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Abstract. We initiate the study of the vertex-ply of straight-line draw-
ings, as a relaxation of the recently introduced ply number. Consider the
disks centered at each vertex with radius equal to half the length of the
longest edge incident to the vertex. The vertex-ply of a drawing is deter-
mined by the vertex covered by the maximum number of disks. The main
motivation for considering this relaxation is to relate the concept of ply
to proximity drawings. In fact, if we interpret the set of disks as proximity
regions, a drawing with vertex-ply number 1 can be seen as a weak prox-
imity drawing, which we call empty-ply drawing. We show non-trivial
relationships between the ply number and the vertex-ply number. Then,
we focus on empty-ply drawings, proving some properties and studying
what classes of graphs admit such drawings. Finally, we prove a lower
bound on the ply and the vertex-ply of planar drawings.

1 Introduction

Constructing graph layouts that are readable and easily convey the information
hidden in the represented data is one of the main goals of graph drawing research.
Several aesthetic criteria have been defined to capture the user requirement for a
better understanding of the data, e.g., resolution rules [13,18], low-density [14],
proximity drawings [17]. The ply number [10] of a graph is another such criterion.
We adopt the following notation: given a straight-line drawing Γ of a graph
G = (V,E), for each vertex v ∈ V consider an open disk Dv (called the ply-disk
of v) centered at v with radius rv equal to half of the length of the longest edge
incident to v. Over all points p on the plane, let k be the maximum number of
ply-disks of Γ that include the point p in their interior. Then, the drawing Γ
has ply k. The ply number of G is the minimum ply over all its drawings.

The ply number was originally proposed by Eppstein and Goodrich [12] in the
context of interpreting road networks as subgraphs of disk-intersection graphs.
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Fig. 1. (a) Gabriel, (b) Relative-neighborhood, and (c) Ply proximity regions.
(d) A disconnected empty-ply graph. (e) A non-planar empty-ply drawing.

The concept of a ply number is also related to proximity drawings of graphs [17].
A proximity drawing of a graph G is a straight-line drawing of G in which for
every two vertices u and v, there exists a region of the plane, called proximity
region of u and v, that contains other vertices in its interior if and only if u
and v are not connected by an edge in G. If G admits a proximity drawing,
then it is a proximity graph. A proximity region specifies a set of points in
the plane that are closer to u and v than to the other vertices, and different
proximity regions lead to different definitions of proximity drawings. Regions
can be global, e.g., Euclidean minimum spanning trees [19], or local, e.g., Gabriel
graphs [15] (Fig. 1a), relative-neighborhood graphs [20] (Fig. 1b), and Delaunay
triangulations [8,19]. Proximity drawings of graphs are also studied in the weak
model [9], where the “if” part of the condition is neglected: i.e., if two vertices
are not connected by an edge, then their proximity region may be empty.

In this work, we are interested in deepening the study of the relationship
between the notions of ply number and of proximity drawings. In this direction,
one can consider the local proximity region associated with a pair of vertices
u and v as the one composed of the disks centered at u and at v, with radius
equal to half of the length of the straight-line segment between u and v (Fig. 1c).
Due to the possible absence of edges, this is a weak proximity model. However,
a drawing Γ may have ply larger than 1 even if no proximity region contains
a vertex different from the two which defined it, since the ply of Γ is only
determined by the way in which different regions intersect each other.

To improve this relationship, we relax the definition of ply number and intro-
duce the concept of vertex-ply number. Consider a straight-line drawing Γ of a
graph G. Over all vertex-points p on the plane (i.e., points which realize a vertex
of G), let k be the maximum number of ply-disks of Γ that include the point p
in their interior. Then, the drawing Γ has vertex-ply k. The vertex-ply number of
G is the minimum vertex-ply over all its drawings. In the special case in which
Γ has vertex-ply 1, i.e., every disk Dv contains only v in its interior, we say that
Γ is an empty-ply drawing. Note that an empty-ply drawing is in fact a weak
proximity drawing with respect to the proximity region defined above, that is, a
drawing is empty-ply if and only if all the proximity regions are empty.

Some relationships between proximity models are known, e.g., any Delaunay
triangulation contains a Gabriel graph as a spanning subgraph, which in
turn contains a relative-neighborhood graph, which in turn contains a
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minimum spanning tree [17]. It is hence natural to ask about the role of empty-
ply drawings in these relationships. We first note that an empty-ply drawing may
be non-planar (see Fig. 1e), which is not the case for Delaunay triangulations,
and thus for any of the other type of proximity drawings. On the other hand,
there exist empty-ply drawings that are not connected and that cannot be made
connected by just adding edges while maintaining the empty-ply property (see
Fig. 1d), which differs from the case for minimum spanning trees (and thus for
all the other proximity drawings). These two observations imply that empty-ply
drawings are not directly comparable with other types of disk-based proximity
drawings.

The concept of empty-ply is related to partial edge drawings (PEDs) [4–6].
A PED is a straight-line drawing of a graph in which each edge is divided into
three segments: a middle part that is not drawn and the two segments incident
to the vertices, called stubs, that remain in the drawing and that are not allowed
to cross. Our Theorem 2 in Sect. 3 shows that an empty-ply drawing also yields
a PED whose stubs have nontrivial lengths.

Drawing graphs with low ply was first considered by Di Giacomo et al. [10].
They show that testing whether an internally triangulated biconnected planar
graph has ply number 1 can be done in O(n log n) time and that the class of
graphs with ply number 1 coincides with unit-disk contact graphs [3], which
makes the recognition problem NP-hard. Angelini et al. [1] studied area require-
ments of drawings of trees with low ply. De Luca et al. [7] performed an experi-
mental study demonstrating correlations between the ply of a drawing and aes-
thetic metrics such as stress and uniform edge-lengths. An interactive tool has
been implemented by Heinsohn and Kaufmann [16].

We first demonstrate non-trivial relationships between the ply number and
the vertex-ply number of graphs. In Sect. 2 we positively answer a question
from [10] (Problem 4) regarding whether the ply number of an empty-ply draw-
ing is constant. In Sect. 3 we study properties of empty-ply graphs. In Sect. 4 we
provide several classes of graphs that admit empty-ply drawings and some classes
that do not (we consider k-ary trees, complete (bipartite) graphs, and squares
of graphs with ply number 1). Further, in Sect. 5 we answer another question
posed in [10] (Problem 3), regarding the relationship between (vertex-) ply and
crossings, by presenting graphs that admit drawings with constant ply and only
3 crossings but any corresponding planar drawing requires linear ply. We con-
clude in Sect. 6 with several open problems. For space reasons, some proofs have
been sketched or omitted. Complete proofs can be found in the full version of
the paper [2].

2 Relationships Between Ply and Vertex-Ply

We start with a natural question about the relationship between the ply number
and the vertex-ply number of a graph.
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Fig. 2. (a) Illustration for the proof of Theorem 1. (b) An empty-ply drawing of a star
of degree 24. For readability, edges are not drawn.

Theorem 1. The ply of a drawing of a graph with vertex-ply h is at most 5h.

Proof. Let Γ be any drawing of a graph G with vertex-ply h. Let p be any point
in the plane and let v1, . . . , vk be the vertices whose ply-disks contain p in their
interior, appearing in this radial order around p; see Fig. 2a. Without loss of
generality, assume that v1 is the vertex closest to p. Let l be the line through p
and v1, and let l′ and l′′ be two lines through p creating angles π

3 and −π
3 with l.

These lines determine a covering of the plane by six closed wedges A1, . . . , A6

centered at p, each having π
3 as its internal angle.

Let A1 and A2 be the wedges delimited by the half-line starting at p and
passing through v1. For each vertex vi ∈ A1 ∪ A2 we have ∠v1pvi ≤ π

3 . This
implies that |v1vi| ≤ |vip| and hence that v1 belongs to the ply-disk Dvi

, since
p belongs to Dvi

. Thus, if the union of the closed wedges A1 and A2 contains
at least h vertices among v2, . . . , vk, we obtain that v1 belongs to at least h + 1
ply-disks. This is not possible, since Γ has vertex-ply h.

We now prove that each wedge Ai with 3 ≤ i ≤ 6 contains at most h vertices
among v2, . . . , vk. Namely if it contains at least h + 1 vertices we can argue as
above that the closest vertex to p among them belongs to the ply-disks of all
the other h vertices. This completes the proof of the theorem that there exist at
most 5h vertices whose ply-disks enclose p. ��

Corollary 1. The ply of an empty-ply drawing of a graph is at most 5.

Note that the converse of Corollary 1 does not hold. If a graph G does not
admit any empty-ply drawing, that does not imply that the ply number of G
is larger than 5. A star graph with degree larger than 24 does not have an
empty-ply drawing (see Theorem 3), but can be drawn with constant ply 2 [10].

3 Properties of Graphs with Empty-Ply Drawings

Let Γ be a straight-line drawing of a graph G. Let {D′
v, v ∈ V } be the set of

open disks where D′
v is centered at v, but with radius only rv

2 . We can think of



28 P. Angelini et al.

these disks as obtained by shrinking the original ply-disks of Γ to half-length
radius. Note that if Γ is an empty-ply drawing, then the disks in {D′

v, v ∈ V }
are pairwise disjoint. This observation implies the next result.

Lemma 1. In an empty-ply drawing Γ of a graph G = (V,E) the sum of the
areas of all ply-disks {Dv, v ∈ V } does not exceed 4 times the area of their union.

Proof. Each disk D′
v has area four times smaller than Dv, but is drawn inside

the union of all ply-disks.

In the rest of the paper we frequently use disk-packing arguments based
on Lemma 1. Another consequence of the observation above is a relationship
between empty-ply drawings and the most popular type of PED, called 1

4 -
SHPED [5], in which the length of both stubs of an edge e is 1

4 of e’s length.

Theorem 2. An empty-ply graph admits a 1
4 -SHPED.

Proof. Let Γ be an empty-ply drawing of a graph G = (V,E) with the set of
disks {D′

v, v ∈ V }. Let Γ ′ be the drawing obtaining from Γ by keeping for each
edge (u, v) only the two parts in the interior of disks D′

u and D′
v. By definition,

both these parts cover at least 1
4 of (u, v). Since no two such disks overlap, there

is no crossing in Γ ′, and the statement follows. ��
We now focus on the relationship between the radii of the ply-disks of adja-

cent vertices in an empty-ply drawing. For the following two lemmas we use that
for each vertex v, and for each edge (v, w) incident to v, we have rv ≤ |vw|, as
the drawing is empty-ply, and rv ≥ |vw|

2 , by the definition of the ply-disk Dv.

Lemma 2. In an empty-ply drawing, for any two edges (u, v) and (v, w) incident
to the same vertex v, we have 1

2 ≤ |uv|
|vw| ≤ 2.

Lemma 3. In an empty-ply drawing, the radii of the ply-disks of two adjacent
vertices u and v differ by at most a factor of 2, i.e., 1

2 ≤ ru

rv
≤ 2.

We conclude the section by presenting a tight bound on the maximum degree
of graphs that admit empty-ply drawings.

Theorem 3. No vertex of an empty-ply graph has degree greater than 24.

Proof. To obtain a contradiction, let Γ be an empty-ply drawing of a graph G
with a vertex v of degree greater than 24. By Lemma 2, the lengths of all edges
of v are in the interval [m, 2m], where m is the length of the shortest edge. Note
that there are at least 13 edge lengths either in the interval [m,

√
2m] or in the

interval [
√

2m, 2m]. In either case, there exist two neighbors u and w of v such
that |vu| ≤ |vw| ≤ √

2|vu| and α = ∠uvw ≤ 2π
13 . Scaling Γ by a factor of |vu|−1,

we may assume w.l.o.g. that |vu| = 1 and that |vw| = q ∈ [1,
√

2]. By the law of
cosines, |uw|2 = 1 + q2 − 2q cos α. As Γ is an empty-ply drawing, the vertex v
does not belong to the open disk centered at w. Hence |uw| ≥ q

2 .
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Fig. 3. (a) Empty-ply drawing K7; note that there are edges drawn on top of each
other. (b) Partition of the region where the vertices of K8 can be placed.

From the above reasoning it follows that q should satisfy the quadratic
inequality q2

4 ≤ 1+q2−2q cos α, which yields that either q ≤ 4 cosα−√
16 cos2 α−12
3

or q ≥ 4 cosα+
√
16 cos2 α−12
3 . This contradicts the fact that q ∈ [1,

√
2], because:

4 cos 2π
13 −

√
16 cos2 2π

13 − 12 .= 2.8 < 3 and 4 cos 2π
13 +

√
16 cos2 2π

13 − 12 .= 4.27 >

4.24 .= 3
√

2. This concludes the proof of the theorem. ��
Note that K1,24 admits an empty-ply drawing with only two different lengths

of edges (see Fig. 2b) and so the degree bound provided in Theorem 3 is tight.

4 Graph Classes with and Without Empty-Ply Drawings

4.1 Complete Graphs

Theorem 4. Graph Kn admits an empty-ply drawing if and only if n ≤ 7.

Proof (sketch). For a contradiction, suppose that K8 has an empty-ply drawing
Γ . Let (x1, x2) be the longest edge of Γ , w.l.o.g. having length 2; assume that x1

and x2 lie on an horizontal line l. Since (x1, x2) is the longest edge, the remaining
six vertices lie in the intersection of two disks centered at x1 and x2, respectively,
with radius 2; also, by Lemma 2, they lie outside the two disks centered at x1

and x2 with radius 1; see Fig. 3b. This defines two closed regions in which these
vertices lie: one above l and one below.

Using two circles centered in x1 and x2 with radius
√

2, we partition each
of these two regions into four closed subregions, called A+, B+, C+,D+ and
A−, B−, C−,D−, where the apex + or − indicates the region above or below l,
respectively. Namely, any point in the interior of A+ ∪ A− (of D+ ∪ D−) has
distance larger (smaller) than

√
2 from both x1 and x2; while any point in the

interior of B+ ∪ B− (of C+ ∪ C−) has distance smaller (larger) than
√

2 from
x1 and distance larger (smaller) than

√
2 from x2.

We show that any placement of the six remaining vertices in these regions leads
to a contradiction. We denote by |Xy|, with X ∈ {A,B,C,D} and y ∈ {+,−},
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(a) (b) (c)

Fig. 4. Empty-ply drawing of (a) K2,12, (b) K3,9, and (c) K4,6. Note that the drawing
of K4,6 has edges drawn on top of each other.

the number of vertices in Xy. First note that each region can contain at most one
vertex, except for D+ and D−, which may contain two vertices. In fact, if we place
any vertex w in a region Xy, with X ∈ {A,B,C} and y ∈ {+,−}, then the ply-
disk Dw of w (defined, at least by the distance to x1, x2) covers the entire region
Xy. Regions D+ and D−, on the other hand, have area with height 1 and width
0.5. Let w ∈ D+ be the point at distance

√
2 from both x1 and x2 and Dw be its

ply-disk. Then, set D+ \Dw defines an area with diameter at most 1
3 and it is not

sufficient to place more than one vertex, since the ply disks would have at least a
radius 0.5.

Combining the placement of the vertices in different regions, we can use
similar arguments to prove that |D+ ∪ D−| ≤ 3 and |A+ ∪ A−| ≤ 1. Also, if
|A+| = 1 (resp. |A−| = 1), then |D−| ≤ 1 (resp. |D+| ≤ 1). Thus, if |A+∪A−| = 1
then |D+ ∪ D−| ≤ 2. Also, if |A+| = 1 (resp. |A−| = 1) and |B−| = 1 (resp.
|B+| = 1) then either |B+| = 0 or |C+| = 0 (resp. |B−| = 0 or |C−| = 0), i.e.,
|B+ ∪C+| ≤ 1 (resp. |B− ∪C−| ≤ 1). By symmetry, if |A+| = 1 (resp. |A−| = 1)
and |C−| = 1 (resp. |C+| = 1) then either |B+| = 0 or |C+| = 0 (resp. |B−| = 0
or |C−| = 0), i.e., |B+∪C+| ≤ 1 (resp. |B− ∪C−| ≤ 1). Hence, if |A+ ∪A−| = 1,
the other regions cannot contain 5 vertices.

The final case where |A+ ∪ A−| = 0 directly implies the claim for K9. To
prove this for K8 we can see that if |B−| = 1 and |C+| = 1 (resp. |B+| = 1
and |C−| = 1), then |D+ ∪ D−| ≤ 1, which again leads to a contradiction.
To conclude the proof, we present an empty-ply drawing for K7 in Fig. 3a. We
strongly believe that this drawing is unique.

4.2 Complete Bipartite Graphs

We now consider complete bipartite graphs. For proof-by-picture of the next
theorem see Fig. 2b and Figs. 4a–c.

Theorem 5. Graphs K1,24, K2,12, K3,9, and K4,6 admit empty-ply drawings.

Note that Theorem 3 implies that K1,25 does not admit any empty-ply draw-
ing, and hence this is true for any complete bipartite graph Kn,m with n or m
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greater than 24. This leaves a wide open gap between the upper bounds on the
values of n and m, and the lower bounds from Theorem 5.

For K2,m, we give a negative result for m ≥ 15 in the following theorem
based on arguments similar to those in Theorem 4.

Theorem 6. Graph K2,m with m ≥ 15 does not admit any empty-ply drawing.

4.3 Trees of Bounded Degree

A d-ary tree T with k levels is a rooted tree where all vertices at distance less
than k from the root have at most d children and the remaining ones are leaves.
If all the non-leaf vertices have exactly d children, we say that T is complete.
Any tree with maximum degree Δ is a subtree of a (Δ − 1)-ary tree.

Note that binary trees admit empty-ply drawings, as the drawings with
ply 2 constructed by the algorithm in [10] are empty-ply drawings. Applying
Corollary 1 to the class of complete 10-ary trees (which do not admit drawing
with constant ply [1]) shows that they do not admit empty-ply drawing. But we
can prove something stronger.

Theorem 7. For sufficiently large k, the complete 4-ary tree Tk with k levels
admits no empty-ply drawing.

Proof. Assume without loss of generality that k is even and that Tk has an
empty-ply drawing Γ where the ply-disk of the root v0 has unit radius. We
announce that for simplicity the following estimates are not stated in the tightest
form. We will make use of the following consequences of Lemmas 2 and 3:

Claim (A). If a ply-disk of a vertex u in Γ has radius at least 2i, then all the
leaves of the subtree rooted at u have radii at least 22i−k.

Proof. Since ru ≥ 2i, the distance between u and the root is greater than i by
Lemma 3. Thus the path from u to its leaves has length at most k − i. ��
Claim (B). If v is a leaf whose ply-disk has radius rv ∈ (22i−k, 22i−k+2], with
i ∈ {0, k − 1}, then its Euclidean distance from the root is |v0v| ≤ 2i+2.

Proof. Let v0, v1, . . . , vk = v be the path from the root v0 to vk in Tk. Since
rv0 = 1, edge (v0, v1) has length at most 2. Also, by Lemma 2, the lengths of the
edges can grow at most by a factor 2 along the path; hence, |vj−1vj | ≤ 2j for
j ∈ {1, . . . , i}. If we traverse the path in the opposite direction from vk, whose
ply-disk has radius at most 22i−k+2, we get analogously that |vk−j+1vk−j | ≤
2j+2i−k+2 for j ∈ {1, . . . , k − i}.

The total distance is thus bounded by |v0vk| ≤ |v0v1|+|v1v2|+· · ·+|vk−1vk| =∑i
j=1 |vj−1vj | +

∑k−i
j=1 |vk−j+1vk−j | ≤ ∑i

j=1 2j +
∑k−i

j=1 2j+2i−k+2 = 2i+1 − 2 +
2i+1 − 23+2i−k ≤ 2i+2, and the statement follows. ��
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We now distribute the 4k leaves to k sets L0, . . . , Lk−1 (all logarithms binary):

(a) if i ≥ 3 log k then Li = {v : rv ∈ (22i−k, 22i−k+2]}
(b) if i < 3 log k then Li = {v : rv ≤ 26 log k−k and whose largest predecessor u

has radius ru ∈ [2i, 2i+1)}
In the first case, the radii of the leaves in Li are sufficient to obtain a good

bound on enclosing area of the disks in Li. In the other case, the radius on the
enclosing disk for Li mostly depends on the presence of predecessors that are
larger than the root disk.

Some of the sets are empty by the definition, but it is irrelevant to our further
deductions. By pigeonhole principle, either some Li, i ≥ 3 log k satisfies |Li| ≥ 4k

2k

or some Li, i < 3 log k satisfies |Li| ≥ 4k

6 log k , since k+1−3 log k
2k + 3 log k

6 log k ≤ 1 when
k ≥ 3

√
2.

The rough idea behind the distinction of these two cases is that in case a),
when the diameters of leaves are sufficiently large, it suffices to consider twice
smaller proportion than the uniform pigeonhole principle would use and show
that the total area of ply-disks corresponding to leaves of Li is still too large for
an empty-ply drawing Γ . In case b) we use a slightly more elaborate argument
considering also the area of the predecessors of the vertices in Li.

Case (a). Assume that for some i ≥ 3 log k it holds that |Li| ≥ 4k

2k . The total
area occupied by the disks in Li is at least 4k

2kπ42i−k = 8iπ
2k . By Claim (B),

for every v ∈ Li it holds that |v0v| ≤ 2i+1, hence all ply-disks of Li must be
contained in a disk centered at the root of radius 2i+1 + 22i−k+2 ≤ 5 · 2i, since
for i ∈ {0, . . . , k} : i > 2i − k. In particular this disk has area at most 25π4i.

In order to apply Lemma 1, it suffices to choose k large enough such that
8iπ
2k > 4 · 25π4i for all i ≥ 3 log k, i.e., k > 5

√
200 .= 2.9.

Case (b). Assume that for some i < 3 log k it holds |Li| ≥ 4k

6 log k . Any v ∈ Li has
radius smaller than 26 log k−k, as otherwise we would be in case a). To obtain the
maximum distance between v and the root v0 we argue that the first 3 log k disks
along the path from v0 to v may have radius at most 2i+1. Analogously as in
the proof of Claim (B), the j-th predecessor of v has radius at most 26 log k−k+j .
An upper bound of |v0v| ≤ 2i+2(3 log k + 1) is obtained by summing up.

We now consider the subtree T ′ of Tk induced by the vertices of Li and all
their predecessors. Note that the drawing of the entire tree T ′ shall be contained
within a disk of radius 2i+2(3 log k + 1) + 23 log k−k, i.e., in area at most 4i+3π.
On the other hand, by Claim (A), each of the leaves has radius at least 22i−k.
Thus, their total area is at least 4k

6 log k42i−kπ = 8iπ
6 log k .

The number of parents of disks in Li is at least 4k−1

6 log k , each of radius at

least 2i−1, hence they occupy area also bounded from below by 8iπ
6 log k . Thus, all

leaves in Li and all their k − i predecessors occupy space at least 8iπ
6 log k (k − i) ≥

8iπk
12 log k . Again, to apply Lemma 1, it suffices to choose k large enough such that
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8iπk
12 log k > 4 · 64π4i for all non-negative i < 3 log k (in particular for i = 0). A
straightforward calculation verifies that the inequality holds e.g., for k ≥ 216.

For k = 216 one of the two cases applies, which concludes the proof. ��
Theorem 7 leaves open the question for 3-ary trees. We remark that the

algorithm for binary trees [10] adopts a common drawing style: the orthogonal
one with a shrinking factor of 1/2; see also [11]. We prove that this technique
fails for 3-ary trees, for any shrinking factor in (0, 1).

Theorem 8. Rooted ternary trees do not admit empty-ply drawings constructed
in orthogonal fashion with shrink factor q for any q ∈ (0, 1), i.e., when the
distance from a vertex to its children is q times the distance to its parent.

4.4 Graph Squares

The square of a graph G is the graph obtained from G by adding an edge between
each vertex and the neighbors of its neighbors.

Theorem 9. Let G2 be the square of a graph G. If G admits a drawing with
ply 1, then G2 admits an empty-ply drawing. Also, if G is a subgraph of a trian-
gular tiling, then G2 admits an empty-ply drawing with ply at most 4.

Proof. Let Γ be a straight-line drawing of G with ply 1. As proved in [10], all
the edges of G have the same length, say 1, in Γ , and every two non-adjacent
vertices are at distance at least 1 from each other. Hence, adding the edges of
G2 \ G to Γ produces a drawing Γ 2 of G2 in which each edge has length at
most 2. This implies that every ply-disk has radius at most 1 in Γ 2, and thus
Γ 2 is an empty-ply drawing. Note that Γ 2 may contain edge overlaps.

For the second part of the statement, recall that if G is a subgraph of a
triangular tiling, then it admits a drawing Γ in which all edges have the same
length and all the angles are multiples of π

3 . Hence, Γ has ply 1. Also the drawing
Γ 2 obtained by adding the additional edges of G2 \ G to Γ is an empty-ply
drawing. In this case, however, we can also prove that the ply of Γ 2 is at most 4;
recall that an upper bound of 5 to the ply of Γ 2 is already implied by Corollary 1.

W.l.o.g. let the triangular tiling be of unit edge length. Consider the open
disk of unit radius, which is centered at an arbitrary point p on the plane. If p is
not a vertex of the triangular tiling, at most four vertices of the triangular tiling
may fall in this disk. In the case where p is a vertex of the triangular tiling, no
other vertex of the tiling falls in the disk, but only on its boundary. Thus, any
point p can be internal to at most four ply-disks of the tiling vertices. ��

5 Ply and Vertex-Ply of Planar Drawings

In the original paper on the ply number it was observed that considering only
plane graph drawings may prevent finding low ply non-plane drawings [10]. In
particular, for the class of nested-triangles graphs the “most natural” planar
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(a) (b) (c)

Fig. 5. Nested triangles graph: (a) “The most natural” drawing. (b) A non-planar
drawing with ply 5. (c) A planar drawing with ply 4. The disks of three vertices at the
same level do not properly overlap, and disks at levels i and i + 3 do not overlap.

drawing has ply Ω(n) (see Fig. 5a), while there exist non-planar drawings (with
edge overlaps) with ply 5 (see Fig. 5b). Note that however a “less natural” planar
drawing with ply 4 can always be constructed; see Fig. 5c.

We strengthen this observation by providing a planar 3-tree G admitting a
non-planar drawing (with only 3 crossings) with ply 5, such that any planar
drawing of G has ply Ω(n); the same linear lower bound holds even for vertex-
ply when the outer face is fixed. Recall that a planar 3-tree can be constructed,
starting from a 3-cycle, by repeatedly adding a vertex inside a triangular face
and connecting it to all three vertices of this face.

Our result also gives a negative answer to an open question posed in [10] on
whether there exists a relationship between the number of crossings and the ply
number of a drawing. Our example shows that one can reduce the ply number
from Ω(n) to O(1), by introducing only O(1) crossings.

Theorem 10. There exists an n-vertex planar 3-tree G such that any planar
drawing of G with a fixed outer face has vertex-ply Θ(n), and hence ply Θ(n),
while G admits a drawing with ply 5 and vertex-ply 4 with three edge crossings.

Proof. Graph G has three vertices v1, v2, and v3 on the outer face, and a vertex
u that is connected to all of v1, v2, and v3. Refer to Fig. 6a. In addition, it
contains three paths x1, . . . , xm, y1, . . . , ym, and z1, . . . , zm, each on m = n−4

3
vertices. The edge set further contains edges (u, x1), (u, y1), (u, z1) and also
(xi, v1), (xi, v2), (yi, v2), (yi, v3), (zi, v1), (zi, v3) for each i ∈ {1, . . . , m}.

Consider any planar drawing Γ of G. Suppose, w.l.o.g., that (v1, v2) is of unit
length and that it is the longest edge in Γ among the three edges incident to
the outer face, that is, |v2v3|, |v1v3| ≤ 1. Since vertex u lies inside the triangle
v1v2v3, we have |uv1|, |uv2| < 1. Hence, it is possible to cover the whole region of
the plane delimited by triangle uv1v2 with a set of 28 disks, each having radius
1
8 , as illustrated in Fig. 6b. Thus, at least one disk D out of these 28 contains in
its interior at least m

28 = n−4
84 vertices out of x1, . . . , xm.

Consider any vertex xi ∈ D. Since xi is connected to both v1 and v2, the
longest of its incident edges has length at least 1

2 , and hence the radius of the
ply-disk of xi is at least 1

4 . Hence the ply-disk of xi entirely contains the disk D
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Fig. 6. (a) The planar 3-tree G in the proof of Theorem 10. (b) A set of 28 disks
of radius 1

8
covering the whole region delimited by triangle uv1v2 when |v1v2| = 1 >

|uv1|, |uv2|. (c) A non-planar drawing of G with ply 5 and vertex-ply 4.

in its interior, and thus it contains all the vertices inside it. Since this is true for
all the n−4

84 vertices inside D, the first part of the statement follows.
A non-planar drawing of G with ply 5 and vertex-ply 4 is depicted in Fig. 6c.

Here vertices v1, v2 and v3 form an equilateral triangle with barycenter u. Vertices
x1, . . . , xm are arranged along the axis of the segment v1v2 at distances growing
exponentially by a factor of 2, analogously for vertices y1, . . . , ym and z1, . . . , zm.
The disk Du overlaps with Dx1 , Dy1 , and Dz1 , without enclosing these vertices.
The drawing of the subset of vertices {u, x1, y1, z1} is empty-ply and of ply 2.
After considering the remaining vertices, the disks of v1, v2, v3 may contain all
of them in their interior. Thus we obtain ply 5 and vertex-ply 4.

6 Conclusions and Future Work

We defined and studied the vertex-ply of a straight-line drawing, paying partic-
ular attention to the special case of empty-ply drawings, whose vertex-ply is 1.
We conclude with several natural open problems.

1. We know that binary trees admit empty-ply drawings [10] and that 4-ary
trees do not (Theorem 7). What about 3-ary trees? Note that Theorem 8
rules out a large class of possible drawings (orthogonal and shrinking).

2. Another way of generalizing binary trees is to maintain the degree restriction,
leading to the question: do (planar) max-degree-3 graphs admit empty-ply
drawings?

3. In Theorem 9 we proved that the square G2 of a graph G with ply 1 admits
an empty-ply drawing, which has ply at most 5 by Corollary 1. On the other
hand, if G is a subgraph of a triangular tiling, then the empty-ply drawing
of G2 has ply at most 4. Does the square of every graph with ply 1 admit an
(empty-ply) drawing with ply 4? Note that there are ply 1 graphs that are
not subgraphs of a triangular tiling.

4. Looking at empty-ply drawings from the proximity perspective, it is natural
to consider the generalization in which ply-disks do not need to be empty,
but can contain at most k vertices. We call a drawing with this property
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a k-empty-ply drawing, in compliance with the definition of k-Gabriel and
k-relative-neighborhood drawings [17]. With the argument of Theorem 10
there exist n-vertex graphs whose any planar drawing is Ω(n)-empty-ply.

5. In Theorem 4 we proved a tight bound of 7 on the size of complete graphs
admitting empty-ply drawings. For complete bipartite graphs Kn,m, we have a
tight bound of m = 24, for n = 1, and an almost tight bound of 12 ≤ m ≤ 14,
for n = 2, with larger gaps between the bounds for larger values of n.
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