide focus for the next part of the
seminar or to summarize the ideas of the previous session.

In addition to these methods for structuring student work sessions we used two
methods that we called “the big scroll” and coffee breaks. The “big scroll” was a large
brown package paper roll that we used for capturing main ideas and findings of the
seminar after and during the seminar work. During the three-day seminar, the scroll was
visible in front of the students and could be used to look something up or to reconstruct
the learningpath of thewhole group.The ideaof capturing the learningpathof the group
was a fruitful idea, especially for showing the growth of knowledge in the group and the
diversity of thoughts and beliefs that manifested during the seminar. The “big scroll”
method had some disadvantages during the seminar. These include the handling of the
scroll during the sessions, loss of session time used to write down and discuss in which
ways general ideas should be preserved, and more importantly, the lack of individual
reflection, especially through students’ formulating their own thoughts. In the subse-
quent semester-long seminar we decided to implement reflection journals (c.f.
Sect. 4.7), which prompted students to engage in a reflection process and draw con-
nections between the single sessions of the full-semester seminar.

The coffee breaks played several roles in the pilot seminar. One obvious role was
that they provided a clear break for recreation between the different parts of the
intensive seminar. Another role was to prepare the participants for the next seminar
session, through the use of posted pictures in the coffee break room. The pictures
helped to pique students’ curiosity about new topics. The coffee breaks provided
important opportunities to create an open and positive environment for the partici-
pants, seminar facilitators, and observers, because this was the key for getting to know
the students’ personal struggles with their own transitions from school to university.
Many students mentioned the openness and positive atmosphere among all members
of the group working together in the seminar and the coffee breaks for getting know
each other much better. Of course, the implementation of coffee breaks in a seminar is
more reasonable in an intensive three-day seminar, and we did not use them in the
semester-long seminar, which was structured in 1.5-h sessions.
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4.4 Methods

As previously stated, the primary objective of the entire project was to design a
seminar to address and support university mathematics students’ transition from
school to university mathematics. And, an important first step was to design and
implement a pilot seminar to investigate the possibilities and outcomes. That is, we
conjectured when we entered this work that the pilot investigation would lead us to
a full-semester seminar. Consequently, the methods described here for the pilot
seminar also correspond to the semester-long seminar; however, we describe dif-
ferences in implementation as needed.

We defined several research questions that would enable us to characterize the
ways in which students recognize and describe the transition from their own per-
spective. In particular, we were also interested in the ways in which the historical
content played a role in students’ recognition and description of the transition
problem. In order to understand the results of students confronting their mathe-
matical belief system(s) in this manner and using this intervention, we formulated
several research questions deducted from our research hypothesis:

1. In what ways do students recognize and articulate an abstract/empirical or
knowledge gap from school mathematics to university mathematics? And, how
do they articulate their experience with navigating this gap?

2. In what ways do students use the historical development for explaining the
transition problem?

For the purpose of examining what students recognized and described about
school and university mathematics, we also found it necessary to determine the
beliefs held by the students regarding mathematics:

3. What are the beliefs of mathematics held by students (pre-service mathematics
teachers at university) prior to and after the ÜberPro Seminar?

To achieve our research goals, we conducted an intrinsic (multiple) case study
(cf. Stake 1994), with the intent to provide insight of a particular case of university
students’ views of mathematics, while in the throes of the transition from school
mathematics to university mathematics. The study was conducted at the University
of Siegen. Twenty students (12 female; 8 male) participated in the pilot seminar,
and although an elective course, it was one of several seminar options that students
were required to take (i.e. they needed to take at least one). The age of the student
participants ranged from 19 to 26 years, with an average age of 23. With respect to
their time at university, students had been at university between three and 13
semesters; however, two students who took the seminar for “fun” were actually
advanced master’s students, and had been at university either 10 or 13 semesters.
Accounting for these two students, the median time at university was five
semesters.
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Of the 20 seminar participants, we selected a subset of eight students to
investigate as case studies. Students were identified as a potential case study
respondent by either (a) interesting pre-survey responses that prompted one or more
of the authors to want to know more about the particular student’s views of
mathematics or (b) their participation level during whole group discussions on the
seminar content. Of the eight students identified, one student was outside of the
focus population (one of the advanced master’s students); that is, we wanted to
investigate students’ views on mathematics and their recognition of the transition
problem earlier in their university mathematics career and not at the end of it.
Another one of the eight selected students possessed an incomplete data profile.
Finally, we determined six participants for whom to construct case studies, and the
six represent the overall demographics of the seminar population, including gender,
age, and number of semesters completed at university.

4.4.1 Data Sources

Several data sources were used to inform the case study, including pre- and
post-surveys, a semi-structured interview (recorded and transcribed), and a final
essay. The pre-survey was composed of four parts: background data (eight items),
conceptions of mathematics (eight items), content (specifically related to the sem-
inar content, including proof and argumentation in mathematics in general, and in
geometry specifically (10 items)), and a small subset (20 total) of attitudes and
beliefs items (Grigutsch et al. 1998). After a five-minute welcome message to the
students, the pre-survey was distributed to students at the beginning of the three-day
ÜberPro Seminar.

The post-survey included items from only two of the four parts of the pre-survey,
since it was not necessary to collect background data again, nor did we feel that a
three-day time lapse would yield remarkable changes in the subset of beliefs items.
The final post-survey included four of the eight pre-survey items on conceptions of
mathematics and six of the 10 pre-survey items on content. The post-survey was
distributed to students at the end of the ÜberPro Seminar.

In addition to pre- and post-survey responses, a student participant’s data profile
also included an audio recorded and transcribed semi-structured interview, and the
final essay (assigned as part of the seminar). Finally, we audio recorded and tran-
scribed comments during a “summary discussion” at the end of the seminar, and
this provided an additional data source for some of the case study constructions, as
in the case of Inga, which we describe later in this chapter.

After all of the data were translated from German to English, the texts of these
sources were analyzed using aspects of grounded theory. The analytic process
began with open coding, defined by Strauss and Corbin (1998) as one in “which
concepts are identified and their properties and dimensions are discovered in data”
(p. 101). To identify initial codes, we used line-by-line analysis of each student’s
pre-survey, summary discussion comments, post-survey, semi-structured interview,
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and final essay. We began the process by first identifying initial codes from stu-
dents’ written responses on the eight conceptions of mathematics items in the
pre-survey. Next, we used the initial codes in our review of the interview transcripts
and the students’ written essays. In our review, we coded for the two overarching
domains from our first research question. That is, we searched for the ways in which
students described their recognition and how they articulated an abstract/empirical
or knowledge gap in the transition from school to university mathematics. In our
analysis, we were able to collapse these codes into several categories (which we
called “dimensions”) for which to capture the ways in which Inga was able to
recognize and articulate the abstract/empirical or knowledge gap present in the
transition from school to university mathematics in general, and specifically for and
from her own experience.

4.5 The Case of Inga

We found Inga as a future teacher to be an interesting case for several reasons. As a
fifth semester university student in mathematics and French (as her second subject),
she had quite a bit to say about the transition problem. We completed several passes
through all of Inga’s data and decided to construct her case to address the research
questions outlined above. Inga’s case was also interesting because of the level of
emotionality in many of her interview responses, as well as during the summary
discussion. For this paper, we provide only an English translation of Inga’s
responses and essay excerpts. The phases of analysis (with data sources) and the
development of the resulting coding dimensions (general, self, historical, and
praxis) for the two domains (recognition and articulation) addressed in the first
research question are shown in Fig. 4.2.

Surveys:

Coded pre-surveys for 
views about mathematics 
(confirmed/denied with 

post-surveys)

Interview & Essay
• Recognition Domain
• Historical dimension
• Self dimension
• General dimension

• Articulation Domain
• Historical dimension
• Praxis dimension
• Self dimension
• General dimension

Summary Discussion
• Recognition Domain

• Historical dimension
• Self dimension
• General dimension

• Articulation Domain
• Historical dimension
• Praxis dimension
• Self dimension
• General dimension

Fig. 4.2 Data sources, with accompanying coded domains and dimensions
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We defined the four dimensions as:
General dimension: the student describes aspects of the transition from school to

university in terms of the features one might identify as being part of the content or
instructional practice at either school or university.

Self dimension: the student describes aspects of the transition in terms of their
own, personal experience.

Historical dimension: the student’s response includes features or examples from
the historical development of mathematics in general (or geometry, in particular).

Praxis dimension: the student’s response includes references to actual practices
that have been (or that they perceive will be) problematic in perpetuating the
transition problem.

4.5.1 Before the Seminar: Inga’s Views of Mathematics
and Recognition of the Transition Problem

On the pre-survey Inga’s view of school and university mathematics were distin-
guished by a clear dichotomy. In response to the question, “Are there differences
between school and university mathematics? And if so, name them and explain
your answer.” Inga drew the following (Fig. 4.3).

Additionally, Inga recognized that a gap does occur between school and uni-
versity, and for her, this recognition is oriented along the self dimension:

I find it unfortunate that the gap between school mathematics and university math is so
large. I had after my LK (Leistungskurs; in English, “advanced course”) felt that I’m good
at math. At university the feeling has become quite quickly to the contrary. (Inga,
pre-survey)

School Mathematics University Mathematics

Computing, often according to the book Not formulaic; independent solving strategies 
are required

(Almost) exclusively computing 
� only a bit of “why” asked

Many proofs + arguments

Tangible context / Application Theoretical and very abstract
� related to everyday life and conceivable

Fig. 4.3 Inga’s identified differences between school and university mathematics
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4.5.2 During the Seminar: Articulation for a Specific
Application

We also examined the summary discussion transcripts for ways in which Inga
recognized or further articulated the transition problem. Although the seminar was
only three days in length, we would find it encouraging if students were able to
articulate specific aspects or potential outcomes of the transition problem after only
three days’ of exploring different views and beliefs about mathematics and the
accompanying historical genesis. In the discussion Inga shared:

A few days ago I did [an] oral didactics exam for which I learnt a lot and read a few books,
which all stated that everything should be made as graphical as possible and you need to
neglect the abstract ideas, all while using realistic examples. The problem concerning the
limit was introduced there… now I think that this graphical introduction is one of the
largest problems concerning the transition to university. …I don’t understand that why
these didactic books all refer to this introduction as flawless and superb despite being the
source of the problem. I think that’s very controversial.

Thus, at some point Inga was able to articulate potential repercussions associated
with the transition problem. In this way, Inga was able to move from recognizing
the existence of the transition problem from her own learning biography (i.e. the
self dimension) to articulating the transition in terms of future teaching practice (i.e.
the praxis dimension).

4.5.3 After the Seminar: Inga’s Recognition
and Articulation Along Different Dimensions

Finally, Inga’s interview and essay revealed her evolving consideration of the
transition problem—within both the recognition and articulation domains. In par-
ticular, we provide one example of recognition (from the interview), and two
articulation examples (from the final essay). In both domains, Inga was able to refer
to the historical genesis that framed the content of the seminar.

Recognition (historical dimension):

And I think it is important, that this change [e.g. the transition from school to university
mathematics] does not only happen to us, but rather you can see it also in earlier times,
when you are looking in history. And that then many other people probably had the same
problems, or even bigger problems…

Articulation (self dimension):

Nevertheless, I did not know before our seminar what the actual causes of my initial,
sudden difficulties in mathematics were. Originally this fact – that I suddenly had difficulty
in math – gnawed at my very self-confidence…However, in the seminar I realized that this
altered image of mathematics plays a major role in the transition between school and
university.
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Articulation (historical and praxis dimensions):

…compare this [modern mathematician’s view] with the idea after Hilbert, which allows
other geometries to be true, even though they contradict the original Euclidean geometry
first. This fact is responsible for ensuring that the mediated image of mathematics in school
falters and must be changed. [One] is now on his own [at university] to figure out that
mathematics not only possesses one truth, but under different circumstances, even con-
tradictory statements can be perceived as quite correct, because mathematics is a science,
something true, once it can be logically deduced. This is an abstract and very theoretical
requirement that students must tackle in order to deal with the university mathematics.

4.6 Inga’s Confrontation of the Transition Problem:
Influenced by History?

Although we were interested in capturing Inga’s overall experiences with and
impression of the ÜberPro Seminar, we were also particularly interested in the ways
in which the historical content impacted how Inga discussed her personal con-
frontation of the transition problem. Thus, a specific sub-question we investigated
related to the first research question was:

1a. In what ways do students refer to history in their description and reflection of their
individual problem with the transition (from school to university mathematics)?

And, with respect to the second research question, we asked:

2a. In what ways do students deal with (e.g. confront, agree with, reflect upon) the research
hypothesis?

4.6.1 History of Mathematics Informing Inga’s Transition

As we have previously described, Inga’s case was of interest to us because she
articulated an almost palpable frustration with the transition from school to uni-
versity mathematics, and she did so in different ways. In one way, Inga used the
content of the seminar to compare what had occurred historically with her own
transition. When asked to describe in her words during the interview what was the
message of the ÜberPro seminar, Inga stated:

Actually I would say we talked a lot on geometry; on different geometries. I would say, that
the message was, that there was a change of view also in the history of mathematics. But I
must say I recognized this personally at the very end of the seminar…

When we prompted Inga further about the potential support for the hypothesis
for the seminar, she observed:

We…sat there in [the coffee] breaks and in the evening and thought about how this is
connected to the main theme [transition problem]. And then you figured out, that the
change [that took place] in history also takes place in the transition from school to uni-
versity. That was something that you become aware of.
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During the interview, we explicitly asked Inga about the connection between
what had taken place in history and the transition from school to university.
However, even before the interview, Inga was aware of this connection and she
addressed this in her essay. She wrote:

During the seminar for me it became clear that this changed picture of mathematics plays a
crucial role for the transition from school to university. This finding was further supported
by a look into the history of mathematics. We have especially concentrated on geometry,
because there you can also find a significant change of beliefs.

After Inga provided an overview about the historical development of geometry
in her essay, she then connected views about mathematics at school and university
to historical views on geometry.

But how can the different beliefs on geometry and Hilbert’s statement be connected with
the transition problem?

Especially the visual, tactile geometry of Euclid can be described metaphorically by the
mathematical view, which is transmitted at school. […] When students decide to study
mathematics at university, they will be confronted with a different view on mathematics.
[And this is] similar to the notions of Hilbert.

Thus, Inga identified parallels between the historical development of mathe-
matics (in this instance for the seminar, the historical development of geometry)
with her own transition; that is, a change of view was evident in both.

4.6.2 The Research Hypothesis Realized:
Supporting Inga in Her Transition

There are two key elements within our research hypothesis. First, we claim the
change from an empirical-object oriented belief system to a formal-abstract belief
system constitutes a crucial obstacle in the transition from school to university.
Second, we state that changes regarding the differing natures of mathematics can be
described in similar ways for the history of mathematics. And, related to this,
explicitly analyzing the historical genesis provides support for students as they deal
with, navigate, or journey through their individual transition.

Thus, we began this research with the idea that we would make the transition
problem explicit to students and that we would do so using the historical devel-
opment of geometry as the vehicle to portray a change in nature of mathematics (or,
in this case, geometry as a specific example). However, in doing so we were unsure
about how students would deal with the key premise of the hypothesis, which was
that the seminar would support the students in their transition.

We anticipated that a three-day seminar would not serve to substantially change
students’ views on mathematics. Nonetheless, we questioned Inga to determine how
she currently assessed her view on mathematics and she stated:
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Actually I think not. For my view on mathematics, I had in school a more
application-oriented view, which we get taught. How should I explore another one? And at
university, first I could not deal with mathematics and then I have understood mathematics
as a language, I also study a language, because this is a contained system and so I could
compare mathematics to it very well and at least accept it [mathematics]. And this doesn’t
change; that there are two different views, which changed in time for me, and now all in all
my view doesn’t change.

Yet the belief change Inga did experience was from an empirical view of
mathematics to a formal view of mathematics, as she described in her essay:

Meanwhile for me, mathematics is characterized as a language, because it is an enclosed
system of different rules, formulas, and abstract signs. This picture about mathematics I
achieved firstly at university, because I was firmly convinced that mathematics has a strong
relationship to the everyday world and that usual situations can be explained by appropriate
mathematical models. Foremost, I was curious that mathematics was almost everywhere.
Sadly, it was not possible to hold this view on mathematics because of my course of
[mathematical] studies, because the contents for learning became more abstract and
theoretical.

Inga’s written description of her change in beliefs was echoed during her
interview (which we have previously mentioned), in which Inga declared that, “…
in the seminar I realized that this altered image of mathematics plays a major role in
the transition between school and university.”

And, finally, Inga’s case is exemplary in that she claims to support her future
students in a way similar to what we intended in the seminar. In her essay, Inga
wrote:

I think it is thoroughly appropriate to unveil different views on mathematics to students at
school. I hope that I can convey a broadly diverse view on mathematics while I am a
teacher, so that my future students have the opportunity to get to know different beliefs, and
so that they are protected – in case of studying mathematics at university – against the
abstraction shock, which I suffered myself.

4.7 Rethinking the Seminar: Converting the Pilot Seminar
into a Semester-Long Seminar

Our experiences from the pilot seminar, the accompanying research, and students’
feedback gave us some ideas about what should be changed in a second seminar
trial (cf. Fig. 4.4). The main ideas and aims of the seminar remained the same as in
the pilot seminar since the research hypothesis was supported by the empirical data
of the pilot seminar (cf. Sect. 4.6). The major changes on the seminar content and
structure were the expansion of the intensive three-day seminar to a semester-long
seminar, consisting of 11, 1.5-h sessions (Sect. 4.7.1), instructional changes
(Sect. 4.7.2), and the inclusion of requiring reflection journals from the seminar
participants (Sect. 4.7.3).
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4.7.1 Content Changes Implemented for the Semester-Long
Seminar

The expansion of the seminar was motivated by students’ feedback about the
three-day seminar. Students stated that the seminar was very intense and thus
difficult to remain aware of the research hypothesis while exploring the views on
mathematics in the history of mathematics. Instead, the seminar content was
restructured by dividing the original four parts of the seminar into 11 sessions. This
enabled us to strengthen the focus of each topic and to give sufficient time for the
students to reflect. Another change implemented in the semester-long seminar was
to repeatedly remind students of the research hypothesis, for the purpose of making
the students aware of the parallels between the historical development of mathe-
matics discussed during the seminar and their individual transition process. The
agenda of the seminar in summer 2016 is shown in Table 4.1.

In addition to extending the number of seminar sessions (originally taking place
over three days, to comprising a semester-long seminar), we also modified the
content of the seminar.

The first change included the insertion of one session on proofs of the
Pythagorean Theorem. The pilot seminar included only a motivation of Euclid’s
Elements as a piece of mathematics par excellence, as it is described by historians
and philosophers of mathematics, the popular media, and mathematicians them-
selves. In addition to this motivation, we also focused on the question in which
ways the theorems in Book 1 of Euclid’s Elements are connected and can be traced
down to the axioms and postulates. Thus, after session 4 we inserted a new session
(now session 5) in which students explored several proofs (e.g. Göpel, Bhaskara,
Perigal, Garfield, Epstein and Nielsen, Bride’s Chair) of the Pythagorean theorem.

Fig. 4.4 Schematic summarizing the need for modifying pilot seminar into the full seminar
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There were two reasons for this addition. On the one hand the topic is strongly
connected to session 4, because the Pythagorean Theorem can be seen as the climax
of Book 1 of Euclid’s Elements. On the other hand, the Pythagorean Theorem is a
prominent topic in elementary geometry, even when proving this theorem is no
longer mandatory in school instruction (e.g. Kultusministerkonferenz 2003).

The most important argument for adding this session is that we were able to
discuss students’ understanding of what comprises mathematical proof. We planned
two activities in the session to encourage reflection about this important concept.
The first activity included two videos. The first video showed an experiment in
which water flows from two cuboid canisters with square base areas into another
cuboid canister, whose base area was a square with the area equal to the sum of the
areas of the other two bases. In the second video, two solid cuboids and another
cuboid with similar properties of their shapes were weighed against each other
using a beam balance. After a short discussion of the benefits for motivation and
empirical verification of the Pythagorean Theorem in the real world as well as the
risks of these examples (e.g. that students could understand them as proper math-
ematical proofs), students prepared a short presentation in small groups (two to
three students each). The presentation included one of six different proofs of the
Pythagorean Theorem based on a worksheet for Grade 8 (QUA-LIS 2003).
Afterwards, students highlighted the differences among the proofs in their reflection
journals.

The second change in creating the semester-long seminar involved the sources,
materials, and literature used during the seminar for the topic of non-Euclidean
geometry. In the pilot seminar, we used various textual sources, which described
the myth of Gauss’ experiment, for proving empirically that the interior sum of a

Table 4.1 Agenda of the ÜberPro geometry seminar in summer 2016

Session Topic Part of the
seminar

ÜberPro geometry: pre-questionnaire

1 Organization and overview I

2 What is mathematics? What are beliefs about mathematics? I

3 Between the poles of empirical-concrete versus formal-abstract I

4 A paradigmatic example of the axiomatic structure of a
mathematical theory: Euclid’s Elements

II

5 The Pythagorean theorem: typical proofs in the classroom II

6 Projective geometry: from grabbing to seeing II

7 Projective geometry at school? II

8 Proving the parallel postulate II

9 Non-Euclidean geometries and the angle sum of triangles II

10 Paving the way to formal mathematics III

11 Debate and final discussion IV

ÜberPro geometry: post-questionnaire
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triangle is 180°, and excerpts from geometry scripts dealing with hyperbolic and
elliptic geometries. For a first understanding of the different geometries and their
particular geometrical properties we used real models in the form of a Styrofoam
sphere and a paper structure, where the students experienced different interior sums
of triangles drawn on these objects. Still the students stated that thinking about
these different geometries was difficult for them. We decided in the subsequent
seminar to use a more coherent source. Our choice was “Nicht-Euklidische
Geometrie” (van Gulik-Gulikers 2010), which is one chapter of an original Dutch
book for upper secondary classes about geometry and is designed for initiating
autonomous project work with students. The chapter begins with a recapitulation of
the axiomatic structure of non-Euclidean geometries and develops from this the
historical question about the truth of the Parallel Postulate, which leads to elliptic
and hyperbolic geometries. The described historical development and materials
about both geometries are accompanied with (reflective) tasks, which should be
solved by the students on their own. Inspired by the way in which the text promoted
working on these geometries, we used models of the geometry including solid
spheres and GeoGebra tasks for understanding the different geometries. In the
seminar we discussed the texts and the solutions of the tasks, especially regarding
similarities and differences between Euclidean and non-Euclidean geometries. From
our perspective, the students were able to delve more deeply into non-Euclidean
geometries. This can be seen in the following excerpts from the reflection journals
after the last session of the non-Euclidean geometries.

Questions for reflection:
1. What are similarities and differences between the non-Euclidean, Euclidean, and projective
geometries?
2. What do you think? How can the knowledge addressed in today’s session help you to
overcome the transition from school to university?

One example of a student answer:
1. The different geometries have in common the names they use. But what the meaning of a line
or a point is, is very different. And therefore the constructs based on these fundamental objects as
well as their relations are different as well. The interior angle sum of a triangle might not be 180°
at all, but can be smaller or greater, depending on the geometry, than 180°. Also the
understanding of parallel lines changes, because the basic notions are changing. There can be one
or more or no parallels depending on the point of view.
2. I believe that the knowledge on further forms/kinds of geometries can change the
understanding on mathematics in the way that you change the perspective from a static view on
mathematics to a more flexible one. In mathematics you deal with closed systems, that means
you have to know continuously in which system you are, and what are the foundations of this
system. You need to have the mental ability to be flexible to draw a distinction and work in
different systems. In the sense of the transition problem this example can give the opportunity
that mathematics does not have to be seen as one construct, but more as a collection of constructs
which should be handled flexibly and in which you can independently and freely move between
and work within them.
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4.7.2 Instructional Changes Implemented
for the Semester-Long Seminar

In the semester-long seminar we incorporated significant refinements regarding the
instructional methods that went beyond the implementation of participants’
reflection journals and use of new media, i.e. GeoGebra. In addition to learning new
content and participants reflecting on their own beliefs, we wanted to give the
students the opportunity to regulate their learning processes more freely and to
acquire a toolbox of teaching methods throughout the seminar. Therefore, we used
the learning management system Moodle™ for sharing materials, providing web
links or resources that described the teaching method used in the seminar, giving
opportunities to discuss and prepare via Moodle™ communication forums and
sharing modules for student interaction, and providing the opportunity to write their
reflection journals online. All in all, we tried to make the use of different methods
and their benefits for different seminar sessions explicit and accessible.

We closed the pilot seminar with a summary session, which included a pre-
sentation of the seminar topics. In session 11 of the semester-long seminar we used
a debate with the topic, “What is geometry and what is it for?”. For the debate,
groups of two to three students prepared for the role of a moderator, selecting from
David Hilbert, Moritz Pasch, Gottlob Frege, and Hermann von Helmholtz. The
groups had one week to prepare for the debate, after which one student from each
group represented the role of the historical figure in the debate. In the students’
short evaluation feedback about whether this method should be used in future
seminars they made clear that even if they were only observers of the debate, they
felt more aware of the differences among the different views on geometry, which
were embodied by the four historical roles. When offering improvements about this
particular session for future seminar implementation, students commented that they
wished they had more time to prepare for the debate.3

4.7.3 Implementation of Reflection Journals

Implementing reflection journals at school and in university is not a new idea. In
Germany, the most popular grounding for the use of learning diaries or reflection
journals in mathematics classes is found in the work of Gallin and Ruf (1991).
Motzer (2007) provided an example of the use of learning diaries to accompany a
number theory course at university. Written reflection journals are not only a
profitable opportunity for learning and reflection for learners, but also for teachers.
When students share their journals with the teacher, he or she can in turn improve
their teaching by gaining deeper insight into what students already know or feel.

3During the first version of the semester-long seminar, students prepared for the debate in groups,
and this took place between sessions 10 and 11.
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Furthermore, for researchers, students’ reflection journals are a rich resource for
several reasons. Our work is informed by the reflection journals in three ways.

First, the reflection journals provide an evaluation of the seminar, including
whether the materials are beneficial for the students’ understanding, as well as
transporting the views about mathematics held by the authors. Second, the reflec-
tion journals are a much more individual enterprise than the “big scroll” used in the
pilot seminar. Third, the reflection journals provided important evidence concerning
whether the seminar was really giving students “…the explicit analysis of the
historical genesis” and whether it was providing “support for students dealing with
their individual transition processes” (research hypothesis for the seminar).

The students were able to complete their reflection journals online via the journal
module in Moodle™. Alternatively, they could complete their journal entries outside
of the online environment using pen and paper if they preferred to handwrite their
journals. The reflection journals played a major role in the semester-long seminar as
well as for the research on the evolution of students’ beliefs during the semester.

The reflection journals seem to be an important data source from the
semester-long seminar. The analysis of students’ journal entries (one excerpt is
shown in Sect. 4.7.1) from two semester-long seminars (summer 2016 and summer
2017) will further inform our research on the transition problem, and which will
inform future publications.

4.8 Implications

Describing the case of Inga enabled us to assert that students participating in the
three-day ÜberPro Seminar were able to recognize and articulate the transition
problem from school to university mathematics. Furthermore, as in the case of Inga,
the seminar’s goal of raising explicit awareness of the problem was of particular
value for her (self dimension). There is evidence to indicate that the historical
content of the seminar can play an important role in university mathematics stu-
dents’ (and pre-service mathematics teachers’) ability to navigate the crucial tran-
sition (historical dimension). Implementing the initial three-day seminar was vital
in providing evidence to pursue a longer intervention with prospective mathematics
teachers at university.

This research study was initially started to empirically test the theoretical
framework developed in the working groups of two of the authors (first and third),
and with additional empirical research (second and fourth authors), now exhibits
benefits of this approach for understanding the transition problem. The project data
indicate on the one hand that students’ belief systems are quite stable and need
further long-term measures. On the other hand, the case of Inga shows that the idea
of an intervention seminar using epistemological parallels regarding historical
developments and individual learning biographies is a useful tool to reflect on the
transition problem, giving a jump-start to an evolutionary process regarding ade-
quate belief systems about mathematics. Additionally, the seminar provided
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participants (university mathematics teacher-students) with the ability to formulate
their own point of view regarding their understanding of mathematics—which is an
absolute necessity for respecting and developing others, particularly when prepar-
ing to teach mathematics. And, as we witnessed with the case of Inga, she discussed
her intent to share the different views about mathematics with her future students.

As a result of analysis of the three-day seminar piloted in early 2015, the first
and fourth authors implemented a semester-long seminar in summer 2016, and the
first, second, and fourth authors will implement a semester-long seminar in summer
2017. As we have described here, modifications were made to expand the three-day
seminar into a semester-long seminar. Implementing these modifications while
keeping the historical content essentially the same allows for additional time to be
spent on the four historical points of view in the development of geometry (cf.
Sect. 4.3.1). This in turn enables longer engagement with seminar tasks and sup-
porting more substantial small group and whole group discussions. Additionally,
during the semester-long seminar, students were required to keep reflection journals
by responding to weekly reflection questions. The research analysis of the 2016
implementation will focus on the particular elements from the historical content that
students used to recognize and articulate the transition problem. In particular, we
plan to extend cases like Inga’s to include commentary of the historical content
from the intervention on students’ individual transition process.

We anticipate that the semester-long seminar will enable us to identify deeper
insights about the diversification of students’ belief systems and their awareness
about their own beliefs, and to support university students in their articulation and
awareness of these diverse beliefs. In particular, we aim to assist in overcoming the
double discontinuity that Klein (2004, p. 1) identified, by highlighting the impor-
tance of views on mathematics for mathematical learning, which can also survive in
the mathematics teacher candidates well beyond the second transition of becoming
mathematics teachers at school:

The young university student found himself, at the outset, confronted with problems which
did not suggest, in any particular, the things with which he had been concerned at school.
Naturally he forgot these things quickly and thoroughly. When, after finishing his course of
study, he became a teacher, he suddenly found himself expected to teach the traditional
elementary mathematics in the old pedantic way; and, since he was scarcely able, unaided,
to discern any connection between this task and his university mathematics, he soon fell in
with the time-honored way of teaching, and his university studies remained only a more or
less pleasant memory which had no influence upon his teaching. (Klein 2004, p. 1)
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Chapter 5
Facilitating Source-Centered History
of Mathematics

Developing Materials for Danish Upper
Secondary Mathematics Education

Kristian Danielsen, Emilie Gertz and Henrik Kragh Sørensen

Abstract We present and discuss initiatives to develop source-centered teaching
materials in history of mathematics for upper secondary education, aiming at
meeting the objective of the Danish curriculum to make history of mathematics
relevant. To this end we present the design template for such multi-purpose
materials we developed, which allows devising materials neither too superficial nor
too specialized, and we address the constraints on and affordances of historical
sources in adapting to teaching objectives. It includes differentiation and scalability
for using historical sources, and provides opportunity for interdisciplinary teaching,
another requirement for Danish upper secondary education. We also report on
(i) the recent application of our design approach to develop such source-centered
materials in collaboration with small groups of dedicated teachers, and (ii) students’
positive response to the inquiry-driven teaching based on this material.
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5.1 Introduction

Teaching a subject—such as mathematics—involves teaching a set of core topics, a
set of competencies, and an outlook on that subject, including its identity, methods,
historical development, and relation to other subjects in the curriculum and its
societal role. Different curricula put different emphases on these components, and in
some respects, the Danish case is a special one for the role the curriculum attributes
to history of mathematics and philosophical issues about the identity of mathe-
matics and the processes involved in mathematical modeling.

The use of history of mathematics in teaching mathematics in upper secondary
schools provides a potential to have students engage with sources in order to
address questions of ‘why’, ‘how’, ‘when’ and ‘where’ which are otherwise rare in
the mathematics classroom. This potential can be exploited by an inquiry-based,
source-centered approach to teaching history of mathematics, but this raises two
demands: Suited materials must be available and teachers must have relevant
training in teaching with history of mathematics.

In this chapter, we present and discuss initiatives to develop source-centered
teaching materials in history of mathematics aimed at upper secondary mathematics
teaching in the Danish school system. We present a design template for such
multi-purpose materials that includes differentiation and scalability for using his-
torical sources and provides opportunity for interdisciplinary teaching which is also
a requirement for Danish upper secondary education. This approach allows us to
devise materials that are neither too superficial nor too specialized. In particular, we
address the constraints on and affordances of historical sources in adapting to
teaching objectives. We also report on a project with a small group of dedicated
teachers aiming at facilitating the development of source-centered materials.

5.2 History of Mathematics in Danish Upper
Secondary Schools

The largest sector of Danish upper secondary education (16–19-year-old students)
is the general gymnasium, STX. This education provides a general education in a
broad range of subjects, including mathematics. In the STX, mathematics is taught
at the mandatory one-year C-level aimed at providing general, critical education for
citizenship, at the two-year B-level, adding focus on mathematics applied in the
sciences, and at the three-year A-level, further adding grounding for the sciences.
The education also includes a large project (SRP) in the final year, combining two
subjects. Until 2016, a mandatory interdisciplinary component (AT) focused on the
methods of different disciplines was also taught. This component has since been
abolished and some of its perspectives moved into the large project where philo-
sophical considerations will form part of the evaluation criteria, and interdisci-
plinary reflections on methodology remain central.
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In STX, history of mathematics is—and has been for decades—a mandatory part
of teaching mathematics (see Kjeldsen and Carter 2014). For instance, at all levels
of the STX, the supplementary material (25 h per year) has to include topics in
history of mathematics. These topics can, at least in part, be involved in addressing
the objective to enable the students to “demonstrate knowledge about mathematical
methods, the application of mathematics, and examples of the interaction between
mathematics and other developments in science and culture” (Læreplan Matematik
C, translation by the authors, emphasis added). This quote is taken from the STX-C
level, but the role for history of mathematics is even stronger at STX-B and STX-A
levels, where the ministerial recommendations for teachers also stress history of
mathematics as a way for teachers to collaborate with colleagues in other subjects,
particularly history, to seek out opportunities for interdisciplinary teaching. The
recommendations now (2017) also explicitly mention working with sources as a
means to stimulate inquiry and curiosity in the students (Matematik A/B/C, stx:
Vejledning, p. 26). Yet, no specific suggestions are made concerning what history
of mathematics to teach and how to teach it.

Thus, the curriculum and ministerial recommendations stress including history
of mathematics as part of teaching about mathematics and to enable interdisci-
plinary teaching. The underlying reasoning is not only that history of mathematics
can be important in and by itself, but that history of mathematics contributes to the
students’ understanding about mathematics and its social and scientific use (see also
Jankvist 2009).

Although teaching of history of mathematics is mandatory in upper secondary
schools, studies have shown that mathematics teachers experience challenges in
implementing it; these challenges span from insufficient confidence and competence
in reading historical sources to lack of well-designed, relevant mono- or interdis-
ciplinary teaching situations integrating historical sources (see e.g. Johannesen
2015; Jørgensen 2013). Additionally, teachers are under constant time pressure, and
since no fixed recommendations exist on which topics to address from the history of
mathematics, it is left to the individual teacher to identify and screen suggestions.
Participants in our workshops confirm this and stress that collecting materials, and
in particular identifying good sources, are difficult tasks for teachers to perform.
These concerns call for activities on two fronts: Providing teachers with the means
and confidence to use sources to teach history of mathematics is not easily
addressed in traditional written communication but must, we believe, be taught
either in university level courses on history of mathematics or in in-service training
of more experienced teachers (see also Clark 2014). And providing relevant,
easy-to-use and quality-tested teaching materials and devising interesting teaching
situations in which to use them is a challenge that should be approached through
integrative collaborations between academic historians of mathematics and moti-
vated teachers. Thus, two challenges arise: how to educate the teachers so that they
can utilize these materials and how to devise and develop suitable materials for
classroom usage. In the following, we present and discuss our framework for
selecting and developing source-centered materials.
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5.3 The Potentials of Source-Centered History
of Mathematics

To meet the objective of the Danish curriculum to make history of mathematics
relevant and enable a variety of interdisciplinary collaborations, we have developed
a source-centered framework for presenting authentic history of mathematics rel-
evant to the educational situation and teaching objectives. Our combined back-
grounds as professional historians of mathematics and mathematics teachers at the
upper secondary level integrate the main concern of such an endeavor, namely to
balance the needs incurred by teaching a specific curriculum while not losing sight
of historical complexity (see Fried 2001). A central challenge for a source-centered
approach to teaching with history of mathematics thus lies in identifying and
making accessible sources that can address relevant teaching objectives.

Recently, the use of primary sources in teaching mathematics has been addressed
from an educational perspective (see e.g. Jahnke et al. 2000; Jankvist 2014;
Pengelley 2011). Our approach consists in integrating reflections on teaching
objectives with efforts to identify sources and develop materials to achieve relevant
teaching of history of mathematics. Thus, this integration should evolve into an
extended dialectic process, optimally undertaken in collaborations such as ours
between (academic) historians of mathematics and devoted mathematics teachers.

Among the main characteristic constraints of a potential source to take into
account are its length, language and level.

The source can obviously not be too long, since students will not be able to work
their way through it in a reasonable amount of time. On the other hand, the source
also cannot be too short, as a mere snippet will not facilitate the range of per-
spectives intended. Thus, what constitutes the entity of a source needs to be
negotiated; it could be an entire (short) research article, a chapter or section from a
monograph or article, a few graphical illustrations, a set of data, or a series of
images of mathematics and mathematicians. Importantly, the central source should
be complemented by other sources from its contexts of production and influence. In
order for the central source to be accessible to students in the Danish context, it
must be in either English or Danish. In reality, given the literacy of Danish students
in English, even English texts must probably be translated, not least if they use
archaic language or orthography. Providing such a translation is not, in itself, a
restriction on the source but rather on the expertise required for the development of
suitable materials. Ideally, original mathematical notation is to be preserved as it
provides an opportunity for students to practice reading authentic, foreign mathe-
matics and develop their skills at manipulating mathematical symbols and relations
(see Kjeldsen and Petersen 2014). An interesting perspective could be added to the
teaching objectives by including (extracts from) the original text in facsimile, using
original orthography and print.

Probably the most difficult constraint to meet is matching the mathematical level
of the central source to the desired teaching objectives. Again, this is confirmed by
participants in our workshops who also emphasize that the use for mono- and
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cross-disciplinary purposes may raise different concerns about the appropriate level
of technical mathematics in the source. As one of the participants explained about
locating historical sources: “It is difficult to find anything that contains enough
mathematical content without it being too difficult. And finding interdisciplinary
connections provides another difficult challenge.” Thus, the suitable source need
not be immediately accessible to the students, but it cannot be too far beyond their
mathematical level and it will require scaffolding for the students to engage with it.
Thus, not all sources are usable in upper secondary mathematics education as they
may well involve techniques or topics beyond reach of the curriculum. However, by
broadening the search beyond the original formulations of new ideas and looking
for historical didactical texts (such as expositions or textbooks), some otherwise
inaccessible topics may still become open to the source-centered approach. Thus,
the initial search for sources, which could start with standard collections, is likely to
benefit from engaging with the expertise of research historians of mathematics.

These main constraints are to be balanced against the affordances that the source
provides for attaining relevant teaching objectives (see Fig. 5.1). In other words, the
source can allow for interesting perspectives in at least the following three main
ways: the content and its presentation, itself, can be an attraction for using the
source, the source can feature in an interesting internal context such as the devel-
opment of an important theory, or the source can be embedded in an interesting

Fig. 5.1 Dialectic of affordances and constraints between sources and teaching objectives. In the
process of developing materials (see Fig. 5.3), this corresponds to tasks 1 (source) and 4 (teaching
objectives)
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external context such as being the solution to a problem of societal or scientific
importance.

The relative importance of these affordances depends on the teaching objectives
stipulated by the curriculum and the teaching situation. It will be an extra attraction
if the content would fall within the core curriculum or at least be in direct con-
tinuation of topics already familiar to the students. The teaching objectives might
include motivating new topics by situating their invention or cultivation within the
internal or external contexts in which they arose or were developed. Moreover, the
potentials for integrated teaching or interdisciplinary collaborations with other
subjects such as history, Danish, languages and classical culture may be attractive
affordances.

Ideally, the dialectic process of searching for sources and expounding the
teaching objectives they can address will lead to a central source that can be adapted
for multiple purposes (see Fig. 5.2). Among the specific purposes for using the
source-centered approach are (i) serving as (relatively short) introductions and
motivations of new topics within the mathematics teaching, (ii) grounding more
extensive teaching of a mathematical topic in a (longer) inquiry-driven approach to
reading a historical source, (iii) the integration with another subject (in particular
history or foreign languages), (iv) providing students with the foundations for
independent projects (in the Danish STX in particular the cross-disciplinary SRP),
(v) forming the foundation or perspective of an interdisciplinary project (such as the
SRP), or even (vi) providing the inspiration and content for study trips abroad
(which are semi-mandatory in the Danish STX). Naturally, not all these objectives
are realistic to achieve to the same extent for every source or material, but keeping
them in mind and addressing them as they become relevant is a key design feature
of our approach. In order to provide multi-purpose materials, which allow for a
wide variety of such teaching objectives, we address our materials at the teacher,
not the students, and expect the teachers to provide the transformation into teaching
the specific objectives that they have in mind.

Fig. 5.2 Multi-purpose material aimed at teachers who will transpose it for specific use
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Obviously, focusing on a single source may impose restrictions on the learning
outcomes to be gained. There are (important) aspects of the historical development
of mathematics that are not accessible from a strict focus on just one instance in the
past. Yet, by narrowing the focus to one such instance and providing the relevant
contextualization, we gain authenticity and access to equally important learning
objectives about the motivation, use and changing nature of mathematics. Thus, by
showing authentic differences in mathematical thought and text, we can at least
identify different points on a time-spectrum of mathematical development. If the
historical processes in-between these points are the desired teaching outcomes, the
source will need to be properly contextualized in these respects and, preferably,
supplemented by other authentic materials. Thus, in a sense, our tradeoff is one
between authenticity on one side and historical continuity on the other side. As
such, the balance is not particular to upper secondary history of mathematics, but is
inherent in history teaching more generally.

5.4 Developing Materials and Introducing Teachers
to Sources

In developing pilot materials directed at teachers, we have adopted a common
template:

1. An introduction addressed to the teacher.
2. A short, engaging narrative situating the source by introducing central actors,

places, developments and perspectives. To a limited extent, this narrative can
include historical dramatization. It, too, is intended for the teacher, but it could
also prove relevant (and readable) to students.

3. The source in Danish translation (if necessary) and with as much preservation of
mathematical notation as possible.

4. A detailed, step-by-step elaboration and commentary of the source, including
suggested exercises for students and hints and solutions for the teacher. The
purpose of these exercises is to engage students to work with technical, con-
ceptual and contextual aspects necessary for understanding the source. Thus,
this part will consist both of historical contextualization (4a) and elaboration of
technical mathematics (4b), providing a mixture of ordinary explanation and
exercises for guiding students’ inquiries.

5. A series of suggestions for addressing various teaching objectives based on the
source. These suggestions range in perspective and in scope from short, moti-
vating and contextualizing one-lesson introductions (tall), over in-depth
approaches to the relevant mathematical topics through the source spanning
multiple lessons (grande) to suggestions for interdisciplinary teaching and
student projects (venti).
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Furthermore, a set of resources that include PDF files of the central source, our
suggested exercises, and examples of adaptation to teaching situations provided by
teachers who have used the material are made available online.1

The set of pilot materials presently includes one on logistic growth based on
Pierre-François Verhulst’s (1804–1849) original source from 1838 and one on Hero
of Alexandria’s (c. 10AD–c. 70AD) procedure for computing the area of a triangle
based on his Metrica (Danielsen and Sørensen 2014, 2016). Additional material on
the introduction of Hindu-Arabic numerals in the Icelandic thirteenth-century
manuscript Hauksbok is in preparation (Jensen et al., in preparation; see also
Bjarnadóttir and Halldórsson 2011), and two further materials have been planned.
These sources are all chosen because they offer a combination of important his-
torical (and philosophical) reflection about mathematics with a mathematical con-
tent that is accessible and interesting. At the same time, they open possibilities for
interdisciplinary teaching with history, biology, classical culture, etc. Thus,
Verhulst (Danielsen and Sørensen 2014) offers a way of discussing the develop-
ment of mathematics for societal problems and an important insight into mathe-
matical modeling. At the same time, logistic growth is something students need to
study, anyway. The case of Hero’s formula (Danielsen and Sørensen 2016) offers
an opportunity to supplement the standard picture of Greek mathematics in the
Euclidean tradition with a mathematician quite explicit about the role of mathe-
matics and computation, and students will be surprised to find that a “formula” was
described in such verbose text. And materials about Arabic arithmetic (Jensen et al.,
in preparation) may provide an occasion for showing that mathematics was part of a
great cultural exchange, while at the same time challenging students to understand
relatively simple mathematics presented in unfamiliar forms. Thus, our criteria for
choosing and developing these materials were precisely combinations of historical
and mathematical constraints and affordances (for a suggestion for developing
historical awareness, see also Kjeldsen 2010, 2011).

The design of the template was based on a variety of academic and practical
input. From related discussions about teaching Nature of Science (NOS), we were
inspired by Douglas Allchin to engage students with an introductory narrative to
which they could relate (point No. 2 above; see e.g. Allchin 2013). Since the
ambition was to support student inquiry, it was required to provide teachers with a
provisional background (point No. 4 above). The extent of the contextualization
and commentary was mainly determined by drawing on the teaching experience of
members of the group. In order to make the introduction into actual teaching
practices feasible, we felt a need to provide examples and suggestions of practical
use (point No. 5 above). These considerations were largely validated by the feed-
back that we have received (see below).

A specific role for the contextualization is to provide a background for an
understanding of the mathematical source in a nuanced way that does not, in
particular, reduce to anachronisms or mere translations into modern notation and

1Available at http://www.matematikhistorie.dk/; accessed August 7, 2017.
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terminology (see also Fried 2014). Since a main purpose of using history of
mathematics in this way is to provide a broad conception about mathematics, it is
necessary to address both similarities and differences between historical and con-
temporary mathematical practice. Thus, although the sources may be chosen for
their relevance to the contemporary curriculum, they need to be situated in their
historical contexts for this higher-order learning objective to be feasible. This
objective can be brought to the students by explicitly engaging them with trans-
lation and interpretation of concepts, terms, and notations that are foreign to them
(see also Danielsen and Sørensen 2016).

Our framework and reflections were developed aswe produced the first material on
logistic growth, and subsequently refined in working with the latter materials. The
case of logistic growth was initially chosen because it offered a number of attractive
affordances (see also Danielsen and Sørensen 2015). For example, the original source
has a suitable length (approx. 5 pages). Its language was rather non-technical and
could be translated from the original French into Danish with minimal effort. Its
mathematical content formed part of the core curriculum in STX-A, whence the
teacher could tag on a historical component to existing teaching at little extra cost in
the form of teaching time. And, the reflections of Verhulst in themidst of his modeling
process opened for some very interesting perspectives on mathematical models that
werewell known in the philosophical literature butwere difficult to explain in teaching
situations by showing rather than by merely telling.

The produced material on logistic growth was aimed at teachers but began by
situating the source through an introduction that was also meant to be readable by
students. Subsequently, historical and mathematical elaboration and context was
provided to allow the teacher to quickly orient herself in preparing for teaching. This
led up to suggestions for tall, grande and venti adaptations to teaching in an
open-ended fashion so as to not instruct but inspire teachers. For instance, the source
could be read as homework for an initial discussion about the problem of modeling
population growth (tall). Or the source could be worked through in more detail
(grande), leading to the necessity of learning about solutions of differential equations
by separation of variables. Or, by opening up discussion about the national importance
of demographic data, the source could formpart of an interdisciplinary sequence about
the birth of nation states in the nineteenth century (venti).

The material on logistic growth was distributed to all members of the organi-
zation of upper secondary mathematics teachers (LMFK), and the reception has
been favorable. Teachers who have used the material report that it was easy to use
and that it worked very well to engage students, and they found multiple uses for it
in teaching, along each of the tall, grande and venti suggestions. Many teachers
followed our suggestions, but they also appropriated the material for other pur-
poses; for instance, the source could be used in interdisciplinary teaching about
climate and population modeling. Teachers who used the material also reported that
efforts to transpose the material into tasks suited for students were supported by the
materials we developed for teachers.

This latter point accords well with our approach, which is to develop materials
addressed at teachers and providing them with sufficient resources (historical,
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mathematical and educational) that the inevitable transposition for specific use was
made feasible. Specific teaching objectives and desired uses of the material span a
wide variety, and teachers and classes also vary, raising the issue of adaptation and
transposition for use (see Fig. 5.2). However, inspiration for the variety of uses and
suggestions for the necessary transpositions are, we believe, among the core ben-
efits of carefully crafted teaching materials in history of mathematics. Thus, the
ambition of our approach is to limit the need for vast specialization in the history of
mathematics on the part of the end-user teacher, while instead depending on her
qualifications in adopting a wide-ranging, multi-purpose material to her specific
teaching style and objective, or to specific learning challenges among her pupils.

5.5 Working with Teachers to Develop More Materials

In spring 2016, we set up an intervention, supervising a group of nine dedicated
teachers to develop new source-centered teaching materials. The format included
online collaboration, a one-day seminar, supervision and discussion, and eventually
presentation at an international workshop in August 2016 and the preparation for
publishing the materials and making them accessible through LMFK.

We began by setting the scene by introducing the notion of source-centered
history of mathematics, as we perceive it, and circulating a description of the
objectives and an introduction to working with sources. In particular, we structured
the development process according to the diagram in Fig. 5.3. This process diagram

Fig. 5.3 Process diagram for developing source-centered materials, indicating the temporal
relation and interdependency of tasks and eventual chapters in the design template. The boxes
correspond to the dialectic process in Fig. 5.1
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shows the reverse order in which the elements of the general design template are
likely to be achievable for the teachers who work to produce materials: Once a
source has been chosen through the dialectic process (blocks 3 and 5; see also
Fig. 5.2), the mapping of the educational potentials and the specific demands raised
by the source influence the substantiation of the contextualization and elaboration
(tasks 4a and 4b, respectively). The translation of the source (3a) and the devel-
opment of specific teaching situations (5a, 5b, etc.) are tasks which can run in
parallel, once the general structure is set. Finally, the introductory elements (2 and
1) are likely to be the last to be produced. Thus, this process diagram served to
transform the general design template into concrete and prioritized tasks for
teachers to pursue.

Based on the methodological reflections discussed above, we identified three
topics with associated central sources that address different dimensions of our
design concerns. These topics are:

A. Edmund Halley’s (1656–1742) estimates of mortality (1693) and his use of it
for computing annuities on lives. In the 1690s, quantitative data on mortality
rates were a novel phenomenon, and Halley made innovative uses of data
obtained from Breslau to describe a general model for taking out annuities on
lives. Based on surveys of the age distribution of the population of Breslau,
Halley made generalizations to mortality rates in the United Kingdom. The
mathematical content of the source is fairly basic, although it can lead on to
more advanced conditional probabilities. Reading from an old, authentic text
and puzzling over aspects of computational methods and historical context can
inspire students to engage with mathematics in new ways. And the situation of
Halley’s interest in the problem merits historical attention, as the prevailing
national model for life insurances at the time was about to ruin the scheme.

B. John Snow’s (1813–1858) innovative use of graphical data representation
(1855) in determining the cause of the cholera epidemic in London. During the
nineteenth century, Europe was hit repeatedly by cholera epidemics. It was
generally believed that cholera was caused by miasma, but John Snow was
convinced that the cause was water pollution. When London’s Soho suffered
from an outbreak of cholera in 1854, Snow collected data about the deaths in
the district, in particular, dates and addresses. Snow represented his data in a
so-called ghost map which he used to convince the authorities that pollution of
a particular water pump in Broad Street had caused the outbreak. The mathe-
matical content is simple and is suited for STX-C. The students also have to
work with different types of historical sources to complement Snow’s own
description of the procedure, namely graphical representations of data. Thus,
understanding the mathematical source is valuable in training mathematical
skills and in deepening and broadening the historical analyses of an interesting
episode.

C. Augustin-Louis Cauchy’s (1789–1857) redefinition of the integral (1823) by
what is still known as the Cauchy-integral based on limits. Since the invention
of the calculus, integrals had been defined as anti-derivatives. Yet, Cauchy
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inverted the relation between anti-derivatives and area, defining the integral as
the area under the curve and proving the Fundamental Theorem of Calculus. In
his definitions and his proof that the theorem holds for any continuous function,
Cauchy employed arguments that have since become standard practice in rig-
orous arguments in analysis. The conceptual mathematical content is thus more
advanced in this source, and its use is aimed at STX-B and A. The mathe-
matical terminology and symbolism in the source is very similar to the modern
textbooks, but there are differences, and the students have to be attentive to the
small differences when they work with the source.

Thus, these topics and the identified central sources all invite different teaching
objectives and provide different affordances. For instance, topics B and C both
address core curriculum stipulations but in different ways: Integral calculus is a
mandatory part of STX-A, and working with graphical data representation and
training students to read information off various graphs is mandatory at STX-C.
Similarly, topics A and B invite collaborations with history, English, or even social
science or biology, whereas topic C could be related both to important internal
contexts within mathematics and the role of mass education in shaping the disci-
pline in the wake of the French Revolution.

In groups, and under supervision, the teachers began in January 2016 to research
and develop appropriations of the source along the methodological lines discussed
above. Obviously, as developing such appropriations is quite time consuming, the
groups would gradually choose to focus their attention on one or more of the
objectives while continuing to keep the multi-purpose material approach in mind.
During an intense and productive one-day seminar in April 2016, we met with the
participants to assist them in their efforts. This occasion also marked the beginning
of the collaborative work of each group, and quite a lot of coordination was
required as the teachers were geographically dispersed at different schools. It was
clear that they found the process both stimulating and challenging, as it required
them to work beyond their ordinary teaching practices. To address such challenges,
we provided them with a process diagram (Fig. 5.3) and a general outlook and
methodology for developing source-centered materials. These, they reported, were
clarifying and helped them structure their work and their intended product. This
pointed to another recurring logistic challenge, namely to stimulate discussion and
communication between the participating teachers and us when we could not meet
in person.

During the summer, the groups of teachers worked on their projects, especially
towards presenting their products at the conference “History of Mathematics in
Education: An Anglo-Danish Collaboration” which we organized together with Sue
Pope and under the auspices of the Danish LMFK and the British Association of
Teachers of Mathematics (ATM) in Bath in August 2016. There, the groups of
Danish teachers were able to present their materials in workshop format and receive
constructive feedback from the participants, both Danish and British. Although
differences between the national curricula and teaching formats and traditions
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pointed to some of the specificity of the Danish context, the experience of pre-
senting their work and discussing it proved very useful for the groups.

While they were developing their materials, the groups were also able to test
some of it in their own teaching. These hands-on experiences and the feedback they
provided to the materials were also essential. We followed and observed some of
the lessons taught to first-year students based on the material on topic B (John
Snow), and we interviewed a focus group of students. When asked whether the
approach through historical sources made a difference to their experience, the
students responded positively to the inquiry-driven involvement:

Student 1: I think it is more motivating, when we are to do something, to know what it can
be used for. […] When we are to investigate something that was relevant in the past, and we
can see that it is still useful and has been used, I find that it becomes much more interesting.

Thus, the source-driven approach was seen as adding authenticity and relevance
to the problems treated. Some also contrasted this approach to their ordinary
mathematics lessons:

Student 2: Personally, I like to do the kinds of mathematics, where you just have to sit down
with some exercises and solve them. But this [the source-centered approach] shows that this
kind of mathematics can be used in specific connections with medicine.

They were also explicitly reflecting on the methodological differences in history
and mathematics:

Student 3: I think that you learn history differently when you combine it with mathematics.
In a history lesson, if we were to learn about cholera, we would probably only be taught
how it worked. Now that we have worked with it, we know what the causes were and how
many died and so on.

Student 2 [continuing from student 3]: And how he found out. Mathematics makes it much
more manageable.

In observations of the teaching, we also experienced that the confrontation with
original sources prompted students to reflect on their practices in new ways. It has
been argued (Kjeldsen and Blomhøj 2012; Kjeldsen and Petersen 2014) that such
confrontation can lead to ‘commognitive conflicts’ in the sense of Anna Sfard and
thus conceptual learning in mathematics (Sfard 2010). We saw that when asked to
work with authentic data from Snow’s observations, students were forced to
develop suitable means of entering data into their spreadsheets. This is likely to
happen whenever the data are not spoon-fed from the teacher or textbook in
ordinary notation and format. But the use of authentic, historical sources is certainly
one way to achieve this. And compared to historically inspired problems, it pro-
vides a platform for addressing the past that goes well beyond translating it into
modern terms.

The other groups report similar experiences from their use of the materials that
are being developed. In summary, these experiences point to the usefulness of a
source-centered approach both for mathematical learning and for interdisciplinary
teaching in history and mathematics.
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After the conference and their calibration with input from their teaching, the
groups have revised their material and submitted them to a volume that we are
currently editing, to be published by the LMFK (Danielsen and Sørensen 2018) and
made widely available for other teachers to use. In their final form, the three
materials exhibit the variety of voices, experiences and concerns of the teachers
involved. They all follow the design template and the source-centered approach by
including the source, its contextualization and elaboration, and suggestions for a
variety of uses in teaching. Although the teachers found the process both stimu-
lating and worthwhile, they also experienced that working with sources and
developing new teaching uses in this way was extremely time-consuming. Thus,
some teachers found themselves forced to withdraw from the final phase of
development, and some additional editing was required from us.

5.6 Conclusion

Integrating historical perspectives in mathematics teaching has both a long history
and a specific place in the curriculum of Danish upper secondary education (STX).
We have developed a design template for a source-centered approach to using
history of mathematics in both mathematics-specific and interdisciplinary teaching.
The approach is inquiry-based and centered on the contextualization and elabora-
tion of well-chosen historical sources. These sources are to be identified in a
dialectic process with their educational potentials in mind. This process demands an
academic overview of the possible sources and experiences with the concrete
day-to-day constraints of teachers. Developing such sources for use in teaching is
thus a candidate for collaboration with teachers, and we have developed and tested
a format in which teachers are guided to produce materials. This development
process was generally successful, but is not likely to scale easily as it is
time-consuming for teachers and requires well-motived teachers with competencies
in both mathematics and other disciplines such as languages or history. On the other
hand, the use of such materials is likely to scale more easily as more materials
become available.
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Chapter 6
Involving Students in Original Research
with Primary Sources

A Graduate Course in the History of
Mathematics Education

Patricia Baggett and Andrzej Ehrenfeucht

Abstract We describe the structure and content of a graduate mathematics course,
History and Theories of Mathematics Education, which focuses mostly on the
history of mathematics education in colonial America and the US, including dif-
ferent authors’ opinions about the purpose/methods of mathematics education.
Students study original antiquarian books and read articles by writers who have
influenced the development of mathematics education, preparing a major final
project that they present at a conference at the course’s end, open to faculty,
students and guests. Our aim in designing and implementing this course is to use
original sources in the history of mathematics education (rather than the history of
mathematics) to allow each student to carry out his/her own individual research in
the history of the issues described in these sources, and to report publicly on these
results. We give details on the actual implementation of this course and its eval-
uation by the students enrolled in it.
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6.1 Introduction

Using primary original sources in university mathematics courses is a topic that has
been studied by many authors. Theoretical, motivational, educational and other
aspects have been examined. In this article we describe the structure and content of
a graduate course in mathematics education, taught in a mathematics department,
that uses historical sources in mathematics education. The course has several
characteristics that are different from courses that have been discussed in the lit-
erature. The main difference is that the historical sources in mathematics education,
rather than in pure mathematics, allow each student to carry out his/her own unique
individual research in the history of the issues described in them. The goal of the
research is that the student may present his/her results at a local or national con-
ference, or even publish them.

When an investigation is in the history of mathematics, the main questions are
about the development of new mathematical knowledge at a particular time. But in
the history of mathematics education, the questions are how mathematics was
taught and used at a particular time in a given historical and social environment.
Students are able to investigate such questions when they have adequate historical
and cultural backgrounds, which the course intends to provide.

6.2 The Course, The Students and Their Backgrounds

The one-semester course, offered for three hours of graduate credit, has been taught
eight times. It is the only course in mathematics education history in the Department
of Mathematical Sciences. It is an elective course; there are no qualifying exams
based on it. The only prerequisite is graduate standing (in any discipline) or per-
mission from the instructor. All students who enroll have completed at least two
semesters of calculus, and almost all have taken a modern algebra and analysis
course. Attendees have been multinational; thus far, students from Mexico, Jordan,
Lebanon, Saudi Arabia, Nepal, China, Ghana, Cameroon, Nigeria, Guam and of
course, the United States, have enrolled. Some are teaching or plan to teach in a
high school or community college. Those seeking a Ph.D. (in mathematics or other
fields) are primarily interested in a university position, but not necessarily a position
in the history of mathematics education. Only two students who have taken the
course have gone on to complete Ph.D.s in the history of mathematics education;
they are now employed as assistant professors in the US.
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6.3 Resources That Are Needed

The historical resources that students study are mostly old textbooks relating to
mathematics/mathematics education that were actually used in the past, either from
the instructor’s private collection, or digitized online (Google Books, Hathi-Trust,
Openlibrary.org, archive.org, etc.). Other materials that students access come from
a course pack of readings, discussed below, and from Interlibrary Loan, WorldCat,
GoogleScholar, etc.

At the first class session, we bring in scores of actual books, mostly school
textbooks, from a private antiquarian collection. Books are spread out on tables and
students are invited to handle them. Students pick up the books—they turn their
pages. They notice their fragility, their tattered and discolored pages, their small
formats. They are allowed to take home a book that they find interesting, and at the
next class we discuss what they have found. Students thus begin their work with
books that were actually used in the past.1

6.4 Students’ Assignments

Students have three essential assignments:

– Preparing and delivering a book report on an antiquarian book;
– Turning in answers to questions from background readings; and
– Preparing and delivering a final project suitable for a conference.

In order to do the assignments, students need to get background knowledge about
the place and the time period in which the books they are studying were written.
They need to be familiar with the methodology of historical research in general, and
how to ask and answer relevant questions and to justify their final conclusions.
Finally, they need to compress their findings into a 15 to 20 min conference talk.

6.4.1 Book Reports

Old mathematics textbooks provide a richness of educational and historical infor-
mation. To quote John Dewey (1938), “Books, especially textbooks, are the chief
representatives of the lore and wisdom of the past” (p. 18).

1This aspect of studying an actual book (rather than a digital copy) is under-appreciated.
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In our course, a student’s first assignment is to prepare and deliver a book report.
Students most often choose an antiquarian textbook, one that was actually used for
instruction, that is available online and/or from antiquarian mathematics books in
the instructor’s private collection, written in English and published in the United
States or England. However, one may instead choose a book, modern or historical,
from another culture or nation (international students often make such choices). The
student gives an in-depth talk about the book in the class.

Such an assignment is new for almost every student, and they are rather lost
about how to proceed. Many students do not know how to use Google Books and
similar internet sources. The first thing a student needs to do is read the whole book
from cover to cover. This is something that many have not done since high school.

A student also needs to decide what to cover in his/her report, and what to leave
out. The instructor may help by asking leading questions such as:

What do you find interesting or weird in your book?
For whom was the book intended?
What do you know about the author?
What topics were included? How were they sequenced?
Did the author describe his/her reasons for teaching mathematics or his/her views
on the psychology of learning?
How was the mathematics taught? Was there any advice to the teacher or
schoolmaster about how to teach?
Is there any mathematical terminology that seems strange? Any unusual mathe-
matical symbols or abbreviations?
What algorithms were taught?
What about weights and measures?
What currency was used at the time the book was written?
If there are word problems, what content do they have?
Is your author’s content original? Or do you find content that is essentially identical
in earlier books? Or, can you find parts of your book’s content in later books?
Were answers to problems and methods of solutions provided in the book? Or were
they in a separate “key”? Did pupils work problems directly in the book itself?
What changes do you see in the mathematics presented in schools today and when
your book was printed, in terms of content, sequencing, illustrations, …?
Look for concepts in your book that are not in modern books, or whose meaning
has changed from when the book was written to today, e.g. diagonal scale,
St. Andrew’s Cross, aliquot part, surd, wrangler, zero, proof, …

Such questions allow the student to find interesting features of the book, and
topics that match the interests of the class. Most students also need help in selecting
the most relevant aspects of the book that they need to concentrate on in their
reports. Often the student is asked to practice his/her talk in front of the instructor,
before giving it in front of the class. Presentations are given in PowerPoint, and at
least one session of the class is devoted to instruction in its features and use, since
many have no experience with it. And there is one rule: You do not have to cover
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everything in your book. However, when you give your book report, the class may
ask you about anything that you include in your presentation. Thus, never cut and
paste into your report anything that you do not understand.

Some books that have been reviewed, which are also listed in the references, are:

(1) The Nine Chapters on the Mathematical Art (10th–2nd century BCE) (used
in class in Chinese and in English translation).

(2) Principles of Hindu Reckoning (Kushyar Ibn Labban). A Translation with
Introduction and Notes, 1965.

(3) The Treviso Arithmetic (Arte dell’Abbaco 1478) (used in English translation
by D. E. Smith and Frank Swetz).

(4) Adam Riese, Rechenung nach der lenge auff den Linihen und Feder (1550)
(English translation of selected parts).

(5) Sumario Compendioso of Brother Juan Diez (1556) (in Spanish and English
translation by D. E. Smith).

(6) Robert Recorde, The Grounde of Artes (1632).
(7) Edward Cocker’s Arithmetick (1715) (a book studied by Benjamin Franklin).
(8) John Ward, Young Mathematician’s Guide (1771) (used as a textbook at

Harvard as early as 1726).
(9) Nicholas Pike, A New and Complete System of Arithmetic Composed for the

Citizens of the United States (1788).
(10) Stephen Pike, The teacher’s assistant or a System of practical arithmetic

(1811).
(11) William Hawney and Thomas Keith, Hawney’s Complete Measurer (1813).
(12) Jeremiah Day (president of Yale University), An Introduction to Algebra

(1834).
(13) Isaac A. Clark, Prussian Calculator (1846).
(14) John B. Jones, Elementary Arithmetic in Cherokee and English (1870).

Students wrote their opinions about the book reports in an anonymous survey at
the end of a recent course. Here, we provide three student opinions:

• The book reports were an excellent way to get acquainted with one another as
well as the scope and goals of the class overall.

• I found the book report worthwhile in the sense [that] it not only makes us
prepared for the final project but it also gives a deep idea about how a particular
subject was taught in the past in America.

• I loved the book reports! I liked diving into an old text and presenting it to the
class. It was a nice way to practice this type of investigative research.

Students who discovered something in their book that led to their final project
seemed to have an advantage in preparing their projects. Several commented on this
fact in their surveys (see Appendix).
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6.4.2 Background Readings

Students need to acquire a lot of background information about the American
Colonies, the Revolutionary War, philosophies of teaching/learning, the beginning
of high schools and other topics that come out from reading old texts. There is a
basic course pack of readings (online and on paper) for the class (see references).
During the semester, additional readings are added to match the students’ interests
and books and projects that they are planning. Especially when we have multina-
tional students, we will read one or more articles related to educational issues in
different nations and cultures (e.g. the Sumario Compendioso, mentioned above, or
parts of Bhaskara II’s Lilavati, in both English and Sanskrit, or Principles of Hindu
Reckoning (Kushyar Ibn Labban), written in Arabic with English translation).

We include many maps with the readings, including, for example, the 1507
Waldseemüller map,2 which is the first map on which the word “America” appears,
as well as the 13 British Colonies, the Louisiana Purchase, divisions during the US
Civil War and the locations of “land grant” colleges.

The articles that are assigned, all in English, are particularly difficult for inter-
national students who are not fluent in English and not familiar with American
history. But these students comment that as the course progresses their English
improves, and reading the articles and writing about them become easier. When we
discuss education in the United States, we cannot assume that students from dif-
ferent countries are familiar with it. Selections from Hillway (1964) are especially
helpful, as are modern articles about the No Child Left Behind Act, the Common
Core Standards Initiative (CCSSI) (2010) and the Every Student Succeeds Act.
Similarly, some topics can be about mathematics education in other countries (e.g.
China, Mexico, Nepal). Readings should provide enough context so that the other
elements of the course make sense.

At each class meeting students are given reading assignments and reading
questions for topics discussed in class. Answers are to be turned in at the next class,
and we discuss them as soon after as possible.

A small sample of readings, also listed in the references, include:

• Toby Lester (2009). “Putting America on the Map,” in Smithsonian Magazine.
• John Dewey (1915). The School and Society (selected parts).
• Morris Kline (1974). Why Johnny Can’t Add (critique of the “New Math”).
• Hans Freudenthal (1981). “Major Problems of Mathematics Education,” in

Educational Studies in Mathematics.
• B. F. Skinner (1984). “The Shame of American Education,” in American

Psychologist.
• George Stanic (1986). “Mental Discipline Theory and Mathematics Education,”

in For the Learning of Mathematics.

2Available at https://www.wdl.org/en/item/369/view/1/1/. Accessed August 7, 2017.
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• Anna Sfard (2012). “Why Mathematics? What Mathematics?” in The
Mathematics Educator.

Additionally, sample reading questions for the above articles included:

• According to the article by Lester, How did America get its name?
• What did John Dewey (1859–1952) mean by “progressive education”?
• Why does Morris Kline say “Johnny can’t add”?
• Give at least two major problems of mathematics education discussed by

Freudenthal, and his suggestions of how to fix them.
• What does Skinner say is “the shame of American education”, and what does he

propose to do about it?
• What does Stanic say is the “basic metaphor” for mental discipline theory? Does

the theory “require” that mathematics be the necessary topic of study? Briefly,
what caused the decline of mental discipline theory?

• Anna Sfard gives her opinions about why to study mathematics and what
mathematics to study. What are her opinions? Do you agree with them? If not,
why not?

Students’ opinions of the readings, from an anonymous survey at the end of the
course (see Appendix), were generally positive:

• The readings were diverse, appropriate, and thought provoking. The questions
were often demanding and helped to better digest the material and read more
closely.

• The reading questions were definitely worthwhile. They helped me to com-
prehend the readings.

• The readings were appropriate as were the reading questions. I think it would
have been nice to have more time to discuss them. Either a two-semester course,
longer class meetings, or allotting ten-fifteen minutes at the beginning of each
class would be helpful.

6.4.3 Final Projects

The essential aspect of any research is the choice of the questions that the researcher
intends to answer. Students find that it is the most difficult part of their task. Often,
from their book reports, they find topics that they want to know more about.
However, determining a specific question to delve into is complex.

1. The choice of questions

As we discussed in the introduction, work in the history of mathematics education
is different from work in the history of mathematics. All questions concerning
education are always situated in a broad social, economical and cultural context.
Thus, students cannot concentrate only on mathematical features of the text, and at

6 Involving Students in Original Research with Primary … 107



the same time they must choose a very narrowly defined question in order to be able
to investigate it during one semester.

Even a simple question such as, “Why was mathematics taught?” can result in
answers belonging to

– psychology: “It develops a student’s mind”;
– sociology: “It is needed in everyday situations”;
– politics: “It is essential for national security”;

and many others.
Any question that is investigated has to be of interest to the student, but also to

the instructor and to a more general audience. In the course, the emphasis is on
mathematics education in the 18th and 19th centuries in the United States, but the
range of research questions has been much broader.

For example, one student investigated the history of mathematics education in
Guam; another student provided an English translation of a short, but very inter-
esting, 15th-century Arabic poem in algebra that had never been translated before
(see the seventh project described below).

As mentioned above, sometimes, as a result of having given a book report, a
student will notice something of interest in the book that the student still has
questions about. This can lead to the student’s final project. However, the student’s
choice must be within the reach of his/her knowledge. Some students may need to
restrict their choices to topics in elementary mathematics and not higher mathe-
matics. The instructor is available and willing to suggest topics if the student has
difficulty (more about this below).

Basic guidelines for the final project are:

– What question(s) will you try to answer?
– How will you try to answer it/them?
– What resources do you have?
– Trace your questions with respect to time and geographical location.
– Justify your answer(s) using historical sources (say something new about

something old).
– Do you have enough background knowledge to handle your topic?
– A historical analysis tries to make sense of something. What was it? Why was it

important? When did it start, and why? Why did it persist? (E.g. was it related to
some other thing that existed and disappeared?) For how long did it exist? When
did it stop, and why? Did anyone else write about it?

2. Preliminary analysis

The goal of the preliminary analysis is to make a plan of work for the rest of the
semester. Each student is responsible for his/her own work, but the plan of work
must be approved by the instructor and is usually discussed with the rest of the
class.
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Usually the student needs to do a considerable amount of background reading
specific to the topic being investigated. The previous assignments (book report and
readings) prepare students to do this reading without the instructor’s supervision.

Some students who took this course before are invited by the instructor to show
their projects in class, and to describe how they did their work. This is a very
important element of the whole course, not only because it helps current students
plan their research, but also because it shows them how a final presentation should
look.

Each student designs, prepares, and delivers a 15 to 20 min talk at a
mini-conference at the end of the semester, open to faculty, students and guests.
This final project requires extensive background work and should be suitable for a
national conference.

6.5 Examples of Final Projects

Below are several examples of book reports that have led to final projects. The first
six listed resulted in publications (two; one in a journal and one in a book) and
acceptances/presentations to national conferences (four). The seventh project
below, which did not begin with a book report, also resulted in a presentation at a
national conference.

6.5.1 Kristina Leifeste Brantley, Mathematics Graduate
Student

Book report: Hawney’s Complete Measurer (1813) describes an unusual measuring
instrument, a diagonal scale (Fig. 6.1). She decided to investigate this instrument,
and her exploration culminated in her final project, “A forgotten contrivance: A
study of the diagonal scale and its appearance in mathematics texts from 1714 to the

Fig. 6.1 A diagonal scale and a two-point compass, allowing measurements from one to 1/10 to
1/100 unit
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present.” She expanded it into a master’s thesis in mathematics, and an article with
the same title was published (Leifeste 2015).

6.5.2 Valeria Aguirre-Holguin, Interdisciplinary
Mathematics and Education Graduate Student

Book report: Stephen Pike’s 1811 The Teacher’s Assistant. She learned that
Abraham Lincoln (the 16th President of the United States) studied the book when
he was a teenager (Fig. 6.2). For her final project she investigated this and as a
result became co-author of a chapter in Ellerton and Clements (2014).

6.5.3 Lokendra Paudel, Mathematics Graduate Student

Book report: An introduction to algebra: Being the first part of a course of
mathematics: adapted to the method of instruction in the American Colleges by
Jeremiah Day (1823). Day’s preface states that he used as his sources Newton,
Maclaurin, Saunderson, Simpson, Euler, Emerson, Lacroix, and others. Mr. Paudel
matched parts of his text to selections from algebra books by some of these authors,
and to some others (see Fig. 6.3 for an example). But in many cases, as was noted
by Cajori (1890), Day’s content is simplified. Mr. Paudel discussed the contents of
Day’s book and the matches he found, together with the content (especially defi-
nitions and axioms) that Day seems to have created on his own. He also discussed
why Day’s book made such a unique contribution to algebra in the 19th century
United States. His paper was accepted for presentation at the Joint Mathematics
Meetings in Seattle, WA in January 2016, but due to extenuating circumstances it
was not presented.

Fig. 6.2 Possible matches of
Lincoln’s copy book with
Steven Pike (1811)
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6.5.4 Crystal Montana

Crystal Montana, a master’s student in Curriculum and Instruction, reviewed
Warren Colburn’s 1825 First Lessons in Arithmetic on the Plan of Pestalozzi, for
her book report. She noticed the “plates” that he used in early editions of his book
and how clearly they were used to explain fractions (Figs. 6.4 and 6.5). Then, for
her project, she compared the book’s information on fractions to the material on
fractions in a 2012 Common Core State Standards mathematics text, GoMath! She
presented her project at the Joint Mathematics Meetings in Seattle, WA in January
2016.3

6.5.5 Jill Duke

Jill Duke, an engineer working at NASA (National Aeronautics and Space Agency)
who took the course because the title caught her eye, reviewed for her book report
Catharine Beecher’s Arithmetic Simplified (1832; Fig. 6.6), which is possibly the
first arithmetic text by a female author in the United States.

Ms. Duke’s final project was titled “Arithmetic Simplified (1832): The Story
Behind Catharine Beecher’s Most Unrecognized Work.” It delved into
Ms. Beecher’s life story and her motivations for writing the book. Her project was
presented at the Joint Mathematics Meetings in Seattle, WA in January 2016.4

Elements of Algebra: Nicholas 
Saunderson (1761)

160. What two numbers are those
whose sum is a and the sum of their
cubes b?
An example of the foregoing canon:
What two numbers are those whose sum
is 7 and the sum of their cubes 133?

Jeremiah Day (1823)

Prob. 8. What two numbers are those whose sum is 6 
and the sum of their cubes 72?

Ans 2 and 4

Elements of Algebra:

Silvestre Francois Laçroix (1818)

Let there be the general equation

xm + Axm-1 + Bxm-2 + Cxm-3…+Tx + U = 0

Jeremiah Day (1823)

Fig. 6.3 Possible matches of Day’s 1823 Algebra with Saunderson (1761) and Laçroix (1818)

3The abstract is at http://jointmathematicsmeetings.org/amsmtgs/2181_abstracts/1116-c1-1172.pdf.
Accessed August 7, 2017.
4The abstract may be found at http://jointmathematicsmeetings.org/amsmtgs/2181_abstracts/1116-
d1-1287.pdf. Accessed August 7, 2017.
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6.5.6 Meredith Anderson

Meredith Anderson, a doctoral student in mathematics (now an assistant professor
of mathematics at a university in Colorado), reviewed The Public School Euclid &
Algebra (1897; Fig. 6.7), a book authorized for use in the Public Schools of

Fig. 6.4 Colburn’s First
Lessons in Arithmetic (1825)

Fig. 6.5 One of Colburn’s
plates
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Fig. 6.6 Beecher’s
Arithmetic Simplified (1833).
It was prepared for, among
others, female seminaries. In
an 1835 version, her name on
the title page was changed to
“An experienced teacher”,
presumably to hide her gender

Fig. 6.7 Public School
Euclid and Algebra, a
Canadian text
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Ontario. She then found the book Euclid and his Modern Rivals (first edition 1879)
by Charles Dodgson (also known as (AKA) Lewis Carroll, who wrote Alice in
Wonderland and Through the Looking Glass). It is a rousing and humorous defense
of using Euclid’s Elements as the main geometry textbook in schools. Her final
project was titled “How Charles Dodgson AKA Lewis Carroll Would Evaluate a
19th century Canadian Geometry Text.” She revised her paper and gave it the title
“The Trend Away from Euclid: A Glimpse Through the Looking Glass” and dis-
cussed how it was that Dodgson lost the battle, and the teaching of geometry in
schools was forever changed. She presented her paper at MathFest in Columbus,
OH in August 2016.5

6.5.7 Ishraq Al-Awamleh

Ishraq Al-Awamleh, a first-year mathematics graduate student from Jordan, dis-
covered on the internet a 1402 manuscript in Arabic, with a 58-line poem, Al Mkni
fi’l-jabr wa’l-muqābala, (Exposition of Algebraic Operations), by Ibn Al-Ha’im
(Figs. 6.8 and 6.9). It is a poetic abstraction of the algebraic rules of that time, based
on the six canonical forms of al-Khwãrizmî. It had never before been translated into
English. She translated part of it for the mini-conference in May 2016, and she
presented part of the poem in translation with commentary at MathFest in
Columbus, OH in August 2016.6 Ms. Al-Awamle continued an extra semester in an

Fig. 6.8 First part of 1402
poem in Arabic, Al Mkni
fi’l-jabr wa’l-muqābala

5Abstract located at http://www.maa.org/sites/default/files/pdf/mathfest/info/MF2016AbstractBook_
0.pdf. Accessed August 7, 2017.
6Abstract available at http://www.maa.org/sites/default/files/pdf/mathfest/info/MF2016AbstractBook_
0.pdf. Accessed August 7, 2017.
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independent study course, working on the poem, and she presented a complete
English translation at MathFest in Chicago, IL in July 1017.7

6.5.8 A Closer Look into the Project by Jill Duke (Project 5
Above), Titled Arithmetic Simplified (1832):
The Story Behind Catharine Beecher’s Most
Unrecognized Work

Each project has its own unique backstory. To give the reader at least an idea about
what actually goes into its preparation, we describe in more detail the project on
Catharine Beecher and her book.8

The author, Jill Duke, first reviewed Catharine Beecher’s 1832 book, using an
original copy from the instructor’s collection and an electronic copy easily available
from Google Books. In her report she described the book’s contents and gave a
brief biography of Ms. Beecher (1800–1878), noting that, as far as Ms. Duke could
find, Ms. Beecher’s book might be the first arithmetic book written by a woman in
the United States.

For her project, Ms. Duke decided to pursue Ms. Beecher’s background, espe-
cially in mathematics, and how she came to write an arithmetic book.

Fig. 6.9 Second part of the
poem

7Abstract at https://www.maa.org/sites/default/files/pdf/mathfest/2017/AbstractBookFINAL.pdf.
Accessed August 26, 2017.
8For more information about her project, the answers to the questions above, and her PowerPoint
presentation, Ms. Duke can be reached at jrduke@nmsu.edu.
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Below we give a brief outline of some of the questions and issues that Ms. Duke
addressed and answered about Catharine Beecher.

She found that she was the sister of Harriet Beecher Stowe, who wrote the
anti-slavery novel, Uncle Tom’s Cabin. In fact, at age 22 Ms. Beecher was engaged
to marry a professor at Yale University, but he died in a shipwreck before the
wedding. She decided she would need to care for herself and become educated,9

and help other women to do so as well, which is how she decided to write an
arithmetic book, and why was it used in female seminaries (which she founded). In
connection with what mathematics did she learn, Ms. Duke found in Beecher’s
memoirs that she studied Nathan Daboll, Jeremiah Day, a little logic, and some
geometry.

Moreover, Ms. Duke explored further issues related to Ms. Beecher, who lived
until 1878: What really motivated her to learn mathematics and with whom did she
study? Was the content of her book original, or did she copy much of it from
others? Why there were three different editions of her book, and why, in the 1835
edition, was her name on the title page changed to “AN EXPERIENCED
TEACHER”? What pedagogy was in her book? What was her philosophy of
education, and especially of the education of women? And more generally, what
was her life story after the publication of her arithmetic books?

Ms. Duke cited some of Ms. Beecher’s many writings, such as textbooks, advice
books, pamphlets, newspaper articles and essays, as well as information by others
such as Burstyn (1947).

6.6 Students’ Statements About What They Will Do Next
with Their Projects

Students have commented on the anonymous questionnaires completed at the end
of the course about the “next steps” they will take with their final projects. A sample
from these comments are:

• I am very interested in developing a full-blown argument and paper in this field.
• I would very much like to submit my project to a conference, though I will have

quite a bit of work to do on it first.
• I think my project can definitely be expanded. The time spent in class is a great

starting point for me to take this research further.

9The following is a characteristic quote from Ms. Duke’s presentation: “In 1870 at age 70,
Catharine enrolled in a course at Cornell University. She was told that Cornell had no courses open
to women. She replied, ‘Oh that is quite all right…, in fact I prefer to take it with men’. When
offered to have a suitable place found for her to stay while attending the university, she announced
that a room in one of the dormitories would be satisfactory. She said of the exclusively male
residence, ‘…and as for those young men, who are of appropriate age to be my grandsons, they
will not trouble me in the least’.”
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• I was really challenged in this class, and I succeeded in making a project that I
am proud of. I never thought I could do it!

• The only thing that might prevent me from presenting at a conference [besides
getting my paper accepted] is enough financial resources to attend a conference.

• I do not have the time now to attend a conference because I just started in my
job. Probably I can submit an expanded version of it, especially if I am able to
find more information.

Several students indicated that the course should be two semesters long, so that
they could develop their projects more fully.

6.7 Adjustments We Have Made to Try to Improve
the Course

The course continues to evolve (the course was offered most recently in Spring
2017).10 As a result, we continue to make adjustments, such as:

a. Adapt the readings and reading questions to students who are currently taking
the course, their choices of books for their book reports, their projects and their
interests. We have had book reports and projects involving materials in not just
English, but Latin, Greek, Hindi, Sanskrit, Nepali, Chinese, German, Italian,
Spanish, Arabic, Cherokee (a Native American language) and Chamarro (the
native language of Guam).

b. Guide students in how to do a book report. Meet with them outside of class if
they need help.

c. Help students learn to use InterLibrary Loan (ILL), Google Scholar and JStor
(online database for journal articles), and other internet resources such as
multilingual dictionaries.

d. Book reports and projects are accompanied by slides in PowerPoint, and this
software is new for some students. Offer instruction outside of class in making
simple PowerPoint presentations.

e. Provide a great deal of assistance with projects. Require an out of class meeting
at least once a week with the instructor to discuss where individual students are
in the project process.

f. Invite others who previously took the class to present their book reports and
their projects (this is especially helpful and was mentioned as a high point by
several on course evaluations).

g. Require that students present their draft projects in class, for others to critique
and question.

10More information about the course can be found at https://www.math.nmsu.edu/
*breakingaway/Syllabus_562. Accessed August 7, 2017.
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h. Have at least one run-through of the entire mini-conference beforehand, using
both a timer and laser pointer.

i. If a student wishes to go further with his/her project after the class is over, offer
independent study to continue the work; for example, to prepare an article for
submission, if the student desires it.

6.8 Final Remarks

In this course we gave each student a chance to do his/her own individual research.
Students were given help from the instructor and from other students, but each
student was fully responsible for his/her project, and took credit for its success or
blame for its failure.

Students have found it very difficult to prepare and present a final presentation.
The student must practice his/her talk many times: alone, in front of the instructor,
and in front of the class, revising it as needed. The last few weeks are typically
devoted to students’ practicing and refining their presentations. During practice
sessions, class members are urged to ask questions, and the speaker needs to learn
how to handle them. Keeping the talk within a strict time limit, typically 15 min, is
essential; students have usually never had to operate with such a constraint. They
have also rarely before had to stand in front of an audience and give a profes-
sionally acceptable talk; this is often their first such experience. Based on comments
on course evaluations, students indicate that they gain considerable confidence by
organizing and presenting such a talk.

Completing a project is not a requirement for passing the course, but it is a
requirement for receiving a course grade of “A”. The number of successful com-
pletions of projects surprised us (all but about 10 of over 80 students). In com-
parison to other graduate courses in mathematics, this course is usually not
mathematically difficult, but it is very time consuming and requires sustained effort
through the whole semester. Such effort is possible only when students are truly
interested in the topic they investigate.

It is clear why a student interested in mathematics education may want to take
such a course. However, why students working toward a Ph.D. in pure mathematics
might want to take such a time-consuming course requires some explanation. The
content of most of the Ph.D. dissertations in pure mathematics is so specialized that
it is inaccessible not only to students, but also to colleagues working in the same
department. However, historical research in mathematics education is accessible
and interesting for the whole mathematical community. After the course is com-
pleted, students have a presentation that they can modify or give at a moment’s
notice, for example, at a job interview or to those with less specialized mathematical
backgrounds. Several students indicated on course evaluations that they thought,
with some work, they could teach a course in the history of mathematics education.
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In this course, students do research under supervision. They do not create new
mathematics. Their investigation produces the answer(s) to some question, and the
answer(s) was/were not known before. During the period of the course they for-
mulate a (small) question related to the history of mathematics or mathematics
education as used in society. They present it in a format that would be of high
enough quality to be accepted to a national conference, and that would be under-
standable to anyone interested in mathematics education.

Appendix

Below is the anonymous questionnaire given at the end of the course. It is not
meant as a course evaluation, but it addresses some specific parts of the course and
what changes the students see as desirable.

Anonymous questionnaire for Math 562: History and Theories of
Mathematics Education

1. Please comment on the readings that were handed out. You could address
some of these questions:
Do you think they were appropriate? Do you think having reading
questions to answer about them was worthwhile? How could we arrange
the class so that there would be more time for discussing them? (One
possibility would be to make this course two semesters long.) Are there
any topics that you wish we would have had readings about that we
missed?

2. Do you think that you will carry through on your project and submit it to a
conference? Why or why not? Do you think you will take it farther, e.g.
perhaps submit an expanded version of it to a journal?

3. Comment about the book reports. Do you think they were worthwhile?
4. Did you find project presentations by former students useful or helpful?

Please comment!
5. Any additional comments are welcome.
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Chapter 7
Algebra Without Context Is Empty,
Visualizations Without Concepts
Are Blind

Rainer Kaenders and Ysette Weiss

Abstract In the acquisition and formalization of mathematical concepts, the
transition between algebraic and geometric representations and the use of different
modes of representation contextualizes abstract algebra. Regrettably, the role of
geometry is often limited to the visualization of algebraic facts and figurative
memory aids. Such visualizations are blind for the underlying concepts, since
transitions between concepts in different representations assume the existence of
symbols, language, rules and operations in both systems. The history of mathe-
matics offers contexts to develop geometrical language and intuition in areas cur-
rently being taught in school in a purely algebraic fashion. The example of the
determination of zeros of polynomials shows how reflecting on posing a problem in
ancient Greek mathematics, engineering mathematics (19th century) and paper
folding (beginning of the 20th century) can help to develop geometrical concepts,
language and intuition stemming from an algebraic context.

Keywords Engineering �Greek mathematics �Algebraic/geometric representations
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7.1 Introduction

Concept development in high school mathematics—in particular A-level subjects in
many countries—is characterized by predominant algebraization. Definitions and
formulas are often introduced according to the Rule of Three (Regula de Tri) of
mathematics education: That is what it is called; that is how it goes; that is how it is
(Jahnke 2012; authors’ translation). The derivation of formulas is carried out, if at
all, by rearranging algebraic terms and solving equations. The high degree of
abstraction and technical complexity of algebraic symbolic language gives students
few opportunities to question the underlying rules, to introduce their own situated
notations and notions reflecting an individual understanding of a problem and its
context, or to develop their own mathematical questions.

It seems that, in the modern teaching of mathematics, the training of pattern
detection of types of problems and the matching of a type to its solution scheme
increasingly dominates. Linear systems of equations, the application of the solution
formula for quadratic equations, or the calculation of extreme values of a function
using derivatives are just such trained solution schemes.

Because elementary geometry does not allow for such reductions to algorithmic
solution schemes, we regard geometrical contexts as a means to teach abstract
modern concepts without hindering autonomous thinking and experimental dis-
covery. For this, we need geometrical concepts, which can lead to variants of
typical algebraic and analytic school subjects. A brief glance at the presentation of
such subject in school mathematics textbooks seems to indicate no need to add
more geometry: they are full of images and visualizations. One can hardly find
problems without seeing corresponding sketches of function graphs or vectors as
arrows in Cartesian coordinates.

However, do these pictures allow us to see geometrical concept development?
Are visualizations geometrical symbols? In most cases the answer is no. Even in
some geometric proofs, visualizations are only figurative presentations of algebraic
structures, because of the identification of length, angles and areas with numbers
and reasoning in the language of term manipulations related to algebraic and
arithmetical objects and operations. In these approaches, the development of a
geometrical symbolic language that formalizes geometrical operations among
geometrical objects is hardly found. In particular, for the calculation of extreme
values and zeros of polynomial functions in senior classes, the geometrical repre-
sentations serve only as visualizations and figurative notations of algebraic and
analytic structures; a geometrical concept development is lacking.

In this chapter, we use the history of mathematics as a tool (Jankvist 2009) to
contrast different geometrical concept developments and an algebraic approach. The
aforementioned difference between the visualizations of an algebraic object and its
geometrical concept development is illustrated by means of an example. We
introduce geometrical presentations to an algebraically formulated problem with the
help of four projects from four areas of mathematics that appeared within different
cultural traditions and contexts for concept development: algebra, ancient geometry,
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the engineering mathematics of the 19th century and geometrical constructions by
paper folding. These areas have different backgrounds and motivations for their
existence (mathematical engineering, investigative–problem orientated, mathemat-
ical structuring, etc.). Every project can be varied and adapted corresponding to the
available time, the existing knowledge, experiences and interests of the students—
be it in high school or university. The projects discussed in the next sections are:

1. The Horner scheme (Sect. 7.2)
2. Lill’s method and geometrical solutions of polynomial equations (Sect. 7.3)
3. The mean proportional and doubling the square and the cube in ancient Greek

mathematics (Sect. 7.4)
4. Solving quadratic and cubic equations by paper folding (Sect. 7.5).

The detailed algebraic presentation of the problem in the next section serves both
to familiarize the reader with the mathematical question and its elegant algebraic
solution, as well as to draw attention to definitions, descriptions, notions, and proofs
that are characteristic of the algebraic approach. The latter is important in order to
contrast the algebraic context with different geometrical contextualizations of the
problem in the projects discussed in the subsequent sections. We refer to materials
that have been used and further developed in several national and international
workshops for students in upper secondary school and in university education for
teachers, as well as in workshops for mathematics teachers.

7.2 Horner’s Scheme

The first project deals with a typical algebraic procedure. The starting point is a
polynomial

PðxÞ ¼ anxn þ an�1xn�1 þ � � � þ a1xþ a0

with real coefficients an; an�1; . . .; a1; a0 and an 6¼ 0. For this situation we intro-
duce the following computational scheme. Choose some real number x0. Write the
coefficients an; an�1; . . .; a1; a0 in a row, define bn to be an and write it in a row
below the first one such that some space between the rows remains. Then proceed
as follows. Write x0bn in the second column between the two first rows. Let bn�1 be
the sum of the numbers in the second column, i.e. bn�1 :¼ an�1 þ x0bn and write it
in the last row, second column. Now we go on like this. In the i.e. k-th column we
write x0bn�k�1 and add the two numbers in that column, i.e. bn�k�1 :¼
an�k�1 þ x0bn�k .
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an an�1 an�2 . . . a1 a0
# þ þ � � � þ þ

x0bn x0bn�1 . . . x0b2 x0b1
bn ¼ an bn�1 ¼ an�1 þ x0bn bn�2 ¼ an�2þ x0bn�1 . . . b1 ¼ a1 þ x0b2 b0 ¼ a0 þ x0b1

The algorithm is called Horner’s scheme after the British mathematician
William George Horner (1786–1837). Via some suitable examples, the students
conjecture that the number b0 is nothing but the value Pðx0Þ, which can alterna-
tively be computed by inserting x0 into the polynomial. Asking how many ele-
mentary operations (multiplication and addition) are needed to calculate the value
draws attention to the algebraic algorithmic structure of the problem. The first
challenge is to prove that b0 ¼ Pðx0Þ. The proof is done in a purely algebraic
fashion by skillful factoring.

As a next step, by means of many concrete suitable examples we discover the
special meaning of the row of numbers bn; bn�1; bn�2; bn�3; . . . ; b2; b1 where x0 is
a zero of the polynomial PðxÞ. It is the row of coefficients of the polynomial
Q xð Þ ¼ bnxn�1 þ bn�1xn�2 þ � � � þ b2xþ b1 with the unique property that
P xð Þ ¼ x� x0ð ÞQ xð Þ. The students prove this by expanding the polynomial
expression x� x0ð Þðbnxn�1 þ bn�1xn�2 þ � � � þ b2xþ b1Þ and comparing the result
coefficientwise with anxn þ an�1xn�1 þ � � � þ a1xþ a0.

With P xð Þ ¼ x� x0ð ÞQ xð Þ, we can express the derivative of P as
P0 xð Þ ¼ Q xð Þþ x� x0ð ÞQ0 xð Þ. Therefore, the derivative in x0 is justQ x0ð Þ. Since the
students already know how to evaluate P x0ð Þ from the numbers an; an�1; . . .; a1; a0,
they can do the same with Q x0ð Þ from the row bn; bn�1; . . .; b1.

The procedure and the methods applied are typical of school-level algebra: the
introduction of suitable notations and term transformations according to algebraic
rules like commutativity, associativity and distributivity. The students argue alge-
braically, and the proof is done purely symbolically.

At the end of the “algebra” workshop, a historical excursion is worthwhile since
we can see how algebraic language developed. For instance, Horner (1819) wrote
his methods with coefficients named a; b; c; d; e; g; . . ., which gives a clear limit in
expressing the nature of the recursion. The Chinese roots (Wang and Needham
1954) of Horner’s scheme would give even more insight into the early development
of algebra. In order to contrast algebraic language with geometrical concept
development we do not present the scheme in Horner’s notation (Horner 1819) but
in modern notation based on modern index usage and set theory.

In all our workshops, students managed to show that the calculations with
Horner’s scheme lead to the evaluation of a function’s value in a given point. The
algebraic formalization and the algebraic proof of the connection between Horner’s
scheme and the factorized polynomial and the derivative of the polynomial required
additional instructions depending on the mathematical skills and experiences of the
participants of the groups.
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7.3 Lill’s Method

In the realm of engineering mathematics, the former captain of the Austrian-
Hungarian Army (Genie-Akademie) Eduard Lill (1830–1900) invented, as engineer
of the Nordwestbahn, a method to geometrically compute polynomials (see
ÖBLBD 1971, p. 214ff for more biographical data). Nowadays it is known as the
method of Captain Lill (see Hull 2011; Kalman 2008; Klein 1897, p. 267; Lill 1867;
Anonyme 1868; Tabachnikov 2017). This provides the second historical excursion,
which sheds some light on the industrial revolution and how its engineers replaced
computations by drawings. In this workshop, we explain the method as a geo-
metrical algorithm via the example of a polynomial with only positive coefficients.
Consider the example 2x5 þ 6x4 þ 7x3 þ 5x2 þ 4xþ 1 ¼ 0. In order to show the
general nature of the method we denote the polynomial by

P xð Þ ¼ a5x
5 þ a4x

4 þ a3x
3 þ a2x

2 þ a1xþ a0 ¼ 0:

One can argue in an analogous way for polynomials of any degree. We draw a
polygonal line by first drawing a line segment of the length of the first coefficient
a5 ¼ 2. Then we turn left through 90° and draw a line segment of the length of the
second coefficient a4 ¼ 6. Then take a left turn through 90° at each vertex and draw
the next line segment of length a3 ¼ 7. Continue that way up to the last line
segment of length a0 ¼ 1 (see Fig. 7.1). By this procedure, we obtain a polygonal
line OP5P4P3P2P1P0.

Now we try to inscribe a polygonal line OQ4Q3Q2Q1Q0 with the same starting
point O and endpoint P0 and with five subsequently rectangular line segments (the
grey ones in Fig. 7.1). Each of the vertices should lie on a different line segment of
the initial polygonal line and we take a left turn through 90° at each vertex when we
run through this polygonal line from the start to the end. If we are able to find such a
polygonal line, then we consider t ¼ tanu, the slope of the first line segment. Then
we claim that x0 ¼ �t is a zero of the polynomial.

We demonstrate the idea of the proof in the concrete case of the considered
example of degree 5 with positive coefficients in terms of Fig. 7.1. The first
observation is the similarity of the right-angled triangles with the grey segments of
the new polygonal line as hypotenuses. The second observation is that if our
equation would be just a linear one, a0 þ a1x ¼ 0, the negative slope of the (only)
grey segment � tan a ¼ �a0=a1 would be the solution of the linear equation.

Now, back to the 5th degree equation. When a5 is the first short leg of the first
right-angled triangle, a smart choice to denote the second short leg is �ta5. Now we
express the first short leg of the second triangle by a4 � ta5 and the second leg by
t a4 � ta5ð Þ using the similarity of the triangles. By continuing this iteration pro-
cedure, we get
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a0 ¼ t a1 � t a2 � t a3 � t a4 � ta5ð Þð Þð Þð Þ or
a0 � t a1 � t a2 � t a3 � t a4 � ta5ð Þð Þð Þð Þ ¼ 0

Clearly x0 ¼ �t is a root of the polynomial P xð Þ ¼ a5x5 þ a4x4 þ a3x3 þ
a2x2 þ a1xþ a0.

At this stage, most of the participants of the workshop observed the analogy to
Horner’s scheme. In addition, the negative value of the root appears plausible from
the algebraic point of view because of the choice of positive coefficients.

By slightly modifying the above procedure to find a root x0 of a polynomial P xð Þ
of degree n, one can also get the value of P x1ð Þ for any value x1. For this, we choose

Fig. 7.1 Lill polygonal line of 2x5 þ 6x4 þ 7x3 þ 5x2 þ 4xþ 1 ¼ 0
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an angle a with x1 ¼ � tan a and draw a polygonal line OQ4Q3Q2Q1Q0 that starts
out in O with angle a (Fig. 7.2).

With c :¼ P x1ð Þ we know that x1 ¼ � tan a is a zero of the polynomial

P xð Þ � c ¼ a5x
5 þ a4x

4 þ a3x
3 þ a2x

2 þ a1xþða0 � cÞ

and therefore, the polygonal line OQn�1Qn�2 . . .Q1Q0 fits exactly in the Lill
polygon of P xð Þ � c: So our P x1ð Þ ¼ c appears as the difference between the
constant values of the polynomials P xð Þ and P xð Þ � c. In the diagram, we identify it
as the oriented distance between P0 and Q0 (i.e. P x1ð Þ has the same sign as the
constant term a0 if and only if Q0 lies strictly between P1 and P0).

Now let us try to find the geometrical interpretation of other studied applications
of Horner’s scheme for a general polynomial P xð Þ ¼ Pn

k¼0 akx
k of degree n. For

some real number x1, the polynomial division with remainder of P xð Þ by x� x1ð Þ
yields P xð Þ ¼ Q xð Þ x� x1ð Þþ c with c ¼ P x1ð Þ and we obtain for the derivative
P0 xð Þ ¼ Q0 xð Þ x� x1ð ÞþQ xð Þ. By inserting x1, we find P0 x1ð Þ ¼ Q x1ð Þ. But can we
find this polynomial P xð Þ back in the Lill polygon? Can we determine for an
arbitrary x1 the derivative P0 x1ð Þ ¼ Q x1ð Þ? The answer is astonishing.

When a is chosen such that x1 ¼ � tan a, we draw a Lill polygonal line
OQn�1Qn�2 . . .Q2Q1Q0 that starts out in O with angle a and ends somewhere on
the straight line corresponding to a0. Then this polygonal line can be interpreted as

Fig. 7.2 Geometrical determination of P x1ð Þ ¼ 2x51 þ 6x41 þ 7x31 þ 5x21 þ 4x1 þ 1 for an x1 2 R
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a Lill polygon of some polynomial ~Q xð Þ ¼ Pn
k¼0

~bkxk itself. We claim that this
polynomial is in fact our polynomial Q xð Þ up to a positive factor bigger than one.

To show this, we denote the coefficients of Q xð Þ by b0; . . .; bn�1, i.e.
Q xð Þ ¼ Pn�1

k¼0 bkx
k. From Horner’s scheme we know that an ¼ bn�1 and ak ¼

bk�1 � tbk for k ¼ 1; . . .; n� 1. In our polygon, we find the bk as the first short leg
of the right-angled triangles lying on the lines segment of ak (Fig. 7.3).

Using once more the similarity of the triangles and that cos a ¼ bk
�
~bk, or the

Pythagorean Theorem, we get ~bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x21

p
� bk; or, in other words, we obtain

~Q xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x21

p
� Q xð Þ.

Now it remains to identify P0 x1ð Þ ¼ Q x1ð Þ in the Lill picture. Since ~Q xð Þ is
already represented by a Lill polygon and since we know how to use such a Lill
polygon to evaluate a function, we can easily identify ~Q x1ð Þ. For this, we draw a
Lill polygon ORn�1Rn�2 . . .R2R1R0 into OQn�1Qn�2 . . .Q1Q0 that starts out in
O with angle a (with respect to OQn�1) and ends somewhere on the straight line
corresponding to Q1Q0 (see Fig. 7.4). Then the oriented distance R0Q0 is ~Q x1ð Þ. Let
L be the pedal point of R0 onto P2P1. Again, by similarity, we see that R0Q0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi

1þ x21
p

� LP1 and therefore, the oriented (in the sense explained above) distance

LP1 is the value ~Q x1ð Þ
. ffiffiffiffiffiffiffiffiffiffiffiffi

1þ x21
p

¼ P0 x1ð Þ for which we are looking.

Fig. 7.3 Finding the coefficients of Q xð Þ ¼ Pn�1
k¼0 bkx

k in the Lill polygon
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The method even works for polynomials with negative and with vanishing
coefficients. Here we first need a rule of thumb to be able to draw our generalized
polygon lines. For this we start out with a general polynomial

P xð Þ ¼ anxn þ � � � þ a4x4 þ a3x3 þ a2x2 þ a1xþ a0 ¼ 0

Now, starting in a horizontal direction, we draw our starting polygonal line with
oriented segments to the right when all coefficients ak are positive, like the spiral in
Fig. 7.5. When one of the coefficients ak is negative, we look at the spiral and draw
a respective oriented line segment in the oriented polygonal line in just the opposite
direction. Therefore, the direction of the k-th line segments is independent of the
direction of neighboring line segments.

Fig. 7.4 Computation (for n ¼ 6) of the derivative with Lill polygon as P0 x1ð Þ ¼ LP1
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Let us view an example. We consider a polynomial equation of degree 4 of the
form

P xð Þ ¼ a4x4 � a3x3 � a2x2 � a1xþ a0 ¼ 0;

with coefficients a4; a3; a2; a1; a0 � 0. We draw our spiral and apply our rule of
thumb to find the directions in which we have to find our polygonal line (Fig. 7.6).

A polygonal line that will lead to the solution can also start with a negative ratio
�t, i.e. we do not turn from O to the left, but to the right. Thus, we proceed as
follows. When we come from the line that carries ak , we look for the line that is
formed by akþ 1 (Fig. 7.7).

Fig. 7.5 Spiral as a rule of thumb

Fig. 7.6 Rule of thumb for P xð Þ ¼ a4x4 � a3x3 � a2x2 � a1xþ a0 ¼ 0
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If we do so, we end up with a0 ¼ �t a1 � t a2 � t a3 þ ta4ð Þð Þð Þ. Again, we set
x0 ¼ �t and get the equation a0 ¼ x0 a1 þ x0 a2 þ x0 a3 � x0a4ð Þð Þð Þ or likewise

P xð Þ ¼ a4x
4
0 � a3x

3
0 � a2x

2
0 � a1x0 þ a0 ¼ 0:

Before we considered vanishing coefficients, we looked with the students at still
another example and considered a polynomial equation of degree 6 of the form

P xð Þ ¼ a6x
6
0 � a5x

5
0 þ a4x

4
0 � a3x

3
0 � a2x

2
0 þ a1x0 þ a0 ¼ 0

where the numbers a6; a5; a4; a3; a2; a1 and a0 are all positive. The corresponding
polygonal line can be found in an analogous way, as we see in Fig. 7.8.

The method works even for vanishing coefficients. For a coefficient ak ¼ 0, we
imagine a line segment of length zero lying on a straight line orthogonal to the
straight line corresponding to the coefficient ak�1, which might be zero, too. Thus,
in the Lill polygon OPnPn�1 . . .P3P2P1P0, it is possible that consecutive points
coincide. However, the first line segment OPn is not just a point since the

Fig. 7.7 A more general equation of degree 4 and an attempt to find a solution
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polynomial is supposed to be of degree n. To any subsequent pair PkPk�1 for
k ¼ n; n� 1; . . .; 2; 1, corresponds a straight line through Pk�1 that is orthogonal to
the respective straight line that corresponds to Pkþ 1Pk, where we set Pnþ 1 ¼ O.
This gives a recursive procedure to associate a straight line to any PkPk�1, which
we (by abuse of language) also denote by PkPk�1.

For instance, the equations xk � a ¼ 0 for any positive number a, and in par-
ticular the quadratic and cubic equations, can be solved that way. This approach
gives precisely the same constructions and figurative presentations for the n-th roots
of a as the ancients used by employing mean proportionals.

In this method, we reason mostly geometrically. The pictures in the Lill method
are not just visualizations of Horner’s scheme. We create and manipulate these
pictures without explicit recourse to algebra or arithmetic. The method is not
restricted to these pictures; for instance, one can also vary the angles (Fig. 7.9).

After some examples, the participants of the workshops varied polygonal lines
without referring to algebraic equations and searched for conditions, which allow
finding inscribed polygonal lines in geometrical terms. For quadratic equations,
they constructed the inscribed polygonal line, i.e. its real solutions using Thales’
theorem.

Fig. 7.8 A more general equation of degree 6 and an attempt to find a solution
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Fig. 7.9 The Lill polygonal lines are not restricted to polygonal lines with right angles
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7.4 Mean Proportionals

In the third workshop, we also employ historical excursions. Additionally, we
repeat topics from the school curriculum for 14/15-year-old students—such as the
Height on Hypotenuse Theorem. First, we study how algebraic operations can be
constructed geometrically (Courant and Robbins 1941, p. 120ff). In order to
introduce geometrical notions and notations, the students develop geometrical
versions of addition, subtraction, multiplication and division. In doing so we
emphasize that the latter constructions rely on the choice of a unit length. This
excursion goes back to the 17th century, especially to Fermat and Descartes.

Then we go even further back in history. The ancients [e.g. Euclid: Elements,
Book VI, §8; Book II, §14 (implicitly)] already knew that if in a right triangle ABC
the height from the vertex of the right angle is drawn, a little miracle occurs. All of a
sudden, three similar triangles are formed; AHC, CHB and ABC (Fig. 7.10); with
the height h being the mean proportional of u and v.

This leads us to the ratios u=h ¼ h=v, which enables us to geometrically con-
struct square roots of a line segment of lengths u, when we choose v to be 1. We can
iterate the method of finding mean proportionals in two ways, as indicated in
Fig. 7.11. These methods can explicitly be found in connection with the duplication
of the cube.

By both constructions, we find mean proportionals of order two h1; h2, i.e.
u=h1 ¼ h1=h2 ¼ h2=v or v ¼ h31

�
u2. When we choose u ¼ 1 and v ¼ a then h1 is

the third root of a line segment of length a. Conversely, with u ¼ a and v ¼ 1 we
find h2 to be the third root of a line segment of length a. The construction to the left
in Fig. 7.11 is due to Plato (Herrmann 1927, p. 43ff).

The construction to the right in Fig. 7.11 is ascribed to Eratosthenes in con-
nection with his mesolabium (Burton 2011, pp. 184–185), which is sketched in
Fig. 7.12. There we consider three congruent rectangular triangles D1 ¼ A1B1C1, as
well as D2 ¼ A2B2C2 and D3 ¼ A3B3C3, where for i ¼ 1; 2; 3 the hypotenuses ci
and the short sides ai and bi are such that the sides ai; bi; ci of Di are oriented
counterclockwise and that the three short sides bi are always lying on a fixed line g.

Now we slide the triangles D1;D2;D3 along this line g, such that the three
intersection points A1 (the common vertex of c1 and b1), F (the intersection point of
a1 with c2), and G (the intersection point of a2 with c3), are all lying on a common

Fig. 7.10 Construction of an altitude in a right triangle
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line h. Denote by h1 the distance between F and B1 (the common vertex of c1 and
a1) and let h2 be the distance between G and B2 (the common vertex of c2 and a2)
(see Fig. 7.12). If u is the distance from A1 to B0, and v the distance from H (the
intersection point of a3 with h) and B3 (the common vertex of a3 and c3), then, by
the similarity of the three trapezia B0B1FA1, B1B2GF and B2B3HG, it follows that:

u=h1 ¼ h1=h2 ¼ h2=v

and h1 ¼
ffiffiffiffiffiffiffi
vu23

p
. Starting with u ¼ 1 and v ¼ a we can reverse the construction and

find h1 to be the third root of a. There is also a mesolabium of Descartes (1954,
p. 46), whose principle is similar to the Eratosthenes’ mesolabium, but which will
not be discussed here.

Fig. 7.11 Mean proportionals of order two following Plato (left) or Eratosthenes (right)

Fig. 7.12 Mesolabium of Eratosthenes
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The mesolabium and Plato’s construction give rise to the invention of drawing
and construction devices for getting roots of line segments geometrically. Knowing
the basic geometrical constructions, such devices can be invented by the students
themselves.

The construction of mean proportionals of order two or higher cannot be
accomplished by straightedge and compass anymore, as was shown by Pierre
Laurent Wantzel in 1837 (see Courant and Robbins 1941, p. 134ff). However,
geometrical language does not have the expressive power (cf. Kvasz 2000, p. 11ff)
to find this result by geometrical means. Here the geometric language is not a
visualization of the algebraic one, simply because in ancient times the latter did not
exist. We rely only on the notions of length and the ratio of line segments. This
workshop is related to topics from school mathematics, which are, according to the
German curriculum, taught to 14- and 15-year-old students. The participants of our
workshops knew from school that the height to the hypotenuse of a rectangular
triangle has the property of dividing this triangle into two smaller triangles, which
are both similar to the original one. However, they did not establish the connection
between Lill’s method for the equation x2 � a ¼ 0 and the construction of the
geometric mean before the third workshop.

7.4.1 Paper Folding Constructions

Another way to promote geometrical concepts and intuition are paper-folding
constructions, also called “origami” due to their origin in the Japanese culture going
back to the 6th century (Kasahara 2004). Paper folding construction as a mathe-
matical problem-solving approach is quite a modern development in mathematics,
as well as in mathematics education. Paper folding introduces new geometrically
meaningful objects and transformations. Generating a straight line by paper folding
is associated with the reflection of the (paper) plane leaving every point of the
crease line invariant. It allows hands-on experiences related to angles, triangles,
quadrilaterals, polygons, congruence and similarity from the perspective of sym-
metry. The first person to discover the full power of paper folding as a geometric
construction tool was Margharita Piazolla Beloch in the 1930s (Beloch 1936). The
principles of paper folding the so-called Huzita-Hatori axioms or Huzita-Justin
axioms describe the operations that can be made when folding a piece of paper as
mathematical operations. The six axioms were, as the names suggest, rediscovered
several times between 1986 and 1995. The idea that mathematics can be lost or
forgotten is for most of the students unusual and strange. In the mathematical theory
of paper folding, constructions are made by sequences of basic moves, which can
be classified by enumerating all the allowed ways of folding: a single straight crease
line can be made by aligning given points or lines to other points or lines already
made on the paper (Hull 2011). For clarity, we use drawn lines and points for
images and pre-images of the reflections, crease lines are associated with symmetry
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axes of reflections. We give some of the basic moves M1 to M6. The first move M1
connects two given points by a fold that passes through both of them, i.e. the crease
line is the straight line defined by the two points.

The second move, M2, is the reflection of the plane folding a point P1 onto a
point P2; in other words, it is the construction of the symmetry axis of the line
segment P1P2. The third move M3 is the reflection of the plane leaving a given
point P and a given line g invariant (Fig. 7.13). These moves can also be made by
straightedge and compass. The students are asked to construct an equilateral tri-
angle and an angle bisector of two lines by folding. In contrast to straightedge and
compass constructions—where the notion of length and size dominates the
description and notations—the basic notion of folding constructions are reflections
and their invariant symmetry axes.

The next exercise is to fold a given point P to a given line g in different ways,
introducing the corresponding move M4. The result is the construction of the
envelope of a parabola defined by its focus P and its directrix g (see Fig. 7.14).

The pointwise construction of a parabola can also be made by straightedge and
compass. The students know parabolas as graphs of quadratic functions. The
appearance of the well-known shape in the context of square roots leads to ques-
tions related to the introduction of suitable Cartesian coordinates and the relation
between the locus and the graph and the construction of square roots by folding.

The fifth move M5 allows the construction of the square root shown in Fig. 7.15
(left) by paper folding: Move M2 defines the center P3 of P1P2 by folding P1 onto
P2. The move M5 is a fold that places P1 onto g and passes through P3 (Fig. 7.15,
right).

The next move M6 folds (if possible) two given points on two given lines. This
construction cannot be done by straightedge and compass. The well-defined
description of the move, the folding of the needed reflection and its pictorial and
symbolic presentation, as well as its composition with other moves, lead to a new,
more powerful geometric language related to transformations.

Fig. 7.13 The two basic folding moves
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In order to construct cubic roots we introduce Beloch’s square (Hull 2011,
p. 309) as a sequence of moves. This part of the workshop is led by guided
instruction. Squared paper is used for the folding construction of the cubic root of
two (Fig. 7.16).

Note that we also encounter here the same pictorial representations that we
previously discovered in the compass and straightedge context as well in the
context of polygonal lines.

Suitable secondary literature about paper folding as a mathematical method for
the students is Felix Klein’s short historical and mathematical outline of approaches
to the geometrical solutions of quadratic and cubic equations, including paper
folding (Klein 1897, p. 42), as well as his book, Elementary Mathematics from an
Advanced Standpoint—Geometry (Klein 1926; in the English edition: Klein 2016,
pp. 280–281), where he also discusses Lill’s method and quotes it as well known.

Fig. 7.14 Folding a parabola
as an envelope by move M4

138 R. Kaenders and Y. Weiss



F
ig
.
7.
15

C
on

st
ru
ct
in
g
an
d
fo
ld
in
g
th
e
sq
ua
re

ro
ot

of
a
po

si
tiv

e
nu

m
be
r
a,

by
m
ov

e
M
5

7 Algebra Without Context Is Empty, Visualizations … 139



Fig. 7.16 Constructing
ffiffiffi
23

p
by folding

7.5 Conclusion

In our project, we use history as a tool to foster mathematical understanding.
Treated as an algorithm, the algebraic setup is the easiest context for the students to
grasp (according to our experience in the workshops and seminars).

Nevertheless, it is also a context, which does not allow one to easily vary the
problem and to ask individual questions. This is due to the underlying theoretical
and abstract structure of the algebraic setup. In the algebraic context, appropriately
given variations are variations of the involved objects (numbers, degree, ring…)
and operations (addition, multiplication). The latter deal with algebraic structures,
which are visually unintuitive, however.

Canonical visualizations of the algebraic concept of values of polynomials and
their zeros in school would be presentations as a graph of the “polynomial func-
tion.” The geometrical operations for graphs known to the students are changes of
the coordinate system (e.g. rescaling of the axes, shift of the origin). The latter are
not visualizations of operations related to Horner’s scheme.

In our approach, the history of mathematics is used by the teacher as a source of
inspiration to prepare geometrical contextualizations, and as a form of discovery
learning by the students during and after the classroom project in their individual
work. For the latter, suitable secondary literature is an essential requirement. From our
experience, the students consider the algebraic and different geometrical contextu-
alizations to be the same idea, which can be interpreted differently. We are aware that
this is a Whiggish approach to history without historical methodology. Nevertheless,
our experience shows that the feeling of understanding such deeper interdependences
provides motivation to become seriously engaged in the history of mathematics. This
holds for both the teacher, as well as the students. In this way, the history of mathe-
matics becomes both the object of interest and the goal of the activity.

Participants in our workshops were able to pose independent research questions in
geometrical terms with geometrical meaning. For instance, they studied the folding
procedures of enveloping curves and searched for interpretations of binomial coef-
ficients or Pythagorean triples in the realm of Lill’s method. We interpret this as an
indication of their developing a geometrical language and perspective and the ability
to switch between algebraic and geometrical contexts.

140 R. Kaenders and Y. Weiss



Acknowledgements The authors thank Carl-Peter Fitting for alerting them to the method of
Captain Lill that turned out to be such a fruitful topic when using history to foster concept
development. They are grateful for the elaborate and constructive comments of the referees that
helped to improve this chapter considerably.

References

Anonyme. (d’après M. Lill). (1868). Résolution graphique des équations algébriques qui ont des
racines imaginaires. Nouvelles Annales de Mathématiques, 7(2), 363–367.

Beloch, M. P. (1936). Sul metodo del ripiegamento della carta per la risoluzione dei problemi
geometrici. Periodico di Mathematiche, 16(4), 104–108.

Burton, D. (2011). The history of mathematics: An introduction (7th ed.). New York:
McGraw-Hill.

Courant, R., & Robbins, H. (1941). What is mathematics? An elementary approach to ideas and
methods. London: Oxford University Press.

Descartes, R. (1954). The geometry of René Descartes (Second Book). Mineola, NY: Dover.
Herrmann, A. (1927). Das Delische Problem (Verdopplung des Würfels). Leibzig: B. G. Teubner.
Horner, W. G. (1819). A new method of solving numerical equations of all orders, by continuous

approximation. Philosophical Transactions of the Royal Society of London, 109, 308–335.
Hull, T. C. (2011). Solving cubics with creases: The work of Beloch and Lill. American

Mathematical Monthly, 118(4), 307–315.
Jahnke, T. (2012). Die Regeldetri des Mathematikunterrichts. In M. Ludwig & M. Kleine (Eds.),

Beiträge zum Mathematikunterricht, 46th meeting of the GDM (pp. 413–416). Münster: WTM.
Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics

education. Educational Studies in Mathematics, 71(3), 235–261.
Kalman, D. (2008). Uncommon mathematical excursions: Polynomia and related realms.

Washington, DC: The Mathematical Association of America.
Kasahara, K. (2004). The art and wonder of origami. Gloucester: Quarry Books.
Klein, F. (1897). Famous problems of elementary geometry: The duplication of the cube; the

trisection of an angle; the quadrature of the circle (W. W. Beman & D. E. Smith, Trans.).
Boston: Ginn & Co. (Authorized Translation of F. Klein’s Vorträge über Ausgewählte Fragen
der Elementargeometrie, ausgearbeitet Von F. Tägert.).

Klein, F. (1926). Elementarmathematik von höheren Standpunkte aus, II: Geometrie. Berlin:
Springer.

Klein, F. (2016). Elementary mathematics from an advanced standpoint: Vol. II Geometry
(G. Schubring, Trans.). Heidelberg: Springer.

Kvasz, L. (2000). Patterns of change—Linguistic innovations in the development of classical
mathematics. Basel: Birkhäuser.

Lill, E. (1867). Résolution graphique des équations numériques de tous les degrés à une seule
inconnue, et description d’un instrument inventé dans ce but. Nouvelles Annales de
Mathématiques, 6(2), 359–362.

Österreichisches Biographisches Lexikon und Biographische Dokumentation (ÖBLBD). (1971).
ÖBL 1815–1950 (Vol. 5). Wien: Verlag der Österreichischen Akademie der Wissenschaften
(Lieferung 23).

Tabachnikov, S. (2017). Polynomials as polygons. The Mathematical Intelligencer, 39(1), 41–43.
Wang, L., & Needham, J. (1954). Horner’s method in Chinese mathematics: Its origins in the

root-extraction procedures of the Han dynasty. T’oung Pao, International Journal of Chinese
Studies, 43(1), 345–401.

7 Algebra Without Context Is Empty, Visualizations … 141



Chapter 8
History of Mathematics in German
Mathematics Textbooks

Typology of Tasks

Sebastian Schorcht

Abstract Student textbooks and the tasks that they feature play a crucial role in
mathematical lessons (Hiebert et al. 2003). While there have been several inter-
national studies on the history of mathematics in textbooks (Lakoma 2000; Shen
et al. 2013; Smestad 2000a; Smestad 2000b; Smestad 2002; Xenofontos and
Papadopoulos 2015), a comparable German study has yet to be published. This
study analyzes and classifies one hundred and fifty-one tasks associated with the
history of mathematics in mathematics textbooks and groups each task into one of
four dimensions: “connection between the present and the past,” “evolution of
mathematics over time,” “people throughout mathematics history” and “the aims
and purposes of mathematics.” The results show five types of tasks: informative
present, acting present, informative past, acting past and personalization type.

Keywords History of mathematics � Typology construction � Textbooks
Mathematics education � General mathematics � General education

8.1 Introduction

The benefits of the history of mathematics and the role it plays within mathematics
education have been debated for more than two hundred years. Important persons
such as Lindner (1808), De Morgan (1865), Toeplitz (1927), Klein (1933),
Schubring (1978), Fauvel and van Maanen (2000), Sriraman (2012), and Matthews
(2014) have weighed in on this debate and their contributions are valuable in terms
of understanding the potential of the history of mathematics in mathematics edu-
cation and what it can accomplish. Some have offered that it might motivate the
student of mathematics (Lindner 1808) or provide real evidence that mathematics
has undergone an evolution (Jankvist 2009)—an evolution that has been greatly
influenced by diversity across mathematical cultures. The themes of these debates
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are also diverse, from the Mayans’ concept of numbers, to Al-Khwãrizmî’s al-jabr,
to the creation of measures—such as a cubit—by authorities. There is also an
acknowledgement that mankind has had an effect on the development of mathe-
matics and that mathematics has evolved into an intellectual tool (Jankvist 2009).
Jahnke and Habdank-Eichelsbacher (1999) offer a more mathematical focus in their
writings about mathematical languages. They believe the student learns more about
mathematical languages and has a better understanding of them when applying the
history of mathematics in mathematics education. As these scholars have shown,
there are diverse and varying opinions as to how to incorporate the history of
mathematics into the education of mathematics.

Defining qualitative and meaningful tasks about the history of mathematics in
mathematics education requires both historical and mathematical skills. Tasks about
the history of mathematics in mathematics education are “defined as a classroom
activity, the purpose of which is to focus the student’s attention on a particular
mathematical idea” (Stein et al. 1996) or a particular period in history. Defining
new and suitable tasks and providing examples presents a difficult challenge for the
teacher who needs advice about how to use the history of mathematics in mathe-
matics education, advice that has largely been lacking. As a consequence, there is a
reliance and dependence on suitable tasks that already exist.

Many references to the history of mathematics in mathematics education can be
found in professional teaching journals or collective volumes (Biegel et al. 2008;
Fauvel and van Maanen 2000; Jahnke and Habdank-Eichelsbacher 1999; Jahnke
et al. 1991, 1999, 2000, 2008; Winter et al. 1986). There is an abundance of
elaborate tasks to be found in thematic journals, while student textbooks also offer
examples of tasks within the history of mathematics; however, there has never been
a classification of the types of tasks found within German textbooks.

The tasks that appear in textbooks are primarily adopted in schools and have already
been referred to in international research. For example, Shen et al. (2013) studied
mathematical textbooks from China, Singapore, USA and France. Lakoma (2000)
researched Polish textbooks to describe how the history of mathematics can be used.
Smestad (2000a, b, 2002) analyzed tasks about the history ofmathematics and collected
themes used in Norwegians textbooks. Thomaidis and Tzanakis (2010) described
different kinds of tasks, from factual information to mathematical activity to historical
events, andXenofontos andPapadopoulos (2015) discovered tasks that inform students
about the history of mathematics, as well as tasks that call upon students to act.

However, there have been no such studies in Germany. This chapter attempts to
redress this by posing the following question of the History and Pedagogy of
Mathematics community (mentioned in the introduction of this book): To what extent
has the history of mathematics been integrated into mathematics education, and in
particular, what does the history of mathematics look like in German textbooks?
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8.2 Framework for Integrating the History
of Mathematics

This paper presents theories about using the history of mathematics in mathematics
education from a genetic view, a view by historical didactics and a view by general
education, or the ‘Allgemeinbildung’ of mathematics education. In a comprehen-
sive summary of the ideas for example from Toeplitz (1927), Jankvist (2009),
Heymann (1996), and Radbruch (1997) or Wille (2001) four possible dimensions
can be extrapolated to describe types of tasks:

(1) Connection between the present and the past (genetic explanation);
(2) Presentation of the evolution of mathematics over time (historicity);
(3) Historical people in mathematics history (identity); and
(4) Focus on the aims and the purpose of mathematics (orientation).

8.2.1 Genetic Explanation

The dimension of genetic explanation focuses on two attributes: linkage to the
present and remain in the past. The former refers to a linkage between historical
mathematical tasks and the present environment of the student; the latter refers to
tasks about the history of mathematics where the aforementioned linkage does not
exist. Table 8.1 presents all attributes associated with each of the four dimensions.

Hug (1985, p. 71), a researcher on history of education, distinguishes three
possible linkages. Firstly, former events describe the history of the present and

Table 8.1 Dimensions and attributes used for the study of tasks about history of mathematics in
mathematics textbooks

Dimension Attributes

Genetic explanation Linkage to the present

Remain in past times

Historicity Mathematics as product

Mathematics in evolution

Identity Personalization

Personification

Orientation Historical information

Mathematical information

Historical acting

Mathematical acting

Historical orientation

Mathematical orientation
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contain the conditions, causes and prerequisites of present circumstances. The
present relates back to former progress or decisions and both have an effect on the
present; as a consequence the present depends on its past and is based on former
traditions. The main aspect in this linkage is the evolution of traditions.

Secondly, history-based structures and events are models that help to explain a
modern situation. The example of history could be paradigmatic for a modern
situation. It allows a deeper understanding of this situation because there are hints
and explanations in the historical situation that help in the understanding of modern
problems or facts. The main aspect here is the explanation of a current situation.

Thirdly, different historical situations could be compared in the contrast or the
alternative, thereby demonstrating the salient facts and opening the student’s mind
to recognizing changeable facts in the present. Therefore, relativity and the com-
monality of situations are visible. The student might be able to assess present
situations by analyzing the relatives and the restrictions. The main aspect in Hug’s
third linkage is identification of the alternatives.

Rüsen (2001, p. 83) offers a sophisticated explanation for this linkage. In his
opinion, historical artifacts that occur in the past also occur in the present, but dif-
ferently. These artifacts could be a promise of what the future holds: a valuable
inheritance, or a fact onwhich hopes are pinned for changing circumstances. Teaching
the understanding of unfamiliar attitudes is the important role of this linkage.

The different nature of the past should not be interpreted as unprogressive
pre-history of the present, but rather offer the student the opportunity to assess and
reflect on present situations. These situations should provide an orientation and
meaning. Experiences with alterity in tasks are a consequence of contrasts and
alternatives to the present situation.

To summarize, the history of mathematics offers a historical, genetic view of
mathematics. Present mathematical activity affords a historical, genetic meaning
through a linkage to the past. If children were to understand current mathematics as a
product of evolution, they would need a linkage between a current mathematics and its
past. Linkages are prepared by genuine, historical views on particular topics and
therefore create accessions to history, for example, as in the case of the linkages byHug
(1985) or Rüsen (2001). People have questions about history. They want to explain
traditions or present situations as well as discover new alternatives. The origins of
historical studies are always based on questions from the point of view of the present
(Rüsen 2001; Bergmann 2008). Therefore, tasks about the history of mathematics in
mathematics textbooks can produce linkages between the present and the past and
answer actual questions posed by the student. Tasks without linkages are collections of
anecdotes and the history of mathematics provides an avenue into mathematical topics.
Thus, tasks offer a linkage to the present or they remain in the past.
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8.2.2 Historicity

The dimension of historicity focuses on two attributes: mathematics as product and
mathematics in evolution. Mathematics is a product and a result of progress or
evolution. On the one hand, tasks about the history of mathematics can present an
evolution of mathematics, while on the other hand, tasks support the perception of
mathematics as a product. These two views are described below.

Jankvist (2009, pp. 21–26) compares two possible goals about the history of
mathematics in mathematics education: “history-as-a-tool” and “history-as-a-goal.”
History-as-a-tool refers to the knowledge about the inner issues of mathematics.
That is, knowledge about types of numbers, their interdependency and their car-
dinality. History-as-a-goal refers to the knowledge about the outer issues, such as
how mathematics evolves over time. Jankvist agrees with Hersh (1997) about the
concept of the inner issues and outer issues of mathematics. Similarly, Furinghetti
(2004, p. 2) writes there are two possible goals: (a) “History for reflecting on the
nature of mathematics as socio-cultural process” and (b) “History for constructing
mathematical objects.” The former contains the outer issues of mathematics where
the focus is on history-as-a-goal. The latter contains the inner issues and focuses on
history-as-a-tool.

History-as-a-goal centers on mathematics as a process in progress. If the focus is
on unfamiliar mathematical procedures, courses will discuss this mathematical
process. Tasks that lack focus on unfamiliar mathematics are restricted to current
mathematics, thus shifting the main focus to mathematics as a product. As a con-
sequence, progress is not in the discussion within mathematical learning; essen-
tially, mathematics has not been exposed to changes, but rather has been
“discovered” or “developed.” For example, theorems may be presented as a
product. They are “discovered” and integrated into mathematical concepts. In this
view, other historical aspects are neglected. Contemporary mathematics is pre-
sented as an advanced solution, a product without changes in the past, present and
hence the future.

The progress of mathematics is apparent if a view on changeable facts exists
(Jahnke et al. 2000, p. 292). Analyzing the progress within education presents the
advantages and disadvantages of mathematical actions. For example, algorithms for
addition have experienced diverse changes over time. By demonstrating these
changes, the student realizes the efficiency of contemporary procedures and
understands there is more than one approach to numerical addition.

To summarize, tasks about the history of mathematics in mathematics education
have to present the progress in mathematics and according to Jankvist (2009):
“[Mathematics] is a discipline that has undergone an evolution and not something
that has appeared out of thin air” (p. 22). The aim of research on history in
education is to ameliorate historical awareness for the student, while the goal of the
history of mathematics in education is to promote awareness of the historicity of
mathematics. In accordance with the point of view about historical awareness
expressed by the German researcher Schieder (1974, p. 78), we can say that being
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aware of the historicity of mathematics means the permanent awareness that
mathematics exists in time, and therefore has an origin and a future. Mathematics is
not unconditionally stable or static. Thus, tasks about the history of mathematics
present mathematics as a product or mathematics in evolution.

8.2.3 Identity

The dimension of identity focuses on two attributes: personalization and personi-
fication. Personalization represents prominent, historical figures (from now on
referred to as ‘celebrities’) who have played an important role in the history of
mathematics and include such personalities like Thales, Diophantus or Euler.
Personification represents trans-regional, ordinary individuals (from now on refer-
red to as ‘persons’) whose approach to mathematics is one akin to that of a man-
ufacturer, craftsman or merchant.

Presenting celebrities who have influenced mathematical development confers a
“human face” on mathematics (Jankvist 2009). Studies on the history of education,
including those of Bergmann (2008) and Sauer (2009), embrace similar concepts of
associating famous historical figures with mathematics. This teaching principle is
known as the personalization and personification of history. In the last century,
people who acted in history are celebrities of history (Sauer 2009, p. 85); whereas in
the present day, history of education juxtaposes the concept of historical celebrity
with the abstract concept of common day experience and attitude. Bergmann (2008,
p. 158) and Sauer (2009, pp. 85–88) argue for a balance between personalization
and personification. Personalization, means celebrities are the sole participants in
history and seemingly it is only those whose actions in the present influence what is
later viewed as history. The result, according to Sauer, is a servile spirit because
celebrities became a leitmotif for all people. In contrast, personification has the
objective of depersonalizing historical events. History should refer to a historical
living environment that compares favorably to that in which the present day student
exists. In this way, history refers to the student’s own living environment.
Furthermore, Bergmann (2008, p. 159) urgently insists on the balance between
personalization and personification. An imbalance between personification and
personalization leads to a unilateral representation of history.

Regarding tasks about the history of mathematics and personalization, these refer
to biographical information about important mathematicians. Epple (2000, p. 135)
writes about these kinds of tasks and ventures, stating that there is no canon of
topics, only preferences for teaching about some mathematicians while disregarding
others. This subjective assessment concerning topics can never be clarified for
education courses. Epple refers to Nietzsche (1874/2009, p. 27), who called this
type of history “monumentalistische […] Art der Historie,” or, a monumentalism
type of history, which according to Nietzsche lauds bygone celebrities while at the
same time criticizes present day celebrities. Even Nickel (2013, p. 260) criticizes
the history of biographies and refers to them as a “caricature.” He writes that
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mathematics would be performed by intellectual, unattainable giants whose
intimidating shadow allows no likelihood of one’s own mathematical activities. The
presumption is that one’s own mathematical activities are irrelevant compared to
the major discoveries of deceased mathematicians. Nickel (2013, p. 260) presents
mathematicians as “joviale Karikatur,” or jovial caricature, meaning that the dis-
coveries of mathematicians are analyzed within contemporary knowledge and
interpreted as a preliminary stage to present-day mathematics. This view is known
as “Whig” history (Fried 2001, p. 395). Opposing a monumentalism type of history,
as well as caricature and jovial caricature, requires personification, or rather, per-
sons and their tasks about the history of mathematics in mathematics education.
Therefore, the history of mathematics in mathematics education proves to the
student that not only celebrities influence mathematics, but also persons.

In summary, one of the objectives in the study of the history of mathematics is to
expose human influence on mathematics (Epple 2000; Jankvist 2009). The influence
of celebrities, or persons should be a topic associatedwith the tasks about the history of
mathematics, but the balance between these two types of representations is also
significant (Bergmann 2008, p. 159). Thus, tasks about the history of mathematics
present celebrities (personalization) as well as persons (personification).

8.2.4 Orientation

The dimension of orientation focuses on six attributes: historical information,
mathematical information, historical acting, mathematical acting, historical ori-
entation and mathematical orientation. Tasks about the history of mathematics can
provide information inciting students into action and introducing “orientational
knowledge.” This requires some explanation.

Available knowledge is knowledge; “I know that I don’t know,” Radbruch
(1997; author’s translation). Available knowledge can be remembered or trans-
ferred and is objective. Therefore, it describes mathematical acting, which Fischer
(2006, p. 86) concludes as the presentation, calculation and interpretation of
abstracts. Mathematical acting in tasks about the history of mathematics should
enrich possible presentations, stimulate mathematical calculations or practice
mathematical interpretations.

Orientational knowledge is knowledge; “I don’t know that I know” (Radbruch
1997; author’s translation). It is non-quantifiable and comprises experiences, dis-
positions and intuitions. Radbruch distinguishes available and orientational
knowledge as follows:

• “Life in awareness becomes accessible to reality by orientational knowledge,
and only in a small part by available knowledge.”

• Orientational knowledge fundamentally precedes every available knowledge in
time. In other words: every available knowledge has its conceptual roots in
orientational knowledge” (Radbruch 1997, p. 7; author’s translation).
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Thus it appears that orientational knowledge benefits in two possible situations.
Firstly, orientational knowledge precedes available knowledge. People first stimu-
late orientational knowledge through experiences and dispositions. Secondly, once
a person resolves a problem, they retain knowledge they can use in a similar
situation. Experiences become goods that can be transported to others. At the same
time, available knowledge loses its connection to orientational knowledge and is
independent from context.

There are two kinds of orientational knowledge: one based on discovery, and the
other based on experience. If a new way to generate energy in a factory is devel-
oped, this is an example of orientational knowledge through discovery. Experience
over many years is orientational knowledge through experience. The former occurs
as an event at a specific moment in time, whereas the latter occurs over a period of
time. The more experiences, the more visible are the boundaries and possibilities of
techniques. Both the progress of, and the social experiences with, available
knowledge severs the connection between available and orientational knowledge. In
the transfer of experiences and dispositions, available knowledge loses its con-
nection to context-dependent experiences and dispositions. The aim is to recon-
struct this moment of separation and in this context Radbruch states (1997, p. 7;
author’s translation): “It follows from there that every available knowledge is at its
greatest power when it is accompanied by orientational knowledge. Consequently,
everything shared and transferred, and everything taught about available knowl-
edge, has to be linked with orientational knowledge.”

Orientational knowledge in connectionwith available knowledge would be visible
by analyzing the progress from pre-scientific acts to transferable scientific descrip-
tions (Radbruch 1997, p. 8). The moment of separation is a historical moment. The
aims and the purposes of mathematical decisions and experiences with mathematics
can also be historical. Therefore, the point is that the progress of mathematics enriches
the teaching of available knowledge through its orientational knowledge.
Orientational knowledge refers to the source and origin of mathematical decisions.

To summarize, besides teaching available knowledge and presenting information
in tasks, the history of mathematics is supposed to initiate orientational knowledge in
order to provide insight into the aims and purposes ofmathematical acts and to initiate
a discussion inmathematics education about mathematical changes. Heymann (1996)
offers a similar meaning about the history of mathematics in mathematics education
when he writes about adapting existing culture and acting creatively within cultural
coherence. The aim of teaching orientational knowledge is to become aware about the
aims and the purposes of mathematics. In conclusion, tasks about the history of
mathematics can provide information such as historical information ormathematical
information, available knowledge such as historical acting or mathematical acting,
and orientational knowledge such as historical orientation or mathematical
orientation.

The eventual outcomes of the four dimensions are twelve attributes. They char-
acterize possible attributes to describe tasks about the history of mathematics. Those
tasks may, or may not, have a linkage between the present and the past. They could
present the evolution of mathematics, or present-day mathematics as a product. Tasks
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could also show how historical celebrities and/or persons inform the student about
history as well as mathematics, ask for available knowledge ofmathematics or history
and enrich that knowledge with orientational knowledge about mathematics or his-
tory. These attributes are included in those mentioned above.

This completes the discussion concerning the study’s attributes. The next section
concerns the study’s source material and how it was analyzed.

8.3 Method and Material of the Study

Classifying the tasks of the history of mathematics in German textbooks can be
determined through the Qualitative Content Analysis by Mayring (2008, pp. 89,
91), particularly the typological structuring of the foundations of the study pre-
sented. He advocates a systematic procedure in ten steps. In the first step, units of
analyses have to be extracted from the material. In the second step, possible
dimensions of the history of mathematics in mathematics education are determined.
In the third and fourth steps, Mayring proposes a determination of attributes by a
system of categories. In the fifth to seventh steps, the examples have to be described
and extracted by the researcher, which may result in changes to the attributes.
Attributes have to be adjusted to the object of the investigation. The list of attributes
given in Table 8.1 is the final list. The eighth step determines attribution by
extrema, theoretical interest and empirical frequency. Consequently, this study uses
the formal concept analysis developed by the mathematicians Ganter et al. (2005).
This method guarantees the mapping of multiple answers in a linear diagram, also
known as a Hasse diagram. The procedure matches all attributes, arranges all tasks
in an order using binary relations, and presents conceptual hierarchies graphically.
Types are extracted out of this ordered set of tasks and their attributes. Finally, the
ninth step determines prototypes, while the tenth step delivers an exact description
of these prototypes.

One hundred and fifty-one tasks appear in 41 German textbooks that constitute
12 series for students in the first through seventh grades. Examples of the history of
mathematics in these textbooks were sorted in this study using Jankvist’s approach
that integrates the history of mathematics (Jankvist 2009) with Rezat’s structure of
levels in German mathematics textbooks (Rezat 2009). These two views on tasks
are now explained as they offer the opportunity to extract tasks about the history of
mathematics from the textbooks that were analyzed.

Jankvist (2009, p. 26) describes three approaches to integrate the history of
mathematics: “illumination approaches,” “modules approaches” and “history-based
approaches.” Illumination approaches are succinct text such as names, biographical
information, and deeds or epilogues as narrative stories. The possibility of more
time to learn and to teach the history of mathematics in tasks is found in the
modules approaches (for example, in projects and exercises that are orientated in a
curriculum). According to Jankvist, these approaches range from two hours to a
school year or an academic year. History-based approaches use the history of
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mathematics to structure school courses and are not necessarily made explicit to the
student. Jankvist (2009, p. 256) is a researcher who wrote about approaches on how
to integrate the history of mathematics—approaches that can be followed in any
study of this nature. At the same time, he warns about unreflecting assumption
because characterization depends on the object of investigation (Jankvist 2009,
p. 20). Therefore, the characterization by Jankvist must be adapted for this study on
German tasks in mathematics textbooks. At this point, the study uses Rezat’s
structure of levels in German textbooks.

Textbooks have different structural levels. Rezat notes there are three levels in
German mathematic textbooks: the book level, the chapter level and the lesson level
(Rezat 2013, p. 661). These levels hold an essential place within the textbook as
they are similar to Jankvist’s illumination approaches and modules approaches.
Each level comprises several blocks. The chapter level is characterized by blocks
such as introductory pages, activities, lessons and topical pages. Learning the
blocks within the chapter level requires two or three teaching hours (Valverde et al.
2002, p. 139). In this way, lessons are similar to Jankvist’s modules approaches, or
in terms of Tzanakis et al. (2000, p. 214), they could be research projects based on
historical texts, worksheets or primary sources. By contrast, Jankvist’s illumination
approaches are found in the lesson level in which the blocks require up to one hour
to learn. Tzanakis et al. (2000, p. 214) refer to these blocks as historical snippets
and may include introductory tasks or activities, expositions, tasks and problems.

Tasks are extracted and identified in response to key questions where each
question assigns tasks to a specific block. For example, tasks are reasoned as
exercises if the response is in the affirmative to the key question “is there an explicit
call for action within the historic mathematical content?” Tasks about the history of
mathematics exist at all levels. This chapter and its study focus on the levels of
chapter and lesson and as such, books about the history of mathematics are not
addressed. The source material for the investigation is first through seventh grade
German mathematics textbooks wherein examples of the history of mathematics are
distinguished in blocks at the chapter and lesson levels. One hundred and fifty-one
tasks are classified through responses to key questions. Table 8.2 illustrates the
distribution of tasks associated with the history of mathematics and mathematics
textbooks across the school grades. The preponderance of tasks occurs in the fifth
grade because the subject of Roman numerals appears primarily in fifth grade
German mathematics textbooks. Each federal state in Germany determines its
educational requirements. Roman numerals are included in the curriculum of federal
states such as Saxony (Sächsisches Staatsministerium für Kultus 2004, p. 21), while
other states may adopt textbooks that include subjects similar to that of Roman
numerals.

Table 8.2 also illustrates the number of different textbooks that include tasks
about the history of mathematics. Five textbooks are from the primary school level
and seven textbooks are from the secondary school level. The grades taught at
German primary and secondary schools vary from state to state. Primary school
comprises the first four grades in some states, or the first six grades in others.
Secondary schools include up to the ninth grade in some states and up to the tenth
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grade in others. Therefore, the selection of the source material used as input to the
study are those used at primary schools and any transition grade into secondary
school, which is state dependent. All textbooks are used in schools and reflect a
progression of different themes, or have a fragmented content coverage (Valverde
et al. 2002, pp. 63–73). The selection of books depends on the diversity of sec-
ondary schools. Germany has three different schools at the secondary level with
different educational levels. Therefore, there are books from each of these three
different levels. Furthermore, the selection depends on the diversity of publishers in
Germany. There are books from the publishers Cornelsen, Duden, Ernst Klett,
Schroedel and Westermann. This diversity guarantees a broad analysis of school
textbooks. There is no textbook used in the source material that has specific content
on the History of Mathematics.

8.4 Analysis of Tasks About History of Mathematics

The tasks were classified in accordance with a set of key questions that are
answered either in the affirmative or negative and notated on a decision graph, or
flow chart. This process is based on Ott (2016), who used this type of analysis to
classify the quality of student representation. For example, if the answer to a
question belonging to the dimension of genetic explanation is affirmative, a linkage
to the present is notated on the chart; if the answer is in the negative, remain in the
past is notated. Once all tasks were notated on the chart, each task was evaluated
against the twelve attributes in Table 8.1 to determine which attributes exist for that
task. This combination of dimension, task and its apparent attributes is the basis for
the study’s formal concept analysis.

For example, Fig. 8.1 defines a task that informs the student about the history of
length measurement (Kliemann et al. 2006, p. 56; author’s translation):

Table 8.2 Distribution of tasks associated with the history of mathematics and mathematics
textbooks across scholastic grades

Grade Number of tasks about the history
of mathematics

Number of textbooks with tasks about the
history of mathematics

1st 4 1

2nd 2 1

3rd 8 4

4th 16 5

5th 68 7

6th 31 6

7th 22 7
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The meter unit of length dates back two hundred years. However, older units of length have
endured in many areas. Modern ICE trains run on tracks of 4 feet gauge and 8.5 inches
wide (1,435 mm), pilots fly airplanes at altitudes of 10,000 feet, ships travel in knots – a
sea mile is 1,852 meters per hour, and a car or bicycle’s wheel rim diameter is measured in
inches. These measurements, however, were not uniformly consistent and therefore the
length of one foot varied considerably - anywhere between 25 cm and 35 cm. A thousand
years ago, the unit of measure we know today as the foot was established by King Edgar:
36 barleycorns laid end to end. One foot – English: 1 foot averages 30.48 cm.

The decision graph supports the classification of this task within each of the four
dimensions. The first dimension of genetic explanation shows a linkage to the
present in the task because contemporary measurements occur as a historical
genetic consequence caused by the inaccuracy of ancient measurements. However,
these ancient units of measure are still studied by the student of today, where the
diameter of a bicycle wheel rim is measured in inches and an airplane’s altitude is
measured in feet. Therefore, the task includes mathematics in evolution within the
second dimension of historicity. Figure 8.1 illustrates how units of measure have
undergone change over a thousand years, as explained by Kliemann et al. above.
The third dimension of identity acknowledges King Edgar as a celebrity within the
history of mathematics because he is supposed to be the first person to define the
foot as a unit of length. Although there is a photograph in the task of people
producing a rod and a meter, the children in Fig. 8.1 are used simply as a means for

Fig. 8.1 Task of informative present type in Kliemann et al. (2006, p. 56). © Ernst Klett Verlag
GmbH
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creating the “foot” as a standardized unit for measuring length. They do not create
mathematics in the same way King Edgar is supposed to have invented the foot as a
unit of length measurement. Therefore, the task is an example of personalization
and not personification. The fourth dimension of orientation focuses on mathe-
matical and historical information, which are evident in the example above.
Kliemann et al.’s task merely provides information and does not call for any
mathematical or historical action. The possible aims and purposes of mathematics
are described in the sentence: “These measurements, however, were not uniformly
consistent and therefore the length of one foot varied considerably—anywhere
between 25 cm and 35 cm.” Thus, one objective of a mathematical measurement
was to create consistency as it applies to the unit of measure. The student had to
guess in respect to the purpose or objective of the measurement, as well as to
whether the measurement was consistent. However, people needed consistent
measurement for fair comparison and trade and measurements varied depending on
the city, principality and country. In conclusion, there is mathematical orientation.
Moreover, the task refers to historical artifacts in the present that lead to discussions
about history. Therefore, access to, or entrance into, the history of mathematics is
an authentic one and the task has historical orientation.

In summary, the task in Fig. 8.1 contains a linkage to the present, illustrates
mathematics in evolution, has personalization, and provides mathematical and
historical information as well as mathematical and historical orientation. This
specific combination is the basis for concept lattices by Ganter et al. (2005). The
formal concept consists of the set of tasks and the set of attributes. These two sets
are ordered by an incidence relation. Using the tools of formal concept analysis, the
study puts in subsets similar combinations of attributes. Every task within a subset
shares common combinations of attributes with other tasks within the subset. Out of
these subsets, the types are extracted as the supremum of a subset. In conclusion, a
type has a specific combination of attributes that characterize all tasks in this type.
Each task in a type can be different, but all have a certain, common combination.
The next section characterizes the types of tasks found in German mathematics
textbooks.

8.5 Research Results

The study establishes the following five types of historical mathematical tasks in
German textbooks for the student in grades one through seven:

1. informative present;
2. acting present;
3. informative past;
4. acting past; and
5. personalization type.
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These types classify the tasks discovered in the history of mathematics. Each
type is characterized by a prototype. There are always tasks in a type that possess an
additional attribute. Finally, all tasks in a type have a specific combination of
attributes. Table 8.3 illustrates each combination of attributes for each type.

Tasks about the history of mathematics that belong to the informative present
type are those tasks that inform the student about mathematics and build a linkage
to present-day mathematics, allowing the student to connect today’s mathematics
with its past. Out of the 151 tasks, 103 belong to this type and have a linkage to the
present and provide historical information such as that given in Fig. 8.1.

Tasks belonging to the acting present type (77 out of 151) contain linkages to
present and require independent mathematical acting by the student. All tasks of
this type comprise these two attributes such as the task in Fig. 8.2.

Figure 8.2 illustrates a call for action: “arrange by value” (Böttner et al. 2008,
p. 30; author’s translation). The student interprets the numerical symbols and
arranges them in accordance with their value. The symbols are Western Arabic and
Roman numerals. The Western Arabic numerals appear both in the decimal and
binary positional systems. By comparing the present mathematical acting, such as
the Western Arabic numerals, and the past mathematical acting such as the Roman

Table 8.3 Combination of attributes per type found in the tasks that were examined

Types of tasks Combination of attributes within all tasks of one type

Informative present type Linkage to the present

Historical information

Acting present type Linkage to the present

Mathematical acting

Informative past type Remain in the past

Historical information

Acting past type Remain in the past

Historical information

Mathematical acting

Personalization type Remain in the past

Personalization

Historical information

Fig. 8.2 Task of acting present type in Böttner et al. (2008, p. 30). © Ernst Klett Verlag GmbH
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numerals, the student must address alterity through the two different representa-
tions. This comparison results in an identification of alternatives and provides a
linkage to the present. Mathematics appears as a product because there is no explicit
reference to the evolution of numbers. This evolution is explained four pages before
and the task only refers to this page. Nevertheless, the tasks are analyzed separately
and Roman numerals occur only as a possibility of numerical symbols like those
that appear on church clocks and for page numbers in a preface. The task furthers
mathematics as a product. There are neither celebrities nor persons and this is why
personalization and personification do not occur in the task. There is no historical or
mathematical information that the student could use to translate into other number
systems. The call for action only affects mathematical acting, but historical acting is
missing because a call for historical interpretation of the original sources does not
exist. The same is true in the case of mathematical or historical orientation. The task
does not refer to the aims and the purposes of Roman or Western Arabic numerals
in the same way the task does not refer to an original source. Consequently, there is
a means to enter into historical discussions. This task symbolizes the acting present
type. Each task within this type is similar to the task in Fig. 8.2, but each task could
possess several of the attributes that appear in Table 8.3.

Tasks of the informative past type (38 out of 151) inform the student about the
history of mathematics without a linkage to present-day mathematics. All tasks of
this type remain in the past but require historical information.

Tasks of the acting past type (28 out of 151) direct students to independent
mathematical acting—but without a linkage to present-day mathematics. All tasks
of this type remain in the past, offer historical information and require mathematical
acting by the student.

Tasks of the personalization type (28 out of 151) only use personalization to
inform about the history of mathematics. All tasks of this type remain in the past,
prefer personalizations and possess historical information. For the most part, per-
sons are the focus of interest as is the case of the task that appears in Fig. 8.3.

Figure 8.3 provides biographical information about Sofia Kowalewskaja
(Wittmann and Müller 2011, p. 115; author’s translation):

Sofia Kowalewskaja was born in Moscow in 1850. Her parents and teacher recognized
Sofia’s mathematical talents at an early age. Since girls could not attend the university in
Russia, she went to Germany when she was 20 years old. However, there were also many
obstacles for women in Germany. Sofia did not allow herself to be discouraged and con-
tinued her struggle for equal rights. In 1884, she became the first female professor of
mathematics in Sweden.

After this informative section, there is a section that requires the student to act by
looking for biographical information. Three questions prompt the student into a
mathematical operation: “(a) How old was Sofia Kowalewskaja?”, “(b) At what age
did she become a professor?” and “(c) In which year did she move from Russia to
Germany?”

A connection between the present and the past does not exist. The task deals
with historical biographical information. The student has an opportunity to enrich
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their mind with a deeper awareness of mathematical concepts. A genetic-historical
understanding of present mathematical acts is not included in this task. Therefore,
an evolution of mathematics over time is not present in this task. One reason for this
is the lack of any linkage to the present; another is the missing mathematical
concept. The task does not deal with a mathematical concept and therefore an
evolution of mathematics cannot be illustrated.

In conclusion, the tasks remain in the past. In regard to the meaning of per-
sonalization in mathematics history, the task presents Sofia Kowalewskaja
(Fig. 8.3). She influenced mathematics because she was a researcher. Thus, the
operation within mathematics is an attribute of celebrities. This characteristic of
dimension identity is emblematic for tasks of the personalization type. The aims and
the purposes of mathematics do not exist in the task and the focus is on historical
information.

The types of tasks that are found within German mathematics textbooks can
serve as a tool to create new tasks systematically. Each type is classified by one or
more attributes. The types can be modified if these attributes are known. As tasks
have evolved naturally and culturally over time, the examples analyzed in the study
could be expanded to fit normative claims. Normative claims are extracted by the
four dimensions used in this study. Hence, tasks associated with the history of
mathematics in textbooks should question the student about present time, demon-
strate the evolution of mathematics through a perspective of change, present public
personalities of mathematics, as well as trans-regional, ordinary people who
influenced the evolution of mathematics and enrich the student’s knowledge with

Fig. 8.3 Task of the personalization type in Wittmann and Müller (2011, p. 115). © Ernst Klett
Verlag GmbH
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the aims and purposes of mathematics. This possibility to change tasks empowers
the teacher to adjust tasks for their lessons; the teacher can employ tasks about the
history of mathematics more often.

For example, the task in Fig. 8.1 has a linkage to the present, demonstrates the
evolution of mathematics over time and provides orientational knowledge. The task
has all the attributes associated with a good task should have. The only dimension
that changes is that of identity. In the top right corner of the task in Fig. 8.1, Köbel
(1536) draws an illustration of sixteen people placing their toes on the heels of the
person standing next to them. A study about Köbel extends the field of people who
create mathematics and as a consequence, the student learns about people and may
easily identify themselves with people of their socio-economic level. The task is
extended through the attribute of personalization. Hopefully, more historical tasks
will be used in school courses once teachers are able to change tasks if required—as
discussed in the example above.

8.6 Conclusion

While there have been international studies on tasks about the history of mathe-
matics, there has been a lack of research regarding tasks in German mathematics
textbooks. This study attempts to redress this imbalance and offers possibilities for
the teacher on how to transform tasks in mathematics textbooks.

The results of this study are similar to those of international studies. For
example, the study by Thomaidis and Tzanakis (2010) of Greek tasks has similar
attributes to this study and both comprise factual information and mathematical
activity. This study and that presented by Xenofontos and Papadopoulos (2015)
discover tasks that inform the student or call them into an action. Though more
attributes are used in the study presented here, those presented by Thomaidis and
Tzanakis or Xenofontos and Papadopoulos are not dissimilar and are definitive for
the typology of tasks in German mathematics textbooks.

The dimensions used in this study are conducive to generating a typology of
tasks and future research may conclude if there are more than four dimensions and
associated attributes. Tasks were extracted from the textbooks as part of this study
using key questions on types of blocks (Jankvist 2009; Rezat 2009). Both of these
studies help to identify tasks about the history of mathematics and provide valuable
definitions for introductory pages, activities, lessons and topical pages and historical
snippets (for example, introductory tasks or activities, expositions, tasks and
problems). After extracting tasks, Mayring (2008), along with Ganter et al. (2005),
provide a typology that takes into account multiple answers in relation to attributes.
A typology of tasks is realized by analyzing the linear diagram in which whole sets
of tasks and attributes are grouped into subsets and each subset has a supremum.
These suprema are the basis for the typology of tasks.

Another benefit of this study is that it enables the teacher to make their own
changes to tasks in textbooks. Even though a historical study for the teacher in
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mathematics education is a challenge, they can themselves evaluate tasks according
to a detailed analysis about history of mathematics. They only have to know the
normative claims: linkage to the present, mathematics in evolution, balance
between personalization and personification, and mathematical orientation. Future
research must verify these normative claims and may discover new ones. In con-
clusion, the aim is to empower the teacher to use history of mathematics in
mathematics education through a tool of evaluating tasks.
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Part III
Empirical Investigations on Implementing
History and Epistemology in Mathematics

Education



Chapter 9
Geometry and Visual Reasoning

Introducing Algebraic Language in the Manner
of Liu Hui and al-Khwãrizmî

Iolanda Guevara-Casanova and Carme Burgués-Flamarich

Abstract The general aim of this chapter is to identify the potential learning
opportunities provided by the introduction of historical geometric diagrams into
student tasks. To this end, we examine some problem sets for secondary education
students concerning situations to be solved with diagrams in which right triangles or
solving second-degree equations are involved. In all cases the objective is that
students should transfer linguistically expressed reasoning (second-degree algebraic
expressions) to reasoning with visual diagrams (figures with squares and rectangles)
that are the geometric interpretation of the second-degree algebraic expressions.
The research is therefore focused on students’ learning process, and specifically, the
results they achieve by the use of these diagrams.

Keywords Teaching and learning of algebra � Geometry-algebra connection
Visualization � Historical context � al-Khwãrizmî � Liu Hui

9.1 Geometrical and Historical Diagrams

The purpose of introducing diagrams is to connect symbolic algebraic thought with
visual thought regarding geometrical shapes. Historians, educators and many spe-
cialists in the teaching of mathematics advocate the connection between seemingly
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different themes as one of the important mathematical processes (Burgués 2008;
Burgués andSarramona 2013; Fauvel andvanMaanen2000;Giaquinto 2007; Jankvist
2009; Katz and Barton 2007; NCTM 2000; Niss 2002; Niss and Højgaard 2011).

Katz and Barton (2007) describe the various stages in the history of the con-
struction of algebra which, according to these authors, lead to implications in
teaching and learning. The learning of algebra should begin with the close relation
between geometry and problem solving. The introduction of the new mathematical
topics should be discussed orally in class with groups of students as a whole. Katz
poses the following question: Why not begin algebra by thinking about geometrical
figures? The results of this research clearly support the introduction of this approach.

In the history of mathematics, Radford and Puig (2007) associate algebra with
geometry in at least two instances in which algebraic reasoning (reasoning about
unknowns) is associated with geometric reasoning: some of the problems on
cuneiform tablets of Mesopotamian scribes (1900–1600 BCE), and the calculations
by al-Khwãrizmî (9th century) in the study and classification of first- and second-
degree equations in Hisāb al-ğabr wa’l-muqābala. This latter instance provides the
source for the second activity set out in this research. Radford and Guérette (2000)
and Siu (2000) also endorse visual reasoning and the use of historical texts. In their
study, Radford and Guérette address the Babylonian Geometric Method, while Siu,
giving Nine Chapters on Mathematical Procedures (1st century) as an example,
claims that problems in ancient Chinese mathematics also provide evidence in
support of proofs1 through drawings, analogies, generic examples and algorithmic
calculations. According to Siu, this can all be of great educational value to com-
plementing and supplementing the teaching of mathematics, with emphasis placed
on traditional deductive logical thinking.

In the past, the first author has used historically-based activities in the classroom
to provide students with the context in which the mathematics they are studying has
been developed, and also to introduce them to alternative ways of thinking about or
reasoning in mathematics (Guevara 2009; Guevara et al. 2006), but without ever
conducting a systematic collection and analysis of data. The resources used consist
of historical diagrams taken from Arabic (9th century) and Chinese (1st century)
cultures. It should be mentioned that other authors have also considered such
diagrams to be very helpful in the teaching and learning of algebra (Demattè 2010;
Puig 2008–11; Siu 2000).

With regard to the use of diagrams, Barwise and Etchemendy (1996) argue that
inference and reasoning not only occur in sentences with linguistic expressions, but
also with the use of diagrams and charts, and that the use of diagrams is a historical
legacy. They relate the use of diagrams with geometry and cite as examples the
countless proofs of the Pythagorean Theorem that are found throughout history and
in different cultures around the world.

In short, the diagrams used in the research are geometrical and historical; geo-
metrical because they are geometric figures with letters and numbers indicating

1In the sense of explanatory notes, which serve to convince and enlighten (Siu 2000, p. 161).
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areas or lengths, and historical because they come from the history of mathematics
and students use them to solve classical problems usually solved only with alge-
braic language.

The problems posed to students correspond to Chap. 9 of the Nine Chapters;
specifically, problems 4 through 12 in the version of Chemla and Guo (2005). What
we wish to emphasize is the justification of the calculation procedure in the classical
text (1st century) with geometric figures that Liu Hui conducted in the year 263 AD.
These figures were described by him but did not appear properly in the text until
centuries later (13th century; Fig. 9.1).

The material for the unit of solving quadratic equations has likewise been pre-
pared. In this case, it is based on the justification of a geometric equation with
squares and rectangles, in accordance with Rosen’s (1831) edition (Fig. 9.2).

From these historical problems we have drawn two different topics that are
appropriate for use in the secondary education curriculum: (I) The resolution of
problems of right triangles with diagrams: The Pythagorean Theorem in ancient
China; (II) Solving equations by completing geometrical squares: Quadratic
equations.

Fig. 9.1 Nine Chapters Edit.
of Bao Huanzhi (1213) in
Chemla and Guo (2005),
p. 695

Fig. 9.2 Al-Khwãrizmî
(original 813), The Treatise of
Algebra (al-Khwãrizmî 1831,
p. 16)
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By means of visual reasoning concerning the areas of squares and rectangles,
students solve problems that are usually solved using either the formula associated
with the Pythagorean Theorem or quadratic equations. They are also cognizant of
the historical contexts in which this occurred: in ancient China and within the
Arabic culture. The students in this study are in the 9th grade (14–15-year-olds) in a
high school at Badalona, Barcelona (Spain). The characteristics of students and how
they work in the classroom are described in greater detail in Sect. 9.4.

9.2 Resolution of Problems of Right Triangles
with Diagrams

In secondary education, the classical problems of right triangles are normally posed
by giving two sides of the triangle and then asking students to solve for the third
side. In problems from Chap. 9 of the Nine Chapters the situation is more difficult,
because in most of the problems the data consist of one side of the triangle and the
difference or the sum of the other two.

In this situation, when the relationship between the data and the unknown is
expressed by an algebraic equation, some ability in solving equations is required in
order to solve the problem. This difficulty can be overcome by introducing dia-
grams, on the basis of which students are able to argue visually. Then they follow
the procedure for calculating the solution to the problem by manipulating geometric
shapes that are introduced after analyzing the data of the problem (see Figs. 9.14
and 9.15).

9.2.1 Solving Right Triangle Problems with Diagrams
in the Manner of Liu Hui

Take as an example Liu Hui’s explanation of the solution to problem 62 in
Chap. 9 of Nine Chapters, as given in Chemla and Guo (2005, p. 711). In order to
solve the case of a right triangle in which one of the perpendicular sides and the
difference between the hypotenuse and the other perpendicular sides are known, Liu
Hui states the following:

Here take half the side of the pond, 5 chi, as gou, the depth of the water as the gu, and the
length of the reed as the hypotenuse. Obtain the gu and the hypotenuse from the gou and
the difference between the gu and the hypotenuse. Therefore, square the gou for the area of

2“Given a reed at the center of a pond 1 zhang square and which is 1 chi high above the water.
When it is drawn to the bank, it is just within reach. Tell: the depth of the water and the length of
the reed. Answer: The water is 1 zhang 2 chi deep and the reed 1 zhang 3 chi tall” (Dauben 2007,
p. 286).
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the gnomon. The height above the water is the difference between the gu and the hypo-
tenuse. Subtract the square of this difference from that of the area of the gnomon; take the
remainder. Let the difference between the width of the gnomon and the depth of the water
be the gu. Therefore construct [a rectangle] with a width of 2 chi, twice the height above the
water. Its length is the depth of the water to be found. (Dauben 2007, p. 287).

This type of reasoning with areas rather than calculating with algebraic symbols
is what we believe students should be encouraged to do. We may imagine the right
triangle devised by Liu Hui as that described by Dauben (2007, p. 284) in Fig. 9.3,
even though Liu Hui himself did not include any figures in his explanation. These
geometrical shapes have been studied and transcribed by historians such as Cullen
(1996, pp. 206–217), Chemla and Guo (2005, pp. 673–683) and Dauben (2007,

Fig. 9.3 Problem 9.6

Fig. 9.4 The calculation of
b and c from a and c − b
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pp. 223–287). These demonstrations have been chosen in order to introduce the
diagrams used in solving problems involving right triangles.

Figure 9.4 shows that when a, b and c are the sides of a right triangle, the large
square on side c is the same as the sum of the squares on sides a and b. Since in
ancient mathematics the concept of area is not explicit, neither in Greek nor in
Chinese mathematics, we must now address the area of the three squares.
Figure 9.4 also shows what happens with the area of the squares, the gnomon and
the final rectangle.

In case of problem 9.6, a = 5 and c − b = 1, and we can solve b and c with
geometrical and visual reasoning just as Liu Hui does3 (see the previous quotation
from Dauben 2007, p. 287):

By performing the multiplication of the base (gou) by itself, we first show the area of the
gnomon

a = 5 is one of the sides of the right triangle
a2 = 25 is the area of the square, but also the area of the gnomon. Figure 9.4

shows three squares with the same area, the first one c2, the second one
gnomon (b2) + 25, and the third one b2 + gnomon (a2), so this last gnomon must be
25.

Liu Hui goes on to state that:

What extends above the water is the difference between the height and the hypotenuse;

in this case c − b = 1.

One subtracts the square of this difference from the area of the gnomon and only then does
one divide. The difference is the width of the area of the gnomon; the depth of the water is
the height.

25 − 1 = 24; 24/2 = 12 is the area of a rectangle with base c − b = 1 and
altitude b; so, b = 12/1 and c = 12 + 1 = 13.

This is so because the gnomon becomes a rectangle of base c − b and altitude
c + b. This entire explanation becomes shorter with a figure and the comparison of
area, as shown in Fig. 9.4.

In algebraic terms, the situation is as follows:

a2 þ b2 ¼ c2; 25þ b2 ¼ bþ 1ð Þ2¼ b2 þ 2 � 1 � bþ 1; 25� 1 ¼ 2 � 1 � b; and finally

b ¼ ð25� 1Þ=2; c ¼ ð25� 1Þ=2þ 1:

31 zhang = 10 chi = 100 cun (see Chemla and Guo 2005, inside cover).
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9.2.2 The Fundamental Figures

The use of visual reasoning for solving problems of right triangles is based on
diagrams described by Liu Hui and analyzed by the historians Cullen (1996,
pp. 206–217), Chemla and Guo (2005, pp. 673–683) and Dauben (2007, pp. 223,
287). Chemla and Guo called these diagrams fundamental figures.

The First Fundamental Figure

The first fundamental figure (Fig. 9.5) is a square of side a + b (base and altitude
of the initial triangle). It contains the square of side c (hypotenuse of the triangle).
This triangle is inside the square a + b in a manner that determines four right
triangles of sides a, b, c, and a square (b − a).

If the hypotenuse (c) and the difference of the perpendicular sides (b − a) are
known, the first fundamental figure serves to calculate (a + b), the side of the big
square. Once a + b is known, and taking into account that (b − a) is known, a and
b are calculated by adding or subtracting two numbers and dividing by two,
because: (a + b) + (b − a) = 2b, and also (a + b) − (b − a) = 2a.

Liu Hui used this argument to solve problem 11 in Chap. 9.4 We translate his
arguments into diagrams with two different explanations in the same way that Liu
Hui himself did (Figs. 9.6 and 9.7).

Fig. 9.5 The initial triangle
and the first fundamental
figure

4“Let us assume that we have a single-leaf door whose height exceeds its width by 6 chi 8 cun and
whose two [opposite] corners are separated one from the other by exactly 1 zhang. We ask what is
the value of the height and the width of the door, respectively. Answer: The width measures 2 chi 8
cun; the height measures 9 chi 6 cun” (Chemla and Guo 2005, p. 717; authors’ translation).

Liu Hui stated: “Let us say that the width of the door is the base (gou), its height is the height
(gu), the distance between the two corners, 1 zhang, is the hypotenuse, and that the height exceeds
the width by 6 chi and 8 cun, which is the difference between the base (gou) and the height (gu).
Their positions are established from the figure. The square of the hypotenuse covers exactly 10,000
cun. If this is doubled, and one subtracts the square of the difference between the base and the
height, and if by extraction one divides this by the square root, what one obtains is the value of the
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With the data from problem 9.11 (see Footnotes 3 and 4), we have:
1002 + 1002 – 682 = 10,000 + 10,000 – 4624 = 15,376 and its square root

(equal to 124) is a + b.

ðaþ bÞ � ðb� aÞ ¼ 2a ! a ¼ ð124� 68Þ=2 ¼ 56=2 ¼ 28 and
aþðb� aÞ ¼ b ¼ 28þ 68 ¼ 96:

The Second Fundamental Figure

The second fundamental figure is the one described at the beginning of Sect. 9.2.1
in order to exemplify Liu Hui’s explanation. Figure 9.8 shows the second funda-
mental figure with algebraic labels. Given this situation, when a and (c − b) are
known, one can calculate b using the area a2 corresponding to a square, a gnomon
and a rectangle, as in the sequence of diagrams in Fig. 9.8, because the base
(c − b) is known and one can calculate the height (b + c) or b + (c − b) + b.

Fig. 9.6 The calculation of a + b from c and b − a

Fig. 9.7 Problem 9.11, and the first fundamental figure (Solution of Problem 9.11 based on Liu
Hui’s comment)

sum of the height and the width. If the difference is subtracted from the sum and one takes half of
this, that gives the width of the door. If one adds to this the value of how much one exceeds the
other, this will give the height of the door” (Chemla and Guo 2005, p. 719; authors’ translation).
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9.3 Solving Equations by Completing Geometrical
Squares

In secondary education, solving quadratic equations is a compulsory topic in the
mathematics curricula. In this proposal, our students learn to solve equations in two
different grades:

• 9th grade (14–15-year-olds): completing geometrical squares
• 10th grade (15–16-year-olds): solving equations ax2 + bx + c = 0 with the

formula

x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a

The aim of this topic was to lead students to use geometrical reasoning in the
manner of al-Khwãrizmî, who justified the rules of computational algorithms with
geometrical rules of transformations of figures and areas. While al-Khwãrizmî used
rhetorical algebra, we use geometrical rules of transformations of figures and areas
to introduce symbolic computation with algebra.

To this end, the process consists of four steps:

(a) The equation is translated into geometrical figures (squares and rectangles). In
Sect. 9.3.2 we explain the translation from geometrical figures to symbolic
algebra.

(b) The figures are manipulated and transformed (changing their lengths and areas).
(c) New lengths and new areas are deduced from the figures.

Fig. 9.8 The second fundamental figure with algebraic labels
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(d) The students interpret the figures and the measures and the solution of equation
follows from this interpretation (the solution is one of the measures of the last
figure obtained in the transformations).

Figure 9.9 shows the idea of the transformation of figures and the deductions of
new lengths and new areas.

Radford and Guérette (2000) presented a teaching sequence whose purpose is to
induce students to reinvent the formula for solving the general quadratic equation.
Their teaching sequence was centered on the resolution of geometrical problems
regarding rectangles by using an elegant and visual method developed by
Babylonian scribes during the first half of the second millennium BC, and on the
resolution of many problems found in a medieval book, the Liber Mesuratinonum
by Abû Bekr (probably 9th century), as well as on al-Khwãrizmî’s Al-Jabr (9th
century). Their goal was achieved through a progressive itinerary that starts with the
use of manipulatives and evolves through an investigative problem-solving process
combining both numerical and geometrical experiences. Instead of introducing
students to modern algebraic symbolism from the start—an approach that often
discourages many of them—algebraic symbols are only introduced at the end, after
the students have truly understood the geometric methods.

In this sense, our two proposals (the resolution of second-degree equations, and
problems with rectangular triangles) are aimed at teaching students to develop
visual geometric reasoning with diagrams. We encouraged the students to use the
diagrams on their own initiative and leave the reinvention of the formula for solving
the general quadratic equation for the following year. The point of departure in our
research is not the resolution of a geometrical problem, but rather the resolution of a
second-degree equation that has been transformed into a problem of calculating
areas and lengths related to squares and rectangles. The aim is for students to move

Fig. 9.9 Process for solving
the equation by completing a
geometric square
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from algebraic expressions to geometry, to find solutions in the geometric field and
then do the final reading in algebraic terms, thereby avoiding calculations with
algebraic expressions.

9.3.1 Solving Equations in the Manner of al-Khwãrizmî

In his Treatise of Algebra, al-Khwãrizmî classified second-degree equations with
positive coefficients and admitting only positive solutions, into six different types.
He did not use algebraic symbols to denote the unknown coefficients and the
equations could only be solved with what is known as rhetorical algebra.

For each of the six cases, al-Khwãrizmî justified the proposed algorithms with
areas of squares and rectangles. From one of these cases, the solution process
proposed to the students in learning activities has been taken in order to solve
quadratic equations by completing a geometric square.

If transcribed with algebraic symbols, the equation is as follows: x2 + 10x = 39.
Figure 9.2 shows the geometric basis of his reasoning. Figure 9.9 contains
the proposed activity with squares and rectangles visualized as provided to the
students in Solving equations by completing geometrical squares: Quadratic
equation.

9.3.2 Visualization of the Terms of an Equation
in a Geometrical Sense

Figure 9.10 shows the visualization of the first-degree terms as used with students.
Here, (a) x is the length of a segment; (b) two segments of length x together, one

Fig. 9.10 Visualization of
the first-degree terms
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after the other, have length 2x; (c) but also 2x could be the area of a rectangle with
base x and altitude 2; (d) x + 2 is the same as 2 + x, because it is the length of the
same segment.

Figure 9.11 shows the visualization of the second degree terms: (a) x2 is the area
of square of side x: (b) 3x2 is the area of a rectangle which contains exactly three
squares of area x2 and is the same as x2 + x2 + x2; (c) finally, x2 + 6x is a rectangle
formed by a square x2 and another rectangle 6x.

When students more or less understand this relationship between algebraic terms
and the length and area of squares and rectangles, they are able to solve quadratic
equations by completing geometric squares.

Fig. 9.11 Visualization of
the second-degree terms
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9.4 Students Solve Problems in the Manner of Liu Hui
and al-Khwãrizmî

9.4.1 The Students Involved in the Research and Classroom
Activities

The population under study consisted of a group of 21 students of the 9th grade (3rd
ESO5; 14–15-year-olds) of the Institute Badalona VII Secondary School during the
academic year 2009–2010, and of which the first author of the study was their
teacher of mathematics. The two topics analyzed—solving problems of right tri-
angles and solving second degree equations—form part of the 9th Grade ESO
curriculum. The first topic was taught during the first quarter and the second topic
during the third quarter.

With regard to the characterization of these 21 students and their learning of
mathematics, the class was a heterogeneous and diverse group. In general terms,
they can be divided into four different subgroups of 8, 7, 2 and 4 students,
respectively, each one with a different profile. The first subgroup of eight students
possessed the algebraic skills introduced during their previous year (2nd ESO);
students were able to solve simple first-degree equations and had sufficient
understanding of the basic rules for isolating the unknowns. The second subgroup
of seven students had not acquired sufficient algebraic reasoning, and one might
even say that their use of letters (x) for identifying unknowns constituted an
excessive degree of abstraction for their level of reasoning. The third subgroup of
two students, while failing to possess the required level of the symbolic language of
algebra corresponding to Spanish Secondary School 1st Grade (at age 12), were
sufficiently familiar with numerical calculation but were somewhat unreceptive to
the introduction of visual and geometrical reasoning. The fourth subgroup of four
students had not acquired the level required at the 2nd ESO, but were able to work
with numbers, although possibly without a fully developed understanding of the
operations. One of the students in this subgroup, who faced serious reading diffi-
culties, had handwriting that was only partially legible and experienced learning
problems in all subjects. The students belonging to this last subgroup possibly
lacked the sufficient basic knowledge for undertaking the activities, even geomet-
rically, with the use of diagrams, as well as algebraically for solving of equations.

Throughout the course, the students worked together in groups of three or four
without textbooks, and for each topic they were provided with a work dossier. The
work groups were assigned by the teacher and were heterogeneous in terms of
students’ level and capabilities, so that in each group there was at least one student
belonging to the first profile, as described in the previous paragraph, and one from
the second profile. The 6 (2 + 4) students with the lowest levels of competence
were also distributed in different groups.

5Secondary School Compulsory Education (in Spain).
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Dossiers were also provided for the two topics on which the research is based. In
the case of the right triangles, the dossier was called “Pythagoras’ Theorem in
Ancient China.” It contained nine problems from Chap. 9 of the Nine Chapters (4,
5, 6, 7, 8, 9, 10, 11 and 12), in the Chinese and Catalan versions based on the text
by Chemla and Guo (2005, pp. 711–721). First of all, the students were shown the
procedure of “base & height” (Gou and gu), using paper cut-outs, before going on
to familiarize themselves with the first and second figures. Then they were
requested to solve the problems, deciding beforehand which of the two figures was
appropriate for each problem. It was necessary to realize first that the first figure
served to demonstrate the base-height procedure (Gou gu) and to solve problems 4,
5, 11 and 12; while the second figure was used to solve problems 6, 7, 8, 9 and 10.
A script was also included to help students to look for information about Liu Hui
and his historical context (cf. Sect. 9.7). The activities comprised ten teaching
sessions of 55 min each and an eleventh session for the test, which included three
problems, two of which are analyzed in this chapter.

The dossier for working in the manner of al-Khwarizimi was entitled “Equations
of the Second Degree.” It began with one of the problems on the measurement of
rectangles from the cuneiform tablet YBC 4663 (ca. 1800 BC), inviting resolution
by trial and error. It was followed by a series of incomplete equations of second
degree, such as ax2 = c and ax2 + bx = 0, which the students had to solve by both
algebraic methods (the previous year they had worked on first-degree equations),
and geometric methods, transforming the equations into additions and subtractions
of areas of squares and rectangles. In the second part of the dossier, the resolution of
second-degree equations in al-Khwãrizimî’s manner was introduced, with the
completion of geometric squares, as seen in Fig. 9.9. Solving the general
second-degree equation ax2 + bx + c = 0 was performed in all cases by geometric

procedures, with the deliberate omission of the formula x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffi

b2�4ac
p
2a until the

following school year, in order to make the students solve the equations at all times
by completion of the geometric squares. A script was also included to enable the
students to look for information about al-Khwãrizmî and his historical context. The
activities comprised eight teaching hours of 55 min each, and a ninth session for the
test, which included three problems, two of which are analyzed in this chapter.

In both cases, the work dossier made reference to historical contexts; ancient
China, in the first instance, and the ancient Arabic context in the second. The
mathematical knowledge of the students constituted the explicit point of departure,
as well as the measurement of areas of squares and rectangles, solving equations of
the second degree by completing geometric squares, and techniques for identifying
unknowns in equations of the first degree. This approach generates learning by
comparison and uses what has worked in other situations in order to arrive at new
situations that require new tools. These new tools are diagrams or figures with
written information that act as a support for performing calculations with which
students are unfamiliar by means of algebraic manipulation. In this way, by using
geometric transformations, a new figure is arrived at on which the solution can now
be read.
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During the test on “Pythagoras’ Theorem in Ancient China” the students worked
in groups; nine groups of two students and one group of three. So, we analyze ten
different solutions of problem 1 and ten of problem 2. On the other hand, during the
test on “Equations of the Second Degree” the 21 students worked individually.
Therefore, we analyze 21 examples of the solution of one equation, and 21 different
examples of the other.

9.4.2 Solving Problems of Right Triangles with Diagrams:
Student Work Examples

We illustrate the process of problem solving with diagrams by using two problems
taken from the test; one solved with the second fundamental figure and the other
with the first fundamental figure. Note that the problems in this final test consisted
of instances relevant to the 21st century in order to show that mathematics is not
only a tool for solving old historical problems.

Statement of Problem 1:

An antenna tensioner, suspended from the top of the antenna without being tightened,
exceeds the height of the antenna by 6 m. When tightened on the ground, it lies 16 m from
the base of the antenna. What is the height of the antenna and how long is the cable
tensioner?

The process of problem solving with diagrams consists of four steps: con-
struction, processing, interpretation and reading. We can follow the process in
Fig. 9.8 with an example of one student (from the pair of students 1 and 4).

(a) The student constructs a diagram of data, a triangle with one side known, the
relationship of the other two sides, and the unknown sides (Fig. 9.12a).

(b) The student decides which of the two calculation diagrams corresponds to the
problem to be solved (Fig. 9.12b).

(c) The student constructs a calculation diagram and writes the known data
(Fig. 9.12c).

(d) In order to be able to read the solution to the problem on the last diagram
(Fig. 9.12d), the student transforms this first diagram into as many other suc-
cessive diagrams as he/she wishes.

Fig. 9.12a The diagram of data and the relationship of the other two sides
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Statement of Problem 2:

When it is said that a screen measures 26 inches, it means that the diagonal of the rectangle
is 26. If the width of the screen exceeds its height by 14 inches, calculate the sides of the
screen.

Again, problem solving with diagrams consists of four steps: construction,
processing, interpretation and reading. We can follow this process with an example
from one of the students who produced Fig. 9.12. Figures 9.13 and 9.14 correspond
to this same student’s group (comprising two students).

In this case, the student solved the problem using a different interpretation of
Fig. 9.5 (note that there is a slight mistake in the calculation: 676 + 480 = 1156,
and not 1176, as she computed).

Fig. 9.12b Student’s explanation of choice (c = b + 6, b = c − 6 and 6 = c − b. With this
knowledge, we choose Fig. 9.8 because it is related to c − b, the area of the gnomon is a2 = 162 =
256)

Fig. 9.12c .

Fig. 9.12d .
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9.4.3 Solving Second-Degree Equations: Student Work
Examples

We asked students to solve different kinds of equations in the same manner as
al-Khwãrizmî, both arithmetically and geometrically, so that they associate x as a
length, 2x as a length, or an area, and x2 as an area. Examples of the first types of
these are: x2 = 25; 3x2 = 12; x2 = 20; 2x2 = 12; x2 – 81 = 0; x2 – 24 = 0. Students
then solve x2 – 5x = 0; x2 + 5x = 0; 2x2 – 8x = 0; 3x2 + 81x = 0.

The aim is for them to relate the terms of an equation to length and area through
the visualization of the terms of an equation in a geometrical sense, as explained in
Sect. 9.3.2. in which the equation x2 + 6x = 40 appears. The expected learning
outcomes are shown in Fig. 9.15. We do not have the solution when we draw the
figure; the idea is that figures do not have to be realistic.

Figure 9.15 shows the four steps of the process: cutting the initial rectangle,
moving a piece of the rectangle to obtain a square (or more or less a square), in
order to complete the new figure and arrive at a whole square.

Fig. 9.12 The solution of one student and her explanations (First, we find the right triangle, so as
in the statement the tensioner is said to be 16 m from the base of the antenna, we know that it is 16.
Since the untightened cable exceeds the height of the antenna by 6 m, we know that c = b + 6,
b = c − 6 and 6 = c − b. With this knowledge, we choose Fig. 9.8 because it is related to c − b, the
area of the gnomon is a2 = 162 = 256, the shortest side of the gnomon is 6, so in order to find the
square inside the gnomon we do 6 � 6 = 36. We subtract 36 from 256 in order to find the areas of
the two remaining rectangles, and since there are two we do 256 − 36 = 220 and 220/2 = 110, and
so we know that each rectangle has an area of 110. In order to find b, we divide 110 by 6, because
one side of the rectangle is 6. Since we have to find the other, 110/6 = 18.3 = b, and since
c = b + 6 we add 18.3 + 6 = 24. 3 = c)
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Fig. 9.13 A student’s solution of the problem using the first fundamental figure, and student’s
explanation (The screen: First we find the right triangle, and since in the statement it says that the
plasma screen measures 26 in. (diagonally) and that the width exceeds the length by 14 in., we
then have that c = 26, b = a + 14, a = b − 14, 14 = b − a, that is, we choose Fig. 9.1 because it is
related to b − a. The area of the inner square is 142 = 196 and the area of the middle square is
c2 = 262 = 276. The four triangles in the middle square are the middle square minus the small
square = 696 − 196 = 480. To calculate (a + b)2 we add 676 + 480 = 1176 and we take the
square root of 1176 in order to calculate a + b,

ffiffiffiffiffiffiffiffiffiffi

1176
p

= 34.29 = a + b. To find 2a, we subtract
34.29 − 14 = 20.29 = 2a. Then we divide 20.29/2 to find a, which gives 10.14, and to find b we
add 14, because the width was a + 14, 10.14 + 14 = 24.14 = b)

Fig. 9.14 Solving the
problem with another
interpretation of the
relationship in the first
fundamental figure
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Figure 9.16 shows the process of solving an equation (x2 + 6x = 40) geomet-
rically with an example by a student (belonging the second subgroup of seven
students described in Sect. 9.4.1). He begins with a square x2; he adds the rectangle
6x; he cuts the rectangle into two pieces; he moves one of the rectangles, and finally
he completes the figure with a small square of area 9.

9.5 The Process of Problem Solving with Diagrams

Solving right triangles with diagrams and solving equations by completing geo-
metric squares provide two topics for secondary education taken from the history of
mathematics, but from the mathematical point of view they possess some similar
characteristics. For the first topic, while solving the problem it is necessary to give
the geometrical meaning of algebraic terms. In the second, the solution involves
working with calculation diagrams and the transformations of these diagrams. The

Fig. 9.15 Solving x2 + 6x = 40 geometrically

Fig. 9.16 A student (number 13) solving x2 + 6x = 40 geometrically
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difference resides in the point of departure: In right triangles the context is geo-
metrical, and the data are measurements of a right triangle. This consists of dia-
grams of data expressing algebraic relations between the data. Afterwards, we
return to geometry to solve the problem with a calculation diagram. In solving
equations by completing geometrical squares, the context is algebraic, the data are
equations, and we then move to geometry to find the solution with a calculation
diagram.

The diagrams employed in this research follow the classification of Barwise and
Etchemendy (1996) and the nomenclature of Mason et al. (2005) and Giardino
(2009, 2014). From the analyses of these authors, we have adopted two features
associated with the diagrams thus introduced and analyzed in this work: (i) the
expressive efficacy of the diagram, that is, the ability to express semantic properties
and computational efficiency, and (ii) the ability to infer new information. Two
types of these diagrams have been identified to differentiate their role in the
problem-solving process; one type is denoted as data diagrams and the other as
calculation diagrams, and both have expressive efficacy. A data diagram expresses
semantic properties between data, and helps to choose the correct calculation dia-
gram when solving right triangles. A calculation diagram has expressive efficacy for
solving right triangles and second-degree equations because they help to calculate
the solution of the problem.

Giardino (2009) identifies two kinds of elements in the sequence of problem
solving with calculation diagrams: the diagrams and the actions involved. The
actions are four-fold: construction, processing, interpretation and reading. In
Sect. 9.2, we have described the process with an example of right triangles, while in
Sect. 9.3 we have described it with an example of quadratic equations. Figures 9.17
and 9.18 show the different steps in the process and the connections between them.

Figure 9.17 should be read from top to bottom and from left to right. The
rectangles contain data and diagrams. Arrows indicate actions, in accordance with
Giardino (2009). The data diagram is constructed from the data of the problem.
Decide first what calculation diagram to use by looking for the relations in the data

Fig. 9.17 The process of problem solving with diagrams
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diagram. The calculation diagram is then constructed. Each diagram has a corre-
sponding interpretation in algebraic terms (bottom of Fig. 9.17). The first calcu-
lation diagram contains different transformations and processing, in accordance
with Giardino (2009). Finally, the solution is obtained through the last calculation
diagram.

Following the diagram in Fig. 9.17 for the antenna problem (Fig. 9.12), we
arrive at the diagram in Fig. 9.18.

9.6 Organization of the Conclusions in Accordance
with the Four Characteristics of Problem-Solving
Diagrams

The four actions in problem solving with diagrams (construction, processing, in-
terpretation and reading) can be combined into three procedures: translation,
transformation and diagrammatic reasoning. We summarize the resulting conclu-
sions in Sects. 9.6.1–9.6.3 and in more general terms in Sect. 9.6.4 about the
advantages of using diagrams. More specifically, construction and reading form
part of problem solving with diagrams and the end of the process with the solution.
We combine these two processes into one, namely translation. Processing involves
the transformation of diagrams. Interpretation connects geometry with algebra and
explains reasoning to students; this is diagrammatic reasoning. Each one of these
procedures leads to several conclusions drawn from our empirical research, some of
which are briefly outlined in the next subsections.

Fig. 9.18 The process of solving the antenna problem
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9.6.1 Translation

The first procedure is the translation of the problem into the language of diagrams;
that is, the study of the equivalence established by students between algebraic
language and the geometric representation when they construct the first diagram
with the data of the problem, and likewise, the reinterpretation of the final diagram
in terms of the problem posed.

Of the various conclusions concerning translation (Guevara 2015, pp. 428–435),
we emphasize the most important one: the students associate terms of first degree
with unit coefficient (x) to lengths; the first degree with other coefficients (6x) to
areas; the second degree also to areas; the numerical values with lengths or areas.
Figure 9.16 shows the equivalences that one student established between the terms
6x, x, 40 and the sides and areas of the figure, with the use of corresponding labels.
He places it within, or outside the figure, according to whether it represents an area,
or a length.

Table 9.1 shows how students related the labels to length or area. On the whole,
the labels are related correctly, and in three cases the error is not transferred to the
equation-solving process.

9.6.2 The Transformation of Diagrams

The second procedure is the transformation of diagrams; that is, a description of the
diagram transformation process used by students in problem-solving. Several
conclusions (Guevara 2015, pp. 435–445) are crucial for the series of transfor-
mation diagrams when solving the problem and its predictability (the number of
diagrams containing the number associated with a problem; the number of diagrams
for a given student to solve a particular problem; the structure and direction of the

Table 9.1 Students’ labels when solving x2 + 6x = 40

Label Number of students Related to length/area Ratio correct/errors

x 14 Length 8/6

x2 4 Area 2/2

6 10 Length: 8; area: 2a 9/1

6x 6 Area: 5; length: 1b 4/2

40 19 Area 12/7

3 20 Length 15/5

9 20 Area 14/6

49 7 Area 4/3

7 2 Length 2/0
aTwo students solved the equation correctly
bThe student solved the equation correctly
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changes), but the most important one seems to be the thread that guides the diagram
transformation process of the areas in the figures (squares and rectangles).

Students have identified the key areas for constructing the first calculation dia-
gram: 256 for the first right triangle problem; 676 and 196 in the second problem;
and 40 for the quadratic equations. Figures 9.12 and 9.20 contain the solution
obtained by two students using the second fundamental figure to solve a right
triangle problem. The thread that guides the process of transformation is the area
256. Figure 9.13 contains the solution obtained by a student using the first fun-
damental figure to solve a right triangle problem. The thread that guides the process
of transformation is the two areas 676 and 196. In Figs. 9.16, 9.19 and 9.21, the
problem involves the solution of a second degree equation. This time the guide is
the area that equals 40.

9.6.3 Diagrammatic Reasoning

The third procedure is diagrammatic reasoning; that is, identifying the key elements
of diagrams in problem solving and what they represent in the reasoning followed
by the students.

Mancosu (2001, 2005) distinguishes between visualization and diagrammatic
reasoning. He uses visualization as a discovery tool, in the same way as Giaquinto
(1992). On the other hand, he uses diagrammatic reasoning as a demonstration tool,
in the same way as Barwise and Etchemendy (1996).

One conclusion to be drawn is that when solving the problem with the use of
diagrams, each student has a key diagram and this key diagram is the same for all
students. In the case of equations, for example, Fig. 9.16 shows the key diagram,
and the final square with two squares and two rectangles inside it. However, we
would like to emphasize another conclusion as the most important; namely, that the
essential labels used by the students are the numerical labels in preference to
algebraic ones, without which the diagram does not help to solve the problem.

In Figs. 9.16, 9.19 and 9.21, different types of labels are used, while in Fig. 9.19
one may see that in the process followed by the student for the solution to the
equation x2 + 6x = 40 no algebraic labels are used.

Fig. 9.19 Solution without
algebraic labels (student 1)
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Table 9.1 shows the labels used by students, the majority of whom used the
numerical labels 40, 3 and 9, which are indeed the most essential labels for solving
the equation correctly.

9.6.4 The Advantages of Using Diagrams

Finally, in a more general sense, four conclusions regarding the advantages of using
diagrams to solve problems in secondary school concur with the ultimate aim of this
study.

(1) Students mainly chose the geometric method of solving problems. However,
some students used both geometrical and algebraic methods, as may be seen in
Fig. 9.18.

(2) The second conclusion concerns effectiveness: visual diagrams enable students
to be more effective. Not only did more students solve the problem in this way,
they also solved it better. Analysis of the 21 results achieved by students with
right triangles and the quadratic equation supports this assertion. In the case of
the quadratic equation, they were unable to use the algebraic method because
they were not familiar with it, as explained in Sect. 9.3.

(3) Regarding the advantages of using diagrams (Guevara 2015, pp. 452–458), we
would like to emphasize the following as the most notable one: manipulating
diagrams with ease is necessary to distinguish between the concept of perimeter
and area, and also between measuring a length and a surface. Figure 9.21
shows one student’s solution, who added values for length (6) and area (9), thus
preventing herself from getting the final result correctly.

Fig. 9.20 Geometrical and
algebraic solution (student 6)
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(4) The last conclusion we mention is related to the third one above: In order to
connect geometry and algebra, one must determine how many figures are
contained within a given one (visual perception) and also associate the data on
algebraic relations, with lengths and areas.

In the present research, unlike that by Radford and Guérette (2000) mentioned
above, the objective is not to arrive at algebraic formulas, but rather for students to
acquire knowledge at the geometric stage with the help of diagrams. To this end,
the students’ own productions are analyzed and the construction of knowledge with
the support of the diagrams is identified.

9.7 Using History to Teach Mathematics and the Teaching
and Learning of Algebra

Activities based on the analysis of historical texts as part of the curriculum con-
tribute to the improvement of the students’ overall training by providing them
additional knowledge about the social and scientific context of the periods involved,
because in both cases the dossier included a script containing information to enable
them to understand the context of the historical character being studied.

Students thereby acquire a vision of mathematics not as a final product but as a
science that has been developed on the basis of seeking answers to questions that
humankind has been asking about the world around us throughout history.

As an example, in the case of “The Pythagorean Theorem in ancient China,”
students were provided with a script containing the following questions
(cf. Sect. 9.4.1):

ANCIENT CHINESE MATHEMATICS

1. Who was the first Chinese emperor? What dynasty did he found? In what
period?

2. What were the public buildings in that time? For what purpose were they
built?

Fig. 9.21 Sum of areas and
lengths in the solution by one
student (17)
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3. What are the two oldest Chinese mathematical texts for which documentary
evidence exists? What type of mathematics do they contain? To whom were
they addressed?

4. What has been the most important classical text for many centuries in
Chinese mathematics?

5. Situate this classical text: Title; author; period; to whom it is addressed;
describe briefly the contents of the different chapters. (Guevara 2015, p. 492)

A detailed analysis of students’ outcomes and the conclusions drawn from the
learning process using this resource indicates that this way of introducing algebra in
relation to geometrical interpretation may be profitably applied. Through geometry,
both operations with numbers (arithmetic) and operations with letters (algebra)
express the results of measuring lengths and areas and in this way they acquire the
same meaning.

Given the results obtained from the analysis of student activities and the con-
clusions reached thereby, it can be stated that the teaching of algebra in the first year
should go hand in hand with visual arguments and the use of diagrams. In other
words, the introduction of algebra, besides being just a generalization of arithmetic
where the rules of operations with numbers are generalized to rules with letters,
should also have a visual component which gives the geometrical interpretation of
algebraic formulas. With this paradigm, and depending on the situation, linear
expressions can be interpreted as areas or lengths of segments, while quadratic
expressions can be interpreted as areas. All operations and the rules for operating
with letters have their interpretation in the geometric model. In this way, the
properties of operations are not justified solely via general syntactic rules on
symbols, but rather have an equivalent in the geometric model.

This claim is supported by the results obtained in the present research: In the
case of “The Pythagorean Theorem in ancient China,” from the 10 outcomes
analyzed,6 six students tackled the problem with geometrical reasoning using dia-
grams, three treated it using algebraic expressions and one was unable to do any-
thing. Four students out of the first six obtained the solution using diagrams, and
one student from the second three reached the solution with algebraic reasoning. In
the case of the second-degree equations, we analyzed 21 outcomes, in all of which
diagrams were used because the students did not know the algebraic form for
solving second-degree equations, and 15 out of these 21 obtained the solution
correctly.

As Katz and Barton (2007) state: “An historical view places number and
geometry on at least equal footing in mathematical development, and highlights the
powerful interrelationship between the two” (p. 198). In this sense, we believe that
moving from arithmetic to algebra by skipping geometry may be regarded as a
pedagogical and historical error. Though this is an approach that fits well to the 17th
century, when the force of the new symbolic language replaced visual geometric
reasoning, it may be considered not appropriate in the 21st century. Nevertheless,

6Recall that 21 students performed the activities in pairs.
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for many centuries, in the absence of formal algebra and with only the four basic
arithmetic operations available, humanity was able to solve problems that we now
solve with equations. And this cannot be ignored altogether, in view of the fact that
a significant number of students exist who are unable to solve problems just
because they do not thoroughly understand the rules of this language, and thus may
be regarded as mathematically illiterate. We think that there is sufficient ground to
believe that, when beginning to learn algebra, it is necessary to return to the
reasoning used by ancient mathematicians, who calculated on the basis of geometric
models to justify the validity of their operations. It is our contention that these
geometric models can be used to help our students to understand algebra.
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Chapter 10
Missing Curious Fraction Problems

The Unknown Inheritance and the Unknown
Number of Heirs

Maria T. Sanz and Bernardo Gómez

Abstract In this paper we present a study of one of the best-known types of
descriptive word fraction problems. These problems have disappeared from today’s
textbooks but are hugely important for developing arithmetic thinking. The aim of
this paper is to examine the historical solution methods for these problems and
discuss the analytical readings suggested by the authors. On the basis of this
analysis we have conducted a preliminary study of the performance of 35 Spanish
students who are highly trained in mathematics. Our results show that these stu-
dents have a preference for algebraic reasoning, are reluctant to use arithmetic
methods, and have reading comprehension difficulties that are reflected in their
translations, from literal language to symbolic language, of the relationship between
the parts expressed in the problem statement.

Keywords History and mathematics education � Descriptive word fraction prob-
lems � Resolution methods � Student performance

10.1 Introduction

Textbooks contain a wide range of descriptive word fraction problems whose
history dates back to ancient mathematical cultures. The statements of these
problems have evolved over time, adapting to social changes, mathematical
developments and the predominant educational theories of the era while main-
taining a common mathematical content.

These problems were essential components of the arithmetic of the past and can
be found in a multitude of historical texts. Examples of these texts are Jiuz hang
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Suan shu, better known as the Nine Chapters on the Mathematical Art (ca.100 AD;
Chemla and Guo 2005; Shen et al. 1999), which contains 247 Chinese mathe-
matical problems; collections of Hindu mathematical problems, such as the
Bhaskara manuscript, also known as the Līlāvatī (Colebroke 1817; Phadke et al.
2001); and basic texts from medieval Europe, such as the Greek Anthology1 (Jacobs
1863) and the recreational mathematical collections of Bede (De Arithmeticis
Propositionibus in 641 AD; Migne 1850) and Alcuin (Propositiones ad acuendos
juvenes in 775 AD; Migne 1863). Descriptive word fraction problems also appear
in texts that introduced the west to Islamic mathematical methods such as
Fibonacci’s Liber Abaci (Sigler 2002). Later they also appear in the first printed
books on arithmetic and algebra, such as the texts in Spanish by De Ortega (1552),
Silíceo (in 1513; Sánchez and Cobos 1996), Pérez de Moya (1562), and the syn-
copated algebra of Aurel (1552). We should also mention their presence in recre-
ational mathematical texts, such as those by Bachet (1612), Ozanam (in 1692;
Hutton 1844) and Vinot (1860) and, more recently, in popular works such as that by
Swetz (2014).

However, the advent of a general public education system led to the adoption of
an approach to mathematical problems that is based on the application and practice
model and gives prevalence to the algebraic method over the arithmetic method.
This has lowered confidence in the educational value of these problems to the extent
that many have disappeared from textbooks, or appear in them merely as past time
activities.

Today’s basic curriculum for Spanish Primary Education explicitly states that

Problem-solving processes are one of the main axes of mathematical activity; they con-
stitute the cornerstone of mathematics education and as such they should be the source and
main support for learning throughout this stage of education. Solving a descriptive word
problem requires a multitude of basic skills, including reading, thinking, planning the
solution process, establishing and reviewing strategies and procedures, modifying this plan
if necessary, checking the solution, and communicating the results. (Spanish Royal Decree
126/2014; MEC 2014, p. 19386; authors’ translation)

Curriculum proposals therefore consider problem solving to be a basic competence
in the development of mathematical activity.

We believe that historical problem-solving methods are indispensable sources of
information for mathematics education because they illustrate the reasoning the
great mathematicians of the past used in their solutions to these problems. In this
chapter, we compile historical evidence on the solution methods for descriptive
word fraction problems and highlight certain aspects of problem solving that will
enable pupils to acquire significant knowledge.

The existing literature contains numerous classifications of problems with nat-
ural numbers that follow criteria such as the mathematical structure, or the state-
ment’s syntactic characteristics, including location of the question, length and

1A collection originally compiled by Metrodorus, probably around the 6th century and later on
greatly enriched by C. Cephalas in the 10th century and M. Planudes in the 13th century.
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number of sentences, number of words, verb tenses, etc.; or semantic characteris-
tics, which include global semantics, inclusion of superfluous information and
distracters, etc. (Cerdán 2008; Goldin and McClintock 1979). However, no clas-
sification of fraction problems has been widely accepted by the research commu-
nity. In textbooks, these problems appear under headings such as Methods, Rules,
Contexts or Actions and Agents (see Gómez et al. 2016). Although presenting them
in this way gives the problems certain recognition at least, it does not provide a
sufficiently global or overall view of them. Moreover, this form of presentation is
also an arbitrary one, because the same problem can be solved using different
(arithmetic or algebraic) methods and because the same method can be used to
solve different problems. The same occurs with the name of the problem, the
context in which it is set, or the agents involved, because these say nothing about
how the problem is structured, or what it contains.

To address this question, in Table 10.1 we first present a structured classification
of descriptive word fraction problems. The problems are divided into categories and
types according to two intrinsic variables of fraction problems: the known or
unknown whole or total quantity, and the relationship between the parts (for more
details see Gómez et al. 2016). This classification will be used to achieve the
general objective of this paper, which is to compile a list of historical methods by
analyzing each type of problem identified.

In this chapter, we will focus on a particular type of descriptive problem that
involves an unknown whole and related parts. We present the methods that have
been used in textbooks to solve this type of problem and the analytical readings that
have been used to support these methods. By analytical reading we mean the
reduction of the statement to a list of quantities and a list of relationships between
these quantities (see Gómez 2003; Puig 2003). Then, we use this information to
conduct a pilot study to investigate the extent to which these methods and readings
are reflected in students’ performance.

The rest of the chapter is organized as follows. First, we present a
sub-classification of the problems that contain an unknown whole and related parts
in order to contextualize the specific type of problem analyzed in this paper. We
then examine this type of problem based on the various analytical readings and
problem-solving methods. Finally, we present the results of our pilot study of
students who attempted to solve these problems.

10.2 Study Problem

Gómez et al. (2016) present a subdivision in which the problems with unknown
wholes and related parts are divided into four groups (see Table 10.2).

In this chapter we focus on the fourth type of problem illustrated in the above
subdivision. As Singmaster (1998) pointed out, this type of problem first appeared
in Fibonacci’s Liber Abaci (1202). Singmaster (1998) calls it the problem of
inheritance, with the ith son getting 1 + 1/7 of the rest and all getting the same
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amount. This is a descriptive word problem that comprises several stages in which
the whole is unknown, the parts are related by an additive complement, and the
distribution is equitable.

The statement for this problem, which Fibonacci called The Bequest of a Man’s
Fortune, is:

A certain man coming to the end of his life said beforehand to his eldest child, My movable
goods you will divide among you thus: you will take one bezant and one seventh of all
remaining; to another child he truly said, And you will take 2 bezants and a seventh part of
the remaining. And thus he said to all his children in order, giving each one more than the
preceding, and by steps always a seventh of the remaining; the last child had that which was
left. It happened however that each child had of his father’s property equally under the
aforesaid conditions. It is sought how many children there were and how much was the
fortune. (Sigler 2002, p. 399)

The analytical readings for this type of problem found in historical textbooks
focus on three fundamental relationships, all of which are equivalent:

(a) all the children have the same amount;
(b) the difference between what two children receive is zero; and
(c) the difference between the amount remaining before the last distribution and

what the last child receives is zero. We now present three problems to illustrate
these three analytical readings.

(a) All sons receive the same amount

An algebraic approach to this problem is found in the syncopated algebra by Aurel
(1552):

Problem: A sick man makes his will and determines that his property be divided
equally among his sons so that each receives the same amount. On the death of the
father, the eldest son receives one ducat and 1

10 of the remainder. The second son
receives 2 ducats and 1

10 of the remainder. The third son receives 3 ducats and 1
10 of

the remainder. In this way, each son receives one ducat more than the previous one
plus 1

10 of the remainder. In this way, the sick man’s wish is fulfilled because all
sons receive the same number of ducats. How many ducats did the father leave and
how many children did he have?

Solution. The man left x ducats. The eldest son received 1 ducat, thus leaving x − 1
ducats, and 1

10 of the remainder is x�1
10 , which added to 1 ducat means that the eldest son

received xþ 9
10 ducats. Taking these ducats from the x initial ducats leaves 9x�9

10 ducats for
the remaining children. Of these ducats, the second child receives 2 ducats, leaving
9x�29
10 ducats, 1

10 ofwhich is
9x�29
100 , whichwhen added to the 2 ducats already received by

the second son makes 9xþ 171
100 ducats in total for the second son. Since both sons

inherited the same amount, the number of ducats for the first son must equal the
number of ducats for the second son. I say, therefore, that the xþ 9

10 ducats received by
the first son are equal to the 9xþ 171

100 received by the second son. Reducing this equation
to integers (cross-multiplying) leaves 100x + 900 = 90x + 1710. Solving this
equation leaves x = 81, which is the number of ducats left by the father. To find how
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many sons he had, find how much each son received. Taking 1 ducat from 81 leaves
80, 1/10 of which is 8. If we add 1 ducat to 8 ducats, we get 9 ducats in total for the first
son, which is the same number received by all sons (fol. 92; authors’ translation).

As we can see in the text, Aurel uses relationship (a), which allows him to
formulate the equation: xþ 9

10 = 9xþ 171
100 . In the transcription of the solution to this

problem, for greater clarity, we have replaced the cossic symbols with current
algebraic symbols.

(b) The difference between what two sons receive is zero

The following example, taken from Euler (1822/1770), also uses the algebraic
method but that time in Cartesian form (Descartes 1701; Descartes wrote in that
book what one needs to do to translate a problem into equations and Polya (1966)
rewrote the Cartesian rules to show it as rules to solve problems with algebraic
signs).

Problem: A father leaves at his death several children, who share his property in
the following manner: namely, the first receives a hundred pounds, and the tenth
part of the remainder; the second receives two hundred pounds and the tenth part of
the remainder; the third takes three pounds and the tenth part of what remains and
the fourth takes four hundred pounds and the tenth part of what remains; and so on.
And it is found the property has thus been divided equally among all the children.
Required is how much it was, how many children there were, and how much each
received?

Solution. Let us suppose that the father’s total fortune amounts to z pounds and
that each son will receive the same equal share, which we will call x. The number of
children will therefore be z

x. Now let us solve the problem.

Sum or inheritance to be divided Order of sons Share for each son Differences

z 1st x ¼ 100þ z�100
10

z – x 2nd x ¼ 200þ z�x�200
10 100� xþ 100

10 ¼ 0

z – 2x 3rd x ¼ 300þ z�2x�300
10 100� xþ 100

10 ¼ 0

z − 3x 4th x ¼ 400þ z�3x�400
10 100� xþ 100

10 ¼ 0

z − 4x 5th x ¼ 500þ z�4x�500
10 100� xþ 100

10 ¼ 0

z − 5x 6th x ¼ 600þ z�5x�600
10

And so on

We have included the differences between successive shares in the final column.
These are obtained from each share minus its preceding share. Since all shares are
equal, this difference is equal to zero. By solving the equation 100� xþ 100

10 ¼ 0, we
obtain x = 900.

We now know, therefore, that each son will receive 900 pounds. So, by taking
any of the formulas from the third column we obtain x ¼ 100þ z�100

10 . Therefore,
z = 8100 pounds and the number of sons is 8100/900 = 9 (Euler 1822/1770,
p. 173).
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In this case, Euler uses relationship (b) to propose the equal relationships
reflected in the fourth column of the above solution.

(c) The difference between the amount remaining before the final distribution
and what the last son receives is zero

The following quick solution is the one we previously mentioned from Fibonacci.

For the seventh that he gave each child you keep 7 from which you subtract 1; there
remains 6 and this many were his children, and the 6 multiplied by itself makes 36, and this
was the number of bezants. (Sigler 2002, p. 399)

Because the explanation is regulated, i.e. based on an unexplained rule, there is
nothing in the text to help us ascertain which reading analysis was used to support
the solution. However, it may be possible that Fibonacci used an arithmetic method
based on factorization and proportion. To explain this method, we will use sym-
bolic language.

Let C be the final remainder of bezants and 1 � nþ 1
7 C � 1 � nð Þ; n� 2 be the

amount received by the final son. Relationship (c) is then written as:

C � 1 � nþ 1
7

C � 1 � nð Þ
� �

¼ 0; ð10:1Þ

where n is the number of sons. From Eq. 10.1 we obtain Eq. 10.2:

7C � C � 7n� n ¼ 0 ! 7� 1ð ÞC ¼ 7� 1ð Þn ! 6 � C ¼ 6 � n ð10:2Þ

From Eq. 10.2 we deduce that C ¼ n, i.e. the number of children is equal to the
final remainder and, according to Eq. 10.1, this is equal to the amount received by
the final son. Therefore, since the distribution is equitable, each son receives this
same amount and the inheritance (which we can call H) will be equal to n2 (the
number of sons by n bezants for each son).

All we need now is to find the value of n, which can be obtained, for example,
from the equation corresponding to the amount received by the first son:

1 þ 1
7
ðn2 � 1Þ ¼ n ! n ¼ 6: ð10:3Þ

From 10.3 we find that n = 6. We also find that this result could also have been
obtained from Eq. 10.2 by using factorization and proportion as we stated before.

Another example of this method of factorization and proportion is the following
problem extracted from Puig (1715).

Problem: A sick merchant makes his testament, in which he leaves a certain
amount of his property to each of his sons. He determines that the eldest son will
receive a sixth of his property plus 300 ducats, the second son will receive a sixth of
the remainder plus 600 ducats, the third son will receive a sixth of the new
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remainder plus 900 ducats, and so on for the next sons, giving each one a sixth part
of the new remainder plus 300 ducats more than the preceding one. On the father’s
death, the property was divided and it was found that all the sons received the same
amount. How many sons did the father have, how much property did he leave, and
how much did each son receive?

Solution. Subtract the numerator from the denominator, i.e. 1 from 6, to leave 5,
which is how many sons the father left. Then multiply the 300 ducats, which is the
number of ducats more that are successively given to each son, by 6, the denom-
inator, to give 1800 ducats, which is the total amount given to each son. Multiply
this amount by 5 to find the value of the property left by the father. Try it and you
will find this is true (Puig 1715, p. 209; authors’ translation).

Using symbolic language to follow the reasoning shown earlier, relationship
(c) is written as follows:

C � 300nþ 1
6
C

� �
¼ 0; ð10:4Þ

where 300nþ 1
6C; n� 2 is the amount received by the youngest son, n is the

number of sons, and C is the final remainder.
From Eq. 10.4 we obtain:

6C � C ¼ 6� 300n ! 6� 1ð ÞC ¼ 6� 300n; ð10:5Þ

The number of children and the amount inherited must be whole numbers. If we
observe the equality and the above explanation in terms of factorization and pro-
portion, then 6�300

6�1 ¼ C
n, which shows that n = 6 − 1 and that C = 6 � 300. This is a

possible solution and may be the idea that was applied by Fibonacci.
In conclusion, we have found three analytical readings for the same inheritance

problem in which the whole is unknown, the parts are related by an additive
complement, and the distribution is equitable. We have also observed two methods
for solving the problem: the regulated arithmetic method and the algebraic method
using syncopated algebra and Cartesian algebra.

10.3 Pilot Study

For our pilot study, we chose a similar but more intuitive statement to that of
Fibonacci, which is taken from Tahan (1993), who calls it The Raja’s Pearls.

A rajah on his death left to his daughters a certain number of pearls with instructions that
they be divided up in the following way: his eldest daughter was to have one pearl and a
seventh of those that were left. His second daughter was to have two pearls and a seventh of
those that were left. His third daughter was to have three pearls and a seventh of those that
were left. And so on. The youngest daughters went before the judge complaining that this
complicated system was extremely unfair. The judge, who as tradition has it, was skilled in
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solving problems, replied at once that the claimants were mistaken, that the proposed
division was just, and that each of the daughters would receive the same number of pearls.
How many pearls were there? How many daughters had the rajah? (Tahan 1993, p. 76)

The study included the following participants: 27 future high school mathe-
matics teachers (hereafter, HSMT), two future primary school teachers (hereafter,
PST), and six high school students (hereafter, HSS). With this non-homogeneous
sample, our aim was to observe the participants’ skills in using problem-solving
methods and analytical readings at each of the levels of mathematical knowledge.
The following are the results of a pilot study and provide us with just a first view.
For more significant conclusions a larger sample should be used in future studies.

10.4 Results

The problem was solved algebraically by 12 students (11 HSMT and 1 HSS) using
the fundamental relationship (a). As an example, Fig. 10.1 shows the solution
produced by one of these students. This student obtained the number of pearls
received by the first daughter 1þ 1

7 x� 1ð Þ� �
and the number of pearls received by

the second daughter, 2þ 1
7

6
7 x� 1ð Þ � 2
� �� �

and then formulated the equation by
equating the two expressions.

Two students (HSMT) solved the problem using an arithmetic method and
relationship (c). To do so, they assumed that the total number of pearls minus one
had to be a multiple of 7 and then worked backwards to solve the problem by trial
and error (Fig. 10.2).

The rest of the students were unable to solve the problem due to one of two
reasons:

1. They were unable to translate some of the expressions in the statement into
symbolic language. For example:

(a) the characteristic expression for this type of problem: “of those that were
left” (see Fig. 10.3).

(b) the expression “a pearl and a seventh of those that were left” (see Fig. 10.4).

2. They had problems working out the fractions.
This student started with the number of pearls corresponding to the first
daughter but did not transcribe the expression “of those that were left” correctly,
writing 1þ 1

7 x, instead of 1þ 1
7 x� 1ð Þ. From this point on, the solution is

incorrect and the errors accumulate in the subsequent steps. Although the stu-
dent equates what the first daughter receives with what the second daughter
receives, the problem is now impossible to solve and the student expresses this
fact.

In the first line in Fig. 10.4 we can see that the student transcribes the share of
the pearls that should be inherited by all the daughters. The student expresses the
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number of pearls received by the first daughter correctly, 1þ 1
7 x� 1ð Þ, but then

makes an error when expressing the number of pearls received by the second
daughter. We can see how the student is unable to correctly transcribe the
expression “two pearls and a seventh of those that were left” symbolically, writing
2þ 1

7
1
7 x� 1ð Þ� �

instead of 2þ 1
7

6
7 x� 1ð Þ � 2
� �

. After this, the solution makes no
sense.

10.5 Final Remarks

We have conducted a historical-epistemological study and a pilot study with stu-
dents on descriptive word fraction inheritance problems in which the distribution is
equitable, the whole is unknown, and the relationship between the parts is based on
an additive complement.

x = the number of pearls at the beginning

Solution. There were 36 pearls and 6 daughters with 6 pearls each.

Fig. 10.1 The correct solution, for which the student used the algebraic method and assumed that
all the daughters received the same amount, and its translation. A literal translation is given in
italics and clarifications are given in non-italics

10 Missing Curious Fraction Problems 203



In our historical-epistemological study, we observed the use of regulated arith-
metic methods as well as syncopated algebra and Cartesian algebra. We also
observed three equivalent analytical readings: when all heirs are considered to
receive the same inheritance; when the difference between what two heirs receive is

We imagine that the total amount minus one is a number divisible by seven.
Start by assuming 15 – 1 = 14. 14/7 = 2. The first daughter has 3 pearls; the remainder is 
12, 12 – 2 = 10, which is not divisible by seven.

The students test with different numbers until they reach 36 pearls:

36 – 1 = 35, 37/5 = 5. The first daughter has 6 pearls, the remainder is 30.

30 – 2 = 28, 28/7 = 4. The second daughter has 6 pearls, the remainder is 24.

24 – 3 = 21, 21/7 = 3. The third daughter has 6 pearls, the remainder is 18.

18 – 4 = 14, 14/7 = 2. The fourth daughter has 6 pearls, the remainder is 12.

12 – 5 = 7, 7/7 = 1. The fifth daughter has 6 pearls, the remainder is 6.

The sixth daughter has the final 6 pearls.

Fig. 10.2 A correct solution, for which the students used the arithmetic method and assumed that
the difference between the amount remaining before the final distribution and what the last
daughter receives is zero, and its translation. Literal translations are given in italics and
clarifications are given in non-italics
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considered to be zero; and when the difference between the final remainder and the
final amount inherited is considered to be zero.

The results of our pilot study were as expected. On the one hand, thirteen of the
future high school teachers solved the problem correctly. Most of these students
used the Cartesian method and the analytical reading that identified that both heirs
would receive the same amount. We should stress that only two of these students
solved the problem through arithmetical reasoning, and this was by trial and error
and the inverse method. On the other hand, future primary school teachers were not
able to solve the problem, though we knew from their curriculum that they had

1 + 17 𝑥 1st daughter2 + 17 𝑥 2nd daughter3 + 17 𝑥 3rd daughter

1 + 17 𝑥 2 + 17 𝑥17 𝑥 17 𝑥 2 − 10 1, it is impossible.

Fig. 10.3 An incorrect solution because of the incorrect translation of the expression “the
remainder.” Literal translations are given in italics and clarifications are given in non-italics
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received training in elementary algebra during their secondary school education.
However, in this research we had only two such teachers and with such a restricted
sample no conclusions can be drawn. However, this situation could be an indication
of what is expected if a larger sample were used in future research. We also found

→

Fig. 10.4 An incorrect solution because of the incorrect translation of the expression “a pearl and
a seventh of those that were left.” A literal translation is given in italics and clarifications are given
in non-italics
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that many students had problems transcribing the expression “of those that were
left.” This highlights the constructively interfering complementary roles of the
literary and symbolic languages.

Our study also showed that the Cartesian method is the one that is most used by
today’s students, since we found no evidence that arithmetic reasoning was used to
solve the problem. The problems presented in this chapter, which seem to have
been lost from the educational record, are by themselves a rich source of knowl-
edge. As such, we found that they have helped to communicate mathematical
applications, techniques, approaches, methods and reasoning, and that the historical
sources illuminate solutions of the historical authors. Thus, it may be useful to teach
how to use these problems as an object of study, rather than to find their solution as
the by-product of another branch of learning; namely, algebra.

This information may also prove useful for research on numerical and algebraic
thinking, since it provides a historical framework for studying classical problems,
not as individual components of a mathematical content but as elements related to
the roots of mathematics and to analysis of its evolution.

Finally, the challenge for teachers and researchers is to keep this wealth of
knowledge alive, preventing it from being forgotten. They must take into account
the aims of the curriculum, which considers that problem solving is a basic com-
petence to be adapted in education in accordance to the students’ background.
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Chapter 11
History of Matrices

Commognitive Conflicts and Reflections
on Metadiscursive Rules

Aline Bernardes and Tatiana Roque

Abstract This chapter contains a teaching proposal based on the history of
matrices inspired by the conceptual and methodological framework introduced by
Kjeldsen (2011) to integrate history into the teaching of mathematics. Kjeldsen’s
conceptual framework is based on Sfard’s (2008) theory of thinking as commu-
nicating. Our goal is to create conflicting situations in which students are encour-
aged to reflect upon the metadiscursive rules related to matrices and determinants,
comparing them with those found in some historical writings. Two teaching
modules were created, dealing with two episodes in the history of matrices, based
on the works of the mathematicians Sylvester and Cayley, and on the historical
interpretation of Brechenmacher (2006). Two field studies were conducted with
undergraduate mathematics students, from two universities in Rio de Janeiro. In this
chapter we also explain how some historical metadiscursive rules were identified.
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11.1 The Context of the Work

The main motivation of this study was the teaching of matrices in undergraduate
Linear Algebra courses for future teachers. Many Linear Algebra courses in Brazil,
and their corresponding textbooks, start with the concept of the matrix as a
stand-alone mathematical object. Both the definition of matrix and its operations are
often presented without problematizing why this object must be defined and why
the operations are done the way they are. In this kind of approach, the teaching is
often guided by procedures. The same focus on procedures marks the teaching of
determinants.

In the context of Linear Algebra courses, students tend to better grasp the
concept of matrices with the study of linear transformations, where they are seen as
objects that act geometrically on vectors. But oddly, when asked why matrix
multiplication is defined in terms of inner products between rows and columns of
the matrices, students nearing graduation from university, and even some high
school teachers, usually do not give an adequate answer.

Mathematical concepts are often presented in the teaching of mathematics as
ready and finished products—that is, as static entities. The problems and demands
that drove the emergence and development of the concepts, as well as the factors
that determined their choice as objects to be studied, are not taken into account in
the training of mathematics teachers.

In this sense, the history of mathematics may contribute to the understanding of
certain subtleties inherent to the development of the concept being studied: what led
to its current definition, for what ends it was created, etc. Let us take the example of
matrices, which were historically introduced after determinants. This means, in
particular, that determinants have not always been computed with matrices. Thus,
the history of mathematics may play an important role in the teacher training as a
way to reveal the paths taken by the development of the concepts, which are hidden
in their modern presentation.

This study used historical sources on matrices and elaborated a teaching pro-
posal exploring two mathematical practices, by the English mathematicians Arthur
Cayley (1821–1895) and James Joseph Sylvester (1814–1897), respectively, in
which matrices appeared as a useful representation (Brechenmacher 2006). The
practices show that this notion was not proposed immediately as a mathematical
object and the way that matrices and determinants were understood and used has
changed over time.

The conceptual framework is based on the perspective of mathematics as a
discourse, and the notions of commognitive conflicts and metadiscursive rules
proposed by Sfard (2008), and on the theoretical argument introduced by Kjeldsen
(2011), which gives to the history of mathematics a new role in the learning of
mathematics grounded in Sfard’s theory. Teaching and learning situations were
therefore developed with the aim of creating commognitive conflicts, in which
students were encouraged to reflect upon the metadiscursive rules that define their
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actions when dealing with matrices and determinants, after comparing them with
the rules that appear in some historical writings.

This chapter intends to contribute to the discussions related to the theme of
“theoretical and/or conceptual frameworks for integrating history in mathematics
education.” We will present an example of an empirical study using Kjeldsen’s
theoretical argument applied to the use of history in the teaching of Linear Algebra,
in particular, of matrices and determinants.

A pilot study was first carried out to test two teaching modules (Bernardes and
Roque 2014). After that, two additional field studies were done with three research
goals: (i) to investigate how historical sources encourage reflections about metarules
related to matrices and determinants; (ii) to investigate how reflections about
metarules impact students’ conceptions about matrices and determinants; and (iii) to
investigate the development of a historical consciousness in the students. The
investigation related here is part of the research of a doctoral thesis by the first author
(Bernardes 2016). This paper focuses on the results related to the first research goal
above.

The next section introduces briefly the main concepts of Sfard’s theory which
were used in the work, and explains how Kjeldsen has proposed using this theory to
integrate history with the teaching of mathematics. Then, two episodes from the
history of matrices are presented—inspired by the work of Brechenmacher (2006)
—along with an explanation on how four metadiscursive rules were identified in the
historical sources of Sylvester and Cayley. After that, a brief description is given of
the field studies carried out and of the teaching material. The results related to the
first research goal above are presented and discussed, before the presentation of
some conclusions drawn from the investigation.

11.2 Theoretical Framework

The theoretical framework of the research draws inspiration from the works of
Kjeldsen and collaborators (Kjeldsen 2011; Kjeldsen and Blomhøj 2012; Kjeldsen
and Petersen 2014). In the first paper, Kjeldsen introduced a theoretical argument to
integrate history in the teaching of mathematics based on Sfard’s theory of thinking
as communication (Sfard 2008).

Sfard couches her theory within a participative perspective, in opposition to an
acquisitionist one, and emphasizes the social, cultural and historical aspects of
human development by shifting the focus of learning from the individual to the
collective and to human activity. According to Sfard, humans are social beings
“engaged in collective activities from the day they are born and throughout their
lives” (Sfard 2008, p. 79).

Through this perspective, Sfard defines communication as a standardized col-
lective activity, whose standards can be described as the result of processes gov-
erned by rules. In this way, there are different ways of communicating and they are
called discourses. Mathematics is therefore seen as a type of discourse; chemistry,
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physics and history are also examples of discourses, and so on. Learning mathe-
matics requires becoming part of the discourse of mathematics and being capable of
individualizing it. In other words, it means “becoming able to have mathematical
communication not only with others, but also with oneself” (Sfard 2007, p. 575).
Sfard furthermore posits that learning mathematics is equivalent to modifying and
extending one’s own discourse.

There are two types of rules that shape the standards of communication in the
discourses: object-level rules and metadiscursive rules. Object-level rules are
defined as “narratives about regularities in the behavior of objects of the discourse,”
while metadiscursive rules, or metarules, “define patterns in the activity of the
discursants trying to produce and substantiate object-level narratives” (Sfard 2008,
p. 201). In the case of mathematical discourse, object-level rules relate to the
properties of mathematical objects. For example, in Euclidean geometry, the inte-
rior angles of a triangle always add up to 180°. In physics, Newton’s laws of gravity
and of motion are examples of object-level rules. Metarules are related to the
actions of discursants, or rather, the way that they interpret the content of the
discourse. They are generally implicit in the discourse and are made manifest when
we judge, for example, that a specific description could be considered as a defi-
nition, or if a proof can be accepted as correct.

Metarules govern “when to do what and how to do it” (Sfard 2008, p. 208). So,
they affect the way in which participants of a discourse interpret its content.
Learning of mathematics is thus the development of appropriate metarules. On the
other hand, as these rules are contingent and tacit (Sfard 2008, pp. 203, 206),
participants do not observe them in a conscious and natural way. For this reason, it
is unlikely that participants can learn metarules by themselves.

Kjeldsen (2011) argued that the history of mathematics plays a fundamental role
in order to “illuminate metadiscursive rules” of the mathematical discourse. They
are historically established and may thus be treated as the object-level of a historical
discourse. In this way, metadiscursive rules stop being tacit and can be made
explicit objects of reflection.

The idea is then to promote situations in which students are encouraged to
investigate the development of mathematical practices, through the use of historical
sources, and to understand the vision mathematicians had about their own practices,
as well as how they viewed and used their objects of study, and how they for-
mulated and substantiated their mathematical narratives. Doing so, students can
have contact with discourses governed by metarules that are different from the
modern ones and different from their own metarules.

Kjeldsen’s theoretical argument rests on the concept of commognitive conflict,
defined as “a situation in which communication is hindered by the fact that different
discursants are acting according to different metarules” (Sfard 2007, p. 576). The
use of historical sources can lead to these conflicts, since history offers several
discourses governed by distinct metarules.

The research done in this study used Kjeldsen’s theoretical argument as a
starting point and was greatly inspired by her works; but, it concerns a different
mathematical subject that has yet to be widely explored in the history-based
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teaching experiments reported in the literature. This study was interested in using
historical sources on the history of matrices to show how the metarules regarding
matrices and determinants have changed over time. In this way, (future or current)
teachers—the investigatory subjects of our research—can make their own metarules
about matrices and determinants explicit.

11.3 The Historical Part and How the Metarules Were
Identified

11.3.1 Two Episodes from the History of Matrices

This section sets forth some historical aspects of matrices based on the ideas dis-
cussed in the article Les Matrices: formes de représentation et pratiques
opératoires (1850–1930) (Brechenmacher 2006) and on some original sources from
the English mathematicians James Joseph Sylvester and Arthur Cayley. This sec-
tion is aimed at providing a basis for introducing the metarules identified in the
sources, which were explored in some of the teaching experiments.

Brechenmacher’s historical interpretation was chosen because his works are
based on the conception of mathematics as a practice, or series of practices, and
because he takes into account the social, cultural and intellectual factors within
which mathematical activities are developed. It is important to mention that this
kind of historical approach facilitates the identification of metarules. In contrast, an
anachronistic historical approach can hinder identification of metarules.

(a) Sylvester’s episode

Between 1850 and 1851, Sylvester published a series of articles analyzing the
nature of points of intersection (real/complex, finite/infinite) of two conics and the
types of contacts between two conics and two quadrics. The Sylvester’s research
episode was limited in accordance with the articles (Sylvester 1850a, b, 1851a),
focusing on the problem of classifying the types of contacts between two conics,
which it will be referred to moving forward as the problem of contacts.

The term “contact” was employed to denote the points of intersection where two
conics are tangent to each other. There are four types of contacts that can be
characterized by the multiplicity1 (2, 3, or 4) of the point(s) of intersection where
the conics are tangent: simple contact, diploidal contact, proximal contact and
confluent contact (Figs. 11.1 and 11.2).

The main mathematical tool used by Sylvester in order to solve the problem of
contacts was the notion of determinant. However, he did not compute determinants

1The term “multiplicity,” used in reference to the points of intersection of the conics, refers to the
algebraic concept of the index of intersection, which generalizes the intuitive notion of counting
the number of times that two algebraic curves intersect at a point.
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of matrices. This last notion was introduced later. In order to classify the type of
contact between two conics, Sylvester analyzed the multiplicity of the roots of the
equation detðUþ lVÞ ¼ 0, U and V being homogeneous polynomials of degree 2
in three variables. To clarify:

U : ax2 þ by2 þ cz2 þ 2a0xyþ 2b0xzþ 2c0yz ¼ 0;

V : ax2 þ by2 þ cz2 þ 2a0xyþ 2b0xzþ 2c0yz ¼ 0;

and the coefficients are real numbers. So, Sylvester computed determinants of
(homogeneous) polynomial functions. He did not present a definition for deter-
minants in his works about the contact problem. The equality detðUþ lVÞ ¼ 0
yields a cubic polynomial equation. In some examples, he presented this equation
directly, but there are representations for determinants using a table form.

When the roots of detðUþ lVÞ ¼ 0 are distinct, there are no points of contact.
In the case of double or triple roots (with algebraic multiplicity 2 or 3, respectively),
there are points of contact (Figs. 11.1 and 11.2). Knowing of the existence of four
types of contact, the analysis of the multiplicity of roots of detðUþ lVÞ ¼ 0 proved
to be an insufficient criterion for considering all cases. Then, Sylvester introduced
the notion of minor determinants:

Imagine any determinant set out under the form of a square array of terms. This square may
be considered as divisible into lines and columns. Now conceive any one line and any one
column to be struck out, we get in this way a square, (…) and by varying in every possible
manner the selection of the line and column excluded, we obtain, (…), n2 such minor
squares, each of which will represent what I term a First Minor Determinant relative to the
principal or complete determinant (…). (Sylvester 1850a, p. 147)

(a) (b)

Fig. 11.1 a Simple contact: one double intersection point; b Diploidal contact: two double
intersection points

(a) (b)

Fig. 11.2 a Proximal contact: one triple intersection point; b Confluent contact: one quadruple
intersection point
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Following that, properties of the minor determinants were stated and applied in
order to classify the type of contact between two conics. Sylvester developed a
practice that consisted of comparing the common factors in the polynomial
development of the complete determinant det(U + µV) and of the first minor
determinants.

The practice of classifying the types of contacts between two conics was extended
to investigate the intersections between two quadrics (represented by the
second-degree homogenous equations in four variables) and, more broadly, between
two quadratic forms (in n variables). The generalization of the technique for
extracting systems of minor determinants was based on a representation in the form
of a rectangular table, which Sylvester dubbed a matrix (Brechenmacher 2006):

(…) we must commence, not with a square, but with an oblong arrangement of terms
consisting, suppose, of m lines and n columns. This will not in itself represent a determinant,
but is, as it were, a Matrix out of which we may form various systems of determinants by
fixing upon a number p and selecting at will p lines and p columns, the square corresponding
to which we may be termed determinants of the pth order. (Sylvester 1850a, p. 150)

In this quote, Sylvester made explicit his understanding of a matrix as a source
of minor determinants, concisely called by Brechenmacher (2006) as “mère de
mineurs” (p. 15).

(b) Cayley’s episode

The generalization of the practice of extracting minor determinant systems from
determinants of any order created the problem of enumerating these systems, which
attracted Cayley’s attention to the notion of matrix. Eight years later, Cayley
published a text in which he defined the matrix operations and stated their prop-
erties (Cayley 1858). Matrices arise, according to the author, naturally from “an
abbreviated notation” for linear systems of equations. Cayley also indicated the use
of matrices as a notation for bilinear and quadratic forms in other works, but the
1858 memoir places more emphasis on the association between matrices and linear
systems (what he called a set of linear equations).

The definitions of matrix operations were based on the relationship between
matrices and systems of equations. The multiplication of matrices, for example, was
defined through a “composition between linear systems.” It is interesting to note
that, although Cayley initially referred to a system of equations, upon explaining the
notation, he referred to a set of linear functions. He apparently did not find it
necessary to distinguish between systems of linear equations and linear transfor-
mations,2 as is done today.

One issue raised by Brechenmacher (2006) relates to the “remarkable theorem,”
around which the theory of matrices was developed, and which was announced on
the first page of the memoir: “I obtain the remarkable theorem that any matrix

2It is worthwhile to note that the expression “linear transformations” was often used by Cayley,
despite his not having used it in the 1858 memoir. Some articles are dedicated entirely to linear
transformations; for example, Cayley (1845).
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whatever satisfies an algebraical equation of its own order, the coefficient of the
highest power being unity, and those of the other powers [are] functions of the
terms of the matrix, the last coefficient being in fact the determinant” (Cayley 1858,
p. 17).

More than half of the memoir was dedicated to applications of the remarkable
theorem, which led Cayley to pose the problem of expressing the powers and roots
of a matrix. To solve this problem, he developed a practice based on a dual
interpretation of the notion of a matrix: sometimes a matrix was interpreted as a
system of numbers, sometimes as a single quantity or as a number. Soon after
defining the operation of multiplying a matrix by a number, Cayley introduced the
notion of the matrix considered as a single quantity. In modern3 notation:

m ¼
m 0 0
0 m 0
0 0 m

0
@

1
A

According to Cayley, “the matrix on the right-hand side is said to be the single
quantity m considered as involving the matrix unity” (Cayley 1858, p. 20, italics in
the original). In current terms, Cayley sometimes used the same symbol m to denote
both a number and a square matrix (mIn). The dual interpretation of a matrix was
expressed in a slightly different way in the proof of the “remarkable theorem,”
which was done for a particular case with square matrices of order 2:

“Imagine a matrix

M ¼ a b
c d

� �

and form the determinant

a�M b
c d �M

����
����

the developed expression of this determinant is

M2 � ðaþ dÞM1 þðad � bcÞM0; ”

(Cayley 1858, p. 23).
Even so, he justified the procedure based on his notion of a matrix as a “single

quantity.” In the sequence of the proof, he explained that:

3To keep the presentation simpler, Caley’s original notation for a matrix (a combination of
parentheses and vertical lines) is not used here (though his notation for determinants using vertical
lines is identical to the modern one).
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a�M b
c d �M

� �
¼ a b

c d

� �
�M

1 0
0 1

� �

is the “original matrix, decreased by the same matrix considered as a simple
quantity involving the matrix unity” (Cayley 1858, p. 24).

As it can be seen above, the notion of a matrix changed and acquired a new
identity with Cayley’s memoir. Matrices were no longer considered merely as
generators of minor determinant systems, but began to be associated with the laws
of a symbolic calculation and to a “remarkable theorem” (Brechenmacher 2006).

11.3.2 Metarules in the Discourses of Sylvester and Cayley

Four metarules were identified in the discourses of Sylvester and Cayley, which
were to be explored in the teaching proposal. An interest in rules expressing actions,
or influencing concepts in relation to determinants and matrices and that are clearly
different from the current metarules is what determined the choice of these four
metarules over so many others implicit in these mathematicians’ discourses. The
path traced to identify the metarules is based on Kjeldsen’s theoretical argument,
which affirms that metarules implicit in the mathematical discourse become explicit
in the historical discourse. So, the metarules were first identified in the historical
interpretation of Brechenmacher (2006). An analysis of some primary sources
(Cayley 1858; Sylvester 1850a, 1851a, b) was then done in an effort to understand
where the identified metarules would fall, in relation to the underlying routines in
Sylvester and Cayley’s practices.

As seen in the historical section on Sylvester’s practices, the original aspect of
his work was his computation of determinants to solve the problem of identifying
the types of contacts between two conics or two quadrics. Brechenmacher (2006)
expressed a fundamental idea underlying Sylvester’s practice when he says4:

These successive publications make it possible to follow the progressive elaboration of a
method which is characterized by a translation of geometric or analytical properties in the
context of the calculation of determinants. (Brechenmacher 2006, p. 10; authors’
translation)

It was also noted that Sylvester spoke of determinants of functions, with the
functions being homogeneous polynomials of degree 2, which represent conics.
Thus, the manner in which this mathematician utilized determinants led to the
consideration of the following metarule: Determinants are tools used to investigate

4In the original: “Ces publications successives permettent de suivre l’élaboration progressive d’une
méthode qui se caractérise par une traduction de propriétés géométriques ou analytiques dans le
cadre du calcul des déterminants.”
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the geometric properties of curves, and are calculated using functions (homoge-
neous polynomials of degree 2).

A huge difference is immediately noticeable between this metarule and the
current ones, since a determinant is currently defined in the context of Linear
Algebra as a function that associates square matrices to numbers and is seen as a
property of square matrices. This was not previously the case, since the notion of
matrices emerged after determinants.

By introducing the term “matrix,” Sylvester makes explicit his conception of
matrices as a source of minor determinants (Sylvester 1850a, p. 150), or the mother
of minors, according to Brechenmacher (2006). This vision was reinforced in
another paper dedicated to stating the properties of minor determinants:

I have in previous papers defined a “Matrix” as a rectangular array of terms, out of which
different systems of determinants may be engendered, as from the womb of a common
parent; these cognate determinants being by no means isolated in their relations to one
another […]. (Sylvester 1851b, p. 302)

Such a conception of the notion of a matrix is directly linked to Sylvester’s
action of supporting his practice in a representation with the form of a table to
extract the minor determinants and to formulate the narratives about these new
objects; that is, to state their properties. This action led to the consideration of the
following metarule: Matrix as the mother of minor determinants: the use of
matrices as a representation connected to the technique of generating a system of
minors. First of all, this metadiscursive rule highlights the moment at which
matrices were introduced and shows how this notion was used before the mathe-
matical object which we now know today was constituted.

In Cayley’s memoir, the interpretation of the matrix as “a notation that is very
convenient for the theory of linear equations” (Cayley 1855, p. 282; authors’
translation) substantially influenced the way in which operations with matrices were
defined. Cayley used an association between linear systems and matrices as the
basis for introducing the addition of matrices, the multiplication of one matrix by a
“single quantity” (number), the multiplication (or composition) of matrices, as well
as the definitions of matrix zero (null matrix) and of matrix unity (identity matrix).
The use of this relationship led to consideration of the following metarule: A matrix
is a convenient notation to use when working with linear equation systems.

Currently, operations with matrices are defined in an abstract way, without
problematizing the reason for, or the origin of, such definitions. Reflecting upon this
metarule and its role in the theory of matrices exposed by Cayley allows for an
understanding of why there is a specific rule for multiplying matrices.

Another aspect of Cayley’s practice is the dual interpretation of a matrix,
namely, sometimes a matrix was used as a system of numbers and sometimes as a
“single quantity” or a number. In the routine of constructing the proof of the
remarkable theorem, Cayley alternated between the two interpretations above.
Relying on the dual interpretation about what a matrix is to Cayley, the last
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metarule considered is: Dual interpretation of the notion of matrix: a matrix is
sometimes considered as a single quantity (number) and sometimes as a multiple
quantity (system of numbers).

The metarule above differs substantially from current ones, according to which a
matrix in general is not seen as a quantity or number, but rather as a table of
numbers or, from a more formal point of view, as a function. Mathematically, the
association between a scalar matrix mIn and a real or complex number m is correct.
While complex numbers can also be identified with a 2 � 2 real matrix of a special
form, it is not possible to have such an identification between a matrix and a number
in a more general context (without assuming restrictions on the matrix entries).

The four (historical) metarules stated above were explored through historical
activities in two teaching modules in which the works of Sylvester and Cayley were
presented in an abbreviated manner. The next section describes how teaching
modules were designed and tested in two field studies.

11.4 The Empirical Part

11.4.1 Two Field Studies

Two experiments were carried out with nine undergraduate mathematics students
(prospective teachers), from two universities in Rio de Janeiro. A mini-course under
the topic of “Different roles of the notion of matrix in two episodes of the history of
matrices” was offered for both groups of volunteers. The participants had each
taken at least one course in Linear Algebra. The goal was not to use the history of
mathematics to introduce the concept of matrix. Students were selected who had
already taken a preliminary course in Linear Algebra and who had learned about
matrices. Besides matrices, the participants had learned about determinants, linear
systems, rank and linear transformations.

The work was done with the two groups above separately. The mini-course had a
duration of six sessions lasting three hours each. The first and the last meetings
were set aside for carrying out interviews with the participants.

The teaching module on Sylvester was developed during two sessions: First,
there was an introduction to the mathematician Sylvester and to the problem of
classifying the types of contacts between two conics, discussing the concepts of
projective geometry necessary to accompany Sylvester’s mathematical practice.
The concepts of projective geometry were introduced using modern language.
However, the solution of the problem was presented in a way that sought to follow
the original notation whenever possible and without using matrices, so that the
participants could dive into the thinking of the time. These choices were not an
imposition; on a few occasions matrices and modern notation were used to facilitate
understanding. During the next session, the participants worked on the historical
activities in groups.
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The teaching module on Cayley was also developed during two sessions. First, a
guided study was conducted on the introductory pages to Cayley’s (1858) memoir,
in order to understand how and for what Cayley used matrices, and how he defined
the operations with matrices, especially matrix multiplication. During the next
session, the participants discussed the historical activities in groups.

The following instruments were used to generate data in order to investigate how
historical sources encourage reflections about metarules: (i) record of written
answers for the historical activities in both modules, and (ii) audio recordings of the
discussions when participants carried out the historical activities for both modules.
The audio of the discussions was fully transcribed for data analysis.

11.4.2 The Teaching Modules

The first teaching module was entitled: “How matrices appeared in Sylvester’s
study of conics.” The geometric context, in which the term “matrix” was proposed
by Sylvester, was introduced along with an explanation of how he solved the
problem of the classification of the types of contact between two conics using
determinants. Original excerpts were used as much as possible; however, for the
sake of clarity, modern definitions and illustrations were used occasionally. Some
concepts from projective geometry were necessary, like homogeneous coordinates,
projective points, and projective conics. Mathematical exercises were proposed to
help the students understand the mathematics of Sylvester’s practice. After intro-
ducing these notions, this teaching module presented a summary of the practice
developed by Sylvester in order to solve the problem of contacts. In the end, the
students had to discuss historical questions in groups.

The goal of the historical activities was to elicit a discussion among the students
concerning the historical metarules and, therefore, to encourage reflections and
discussions about their own metarules related to matrices and determinants. The
historical activities of the teaching module about Sylvester were:

• Summarize how Sylvester classified the types of contacts between two conics
U and V.

• Sylvester uses various mathematical concepts/tools in the practice he developed
to solve the problem of classifying the types of contact between two conics. To
understand the role of each one of these in his research, identify which played
the role of inducing new knowledge (object(s) of investigation) and which
helped to supply answers to the given problem (techniques). The object of
Sylvester’s investigation is: the classification of the types of contacts between
two conics.

• List all the mathematical concepts/tools that constitute the techniques used by
Sylvester, according to the text.

• Describe the difference between how Sylvester used determinants and how we
use them today. See Extract IV.
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• Explain what a first minor determinant is according to the definition presented
by Sylvester in Extract I. What is a second minor determinant? Finally, what is a
minor determinant of order r?

• Why did Sylvester have to introduce the minor determinants?
• Based on Extracts II and III, explain what a matrix was and what role this notion

fulfilled for Sylvester.
• Compare the definition of matrix presented by Sylvester in Extract II with the

definition that is used nowadays. Note at least one similarity and at least one
difference.

Extracts I, II, III and IV mentioned above are excerpts of Sylvester’s articles and
available in the teaching module. Extract III, for instance, shows how Sylvester
interpreted matrices in the episode considered5; that is, as the mother of minors.

The second teaching module was entitled “Cayley and symbolic calculus with
matrices.” It began by presenting a translation of one part of the 1858 memoir
(Cayley 1858). Initially, the students read the translation, and then a discussion was
held on how Cayley introduced the matrix operations as well as the reasons why he
used symbolic calculus with matrices. Afterwards, the following historical activities
were proposed in order to give the students the opportunity to reflect on the
metarules:

• What is the object of Cayley’s investigation according to what you saw in this
module? List the techniques used by Cayley in the part of the memoir you
studied.

• Compare the description of a matrix presented by Cayley (see the first page of
the translated memoir) with the current definition. Do you see similarities? If
yes, what are they? Do you see differences? If yes, what are they?

• Discuss the way Cayley established the rules for the laws of addition, of mul-
tiplication by a single quantity, and multiplication or compounding of two
matrices. Compare that with the method that Linear Algebra textbooks present
for operations with matrices.

• Explain what Cayley meant to say by “a matrix considered as a single quantity
involving a matrix unity” (see item 10 in the excerpts).

• State, in your own words, the “remarkable theorem” that Cayley mentioned in
the first page of his memoir and presented in items 21, 22 and 23 of the memoir.

• The proof of the theorem for matrices of order 2, in item 21, uses the following
determinant:

a�M; b
c; d �M

����
����

5For this study, Sylvester’s episode was delimited by his publications on the problem of contacts;
some of them are Sylvester (1850a, b, 1851a).
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whose expression is M2 � ðaþ dÞM1 þ ðad � bcÞM0. Would Cayley’s proof be
accepted as correct nowadays? Explain.

• Compare the way that Sylvester used determinants—according to the first
module—and the way Cayley used determinants—according to this module.

• What is a matrix for you? What was a matrix for Sylvester? What was a matrix
for Cayley?

• Compare the description of a matrix presented with the current definition. Can
you see any similarities? If yes, what are they? Can you see any differences? If
yes, what are they?

The participants worked in groups while answering the historical activities. An
audio recording was made of the participants’ discussions while they did the
activities.

11.5 Analysis and Discussion

11.5.1 Metarules

In order to investigate how historical sources encourage reflections about metarules,
the participant discussions—transcribed from the audio recordings—were analyzed.
Some questions in the historical activities were more specific in order to encourage
discussion about historical metarules, and those questions were selected as a
starting point.

Although the two empirical studies were conducted separately, we analyzed all
the data together. In the first part of the analysis, we sought to locate discussions
about the historical metarules, and discussions in which participants laid out their
metarules regarding matrices and determinants.

Most of the groups had intense discussions on the historical metarules. In
addition to reflections on the historical metarules, which is in itself a result, three
metarules in the participants’ discourse were found. To illustrate how the reflections
on metarules were identified the dialogue below shows a discussion of one group
about how Sylvester dealt with and computed determinants:

Yhedi: So, the determinant associated to the matrix. We are the ones doing it the
other way around, we associate the matrix with a real number, which is
the determinant.

Maria: Ah, ok. I got it. [Pause]
Maria: The way it’s used nowadays is different. Because nowadays, from the

matrix you get a determinant, and with him [Sylvester] it was the opposite,
from the determinant he asked to find a matrix and associate it to this
determinant. And for him this determinant was the determinant of a
function, nowadays the determinant is [calculated] from a matrix.
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In the dialogue above, the participants discussed ideas related to the first his-
torical metarule (identified in the Sylvester episode), according to which determi-
nants were computed using functions (homogeneous polynomials that represent the
conics). The discussion about Sylvester’s practice led the participants to make their
own metarules explicit, according to which determinants are properties of a
[square] matrix, in contrast to what governed Sylvester’s discourse. In this way, the
study provided opportunities for the students to perceive that the metadiscursive
rules and the object-level ones change over time.

A second metarule was detected during the Cayley teaching module activities.
Discussions were found indicating that some participants were guided by a metarule
according to which the concept of a matrix is described based on the characteristics
of its representation in the form of a table.

Francisca: What’s a matrix for you? A table, or rather, a matrix is a vector
where I can place various data and manipulate them the way I
want.

Raelo: Ok, for me the…. But, hold on, there are three [participants].
Francisca: We have to come to a consensus.
Mathematician: I think that it’s an arrangement of numbers.

[…]
Raelo: Let A be a square matrix of two columns … You said it’s an

arrangement of numbers.
Mathematician: An arrangement of real or complex numbers arranged in rows

and columns.

Sylvester and Cayley also described matrices based on their representation;
namely as an “arrangement of terms” in Sylvester’s words, or as a “set of quantities
arranged in the form of a square” in Cayley’s words. Nevertheless, there is a big
difference in the understanding of the concept by Sylvester, Cayley and the par-
ticipants. For those mathematicians, the notion of matrix was identified with their
practices: the mother of minors by Sylvester and a convenient notation for linear
systems by Cayley. It is clear that the concept of a matrix had a meaning or a sense
for them.

It is curious that the participants did not mention connections between matrices
and other concepts from Linear Algebra, such as systems of linear equations or
linear transformations in the dialogue above. To answer the question, “What is a
matrix for you?,” they based themselves in the common elements between the
historical descriptions of matrices by Sylvester and Cayley, and the current defi-
nition of a matrix. Usually, Linear Algebra textbooks define matrix as a table or a
rectangular grouping of numbers; that is, the concept of matrix is also associated
with its representation in the form of a table.

A third metarule was identified in the discourse of some participants during the
Cayley teaching module activities. The excerpt below illustrates a discussion about
the validity of Cayley’s proof of the “remarkable theorem,” which was done by
Cayley in a particular case with square matrices of order 2 (see Cayley’s episode:
part (b) of Sect. 11.3.1):
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Mario: This only applies to a particular case and is extended to…
João: Only a particular case?
Mario: Accept that it is true… I don’t think so. Letter b.
João: We consider this to be only an example. [Pause]
Mario: It would be considered a specific case or an example.

The participants concluded that the proof would not be accepted as correct
because it was constructed for a matrix of order 2; that is, only a specific case is
considered in the proof. The conversation above suggests that Mario and João
needed to use a metarule for guidance according to which proofs that are based
only on particular cases are not valid. Such a metarule is in accordance with the
rules for proofs in mathematics, but the group did not notice a bigger problem with
the proof presented: the dual interpretation of a matrix applied to a full matrix. More
specifically, the notion of matrix as a single quantity was applied to a full matrix.

Cayley started the proof by forming the determinant
a�M b

c d �M

����
���� from the

matrix M ¼ a b
c d

� �
. The determinant resulted in the expression

M2 � aþ dð ÞM1 þ ad � bcð ÞM0. So, Cayley sometimes used the symbol M as a
matrix and sometimes as a number.

11.5.2 Commognitive Conflicts

In relation to the commognitive conflicts, an effort was made to locate discussions
that showed their manifestation, i.e. conflicting narratives in which the discussants
(the participants and the historical sources) were guided by different metarules.

The historical metarule in Cayley’s episode about the dual interpretation of the
notion of matrix produced commognitive conflicts in all the groups. The excerpt
below shows one group’s discussion, which took place when the participants were
trying to understand the symbolic calculation carried out by Cayley in the proof
presented on the “remarkable theorem” in the memoir:

Fernando: What a trip. It’s really crazy because look what he does next. He takes
the big M, which is the full matrix. This is as much a matrix as it is a
number.

Yhedi: No.
Fernando: But here, look, he’s operating with numbers. Here he’s operating with

numbers. Here, this here is a number. Except that this is a matrix.
Yhedi: But when he uses the matrix as a number, he’s doing M times identity.
Fernando: Huh?
Yhedi: When he treats the matrix like a number, it’s the number times identity.
Fernando: But this matrix here, man?

[At this point, they asked for the researcher’s help.]
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In the excerpt above, the participants were puzzled by the determinant formed
and by the symbolic calculation, where the notion of matrix as a single quantity is
applied to a full matrix. The commognitive conflict in the last dialogue arose from
the differences in the metarules behind Cayley’s discourse and the participants’
discourse. Cayley was guided by a metarule that allowed for a dual interpretation of
the notion of a matrix as sometimes being a single quantity (i.e. a number), and
sometimes being a “system of numbers.” Today, this would not be accepted
because a matrix is not seen as a quantity.

One case of commognitive conflict was chosen for description in this text, whose
manifestation occurred in an explicit way; specifically, it is possible to see divergent
discourses between the discursants. However, this did not occur in all cases. There
was a situation where the participants noticed that the discourse was governed by
metarules that are no longer fashionable. In this case, no occurrence was found of
conflicting narratives expressed as a result of a lack of understanding, or through
disagreements in relation to the historical source. The participants knew that they
were dealing with historical sources and therefore, that they would be confronted
with very different ideas.

11.6 Closing Remarks

Comparing the results of the study with those of Kjeldsen and Petersen (2014), the
findings about metarules and commognitive conflicts have confirmed the potential
of historical sources to promote reflections on metarules. Furthermore, the analysis
showed that it is possible to diagnose participants’ metarules in teaching situations
where historical sources are investigated. On the other hand, one difference is that
this study did not detect participants’ metarules that are at odds with the discourse
of modern textbooks or with the discourse passed along by the educational system.
However, the discourse of students engaged in activities of an exclusively mathe-
matical nature was not analyzed in this study as it was done for the aforementioned
researchers.

The task of detecting commognitive conflicts was not easy, as noted by Sfard
(2008, p. 256). Initially the hope was to find conflicts in the common acceptance of
a word, that is, the expectation was to find some instances of difficulty or moments
of surprise or doubt in discussions. However, there was a case of commognitive
conflict where the occurrence of conflicting narratives was not observed. The
participants knew that they were dealing with historical sources and perceived that
they were facing a discourse governed by metarules that are no longer operating.

Some methodological options were important to show the practices of Sylvester
and Cayley; for instance, to make several excerpts available from the original
sources, to maintain their original notations and to show how they defined their
objects and argued their proofs. All these contributed to elicit reflections about
metarules. As Kjeldsen (2011) noted, historical texts play the role of interlocutors,
as discursants acting in accordance with specific metarules.
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In addition, metadiscursive rules in the mathematical discourse become
object-level rules in the historical discourse (Kjeldsen 2011); hence, what is implicit
in one discourse (in this case, the mathematical discourse) can become explicit in
another (historical) discourse. Therefore, all the support given to investigating the
sources, with the summary presented in the first module and the researcher’s oral
presentations, played a role in bringing the metarules to the object level, i.e. making
them explicit objects of discussion. Historical activities also played an important
role in guiding the discussions toward the historical metarules, and in getting
participants to explain their own metarules.

As the study by Kjeldsen and Blomhøj (2012) indicated, the analysis showed
that the use of original sources guided by historical activities spurred not only the
learning of metadiscursive rules, but also an opportunity to discuss object-level
rules. Similarly to the conclusion reached by Kjeldsen and Petersen (2014), the
study showed that students went through a learning situation that was not familiar to
them. They had the opportunity to discuss the notion of matrix and related concepts
in a non-operational way; that is, at a more conceptual level, outside of the pattern
of applying readymade techniques to solve mathematical problems. The historical
activities led the students to reflect upon what the matrix object is, and this was not
a trivial task for them.

Reflecting on the findings and on the study as a whole, we have questioned
whether it is appropriate to start a Linear Algebra course with the concept of a
matrix as an object in itself. Historically, the notion of the matrix was the last to
emerge; i.e. matrices were introduced after determinants, linear systems, linear
transformations and quadratic forms. They arose first as a technique, before being
constituted as a mathematical object. Sylvester’s and Cayley’s episodes showed that
their introduction and development were motivated by the necessity of a repre-
sentation in a table form. So one could argue that the concept of matrix should only
be introduced when there is a need for representation in a matrix—for example,
during the study of linear systems—as well as the introduction of the multiplication
of matrices alongside the composition of linear transformations. In this way, stu-
dents might make more sense of matrices and their operations and might learn them
in a more problematized way.
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Part IV
Original Historical Sources in Teaching

and Learning of and About Mathematics



Chapter 12
Liu Hui Shares His Views with Young
Students

Vasiliki Tsiapou

Abstract This study reports on the integration of original sources from the history
of Chinese mathematics in a class of Greek sixth-grade students. The aims were: to
(1) support students’ learning of mathematical concepts and processes, and
(2) provide opportunities for students to develop adequate views about mathe-
matics. Here, the focus is placed on the second aim and, in particular, on the design
of the teaching sequences and the analysis of specific activities accompanied by
dialogues from the actual teaching. I present relevant results from the
post-questionnaire and, in the discussion, I include reasons for the integration of
original sources in elementary school with references to benefits and obstacles from
the intervention.

Keywords Original sources � Diachronic reading � Elementary students’
mathematics-related beliefs � Sociocultural approach � Anchoring

12.1 Introduction

The study described here integrated original sources from the history of mathe-
matics in an elementary school setting, an educational level less investigated, and
responded to calls for more empirical studies that take into account mathematics,
history and didactics (e.g., Siu and Tzanakis 2004). The basic assumption was that a
detailed description of the design, implementation, and didactical material would
provide insight on the transferability or the adaptation in other classrooms. The
objectives for students were taken from the study of Tzanakis et al. (2000):

• For the learning of mathematics: to develop reasoning and proving abilities in
order to facilitate the transition to the more theoretical geometry of middle
school;
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• For developing adequate views about mathematics: to appreciate the value of
explaining and justifying; to become aware of the impact of external factors on
the evolution of mathematics.

Given that the focus here has been placed on the second objective, I briefly
discuss students’ views (beliefs), a topic of interest in the last decades. Schoenfeld
(1985) defined beliefs as one’s mathematical worldview, the perspective one takes
to approach mathematics and mathematical tasks. Students’ mathematics-related
beliefs have been studied from different perspectives. Op’t Eynde et al. (2002), for
example, categorized beliefs regarding mathematics education, the self and the
social context. Jankvist (2015) discussed a missing dimension: beliefs about
mathematics as a discipline in order to embrace views about the nature of mathe-
matics as a whole. Reviews of studies (e.g. Muis 2004) that have investigated
students’ beliefs have shown that many students believe that mathematics is an
unchanging and, accordingly, an ahistorical subject; others believe that it is just a
collection of rules and procedures. Ernest (1989) called the first views Platonist and
the second ones Instrumental. However, original sources have the potential to
promote a dynamic, problem-solving view of mathematics (Ernest 1989), in which
mathematics is regarded a historically shaped and evolving discipline, a process of
inquiry and a cultural product.

12.2 Theoretical Perspectives

12.2.1 Learning with Artifacts and Signs: The Case
of Original Sources

Compatible with the dynamic view of mathematics are socio-cultural theories
according to which learning is a communal event where the learner gives meaning
to the world and reasons mathematically through the prism of his/her culture
(Radford 2010). Meaning is a double-sided construct; on the one hand, it is sub-
jective, linked to the individual’s personal history and experience, and, on the other
hand, it is a cultural construct endowed with the values and the theoretical content
of the culture(s). While participating in social activities, in order to give meaning to
these concepts and values, we resort to artifacts and signs1 (language, systems of
representation and also gestures) (Radford 2006). Both artifacts and signs embed
the experience of cognitive activity, and styles of inquiry of the culture. The
knowledge embedded in the artifacts was highlighted by Bartolini Bussi and
Mariotti (2008). They identify primary artifacts as the physical (e.g. compass) and

1The use of the term sign is inspired by Peirce. “A sign is in a conjoint relation to the thing denoted
and to the mind”… “The sign is related to its object only in consequence of a mental association,
and depends upon a habit” (Hartshorne and Weiss 1933, as cited in Bartolini Bussi and Mariotti
2008, p. 779).
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software tools, and secondary artifacts as the written texts. Original sources, under
this perspective, are secondary artifacts. They have the potential to become semiotic
tools (Bartolini Bussi and Mariotti 2008) as long as the voice of the author finds a
space to interact with the students’ voice and communicate mathematical and/or
meta-mathematical meanings. The semiotic process starts when students produce
signs and interpret (give meaning to) the signs of the others while interacting with
the various artifacts and the social environment of the class. The teacher’s role is to
link the students’ subjective meanings with the cultural meanings embedded in the
original source-artifact.

12.2.2 Approach to History and Implications on Teaching

What approach to history can a teacher adopt when integrating original sources in
order to develop dynamic views, and what are the implications on teaching? Jahnke
(1994) and Jahnke et al. (2000) argue that the reading of an original source requires a
hermeneutic (interpretive) effort, a constant change between the modern reader’s
views (synchronic) and those of the author of the source (diachronic). With the
synchronic reading, students reflect on their own views on mathematics and math-
ematical activity, while, with the diachronic one, they become able to understand
how the synchronous and the diachronous culture are intertwined. An idea con-
nected with the reading of an original source is that “it may influence the students on
their meta-cognitive level and contribute to their ability to reflect on mathematics”
(Jahnke et al. 2000, p. 317). Methodologically, one way of framing such reflections
is Jankvist’s (2011) anchoring approach in which reflections on meta-mathematical
ideas are anchored to related mathematical ideas. In this way “concrete historical
examples which illustrate somewhat general features, may help students to learn
about the historical development of mathematics, even though they may only be
exposed to one historical case” (Jankvist and Kjeldsen 2011, pp. 850–851). Whilst
anchoring is a framework for designing historical activities and studying the stu-
dents’ related meta-mathematical views, when one comes to the teaching process,
they need to analyze how to approach the view of the author of the source. The
teacher’s role is critical, and Arcavi and Isoda (2007) proposed various hermeneutic
tools: parsing of the text for local understanding, posing questions to adopt the
writers’ perspective, pasting the pieces for an understanding of the whole, etc.

12.3 The Original Sources and an Overview
of the Intervention

(i) The first source is problem 1.32 of the Mathematical Canon Jiu Zhang Suan
Shu (JZSS; 1st century BCE or CE). The Canon offered four methods for the
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area of a circular field, but, in the data, the ratio of the circumference to the
diameter was taken as 3 (Lay-Yong and Tian-Se 1986).

(ii) The second source belongs to Liu Hui (3rd century CE), who commented on
problem 1.32. Liu Hui proved the correctness of the first algorithm and
estimated p as 3.1416. Liu Hui inscribed double-sided polygons com-
mencing from a regular hexagon, and, employing a circle dissection tech-
nique, he reached the circle’s area: ½ Circumference � ½ Diameter
(Lay-Yong and Tian-Se 1986).

(iii) The third source is in fact an excerpt of the second source (Siu 1993). At the
end of his proof, Liu Hui comments on the wrong ratio, highlighting both the
impact of culture on mathematics and the value of explaining and justifying
for trustful knowledge.

However, those who transmit this method of calculation to the next generation never
bother to examine it thoroughly but merely repeat what they learned from their pre-
decessors, thus passing on the error. Without a clear explanation and definite justifi-
cation, it is very difficult to separate truth from fallacy. (pp. 348–349)

(iv) The fourth source is also an excerpt from Liu Hui’s preface of his commentary
on JZSS in which he reveals pedagogical considerations for the reader (Siu
1993).

[…] If we elucidate by prose and illustrate by pictures, then we may be able to attain
conciseness as well as comprehensiveness, clarity as well as rigor. (p. 355)

12.3.1 Participants and Settings

This intervention was implemented in the 2014–2015 school year. The participants
were fourteen sixth-grade students of a public urban primary school in
Thessaloniki, which served as a convenience sample because the school is the
teacher-researcher’s workspace. The intervention was held mainly during the pro-
ject development hours and, occasionally, during mathematics and ICT class hours.
In order to detect the students’ views, I administered a pre-questionnaire. After the
intervention, I administered a relevant post-questionnaire. Other data, for triangu-
lation purposes, were audio recordings, worksheets, material produced by students
and individual student journal writing.

12.3.2 An Overview of the Intervention

The intervention consisted of three parts:

1. Introduction: Using an indirect strategy in the form of presentation (Jahnke et al.
2000), students became familiar with the author’s historical context. They also
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found differences and similarities between the Roman Empire (and the fol-
lowing Byzantine one) and the Chinese Han Dynasty in educational and
administrative issues. In addition, they created hypothetical stories, in order to
reconstruct Liu Hui’s life based on the information.

2. Analysis: We dealt with the mathematical content of the first and the second
sources. I parsed them into small excerpts using the “guided reading” strategy, a
combination of group work and whole-class exploration together with a series of
tasks (Laubenbacher et al. 1994). The excerpts were not modified, but I replaced
or modified certain methods of computation.

3. Synthesis: Connections were made with the Introduction and Analysis parts,
with the third and fourth sources, and with information from secondary
literature.

During the Analysis part, the students were involved in mathematical activities
and reflected on their culture’s values, mainly with the second source.
Consequently, the reading could be seen as a synchronic one. In the Synthesis, the
target was the interaction between the synchronous and diachronous cultures. In
Sects. 12.4 and 12.5, I focus on the design and aspects of the intervention, in order
to show how I addressed this issue in relation to the second objective.

12.4 Synthesis Part: Research Questions and Ways
to Answer

Here, I formulate a research question (R.Q.) analyzed in two sub-questions. First,
research question 1 was formulated as: How and under what conditions does the
integration of original sources from the history of mathematics in the teaching
contribute to the development of students’ views regarding:

• R.Q.1a: the impact of cultural circumstances on the evolution of mathematics?
• R.Q.1b: the value of explaining and justifying based on mathematical

arguments?

In order to answer the questions, I present the components and processes of the
design of the activities in the Synthesis part, using Arcavi’s and Isoda’s (2007,
p. 122) metaphor “pasting pieces together towards a global understanding of the
whole” (Fig. 12.1). If we view the development of dynamic views about mathe-
matics as a whole, the pieces (the components of the whole) would be Liu Hui’s
third and fourth sources, relevant secondary literature, and activities from the
Introduction and Analysis parts. In order to paste the pieces, I anchored the stu-
dents’ mathematical knowledge and meanings developed in the Analysis part to
(a) the historical knowledge of the Introduction part; and (b) the meta-mathematical
meanings of the third and fourth sources and secondary literature that uncovered the
author’s reasoning and context. As for the conditions, I considered it important to
(a) use hermeneutic tools (Arcavi and Isoda 2007), and (b) evoke norms (Op’t
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Eynde et al. 2002) established in the previous parts, such as justifying under shared
reasoning processes. Such norms are values of the synchronous culture, but, at the
same time, they are diachronic, since Liu Hui expressed relevant viewpoints in the
sources. I conjectured that by prompting students to reflect on the values they would
appreciate them as diachronic after reading the sources.

12.5 Activities for Developing Meta-mathematical Views

12.5.1 The Cards of Philosophy Activity

The activities during the Synthesis part mainly revolved around The Cards of
Philosophy (a name given by a student, which I found interesting to adopt).
I created the cards because I did not want to subject students directly to the
information of secondary literature, as it would be a challenging task. The historical
and philosophical context of the cards dates back to the Han Dynasty. The school of
Confucianism influenced society and consequently the work of mathematicians,
which was framed by the effort of preserving earlier wisdom rather than testing and
surpassing it (Lloyd 1990). For the consolidation of a single world view, the
scholars’ role was crucial. On the contrary, during the Three Kingdom’s period,
which followed the collapse of the Han dynasty, political unrest and weakening of
Confucianism enhanced uninhibited thinking (Siu 2008). “Mathematics entered its
theoretical phase and importance was attached to proofs in their own right and not

Fig. 12.1 Synthesis part: the design for developing students’ meta-mathematical views
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only for practical purposes” (Martzloff 1997, p. 14). In this context, Liu Hui felt
free to test the knowledge of the past (Fig. 12.2).

In order to show the evolution of students’ subjective meanings, in Sect. 12.5.2, I
present a dialogue from the Introduction part and, in Sect. 12.5.3, I compare it with
a dialogue from the Synthesis part which took place within the Cards of Philosophy
activity.

12.5.2 Examples from Teaching: Introduction Part

During the Introduction part, the students were asked to compare the presentation
format of JZSS, ‘problem—answer—methods,’ with the format in their mathe-
matics textbook: ‘problem—solution with explanation—answer.’ Some of the
students pointed out the absence of reasoning behind the formulas in JZSS, but
others rejected the idea offering arguments against it. The dialogue below shows
how students justified their thinking.2

1. Te: What is missing from the ancient text?
2. M: The reasoning.
3. K: If the book says so, why do we care?
4. Y: The farmers and the excavators do not need explanations. They need to

learn the methods for their daily duties.
5. M: But, in this way, they do not know why they do what they do.
6. Y: What is the use of knowing why? Farmers want to measure the field and

then plant. They are not students.

Fig. 12.2 Cultural impact on mathematics: on the left before, and on the right during,
Liu Hui’s era

2Within transcript excerpts, the abbreviation “Te” is used for the teacher (author) and single initials
are used for individual students.
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7. Te: Why should students know [the reasoning behind a formula]?
8. Y: Students have to know, especially those that will follow studies in

mathematics and physics.

For K and Y, knowing the reasoning behind the formulas is unnecessary, since,
in K’s view (line 3), a mathematics book is the source of unquestionable truths (a
Platonist view) and, in Y’s view (lines 4 and 6), mathematics is procedures for
direct implementation. Even if Y holds this view only as far as workers are con-
cerned, when referring to students (line 6), he is either directed from a utility
perspective (instrumental views) or he considers that knowing the reasoning behind
formulas is a necessary evil. In the journal writing after the lesson, both students K
and Y responded according to the aforesaid views when asked to position them-
selves in a hypothetical scenario: Imagine you are a merchant in ancient China who
reads the JZSS’s methods in order to calculate the area of a field that you want to
sell. Is there anything else that you would like to know that is missing from the text?
My role was rather discreet and I intervened in the discussion with two hermeneutic
tools. With the first, I oriented students’ thinking to a hidden parameter of the
source in order to move the discussion towards the goal of the activity (line 1). In
order to uncover the essence and the source of Y’s claim, the ‘why’ question
followed (line 7). In addition, the hypothetical scenario in the journal writing after
teaching served as an extra tool for accessing the students’ views. In Sect. 12.5.3, I
present the design of an anchoring activity and a discussion that shows the evo-
lution of students’ views.

12.5.3 Synthesis Part: Designing Discussions for R.Q.1a

If we see the whole as the development of adequate views about the impact of
culture on the evolution of mathematics (R.Q.1a), the pieces were: (a) the mathe-
matical content of the first source; (b) Cards of Philosophy with information about
the predominance of Confucianism and the transmission of knowledge. I put the
information into the words of imaginary people of the past who would discuss with
students in first-person discourse; and (c) slides from the introductory presentation
(e.g. the technological orientation of Chinese science and the problems of JZSS).
For illustrative purposes, I gathered the ‘pieces’ in Fig. 12.3. The ‘pasting’ process
followed the path: (a) $ source $ (b $ c). The first connection ‘(a) $ source’
was an anchoring between the mathematics of the Analysis part and the source.
More analytically, when we returned to problem 1.32 of JZSS after the exploration
of Liu Hui’s proof, the students found that, in the data and in two methods, p was 3.
They realized for the first time that a mathematical textbook, JZSS, contained an
error. When they read Liu Hui’s comment on the incorrect ratio (third source), they
already knew what he was talking about. Another connection between the excerpt
and the historical proof in which Liu Hui said: “The ratio of the diameter to the
perimeter [of the hexagon] is 1 to 3” and several lines below “if the ratio [i.e. 3] is
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used to compute the length of an arc, the result obtained is not the arc but the chord”
(Lay-Yong and Tian-Se 1986, p. 336). During the Analysis part the excerpts were
analyzed within a synchronic reading but the students could not explain Liu Hui’s
insistence on returning to the same issue; anchoring their knowledge with the
meta-mathematical excerpt helped them understand why Liu Hui kept telling the
aforesaid phrases. However, the rest of his words “merely repeat what they learned
from their predecessors, thus passing on the error” did not make any sense. The first
questions I raised were: Who were responsible for transmitting the wrong ratio?
What do we know about Liu Hui’s ancestors? From a hermeneutic approach, the
questions are equivalent to the question: What are the hidden assumptions in the
source? For students to be able to deal with the questions, the connection, source
$ (b $ c), should follow. The reason for such a connection rested on the
assumption that, by evoking (c), students would be able to interpret the scholars’
views in (b). All of the above connections were expected to help students interpret
the author’s words, and to place their meaning in the context of the Han Dynasty.

12.5.3.1 An Example from Teaching

The students had already found the connection between the cards Confucianism and
Scholars Mathematicians (Fig. 12.3). The classroom discussion revolved around
the meanings embedded in the latter:

9. Te: To whom are the mathematicians referring? Which people?
10. P: To the other civil servants that gather taxes or the farmers and the

excavators.

Fig. 12.3 Synthesis part: sources for appreciating the impact of culture on mathematics
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11. M: I do not get it; how can you calculate without understanding what you
are doing?

12. P: We can’t say if this right or wrong, but what mattered was to use
mathematics for the welfare of the state.

13. Te: Do not forget that people of that time were influenced by the idea that the
ancestors were holding the truth. So, what P said right now is important.
It is not a matter of right or wrong. It is a matter of what counts as
important or not, depending on the era you live in.

14. Y: I guess this worked and people did not ask for the reasons behind the
math formulas.

15. Te: Should they ask for them?
16. Y: Liu Hui found that p was wrong. If they had searched… but how could

they have searched? Did they know the mathematics he knew?
17. M: No, not the common people, the scholars!
18. Te: I wonder what made Liu Hui so different from other scholars that he

searched for the reasoning behind the formulas of JZSS and, because of
this, he corrected the wrong ratio. I mean, he was a scholar himself. Why
did he start wondering about these things?

Compared to the previous dialogue, M is consistent with her view (line 11) that
reasoning is significant, although the way she expressed her dissatisfaction with the
scholars’ views was like seeing the past through modern lenses. On the contrary, P
justified the scholars by connecting their views with prior historical knowledge of
China’s technological orientation (lines 10 and 12), thus she made an effort to
understand the past in its own terms. I tried to highlight P’s contribution for a
diachronic reading of the source (line 13) and this probably affected Y’s remarks,
who acknowledged the societal influence on peoples’ thinking (line 14 and line 16).
I observed a change in Y’s view, compared to the previous dialogue, when he was
asked to justify his claim (line 15). Y resorted to Liu Hui’s contribution, the value
of p, in order to stress the necessity of searching the reasoning behind mathematical
concepts. We could say that, at this point, Y offered an anchoring argument, since
he supported his meta-mathematical claims about people’s reasoning by resorting to
the mathematical content of the first source. This anchoring helped him to abandon
the idea that common people do not need to know the reasoning behind formulas.
Moreover, and based on his anchored argument, Y moved one step ahead and
delved into the ancient era, by wondering how people could have searched for
understanding (line 16). With his utterance, he added a new parameter (also con-
nected with the Introduction part)—that of educational constraints—in order to
express his sympathy for common people, who could not access knowledge. M’s
response (line 17) to Y’s remark was significant for two reasons. First, her argu-
mentation finally followed the other classmates in order to understand the ancient’s
reasoning. Secondly, she added new elements when she highlighted another aspect
of the card and referred to the responsibility of scholars, and not common people, to
test the knowledge, thus she implicitly accused scholars for the negative effects on
mathematics. And, without realizing it, M went hand-in-hand with Liu Hui’s
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intentions. In the end, I raised a question (line 18) that, from a hermeneutical
approach, could be the following: What is the reason that Liu Hui had different
lines of reasoning from those of his predecessors? It was a rhetorical question
which aimed at introducing students to new historical events that positively influ-
enced the development of mathematical thinking in China.

The discussion touched upon two meta-mathematical views. The first one was
the necessity of knowing the reasoning behind concepts. Compared to the previous
dialogue, all the participants embraced the view this time. This could be seen as the
evolution of their subjective meanings in order to embrace those of the synchronous
mathematics culture, resulting from the mathematical knowledge of the first two
sources, and from the ‘why’-oriented classroom’s context. The second view was the
main issue of the discussion, the cultural forces that prohibited the feeling of this
necessity; however, such an aspect requires a diachronic reading. Due to my ori-
enting questions and the social interaction between the students, the (a) $ source
anchoring (between mathematics and meta-mathematical ideas) became the
springboard for the connection source $ (b $ c), that is, between the original
source and secondary literature. These conditions in turn enhanced a cultural
interaction; the students’ synchronous meanings widened for them to understand
the past in its own terms and, as a result, they embraced the meanings of the author
of the source.

12.5.4 Synthesis Part: Designing Discussions for R.Q.1b

Some of the meta-mathematical activities during the Synthesis part centered on
R.Q.1b. Seen as a whole the development of the view that mathematical justifi-
cations are significant for acquiring understanding, I integrated the fourth source in
which Liu Hui appraises the role of theoretical arguments and representations.
I used as pieces (a) Cards of Philosophy that included images of the students’
productions, and (b) real productions (constructions, worksheets, journal writing,
etc.). These productions were the secondary artifacts carrying the students’ math-
ematical and meta-mathematical signs and subjective meanings, rooted in activities
with primary artifacts. The pasting process followed the path: source $ a + b,
which means: reading of the source, resorting to the images and real productions in
order to recall the mathematical content and reflect on the proving processes,
returning to the source in order to understand its meaning. The reflections on the
proving processes aimed at detecting the meanings they had constructed for the
value of justifying mathematically, in line with the classroom’s context (the
intended meaning of the synchronous culture). Returning to the source aimed at a
diachronic reading and involved the anchoring between the students’
meta-mathematical meanings and those of the source. The background of such an
activity from the Analysis part and the discussions from the Synthesis part are
presented in Sects. 12.5.4.1 and 12.5.4.2.
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12.5.4.1 The Design of an Activity and the Mathematical Background

The card of the activity was named Liu Hui-Internal motive: To Explain and Justify
Mathematical Concepts. It contained the fourth original source and photos from
students’ activities (Fig. 12.4). My underlying message was: What Liu Hui says
here can be explained with our mathematical activities. One such photo was from
an activity of the Analysis part and concerned Liu Hui’s excerpt: “If we multiply
the radius by one side of the hexagon and then by 3, the product is the area of an
inscribed dodecagon.” During that part, students had inscribed a dodecagon based
on a hexagon and reconfigured it to a rectangle; then, the task was to calculate its
actual area. In order to find the dimensions of the rectangle, many students used
measurements. Measurements would not lead to Liu Hui’s generalized formula
Area of dodecagon ¼ 3s6 � 1

2 d, (s6 = side of the hexagon and d = diameter).
Theoretical arguments should enter the scene in order to relate the dimensions of
the rectangle with the hexagon’s sides and the radius. We reflected on both pro-
cesses, in order to evaluate their efficacy and, in the Synthesis part, we returned in
order to discuss in connection with the source.

12.5.4.2 Example from Teaching

The activity began when I asked students to recall the construction of the dode-
cagon and its reconfiguration to a rectangle (Fig. 12.4). However, the dialogue
concerns the next step where the focus was placed on the proving methods.

Fig. 12.4 Synthesis part: a card for appreciating the value of justifying mathematically
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1. Te: Let’s remember now how we had found the base of the rectangle. I remind
you that, when we were taking this lesson, some of you measured the base
while others tried to find relations with the circle and the hexagon.

2. M: No need to measure. The base is three hexagon sides. Every side is the
radius.

3. Te: M said the hexagon’s side equals the radius. How do we know that? Can
someone explain M’s thinking?

4. K: When we constructed the hexagon in the circle. Here… (Points at the
inscribed hexagon hanging on the wall, a students’ construction in
GeoGebra). Every side was a different radius of a circle around the first
one and it was 10 cm (rotating hands imitating the compass movements).
[I asked for a better description of the construction process and K
repeated with the help of other students.]

M reflected on the proving methods (line 2) with a deductive argument, a
mathematical sign. The meaning of the sign was communicated by another student,
K (line 4), who used body gestures (rotating hands and arms) and verbal descrip-
tions. From a semiotic perspective, we could say that K has internalized cultural
knowledge via the use of primary artifacts (the compass) and social interaction
(manipulation of the artifact for the construction of the hexagon, the relation circle
radius—hexagon side, and the description of the construction). In order to com-
municate with the rest of the class, K oriented the internalized knowledge outwards
with various semiotic means, though informal in nature. Indeed, K’s mental com-
pass movements were linked to the concrete artifact use, and the verbal descriptions
were lacking adequate syntax and terminology. Nevertheless, the communication of
the meaning was substantial. And the benchmark for K to communicate M’s
meaning was the students’ production hanging on the wall, the inscribed hexagon.
At that point, it was not just a representation of the mathematical object of the
hexagon; it became a semiotic tool the embedded signs of which were rooted in
students’ activities with primary artifacts and social interaction. In order to detect
how students had internalized measurements and property relations as alternative
proving processes, I asked them to compare the efficacy of both.

5. Te: So, we used our previous knowledge of the relation between the side of
the hexagon and the radius in order to find the length of the rectangle’s
base. But think of something else know. Why not measure instead? Do
you remember our discussions about this matter?

6. No student responses
7. Te: Would we have ended up with the formula for the area of the 12-gon if

we had just measured the dimensions? This formula led us to the circle
area formula in the end (showing the consecutive double-sided polygons
after the dodecagon and their formulas in the card).

8. K: No. If we had measured, we would have just found a result.
9. Te: And something else. Would we be able to explain why the side equals

10 cm, and not 11 or 12?
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10. M: I remember we said that again, when we wanted to prove that the
triangles inside the dodecagon were isosceles (meaning the triangles
formed by the diagonals that pass from the center of the polygon). K.’s
team had measured, but we had found it in another way.

11. Te: Do you remember how?
12. M: The long sides were also radii. And the others had measured and found

the same [result], but they couldn’t explain why they found this result
and not another.

My examples for the efficacy of the proving methods (line 7 and 9) were tied to
the mathematics of the second source, and the specific numerical values. Based on
the examples, students became able to recall the discussions on the proving pro-
cesses. This was evident in K’s comment, “If we had measured, we would have just
found a result,” an implicit reference to a conclusion we had arrived to during those
discussions (line 8). Most importantly, M recalled another relevant example during
which two groups were arguing on the efficiency of the two methods (line 10, 12).
We could say that both students offered anchored arguments that are the discourse
for mathematically-underpinned, meta-mathematical discussions which in turn
revealed that students appreciated the value of proving-using relations. In order to
provide a synthesis of the above ideas, I tried to anchor the students’ reflections on
the proving processes to Liu Hui’s argument that theoretical arguments and figural
representations promote understanding.

13. Te: In general, Liu Hui’s phrase ‘elucidate by prose’ means to analyze my
reasoning by using relations between figures or my previous knowledge,
or describing a construction with adequate terminology, as K did before.
In this way, the others understand what I am talking about and where I
base my reasoning.

14. Te: Liu Hui also said “illustrate by pictures.” How did we use shapes?
15. St: We cut shapes, we constructed on the worksheet, on the board, etc.
16. Te: Right. Do you think that we would have been able to understand, for

example, the meaning of Liu Hui’s excerpt in which he describes how to
find the area of the dodecagon, if we had not used figures?

17. F: No way. Even now, when I read it, I cannot understand. Well… when I
see the images again, I remember (showing the figures in the card).

18. Te: So, geometric figures help us clarify what the words are describing. And
what tools did we use? Liu Hui does not explicitly refer to tools here, but
we used them for the constructions.

19. Class: Rulers, compasses, gnomons, GeoGebra, our brain.
20. Te: So, do you agree with Liu Hui that analyzing with words and explaining

with figures are important factors for making mathematical ideas
understandable?

21. P: Yes! When I claim something, it is important to do it first and then
confirm!
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Besides showing the difficulties he encountered with the mathematics, F’s
utterance (line 17) is also a reflection on his meta-cognitive strategies, and an
implicit agreement with the ancient author concerning the role of representations. In
the end, another contribution was important. P’s spontaneous meta-mathematical
sign (line 21) could be seen as the external expression of the way she internalized
the meaning of Liu Hui’s entire excerpt (line 21). By saying “claim,” “do” and
“confirm” in the specific order, P informally captured the essence of argumentation.
And, by emphasizing the simplistic, though active, verb “do” it was as if she
wanted to stress the action of the learner, who, following Liu Hui’s advice, he/she
“elucidates by prose” and “illustrates by pictures.” The entire dialogue showed that,
to a certain extent, the students gave meaning to and embraced Liu Hui’s peda-
gogical advice and appreciated that mathematical justifications are diachronic
values, too.

12.6 Findings from the Questionnaires
and Interpretations

I now present an example of the Likert-scale items with which I tried to detect
students’ views about the value of justifying connected with the R.Q.1b.3

Item 1: It’s enough to know a geometric formula and apply it to a problem. No
need to know where it came from or why it works.

In the Post (Fig. 12.5), I observed a positive shift towards the significance of
knowing the reasoning behind a formula. The results in the Post are explained with
the activities in the Analysis part, where the focus was placed on the proving

Fig. 12.5 Item 1: comparative results between Pre and Post

3The abbreviations for the Likert scaled used are defined as follows: Tot. Ag = Totally Agree; Q.
Ag = Quite Agree; U/D = Undecided; Q. Dis = Quite Disagree; and Tot. Dis = Totally Disagree.
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process of the circle area formula, and with the meta-mathematical discussions of
the value of justifying in the Synthesis part.

Item 2 included factors that foster the development of mathematics. Especially
items 2.1 and 2.3 are connected with R.Q.1a and R.Q.1b, respectively.

Item 2: Mathematics has been developed because…:

2.1. People insist on accuracy; for example, they want to correct wrong ideas.
2.2. People want to draw conclusions that apply generally and not only in specific

problems.
2.3. People tend to prove what they say; that is, they justify their thinking based on

a theory and on various representations such as symbols, shapes, etc.
2.4. People are curious to pose questions and then look for ways to answer.

Compared to the Pre-questionnaire, in the Post (Fig. 12.6), many students agreed
with these dynamic views. Almost everyone agreed with the view of item 2.1,
which also touches upon external factors (cultural reasons for the wrong ratio). The
view expressed in item 2.3 also had a positive change. However, a remarkable

Fig. 12.6 Item 2: comparative results between Pre and Post
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change was observed in the view of item 2.4. In the Pre, many students remarked
that the idea of posing their own mathematical questions and pursuing their answer
was strange. Thus, it came as no surprise that only four students aligned themselves
with the idea. In the Post, all but one agreed. The connection with the intervention
may rest on discussions where students passionately expressed their sympathy to
Liu Hui for his curiosity to test the knowledge of the past and write his own proofs.
This may also be attributed to the fact that they were asked to make hypotheses in
order to predict Liu Hui’s next steps during the proof exploration.

Item 3 was an open question with which I tried to detect students’ views on the
evolutionary nature of the discipline.

Item 3: Do you believe that the mathematics in your textbook has always been the
same?

Due to the initial hypothesis, I was expecting that more students would give
affirmative answers in the Pre (Fig. 12.7). Yet, half the students simply wrote, “I do
not know,” a sign that they never had such a dilemma. It is interesting, however,
that four students saw mathematics as an evolving subject of human creation. One
of the three students who said that mathematics has always been the same justified it
by stressing the logical nature of mathematics. It is true, of course, that mathematics
has a logical structure, and we may call the processes for justifying, stable ideas.
However, it is unlikely that the young student has elaborated the stability of the
mathematical ideas in terms of dynamic processes. In connection with his answer
“mathematics has always been the same,” he may be oriented by different views:
either that mathematics is a logical discipline the stable ideas of which are closed
sets of rules (an instrumental view) or it is infallible with stable eternal ideas, and,
thus, it has always been the same (a Platonist view). In the Post (Fig. 12.7),

Fig. 12.7 Item 3: comparative results between Pre and Post
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everyone answered that mathematics has changed. Half the students, without jus-
tifying it, stressed the evolutionary aspect in terms of ‘change,’ ‘upgrade,’ ‘evo-
lution,’ ‘invention.’ Five students made either direct references to the intervention
or, based on the intervention, gave general remarks as evidence, such as the impact
of technology or the correction of mistakes, e.g. “over the centuries, people correct
mistakes.”

In Item 4, students were asked to position themselves in the connection between
cultural factors and mathematics.

Item 4: Do you think that mathematics is influenced by philosophy, namely peo-
ple’s ideas about the world?

In the Pre (Fig. 12.8), the four students who saw a connection between math-
ematics and people’s ideas about the world could not explain it. The rest of them
could not find any relation and justified it by linking mathematics to other scientific
domains or calculations. In the Post (Fig. 12.8), almost all students acknowledged
the relation. Many saw a diachronic relation using expressions such as “depending
on the era.” They did not explicitly mention the intervention, but the words “ide-
ology,” “influence” and “transmitted” were connected with the terminology used in
the intervention. Only three students gave concrete examples from the intervention.

12.7 Discussion

In this chapter, I discussed the integration of two excerpts from the history of
ancient Chinese mathematics, for sixth-grade students to appreciate: (a) the impact
of culture on mathematics, and (b) the value of justifying mathematically. Framed
by cultural-semiotic theories of learning and a hermeneutic approach to history, I

Fig. 12.8 Item 4: comparative results between Pre and Post
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consider the development of these views as the merge of the students’ subjective
meanings with those embedded in the source, a process that requires a constant
change between a synchronic and a diachronic reading. Regarding my objectives, I
presented the design of two activities. The working material came from various
sources included in the Cards of Philosophy, the meanings of which were related to
the excerpts. Moreover, the organization of the material proved to be helpful in
orienting students’ thinking in significant parameters of the excerpts.
Methodologically, the anchoring strategy facilitated the diachronic reading when
the hidden assumptions of the excerpts were highlighted by mathematical concepts
and processes of the related mathematical sources. However, for the realization of
the cultural interaction between the author and the students, important conditions
were provided by my close guidance and orienting questions, and the classroom’s
context, which facilitated the exchange of views.

Regarding the first objective, two points helped students to reflect on the hidden
meanings of the mathematical sources. The first point was when students connected
the excerpt with problem 1.32, and perceived Liu Hui’s motive to comment on the
specific problem and write his proof. The second point was between the excerpt and
the proof where Liu Hui made recurrent references for what the relation 3:1 stands.
The reason for his persistence in this issue was hidden during the synchronic
reading, where the mathematical content had priority, but anchoring the mathe-
matical experience to the author’s words, students read the proof in a reflective way.
However, the forces responsible for the error were hidden in the excerpt, so I
oriented students to the material of the cards. In the discussion that followed, the
above revelations fueled the emergence of the value of knowing the reasoning
behind mathematical calculations. Compared to the dialogue before the interven-
tion, the view was embraced by all the participants. A diachronic reading was
performed during the dialogue and the students approached the author’s view on the
impact of culture on the development of the mathematics of his time. The factors
that facilitated the reading were, on the one hand, the evocative power of the
material and, on the other hand, the exchange of views between the students, who
tried to understand the past in its own terms. Regarding the second objective, the
connection with the mathematical discourse was more evident. The students
became able to evoke their meta-mathematical views on the role and the efficacy of
the various proving processes using various multimodal signs and arguments. From
a semiotic perspective, the images of the card became semiotic tools due to their
power to evoke the students’ meanings, which in turn showed that they had
appreciated the value of proving using relations, a value of the synchronous culture.
For a diachronic reading, a link should follow between the students’ reflections and
Liu Hui’s basic components of argumentation (theoretical arguments and figural
representations). My approach was to anchor the students’ contributions during the
dialogue and from previous mathematical activities to these components. Although
the students’ argumentation was lacking analytical thinking, to a certain extent they
reached an agreement with the author’s views, a sign that they started appreciating
the value of justifying mathematically, as a diachronic value.
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The comparative results of the questionnaires showed that, in the
Pre-questionnaire, many students held instrumental and Platonic views. In addition,
many indicated that they were “undecided” or answered “I do not know.” The latter
may confirm Lester (2002), who stated that students may not be really aware of
their views about mathematics. In the Post-questionnaire, these answers were
almost eliminated, and a significant change towards dynamic views was observed.
This was evident in items 1 (the value of knowing the reasoning behind a formula)
and 2 (reasons for the development of mathematics), which are both connected with
R.Q.1a and R.Q.1b. The change can be attributed to the activities concerning the
proof and the culture of ‘why,’ and to those with the Cards of Philosophy.
Regarding item 4, connected to R.Q.1, many students seem to have built a rather
generalized view of the impact of culture on mathematics, although the excerpt used
the Han Dynasty as a reference. Item 3 is connected to R.Q.1a. The wrong ratio was
the only concrete example they knew, but it affected their views. While in the Pre,
half the students said that they did not know whether mathematics changes or not,
in the open-ended items of the Post, they justified with concrete examples from the
original sources or with general arguments based on the intervention, and using
terminology that revealed the evolutionary nature of mathematics.

12.7.1 Integrating Original Sources in Elementary School:
Is It Feasible?

Siu (2006) listed objections to integrating the history of mathematics and I will try
to discuss one of them with respect to integrating history in order to develop
students’ views. An objection is that students do not have enough general knowl-
edge about culture to appreciate it. Jahnke (1994) stated that, when one is reading
an original source, they must be able to feel the intellectual environment of the
author, and this presupposes that the learner has a certain foundation. Due to this
reason, I did not present Liu Hui’s socio-historical background in the introductory
activities alone (see paragraph 1 in Sect. 12.3.2 of this chapter), but I tried to build
on students’ historical knowledge (Jahnke et al. 2000), for them to appreciate that
the Chinese culture of that time had specific similarities with their own cultural
background, thus it was not something strange or bizarre. Of course, this cannot
always be the case. I was lucky that Liu lived in an era with a historical counterpart
that my students knew, yet other connections may be possible for other researchers.
While the introductory part enabled somewhat straightforward information, the
connections with the various historical and philosophical issues in the Synthesis
part were a different case. One might say that elementary school students are not
mature enough to ‘feel’ the intellectual context. I will discuss this issue from the
perspectives of the original source, the teaching-learning process, and the effect on
students, because I think that these three factors, and not the age of the students
alone, should be taken into account before deciding whether such investigations
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could take place in elementary school. The appropriateness of the source has been
discussed by Jankvist and Kjeldsen (2011), who claimed:

By identifying concrete historical examples illustrating somewhat general features, students
will be able to learn something about the historical development of mathematics in general,
even though they may only be exposed to a single, but exemplary, case. (pp. 850–851)

I believe that the sources of the study (the excerpts) have general features related
to concrete examples (the proof and problem 1.32). Liu Hui exposed his reasoning
in his proof step by step, which not all the ancient authors were willing to do.
I found that, with certain changes, students would be able to follow. In addition, the
meta-mathematical meanings of the excerpts could be decoded with the help of
secondary literature (Siu 1993). Thus, with respect to my two aims, the sources
seemed appropriate. But were they appropriate for elementary school students?

And here enters the teaching-learning process. There are many parameters, but I
will mention only those I discussed in this chapter. I believe that the reading of the
source in a diachronic way fits the anchoring approach in elementary school,
because the exemplary case substituted the students’ limited background and
decoded the general. Moreover, the material organized in the cards and adapted to
the level of the students was helpful in enhancing discussions. Did this process have
an impact on students? In other words, “… we need to know more whether this is
really the case and, if so, to what degree” (Jahnke et al. 2000, p. 317). The dia-
logues and the questionnaire have shown a positive impact on students’ views. But,
if we observe the results, the positive change in many cases was from the “I do not
know” or “Undecided” responses. Students are not always aware of their views
(Lester 2002), and this may especially apply to elementary-school students. Based
on the results, we may say that, for such students, a single historical case can foster
them to gradually develop adequate views or at least to wonder about their views.

“To what degree?” Jahnke et al. (2000, p. 317) asked. I would add: … are
elementary students capable of philosophical investigations in order to reflect and
develop adequate views? To respond, I will provide some examples. The dialogue
concerning the cultural forces that influenced Han’s mathematics showed that many
sixth-grade students were able to connect ideas from different sources in order to
make hidden meanings apparent. Another example is item 2.4: People are curious
to pose questions and then look for ways to answer, which had the greatest positive
change. It was not directly connected with any objective, but instead with discus-
sions about the change in Liu Hui’s era. Many students passionately engaged in this
discussion, comparing the Han period with the one of Liu Hui, and appraised his
curiosity to test the knowledge and write his own proofs. Did all of the students
discuss in this way? No. They were not all able to delve into such issues, but many
of them, and despite their age, were capable of reasoning more deeply. Sometimes,
such discussions influenced other students who usually remained silent.
Nevertheless, reasoning does not come hand in hand with written language. Few
students gave detailed descriptions of their reasoning to the open items.

I am fairly certain that Liu Hui became a teacher and shared his views with my
students, but I use the word ‘share’ because this does not mean that his views were
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conceived by all students in the same way, since the meaning of cultural knowledge
is reformed depending on the meanings we attach to the signs of culture. And here,
a question is hidden: Is it possible that my students have developed new inadequate
beliefs? For example, the connection of the wrong ratio and Confucianism must
have played an important role for the change of views, but, on the other hand, one
might say that a Platonic view may be hidden behind the phrase “over the centuries,
people correct errors” (Fig. 12.7). It is possible that such a view may have emerged
in connection with p, as something real and eternal? However, another interpre-
tation could be that the student embraced the idea that mathematics in general has
undergone changes, and he generalized by evoking the only concrete example he
had in mind, in order to justify his negative answer to the question, Has mathe-
matics always been the same? Inadequate beliefs may have arisen. Surely, the
intervention could not have addressed all students’ beliefs, but, once the issue was
raised, it should be taken into account in the design of another project.

12.7.2 Conclusions

Is it, after all, feasible to integrate the history of mathematics in elementary school?
I think it is. An appropriate source in connection with a design that promotes a
diachronic reading and takes into account the limited background of elementary
school students could make an intervention feasible, which, as the results showed,
may influence the emergence of students’ dynamic views. Obstacles do exist, such
as the unwillingness of some students to participate in discussions or to express
their views, especially in writing. These issues can be addressed with a more careful
design and attractive activities. Moreover, new inadequate beliefs may arise that
need to be analyzed in the design. But, on the other hand, elementary school
students have not shaped persistent inadequate views, thus the sooner history is
integrated in mathematics the more effectively teachers will shape these views. In
addition, the students can show maturity and engage in meta-mathematical dis-
cussions and reflections, despite their young age. They are able, to some extent, to
delve into relations and make conjectures and interpretations on historical texts.
Therefore, with the inclusion of history “our students will no longer find themselves
in front of an impenetrable alienating discourse, but rather will grow up as subjects
of mathematics, as critical cultural subjects” (Radford 2014, p. 106).
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Chapter 13
Experimentation on the Effects
of Mathematical Diversity

Using Ancient Cuneiform Mathematics on
Conceptual and Nature of Sciences Aspects

Charlotte de Varent

Abstract We examine, with in-depth teaching recordings and interviews, how
tenth grade (15–16-year-old) students react when confronted with an ancient
cuneiform clay tablet. The question is whether mathematical diversity can produce
new questions (to be further used by teachers) linked to area and measure concepts.
We observed conceptual changes with regard to mathematics, but it was difficult for
students to make them explicit. In terms of “nature of science” aspects, we were
able to document a change in debate content, and we also formulated some pre-
cautions. We provide a methodological reflection. We are attentive to the conse-
quences of historical constraints on making links between ancient and current
mathematics.

Keywords History of sciences � Units of measurement � Area
Mesopotamia � Cuneiform tablets � Interdisciplinary

13.1 Introduction

13.1.1 Framework and Purpose

The mathematical Sciences in the Ancient World project (SAW) has a main goal: to
understand the ingenuity of the ancient mathematical thinking system, rather than
project our own understanding and our own mathematical habits on ancient pro-
cedures. Seeking for a “transposition” of this current way of making history could
be interesting on at least two levels: using a type of history that is connected to new
research trends and using various mathematical solutions from ancient sources to
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question today’s mathematical methods through diversity. Using the history of
sciences in the classroom can take multiple forms, as described in Jankvist (2009).
History can be seen as a tool or a goal in various ways; it can be oriented towards
learning mathematics, working on the nature of science or on motivation and
affectivity toward mathematics, seeing mathematics as a cultural activity, or pro-
viding new perspectives to teachers. We decided to work with a history of math-
ematics researcher accustomed to teach history “as a goal” and determine whether
there would be effects on students from a mathematical perspective (“history as a
tool” perspective). This was our research team’s interpretation of the SAW context
(our team was composed of history of sciences and science education researchers).
In this regard, we placed ourselves in a type of “symmetrical” interdisciplinary
approach; we tried to take both disciplines’ constraints into account. These diffi-
culties in such a balance had already been expressed, for instance by Fried (2008):

The question at hand is whether the incorporation of history of mathematics in mathematics
education is unproblematic in principle. […] the history of mathematics and mathematics
education are disciplines, each with its own aims and its own conception of the subject. […]
For mathematics education—at least as it is usually conceived (and this qualification is not
trivial)—aims towards modern mathematics, but treats mathematics as it is conceived today
as if it were mathematics tout court; […] In a way, this is the projection of the position of
working mathematicians or working scientists who, to use Kuhn’s famous terms, must, in a
normal period, work within a paradigm, a set of concepts, procedures, and approaches
fixed, as if eternal, in textbooks. […] Historians of mathematics are like anthropologists
who study mathematical cultures very different from our own; at work, historians must
consider mathematics as ever changing and having no eternal, fixed, reference. (pp. 2–3)

During one “history as a goal” session led by our historian, we decided to
observe the possible conceptual effects of the mathematical differences born by an
ancient cuneiform tablet. We also tried to describe some “nature of mathematics”
and “nature of history” aspects by comparing two groups of students: a history of
sciences group (HSG), which had followed our history sessions, and a control
group, which had not.

13.1.2 Didactical Basis

The expectations observable a priori (Artigue 1992) from a conceptual point of
view, on the one hand are based on a synthesis of didactic works on area and
measure. On the other hand, an epistemological analysis of historical texts and an
analysis of fifth-grade textbooks ensued from this analysis. Part of this work from
our dissertation is presented in an article (de Varent 2015), though it is not possible
to provide the full details here.

The following assumptions have been made thanks to this multi-dimensional
analysis: the pupil’s conception of area (Perrin-Glorian 1990) must go through a
surface/area/number distinction (area can be expressed by different numbers
depending on the chosen standard). We worked on how this previous work must be
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accompanied by a conceptualization of the units of measurement; this is linked to
the underlying metrological system that creates implicit shortcuts, depending on
how it was built. This distinction passes, among other things, by working on the
unit of measurement concept in various “representation registers” (Duval 1993).
For instance, fifth-grade textbooks present a “discovery activity” (using a grid to
count tiles with 1 cm sides inside given squares or rectangles). We argue that
linking this “discovery activity” (geometrical register) to a formula (arithmetical
register) will be difficult because of unguided conceptual change in the unit of
measurement status.

First, it is a square (with a given shape) with a given associated number, 1. It is
noticeable that surface/area/number distinction does not seem to apply to the teaching
of the unit of measurement. However, in this geometrical register, it still has the
function of a standard (something used to measure by copying and shifting it as many
times as necessary). In the formula, it is as if the standard has become part of a
multiplication (cm � cm = cm2, which has its advantages, as Chevallard (2001)
explains), when it is not completely erased of the action and added at the end (this is
what we call the “literary role” of the unit). This is observable when students try to
make up geometrical representations for “cm � cm = cm2.” They can say, for
example, “cm by cm creates a square,” showing an “L” with their hands, or they can
give an infinitesimal idea of adding “centimeter times a centimeter” to fill up an entire
square. In any event, in the formula context, there is no more surface nor area nor
number linked to the unit. It is no longer a measuring tool (standard function), either.
We argue that the impossibility of linking these conceptions of units of measurement
would create a difficulty in making sense of the formula and linking it to the “grid.”
This would, in the long run, prevent the student from using the grid anymore. Outhred
and Mitchelmore (1992, 1996) provide insight into the “good conditions” needed for
the grid to be linked tomultiplication.Among others, they recall that it is not automatic
for a student to link the number of tiles on a side with the number of centimeters of the
side. In our perspective, we argue that this lack of connection can create a miscon-
ception about the unit of measurement: students then have to build an erroneous
conception of the unit of measurement to make the geometrical and arithmetical
registers compatible. Brissiaud et al. (2013), in their textbook, provide a half-erased
grid that ensures that this connection must be made in order to solve the exercise.

We argue that the connection between the number of tiles on a side and the number
of centimeters in the formula is the first step to ensuring conceptualization of unit of
measurement that is compatible in both geometrical and arithmetical registers, which
is an essential basis to ensure that students can keep a rich multi-level conception of
area. If the concept of area can be replaced simply with multiplication, the risk is that
we might believe that the students have evolved toward an algebraic conception of
area and can begin working on integral and dimensional analysis when they cannot
actually have a full understanding of these new notions, based on algebraic, geo-
metrical, and measure-related registers. We argued that this difficulty in the concep-
tualization of the unit of measurement is implied by the underlying metrical system.
Today, it is indeed possible to erase differences between the numerical value of the
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length and the number of tiles (and then to create misunderstood bridges between
measuring units of lengths and areas), and between the result of the multiplication and
the value of the area, because we constructed these possibilities when designing our
metrical system. This provides an opening for quantities and units of measurement to
be conceptually erased, leavingmultiplication a central part and reducing themeaning
of saying “in which unit is the result expressed” at the end of the computation. We
make the hypothesis that these implicit links to our metrical system will ensure
difficulties in at least three observable ways:

• the meaning students give to multiplication;
• the capacity to detail algorithmic steps and make explicit what is being operated

on, with a possible blurring of the conceptualization of types of numbers (such
as numerical values of length and area numbers, quantifying numbers and
numbers to operate on with no special interest in their order of magnitude); and

• the conceptualization of the unit of measurement and underlying quantities in
the formula (with the risk of mixing up the roles of measuring units of lengths
and areas to build up erroneous geometrical representations of units of mea-
surement and to forget about the “shifting” role-of-measuring-tool aspect of the
unit of measurement).

The way that metrological systems, area-computation algorithms, concepts of area
and units ofmeasurement and quantities are balanced is different in every historical text.
We decided to document whether these three previous items could be affected by a
cuneiform tablet with a metrological system in which the systems for measuring length
and area do not correspond. The main research question is: Is it possible for history of
science sessions, presented in a way that is compatible with the historical discipline’s
constraints, to have an effect on the questions that students ask themselves in the context
of the area of the square/rectangle (on the three observable points evoked above)? By
this we mean, is it possible for history sessions to constitute a favorable “a-didactique
milieu” (Brousseau 1986, p. 86) to be reinvested later bymathematics teachers to clarify
some implicit aspects on a notion supposed to be stable.What are the conditions for the
two types of mathematical systems (ancient and present-day) to affect one another
(communicate) while at the same time preserving their diversity? This leads to a
sub-question: What effects does such a meeting with mathematical thinking diversity
have on nature of history and nature of mathematics perceptions?

13.2 Method and Implementation as a Teaching Situation

13.2.1 General Outline of Our Method

We document the use of a paleo-Babylonian cuneiform tablet in experimentation with
tenth-grade students (15–16-year-olds). To be able to answer our research questions,
implementation in the classroom needed to respect the following constraints:
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• Material presented in a way that is acceptable for historical researchers. We
chose to build our sessions with a specialist who was in charge of presenting
them to students. This enabled us to observe the consequences of such a class
without interfering with the variable consisting of the teacher’s understanding of
history. We will make some of our constraints explicit while detailing the
teaching sequence. Using an unmodified clay tablet enabled us to preserve the
cuneiform mathematical thinking system’s specificity and diversity.

• Being a priori able to question student’s representations about the area of the
square/rectangle computation, which involves measuring units and the metrical
system. We will make an extensive description of the possible effects this tablet
might provoke a priori.

We do not exclude the hypothetical next phase, which would consist of
implementing such a session by giving “ready to use” documents to teachers and
studying their way of teaching it. We wanted to study this preliminary phase (in
which a historian presented) to know more about its consequences before consid-
ering its further use. We have also not investigated the phase that would consist (for
the mathematics teacher) of using the milieu’s (hypothetical) effects to clarify
today’s algorithm. Here we only try to document whether some effects exist, what
they are, if they affect every child in the same way, and if it is possible to rely on
some of these effects when building hypothetical next phases. We will mention
these phases in our conclusion.

The tenth grade was chosen because it could provide students who would be able
to understand some of the ancient text’s features.1 At the same time, tenth grade
students would be confident enough with the area of the square algorithm. This can
be related to level 3 in the sense of Airasian et al.’s approach (2013). We wanted to
observe whether the tablet could make them reinvest in a notion that is supposed to
be stable (opening a door for levels 4–6). The high school (Lycée Léonard de Vinci,
Levallois-Perret) was of “average level.” It had a 90% high school diploma success
score in 2014, 3% lower than the national average. The two groups (control group
and HSG) were taken from two tenth grade classes with approximately the same
average grade in mathematics. The historian of medieval mathematics, M. Husson,
led a history of sciences project in the tenth grade that allowed us to implement the
cuneiform class for over 8 h, which was then followed by interviews.

To be able to document whether there was communication between the two
mathematical thinking systems (ancient and current), we studied differences in the
answers of the two groups. The “control group” had not taken the “history of
sciences” teaching sequence, and only participated in our final interview. The HSG
participated in the interviews after taking the history of cuneiform mathematics

1Discussion about the “right” level is still ongoing. It would be tempting to work with this text
with sixth grade students, in both geometrical and metrological parts, when the concept of the area
of the square is still “fresh.” Although full understanding of mathematical creativity the numerical
system provides is at the university level, when modulos are fully mastered, a balance must be
struck between mathematical difficulty and full understanding of historical ingenuity.
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sessions. Of course, this does not mean our control group never had any contact
with the history of sciences, as we know this might have happened at some point in
their mathematics education (from textbooks, mathematics teachers in their class
introductions, their own conceptions of history, etc.). This parameter was not
controllable. Thus, the study can only document a “state of the art” into our control
group and whether or not the HSG bears the same features. If not, we can only
make hypotheses about why they differ. The two groups were divided into
sub-groups of three to four students during our interviews. As far as the HSG is
concerned (32 pupils in total), these same sub-groups were already working toge-
ther during the previous history sessions, and this was recorded. Students had to
write down answers on papers that we collected after every session. Nine interviews
(1 h each) were conducted and recorded in the HSG at the end of session 4. We
were able to interview five sub-groups of four students from the control group (20
pupils in total). Semi-directed discussion formats were chosen to open a breach for
spontaneous questions that we sought to document.

13.2.2 Implementation in the HSG: Preliminary Sessions

Special care was given to the type of history presented to the students in the HSG,
who needed to know enough ancient mathematics to engage in the diverse math-
ematical thinking. Thus, the teaching sequence was time consuming, which we
believe to be a real constraint on this type of history of sciences approach. It took
four 2-h sessions to provide pupils with enough skills to be able to navigate the
ancient mathematical system (although we will later indicate some shortening
possibilities). The three preliminary sessions needed to understand the final clay
tablet were also developed in terms of historical investigation and motivation.

Teaching session 1: discovering sexagesimal place value notation (SPVN
numbers) by deciphering an ancient multiplication table of 12 from
paleo-Babylonian period (Nippur scribal schools) written in cuneiform. Students
did not have trouble decoding numbers in cuneiform, and they understood it was a
multiplication table fairly quickly. Arriving to “5 � 12,” they saw the same sign as
for “1” as a result. For “6 � 12” they saw “1:12” and not the expected 72.
A comparison with the way we write down hours on digital clocks then came
naturally from the students. However, this does not make it explicit that 12 can
mean 12, as well as “12 � 60,” or “12 � 60 � 60,” and so on (there is a loss of the
order of magnitude, which is not the case in our digital clocks). Indeed, we might
consider this notation as we would look at a digital watch. However, we will avoid
translating 6:40 as 400, as we will follow Christine Proust’s interpretation of SPVN
numbers. Indeed, she argues (Proust 2007, pp. 190–202; 2009, p. 11) in this
numerical system, the order of magnitude is not taken into account (“floating
numbers”). Of course, number position matters, and the 6 from 6:40 is sixty times
superior to 40. However, this 6 could as well be 6 or 6 times 60 or 6 times 602, as
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long as 40 is sixty times inferior. In this way, the sexagesimal system can be used in
all its ingenuity, providing easy computation (for example, it is possible to divide
by multiplying with the inverse number in base 60 without having to care about the
order of magnitude). The reader might ask the following: How to count things or
measure, then? Another numerical system is used, which is “not floating.”
The SPVN system is used only to compute.2 This aspect needs to be made explicit
by the speaker, and it can be observed in the way the result from “5 � 12” is not
written to the left of the previous result (positions only matter relative to each other,
as in “1:12,” where “1” is sixty times superior to twelve). This SPVN system is
needed to understand the clay tablet (teaching session 4). Then, the students worked
on deciphering a multiplication table of 18, table of squares and table of square
roots. This part might be shortened for the sake of implementation in other contexts.
The session ends with writing on real clay using chopsticks.

To summarize, this session provided skills with SPVN while preserving the
diversity of this numerical system (a place value system with loss of magnitude
order used to compute). It is also built in a motivational-investigational way (de-
ciphering a numerical system written in cuneiform, making a hypothesis on broken
parts of the tablets and working with material conditions, including clay, water and
using chopsticks as reed pen styli to write on clay).

Teaching session 2: discovering multiplication and division in SPVN. Students
began by working on deciphering a new cuneiform table, which reveals itself to be
an inversion table. While looking for the internal logic of the table, they understand
it gives (in the right column) “the number by which you have to multiply the left
column number to get 60” (which is 1). They are led to discover a new possibility
with the SPVN system: multiplication by the inverse instead of division, which
gives sense to its characteristics, particularly the loss of the order of magnitude.
A second tablet is given in cuneiform, which gives a multiplication of 4:50 by itself
(the result is 23:21:40).

Students had to guess that this was a way of writing down multiplication of a
number by itself. An example of this was present in the top left corner of our
cuneiform clay tablet in teaching session 4 (area of the square). This first tablet was
also used to introduce multiplication in SPVN with beans and pastas. This part
might be shortened for the sake of implementation in other contexts. Students
worked on a multiplication abacus with an alternation of factors 6 (beans) and 10
(pastas) to go from one column to the next. It provided an opening for discussing
the SPVN characteristics, such as place value notation (columns need to be
respected for computation), with no general order of magnitude.

To summarize, this session deepens the understanding of the SPVN character-
istics and its use in computation (with the possibility of replacing division by
multiplication). It gives insights into the final tablet’s layout (top-left corner,
multiplication), and the students were introduced to the final tablet’s multiplication

2The way this numerical system is used relative to other numerical systems in terms of preserving
order of magnitude will be presented later.
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of 20 by 20 (which is 6:40). It is also still built in a motivational-investigational
way (deciphering tablets, making a hypothesis on the inversion table’s meaning and
working with hypothetical historical material conditions: abacus with columns
alternating 6 and 10 groupings; we used beans and pastas: 6 beans equals one
pasta, 10 pastas equals one bean).

Teaching session 3: discovering metrological tables of lengths and surfaces by
deciphering ancient tablets. Students began by finishing the abacus multiplication
work from the previous session. Then, they were asked to translate “metrological
tables” that consists of an increasing list of length (or area) measures, in the left
column, with a corresponding mysterious SPVN number in the right. Interpretation
of the use of these tables is not given at this point. This was the key issue in session
4. Length and surface measures are not expressed in SPVN. Indeed, SPVN does not
allow the orders of magnitude to be given, so neither the measures nor the number
of items are expressed in this system. Students were asked questions to help them
understand the relations between the measuring units (factors between units) and
the implications of these factors on the corresponding SPVN number for these
measures. They were led to observe the cyclicity of the SPVN numbers in the right
column, from 1 to 60 (several measures correspond to a SPVN number). This
characteristic is important in session 4.

To summarize, this session provided an introduction to metrological tables
whose meaning is the key question of session 4. It led students to observe them, to
be introduced to the measuring units, to see how the tables went from small to large
measures and to observe how there was a corresponding number on the right. They
were led to differentiate numerical systems and recognize SPVN numbers as well as
their cyclicity in the right column. They still worked directly with cuneiform
sources, translating with the help of a small dictionary on measuring units. They
added refined observation of lists to their history investigative skills. They observed
how factors between length (or area) units might vary, and how systems of factors
between area units might not be the square of length units.

13.3 A Priori Analysis and the Situation Given to Students

13.3.1 The Situation: Cuneiform Clay Tablet
and the Students’ Tasks

Teaching session 4: discovering the area of the square on the cuneiform tablet
UM 29-15-1923 and the role of metrological tables. Students began by searching
for SPVN number 10 and several corresponding length measures in the metro-
logical table of lengths. They were asked to search for a relation between metro-
logical tables of lengths and surfaces. At this point, students realized at least that

3Cuneiform transcription can be found in Proust (2007, p. 193) or CDLI (n.d.).

262 C. de Varent



units of lengths and surfaces did not bear the same type of names as in cm ! cm2.
Measuring units’ names were translated in the student’s document as they evoked
tangible objects used to measure. Students were led by indications of the order of
magnitude on the metrological tables and the corresponding SPVN numbers to
observe that a measurement unit of lengths (ninda, order of magnitude of a house’s
side) would have to be linked to measurement unit of surface (sar, order of mag-
nitude of a house’s surface). One ninda corresponds to 1 SPVN number, and 1 sar
does, too. Indeed, if they pursue the investigation and decide to use the corre-
sponding SPVN number and squaring operation, a square of a 2 ninda side gives
SPVN number 2; “2 � 2 = 4” can be carried out. They get a surface of 4 sar,
which corresponds to SPVN number 4. However, this relation is not so simple
when it comes to other measuring units. Indeed, 6 šu-si (meaning “fingers,” order of
magnitude of a tablet side) would give SPVN number 1 and not 6. At this point,
students had to find a way to continue. Some students already understood the need
to operate on SPVN numbers to be able to continue. Here, they computed
“1 � 1 = 1.” Using indications on the orders of magnitude, the surface measure
corresponding to the order of magnitude of a tablet surface for SPVN number 1 is 3
gin2 (grain),4 which is the right answer. The speaker expressed the sar as the
surface of a ninda-side square. She explained that the relation cannot be expressed
this way between other measuring units because the factors between surface units
do not correspond to the square of factors between length units. Here we introduced
a copy of cuneiform tablet UM 29-15-192. Students were asked to translate it with
the help of a small dictionary. Figure 13.1 shows the cuneiform tablet translation
and a hand-written copy.5

Students deciphered cuneiform numerical writings on multiplication tables and a
squaring tablet during the three previous sessions and were used to it. The dic-
tionary was used only for words, such as “side” or “square.” Written questions led
them to look at the tablet’s layout and make explicit the separation between a
computation (top-left corner) and wording/result (bottom-right corner). Then they
were asked to look for a link between the two parts of the tablet or express why they
did not think it was possible. This question was intended to spur a reaction on the
fact that the side is “2 fingers” and the computation is carried on the number “20.”
Students were led to use the documents at their disposal to interpret this tablet. The
metrological tables were, of course, fresh in their minds, and their attention had also
been focused on the relation between 6:40 and 1/3 of a grain in session 3, on the
metrological table of surfaces. They were used to multiplication in SPVN following
sessions 1 and 2 so that 20 times 20 could be naturally interpreted as a

4The measurement unit of surfaces gin2 can be translated as “grain.” It belongs to the metrological
table of weights, and will be used in the sequel as terminus technicus. The beginning of metro-
logical table of surfaces is exactly the beginning of metrological table of weights, until it reaches
1 ma–na. The gin2 is also used in the metrological table of capacities but this metrological table is
independent (Proust 2007, p. 311).
5The handwritten copy was made and adapted by Christine Proust for experimentation purposes.
The original can be seen at CDLI (n.d.) and comes from Neugebauer and Sachs (1984, p. 251).
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multiplication giving 6:40 as a result. This context led them to understand how to
use metrological tables quite easily. In the area of the square computation, the two
systems have to interact. How?

Computation (multiplication of 20 by itself) is not performed on “2” from “2
fingers” (2 šu-si),6 but rather on 20. This symbolizes communication between the
two numerical systems: SPVN numbers to compute and “non-floating numbers” to
measure and count objects. The scribe uses a “dictionary” (metrological table of
lengths, see left side of Fig. 13.2) to transform measures of length (2 fingers) into
numbers that can be multiplied (here, number 20) in “floating numbers;” then a
metrological table of surface (see right side of Fig. 13.2) is used to transform the
result of multiplication (6:40) into area measures (1/3 of a grain). To select the
“right” surface measure, he has to pay attention to the expected order of magnitude
of the result (because of the SPVN number’s cyclicity). If students do not think
about using metrological tables, they are led to do so with the question, “How do
you explain the use of metrological tables?” The ancient algorithm can be sum-
marized this way:

Input: length measure.
Conversion in SPVN using metrological table of lengths.
Computation on this SPVN number (multiplied by itself).
Conversion of the SPVN result in area measure using the metrological table of
lengths and expected order of magnitude.
Output: area measure.

The last two questions to the students were as follows: “Could you write this
exact exercise with today’s vocabulary?” and “Could you give your impressions of
this exercise?” These questions were designed to provide records of the way history
impacted students in terms of the current algorithm steps and if they were able to
offer spontaneous remarks or questions on the fact that today, there are no steps

Fig. 13.1 Tablet translation and hand-written copy

6Šu-si is a length unit which can be translated as “fingers.”
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corresponding to metrological tables’ use (to make numerical values and multiplied
numbers correspond; which is indirectly linked to our metrical system).

To summarize, this key session 4 was the meeting of the students with our
milieu: cuneiform tablet UM 29-15-192. They were led to find an interpretation of
the relation between the area of the square computation and metrological tables.
They still worked directly with cuneiform sources, translating with the help of a
small dictionary. They added refined observation of the tablet’s layout to their
investigative skills. They developed a historical interpretation using the sources at
their disposal (area tablet, metrological tables, multiplication table of 20). They
entered into the mathematical thinking system’s special features: the use of SPVN
numbers to compute (allowing them to get rid of division), the way to navigate
between this numerical system and others (metrological tables), the use of the order
of magnitude and special relations in a metrological system that differs from ours.

13.3.2 A Priori Expectations on Conceptual Aspects

In Table 13.1, we present items of the ancient text coming from mathematical
diversity (first column). We show in the second column how this preserved
diversity is expected to have an effect on the current mathematical conceptions of
the student, first with regard to the general concepts (numbers, measurement, unit of
measurement, etc.) and second, with the application via detailed questions linked to
the area of the square. In the third column, we indicate the strategies developed to
investigate these possible effects. Recall that we documented only the history of
sciences sessions’ effects and what meeting with ancient mathematics did to stu-
dents before the intervention by the mathematics or history teacher. We sought to
know more about the new ground on which teachers will institutionalize current
mathematical notions, and whether we favored emergence of new spontaneous
questions.

Metrological table of lengths 

1 finger 10 
2 fingers 20 
3 fingers 30 
4 fingers 40
5 fingers 50

6 fingers 1

Metrological table of surfaces 

⅓ grain 6 : 40 
½ grain 10
1 grain 20
2 grains 40 
3 grains 1

Fig. 13.2 Abstract from metrological tables of lengths and surfaces
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13.4 Results

In this section, we present some of the results from comparing answers between the
control group’s interviews and HSG’s interviews.7 Semi-directed discussions were
chosen to provide an opening for spontaneous questions from students, which we
sought to observe. The structure of the interview mainly consisted of two parts.
First, we asked questions about the area of the square to both the HSG and control
groups in order to (1) detail the mathematical basis we had made predictions on in
the control group and (2) determine if we could record the effect of the history of
mathematics sessions on current mathematical conceptions by comparing the HSG
with the control group. Conclusions were based on indirect analysis of the answers
regarding current mathematics questions (e.g. by observing spontaneous questions
from HSG students on current area computation). Second, direct questions about
mathematics, the history of sciences and history were asked to both groups to seek
for nuances in their representation of these disciplines. We hypothesized that
changes might emerge due to students being introduced to a type of history of
sciences, in particular their immersion in another system of mathematical thinking,
respecting its diversity. Students also had to work with history in an investigative
way (developing an interpretation based on primary sources, translations from
cuneiform and experimentation with tools, including clay, abacus, etc.).

13.4.1 Interviews on Current Mathematics

This part of the interview first aimed to verify that students’ current mathematical
state of knowledge was compliant with the hypothesis we drew from our prelim-
inary analysis (control group study). Second, it aimed to provide a ground for the
emergence of spontaneous questions as a result of this encounter with mathematical
diversity in the form of the ancient cuneiform tablet, which would allow us to study
the differences between the control and HSG groups and describe possible com-
munications and effects between the two mathematical systems (ancient and cur-
rent). Indeed, we detailed in our a priori analysis (see Sect. 13.3) how the ancient
text might have had an impact on students’ conceptions of numbers, measures,
algorithm, etc. We sought for traces of these both in spontaneous questions and in
the differences between the control group and the HSG in the context of the area of
the square. We only present a brief overview of the results, though they are detailed
thoroughly in the author’s doctoral dissertation.

For this part of the experiment, there are two main conclusions. First, the
hypotheses about (current) mathematics based on working with the ancient texts’
influence were mainly verified, often more strongly than we had expected. The
objects on which the computation algorithm operates are not clearly identified by

7Interview questions are presented in Appendix.
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the students, and the concept of unit of measurement is not (or no more) related to
the idea of shifting the same standard several times: the act of measuring. The unit
of measurement seems to play what we had qualified as “literary role;” it was used
to give contextual clarifications. The results reinforce our hypothesis that the loss
(or lack of knowledge) of the geometrical grid taught in fifth grade plays a key role
in these difficulties.

When students were asked to explain how to calculate the area of a square, the
quasi-unanimous answer given by the two groups was very largely to give “the
formula” (among them, six students in the HSG gave an erroneous one). In addi-
tion, 60.97% of students in the HSG did not attempt explanations, while 47.6% of
the control group did not attempt an explanation. Only one pupil from each group
proposed a “grid” representation at this stage; a student from the HSG also pro-
posed an explanation related to the proportionality between the length and area. The
other students related to external work (“it was taught this way/it has been proven”)
or responded by giving conditions for applying the formula (12.5% for the HSG,
20% for control group).

The hypothesis of this loss of the grid is largely reinforced by our last “pool”
exercise. Students were asked to find the number of tiles (each of area 1 cm2)
needed to fill the bottom of a pool with 20 cm sides. From both groups, a strong
majority of students chose explicitly to compute the area of the bottom (square) to
find 400 cm2 and then divide by the area of a tile (1 cm2). Only a few performed a
multiplication of 20 by 20, explicitly, to directly find the number of tiles.

Area conception seems to have lost a rich multi-level character which has been
replaced only by multiplication, with almost no connection to quantities. An
important confusion was expressed in one of the HSGs, as students considered the
formula of the area of the square to operate on “one side.” The formulas of the area
of the triangle and, above all, of the circle (which has no sides) cannot apply the
same type of operation, in their opinion. This is important because it exemplifies
one of the risks of not knowing clearly which objects are involved in the calcu-
lation. It also shows to what extent the identification of the mathematical objects of
an algorithm which here takes a “side” rather than a number of tiles as “entry,”
makes it mathematically difficult to gain a deep understanding of the operation. In
detailing algorithmic steps, students focus only on the multiplication step. They can
no longer connect the algorithm to tiles, nor “cm2” geometrical units, nor “cm”
geometrical length units (shifted on a side), but only to “the side: 5 cm” as a whole.
When some of the students discussed measuring units during the interview, it was
to remind them to “add” the “cm2” at the end, but it was not physically concep-
tualized, and some students confused it with “cm.” The majority of the students in
the control group and the HSG expressed the fact that the unit of measure was used
to “indicate that it is an area” (45% of the control group and 31.57% of the HSG).
Furthermore, 10% of the students in the control group and 5.26% of the HSG
students recalled that it was “because cm � cm = cm2.” When asked what “cm2”
was, the students in the control group mostly answered “a surface” (37.5%), while
18.75% of the students specified “a tile.” In the HSG, 53.12% of students directly
indicated it was a tile or a square. However, the idea of a tile or surface does not
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mean that the students mobilized the idea of “shifting” or the conception of a
“grid.” Only in the HSG did there exist a reference to its use to measure (e.g.
apartments), and thus indicates an indirect idea of shifting measurement unit.
Students were also unable to link numbers (like 5) to the number of tiles or to the
number of centimeters on a side.

We explain this non-persistence of the “grid” in part by the conceptual impos-
sibility of making the “tile” geometrical representation of the unit of measurement
in the grid coincide with its arithmetical multiplicative representation in the for-
mula. Here, when asked about a “centimeter-square” length-measuring unit “cm”
also pops into the picture and generates erroneous geometrical representations of
relations between units of measurement (see the “L” representation in Sect. 13.1),
but they are still never linked to an area algorithm. Thus, in the algorithm, the unit
of measurement finds itself confined to a role that is not so much “mathematical”
anymore. These results reinforce the interest in making explicit (at some point) the
consequences of the metric system on the fluidity of navigation between quantities
(governed by relations of proportion) and numbers (linked by operations). History
has also had an important effect on the conception step of this experiment through
the diversity of propositions it offers in connection with various metrological
systems.

Questions arising from the meeting with history do not emerge spontaneously
among pupils in this part of the interview, which is nevertheless suggestive. When
asked to give the algorithmic steps (ancient and current) as they would for “a
cooking recipe” or a computer, students from the HSG did not make spontaneous
remarks about the absence of “conversion” in our system. The question “is the 5 in
5 cm the same as the 5 in 5 � 5?” shows a disparity between the HSG and the
control group. In the control group, 62.5% numbers of pupils answered that they
were “the same.” This response was found in 28.57% of the HSG students. In the
HSG, 50% responded that we compute on numbers that “represent something;”
they express the idea of the remains of “side” (of the square) or “length” (of the
side). In the ancient text, the number (SPVN number), whose value is not the same
as the number associated with the measurements, is an independent mathematical
construction that allows different elements to communicate: length measures and
area measures. Here, the number on which to compute is not presented as “inde-
pendent,” as in the ancient system, by the students: it is precisely the interest of our
metric system. However, interestingly, students also expressed the capacity of the
number to “represent several other things.” Consequently, this differentiates num-
bers (which according to their answers can represent measures and other mathe-
matical objects) from measures, and it even underlines numbers as transitional
objects. It is possible that here we have access to a communication trace between
ancient and present-day mathematics, which is what we were seeking. It is con-
ceivable that the teacher of mathematics can utilize this effect; although it should be
noted it affected only 50% of the students in this study. This is one of the points we
wished to describe: our ancient text as a milieu has different effects on different
students, and therefore it cannot be taken for granted. Explicit spontaneous ques-
tions about the fact that it is possible today to use the “same” number values to
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measure length and to compute (whereas it is not possible in the ancient text) were
not raised. The teacher would have to raise the question and explain the reasons for
the possibility of expressing a calculation on values coming from measurement, due
to the way in which the metric system is constructed, and thus make explicit the
type of objects that enter a computing algorithm. He could then use the “grid” to
re-explain where “numbers” come from at each step, linking them back to tiles
(associated secondarily to the number of centimeters of the side).

Students could have raised explicit questions. In our system, measuring units of
lengths and surfaces seem connected; why is this not the case in the ancient text?
This question did not arise spontaneously. It would then be very interesting for the
mathematics teacher to raise afterwards, and it would not transform history in a
prejudicial way. One of our indirect questions seems to show an impregnation of
the historical text: “Today, where do you shift from lengths to surfaces?” This
question is not completely legitimate mathematically; although we used it to see if
students would reply with explicit remarks, such as: “There is no conversion
today,” which could be used by the mathematics teacher to make the difference
between length and area measuring systems more explicit (by expressing how we
built a system that makes units correspond). Seventy-five percent of the students in
the control group said that change occurred during multiplication, while only 64.7%
of students in the HSG indicated this. A new option also emerged in HSG: “at the
time of the result” for 14.7% of students. Formulations of the type “just after
multiplication/between calculation and result” or “because of what one multiplies”
were found, in minority, in both groups. The emergence of the new option could be
explained by the encounter with the ancient text: after calculation, with SPVN
numbers, we must look for the area measure in the metrological table. Thus, this
could be related to the “time of the result” formulation. It should be noted that this
effect, which again, impacted only 14.7% of students, did not lead to explicit
questions, such as questions on the “absence of conversion” in our system, as we
expected. Thus, the effect, probably linked to the historical text, remains unex-
ploited and does not allow students to consciously question mathematics.

The second important conclusion of this descriptive experiment is that the text
does not seem to act perfectly as an “a-didactic milieu,” as spontaneous explicit
questions cannot be raised by students. This shows the difficulty for students in
having the ancient and current mathematical systems interact, although the students
knew how to navigate in each system independently. This encourages precautions
in all experiments using the history of science to improve current mathematical
knowledge, as such interactions are not automatic. Furthermore, trying to force
interactions almost always interferes with historical constraints in creating paral-
lelisms between the two mathematical thinking systems (parallelisms that imply
transforming ancient mathematics and its diversity for the sake of comparison).
Even if a mathematics teacher utilized the ancient text’s effects, he could not rely on
uniform explicit influence of the text in his class. However, the divergence of
results, sometimes important, between the control group and the HSG shows the
emergence of historical influence in terms of current mathematical aspects. This
does not mean pupils can use this influence to explicitly interrogate their own
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knowledge. To avoid speaking only to a part of the class, the teacher would also
have to raise the hypothetical “spontaneous questions” we evoked. In this way and
before establishing any mathematics-to-be-taught in its present-day form, he will
help in making these changes explicit, which otherwise will remain tacit in stu-
dents’ discourse. This rejoins the deeper debate of investigative activities. However,
these spontaneous questions can also be seen as a compromise that allows the use of
the history sequence in mathematics classes without losing sight of history.
Methodologically, we sought traces of conceptual impact in terms of both spon-
taneous questions and the differences between the control group and the HSG in the
context of the area of the square. It might be interesting to search for a more direct
impact on the concepts of number, algorithm, multiplication, etc. (see a priori
analysis) without inquiring into the context of the area of the square, which could
create a bias. Another methodological possibility would be to study the effects of
history of science sessions led by teachers from each discipline (mathematics and
history) in parallel, during preliminary analysis, with the help of a history education
researcher. This would constitute a “double ingénierie” and would offer clear
insights into where the parallelisms created to transpose mathematical knowledge
today might affect history.

13.4.2 Interviews: “Nature of Sciences (Historical
and Mathematical)”

This part of the interview aimed to study the “nature of science” effects of our
sessions on representations of mathematics, history and history of sciences, based
on the fact students had been introduced to historical mathematical diversity, in a
motivational (or at least built to be motivating) context with historical investigation
tasks. We only present a brief overview of the results, which are thoroughly detailed
in the author’s doctoral dissertation.

The question “What is important when presenting a historical text?” is
methodologically interesting. The debate seems to continue from the previous
question on the history of science, and some students answer based on what they
would find important to say in a history of sciences class. The answers in the two
groups are mostly related to “giving contextual clarification” on the source. Themes
such as presenting “research steps” (6 occurrences) in history of sciences, or
referring to the present (5 occurrences; e.g. How are these findings useful today?
How can history be used to improve?), are absent in the HSG. One hypothesis is
that conceptions about the possibilities of using the history of science have changed
in the HSG because of the cuneiform sessions. The most important part of the
results is that the HSG engaged in seven “discussions using diversity of arguments”
that were not present in the control group:
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1. Questions on the status of the source in relation to the subjectivity of the author
(necessary step back):

S1: Well, for example, if we write it when we are at war, the adversary
countries do not have the same version. So, if the text was written in one
country… it’s not… valid. […]

2. The difficulty and need (or not) to know the author depending on the type of
source:

S2: What I mean is, the author is not essential in every document,
not in all types of documents. […] Well I mean for a novel, for
an article and all, alright, we need it, I agree with S3.

Interviewer: Why?
S2: Because hum… to know, well for culture, to be able to

compare… with others […] but hum, for instance a math
problem, you will not ask yourself… who wrote it, I mean…
whether it’s your grandma’ or some guy you ran into.

S3: A math problem, it’s different and… [inaudible debate] […]
S3: The text will be famous and the problem won’t be because the

problem… It depends on the type of text. […]

3. The reliability of the scientific content of the text, with the risk of learning
something incorrect [this could perhaps belong to one of the facets of what has
been described as “dépaysement” (Barbin 1997; Guillemette 2015)]:

S5: Well… if the source is not reliable, I mean… if it hasn’t been
demonstrated, we cannot give them [students] something… that
might be wrong.

Interviewer: How can it be wrong, for instance?
S5: Hum… if we discovered afterwards that in fact this computa-

tion… did not work or… […]
S5: It makes us take a… step back, right? [laughs]
Interviewer: It makes you take a step back?
S6: Well maybe it can also make us progress, because we already

know it’s not right, so we can already withdraw an… […]
hypothesis, hum… […]

S5: I mean if it’s wrong and we know it, it’s ok. However, if we
think it’s true and we learn it, hum…

Interviewer: You’re afraid to learn something wrong?
S5: Exactly.
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4. Nuances on the role of the historian in the presentation of a “true” interpretation
of the text (this would need to be discussed with the help of a history teacher);
also linked to a different form of dépaysement:

S7: because hum… every historian must have had an hypothesis, they tried
and all… and hum… they saw this [cuneiform sign] means “1” and tried
on several tablets and so… this, hum… led them to believe it meant 1.

S8: I think yes, she’s right, many people must have, hum… described this,
hum… tablet, some had right answers and some had wrong answers,
and… I would not have liked to learn a wrong one.

S7: It shouldn’t… hum… it has to be a collective work, there must be several
points of view.

S8: Yes, that’s it, it must be demonstrated and… […]
S7: If there is a logical reasoning, hum… we also see… the greatest

majority… even… everyone, gets the same result. This… they conclude
on the same… hypothesis.

S8: If we manage to convince everyone [it means it’s true].

This debate led to a debate on students’ role and implication which could be
linked with our “investigational” practice:

S2: It’s interesting but… in fact every student could also give his opinion, it
could help historians.

S8: Yes.
S7: Because, hum… everyone can give his opinion and be right so, hum…

maybe thanks to our hypothesis or our… commentaries it could lead
them to think… something else which might lead them too, to find the
right result (laughs).

5. The need to know the mathematical basis to understand the source.
6. The role of the context which is interpreted by the student as a motivating tool:

S9: We should know… the context […] to know why… we found it
today and what it was used for before.

Interviewer: Alright. And why is it important?
S9: Because if not… well to me we cannot understand the source.

[…]
S10: Well, I would say you have to be, hum… well when we present

something we have to be convincing, also, to make people want
to listen. […]

S9: A “full of life” type of class […]
Interviewer: The context, to you, it gives interest? The context… of the

source, for instance?
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S10: I don’t know.
S9: Well maybe not interest, but it helps understand […]
S10: Well yeah, I already had some teachers, when they explained

something they used to put… the right tone. It made us want to
listen. I think it’s better.

Interviewer: Alright, when they presented the source?
S10: Yeah.

7. And the impact of status of the source (raw, to be deciphered or not) in moti-
vating the student and/or taking a scientific approach:

S11: I would give it translated […] so we would get a first example, to know
what they [scribes] did, and could try to put every letter in hum… the
translation, for everyone to understand, and then try to translate by
ourselves, with an example. […]

C: Alright. Do you agree?
S12: Yes, if we do not justify it’s like preaching things. And so we cannot

necessarily trust it.
C: Alright, you mean saying why it was translated this way? […] do they

tell you this in history class?
All: No. Not much. […]
S13: I would give it raw. To me it’s the only way… we can understand. We

have to sort things out. […] to test, to sort things out, to understand by
ourselves and then we can ask for the answer to check and then
continue doing hum… computation, but to me, it’s raw. Because with
help it’s too… easy. We get the answer and the hum… we just copy
so… it’s raw.

These discussions demonstrate a step back from the historical source, what is
known, and what it takes to understand it. The various possibilities of presenting the
source to the pupils are mentioned by one sub-group in a discussion on “pedagogy.”
This fact is not without interest, since it testifies to taking a step back in terms of the
different presentation possibilities for the source as well as its foreseeable “politi-
cal” use. It also testifies to taking a step back from possible scientific interpretation
of the content of the text in relation to what is known today, based on the role of the
historian in choosing an interpretation (although sublimated here, because he knew
the “right” interpretation). All of these are interesting effects of the session. It could
be guided by the history teacher after the session. Indeed, we studied the effect of
the text on debates without teaching intervention. Doussot and Vézier (2014) recall
differences in students’ answers about the historical source, depending on the
question addressed to them by teachers. The student discussions highlighted
motivation to exchange on these themes. Variety in the use of arguments in the
HSG may show a complexification of their position which can open an interesting
breach to enrich their conceptions linked to history, which can be guided by the
teacher.
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In general, in this part of the experiment, the results reveal that the history of
science teaching sequence may have had an effect on the wealth and number of
debates concerning the nature of mathematics and history. We were able to doc-
ument more varied arguments in the HSG, as well as more lengthy debates. It
should be noted, however, that these positive results do not exclude the use of
“condescending” formulations toward the past, even by some students in the HSG.
Ancient mathematical work exposed to the class can be used as an argument to
glorify the present and its simplicity, rather than to consider diversity. These
“positivist” positions must, however, be nuanced, and they are not adopted all the
time; the same pupil could adopt relativist position at other times. Indeed, many
arguments proving the capacity to “put oneself in the shoes” of the ancient author,
to consider the tools at his disposal and his possible objectives, are also recurring. It
would be necessary to further document through experimentation, the possible
increase in the number of relativist arguments between a control group and a history
of science group. Here, the role of the history teacher, after the sequence, could be
fundamental, and the debates described in the experimentation could be guided. In
the same way, the spontaneous remarks that we have noted as interesting could
serve as fertile soil in history class (the role of the historian, the availability or lack
of availability of information on the author and his subjectivity, the diverse pos-
sibilities for presenting the source [untouched or translated], the room given to
interpretation, etc.).

From a methodological point of view, in this part of the interview we used open
questions, which could have induced rather general, even blurred, answers by the
pupils and not provide access to all of their finesse. Furthermore, considering the
hypothetical effects of our sessions shortly after they took place is questionable, so
results should be only taken as a basis for further study and discussion. Results were
built from comparison of both groups which prevented the risk for the HSG to be
interviewed before attending HSG class, as they would have sought for our di-
dactical contract.8 Comparison of both groups made it possible to highlight dif-
ferences in the types of arguments between the HSG and the control group. Our
choice of semi-guided interviews gave free rein to discussion, which allowed,
despite direct questions, spontaneous debates with varied arguments (as mentioned
above) to emerge, allowing us to document the differences between the groups. This
point should be investigated with a pre-session interview on history group in future
studies. Finally, some direct questions indirectly led students to use history of
science arguments (questions about the “nature of mathematics” and the “presen-
tation of a historical source,” for example), which provides hints to their concep-
tions. Thus, these open questions can give access to some aspects of the nature of
history or nature of mathematics.

8See e.g. Mason and Johnston-Wilder (2004, Ch. 3).
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13.5 Conclusion

The results of the “current mathematics” section show that the presence of pupils’
difficulties, considered thanks to the ancient texts, are verified. It has also shown
that the mathematics of the historical text effectively affected students’ perception
of current mathematics, as they acted on their conceptions of predicted mathe-
matical objects. However, the effect is often difficult for the pupil to make explicit,
and does not affect the whole class uniformly. The role of the mathematics teacher
in the reuse of the history of science sequence is therefore necessary to make both
mathematical systems communicate. However, it is a delicate role because of the
disciplinary constraints (Décamp and Hosson 2015) imposed by history, which we
mentioned above, and it also influenced the way we designed the experiment. We
proposed methodological leads to investigate how to take into account this diffi-
culty. The results of the “nature of science” section (historical and mathematical
sciences) showed that attending the history of science sessions led to a higher
number of arguments and spontaneous debates for both mathematics and history. It
is necessary to qualify this: Students may appeal to condescending formulations
toward history, sometimes in a non-uniform way. The same student can use this
type of argument at one point in the interview and then demonstrate relativism by
placing the objectives and mathematical tools in context. Moreover, a possible link
between the number of “positivist” arguments and students’ feeling of failure when
interacting with ancient mathematics should be further documented. To frame these
positions and debates, which could take place after the history of science sequence
in history class, the history teacher could have a key role. It is possible for him to
use this springboard to refine the students’ relationship to historical sources, and to
deepen their understanding of what it is possible or impossible to make ancient
sources say. Given these complex interrelations, it seems all the more important to
further balance history and mathematics teaching objectives in order to exploit
historical sources in the classroom, while keeping a non-elitist perspective and
without losing sight of historical and mathematical objectives.
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Appendix—Interviews’ Content

I. Questions: mathematical part

Could you tell me how you calculate today the area of a square? (Individual
reflection time)
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1.

• If the student has given a formula: Do you know why this formula works?
How would you explain it to someone?

For these first two questions, we do not assume that the results will be very
different between the control and HSG groups. We expect some “grid” type of
explanations and a majority of students with difficulties to answer, “I do not know”
or students who simply give the formula. We can imagine, however, that the HSG
may raise more spontaneous remarks such as “I wonder why the formula works”
(see a priori analysis).

2.

• If the student has only given a formula, not applied to an example: Can you
give me an example with a square the size of your choice? (Individual
reflection time)

This question will allow us to analyze the space given to units of measurement in
the application of the formula and their choice.

3. In your opinion, what are all the steps involved in calculating a square area, if you
were to give them something like a kitchen recipe? (Individual reflection time)

This question has a key role; it will allow us to analyze a possible change in the
ability of the students of the HSG to distinguish the mathematical steps and objects
involved in each step of the algorithm after meeting with a different algorithm.
I recall that we make the hypothesis of a difficulty distinguishing between steps (at
least for the control group), with a tendency to summarize the area calculation in the
single multiplication step.

4. In your formula, what is the “3” (which is multiplied)?

I recall that we make the hypothesis of a difficulty in explaining what is mul-
tiplied, especially for pupils unable to mobilize the idea of “grid,” as well as a
difficulty in distinguishing number and numerical value associated with a magni-
tude value. We expect a few answers like “a number of tiles” and a majority of
answers like “length of the side,” on which we could counter and ask for clarifi-
cation, on why “it works.”

This may be an opportunity to see a difference between the control and HSG
groups. The latter could, for example, make spontaneous remarks such as “ah, but it
is true that today it is both” (number multiplied and measure of length), while in
Mesopotamia it is not the same (SPVN and length measurement numerical system).

5. In multiplication, what is multiplied?

Same remarks as in the previous question

6. Why do we put “cm2” as a unit of measurement here?
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I recall that we make the assumption of a general difficulty in explaining the
choice of the unit of measurement, due to an automatic use of the area unit of
measurement “corresponding” to the length unit of measurement.

This question may be the occasion to note the emergence of spontaneous
questions in the HSG, due to the encountering with area units of measurement
unrelated to lengths units of measurement, like: why do our units of measurement
bear the “same name”?

7. What is “cm2” to you?

We a priori expect answers of the type “a tile” and answers of the type “an area
unit of measurement;” without distinction between the two groups (control and
HSG).

8. Here, there are length measurements and there, surface measurements; when did
we go from one to the other?

This question, although asked in a “partially mathematically legitimate” way,
will allow us to draw students’ attention to different type quantities at stake in the
algorithm. Here we expect a difference between control and HSG groups. We
believe that control group will respond “at the time of multiplication,” giving a key
role to the multiplication that seems to do a “magical” transformation. We believe
that the HSG, which has found the existence of SPVN numbers and metrological
tables, will be divided and hesitant. Perhaps spontaneous questions will emerge at
this moment, like: “in the tablet we have made a correspondence between measure
of length and numbers, then between numbers and area measure; I do not know
how we do it today/I do not know where this step is today.”

Some pupils in each group may use the idea of a “grid” to answer that length
measurement does not really matter, and that it is actually a matter of knowing the
number of tiles (the number of cm2), with multiplication operating on the number of
tiles per row and column. Then the length measurement simply gives the number of
tiles on a line. It could be said that there is an implicit mapping of the length
measurement from one side to the number of tiles on the side.

9. If I have a square (20 cm sided) pool, and if I want to tile it with tiles (squares)
of 1 cm side, how many tiles do I need?

I recall (see previous analysis) that we make the hypothesis of a general difficulty
in mobilizing the grid, that hence bears no meaning anymore, in the memorized
formula. This question will show which method is preferred by the students: to
count tiles or to calculate the area and then divide by the area of a tile. We assume a
majority of use of this latter method, in both groups. We think the question may
allow some of the students to remobilize the “grid.”

10. Can you explain why the formula works?

We want to see if the students who “remobilized the grid” change their
explanations.
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II. Questions: nature of sciences

[The first six questions based on the cuneiform tablet (historical, mathematical)
are omitted because they were asked only to the HSG.]

1. Do you like math? Yes/no, why?

This question shall be used to investigate the relationship of students with his-
tory of science sessions, based on their relationship to mathematics, and a possible
explicit effect (or not) of the sessions on their tastes, by comparison with the control
group.

2. In your opinion, what is important when presenting a historical text?

This very direct question will help us to know whether or not students are able to
make explicit their relationship to the historical discipline; and to see possible
changes between control group and HSG.

3. What is history of sciences, for you?

This very direct question will help us to know whether or not students are able to
make explicit their relationship to the history of sciences; and to see possible
changes between control group and HSG.
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Chapter 14
Making Domain-Specific Beliefs Explicit
for Prospective Teachers

An Example of Using Original Sources

Susanne Spies and Ingo Witzke

Abstract The implicit effects of using history of mathematics in teachers’ edu-
cation on the individual beliefs of prospective mathematics teachers are widely
discussed. However historical texts may also play an important role in making
different mathematical worldviews and domain-specific beliefs explicit, as we
discuss in this chapter. For this purpose, after sketching some connecting points
between the history of mathematics on the one hand and individual beliefs of
mathematics on the other and the short presentation of results of an empirical study
on domain-specific beliefs of school calculus, we present an example from
prospective teachers’ education at the University of Siegen: Within a course on
subject matter didactics of calculus a historical source is used to initiate discussions
on students’ beliefs.

Keywords Prospective mathematics teachers � History of mathematics
Mathematical worldviews � Domain-specific beliefs � Calculus

14.1 Introduction

It is widely discussed that teachers’ individual beliefs (and related concepts such as
mathematical worldviews, beliefs, belief systems, etc.) of what mathematics is,
influences his or her beliefs about teaching and learning mathematics. This has an
influence on the concrete classroom performance and the pupils’ learning process
(e.g. Philipp 2007; Wilson and Cooney 2002). Following this hypothesis, the
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research on mathematical worldviews takes place in teacher education with two
different foci. Firstly, it is acknowledged that every teaching process at university
leads students to individual experiences with mathematics, which influences stu-
dents’ belief systems. This rather unconscious development may eventually lead to
an authentic and helpful belief system, which follows the hypothesis, ‘mathematics
is what mathematicians do.’ Secondly, making different mathematical worldviews
explicit could be helpful as well, for example, as explicit topics in seminars on the
teaching and learning of mathematics. This process of making metacognitive
aspects explicit to learners is in turn supposed to lead students to a more conscious
and reflective approach on what mathematics is: “On the basis of rational and
‘reflexive’ considerations, mathematics is embedded in an individual idiosyncratic
structure of beliefs” (Bauer 1990, p. 7; authors’ translation).1

In this chapter we will make a case for using original sources from the history of
mathematics within prospective teachers’ education at university level, in the sense
that it does not only work in the first implicit way, which was described above, but
that it also can be fruitful to initiate explicit reflections on different—sometimes
even problematic—belief orientations. Furthermore, we will discuss the capability
of working with original sources especially within seminars on the teaching and
learning of mathematics with a special focus on domain-specific beliefs on school
calculus—which must be seen separately from courses on calculus itself.2

We will start by giving an outline on different aspects of the interplay between
using history of mathematics and mathematical worldviews within teachers’ edu-
cation. In a second step, we present results of a questionnaire on calculus specific
beliefs of high school students and point out some problems from the perspective of
subject matter didactics. We will also mention parallel developments in the history
of calculus, on an epistemological level. On this basis, we present an example from
a seminar on the teaching and learning of calculus (‘Didaktik der Analysis’), in
which we used a part of Jean Bernoulli’s (1667–1748) work on calculus to make the
idea of an empirical orientation concerning main concepts of calculus explicit and
to initiate students’ reflections on possible consequences for their prospective cal-
culus lessons in school.

1“Auf der Basis rationaler und ‘reflexiver’ Überlegungen wird die Mathematik in die eigene,
individuelle Wertstruktur eingebettet” (Bauer 1990, p. 7).
2It is a special characteristic of the teacher education course at the University of Siegen that
introductory content subject lectures are in general accompanied by appropriate Pedagogical
Content Knowledge (PCK)-courses; ‘Analysis courses’ for example are accompanied by ‘Didaktik
der Analysis’ (Didactics of Analysis).
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14.2 History of Mathematics and Mathematical
Worldviews

Many scholars are convinced that mathematical worldviews or beliefs are important
to understand core processes of the learning of mathematics. Amazingly, the
concept of beliefs remains a somewhat blurred construction with different thematic
implementations (cf. Forgasz and Leder 2008). Some scholars have described the
two dimensions of mathematics as a process versus mathematics as a product. As
one interpretation of this duality we acknowledge the question of whether mathe-
matics is a human activity and endeavor or an ‘a priori’ given corpus or a set of
known rules and objects. Thereby, getting to know mathematics as a human
endeavor is one of the prominent alleged effects of using history of mathematics
within mathematics education. For example, for Jahnke et al. (2000, pp. 291ff.) the
so called “replacement” is one of the “three general ideas” of using history of
mathematics, with original sources in this special case:

Integrating history in mathematics replaces the usual with something different: it allows
mathematics to be seen as an intellectual activity, rather than as just a corpus of knowledge
or a set of techniques. (p. 292)

Following this, it is not surprising that integrating history of mathematics—
especially within teachers’ education—is often linked with positive effects on the
individual beliefs of prospective teachers (cf. Furinghetti 2007).

14.2.1 Changing Prospective Teachers’ Beliefs
Through History of Mathematics

Frequently changing or broadening teacher students’ beliefs is formulated as an
expected result when describing prospective teacher education programs, whereby
the historical material is supposed to do its job in an implicit way [e.g.
Beutelspacher et al. (2011), Fenaroli et al. (2014) and many others, as for example
mentioned in Furinghetti (2007)]. This means, on the one hand, that only by the
work with original sources for example, or by learning mathematics by its history,
students are supposed to come to belief-changing experiences just by themselves,
without focusing their attention explicitly on the transfer of certain beliefs. On the
other hand, there are a few approaches relying on the possibility of historical
material to initiate reflection on the mathematical objects, as a way to focus on
students’ mathematical worldviews explicitly [e.g. Jahnke et al. (2000), Jankvist
(2015), or the approaches mentioned by Gulikers and Blom (2002)]. Additionally,
there are a few empirical studies in which belief changes potentially caused by
using history of mathematics in teachers’ education were investigated. With respect
to beliefs of mathematics in general see, for example, Charalambous et al. (2009),
Liu (2007), Jankvist (2015, with focus on high school students) and others, such as
those referred to by Bütüner (2015).

14 Making Domain-Specific Beliefs Explicit for Prospective Teachers 285



Somewhat remarkable is the fact that all of these studies, as well as the
accompanying concrete examples, only focus on the nature of mathematics in
general. Even if the emphasis often lies on courses concerning a special
sub-discipline of mathematics (e.g. geometry, calculus, algebra) there is no atten-
tion to students’ domain-specific beliefs.

There are only a few examples in literature in which history of mathematics is
used in courses for teaching and learning mathematics, especially regarding subject
matter didactics.3 This is even more surprising considering that beliefs and mathe-
matical worldviews—which are closely linked to the history of mathematics (see
above)—are part of prospective teachers’ curricula. Furthermore, “self-reflection”
and “metacognition,” as well as a “reflection of meaning and sense”—which are
likely to be encouraged by working with historical sources—are metacognitive
strategies alleged to profoundly make students’ views on a piece of mathematics
explicit (cf. Lengnink 2006). There are various reasons for the lack of a use of history
in courses for teaching and learning mathematics: As we have already mentioned,
there is a strong tendency to rely on the unconscious effects of historical material on
students’ beliefs while learning mathematics, rather than making different beliefs
explicit. In addition, the common focus on beliefs concerns operations and moti-
vations instead of the nature of mathematical objects. This focus may distract from
the possibilities of historical material. Another reason why historical examples are
rarely used in courses on subject matter didactics could be that there is not much
secure knowledge on domain-specific beliefs of students in the literature thus far.

14.2.2 Classification of Beliefs

The categories which are used to classify beliefs differ quite a bit in each case,
although many of them can be placed in the well-known catalogue of Grigutsch
et al. (1998, p. 13; original in German, authors’ translation), who formulate the
toolbox aspect, the system aspect the process aspect and the utility aspect—de-
scribed by Liljedahl et al. (2007) as follows:

In the “toolbox aspect,” mathematics is seen as a set of rules, formulae, skills and proce-
dures, while mathematical activity means calculating as well as using rules, procedures and
formulae. In the “system aspect,” mathematics is characterized by logic, rigorous proofs,
exact definitions and a precise mathematical language, and doing mathematics consists of
accurate proofs as well as of the use of a precise and rigorous language. In the “process
aspect,” mathematics is considered as a constructive process where relations between
different notions and sentences play an important role. Here the mathematical activity
involves creative steps, such as generating rules and formulae, thereby inventing or
re-inventing the mathematics. Besides these standard perspectives on mathematical beliefs,
a further important component is the usefulness, or utility, of mathematics. (p. 279)

3An example connecting history and domain-specific beliefs of negative numbers is given by
Hsieh (2000).
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A closer look on these “classical” categories of Grigutsch et al. (1998) shows
differences between the categories concerning the nature of objects of beliefs. While
the toolbox aspect and the process aspect are connected to operations considered as
central for mathematics in general, the system aspect and especially the utility
aspect mainly take into account the motivation for doing mathematics in general.
However, beliefs regarding the nature of mathematical objects are found only
implicitly in the described system of categories. However, as these beliefs play a
crucial role for the development of mathematical knowledge (cf. Burscheid and
Struve 2010; Schoenfeld 1985; Witzke 2009) and open a field of possible con-
nections to history of mathematics, we suggest extending the system of categories
by two categories in the tradition of Schoenfeld (1985).

Schoenfeld introduced the term of a pure empiricist belief system, meaning that
insights in the process of problem solving as well as the generation and verification
of hypotheses depend solely on objects from physical aspects (‘empirical’ reality).
In geometry, for example, insights for archetypal students in the sense of “pure
empiricists” only come from drawings in the drawing plane while solving a
problem. In such a “belief system mathematical proof is irrelevant to both the
discovery and (personal, rather than formal) verification process” (Schoenfeld 1985,
p. 161). Drawing from the Schoenfeldian belief system of “pure empiricism”
Burscheid and Struve (2010) theoretically developed the notion of an “empirical
belief system,” where mathematics is ontologically bonded to reality but where
deductive reasoning plays a major part (cf. the natural sciences) and a “formal(ist)
belief system,” which they ascribe in particular to modern professional mathe-
maticians. In this model ideas and considerations are only generated and derived
logically from existing knowledge in a formal way. For verification, hypotheses are
exclusively deduced from known—meaning already proven—theorems and
axioms, and verified logically: “The objects [of geometry] are taken as abstract
entities, only visualized by drawings” (Burscheid and Struve 2010, p. 28; original in
German, authors’ translation). In such a setting at first, theorems are only expressive
forms (‘Aussageformen,’ in Hilbert’s expression), which may be interpreted
semantically but do not have to exist in the empirical world.

As mentioned above, the concepts of the empirical and the formal belief system
offer interesting links to the history of mathematics; they offer a special lens for
looking on historical sources from an epistemological point of view. For example,
the Leibnizian calculus could be reconstructed, by following the ideas of struc-
turalism (Balzer et al. 1987), as an empirical theory, and as a prime example for
mathematics developed in an empirical sense—meaning ontologically bonded to
physically constructed curves on pieces of paper. This could be used again as a
basis for further discussions about the teaching and learning of the subject matter
(cf. Witzke 2009).

In the following sections, we first introduce a study on domain-specific beliefs of
school calculus—including the broader notion of beliefs outlined above. Then, we
present an example of using one original source within a course of subject matter
didactics of calculus, used to discuss the empirical results of our study with our
teacher students.
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14.3 Domain-Specific Beliefs of School Calculus

14.3.1 Empirical Results of a Questionnaire Study

In order to describe and classify domain-specific beliefs of students at the very
beginning of their mathematics studies regarding calculus in a qualitative setting we
designed an open-ended questionnaire, in which the respondents were asked to
associate and answer in their own words. The questionnaire consisted of three parts.
The first part set the focus on one specific situation of a calculus course and the
emotions the students connected to it:

Recall and describe a special school lesson (e.g. the introduction of a new topic, classroom
talk, a problem-solving situation…) of your calculus course. (Introduction of the first part)

The second part of the questionnaire made up the nucleus of the present
investigation. Here we asked the students for associations on key terms regarding
(school) calculus: derivative, function, integral, point of inflection, continuity,
extreme value, tangent, limit, differentiability, graph, instantaneous velocity.
Providing students with both lines and grid space, we gave them the possibility to
express their associations in written and graphical terms and both possibilities were
chosen by the respondents. In addition to the associations for single key terms of
calculus, there were two more general questions that referred to the used objects and
the legitimization of calculus in school with the possibility of free-text responses.
These questions were:

22. What is computed in school calculus? What do the results stand for?

23. Why should calculus be taught at school?

The third part of the questionnaire was a standardized, closed-ended section,
using prominent items of mathematics education for further triangulation purposes.
The questionnaire concluded with personal data items. After piloting the ques-
tionnaire with a small number of respondents from different groups of interest
(pupils, schoolteachers, university students and lecturers) it was given to a total of
83 first semester pre-service teachers at the University of Siegen and the University
of Cologne in Germany. The students completed the questionnaires during their
very first week at university, without any prior contact to university mathematics,
and their responses to the second part of the questionnaire are the basis for the
results we refer to in the present paper.4 We used the categories of beliefs of
mathematics that we previously discussed as a basis of the qualitative content
analysis (e.g. Mayring 2002) conducted on the association section of the

4An extended description, including a link to the questionnaire as well as a detailed presentation of
the results and a data-based analysis, is published in Witzke and Spies (2016). In the present paper
we only provide a short outline of the instrument of analysis and describe the main results in a
qualitative way, in order to focus on points of interest for our present topic.
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questionnaire. After several iterations of the coding process we modified the the-
oretically based categories as given in the final coding framework (Fig. 14.1).

The analysis of the data by these categories shows several interesting results
concerning particular items as well as the accumulation of typical combination of
categories (cf. Witzke and Spies 2016). Summarizing the complexity of results from
the first analysis of the data exhibited the following key findings:

• Ideas from elementary geometry generate dominant associations (and beliefs),
even if the setting and the moment within the survey may suggest an explicit
analytical calculus-context.

• The toolbox orientation, which is a mainly syntactical view on school calculus,
still plays a remarkable role amongst students.

• The evaluated domain-specific beliefs of students do not reflect the paradigm of
utility orientation in current efforts of subject matter didactics in Germany.

• If students associate semantic interpretations with key concepts of calculus these
have an empirical or even geometrical character. That means the concept of
function is associated with curves, the concept of derivative with slopes of
tangents, the concept of integral with surface areas, the concept of extreme
values with turning points, etc. Figure 14.2 displays an impressive example of
how an empirical orientation is manifested by the students.

Even though these key findings have to be handled with care (since they need
more empirical research), they give way for further interpretation, explanation and
discussion. For example, the results of a follow up study of a small group of active
teachers show remarkable differences. The teachers received a modified version of
the association items, combined with questions concerning how they teach the core
concepts of school calculus.5 There was a much higher rate of utility orientation and
a lower rate of symbolic or toolbox orientation than shown by the students.
Furthermore, there were only a few answers coded as empirical orientation. [Only
regarding the items to which a greater amount of students had no answer—differ-
entiability, continuity—the teachers gave empirical oriented answers like “knick-
frei” (without any kinks) or “ohne abzusetzen durch zeichnen” (draw in one
uninterrupted line).] If they used drawings together with some kind of written
definition, these were very often likely to be meant as visualizations of an abstract
concept. These results show that teachers’ domain-specific beliefs are not directly
transported into students’ beliefs. For example, pictures meant as visualizations by a
logical-structural oriented teacher may be conceived of as mathematical objects by
their students, which again may lead to an empirical orientation of students.

Nevertheless, it is worth making such discrepancies explicit and therefore the
results are worth discussing with prospective teachers within a course on the
teaching and learning of school calculus. Furthermore, the high rate of empirical
orientated beliefs exhibited within the group of students makes for an interesting
case to incorporate historical considerations.

5For a more detailed analysis of the study involving teachers, see Spies and Witzke (2017).
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Category Definition in brief Examples
Logical-
structural 
orientation

Deduction and proofs, understanding/knowing 
about (inner-mathematical) connections of a 
concept and the underlying structure.

Abstract-
terminological 
orientation

Stressing formal rigor, using a precise 
mathematical language, mathematical objects 
are understood as abstract entities. 

Toolbox 
orientation

Doing calculus means using rules, formulas and 
procedures in a schematic way. Association are 
about how to derivate, identify extreme values,
and so on.

Utility 
orientation

Extra-mathematical applications, mathematical 
modeling 

Empirical 
orientation

Objects are related to the physical world.  Basic 
concepts are derived from empirical perception. 

Tangente: „In einem Punkt berühren“

Symbolical 
orientation

Objects of calculus are identified with the 
symbols used in common.

Point of inflection: always 
setting equal to zero

Point of inflection: Calculation 
for at what time or day a barrier 

lake loses water

Integral of a function (surface 
area)

Tangent: “Touching in one point”

f(x)=x2:

f(x)=x2:

“Parabola”

f(x)=x2:

Integral: Anti-operation to 
differentiation 

Function: A function maps 
uniquely every x on to y

f(x)=x2:

Function:

Point of inflection:
Turning point of

Fig. 14.1 Summary of the coding framework, including typical examples
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14.3.2 The Empirical Orientation in the Light of Examples
from the History of Calculus

Searching for parallels and differences to such historical approaches that can be
reconstructed as empirical theories as well, may help to interpret and judge the
present results.

The first textbooks on calculus which were published at the end of the 17th
century surprisingly worked without using a precise notion of limit. The central
terms in Leibniz’s calculus differentialis and calculus integralis (which is virtually
equivalent to Newton’s theory of fluxions) were respectively infinitesimal and
infinitesimally small quantities. Looking at the first calculus textbook Analyse des
infiniment petits by Marquis de l’Hospital in 1696,6 today’s reader may be surprised
that instead of real-valued functions, curves are the objects of interest, as in many
present-day school contexts. These were not defined by the help of numbers and
variables, as it is common in modern analytical geometry, but were given by
geometrical construction as empirical objects drawn on paper.7

Fig. 14.2 Example from the association items of the questionnaire (answers to all items are given
in one picture)

6Marquis de l’Hospital, in 1696, was a French nobleman who heavily relied on the knowledge of
Jean Bernoulli and actually copied almost everything which could be found in the Analyse from
Bernoulli’s lectures of 1691–92. Leibniz—regardless of the priority controversy between himself,
Bernoulli and l’Hospital—appreciated the book (Witzke 2009, p. 87) and was in contact with both.
7Only subsequently, these curves were described (following the ideas of Descartes) by coordinates
to simplify the procedure of describing and analyzing the curves. After placing the curve in a
coordinate system, mathematicians of the 17th and 18th centuries assigned geometrical lengths
(length x of the abscissa or length y of the ordinate) to the points of the curve. These lengths, or
what we want to call quantity-functions assigning lengths to points, were independent from each
other; it seems as if the curve, as an empirical object, was defining the relations of the length
belonging to certain points.
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After short introductory remarks on the basic principles of the infinitesimal
calculus and differentiation rules, Jean Bernoulli explained how to tackle mathe-
matical problems with the new methods invented by Leibniz.

While the left-most curve in Fig. 14.3 is associated with the method of finding a
tangent to a given point on a curve (cf. the example discussed with students later in
this chapter), the middle one is the background for determining extreme values, and
the right one shows the curve with which the author demonstrated his method to
determine surface areas imbedded by a curve (integration). Therefore, he used in
some sense heuristic arguments proposing that “every bent curve consists of infi-
nitely many straight line segments” (Schafheitlin 1924, p. 11; original in German,
authors’ translation), which are formulated as postulates in the introduction.

The slopes of the curves, which Bernoulli and Leibniz observed—parabolas and
root functions in today’s terms—were of course well known at that time. Some
historians conjecture that in principle they worked like natural scientists on an
inductive path, extending the range of application of the calculus tentatively, e.g.
from parabolas to arbitrary polynomials (cf. Boyer 1991). As already mentioned,
the Leibnizian calculus works without a notion of limit; nevertheless, it relies
respectively on the notion of differentials of quantities and infinitely small quan-
tities. An expressive example here is the use of the so called characteristic triangle
(cf. Fig. 14.4), which at the same time underlines parallels between the historical
approach and today’s discussion in subject matter didactics with outreach to
modern textbooks used in schools.

Bernoulli and Leibniz assigned a right triangle to every point C of a curve,
whose perpendicular sides are the differentials dx and dy and whose hypotenuse
illustrates the bow length ds. The integral of ds—“meaning” the integral of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx2 þ dy2
p

—can then be used to compute the bow length. This leads to the idea

Fig. 14.3 Curves as objects of calculus, Bernoulli 1691/92 (Schafheitlin 1924, pp. 11 and 27;
Kowalewski 1914, p. 12)
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that the characteristic triangle possesses a hypotenuse together with the curve;
following this idea the tangent does not only contact the curve in a point C but
‘shares’ an infinitely small segment ds with the curve.

This characteristic triangle according to Leibniz, in Bernoulli’s formulation, is
geometrically similar to the tangent triangle, consisting of the tangent segment t, the
sub tangent segment m and the ordinate y to a point C (cf. Fig. 14.4). In the
Leibnizian calculus it holds that ds:dx:dy ¼ t:m:y. From this, it easily follows that
the quotient of dy

dx gives the slope of the tangent as dy:dx ¼ y:m (for a detailed
account of this simplified depiction compare with Witzke 2009).

This wonderfully ostensive deduction of the concept of derivative of course does
not (aspire to) meet standards of precision of modern (university) mathematics;
nevertheless, it works in an appealingly elegant way, and—especially interesting in
the context of this paper—seems to correspond with modern didactical ideas of how
to teach calculus at school. In some schoolbooks, we see that (especially in absence
of a true concept of limit) a curve and tangent may have a line segment “in
common” (see for example the popular German textbook Lambacher Schweizer;
Brandt et al. 2014, p. 47). In special accompanying work assignments in the book
students are confronted with the idea of magnifying a part of a curve with the help
of the zoom function of the graphing calculator (GC), which eventually causes the
same intuition. The idea of deriving graphically by the help of a
“Funktionenemikroskop,” or “optical microscope,” was actually proposed by
Kirsch (1979) and Tall (1980). The idea of zooming in, connected with the concept
of local straightness in Tall’s approach, forms an elaborated ‘graphic calculus.’8

Taking into account for example the second “postulate” made by Johann Bernoulli

Fig. 14.4 Authors’
illustration of Leibniz’s
characteristic triangle (cf. the
left picture in Fig. 14.3)

8In Tall’s understanding this way of teaching calculus can even lay foundations for an e-d-calculus
or an integrated approach to non-standard-analysis giving proof to the thesis that we do not in
general obstruct the development of precise student knowledge regarding calculus by “visual
approaches.” A detailed motivation and description can be found in Tall (2013, p. 298ff.).
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in his lectures of differential calculus: “Every bent curve consists of infinitely many
straight lines, which are infinitely small” (Schafheitlin 1924, p. 11), we see at first
glance interesting parallels to modern ‘visual’ approaches in high school textbooks.
But on the second glance there are remarkable differences; Bernoulli sees the need
to justify his conclusion in a logical or at least heuristic way by referring to his own
postulates stated at the beginning of the text or by referring to heuristic analogies
taken from Euclidean geometry. He is clearly devoted to “more geometrico”
although he was probably aware that some of his conclusions were set on what was
seen as dubious logical foundations at the time (cf. Witzke 2009, pp. 130–136 and
178ff.). In contrast, today’s widespread textbook argumentations in Germany are
quite often based solely on “empirical evidence” taken from drawings. Without any
further intervention by the teacher, this will, for many students, eventually lead to a
naïve empirical orientation about calculus in the sense of Schoenfeld.

Another point worth mentioning regarding the comparison of empirical school
calculus and historical examples is the modern criticism of a schematic-symbolic
orientation of calculus in school curricula: when we look at Leibniz, the Bernoullis,
and their students, we see that the algorithmic power of the “nova methodus” was a
crucial point. The new differential and integral calculus offered standard routines for
solving a variety of problems, like the determination of tangents, surfaces under-
neath curves, circles of curvature, etc., in a systematic way. The ancient Greeks
could solve some of these problems with singular methods but it was Leibniz who
first offered a systematic calculus for this. Looking at all the demands for a qual-
itative turn regarding modern calculus curricula, we should keep in mind that
providing these algorithms is a major quality of differential and integral calculus.
Nevertheless, the historical calculus always came together with intuition on curves
to explain matters at least in a geometric manner. This in principle may lead to a
more appreciative view on the combination of toolbox orientation and empirical
orientation, which we have seen relatively often in our empirical investigation.

The detected resurgence of an empirical orientation in present-day school cal-
culus gives one more reason for using original sources as a tool in teachers’ edu-
cation, as the following example makes a case for.

14.4 Reflecting on the Empirical Orientation
with Bernoulli’s Lectiones de calculo differentialium

At the University of Siegen, examples from the history of mathematics in general
and original sources in particular have been used in a range of seminars and lectures
for prospective teachers. According to the main topic or aim of the respective
courses (e.g. university mathematics, school mathematics from an advanced point
of view, courses on the teaching and learning of mathematics) different ways of
introducing the historical examples are necessary (cf. Allmendinger et al. 2015).
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The place in university curricula for learning about different domain-specific
beliefs of students and teachers and their impact on the learning process of the
chosen domain are seminars on subject matter didactics. Within such courses the
phenomenon of different mathematical worldviews can be linked with questions
regarding the teaching and learning of the chosen subject in current mathematics
lessons, in the history of mathematics, as well as with results of empirical studies as
described above. As experiments show, examples from the history of the subject
matter are an appropriate starting point to this subject area. In addition to a range of
general reasons for using original sources in teachers’ education (cf. for example, the
approaches compiled in Allmendinger et al. 2015), the issue of epistemic beliefs can
be addressed via the history of mathematics for different reasons: On the one hand
students get to know that during the historical development different belief systems
were in place for solving the central problems of the discipline. Furthermore, the
difficulties of understanding an old argumentation can sensitize for aims and
assumptions which possibly are different from the current approaches. Making such
differences explicit provides a fruitful starting point for discussions about the nature
of the mathematical objects, the language used and how sophisticated the underlying
theory is in each case. The following case study9 proposes to concretize this.

14.4.1 Reading Bernoulli Within a Seminar of Subject
Matter Didactics of School Calculus

Within a seminar of subject matter didactics of school calculus ‘Didaktik der Analysis’
at the University of Siegen, students got to know awell-known original source from the
history of calculus: A translation of “exercise one” from JohanBernoulli’s Lectiones de
calculo differentialium (1691/92; “How to find the tangent on a parabola”) and as
additional information his postulates and the rules about sums and products of differ-
entials (Schafheitlin 1924, pp. 1–17). To avoid a totally anachronistic way of working
with such a text, following the rules of a hermeneutic analysis of the source (e.g. Jahnke
et al. 2000) at least some biographical information about the author and his oeuvre are
necessary, as well as knowledge of the mathematical background. The latter was
expected—as the participants were prospective high school teachers with a mathe-
matical expertise regarding calculus; the former was given in a very condensed form.
Due to strict time restrictions for the seminar lessons, students were provided with
selected information as opposed to finding it on their own.10

9The example presented is just part of reflective teaching reacting on the results of our empirical
research on domain-specific beliefs presented earlier in the chapter. Since we have not completed
further systematical evaluation of the course or analysis of the students’ products, we can only
describe our theory-based teaching design and link our concrete teaching experiences to theoretical
considerations.
10It should be noted that it would have been more helpful for students to locate the relevant
information on their own (see Allmendinger et al. 2015).
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The following assignments for groups of three to four students guided the work
on the source itself during the seminar lesson:

1. Read the excerpt from Johann Bernoulli’s “Vorlesung über das Rechnen mit
Differentialen” (“Lecture on the differential calculus”) (1691/92) carefully (with
paper and pencil):

(a) Draw your own sketch while reading. Use the one of Bernoulli (Fig. 14.5)
as an orientation.

(b) How can the quantities dx and dy be interpreted within this construction?
What is the so called ‘sub tangent’? Which geometrical considerations are
used?

2. Compare Bernoulli’s text and current textbooks in school:

(a) What is the starting point in each text? How is the problem formulated and
motivated?

(b) Which mathematical ‘tools’ (geometrical or algebraic considerations, a
coordinate system, sketches, computer, etc.) are used?

Questions 1a and 1b should help students access the source and to understand
the underlying mathematical content (see the explanation above). These questions
already helped to focus on the geometrical character of Bernoulli’s formulation of
the problem and the solution. Even though all of the students knew how to find the
slope of a tangent in a given point of a quadratic function, it seemed to be that this
geometrical character of argumentation makes grasping Bernoulli’s arguments

Fig. 14.5 Drawing of
Bernoulli, (1691/92), Exercise
one (Schafheitlin 1924, p. 11)
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difficult. Most students started to draw a coordinate system and reformulated the
arguments by their notions of functions. This in fact is more complicated, especially
because of the fact that Bernoulli uses the letter x for the ordinate and y for the
abscissa (see Fig. 14.5)—which is the opposite of the common notion of today’s
calculus. Figure 14.6 shows two trials of reconstructing the situation using a
coordinate system; in the first step students were confused by the change of the
common orientations of the variables x and y.

Other difficulties arose when dealing with the infinitely small triangles. For
example, students struggled with the pragmatic use of infinitely small parts of a sum
when calculating [see the students comment in Fig. 14.6: “dy fällt nach Bernoulli
weg” (“dy drops out according to Bernoulli”)] or by trying to bring the notion of
limits into account.

Another problem arose when interpreting the length “a”—a line used by
Bernoulli to construct the curve of the parabola. Most students struggled with this
line documented by comments like “Das nehme ich so hin” (“I take that for
granted”) or just ignored this line even in their drawings of the situation.
Figure 14.7 gives an example where one student drew the parabola without the
construction line, with today’s picture of a full parabola in mind, including its entire
graph with respect to its axis. The different backgrounds of the 17th century
mathematician and today’s teacher students who worked here became more obvious
when they compared the former with today’s textbooks. Even if they reconstructed
Bernoulli’s geometrical argumentation without using a coordinate system, they still
talked of the graph of a function as modern textbooks do, and not of the curves as
Bernoulli did.

In the previous lesson the students discussed different established approaches to
the introduction of the derivative at school—here again, approaches from the his-
tory of calculus are considered as helpful (cf. Danckwerts and Vogel 2006,
pp. 45ff.). In addition, students were made to recognize them within popular
German textbooks. Question 2 led students to recapitulate these and to compare
them with Bernoulli’s approach.

Fig. 14.6 Students’ reconstruction of Bernoulli’s solution by using today’s coordinate system
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14.4.2 Reflecting on the Empirical Orientation Guided
by Parallels and Differences

The aim of Bernoulli (finding a second point in the drawing plane to draw the
tangent vs. determining the slope of the tangent in any point by getting the
derivative function in modern approaches), as well as the discussed objects (curves
in the drawing plane vs. functions or graphs of functions) and the mathematical
tools (Bernoulli used theorems inspired by Euclidean geometry about congruence
of (infinite small) triangles vs. algebraic rules and the limit value of the ratio of the
differences used today), are very different from the modern differential calculus.
Some of the students indeed needed quite some time to grasp especially the initial
aim of Bernoulli. But on second glance there were also correspondences with the
modern textbooks. In both cases, the parabola or the quadratic function is used as an
introductory example. This somehow superficial observation can be the starting
point of a discussion of the didactical quality of this example.

Another correspondence can open the discussion about different domain-specific
beliefs of mathematics. That is, even if current textbooks often start interpreting the
derivative as instantaneous rate of change, the argumentation is prominently sup-
ported by pictures of graphs of functions with their secants and tangents or sup-
ported by arguments like “zooming” in on the graph. The objects discussed and
used as an argumentation basis in many cases are curves, which can be seen
through the eyes of the observer: drawn on paper, generated by GCs, or taken from
real contexts like bridges or trajectory parabolas. The consequent usage of GCs
even supports this impression as the pictures of curves are potentially always
present and are especially used to make qualitative statements or to motivate
arguments. This may lead to an “empirical belief system,” as introduced above, in

Fig. 14.7 Sketch of the
parabola without using the
construction-line
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which the function is identified with the sketch of the graph in the way Bernoulli
did by arguing by means of the constructed curve in the drawing plane.

Here the next differences appear and lead the students to evaluate today’s
approaches. Whereas Bernoulli used the theorems of Euclidean geometry and his
own axioms to justify and explain each step of his construction, current textbooks
often refer only to what the students may see on the picture or within the screen of a
computer algebra system (e.g. GC). This may be one reason for the (naïve)
empirical orientation (Schoenfeld’s pure empiricism) of a few students found in our
study. The discussion may also achieve a possible difference between the intention
of teachers and textbook authors and the impact on the belief system of their
students. While the former may use pictures for didactical reasons to visualize
abstract concepts, for the later the drawings may become the mathematical object
itself.11 This again gives rise to reflect on the ontological and epistemological status
of the graph of a function and arguments based only on the empirical intuition.

In addition, the experience with the—in some ways not as different as expected
—approaches in history and current school textbooks could be turned in a more
constructive way by thought experiments like: Imagine if we would teach calculus
in today’s high school in the way Bernoulli did. What possible problems do we
have to consider? In what ways would it be “another” calculus and would it be
possible to link this to more formal or utility-orientated approaches of calculus?
Taking our considerations into account it might be a sensible modern didactical
perspective to develop a visual calculus leaning on (visual) concepts of infinitesimal
calculus of the 17th/18th century. Teaching (variants) of Leibniz’s calculus must
not obstruct the further development of mathematical knowledge on a precise
formal level. Therefore, it needs to be implemented properly—and not only for
illustrative reasons—following a thoughtful conceptual design. This means to
include deductive reasoning and the usage of infinitesimal arguments within visual
approaches to calculus (cf. Jahnke 2006). These mathematical competencies must
later be transferable to the formal level (Witzke 2014). Without these an empirical
calculus will not be more than an “elementary algebra combined with the sketching
of graphs” (Tietze et al. 2000; original in German, authors’ translation) and will
never reach the status of a “blended embodiment and symbolism” (Tall 2013) or, in
our terminology, of a coherent empirical theory on calculus.

Of course, a profound reflection on such issues needs additional information
(e.g. about different belief systems and the supposed impact on the learning and
understanding) and quite some time of plenary discussion after working with the
original source. But the special focus on domain-specific beliefs provides benefit on
different levels. First, from a historical point of view it guides a deep and exact
analysis of the given source. Furthermore, this is an example of how the effect of

11This hypothesis is supported by the results of a follow up investigation of domain-specific beliefs
of high school teachers using a questionnaire similar to the one described above (cf. Spies and
Witzke 2017).
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alienation of a common notion by an original source leads to fruitful discussions
about special issues on teaching and learning of mathematics within preservice
teacher education.

14.5 Beyond the Special Topic: Original Sources
in Courses on Mathematics Education in General

The extract of Bernoulli’s Lectiones gave rise to reflect on a wide range of aspects
with respect to domain-specific beliefs. Beyond the special example and the special
topic in school calculus, there are many more positive accounts for experiences by
using original sources within courses on mathematics education to foster discus-
sions on belief systems and worldviews of mathematics at the University of Siegen.
For example, the work on the transition problem from school to university math-
ematics heavily relies on the use of original sources for making belief systems
regarding geometry explicit (Euclid vs. Projective Geometry and Non-Euclidean
Geometries; Hilbert; Gödel; etc.) and discussing them with students (cf. Witzke
2015; Witzke et al. 2016). G. Stoffels’ promising dissertation project focuses on the
awareness for changing domain-specific beliefs of stochastics for pre-service
teachers, on the work with original sources of R. von Mises and A. Kolmogoroff.
To make students sensitive for the aesthetics of mathematics and to make the view
of mathematics as a creative endeavor explicit, there are experiences with the
reading of Al-Khwãrizmî’s work on how to solve quadratic equations contrasted by
today’s formulas (for using and reflecting the source with middle school students
see Allmendinger and Spies 2015).

By just looking only at these examples we get the insight that the implemen-
tation of original sources regarding beliefs in teacher education bears great
potential, which brings additional value to sole usage in subject matter settings.
A short exploration on the basis of the three “general ideas” for using original
sources formulated by Jahnke et al. (2000) (replacement, reorientation and cultural
understanding) may help to grasp possible effects more systematically.

By studying original sources, students are supposed to experience mathematics
as an intellectual human endeavor instead of experiencing a fixed collection of a
corpus of knowledge and techniques (replacement) (Jahnke et al. 2000, p. 292).
Thinking of questions concerning mathematics education such experiences could
lead to reflection on the nature of mathematics in general as well as on the role of
the mathematician and the mathematical working processes. Furthermore, it makes
students aware of the fact that even the great “masters of mathematics” struggled
with the core ideas of their discipline (like infinitely small quantities for example)
and were far away from today’s rigor. By experiencing this, prospective teachers
may learn to esteem such intuitive and abductive approaches instead of disregarding
empirical graphical arguments in documents produced by pupils. In addition, his-
torical sources as documents of authentic mathematical practices on an elementary
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level give the opportunity for reconstructing real problem-solving—or modeling
processes—leaning on Freudenthal’s idea of guided reinvention (Freudenthal
1991).

Additionally, reading sources from history helps to make the “familiar becomes
unfamiliar” (reorientation) (Jahnke et al. 2000, p. 292). The positive effects of this
“dépaysement” (cf. Barbin 1997) for learning mathematics have been widely dis-
cussed. With respect to topics of teaching and learning mathematics the impact may
be different to some extent. The closer look on subject matter caused by the effect of
“dépaysement” may draw the students’ attention to the mathematical objects in
detail, which is an essential condition for any serious discussion, at least in subject
matter didactics. Regarding prospective classroom practice, this is supposed to be a
helpful exercise for taking the pupils’ perspective, for “learning to listen” (cf.
Arcavi and Isoda 2007).

Furthermore, the detailed analysis necessary to reconstruct historical mathe-
matical thinking processes underlying the sources on an epistemological level
shows parallels to the analysis of pupils’ products of problem-solving processes and
their possible difficulties of understanding (e.g. epistemological gaps; cf. Bachelard
1991 or Sierpinska 1994). Depending on the selected historical text, it may also
give examples of and lead to a systematic discussion of different modes of notation.

If students analyze original sources in a contextualized, not totally anachronistic
way, they must pay attention to the sociocultural background of the text and his
author. Once again, with this, mathematics may be experienced as a cultural
endeavor (cultural understanding) and the influences of mathematics on society and
vice versa can be discussed authentically. In addition, examples from old textbooks
could give an authentic view into the history of teaching and learning mathematics.

Besides, there is at least one more fundamental reason for using original sources
in courses of teaching and learning for prospective teachers: they deliver examples
for bringing history into the mathematics classroom.

14.6 Closing Remarks

Although we cannot generalize the results from our relatively small data set, the
case study provides evidence for the hypothesis that reading historical original
sources does not only (implicitly or explicitly) lead to a deeper understanding of the
mathematical content and an enrichment of mathematical worldviews, when used in
content knowledge courses; when used and discussed in mathematics education
courses they provide great potential for making domain-specific aspects and beliefs
explicit, which lead to a more differentiated view on ways of how (in our example)
calculus can be understood in a proper way. Our reflections give way to the con-
sideration that especially regarding the empirical orientation, there is an interesting
analogy between historical and present student beliefs. In both cases, it is the curve
as a constructed and drawn “empirical” object on a piece of paper which is the
object of interest—not a formal-abstract notion of function. The meaning of this
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gets again very clear as we look in the German mathematics standards (and text-
books designed according to them), in which it is required to teach the procedure of
“graphical differentiation” meaning to draw a derivative curve from a given curve
by virtually looking at characteristic points. This produces the impression that
calculus is a branch of mathematics, which is about drawing objects in a certain
manner—if we recall the reconstruction of Bernoulli’s approach to finding a tangent
to the parabola we see that it is about finding a second point A to virtually draw a
tangent line to a curve constructed before on a piece of paper; and not to find the
slope in a certain point as nowadays is intended. Making this explicit is a very
important aspect, which might help to reflect with pre-service teachers why students
in Germany quite often develop an empirical orientation by the time they graduate
and how to deal with this phenomenon. This is especially valid for the problem of
“naïve empiricism” which, following the terminology of Schoenfeld, may be
attested when students see calculus as a matter about empirical objects (drawn
curves). But in contrast to their historical predecessors, they do so without any
sense of logical reasoning or structure, and in particular, regarding infinitesimal
arguments.

More generally speaking, the use of original sources appears as an appropriate
tool to discuss the prerequisites and consequences of the different orientations
presented in this chapter (cf. Fig. 14.1). They give us the possibility to view the
same content area in a totally different light—given the readiness to get involved
with the historical approach without thinking of barriers.

References

Allmendinger, H., & Spies, S. (2015). Alte Bekannte aus persönlicher Sicht. Quadratische
Gleichungen ästhetisch reflektiert. mathematiklehren, 193, 24–31.

Allmendinger, H., Nickel, G., & Spies, S. (2015). Original sources in teachers training—Possible
effects and experiences. In É. Barbin, U. T. Jankvist, & T. H. Kjeldsen (Eds.), History and
epistemology in mathematics education: Proceedings of ESU 7 (pp. 551–564). Copenhagen:
Danish School of Education, Aarhus University.

Arcavi, A., & Isoda, M. (2007). Learning to listen: From historical sources to classroom practice.
Educational Studies in Mathematics, 66, 111–129.

Bachelard, G. (1991). The formation of the scientific mind (M. McAllester Jones, Trans.).
Manchester: Clinamen.

Balzer, W., Moulines, C. U., & Sneed, J. D. (1987). An architectonic for science. The structuralist
program. Dordrecht: Reidel.

Barbin, É. (1997). Histoire des Mathématiques: Pourquoi? Comment? Bulletin de l’Association
Mathématiques du Québec, 37(1), 20–25.

Bauer, L. (1990). Mathematikunterricht und Reflexion. mathematik lehren, 38, 6–9.
Beutelspacher, A., Danckwerts, R., Nickel, G., Spies, S., & Wickel, G. (2011). Mathematik Neu

Denken. Impulse für die Gymnasiallehrerbildung an Universitäten. Wiesbaden: Vieweg u.
Teubner.

Boyer, C. B. (1991). A history of mathematics (Revised by U. C. Merzbach). New York: Wiley.
Brandt, D., Giersemehl, I., Greulich, G., Herd, E., Jörgens, T., Jürgens-Engel, T., et al. (2014).

Lambacher Schweizer. Mathematik Einführungsphase NRW. Stuttgart: Ernst Klett Verlag.

302 S. Spies and I. Witzke



Burscheid, H. J., & Struve, H. (2010). Mathematikdidaktik in Rekonstruktionen. Ein Beitrag zu
ihrer Grundlegung. Hildesheim: Franzbecker.

Bütüner, S. Ö. (2015). Impact of using history of mathematics on students’ mathematics attitude:
A meta-analysis study. European Journal of Science and Mathematics Education, 3(4), 337–
349.

Charalambous, C., Panaoura, A., & Philippou, G. (2009). Using the history of mathematics to
induce changes in preservice teachers’ beliefs and attitudes: Insights from evaluating a teacher
education program. Educational Studies in Mathematics, 71, 161–180.

Danckwerts, R., & Vogel, D. (2006). Analysis verständlich unterrichten. Wiesbaden: Elsevier.
Fenaroli, G., Furinghetti, F., & Somaglia, A. (2014). Rethinking mathematical concepts with the

lens of the history of mathematics: An experiment with prospective secondary teachers.
Science & Education, 23, 185–203.

Forgasz, H., & Leder, G. (2008). Beliefs about mathematics and mathematics teaching.
In P. Sullivan & T. Wood (Eds.), Knowledge and beliefs in mathematics teaching and
teaching development (pp. 173–192). Rotterdam: Sense.

Freudenthal, H. (1991). Revisiting mathematics education. China lectures. Dordrecht: Kluwer.
Furinghetti, F. (2007). Teacher education through the history of mathematics. Educational Studies

in Mathematics, 66, 131–143.
Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen gegenüber Mathematik bei

Mathematiklehrern. Journal für Mathematik-Didaktik, 19(1), 3–45.
Gulikers, I., & Blom, K. (2002). ‘A historical angle’, a survey of recent literature on the use and

value of history in geometrical education. Educational Studies in Mathematics, 47(1), 223–
258.

Hsieh, F.-J. (2000). Teachers’ teaching beliefs and their knowledge about the history of negative
numbers. In W.-S. Horng & F.-L. Lin (Eds.), Proceedings of the HPM conference on history in
mathematics education: Challenges for a new millennium—A satellite meeting of ICME-9
(pp. 88–97). Taipei: National Taiwan Normal University.

Jahnke, H. N. (2006). Students working on their own ideas: Bernoulli’s lectures on the differential
calculus in grade 11. In F. Furinghetti, H. N. Jahnke, & J. A. van Maanen (Eds.), Studying
original sources in mathematics education (pp. 1313–1315). Oberwolfach: Mathematisches
Forschungsinstitut Oberwolfach Report 22/2006.

Jahnke, H. N., Arcavi, A., Barbin, E., Bekken, O., Furinghetti, F., El Idrissi, A., et al. (2000). The
use of original sources in the mathematics classroom. In J. Fauvel & J. van Maanen (Eds.),
History in mathematics education: The ICMI study. New ICMI Study Series (Vol. 6, pp. 291–
328). Dordrecht: Kluwer.

Jankvist, U. T. (2015). Changing students’ images of “mathematics as a discipline.” Journal of
Mathematical Behavior, 38, 41–56.

Kirsch, A. (1979). Ein Vorschlag zur visuellen Vermittlung einer Grundvorstellung vom
Ableitungsbegriff. Der Mathematikunterricht, 25(3), 25–41.

Kowalewski, G. (Ed.). (1914). Johannes Bernoulli: Die erste Integralrechnung (1691–1692). Aus
dem Lateinischen übersetzt. Ostwalds Klassiker der exakten Wissenschaft. Leipzig: Verlag W.
Engelmann.

Lengnink, K. (2006). Reflected acting in mathematical learning processes. Zentralblatt für
Didaktik der Mathematik, 38(4), 341–349.

Liljedahl, P., Rolka, K., & Roesken, B. (2007). Belief change as conceptual change. In D.
Pitta-Pantazi & P. Philippou (Eds.), Proceedings of CERME 5 (pp. 278–287). Larnaca:
University of Cyprus.

Liu, P.-H. (2007). History as a platform for developing college students’ epistemological beliefs of
mathematics. International Journal of Science and Mathematics Education, 7, 473–499.

Mayring, P. (2002). Einführung in die qualitative Sozialforschung. Weinheim: Beltz.
Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester Jr. (Ed.), Second

handbook of research on mathematics teaching and learning (pp. 257–315). Charlotte, NC:
Information Age.

14 Making Domain-Specific Beliefs Explicit for Prospective Teachers 303



Schafheitlin, P. (Ed.). (1924). Die Differentialrechnung von Johann Bernoulli aus dem Jahre
1691/92. Ostwalds Klassiker der exakten Wissenschaft. Leipzig: Akademische
Verlagsgesellschaft.

Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press.
Sierpinska, A. (1994). Understanding in mathematics. London: The Falmer Press.
Spies, S., & Witzke, I. (2017). Domain-specific beliefs zur Analysis von Lehrkräften. Beiträge zum

Mathematikunterricht, 51, 929–932.
Tall, D. (1980). Looking at graphs through infinitesimal microscopes, windows and telescopes.

The Mathematical Gazette, 64(427), 22–49.
Tall, D. (2013). How humans learn to think mathematically. New York: Cambridge University

Press.
Tietze, U.-P., Klika, M., & Wolpers, H. (Eds.). (2000). Mathematikunterricht in der Sekundartufe

II. Band 1. Braunschweig: Springer.
Wilson, M., & Cooney, T. (2002). Mathematics teacher change and development. In G. C. Leder,

E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education?
(pp. 127–147). Dordrecht: Kluwer.

Witzke, I. (2009). Die Entwicklung des Leibnizschen Calculus. Eine Fallstudie zur
Theorieentwicklung in der Mathematik. Hildesheim: Franzbecker.

Witzke, I. (2014). Zur Problematik der empirisch-gegenständlichen Analysis des
Mathematikunterrichtes. Der Mathematikunterricht, 60(2), 19–32.

Witzke, I. (2015). Different understandings of mathematics. An epistemological approach to
bridge the gap between school and university mathematics. In É. Barbin, U. T. Jankvist, & T.
H. Kjeldsen (Eds.), History and Epistemology in Mathematics Education: Proceedings of the
7th ESU (pp. 304–322). Copenhagen: Danish School of Education, Aarhus University.

Witzke, I., & Spies, S. (2016). Domain-specific beliefs of school calculus. Journal für
Mathematik-Didaktik, 37(1), 131–161.

Witzke, I., Struve, H., Clark, K., & Stoffels, G. (2016). ÜberPro—A seminar constructed to
confront the transition problem from school to university mathematics, based on epistemo-
logical and historical ideas of mathematics. MENON: Journal of Educational Research, 2nd
Thematic Issue, 66–93.

304 S. Spies and I. Witzke



Chapter 15
Primary Historical Sources
in the Classroom

Graph Theory and Spanning Trees

Jerry Lodder

Abstract I study student response to learning from a specific historical curricular
module and compare this to advantages of learning from historical sources cited in
education literature. The curricular module is “Networks and Spanning Trees,”
based on the original works of Arthur Cayley, Heinz Prüfer and Otakar Borůvka.
Cayley identifies a compelling pattern in the enumeration of (labeled) trees,
although his counting argument is incomplete. Prüfer provides an alternate proof of
“Cayley’s formula” by counting all railway networks connecting n towns that
contain the least number of segments. Borůvka develops one of the first algorithms
for finding a minimal spanning tree by considering how best to connect n towns to
an electrical network.
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15.1 Introduction

I examine the pedagogical benefits afforded by teaching from primary source
documents by studying the details of one classroom module, “Networks and
Spanning Trees” (Lodder 2013). This is only one of several curricular modules
covering topics in discrete mathematics and computer science, available online
(Barnett et al. 2013). “Networks and Spanning Trees” highlights the work of three
scholars, Arthur Cayley (1821–1895), Heinz Prüfer (1896–1934) and Otakar
Borůvka (1899–1995) on the use and enumeration of (labeled) trees as well as one
of the first algorithms for finding a minimal spanning tree, all written before the
subject of modern graph theory had been developed. These historical sources
provide context to the subject matter, with the authors stating a compelling problem
whose solution involves key concepts or constructions that have become abstract
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definitions or theorems in present-day textbooks. A verbal description of the
problem, without specialized vocabulary, offers a more inviting and understandable
entry into the subject. The sources provide motivation for study, once the original
problem has been stated and its significance is understood. When arranged over
time, the sources provide direction to the subject matter not apparent when reading
the final axiomatized version in a textbook. Also, studying from primary sources
leads to an interdisciplinary approach to learning, since the sources were almost
always written before the modern division of scholarship into collegiate depart-
ments. Many concepts in the module “Networks and Spanning Trees” are germane
to both discrete mathematics and computer science. In fact, algorithms for finding a
minimal spanning tree have been a topic of research in computer science, while
combinatorial arguments for counting trees are primarily taught in mathematics
courses.

In terms of a theoretical framework, the classroom module “Networks and
Spanning Trees” uses history-as-a-tool (Jankvist 2009) to learn the inner issues of
graph theory and some of its applications. To elaborate, the primary goal of
introducing historical sources in the classroom is to learn mathematics. The history
of the subject is used as a tool to help in the understanding of mathematics. The
inner issues refer to the lemmas, theorems, procedures or reasoning processes
within the subject. In this module we read that Prüfer is motivated by finding all
ways of connecting n towns to a railway network using the least number of railway
segments as possible. Borůvka is motivated by a different problem, namely of all
possible networks connecting n towns to an electrical grid, which network uses the
least amount of electrical cable. Neither author uses any specialized vocabulary in
the statement or solution to these problems, not even the word tree, which displays
an advantage of learning from primary sources articulated by Jahnke and his col-
leagues (2000), namely an ease of understanding the motivational problem.
Students and instructors may feel a bit of cognitive dissonance, or dépaysement
(Barbin 1997) when reading a historical source and find no modern theorems.
Primary source documents are not written like textbooks, and cognitive dissonance
arises when the reader encounters the unexpected, particularly in what has become
the formalized subject of mathematics. In the language of Sfard (2000, p. 161)
Prüfer and Borůvka are using object-level rules to find solutions to their respective
problems, while a meta-discursive discussion is needed to formulate these results in
terms of modern theorems or algorithms in graph theory, a discussion worth pur-
suing in the classroom. Cayley uses the rules of algebra (associativity, commuta-
tivity, distributivity) when manipulating polynomials to represent trees, and these
are the rules of the “objects” (object-level rules) in his treatment of counting trees.
Prüfer counts trees with what today would be called Cartesian products of sets,
which requires a different set of rules for the enumeration of their elements. To
formulate the modern definition of a tree, however, we must go beyond counting
arguments, and formalize the fundamental properties of the objects we wish to
count. This requires reasoning beyond the object-level rules, and the beginning of a
meta-discursive discussion. Throughout this chapter, I mention which definitions or
theorems have evolved from observations in the primary source documents. In fact,
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Kjeldsen and Blomhøj (2012) suggest that reading original sources may be essential
for raising students’ awareness of the meta-discursive rules that govern the current
mathematical paradigm.

15.2 Design Features of the Module

The module “Networks and Spanning Trees” was originally written to explore and
explain the ideas behind the modern definition of a tree, appearing today in many
textbooks on graph theory or discrete mathematics. There a tree is defined as a
connected graph containing no cycles, which serves as the starting point for many
lemmas and theorems about trees. While this definition has intuitive appeal after a
study of the subject is complete, the definition remains opaque and in fact arbitrary
for novices. The modern definition of a tree, stated by Veblen (1922), is an out-
growth of the study of the connectivity of a topological space and not an explo-
ration of combinatorial problems that can be solved using the structure of a tree. In
fact, explaining the mathematics behind any opaque definition or procedure could
be the staring point of a historical curricular module. The pedagogical idea is to
replace the memorization of technical definitions with the study of more engaging
and compelling mathematical problems whose solutions involve the constructions
appearing in modern definitions.

Once knowledge of the historical background of the topic is acquired, often from
a few key primary sources, authorship of the module can begin. The modes of
reasoning and standards of rigor from historical sources are often very different
from those of today. Care should be taken to avoid an anachronistic or Whiggish
(Fried 2001) view of history by evaluating sources in terms of the modern math-
ematical paradigm of the subject. For example, although Cayley uses the term
“tree,” he offers no mathematical definition of this term. Its use is intuitive and he
arrives at a striking pattern for the enumeration of certain types of trees based on
simple counting arguments that involve no specialized algorithms. Students are
more often able to participate in the reasoning process when the cognitive demand
(Schoenfeld and Floden 2014) is eased via the less formal description of a problem
from historical sources. Careful study then reveals the need for more rigorous
reasoning, often developed in later sources by scholars or mathematicians con-
fronted with the same situation. Thus, we see Prüfer offers a rigorous proof of
“Cayley’s formula.” Additionally we see how concepts and definitions evolve over
time. Although Prüfer presents no formal definition of a tree, nor does he even use
the word “tree,” he seeks to count all railway networks between n-many towns that
are connected and contain the least number of railway segments. This reflects the
characterization of a tree as a connected, minimally-connected graph, which is
logically equivalent to a connected graph containing no cycles (the textbook defi-
nition of a tree). By studying how modern textbook concepts evolved from solving
problems of the past, students (and instructors) are able to resolve the cognitive
dissonance encountered when first reading an original source.
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A historical module should have a focal point, a main result with significance
outside mathematical formalism. For “Networks and Spanning Trees,” the ultimate
goal is to understand Borůvka’s algorithm for finding a minimal spanning tree,
which is a tree of shortest total edge length that connects n-many towns (or points).
The origin of this problem is to connect n towns to an electrical network using the
least amount of cable, which Borůvka solved in 1926. Once the significance of this
result is understood, we see how the concept of tree defines the domain of study for
the minimal spanning tree algorithm, and we see how Cayley’s and Prüfer’s work
enumerates the elements in the domain. Borůvka’s work can then be understood as
an algorithm for finding a tree of minimal total edge length over this domain. In this
way we witness how the historical pieces fit together to form a coherent whole. Let
us now outline the specific mathematical content of this module.

15.3 Cayley’s “Theorem on Trees”

Although not motivated by a problem as broad in scope as those stated by Prüfer or
Borüvka, Cayley (1857) does introduce the term tree, without definition, to describe
the logical branching when iterating the fundamental process of (partial) differen-
tiation. In a later publication Cayley (1889) counts trees in which each knot (his
term for vertex or node) carries a particular label or letter. Two trees are counted as
the same if and only if the same pairs of vertices are directly connected by an edge.
Cayley associates to each tree a certain polynomial constructed from the vertex
labels (letters). He then adds all polynomials for a fixed number of vertices and
arrives at a striking pattern, which he claims (without proper justification) continues
for all values of n, where n is the number of vertices. The object-level rules (Sfard
2000, p. 161) for working with polynomials are those of algebra, namely asso-
ciativity and commutativity of addition and multiplication, and distributivity of
multiplication across addition. To understand Cayley’s use of polynomials, first
consider trees with three fixed vertices, labeled a, b, c in Fig. 15.1.

In tree I the vertices a and c are not directly connected by an edge, while in tree
II, a and b are not directly connected, and in tree III, b and c are not directly
connected. Should these three trees be counted as distinct? Cayley does so in his
1889 paper, and introduces a method of counting trees based on assigning poly-
nomials to trees. Let us construct polynomials for the trees given in Fig. 15.1 by
multiplying all pairs of vertices in the given tree that are directly connected by an

I. II.               III.

α
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α α

Fig. 15.1 Labeled trees on three vertices
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edge, and then follow the rules of algebra. For tree I, a is directly connected to b
and b is directly connected to c. Thus, the Cayley polynomial is given by (ab)
(bc) = b(abc), which uses the associativity and commutativity of multiplication.
For tree II, a is directly connected to c and c is directly connected to b. In this case,
the Cayley polynomial is (ac)(cb) = c(abc). For tree III, the Cayley polynomial is
(ba)(ac) = a(abc). Adding all polynomials for labeled trees on three vertices, we
have (a + b + c)(abc).

To follow Cayley’s argument (Cayley 1889), the reader is asked to consider the
number of possible trees on four vertices a, b, c, d. First, arrange the vertices in a
fixed configuration, such as a diamond in Fig. 15.2.

Then, begin to connect the vertices via edges to form trees. Of course, one
vertex, for example a, could be connected to each of the other vertices, b, c, d,
forming the polynomial (ab)(ac)(ad) = a2(abcd). The list of all Cayley polynomials
that can be constructed could be either a homework problem or an in-class activity.
For reference, the complete list is:

abð Þ abcdð Þ; acð Þ abcdð Þ; adð Þ abcdð Þ; a2 abcdð Þ;
bað Þ abcdð Þ; bcð Þ abcdð Þ; bdð Þ abcdð Þ; b2 abcdð Þ;
cað Þ abcdð Þ; cbð Þ abcdð Þ; cdð Þ abcdð Þ; c2 abcdð Þ;
dað Þ abcdð Þ; dbð Þ abcdð Þ; dcð Þ abcdð Þ; d2 abcdð Þ

Although this list is a bit lengthy, adding all of the above terms, we have:

aþ bþ cþ dð Þ2 abcdð Þ;

which hints at a simple pattern for counting labeled trees on n vertices. A discovery
exercise for students could be to articulate what this pattern is. Note that the
commutativity of polynomials, such as ab = ba, loses information about how the
tree is constructed, a point the instructor may wish to explore with the class. Might
there be a better symbolic device other than polynomials that encodes the con-
struction of a tree? That question will be answered in the next section. Cayley
(1889) discusses the number of trees on six vertices a, b, c, d, e and f in detail,
arriving at the expression (a + b + c + d + e + f)4(abcdef). After the six-vertex
example, Cayley (1889) writes “It will be at once seen that the proof for this
particular case is applicable for any value whatever of n,” although the inverse
correspondence between polynomials and trees is not mentioned. To illustrate the
difficulties with the inverse correspondence, ask students to find all trees with
polynomial a2b2(abcdef) in the six-vertex example. Nonetheless, a compelling
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Fig. 15.2 Find the labeled
trees
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pattern in the number of labeled trees with n vertices has been identified, corre-
sponding to the number of terms in an expansion of the form
aþ bþ cþ � � � þxð Þn�2, where there are n-many letters in the list a, b, c, …, x.
This suggests that there are nn−2 labeled trees on n vertices.

15.4 Prüfer’s Enumeration of Trees

Heinz Prüfer begins his paper (Prüfer 1918) with the geometric problem of counting
all railway networks connecting n-many towns so that: (1) the least number of
railway segments is used; and (2) a person can travel from each town to any other
town by some sequence of connected segments. The ideas expressed here, that the
least number of railway segments is used, yet travel remains possible between any
two towns, are recognized today as properties that characterize such a railway
network as a tree. Since the town names (labels) are fixed, the modern concept of a
labeled tree is an excellent model for this problem. Prüfer also states several
properties about such a network that have become modern theorems in graph
theory. For example, the statement that every network connecting n towns has
exactly n − 1 many single segments has become the theorem that every tree on
n vertices has n − 1 edges. Also, the statement that every network has an endpoint
has become the theorem that every tree has a leaf (a vertex with only one edge
connected to it). Prüfer assigns to each tree with n vertices a “symbol” consisting of
n − 2 numbers (or characters) taken from the labels of the vertices. Moreover, he
establishes that each tree corresponds to only one symbol, and each symbol cor-
responds to only one tree. Thus, the problem of counting trees is reduced to the
problem of counting sequences of length n − 2 taken from a set of n numbers (or
characters), where the characters may be repeated. Two symbols are considered the
same if and only if all corresponding entries are the same. The resulting number of
symbols is nn−2 for n > 1.

Prüfer (1918, 1976) writes:

Consider a country with n towns. These towns must be connected by a railway network of
n − 1 single segments (the smallest possible number) in such a way that one can travel
from each town to every other town. There are nn−2 different railway networks of this kind.

By a single segment is meant a stretch of railway that connects only two towns. The
theorem can be proved by assigning to each railway network, in a unique way, a symbol
{a1, a2, …, an−2}, whose n − 2 elements can be selected independently from any of the
numbers 1, 2, …, n. There are nn−2 such symbols, and this fact, together with the
one-to-one correspondence between networks and symbols, will complete the proof. (p. 53)

Today, a Prüfer symbol would be written with parentheses as delimiters, i.e., (a1,
a2, …, an−2), and considered as an element of the Cartesian product Vn

−2 = V � V � ��� � V, where V is the set of vertex labels (or letters). The
object-level rules (Sfard 2000, p. 161) of counting Prüfer symbols are the rules of
enumerating the elements of Cartesian products, where elements are not subject to
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the commutativity of their components. To understand the construction of a Prüfer
symbol, I quote from the original paper (Prüfer 1976):

In the case n = 2, the empty symbol corresponds to the only possible network, consisting of
just one single segment that connects both towns. If n > 2, we denote the towns by the
numbers 1, 2, …, n and specify them in a fixed sequence. The towns at which only one
segment terminates we call the endpoints.

… In order to define the symbol belonging to a given net for n > 2, we proceed as follows.
Let b1 be the first town which is an endpoint of the net, and a1 the town which is directly
joined to b1. Then a1 is the first element of the symbol. We now strike out the town b1 and
the segment b1a1. There remains a net containing n − 2 segments that connects n − 1
towns in such a way that one can travel from each town to any other. (p. 53)

The above characterizes the new graph, after deleting vertex b1 and edge b1a1, as
a tree. The process may be iterated, or a recursive construction can be formulated to
yield a Prüfer symbol. Prüfer offers several examples of how to construct symbols
from nets (trees) in his paper, given below (Prüfer 1976, p. 53).

The ambiguity raised in the last section over which trees on six vertices have
Cayley polynomial a2b2(abcdef) can now be solved. First, use vertex labels a, b, c,
d, e, f, ordered as a < b < c < d < e < f. Realizing that the Prüfer symbols for such
trees are carried by the factor a2b2, we see that there are six possible Prüfer symbols
corresponding to a2b2, namely:

a; a; b; bð Þ; a; b; a; bð Þ; b; a; a; bð Þ; a; b; b; að Þ; b; a; b; að Þ; b; b; a; að Þ:

Then apply Prüfer’s algorithm to produce trees from symbols, given in his
original paper. Recall that Prüfer uses braces, {…}, to delimit his symbols. He
writes (Prüfer 1976):

Conversely, if we are given a particular symbol {a1, a2, …, an−2}, other than the empty
symbol, then we write down the numbers 1, 2, …, n, and find the first number that does not
appear in the symbol. Let this be b1. Then we connect the towns b1 and a1 by a segment.
We now strike out the first element of the symbol and the number b1.

If {a2, a3, …, an−2} is also not the empty symbol, then we find b2, the first of the n − 1
remaining numbers that does not appear in the symbol. Connect the towns b2 and a2. Then
strike out the number b2 and the element a2 in the symbol.

In this way we eventually obtain the empty symbol. When that happens, we join the last
two towns not yet crossed out. (pp. 53–54)
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Let us study how Prüfer’s mostly verbal description of the tree corresponding to
a symbol can be applied to (a, a, b, b), using the modern notation for a symbol.
Since Prüfer speaks of “the first town” or of “the first number,” we see that the town
names or vertex labels are ordered. For the vertex labels a, b, c, d, e, f, simply use
the alphabetical ordering. Now, set

a1; a2; a3; a4ð Þ ¼ a; a; b; bð Þ

Thus, a1 = a, a2 = a, a3 = b, a4 = b. The letters that appear in the symbol are
just a, b. The first letter that does not appear in the symbol is c. Set b1 = c. Since
b1 = c and a1 = a are connected by a segment, the first edge in the construction of
the tree has form as shown in Fig. 15.3.

The updated symbol is now (a2, a3, a4) = (a, b, b). The updated list of vertex
labels, after striking out c, is: a, b, d, e, f. The first symbol in this list that does not
occur in (a2, a3, a4) is d. Thus, b2 = d, which is connected to a2 = a by a segment.
Including the second edge in the tree, we have Fig. 15.4.

The updated symbol is now (a3, a4) = (b, b). The updated list of vertex labels,
after crossing out d, is: a, b, e, f. The first element in the above list that does not
occur in (a3, a4) is a. Thus, b3 = a, and b3 is connected to a3 = b by a segment. The
tree now has form as shown in Fig. 15.5.

The updated symbol is now just a4 = b. After crossing out a, the updated list of
vertex labels is: b, e, f. The first element in the this list that does not contain a4 is e.
Thus, b4 = e, and b4 is connected to a4 = b by a segment. The tree now has form as
shown in Fig. 15.6.

γα Fig. 15.3 The first segment
of (a, a, b, b)

α 

γ

δ

Fig. 15.4 The second step
for constructing a labeled tree
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Fig. 15.5 The third step for
constructing a labeled tree
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εFig. 15.6 The fourth step for
constructing a labeled tree
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The updated symbol is now empty. The updated list of vertex labels, after
crossing out e, is just b, f. Prüfer writes: “In this way we eventually obtain the
empty symbol. When that happens, we join the last two towns not yet crossed out”
(1976, p. 54). Thus, the final step in the construction of the tree is to join b and f
with a segment (Fig. 15.7).

Figure 15.7 is a tree corresponding to the Prüfer symbol (a, a, b, b). The exact
positioning of the edges is not given by the algorithm to construct a tree and may
depend on the location of the vertices, provided that information is given at the
outset of the problem. An interesting exercise for students or instructors is to verify
that the symbol for the above tree is actually (a, a, b, b). Also, trees corresponding
to the symbols (a, b, a, b), (b, a, a, b), (a, b, b, a), (b, a, b, a), (b, b, a, a) could
now be assigned as homework problems. Further exercises in the student module
(Lodder 2013) develop a precise algorithmic formulation of the tree corresponding
to a given symbol, which can be gleaned from Prüfer’s original paper, excerpted
above. The one-to-one correspondence between symbols and trees is further
developed in the exercises of the student module, while a study of trees having the
same Prüfer symbol leads to the idea of a graph isomorphism.

15.5 Borůvka’s Solution to a Minimization Problem

Perhaps more important than counting trees are the applications that this structure
have found in modern day mathematics and computer science. Well before graph
theory was a subject in the present-day curriculum, Borůvka (1926a, b) published
the solution to an applied problem of immediate benefit for constructing an elec-
trical power network in the Southern Moravia Region, now part of the Czech
Republic. He describes his own involvement in this project as (Graham and Hell
1985):

My studies at polytechnical schools made me feel very close to engineering sciences and
made me fully appreciate technical and other applications of mathematics. Soon after the
end of World War I, at the beginnings of the 1920s, the Electrical Power Company of
Western Moravia, Brno, was engaged in rural electrification of Southern Moravia. In the
framework of my friendly relations with some of their employees, I was asked to solve,
from a mathematical standpoint, the question of the most economical construction of an
electric power network. I succeeded in finding a construction … which I published in 1926
…. (p. 50)

ε

β
α

γ

δζ

Fig. 15.7 A labeled tree for
(a, a, b, b)
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He phrased the problem as follows (Borůvka 1926b; Nešetřilm et al. 2001):

There are n points in the plane (in space) whose mutual distances are all different. We wish
to join them by a net such that: (1.) Any two points are joined either directly or by means of
some other points; and (2.) The total length of the net would be the shortest possible.
(p. 153)

How does this problem differ from that posed by Prüfer? Prüfer wishes to find a
network that requires the least number of single segments, while Borůvka wishes to
find a network of shortest possible total length. Both authors require that all towns
in their respective applications be connected to the network (railway or electrical).
Are these identical problems? No, since Prüfer never considers the length of a
railway segment connecting two towns. Are these problems related? Yes, since a
network of shortest total length is recognized today as a tree. Thus, of all possible
nn−2 labeled trees on n points (towns), which tree or trees have the shortest possible
total length? Borůvka offers a solution to this problem that is rather algorithmic in
nature, and has become the basis for finding what today is called a minimum
spanning tree. With the advent of the electronic programmable computer in the late
1940s and early 1950s, algorithms for finding minimal spanning trees became a
topic of research in computer science, with both Kruskal (1956) and Prim (1957)
publishing their own methods for finding such as tree. Some thirty years before this
Borůvka (1926b) had published “A Contribution to the Solution of a Problem on
the Economical Construction of Power Networks,” which outlines how to find a
network of shortest total edge length in a very visible and compelling example. He
uses no modern terminology in his 1926 papers, not even the word “tree.”

Borůvka proposes a simple algorithm to find such a net of minimum total length,
based on the guiding principle “I shall join each of the given points with the point
nearest to it” (Borůvka 1926b, p. 153; Nešetřilm et al. 2001). Of course, given points
v1, v2, v3, … in the plane, if the closest point to v1 is v2, then it is not necessarily the
case that the closest point to v2 is v1. Also, if the only connections made are those
resulting from connecting a vertex to its nearest neighbor, then a connected graph
would not necessarily result, but would consist of several connected components. If
this is the case, Borůvka uses the term “polygonal stroke” to refer to a connected
component. He then devises an ingenious method to iterate this algorithm by con-
necting each polygonal stroke to its nearest polygonal stroke. The distance between
two polygonal strokes G0 and G1 is given by min d(vi, vj), where vi ranges over the
vertices of G0, vj ranges over the vertices of G1, and d(vi, vj) denotes the distance
between vi and vj. Of course, after connecting a polygonal stroke to its nearest
polygonal stroke, a connected graph may still not necessarily result, but the algo-
rithm can be iterated until a connected graph does result, beginning with a finite
number of vertices initially. Borůvka vividly illustrates his algorithm with the fol-
lowing example (Borůvka 1926b, p. 153). “Given the 40 towns (points) in Fig. 15.8
find the network of least total length that connects them.”

First, “join each of the given points with the point nearest to it” (p. 153),
resulting in “a sequence of polygonal strokes” (p. 153) in Fig. 15.9.
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Then “join each of these strokes with the nearest stroke in the shortest possible
way (resulting in Fig. 15.10)” (p. 153).

Borůvka concludes (Borůvka 1926b):

I shall join each of these strokes in the shortest way with the nearest stroke. Thus stroke 1
with stoke 3, stroke 2 with stroke 3 (stroke 3 with stroke 1), stroke 4 with stroke 1. I shall
finally obtain a single polygonal stroke (see Fig. 15.11) which solves the given problem.
(p. 154)

It remains to be checked that Borůvka’s algorithm produces a minimal spanning
tree. Borůvka proves so in his first publication (Borůvka 1926a), which is a rather
algebraic formulation of his algorithm using matrix notation. The visual appeal of

Fig. 15.8 Borůvka’s 40 towns

Fig. 15.9 The first step of Borůvka’s algorithm
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the above example (Borůvka 1926b) remains a compelling illustration of this
procedure. Under the assumption that all edge lengths are distinct, there is only one
(a unique) solution to the minimal spanning tree problem for a given set of vertices.
For further exercises on a precise formulation of Borůvka’s algorithm, as well as an
exploration of why a minimal spanning tree is produced, see the student module
“Networks and Spanning Trees” (Lodder 2013).

Fig. 15.10 The second step of Borůvka’s algorithm

Fig. 15.11 The minimal spanning tree
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15.6 Implementation of the Module

The module “Networks and Spanning Trees” has been tested at New Mexico State
University in both a mathematics course on combinatorics and a computer science
course on algorithm design during the years 2009–2011. Both of them were
undergraduate courses. In the combinatorics course, student work on constructing
trees with Cayley polynomial a2b2(abcdef) was graded with leniency, since the
goal of this exercise is to raise doubt in the students’ minds whether Cayley’s
formula for counting trees is correct. The complete solution to this problem must
wait until the conclusion of the Prüfer section. While working through the Prüfer
section, most students were able to construct the correct symbol from a given
labeled tree. However, students needed guidance when working in the reverse
direction, namely when constructing a labeled tree from a Prüfer symbol. During
class, instructors may wish to work through the example of this given above. Also,
Prüfer uses an induction argument on n, the number of vertices of a tree, to prove
that there is a one-to-one correspondence between labeled trees and his symbols,
which the instructor may wish to explore with the class.

For use in computer science courses, the need for an algorithm to find a minimal
spanning tree can be vividly demonstrated from Borůvka’s example of 40 towns.
We know that there are 4038 � 7.55 � 1060 labeled trees on 40 vertices, and
finding the minimal spanning tree by checking the least value over this entire
domain, even electronically, is virtually impossible. A more systematic method is
necessary. The efficiency of Borůvka’s algorithm can be explored by comparing the
running time to find a minimal spanning tree with other algorithms, such as those
proposed by Kruskal (1956) or Prim (1957). Today, Borůvka’s algorithm is known
as a “greedy” algorithm, since at each step, a vertex is connected to the vertex
closest to it (in some iteration of the algorithm), and this is characterized as a
“greedy” choice. In fact an entire subject, combinatorial optimization (Lawler
1976), has arisen to discuss these algorithms.

At the conclusion of these courses using historical curricular modules, students
were asked to complete a questionnaire about their attitudes towards learning
mathematics. Students were asked to offer, in free response, what are the benefits of
learning from historical sources, and separately what are the drawbacks of learning
from historical sources. Stated drawbacks include “the language may be difficult to
read,” and “math may not be state-of-the-art.” Although anecdotal, stated benefits
are encouraging, and include:

“You get answers to questions like ‘where did all of this come from?’”

“It helps me understand the reason why things were put together like they are.”

“I like to see where everything comes from and how it works, especially when I am able to
make sense of it.”

“You learn the concept.”

“It makes me care about learning.”
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15.7 Concluding Remarks

Pedagogical advantages of teaching from historical curricular modules include:

(1) The study of engaging problems rather than the memorization of technical
definitions. Modern textbooks on graph theory begin with the formal definition
of a graph and the definition of a tree, followed by lemmas and theorems about
these structures and proofs of the results. By contrast, in a historical module we
see from the outset what problems humankind confronted and the thought
processes developed to find a solution. Cognitive dissonance or dépaysement
(Barbin 1997) may occur when reading a verbal description of these problems
without knowledge of the formal definitions of a graph or tree. A reader may
not view the verbal description as mathematics.

(2) The description of problems without the use of specialized vocabulary. Both
Prüfer and Borůvka offer verbal descriptions of problems they wish to solve
without reference to any technical terms. This represents an advantage of
learning from original sources articulated by Jahnke et al. (2000). No spe-
cialized use of vocabulary is required at the outset.

(3) An ease of the cognitive demand in understanding the reasoning process.
Modern graph theory textbooks provide a proof of “Cayley’s formula” for the
number of labeled trees on n vertices, although such proofs are often difficult
for students to follow, if students read these at all. The first attempts to justify a
result are often intuitive and do not require the assimilation of a body of
technical results, easing the cognitive demand (Schoenfeld and Floden 2014)
for understanding. Thus, we see Cayley’s attempt to count trees with an
algebraic construct already familiar to him, and familiar to most students at this
point, namely polynomials, subject only to the rules of algebra (associativity,
commutativity, distributivity). Once it becomes clear how a monomial is
constructed from a tree, then the object-level rules (Sfard 2000, p. 161) of the
algebra of polynomials become the object-level rules of representing trees.

(4) An appreciation of rigor by observing how the subject has evolved over time.
By studying the first attempts to verify a result, inconsistencies, omissions or
unanticipated subtleties often arise. When students are afforded the opportunity
to find or understand these gaps in reasoning, they appreciate the efforts of other
scholars to offer a more rigorous justification of the same result. Thus, we see
Prüfer provide a proof of “Cayley’s formula” by using a one-to-one corre-
spondence between labeled trees and Prüfer symbols. A Prüfer symbol for a
labeled tree on n vertices can be interpreted as an element of the Cartesian
product, Vn−2 = V � V � ��� � V, where V is the set of vertex labels. Once the
construction of a Prüfer symbol is understood, then the object-level rules of
Cartesian products (as sets) become the object-level rules of counting trees.
When moving from Cayley to Prüfer, we see the development of rigor by
replacing one set of object-level rules (polynomials as objects) with a more
subtle set of object-level rules (Cartesian products as objects). Of course,
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elements of a Cartesian product are not subject to commutativity of their
components.

(5) An understanding of the origin of modern mathematical definitions and pro-
cedures. Modern mathematics attempts to codify the key properties of a
structure or procedure in the form of a definition or an axiom. After a study of
trees and their applications is complete, we see why a tree might be defined as a
“connected, minimally-connected graph,” and why this might be reformulated
as a “connected graph with no cycles,” since a cycle always contains more
edges than necessary in order for the graph to be “connected and
minimally-connected.” The formulation of a modern definition requires a
knowledge of the various historical works (discursants) about the subject, and a
meta-discursive (Sfard 2000) synthesis of these works into one definition. This
offers an example of raising students’ awareness of the meta-discursive rules
that govern the current mathematical paradigm (Kjeldsen and Blomhøj 2012).

(6) Context, motivation and direction for the subject. As a summary statement, the
three historical sources in this curricular module provide context, motivation
and direction for a course on graphs and trees.

Instructors seeking more information on this teaching module should consult
Lodder (2014).
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Part V
History and Epistemology of Mathematics:

Interdisciplinary Teaching and
Socio-Cultural Aspects



Chapter 16
The Pantograph: A Historical Drawing
Device for Math Teaching

Silvia Schöneburg-Lehnert

Abstract Invented more than 400 years ago, the Pantograph—also called “Stork’s
beak”—is still known in modern times. Although it has lost its practical importance,
it still invites users to play with geometry. This and the fact that the mathematical
background to its working has strong links to modern curriculum suggest studying
the Pantograph in class may be beneficial. Furthermore, the history of the
Pantograph is described in historical sources and tells a lot about the history of
mathematics. But can the history of the Pantograph be used in class to teach
mathematics, Latin, history, or handicraft? We investigate this question in an
interdisciplinary school project using the classical text by Christoph Scheiner of
1631 for studying the Pantograph with students of grades 8–11.

Keywords Intercept theorem � Similarities � Historical drawing devices
Pantograph � Christoph Scheiner � Latin

16.1 Introduction

“There is no Mathematics without its history” (Scriba 1983, p. 114; author's
translation). Surely, it is not possible to argue against this statement, and in par-
ticular, mathematics teaching is more and more taking this into account. In the past
years, several ideas and concepts from history of mathematics became increasingly
important for the teaching of the subject. The success of this approach can be seen
in a large amount of new material, publications and conferences on this subject, but
also in the reconstruction of curricular frameworks (Fasanelli et al. 2000). This
happened in spite of the doubt expressed in some debates on the benefit of this
enterprise (cf. Glaubitz 2010, p. 1). Since history of mathematics, aligned with
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problems and personalities—seen in the context of “their” time—stimulates at all
levels the “rigorous” investigations through all the different areas of mathematics,
teaching of mathematics surely benefits from historical input.

For the understanding and consideration of mathematics within social context it
is essential to conceive it as a self-developing science and as being part of the
human culture. Questions about the decisive development of the aspects in math-
ematics emerging in this context are natural and may be included within the
teaching of mathematics, though in different degrees.

We may refer here to Pythagoras or to the rule of Thales, but the mathematical
and historical view should not be limited to these fundamental contents. It should
rather be extended to many other topics, for which the mathematical and historical
background is not always immediately obvious but still of the greatest interest.

One of these extensions, which can be integrated in the topic of “Similarities,” is
the discussion of the Pantograph—also called “stork’s beak.” The word derives
from the Greek. It is a compound word, consisting of the first part “pᾶm” (= each,
all) and the second part “cqάueim” (= write, draw). So, its translation means “the
all-writer.” It is a device capable of copying pictures at any scale. The device
consists of four wooden rods, which are assembled to a parallelogram with mobile
corners. A pencil, a stylus and a stationary mount are positioned collinearly on the
device. The distance ratios of stylus and pencil to the mount are fixed and changing
their ratio it is possible to choose how much the copy shall be smaller or larger than
the original (Fig. 16.1). The mathematical background is easy to understand: the
Pantograph is based on the intercept theorem. Hence, using the Pantograph one can
apply dilations.

Fig. 16.1 The pantograph as
shown in Christoph
Scheiner’s Pantographice seu
Ars delineandi (Scheiner
1631, p. 29)
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16.2 Historical Remarks

Before we describe the actual school project let us start with some remarks about
the history of the Pantograph. Following its history, one recognizes that the origin
of this drawing device is not well documented and is difficult to reveal it down to
the last detail. For instance, we find in a writing of the early 17th century the
following statement:

Diß Instrument / dessen gebrauch ich allhie in der kuertze zu beschreiben vorgenommen /
ist zwar keine newe / und also auch nicht meine / sondern ein etwas alte Invention / welche
aber / meines wissens / noch von niemanden in Truck befoerdert / oder zu Tag gegeben
wurden. (Bramer 1617, p. 47)

This device / the use of which I describe here shortly / indeed is not a new / hence not my /
but a slightly old invention / which / up to my knowledge / nobody has printed yet / or
communicated. (author’s translation)

Hence, it seems that the Pantograph had already existed for a while, but there are
no concrete references to the actual origin of this drawing device. Shortly after the
year 1600, an increasing number of publications on this subject appeared, which
shows that in the 17th century the Pantograph was broadly accepted and used as a
copying device (Goebel et al. 2003, p. 9). Among the first known publications are
the monographs of Benjamin Bramer (1588–1652), Daniel Schwenter (1585–1636)
and Christoph Scheiner (1575–1650).

Benjamin Bramer was a German architect and mathematician. In 1617 Bramer
published a short script: “Bericht eines Parallel Instruments” (Bramer 1617). On 12
pages Bramer describes how to build his drawing device and makes some detailed
descriptions on the way it works. He describes how to use the device to copy figures
at the same size and how to scale them up or down. He finishes his script with some
short theoretical remarks on the mathematical background referring to the relevant
parts of Euclid (Bramer 1617, p. 58).

Daniel Schwenter was a German orientalist. In the sixth book of the first treatise
of his opus “Geometria e practicae novae et auctae” (Schwenter 1625), Schwenter
describes the Pantograph. This description is very concise and hardly longer than a
single page (Schwenter 1625, pp. 255–256). He finishes the treatment of the
Pantograph in this overview with a reference to a more detailed description of the
drawing device in a separate treatise.

Weil aber diß ein sehr nuetzlich Instrument ißt / wil ich wils Gott davon ein sonderlich
Tractetlein schreiben / und dem Leser viel schoener vorthel weisen zum abreissen / ver-
groessern / verjuengern / vergleichen. nicht allein mit dießem Instrument sonder auch mit
einem andern und viel bequemern. (Schwenter 1625, p. 256)

Since this is a very useful device / God willing I will write a separate tractate about this /
and teach the reader much nicer how to copy / enlarge / reduce / compare. Not only with
this device but also with a different and much more convenient one. (author’s translation)
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However, this “separate tractate” seems to be lost (as well as the much more
convenient device). The type of Pantograph described in the work of Schwenter
coincides with the device called Milanese Pantograph later on (Goebel et al. 2003,
p. 12).

Starting in the 18th century, the Jesuit Christoph Scheiner is commonly con-
sidered to be the inventor of the Pantograph—even though the descriptions by
Schwenter and Bramer appear superior in some technical aspects and Scheiner’s
work was published more than ten years later.

16.2.1 The Jesuit Christoph Scheiner

The Jesuit, mathematician and scientist Christoph Scheiner was born on July 25,
1575 in Markt Wald close to Mindelheim, Germany. He entered the Jesuit order in
1595, studied philosophy in Ingolstadt and Dillingen, and earned the degree
“Magister Artium” in 1605.

While studying in Dillingen he worked for three years (1602–1605) as a teacher
for Latin at the Jesuit high school. At the same time, he temporarily held mathe-
matics courses at the academy that was associated with the Jesuit high school.
According to his description, he discovered the Pantograph during this period. We
will come back to this, after the biographical sketch.

Fig. 16.2 Front page of
Pantographice seu Ars
delineandi (Scheiner 1631)
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Scheiner studied theology in Ingolstadt earning a doctoral degree in 1609, the
year of his ordination to the priesthood at Eichstätt. He took the three vows of
poverty, chastity and obedience in 1617. From 1610 to 1616 he was professor of
mathematics and Hebrew in Ingolstadt and held courses about sundials, practical
geometry, astronomy and optics as well as a seminar on the telescope.

He spent several years in Innsbruck, Freiburg im Breisgau, Vienna and Rome
and finally settled in Neisse, where he stayed at the Jesuit center founded by him.
He died on July 18, 1650 (von Braunmühl 1891; Schönewald 2000).

As his oeuvre impressively shows, Christoph Scheiner was an outstanding
mathematician, astronomer, physician and engineer of his times. He was always
keen to use, understand, adopt and develop new instruments and methods in order
to gain insight and to reproduce, verify and improve scientific progress. He made
important contributions to the development of the astronomical telescope by
inventing physical and optical devices like the “heliotropium teliscopium.” He can
be considered as cofounder of physiological optics (Daxecker 2014). In order to
study conic sections, he invented his own ellipsograph, and in order to measure the
orbit of a comet he developed within a single day a wooden sextant. But the reason
why we discuss him here in great detail is of course his invention of the Pantograph.

According to his own words he was inspired for this invention by a painter.
Following numerous considerations and unsuccessful attempts to recapture the
painter’s technique in copying images he finally found the solution to this problem
in a dream. Using mathematical reasoning, he built the device in January 1603 and
gave it the name “Parallelogrammos.”

In the following years Scheiner continued to work on his Pantograph and made
several improvements. It was not before 1631 that he published in Rome a
description and assembling instruction titled Pantographice seu Ars
delineandi (Fig. 16.2). In order to arouse readers’ interest and curiosity, Scheiner
tries to make the reader smile and lets his monograph start with the anecdote of the
painter and the history of the invention. On the front page of the monograph the two
possible applications of the Pantograph are shown. On the one hand the Pantograph
can be used as a device for copying pictures on the plane. On the other hand, the
Pantograph can be used as part of a perspective machine, with which one could
draw any kind of object and project pictures on curvilinear surfaces.

In his monograph, Scheiner claims that this art of drawing was not widely
known among his contemporaries in 1603. After inventing his drawing device,
Scheiner started to teach how to use the Pantograph in order to copy pictures in the
plane not only as a professor to his students at the college, but also privately
(Scheiner 1631, p. 6). However, he did not reveal the full power of the new device
and only few people were allowed to learn about the art of spatial drawing
(Scheiner 1631, p. 6f). Nevertheless, he had to admit:

…tametsi fieri posse non negem, ut aliqui fortassis extent alicubi, qui affine quid istis
insinuent: at qui hac via, methodo, & arte progrediatur, esse puto neminem.
Stereographicen certe istam totam novam esse primoq. partu in lucem prodire mihi per-
suadeo,[…]. (Scheiner 1631, p. 7)
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However, I shall not deny that it might happen, that eventually one might find somewhere
others, who tell things close to this. But I believe that nobody exists who is proceeding this
way, with this method, and with this art. I am convinced that the art of spatial drawing by
itself is completely new and came to the world as a first birth, […]. (author’s translation)

The monograph consists of two books describing both kinds of applications. The
first book “Pantographices libellus primus” describes “the art of drawing in the
plane”: Given an arbitrary pre-image, it describes how to construct a similar image
using the graphical tool Pantograph. The book is divided into two parts, the first
being devoted to practical aspects only. In seven chapters, Scheiner reports about
his invention, basic terms and definitions, materials and construction of the graphic
Pantograph, tasks and assignments of different pieces and how to use the
Pantograph and with which effect.

The second part deals with the theoretical background. Some aspects of the first
part are taken up again and discussed from a theoretical point of view. In total
fifteen “Propositiones” and several “Lemmata” are formulated and proved. In these
proofs Scheiner’s way of reasoning follows the commonly used approach to such
problems. Starting from a general lemma, the problem is presented with a concrete
example and a claim is stated. What follows is a mathematically well-thought-out
proof.

In the second book, “Pantographices libellus secundus,” Scheiner continues his
studies. Reflecting directly on the function and meaning of the Pantograph, he
focuses on several key aspects of his art of drawing. The book is divided into eight
“Propositiones,” which are discussed in detail. For instance, he discusses the art of
spatial drawing. He concludes that in this case the pre-image cannot stay connected
to the stylus. In the subsequent chapters he describes material, shape, and correct
position of the stylus in spatial applications (Scheiner 1631, p. 89ff).

The construction manual and the description of how to use his tool in the art of
planar as well as spatial drawing make Scheiner’s monograph an essential resource
about the Pantograph. A description as extensive as this had not existed before.
Scheiner leads his readers to a much deeper understanding of the mathematics
behind the Pantograph and shows a broader scope of possible applications than
Bramer and Schwenter did. Compared to Scheiner’s description the works of
Schwenter and Bramer are only very brief introductions sketching only some main
applications. Taking this into account, one understands the judgement that the
Pantograph is Scheiner’s invention, even if it has some technical disadvantages
compared to the tools of Schwenter and Bramer.

The elementary mathematical features which characterize the Pantograph, its
presence until nowadays—and not just as a widespread toy—as well as its historical
embedding in a period that was very interesting and important from a scientific
point of view, i.e. the Baroque, are good reasons to approach this topic with
students. This suggests to go beyond the pure mathematical aspects of the device
and to look at the mathematics of this period in its entire social context.
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16.3 But Why Exactly the Scheiner Pantograph?

Even today the Pantograph is well known to several people. So, dealing with it in
the mathematics teaching represents both for students and for teachers a natural link
to the everyday life.

The unreflecting, playful use of the device offers a good starting point
approaching its mathematical background. Thus, 9th grade students dealing with
the topic of similarity transformations have the necessary prerequisites for handling
the Pantograph.

This argument is so obvious that we have to admit that we are not the only—not
even the first—to suggest the use of the Pantograph in class. The Pantograph has
even been included within the topics of some school books (e.g. Griesel et al. 2015,
p. 247), though the respective exercises are usually detached from the historical
context. However, embedding the Pantograph within a historical frame allows the
teacher to transmit the idea that mathematics is a living part of the cultural
development to the students.

The confrontation with the Baroque science, in our case, via the invention of a
drawing device, is usually not considered within the teaching of history. Thus,
working with the Pantograph can enrich both the teaching of mathematics and
history. The style used by Scheiner in his description about the design and the
functionality of the Pantograph and its mathematical background allows including
his original textbook Pantographice seu Ars delineandi directly in class.

Nevertheless, it should be mentioned that there is a certain difficulty about the
comprehension of the text, since it is written in Medieval Latin (cf. Fig. 16.3).
However, this problem can be solved by connecting the teaching of Latin with the
study of the Pantograph. Furthermore, the translation of selected excerpts allows
gaining interesting and important information for both the mathematics and the
history class. In collaboration with the teacher of Latin it is possible to create
working material for the students, even for those who are still at an early stage of
learning Latin (a concrete example of how this was done can be found in
Sect. 16.5).

A particular advantage of dealing with the text on the Pantograph consists of the
fact that the students have the possibility of facing the topic practically.
Consequently, handling the toy-Pantograph, reproducing a Scheiner-Pantograph, as
well as building a “modern” Pantograph can be very useful activities. The latter
provides the possibility of cooperating with teachers of arts and handicrafts.

However, such a widespread topic is often not applicable due to the short time
available in the mathematics class. For such cases, projects extending the standard
teaching time would be suitable. Jankvist gave a categorization of approaches to
integrate history of mathematics in the mathematics education (the “hows:” Jankvist
2009). From a methodological point of view, our project corresponds to what
Jankvist called a “module approach.”
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16.4 Is There Really a Benefit: From Using Historical
Original Sources?

Obviously, this question is not at all new and a large number of authors contributed
to an (often affirmative) answer (e.g. Arcavi and Bruckheimer 2000; Barbin 1991;
Jahnke et al. 2000, 2006; Jankvist 2014; Pengelley 2011; Thomaidis and Tzanakis
2008). However, here we want to emphasize a special aspect of all this discussion
that was of particular interest during the project. While most of the work on primary
sources in the classroom deals with historical text sources, the Pantograph offers the
chance to integrate a broader variety of historical sources in class.

Quellen sind Objektivation und Materialisierung vergangenen menschlichen Handelns und
Leidens. Sie sind in der Vergangenheit entstanden und liegen einer ihr nachfolgenden
Gegenwart vor. (Pandel 2003, p. 11)

Original sources are objectification and materialization of past human action and suffering.
They have been created in the past and are available in a subsequent present. (author’s
translation)

Following this definition of original sources, the Pantograph as a historical
drawing device is by itself an interesting historical source that is worthy to be
rediscovered. Following this approach, van Randenborgh used the Pantograph—not
only Scheiner’s pantograph, but also Schwenter’s and Bramer’s pantograph—as
one of two exemplary historic drawing devices in class (van Randenborgh 2015). In
this study, van Randenborgh compared the use of the historical source with the use

Fig. 16.3 Excerpt of Christoph Scheiner’s Pantographice, seu Ars delineandi (Scheiner 1631,
pp. 3–4). The Latin source is not directly easily accessible to contemporary high school students
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of a digital reproduction of it—using dynamic geometry environments. His results
suggest that students perceive the digital reproduction as a simulation of the his-
torical device (van Randeborgh 2015, p. 179). Another conclusion of this study is
that the use of the Pantograph—or even its digital reproduction—in class provides
special insights for the students:

Historische Zeichengeräte beruhen auf der mathematischen Idee und genau diese soll im
Unterricht von den Schülern entdeckt bzw. rekonstruiert werden. […] Durch dieses
Aufdecken, Erklären und Herstellen von Zusammenhängen wird das Artefakt zum
Instrument der Wissensvermittlung. (van Randenborgh 2015, p. 193f)

Historical drawing devices rely on a mathematical idea and exactly this idea shall be
rediscovered or reconstructed by the students […] This uncovering, explaining, establishing
of relations turns the artifact into an instrument for the transfer of knowledge. (author’s
translation)

The monograph Pantographice seu Ars delineandi (Scheiner 1631) is another
valuable source. On the one hand, it provides insight into the mathematical back-
ground, the construction and the use of the tool. On the other hand, it tells a story
about Scheiner’s motivation to construct such a tool, about the difficulties and
problems and about the way people thought and talked about mathematics in the
17th century. This reason is enough to put not only the Pantograph itself—with its
mathematical and mechanical ideas—but also Scheiner’s original text and the
critical reflection of his ideas into the focus of the school project.

Doing this it would be negligent to consider historical sources just as memory of
knowledge and information. The additional educational potential of them originates
in the particular way they tell their story—or can be brought to tell a story. This
makes them monuments inviting us to study not only the source itself but also the
broader context. Opening up minds for new kinds of questions the source provides
more information than the author intended to put there.

Scheiner’s textbook invites us to take the journey through the history of the
Pantograph showing at the same time some disadvantages of the scientific style
used in the 17th century. The students can compare the circumlocutory and (by
modern standards) redundant mathematical language of Scheiner to the language
used in modern textbooks and can make their own judgment on the value of our
modern formal language of mathematics. In particular, this can be seen in
Scheiner’s proofs. This will be discussed further with the aid of a concrete example
in Sect. 16.5.2.

16.5 The Project “The Pantograph of the Jesuit Christoph
Scheiner”

Due to the long cooperation between the Cantor Gymnasium Halle and the Institute
for Mathematics at the University of Halle-Wittenberg, and thanks to the
open-minded spirit towards new forms of cooperation, the possibility arose for a
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project entitled “The Pantograph of the Jesuit Christoph Scheiner.” The input to the
project was given by a research project at the University of Halle-Wittenberg
(Goebel et al. 2003; Richter and Schöneburg 2008) regarding Christoph Scheiner’s
book Pantographice seu Ars delineandi. The research project provided the working
materials for the immediate school application within the frame of an interdisci-
plinary project.

The principal idea was to offer an extracurricular research project. The project
was planned to (and did indeed) finish after one term. For the implementation of the
project it was decided to hold a weekly meeting of a working group (an alternative
to this would have been to have several “project days” during which the students
would skip the regular classes in order to work exclusively on the research project).
In this context, the students would have to develop a high level of self-activity for
the arrangement and performance of the working group, thus making the project
literally their own.

The definition of the thematic focal points for the working group was based on
the suggestions and ideas of the students.

Christoph Scheiner and his time:

About Christoph Scheiner;
Universal Science in the Baroque;
the Pantograph and other drawing devices;
the Pantograph throughout the ages.

About the functioning and working of the Pantograph:

Scheiner’s assembling instruction;
our reconstruction and our improved assembling instruction;
mathematical background;
testing and explanation of the Pantograph.

Presentation of results:

Wall newspapers;
crafting instructions;
theatre;
internet presentation.

The project was publicly announced at school and 18 students of grades 8
through 11 (ten students from grade 8, three from grade 10, and five from grade 11)
volunteered to take part in the working group. Obviously, we had to cope with
different levels of students’ prior knowledge, in particular concerning Latin. This
was not at all a disadvantage; on the contrary, it appeared to be an enriching feature
of the project.

All students brought their own skills and, since they were used to working in
groups, they were able to motivate each other via harmonizing their different skills
and knowledge. With the aim of making the working group more interesting and
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diversified, particular emphasis was put on the meaningful and alternating use of the
linguistic, mathematical, historical and artistic aspects.

To be more precise, during the work on Pantographice seu Ars delineandi
students started to study in groups excerpts of the Latin monograph and their results
were discussed in class. The excerpts were chosen with a thematic focus on the tale
of the invention of the Pantograph and the construction guidelines for its different
parts. Along these lines, the teacher who was in charge of the history part of the
project could easily lead the discussion to the historical research questions of the
project, e.g. what was the Baroque period about and what are the characteristic
elements of this epoch? Therefore, not only linguistic but also historical, mathe-
matical and artistic aspects became crucial parts of the discussion while interpreting
the excerpt (cf. Fig. 16.4).

The reproduction of the historical Pantograph—using the translation of the
excerpt as a construction manual—was another part of the project. Here, the stu-
dents needed not only artistic, but also mechanical skills (cf. Fig. 16.5). Originally,
it was planned to construct only a paperboard Pantograph. After doing this and
using the paperboard Pantograph for several drawings, the students came up with
the wish to construct a “real” Scheiner Pantograph. Satisfying this wish turned out
to be a valuable experience of constructing a “real tool.”

A third part of the project was the development of the mathematical background.
Obviously, this part demanded mainly mathematical skills. The students used their
own Pantographs to search for mathematical reasons for the functionality and used
their insights to explain what was going on. An important aspect of the project was
to develop this explanation using mathematically correct language. This aspect was
strengthened further by a subsequent discussion of one of Scheiner’s propositions
and its original proof (cf. Fig. 16.6).

Fig. 16.4 The Latin text was
elaborated in teamwork and
discussed jointly

Fig. 16.5 The main aim
during the reconstruction of
the Pantograph consisted of
artistic and practical aspects
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16.5.1 How to Deal with Different Levels of Prior
Knowledge?

As mentioned above, a consequence of allowing students of different grades to
participate in the project was the variety of different levels of prior knowledge—not
only in Latin but also in mathematics. Although sounding like a problem, this
turned out to be a source for motivating teamwork, inspiring discussions and a
fruitful learning environment. Nevertheless, this diversity was a challenge we had to
face. Our strategy to do so is shown in Table 16.1.

The following description of an exemplary phase of the project shall make more
precise the above mentioned schematic description of our approach to face the
varying level of students’ prior knowledge. The phase of the project described
below was used as an introduction to the project. It deals with the tale of the
invention of the Pantograph.

Before handing out Scheiner’s original description of this tale (cf. Fig. 16.3)
students were prepared with working sheets, which were adjusted to the level of
students’ prior knowledge. Both versions—the working sheet for students of grade
8 (cf. Fig. 16.7) and the working sheet for students of grade 10/11 (cf. Fig. 16.8)—
contain an edited version of the original text and selected vocabulary. While
preparing the edited (Latin) text, the main goal was to stay as close to the medieval

Fig. 16.6 Obviously,
mathematics—with an
emphasis on correct
formulation—was the
principal aspect of the project
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Table 16.1 Working methods with respect to subjects and age groups

Age group characteristics relative to subject Main working methods

Linguistic parts of project:
Grade 8: Little prior knowledge—in

particular, only basic knowledge of
Latin; enriching the work in the
project with enthusiasm, curiosity
and creativity (both in terms of
content and methodology)

Grade 10/11: Solid prior knowledge, broader
knowledge of Latin, higher
level of autonomy

Work with Latin source text
Working in parallel in groups of different
sizes and in changing composition;
Students are encouraged to help each other
even beyond their own working groups

Mathematical and historical parts of project:
Grade 8: High level of curiosity and creativity
Grade 10/11: Analyzing different ideas,

checking ideas for correctness,
potential and possible
consequences

Work on the mathematics and the history of
the Pantograph
Joint discussions interrupted by periods of
teamwork (in groups of changing
composition and size)

Fig. 16.7 Introductory working sheet for grade 8 (exercises and vocabulary in English translated
from German by the author)
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original as possible. So, while compiling the text in regard to its content, care was
taken so that the students obtained a solid impression of Scheiner’s use of Latin and
his style in presenting the mathematical content. This impression was reinforced
later on by comparing the edited text with Scheiner’s original text.

Fig. 16.8 Introductory working sheet for grades 10 and 11 (exercises and vocabulary in English
translated from German by the author)
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16.5.2 How Does Scheiner Prove Statements?

As already mentioned, the second part of the first book of Pantographice seu Ars
delineandi (Scheiner 1631) contains several mathematical statements and proofs.
During the project, the students had to cope with several of them. To give an
impression of this mathematical aspect of the project, we show the treatment of
Lemma 3:

In modern mathematical language, the statement could be expressed as follows:

A parallelogram in the Euclidian plane is uniquely determined by (the position and the
length of) two of its sides.

However, Scheiner’s formulation sounds—at least to students—very different as
the following (rough) translation shows.

If one side of a parallelogram stays fixed, then either none of the other three or all other
three [sides] are moved to stay with a parallelogram. (author’s translation; cf. Fig. 16.9)

Of course, Scheiner was thinking of his parallelogram as something representing
his device consisting of four wooden rods. Therefore, it makes sense to speak of
movements of sides. This monograph was meant to be a textbook for readers in the
17th century explaining the use of his device, not as a textbook explaining
Euclidean Geometry.

A careful analysis of his “Expositio” shows that Scheiner seems to use either
some hidden assumptions on a third angle to be fixed, or uses some unproven
observations. In his proof he deduces that it is impossible to “move” just one side
and concludes that all three sides have to be “moved.” The case that just two sides
are “moved” seems to be excluded per se. Although the original Latin text can be
found in Fig. 16.9, we state here its translation:

Expositio: Given Figure 17 of the parallelogram ABCD and the side AD that stays fixed.
I claim that either none of the other sides AB, BC, CD, or all three of them have to be
moved. If it happens that the side CD is moved around D in the beginning in E, while the
other (sides) stay, then the figure ABED shall be a parallelogram, the angle EDA will be the
same as the opposite angle ABE; this angle will be the same as the angle CDA; hence the
two angles are equal to each other, a part and the total, which cannot happen.

Neither has the side CD be moved to E, nor any other movement has happened. Similarly, it
will not be moved inside to F. Since the angles FDA and CDA, opposite to the same angle
ABC in the parallelogram BD, are equal, a part and a total, which cannot happen. Hence if
one side of a parallelogram stays fixed, either none or all of the other three are moved.
Qoud erat demonstrandum. (italics in the original; author’s translation; cf. Fig. 16.9)

For several reasons, it was very fascinating to observe the students during this
period of the project. First of all, this time they did not get an adapted version of the
source but rather worked with the Latin source itself. Due to the mathematical
content, the students were able to figure out the correct content. In particular, the
use of Scheiner’s sketch and the mathematical “symbols” (“A”, “B” etc.) helped
them to come up with the correct meaning of Scheiner’s “Expositio.” In contrast,
translating the content in a modern language was much harder.
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Fig. 16.9 Lemma 3. Excerpt of the second part of the first book of Pantographice seu Ars
delineandi (Scheiner 1631, pp. 43–45)
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The students also realized that Scheiner’s circumlocutory style carries some
problems. Although he is using a lot of words it is not obvious why some of his
conclusions are true. It was much easier for them to comprehend (8th grade) or
write down (10th and 11th grade) a modern proof of the modern statement above.

16.6 What Was So Special in This Working Group?

Initially, there were concerns that through the encounter of students of different
ages substantial social problems could arise, but those concerns were quickly
canceled. The teamwork among the students was excellent and the different groups
integrated each other smoothly. An advantage for the work was the fact that all
participants brought their own experiences in the working group (from school and
from other projects). The division of labor was made ad hoc and allowed each
student to participate with her/his own creativity. The project was characterized by
its serene working atmosphere. All students felt in the same way responsible for the
organization, the contents and the design.

In order to make the work more interesting for the students, the activities were
intentionally switched between working in groups and working with the whole
class.

The students were so much interested in the project, that they continued working
on the Pantograph topic at home, thus enriching the meetings with more content and
new ideas. The chosen way shows good possibilities of following the skills and
interests of the students and of implementing them productively and creatively.

The interaction of mathematics, Latin, history and handicrafts, united in studying
the Pantograph, showed to be multifaceted in a way that cannot easily arise in
everyday life or conventional school classes.

The students were guided through the project to an effective scientific and
interdisciplinary work. It clearly appeared that many century-old original mathe-
matics texts are suitable for being read, analyzed and elaborated by students. The
students could gain experiences of many different kinds. The project “The
Pantograph of the Jesuit Christoph Scheiner” was a very successful and rewarding
venture.
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Chapter 17
Expanding Contexts for Teaching Upper
Secondary School Geometry

Panagiota Kotarinou, Eleni Gana and Charoula Stathopoulou

Abstract This chapter describes how the theatrical performance based on the
history of mathematics—‘An Amazing Story: The Measurement of the Earth by
Eratosthenes’—created the opportunity of a ‘third,’ expanding learning space,
which allowed for new practices and tools to emerge. It also permitted students to
approach mathematical concepts in an experiential way and (re)negotiate their own
learning processes, their conceptions of mathematical Discourse, and the nature of
mathematics. We analyze a one semester-long, interdisciplinary, didactical inter-
vention for 10th grade students in a public school in Athens, where different funds
of knowledge and Discourses expanded the boundaries of the official school
Discourse. Our aim is to show how an experiential way of integrating the history of
mathematics—a theatrical performance based on history—can create a ‘third,’
expanded learning space, where new tools and new Discourses are applied.

Keywords Eratosthenes’ measurement � Theatrical play � Hybrid
Expanded space � Interdisciplinary

17.1 Introduction

The fact that students consider geometry as a difficult school subject and with
different problems for them (Clements and Battista 1992) dictates, inter alia, the
revision of teaching to enhance students’ interest and active participation in class.
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Amongst the alternative approaches for teaching geometry which actively involve
students’ participation in the teaching and learning process, the use of applications
from the history of geometry is suggested (Gulikers and Blom 2001).

Experiential learning theory defines learning as “the process whereby knowledge
is created through the transformation of experience. Knowledge results from the
combination of grasping and transforming experience” (Kolb 1984, p. 41, as cited
in Kolb et al. 2000, p. 227). Experiential learning supports students’ learning in an
effortless, constant and permanent way through the ‘real’ experience and partici-
pation in activities that are related to themselves and that they find interesting.

Some of the experiential ways of integrating the history of mathematics include
the enactment of theatrical plays (Fraser and Koop 1981; Prosperini 1999), the
dramatization of different themes from the history of mathematics (Hitchcock 1999,
2000; Lawrence 2000; Ponza 2000), debates (Furinghetti 1997), historical debates
based on a mathematical issue (Bartolini Bussi and Mariotti 1999; Bartolini Bussi
and Mariotti 1998; Katz 1997), ‘Mantle of the expert’—a ‘Drama in Education’
technique—(Pennington and Faux 1999) and oral story-telling from history of
mathematics (Schiro and Lawson 2004; Selby 2009).

In this chapter, our aim is to discuss how one of the experiential ways of
integrating the history of mathematics—a school theatrical performance with a
theme from the history of mathematics—can create a ‘third,’ expanded learning
space, where new tools and new Discourses are applied. Here we refer to Gee’s
(1996) conception of ‘Discourses,’ as the ways of knowing, doing, talking, inter-
acting, valuing, reading, writing and representing oneself, produced and reproduced
in several social and cultural communities in which they participate. The uppercase
‘D’ distinguishes this use of the term from a mere stretch of language, which Gee
identifies as ‘discourse’ defined by a small ‘d.’ Any stretch of language (discourse)
is always embedded in a particular way of knowing (Discourse) (Gee 1999). Gee’s
conception of the relationship between culture and Discourse refers not only to
ethnic experiences and relations, but also to peer, social class and community
relationships, among others. Therefore, if one situates this conception of Discourses
in secondary school settings, it can be argued that content area classrooms represent
communities that privilege different Discourses. In this perspective, our pedagog-
ical endeavor challenged the boundaries of the diverse school subjects, encouraged
students to approach mathematical notions experientially and through a multilingual
corpus of literary texts offered them the potential to renegotiate their perceptions
regarding mathematics nature and particularly Euclidean geometry.

17.2 ‘Third Space,’ History of Mathematics and Proposals
for Educational Practice

Borders or the boundary area between two fields, according to Bhabha (1994), a
theorist of postcolonial studies, is often an overlap area or hybridization, i.e. a ‘third
space’ that includes an unpredictable and changing combination of the features each
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of them carries. The theory of hybridity argues that people add meaning to their
world through the integration and interaction of multiple available social and
cognitive resources. This construction of a ‘hybrid’ space emphasizes the
in-between space that gathers knowledge and Discourses by individuals and the
various environments in which people participate today and which Discourses can
be contradictory and competitive to each other across different contexts.

Moje and her colleagues (2004, p. 41) argued that the active integration of
multiple funds of knowledge and Discourse is important to support youth in
learning how to navigate the texts and literate practices that are necessary for
‘survival’ in secondary schools. In what comes to be called a ‘third’ or ‘hybrid’
space, the different knowledge, discourses and relationships one encounters in ways
that collapse oppositional binaries, can actually work together to generate new
knowledge, discourses and identities (Moje et al. 2004).

A number of studies examine the function of the third space to improve the
teaching and learning of mathematics (e.g. Cribbs and Linder 2013; Flessner 2009;
Razfar 2012; Thornton 2006). In each case the relevant research reveals the learning
benefits when teachers undertake the responsibility to bridge the boundaries
between the two ‘worlds,’ that of the lives of students outside the school and that in
the classroom, describing the students’ involvement in the learning process as
substantial and lasting. Thornton (2006) examined how students’ funds of knowl-
edge play out in the mathematics classroom and casts forward to the creation of an
environment that values and builds on the rich funds of knowledge brought by
students as they enter high school mathematics.

In the educational context, the ‘third space’ could be also reconceptualized as the
integration of the varied disciplinary Discourses in the school curriculum and the
creation of a fruitful dialogue between their own Discursive practices in order to
promote the acquisition of new knowledge (Wallace 2004). For example, Kotarinou
et al. (2015) described how the reading of a literary work—The Sand Reckoner,
concerning the work and life of Archimedes—created the opportunity of an
expanding learning space, where tools and resources of different knowledge
domains (funds of knowledge) came together to transform traditional classroom
practices. Also, through a more recent project (Kotarinou et al. 2017), where
multimodality was exploited in teaching geometry—literary, visual and performing
texts and practices where used—it was noticed that such a framework would create
a hybrid (third) space that enhances mathematics learning.

The educational value of integrating the history of mathematics in mathematics
education has been intensively studied over the last four decades (e.g. Fasanelli and
Fauvel 2006; Fauvel and van Maanen 2000; Katz and Tzanakis 2011), including a
survey conducted on the recent developments in the field since 2000 by Clark and
colleagues (2016). There are three different—though interrelated—types of con-
tributions of the research on the role of history of mathematics in mathematics
education: epistemological, cultural and didactical (Barbin and Tzanakis 2014).
Tzanakis et al. (2000, p. 203) referred to five main areas in which mathematics
teaching may be supported, enriched and improved through integrating the history
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of mathematics into the educational process: (a) the learning of mathematics; (b) the
development of views on the nature of mathematics and mathematical activity;
(c) the didactical background of teachers and their pedagogical repertoire; (d) the
affective predisposition towards mathematics; and (e) the appreciation of mathe-
matics as a cultural-human endeavor.

In our chapter, we claim that introducing the staging of a theatrical play based on
the history of mathematics, exploiting of literary works and other genres in teaching
geometry, has the potential to create a ‘third space.’ In this space, with new tools
and new Discourse—a blend of standard and non-standard mathematics Discourse
—a richer repertoire of students’ participation possibilities is facilitated. In such a
teaching environment—intertextual and cross-disciplinary—conditions and cir-
cumstances are created for the students to experience the learning process through a
different educational management, as evidenced by the implementation of the
project below.

17.3 The Study

Our aim in this chapter is to discuss how a group of adolescent students were
engaged in the interdisciplinary project, “Hellenistic Alexandria: The Beacon of
Knowledge,” through a theatrical performance concerning Eratosthenes’ measure-
ment of the Earth. Students were encouraged to communicate mathematics through
this theatrical performance (using both mind and body), through a variety of
practices related to reading literature and various other activities. In this project, we
explored the following main research questions:

1. How can a theatrical performance, based on a historical topic of mathematics,
create a ‘third,’ expanding space in which students can renegotiate the dichot-
omy of the Discourses of Science and Humanities?

2. How might the students’ experience of the expanded mathematical space
influence their conceptualizations of mathematics and motivate their
participation?

17.3.1 Data Collection

The use of ethnographic research techniques helped us to gather empirical evidence
regarding the students’ experiences, with the teacher-librarian and the mathematics
teacher (the first author) being either participants or participant observers in all
phases of the study. Both of them kept ethnographical notes, and the ethnographic
material was supplemented by interviews with the students and video recordings of
selected parts of the entire procedure. In our research we maintained a high standard
of ethics. As is considered appropriate in the Greek context, we asked permission
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from students’ parents to video record their children and to interview them; and we
reassured students that their anonymity would be maintained at all times throughout
the entire research process.

A questionnaire with open questions was administered to all students and a
number of semi-structured interviews were conducted, which aimed to explore how
students themselves perceived and processed their experience of participating in the
project, mentally and physically. Our data collection was completed with a ques-
tionnaire given to students at the end of the project implementation, with open
questions such as ‘Which activities did you like more and why?’, ‘Which activities
did you not like and why?,’ and ‘What positive thing do you think you gained from
the activities?’ A post-graduate student of the didactics of mathematics who acted
as a non-participating observer in some of the activities interviewed the teachers
and the students of the project.

17.3.2 The Project in Practice

The project was carried out for a whole school semester (February to May), in a
State Lyceum, an inner-city school in Athens (Greece), with one class of 10th grade
students. To meet the needs of the project, the students’ mathematics teacher (first
author), the Greek language teacher, and the teacher-librarian collaborated,1 and in
some cases co-taught. We chose the model of collaborative teaching practice which
was based on the reiterative cycle of planning, researching, sharing resources,
teaching collaboratively and finally assessing the outcomes of a lesson (Lawrence
2008). Working in this way, the teachers had the opportunity to renegotiate their
practices and their professional development, entailing knowledge and practice. The
main activity of the project, the theatrical performance of ‘An Amazing Story: The
Measurement of the Earth by Eratosthenes,’ involved all the students of the class.
This was the stimulus for the realization of all the activities of the project, aiming
for students’ acquaintance with the Hellenistic World through the History class,
Ancient and Modern Greek Language, Mathematics, Religion and Computer
Science classes.

For the whole project 21 teaching hours were required over a period of
10 weeks. The timeline of the activities in the project is shown in Table 17.1.

Throughout the project, different teaching interventions and activities were
carried out every week according to the topics emerging from the theatrical play or
the necessity of elucidating the historical era of the play. In this way, the teaching of
different mathematical topics was presented as the elaboration of meanings con-
structed during the staging of the play. A combination of different tools and texts,

1Despina Koutli (Science teacher and teacher librarian at that time) and Anastasia Apostolopoulou
Chrysanthaki (Greek language teacher).
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coming from different contexts were used, challenging dichotomies like body-spirit,
formal-informal learning, listening-acting, etc.

17.3.2.1 The Theatrical Play

At the beginning of the second semester, for five weeks (one teaching period per
week) in the Geometry class students read aloud extracts from the work “Les
Cheveux de Bérénice” by Denis Guedj (translated into Greek as The Stars of
Berenice, Guedj 2005). These extracts consisted mainly of dialogues regarding the
Earth’s measurement carried out by Eratosthenes, which was based on measuring
an arc of the meridian crossing the city of Alexandria in Egypt. This example, as
Tzanakis (2016) mentions, is one of those that:

…from a mathematical point of view, are elementary. However, the emphasis is on how
elementary geometrical ideas and reasoning led historically to astronomically and physi-
cally non-trivial consequences with far-reaching cultural implications of the highest
importance that can be posed didactically. (p. 89)

Table 17.1 The timeline of the project

Week Activities Class

1st–5th Reading and commenting on the dialogues of the play
(one teaching period per week)

Geometry class

6th a. Other measurements of the earth’s meridian; a debate on
the establishment of the meter

Science class

b. Archimedes’ “mechanical method” Ancient Greek
language class

c. Resolving, as Archimedes did, mathematical problems
with the use of physics

Geometry class

7th a. Theatrical ‘cold reading’ of one of Renyi’s ‘Dialogues’
between Archimedes and Ieron

Geometry class

b. Simulation of Eratosthenes’ Earth measurement In computer lab

8th a. Students’ narrations about Archimedes Geometry class

b. Students’ narrations about Septuagint Religion class

c. Students’ narrations about Hellenistic Age and Alexandria History class

d. Students’ narrations about Eratosthenes and Archimedes English language

e. Trigonometry in Hellenistic Age In computer lab

f. Alexandria through Cavafis’ poems Literature class

9th a. Students’ narrations about Archimedes, finding the area of
an irregular shape, with the help of laws of physics

Geometry class

b. Geometric constructions: drawing with compass and
straightedge

Geometry class

c. The unsolved geometric problems of Antiquity and
Archimedes’ method of angle trisection

Geometry class

10th The theatrical performance
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During the reading process, several issues such as the way time was measured in
antiquity and the beliefs of that time about the shape of the Earth were further
exploited. Notions that were included in the text such as the equator, the meridian,
the latitude and longitude, as well as mathematical topics (the notion of proof, the
measurement of an arc, the ratio of two arcs or two angles, the measurement of an
angle with the help of the shadow of a set square, the Eratosthenes’ model of Earth
measurement and generally the mathematical model of a real problem) were elicited
collaboratively.

Once the reading of the dialogues was completed, all three teachers helped after
school with the staging of the play ‘An Amazing Story: The Measurement of the
Earth by Eratosthenes,’ based on the aforementioned dialogues of Denis Guedj’s
book Les Cheveux de Bérénice, involving all the 10th grade students of the same
class. We tried to involve all students in the theatrical play, without putting any
pressure on anyone who did not wish to take part in the performance (Kontogianni
1998). After sharing the roles, the other students were assigned tasks such as the
construction of scenery and costumes, music, soundtrack, lighting, designing,
hairstyling and make up and stage managing. The 45-min play was performed for
all school students on the last day of the school year and it was also presented to the
parents (Fig. 17.1).

17.3.2.2 Activities During the Staging of the Play

After the reading of the play and along with the rehearsals, other activities were
carried out. The students attended a debate between two 11th grade students
(Fig. 17.2), concerning the choice by the French National Assembly during the
French Revolution of a length measurement unit, which created the need of a new
measurement of the Earth’s meridian.

Prior to the debate, extracts from Denis Guedj’s (2002) book Le Mètre du Monde
(The Meter of the World) were read and the Physics teacher presented the pendulum
and its principles. The references in the dialogues to the famous mathematician

Fig. 17.1 A scene of the
theatrical play
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Archimedes—contemporary and friend of Eratosthenes—gave us the opportunity
of a theatrical ‘cold reading’ by students of one of the dialogues of the Hungarian
mathematician Renyi’s (1979) book, Dialogues on Mathematics. This imaginary
dialogue is between Ieron, the tyrant, and Archimedes, regarding mathematical
applications. After the reading of this dialogue by two students, we discussed pure
and applied mathematics, focusing on the parabola and its properties, and parabolic
reflectors (Fig. 17.3).

Students were assigned to make and present, through narration, thematic
accounts of varied literary texts2 relevant to Hellenistic Alexandria (Fig. 17.4). The
topic of their narration (Fig. 17.5) referred to the foundation of Alexandria City, the
Beacon and the Library, the Ptolemaic dynasty, the Septuagint and the mathe-
maticians of the Museum: Archimedes, Euclid and Eratosthenes.

Each student was also assigned to write a short essay referring to the subject of
his/her narration, finding all the information needed from a given bibliography. The
essays (Fig. 17.6) were about the libraries and the books in antiquity, ancient and

Fig. 17.2 The debate

Fig. 17.3 Theatrical cold
reading

2The literary books were the following: The Bathtub of Archimedes by Ortoli and Witkowski
(1997), The Parrot’s Theorem by D. Guedj (2000), Euclid’s Rod by J.-P. Luminet (2003), Pharos
and Pharillon by E. M. Forster (1991), The Stars of Berenice by D. Guedj (2005), Anthology of
Alexandria by T. Psarakis (1992), and The Lost Library of Alexandria by L. Canfora (1981).
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contemporary beliefs on the shape of the Earth, other measurements of the
meridian, Eratosthenes’ sieve, Archimedes’ cattle problem and Archimedes’ The
Sand Reckoner. At the end of the school year, a school exhibition of the entire
project’s material was held (Fig. 17.7).

In the History class the unit, Hellenistic world—the Kingdom of Egypt and
Hellenistic Culture—Alexandria, was presented. In Religion class the Translation
of the Pentateuch in Greek language by the 72 elders representing the 12 tribes of
Israel was discussed. In Greek language class students became acquainted with
Alexandria through the life and work of the poet Konstantinos P. Cavafis, while in
English language class the short text, “Stories about Eratosthenes,” from Mary
Brading’s (1997) book, Mathematics from History-The Greeks, was read.

Fig. 17.4 The booklet with
the literary texts for students’
narration

Fig. 17.5 A student narrates
in the school library
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The mathematical topics we chose to discuss were either mentioned in the
theatrical play, or were related to Archimedes to whom several references are made
in the play. Some of them also referred to Hellenistic mathematics. We ensured that
the topics included were from the current class curriculum or known to students
since high school, but presented or shown from another point of view.

In the following Sects. 17.3.2.3–17.3.2.6, some of the teaching issues related to
mathematics are presented, followed by the practices and tools that were exploited.

Fig. 17.6 The booklet with
the students’ written essays

Fig. 17.7 The exhibition in
the end of the school year
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17.3.2.3 Archimedes’ “Mechanical Method”: Finding the Area
of a Parabolic Section Using the Law of the Lever

Due to Euclidean methodology, a ‘deductivist style’ of presentation of mathematics
is adopted, leading to the concealment of the incentives, and the problems, ques-
tions and methods that led to the development of this field and the discovery and
proof of the theorems (Lakatos 1976). As Lakatos (1976) characteristically noted,
“the successive tentative formulations of the theorem in the course of the proof -
procedure is doomed to oblivion while the end result is exalted into sacred infal-
libility” (p. 142).

In Archimedes’ letter to Eratosthenes, a work referred to as The Method (in
Greek: “Peqὶ lηvamijῶm hexqηlάsxm pqὸ1 Ἐqasorhέmη ἔuodo1”)—the
well-known Palimpsest, found by J. L. Heiberg in 1906—the heuristic method of
Archimedes, with which he discovered many of his known theorems in geometry is
described. This work has great importance due to the fact that it contains the only
report of a mathematician of antiquity describing the method he utilized in dis-
covering his theorems (Assis 2010, p. 38).

Using this “mechanical method,” Archimedes, with the aid of the law of the
lever, estimated the area of a parabolic segment, thus overcoming all the difficulties
of the absence of limit methods. As Tzanakis (2016) remarked: “In teaching and
learning either mathematics or physics, neither history should be ignored, nor the
close interrelation of the two disciplines should be circumvented or bypassed”
(p. 79).

To support this interactive interplay of mathematics and physics, and for the
students to be acquainted with Archimedes’ Method, mathematics and ancient
Greek language were co-taught (Fig. 17.8) by teachers working together to translate
and explain parts of the Archimedes’ letter.

Students were asked to specify the content of mechanics taught in their physics
lesson, while we referred to Archimedes’ concept of mechanics. The first postulate3

from his book On the Equilibrium of Planes (in Greek: Peqὶ ἐpipέdxm
ἱroqqopiῶm) was read and analyzed, as well as the law of lever: “Two magnitudes,
whether commensurable (Proposition 6) or incommensurable (Proposition 7), bal-
ance at distances reciprocally proportional to the magnitudes” (Heath 2001, vol. II,
p. 95). Students were then asked to establish the equilibrium condition of a solid
body and to solve simple problems with levers.

Through the latter, Archimedes’ method for the calculation of the parabolic
section was presented. For example, for Archimedes to find this area, he balanced
the unknown area of the parabolic section, with the known area of the triangle, so

3In postulate one, Archimedes states that “Equal weights at equal distances are in equilibrium”
(Heath 2001, vol. II, p. 94).
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the position of the fulcrum defined the relationship between their sizes.4 However,
students also realized that Archimedes used mechanics as a heuristic method, and
then he confirmed his conclusions with a rigorous mathematical proof.

17.3.2.4 Resolving, as Archimedes Did, Mathematical Problems
with the Use of Physical Principles

As an application in solving mathematical problems with the use of physical
principles as Archimedes did, and more specifically, using the condition of static
equilibrium of a solid body, a classroom activity asked students to find and prove
Ceva’s theorem. The activity consisted of three components.

(a) Finding and proving Ceva’s5 theorem, using the properties of the center of
gravity of a system of points.

Giovanni Ceva (1678), in his work De lineis rectis se invicem secantibusstatica
constructio (construction of concurrent lines through statics), studied the applica-
tion of propositions on the center of gravity of a system of masses in proving
geometrical theorems (Loria 1972). As an alternative to the routine treatment of
geometrical constructions with ruler and compass, he proposed the “replacement of
lines with weights,” placing at the points of intersection of the straight line seg-
ments weights that are inversely proportional to the lengths of these segments (cf.
the law of the lever referred to above). The theorem bearing his name gives the
condition for three line segments from the vertices of a triangle to the opposite sides

Fig. 17.8 The two teachers,
teaching together

4If placed in a modern context, Archimedes assumes that the (algebraic) sum of the torques of the
weights of each particle of the figure with respect to a given point, is equal to the torque of the
weight of the entire shape with respect to that point, of course without referring to the mechanical
concept of the torque of a force, which did not exist at that time.
5This activity was based on professor Stranzalos’ (1999) lectures in a master’s degree course in
Didactics of Mathematics at the Mathematics Department of the National University of Athens.
One can also find a proof of Ceva’s theorem based on mechanical principles in the article of Hanna
and Jahnke (2002).
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to be concurrent. As an application of this theorem, the concurrency respectively of
the bisectors, the medians and the heights of a triangle is derived.

Ceva’s theorem states that a necessary and sufficient condition for the straight
line segments AD, BE, CZ in a triangle ABC to be concurrent at K, is that the
segments a1, a2, b1, b2, c1, c2 satisfy the relation a1b1c1 = a2b2c2 (see Fig. 17.9). In
order to discover the condition of congruence, we asked students to assume that in
the triangle ABC, the line segments AD, BE, CZ are rigid weightless rods passing
through K and that weights bA, bB,, bC have been placed at A, B, C respectively so
that the center of gravity of ABC is in K.

In the worksheet, the law of the lever was given6 and it was also emphasized to
the students that in any system of (point) masses:

1. The center of gravity is unique, defined as the point relative to which the
(vectorial) sum of the torques of the points’ weights vanishes; e.g. the center of
gravity of bB and bC, is that point D on BC for which bBa1 = bCa2; and

2. The center of gravity of a system remains unchanged, if in the system we replace
two weights by another one equal to their sum, applied to the center of gravity of
the two masses.

The inverse of Ceva’s theorem and the problem of the concurrency of a trian-
gle’s medians were given to students as homework.

(b) Finding the area of an irregular shape, with the help of laws of physics.

This activity was also given to students to try to make a change of context and
solve a mathematical problem with the laws of physics.

Students were asked to measure, either directly or indirectly, the area of an
irregular shape which is designed within a square (Fig. 17.10).

Fig. 17.9 Ceva’s theorem

6Weights at the ends of a lever are in equilibrium at distances from the fulcrum inversely pro-
portional to their weights; in other words, that the fulcrum is at the center of gravity of these two
weights.
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(c) An activity concerning geometric solids’ balance on a scale (a cylinder, a cone
and a sphere).

Having encountered the solution of mathematical problems in a physics context,
we wanted to see the reverse case, too; i.e. the solution of problems of physics with
the help of laws which are traditionally considered to belong to the field of
mathematics. The activity concerned a balance problem of solids mentioned in the
above debate and whose volume was calculated by Archimedes: Let us assume that
we have a cylinder (height R and base radius R), a cone (height R and R base radius)
and a hemisphere (radius R), which are constructed from the same homogeneous
solid material. What is the minimum number of objects of every shape, which is
required to balance a scale with the minimum number of objects of another kind of
shape? (Thomaidis et al. 1999, p. 343; see Fig. 17.11).

17.3.2.5 Archimedes’ Method of Angle Trisection

Neusis (from the Greek word meῦri1) is a geometric construction which consists of
fitting a line element of given length in between two given lines, in such a way that

Fig. 17.10 The irregular
shape designed within a
square

Fig. 17.11 Balancing a scale
with geometric solids
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the line element, or its extension, passes through a given point. Neusis was
Archimedes’ method of angle trisection, one of the unsolved geometric problems of
Antiquity.

In order for the students to become acquainted with geometric constructions in
the Geometry class, we drew compass and straightedge constructions such as:
(i) the construction of the perpendicular bisector of a line segment, (ii) the con-
struction of the bisector of an angle, and (iii) the construction of a line perpendicular
to a straight line from a point not belonging to that line. Then, we stated the
unsolved geometric problems of antiquity and presented different ways of solving
the problems. We read Eratosthenes’ letter to King Ptolemy concerning the Delian
Problem and gave students as homework proposition 8 from the Book of
Lemmas by Archimedes:

If AB be any chord of a circle whose center is O, and if AB be produced to C so that BC is
equal to the radius; if further CO meets the circle in D and be produced to meet the circle the
second time in E, the arc AE will be equal to three times the arc BD. (Fig. 17.12)

The Neusis construction for the angle trisection (based on the previous Lemma)
was presented, which called for fitting the line segment DE, in between the circle
and the line AO, which also passes through the given point B (Thomaidis et al.
1999, p. 103; see Fig. 17.13).

17.3.2.6 Mathematics in the Computer Laboratory

(a) “The computer takes the place of Eratosthenes”: A simulation in computer
laboratory
While in the computer lab, students worked with a simulation of Eratosthenes’
measurement of the Earth’s circumference. There we had the opportunity to
discuss on the non-mathematical assumptions such as the Earth is spherical and
that the Sun is so far away that its light rays are practically parallel (Fig. 17.14).

(b) Trigonometry in Hellenistic Age
This session began with a brief historical overview on the genesis of
trigonometry and its development in antiquity and included an activity with

Fig. 17.12 Proposition 8
from Archimedes’ Book of
Lemmas
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computers for the students to see that Ptolemy’s table of chords is equivalent to
the table of sines (Eves 1989, p. 115).

17.4 Discussion of Results

17.4.1 The Creation of the Third Space

Our first research question was if and how a theatrical performance about a his-
torical topic of mathematics can construct an expanding learning space where

Fig. 17.13 Neusis
construction

Fig. 17.14 The light rays are
practically parallel
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different and apparently conflicting sources of knowledge and practices of the
school curriculum enter in dialogue and synergy, allowing students to renegotiate
technical imposed binaries like science versus humanities.

The theatrical stage itself was an expanding space, a space open to all possi-
bilities, a space between truth and falsehood enabling students to experience both
worlds, which are considered to be opposite. This space allowed the transition from
the historical people and the historical context of this era to mathematics itself, with
the protagonists of the play talking about and solving mathematical problems. In
this space, the verb ‘learn’—linked with school practice—and the verb ‘play’—
linked with outside classroom context—coexisted in a creative dialogue, creating
conditions and prerequisites for a greater and a more effective participation of
students.

The theatrical play in school mathematics teaching offered opportunities for
incorporating unconventional and informal practices and also tools and practices of
different activity systems of the school curriculum providing cross-disciplinary
experiences. All of these generated a third space, where the different Discourses
established a dialogue which expanded the boundaries of the official school
mathematics Discourse and where students were actively involved.

For example, in the mathematics classroom the reading of a theatrical play or the
reading of literary work introduced a classroom Discourse that was unfamiliar or
even contradictory to the mathematics classroom Discourse, to which students have
become accustomed. In the mathematics classroom students are used to reading
texts written in the mathematical language and to solve problems, while in literature
class students are used to reading poems, theatrical plays, and literary works.

The third space constructed in the ancient Greek language class with the reading
and analyzing a text concerning mathematics, challenged and reshaped both dis-
ciplinary Discourses. Students did not only have to learn grammar and syntax and
write the translation of the text; they had to transfer it to mathematical language and
draw the geometrical shapes, as well as discuss the law of the lever, which they
typically only meet in Science class.

17.4.2 Students’ Experiences

We will now try to answer the second research question concerning students’
experiences of the expanded mathematical space and how these influenced and
changed their conceptualizations of mathematics and motivated their participation.
The analysis of the interviews and the open questions of the questionnaire permitted
us to stress a number of dimensions of processes of knowledge construction, the
experiential character of learning, the role of the history of mathematics and
changing stereotypic images of mathematics. Each of these is briefly analyzed in the
following sections.
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17.4.2.1 Challenging Students’ Perceptions About Teaching
and Learning Processes

From the questionnaire and the interviews conducted, it became clear that the pupils
were motivated within these expanded contexts, and they were actively involved in
the new teaching practices. The activities enabled students to experience situations
cognitively, gaining new knowledge:

We learned about that era. (Maria)

We got historical information. (Eva)

We got new knowledge. (George)

Eratosthenes’ way of thinking became understandable. (Katerina)

The activities also helped in establishing new ways of thinking:

It helped us think and discover things by ourselves. (Athina)

The project offered me knowledge and a new way of working. It also helped me to develop
skills in other areas such as computing and handling of the computer; it motivated me to
deal with the research, collection and evaluation of information and to look for ways to
impart my knowledge. (Katerina)

Furthermore, the project enabled students to experience situations affectively:

‘We cooperated’, ‘We came closer’, ‘We helped each other’, ‘We had new experiences’,

‘We had fun’, ‘It unfolded aspects of our character’.

Overall, students’ experience of the expanded mathematical space challenged
their perceptions of mathematics teaching and learning:

The teachers chose the play as a different way for us to learn. From my point of view, what
I learned, it was like a fairy tale. (Xenia)

The teacher wanted to teach math in an alternative way. The aim was to have fun and the
learning came by itself. We loved it. (Sotiris)

The activities gave us the opportunity to get out of the standard mathematics of our
textbooks. So, they helped us to think and to discover by ourselves the ‘secrets’ of math-
ematics. It’s an alternative way of learning. (Athina)

The varied forms of activities developed during this project appear to be a
positive experience for them:

I was motivated. (Maria)

Now I like math even more. (Valia)

This was true for students who already had a positive attitude towards
mathematics:

I always liked math and these activities helped me to answer some questions I had and
made me love it much more. (Marina)
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And, also for others with negative experiences with mathematics:

I didn’t like math at all. But my attitude changed. I want now to do relevant studies. This
approach changed my beliefs about it…completely different from what I used to believe in
the past. (Xenia)

17.4.2.2 Challenging Students’ Perceptions About Geometry

These classroom experiences of the expanded mathematical space challenged stu-
dents’ stereotypic images of what constitutes mathematics knowledge:

I realized that math is simple and manageable. (Dimitra)

I understood that even difficult geometrical problems can be solved using and combining
the knowledge we already know. (Heleni)

Moreover, the above-mentioned experiences helped students to understand the
connection of mathematics to everyday life:

I saw maths related to practical applications. (Katerina)

Mathematics isn’t simple theories, but helps us understand the world we live in. (Petros)

Now I see mathematics in a different way…more enjoyable! (Lydia)

Students’ experience of the expanded mathematical space had an impact on the
development of a stronger interest on the subject:

I got to know another aspect of math, related to the history. (Katerina)

The activities helped students to understand that mathematics is a
historically-evolving human creation:

I liked it because I realized that there were some great people who thought such ideas that
we are trying to understand by reading them. (Dimitra)

All of the students’ responses offer considerable evidence of the effectiveness of
the activities to challenge the students’ dominant views of mathematics, to give
students a humanistic image of mathematics and to modify their epistemological
conceptions about mathematics.

17.4.3 The Experiential Character of Learning

The exploitation of theatrical practices added to the experimental dimension of
teaching. To the question, ‘Which activities did you like more and why?,’ all 19
students chose the theatrical play, mainly due to its experiential dimension.
Students experienced the way Eratosthenes managed to solve the problem, which
led them to an understanding of the solution:
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We experienced the Earth measurement. (Christina)

Every time the leading actor repeated his lines about the measurement of the Earth, during
the rehearsals, we comprehended them better. (Lydia)

The play, because I was part of it. (Christos)

I liked the theatrical performance, because the representation of the era in which
Eratosthenes, a great mathematician, measured the Earth was held in an experiential way.
Yet, the process and the way of his thinking became understandable. (Katerina)

Acting or staging the play helped us realize the climate of that era and we better learned
about Eratosthenes’ measurement of the Earth from the theatrical play than from the
narration of the dialogues by the teacher. (Marianna)

Ten students also chose the students’ narration, with some of the students
commenting that:

Because children narrate with an eloquent way and they communicate the new knowledge
in their own way. (Katerina)

I became able to express myself verbally. (Dimitra)

I cultivate the ability of narrating. (Eva)

To the question, ‘What activities did you not like at all?,’ students chose the
activities in which the majority of them remained passive listeners (eight replies
were related to the ‘cold reading’ by their two classmates, seven to the debate
between the two students, three to the reading of dialogues from the teacher).
Students explained their choices, arguing that:

We didn’t experience the persons as much as we experienced them when we played the
roles. We did not have a direct role. (Christina)

17.4.4 The Role of History

According to Jankvist (2009), the arguments for using history are of two different
kinds: those that refer to history-as-a-tool for assisting the actual learning and
teaching mathematics and those that refer to history as-a-goal in itself, which
focuses on the developmental and evolutionary aspects of mathematics as a dis-
cipline. In the whole project, we used both history as-a-goal (in the theatrical play)
and history-as-a-tool (e.g. to highlight the interplay and mutual influence between
mathematics and physics).

The reading of original historical texts gave us the opportunity to introduce
methods that may not be taught today and helped to bridge mathematics with
history, physics, astronomy, geography and philosophy. Eratosthenes’ measure-
ment revealed, as Tzanakis (2016) mentioned, the fruitful, far-reaching connections
among elementary Euclidean geometry and modeling of physical situations.
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The important role of the history of mathematics was highlighted by students:

I liked the fact that we got information about the Ptolemaic era and Alexandria and we
learned the history of Earth measurements. (Eva)

I liked how Eratosthenes measured the circumference of the Earth so many years ago and
was so close to the point! I liked it very much! (Mary)

Students believed that their teachers chose the play based on the history of
mathematics for teaching purposes and they agreed with this choice:

I believe that the teachers chose this play for us to learn through the history of mathe-
matics. We wouldn’t have learnt with another theatrical play. (Petros)

Students who do not love mathematics claim that they liked not only the history
of mathematics itself but also the teaching through its use. They believed that this is
a teaching strategy suitable for students like themselves who have negative attitudes
towards mathematics:

I don’t like mathematics…I find it very difficult. But I liked the history of mathematics. With
another play, we wouldn’t have learnt anything…It would be good to teach mathematics in
this way, to students who don’t like it. (Panos)

17.5 Conclusion

Specialization in education, as a modern phenomenon, results in viewing
present-day school mathematics as completely separate from other subjects of the
curriculum. The way curricula are designed, on the one hand, and the way school
administration and time-tabling of classes are organized, on the other, function as
obstacles to the connections between subjects that should be taught (Fauvel and van
Maanen 2000, p. 52). In our project, we used the history of mathematics as a
resource to link different mathematical topics with topics of science and humanities,
implementing interdisciplinary teaching and learning in a natural way. Students had
the opportunity to explore the connections of the history of mathematics with the
historical context and, at the same time, connections within mathematics and
between mathematics and other disciplines, leading to them perceiving the subjects
as meaningful.

Through this experience, we noticed changes (previously discussed), not only
with respect to students but also with respect to teachers. The reflection of the
experience of collaboration, of co-teaching, and furthermore, the use of several
genres and modalities for mathematics teaching through history, contributed to
teachers’ professional development challenging their previous practices in mathe-
matics classroom.

The staging of the theatrical play with a theme of the history of mathematics
provided teachers with opportunities to incorporate into their teaching a variety of
mediating tools and disciplinary discourses that generated an expanded learning
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space. This expanded space bridged different worlds and practices unifying usual
dichotomies: the world of drama and the world of mathematics, the imaginary and
the real, the spirit and the body, humanities and mathematics, the teacher who
teaches and the student who learns. This space inspired greater participation of
students in mathematical thinking and expression, as it was open to an emotional,
physical and intellectual engagement of students. In these various forms of par-
ticipation students could renegotiate both mathematics concepts and their own,
personal perceptions of what constitutes mathematics knowledge. In such a context,
the students face the challenge to see mathematics as a continuous spectrum which
penetrates the various aspects of life, both now and in the future, fulfilling both
individual and social needs.

As the post-graduate student (only an observer) wrote in her evaluation of the
project:

Perhaps this performance didn’t look like to a professional one but this is not what one
would remember as the time goes by. The love of the three colleagues for their work and
their willingness to challenge students’ interest is the impressive feature of this experience.
Working voluntarily and sacrificing much of their time, they managed to make the school a
meeting place for discussions and reflections on the history of mathematics and the
mathematics itself. Students responded to the call, perhaps not so much because of their
diligence in the course of mathematics or of love for acting, as of the appreciation towards
the interest of people who wanted to lead them to knowledge in this way. (authors’
translation form Greek)

Appendix

In this appendix, we provide the solutions of some of the given problems above,
with an analysis of students’ worksheets.

(i) Concurrent line segments in a triangle

Let AD, BE, CZ be concurrent at K. Imagine weights bA, bB and bC suspended at A,
B and C, respectively. The main idea for this solution is to choose the weights bA,
bB and bC so that the center of gravity of the triangle ABC they define is on K. To
this end we note that,

(1) Since the center of gravity of ABC lies on CZ, the center of gravity of AB is at
Z.

(2) For the same reason the center of gravity of BC is at D.
(3) Similarly, the center of gravity of AC lies on E.

By (1), (2), (3) and the definition of the center of gravity of two point masses, we
have, respectively bA

bB
¼ c2

c1
:, bB

bC
¼ a2

a1
, bC
bA

¼ b2
b1
:

Multiplying these three equations gives bA
bB
� bBbC �

bC
bA

¼ c2
c1
� a2a1 �

b2
b1
¼ 1 ,

c2b2a2 ¼ c1b1a1, that is, Ceva’s theorem.
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The converse theorem holds: In a triangle ABC let D, E and Z be given on its
sides BC, AC and AB respectively, so that the following relation holds

c2
c1

� a2
a1

� b2
b1

¼ 1

Then the three line segments AD, BE and CZ are concurrent at a point K.
Indeed, if we choose the weights bA, bB and bC so that the center of gravity of

AB is at Z, and the center of gravity of BC is at D, then we have that bA
bB

¼ c2
c1
and

bB
bC

¼ a2
a1
and the center of gravity of ABC should be on both CZ and AD; that is, at

their point of intersection K.
Then by the hypothesis, we have that bA

bC
¼ c2

c1
� a2a1 ¼

b1
b2
, which shows that the

center of gravity of bA and bC is at E. Consequently, K, the center of gravity of ABC
must be on BE as well, and therefore the three lines are concurrent at K.

The greatest difficulty faced by students during the proof of the theorem was the
change of the context of the solution of the problem. The students have learnt to
think of a mathematical problem only in a mathematical framework. Students were
not able to prove neither the converse nor the theorem of the median, neither in the
frame of mathematics (as an application of the Ceva’s theorem) nor in the physics
frame (i.e. to apply to the vertices of the triangle equal weights).

(ii) Finding the area of an irregular shape

Here are two solutions: To calculate the area of the irregular shape indirectly we can
initially weigh the entire square ABCD and measure its area. Then we have to cut
the irregular shape of the frame and weigh it. The ratio of the weights is the ratio of
the areas. We can also calculate the area by counting the number of squares con-
tained in the irregular surface. To find the area of this irregular shape all our
students chose to use millimeter-grid paper or created a grid of squares and counted
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the number of squares contained in the irregular surface. In some cases, students
chose to split the irregular shape to other known shapes, as triangles or squares.

(iii) Using geometry to solve a problem in Physics

To solve the above equilibrium problem students should work in a frame of
geometry, after linking the mass of solids with their volumes through density. The
solution is as follows: Since the objects are made from the same homogeneous
material, it means that they have the same density and due to the formula d = m/V,
which connects density (d), mass (m), and volume (V) of a solid, we conclude that
the ratio of the volumes of the two objects is equal to the ratio of their masses.

In this equilibrium problem of solids, students were led to a geometric solution,
i.e. the determination of the relation of the volumes, because the problem was given
during the geometry class. Then, students calculated the volumes of the geometrical
solids; they found the ratio of volumes and thus, they found the number of solids
needed for the equilibrium. They were led automatically to this solution without
proving it through the formula of the density of a solid body.
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Chapter 18
Learning New Mathematics from Old

Euclid’s Art After Bath

Snezana Lawrence

Abstract This chapter presents a project for the learning of mathematics based on
its relationship with art, conducted with secondary mathematics teachers in training.
It aimed to use a reorientation process in order to reenergize students’ interest in
mathematics by giving them a problem that puts a mathematical concept under a
new light, thus showing them different ways of teaching. The initial images were
chosen by the author (Rafael’s The School of Athens, and de’Barbari’s Luca
Pacioli, both containing mathematical diagrams referring to Euclid’s Elements,
book XIII) and their interpretations were investigated offering new insights related
to the Elements. Students were then introduced to the project by putting mathe-
matics in historical and cultural context through its relationship with art, and
encouraged to seek new information in an area of mathematics they were already
familiar with. The project’s results relate to both the historical analysis of these
images, and the use of such research to create opportunities to engage with the
study of mathematics.

Keywords Euclid’s Elements � Rafael � Pacioli � de’Barbari � Platonic solids
Adelard of Bath � Leonardo da Vinci

18.1 Euclid Goes from Athens to the Vatican

This section of the chapter will describe my research and how I came to formulate
the task for my students, who were secondary mathematics teachers in training in
the city of Bath, in the southwest of England. In other publications it is explained
how, in my teacher education and training experience, a reorientation process has
been used (Furinghetti 2007; Lawrence 2009, 2016) to reenergize students’ interest
in mathematics by giving them a problem that puts a mathematical concept under a
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new light in order to show them different ways of teaching. During the academic
year 2015–16, I took my inspiration from art.

At the same time as this project was being planned, I organized a conference on
The Art of Learning Mathematics, and was alerted by one of the speakers to the
meaning of a geometric diagram that Euclid (possibly by him, but not directly
identified) is showing, whilst seemingly proving a theorem in Rafael’s (1483–1520)
The School of Athens. This fresco was painted between 1509 and 1511, and can be
seen in the Apostolic Palace in the Vatican. The detail (Fig. 18.1) from the fresco
shows this diagram, but its exact shape is open to various interpretations.

18.1.1 Interpretations of the Diagram

The first interpretation of what possibly Euclid is showing, comes from Watson
(2015). She suggests that the diagram refers to areas of certain shapes contained in a
hexagonal star. The diagram of the original is given for reader’s reference (Fig. 18.1).

Watson’s interpretation (Fig. 18.2) claims that the image represents a right triangle
contained within the hexagonal star. Then, Pythagoras’ theorem, where areas of
squares are being replaced by equilateral triangles, is applied so thatAEC andABF add
to BDC. This interpretation also points to some conjecturing on the ratio of figures,
AEC being 1/3 of DGF (Fig. 18.2). A reference is further made to the method of
teaching to which the picture refers, namely the dialogue as that described in Meno,
between Socrates and the slave boy, andmodeling the universal teachingmethod via a
dialogue (Lawrence 2013; Plato 2009; Watson and Mason 2009).

Fig. 18.1 The detail from Rafael’s The School of Athens (1509–1511), showing a teacher (probably
Euclid) demonstrating a theorem to a pupil. (Retrieved from https://commons.wikimedia.org/wiki/File:
School_of_Athens_Raphael_detail_01.jpg (accessed 13/9/2017). This and other details from this
famous painting are accessible online from many other sites; e.g. https://www.quora.com/What-are-the-
important-figures-in-Raphaels-The-School-of-Athens or https://www.google.gr/search?q=Rafael%27s
+The+School+of+Athens,+pictures&client=firefox-b&dcr=0&tbm=isch&tbo=u&source=univ&sa=
X&ved=0ahUKEwjopIur45_WAhWHMhoKHcULCeYQsAQIJw&biw=1280&bih=878#imgrc=
AU0wPOA0DYbdwM etc.)
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It occurred to me that a painting as old as this, with a diagram as clearly
mathematical as this one is, must have had other interpretations. A brief search
about the painting and mathematics contained within it found several papers written
over the past quarter of a century or so. Although not the oldest from this group, we
will now come to look at one of these interpretations, offered by Heilbron (2000).

Heilbron conjectures that the picture depicts Euclid teaching the properties of
polygons, and in particular, of a hexagon. His diagram, reproduced here (Fig. 18.3),
shows how a hexagonal star can be divided by a diagonal PS, on both sides of
which, at equal distances, parallel lines are constructed. It can then be proved (Haas
2012; Heilbron 2000, pp. 229–230) that AB is equal to CD. Heilbron called this
‘Rafael’s theorem.’ Although demonstrated figuratively by Euclid in Rafael’s
painting, the theorem does not appear in Euclid, and may well have been Rafael’s
original mathematical work. While we cannot say whether this was indeed original
with Rafael as Heilbron suggests, it still gives us something important to consider:
is it possible that art was at the time used to promote the study of mathematics and
possibly some new findings that Rafael and his contemporaries worked on?

18.1.2 Pacioli’s Euclid

Because the original diagram from Rafael’s painting is linked in the
already-mentioned literature to another painting from the same period, I looked at
this to make a comparison. The second painting is of Luca Pacioli (ca. 1445–1517)
attributed to Jacopo de’Barbari (1495). The painting portrays Luca Pacioli, cele-
brated mathematician, shown surrounded by mathematical instruments and objects,

Fig. 18.2 A possible
interpretation of the diagram
from The School of Athens.
(Produced by the author)
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pointing to a drawing board and a book, and standing in front of (very possibly)
Albrecht Dürer.

In de’Barbari’s painting the diagram to investigate is also drawn on a small
blackboard, being used possibly in some kind of teaching episode. In this painting,
the diagram is perhaps clearer (Fig. 18.4). Its interpretation is however sometimes
given as that referring to the theorem of Euclid XIII.8 (Baldasso 2010; Gamba
1999; Landrus 2001) or theorem XIII.12 (Mackinnon 1993). But let us distinguish
the two theorems first.

The stick in Pacioli’s right hand (Fig. 18.4) points in fact to an unfinished
diagram, which could be either the theorem XIII.12 or XIII.8. However, Pacioli’s
left hand (e.g. index finger) points clearly to the text of the theorem XIII.8 from the
book, with the diagram given in the margin (Fig. 18.5). On the blackboard, there
are also, as Gamba (1999) points out, some numbers and a line divided in a ratio.
One thing seems certain from Pacioli’s posture, that there is a correlation between

Fig. 18.3 Heilbron (2000)
interpretation of the diagram
from The School of Athens.
(Produced by the author)

Fig. 18.4 Detail from de’
Barbari’s portrait of Luca
Pacioli (1495), showing the
diagram relating to Euclid’s
book XIII. (Retrieved from
https://commons.wikimedia.
org/wiki/File:Jacopo_de%27_
Barbari_-_Portrait_of_Fra_
Luca_Pacioli_and_an_
Unknown_Young_Man_-_
WGA1269.jpg (accessed 6/
10/2017))
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the diagram and the theorem to which the Pacioli points on the blackboard
(Fig. 18.4) and the one which appears in an edition of Euclid’s Elements
(Fig. 18.5).

So, does it matter which theorem it is or whether the two pointers refer to the
same one? Let us, for the moment, examine the theorems in question before
attempting to make a conclusion about this.

18.1.3 Euclid’s Theorems

Two theorems: XIII.8 and XIII.12 are different but they are in the same book and
are indirectly linked.

Proposition 8, book XIII, refers to the golden ratio or section: If in an equian-
gular pentagon straight lines subtend two angles [are] taken in order, then they cut
one another in extreme and mean ratio, and their greater segments are equal to the
side of the pentagon (Heath 1908, p. 453).
This is nicely represented by the diagram in Fig. 18.6.

Proposition 12 of the same book states on the other hand that: If an equilateral
triangle be inscribed in a circle, the square on the side of the triangle is triple of the
square on the radius of the circle (Heath 1908, p. 466; Fig. 18.7).

What do these theorems, and indeed the diagrams, actually refer to?
We know that book XIII of Euclid’s Elements refers to Platonic solids. In fact,

there is a hypothesis, famously stated by Proclus, that one of the aims (perhaps the

Fig. 18.5 Detail from de’
Barbari’s portrait of Luca
Pacioli, Pacioli’s index finger
pointing to an edition of
Euclid’s Elements. (Retrieved
from https://commons.
wikimedia.org/wiki/File:
Jacopo_de%27_Barbari_-_
Portrait_of_Fra_Luca_
Pacioli_and_an_Unknown_
Young_Man_-_WGA1269.
jpg (accessed 6/10/2017))

Fig. 18.6 Proposition XIII.8
as illustrated in Heath (1908).
(Reproduced by the author)
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most important one) of the Elements was the construction of the regular polyhedra
(Proclus 1560; Sanders 1990).

If we look at the two theorems here stated, they refer to: XIII.8—the construction
of a pentagon, the basis for the construction of dodecahedron, and XIII.12—the
construction of tetrahedron. Let us then look a little more closely at the latter
theorem, XIII.12. By closer inspection we can say that this theorem itself is closely
related to what is previously mentioned as Rafael’s theorem, easily resembling the
first image (Fig. 18.1) as shown in the comparison (Fig. 18.8).

Why and how would the two be connected, apart from the obvious (they both
refer to the book XIII, and the Platonic solids)? Further investigation will conjecture
on this, but let us first examine the editions of the Elements to which both Rafael
and Pacioli had access and to how these diagrams could be in any way relevant to
our research.

Fig. 18.7 Proposition
XIII.12 as illustrated in Heath
(1908). (Reproduced by the
author)

Fig. 18.8 Two diagrams compared—Rafael’s theorem 18.3 with 18.6. (Produced by the author)
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18.1.4 Edition of the Elements

It is possible, but not certain, that we can identify the edition of Elements to which
Pacioli is pointing to with his left hand. As the date of the painting is most probably
1495, the only possible Elements to which Pacioli (and indeed de’Barbari) would
have had access is the Venice edition from 1482 (Mackinnon 1993). This edition
was the Latin translation by Johannes Campanus, Pope Urban IV’s chaplain at the
time. The book was illustrated and produced by Erhard Ratdolt, and, for my pur-
poses of study, a copy of this can be found in Victoria and Albert Museum in
central London. If one looks at the pages to which Pacioli is pointing in his portrait,
they are quite identifiable as pages from this book—something that is analyzed at
length by Baldasso (2010).

However, another interesting conjecture comes to mind—that of Taylor (1980)—
in which he states that Pacioli may have written another book based on Euclid’s
Elements apart from the straightforward Latin edition published in 1509 (Swetz
2014). Taylor suggests that Pacioli would have written and possibly published this
other book earlier, but that it did not survive to our time. If so, Taylor (1980) suggests
that this edition would have also been based on Campanus’ but written in Italian.
Considering that another work of Pacioli’s, his De viribus quantitates, written in the
similar period (between 1496 and 1508), was only discovered in the University of
Bologna library in 2007, it is conceivable that Taylor is right and that there may yet
exist the books by Pacioli which he describes.

In any case, the two theorems also coincide with the apocryphal records about
books XIV and XV of the Elements. These two books, apparently the first written
by Hypsicles (ca. 190–120 BC) and possibly based on Apollonius’ Conics, and the
second by Isidore of Miletus (442–537), investigated Platonic solids inscribed in
spheres.

If so, and if there are undiscovered books by Pacioli there is still much research
to be done on the work relating to historical analysis of Pacioli and the diagrams we
spoke about, as the two books by Hypsicles and Isidore of Miletus relate reportedly
to:

(a) the ratio of the surfaces of dodecahedron and icosahedron inscribed in the same
sphere being equal to their volumes; and

(b) the relationships of the edges and solid angles in Platonic solids (Boyer 1991).

18.2 Pedagogy Related to the History of Mathematics—
How Does Euclid Make It to Bath?

In the previous section of this chapter I have recalled my search which began from
Rafael’s The School of Athens and ended up with one of the unsolved mysteries
relating to the missing books by Pacioli and even Euclid. This research and the
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questions it raised inspired me to think further about the mathematics contained in
the Rafael’s and de’Barbari’s paintings, bringing back the joy of learning new
mathematics to my everyday working life. As I found such inspiration, I thought it
would perfectly fit my original idea to find a source of inspiration for my stu-
dents too, based on art.

This part of the chapter will deal with this particular aspect of the project: how I
linked such personal inspiration and channeled and structured the work for student
teachers. The aim of this was to try and recreate for them the investigation so that
they too may have an aesthetically pleasing experience in the learning of
new-but-old mathematics. This in turn, I hoped, would enable student teachers to
seek similar sources of inspiration in the future, bringing them a recurrent ‘reori-
entation’ event every so often.

In the pursuit of this task, I looked for anchors on which to base the structure of
the project for students. The building of teacher identity was the first aspect I
wanted to pay attention to as this highly personal development is part of the official
teacher training framework in the UK that is assessed in a formal way.

18.2.1 Teacher Identity

In building of the pedagogy for practice, my recent interests have focused on
‘finding one’s own voice’ (Lawrence 2016). In the teacher education context, this
question of identity is an interesting one to which I will now turn for some further
thoughts and describe the experiences from the project.

The following question may be difficult to answer in some circumstances, but in
our case it was quite easily dissected and deconstructed: “Who am I—personally,
professionally, intellectually and so on?” One may ask oneself this question at
regular intervals, and to which one may or may not find easy (or comfortable)
answers (Brown 2011).

However, this project gave us ample opportunities to investigate precisely these
types of issues and questions. They are more easily investigated when one has the
Pacioli’s portrait as a point of reference. Looking at it and seeing Pacioli as he was
portrayed by de’Barbari, student teachers could easily ask themselves questions
such as:

• Who am I? and consequently,
• What is it that defines me?
• What mathematics interests me, and what are my tools?
• Who is my most important colleague or collaborator?
• Who are my pupils (perhaps even my ‘ideal’ ones)?

All of these questions were easily posed and discussed with Pacioli’s portrait as
a starting point. My students came with engaging, and at times funny, answers—all
of which were presented in self-portraits in response to these questions. These were
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presented visually and we organized an ‘exhibition’ of a kind where students
portrayed themselves in a similar position in which Pacioli was depicted, with their
preferred teaching and mathematical tools presented around them, and their most
interesting recent discovery in front of them, with their ‘ideal’ student standing
behind them. I found this exercise, apart from being an engaging one, to be the most
(surprisingly) important one in the project, offering students opportunities to form
opinions and position themselves in the new landscape of mathematics education
they were just entering and exploring.

Linking Euclid’s Elements and his depiction in Rafael’s painting, and the tra-
dition of teaching Euclidean mathematics, brought us to the question of its various
editions and the loss and retrieval of the books and of knowledge in the Middle
Ages. Here we came across one of the most celebrated moments of intellectual
history of all time, the recovery of Euclid’s Elements to the Western culture by
Adelard of Bath (1080–1152). Adelard was a philosopher, traveler and translator,
who brought to England the Latin translation of Euclid’s most famous work. The
fact that Adelard was born in Bath where the project took place, was an important
factor in our project.

In terms of gender, the illustration below (Fig. 18.9) shows not only learned
men, but also a female teacher showing geometrical constructions and/or,
demonstrating geometrical theorems. This image is an illustration of Adelard’s
French translation, attributed to a Meliacin Master, dated approximately between
1309–1316. The female image brought about the question of gender balance into
focus, not only apparent in ancient, but also the more modern or contemporary

Fig. 18.9 This image is an
illustration of Adelard’s
French translation, attributed
to a Meliacin Master, dated
approximately between 1309
and 1316 (Meliacin Master
1309–1316)
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mathematics scene. For example, in a study conducted recently in the UK, only 6%
of all mathematics professors are women, and women roughly comprise about 30%
of all university lecturers in the field (LMS 2013, p. 14).

This particular image further contains some other interesting information about
the context and mathematical and teaching tools from the period. Let us pay
attention to the circular space in front of the female teacher, in which geometric
drawing tools can be seen, such as compasses, set squares and other objects. These
tools are placed in a circular shape, most probably a sand tray, in which geometric
diagrams were drawn for demonstration purposes in the teaching of mathematics
(Fig. 18.9). My students did not question the gender of the teacher in the image and
the general consensus between them was that there would have been more women
in teaching roles in the history of the discipline than what the official records tell us.

Thus, we have the elements that can bring about a contemplation on the locality,
individual’s role in the teaching of mathematics and the circulation of mathematical
knowledge and mathematics texts throughout the world.

18.2.2 Building the Pedagogy

Here I will describe how I went about building pedagogy to bring the students to
both learning of new mathematics from the old, and to position themselves in
relation to their chosen professional role of a mathematics teacher. I used the
following sequence to introduce the students to the project.

Firstly, the students were given the original diagrams and images and the papers
which analyzed these diagrams at the beginning of the project. Copies of Rafael’s
and de’Barbari’s paintings and the enlarged details of the diagrams in question were
given, from which students could work. The picture of Rafael was clearly related to
Euclid, and from the same period there were other pictures related to doing
mathematics and to Euclid, e.g. Pacioli’s portrait. Once this was established, the
images of Euclid’s Elements were found that related to the city of Bath in England
—the place where the project was taking place—via Adelard of Bath, the first
translator of Euclid’s Elements into Latin. These facts and images were presented
and discussions were encouraged, along with further research on personalities
introduced thus far (Euclid, Rafael, Pacioli).

The overall task they were presented with had two overarching aims:

1. To learn how to seek for cultural references in mathematics in order to gain
understanding and insight into the different interpretations of what doing and
learning of mathematics can be like (and how it is defined in different cultures
and periods); and

2. To experience the process of learning some new mathematics via some old one,
i.e. culturally referenced and historically bound mathematical analysis.

376 S. Lawrence



Secondly, I asked students to think, contemplate and not necessarily come up
with immediate answers, on the questions such as:

1. What kind of mathematics teacher do I want to be?
2. How does mathematical knowledge travel through the world (and in this case,

within Europe)?
3. Does my gender play any role in all of this, and if not for me, does it play one

for others?
4. Formulate your own research question based on the context of these two paintings.

Students were then given five smaller tasks to complete in order to structure their
work on this project, in which they were asked to:

• find everything they could about Rafael’s and de’Barbari’s paintings;
• analyze for themselves the images showing instruction on the blackboards

depicted in these two paintings;
• compare interpretations of the diagrams;
• make mind-maps in groups to show all of the prerequisite knowledge needed to

teach the theorems in question to pupils in secondary settings and
• construct an activity based on the theorems contained in the diagrams from two

paintings, and connect it to the National Curriculum.

The original exploration and the connection between two images by Rafael and
de’Barbari offered much more than was hoped for in the beginning. A link between
the two images, and mathematics contained within them as we have shown, can be
seen from the diagrams. It further transpired that these images, which put geometry
in context of history and art so beautifully, also contain a wealth of further pathways
to investigate. A few other aspects of pedagogy were considered in the project, and
this is where we now turn.

18.2.3 Range of Pedagogical Tools:
General and Mathematical

Finding one’s ‘voice’ in the learning and teaching of mathematics is an important
process as it is in any learning experience. This has been described in numerous
examples, but I mention two as directly relevant: Fried (2008) and Lawrence
(2016). This process of ‘finding one’s voice’ related in our case to the dual aspect of
being a learner and a teacher, and to finding an internal and external dialogue
related to mathematical narratives in historical context. In our case, the narratives
were manifold and related to:

• how something works;
• how this fits in with the greater structure of mathematical knowledge;
• how mathematical facts are interrelated; and
• how mathematical knowledge travels and is enriched by practitioners.
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All of the above were easily contained within the framework of the Elements.
Furthermore, the knowledge thus investigated, gained, networked and conveyed,
could be questioned (Lawrence 2016). The questions we could pose while inves-
tigating our discussed diagrams, the way they came about and reading the relevant
literature could be:

1. What further is there to learn from what we found out? and
2. How can that be translated into a mathematical language, a narrative and a

mathematical pedagogy suited to a secondary classroom?

The answer to the first question remains open. I posed this in the conclusion of
the first part of this chapter: there certainly is more to be discovered related to the
relationship between tetrahedron and dodecahedron, and the apocryphal books XIV
and XV of the Elements. Put in this light, this question could initiate further interest
of future teachers (and their teacher) for years to come.

The second question is perhapsmore difficult. It refers not only to the knowledge of
mathematics, history of mathematics and pedagogy, but also to ‘task design.’ Task
design is a complex skill and not easily taught to teachers in training. The necessary
aspects of such an undertaking seemhowever to rely almost on the same principles that
can be identified from the thread connecting the images of Euclid in Rafael’s and
de’Barbari’s paintings: the variation of interpretation is needed (and necessary) and
must be personal, to allow for sense making (Watson and Mason 2006).

My argument is that this type of research, starting from a historical artifact, in
this case a painting, following some established and the seeking of new links, must
be left to the teacher or educator to find her/himself in order to begin making sense
of both mathematics and how to communicate it. When enough material is given,
the teachers must be left free to rummage through it to make sense out of mathe-
matics presented to themselves, to their peers, and to their pupils (Lawrence 2016).
But how successful was this in our case? I will come to that in a moment, but let us
now first pay attention to the artifacts and teaching techniques that the students
learnt through this project.

18.2.4 Teaching Objects and Techniques

Through this investigation we have come across several artifacts and teaching
techniques that are important for novice teachers to think about and investigate
further.

First is certainly the role of demonstration in the teaching process. What tools of
demonstration can one use and how have these developed over time? In our
example there are at least two identifiable such objects and techniques of expla-
nation: the blackboard, and the sand-table for drawing of geometrical objects and
showing and proving their meaning. We may ask further—what are their modern
equivalents?
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There is also the teaching dialogue as implied by the Rafael’s painting and the
references we drew from it. The Socratic dialogue, the importance and the use of
which never seem to fade in the learning process, has certain rules that a teacher in
education would be prudent in knowing and exploring for themselves (Lawrence
2013; Watson and Mason 2009).

The exercise with the Pacioli’s portrait was another important tool and artifact
that was used in this project, as students made their own self-portraits. This exercise
brought about a discussion on different ways not only of teaching but of learning
mathematics. It gave the students ideas to repeat similar tasks in their secondary
classrooms in order to give opportunities to their pupils to question and challenge
their interest in mathematics and contemplate about their skills and abilities related
to the subject.

18.3 Conclusion: What Does the Future Hold?

This project can certainly offer many further pathways for research. In terms of
reinvigorating my own interest, I will certainly look further into the work of Piero
della Francesca (1415–1492), one of the leading artists of the Renaissance with
significant contributions to development of geometrical techniques, and who was
connected to both Rafael and Pacioli. Leonardo da Vinci (1452–1519), one of the
most celebrated artists and scientists of all time, was also closely working with
Pacioli on his Summa de Arithmetica, geometria, proportioni et proportionalita
(1494), having provided illustrations for it. Da Vinci’s theorem (Fig. 18.10) is
closely linked to the particular problem described at the beginning of this chapter.
He was certainly at the time interested in the relationships between lengths, areas,

Fig. 18.10 Leonardo da Vinci, Codex Arundel (1478–1518), British Library manuscript Arundel
263, f215. (Reproduced with permission)
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and volumes. In Codex Arundel (da Vinci 1478–1518; Duvernoy 2008), he cal-
culates (Fig. 18.10) the center of gravity of a pyramid (Arundel 263, f215), further
extending it to tetrahedron, as was the case with both instances of diagrams from
which we began (Fig. 18.8).

To use this research further with teachers or learners, some discussions may be
had about:

(a) the possibility of connecting two- and three-dimensional geometry seamlessly,
showing the interconnectedness of mathematics;

(b) universality and beauty of mathematical concepts that transcend centuries,
cultures and disciplines; and

(c) showing that mathematics is both an inspiration and a part of culture.

However, the most surprising results of this project could be put into two cat-
egories. The first relating to the teacher students, and the second to their teacher, i.e.
this chapter’s author.

(a) Teacher students’ greatest benefit from this project was an opportunity to search
for and find (or not) their own voice while making sense of mathematics they
were trying to decipher. By making self-portraits based on de’Barbari’s portrait
of Pacioli, student teachers were able also to identify their own favorite
mathematical tools, processes and facts, and imagine their favorite type of
pupil.

Students engaged with this activity well and some used the auto-portraits
throughout the year-long course. This activity—finding one’s professional and
literal image, articulating their own interest in mathematics, defining the tools with
which to investigate, teach and explain mathematics most appropriately to their own
interests, portray their own demeanor, illustrate and model the behavior of their
own students (ideal or not) and collaborators—gave teachers the opportunities to
question, examine and challenge themselves. It also gave them opportunities to do
so with the images of mathematics and mathematicians from contemporary and
historical cultures.

This aspect of the project was successful with all teacher students. Some dis-
cussions that followed this activity would be important in any learning environment
and therefore they are described in the following paragraphs.

Firstly, what is familiar to learners locally is more likely to affect them positively
as they begin making other connections with things they already know (Lawrence
2016). The local ‘effect’ had a positive influence as learners began to make other
connections by drawing on their personal experience.

Secondly, the identification for both genders was a rich subject for many dis-
cussions—we had by a happy coincidence that both geography and gender were
reflected in the image of Adelard of Bath’s book (Fig. 18.8). We questioned the
images of women as teachers of mathematics and discussed the possible interpre-
tation—that such images were metaphors for sciences rather than images of women
teaching in practice. Concluding remarks of my female students’ were generally
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that such interpretations perpetuate the place of women in the history of teaching
and learning of mathematics, rather than give accurate historical information.

In this complex project however, the engagement of some students was not
positive. I was surprised to see that the thread relating to mathematical facts
expounded in the first section of this chapter did not seem to be as interesting to
students as I expected it to be (and as it was to me). One of the reasons for this was,
I believe, due to the shortness of time given to teachers in training to investigate and
contemplate mathematics. This stands in sharp contrast to the amount of time they
are given to present mathematics in a utilitarian way (as prescribed by the schools
and the National Curriculum).

So what was the main benefit of such a project? This brings us to the final point I
wish to make in respect of the pedagogy relating to the history of mathematics as
developed in this project.

(b) Through working in teacher education I have come across many approaches
relating to pedagogy, and this project showed how one such approach can be
developed starting from an image portraying teaching and learning of mathe-
matics in art.

One aspect of pedagogy I have not come across in the related literature yet is
about reigniting the interest in original research related to mathematics in the
mathematics teachers’ teacher.

This project showed me that this is, indeed, possible. Finding an initial impetus
like our initial image, which gives opportunities for many interpretations, led me to
new areas and images and a multitude of new potential research pathways. The
further development of research in this project reminded me, a teacher educator,
that one can learn many new things from old mathematics, and that doing so can
indeed bring back the passion for learning in the teacher educator. This was
probably the most satisfying and surprising result of this project. The hope is that
the student teachers will be left with many unanswered questions relating to history
of mathematics, showing them that the inspiration for their own engagement is
always there, and that new mathematics can always be found in old artifacts and art
related to mathematics.
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