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Abstract. We introduce the family of k-gap-planar graphs for k ≥ 0,
i.e., graphs that have a drawing in which each crossing is assigned to
one of the two involved edges and each edge is assigned at most k of
its crossings. This definition finds motivation in edge casing, as a k-gap-
planar graph can be drawn crossing-free after introducing at most k local
gaps per edge. We obtain results on the maximum density, drawability
of complete graphs, complexity of the recognition problem, and relation-
ships with other families of beyond-planar graphs.

1 Introduction

“Beyond-planar graphs” are informally defined as nonplanar graphs that can be
represented with some forbidden edge crossing patterns (see, e.g., [29,30,36]).
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Fig. 1. (a) A drawing of a graph G and (b) its cased version where each edge is
interrupted at most twice, i.e., a 2-gap-planar drawing of G.

Research on this topic is attracting increasing attention within the communities
of graph theory, graph algorithms, graph drawing, and computational geometry,
as these graphs represent a natural generalization of planar graphs, and their
study can provide significant insights for the design of effective methods to visu-
alize real-world networks. Indeed, the motivation for this line of research stems
from both the interest raised by the combinatorial and geometric properties of
these graphs, and experiments showing how the absence of particular edge cross-
ing patterns has a positive impact on the readability of a graph drawing [31].

Among the investigated families of beyond-planar graphs are: k-planar graphs
(see, e.g., [11,34,38]), which can be drawn with at most k > 0 crossings per edge;
k-quasiplanar graphs (see, e.g., [2,3,22]), where there are no k > 2 pairwise cross-
ing edges; fan-planar graphs (see, e.g., [9,12,32]), where no edge can be crossed
by two indepedent edges; fan-crossing-free graphs [17], where crossings between
an edge and two adjacent edges are forbidden; planarly-connected graphs [1], in
which each pair of crossing edges is independent and there is a crossing-free edge
that connects their endpoints; RAC graphs (refer, e.g., to [19]), which admit a
straight-line (or polyline with few bends) drawing with right-angle crossings.

In this paper we introduce k-gap-planar. Intuitively speaking, each crossing
is assigned to one of the two involved edges and each edge is assigned at most
k crossings (see Sect. 2). This definition generalizes that of k-planar graphs, and
it is practically motivated by edge casing, a method commonly used to alleviate
the visual clutter generated by crossing lines in a diagram [5,21]. In a cased
drawing of a graph, each crossing is resolved by locally interrupting one of the
two crossing edges. Clearly, minimizing the number of gaps per edge is one of the
desirable goals in this situation, and a k-gap-planar graph can be equivalently
defined as a graph that admits a cased drawing in which each edge has at most
k gaps. Figure 1 shows a drawing of a graph and its version with edge casing.
Eppstein et al. [21] studied many optimization problems related to edge casing,
assuming the input to be a drawing (rather than a graph). In particular, the
problem of minimizing the maximum number of gaps (called tunnels) for any
edge of a drawing can be solved in polynomial time (see also Sect. 2). We also
remark that a similar drawing paradigm is used by partial edge drawings (PEDs),
in which the central part of each edge is erased, while the two remaining stubs
are required to be crossing-free (see, e.g., [15,16]).
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Our results can be summarized as follows:

– Every k-gap-planar graph with n vertices has O(
√

k · n) edges (Sect. 3). If
k = 1, a bound of 5n − 10 edges is proved for 1-gap-planar multigraphs,
which is tight as there exist k-gap-planar (simple) graphs with these many
edges. Note that this density bound equals that of 2-planar graphs [38].

– The complete graph Kn is 1-gap-planar if and only if n ≤ 8 (Sect. 4).
– Deciding whether a graph is 1-gap-planar is NP-complete, even when the

input graph comes with a fixed rotation system that is part of the input
(Sect. 5). We remark that analogous recognition problems for other families
of beyond-planar graphs are also NP-hard (see, e.g., [7,9,12,13,25,35]), while
polynomial algorithms are known only in restricted settings (see, e.g., [6,9,
13,18,20,27,28]).

– We study relationships of the k-gap-planar family with other beyond-planar
families. For all k ≥ 1, the class of 2k-planar graphs is properly included in
the class of k-gap-planar graphs, which in turn is properly included in the
(2k+2)-quasiplanar graphs (Sect. 6). It is worth observing that recent papers
proved that k-planar graphs are (k + 1)-quasiplanar [4,26].

For reasons of space some proofs and technicalities have been omitted and can
be found in [8].

2 Preliminaries and Basic Results

A drawing Γ of a graph G = (V,E) is a mapping of the vertices of V to dis-
tinct points of the plane, and of the edges of E to Jordan arcs connecting their
corresponding endpoints but not passing through any other vertex. If two edges
are incident to the same vertex, then they do not cross in Γ ; else, they have
at most one common interior point where they cross transversely. For a subset
E′ ⊆ E, Γ [E′] denotes the restriction of Γ to the curves representing the edges
of E′. Drawing Γ is planar if no edge is crossed. The crossing number cr(G) of a
graph G is the smallest number of edge crossings over all drawings of G. A graph
is planar if it admits a planar drawing. A planar drawing subdivides the plane
into topologically connected regions, called faces. The unbounded region is the
outer face. A planar embedding of a planar graph G is an equivalence class of
topologically equivalent drawings of G. A plane graph is a planar graph with a
planar embedding. The crossing graph C(Γ ) of a drawing Γ is the graph having
a vertex ve for each edge e of G, and an edge (ve, vf ) if and only if edges e and
f cross in Γ . The planarization Γ ∗ of Γ is the plane graph formed from Γ by
replacing each crossing by a dummy vertex. To avoid ambiguities, we call real
vertices the vertices of Γ ∗ that are not dummy.

Let Γ be a drawing of a graph G. We shall assume that exactly two edges
of G cross in one point p of Γ , and we say that these two edges are responsible
for p. A k-gap assignment of Γ maps each crossing point of Γ to one of its two
responsible edges so that each edge is assigned with at most k of its crossings;
see, e.g., Fig. 1(b). The gap of an edge is the number of crossings assigned to it.
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An edge with at least one gap is gapped, or a gap edge, else it is gap free. A
drawing is k-gap-planar if it admits a k-gap assignment. A graph is k-gap-planar
if it has a k-gap-planar drawing. Note that the 0-gap-planar graphs coincide
with the planar graphs, and that k-gap-planarity is a monotone property: every
subgraph of a k-gap-planar graph is k-gap-planar. From the pigeonhole principle
we have:

Property 1. Let Γ be a k-gap-planar drawing of a graph G = (V,E). For any
E′ ⊆ E, Γ [E′] contains at most k · |E′| crossings.

A k-gap assignment of a drawing Γ corresponds to orienting the edges of the
crossing graph C(Γ ) such that each vertex has indegree at most k (intuitively,
orienting a crossing towards an edge means we assign the crossing to that edge).
Since finding a lowest indegree orientation of a graph corresponds to finding its
pseudoarboricity [23,39], Property 2 follows. A pseudoforest is a graph in which
every connected component has at most one cycle, and the pseudoarboricity of
a graph is the smallest number of pseudoforests needed to cover all its edges.

Property 2. A graph is k-gap-planar if and only if it admits a drawing whose
crossing graph has pseudoarboricity at most k.

Given a drawing Γ of a graph G = (V,E), finding the minimum k such that Γ is
k-gap-planar can be solved in O(|E|4) time, due to the fact that finding a lowest
indegree orientation of C(Γ ) can be solved in time quadratic in the number of
edges of C(Γ ) [40].

3 Density of k-gap-planar Graphs

We begin with an upper bound on the number of edges of k-gap-planar graphs.

Theorem 1. A k-gap-planar graph on n ≥ 3 vertices has O(
√

k · n) edges.

Proof. The crossing number of a graph G with n vertices and m edges is bounded
by cr(G) ≥ 1024

31827 · m3/n2 when m ≥ 103
6 n [37]. Combined with the bound

cr(G) ≤ k · m (Property 1), we obtain

1024
31827

· m3

n2
≤ cr(G) ≤ km,

which implies m ≤ max(5.58
√

k, 17.17) · n, as required. �

Better upper bounds are possible for small values of k, in particular for
k = 1. Pach et al. [37] proved that a graph G with n ≥ 3 vertices satisfies
cr(G) ≥ 7

3m − 25
3 (n − 2). Combined with the bound cr(G) ≤ k · m, we have

m ≤ 25(n − 2)
7 − 3k

.



Gap-Planar Graphs 535

For k = 1 (i.e., for 1-gap-planar graphs), this gives m ≤ 6.25n − 12.5. We now
show how to improve this bound to m ≤ 5n−10. The idea is to follow a strategy
developed by Pach and Tóth [38] and Bekos et al. [11] on the density of 2- and
3-planar graphs, with several important differences.

We start by stating the assumptions and notations for the proof of Theorem 2.
In order to accommodate the elementary operations in the proof, we work on
a broader class of graphs, namely multigraphs admitting a drawing without
homotopic1 parallel edges.

(i) For any n ∈ N, n ≥ 3, let G = (V,E) be a 1-gap-planar multigraph
with n vertices that has the maximum number of edges possible over all n-
vertex 1-gap-planar multigraphs without homotopic parallel edges; (ii) let Γ be a
1-gap-planar drawing of G with the minimum number of edge crossings over all
possible 1-gap-planar drawings of G with non-homotopic parallel edges; and
(iii) let H = (V,E′) be a sub-multigraph of G, where E′ ⊆ E is a multiset of
edges that are pairwise noncrossing in Γ [E′]. (iv) We assume that over all choices
of G, Γ , and H described above, the multigraph H is maximum and, in case of
ties, has the fewest connected components.

Our proof is based on the next technical lemma.

Lemma 1. The multigraph H is a triangulation, that is, a plane multi-graph in
which every face is bounded by a walk with three vertices and three edges.

We can now show that |E| ≤ 5n − 10.

Theorem 2. A 1-gap-planar graph on n ≥ 3 vertices has at most 5n−10 edges.

Proof. By Lemma 1, we know that H = (V,E′) is a triangulation. By Euler’s
polyhedron theorem, it has 3n − 6 edges and 2n − 4 triangular faces. Consider
the edges in E′′ = E \ E′. It remains to show that |E′′| ≤ 2n − 4.

The embedding of edge e ∈ E′′ is a Jordan arc that visits two or more triangle
faces of H. We call the first and last triangles along e the end triangles of e. For
an end triangle Δ, the connected component of e ∩ Δ incident to a vertex of Δ
is called an end portion. We use the following charging scheme.

Each edge e ∈ E′′ charges one unit to a triangle face of H. If e has an
end portion that has a gap neither in the interior nor on the boundary of the
corresponding end triangle Δ, then e charges one unit to Δ. (If neither end
portions of e has a gap in the interior or on the boundary of its end triangle,
then e charges one arbitrary end triangle.) Otherwise the two end portions of
e lie in two adjacent triangles, say, Δ1 and Δ2, and e uses its gap to cross the
common edge on the boundary between them; in this case e charges one unit to
Δ1 or Δ2 as follows: If the gap of the common edge between Δ1 and Δ2 is used
for an end portion of e′ ∩ Δ1 for another edge e′ ∈ E′′ and e′ charges Δ1, then
e charges Δ2, otherwise it charges Δ1.

We claim that each face of H receives at most one unit of charge. Let Δ =
Δabc be a face in H. Note that if Δ receives positive charge from an edge e ∈ E′′,
1 Two parallel edges are homotopic if at least one of the two regions defined by these

two edges contains no vertex in its interior.
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(a) (b) (c)

Fig. 2. Patterns that produce 1-gap-planar graphs with n vertices and 5n−Θ(1) edges.

then an end portion of e lies in Δ, and does not use any gap in the interior of
Δ. Consequently if Δ received positive charge from edges e1, e2 ∈ E′′, then the
end portions of e1 and e2 in Δ cannot cross, and they are incident to the same
vertex of Δ. Therefore, all edges in E′′ that charge Δ are incident to the same
vertex of Δ, say a, and cross the edge of Δ opposite to a, namely (b, c). Let
Δ′ = Δ′bcd be the face of the plane graph H on the opposite side of (b, c).

The gap of edge (b, c) can be used for at most one crossing along (b, c). If the
gap of (b, c) is used for a crossing with one of the end portions in Δ, then e sends
1 unit charge to Δ. The only other edge that could possibly send a charge to
Δ is the edge (a, d) ∈ E′′ that uses its own gap to cross (b, c). However, in this
case, (a, d) charges one unit to Δ′ in our charging scheme. If the gap of (b, c) is
not used for any of these end portions in Δ, then the edge (a, d) may send 1 unit
charge to Δ. Overall, Δ receives at most 1 unit of charge. Consequently, |E′′| is
bounded above by the number of faces of H, which is 2n − 4, as required. �

We now show that the bound of Theorem 2 is worst-case optimal. A 2-planar
graph with n vertices and 5n − 10 edges is also 1-gap-planar (see Lemma 6).
Pach and Tóth [38] construct such a graph by starting with a plane graph with
pentagonal faces (e.g., using nested copies of an icosahedron), and then add all
five diagonals in each pentagonal face; see Fig. 2(a). This construction yields a
1-gap-planar graph with n vertices and m = 5n − 10 edges for all n ≥ 20, n ≡ 5
(mod 15).

We can modify this construction by inserting a new vertex in one or more
pentagons, and connecting it to the 5 vertices of the pentagon; see Fig. 2(b).
Every new edge crosses exactly one diagonal of the pentagon, so the new crossings
can be charged to the new edges. Since every new vertex has degree 5, the
equation m = 5n − 10 prevails. By inserting a suitable number of vertices into
pentagons, we obtain constructions for n ∈ N such that 20 ≤ n ≤ 32 or n ≥ 38.
A similar construction is based on hexagonal faces; see Fig. 2(c). Start with a
fullerene, that is, a 3-regular, plane graph G0 with n0 vertices, 12 pentagon
faces, and n0/2 − 10 hexagon faces (including the external face). Add diagonals
in each face to connect a vertex to their second neighbors (the graph is 2-planar
so far); finally insert a new vertex in each face of G0, and connect them to
all vertices of that face. We obtain a 1-gap-planar graph G. The number of
vertices is n = n0 + 12 + (n0/2 − 10) = 3

2n0 + 2, and the number of edges is
m = 3

2n0 + 10 · 12 + 12 · (n0/2 − 10) = 15
2 n0 = 5n − 10. Fullerenes exist for
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n0 = 20 and for all even integers n0 ≥ 24 [14]. This yields a lower bound of
5n− 10 for n = 32 and for all n ≥ 35 where n ≡ 2 mod 3. However, similarly to
the previous construction, the equation m = 5n − 10 prevails if we delete up to
12 vertices inserted into pentagons. Consequently, the upper bound 5n − 10 in
Theorem 2 is tight for all n ≥ 20.

Theorem 3. For every n ≥ 20 there exists a 1-gap-planar graph G with n
vertices and 5n − 10 edges.

4 1-gap-planar Drawings of Complete Graphs

Theorem 4. The complete graph Kn is 1-gap-planar if and only if n ≤ 8.

Proof. Figure 3(a) shows a 1-gap-planar drawing of K8, and by monotonicity
the graphs K1, . . . ,K7 are 1-gap-planar as well. We now prove that K9 is not
1-gap-planar, which again by monotonicity settles all cases Kn for n ≥ 9.

Since K9 has 36 edges and cr(K9) = 36, a 1-gap-planar drawing of K9 can
only arise from assigning exactly one gap to each edge in a crossing-minimal
drawing of K9 (cf. Property 1). We obtain a contradiction by showing that in
every crossing-minimal drawing of K9 some edge has no crossing at all.

Let Γ ∗ be the planarization of such a crossing-minimal drawing Γ . Note that
Γ ∗ has n∗ = 45 vertices and m∗ = 108 edges (since it has 9 real vertices of
degree 8 and 36 dummy vertices of degree 4), so by Euler’s formula, the number
of faces of Γ ∗ is f∗ = m∗ − n∗ + 2 = 108 − 45 + 2 = 65. For a real vertex u of
Γ ∗, we denote by F (u) the set of faces of Γ ∗ that are incident to u. We claim
that Γ ∗ is biconnected and |F (u)| = 8 for every real vertex u of Γ ∗.

Suppose, for a contradiction, that Γ ∗ is not biconnected. Then it contains a
cut-vertex c, which is either a dummy or a real vertex. If c is a dummy vertex,
note that it is adjacent to exactly two connected components of Γ ∗ \ {c}. Then
we can reflect the drawing of one of the two components, thereby eliminating the
crossing at c, which contradicts the crossing-minimality of Γ . We now show that
no real vertex is a cut-vertex in Γ ∗. Every 3-cycle in K9 forms a simple cycle in
Γ ∗ (since Γ is a simple drawing and thus adjacent edges do not cross). On the
other hand, any three real vertices in Γ ∗ are part of a 3-cycle in K9, and thus
part of a simple cycle in Γ ∗. Hence, no real vertex is a cut-vertex in Γ ∗. Finally,
|F (u)| = 8 because every real vertex u has degree 8 and Γ ∗ is biconnected.

It follows that there are real vertices u, v which share a face (i.e. F (u) ∩
F (v) 	= ∅), as otherwise there would have to be

∑
u |F (u)| = 9 ·8 = 72 > 65 = f∗

faces. But now the edge (u, v) can be redrawn inside this face, and since Γ was
assumed to be crossing-minimal this edge can not have had any crossing to begin
with. �

5 Recognizing 1-gap-planar Graphs

We use 1GapPlanarity to denote the problem of deciding whether a given
graph G is 1-gap-planar. We show that 1GapPlanarity is NP-complete, and
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(a)

u v

(b)

Fig. 3. A 1-gap-planar drawing of (a) K8 and (b) K3,12.

we use a reduction from 3Partition. Recall that an instance of 3Partition
consists of a multiset A = {a1, a2, . . . , a3m} of 3m positive integers in the range
(B/4, B/2), where B is an integer such that B = 1/m·∑3m

i=1 ai, and asks whether
A can be partitioned into m subsets A1, A2, . . . , Am, each of cardinality 3, such
that the sum of integers in each subset is B. This problem is strongly NP-
hard [24], and thus we may assume that B is bounded by a polynomial in m.

The fact that 1GapPlanarity is in NP can easily be shown by exploiting
Property 2.

Our reduction is reminiscent to the reduction used in [9]. However, the proof
in [9] holds only for the case in which a clockwise order of the edges around
each vertex is part of the input, i.e., only if the rotation system of the input
graph is fixed. A similar reduction is also used in [10], in which the rotation
system assumption is not used. However, the gadgets used in [10] have a unique
embedding. We do not use the fixed rotation system assumption, nor we can
easily derive a unique embedding for our gadgets, and thus have to deal with
additional challenges in our proof. In what follows we define a “blob” graph
that will be used to enforce an ordering among the edges adjacent to certain
vertices. Consider the complete bipartite graph K3,12, whose crossing number
is 30 [33,41]. We exhibit a 1-gap-planar drawing of K3,12 with exactly 30 gaps
in Fig. 3(b). Note that two degree-12 vertices, u and v, are drawn on the outer
face. Since K3,12 has 36 edges, the next lemma easily follows.

Lemma 2. Every 1-gap-planar drawing of K3,12 has at most 6 gap-free edges.

A blob B is a copy of K3,12. A gapped chain C of a 1-gap-planar drawing is
a closed, possibly nonsimple, curve such that any point of C either belongs to a
gap edge or it corresponds to a vertex.

Lemma 3. Let u and v be any two degree-12 vertices of B. Every 1-gap-planar
drawing Γ of B contains a gapped chain C containing u and v.

Sketch of proof. Let Γ ∗ be the planarization of Γ . Let Γ ′ be the subgraph of Γ ∗

consisting only of those edges that correspond to or belong to gap edges of Γ .
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We prove that Γ ′ contains two edge-disjoint paths from u to v. Note that
these two edge-disjoint paths may meet at real vertices and at dummy vertices
(i.e., a crossing between two gap edges). A curve that goes through these two
paths is the desired gapped chain. According to Menger’s theorem, two such
paths exist if and only if every (u, v)-cut of Γ ′ has size at least 2, where a (u, v)-
cut of Γ ′ is a set of edges of Γ ′ whose removal disconnects u and v. Such edge
cuts correspond to cycles in the dual, which in turn correspond to curves that
separate u and v by crossing a set of edges. By Lemma 2, one can show that any
such curve crosses at least two gap edges in the original drawing Γ . �

We are now ready to show how to transform an instance A of 3Partition
into an instance GA of 1GapPlanarity. We start by defining some gadgets for
our construction. A path gadget Pk is a graph obtained by merging a sequence of
k > 0 blobs as follows. Denote by B1, B2, . . . , Bk, k blobs such that ui and vi are
two vertices of degree 12 in Bi. We let vi = ui+1 for i = 1, . . . , k−1, each of these
vertices is an attaching vertex. Thus, Pk has k + 1 attaching vertices. A 1-gap-
planar drawing of Pk is such that any two gapped chains of any two blobs Bi and
Bj (i < j) do not share points, except at a possible common attaching vertex. A
schematization of Pk (for k = 3) is shown in Fig. 4(a). A top beam Gt is a path
gadget Pk with k = 3m(�B/2� + 2) + 1. Recall that Gt has 3m(�B/2� + 2) + 2
attaching vertices. A right wall Gr is a path gadget Pk with k = 2. Symmetrically,
a bottom beam Gr is a path gadget with k = 3m(�B/2� + 2) + 1, and a left wall
Gl is a path gadget with k = 2. A global ring R is obtained by merging Gt, Gr,
Gb, and Gl in a cycle as in Fig. 4(b). Again, in any 1-gap-planar drawing ΓR of
R, the gapped chains of any two blobs Bi and Bj do not share points, except at
a possible common attaching vertex. Thus, ΓR contains a gapped chain CR that
is the union of all the gapped chains of the blobs of R.

We start the construction of GA with a global ring R. Let α, β, γ, δ be the
attaching vertices shared by Gl and Gt, Gt and Gr, Gr and Gb, Gb and Gl,
respectively (see also Fig. 4(b)). First we add the edges (α, β) and (γ, δ). Denote
as R+ the resulting graph, and consider a 1-gap-planar drawing of this graph.
The gapped chain of R subdivides the plane into a set of connected regions,
such that only two of them contain all of α, β, γ, and δ on their boundaries. We
denote these two regions as r1 and r2. For ease of illustration, we assume that
one of them is infinite (as in Fig. 4(b)), say r2. Since the drawing is 1-gap-planar,
each of (α, β) and (γ, δ) is drawn entirely in one of these two regions. We assume
that both these two edges are drawn in the same region, say r2, and we will later
show that this is the only possibility in any 1-gap-planar drawing of the final
graph GA. We continue by connecting the top and bottom beams by a set of 3m
columns; refer to Fig. 4(c). Each column consists of 2m − 1 cells; a cell consists
of a set of pairs of crossing edges, called its vertical pairs. In particular, there are
m−1 bottom cells, one central cell and m−1 top cells. Cells of the same column
are separated by 2m − 2 path gadgets, called floors. Note that we are assuming
a particular left-to-right order for the attaching vertex of a floor, we will see
that this is the only possible order in a 1-gap-planar drawing. The central cells
(we have 3m of them in total) have a number of vertical pairs depending on
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u1 B1

gapped chain of B1

B2 B3

v1 = u2

v3

(a) P3

Gt

Gl

Gb

Gr

α β

γδ

a b

(b) R

π2

π3

a bπ1

α β

γδ

(c) GA

Fig. 4. (a) Schematization of a path gadget P3. (b) A global ring R. (c) Schematization
of the instance GA with m = 3, A = {7, 7, 7, 8, 8, 8, 8, 9, 10} and B = 24. Transversal
paths are routed according to the following solution of 3Partition A1 = {7, 7, 10},
A2 = {7, 8, 9} and A3 = {8, 8, 8}. For simplicity, the gapped chains of the various blobs
are not shown, as well as vertex w and all the degree-2 vertices of the transversal paths.

the elements of A. Specifically, the central cell Ci of the i-th column contains
ai vertical pairs connecting its delimiting floors (i ∈ {1, 2, . . . , 3m}). Each of
the remaining cells each has �B/2� + 1 vertical pairs. Hence, a noncentral cell
contains more edges than any central cell. Further, the number of attaching
vertices of a floor can be computed based on how many vertical pairs must be
connected to the gadget. It is now straightforward to see that it is not possible
to draw both a column and one of (α, β) and (γ, δ) in r1 or r2 without violating
1-gap-planarity. Hence, we shall assume that both (α, β) and (γ, δ) are in r2
and that all the columns are in r1. Consider now a 1-gap-planar drawing of a
column. If we invert the left-to-right order of the attaching vertices of a floor
(i.e., we mirror its drawing), then the resulting drawing is not 1-gap-planar, since
each floor delimits at least one noncentral cell with �B/2� + 1 vertical pairs.
Moreover, since each vertical pair has a gap edge, two vertical pairs cannot cross
each other in a 1-gap-planar drawing, and thus the drawings of the columns
are disjoint one another. Finally, let a and b be the attaching vertices of the
left and right walls distinct from α, β, γ, and δ. We connect a and b with m
pairwise internally disjoint paths, called transversal paths; each transversal path
has exactly (3m − 3)(�B/2� + 1) + B edges. The routing of these paths will
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be used to determine a solution of A, if it exists. Thus, we aim at forcing the
transversal paths to be inside r1 in a 1-gap-planar drawing of the graph. For
this purpose, adding a vertex w connected to all the attaching vertices of Gt and
Gb will suffice. Due to the presence of the columns in r1, vertex w must be in
r2 and, due to the edges (α, β) and (δ, γ) in r2, all its incident edges (except at
most two) are gapped. Thus, the transversal paths must be drawn in r1. This
concludes the construction of GA.

We can prove the following.

Theorem 5. The 1GapPlanarity problem is NP-complete.

We conclude by observing that our proof can be easily adjusted for the setting
in which the rotation system of the input graph is fixed. We call this problem
1GapPlanarityWithRotSys. It suffices to choose a rotation system for GA

that guarantees the existence of a 1-gap-planar drawing ignoring the transver-
sal paths (we already discussed the details of this drawing), and such that the
transversal paths are attached to a and b with the ordering of their edges around
a reversed with respect to the ordering around b. The membership of the problem
to NP can be easily verified. Thus, the next theorem follows.

Theorem 6. The 1GapPlanarityWithRotSys problem is NP-complete.

6 Relationship Between k-gap-planar Graphs and Other
Families of Beyond Planar Graphs

In this section we prove the following theorem.

Theorem 7. For every integer k ≥ 1, the following relationships hold.

(2k)-planar � k-gap-planar � (2k + 2)-quasiplanar

We begin by showing the following.

Lemma 4. For all k ≥ 1, every k-gap-planar drawing is (2k + 2)-quasiplanar.

Proof. Recall that a graph G is q-quasiplanar, for q ∈ N, if it admits a drawing
in which there is no subset of q pairwise crossing edges, or equivalently if every
subset of q edges has less than

(
q
2

)
= q(q − 1)/2 crossings. On the other hand,

in a k-gap-planar drawing there are at most kq crossings among any q edges
(Property 1). Consequently, a k-gap-planar graph is (2k + 2)-quasiplanar. �

We also need to show that for every k ∈ N there is a (2k + 2)-quasiplanar graph
that is not k-gap-planar. We prove a stronger statement:

Lemma 5. For all k ≥ 1, there is a 3-quasiplanar graph Gk that is not k-gap-
planar.
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Proof. Let k ∈ N. We construct a graph Gk = (V,E) as follows. Start with K3,3

and replace each edge by t = 19k edge-disjoint paths of length 2. Note that the
total number of edges is |E| = 9 · 2t = 18t. Graph Gk is 3-quasiplanar. Since
cr(K3,3) = 1, it admits a drawing with precisely one crossing. The paths of length
2 can be drawn close to the edges of K3,3 such that two paths cross if and only if
the two corresponding edges of K3,3 cross. Consequently any two crossing edges
in this drawing are part of two paths that correspond to two crossing edges of
K3,3, which in turn implies that no three edges of Gk pairwise cross.

Suppose that Gk admits a k-gap-planar drawing Γ . Then the total number
of crossings is at most k|E| = 18kt. We derive a contradiction by showing that
cr(Gk) ≥ 19kt. If we choose one of the t paths for each of the 9 edges of K3,3

independently, then we obtain a subdivision of K3,3, therefore there is a crossing
between at least one pair of paths. There are t9 ways to choose a path for each of
the 9 edges of K3,3. Each crossing between two paths in Γ is counted t9−2 = t7

times. Consequently, the total number of crossings in Γ is at least t2 = 19kt. �

We now show that every 2k-planar drawing is k-gap-planar. We note that
a similar result can be also derived from [16] (Lemma 10) for the case k = 1.
A bipartite graph with vertex sets A and B is denoted as H = (A,B,E). A
matching from A into B is a set M ⊆ E such that every vertex in A is incident
to exactly one edge in M and every vertex in B is incident to at most one edge
in M . The neighborhood of a subset A′ ⊆ A is the set of all vertices in B that
are adjacent to a vertex in A′, and is denoted as N(A′). We recall that, by Hall’s
theorem, the graph H has a matching from A into B if and only if for each set
A′ ⊆ A it is |N(A′)| ≥ |A′|.
Lemma 6. For all k ≥ 1, every (2k)-planar drawing is k-gap-planar.

Proof. Let G be a (2k)-planar graph, for any k ≥ 1, and let Γ be a 2k-planar
drawing of G. Let H = (A ∪ B,EH) be a bipartite graph obtained as follows.
The set A has a vertex ae,f for each crossing in Γ between two edges e and f
of G. For each edge e of G there are k vertices b1e, . . . , b

k
e in B. For every pair of

edges e, f of G that cross in Γ , graph H contains edges (ae,f , b1e), . . . , (ae,f , bke)
and (ae,f , b1f ), . . . , (ae,f , bkf ) in H. Notice that if H admits a matching of A in B,
then each crossing of Γ between an edge e and an edge f of G can be assigned
to either e or f , and no edge of G is assigned with more than k crossings.

Consider any subset A′ of A, and let B′ = N(A′) be the neighborhood of A′

in B. We claim that |A′| ≤ |B′|. Let E′ ⊆ EH denote the edges between A′ and
B′. By construction every vertex in A has degree 2k, and hence |E′| ≥ 2k|A′|.
On the other hand, every vertex in B has degree at most 2k as every edge of G
has at most 2k crossings, and hence |E′| ≤ 2k|B′|. Hence |A′| ≤ |B′| as claimed.

By Hall’s theorem, it now follows that H admits a matching from A into B,
which corresponds to an assignment of gaps in Γ such that no edge has more
than k gaps, i.e., Γ is a k-gap-planar drawing. �

To conclude the proof of Theorem 7, we should prove that for every k ≥ 1,
there is a k-gap-planar graph that is not 2k-planar. A stronger result holds:
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Lemma 7. For every k ≥ 1, there exists a 1-gap-planar graph Gk that is not
k-planar.

7 Conclusions and Open Problems

We introduced k-gap-planar graphs, our results give rise to several questions for
future research. Among them are: (i) We proved that k-gap-planar graphs have
O(

√
k ·n) edges, and that 1-gap-planar graphs have at most 5n−10 edges, which

is a tight bound. Can we establish a tight bound also for 2-gap-planar graphs?
(ii) We proved that Kn is 1-gap-planar if and only if n ≤ 8. A similar charac-
terization could be studied also for complete bipartite graphs. Note that K5,7 is
not 1-gap-planar since it has crossing number greater than its number of edges,
while we can exhibit a 1-gap-planar drawing of K5,6. It is open whether K6,6

is 1-gap-planar. Similarly, K3,12 (Fig. 3(b)) and K4,8 are 1-gap-planar, while we
ask if this is true also for K3,13 and K4,9. (iii) We proved that deciding whether a
graph is 1-gap-planar is NP-complete, even if the rotation system is fixed. Does
the problem become polynomial for drawings in which all vertices are on the
outer boundary? (iv) We proved that a drawing with at most 2k crossings per
edge is k-gap-planar, and that a k-gap-planar drawing does not contain 2k + 2
pairwise crossing edges. Do 1-gap-planar graphs have RAC drawings with at
most 1 or 2 bends per edge?
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38. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

39. Picard, J.C., Queyranne, M.: A network flow solution to some nonlinear 0 − 1
programming problems, with applications to graph theory. Networks 12(2), 141–
159 (1982)

40. Venkateswaran, V.: Minimizing maximum indegree. Discr. Appl. Math. 143(13),
374–378 (2004)

41. Zarankiewicz, C.: On a problem of P. Turan concerning graphs. Fund. Math. 41(1),
137–145 (1955)

http://shonan.nii.ac.jp/shonan/blog/2015/11/15/3972/
http://shonan.nii.ac.jp/shonan/blog/2015/11/15/3972/
http://arxiv.org/abs/org/abs/1403.6184
https://doi.org/10.1007/978-3-319-68705-6_5
https://doi.org/10.1007/978-3-319-68705-6_5
http://CEUR-WS.org

	Gap-Planar Graphs
	1 Introduction
	2 Preliminaries and Basic Results
	3 Density of k-gap-planar Graphs
	4 1-gap-planar Drawings of Complete Graphs
	5 Recognizing 1-gap-planar Graphs
	6 Relationship Between k-gap-planar Graphs and Other Families of Beyond Planar Graphs
	7 Conclusions and Open Problems
	References




