
Fabrizio Frati
Kwan-Liu Ma (Eds.)

 123

LN
CS

 1
06

92

25th International Symposium, GD 2017
Boston, MA, USA, September 25–27, 2017
Revised Selected Papers

Graph Drawing
and Network Visualization

Lecture Notes in Computer Science 10692

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Fabrizio Frati • Kwan-Liu Ma (Eds.)

Graph Drawing
and Network Visualization
25th International Symposium, GD 2017
Boston, MA, USA, September 25–27, 2017
Revised Selected Papers

123

Editors
Fabrizio Frati
Roma Tre University
Rome
Italy

Kwan-Liu Ma
University of California
Davis, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-73914-4 ISBN 978-3-319-73915-1 (eBook)
https://doi.org/10.1007/978-3-319-73915-1

Library of Congress Control Number: 2017963772

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-5987-8713
http://orcid.org/0000-0001-8086-0366

Preface

This volume contains the papers presented at the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017), which was held September
25–27, 2017, in Boston, Massachusetts, USA. Graph drawing is concerned with the
geometric representation of graphs and constitutes the algorithmic core of network
visualization. Graph drawing and network visualization are motivated by applications
where it is crucial to visually analyze and interact with relational datasets.
Information about the conference series and past symposia is maintained at
http://www.graphdrawing.org. The 2017 edition of the conference was hosted by
Northeastern University, with Cody Dunne and Alan Keahey as co-chairs of the
Organizing Committee. The conference sessions took place in the Pavillion room of the
Northeastern University Alumni Center at Columbus Place. A total of 85 participants
attended the conference.

Regular papers could be submitted to one of two distinct tracks: Track 1 for papers
on combinatorial and algorithmic aspects of graph drawing and Track 2 for papers on
experimental, applied, and network visualization aspects. Short papers were reserved a
separate category, which welcomed both theoretical and applied contributions. An
additional track was devoted to poster submissions. All the tracks were handled by a
single Program Committee. In response to the call for papers, the Program Committee
received a total of 107 submissions, consisting of 87 papers (35 in Track 1, 31 in Track
2, and 21 in the short paper category) as well as 20 posters. More than 320 expert
reviews were provided, roughly a third of which were contributed by external
reviewers. After extensive electronic discussions, the Program Committee selected 43
papers and 16 posters for inclusion in the scientific program of GD 2017. This resulted
in an overall paper acceptance rate of 49% (65% in Track 1, 35% in Track 2, and 42%
in the short paper category). This year it became mandatory for authors to publish an
electronic version of their accepted papers on the ArXiv repository; a conference index
with links to these contributions was made available before the conference.

There were two keynote talks at GD 2017. Timothy M. Chan, from the University of
Illinois at Urbana-Champaign, USA, showed us how to have “Fun with Recursion and
Tree Drawings.” Alessandro Vespignani, from the Northeastern University, USA,
talked about methods for “Mapping the Next Pandemic.” Abstracts of both talks are
included in the proceedings.

Springer sponsored awards for the best papers in Track 1 and Track 2, plus a best
presentation award and a best poster award. As a result of a vote taken by the Program
Committee, the award for the best paper in Track 1 was assigned to “Ordered Level
Planarity, Geodesic Planarity, and Bi-Monotonicity” by Boris Klemz and Günter Rote,
and the award for the best paper in Track 2 was assigned to “Revisited Experimental
Comparison of Node-Link and Matrix Representations” by Mershack Okoe, Radu
Jianu and Stephen Kobourov. The participants of the conference voted as the best
presentation the one given by Philipp Kindermann for the paper “Experimental

Analysis of the Accessibility of Drawings with Few Segments” and as the best poster
the one by Theresa Fröschl and Martin Nöllenburg entitled “Minimizing Wiggles in
Storyline Visualizations.” Congratulations to all the award winners for their excellent
contributions!

Following the tradition, the 24th Annual Graph Drawing Contest was held during
the conference. The contest was divided into two parts – the creative topics and the live
challenge – each with two categories, automatic and manual. The creative topics fea-
tured two graphs, one about citations among papers from previous GD symposia and
one about human metabolism. The live challenge focused on maximizing the minimum
crossing angle in straight-line drawings. Awards were given in each of the four cate-
gories. We thank the Contest Committee for preparing interesting and challenging
contest problems. A report about the contest is included in the proceedings.

Many people and organizations contributed to the success of GD 2017. We would
like to thank the Program Committee members and the external reviewers for carefully
reviewing and discussing the submitted papers and posters; this was crucial for putting
together a strong and interesting program. Thanks to all the authors who chose GD
2017 as the publication venue for their research. The Organizing Committee did a
terrific job; a big thanks goes to Cody Dunne and Alan Keahey, who co-chaired the
committee, as well as to the other local organizers and volunteers. GD 2017 thanks the
“gold” sponsor Tom Sawyer Software, the “silver” sponsor yWorks, and the “bronze”
sponsor Springer. Their generous support helps to ensure the continued success of this
conference.

The 26th International Symposium on Graph Drawing and Network Visualization
(GD 2018) will take place in September 2018 in Barcelona, Spain. Therese Biedl and
Andreas Kerren will co-chair the Program Committee, Vera Sacristán and Rodrigo
Silveira will co-chair the Organizing Committee.

November 2017 Fabrizio Frati
Kwan-Liu Ma

VI Preface

Organization

Steering Committee

Therese Biedl University of Waterloo, Canada
Giuseppe Di Battista Università Roma Tre, Italy
Fabrizio Frati Università Roma Tre, Italy
Andreas Kerren Linnaeus University, Sweden
Michael T. Goodrich University of California at Irvine, USA
Yifan Hu Yahoo Research, USA
Giuseppe Liotta (Chair) Università di Perugia, Italy
Kwan-Liu Ma University of California at Davis, USA
Martin Nöllenburg Technische Universität Wien, Austria
Roberto Tamassia Brown University, USA
Ioannis G. Tollis FORTH-ICS and University of Crete, Greece
Alexander Wolff Universität Würzburg, Germany

Program Committee

Daniel Archambault Swansea University, UK
Benjamin Bach University of Edinburgh, UK
Fabian Beck Universität Duisburg-Essen, Germany
Michael Bekos Universität Tübingen, Germany
Therese Biedl University of Waterloo, Canada
Giordano Da Lozzo University of California at Irvine, USA
Vida Dujmović University of Ottawa, Canada
Stephane Durocher University of Manitoba, Canada
Tim Dwyer Monash University, Australia
Fabrizio Frati (Co-chair) Università Roma Tre, Italy
Martin Gronemann Universität zu Köln, Germany
John Alexis Guerra Gómez Los Andes University, Colombia, and Berkeley, USA
Michael Hoffmann ETH Zürich, Switzerland
Yifan Hu Yahoo Research, USA
Takayuki Itoh Ochanomizu University, Japan
Anna Lubiw University of Waterloo, Canada
Kwan-Liu Ma (Co-chair) University of California at Davis, USA
Fabrizio Montecchiani Università di Perugia, Italy
Martin Nöllenburg Technische Universität Wien, Austria
Arnaud Sallaberry LIRMM, France
Andrew Suk University of Illinois at Chicago, USA
Antonios Symvonis National Technical University of Athens, Greece
Ioannis Tollis FORTH-ICS and University of Crete, Greece
Csaba Tóth California State University Northridge, USA

Alexander Wolff Universität Würzburg, Germany
Jian Zhao FX Palo Alto Lab, USA

Organizing Committee

Cody Dunne Northeastern University, USA
Alan Keahey Conversant, USA

Contest Committee

Philipp Kindermann FernUniversität in Hagen, Germany
Maarten Löffler (Chair) Utrecht University, The Netherlands
Ignaz Rutter Technische Universiteit Eindhoven, The Netherlands
Will Devanny University of California at Irvine, USA

Additional Reviewers

Shivam Agarwal
Marco Angelini
Patrizio Angelini
Alessio Arleo
Alan Arroyo
David Auber
Yeganeh Bahoo
Juan Jose Besa Vial
Carla Binucci
Johannes Blum
Prosenjit Bose
Romain Bourqui
Guido Brückner
Hsien-Chih Chang
Steven Chaplick
Maxime Cordeil
Anthony D’Angelo
Éric Colin de Verdière
William E. Devanny
Emilio Di Giacomo
Walter Didimo
Thomas C. Van Dijk
William Evans
Krzysztof Fleszar
Siwei Fu
Radoslav Fulek
Ellen Gethner
Daniel Gonçalves
Martin Graham

Luca Grilli
Karen Gunderson
Daniel Harabor
Haleh Havvaei
Jose Tiberio Hernandez
Marcel Hlawatsch
Christophe Hurter
Juan C. Ibarra Lopez
Dino Ienco
Veronika Irvine
Timothy Johnson
Sanjay Kairam
Konstantinos Kakoulis
Michael Kaufmann
Philipp Kindermann
Karsten Klein
Stephen Kobourov
Myroslav Kryven
Shahid Latif
Fritz Lekschas
Fabian Lipp
Zhicheng Liu
Andre Löffler
Maarten Löffler
Min Lu
Sven Mallach
Kim Marriott
Fintan Mcgee
Tamara Mchedlidze

Saeed Mehrabi
Debajyoti Mondal
Pat Morin
Lev Nachmanson
Cydney Nielsen
Dömötör Pálvölgyi
Maurizio Patrignani
Michael Pelsmajer
Claire Pennarun
Emmanuel Pietriga
Alexander Pilz
Sergey Pupyrev
Chrysanthi Raftopoulou
Alexander Ravsky
Vincenzo Roselli
Natan Rubin
Ignaz Rutter
Christiane Spisla
Sabine Storandt
Alessandra Tappini
Marc Van Kreveld
Sue Whitesides
Tilo Wiedera
Steve Wismath
Yanhong Wu
Michael Wybrow
Yalong Yang
Wang Yong
Jiawei Zhang

VIII Organization

Sponsors

Gold Sponsor

Silver Sponsor

Bronze Sponsor

Organization IX

Keynote Presentations

Fun with Recursion and Tree Drawings

Timothy M. Chan

Department of Computer Science, University of Illinois at Urbana-Champaign,
USA

tmc@illinois.edu

Abstract. Divide-and-conquer has always been one of my favorite algorithm
design paradigms. In this talk, I will survey existing techniques on drawings of
trees on grids with small area or width, which nicely illustrate the power of
recursive thinking. I will also mention some new improved upper bounds (work
in progress) for certain types of tree drawings. Along the way, we will encounter
a number of interesting functions and recurrences, and plenty of open problems.

Mapping the Next Pandemic

Alessandro Vespignani

College of Computer and Information Science, Northeastern University, USA
a.vespignani@northeastern.edu

Abstract. In the last ten years, we have seen dramatic advances in data col-
lection and availability in a number of areas ranging from pathogen genetic
sequences to human mobility patterns, and social media data. These advances,
often dubbed as the “big data” revolution, have finally lifted many of the lim-
itations affecting epidemic predictive modeling.

The results of these modeling approaches however must be communicated to
policy makers and public health practitioners, possibly lifting the veil of the
mathematical and statistical jargon. For this reason a visual approach to the data
exploration/exploitation is often required. Here I will introduce recent devel-
opment in the field and show some of the challenges to the development of
visualization tools that show commonalities and patterns in emerging health
threats, as well as explore the wide range of possible scenarios that can be used
by policy makers to anticipate trends, evaluate risks, and eventually manage
future pandemics.

Contents

Straight-Line Representations

Aligned Drawings of Planar Graphs . 3
Tamara Mchedlidze, Marcel Radermacher, and Ignaz Rutter

On the Edge-Length Ratio of Outerplanar Graphs . 17
Sylvain Lazard, William Lenhart, and Giuseppe Liotta

On Vertex- and Empty-Ply Proximity Drawings . 24
Patrizio Angelini, Steven Chaplick, Felice De Luca, Jiří Fiala,
Jaroslav Hančl Jr., Niklas Heinsohn, Michael Kaufmann,
Stephen Kobourov, Jan Kratochvíl, and Pavel Valtr

An Interactive Tool to Explore and Improve the Ply Number of Drawings . . . 38
Niklas Heinsohn and Michael Kaufmann

Experimental Analysis of the Accessibility of Drawings
with Few Segments . 52

Philipp Kindermann, Wouter Meulemans, and André Schulz

Obstacles and Visibility

Obstacle Numbers of Planar Graphs . 67
John Gimbel, Patrice Ossona de Mendez, and Pavel Valtr

Grid-Obstacle Representations with Connections to Staircase Guarding 81
Therese Biedl and Saeed Mehrabi

Reconstructing Generalized Staircase Polygons with Uniform Step Length . . . 88
Nodari Sitchinava and Darren Strash

3D Visibility Representations of 1-planar Graphs . 102
Patrizio Angelini, Michael A. Bekos, Michael Kaufmann,
and Fabrizio Montecchiani

Topological Graph Theory

Lombardi Drawings of Knots and Links . 113
Philipp Kindermann, Stephen Kobourov, Maarten Löffler,
Martin Nöllenburg, André Schulz, and Birgit Vogtenhuber

Arrangements of Pseudocircles: Triangles and Drawings 127
Stefan Felsner and Manfred Scheucher

Drawing Bobbin Lace Graphs, or, Fundamental Cycles for a Subclass
of Periodic Graphs . 140

Therese Biedl and Veronika Irvine

Many Touchings Force Many Crossings . 153
János Pach and Géza Tóth

Thrackles: An Improved Upper Bound. 160
Radoslav Fulek and János Pach

Orthogonal Representations and Book Embeddings

On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity
and Kandinsky Drawings . 169

Michael A. Bekos, Henry Förster, and Michael Kaufmann

EPG-representations with Small Grid-Size . 184
Therese Biedl, Martin Derka, Vida Dujmović, and Pat Morin

Mixed Linear Layouts of Planar Graphs. 197
Sergey Pupyrev

Upward Partitioned Book Embeddings. 210
Hugo A. Akitaya, Erik D. Demaine, Adam Hesterberg,
and Quanquan C. Liu

Experimental Evaluation of Book Drawing Algorithms 224
Jonathan Klawitter, Tamara Mchedlidze, and Martin Nöllenburg

Evaluations

Visual Similarity Perception of Directed Acyclic Graphs: A Study on
Influencing Factors . 241

K. Ballweg, M. Pohl, G. Wallner, and T. von Landesberger

GiViP: A Visual Profiler for Distributed Graph Processing Systems 256
Alessio Arleo, Walter Didimo, Giuseppe Liotta,
and Fabrizio Montecchiani

Drawing Big Graphs Using Spectral Sparsification 272
Peter Eades, Quan Nguyen, and Seok-Hee Hong

Revisited Experimental Comparison of Node-Link
and Matrix Representations . 287

Mershack Okoe, Radu Jianu, and Stephen Kobourov

XVI Contents

Tree Drawings

Improved Bounds for Drawing Trees on Fixed Points
with L-Shaped Edges. 305

Therese Biedl, Timothy M. Chan, Martin Derka, Kshitij Jain,
and Anna Lubiw

On Upward Drawings of Trees on a Given Grid . 318
Therese Biedl and Debajyoti Mondal

Simple Compact Monotone Tree Drawings. 326
Anargyros Oikonomou and Antonios Symvonis

Visualizing Co-phylogenetic Reconciliations. 334
Tiziana Calamoneri, Valentino Di Donato, Diego Mariottini,
and Maurizio Patrignani

Graph Layout Designs

Anisotropic Radial Layout for Visualizing Centrality
and Structure in Graphs . 351

Mukund Raj and Ross T. Whitaker

Computing Storyline Visualizations with Few Block Crossings 365
Thomas C. van Dijk, Fabian Lipp, Peter Markfelder,
and Alexander Wolff

MLSEB: Edge Bundling Using Moving Least Squares Approximation. 379
Jieting Wu, Jianping Zeng, Feiyu Zhu, and Hongfeng Yu

Drawing Dynamic Graphs Without Timeslices . 394
Paolo Simonetto, Daniel Archambault, and Stephen Kobourov

Point-Set Embeddings

Colored Point-Set Embeddings of Acyclic Graphs . 413
Emilio Di Giacomo, Leszek Gasieniec, Giuseppe Liotta,
and Alfredo Navarra

Planar Drawings of Fixed-Mobile Bigraphs . 426
Michael A. Bekos, Felice De Luca, Walter Didimo, Tamara Mchedlidze,
Martin Nöllenburg, Antonios Symvonis, and Ioannis G. Tollis

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity 440
Boris Klemz and Günter Rote

Non-crossing Paths with Geographic Constraints . 454
Rodrigo I. Silveira, Bettina Speckmann, and Kevin Verbeek

Contents XVII

Special Representations

Planar L-Drawings of Directed Graphs. 465
Steven Chaplick, Markus Chimani, Sabine Cornelsen,
Giordano Da Lozzo, Martin Nöllenburg, Maurizio Patrignani,
Ioannis G. Tollis, and Alexander Wolff

NodeTrix Planarity Testing with Small Clusters . 479
Emilio Di Giacomo, Giuseppe Liotta, Maurizio Patrignani,
and Alessandra Tappini

The Painter’s Problem: Covering a Grid with Colored
Connected Polygons . 492

Arthur van Goethem, Irina Kostitsyna, Marc van Kreveld,
Wouter Meulemans, Max Sondag, and Jules Wulms

Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count 506
David Eppstein

Beyond Planarity

1-Fan-Bundle-Planar Drawings of Graphs. 517
Patrizio Angelini, Michael A. Bekos, Michael Kaufmann,
Philipp Kindermann, and Thomas Schneck

Gap-Planar Graphs . 531
Sang Won Bae, Jean-Francois Baffier, Jinhee Chun, Peter Eades,
Kord Eickmeyer, Luca Grilli, Seok-Hee Hong, Matias Korman,
Fabrizio Montecchiani, Ignaz Rutter, and Csaba D. Tóth

Beyond Outerplanarity . 546
Steven Chaplick, Myroslav Kryven, Giuseppe Liotta, Andre Löffler,
and Alexander Wolff

The Effect of Planarization on Width. 560
David Eppstein

Contest Report

Graph Drawing Contest Report . 575
William Devanny, Philipp Kindermann, Maarten Löffler,
and Ignaz Rutter

XVIII Contents

Poster Abstracts

Minimizing Wiggles in Storyline Visualizations . 585
Theresa Fröschl and Martin Nöllenburg

Graph Drawing for Formalized Diagrammatic Proofs in Geometry 588
Nathaniel Miller

Drawing Graphs on Few Circles and Few Spheres 591
Myroslav Kryven, Alexander Ravsky, and Alexander Wolff

Counterexample to the Variant of the Hanani–Tutte Theorem
on the Genus-4 Surface . 594

Radoslav Fulek and Jan Kynčl

A Geometric Heuristic for Rectilinear Crossing Minimization 597
Marcel Radermacher, Klara Reichard, Ignaz Rutter,
and Dorothea Wagner

A Note on Plus-Contacts, Rectangular Duals,
and Box-Orthogonal Drawings . 600

Therese Biedl and Debajyoti Mondal

Grid Obstacle Representation of Graphs. 603
Arijit Bishnu, Arijit Ghosh, Rogers Mathew, Gopinath Mishra,
and Subhabrata Paul

Summarizing and Visualizing Graph Ensembles with Rank
Statistics and Boxplots. 606

Mukund Raj, Ian Ruginski, Robert M. Kirby, and Ross T. Whitaker

Planar k-NodeTrix Graphs: A New Family of Beyond Planar Graphs 609
Emilio Di Giacomo, Giuseppe Liotta, Maurizio Patrignani,
and Alessandra Tappini

Towards Characterizing Strict Outerconfluent Graphs 612
Fabian Klute and Martin Nöllenburg

Flattening Polygonal Linkages via Uniform Angular Motion. 615
Hugo A. Akitaya, Matthew D. Jones, Gregory A. Sandoval,
Diane L. Souvaine, David Stalfa, and Csaba D. Tóth

Optimal Compaction of Orthogonal Grid Drawings for Graphs
of Arbitrary Vertex Degrees . 618

Eduardo Santiago Ramos and Adriano Chaves Lisboa

Contents XIX

BCSA: BC Tree-Based Sampling and Visualization of Big Graphs 621
Seok-Hee Hong, Quan Nguyen, Amyra Meidiana, and Jiaxi Li

Low Ply Drawings of Trees of Bounded Degree . 624
Michael T. Goodrich and Timothy Johnson

Which Graph Layout Gives a Good Shape for Large Graphs? 627
Quan Nguyen, Peter Eades, and Seok-Hee Hong

MetagenomeScope: Web-Based Hierarchical Visualization
of Metagenome Assembly Graphs . 630

Marcus Fedarko, Jay Ghurye, Todd Treangen, and Mihai Pop

Author Index . 633

XX Contents

Straight-Line Representations

Aligned Drawings of Planar Graphs

Tamara Mchedlidze1, Marcel Radermacher1(B), and Ignaz Rutter2

1 Department of Computer Science, Karlsruhe Institute of Technology,
Karlsruhe, Germany

mched@iti.uka.de, radermacher@kit.edu
2 Department of Mathematics and Computer Science, TU Eindhoven,

Eindhoven, The Netherlands
i.rutter@tue.nl

Abstract. Let G be a graph embedded in the plane and let A be an
arrangement of pseudolines intersecting the drawing of G. An aligned
drawing of G and A is a planar polyline drawing Γ of G with an arrange-
ment A of lines so that Γ and A are homeomorphic to G and A. We show
that if A is stretchable and every edge e either entirely lies on a pseudo-
line or intersects at most one pseudoline, then G and A have a straight-
line aligned drawing. In order to prove these results, we strengthen the
result of Da Lozzo et al. [5], and prove that a planar graph G and a
single pseudoline L have an aligned drawing with a prescribed convex
drawing of the outer face. We also study the more general version of the
problem where only a set of vertices is given and we need to determine
whether they can be collinear. We show that the problem is NP-hard
but fixed-parameter tractable.

1 Introduction

Two fundamental primitives for highlighting structural properties of a graph in
a drawing are alignment of vertices such that they are collinear and geometri-
cally separating unrelated graph parts, e.g., separating them by a straight line.
Not surprisingly, both these techniques have been previously considered from a
theoretical point of view in the case of planar straight-line drawings.

Da Lozzo et al. [5] study the problem of producing a planar straight-line
drawing of a given embedded graph G = (V,E), i.e., G has a fixed combinatorial
embedding and a fixed outer face, such that a given set S ⊆ V of vertices is
collinear. It is clear that if such a drawing exists, then the line containing the
vertices in S is a simple curve starting and ending at infinity that for each edge
e of G either fully contains e or intersects e in at most one point, which may
be an endpoint. We call such a curve a pseudoline with respect to G. Da Lozzo
et al. [5] show that this is a full characterization of the alignment problem,
i.e., a straight-line drawing where the vertices in S are collinear exists if and

Work was partially supported by grant WA 654/21-1 of the German Research Foun-
dation (DFG).

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 3–16, 2018.
https://doi.org/10.1007/978-3-319-73915-1_1

4 T. Mchedlidze et al.

(a) (b) (c)

Fig. 1. Aligned Drawing (b) of a 2-aligned planar graph (a). The pseudolines R and
B and the corresponding lines in the drawing are drawn red and blue, respectively. (c)
A non-stretchable arrangement of 9 pseudolines, which can be seen as a stretchable
arrangement of 8 pseudolines (grey) and an edge (black solid).

only if there exists a pseudoline L with respect to G that contains the vertices in
S. However testing whether such a pseudoline exists is an open problem, which
we consider in this paper.

Likewise, for the problem of separation, Biedl et al. [1] considered so-called
HH-drawings, where given an embedded graph G = (V,E) and a partition
V = A∪̇B, one seeks a planar drawing of G in which A and B can be separated
by a line. Again, it turns out that such a drawing exists if and only if there exists
a pseudoline L with respect to G such that the vertices in A and B are separated
by L in the sense that they are in different halfplanes. Cano et al. [2] extend the
result to planar straight-line drawings with a given star-shaped outer face.

In particular, the results of Da Lozzo et al. [5] show that given a pseudoline
L with respect to G one can always find a planar straight-line drawing of G such
that the vertices on L are collinear and the vertices contained in the halfplanes
defined by L are separated by a line L. In other words, a topological configuration
consisting of a planar graph G and a pseudoline with respect to G can always
be stretched. In this paper we initiate the study of this stretchability problem
with more than one given pseudoline.

More formally, a pair (G,A) is a k-aligned graph if G = (V,E) is a planar
embedded graph and A = {L1, . . . ,Lk} is an arrangement of (pairwise intersect-
ing) pseudolines with respect to G. If the number k of curves is clear from the
context, we drop it from the notation and simply speak of aligned graphs. For
1-aligned graphs we write (G,L) instead of (G, {L}). Let A = {L1, . . . , Lk} be
a line arrangement and Γ be planar drawing of G. A tuple (Γ,A) is an aligned
drawing of (G,A) if and only if the following properties hold; refer to Fig. 1(a-b).
(i) The arrangement of A is homeomorphic to the arrangement of A (i.e., A is
stretchable), (ii) Γ is homeomorphic to the planar embedding of G, (iii) each line
Li intersects in Γ the same vertices and edges as Li in G, and it does so in the
same order. We focus on straight-line aligned drawings. For brevity, unless stated
otherwise, the term aligned drawing refers to a straight-line drawing throughout
this paper.

Note that the stretchability of A is a necessary condition for the existence of
an aligned drawing. Since testing stretchability is NP-hard [14,15], we assume
that a geometric realization A of A is provided. However, line arrangements
of size up to 8 are always stretchable [10] and only starting from 9 lines

Aligned Drawings of Planar Graphs 5

non-stretchable arrangements exist; see the Pappus configuration [11] in
Fig. 1(c). It is conceivable that in practical applications, e.g., stemming from
user interactions, the number of lines to stretch is small. The same configuration
illustrates an example of an 8-aligned graph with a single edge that does not
have an aligned drawing.

The aligned drawing convention generalizes the problems studied by
Da Lozzo et al. and Biedl et al. who concentrated on the case of a single line.
We study a natural extension of their setting and ask for alignment on general
line arrangements.

In addition to the strongly related work mentioned above, there are sev-
eral other works that are related to the alignment of vertices in drawings.
Dujmović [6] shows that every n-vertex planar graph G = (V,E) has a pla-
nar straight-line drawing such that Ω(

√
n) vertices are aligned, and Da Lozzo

et al. [5] show that in planar treewidth-3 graphs, one can align Θ(n) vertices
and that in treewidth-k graphs one can align Ω(k2) vertices. Chaplik et al. [3]
study the problem of drawing planar graphs such that all edges can be covered
by k lines. They show that it is NP-hard to decide whether such a drawing
exists. Deciding whether there exists a drawing where all vertices lie on k lines
is open [4]. Drawings of graphs on n lines where a mapping between the vertices
and the lines is provided have been studied by Dujmović et al. [7,8].

Contribution & Outline. First we study the topological setting where we are
given a planar graph G and set S of vertices to align in Sect. 3. We show that
the problem is NP-hard but fixed-parameter tractable (FPT) with respect to |S|.
Afterwards in Sect. 4 we consider the geometric setting where we seek an aligned
drawing of an aligned graph. In Sect. 4.2, we strengthen the result of Da Lozzo
et al. and Biedl et al. and show that there exists a 1-aligned drawing of G with a
given convex drawing of the outer face. In Sect. 4.3 we consider k-aligned graphs
with a stretchable pseudoline arrangement, where every edge e either entirely
lies on a pseudoline or intersects with at most one pseudoline, which can either
be in the interior or an endpoint of e. We utilize the previous result to prove that
every such k-aligned graph has an aligned drawing, for any value of k. The proofs
of statements marked with (�) can be found in the full version on arXiv [12].

2 Preliminaries

Let A be a pseudoline arrangement of a set of k pseudolines L1, . . . ,Lk and
(G,A) be an aligned graph. The set of cells in A is denoted by cells(A). A cell
is empty if it does not contain a vertex of G. Removing from a pseudoline its
intersections with other pseudolines gives a set of its pseudosegments.

Let G = (V,E) be a planar embedded graph with a vertex set V and an edge
set E. We call v ∈ V interior if v does not lie on the boundary of the outer
face of G. An edge e ∈ E is interior if e does not lie entirely on the boundary
of the outer face of G. An interior edge is a chord if it connects two vertices on
the outer face. A point p of an edge e is an interior point of e if p is not an

6 T. Mchedlidze et al.

(1, 0,⊥) (1, 0, 0) (2, 1, 0)

Fig. 2. Examples for the alignment complexity of an aligned graph.

endpoint of e. A triangulation is a planar embedded graph whose inner faces are
all triangles and whose outer face is bounded by a simple cycle. A triangulation
of a graph G is a triangulation that contains G as a subgraph. For a graph G
and an edge e of G, not being an edge of a separating triangle, the graph G/e is
obtained from G by contracting e and merging the resulting multiple edges and
removing self-loops. A k-wheel is a wheel graph Wk with k vertices on the outer
face and one interior vertex. Let Γ be a drawing of G and let C be a cycle in G.
We denote with Γ [C] the drawing of C in Γ . A k-aligned triangulation of (G,A)
is a k-aligned graph (GT ,A) with GT being a triangulation of G.

A vertex is Li-aligned (or simply aligned to Li) if it lies on the pseudoline Li.
A vertex that is not aligned is free. An edge e is Li-aligned (or simply aligned) if it
completely lies on Li. Let Ealigned be the set of all aligned edges. An intersection
vertex lies on the intersection of two pseudolines Li and Lj . An edge is i-anchored
(i = 0, 1, 2) if i of its endpoints are aligned to distinct curves. Let Ei be the set
of i-anchored edges; note that, the set of edges is the disjoint union E0 ·∪E1 ·∪E2.
A 0-anchored, 0-crossed, non-aligned edge is also called free. An edge e is (at
most) l-crossed if (at most) l distinct pseudolines intersect e in its interior. A
non-empty edge set A ⊂ E is l-crossed if l is the smallest number such that
every edge in A is at most l-crossed.

The alignment complexity of an aligned graph G in a way describes how “com-
plex” the relationship between the graph G and the line arrangement L1, . . . ,Lk

is and formally is defined as a triple (l0, l1, l2) , where li, i = 0, 1, 2, describes the
“complexity of i-anchored edges”, i.e. it indicates that Ei is at most li-crossed
or has to be empty, if li = ⊥. For example, an aligned graph where every vertex
is aligned and every edge has at most l interior intersections has the alignment
complexity (⊥,⊥, l). For further examples, see Fig. 2.

3 Complexity and Fixed-Parameter Tractability

In this section we deal with the topological setting where we are given a planar
embedded graph G = (V,E) and a subset S ⊂ V to be collinear. According
to Da Lozzo et al. [5], this is equivalent to the existence of a pseudoline L(S)
with respect to G passing exactly through the vertices in S. We refer to this
problem as pseudoline existence problem. Using techniques similar to Fößmeier

Aligned Drawings of Planar Graphs 7

and Kaufmann [9], we can show that the pseudoline existence problem is NP-
hard; see full version [12]. In the following, we show that the pseudoline existence
problem is FPT with respect to |S|. In the first step deal with biconnected
planar embedded graphs only. Additionally to the set of vertices S we require the
pseudoline to pass through a set of faces F . This trick allows us to combine two
independent pseudolines of two biconnected components of a planar embedded
graph. Thus, let additionally G be biconnected and F be a subset of faces of G.
Notice that in case that the vertices of S are not independent, they can only form
a linear forest, i.e., a set of paths, as otherwise there is no pseudoline through the
vertices S with respect to G. Let G� be the dual graph of G (see Fig. 3.a) and
let S′ ⊆ S be the subset of vertices that form end-points of the paths induced
by S. We denote by f a face of G and by f� its dual vertex. An extended dual
G�

e(S, F) is the graph obtained from G� by the following steps. We omit the
parameters (S, F) if they are clear from the context.

Step 1: For each path induced by S that contains exactly one edge, subdivide
the edge by a vertex and add it to S,

Step 2: Place the vertices of S into the corresponding faces of G� and the edges
induced by them (red vertices and edges in Fig. 3(a)).

Step 3: Connect the vertices of S′ to all vertices of the dual face they lie in
(red dashed edges in Fig. 3(a)).

Step 4: For each vertex v ∈ S remove the edges dual to the primal edges
incident to v.

Step 5: Remove all the dual vertices that have in degree zero or one; see
Fig. 3(b).

Step 6: Replace each vertex f� of G� with a clique of the size equal the degree of
f�, each vertex v of this clique corresponds to an edge e∗ incident to a vertex
f�, thus we call it a clique vertex corresponding to e� and denote by cl(f, e�).
For each edge of G�

e that has survived, we connect the two corresponding to
it clique vertices.

Step 7: Recall that F is a set of faces of G. Assume we would like our pseudo-
line to pass through the faces of F . To check for existence of such a pseudoline
we further augment the graph G�

e as follows. For each f ∈ F , additionally
to the clique that is built on face vertices cl(f, e�

1) . . . cl(f, e�
a), correspond-

ing to the edges incident to the dual vertex f , we add a star with a new
center vertex cent(f) that has cl(f, e�

1) . . . cl(f, e�
a) as leaves. Finally, we set

cent(F) = {cent(f) | f ∈ F}.

Lemma 1 (�). Let G = (V,E) be a biconnected planar embedded graph, let
S ⊂ V be a set of vertices that induce a linear forest and let F be a set of faces
of G. There exist an aligned graph (G,L), where L passes through all vertices of
S and faces F if and only if there exists a simple cycle C in the extended dual
G�

e(S, F) through the vertices of S ∪ cent(F).

8 T. Mchedlidze et al.

Fig. 3. A fragment of a graph G (black) and of G�
e(S, F) (gray and red) (a) after Step 3,

(b) after Step 6.

We utilize the following theorem.

Theorem 1 (Wahlström [16]). Given a graph G = (V,E) and a subset
S ⊂ V , it can be tested in O(2|S|poly(n)) time whether a simple cycle through
the vertices in S exists. In affirmative the cycle can be reported within the same
asymptotic time.

Theorem 1 together with Lemma 1 gives a O(2|S|poly(n)) time algorithm to
solve the pseudoline construction problem for the case of biconnected graphs.
We next sketch how this can be extended to general planar graphs.

Lemma 2 (�). Let G = (V,E) be a planar embedded graph, S ⊂ V and c be a
cut vertex of G separating G into subgraphs G1 = (V1, E1) and G2 = (V2, E2).
Let S1 = S ∩ V1 	= ∅ and S2 = S ∩ V2 \ {c} 	= ∅. Let f be the face of G1 where
G2 lies. There exists an aligned graph (G,L(S)) if and only if there exist aligned
graphs (G1,L(S1)) and (G2,L(S2)), such that L(S1) passes through face f .

Utilizing Lemma 2, we can recursively decompose a graph into biconnected
components, check for the pseudoline existence by applying Lemma 1 and
Theorem 1 and glue the pseudolines if they exist. This implies the following:

Theorem 2 (�). Given a planar embedded graph G = (V,E) and a subset S ⊂
V , it can be tested in O(4|S|poly(n)) time whether an aligned graph (G,L(S))
exists.

4 Drawing Aligned Graphs

We show that every aligned graph where each edge either entirely lies on a
pseudoline or is intersected by at most one pseudoline, i.e., alignment complexity
(1, 0,⊥), has an aligned drawing. For 1-aligned graphs we show the stronger
statement that every 1-aligned graph has an aligned drawing with a given aligned
convex drawing of the outer face. We first present our proof strategy and then
deal with 1- and k-aligned graphs.

Aligned Drawings of Planar Graphs 9

v

x y

(b) (c)
qi

vux

y

u

w

v

(d)

v

w

x

y
qi

(e)(a)

cl1 cl2 cl1

u

x

v

Fig. 4. Steps for triangulating aligned graphs (black) with 1-crossed edges (green).

4.1 Proof Strategy

Our general strategy for proving the existence of aligned drawings of an aligned
graph (G,A) is as follows. First, we show that we can triangulate (G,A) by
adding vertices and edges without invalidating its properties. We can thus
assume that our aligned graph (G,A) is an aligned triangulation. Second we
show that, unless G is a specific graph (e.g., a k-wheel or a triangle), it contains
a specific type of edge, namely an edge that is contained in a pseudoline, or an
edge that is not intersected by any of the pseudolines. Third, we exploit the exis-
tence of such an edge to inductively prove the existence of an aligned drawing
of (G,A). Depending on whether the edge is contained in a separating triangle
or not, we either decompose along that triangle or contract the edge. In both
cases the problem reduces to smaller instances that are almost independent. In
order to combine solutions, it is, however, crucial to use the same arrangement
of lines A for both of them.

In the following we introduce the necessary tools used for all three steps on
k-aligned graphs of alignment complexity (1, 0,⊥). Recall, that for this class (i)
every free edge is at most 1-crossed, (ii) every 1-anchored edge has no intersec-
tions, and (iii) there is no edge with its endpoints on two pseudolines. Lemma3
shows that every aligned graph has an aligned triangulation with almost the
same alignment complexity. If G contains a separating triangle, Lemma 4 shows
that (G,A) admits an aligned drawing if both split components have an aligned
drawing. Finally, with Lemma5 we obtain a drawing of (G,A) from a drawing of
the aligned graph (G/e,A) where one special edge e is contracted. For simplic-
ity we assume the input graph to be 2-connected, general graphs allow similar
techniques.

Lemma 3 (�). Let (G,A) be a biconnected k-aligned graph of alignment com-
plexity (2, 0, 0). There exists a k-aligned triangulation (GT = (VT , ET),A) of
(G,A) whose size is O(k4n). Each edge in ET \ E(G) is at most 1-crossed and
0-anchored, or 0-crossed and 1-anchored.

Proof sketch. To triangulate (G,A), we exhaustively apply each of the following
steps.

10 T. Mchedlidze et al.

1. If f is a non-triangular face whose boundary contains a 2-crossed edge uv,
we build a triangle by inserting a vertex x in the intermediate cell, as shown
in Fig. 4(a). This step ensures that every edge of a non-triangular face is at
most 1-crossed.

2. If f is a non-triangular face whose interior contains the intersection I of a set
of pseudolines, we place a vertex v on I and connect v to two disjoint vertices
on f with two simple paths, where every vertex of the path, which is not an
endpoint, is free; compare Fig. 4(b).

3. If f is a non-triangular face with an aligned edge e = uv we can split f
into two faces f ′ and f ′′ (as shown in Fig. 4(c)) such that f ′ contains e on
its boundary. Then we can triangulate f ′ with 1-crossed edges. A similar
approach works for aligned vertices; see Fig. 4(d).

4. If f is a non-triangular face whose interior contains a pseudosegment S, then
we find two edges vw, xy as shown in Fig. 4(e) and we can triangulate by
inserting a vertex on S and 1-crossed edges.

5. If none of the cases above applies, then no non-triangular face contains a
pseudosegment. Thus all remaining non-triangular faces can be triangulated
with free edges. ��
In order to simplify the constructions we augment the input graph with an

additional cycle in the outer face, so that no two pseudolines intersect in the outer
face. More formally, let A be an arrangement of pseudolines L1,L2, . . . ,Lk. Let
U1, U2, . . . , Ut ∈ cells(A) be the set of unbounded cells in the arrangement of A
such that Ui, Ui+1 are adjacent cells with Ut+1 = U1. For k > 1, a k-aligned graph
is proper (i) if the boundary of the outer face is a 0-anchored 1-crossed cycle of
length t such that every unbounded region Ui contains exactly one vertex of the
cycle, and (ii) every aligned edge in (G,A) is 0-crossed. Observe that for every
k-aligned graph (G,A) there is proper k-aligned triangulation (G′,A) containing
G as a minor.

The following two lemmas show that we can reduce the size of the aligned
graph and obtain a drawing by merging two drawings or by unpacking an edge.

Lemma 4 (�). Let (G,A) be a k-aligned triangulation. Let T be a separating
triangle splitting G into subgraphs Gin, Gout so that Gin ∩ Gout = T and Gout

contains the outer face of G. Then, (i) (Gout,A) and (Gin,A) are k-aligned
triangulations, and (ii) (G,A) has an aligned drawing if and only if there exists a
common line arrangement A such that (Gout,A) has an aligned drawing (Γout, A)
and (Gin,A) has an aligned drawing (Γin, A) with the outer face drawn as Γout[T].

Lemma 5 (�). Let (G,A) be a k-aligned triangulation of alignment complexity
(1, 0,⊥) and let e be a 0-anchored aligned edge or a free edge of G that is not an
edge of a separating triangle. Then (G/e,A) is a k-aligned triangulation of align-
ment complexity (1, 0,⊥). Further, (G,A) has an aligned drawing if (G/e,A) has
an aligned drawing.

Proof sketch. Since u and v either both lie in the same cell or both in the interior
of a pseudosegment, (G/e,A) is an aligned triangulation.

Aligned Drawings of Planar Graphs 11

x

v

x

v

(a) (b)

f

f ′

Fig. 5. Consistent transformation from
a red vertex (a) to a gray vertex (b).

Fig. 6. All possible variations of ver-
tices and edges in Lemma 7.

Let c be the vertex in G/e obtained by contracting e = uv and let f be
the face obtained by removing the vertex c from the aligned drawing (Γ ′, A) of
(G/e,A). We place u at the position of c. This leaves a unique face f ′ to place
v in. Since G/e is a triangulation, f ′ is star-shaped. Thus we can either place v
close to u within its cell or on its line. ��

4.2 One Pseudoline

We show that every 1-aligned graph (G,R) has an aligned drawing (Γ,R), where
R is a single pseudoline and R the corresponding straight-line.

Lemma 6. Let (G,R) be a 1-aligned triangulation with k vertices on the outer
face without a chord. If G is neither a triangle nor a k-wheel, then (G,R) con-
tains an interior aligned or an interior free edge.

Proof. We first prove two useful claims.

Claim 1. Consider the order in which R intersects the vertices and edges of G.
If vertices u and v are consecutive on R, then the edge uv is aligned.

Observe that the edge uv can be inserted into G without creating cross-
ings. Since G is a triangulation, it therefore contains uv, and, further, since no
1-crossed edge can have both its endpoints on R, it follows that indeed uv is
aligned. This proves the claim.

Claim 2. Let (G,R) be an aligned triangulation without aligned edges and let x
be an interior free vertex of G, then x is incident to a free edge.

Assume for a contradiction that all neighbors of x lie either on R or on the
other side of R. First, we slightly modify R to a curve R′ that does not contain
any vertices. Assume v is an aligned vertex; see Fig. 5. Since there are no aligned
edges, R enters v from a face f incident to v and leaves it to a different face f ′

incident to v. We then reroute R from f to f ′ locally around v. If v is incident
to x, we choose the rerouting such that it crosses the edge vx.

Notice that if e is intersected by R in its endpoints, then R′ either does not
intersect it, or intersects it in an interior point. Moreover, e cannot be intersected
by R′ twice as in such case R would pass through both its endpoints. Therefore
(G,R′) is an aligned graph without any aligned vertices. Now, since G is a

12 T. Mchedlidze et al.

triangulation, R′ is a simple cycle in the dual G� of G, and hence corresponds
to a cut C of G. Let H denote the connected component of G − C that contains
x and note that all edges of H are free. By the assumption and the construction
of R′, x is the only vertex in H. Thus, R′ intersects only the faces incident to x
which are interior. This contradicts the assumption that R′ passes through the
outer face of G. This finishes the proof of the claim.

We now prove the lemma. Assume that G is neither a triangle nor a k-wheel.
Thus, G contains at least two interior vertices. If one of both vertices is free, we
find a free edge by Claim 2. Otherwise, there is no free internal vertex, therefore
the only edge which can intersect R is a chord of G. Since G does not contain any
chord, there is a pair of aligned vertices consecutive along R. Thus by Claim 1
the instance (G,R) has an aligned edge. ��
Theorem 3 (�). Let (G,R) be an aligned graph and let (ΓO, R) be a convex
aligned drawing of the aligned outer face (O,R) of G. There exists an aligned
drawing (Γ,R) of (G,R) with the same line R and the outer face drawn as ΓO.

Proof sketch. Given an arbitrary aligned graph (G,R), we first triangulate it
using Lemma 3. As long as it has a free or an aligned edge e we do the follow-
ing. If e is contained in a separating triangle, we decompose the graph using
Lemma 4. Otherwise we simply contract e (Lemma 5). If no such edge exists,
(G,R) is either a triangle or a k-wheel (Lemma 6) and has an obvious straight-
line aligned drawing. We obtain an aligned drawing of (G,R) by reversing the
sequence contraction (Lemma 5) and decompositions along the separating trian-
gles (Lemma 4). ��

4.3 Alignment Complexity (1, 0,⊥)

Let (G,A) be a k-aligned graph of alignment complexity (1, 0,⊥), i.e., every
edge has at most one interior intersection and 2-anchored edges are forbidden.
In this section, we prove that every such k-aligned graph has an aligned drawing.
Figure 6 illustrates the statement of the following lemma.

Lemma 7. Let (G,A) be a proper k-aligned triangulation of alignment com-
plexity (1, 0,⊥) that does neither contain an interior free edge, nor a 0-anchored
aligned edge, nor a separating triangle. Then (i) every intersection contains a
vertex, (ii) every cell of the pseudoline arrangement contains exactly one free
vertex, (iii) every pseudosegment is either covered by two aligned edges or inter-
sected by an edge.

Proof. The statement follows trivially from the following sequence of claims. We
refer to an aligned vertex that is not an intersection vertex as a flexible aligned
vertex.

Aligned Drawings of Planar Graphs 13

(b)(a) (d)(c)

v

e1
e2

e

B

u

w
x

y
v

Fig. 7. Illustrations for the proof Lemma 7

Claim 1. Every pseudosegment alternately intersects flexible aligned vertices and
edges.

Let S be a pseudosegment in the pseudoline arrangement A. As in the proof
of Lemma 6 one can argue that if two vertices occur consecutively along S, then
we find an aligned edge. Assume that S intersects two edges e1, e2 consecutively
as depicted in Fig. 7(a). Since G is a triangulation, it follows that e1 and e2 share
an endpoint v. Every 1-crossed edge in G is 0-anchored, thus all endpoints of e1
and e2 must be free. Further e1 and e2 are consecutive in the circular order of
edges around v as otherwise we would either find an intersection with S between
e1 and e2 or a free edge. Thus, e1 and e2 bound a face and are 1-crossed, hence
their endpoints distinct from v are in the same cell and connected by an edge e,
which is thus free. In a proper graph, the edges on the outer face are 1-crossed,
thus, e is an interior edge, contradicting our assumptions.

Claim 2. Every cell contains at least one free vertex.
Observe that every triangle T containing the intersection of two pseudolines

has at least one l-crossed edge, with l ≥ 2. Since by definition (G,A) does not
contain 2-anchored aligned edges, T cannot contain an empty cell in its interior.
Further, since G is proper, the outer face of G contains the intersection of every
pair of pseudolines in its interior. Thus, since G is triangulated every cell con-
tains at least one vertex.

Claim 3. Every cell contains at most one free vertex.
The following proof is similar to Claim 2 in the proof of Lemma6. Let C be

a cell and assume for the sake of a contradiction that C contains more than one
vertex in the interior; see Fig. 7(b). These vertices are connected by edges to
adjacent cells. If C contains a vertex v on its boundary, we reroute the corre-
sponding pseudolines close to v such that v is now outside of C; refer to Fig. 7(c).
Let C′ be the resulting cell, it represents a cut in the graph with two components
A and B, where C′ contains B in its interior. It is not difficult to see that the
modified pseudolines are still pseudolines with respect to G. Since (G,A) nei-
ther contains l-anchored edges nor l-crossed edges, l ≥ 2, every edge of (G,A′)
intersects the boundary of C′ at most once. Hence, B is connected and since it
contains at least two vertices it also contains at least one free edge, contradicting
our initial assumption.

14 T. Mchedlidze et al.

Claim 4. Every flexible aligned vertex is incident to two 1-anchored aligned edges.
Let v be a vertex lying in the interior of a pseudosegment S. Let u and w be

the anchored vertices incident to S. Further, let x and y be the vertices in the
interior of the two cells incident to S. Our instance (G,A) is triangulated and
every edge is at most 1-crossed. Thus, the vertices u, x, w, y build a quadrangle
containing v in its interior. Since G does not contain a separating triangles,
it cannot contain the edge xy. Moreover, S contains exactly v in its interior,
otherwise we would find a free aligned edge. Finally, since (G,A) is an aligned
triangulation, the vertex v is connected to all four vertices and, thus incident to
two 1-anchored aligned edges.

Since (G,A) is an aligned triangulation, Property (iii) immediately follows
from Claims 3 and 4. ��
Lemma 8. Let (G,A) be a proper k-aligned triangulation of alignment com-
plexity (1, 0,⊥) that does neither contain an interior free edge, nor a 0-anchored
aligned edge, nor a separating triangle. Let A be a line arrangement homeo-
morphic to the pseudoline arrangement A. Then (G,A) has an aligned drawing
(Γ,A).

Proof. We obtain a drawing (Γ,A) by placing a free vertex in its cell, an aligned
vertex on its pseudosegment and an intersection vertex on its intersection.
According to Lemma 7 every cell and every intersection contains exactly one
vertex and each pseudosegment is either crossed by an edge or it is covered by
two aligned edges. Observe that the union of two adjacent cells of the arrange-
ment A is convex. Thus, this drawing of G has an homeomorphic embedding to
(G,A) and every edge intersects in (Γ,A) the line L ∈ A corresponding to the
pseudoline L ∈ A in (G,A) ��

The following theorem can be proven along the same lines as Theorem 3.

Theorem 4 (�). Every k-aligned graph (G,A) of alignment complexity (1, 0,⊥)
with a stretchable pseudoline arrangement A has an aligned drawing.

5 Conclusion

In this paper we showed that if A is stretchable, then every k-aligned graph
(G,A) of alignment complexity (1, 0,⊥) has a straight-line aligned drawing. As
an intermediate result we showed that a 1-aligned graph (G,R) has an aligned
drawing with a fixed convex drawing of the outer face. We showed that the less
restricted version of this problem, where we are only given a set of vertices to
be aligned, is NP-hard but fixed-parameter tractable.

The case of more general alignment complexities is widely open. Our tech-
niques imply the existence of one-bend aligned drawings of general 2-aligned
graphs [13]. However, the existence of straight-line aligned drawings is unknown
even if in addition to 1-crossed edges, we only allow 2-anchored edges, i.e., in the
case of alignment complexity (1, 0, 0). In particular, there exist 2-aligned graphs

Aligned Drawings of Planar Graphs 15

that neither contain a free edge nor an aligned edge but their size is unbounded in
the size of the arrangement; see full version [12]. It seems that further reductions
are necessary to arrive at a base case that can easily be drawn. This motivates
the following questions.

(1) What are all the combinations of line numbers k and alignment complexities
C such that for every k-aligned graph (G,A) of alignment complexity C
there exists a straight-line aligned drawing provided A is stretchable?

(2) Given a k-aligned graph (G,A) and a line arrangement A homeomorphic to
A, what is the complexity of deciding whether (G,A) admits a straight-line
aligned drawing (Γ,A)?

References

1. Biedl, T., Kaufmann, M., Mutzel, P.: Drawing planar partitions II: HH-drawings.
In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 124–136.
Springer, Heidelberg (1998). https://doi.org/10.1007/10692760 11

2. Cano, J., Tóth, C.D., Urrutia, J.: Upper bound constructions for untangling planar
geometric graphs. SIAM J. Discrete Math. 28(4), 1935–1943 (2014)

3. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing
graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 166–180. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50106-2 14

4. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: The com-
plexity of drawing graphs on few lines and few planes. Algorithms and Data Struc-
tures. LNCS, vol. 10389, pp. 265–276. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-62127-2 23

5. Da Lozzo, G., Dujmović, V., Frati, F., Mchedlidze, T., Roselli, V.: Drawing planar
graphs with many collinear vertices. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 152–165. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50106-2 13

6. Dujmović, V.: The utility of untangling. In: Di Giacomo, E., Lubiw, A. (eds.) GD
2015. LNCS, vol. 9411, pp. 321–332. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27261-0 27

7. Dujmović, V., Evans, W., Kobourov, S., Liotta, G., Weibel, C., Wismath, S.: On
graphs supported by line sets. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 177–182. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-18469-7 16

8. Dujmović, V., Langerman, S.: A center transversal theorem for hyperplanes and
applications to graph drawing. Discrete Comput. Geom. 49(1), 74–88 (2013)

9. Fößmeier, U., Kaufmann, M.: Nice drawings for planar bipartite graphs. In:
Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203,
pp. 122–134. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62592-
5 66

10. Goodman, J.E., Pollack, R.: Proof of Grünbaum’s conjecture on the stretchability
of certain arrangements of pseudolines. J. Comb. Theory Ser. A 29(3), 385–390
(1980)

11. Levi, F.: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Ber.
Math.-Phys. Kl. Sächs. Akad. Wiss 78, 256–267 (1926)

https://doi.org/10.1007/10692760_11
https://doi.org/10.1007/978-3-319-50106-2_14
https://doi.org/10.1007/978-3-319-50106-2_14
https://doi.org/10.1007/978-3-319-62127-2_23
https://doi.org/10.1007/978-3-319-62127-2_23
https://doi.org/10.1007/978-3-319-50106-2_13
https://doi.org/10.1007/978-3-319-50106-2_13
https://doi.org/10.1007/978-3-319-27261-0_27
https://doi.org/10.1007/978-3-319-27261-0_27
https://doi.org/10.1007/978-3-642-18469-7_16
https://doi.org/10.1007/978-3-642-18469-7_16
https://doi.org/10.1007/3-540-62592-5_66
https://doi.org/10.1007/3-540-62592-5_66

16 T. Mchedlidze et al.

12. Mchedlidze, T., Radermacher, M., Rutter, I.: Aligned Drawings of Planar Graphs
(2017). https://arxiv.org/abs/1708.08778v2

13. Mchedlidze, T., Radermacher, M., Rutter, I.: Aligned drawings of planar graphs.
In: Proceedings of the 33rd European Workshop on Computational Geometry
(EuroCG 2017) (2017)

14. Mnev, N.E.: The universality theorems on the classification problem of configura-
tion varieties and convex polytopes varieties. In: Viro, O.Y., Vershik, A.M. (eds.)
Topology and Geometry — Rohlin Seminar. LNM, vol. 1346, pp. 527–543. Springer,
Heidelberg (1988). https://doi.org/10.1007/BFb0082792

15. Shor, P.: Stretchability of pseudolines is NP-hard. In: Applied Geometry and
Discrete Mathematics-The Victor Klee Festschrift, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 4, pp. 531–554. American
Mathematical Society (1991)

16. Wahlström, M.: Abusing the Tutte matrix: an algebraic instance compression for
the K-set-cycle problem. In: 30th International Symposium on Theoretical Aspects
of Computer Science, STACS 2013, pp. 341–352 (2013)

https://arxiv.org/abs/1708.08778v2
https://doi.org/10.1007/BFb0082792

On the Edge-Length Ratio of Outerplanar
Graphs

Sylvain Lazard1, William Lenhart2, and Giuseppe Liotta3(B)

1 Inria, CNRS, University of Lorraine, Nancy, France
sylvain.lazard@inria.fr

2 Williams College, Williamstown, USA
wlenhart@williams.edu

3 University of Perugia, Perugia, Italy
giuseppe.liotta@unipg.it

Abstract. We show that any outerplanar graph admits a planar
straight-line drawing such that the length ratio of the longest to the
shortest edges is strictly less than 2. This result is tight in the sense
that for any ε > 0 there are outerplanar graphs that cannot be drawn
with an edge-length ratio smaller than 2 − ε. We also show that every
bipartite outerplanar graph has a planar straight-line drawing with edge-
length ratio 1, and that, for any k ≥ 1, there exists an outerplanar graph
with a given combinatorial embedding such that any planar straight-line
drawing has edge-length ratio greater than k.

1 Introduction

The problem of computing a planar straight-line drawing with prescribed edge
lengths has been addressed by several authors, partly for its theoretical interest
and partly for its application in different areas, including VLSI, wireless sensor
networks, and computational geometry (see for example [6,7,9,13]). Deciding
whether a graph admits a straight-line planar drawing with prescribed edge
lengths was shown to be NP-hard by Eades and Wormald for 3-connected pla-
nar graphs [8]. In the same paper, the authors show that it is NP-hard to deter-
mine whether a 2-connected planar graph has a unit-length planar straight-line
drawing; that is, a drawing in which all edges have the same length. Cabello et
al. extend this last result by showing that it is NP-hard to decide whether a
3-connected planar graph admits a unit-length planar straight-line drawing [3].
In addition, Bhatt and Cosmadakis prove that deciding whether a degree-4 tree
has a planar drawing such that all edges have the same length and the vertices
are at integer grid points is also NP-hard [2].

These hardness results have motivated the study of relaxations and variants
of the problem of computing straight-line planar drawings with constraints on the
edge lengths. For example, Aichholzer et al. [1] study the problem of computing
straight-line planar drawings where, for each pair of edges of the input graph G,
it is specified which edge must be longer. They characterize families of graphs
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 17–23, 2018.
https://doi.org/10.1007/978-3-319-73915-1_2

18 S. Lazard et al.

that are length universal, i.e. they admit a planar straight-line drawing for any
given total order of their edge lengths.

Perhaps one of the most natural variants of the problem in the context of
graph drawing is that where, instead of imposing constraints on the edge lengths,
one aims at computing planar straight-line drawings where the variance of the
lengths of the edges is minimized. See for example [5], where this optimization
goal is listed among the most relevant aesthetics that impact the readability
of a drawing of a graph. Computing straight-line drawings where the ratio of
the longest to the shortest edge is close to 1 also arises in the approximation
of unit disk graph representations, a problem of interest in the area of wireless
communication networks (see, e.g. [4,11]).

Discouragingly, Eades and Wormald observe in their seminal paper that the
NP-hardness of computing 2-connected planar straight-line drawings with unit
edge lengths persists even when a small tolerance (independent of the problem
size) in the length of the edges is allowed. To our knowledge, little progress has
been made on bounding the ratio between the longest and shortest edge lengths
in planar straight-line drawings. We recall the work of Hoffmann et al. [10],
who compare different drawing styles according to different quality measures
including the edge-length variance.

In this paper we study planar straight-line drawings of outerplanar graphs
that bound the ratio of the longest to the shortest edge lengths from above by
a constant. We define the planar edge-length ratio of a planar graph G as the
smallest ratio between the longest and the shortest edge lengths over all planar
straight-line drawings of G. The main result of the paper is the following.

Theorem 1. The planar edge-length ratio of an outerplanar graph is strictly less
than 2. Also, for any given real positive number ε, there exists an outerplanar
graph whose planar edge-length ratio is greater than 2 − ε.

Informally, Theorem 1 establishes that 2 is a tight bound for the planar
edge-length ratio of outerplanar graphs. The upper bound is proved by using
a suitable decomposition of an outerplanar graph into subgraphs called strips,
then drawing the graph strip by strip. The lower bound is proved by taking into
account all possible planar embeddings of a maximal outerplanar graph whose
maximum vertex degree is a function of ε. Theorem 1 naturally suggests some
interesting questions that are discussed in Sect. 3.

We shall assume familiarity with basic definitions of graph planarity and
of graph drawing [5] and introduce only the terminology and notation that is
strictly needed for our proofs.

2 Proof of Theorem 1

It suffices to establish the result for maximal outerplanar graphs. To show that
the edge-length ratio of a maximal outerplanar graph is always less than 2,
we imagine decomposing the dual G∗ of G into a set of disjoint paths, which
we call chains. Each chain corresponds to some sequence of pairwise-adjacent

On the Edge-Length Ratio of Outerplanar Graphs 19

triangles of G. The set of chains inherits a tree structure from G∗, and we use
this structure to direct an algorithm that draws each of the chains proceeding
from the root of this tree down to its leaves. We formally define a chain to be
a sequence Ts, Ts+1, . . . , Tt of triangles of G where s ≤ 0 ≤ t, and such that
(i) T0 consists of an outer edge of G whose vertices are labeled with 0, along
with a third vertex labeled 1, (ii) for each i : 1 ≤ i ≤ t, the vertices of Ti are
labeled by {i − 1, i, i + 1} so that Ti and Ti−1 share the edge having vertices
labeled i and i−1, and (iii) for each i : −1 ≥ i ≥ s, the vertices of Ti are labeled
by {i, i + 1, i + 2} so that Ti and Ti+1 share the edge having vertices labeled
i + 1 and i + 2. Note that this definition prohibits fans (consecutive triangles
all sharing a common vertex) containing more than 3 triangles, except for the
vertex labeled 1, which has four incident triangles on the chain.

The decomposition into chains is constructed by first selecting an edge e′ on
the outer face of some outerplanar topological embedding of G. The edge e′ is
incident with a unique triangle of G. Label each vertex of e′ with 0, and label
the third vertex of the triangle with 1. There is now a unique maximal chain Ce′

in G containing this labeled triangle. The edges of Ce′ can be partitioned into
two sets: Se′ and Le′ where Se′ consists of edges of Ce′ whose vertex labels differ
by 1 and Le′ consists of all edges of Ce′ whose vertex labels differ by 2, along
with e′.

Removing the edges of Se′ from G produces a set of 2-connected components
in 1-1 correspondence with the edges of Le′ : Each component contains exactly
one element of Le′ which lies on its outer face. For each edge e ∈ Le′ , let Ge be
the component of G−Se′ containing e. We can then recursively decompose each
Ge by choosing the (unique) maximal chain Ce in Ge containing the one triangle
(if any) of Ge that is incident with e. We call the set of chains so constructed
a chain decomposition of G. A chain decomposition produces a decomposition
of the edges of G into sets L and S, where L is the union of the edges in each
Le and S is the union of all of the edges in each Se. Note that there is a single
chain for each edge in L, and that the collection of chains produced naturally
form a tree: The root of the tree is the chain Ce′ and its children are the chains
{Ce : e ∈ Le′}; the chain decomposition is entirely determined by the choice of
external edge e′.

The drawing algorithm proceeds by first drawing the root chain Ce′ of the
chain decomposition tree of G and then recursively drawing the chain decompo-
sition trees of each Ge : e ∈ Le′ . The algorithm depends on a specific method
for drawing a single chain. To describe it, we need a few definitions. First, given
a line segment s in the plane and a direction (unit vector) d not parallel to s,
denote by S(s,d) the half-infinite strip bounded by s and the two infinite rays in
direction d that have their sources at the endpoints of s. Finally, given a chain C,
the edges of C ∩ L are called external edges of C; note that each external edge
is incident to exactly one triangle of C.

Lemma 1. Given a chain C with n vertices, an external edge e of C, a segment s
of length 1 in the plane, and a direction d such that the (smaller) angle between s
and d is θ < θ0 = arccos(1/4) ≈ 75.5◦, there exists a planar straight-line drawing

20 S. Lazard et al.

of C such that: (i) the drawing is completely contained within the strip S(s,d);
(ii) no external edge e′ of C is parallel to d, and the strips S(e′,d) are all empty;
(iii) each external edge has length 1 and all other edges have lengths greater than
1/2; (iv) each external edge forms an angle less than θ0 with d. Moreover, such
a drawing can be computed in O(n)-time in the real RAM model.

Proof. Let T0 be the triangle of C containing e. T0 is either adjacent to zero,
one, or two triangles of C. We handle these three cases in turn. If T0 is the only
triangle in C, then we simply draw T0 in S(s,d) as an isosceles triangle with e
drawn as s and with its third vertex drawn so that its two edges have length l,
where 1

2 < l < 1.
Assume now that T0 is adjacent to a triangle T1 of C. Denote the vertices

of C as follows: T0 = {v−
0 , v+

0 v1}, where e = {v−
0 , v+

0 } and v−
0 is not incident

with T1. The vertex of T1 not in T0 is denoted by v2, and, subsequently, the
vertex of each Ti not in Ti−1 is denoted by vi+1. We draw T0 as previously, but
with more careful positioning of v1. To determine where to position v1, we draw
edge {v+

0 , v2} of T1 as a unit-length segment in direction d. As long as v1 is
positioned within S(s,d) but outside of the disks of radius 1

2 centered at v−
0 , v+

0 ,
and v2, the edges from each of these vertices to v1 will have length greater than 1

2

(see top half of Fig. 1). By placing v1 close to e, the edges {v1, v
−
0 } and {v1, v

+
0 }

will have lengths less than 1. Also, since ∠v2v
+
0 v1 < θ0, edge {v1, v2} will have

length less than 1.

1 1 1

1 1

1
2 + ε

1
2 + ε′′

1
2 + ε

1
2 + ε′′

1
2 + ε 1

2 + ε

1
2 + ε′′

1
1
2 + ε′

T0

T1

1

1
2 + ε

1
1
2 + ε′

T0
1

1

1
2 + ε′′′

1
2 + ε′

1
2 + ε′′′

1

1
2 + ε′′′

1
2 + ε′

T2 T3 T4

T−1 T−2 T−3

Tt

Ts

v1

v−0

v2

v3

v4

v5

vt−1

vt

vt+1

v1

v+0

v−1

v−2

v−3

vs+2

vs+1

vs

d

θ
v+0

v−0

Fig. 1. Drawing a chain

Assuming that T0, . . . , Ti−1 have been drawn for some i > 1, Ti is drawn by
positioning vi+1 one unit distant from vi−1 in direction d. The result is that
each Ti is congruent to T1 and so the edge-length ratio of C is less than 2.

On the Edge-Length Ratio of Outerplanar Graphs 21

At this point, all of the unit-length segments, except for e, lie on the two rays
in direction d emanating from v+

0 and v1. By rotating these rays a very small
amount towards one another, we can preserve the lengths of the unit-length
segments while ensuring that all of the remaining segments have lengths in the
range (12 , 1). See the top of Fig. 1.

Finally, suppose that T0 has two adjacent triangles. Starting with T0, label
the other triangles in C so that the labels of adjacent triangles differ by 1. Thus,
for example, T0 is adjacent to T1 and T−1. The vertices in the Ti, i ≥ 0 will be
labeled as in the previous case: the unique vertex in Ti not in Ti−1 is labeled
vi+1. The vertices in the Ti, i < 0 will be similarly labeled: the unique vertex in
Ti not in Ti+1 is labeled vi.

Draw each Ti, i > 0 as in the previous case. Now draw the Ti, i < 0 in a
similar fashion: Place vertex vi one unit distant from vi+2 in direction d. Then,
as above, all of the unit length edges of the triangles Ti, i < 0 will lie on the two
rays in direction d emanating from v1 and v−

0 , and these two rays can be rotated
slightly towards each other while maintaining the length of the unit-length edges
and ensuring that the other edges still have lengths in the range (12 , 1). See the
bottom of Fig. 1. This can clearly be done so that all external edges form angles
less than θ0 with d.

However, we need to ensure that v1 can be placed so that both triangle T1

and triangle T−1 can simultaneously satisfy the required edge-length conditions:
Namely, that edges {v−

0 , v+
0 }, {v1, v−1}, and {v+

0 , v2} are all unit-length, while
edges {v1, v2}, {v+

0 , v1}, {v1, v
−
0 }, and {v−

0 , v−1} all have lengths in the range
(12 , 1). However, it is relatively simple to show that v1 can always be successfully
placed if the (smaller) angle between s and d is less than θ0 = arccos(1/4).
[The angle θ0 is the angle opposite an edge of length 2 in an isosceles triangle
having side lengths 2, 2, and 1.] Finally, the computation of the locations of the
vertices can each be computed in constant time in the real RAM model, giving
a run-time linear in the size of the chain. ��

We are now ready to prove the following lemma. For a planar straight-line
drawing Γ , we denote with ρ(Γ) the ratio of a longest to a shortest edge in Γ .

Lemma 2. A maximal outerplanar graph G with n vertices admits a planar
straight-line drawing Γ with ρ(Γ) < 2 that can be computed in O(n) time assum-
ing the real RAM model of computation.

Proof. We call the drawing computed as in Lemma 1 a U-strip drawing of C and
adopt the same notation as in Lemma 1. Recall that in a chain decomposition of
a graph, the external edges of the chains are exactly the edges of L. A drawing
of G is computed as follows.

1. Compute a chain decomposition tree for G; let Ce′ be the root of the tree.
2. Select a line segment s of length 1 in the plane and an initial direction d not

parallel to s such that ∠sd < θ0.
3. Apply Lemma 1 to compute a U-strip drawing of Ce′ .

22 S. Lazard et al.

4. Each edge e ∈ Le′ is drawn as a segment se of length 1, not parallel to d,
that forms an angle with d that is less than θ0, so draw the subtree of Ce′

rooted at Ce in the empty strip S(se,d).

The result is an outerplanar straight-line drawing in which all edges of L
(long edges) have length 1 while all edges in S (short edges) have length strictly
greater than 1

2 . If we assume that the input is provided to the algorithm in the
form of a doubly-connected edge list [12], then a chain decomposition tree for
G can be computed in linear time. Also, since by Lemma 1 each chain can be
drawn in time proportional to its length, the algorithm runs in O(n) time in the
real RAM model. ��

The following lemma can be proved by means of a packing argument and
elementary geometry.

Lemma 3. For any ε > 0 there exists a maximal outerplanar graph whose
planar edge length ration is greater than 2 − ε.

We conclude the section by observing that Lemmas 2 and 3 imply Theorem 1.

3 Additional Remarks and Open Problems

The upper and the lower bound of Theorem 1 suggest some questions that we
find worth investigating. One question is whether better bounds on the planar
edge-length ratio can be established for subfamilies of outerplanar graphs (for
example, it is easy to show that trees have unit-length drawings). A second ques-
tion is whether an edge length variance bounded by a constant can be guaranteed
for drawings of outerplanar graphs where not all vertices lie in a common face.
By a variant of the approach used to prove Lemma 2 and by using some simple
geometric observations, the following results can be proved.

Theorem 2. The planar edge-length ratio of a bipartite outerplanar graph is 1.

The plane edge-length ratio of a planar embedding G of a graph G is the
minimum edge-length ratio taken over all embedding-preserving planar straight-
line drawings of G.

Theorem 3. For any given k ≥ 1, there exists an embedded outerplanar graph
whose plane edge-length ratio is at least k.

We conclude this paper by listing some open questions that we find interesting
to study: (i) Study the edge-length ratio of triangle-free outerplanar graphs. For
example, it is not hard to see that if all faces of an outerplanar graph have five
vertices, a unit edge length drawing may not exist; however, the planar edge
length ratio for this family of graphs could be smaller than the one established
in Theorem 1. (ii) Extend the result of Theorem 1 to families of non-outerplanar
graphs. For example it would be interesting to study whether the planar edge-
length ratio of 2-trees is bounded by a constant. (iii) Study the complexity of
deciding whether an outerplanar graph admits a straight-line drawing where the
ratio of the longest to the shortest edge is within a given constant. This problem
is interesting also in the special case that we want all edges to be unit length.

On the Edge-Length Ratio of Outerplanar Graphs 23

References

1. Aichholzer, O., Hoffmann, M., van Kreveld, M.J., Rote, G.: Graph drawings with
relative edge length specifications. In: 2014 Proceedings of the 26th Canadian
Conference on Computational Geometry, CCCG 2014, Halifax, Nova Scotia,
Canada (2014)

2. Bhatt, S.N., Cosmadakis, S.S.: The complexity of minimizing wire lengths in VLSI
layouts. Inf. Process. Lett. 25(4), 263–267 (1987)

3. Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified
edge lengths. J. Graph Algorithms Appl. 11(1), 259–276 (2007)

4. Chen, J., Jiang, A.A., Kanj, I.A., Xia, G., Zhang, F.: Separability and topology
control of quasi unit disk graphs. Wirel. Netw. 17(1), 53–67 (2011)

5. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)

6. Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete
Math. 9(3), 349–359 (1996)

7. Doherty, L., Pister, K.S.J., El Ghaoui, L.: Convex optimization methods for sensor
node position estimation. In: Proceedings IEEE INFOCOM 2001, The Conference
on Computer Communications, Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies, Twenty years into the communications
odyssey, Anchorage, Alaska, USA, 22–26 April 2001, pp. 1655–1663. IEEE (2001)

8. Eades, P., Wormald, N.C.: Fixed edge-length graph drawing is NP-hard. Discrete
Appl. Math. 28(2), 111–134 (1990)

9. Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in
VLSI design. In: Chvátal, V. (ed.) Combinatorial Optimization - Methods and
Applications, NATO Science for Peace and Security Series - D: Information and
Communication Security, vol. 31, pp. 33–96. IOS Press (2011)

10. Hoffmann, M., van Kreveld, M.J., Kusters, V., Rote, G.: Quality ratios of measures
for graph drawing styles. In: 2014 Proceedings of the 26th Canadian Conference
on Computational Geometry, CCCG 2014, Halifax, Nova Scotia, Canada (2014)

11. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Unit disk graph approximation. In:
Basagni, S., Phillips, C.A. (eds.) Proceedings of the DIALM-POMC Joint Work-
shop on Foundations of Mobile Computing, Philadelphia, PA, USA, 1 October
2004, pp. 17–23. ACM (2004)

12. Muller, D.E., Preparata, F.P.: Finding the intersection of two convex polyhedra.
Theoret. Comput. Sci. 7(2), 217–236 (1978)

13. Savarese, C., Rabaey, J.M., Langendoen, K.: Robust positioning algorithms for
distributed ad-hoc wireless sensor networks. In: Ellis, C.S. (ed.) Proceedings of the
General Track: 2002 USENIX Annual Technical Conference, Monterey, California,
USA, 10–15 June 2002, pp. 317–327. USENIX (2002)

On Vertex- and Empty-Ply Proximity Drawings

Patrizio Angelini1(B), Steven Chaplick2, Felice De Luca3, Jǐŕı Fiala4,
Jaroslav Hančl Jr.4, Niklas Heinsohn1, Michael Kaufmann1,

Stephen Kobourov5, Jan Kratochv́ıl4, and Pavel Valtr4

1 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

angelini@informatik.uni-tuebingen.de
2 Lehrstuhl für Informatik I, Universität Würzburg, Würzburg, Germany

3 Università degli Studi di Perugia, Perugia, Italy
4 Department of Applied Mathematics, Charles University (KAM),

Prague, Czech Republic
5 Department of Computer Science, University of Arizona, Tucson, USA

Abstract. We initiate the study of the vertex-ply of straight-line draw-
ings, as a relaxation of the recently introduced ply number. Consider the
disks centered at each vertex with radius equal to half the length of the
longest edge incident to the vertex. The vertex-ply of a drawing is deter-
mined by the vertex covered by the maximum number of disks. The main
motivation for considering this relaxation is to relate the concept of ply
to proximity drawings. In fact, if we interpret the set of disks as proximity
regions, a drawing with vertex-ply number 1 can be seen as a weak prox-
imity drawing, which we call empty-ply drawing. We show non-trivial
relationships between the ply number and the vertex-ply number. Then,
we focus on empty-ply drawings, proving some properties and studying
what classes of graphs admit such drawings. Finally, we prove a lower
bound on the ply and the vertex-ply of planar drawings.

1 Introduction

Constructing graph layouts that are readable and easily convey the information
hidden in the represented data is one of the main goals of graph drawing research.
Several aesthetic criteria have been defined to capture the user requirement for a
better understanding of the data, e.g., resolution rules [13,18], low-density [14],
proximity drawings [17]. The ply number [10] of a graph is another such criterion.
We adopt the following notation: given a straight-line drawing Γ of a graph
G = (V,E), for each vertex v ∈ V consider an open disk Dv (called the ply-disk
of v) centered at v with radius rv equal to half of the length of the longest edge
incident to v. Over all points p on the plane, let k be the maximum number of
ply-disks of Γ that include the point p in their interior. Then, the drawing Γ
has ply k. The ply number of G is the minimum ply over all its drawings.

The ply number was originally proposed by Eppstein and Goodrich [12] in the
context of interpreting road networks as subgraphs of disk-intersection graphs.
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 24–37, 2018.
https://doi.org/10.1007/978-3-319-73915-1_3

On Vertex- and Empty-Ply Proximity Drawings 25

(a) (b) (c) (d) (e)

Fig. 1. (a) Gabriel, (b) Relative-neighborhood, and (c) Ply proximity regions.
(d) A disconnected empty-ply graph. (e) A non-planar empty-ply drawing.

The concept of a ply number is also related to proximity drawings of graphs [17].
A proximity drawing of a graph G is a straight-line drawing of G in which for
every two vertices u and v, there exists a region of the plane, called proximity
region of u and v, that contains other vertices in its interior if and only if u
and v are not connected by an edge in G. If G admits a proximity drawing,
then it is a proximity graph. A proximity region specifies a set of points in
the plane that are closer to u and v than to the other vertices, and different
proximity regions lead to different definitions of proximity drawings. Regions
can be global, e.g., Euclidean minimum spanning trees [19], or local, e.g., Gabriel
graphs [15] (Fig. 1a), relative-neighborhood graphs [20] (Fig. 1b), and Delaunay
triangulations [8,19]. Proximity drawings of graphs are also studied in the weak
model [9], where the “if” part of the condition is neglected: i.e., if two vertices
are not connected by an edge, then their proximity region may be empty.

In this work, we are interested in deepening the study of the relationship
between the notions of ply number and of proximity drawings. In this direction,
one can consider the local proximity region associated with a pair of vertices
u and v as the one composed of the disks centered at u and at v, with radius
equal to half of the length of the straight-line segment between u and v (Fig. 1c).
Due to the possible absence of edges, this is a weak proximity model. However,
a drawing Γ may have ply larger than 1 even if no proximity region contains
a vertex different from the two which defined it, since the ply of Γ is only
determined by the way in which different regions intersect each other.

To improve this relationship, we relax the definition of ply number and intro-
duce the concept of vertex-ply number. Consider a straight-line drawing Γ of a
graph G. Over all vertex-points p on the plane (i.e., points which realize a vertex
of G), let k be the maximum number of ply-disks of Γ that include the point p
in their interior. Then, the drawing Γ has vertex-ply k. The vertex-ply number of
G is the minimum vertex-ply over all its drawings. In the special case in which
Γ has vertex-ply 1, i.e., every disk Dv contains only v in its interior, we say that
Γ is an empty-ply drawing. Note that an empty-ply drawing is in fact a weak
proximity drawing with respect to the proximity region defined above, that is, a
drawing is empty-ply if and only if all the proximity regions are empty.

Some relationships between proximity models are known, e.g., any Delaunay
triangulation contains a Gabriel graph as a spanning subgraph, which in
turn contains a relative-neighborhood graph, which in turn contains a

26 P. Angelini et al.

minimum spanning tree [17]. It is hence natural to ask about the role of empty-
ply drawings in these relationships. We first note that an empty-ply drawing may
be non-planar (see Fig. 1e), which is not the case for Delaunay triangulations,
and thus for any of the other type of proximity drawings. On the other hand,
there exist empty-ply drawings that are not connected and that cannot be made
connected by just adding edges while maintaining the empty-ply property (see
Fig. 1d), which differs from the case for minimum spanning trees (and thus for
all the other proximity drawings). These two observations imply that empty-ply
drawings are not directly comparable with other types of disk-based proximity
drawings.

The concept of empty-ply is related to partial edge drawings (PEDs) [4–6].
A PED is a straight-line drawing of a graph in which each edge is divided into
three segments: a middle part that is not drawn and the two segments incident
to the vertices, called stubs, that remain in the drawing and that are not allowed
to cross. Our Theorem 2 in Sect. 3 shows that an empty-ply drawing also yields
a PED whose stubs have nontrivial lengths.

Drawing graphs with low ply was first considered by Di Giacomo et al. [10].
They show that testing whether an internally triangulated biconnected planar
graph has ply number 1 can be done in O(n log n) time and that the class of
graphs with ply number 1 coincides with unit-disk contact graphs [3], which
makes the recognition problem NP-hard. Angelini et al. [1] studied area require-
ments of drawings of trees with low ply. De Luca et al. [7] performed an experi-
mental study demonstrating correlations between the ply of a drawing and aes-
thetic metrics such as stress and uniform edge-lengths. An interactive tool has
been implemented by Heinsohn and Kaufmann [16].

We first demonstrate non-trivial relationships between the ply number and
the vertex-ply number of graphs. In Sect. 2 we positively answer a question
from [10] (Problem 4) regarding whether the ply number of an empty-ply draw-
ing is constant. In Sect. 3 we study properties of empty-ply graphs. In Sect. 4 we
provide several classes of graphs that admit empty-ply drawings and some classes
that do not (we consider k-ary trees, complete (bipartite) graphs, and squares
of graphs with ply number 1). Further, in Sect. 5 we answer another question
posed in [10] (Problem 3), regarding the relationship between (vertex-) ply and
crossings, by presenting graphs that admit drawings with constant ply and only
3 crossings but any corresponding planar drawing requires linear ply. We con-
clude in Sect. 6 with several open problems. For space reasons, some proofs have
been sketched or omitted. Complete proofs can be found in the full version of
the paper [2].

2 Relationships Between Ply and Vertex-Ply

We start with a natural question about the relationship between the ply number
and the vertex-ply number of a graph.

On Vertex- and Empty-Ply Proximity Drawings 27

v1

A2

p

l

A1

A3

A4A5

A6

vi
l′ l′′

(a) (b)

Fig. 2. (a) Illustration for the proof of Theorem 1. (b) An empty-ply drawing of a star
of degree 24. For readability, edges are not drawn.

Theorem 1. The ply of a drawing of a graph with vertex-ply h is at most 5h.

Proof. Let Γ be any drawing of a graph G with vertex-ply h. Let p be any point
in the plane and let v1, . . . , vk be the vertices whose ply-disks contain p in their
interior, appearing in this radial order around p; see Fig. 2a. Without loss of
generality, assume that v1 is the vertex closest to p. Let l be the line through p
and v1, and let l′ and l′′ be two lines through p creating angles π

3 and −π
3 with l.

These lines determine a covering of the plane by six closed wedges A1, . . . , A6

centered at p, each having π
3 as its internal angle.

Let A1 and A2 be the wedges delimited by the half-line starting at p and
passing through v1. For each vertex vi ∈ A1 ∪ A2 we have ∠v1pvi ≤ π

3 . This
implies that |v1vi| ≤ |vip| and hence that v1 belongs to the ply-disk Dvi

, since
p belongs to Dvi

. Thus, if the union of the closed wedges A1 and A2 contains
at least h vertices among v2, . . . , vk, we obtain that v1 belongs to at least h + 1
ply-disks. This is not possible, since Γ has vertex-ply h.

We now prove that each wedge Ai with 3 ≤ i ≤ 6 contains at most h vertices
among v2, . . . , vk. Namely if it contains at least h + 1 vertices we can argue as
above that the closest vertex to p among them belongs to the ply-disks of all
the other h vertices. This completes the proof of the theorem that there exist at
most 5h vertices whose ply-disks enclose p. ��

Corollary 1. The ply of an empty-ply drawing of a graph is at most 5.

Note that the converse of Corollary 1 does not hold. If a graph G does not
admit any empty-ply drawing, that does not imply that the ply number of G
is larger than 5. A star graph with degree larger than 24 does not have an
empty-ply drawing (see Theorem 3), but can be drawn with constant ply 2 [10].

3 Properties of Graphs with Empty-Ply Drawings

Let Γ be a straight-line drawing of a graph G. Let {D′
v, v ∈ V } be the set of

open disks where D′
v is centered at v, but with radius only rv

2 . We can think of

28 P. Angelini et al.

these disks as obtained by shrinking the original ply-disks of Γ to half-length
radius. Note that if Γ is an empty-ply drawing, then the disks in {D′

v, v ∈ V }
are pairwise disjoint. This observation implies the next result.

Lemma 1. In an empty-ply drawing Γ of a graph G = (V,E) the sum of the
areas of all ply-disks {Dv, v ∈ V } does not exceed 4 times the area of their union.

Proof. Each disk D′
v has area four times smaller than Dv, but is drawn inside

the union of all ply-disks.

In the rest of the paper we frequently use disk-packing arguments based
on Lemma 1. Another consequence of the observation above is a relationship
between empty-ply drawings and the most popular type of PED, called 1

4 -
SHPED [5], in which the length of both stubs of an edge e is 1

4 of e’s length.

Theorem 2. An empty-ply graph admits a 1
4 -SHPED.

Proof. Let Γ be an empty-ply drawing of a graph G = (V,E) with the set of
disks {D′

v, v ∈ V }. Let Γ ′ be the drawing obtaining from Γ by keeping for each
edge (u, v) only the two parts in the interior of disks D′

u and D′
v. By definition,

both these parts cover at least 1
4 of (u, v). Since no two such disks overlap, there

is no crossing in Γ ′, and the statement follows. ��
We now focus on the relationship between the radii of the ply-disks of adja-

cent vertices in an empty-ply drawing. For the following two lemmas we use that
for each vertex v, and for each edge (v, w) incident to v, we have rv ≤ |vw|, as
the drawing is empty-ply, and rv ≥ |vw|

2 , by the definition of the ply-disk Dv.

Lemma 2. In an empty-ply drawing, for any two edges (u, v) and (v, w) incident
to the same vertex v, we have 1

2 ≤ |uv|
|vw| ≤ 2.

Lemma 3. In an empty-ply drawing, the radii of the ply-disks of two adjacent
vertices u and v differ by at most a factor of 2, i.e., 1

2 ≤ ru

rv
≤ 2.

We conclude the section by presenting a tight bound on the maximum degree
of graphs that admit empty-ply drawings.

Theorem 3. No vertex of an empty-ply graph has degree greater than 24.

Proof. To obtain a contradiction, let Γ be an empty-ply drawing of a graph G
with a vertex v of degree greater than 24. By Lemma 2, the lengths of all edges
of v are in the interval [m, 2m], where m is the length of the shortest edge. Note
that there are at least 13 edge lengths either in the interval [m,

√
2m] or in the

interval [
√

2m, 2m]. In either case, there exist two neighbors u and w of v such
that |vu| ≤ |vw| ≤ √

2|vu| and α = ∠uvw ≤ 2π
13 . Scaling Γ by a factor of |vu|−1,

we may assume w.l.o.g. that |vu| = 1 and that |vw| = q ∈ [1,
√

2]. By the law of
cosines, |uw|2 = 1 + q2 − 2q cos α. As Γ is an empty-ply drawing, the vertex v
does not belong to the open disk centered at w. Hence |uw| ≥ q

2 .

On Vertex- and Empty-Ply Proximity Drawings 29

(a)

x1 x2

√
2

√
2A+

A−

B+

B−

C+

C−

D+

D−

l

(b)

Fig. 3. (a) Empty-ply drawing K7; note that there are edges drawn on top of each
other. (b) Partition of the region where the vertices of K8 can be placed.

From the above reasoning it follows that q should satisfy the quadratic
inequality q2

4 ≤ 1+q2−2q cos α, which yields that either q ≤ 4 cosα−√
16 cos2 α−12
3

or q ≥ 4 cosα+
√
16 cos2 α−12
3 . This contradicts the fact that q ∈ [1,

√
2], because:

4 cos 2π
13 −

√
16 cos2 2π

13 − 12 .= 2.8 < 3 and 4 cos 2π
13 +

√
16 cos2 2π

13 − 12 .= 4.27 >

4.24 .= 3
√

2. This concludes the proof of the theorem. ��
Note that K1,24 admits an empty-ply drawing with only two different lengths

of edges (see Fig. 2b) and so the degree bound provided in Theorem 3 is tight.

4 Graph Classes with and Without Empty-Ply Drawings

4.1 Complete Graphs

Theorem 4. Graph Kn admits an empty-ply drawing if and only if n ≤ 7.

Proof (sketch). For a contradiction, suppose that K8 has an empty-ply drawing
Γ . Let (x1, x2) be the longest edge of Γ , w.l.o.g. having length 2; assume that x1

and x2 lie on an horizontal line l. Since (x1, x2) is the longest edge, the remaining
six vertices lie in the intersection of two disks centered at x1 and x2, respectively,
with radius 2; also, by Lemma 2, they lie outside the two disks centered at x1

and x2 with radius 1; see Fig. 3b. This defines two closed regions in which these
vertices lie: one above l and one below.

Using two circles centered in x1 and x2 with radius
√

2, we partition each
of these two regions into four closed subregions, called A+, B+, C+,D+ and
A−, B−, C−,D−, where the apex + or − indicates the region above or below l,
respectively. Namely, any point in the interior of A+ ∪ A− (of D+ ∪ D−) has
distance larger (smaller) than

√
2 from both x1 and x2; while any point in the

interior of B+ ∪ B− (of C+ ∪ C−) has distance smaller (larger) than
√

2 from
x1 and distance larger (smaller) than

√
2 from x2.

We show that any placement of the six remaining vertices in these regions leads
to a contradiction. We denote by |Xy|, with X ∈ {A,B,C,D} and y ∈ {+,−},

30 P. Angelini et al.

(a) (b) (c)

Fig. 4. Empty-ply drawing of (a) K2,12, (b) K3,9, and (c) K4,6. Note that the drawing
of K4,6 has edges drawn on top of each other.

the number of vertices in Xy. First note that each region can contain at most one
vertex, except for D+ and D−, which may contain two vertices. In fact, if we place
any vertex w in a region Xy, with X ∈ {A,B,C} and y ∈ {+,−}, then the ply-
disk Dw of w (defined, at least by the distance to x1, x2) covers the entire region
Xy. Regions D+ and D−, on the other hand, have area with height 1 and width
0.5. Let w ∈ D+ be the point at distance

√
2 from both x1 and x2 and Dw be its

ply-disk. Then, set D+ \Dw defines an area with diameter at most 1
3 and it is not

sufficient to place more than one vertex, since the ply disks would have at least a
radius 0.5.

Combining the placement of the vertices in different regions, we can use
similar arguments to prove that |D+ ∪ D−| ≤ 3 and |A+ ∪ A−| ≤ 1. Also, if
|A+| = 1 (resp. |A−| = 1), then |D−| ≤ 1 (resp. |D+| ≤ 1). Thus, if |A+∪A−| = 1
then |D+ ∪ D−| ≤ 2. Also, if |A+| = 1 (resp. |A−| = 1) and |B−| = 1 (resp.
|B+| = 1) then either |B+| = 0 or |C+| = 0 (resp. |B−| = 0 or |C−| = 0), i.e.,
|B+ ∪C+| ≤ 1 (resp. |B− ∪C−| ≤ 1). By symmetry, if |A+| = 1 (resp. |A−| = 1)
and |C−| = 1 (resp. |C+| = 1) then either |B+| = 0 or |C+| = 0 (resp. |B−| = 0
or |C−| = 0), i.e., |B+∪C+| ≤ 1 (resp. |B− ∪C−| ≤ 1). Hence, if |A+ ∪A−| = 1,
the other regions cannot contain 5 vertices.

The final case where |A+ ∪ A−| = 0 directly implies the claim for K9. To
prove this for K8 we can see that if |B−| = 1 and |C+| = 1 (resp. |B+| = 1
and |C−| = 1), then |D+ ∪ D−| ≤ 1, which again leads to a contradiction.
To conclude the proof, we present an empty-ply drawing for K7 in Fig. 3a. We
strongly believe that this drawing is unique.

4.2 Complete Bipartite Graphs

We now consider complete bipartite graphs. For proof-by-picture of the next
theorem see Fig. 2b and Figs. 4a–c.

Theorem 5. Graphs K1,24, K2,12, K3,9, and K4,6 admit empty-ply drawings.

Note that Theorem 3 implies that K1,25 does not admit any empty-ply draw-
ing, and hence this is true for any complete bipartite graph Kn,m with n or m

On Vertex- and Empty-Ply Proximity Drawings 31

greater than 24. This leaves a wide open gap between the upper bounds on the
values of n and m, and the lower bounds from Theorem 5.

For K2,m, we give a negative result for m ≥ 15 in the following theorem
based on arguments similar to those in Theorem 4.

Theorem 6. Graph K2,m with m ≥ 15 does not admit any empty-ply drawing.

4.3 Trees of Bounded Degree

A d-ary tree T with k levels is a rooted tree where all vertices at distance less
than k from the root have at most d children and the remaining ones are leaves.
If all the non-leaf vertices have exactly d children, we say that T is complete.
Any tree with maximum degree Δ is a subtree of a (Δ − 1)-ary tree.

Note that binary trees admit empty-ply drawings, as the drawings with
ply 2 constructed by the algorithm in [10] are empty-ply drawings. Applying
Corollary 1 to the class of complete 10-ary trees (which do not admit drawing
with constant ply [1]) shows that they do not admit empty-ply drawing. But we
can prove something stronger.

Theorem 7. For sufficiently large k, the complete 4-ary tree Tk with k levels
admits no empty-ply drawing.

Proof. Assume without loss of generality that k is even and that Tk has an
empty-ply drawing Γ where the ply-disk of the root v0 has unit radius. We
announce that for simplicity the following estimates are not stated in the tightest
form. We will make use of the following consequences of Lemmas 2 and 3:

Claim (A). If a ply-disk of a vertex u in Γ has radius at least 2i, then all the
leaves of the subtree rooted at u have radii at least 22i−k.

Proof. Since ru ≥ 2i, the distance between u and the root is greater than i by
Lemma 3. Thus the path from u to its leaves has length at most k − i. ��
Claim (B). If v is a leaf whose ply-disk has radius rv ∈ (22i−k, 22i−k+2], with
i ∈ {0, k − 1}, then its Euclidean distance from the root is |v0v| ≤ 2i+2.

Proof. Let v0, v1, . . . , vk = v be the path from the root v0 to vk in Tk. Since
rv0 = 1, edge (v0, v1) has length at most 2. Also, by Lemma 2, the lengths of the
edges can grow at most by a factor 2 along the path; hence, |vj−1vj | ≤ 2j for
j ∈ {1, . . . , i}. If we traverse the path in the opposite direction from vk, whose
ply-disk has radius at most 22i−k+2, we get analogously that |vk−j+1vk−j | ≤
2j+2i−k+2 for j ∈ {1, . . . , k − i}.

The total distance is thus bounded by |v0vk| ≤ |v0v1|+|v1v2|+· · ·+|vk−1vk| =∑i
j=1 |vj−1vj | +

∑k−i
j=1 |vk−j+1vk−j | ≤ ∑i

j=1 2j +
∑k−i

j=1 2j+2i−k+2 = 2i+1 − 2 +
2i+1 − 23+2i−k ≤ 2i+2, and the statement follows. ��

32 P. Angelini et al.

We now distribute the 4k leaves to k sets L0, . . . , Lk−1 (all logarithms binary):

(a) if i ≥ 3 log k then Li = {v : rv ∈ (22i−k, 22i−k+2]}
(b) if i < 3 log k then Li = {v : rv ≤ 26 log k−k and whose largest predecessor u

has radius ru ∈ [2i, 2i+1)}
In the first case, the radii of the leaves in Li are sufficient to obtain a good

bound on enclosing area of the disks in Li. In the other case, the radius on the
enclosing disk for Li mostly depends on the presence of predecessors that are
larger than the root disk.

Some of the sets are empty by the definition, but it is irrelevant to our further
deductions. By pigeonhole principle, either some Li, i ≥ 3 log k satisfies |Li| ≥ 4k

2k

or some Li, i < 3 log k satisfies |Li| ≥ 4k

6 log k , since k+1−3 log k
2k + 3 log k

6 log k ≤ 1 when
k ≥ 3

√
2.

The rough idea behind the distinction of these two cases is that in case a),
when the diameters of leaves are sufficiently large, it suffices to consider twice
smaller proportion than the uniform pigeonhole principle would use and show
that the total area of ply-disks corresponding to leaves of Li is still too large for
an empty-ply drawing Γ . In case b) we use a slightly more elaborate argument
considering also the area of the predecessors of the vertices in Li.

Case (a). Assume that for some i ≥ 3 log k it holds that |Li| ≥ 4k

2k . The total
area occupied by the disks in Li is at least 4k

2kπ42i−k = 8iπ
2k . By Claim (B),

for every v ∈ Li it holds that |v0v| ≤ 2i+1, hence all ply-disks of Li must be
contained in a disk centered at the root of radius 2i+1 + 22i−k+2 ≤ 5 · 2i, since
for i ∈ {0, . . . , k} : i > 2i − k. In particular this disk has area at most 25π4i.

In order to apply Lemma 1, it suffices to choose k large enough such that
8iπ
2k > 4 · 25π4i for all i ≥ 3 log k, i.e., k > 5

√
200 .= 2.9.

Case (b). Assume that for some i < 3 log k it holds |Li| ≥ 4k

6 log k . Any v ∈ Li has
radius smaller than 26 log k−k, as otherwise we would be in case a). To obtain the
maximum distance between v and the root v0 we argue that the first 3 log k disks
along the path from v0 to v may have radius at most 2i+1. Analogously as in
the proof of Claim (B), the j-th predecessor of v has radius at most 26 log k−k+j .
An upper bound of |v0v| ≤ 2i+2(3 log k + 1) is obtained by summing up.

We now consider the subtree T ′ of Tk induced by the vertices of Li and all
their predecessors. Note that the drawing of the entire tree T ′ shall be contained
within a disk of radius 2i+2(3 log k + 1) + 23 log k−k, i.e., in area at most 4i+3π.
On the other hand, by Claim (A), each of the leaves has radius at least 22i−k.
Thus, their total area is at least 4k

6 log k42i−kπ = 8iπ
6 log k .

The number of parents of disks in Li is at least 4k−1

6 log k , each of radius at

least 2i−1, hence they occupy area also bounded from below by 8iπ
6 log k . Thus, all

leaves in Li and all their k − i predecessors occupy space at least 8iπ
6 log k (k − i) ≥

8iπk
12 log k . Again, to apply Lemma 1, it suffices to choose k large enough such that

On Vertex- and Empty-Ply Proximity Drawings 33

8iπk
12 log k > 4 · 64π4i for all non-negative i < 3 log k (in particular for i = 0). A
straightforward calculation verifies that the inequality holds e.g., for k ≥ 216.

For k = 216 one of the two cases applies, which concludes the proof. ��
Theorem 7 leaves open the question for 3-ary trees. We remark that the

algorithm for binary trees [10] adopts a common drawing style: the orthogonal
one with a shrinking factor of 1/2; see also [11]. We prove that this technique
fails for 3-ary trees, for any shrinking factor in (0, 1).

Theorem 8. Rooted ternary trees do not admit empty-ply drawings constructed
in orthogonal fashion with shrink factor q for any q ∈ (0, 1), i.e., when the
distance from a vertex to its children is q times the distance to its parent.

4.4 Graph Squares

The square of a graph G is the graph obtained from G by adding an edge between
each vertex and the neighbors of its neighbors.

Theorem 9. Let G2 be the square of a graph G. If G admits a drawing with
ply 1, then G2 admits an empty-ply drawing. Also, if G is a subgraph of a trian-
gular tiling, then G2 admits an empty-ply drawing with ply at most 4.

Proof. Let Γ be a straight-line drawing of G with ply 1. As proved in [10], all
the edges of G have the same length, say 1, in Γ , and every two non-adjacent
vertices are at distance at least 1 from each other. Hence, adding the edges of
G2 \ G to Γ produces a drawing Γ 2 of G2 in which each edge has length at
most 2. This implies that every ply-disk has radius at most 1 in Γ 2, and thus
Γ 2 is an empty-ply drawing. Note that Γ 2 may contain edge overlaps.

For the second part of the statement, recall that if G is a subgraph of a
triangular tiling, then it admits a drawing Γ in which all edges have the same
length and all the angles are multiples of π

3 . Hence, Γ has ply 1. Also the drawing
Γ 2 obtained by adding the additional edges of G2 \ G to Γ is an empty-ply
drawing. In this case, however, we can also prove that the ply of Γ 2 is at most 4;
recall that an upper bound of 5 to the ply of Γ 2 is already implied by Corollary 1.

W.l.o.g. let the triangular tiling be of unit edge length. Consider the open
disk of unit radius, which is centered at an arbitrary point p on the plane. If p is
not a vertex of the triangular tiling, at most four vertices of the triangular tiling
may fall in this disk. In the case where p is a vertex of the triangular tiling, no
other vertex of the tiling falls in the disk, but only on its boundary. Thus, any
point p can be internal to at most four ply-disks of the tiling vertices. ��

5 Ply and Vertex-Ply of Planar Drawings

In the original paper on the ply number it was observed that considering only
plane graph drawings may prevent finding low ply non-plane drawings [10]. In
particular, for the class of nested-triangles graphs the “most natural” planar

34 P. Angelini et al.

(a) (b) (c)

Fig. 5. Nested triangles graph: (a) “The most natural” drawing. (b) A non-planar
drawing with ply 5. (c) A planar drawing with ply 4. The disks of three vertices at the
same level do not properly overlap, and disks at levels i and i + 3 do not overlap.

drawing has ply Ω(n) (see Fig. 5a), while there exist non-planar drawings (with
edge overlaps) with ply 5 (see Fig. 5b). Note that however a “less natural” planar
drawing with ply 4 can always be constructed; see Fig. 5c.

We strengthen this observation by providing a planar 3-tree G admitting a
non-planar drawing (with only 3 crossings) with ply 5, such that any planar
drawing of G has ply Ω(n); the same linear lower bound holds even for vertex-
ply when the outer face is fixed. Recall that a planar 3-tree can be constructed,
starting from a 3-cycle, by repeatedly adding a vertex inside a triangular face
and connecting it to all three vertices of this face.

Our result also gives a negative answer to an open question posed in [10] on
whether there exists a relationship between the number of crossings and the ply
number of a drawing. Our example shows that one can reduce the ply number
from Ω(n) to O(1), by introducing only O(1) crossings.

Theorem 10. There exists an n-vertex planar 3-tree G such that any planar
drawing of G with a fixed outer face has vertex-ply Θ(n), and hence ply Θ(n),
while G admits a drawing with ply 5 and vertex-ply 4 with three edge crossings.

Proof. Graph G has three vertices v1, v2, and v3 on the outer face, and a vertex
u that is connected to all of v1, v2, and v3. Refer to Fig. 6a. In addition, it
contains three paths x1, . . . , xm, y1, . . . , ym, and z1, . . . , zm, each on m = n−4

3
vertices. The edge set further contains edges (u, x1), (u, y1), (u, z1) and also
(xi, v1), (xi, v2), (yi, v2), (yi, v3), (zi, v1), (zi, v3) for each i ∈ {1, . . . , m}.

Consider any planar drawing Γ of G. Suppose, w.l.o.g., that (v1, v2) is of unit
length and that it is the longest edge in Γ among the three edges incident to
the outer face, that is, |v2v3|, |v1v3| ≤ 1. Since vertex u lies inside the triangle
v1v2v3, we have |uv1|, |uv2| < 1. Hence, it is possible to cover the whole region of
the plane delimited by triangle uv1v2 with a set of 28 disks, each having radius
1
8 , as illustrated in Fig. 6b. Thus, at least one disk D out of these 28 contains in
its interior at least m

28 = n−4
84 vertices out of x1, . . . , xm.

Consider any vertex xi ∈ D. Since xi is connected to both v1 and v2, the
longest of its incident edges has length at least 1

2 , and hence the radius of the
ply-disk of xi is at least 1

4 . Hence the ply-disk of xi entirely contains the disk D

On Vertex- and Empty-Ply Proximity Drawings 35

v1 v2

v3

u

xm

y1
z1

x1

zm ym

(a)

v1 v2

u

(b)

v1 v2

v3

u

xm

y1z1

x1

zm
ym

z2

(c)

Fig. 6. (a) The planar 3-tree G in the proof of Theorem 10. (b) A set of 28 disks
of radius 1

8
covering the whole region delimited by triangle uv1v2 when |v1v2| = 1 >

|uv1|, |uv2|. (c) A non-planar drawing of G with ply 5 and vertex-ply 4.

in its interior, and thus it contains all the vertices inside it. Since this is true for
all the n−4

84 vertices inside D, the first part of the statement follows.
A non-planar drawing of G with ply 5 and vertex-ply 4 is depicted in Fig. 6c.

Here vertices v1, v2 and v3 form an equilateral triangle with barycenter u. Vertices
x1, . . . , xm are arranged along the axis of the segment v1v2 at distances growing
exponentially by a factor of 2, analogously for vertices y1, . . . , ym and z1, . . . , zm.
The disk Du overlaps with Dx1 , Dy1 , and Dz1 , without enclosing these vertices.
The drawing of the subset of vertices {u, x1, y1, z1} is empty-ply and of ply 2.
After considering the remaining vertices, the disks of v1, v2, v3 may contain all
of them in their interior. Thus we obtain ply 5 and vertex-ply 4.

6 Conclusions and Future Work

We defined and studied the vertex-ply of a straight-line drawing, paying partic-
ular attention to the special case of empty-ply drawings, whose vertex-ply is 1.
We conclude with several natural open problems.

1. We know that binary trees admit empty-ply drawings [10] and that 4-ary
trees do not (Theorem 7). What about 3-ary trees? Note that Theorem 8
rules out a large class of possible drawings (orthogonal and shrinking).

2. Another way of generalizing binary trees is to maintain the degree restriction,
leading to the question: do (planar) max-degree-3 graphs admit empty-ply
drawings?

3. In Theorem 9 we proved that the square G2 of a graph G with ply 1 admits
an empty-ply drawing, which has ply at most 5 by Corollary 1. On the other
hand, if G is a subgraph of a triangular tiling, then the empty-ply drawing
of G2 has ply at most 4. Does the square of every graph with ply 1 admit an
(empty-ply) drawing with ply 4? Note that there are ply 1 graphs that are
not subgraphs of a triangular tiling.

4. Looking at empty-ply drawings from the proximity perspective, it is natural
to consider the generalization in which ply-disks do not need to be empty,
but can contain at most k vertices. We call a drawing with this property

36 P. Angelini et al.

a k-empty-ply drawing, in compliance with the definition of k-Gabriel and
k-relative-neighborhood drawings [17]. With the argument of Theorem 10
there exist n-vertex graphs whose any planar drawing is Ω(n)-empty-ply.

5. In Theorem 4 we proved a tight bound of 7 on the size of complete graphs
admitting empty-ply drawings. For complete bipartite graphs Kn,m, we have a
tight bound of m = 24, for n = 1, and an almost tight bound of 12 ≤ m ≤ 14,
for n = 2, with larger gaps between the bounds for larger values of n.

Acknowledgments. This work began at the 2015 HOMONOLO meeting. We grate-
fully thank M. Bekos, T. Bruckdorfer, G. Liotta, M. Saumell, and A. Symvonis for
great discussions on the topic. Research was partially supported by project CE-ITI
P202/12/G061 of GAČR (J.F., J.K., P.V.), by project SVV–2017–260452 (J.H.), and
by DFG grant Ka812/17-1 (P.A., N.H., M.K.).

References

1. Angelini, P., Bekos, M.A., Bruckdorfer, T., Hančl, J., Kaufmann, M., Kobourov,
S., Symvonis, A., Valtr, P.: Low ply drawings of trees. In: Hu, Y., Nöllenburg, M.
(eds.) GD 2016. LNCS, vol. 9801, pp. 236–248. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-50106-2 19

2. Angelini, P., Chaplick, S., De Luca, F., Fiala, J., Hančl Jr., J., Heinsohn, N.,
Kaufmann, M., Kobourov, S., Kratochv́ıl, J., Valtr, P.: On vertex- and empty-ply
proximity drawings. ArXiv e-prints 1708.09233 (2017)

3. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput.
Geom. 9(12), 3–24 (1998)

4. Bruckdorfer, T., Cornelsen, S., Gutwenger, C., Kaufmann, M., Montecchiani, F.,
Nöllenburg, M., Wolff, A.: Progress on partial edge drawings. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 67–78. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36763-2 7

5. Bruckdorfer, T., Kaufmann, M.: Mad at edge crossings? Break the edges!. In:
Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 40–
50. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30347-0 7

6. Bruckdorfer, T., Kaufmann, M., Lauer, A.: A practical approach for 1/4-SHPEDs.
In: 6th International Conference on Information, Intelligence, Systems and Appli-
cations (IISA), pp. 1–6. IEEE (2015)

7. De Luca, F., Di Giacomo, E., Didimo, W., Kobourov, S., Liotta, G.: An experimen-
tal study on the ply number of straight-line drawings. In: Poon, S.-H., Rahman,
M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 135–148. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-53925-6 11

8. Delaunay, B.: Sur la sphère vide. a la mémoire de Georges Voronoi. Bulletin
de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et
naturelles, vol. 6, pp. 793–800 (1934)

9. Di Battista, G., Liotta, G., Whitesides, S.: The strength of weak proximity. J.
Discrete Algorithms 4(3), 384–400 (2006)

10. Di Giacomo, E., Didimo, W., Hong, S., Kaufmann, M., Kobourov, S.G., Liotta,
G., Misue, K., Symvonis, A., Yen, H.: Low ply graph drawing. In: 6th International
Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–6.
IEEE (2015)

https://doi.org/10.1007/978-3-319-50106-2_19
https://doi.org/10.1007/978-3-319-50106-2_19
https://arxiv.org/abs/1708.09233
https://doi.org/10.1007/978-3-642-36763-2_7
https://doi.org/10.1007/978-3-642-30347-0_7
https://doi.org/10.1007/978-3-319-53925-6_11

On Vertex- and Empty-Ply Proximity Drawings 37

11. Eiglsperger, M., Fekete, S.P., Klau, G.W.: Orthogonal graph drawing. In:
Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 121–171.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44969-8 6

12. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an
algorithmic lens. In: Proceedings of the 16th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 1–10. ACM
(2008)

13. Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Thomson Leighton,
F., Symvonis, A., Welzl, E., Woeginger, G.J.: Drawing graphs in the plane with
high resolution. In: FOCS, pp. 86–95. IEEE Computer Society (1990)

14. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Software Pract. Exp. 21(11), 1129–1164 (1991)

15. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation
analysis. Syst. Biol. 18(3), 259–278 (1969)

16. Heinsohn, N., Kaufmann, M.: An interactive tool to explore and improve the
ply number of drawings. In: Proceedings of the 25th International Symposium
on Graph Drawing and Network Visualization (GD 2017) (2017, to appear)

17. Liotta, G.: Proximity drawings. In: Tamassia, R. (ed.) Handbook on Graph Draw-
ing and Visualization, pp. 115–154. Chapman and Hall/CRC (2013)

18. Malitz, S.M., Papakostas, A.: On the angular resolution of planar graphs. In:
Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis, J.A. (eds.) ACM Symposium
on Theory of Computing, pp. 527–538. ACM (1992)

19. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Texts and
Monographs in Computer Science. Springer, New York (1985)

20. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recogn. 12(4), 261–268 (1980)

https://doi.org/10.1007/3-540-44969-8_6

An Interactive Tool to Explore and Improve
the Ply Number of Drawings

Niklas Heinsohn(B) and Michael Kaufmann

Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

{heinsohn,mk}@informatik.uni-tuebingen.de

Abstract. Given a straight-line drawing Γ of a graph G = (V, E), for
every vertex v the ply disk Dv is defined as a disk centered at v where
the radius of the disk is half the length of the longest edge incident to v.
The ply number of a given drawing is defined as the maximum number of
overlapping disks at some point in IR2. Here we present a tool to explore
and evaluate the ply number for graphs with instant visual feedback
for the user. We evaluate our methods in comparison to an existing ply
computation by De Luca et al. [WALCOM’17]. We are able to reduce the
computation time from seconds to milliseconds for given drawings and
thereby contribute to further research on the ply topic by providing an
efficient tool to examine graphs extensively by user interaction as well
as some automatic features to reduce the ply number.

1 Introduction

Graphs are the common mathematical model to represent relationships between
objects and occur in a huge variety of applications and disciplines. To make the
data stored in a graph accessible for humans, we need a graphical representation
which usually involves a drawing of the underlying graph. There exist several
schemes to draw graphs [8,16]. In this work we will focus on straight-line draw-
ings. Several aesthetic criteria on straight-line drawings have been defined to
capture the user requirement for a better understanding of the data (e.g. edge
crossings or angular resolution [3]).

Recently a new parameter called ply number was introduced as a quality
metric for graph layouts [9]. Given a straight-line drawing Γ of a graph G =
(V,E), for every vertex v the ply disk Dv is defined as a disk centered at v,
where the radius of the disk is half the length of the longest edge incident to v.
The ply number of Γ is the maximal number of overlapping disks at any point
in IR2. Theoretical results have been obtained on the ply number of graphs
[1,9] and there exist many real world graphs admitting natural drawings with
low ply number [10]. One common approach to draw such graphs are force-
directed algorithms [15], whose drawings are known to be aesthetically pleasing.
A recent study evaluated the correlation between the ply number of drawings
produced by force-directed algorithms and other known metrics defined on these
algorithms [7].
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 38–51, 2018.
https://doi.org/10.1007/978-3-319-73915-1_4

An Interactive Tool to Explore and Improve the Ply Number of Drawings 39

Fig. 1. A graph with 30 vertices and 40 edges is drawn by our tool in different layouts:
(a) randomly placed vertices with ply 15, (b) circular layout with ply 7, (c) organic
layout with ply 4, (d) the lowest known ply number of 3 for this graph.

There exist many tools and layout algorithms for graph drawing provided
e.g. by OGDF [6] or the yFiles library [19]. The identification of properties as
well as the development of new strategies to optimize parameters of drawings
involve frequent examination of graph drawings. In this paper we present a tool
which allows investigation of graphs according to its ply number. We present a
fast algorithm to compute the ply number for a given drawing based on a plane-
sweep algorithm which is known to be a powerful technique in computational
geometry. Furthermore we provide methods to modify the drawing to reduce the
ply number interactively as well as automatically. We confirm the value of our
tool by providing experimental results on the computation in terms of accuracy
and speed as well as the results on our ply minimization approaches.

A first prototype of the basic plane-sweep algorithm has been implemented
in [4]. We reimplemented the algorithm, improved it and added new features.
The experimental study of De Luca et al. [7] set a benchmark on the compu-
tation of the ply number for a given drawing. The authors evaluated several
layouts by force directed algorithms according to the ply number. To make our
comparison possible, the authors kindly provided some of their data. Both imple-
mentations of the ply computations are based on the Apfloat library [17] which
allows calculations on high precision levels at the cost of time.

2 Functionality

Our tool allows the investigation of a graph regarding its ply number. As basic
functionality, the tool is equipped with some graph layout algorithms, namely
organic, circular and randomized (provided by yFiles library [19]), as presented
in Fig. 1, and allows for interactive manipulation of the drawing, such as moving
vertices. Basic file formats are graphml [5] and gml [14] where graphml provides
structural information on the graph and gml provides a drawing.

Furthermore, we provide a test if a given drawing is empty-ply, where no
vertex is contained in any other vertex’s disk. With our tool we identified that the
complete graph K4,6 admits an empty-ply drawing whereas this was previously
known only for K4,4 [2]. Our implementation is able to compute the ply number
for the drawing during runtime, meaning while the drawing is modified, for
example by layout algorithms or user interaction.

40 N. Heinsohn and M. Kaufmann

Live feedback of the ply number on interactive graph manipulations by users
is another feature of our tool. We mark regions where the maximal ply number
occurred. The user can choose between different layouts as start configurations
for the graph and is able to improve the ply values automatically by a spring
embedder or by manually manipulating the positions of the vertices accordingly.

3 Ply Computation Algorithm

To compute the ply number of a drawing Γ we have to compute the intersections
of the ply disks. Clearly the ply number is at most linear in the number of
vertices. In the following, we introduce one major issue in computing ply numbers
and present our fast plane-sweep algorithm to compute the ply number.

3.1 Precision Problems

Naturally thinking of an easy case to start with are graphs that admit a drawing
with a ply number of 1. This case is easy to describe and points out the difficulty
of computing the ply number: A graph that admits a drawing with ply number
1 has no overlapping ply disks and can be drawn such that every edge has equal
length l and any two vertices are at a distance of at least l. Suppose that there
exists a drawing Γ and a vertex v with different edge lengths |(u, v)| = l1 and
|(w, v)| = l2 and let w.l.o.g l1 > l2. l2

2 is a lower bound on the ply disk Dw and
since l1

2 + l2
2 > l2 the ply disks Dv and Dw intersect and the ply number of

Γ is ≥ 2. Furthermore, since the radius for any ply disk Dv is l
2 , the distance

dist(v, w) between any two vertices has to be ≥ l.
The complete graph K3 admits a drawing with ply number 1, since the

vertices can be placed on an equilateral triangle. Computing a drawing of K3

with the vertices u, v, and w, some coordinates must be irrational, since otherwise
the condition dist(u, v) = dist(u,w) = dist(v, w) is violated. As a consequence
the computer would need an infinite precision to represent a drawing with ply
number 1. Furthermore the calculation of coordinates for intersection points of
circles involves precise arithmetic and is likely to result in irrational coordinates.

In previous applications [4,7] this problem was tackled by increasing the
precision using the Apfloat library. This allows calculation on up to 1000 digit
decimal precision. On the downside these arithmetics require high computational
effort. In the following we present an alternative approach using the primitive
type double reducing the computational effort. Later, we evaluate this decision
by experiments regarding the precision of the outcome in terms of events and
time spent computing the ply number.

3.2 Plane-Sweep Algorithm

A plane-sweep algorithm describes a powerful technique in computational geome-
try. Given a two-dimensional Euclidean space, a conceptual line which represents
the actual state of computation sweeps the Euclidean space scanning for events

An Interactive Tool to Explore and Improve the Ply Number of Drawings 41

from left to right. Given a drawing Γ of a graph G = (V,E), we can easily com-
pute the set of ply disks D = {Dv|v ∈ V }. Every disk Dv is associated with the
vertex v at position (xv, yv) and radius rv. At every x-coordinate of the setting
there exists a highest ply value. Note that the ply number of the graph is the
maximum over all ply values. The ply value can change whenever a disk starts
at (xv − rv, yv), ends at (xv + rv, yv) or if there is an intersection of two disks.
For our purpose these coordinates are called events.

To describe the vertical structure with opening and closing disks, we repre-
sent the disks as bottom and top halfcircles, re spective to the center. At any
x-coordinate between two consecutive events the order of opening and closing
halfcircles on a vertical line in a ply drawing and thereby the maximal ply value
is fix. For every halfcircle we associate and store the ply value.

Whenever we meet a leftmost coordinate xv − rv of a disk Dv, we introduce
two halfcircles (ht

v and hb
v) and add them in the vertical structure. We set the

ply values according to the neighboured halfcircles in this case. Whenever we
meet a rightmost coordinate xv + rv of a disk Dv, we remove both correspond-
ing halfcircles from the vertical structure. If there exist halfcircles between our
removed ones, we decrease the ply of these.

Note that two disks might intersect if and only if any two corresponding half-
circles occur next to each other in the vertical structure. Furthermore, any two
disks Du and Dv can intersect at most twice. To keep the computational effort
minimal the intersection of disks is calculated the first time any two halfcircles
appear next to each other in the vertical structure. Finally an intersection-event
swaps the two affected halfcircles hu and hv, the ply is updated due to a case
distinction.

The events are stored in a priority queue and are executed by their
x-coordinate. In case there exist several events at the same x-coordinate we define
the priority in ascending order as end-event, intersection-event, start-event.

The x-coordinates might get slightly inconsistent due to previously mentioned
precision errors. This results in events which cannot be handled consistently. One
example would be an intersection-event that requires a swap of halfcircles, which
are not neighboured in the actual state. Our solution to this scenario is linearly
searching for the closest consistent event. This event will be executed and we
jump back to the unresolved one. We repeat this until it can be resolved. These
events will be tracked as postponed events. In the results section we evaluate
this delay and describe graphs where this periodically occurs.

4 Experiments

This section is subdivided into three major parts. At first we will present results
on the ply number for various graphs, as well as the number of events and the
time. Second, we compare our results with the results of De Luca et al. [7]. Third,
we present an approach to reduce the ply number by local modification.

We will make use of three datasets. First we take a subset of the Rome
graphs [18], which is determined by taking all graphs matching the file name

42 N. Heinsohn and M. Kaufmann

Fig. 2. Ply number for the Rome
graphs with various densities.

Table 1. The table presents the average values on
Rome9data.

Layout Ply Time (ms) Events

Organic 6.3 < 1 546

Circular 12.5 1.1 974

Random 30 3.8 3153

pattern grafo9*. We call the set Rome9data. It consists of 1094 sparse graphs
with 10 to 100 nodes and a density between 0.9 an 1.8.

The second set contains 100 randomly generated graphs. Every graph consists
of 100 vertices and has densities between 1.5 and 40. We refer to this set as
RANDdata.

The third set will be referred to as FM3data. This set of graphs was kindly
provided by the authors of the experimental study [7] and each graph was
drawn using the fast multipole multilevel method of Hachul and Jünger [12]
which is among the most effective force-directed algorithms in the literature [13].
FM3data contains caterpillars, planar and general (connected simple graphs,
generated with uniform probability distribution) graphs.

4.1 Ply Number for Different Layouts

Our tool supports different layouts provided by the yFiles library, namely
organic, circular and random layout. We evaluated our algorithm on
Rome9data. We observe that for sparse graphs the organic layout creates draw-
ings with lower ply than the circular layout, whereas at densities close to one,
i.e. tree like, they produce similar ply numbers (see Fig. 2). As a reference the
random layout produces the highest ply numbers (see Table 1). We observe a
correlation between the ply number, time and events.

The results on RANDdata are presented in Table 2. Here, the number of
postponed events is noteworthy. While it can be neglected in the organic and
random layout, the number of postponed events in the circular layout is conse-
quential and highly increased with the density. The highly symmetric placement
of the vertices in the circular layout causes many events to share an x-coordinate.
This circumstance, paired with eventually occurring precision errors, influences
this number. Since summing up over all postponed events exceeds the total num-
ber of executed events, the postponed events highly influences the computation
time, as we do a linear search for the next event.

In sparse graphs spring embedding algorithms like the organic layout algo-
rithm produce drawings with low ply numbers, while in dense graphs the draw-
ings have similar ply numbers to a drawing where the vertices are placed ran-
domly. In the dense graphs the circular layout hits the theoretical upper bound
of |V |

2 as shown in Fig. 3.

An Interactive Tool to Explore and Improve the Ply Number of Drawings 43

Table 2. The average ply numbers for each layout is presented for RANDdata, as
well as the average computation time and the average number of postponed events.

Density Layout Ply Time (ms) Events Postponed

1.5–2.5 Organic 16.2 2.2 2381 0

Circular 29.3 5.3 4349.5 11.3

Random 48.2 8.3 7170 0

5–8 Organic 50 12.2 7568 0

Circular 47.5 15.9 9076.5 109.8

Random 75 15.2 9510 0

10–15 Organic 76.5 14 9534 0

Circular 49.7 18 9650.8 3343.6

Random 86 14.4 9882.5 0

20–40 Organic 93 15.9 10016.4 0

Circular 50 160.1 9925.6 151232

Random 94 17.9 10041.4 0

Fig. 3. The density of the graphs of RANDdata is plotted against the ply number
of the drawing. We observe that the organic layout produces low ply numbers for
low densities, whereas at higher densities the circular layout outperforms the organic
layout. In very dense graphs the organic layout performs evenly as the random layout.

4.2 Comparison on the FM3 Drawing Dataset

We compare the number of events and the average computation time on
FM3data. The Apfloat decimal precision was set to 20 digits for this com-
parison. This value was used in the experiments of [7]. We will present the data
split by the type of graphs and according to their density.

FM3data contains 50 caterpillars with 250 to 450 vertices. The average
number of events and the computation time is presented in Table 3. We observe
a huge difference in the total number of events and the computation time. The
difference in number of events can be explained due to the difference in handling
inconsistent events. The algorithm of [7] introduces a number of redundant events
to detect and handle inconsistencies. Our algorithm reduces the computation for
the ply number from seconds to milliseconds.

44 N. Heinsohn and M. Kaufmann

Table 3. The caterpillars of FM3data. Each subset with 250 to 450 vertices contains
10 graphs. During all experiments the ply numbers for both implementations were the
same. The table presents average values for each set of graphs.

Vertices Ply [7] Our Tool

Events Time (ms) Events Time (ms)

250 3.8 2692.4 1328.1 1122.6 3.5

300 4.3 3510.4 1831.9 1430 1.6

350 4.5 3827 1883.7 1602.4 1.9

400 4.6 4564.9 2291.5 1879.3 2.4

450 4.3 5032.8 2581 2110 2.3

Table 4. The planar graphs of FM3data. The values show the average results for
each subset. Both implementations always computed the same ply numbers.

Density Ply [7] Our Tool

Events Time (ms) Events Time (ms)

≤ 1.7 9.6 9878.6 8444.2 3434.6 3.7

> 1.7 11.4 9625.9 9625.9 3609.4 3.8

FM3data also contains planar graphs ranging from 250 to 400 vertices and
a density ranging from 1.5 to 2. We split the planar graphs in two density classes.
In one set all densities are ≤ 1.7 and in the second set the densities are > 1.7.
The results are presented in Table 4. We observed that the ply number seems
to be related to the density rather than the number of vertices. A summary
is presented in Fig. 4. As a confirmation of previously made observations we
computed the ply of organic and circular layouts. For low densities the circular
layout produces higher ply drawings where the organic layout produces similar
ply numbers as the FM3 algorithm. On average the drawings generated by FM3
have slightly higher ply than the organic layout. The average ply number in the
organic layout is 9 for graphs with density ≤ 1.7 and 9.7 for higher density.
Again, note the difference in number of events and computation time keeping
results equal.

The remaining subset of FM3data consists of general graphs with 250 to 450
vertices and the densities 1.5 and 2.5. In 96 of 100 graphs both implementations
computed the same ply number, whereas in 3 graphs we see a difference of 1. In
one specific graph, namely General 400 2.5 5 d 0 FMMM drawing.gml, the ply
number differs by 5. In these graphs we can detect a high number of postponed
events. Furthermore, our algorithm underestimates the ply number in all cases.

To conclude this section we present the interesting result on different layouts
on the third subset of FM3data presented in Fig. 5. Note that the ply numbers
on FM3 and organic layout are very similar. The stairs in the plot indicate the
jump between the densities from 1.5 to 2.5 for each set of graphs.

An Interactive Tool to Explore and Improve the Ply Number of Drawings 45

Fig. 4. For each planar graph of FM3data the computed ply numbers for each of the
three layouts is plotted. Note that the organic and the FM3 drawings have similar ply
numbers, while the circular layout produces higher ply numbers on low density graphs.

Fig. 5. The set of general graphs can be subdivided in 5 subsets consisting of graphs
with 200, 250, ... , 450 vertices. Each subset can be divided in 10 graphs with density
1.5 and 10 graphs with density 2.5. The figure indicates that the FM3 algorithm and
the organic layout produce similar drawings regarding the ply number.

4.3 Ply Minimization

In this part we will present some strategies to create drawings with low ply.
We evaluated our strategies on FM3data and Rome9data. Our first strategy
is based on an obvious upper bound of |V |

2 on the ply number of any graph
G = (V,E), which is obtained by placing the vertices regularly on a circle C.
For every disk there exist a unique disk on the opposite side of the center which
is not overlapping. Therefore at most half of the disks can contribute to the ply
number. We use this observation and apply the circular layout, whenever the
actual layout has ply number larger than |V |

2 .

4.4 Strategies

To achieve a low ply drawing for a given graph we introduce a workflow, which
is directly accessible in our tool. We start with the organic layout since it has
presented itself to produce drawings with low ply number on sparse graphs.
Examining these drawings with our tool, we observed that there often exist
very few regions with the maximal ply number, which often can be reduced by
moving a few vertices locally. From these observations we adjusted a new spring
embedder based on Fruchterman and Reingold [11], similar as suggested in [7],
and tuned the parameters to produce drawings with less ply.

46 N. Heinsohn and M. Kaufmann

4.5 Results

At first we present the advantages of our methods on Rome9data in comparison
to organic layouts. On average the ply number of 6.3 of the organic layout was
improved to 5.1 in the modified setting. This result is presented in Fig. 6.

In the experimental study of the ply number [7] one of the results was the
strength of the FM3 algorithm to produce low ply drawings. We compare the ply
numbers for FM3data to the findings of our ply minimization workflow. Like in
the previous chapters we will present the results separately. For all computations
of the ply numbers we took our implementation for consistency.

On the caterpillars the average ply number for the FM3data is 4.3, which
we could improve to 3.3. On the general graphs we could reduce the average ply
number from 37.3 to 36.7 and on the planar subset we could even improve the
average ply number from 10.4 to 8.8. The results are presented in Fig. 7.

Fig. 6. For each graph in the Rome9data set the organic and the improved ply
number are drawn. The graphs are ordered by the number of vertices.

(a) (b)

(c)

Fig. 7. The plots present the minimization results on FM3data. Note that the axis
change in scale throughout the plots. (a) the ply number of the caterpillars. (b) the
ply number of the planar graphs. (c) the ply number of the general graphs.

An Interactive Tool to Explore and Improve the Ply Number of Drawings 47

5 Discussion and Conclusion

To start our discussion we first want to analyze the results for the ply com-
putation for the different layouts followed by the comparison between the two
implementations. We continue with the ply minimization part. We conclude with
a paragraph on the advantages of our tool.

We have presented the results of the ply computation on various graph lay-
outs. Comparing different layouts, we can easily conclude that on sparse graphs
spring embedding algorithms produce low ply drawings. This confirms the find-
ings of [7]. Analyzing denser graphs, these algorithms tend to reach their limits.
On very dense graphs (close to complete graphs) they perform similar to ran-
dom layouts (see Fig. 3). To strengthen this claim we included the ply number
for randomly drawn graphs in this figure. An interesting observation suggests
that the circular layout produces ply numbers close to |V |

2 even in the worst case.
The reason for this is stated in Sect. 4.3.

Our experiments suggest the equilibrium between the circular and the organic
layout to be between density of 5 and 6.5. At densities larger than 6.5 the ply
numbers for graphs drawn with the circular layout are clearly lower than the ply
numbers for the organic layout (see Fig. 3).

The number of total events indicate a similar observation. While the number
of events highly correlates with the increasing density, a higher number of events
seems to imply a higher ply number of the drawing. Accordingly, the number of
events in dense graphs support the observation that our organic layout produces
similar ply numbers as the random layout (cf. Table 2). This effect is expected
and the reason for this is twofold. On the one hand, every vertex has one ply
disk which represents the dependency on the number of vertices. On the other
hand, more edges tend to induce larger radii and thereby more intersections
even though the number of disks stay the same. The increasing number of events
according to the density and number of vertices is observable in both evaluated
implementations.

According to the precision errors we observe a high number of postponed
events, especially in the circular layout. This can be explained by the highly
symmetric structure of these drawings, which cause many events to share an
x-coordinate. The radii of the ply disks are likely to be irrational numbers and
are thus prone for errors. Note that the value purely counts the number of events,
which could not be solved instantly. There exist events which are counted several
times, since they require more steps in between to be solved and we jump back
to the first unsolved event.

Comparing the two implementations on the FM3data, we observe three
facts. First of all the number of total events differ by a factor of 2 to 3. This
can be explained due to the implementation of [7] adds additional events to pre-
vent the influence of precision errors. This way the errors are detected instantly.
Second, the difference in computation time depends partially on the pure num-
ber of events but the major time difference can be explained by the arith-
metic computation time on Apfloat values in comparison to the primitive type
double. Since we present a tool for the examination of different graphs we need

48 N. Heinsohn and M. Kaufmann

Table 5. The average results of the general graphs of FM3data are presented. The
ply numbers in brackets indicate a different result of the algorithms. Note that these
cases have a high number of postponed events.

Density Vertices Ply [7] Our Tool

Events Time (ms) Events Time (ms) postponed

1.5 250 18 18334 23955 6430 10.2 0.4

300 19.8 25688.3 38454.8 8950.8 9.7 159

350 23.7 34140.5 52829.1 11949.7 23.7 0.6

400 25.4 43543.4 72928.5 15227.5 16.4 0.3

450 28 (27.9) 55643.2 100653.2 19395.6 23.1 0.7

2.5 250 38.1 47248 92192.7 16539.1 19.5 0.5

300 45.4 68070.5 147113.6 23892.3 36.7 2.2

350 51.4 90943.4 217999.9 31850.1 43.5 2.5

400 59.3 (58.7) 118188.7 309601.8 40606.9 83.8 40048.3

450 64.3 (64.2) 148973.3 426993.5 51640.4 112.9 62776.7

a fast computation of the ply number to achieve a feedback for the user within
milliseconds. Note that the implementation of [7] this was not applicable. To
give an overview, there were only 4 out of 100 graphs where a difference in
the computed ply number could be observed. In every case our implementa-
tion underestimated the ply in comparison to the other implementation [7]. The
average error is very low as presented in Table 5.

Examining the results we can state a likelihood or quality of the computed
result. Where the number of postponed events is one important indicator of
occurred precision errors and evenly important a large number of end-events
to solve inconsistencies increase the likelihood of miscomputation. A feature we
want to include in future work is to give visual feedback to the user in that case.

During the experiments we detected a few computations with a high number
of postponed events during the analysis of the FM3data. Examining the
graphs, we observed that the FM3 algorithm tends to produce drawings with
low average edge length and thereby are likely to induce precision errors. In our
layout algorithms larger average edge length where possible. This increases the
accuracy of our algorithm and explains the computation error on these graphs.
All in all we present an algorithm which can compete in the computed result
and is very fast. We conjecture that the accuracy can be even increased by
scaling a given graph. Unfortunately, we cannot support this by experimental
data, another task that will be tackled in future work.

Now we want to discuss the results of our minimization approach. We
compare the organic layout and our strategy to reduce the ply number on
Rome9data. We adjusted a spring embedder to reduce the ply number for
a drawing based on our organic layout. One of the important observations on
sparse graphs was that the maximal ply number is often reached in very few
regions. On this data, in average, we can reduce the ply number by one. For fur-

An Interactive Tool to Explore and Improve the Ply Number of Drawings 49

ther competition on sparse graphs we compare the FM3 layout algorithm, which
was the winning strategy in [7]. Our approach creates drawings that are on
average one ply lower than this algorithm.(cf. Figure 7). Even though our imple-
mentation tends to underestimate the ply number on some FM3data graphs.
Our modification produces a larger scaling and we conjecture that our approach
constructs drawings with lower ply number and the computations are more resis-
tant to precision errors.

For very dense graphs the spring embedding strategies seem to produce draw-
ings which have a ply number close to random layouts. Nevertheless, for dense
graphs we can guarantee an upper bound by using the circular layout, which is
included in our optimization.

Examining the minimization strategies on caterpillars of FM3data, the ply
numbers still range up to 4. Even though we know that caterpillars admit a ply
2 drawing [1]. Further examination on these graphs suggests that our methods
are often able to construct drawings with ply number 2 given a suitable start
configuration and enough time. Since we gave a strict time limit during the
experiments we did not manage to produce many ply 2 drawings on this set.

Our tool provides the user with our adjusted spring embedder and the possi-
bility to enforce equal edge lengths. The equal edge lengths can be interpreted as
a test if the actual embedding admits a ply 1 drawing. During our experiments,
due to precision errors, we did not observe ply 1 drawings by automated layout
methods. The enforced equality of edge lengths includes very strong forces and
converges if there exists a ply 1 drawing in the current embedding.

The optimization process involves several iterative computational steps using
spring embedding algorithms and computation of the ply number in between.
By using these steps and adjusting the vertices manually it is possible for the
user to reduce the ply number even further by moving few vertices, since due to
a previous observation there often exist only few regions with maximal ply.

We conclude this part with a short summary of functionality and a forecast
for our tool. We introduced a fast ply computation algorithm which is able
to give instant feedback to user interaction, e.g. whenever the drawing of a
graph is modified. We were successfully able to reduce the computation time
from seconds to milliseconds. Our tool is equipped with basic layout algorithms
and simple automated minimization techniques. The tool can be used to get
a deeper understanding of several graph classes e.g. according to the question
if there exists a lower bound on the ply number. In the near future we will
include an indicator on the accuracy of the computation. In these cases the
implementation providing higher precision in the computation might be used
as verification. Furthermore, we want to improve the minimization methods.
Further evaluation and experiments will be necessary to observe the influence of
scaling to our computations.

Acknowledgements. We specially thank the authors of [7] for providing their
implementation and data to compare with ours. We also thank Patrizio Angelini,
Lukas Bachus, Michael Bekos, and Felice De Luca for helpful discussions.

50 N. Heinsohn and M. Kaufmann

References

1. Angelini, P., Bekos, M.A., Bruckdorfer, T., Hančl, J., Kaufmann, M., Kobourov,
S., Symvonis, A., Valtr, P.: Low ply drawings of trees. In: Hu, Y., Nöllenburg, M.
(eds.) GD 2016. LNCS, vol. 9801, pp. 236–248. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-50106-2 19

2. Angelini, P., Chaplick, S., De Luca, F., Fiala, J., Hancl, J., Heinsohn, N.,
Kaufmann, M., Kobourov, S., Kratochvil, J., Valtr, P.: On vertex- and empty-
ply proximity drawings. In: Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017) (2017, to appear)

3. Atallah, M.J.: Algorithms and Theory of Computation Handbook. CRC Press,
Boca Raton (1999)

4. Bachus, L.: Ply, University of Tübingen. Bachelor thesis (2016)
5. Brandes, U., Eiglsperger, M., Lerner, J., Pich, C.: Graph markup language

(GraphML). In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualiza-
tion, pp. 517–541. Chapman and Hall/CRC (2013)

6. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The
open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook on
Graph Drawing and Visualization, pp. 543–569. Chapman and Hall/CRC (2013)

7. De Luca, F., Di Giacomo, E., Didimo, W., Kobourov, S., Liotta, G.: An experimen-
tal study on the ply number of straight-line drawings. In: Poon, S.-H., Rahman,
M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 135–148. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-53925-6 11

8. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

9. Di Giacomo, E., Didimo, W., Hong, S., Kaufmann, M., Kobourov, S.G., Liotta,
G., Misue, K., Symvonis, A., Yen, H.: Low ply graph drawing. In: Bourbakis, N.G.,
Tsihrintzis, G.A., Virvou, M. (eds.) 6th International Conference on Information,
Intelligence, Systems and Applications, IISA 2015, Corfu, Greece, 6–8 July 2015,
pp. 1–6. IEEE (2015)

10. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an
algorithmic lens. In: Aref, W.G., Mokbel, M.F., Schneider, M. (eds.) 16th ACM
SIGSPATIAL International Symposium on Advances in Geographic Information
Systems, ACM-GIS 2008, Proceedings, 5–7 November 2008, Irvine, California,
USA, p. 16. ACM (2008)

11. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw., Pract. Exper. 21(11), 1129–1164 (1991)

12. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9 29

13. Hachul, S., Jünger, M.: Large-graph layout algorithms at work: an experimental
study. J. Graph Algorithms Appl. 11(2), 345–369 (2007)

14. Himsolt, M.: GML: A Portable Graph File Format. Universität Passau (1997).
http://www.fmi.uni-passau.de/graphlet/gml/gml-tr.html

15. Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Hand-
book on Graph Drawing and Visualization, pp. 383–408. Chapman and Hall/CRC
(2013)

16. Tamassia, R., Liotta, G.: Graph drawing. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, 2nd edn., pp. 1163–1185.
Chapman and Hall/CRC (2004)

https://doi.org/10.1007/978-3-319-50106-2_19
https://doi.org/10.1007/978-3-319-50106-2_19
https://doi.org/10.1007/978-3-319-53925-6_11
https://doi.org/10.1007/978-3-540-31843-9_29
http://www.fmi.uni-passau.de/graphlet/gml/gml-tr.html

An Interactive Tool to Explore and Improve the Ply Number of Drawings 51

17. Tommila, M.: A C++ high performance arbitrary precision arithmetic package
(2003). http://www.apfloat.org/apfloat/

18. Welzl, E., Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E.,
Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput.
Geom. 7, 303–325 (1997)

19. Wiese, R., Eiglsperger, M., Kaufmann, M.: yFiles - visualization and automatic
layout of graphs. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software,
pp. 173–191. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-
18638-7 8

http://www.apfloat.org/apfloat/
https://doi.org/10.1007/978-3-642-18638-7_8
https://doi.org/10.1007/978-3-642-18638-7_8

Experimental Analysis of the Accessibility
of Drawings with Few Segments

Philipp Kindermann1(B), Wouter Meulemans2, and André Schulz1

1 LG Theoretische Informatik, FernUniversität in Hagen, Hagen, Germany
{philipp.kindermann,andre.schulz}@fernuni-hagen.de

2 Department of Mathematics and Computer Science, TU Eindhoven,
Eindhoven, The Netherlands

w.meulemans@tue.nl

Abstract. The visual complexity of a graph drawing is defined as the
number of geometric objects needed to represent all its edges. In partic-
ular, one object may represent multiple edges, e.g., one needs only one
line segment to draw two collinear incident edges. We study the question
if drawings with few segments have a better aesthetic appeal and help
the user to asses the underlying graph. We design an experiment that
investigates two different graph types (trees and sparse graphs), three
different layout algorithms for trees, and two different layout algorithms
for sparse graphs. We asked the users to give an aesthetic ranking on
the layouts and to perform a furthest-pair or shortest-path task on the
drawings.

1 Introduction

Algorithms for drawing graphs try to optimize (or give a guarantee) on certain
formal quality measures. Typical measures include area, grid size, angular reso-
lution, number of crossings, and number of bends. While each of these criteria is
well motivated, we have no guarantee that we get a good drawing by optimizing
only one of the measures. This is due to the fact that most measures compete
with each other. For example, it is known that certain planar graphs cannot be
drawn with good angular resolution and polynomial area [8]. The question arises
how we can select an appropriate algorithm for a graph drawing task. Instead of
relying on a combinatorial or geometric measure of the drawing, one could also
value the results of the algorithms by measuring the efficiency of tasks carried
out be the observer. Another option would be to just ask the observer which
drawing he considers as “nice”. By conducting such experiments we also hope to
learn something about the formal measures. The goal is here to identify formal
measures/algorithms that are particularly suitable for typical tasks performed
on graph drawings.

This work was partially funded by the German Research Foundation (grant SCHU
2458/4-1). W. Meulemans is funded by the Netherlands eScience Center (NLeSC,
grant 027.015.G02).

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 52–64, 2018.
https://doi.org/10.1007/978-3-319-73915-1_5

Experimental Analysis of the Accessibility of Drawings with Few Segments 53

In this paper, we present a study that investigates how good drawings with
few segments are perceived by the observer in contrast to other drawing styles.
A drawing with few segments tries to draw several edges that form a path as
a single segment. Although the path may contain many edges, this is counted
as only one segment in the drawing. The total number of segments is known
as the visual complexity of the drawing. Instead of straight-line segments, one
could also use other geometric objects to draw paths. One option that has been
introduced by Schulz [12] is using circular arcs. However, in this paper our focus
lies on drawings with segments.

It is an open question whether a small number of segments is a good quality
measure for graph drawings. In our study, we want to find out if this design
criterion makes drawings more aesthetically appealing for the observer and/or if
they are helpful for executing tasks. The main difficulty is that we cannot control
the visual complexity of a drawing while keeping other measures fixed. One way
to avoid this problem is to adapt existing algorithms in such a way that we can
reduce the number of segments in the final drawing without changing too much
in the “style” of the existing drawing.

In our study, we focus on two graph classes. The first class are trees, for
which many drawing algorithms are known. It is not hard to see that every
tree can be drawn with nodd/2 segments, where nodd denotes the number of
odd-degree nodes in the tree [3]. It is however unknown if every tree can be
drawn with nodd/2 segments using only a polynomial grid size. We heuristically
improve the algorithm of Hültenschmidt et al. [6] that draws a tree with minimal
visual complexity and quasi-polynomial area and compare its drawing in the user
study against drawings of other algorithms. In particular, we use the algorithm of
Walker II [14] and of Rusu et al. [11] as alternatives. The former one mimics the
standard way how trees are typically drawn in the computer science literature.
The latter one aims to draw trees with good angular resolution on a small grid.

The second class of graphs we consider are sparse but not necessarily plane
graphs as provided by the ROME library [15]. In this setting, it is even harder to
control more than one formal measure. We therefore selected only one algorithm
to compare with. This is the popular Fruchterman-Reingold spring embedder
algorithm [4]. In order to generate drawings that have a “similar feel” but use
fewer segment, we adapt the spring embedder algorithm by adding constraints
that force certain edges to be collinear, and hence form a straight-line segment.

We selected two categories for the users to evaluate the drawings presented
to them. The first category addresses the question which of the drawings are
aesthetically more appealing to the user. In the second category, we asked the
users to perform tasks. For the trees, we asked to identify pair of nodes realizing
the largest distance; for the sparse graphs we asked to select a shortest path
between two designated vertices. The user study was implemented as a voluntary
online questionnaire in order to reach a significant number of participants.

2 Algorithms

Trees. For trees, we used three algorithms as illustrated in Fig. 1: Tidier, Quad,
and FewSegments. The algorithm Tidier was presented by Walker II [14] and

54 P. Kindermann et al.

(a) Tidier Layout (b) Quad Layout (c) FewSegments Layout

Fig. 1. A drawing of a tree with each of the three considered layouts.

builds upon the classic algorithm by Reingold and Tilford [10]. This algorithm
satisfies three criteria: (1) Nodes at the same level of the tree should lie along a
straight line, and the straight lines defining the levels should be parallel. (2) A
parent should be centered over its offspring. (3) A subtree should be drawn the
same way regardless of where it occurs in the tree.

The algorithm Quad was presented by Rusu et al. [11]. This algorithm allows
the user to specify an angular coefficient and draws edges such that the angles
are above the angular coefficient if possible and evenly spread out otherwise. It
also allows the user to specify how many quadrants may be used to place the
children of a vertex. We chose an angular coefficient of 22.5◦ and allowed the
algorithm to use all four quadrants.

Finally, the algorithm FewSegments is based on the algorithm by
Hülten-schmidt et al. [6] that draws trees on a quasi-polynomial grid with a
minimum number of segments. On a high level, that algorithm uses a heavy path
decomposition of a tree and places the heavy paths onto segments. It recursively
embeds a subtree such that the heavy path of its root is drawn with a vector
specified by the parent edge of its root and all subtrees lie in disjoint boxes. We
use three heuristics to reduce the size of the drawing.

The first heuristic is applied during the layout of the tree. When the algorithm
assigns a vector to a subtree, we allow it to increase the length of the vector
slightly such that the new vector is an integer multiple of a smaller primitive
vector. For example, if the algorithm would assign a vector (6, 11), then this
heuristic would change the vector to (6, 12). This implies that the segments
on the heavy path in this subtree do not have to use vectors that are integer
multiples of (6, 11), but only integer multiples of (1, 2). Although this makes one
segment a bit longer, the subtree might use less area by this change.

The second and the third heuristic are applied in alternating order after a
layout has been found. The second heuristic tries to compress vectors: given a
segment s that is drawn as a vector −→v that is an integer multiple of a primitive
vector −→u , it redraws the tree such that s is drawn with the smallest integer
multiple of −→u without destroying planarity. The third heuristic takes a segment t

that is drawn with a long vector −→w and tries to find a smaller vector
−→
w′ to draw t

Experimental Analysis of the Accessibility of Drawings with Few Segments 55

(a) ForceDir Layout (b) FDFewSeg Layout

Fig. 2. A drawing of the ROME graph 2282.20 with both force-directed layouts.

and the subtree rooted in its child such that the resulting drawing is still planar.
This is a more drastic approach and can change the way a subtree is drawn
completely. We apply both post-processing heuristics five times on the resulting
layout. The second heuristic is applied to all edges, the third only on those whose
length is at least 1/5 of the length of the diagonal of the minimum bounding
box of the drawing.

Graphs. For the sparse graphs, we used the algorithms ForceDir and FDFewSeg;
example drawings are provided in Fig. 2. The former is an implementation of the
spring embedder by Fruchterman and Reingold [4]. This algorithm computes a
force between each pair of vertices. If there is an edge between two vertices, then
there is an attractive force fa(d) = d2/k between them, where d is the distance
between the vertices and k is their optimal distance defined as k = C

√
A/n,

where C is some constant, A is the maximum area of the drawing, and n is the
number of vertices in the graph. If there is no edge between two vertices, then
there is a repulsive force fr(d) = −k2/d between them. By an addition of these
forces at every vertex v, we obtain a movement Δv of the vertex described by
a 2-dimensional vector. Fruchterman and Reingold use simulated annealing to
control the movement of the vertices such that the adjustments become smaller
over time and the algorithm terminates.

The FDFewSeg algorithm is an extension of the ForceDir spring embed-
der. It takes as an additional input a set of edge-disjoint paths P. First, the
movement Δv for every vertex is computed. Let v0, . . . , vk = P ∈ P. The algo-
rithm places the vertices v1, . . . , vk−1 evenly spaced onto the segment between v0
and vk. To this end, for every vertex vi, 0 < i < k, the movement becomes

Δvi =
n − i

n
(v0 + Δv0) +

i

n
(vk + Δvk) − vi.

Note that this procedure does not necessarily draw all paths in P as segments:
if a vertex u of a path is an internal vertex of another path that is processed
later, then u will be moved away from its path segment. Hence, the user should
input that paths in an order that avoids this problem.

3 Hypotheses

We design a user study to compare aesthetics and legibility of drawings produced
by the above-described algorithms. In particular, we pose and analyze for the
following four hypotheses:

56 P. Kindermann et al.

H1. For trees, the aesthetics ranking is Tidier > FewSegments > Quad for peo-
ple with mathematics or computer science background and FewSegments
> Tidier > Quad for people from a different background.

H2. For trees, path finding is easiest with the FewSegments layout, followed by
Tidier, and hardest with Quad.

H3. For sparse graphs, the ForceDir layout is more aesthetically pleasing than
the FDFewSeg layout.

H4. For sparse graphs, path finding is easier with the FDFewSeg layout than
with the ForceDir layout.

Underlying the Hypotheses H2 and H4 is the idea that placing paths onto
few segments makes it easier for the user to follow a path between two nodes
since the eye only has to move along few directions and can traverse several
nodes quickly along a segment. Evenly spacing out the nodes along a path in the
force-directed layout should help the reader to quickly determine the number of
nodes on a segment and thus to judge the combinatorial length of such a path.

For Hypothesis H1, we guess that the uniformity of the Tidier and the
FewSegments layout would make them win over the Quad layout. For mathe-
maticians or computer scientists, we expect that the Tidier layout wins since
it creates a drawing in the standard way that trees are drawn in the literature.
For people with different background, we expect that the FewSegments layout
wins because it seems to be more schematic.

For Hypothesis H3, we think that the smooth curves in the ForceDir layout
look nicer to a reader than the drawings of the FDFewSeg layouts because the
latter ones can have sharp corners at the meeting point of two path segments;
for example, Bar and Neta [1] argue that sharp corners have a negative effect on
aesthetics as such bends are identified with threat. On the other hand, Vessel
and Rubin [13] studied the objectiveness of taste–their conclusion is that there is
typically agreement for natural images, abstract depictions are influenced more
by individual taste. Though they cannot fully be eliminated, we believe that the
uniformity of graphical presentation may mitigate personal preferences to allow
for investigating an overall agreement in aesthetics.

4 Experimental Design

Selecting tasks. We used two tasks: Aesthetics and Query. We created different
graphs for each task. For the Aesthetics task, we showed the user one drawing
for each layout of the same graph next to each other. The order of the drawings
was determined randomly. The user was asked to determine a ranking on the
aesthetics of the drawings by clicking on them in the desired order.

We used different Query tasks based on the graph class. We showed the user
one drawing at a time. Over time, every graph was presented the user once with
each layout.

For the sparse graphs, we asked the users to find the shortest path between
two randomly marked vertices that have distance at least 3 (the pair of vertices

Experimental Analysis of the Accessibility of Drawings with Few Segments 57

was the same for each layout and each user). The user solved this task by clicking
on the vertices (or edges) in the order that they appear on this path. To make
sure that a user does not get stuck on a question, we allowed them to submit
their answer even if no path was found. We helped the user with this task by
marking (in a different color) the valid nodes and edges they can click on, which
are those that are adjacent to the endpoint of one of the two paths starting in
the two marked vertices.

For trees, shortest paths are uniquely defined which makes it unsuitable as
a task. Hence, we asked the user to find the furthest pair of vertices, that is,
the pair of vertices such that the distance between them is maximized. This also
requires the user to inspect several paths in the graph. The user then had to
click on the vertices that they determined as the furthest pair.

Generating stimuli. For trees, we have the following two variables for the stimuli:

– Size. Two different sizes: (1) 20 nodes and (2) 40 nodes.
– Depth. Three different tree depths as defined by the length of the longest

root–leaf paths: (D) deep trees of depth 8 for size 1 and of depth 14 for size 2,
(B) balanced trees of depth 5 for size 1 and of depth 9 for size 2, and (W) wide
trees of depth 3 for size 1 and of depth 5 for size 2.

To construct random trees of given size and depth, we create a uniformly
distributed random Prüfer sequence [9] and check whether the corresponding
labeled tree has the given depth. It is known that Prüfer sequences provide a
bijection between the set of labeled trees on n vertices and the set of sequences
of n − 2 integers between 1 and n. Hence, this algorithm gives us uniformly dis-
tributed random trees of a given depth. For each size and depth, we created four
different graphs for the Aesthetics task and two different graphs for the Query
task. This gives us 2 · 3 · 4 = 24 graphs for the Aesthetic tasks (4 repetitions)
and 2 · 3 · 2 = 12 graphs for the Query task (2 repetitions).

For the sparse graphs, we have the following two variables for the stimuli:

– Size. Two different sizes: (1) 30 nodes and (2) 60 nodes.
– Type. Two different types: (A) graphs from the ROME library and (B)

random graphs.

For graphs of type A, we randomly picked graphs of the given size from the
ROME library [15] that consists of 11,535 sparse, but not necessarily planar,
graphs with 10 to 100 vertices. For graphs of type B, we created a random graph
by creating a number of nodes specified by the size and picking 30 random edges
for graphs of size 1 and 60 random edges for graphs of size 2; we used the resulting
graph if and only if it is connected. For each size and type, we again created four
different graphs for the Aesthetics task and two different graphs for the Query
task. This gives us 2 · 2 · 4 = 16 graphs for the Aesthetic tasks (4 repetitions)
and 2 · 2 · 2 = 8 graphs for the Query task (2 repetitions).

We created the graphs as JSON files that contained the coordinates of the
vertices and the set of edges. During the study, the graphs were drawn using

58 P. Kindermann et al.

the JavaScript library D3.js [2] as SVG figures to allow arbitrary resizing. The
nodes were drawn using blue circles. Links were drawn in black with a small halo
to increase separability between crossing links. The selected vertices and links
in both Query tasks were marked in green and the selectable vertices and links
in the shortest path task were marked in light blue.

Further considerations. For trees, we created 24 stimuli for the Aesthetics task
and 36 stimuli for the Query task (one per graph and layout). For the sparse
graphs, we created 16 stimuli for the Aesthetics task and 16 for the Query
task. This gives us 92 stimuli in total. This is beyond what is reasonable for
an online study, assuming 15 to 25 s per trial. Since the study has two different
graph classes with different tasks, we used the graph class as a between-subjects
measure. This still leaves 60 stimuli for the tree tasks. Since the size of a graph
is very likely to be an overall factor by the larger difficulty of the Query task
on a larger graph, we used the size as an additional between-subjects measure
for trees. This way, we obtain three groups of stimuli: (1) 30 stimuli for trees of
size 1, (2) 30 stimuli for trees of size 2, and (3) 32 stimuli for sparse graphs. A
pilot study showed a completion time of about 15 min for each group.

We first show the Aesthetics task and then the Query task. We did this
such that the user does not get a bias for a specific drawing style based on the
difficulty of the Query task and instead of the most aesthetic one picks the one
that they preferred in the Query section. Though explicitly asking for visual
preference could bias performance in the following Query section, we expect this
effect to be negligible as only one drawing is shown at any given time; and in
any case less strong than the potential bias if the sections were to be inverted.

In order to account for learning effects, the order of the stimuli for each task
was randomized for each participant. Before each stimulus, the participant was
given a pause screen to reduce memory effects and at the same time allow them
to pace themselves and reduce the possible impact of interruptions. The partic-
ipants received one example question with an answer revealed after providing
one, from which they could go back to task description, to ensure that the task
was understood before starting the actual questions. We opted not to provide a
longer series of training questions to keep time investment to a minimum.

Setup. We developed our user study with PHP and the JavaScript library D3.js.
The study was hosted on a web server1 and the data was stored in a MySQL
database. Since the questionnaire was conducted online, we had no control over
many parts of the experimental environment, e.g., device, pointing device, oper-
ating system, browser, screen size, interruptions. We asked the participants to fill
in the questionnaire using a desktop or laptop computer, not a tablet or phone,
and to use the pointing device they are most comfortable with. To make sure
that the browser is suitable to run the questionnaire, the users first had to set
a slider to the value depicted in an SVG figure. We could not control the screen
size, resolution, or distance of the participant to their screen, so we let the user

1 http://tutte.fernuni-hagen.de/web/userstudy/fewarcs.

http://tutte.fernuni-hagen.de/web/userstudy/fewarcs

Experimental Analysis of the Accessibility of Drawings with Few Segments 59

control the scale of the web page by providing a Shrink and a Grow button.
Further, we asked them to put their browser in full-screen mode to reduce dis-
tractions. We requested the participants to not engage in other activities during
the questionnaire and to minimize interruptions, and to specify if any interrup-
tions occurred at the end of the study.

We recruited the voluntary participants of the user study using a mix of
mailing lists, social networks, and social media. Some background and preference
information was asked upon completion, although this remained optional for
what may considered sensitive information (age, gender, country of residence).

5 Results

The data set for the analysis as well as all stimuli have been made available
online2. In total, 84 people volunteered and completed the online questionnaire,
which was open for participation for two weeks. We inspected all comments left
by participants. One participant had a longer break during one of the questions,
rendering this particular question unsuitable for the analysis. As to maintain a
balanced design to allow for stronger analysis methods, we excluded him from
the analysis. This gave us 21 participants for both group 1 and group 2, and 41
participants for group 3. Of the 83 participants, 75 provided their age with an
average of 36.96. In terms of country of residence, a majority of the participants
live in Europe (63), predominantly in Germany (42).

Hypothesis H1. For the tree aesthetics task, we had 42 participants from groups 1
and 2 and each of them was shown 12 stimuli. This gave us a total of 504
rankings between the three layouts. We used loglinear Bradley-Terry (LLBT)
modeling [5] of the 1,512 pairwise aesthetic preference comparisons to produce
ranked worth scores for each of the three layouts. The worth score allows the
consistency of preference to be assessed in forming an overall ranking of the three
classes. Figure 3 shows the ranking of the three layouts in terms of aesthetic
preference, broken down by the balance of the graph and by the background of
the participants.

Consistently, the Quad layout was considered as the least aesthetic tree layout.
Over all answers, the Tidier layout performed the best. There was some effect
based on the balance of the graph. For each balance, we received 168 rankings.
For balanced trees, the layouts FewSegments (worth score 0.4308) and Tidier
(worth score 0.4302) were perceived equally aesthetic. However, for deep and
wide trees the Tidier layout performed better than FewSegments with worth
scores of 0.4757 versus 0.3785 (deep) and 0.4881 versus 0.3959 (wide).

The hypothesis was split into two parts, depending on the background of the
participants. Let us first consider the participants with a mathematics or com-
puter science background. There were 48 rankings by four people with a mathe-
matics background, but not computer science; for those, the Tidier layout was

2 http://tutte.fernuni-hagen.de/web/userstudy/fewarcs/studyresults.html.

http://tutte.fernuni-hagen.de/web/userstudy/fewarcs/studyresults.html

60 P. Kindermann et al.

All Balanced Deep Wide Neither Math CS Both

FewSegments Tidier Quad

W
or
th

1

0

0.75

0.25

0.5

Fig. 3. Worth scores of the three tree layout methods: overall and partitioned by tree
balance or participant background.

clearly preferred with a worth score of 0.4874 over 0.3929. There were 312 rank-
ings by participants with a computer science background, but not mathematics;
for those, the layouts were perceived similarly with a worth score of 0.4360 for
Tidier and 0.4251 for FewSegments. There were 120 rankings by users with
both mathematics and computer science background; those slightly preferred
the Tidier layout with a worth score of 0.4559 over 0.4196. Overall, this sug-
gests that there is some preference of the Tidier layout over the FewSegment
layout, and of both layouts over the Quad layout; hence, we tentatively accept the
first part of Hypothesis H1, due to the caveat of a small number of participants
with a math-only background.

The second part of Hypothesis H1 is about participants from neither mathe-
matics nor computer science background. There is some evidence for the hypoth-
esis to be true. The participants from neither background strongly preferred
the FewSegments layout over the Tidier layout with a worth score of 0.5173
over 0.3761. However, this only included 24 rankings from 2 participants, and
thus the findings are a suggestion at best. This also indicates that our method
for recruitment was not sufficiently broad enough to recruit volunteers from a
variety of backgrounds. Indeed, this affects the other of the results as well.

Hypothesis H2. For the tree query task, we had 42 participants from groups 1
and 2 and each of them was shown 18 stimuli. This gave us a total of 756 tasks
between the three layouts with 252 tasks per layout. We analyzed the error rates
for finding a furthest pair for the three tree layouts defined by the difference
of the distance between the picked pair and the distance between a furthest
pair in the graph, broken down by the balance and by the size of the trees. The
maximum response time was 53 s, so we did not have to exclude any participants.
Figure 4 shows the error rates and the answer times by the participants.

We used a two-way RM-ANOVA to analyze the effects of the layouts, tree
balance, tree size, and their interaction. We used the logarithm of the response
times to normalize the distribution. For the error rate, there are no interaction
effects between layout, balance, and size. The analysis showed a weak effect of
the layout on the error rate (F (2, 80) = 3.636, p < 0.05). A post-hoc Tukey HSD
test with Bonferroni adjustment showed a significant difference between layout
Quad and FewSegments in favor of FewSegments (p < 0.01) and a significant

Experimental Analysis of the Accessibility of Drawings with Few Segments 61

100

0

75

25

50

E
rr
or

ra
te

(%
)

All Balanced Deep Wide Size 1 Size 2

FewSegments Tidier Quad

A
ns
w
er

ti
m
e
(s
ec
)

All Balanced Deep Wide Size 1 Size 2

FewSegments Tidier Quad
20

0

15

5

10

Fig. 4. Error rates and answer times for finding a furthest pair for the three tree layout
methods: overall and partitioned by tree balance or size group. Error bars indicate 95%
confidence intervals.

difference between layout Quad and Tidier in favor of Tidier (p < 0.001), but
no significant difference between layout Tidier and FewSegments. Further, a
post-hoc test showed a weak difference between the tree sizes (p < 0.05) in favor
of smaller trees. For small trees, there is some evidence that FewSegments out-
performs Tidier (p < 0.05); for large trees the error rate seems lower for Tidier,
though no statistically significant effect was found (p > 0.15). We conclude that
the layouts FewSegments and Tidier perform better than the layout Quad, while
the participants performed better on small trees than on large trees.

For the response time, there is some interaction between tree size and tree
balance (F (4, 160) = 2.524, p < 0.05), so we split according to sizegroup for
further analysis. For small trees, there are no interaction effects between layout
and tree balance. The analysis showed a very weak effect of layout (F (2, 40) =
2.523, p < 0.1) on response time. A post-hoc test showed a very weak difference
between layout Tidier and FewSegments in favor of Tidier (p < 0.1) and
no significant difference between the other two layout pairs. We conclude that
the participants performed slightly faster for the Tidier layout than for the
FewSegments layout.

For large trees, there are also no interaction effects between layout and tree
balance. The analysis showed significant effect of layout (F (2, 40) = 9.667, p <
0.001) on response time. A post-hoc test showed a weak difference between layout
Quad and FewSegments in favor of Quad (p < 0.05) and a significant difference
between layout Tidier and FewSegments in favor of Tidier (p < 0.001). We
conclude that the participants performed slightly faster for the Quad layout than
for the FewSegments layout and significantly faster for the Tidier layout than
for the FewSegments layout.

62 P. Kindermann et al.

1

0

0.75

0.25

0.5

W
or
th

All ROME S ROME L Rnd S Rnd L

ForceDir

1

0

FDFewSeg

Fig. 5. Worth scores of the two layout methods: overall and partitioned by type.

Since the error rate was smaller for the FewSegments and Tidier layouts than
for the Quad layout, but the response time for FewSegments was worse than for
the other two, we can only partly accept Hypothesis H2: the layouts FewSegments
and Tidier both outperform the layout Quad, but the layout Tidier outperforms
the layout FewSegments. Though not initially hypothesized, we also found evi-
dence of an effect of the tree balance on both the error rate and the response
time (see the full version [7]) in favor of balanced and wide.

Hypothesis H3. For the sparse graph aesthetics task, we had 41 participants
from group 3 and each of them was shown 16 stimuli. This gave us a total of 656
rankings between the two layouts. We again used LLBT modeling of the 656
pairwise aesthetic preference comparisons to produce ranked worth scores for
both layouts. Figure 5 shows the ranking of the both layouts in terms of aesthetic
preference, broken down by the graph class and the size of the graph.

Over all 656 rankings, the ForceDir layout was preferred with a worth score
of 0.5246 over the FDFewSeg layout with a worth score of 0.4754. The ForceDir
layout was preferred for each pair of graph class and size. The preference is the
smallest for small graphs of the ROME library with a difference in worth score
of 0.0316, and it is the largest for large graphs of the ROME library with a
difference in worth score of 0.1267. Hence, we accept Hypothesis H3.

Hypothesis H4. For the sparse graph query task, we had 41 participants from
group 3 and each of them was shown 16 stimuli. This gave us a total of 656 tasks
between the two layouts with 328 tasks per layout. We analyzed the error rates
for finding a shortest path for the two layouts defined by the difference between
the length of the selected path and the length of a shortest path, broken down
by the four graph types (ROME small, ROME large, Random small, Random
large). Figure 6 shows the error rates and answer times by the participants.

We used the same analysis as for the tree query task. For the error rate, there
is some interaction between layout and graph type (F (3, 120) = 3.313, p < 0.05),
so we split according to graph type. For Random small graphs, we found a
significant difference between the layouts in favor of ForceDir (F (1, 40) = 9.949,
p < 0.01); for the other graph types, there is no significant effect of the layouts.

For the response time, there is a strong interaction between layout and graph
type (F (3, 120) = 21.06), p < 0.001), so we split according to graph type.

Experimental Analysis of the Accessibility of Drawings with Few Segments 63

All Rnd S Rnd L

ForceDir
E
rr
or

ra
te

(%
)

ROME S ROME L

100

0

75

25

50

FDFewSeg

20

0

15

5

10

All Rnd S Rnd L

FDFewSeg ForceDir

A
ns
w
er

ti
m
e
(s
ec
)

ROME S ROME L

Fig. 6. Error rates and response times for finding a shortest path for the two layout
methods: overall and partitioned by graph type. Error bars indicate 95% confidence
intervals.

For ROME small (F (1, 40) = 9.317, p < 0.01) and Random small graphs
(F (1, 40) = 7.474, p < 0.01), there is a significant effect of the layouts on the
response time in favor of ForceDir. For ROME large graphs, there is a very weak
effect of the layouts on the response time in favor of ForceDir (F (1, 40) = 3.901,
p < 0.1). For Random large graphs, there is a significant effect of the layouts on
the response time in favor of FDFewSeg (F (1, 40) = 24.56, p < 0.001).

Since the ForceDir layout outperformed the FDFewSeg on three of the
four graph layouts, we have to reject Hypothesis H4 in general. However, the
FDFewSeg performed better on large random graphs, so there is some evidence
that this layout can give better results if the input graph has many vertices.
The reason for this may be that the ROME graphs tend to have many degree-2
vertices. Similar effects can be observed for the small random graphs. Conse-
quently, paths become easily traceable for these instances even if drawn with
many segments.

6 Conclusion

We compared various graph layout algorithms to assess the effect of low visual
complexity on aesthetics and performance. We have partially confirmed Hypoth-
esis H1, that is, that for trees people with a math or computer science background
tend to prefer the classical top-down layout. We also found some evidence that
people with no such background prefer the layouts produced by the algorithm
assuring low visual complexity; however, lacking a large number of participants
in this category makes this only a suggestion of a possible effect. We have also
partially confirmed Hypothesis H2, by finding evidence that finding a furthest
pair is the easiest with the classical tree layout. We accepted Hypothesis H3
that for sparse graph the traditional force-directed layout is more aesthetic than
its modification to reduce the visual complexity. We rejected Hypothesis H4 in
general, but rather found that it is typically easier to find the shortest paths
between two nodes with the traditional force-directed layout than the modifi-
cation, though our hypothesis was found to hold for large random graphs. This
leaves the possibility open that for graphs that are more intertwined using few
segments can be beneficial.

In short, our findings suggest that visual complexity may positively influence
aesthetics, depending on the background of the observer, as long as it does not

64 P. Kindermann et al.

introduce unnecessarily sharp corners. Hence, drawings trees with few segments
give a more schematic alternative over the classic drawing style without the risk
of harming the aesthetic perception. However, few-segment drawings tend not to
improve task performance. It is worth noting that we did not provide training to
our participants, as to suggest how the segments can for example help to easily
assess the length of a subpath. Providing such clues may have a positive effect on
the performance, but at the same time would also result in an unfair comparison,
if no training or strategies for the traditional layout were to be suggested.

Acknowledgments. The authors would like to thank all anonymous volunteers who
participated in the presented user study.

References

1. Bar, M., Neta, M.: Humans prefer curved visual objects. Psychol. Sci. 17(8), 645–
648 (2006)

2. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans.
Visual Comput. Graphics 17(12), 2301–2309 (2011)

3. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007)

4. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exper. 21(11), 1129–1164 (1991)

5. Hatzinger, R., Dirrich, R.: prefmod: an R package for modeling preferences based
on paired comparisons, rankings, or ratings. J. Statist. Softw. 48(10), 1–31 (2011)

6. Hültenschmidt, G., Kindermann, P., Meulemans, W., Schulz, A.: Drawing planar
graphs with few geometric primitives. In: Bodlaender, H.L., Woeginger, G.J. (eds.)
WG 2017. LNCS, vol. 10520, pp. 316–329. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68705-6 24

7. Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the acces-
sibility of drawings with few segments. Arxiv report arXiv: 1708.09815 (2017)

8. Malitz, S.M., Papakostas, A.: On the angular resolution of planar graphs. SIAM
J. Discrete Math. 7(2), 172–183 (1994)

9. Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27,
742–744 (1918)

10. Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Trans. Software Eng.
7(2), 223–228 (1981)

11. Rusu, A., Yao, C., Crowell, A.: A planar straight-line grid drawing algorithm for
high degree general trees with user-specified angular coefficient. In: Proceedings of
12th International Conference Information Visualization (IV 2008), pp. 600–609.
IEEE Computer Society (2008)

12. Schulz, A.: Drawing graphs with few arcs. J. Graph Algorithms Appl. 19(1), 393–
412 (2015)

13. Vessel, E., Rubin, N.: Beauty and the beholder: highly individual taste for abstract,
but not real-world images. J. Vis. 10(2), 1–14 (2010)

14. Walker II, J.Q.: A node-positioning algorithm for general trees. Softw. Pract.
Exper. 20(7), 685–705 (1990)

15. Welzl, E., Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu,
F.: An experimental comparison of four graph drawing algorithms. Comput.
Geom. 7, 303–325 (1997)

https://doi.org/10.1007/978-3-319-68705-6_24
https://doi.org/10.1007/978-3-319-68705-6_24
http://arxiv.org/abs/1708.09815

Obstacles and Visibility

Obstacle Numbers of Planar Graphs

John Gimbel1, Patrice Ossona de Mendez2,3(B) , and Pavel Valtr4

1 Department of Mathematics and Statistics, University of Alaska Fairbanks,
Fairbanks, USA

jggimbel@alaska.edu
2 Centre d’Analyse et de Mathématiques Sociales (CNRS, UMR 8557), Paris, France

pom@ehess.fr
3 Computer Science Institute of Charles University (IUUK), Prague, Czech Republic

4 Department of Mathematics of Charles University (KAM) and CE-ITI,
Prague, Czech Republic
valtr@kam.mff.cuni.cz

Abstract. Given finitelymany connected polygonal obstaclesO1, . . . , Ok

in the plane and a set P of points in general position and not in any obsta-
cle, the visibility graph of P with obstacles O1, . . . , Ok is the (geometric)
graph with vertex set P , where two vertices are adjacent if the straight line
segment joining them intersects no obstacle.

The obstacle number of a graph G is the smallest integer k such that
G is the visibility graph of a set of points with k obstacles. If G is planar,
we define the planar obstacle number of G by further requiring that the
visibility graph has no crossing edges (hence that it is a planar geometric
drawing of G).

In this paper, we prove that the maximum planar obstacle number
of a planar graph of order n is n − 3, the maximum being attained (in
particular) by maximal bipartite planar graphs.

This displays a significant difference with the standard obstacle num-
ber, as we prove that the obstacle number of every bipartite planar graph
(and more generally in the class PURE-2-DIR of intersection graphs of
straight line segments in two directions) of order at least 3 is 1.

1 Introduction

Let O1, . . . , Ok be closed connected polygonal obstacles in the plane, and let P
be a finite set of points not in any obstacle. We assume that all the points in P
and all vertices of the polygons O1, . . . , Ok are in general position, that is that no
three of them are on a line. Note that by considering some ε-neighborhood of the
obstacles, we see that considering closed or open obstacles makes no difference
(thanks to our general position assumption). Also, allowing or forbidding holes

P. Ossona de Mendez was supported by grant ERCCZ LL-1201 and by the European
Associated Laboratory “Structures in Combinatorics” (LEA STRUCO).
P. Valtr was supported by project CE-ITI no. P202/12/G061 of the Czech Science
Foundation (GAČR).

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 67–80, 2018.
https://doi.org/10.1007/978-3-319-73915-1_6

http://orcid.org/0000-0003-0724-3729
http://orcid.org/0000-0002-3102-4166

68 J. Gimbel et al.

in obstacles makes no difference, as holes disappear if we drill a narrow passage
from the outside boundary of an obstacle to each hole inside the obstacle.

The visibility graph of P with obstacles O1, . . . , Ok is the geometric graph
with vertex set P , where two vertices u, v ∈ P are connected by an edge (geomet-
rically represented by the segment uv) if the segment uv does not meet any of the
obstacles. Visibility graphs have been extensively studied, see [5,13,17,18,23].

Closely related to visibility representation, Alpert et al. [1] introduced the
obstacle number of a graph G, which is the minimum number of obstacles in a
visibility representation of G. For instance, it is known that bipartite graphs can
have arbitrarily large obstacle number [19]. Moreover it was shown in [6] that
there are graphs on n vertices with obstacle number at least Ω(n/(log log n)2).
Although there is a trivial quadratic upper bound for the obstacle number, it is
an open problem whether the obstacle number has a linear upper bound [1,14].
An unexpected, almost linear upper bound (2n log n) was recently obtained in
[2]. For related complexity issues we refer the reader to [4,20].

However the situation changes when one restricts his attention to planar
graphs. Finding a planar graph with obstacle number greater than one was an
open problem [1,14] until it was recently proved [3] that the icosahedron has
obstacle number 2. It is still an interesting open problem to decide whether the
obstacle number of planar graphs can be bounded from above by a constant.
This has been verified for outerplanar graphs by Alpert et al. [1], who proved
that every outerplanar graph has obstacle number at most 1 (see also [12]). In
this paper we complement this partial result by proving that planar bipartite
graphs have obstacle number at most 1.

When considering a planar graph G, the existence of a planar visibility rep-
resentation of G suggests another definition of the obstacle number. Here planar
visibility representation means a geometric visibility graph in which no two edges
cross (see Fig. 1). We define a new graph invariant, the planar obstacle number
of G, as the minimum number of obstacles in a planar visibility representation
of G. (Note that in this context, it will be convenient to assume that obstacles
are domains, that are open connected sets.)

Fig. 1. Example of a graph having a visibility representation with one obstacle (on the
left) and a planar visibility representation with two obstacles (on the right).

Obstacle Numbers of Planar Graphs 69

2 Our Results

For a planar graph G, the planar obstacle number of G, denoted by pobs(G), is
defined as the minimum number of obstacles needed to realize G by a straight-
line planar drawing of G and a set of obstacles.

For n ∈ N we further define

pobs(n) = max
|G|=n

G planar

pobs(G).

The above definitions are correct due to Fáry’s theorem [7] which says that
every planar graph has a straight-line planar drawing; we call any such drawing
a Fáry drawing . Slightly perturbing the set of vertices if necessary, we get a Fáry
drawing with vertices lying in general position. Then it is possible to realize the
graph by putting a small obstacle in each face, and this bound can be reduced by
one if G is not a tree (in which case, for some embedding of G, one can remove
the obstacle of the outer face). Hence for a graph G with n vertices and m edges
this gives the bound pobs(G) ≤ min(m − n + 1, 1).

Obviously, pobs(2) = pobs(3) = 1. In the following theorem we determine
pobs(n) for all n ≥ 4.

Theorem 1. For n ≥ 4,
pobs(n) = n − 3. (1)

Also we can bound pobs(G) by means of the number of edges, vertices and
triangular faces. For a planar graph G, let tr-faces(G) be the maximum number
of triangular faces in a planar drawing of G. It is easily checked that one can
drop an obstacle in any set of non-adjacent triangles, which improves the trivial
upper bound to

pobs(G) ≤ min(m − n + 1 − �tr-faces(G)/3�, 1).

Theorem 2. For every connected planar graph G with n ≥ 5 vertices and m
edges, the following inequalities hold:

max{m−n+1−tr-faces(G), 1} ≤ pobs(G) ≤ max{m−n+1−�tr-faces(G)/2�, 1}.
(2)

More precisely, if tr-faces(G) ≤ 1 we have

pobs(G) =

{
max{m − n + 1, 1} if tr-faces(G) = 0
max{m − n, 1} if tr-faces(G) = 1

(3)

In the proof of this theorem, a key argument is that when two adjacent
triangles have a non-convex union, the obstacles in these triangles may sometimes
be dropped, but not always as witnessed by the following example:

70 J. Gimbel et al.

Note that a linear time representation algorithm (starting from an embedding
of G) is easily derived from our proofs. However, choosing an embedding in order
to maximize tr-faces(G) is difficult in general, as a reduction from minimum
dominating set problem in planar graphs with maximum degree 3 shows that
deciding (for input (G, k)) wether tr-faces(G) ≥ m−n−k is an NP-hard problem.

Planar obstacle number displays a significant difference with the stan-
dard obstacle number, as witnessed by the conjecture that planar graphs have
bounded obstacle number.

Using a combinatorial characterization of visibility graphs with a single
unbounded obstacle and vertices in convex position (Lemma 6) we determine
the obstacle number of PURE-2-DIR graphs, where PURE-2-DIR graphs are
intersection graphs of straight line segments with 2 directions such that any two
segments belonging to a same direction are disjoint [15].

Theorem 3. Let G be a PURE-2-DIR graph (i.e. a graph representable by inter-
section of straight line segments with 2 directions with no two segments in a same
class intersecting). Then the obstacle number of G is either 0 (if G is K1 or K2)
or 1 (otherwise).

As it is known that every bipartite planar graph is a PURE-2-DIR graph,
and more precisely has is the contact graph of a family of horizontal and vertical
straight line segments in the plane [8] we immediately deduce from Theorem 3
the value of the planar obstacle number of bipartite planar graphs:

Theorem 4. The obstacle number of a bipartite planar graph G is either 0 (if
G is K1 or K2) or 1 (otherwise).

3 Preliminaries

In this paper, we consider graphs that are finite, simple, and loopless.
A drawing of a graph G in the plane consists in assigning distinct points of

the plane to the vertices of G, and arcs connecting points to edges. A drawing
is simple if any two arcs intersect at most once, and it is geometrical if the arcs
are straight line segments.

A planar graph is a graph that has a drawing in the plane in which no
two arcs cross. Such a drawing is called an embedding of the graph. A planar
graph embedded in the plane is called a plane graph. A face of a plane graph
is a connected component of the complement of the drawing in the plane. A
face is bounded (or an inner face) if it has a bounded diameter, it is unbounded
otherwise. Note that every plane graph has exactly one unbounded face, which
is called the outer face. The traversal of the boundary of a face then produces

Obstacle Numbers of Planar Graphs 71

a sequence of edges (precisely of arcs representing edges), whose length is the
length of the face. Note that if the graph is 2-connected, the boundary of each
face is a cycle, whose length is the length of the face (in general, bridges are
counted twice). Each face of a (loopless simple) 2-connected graph has thus
length at least 3. A topological embedding of a planar graph G in the plane is the
equivalence class of an embedding of G in the plane under homeomorphisms of
the plane. As they are invariant by every homomorphism of the plane, one can
speak about the faces, inner faces, and outer face of a topological embedding of
a planar graph in the plane. It is well known that a topological embedding in the
plane is fully determined by the cyclic order of the incident edges around each
vertex of the graph and the specification of the outer face. For more informations
and background on topological graph embeddings we refer the reader to [16].

Every (simple) planar graph has a Fáry drawing, that is a crossing free geo-
metric drawing [7] (see also [21]), and that such a drawing — with points in a
linear size grid — can be computed in linear time [10,11]. A planar drawing of
a graph in which every face is a 3-cycle (i.e. has length 3) is a triangulation. A
maximal planar graph is a planar graph G to which no edge can be added while
preserving the planarity. It is easily checked that a planar graph is maximal if
and only if some/every planar drawing of it is a triangulation.

By definition, every planar visibility representation of a graph G defines a
Fáry drawing of G, each obstacle lying inside a single face of the drawing. It
follows that any obstacle can be extended to any connected subset of the interior
of the face. Thus, when minimizing the number of obstacles we may assume that
every face f contains at most one obstacle, and that if f contains an obstacle, this
obstacle is large enough to intersect every segment intersecting f which connects
two independent vertices of G. Note that such a planar visibility representation
is thus characterized by a Fáry drawing of G and the set of its faces containing
an obstacle.

Observe that if F (G) is a Fáry drawing of a connected planar graph G and H
is an inner face of F (G) which is not bounded by a 3-cycle then some straight-
line diagonal of H lies entirely in H and therefore any realization of G using
F (G) must contain an obstacle lying inside the face H.

It follows from Tutte’s spring theorem [22] that if a cycle C of a planar graph
G bounds some face of some planar drawing of G, then G has a Fáry drawing
such that the boundary of the outer face is the cycle C drawn as the boundary
of a convex polygon.

4 Proof of Theorems 1 and 2

In this section we derive Theorems 1 and 2 from Lemma 3 stated below. Lemma 3
is then proved in the next section.

We first prove a weaker statement than Theorem 2, which determines the
planar obstacle number for connected planar graphs not admitting more than
one triangular face in any planar drawing, as given by (3), as well as the lower
bound of (2).

72 J. Gimbel et al.

Lemma 1. For every connected planar graph G with n ≥ 5 vertices and m
edges, it holds

max{m − n + 1 − tr-faces(G), 1} ≤ pobs(G) ≤ max{m − n + 1, 1},

where equality with the upper bound holds if and only if m ≤ n or tr-faces(G) = 0.
Thus if tr-faces(G) ≤ 1 then

pobs(G) = max{m − n + 1 − tr-faces(G), 1}.

Proof. For the lower bound, remark that every planar visibility representation
defines a Fáry drawing with m − n + 1 inner faces. In this drawing, every inner
face with length at least 4 has to contain an obstacle. Thus if n ≥ 5 (so that
pobs(G) > 0) it holds pobs(G) ≥ max{m − n + 1 − tr-faces(G), 1}.

If a planar graph G is acyclic, it obviously holds pobs(G) ≤ 1. Otherwise,
there exists a planar embedding of G with a face C which is a cycle. Using
Tutte’s spring embedding, there exists a Fáry drawing of G whose outer face is
a convex polygon. Putting an obstacle in each of the m−n+1 inner faces we get
a planar visibility representation of G. Thus for every planar graph G on n ≥ 5
vertices it holds

pobs(G) ≤ max{m − n + 1, 1},

and equality holds if and only if G has no embedding with a triangular face
or m ≤ n. Indeed, assume m > n. Consider an embedding of G with an inner
triangular face t = (v1, v2, v3). At most one more face can contain all of v1, v2, v3,
for if three faces would contain all of v1, v2, v3, adding a vertex in each of these
faces adjacent all of v1, v2, v3 would lead to a planar embedding of the non-planar
graph K3,3. As m > n the embedding has at least three faces, including one face
f which does not contain all of v1, v2, v3. We may assume that f is the outer
face. As G is not acyclic, f includes (at least) one cycle C. For each cut-vertex u
of C, we flip the connected components of G − u that do not contain C into an
inner face different from t (such a face exists, as otherwise f would contain all
the three vertices of t). After this is done, the outer face is C and t is an inner
face. Using Tutte’s spring embedding one obtains a Fáry drawing of G, in which
C is the outer face (drawn as a convex polygon) and t is an inner triangular face.
Putting an obstacle in every inner face different from t we get a planar visibility
representation of G with m − n obstacles. 	

4.1 Three Lemmas

Here we state three lemmas used in the proof of both Theorems 1 and 2. We
first give several definitions.

An edge e of a Fáry drawing of a planar graph G is said to be concave if
it lies in two triangular faces and the union of these two faces is a non-convex
quadrilateral. (If G is a triangulation then such an edge is sometimes called a
non-flippable edge in the literature.)

Obstacle Numbers of Planar Graphs 73

Suppose T is a triangulation, x, y, z are three vertices of T , and X is a subset
of the edge set of T . Then we say that a Fáry drawing of T is (X;x, y, z)-concave
if x, y, z are the vertices of the outer face and all the edges of X are concave.

For a graph G = (V,E), an edge set E′ ⊆ E is said to be sparse in G if each
cycle in G contains at least two edges of E \ E′.

Lemma 2. For every triangulation T there is a 2-coloring of the faces of T such
that the set of edges contained in a pair of faces of the same color is sparse in T .

Proof. For a 2-coloring χ of the faces of T , let S(χ) be the set of edges contained
in a pair of faces of the same color. Let χ be a 2-coloring of the faces of T
minimizing the size of S(χ), and let F (T) be any fixed (topological) planar
drawing of T . Any cycle C of T contains at most �|E(C)|/2� ≤ |E(C)|− 2 edges
of S(χ), since otherwise the size of S(χ) could be decreased by flipping the colors
of all the faces lying inside the cycle C in the drawing F (T). Thus, S(χ) is sparse
and χ satisfies Lemma 2. 	

Lemma 3. Let T be a triangulation having a face with vertices a, b, c, and
let S ⊆ E(T) be a sparse set of edges of T . Then T has an (S; a, b, c)-concave
drawing. 	

The proof of Lemma 3 is sketched in Sect. 4.3; all details will be included
in the full version. Importance of (S; a, b, c)-concave drawings clearly appears in
the following technical lemma.

Lemma 4. Let T be a planar triangulation, let G be a spanning subgraph of T
which includes all the edges of a face bounded by a triangle {a, b, c} of T , let
χ be a 2-coloring of the faces of T such that the set S of edges of T contained
in a pair of faces of the same color is sparse, let P (T) be an (S; a, b, c)-concave
drawing of T , and let P (G) be the Fáry drawing of G obtained from P (T) by the
removal of all the edges of E(T) \ E(G).

Then by placing an obstacle in each face of P (G) that is not a triangular
inner face with color 2 we get a planar visibility representation of G.

Proof. Let x, y be a pair of non-adjacent vertices of G, and let F1, . . . , Ft be the
sequence of the faces of P (G) intersected in this order by the segment xy (faces
may appear more than once in this sequence), and let F1, . . . , Ft be their closure.
We have to show that at least one of the faces F1, . . . , Ft is not a triangular face
colored 2. Suppose for contradiction this is not the case and that F1, . . . , Ft are
triangular faces colored 2.

– If t = 1 then F1 is not a triangular face, contradicting the assumption.
– if t = 2, since F1 ∩ F2 lies in S it is concave in P (T) (and also in P (G)), and

conv(F2∪{x}) = conv(F1∪F2) is a triangle. This contradicts the assumption
that the segment xy is included in F1 ∪ F2, which necessarily implies that
F1 ∪ F2 is a convex quadrilateral.

– If t ≥ 3 then all the edges F1 ∩ F2, F2 ∪ F3 lie in S and therefore the bound-
ary of F2 contains two edges in S, contradicting the assumption that S is
sparse. 	

74 J. Gimbel et al.

4.2 The Proof

Here we derive Theorems 1 and 2 from Lemmas 2, 3 and 4. Note that according to
Lemma 1 we need to prove only the upper bound of (2) to establish Theorem 2.

Let n ≥ 4. By Euler’s formula every Fáry drawing of K2,n−2 has n − 3 inner
faces. Each of them is a quadrilateral and therefore has to contain an obstacle.
Thus, pobs(n) ≥ pobs(K2,n−2) ≥ n − 3. In order to prove Theorems 1 and 2
it remains to prove that for a graph G on n vertices and m edges the following
inequality holds: pobs(n) ≤ min(n − 3,m − n + 1 − �tr-faces(G)/2�).

First we show that it suffices to prove the upper bound for all connected
planar graphs on n ≥ 4 vertices. This will easily follows from the next lemma
which relies on an invariant closely related to pobs(G). The invariant pobs′(G) is
defined as the minimum number of obstacles lying in inner faces of a realization
of G, where the minimum is taken over all possible realizations of G. It follows
from the definition that pobs′(G) = pobs(G) if every realization of G with
pobs(G) obstacles uses only obstacles in the inner faces. Otherwise we have
pobs′(G) = pobs(G) − 1.

Lemma 5. Let G be a disconnected planar graph, and let A1, . . . , Aα be the
components of G.

pobs(G) =

{∑α
i=1 pobs′(Ai) if ∃Aj with pobs(Aj) = pobs′(Aj) > 0,

1 +
∑α

i=1 pobs′(Ai) otherwise.

Proof. For a realization of G with the given number of obstacles, suppose first
that pobs(Aj) = pobs′(Aj) > 0 for some Aj . We realize the component Aj

with pobs(Aj) = pobs′(Aj) obstacles. Inside one of its obstacles we make small
individual holes for the remaining components. Each component Ai, i �= j, is
realized in “its” hole using pobs′(Ai) obstacles placed inside its inner faces.
The boundary of the hole surrounds the drawing of Ai so that the surrounding
obstacle functions for Ai as an obstacle in the outside face of Ai. If there is no
component with pobs(Aj) = pobs′(Aj) > 0 then we proceed similarly as above,
realizing the components inside individual holes of one big obstacle.

It remains to show that G cannot be realized with a smaller number of
obstacles. Consider a realization of G, and let Ai be one of its components.
If we consider only the edges of Ai, one or more obstacles must appear in at
least pobs′(Ai) inner faces of the drawing of Ai. Let F be one of these faces.
The interior of F may contain other components of G but (at least) one of the
obstacles inside F does not lie in any face of a component of G lying inside
F , as otherwise a vertex of F would see a vertex of a component lying inside
F . Assigning this obstacle to Ai, we get at least pobs′(Ai) obstacles assigned
to Ai and to no other component of G. This gives the lower bound pobs(G) ≥∑α

i=1 pobs′(Ai). Suppose now that there is no Aj with pobs(Aj) = pobs′(Aj) >
0. Then there must be a component Ai incident to the outer face of the drawing
of G. We have pobs(Ai) = pobs′(Ai) = 0 or pobs(Ai) > pobs′(Ai). It follows
that either we need an additional obstacle in the outer face of Ai which does not

Obstacle Numbers of Planar Graphs 75

lie inside another component of G, or at least pobs(Ai) ≥ pobs′(Ai) + 1 faces of
Ai contain obstacles and we may assign at least pobs′(Ai) + 1 obstacles to the
component Ai. 	

Observe that pobs′(C4) = 1 and pobs′(G) = 0 for any other connected graph
G on at most four vertices. Therefore, due to Lemma 5 and to the trivial inequal-
ity pobs′(G) ≤ pobs(G), it suffices to prove the upper bounds in Theorems 1
and 2 for connected planar graphs (on n ≥ 4 and n ≥ 5 vertices, respectively).

Let G be a connected planar graph on n ≥ 4 vertices. We want to show that
pobs(G) ≤ n−3. Let F (G) be a Fáry drawing of G. We distinguish the following
two cases: either F (G) has a triangular face, or no face of F (G) is triangular.

In the latter case, m ≤ 2n − 4 thus m − n + 1 ≤ n − 3. Hence by Lemma 1
pobs(G) ≤ n − 3.

In the rest of the proof we suppose that F (G) has at least a triangular face
{a, b, c}. By adding straight-line edges to F (G) we obtain a Fáry drawing of a
triangulation further denoted T .

Let χ be a 2-coloring of the faces of T satisfying Lemma 2, and let S be the
set of edges of T contained in a pair of faces of the same color. Due to Lemma 3,
T has an (S; a, b, c)-concave drawing P (T). Let P (G) be the Fáry drawing of G
obtained from P (T) by the removal of all the edges of E(T) \ E(G).

We denote the colors of χ by 1 and 2. We partition the set of the inner faces
of P (G) into the following three subsets:

I1 := the set of the triangular inner faces of P (G) having color 1,
I2 := the set of the triangular inner faces of P (G) having color 2,
I3 := the set of the non-triangular inner faces of P (G).
Since P (T) has 2n − 5 inner faces and each face in I3 is the union of at

least two faces of P (T), we have |I1| + |I2| + 2|I3| ≤ 2n − 5. It follows that
min{|I1| + |I3|, |I2| + |I3|} ≤ �(2n − 5)/2� = n − 3. Also we have |I1| + |I2| =
tr-faces(G) − 1 and |I3| = m − n + 2 − tr-faces(G). Hence |I1| + |I2| + 2|I3| =
2(m − n + 1) − (tr-faces(G) − 1), and

min{|I1| + |I3|, |I2| + |I3|} ≤ m − n + 1 − �tr-faces(G)/2�.
Without loss of generality we suppose that

|I1| + |I3| ≤ min(n − 3,m − n + 1 − �tr-faces(G)/2�).
To prove pobs(G) ≤ min(n − 3,m − n + 1 − �tr-faces(G)/2�) — from which
Theorems 1 and 2 follow — it now suffices to prove that taking the Fáry drawing
P (G) and placing an obstacle in each face of I1 ∪ I3 gives a representation of G,
what follows from Lemma 4. This finishes the proof of Theorem 1. The proof of
Lemma 3, which will be included in the full version of the manuscript, is only
sketched here.

4.3 Sketch of the Proof of Lemma 3

We proceed by induction on n. The case n = 3 is trivial and the case n = 4
is easy. Suppose now that n > 4. If S is empty or contains only an edge of the

76 J. Gimbel et al.

triangle abc then any Fáry drawing of T with the outer face abc is (S; a, b, c)-
concave. Suppose now that an edge e ∈ S is not an edge of the triangle abc. Let
Tr be the set of all triangles of T containing the edge e. We fix a Fáry drawing
F (T) of T with the outer face abc. The set Tr can be partitioned into two sets
Tr+ and Tr−, such that Tr+ contains the triangles of Tr lying on one side of
e and Tr− contains the triangles of Tr lying on the other side of e. Since T is
a triangulation and e is an inner edge in F (T), the set Tr+ contains a unique
face t+ of F (T). Similarly, Tr− contains a unique face t− of F (T). Let t++

be the unique triangle in Tr+ containing all the other triangles of Tr+ in the
drawing F (T). The triangle t−− is defined analogously. Note that if |Tr+| = 1
then t++ = t+. Analogously, if |Tr−| = 1 then t−− = t−.

Without loss of generality, we may assume that in clockwise order one finds
v++, v1, v2 for the triangle t++, v+, v1, v2 for the triangle t+, v−−, v2, v1 for the
triangle t−−, and v−, v2, v1 for the triangle t−.

We define a triangulation T � e as the triangulation obtained from T by the
planar contraction of e with respect to F (T), i.e., it is the graph obtained from
T by the following two operations: (i) removal of all the vertices and edges lying
inside the triangles t++ and t−− in F (T), and (ii) contraction of e. Thus, e = v1v2
is contracted to a new vertex ve and the triangles t++ and t−− (including their
interiors in F (T)) are replaced by the new edges v++ve and v−−ve, respectively.
The drawing F (T) and the construction of T �e immediately give a (topological)
planar drawing Dr(T � e) of T � e with each face being a triangle and with the
outer face abc. Let T+ denote the triangulation consisting of the vertices and
edges lying in the triangle t++ in the drawing F (T). Analogously, let T− denote
the triangulation consisting of the vertices and edges lying in the triangle t−−

in the drawing F (T). Further, let S+ := S ∩ E(T+) and S− := S ∩ E(T−).
We can prove the following two observations: (1) S+ is sparse in T+, and S−

is sparse in T−; (2) S0 is sparse in T � e.
Hence we can apply the inductive hypothesis (i) on T � e and S0, (ii) on T+

and S+, and (iii) on T− and S−. In the first case we get an (S0; a, b, c)-concave
drawing P (T � e) of T � e with the outer face abc. In the second case we get
an (S+; v++, v1, v2)-concave drawing P (T+) of T+ with the outer face t++ =
v++v1v2. In the third case we get an (S−; v−−, v2, v1)-concave drawing P (T−)
of T− with the outer face t−− = v−−v2v1. Our construction of an (S; a, b, c)-
concave drawing of T is obtained by properly combining the drawings P (T � e),
P (T+) and P (T−). Starting with P (T � e), we replace the vertex ve by a short

Obstacle Numbers of Planar Graphs 77

segment e and the two edges vev
++ and vev

−− by skinny copies of P (T+) and
P (T−), respectively, in such a way that the edge e is concave in the resulting
drawing, thus proving Lemma 3 (details omitted here). 	

5 Obstacle Number of Intersection Graphs of Segments

Generally, it is an interesting question to characterize graphs with obstacle
number 1, and specifically those graphs that can be represented using a sin-
gle unbounded obstacle.

It is easily seen that a graph has such a representation if and only if it is
an induced subgraph of the visibility graph of a simple polygon. However, no
characterization is known for visibility graphs of simple polygons. However one
can give some interesting characterization in a special case:

Lemma 6. A graph G has a representation as a visibility graph with a single
unbounded obstacle and vertices in convex position if and only if there exist
functions p, I mapping the vertex set of G to points (resp. to circular arcs) of
S
1, in such a way that

– for every vertex v of G it holds p(v) /∈ I(v);
– for every distinct vertices u, v of G, it holds that u and v are adjacent if and

only if p(u) ∈ I(v) and p(v) ∈ I(u).

Proof. The existence of a visibility representation from functions p and I is
clear, and follows the same ideas as the representation for intersection graphs of
horizontal and vertical segments.

Conversely, assume that G is representable as a visibility graph using a single
unbounded obstacle, and consider such a representation. Without loss of gen-
erality, we can assume that the obstacle is the exterior of a simple polygon, on
which lie the vertices of G. Let v1, . . . , vn be the vertices of G in the order in
which they appear on the polygon (say clockwise), and let i �= j. Let us now
prove that vi and vj are adjacent if and only if there exist i1, i2 and j1, j2 such
that

– in circular order, i is between i1 and i2 and j is between j1 and j2;
– vi is adjacent to both vj1 and vj2 and vj is adjacent to both vi1 and vi2 .

If vi and vj are adjacent, one can let i1 = i2 = i and j1 = j2 = j. Conversely, if
i1, i2, j1, j2 have the properties above, then let x (resp. y) be the intersection of
segments [vi, vj2] and [vj , vi1] (resp. of segments [vi, vj1] and [vj , vi2]). Then the
region R delimited by the quadrangle (x, vi, y, vj) does not meet the obstacle,
thus vj is visible from vi, that is vi and vj are adjacent (Fig. 2).

Let us now define functions p and I: for 1 ≤ k ≤ n let p(vk) = eik2π/n and
I(vk) be the inclusion minimum circular arc containing all the neighbours of vk

but not vk. It follows from the property above that the functions p and I satisfy
the requirements of the Lemma. 	

78 J. Gimbel et al.

vi1

vi

vi2

vj2

vj

vj1

x

y

R

Fig. 2. Illustration for the proof of Lemma 6.

We now prove Theorem 3, which states that the obstacle number obs(G) of
a PURE-2-DIR graph G can be computed as follows:

obs(G) =

{
0 ifG is K1 or K2,

1 otherwise.

and then deduce Theorem 4.

Proof (Proof of Theorem 3). Let G be a PURE-2-DIR graph. Without loss of
generality, we can assume that segments are either horizontal or vertical, and
that they are numbered from top to bottom and left to right. Hence, denoting
a1, . . . , ap the vertices corresponding to the horizontal segments and by b1, . . . , bq

the vertices corresponding to the vertical segments, it is easily checked that ai

is adjacent to bj if and only if there exist i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2 such
that ai1 and ai2 are adjacent to bj and bj1 and bj2 are adjacent to ai. The
result then follows from Lemma 6 (see Fig. 3 for an example of a single obstacle
representation of a PURE-2-DIR graph). 	

b1
b2

b3

b4

b5

b6

a1

a2

a3

a4

a5

a6

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

Fig. 3. Construction of a representation of a graph G ∈ 2-DIR with a single obstacle.

Proof (Proof of Theorem 4). It has been proved in [8] that every bipartite planar
graph can be represented as PURE-2-DIR graph. Thus it directly follows from
Theorem 3 that the obstacle number of every planar bipartite graph different
from K1 and K2 is 1. 	

Note that the linear time algorithm to compute a representation of a bipartite
planar graph as a PURE-2-DIR graph given in [9] can be easily modified to
provide a linear time algorithm providing a representation of a planar bipartite
graph as the visibility graph of a family of points with a single polygonal obstacle.

Obstacle Numbers of Planar Graphs 79

Acknowledgments. We thank Vı́t Jeĺınek for ideas leading to a simplification of our
proof. We also thank Daniel Krá̌l and Roman Nedela for inspiring comments on our
research.

References

1. Alpert, H., Koch, C., Laison, J.D.: Obstacle numbers of graphs. Discrete Comput.
Geom. 44(1), 223–244 (2010)

2. Balko, M., Cibulka, J., Valtr, P.: Drawing graphs using a small number of obstacles.
In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 360–372.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0 30

3. Berman, L.W., Chappell, G.G., Faudree, J.R., Gimbel, J., Hartman, C., Williams,
G.I.: Graphs with obstacle number greater than one. arXiv:1606.03782 (2016)

4. Chaplick, S., Lipp, F., Park, J., Wolff, A.: Obstructing visibilities with one obstacle.
arXiv:1607.00278 (2016)

5. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational
geometry. In: Computational Geometry, pp. 1–17. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-540-77974-2 1

6. Dujmović, V., Morin, P.: On obstacle numbers. Electron. J. Combin 22(3), P3
(2013)

7. Fáry, I.: On straight line representation of planar graphs. Acta Scientiarum Math-
ematicarum (Szeged) II, 229–233 (1948)

8. de Fraysseix, H., Ossona de Mendez, P., Pach, J.: Representation of planar graphs
by segments. In: Intuitive Geometry, vol. 63. Colloquia Mathematica Societatis
János Bolyai, pp. 109–117. North-Holland (1991)

9. de Fraysseix, H., Ossona de Mendez, P., Pach, J.: A left-first search algorithm for
planar graphs. Discrete Comput. Geom. 13, 459–468 (1995)

10. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fary embeddings
of planar graphs. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, STOC 1988, pp. 426–433. ACM, New York (1988)

11. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10, 41–51 (1990)

12. Fulek, R., Saeedi, N., Sarıöz, D.: Convex obstacle numbers of outerplanar graphs
and bipartite permutation graphs. In: Pach, J. (ed.) Thirty Essays on Geometric
Graph Theory, pp. 249–261. Springer, New York (2013). https://doi.org/10.1007/
978-1-4614-0110-0 13

13. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, New
York (2007)

14. Ghosh, S.K., Goswami, P.P.: Unsolved problems in visibility graphs of points, seg-
ments, and polygons. ACM Comput. Surv. (CSUR) 46(2), 22 (2013)

15. Kratochv́ıl, J., Matoušek, J.: Intersection graphs of segments. J. Combin. Theory
Ser. B 62(B)(2), 289–315 (1994)

16. Mohar, B., Thomassen, C.: Graphs on Surfaces. The Johns Hopkins University
Press, Baltimore (2001)

17. O’Rourke, J.: Visibility. In: Handbook of Discrete and Computational Geometry,
pp. 467–479. CRC Press (1997)

18. O’Rourke, J.: Open problems in the combinatorics of visibility and illumination.
In: Advances in Discrete and Computational Geometry: Proceedings of the 1996
AMS-IMS-SIAM Joint Summer Research Conference, Discrete and Computational
Geometry-Ten Years Later, 14–18 July 1996, Mount Holyoke College, vol. 223, p.
237. American Univ. in Cairo Press (1999)

https://doi.org/10.1007/978-3-319-27261-0_30
http://arxiv.org/abs/1606.03782
http://arxiv.org/abs/1607.00278
https://doi.org/10.1007/978-3-540-77974-2_1
https://doi.org/10.1007/978-1-4614-0110-0_13
https://doi.org/10.1007/978-1-4614-0110-0_13

80 J. Gimbel et al.

19. Pach, J., Sarıöz, D.: On the structure of graphs with low obstacle number. Graphs
and Combinatorics 27(3), 465–473 (2011)

20. Sarıöz, D.: Approximating the obstacle number for a graph drawing efficiently.
In: Proceedings of 23rd Canadian Conference on Computational Geometry, pp.
297–302 (2011)

21. Steinitz, E.: Polyeder und Raumeinteilungen. Teubner (1916)
22. Tutte, W.T.: Toward a theory of crossing numbers. J. Comb. Theory 8, 45–53

(1970)
23. Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational

Geometry, pp. 973–1027. North-Holland (2000)

Grid-Obstacle Representations with Connections
to Staircase Guarding

Therese Biedl(B) and Saeed Mehrabi

Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{biedl,smehrabi}@uwaterloo.ca

Abstract. In this paper, we study grid-obstacle representations of
graphs where we assign grid-points to vertices and define obstacles such
that an edge exists if and only if an xy-monotone grid path connects the
two endpoints without hitting an obstacle or another vertex. It was pre-
viously argued that all planar graphs have a grid-obstacle representation
in 2D, and all graphs have a grid-obstacle representation in 3D. In this
paper, we show that such constructions are possible with significantly
smaller grid-size than previously achieved. Then we study the variant
where vertices are not blocking, and show that then grid-obstacle repre-
sentations exist for bipartite graphs. The latter has applications in so-
called staircase guarding of orthogonal polygons; using our grid-obstacle
representations, we show that staircase guarding is NP-hard in 2D.

1 Introduction

Recently, Bishnu et al. [6] initiated the study of grid-obstacle representations.
Here the vertices of a graph G = (V,E) are mapped to points in an integer grid,
and other grid-points are marked as obstacles in such a way that (v, w) is an
edge of G if and only if there exists an xy-monotone path in the grid from v
to w that contains no obstacle-point and no point that belongs to some vertex
�= v, w. See also Fig. 1b. This is a special case of a more general problem, which
asks for placing points and obstacles in the plane such that an edge (v, w) exists
if and only if there is a shortest path (in some distance metric) from v to w
that does not intersect obstacles. See also Alpert et al. [2], who initiated the
study of obstacle numbers, and [9] and the references therein for more recent
developments.

Bishnu et al. [6] showed that any planar graph has a grid-obstacle representa-
tion in 2D, and every graph has a grid-obstacle representation in 3D. The main
idea was to use a straight-line drawing, and then approximate it by putting a suf-
ficiently fine grid around it that consists of obstacles everywhere except near the
edge. The analysis of how fine a grid is required is not straightforward; Bishnu
et al. claimed that in 2D an O(n2) × O(n2)-grid is sufficient. They did not give
bounds for the size needed in 3D (but it clearly is polynomial and at least Ω(n2)
in each dimension). Pach showed that not all bipartite graphs have grid-obstacle
representations in 2D [12].
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 81–87, 2018.
https://doi.org/10.1007/978-3-319-73915-1_7

82 T. Biedl and S. Mehrabi

In this paper, we improve the grid-size bounds of [6]. In particular, rather
than converting a straight-line drawing directly into a grid-obstacle representa-
tion, we first convert it into a visibility representation or an orthogonal drawing
that has special properties, but resides in a linear-size grid. This can then be eas-
ily converted to a grid-obstacle representation. Thus we obtain 2D grid-obstacle
representations for planar graphs in an O(n) × O(n)-grid, and 3D grid-obstacle
representations for all graphs in an O(n) × O(n) × O(n)-grid.

We then discuss the case with the restriction that vertices act as obstacles
for edges not incident to them, and show that sometimes this restriction can be
dropped. We hence obtain non-blocking grid-representations in 2D for all planar
bipartite graphs and in 3D for arbitrary bipartite graphs.

The latter has applications: we can use the constructions for hardness proofs
for a polygon-guarding problem. A point guard g is said to staircase guard (or
s-guard for short) a point p inside an orthogonal polygon P if p can be reached
from g by a staircase; that is, an orthogonal path inside P that is both x- and
y-monotone. In the s-guarding problem, the objective is to guard an orthogonal
polygon with the minimum number of s-guards. Motwani et al. [11] proved that
s-guarding is polynomial on simple orthogonal polygons. Gewali and Ntafos [10]
proved that the problem is NP-hard in 3D; since they reduce from vertex cover
in graphs with maximum degree 3 this in fact implies APX-hardness in 3D [1].
To our knowledge, however, the complexity was open for 2D polygons with holes.
Using non-blocking grid-representations, we show that it is NP-hard.

2 2D Grid-Obstacle Representations

Let G = (V,E) be a planar graph. To build a grid-obstacle representation, we use
a visibility representation where every vertex is represented by a bar (a horizontal
line segment), and every edge is represented by a vertical line segment between
the bars corresponding to the endpoints of the edge [13–15]. We need here a
construction with a special property, which can easily be achieved by “shifting”
where the edges attach at the vertices (see the full paper for a direct proof). See
also Fig. 1a.

Lemma 1. Every planar graph has a visibility representation in an O(n)×O(n)-
grid for which any vertex-bar can be split into a left and right part such that all
downward edges attach on the left and all upward edges attach on the right.

Now convert such a visibility representation into a grid-obstacle represen-
tation. First, double the grid so that no two grid-points on edge-segments or
vertex-bars are adjacent unless the corresponding graph-elements were. For each
vertex v, assign as vertex-point some grid-point that lies between the two parts
of the bar of v; this exists since we doubled the grid. The obstacles consist of
all grid points that are not on some edge segment or vertex bar. Clearly, the
representation is in an O(n) × O(n)-grid. In the full paper, we show that this is
a grid-obstacle representation, and so we have:

Grid-Obstacle Representations and Staircase Guarding 83

(a) (b)

Fig. 1. A special visibility representation gives a grid-obstacle representation.

Theorem 1. Every planar graph has a 2D grid-obstacle representation in an
O(n) × O(n)-grid.

One can easily argue that any straight-line drawing of a planar graph of height
H can be converted into a visibility representation of height 2H and width O(n)
(see also [4]). Then we can apply the same approach as above. Based on drawings
for trees [8], outer-planar graphs [3] and series-parallel graphs [3], we hence get:

Corollary 1. Every tree and every outer-planar graph has a 2D grid-obstacle
representation in an O(log n) × O(n)-grid. Every series-parallel graph has a 2D
grid-obstacle representation in an O(

√
n) × O(n)-grid.

3 3D Grid-Obstacle Representation

In this section, we argue that a similar (and even simpler) construction gives
a grid-obstacle representation in 3D. We obtain this by building an orthogonal
representation first that has special properties. This representation is not quite
a graph drawing, because edges may overlap; this will not create problems for
the obstacle representation later.

Enumerate the vertices as v1, . . . , vn in arbitrary order. Place vi at (i, i, i). To
draw an edge (vi, vj) with i < j, we use the path (i, i, i)−(j, i, i)−(j, i, j)−(j, j, j)
along the cube spanned between the two points. See Fig. 2. Observe that all edges
(vh, vi) with h < i reach vi from the y−-side and that all edges (vi, vj) with i < j
leave vi at the x+-side. Edges incident to vi may overlap along these two sides,
but otherwise there are no overlaps or crossings in the drawing. Also, we clearly
reside in an n × n × n-grid.

Now double the grid, then cover any grid-point by an obstacle unless it is used
by a vertex or an edge. One can easily argue that the result is a grid-obstacle
representation (see the full paper for a formal proof), and we have:

Theorem 2. Every graph has a 3D grid-obstacle representation in an O(n) ×
O(n) × O(n)-grid.

Notice that the obstacle in this case can be made to be just one polyhedron
(albeit of high genus).

84 T. Biedl and S. Mehrabi

Fig. 2. A 3D orthogonal representation of K4, and converting it into a grid-obstacle
representation. All grid-points that are not shown are blocked by obstacles.

4 Non-blocking Grid-Obstacle Representations

In our definition of grid-obstacle representation, we required that the grid point
of any vertex v acts as an obstacle to any other path. The main reason for this
is that otherwise paths could “seep through” a vertex, creating unwanted adja-
cencies. In this section, we consider non-blocking grid-obstacle representations,
which means that vertices do not act as obstacles.

4.1 Planar Bipartite Graphs

We first give an algorithm for non-blocking grid-obstacle representation of pla-
nar bipartite graphs. It is known that any such graph G = (A ∪ B,E) has
an HH-drawing [5], i.e., a planar drawing where all vertices in A have positive
y-coordinate, all vertices in B have negative y-coordinate, every edge is drawn
with at most one bend, and all bends have y-coordinate 0. See also Fig. 3.

In particular, we know that every edge is drawn y-monotonically. Any
such drawing can be converted into a visibility representation [4] where the
y-coordinate of every vertex is unchanged. So we obtain:

Lemma 2. Let G = (A ∪ B,E) be a planar bipartite graph. Then, there exists
a visibility representation of G such that all vertices in A have only neighbours
below, and all vertices in B have only neighbours above.

Now create an obstacle representation as before by doubling the grid, and
placing obstacles at all grid-points that are not used by the drawing. Place each
vertex a ∈ A at the rightmost grid-point of the bar of a, and each b ∈ B at the
leftmost grid-point of the bar of b. One easily verifies that this is a non-blocking
grid-obstacle representation: For each vertex a in A, no xy-monotone path can
go through the grid-point of a without ending there, because no grid-point higher
than a can be reached when going through a. Similarly one argues for B, and so
we have:

Theorem 3. Every planar bipartite graph has a non-blocking grid-obstacle rep-
resentation in an O(n) × O(n)-grid.

Grid-Obstacle Representations and Staircase Guarding 85

Fig. 3. An HH-drawing of a planar bipartite graph, and converting it to a non-blocking
grid-obstacle representation.

4.2 Application to Staircase Guarding

Recall that the s-guarding problem consists of finding the minimum set S of
points in a given orthogonal polygon P such that for any q ∈ P there exists
a p ∈ S that is connected to q via a staircase inside P . Using non-blocking
grid-obstacle representations, we can show:

Theorem 4. s-guarding is NP-hard on orthogonal polygons with holes.

Proof. We reduce from minimum dominating set, i.e., the problem of finding
a set D of vertices in a graph such that every vertex is either in D or has a
neighbor in D. This is NP-hard, even on planar bipartite graphs [7]. Given a
planar bipartite graph G = (A∪B,E), construct the non-blocking grid-obstacle
representation Γ from Theorem 3. Let P ′ consist of all unit squares (pixels)
around grid-points that are not in an obstacle. The obstacles of Γ become holes
in P ′. Now for any vertex a ∈ A extend the bar of a slightly rightward beyond
the last edge, and for every b ∈ B extend the bar leftward beyond the last edge.
Finally, at every edge e, attach two “spirals” on the left and right side of its
vertical segment; the one on the left curls upward while the on the right curls
downward. See Fig. 4. These spirals are small enough that they fit within the
holes of P ′, without overlapping other parts of P ′ or each other. We show in the
full paper that G has a dominating set of size k if and only if this polygon can
be s-guarded with 2|E| + k guards. This proves the theorem. ��

Fig. 4. The polygon for the graph in Fig. 3, and gadgets that we attach.

86 T. Biedl and S. Mehrabi

Fig. 5. A 3D orthogonal representation of K2,3, and converting it into a grid-obstacle
representation. Grid-points not shown are covered by obstacles.

4.3 3D Grid-Obstacle Representation of Bipartite Graphs

In 3D, all bipartite graphs have a non-blocking grid-obstacle representation:
Enumerate the vertices as A = {a1, . . . , a�} and B = {b1, . . . , bk}. Place a point
for vertex ai at (0, i, 0) and a point for vertex bj at (j, 0, 1). Route each edge
(ai, bj) as the orthogonal path (0, i, 0) − (j, i, 0) − (j, i, 1) − (j, 0, 1), and observe
that two paths overlap in the x+-direction at ai if they both begin at ai, or
overlap in the y+-direction at bj if they both end at bj , but otherwise there is
no overlap. Now obtain the grid-obstacle representation as before by doubling
the grid and making grid-points obstacles unless they are used by vertices and
edge-paths (Fig. 5). As before one argues that this is indeed a non-blocking grid-
obstacle representation and so we have:

Theorem 5. Every bipartite graph has a 3D non-blocking grid-obstacle repre-
sentation.

5 Conclusion

In this paper, we studied grid-obstacle representations. We gave constructions
with smaller grid-size for planar graphs in 2D and all graphs in 3D. If the graph is
bipartite then we can construct representations where vertices are not considered
obstacles. We used these types of representation to prove NP-hardness of the s-
guarding problem in 2D polygons with holes.

It remains open whether an asymptotically smaller grid and/or fewer obsta-
cles might be enough. If we allow obstacles to be polygons rather than grid-
points, we use (in Theorems 1 and 3) one obstacle per face of the planar graph, or
Θ(n) in total. For grid-obstacle representations that use straight-line segments,
rather than xy-monotone grid-paths, significantly fewer obstacles suffice [9]. Can
we create grid-obstacle representations with o(n) obstacles, at least for some
subclasses of planar graphs? Another direction for future work would be to find
other classes of graphs for which we can construct non-blocking grid-obstacle
representations. Does this exist for all planar graphs in 2D?

Grid-Obstacle Representations and Staircase Guarding 87

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor.
Comput. Sci. 237(1–2), 123–134 (2000)

2. Alpert, H., Koch, C., Laison, J.D.: Obstacle numbers of graphs. Discrete Comput.
Geom. 44(1), 223–244 (2010)

3. Biedl, T.: Small drawings of outerplanar graphs, series-parallel graphs, and other
planar graphs. Discrete Comput. Geom. 45(1), 141–160 (2011)

4. Biedl, T.: Height-preserving transformations of planar graph drawings. In:
Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 380–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7 32

5. Biedl, T., Kaufmann, M., Mutzel, P.: Drawing planar partitions II: HH-drawings.
In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 124–136.
Springer, Heidelberg (1998). https://doi.org/10.1007/10692760 11

6. Bishnu, A., Ghosh, A., Mathew, R., Mishra, G., Paul, S.: Grid obstacle represen-
tations of graphs (2017). coRR report arXiv:1708.01765

7. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math.
86(1–3), 165–177 (1990)

8. Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for
upward drawings of binary trees. Comput. Geom. 2, 187–200 (1992)

9. Dujmovic, V., Morin, P.: On obstacle numbers. Electr. J. Comb. 22(3), P3.1 (2015)
10. Gewali, L., Ntafos, S.C.: Covering grids and orthogonal polygons with periscope

guards. Comput. Geom. 2, 309–334 (1992)
11. Motwani, R., Raghunathan, A., Saran, H.: Covering orthogonal polygons with star

polygons: the perfect graph approach. J. Comput. Syst. Sci. 40(1), 19–48 (1990)
12. Pach, J.: Graphs with no grid obstacle representation. Geombinatorics 26(2), 80–83

(2016)
13. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientation of

planar graphs. Discrete Comput. Geom. 1, 343–353 (1986)
14. Tamassia, R., Tollis, I.: A unified approach to visibility representations of planar

graphs. Disc. Comput. Geom. 1, 321–341 (1986)
15. Wismath, S.: Characterizing bar line-of-sight graphs. In: ACM Symposium on

Computational Geometry (SoCG 1985), pp. 147–152. ACM (1985)

https://doi.org/10.1007/978-3-662-45803-7_32
https://doi.org/10.1007/10692760_11
http://arxiv.org/abs/1708.01765

Reconstructing Generalized Staircase Polygons
with Uniform Step Length

Nodari Sitchinava1 and Darren Strash2(B)

1 Department of Information and Computer Sciences, University of Hawaii,
Manoa, USA

nodari@hawaii.edu
2 Department of Computer Science, Colgate University, Hamilton, NY, USA

dstrash@cs.colgate.edu

Abstract. Visibility graph reconstruction, which asks us to construct a
polygon that has a given visibility graph, is a fundamental problem with
unknown complexity (although visibility graph recognition is known to
be in PSPACE). We show that two classes of uniform step length poly-
gons can be reconstructed efficiently by finding and removing rectangles
formed between consecutive convex boundary vertices called tabs. In
particular, we give an O(n2m)-time reconstruction algorithm for orthog-
onally convex polygons, where n and m are the number of vertices and
edges in the visibility graph, respectively. We further show that recon-
structing a monotone chain of staircases (a histogram) is fixed-parameter
tractable, when parameterized on the number of tabs, and polynomially
solvable in time O(n2m) under reasonable alignment restrictions.

Keywords: Visibility graphs · Polygon reconstruction
Visibility graph recognition · Orthogonal polygons
Fixed-parameter tractability

1 Introduction

Visibility graphs, used to capture visibility in or between polygons, are simple
but powerful tools in computational geometry. They are integral to solving many
fundamental problems, such as routing in polygons, and art gallery and watch-
man problems, to name a few. Efficient, and even worst-case optimal, algorithms
exist for computing a visibility graph from an input polygon [16]; however, com-
paratively little is known about the reverse direction: the so-called visibility
graph recognition and reconstruction problems.

In this paper, we study vertex-vertex visibility graphs, which are formed by
visibility between pairs vertices of a polygon. Given a graph G = (V,E), the
visibility graph recognition problem asks if G is the visibility graph of some

N. Sitchinava—This material is based upon work supported by the National Science
Foundation under Grant No. 1533823.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 88–101, 2018.
https://doi.org/10.1007/978-3-319-73915-1_8

Reconstructing Generalized Staircase Polygons with Uniform Step Length 89

polygon. Similarly, the visibility graph reconstruction problem asks us to con-
struct a polygon with G as a visibility graph. Surprisingly, recognition of simple
polygons is only known to be in PSPACE [13], and it is still unknown if simple
polygons can be reconstructed in polynomial time. Therefore, current solutions
are typically for restricted classes of polygons.

1.1 Special Classes

A well-known result due to ElGindy [11] is that every maximal outerplanar is
a visibility graph and a polygon can be reconstructed from every such graph in
polynomial time. Other special classes rely on a unique configuration of reflex
and convex chains, which restrict visibility. For instance, spiral polygons [14],
and tower polygons [7] (also called funnel polygons), can be reconstructed in
linear time, and each consists of one and two reflex chains, respectively. 2-spirals
can also be reconstructed in polynomial time [3], as can a more general class of
visibility graphs related to 3-matroids [4].

For monotone polygons, Colley [8,9] showed that if each face of a maximal
outerplanar graph is replaced by a clique on the same number of vertices, then
the resulting graph is a visibility graph of some uni-monotone polygon (mono-
tone with respect to a single edge), and such a polygon can be reconstructed
if the Hamiltonian cycle of the boundary edges is known. However, not every
uni-monotone polygon (even those with uniformly spaced vertices) has such a
visibility graph [12]. Finally, Evans and Saeedi [12] characterized terrain visibility
graphs, which consist of a single monotone polygonal line.

For orthogonal polygons, orthogonal convex fans (also known as staircase
polygons), which consist of a single staircase and an extra vertex, can be recog-
nized in polynomial time [2]; however—strikingly—the only class of orthogonal
polygons known to be reconstructible in polynomial time is the staircase polygon
with uniform step lengths, due to Abello and Eğecioğlu [1]. Other algorithms for
orthogonal polygons use different visibility representations such as vertex-edge
or edge-edge visibility [18, Sect. 7.3], or “stabs” [17]. See Asano et al. [5] or
Ghosh [15] for a thorough review of results on visibility graphs.

1.2 Our Results

In this work, we investigate reconstructing polygons consisting of multiple uni-
form step length staircases. We first show that orthogonally convex polygons can
be reconstructed in time O(n2m). We further show that reconstructing orthog-
onal uni-monotone polygons is fixed-parameter tractable, when parameterized
on the number of the horizontal convex-convex boundary edges in the polygon.
We also provide an O(n2m) time algorithm under reasonable alignment assump-
tions. As a consequence of our reconstruction technique, we can also recognize
the visibility graphs of these classes of polygons with the same running times.

90 N. Sitchinava and D. Strash

2 Preliminaries

Let P be a polygon on n vertices. We say that a point p sees a point q (or p and
q are visible) in polygon P if the line segment pq does not intersect the exterior
of P . Under this definition, visibility is allowed along edges and through vertices.

For our visibility graph discussion, we adopt standard notation for graphs
and polygons. In particular, for a graph G = (V,E), we denote the neighborhood
of a vertex v ∈ V by N(v) = {u | (v, u) ∈ E}, and denote the number of
vertices and edges by n = |V | and m = |E|, respectively. For a visibility graph
GP = (VP , EP) of a polygon P , we call an edge in GP that is an edge of P a
boundary edge. Other edges (diagonals in P) are non-boundary edges.

Finally, critical to our proofs is the fact that a maximal clique in GP corre-
sponds to a maximal (in the number of vertices) convex region R ⊆ P whose
vertices are defined by vertices of P . A vertex v is called simplicial if N(v) forms
a clique, or equivalently v is in exactly one maximal clique. For our work here, we
further adapt this definition for an edge. We say that an edge (u, v) is 1-simplicial
if N(u)∩N(v) is a clique, or equivalently (u, v) is in exactly one maximal clique1.
The intuition behind why we consider 1-simplicial edges is that, in orthogonal
polygons with edges of uniform length, boundary edges between convex vertices
are 1-simplicial, with the vertices of the clique forming a rectangle. (See Fig. 1.)

C1

(a)

C2

e2

(b)

e3 C3

(c)

Fig. 1. Maximal convex regions on vertices of polygons are maximal cliques in visibility
graphs. (b)–(c) 1-simplicial edges are in exactly one maximal clique.

Our running times depend on the following observation for 1-simplicial edges.

Observation 1. We can test if (u, v) is 1-simplicial and in a maximal k-clique
in time O(kn).

3 Uniform-Length Orthogonally Convex Polygons

We first turn our attention to a restricted class of orthogonal polygons that have
only uniform-length (or equivalently, unit-length) edges. Let P be an orthogonal

1 This is not to be confused with simplicial edges, which are defined elsewhere to be
edges (u, v) such that for every w ∈ N(u) and x ∈ N(v), w and x are adjacent.

Reconstructing Generalized Staircase Polygons with Uniform Step Length 91

polygon with uniform-length edges such that no three consecutive vertices on
P ’s boundary are collinear, and further let P be orthogonally convex 2. We call
P a uniform-length orthogonally convex polygon (UP). Note that every vertex
vi on P ’s boundary is either convex or reflex. We call boundary edges between
two convex vertices in a uniform-length orthogonal polygon P tabs and a tab’s
endvertices tab vertices. We reconstruct the polygon by computing the clockwise
ordering of vertices of the UP.

Note that the boundary of a UP consists of four tabs connected via staircases.
For ease of exposition, we imagine the UP embedded in R

2 with polygon edges
axis-aligned. We call the tab with the largest y-coordinate the north tab, and we
similarly name the others the south, east, and west tabs. We similarly refer to
the four boundary staircases as northwest, northeast, southeast, and southwest.

We only consider polygons with more than 12 vertices, which eliminates many
special cases. Smaller polygons can be solved in constant time via brute force.

We first introduce several structural lemmas which help us identify convex
vertices in a UP, which is key to our reconstruction.

Lemma 1. For every convex vertex u in a UP there is a convex vertex v, such
that (u, v) ∈ EP and (u, v) is 1-simplicial.

Proof. If u is a tab vertex, then the other tab vertex v is also convex and (u, v)
is 1-simplicial. Otherwise, without loss of generality, suppose that u is on the
northwest staircase. Then there is a convex vertex v on the southeast staircase
that is visible from u. Edge (u, v) is in exactly one maximal clique, consisting of
u, v, the reflex vertices within the rectangle R defined by u and v as the opposite
corners, and any other corners of R that are convex vertices of the polygon. �
Lemma 2. In a UP, if u or v is a reflex vertex, then edge (u, v) is not
1-simplicial.

Proof (Sketch3). If both u and v are reflex, then (u, v) is in one maximal clique
consisting of only reflex vertices and another one that includes some convex
vertex w. If one of u or v is convex, there exist two convex vertices w and w′,
forming two distinct maximal cliques with (u, v). �

Lemma 2 states that only edges between convex vertices can be 1-simplicial.
Hence it allows us to identify all convex vertices, by checking for each edge (u, v)
if N(u) ∩ N(v) is a clique in O(n2) time, leading to the following lemma.

Lemma 3. We can identify all convex and reflex vertices in a visibility graph
of a UP in O(n2m) time.

We say a UP is regular if each of its staircase boundaries have the same num-
ber of vertices. Otherwise, we call it irregular, consisting of two long and two
short staircases. We restrict our attention to irregular uniform-length orthogo-
nally convex polygons (IUPs); however, similar methods work for their regular
counterparts.
2 That is, any two points in P can be connected by a staircase contained in P .
3 Full proofs may be found in the full version of this paper [19].

92 N. Sitchinava and D. Strash

3.1 Irregular Uniform-Length Orthogonally Convex Polygons

Let GP be the visibility graph of IUP P . Our reconstruction algorithm first
computes the four tabs, then assigns the convex and reflex vertices to each
staircase. The following structural lemma helps us find the tabs. We assume
that we have already computed the convex and reflex vertices in O(n2m) time.

(a) (b)

C0
C1

C2
C3

C4

b

a
v

u

w

w u

v

(c)

Fig. 2. Elements of our reconstruction. (a) Elementary cliques C0, . . . , C4 interlock
along a short staircase. (b) Tab vertices a and b see unique reflex vertices on long
staircases. (c) Reflex vertices (square) are discovered by forming rectangles with known
vertices u, v and w.

Lemma 4. In every IUP there are exactly four 7-vertex maximal cliques, each
containing exactly three convex vertices. Each such clique contains exactly one
tab, and each tab is contained in exactly one of these cliques.

Proof. First note that each of the four tabs are in exactly one such maximal
7-clique. Further, any other clique that contains three convex vertices has at
least nine vertices: each convex vertex and its two reflex boundary neighbors. �

We note that it is not necessary to identify the four tabs explicitly to continue
with the reconstruction. There are only 74 = O(1) choices of tabs (one from each
7-clique of Lemma 4), thus we can try all possible tab assignments, continue with
the reconstruction and verify that our reconstruction produces a valid IUP P
with the same visibility graph. However, we can explicitly find the four tabs,
giving us the following lemma.

Lemma 5. We can identify the four tabs of an IUP in O(nm) time.

We pick one tab arbitrarily to be the north tab. We conceptually orient the
polygon so that the northwest staircase is short and the northeast staircase is
long. We do this by computing elementary cliques, which identify the convex
vertices on the short staircase.

Definition 1 (elementary clique). An elementary clique in an IUP is a max-
imal clique that contains exactly three convex vertices: one from a short staircase,
and one from each of the long staircases. (See Fig. 2(a).)

Reconstructing Generalized Staircase Polygons with Uniform Step Length 93

Lemma 6. We can identify the elementary cliques containing vertices on the
northwest staircase in O(nm) time.

Proof (Sketch). Each elementary clique is constant size and contains a
1-simplicial edge, and can therefore be discovered in O(nm) time. Further,
elementary cliques “interlock” along a staircase: each elementary clique shares
exactly three reflex vertices with its at most two neighboring elementary cliques.
Thus they can be computed starting from the elementary clique containing the
north tab. �

Note that, if our sole purpose is to reconstruct the IUP P , we have sufficient
information. The number of elementary cliques gives us the number of vertices
on a short staircase of the polygon, from which we can build a polygon. However,
in what follows, we can actually map all vertices to their positions in the IUP,
which we later use to build a recognition algorithm for IUPs.

First, we show how to assign all convex vertices from the elementary cliques
to each of the three staircases, using visibility of the north and west tab vertices.
Note, constructing the elementary cliques with Lemma 6 also gives us the west
tab, since it is contained in the last elementary clique on the northwest staircase.

Lemma 7. We can identify the convex vertices on the northwest staircase in
O(n) time.

Proof. The northwest staircase contains the convex vertices of the elementary
cliques from Lemma 6 that cannot be seen by any of the north or west tab
vertices. The staircase further contains the left vertex of the north tab and the
top vertex of the west tab (which can be identified by the fact that they are tab
vertices that do not see either vertex of the other tab). �

We can repeat the above process to identify the convex vertices of the south-
east staircase. However, we might not yet be able to identify tabs as south or
east. Thus, we will obtain two possible orderings of the convex vertices on the
southeast staircase. Next, we show how to assign convex vertices to the long
staircases. In the process we determine south and east tabs, and consequently,
identify the correct ordering of convex vertices on the southeast staircase.

Lemma 8. We can assign the remaining convex vertices in O(n2) time.

Proof (Sketch). Let vi, vi+1 be convex vertices on the same staircase, separated
by a single reflex vertex. Let u be the unique vertex on the opposite staircase,
such that the angular bisector of vi goes through u. Then u sees vi+1. This
likewise holds for the opposite staircase. Therefore, starting from one convex
vertex on each staircase (such as a tab vertex), we can compute all convex
vertices on each staircase. �

94 N. Sitchinava and D. Strash

Fig. 3. (a) A histogram A with three tabs. (b) A decomposition of A into touching
rectangles with a contact graph that is a tree.

Lemma 9. We can assign the reflex vertices to each staircase in O(n2) time.

Proof (Sketch). First we compare the reflex vertices seen by tab vertices, which
gives us many vertices on the long staircases (see Fig. 2(b)). The remaining
reflex vertices are discovered by building vertical and horizontal rectangles that
contain unassigned reflex vertices (see Fig. 2(c)). �

Observe that within each staircase, boundary edges are formed only between
convex vertices and their reflex neighbors. Thus, we can order reflex vertices on
each staircase by iterating over the staircase’s convex vertices (order of which is
determined in Lemmas 6, 7 and 8) and we are done. This gives us the following
result:

Theorem 1. In O(n2m) time, we can reconstruct an IUP from its visibility
graph.

4 Uniform-Length Histogram Polygons

In this section we show how to reconstruct a more general class of uniform
step length polygons: those that consist of a chain of alternating up- and down-
staircases with uniform step length, which are monotone with respect to a single
(longer) base edge. Such polygons are uniform-length histogram polygons [10],
but we simply call them histograms for brevity (see Fig. 3(a) for an example).
We refer to the two convex vertices comprising the base edge as base vertices.
Furthermore, we refer to top horizontal boundary edges incident to two convex
vertices as tab edges or just tabs and their incident vertices as tab vertices.

The Case of Two Staircases. We first note that in double staircase polygons
(consisting of only two staircases) there is a simple linear-time reconstruction
algorithm based on the degrees of vertices in the visibility graph. However, the
construction relies on the symmetry of the two staircases and it is not clear
whether any counting strategy works for arbitrary histograms.

4.1 Overview of the Algorithm

Every histogram can be decomposed into axis-aligned rectangles, whose contact
graph is an ordered tree [10], as illustrated in Fig. 3(b). In Sect. 4.2, we show

Reconstructing Generalized Staircase Polygons with Uniform Step Length 95

Fig. 4. Illustrating all maximal 4-cliques that contain 1-simplicial edges. These include
tab cliques (square regions) and non-tab cliques (triangular regions).

that we can construct the (unordered) contact tree T from the visibility graph
GP in O(n2m) time by repeatedly “peeling” tabs from the histogram. We then
show that each left-to-right ordering of T ’s k leaves (as well as a left-to-right
orientation of the rectangles in the leaves) induces a histogram P ′. For each
candidate polygon P ′ (of k!2k candidates), we then compute its visibility graph
GP ′ in O(n log n + m) time [16] and check if GP ′ is isomorphic to GP . Instead
of requiring an expensive graph isomorphism check [6], we show how to use the
ordering of T to quickly test if GP and GP ′ are isomorphic.

In Sect. 4.4 we show how to reduce the number of candidate histograms from
k!2k to (k − 2)!2k−2, leading to the main result of our paper:

Theorem 2. Given a visibility graph GP of a histogram P with k ≥ 2 tabs, we
can reconstruct P in O(n2m + (k − 2)!2k−2(n log n + m)) time.

Finally, we give a faster reconstruction algorithm when the histogram has a
binary contact tree, solving these instances in O(n2m) time (Sect. 4.4).

4.2 Rectangular Decomposition and Contact Tree Construction

We construct the contact tree T from GP by computing a set T of the k tab
edges of GP (Lemma 11). Each tab (u, v) is 1-simplicial and in a maximal
4-clique, since N(u) ∩N(v) is a 4-clique representing a unit square at the top of
the histogram. Given the set T of tab edges, our reconstruction algorithm picks
an edge t from T and removes the maximal 4-clique containing t. This is equiv-
alent to removing an axis-aligned rectangle in P , and, equivalently, removing a
leaf node from T . Moreover, it associates that node of T with four vertices of
P : two top vertices that are convex and two bottom vertices that are either both
reflex or are both convex base vertices. This process might result in a new tab
edge, which we identify and add to T .

Finding Initial Tabs. We start by finding the k tabs. Recall that every tab edge
is 1-simplicial and in a maximal 4-clique. The converse is not necessarily true.
Therefore, we begin by finding all 1-simplicial edges that are in maximal 4-cliques
as a set of candidate edges, and later exclude non-tabs from the candidates.

Given a visibility graph GP = (VP , EP) of a histogram P and a maximal
clique C ⊆ VP , we call a vertex w ∈ C an isolated vertex with respect to P if
there exists a tab edge (u, v) ∈ EP , such that (N(u) ∪ N(v)) ∩ C = {w}, i.e., of
all vertices of C, only w is visible to some tab of P .

96 N. Sitchinava and D. Strash

Fig. 5. (a) A truncated histogram, created by iteratively removing six tabs (dashed)
from a histogram. (b) When removing Ct: t

′
a, t

′
b form a tab iff t′a, t

′
b ∈ T \ Ct, they see

u and v, and |Ct′ | = 4.

Lemma 10. In a histogram, every 1-simplicial edge in a maximal 4-clique con-
tains either a tab vertex or an isolated vertex.

Proof (Sketch). Figure 4 shows the only types of maximal 4-cliques. �
Lemma 11. In a visibility graph of a histogram, tabs can be computed in time
O(n2m).

Proof (Sketch). We find all maximal 4-cliques in O(nm) by Observation 1 and
detect and eliminate those containing isolated vertices in O(n2m) time. �

Note that top vertices cannot see the vertices above them. Therefore, only
bottom vertices see tab vertices. Moreover, every bottom vertex sees at least one
tab vertex. Thus, identifying all tabs immediately classifies vertices of GP into
top vertices and bottom vertices.

Peeling Tabs. Let P ′ be a polygon resulting from peeling tab cliques (rectan-
gles) from a histogram P . We call P ′ a truncated histogram. See Fig. 5(a) for an
example. After peeling a tab clique, the resulting polygon does not have uniform
step length and the visibility graph may no longer have the properties on which
Lemma 11 relied to detect initial tabs. Instead, we use the following lemma to
detect newly created tabs during tab peeling.

Lemma 12. When removing a tab clique from the visibility graph of a truncated
histogram, any newly introduced tab can be computed in time O(n).

Proof. Denote the removed (tab) clique by Ct and let t be its tab. Let u, v �∈ t
be the non-tab vertices of Ct. Since u sees v, (u, v) is an edge in GP .

Since top vertices can only see vertices at and below their own level, besides
the vertices of t, there are exactly two other top vertices in (remaining) GP that
see u and v, namely, the top vertices t′a and t′b of P on the same level as u and
v (see Fig. 5(b)). Since t′a, t

′
b are adjacent in GP , let t′ = (t′a, t

′
b).

When removing Ct from GP , we can compute t′a and t′b in time O(n) by
selecting the only two top vertices adjacent to both u and v. Since t′a and t′b are
the top vertices of a same rectangle Rt′ , edge t′ is 1-simplicial and is in exactly
one maximal clique Ct′ = N(t′a)∩N(t′b), which corresponds to the convex region
Rt′ . Finally, after Ct is removed, t′ is a newly created tab if and only if |Ct′ | = 4,
which can again be tested in time O(n) by computing N(t′a) ∩ N(t′b). �

Reconstructing Generalized Staircase Polygons with Uniform Step Length 97

With each tab clique (rectangle) removal, we iteratively build the parent-
child relationship between the rectangles in the contact tree T as follows. Using
an array A, we maintain references to cliques being removed whose parents in
T have not been identified yet. When a tab clique Ct is removed from GP , the
reference to Ct is inserted into A[u], where u is one of the rectangle’s bottom
vertices. If the removal of Ct creates a new tab t′ = (t′a, t

′
b), we identify Ct′ in

O(n) time using Lemma 12. Recall that t′ sees all bottom vertices on the same
level. Thus, for every bottom vertex u ∈ N(t′a) (in the original graph GP), if A[u]
is non-empty, we set Ct′ as the parent of the clique stored in A[u] and clear A[u].
This takes at most O(n) time for each peeling of a clique. We get the following
lemma, where the time is dominated by the computation of the initial tabs:

Lemma 13. In O(n2m) time we can construct the contact tree T of P , associate
with each v ∈ T the four vertices that define the rectangular region of v, and
classify vertices of GP as top vertices and bottom vertices.

4.3 Mapping Candidate Polygon Vertices to the Visibility Graph

Let T̂ correspond to T with some left-to-right ordering of its leaves and let
P̂ be the polygon corresponding to T̂ . We will map the vertices of GP to the
vertices of P̂ by providing for each vertex of GP the x- and y-coordinates of a
corresponding vertex of P̂ . Let t1, t2, . . . , tk be the order of the tabs in P̂ . Since
T̂ unambiguously defines the polygon P̂ , each node v of T̂ is associated with a
rectangular region on the plane, and the four vertices of GP are associated with
the four corners of the rectangular region. Since by Lemma 13 every vertex of GP

is classified as a top vertex or a bottom vertex, the y-coordinate can be assigned
to all vertices unambiguously, because there are two top vertices and two bottom
vertices associated with each node v of T̂ . For every pair p, p̄ of top vertices or
bottom vertices associated with a node in T̂ (we call them companion vertices)
there is a choice of two x-coordinates: one associated with the left boundary
and one associated with the right boundary of the rectangular region. Thus,
determining the assignment of each top vertex and bottom vertex in GP to the
left or the right boundary is equivalent to defining x-coordinates for all vertices
in GP . Although there appears to be 2n/2 possible such assignments, there are
many dependencies between the assignments due to the visibility edges in GP .
In fact, we will show that by choosing the x-coordinates of the tab vertices, we
can assign all the other vertices. Thus, in what follows we consider each of the
2k possible assignments of x-coordinates to the 2k tab vertices.

At times we must reason about the assignment of a vertex to the left (right)
staircases associated with some tab tj . Given T̂ , the x-coordinates of each ver-
tex in the left and right staircase associated with every tab tj is well-defined.
Therefore, assigning a vertex p to a left (right) staircase of some tab tj defines
the x-coordinate of p.

In a valid histogram, companion vertices p and p̄ must be assigned distinct
x-coordinates. Therefore, after each assignment below, we check the companion

98 N. Sitchinava and D. Strash

Fig. 6. Visibility from the left (right) base vertex determines the left- (right-)most tab,
and orients all rectangles on the left (right) spine of the contact tree.

vertex and if they are both assigned the same x-coordinate, we exclude the
current polygon candidate P̂ from further consideration.

We further observe that in a valid histogram, if a bottom vertex p is not in
the tab clique, then it sees exactly one tab vertex, which lies on the opposite
staircase associated with that tab. Thus, we assign every such bottom vertex the
left (right) x-coordinate if it sees the right (left) tab vertex.

Next, consider any node v of the contact tree T̂ and let Rv define the rectangle
associated with v in the rectangular decomposition of a valid histogram. Let p
be a top vertex in Rv and let S(p) be the set of vertices visible from p that are
not in Rv (S(p) can be determined from the neighborhood of p in GP). Observe
that if p is assigned the left (right) x-coordinate, then every vertex in S(p) is a
bottom vertex to the right (left) of the rectangle Rv, none of them belongs to a
tab clique (i.e., all of them are already assigned x-coordinates), and all of them
are assigned a right (left) x-coordinate. Since the x- and y-coordinates of the
boundaries of Rv are well-defined by T̂ (regardless of vertex assignment), if S(p)
is non-empty, we check all of the above conditions and assign p an appropriate
x-coordinate. If a condition is violated, then the current polygon candidate is
invalid and we exclude it from further consideration.

Let p be one of the remaining top vertices without an assigned x-coordinate.
If the companion p̄ is assigned an x-coordinate, we assign p the other choice
of the x-coordinate. Otherwise, both p and p̄ see only the vertices inside their
rectangle. In this case, the neighborhoods N(p) and N(p̄) are the same and we
can assign p and p̄ to the opposite staircases arbitrarily.

Thus, the only remaining vertices without assigned x-coordinates are bottom
vertices in tab cliques. Let R be the rectangle defined by the tab and Sright(p)
(resp., Sleft(p)) denote the set of vertices that p sees among the vertices to the
right (resp., left) of R. Consider a companion pair p and p̄ of bottom vertices that
are in a tab clique. Observe that if p is on the left boundary, then Sright(p̄) ⊆
Sright(p) or Sleft(p) ⊆ Sleft(p̄). Symmetrically, if p̄ is on the left boundary then
Sright(p) ⊆ Sright(p̄) or Sleft(p̄) ⊆ Sleft(p). Thus, if |Sright(p̄)| �= |Sright(p)|
and |Sleft(p)| �= |Sleft(p̄)|, we can assign p and p̄ appropriate x-coordinates.
Otherwise, the neighborhoods N(p) and N(p̄) are the same, and we can assign
p and p̄ to the opposite boundaries arbitrarily.

Reconstructing Generalized Staircase Polygons with Uniform Step Length 99

4.4 Reducing the Number of Candidate Histograms

We can reduce the number of possible orderings of tabs and staircases by consid-
ering only those that meet certain visibility constraints on the vertices that form
the corners of each rectangle. In particular, we say that two rectangles R1 �= R2

in the decomposition are orientation-fixed if a bottom vertex vbot from one can
see a top vertex vtop of another. Then these rectangles must be oriented so that
vbot and vtop are on opposite staircases (an up-staircase and a down-staircase).
Thus, fixing an orientation of one rectangle fixes the orientation of the other.

Note that every rectangle is orientation-fixed with some leaf rectangle (as
its bottom vertex can see a tab vertex). Therefore, ordering (and orienting)
the leaves induces an ordering/orientation of the tree. There are O(k!2k) such
orderings (and orientations) for all leaf rectangles, where k is the number of tabs.

For double staircases, T is a path and the root rectangle is orientation-fixed
with every other rectangle (a base vertex is seen by every top vertex). Hence,
orienting the base rectangle determines the positions of the top vertices on the
double staircase. Likewise, for the histogram, the spines of T are fixed:

Lemma 14. The base rectangle of a histogram is orientation-fixed with all rect-
angles on the left and right spines of T .

Moreover, the only tab vertices visible from a base vertex are incident to the
left-most or right-most tab. Thus, we can identify the left-most and right-most
tabs based on the neighborhood of the base vertices. Note that removing a base
rectangle of the histogram produces one or more histograms. Then we can apply
this logic recursively, leading to the following algorithm:

1. Fix the orientation of the base rectangle. This identifies the rectangles on the
left and right spines of T and their orientations. (See Fig. 6.)

2. The remaining subtrees collectively contain the remaining rectangles, which
still must be ordered and oriented. We recursively compute the ordering and
orientation of the rectangles in these subtrees.

Note if we compute the left and right spines of T , we identify the first and
last tabs, and the orientations of their tab edges. Thus, we have (k − 2)!2k−2

remaining orderings of T and orientations of the tab edges to check, as k − 2
tabs remain. This results in the overall reconstruction of a histogram with k ≥ 2
tabs in O(n2m + (k − 2)!2k−2(n log n + m)) time, proving Theorem 2.

We now generalize the number of orderings to consider by defining a recur-
rence on the tree structure. Let v ∈ T , and define C(v) be v’s children in T and
d(v) = |C(v)|. Then if we have a fixed orientation of v’s corresponding rectan-
gle, fixing the rectangles on the left-most and right-most paths from v limits the
number of possible orderings/orientations of v’s descendants to

F (v) ≤

⎧
⎪⎨

⎪⎩

2d(v)−2
∏

u∈C(v) F (u) if d(v) > 1,
F (u) if |C(v)| = 1, s.t.C(v) = {u},
1 if v is a leaf.

100 N. Sitchinava and D. Strash

Note that F (root) = 1 for a binary tree T . That is, the orientation of the base
rectangle completely determines the histogram. Furthermore, we can find such
an orientation by fixing the orientation of the base edge, determining the left-
and right-most paths, ordering and orienting them to match the base edge, and
then repeating this for each subtree whose root is oriented and ordered (but its
children are not), which acts as a base rectangle for its subtree. This process can
be done in time O(n + m) by traversing T and orienting each rectangle exactly
once by looking at its vertices neighbors in its base rectangle in T .

Theorem 3. Histograms with a binary contact tree can be reconstructed in
O(n2m) time.

5 From Reconstruction to Recognition

We note that all of our reconstruction algorithms assign each vertex to a specific
position in the constructed polygon. Let such an algorithm be called a vertex
assignment reconstruction. As a result, we get recognition algorithms for these
visibility graphs as well: we run our reconstruction until it fails or completes suc-
cessfully, verify that the resulting polygon has the same visibility graph in time
O(n log n+m) time [16], and verify that it is a polygon of the given type in linear
time. Thus, we conclude that our reconstruction algorithms imply recognition
algorithms with the same running times.

References

1. Abello, J., Eğecioğlu, Ö.: Visibility graphs of staircase polygons with uniform step
length. Int. J. Comput. Geom. Ap. 03(01), 27–37 (1993)

2. Abello, J., Eğecioğlu, Ö., Kumar, K.: Visibility graphs of staircase polygons and the
weak Bruhat order, I: from visibility graphs to maximal chains. Discrete Comput.
Geom. 14(3), 331–358 (1995)

3. Abello, J., Kumar, K.: Visibility graphs of 2-spiral polygons (Extended abstract).
In: Baeza-Yates, R., Goles, E., Poblete, P.V. (eds.) LATIN 1995. LNCS, vol. 911,
pp. 1–15. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59175-3 77

4. Abello, J., Kumar, K.: Visibility graphs and oriented matroids. Discrete Comput.
Geom. 28(4), 449–465 (2002)

5. Asano, T., Ghosh, S.K., Shermer, T.C.: Visibility in the plane. In: Urrutia,
J.-R.S.J. (ed.) Handbook of Computational Geometry, pp. 829–876. North-Holland,
Amsterdam (2000). Chap. 19

6. Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In:
Proceedings of 48th ACM Symposium on Theory of Computing (STOC 2016), pp.
684–697, New York, NY, USA. ACM (2016)

7. Choi, S.-H., Shin, S.Y., Chwa, K.-Y.: Characterizing and recognizing the visibility
graph of a funnel-shaped polygon. Algorithmica 14(1), 27–51 (1995)

8. Colley, P.: Visibility graphs of uni-monotone polygons. Master’s thesis, Department
of Computer Science, University of Waterloo, Waterloo, Canada (1991)

9. Colley, P.: Recognizing visibility graphs of unimonotone polygons. In: Proceedings
of 4th Canadian Conference on Computational Geometry, pp. 29–34 (1992)

https://doi.org/10.1007/3-540-59175-3_77

Reconstructing Generalized Staircase Polygons with Uniform Step Length 101

10. Durocher, S., Mehrabi, S.: Computing partitions of rectilinear polygons with
minimum stabbing number. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.)
COCOON 2012. LNCS, vol. 7434, pp. 228–239. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32241-9 20

11. ElGindy, H.: Hierarchical decomposition of polygons with applications. Ph.D.
thesis, McGill University, Montreal, Canada (1985)

12. Evans, W., Saeedi, N.: On characterizing terrain visibility graphs. J. Comput.
Geom. 6(1), 108–141 (2015)

13. Everett, H.: Visibility graph recognition. Ph.D. thesis, University of Toronto (1990)
14. Everett, H., Corneil, D.: Recognizing visibility graphs of spiral polygons. J. Algo-

rithms 11(1), 1–26 (1990)
15. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press,

New York (2007)
16. Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility.

SIAM J. Comput. 20(5), 888–910 (1991)
17. Jackson, L., Wismath, S.: Orthogonal polygon reconstruction from stabbing infor-

mation. Comp. Geom. Theor. Appl. 23(1), 69–83 (2002)
18. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press,

New York (1987)
19. Sitchinava, N., Strash, D.: Reconstructing generalized staircase polygons with uni-

form step length. arXiv preprint https://arxiv.org/abs/1708.09842 (2017)

https://doi.org/10.1007/978-3-642-32241-9_20
https://arxiv.org/abs/1708.09842

3D Visibility Representations of 1-planar Graphs

Patrizio Angelini1, Michael A. Bekos1, Michael Kaufmann1,
and Fabrizio Montecchiani2(B)

1 Institut für Informatik, Universität Tübingen, Tübingen, Germany
{angelini,bekos,mk}@informatik.uni-tuebingen.de

2 Dipartimento di Ingegneria, Universitá degli Studi di Perugia, Perugia, Italy
fabrizio.montecchiani@unipg.it

Abstract. We prove that every 1-planar graph G has a z-parallel vis-
ibility representation, i.e., a 3D visibility representation in which the
vertices are isothetic disjoint rectangles parallel to the xy-plane, and
the edges are unobstructed z-parallel visibilities between pairs of rect-
angles. In addition, the constructed representation is such that there is
a plane that intersects all the rectangles, and this intersection defines a
bar 1-visibility representation of G.

1 Introduction

Visibility representations are a classic research topic in Graph Drawing and Com-
putational Geometry. Motivated by VLSI applications, seminal papers studied
bar visibility representations of planar graphs (see, e.g., [23,26–28]), in which
vertices are represented as non-overlapping horizontal segments, called bars, and
edges correspond to vertical visibilities connecting pairs of bars, i.e., vertical
segments that do not intersect any bar other than at their endpoints.

In order to represent non-planar graphs, more recent papers investigated
models in which either two visibilities are allowed to cross, or a visibility can “go
through” a vertex. Two notable examples are rectangle visibility representations
and bar k-visibility representations. In a rectangle visibility representation of a
graph, every vertex is represented as an axis-aligned rectangle and two vertices
are connected by an edge using either a horizontal or a vertical visibility (see,
e.g., [9,18,24]). A bar k-visibility representation is a bar visibility representation
in which each visibility intersects at most k bars (see, e.g., [7,8,13]).

Extensions of visibility representations to 3D have also been studied. Of
particular interest for us are z-parallel visibility representations (ZPRs), in which
the vertices of the graph are isothetic disjoint rectangles parallel to the xy-plane,
and the edges are visibilities parallel to the z-axis. Bose et al. [6] proved that K22

admits a ZPR, while K56 does not. Štola [25] reduced this gap by showing that
K51 does not admit any ZPR. If the rectangles are restricted to unit squares, then
K7 is the largest representable complete graph [14]. Other 3D visibility models
are box visibility representations [15], and 2.5D box visibility representations [2].

In this paper we study 3D visibility representations of 1-planar graphs. We
recall that a graph is 1-planar if it can be drawn with at most one crossing per
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 102–109, 2018.
https://doi.org/10.1007/978-3-319-73915-1_9

3D Visibility Representations of 1-planar Graphs 103

edge (see, e.g., [5,19,22]). The 1-planar graphs are among the most investigated
families of “beyond planar graphs”, i.e., graphs that extend planarity by forbid-
ding specific edge crossings configurations (see, e.g., [17,21]). Brandeburg [7] and
Evans et al. [13] proved that every 1-planar graph admits a bar 1-visibility rep-
resentation. Later, Biedl et al. [4] proved that a 1-plane graph (i.e., an embedded
1-planar graph) admits a rectangle visibility representation if and only if it does
not contain any of a set of obstructions, and that not all 1-planar graphs can
be realized, regardless of their 1-planar embedding. On the other hand, every
1-planar graph can be represented with vertices that are orthogonal polygons
with several reflex corners [12]. Our goal is to represent 1-planar graphs with
vertices drawn as rectangles (rather than more complex polygons) by exploiting
the third dimension. We prove that every 1-planar graph G has a ZPR γ. In
addition, γ is 1-visible, i.e., there is a plane that is orthogonal to the rectangles
of γ and such that its intersection with γ defines a bar 1-visibility representation
of G (see Sect. 2 for formal definitions).

Our main contribution is summarized by the following theorem.

Theorem 1. Every 1-planar graph G with n vertices admits a 1-visible ZPR
γ in O(n3) volume. Also, if a 1-planar embedding of G is given as part of the
input, then γ can be computed in O(n) time.

An embedding is needed, as recognizing 1-planar graphs is NP-complete
[16,20]. An example of a 1-visible ZPR is shown in Fig. 1. We also remark that,
as pointed out by Kobourov et al. in a recent survey [19], very little is known on
3D representations of 1-planar graphs, and our result sheds some light on this
problem.

a b

c

d

f

e

(a)

z

x

a

c
d

b

f

e

(b)

y

z

a

b

e

c

d

f

(c)

Fig. 1. (a) A 1-planar graph G. (b) The intersection of a 1-visible ZPR γ of G with
the plane Y = 0; the red (bold) visibilities traverse a bar. (c) The projection to the
yz-plane of γ (only the red visibilities are shown). (Color figure online)

From a high-level perspective, to prove Theorem 1 (see Sect. 3) we start by
constructing a bar 1-visibility representation γ1 of G, which is then used as the
intersection of the ZPR γ with the plane Y = 0 (see, e.g., Fig. 1b). In particular,
we transform each bar b of γ1 into a rectangle Rb by computing the y-coordinates
of its top and bottom sides, so that each visibility in γ1 that traverses a bar b

104 P. Angelini et al.

can be represented as a visibility in γ that passes above or below Rb (see, e.g.,
Fig. 1c). This is done by using two suitable acyclic orientations of the edges of G.

For reasons of space some proofs and technicalities have been omitted and
can be found in [1].

2 Preliminaries and Definitions

We assume familiarity with the concepts of planar drawings and planar embed-
dings, see, e.g., [10]. The planarization of a non-planar drawing is a planar draw-
ing obtained by replacing every crossing with a dummy vertex. An embedding of
a graph is an equivalence class of drawings whose planarized versions have the
same planar embedding. A 1-plane graph is a 1-planar graph with a 1-planar
embedding, i.e., an embedding where each edge is incident to at most one dummy
vertex. A kite is a 1-plane graph isomorphic to K4 in which the outer face is
composed of four vertices and four crossing-free edges, while the remaining two
edges cross each other. Given a 1-plane graph G and a kite K = {a, b, c, d}, with
K ⊆ G, kite K is empty if it contains no vertex of G inside the 4-cycle 〈a, b, c, d〉.

A (partial) orientation O of a graph G is an assignment of directions to
(a subset of) the edges of G. The graph obtained by orienting the edges of G
according to O is the directed (or mixed) graph GO. A planar st-(multi)graph G
is a plane acyclic directed (multi)graph with a single source s and a single sink
t, with both s and t on its outer face [11]. The sets of incoming and outgoing
edges incident to each vertex v of G are bimodal, i.e., they are contiguous in the
cyclic ordering of the edges at v. Each face f of G is bounded by two directed
paths with a common origin and destination, called the left path and right path
of f . Face f is the left (resp., right) face for all vertices on its right (resp., left)
path except for the origin and for the destination. A topological ordering of a
directed acyclic (multi)graph is a linear ordering of its vertices such that for
every directed edge from vertex u to vertex v, u precedes v in the ordering.

A set R of disjoint rectangles in R
3 is z-parallel, if each rectangle has its sides

parallel to the x- and y-axis. Two rectangles of R are visible if and only if they
contain the ends of a closed cylinder C of radius ε > 0 parallel to the z-axis and
orthogonal to the xy-plane, and that does not intersect any other rectangle.

Definition 1. A z-parallel visibility representation (ZPR) γ of a graph G maps
the set of vertices of G to a z-parallel set of disjoint rectangles, such that for
each edge of G the two corresponding rectangles are visible1. If there is a plane
that is orthogonal to the rectangles of γ and such that its intersection with γ
defines a bar k-visibility representation of G, then γ is a k-visible ZPR.

1 Our visibility model is often called weak, to be distinguished with the strong model in
which visibilities and edges are in bijection. While this distinction is irrelevant when
studying complete graphs (e.g., in [6,25]), the weak model is commonly adopted to
represent sparse non-planar graphs in both 2D and 3D (see, e.g., [2,4,7,12,13]).

3D Visibility Representations of 1-planar Graphs 105

3 Proof of Theorem 1

Let G = (V,E) be a 1-plane graph with n vertices. To prove Theorem 1, we
present a linear-time algorithm that takes G as input and computes a 1-visible
ZPR of G in cubic volume. The algorithm works in three steps, described in the
following.

Step 1. We compute a bar 1-visibility representation γ1 of G by applying
Brandenburg’s linear-time algorithm [7], which produces a representation with
integer coordinates on a grid of size O(n2). This algorithm consists of the follow-
ing steps. (a) A 1-plane multigraph G′ = (V,E′ ⊇ E) is computed from G such
that: The four end-vertices of each pair of crossing edges of G′ induce an empty
kite; no edge can be added to G′ without introducing crossings; if two vertices
are connected by a set of k > 1 parallel edges, then all of them are uncrossed
and non-homotopic. We remark that the embedding of G′ may differ from the
one of G due to the rerouting of some edges. (b) Let P be the plane multigraph
obtained from G′ by removing all pairs of crossing edges. Let O be an orientation
of P such that PO is a planar st-multigraph. Then the algorithm by Tamassia
and Tollis [26] is applied to compute a bar visibility representation of PO.
(c) Finally, all pairs of crossing edges are reinserted through a postprocessing
step that extends the length of some bars so to introduce new visibilities. The
newly introduced visibilities traverse at most one bar each. In addition, each bar
is traversed by at most one visibility.

Step 2. We transform each bar bv of γ1 to a preliminary rectangle Rv. We assume
that γ1 lies on the xz-plane and that the bars are parallel to the x-axis. Let z(v)
be the z-coordinate of bv and let xL(v) and xR(v) be the x-coordinates of the
left and right endpoints of bv, respectively. The rectangle Rv lies on the plane
parallel to the xy-plane with equation Z = z(v). Also, its left and right sides
have x-coordinates equal to xL(v) and xR(v), respectively. It remains to compute
the y-coordinates of the top and bottom sides of Rv. We preliminarily set the
y-coordinates of the bottom sides and of the top sides of all the rectangles to −1
and +1, respectively. All the visibilities of γ1 that do not traverse any bar can
be replaced with cylinders of radius ε < 1

2 . Let P ′ be the subgraph of G′ induced
by all such visibilities, and let γ2 be the resulting ZPR. The next lemma follows.

Lemma 1. γ2 is a ZPR of P ′.

Step 3. To realize the remaining visibilities of γ1, we modify the y-coordinates of
the rectangles. The idea is to define two partial orientations of the edges of P ,
denoted by O1 and O2, to assign the final y-coordinates of the top sides and of
the bottom sides of the rectangles, respectively. In particular, an edge oriented
from u to v in O1 (O2) encodes that the top side (bottom side) of Ru will have
y-coordinate greater (smaller) than the one of Rv. The orientations are such that
if two vertices u and v see each other through a third vertex w in γ1, then their
top (bottom) sides both have larger (smaller) y-coordinate than the one of w.
Hence, both O1 and O2 are defined based on γ1, using the following three rules.

106 P. Angelini et al.

Let f = {o, u, v, d} be a face of PO (and hence of P) such that {o, u, v, d} are
part of an empty kite of G′. In what follows we assume that o is the origin and
d is the destination of the face. We borrow some terminology from [7], refer to
Fig. 2 (the black thin edges only). If the left (resp., right) path of f is composed
of the single edge (o, d), then f is called a right wing (resp., left wing). If both
the left path and the right path of f consist of two edges, then f is a diamond.

o

u

v

d

(a)

bo

bu

bv

bd

(b)
o

u

v

d

(c)

bo

bu

bv

bd

(d)
o

u v

d

(e)

bo

bu

bv

bd

(f)

Fig. 2. (a)-(b) A right wing. (c)-(d) A left wing. (e)-(f) A diamond.

(R.1) If f is a right wing, we may assume that bv is above bu. Consider the
restriction of γ1 with respect to {o, u, v, d}. Either the visibility between bu and
bd traverses bv (as in Fig. 2b), or the visibility between bo and bv traverses bu.
In both cases we only orient edges in O1. In the first case we orient (u, v) from
u to v and (v, d) from d to v (see the green bold edges in Fig. 2a). In the second
case we orient (o, u) from o to u and (u, v) from v to u. (R.2) If f is a left wing,
we may assume that bv is above bu. As for a right wing, either the visibility
between bu and bd traverses bv (as in Fig. 2d), or the visibility between bo and
bv traverses bu. We orient the edges as for a right wing, but we only consider O2

(see, e.g., the blue bold edges in Fig. 2c). (R.3) If f is a diamond, we may assume
that bu is to the left of bv. Either the visibility between bo and bd traverses bv,
or the visibility between bo and bd traverses bu. In the first case we orient (o, v)
from o to v and (v, d) from d to v in O1 (see the green bold edges in Fig. 2e). In
the second case we orient (o, u) from o to u and (u, d) from d to u in O2.
By applying the above three rules for all left and right wings, and for all diamonds
of PO, we obtain O1 and O2. Note that the above procedure is correct, in the
sense that no edge is assigned a direction twice. This is due to the fact that a
direction in O1 (resp., O2) is assigned to an edge only if it belongs to the right
(resp., left) path of a right (resp., left) wing or of a diamond. On the other hand,
an edge belongs only to one right path and to one left path. In what follows, we
prove that both PO1 and PO2 are acyclic, i.e., they have no oriented cycles.

Lemma 2. Both PO1 and PO2 are acyclic.

Sketch of proof. We prove that PO1 is acyclic. The argument for PO2 is sym-
metric. Suppose, for a contradiction, that PO1 contains a directed cycle C =
〈e1, e2, . . . , ec〉, as shown in Fig. 3a. First, note that c > 2. If c = 2, there are
two non-homotopic parallel edges that are both part of the right path of a right

3D Visibility Representations of 1-planar Graphs 107

e1

e2

ec

(a) C

ei

ej

a

bej+1

f

. . .

(b) Case 1.

ei

ej

a

b

ei−1

f

. . .

(c) Case 2.

Fig. 3. Illustration for the proof of Lemma 2. In black (thin) we show the orientation of
the edges according to O, while in green (bold) according to O1. (Color figure online)

wing or of a diamond in PO. But this is impossible since each pair of crossing
edges in G′ forms an empty kite. Some edges of C have opposite orientations in
O and O1, since O is acyclic. In particular, there is at least a non-empty max-
imal subsequence S = 〈ei, ei+1, . . . , ej〉 of C with this property. We distinguish
two cases, whether C is oriented clockwise or counter-clockwise in a closed walk
along its boundary. Let a and b be the origin of ei and the destination of ej ,
respectively. Note that there is a directed path from b to a in PO (and from a
to b in PO1).

Case 1. Refer to Fig. 3b. Since ej is oriented in PO1 , it belongs to the right
path of a right wing or of a diamond f of PO by R.1 and R.3. Also, b is the
origin of f , as otherwise b would have an incoming edge between ej and ej+1

in counterclockwise order from ej , which violates the bimodality of the edges
around b or the fact that the source s of PO is on the outer face. But then the
orientation of ej in O1 contradicts R.1 or R.3.

Case 2. This case can be handled similarly by observing that a is the desti-
nation of a face f having ei−1 in its right path. ��
For each maximal subsequence of the edges of PO1 such that each edge is ori-
ented and the induced subgraph is connected, compute a topological ordering.
Concatenate all such topological orderings, and append at the beginning or at
the end of the sequence possible vertices that are not incident to any oriented
edge. This gives a total ordering of the vertices of PO1 , denoted by σ1. Set the
y-coordinate of the top side of the rectangle representing the i-th vertex in σ1

equal to n − i + 1. Apply a symmetric procedure for PO2 , by computing a total
ordering σ2, and by setting the y-coordinate of the bottom side of the rectangle
representing the i-th vertex in σ2 equal to i − n − 1. This concludes the con-
struction of γ (possible dummy edges inserted by the augmentation procedure
of Step 1(a) are simply ignored in γ). The correctness of γ easily follows.

Lemma 3. γ is a 1-visible ZPR of G.

Since γ1 takes O(n2) area, and each rectangle of γ has height at most 2n, it
follows that γ takes O(n3) volume. Also, each step of the algorithm can be
performed in linear time. This concludes the proof of Theorem 1.

108 P. Angelini et al.

4 Open Problems

Our research suggests interesting research directions, such as: (i) The algorithm
in [7] can be adjusted to compute bar 1-visibility representations of optimal
2-planar graphs [3] (i.e., 2-planar graphs with maximum density), and our con-
struction can be also modified to obtain 1-visible ZPRs for these graphs. Does
every 2-planar graph admit a 1-visible ZPR? (ii) Can we generalize our result so
to prove that every graph admitting a bar 1-visibility representation also admits
a 1-visible ZPR? (iii) Our algorithm computes ZPRs in which all the rectangles
are intersected by the plane Y = 0. Can this plane contain all bottom sides of
the rectangles? If this is not possible, we wonder if every 1-planar graph admits a
2.5D-visibility representation (i.e., vertices are axis-aligned boxes whose bottom
faces lie on a same plane, and visibilities are both vertical and horizontal).

References

1. Angelini, P., Bekos, M.A., Kaufmann, M., Montecchiani, F.: 3D visibility represen-
tations of 1-planar graphs. CoRR abs/1708.06196 (2017). https://arxiv.org/abs/
1708.06196

2. Arleo, A., et al.: Visibility representations of boxes in 2.5 dimensions. In: Hu, Y.,
Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 251–265. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-50106-2 20

3. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar
graphs. In: Aronov, B., Katz, M.J. (eds.) SoCG 2017. LIPIcs, vol. 77, pp. 16:1–
16:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

4. Biedl, T.C., Liotta, G., Montecchiani, F.: On visibility representations of non-
planar graphs. In: Fekete, S.P., Lubiw, A. (eds.) SoCG 2016. LIPIcs, vol. 51, pp.
19:1–19:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

5. Bodendiek, R., Schumacher, H.J., Wagner, K.: Bemerkungen zu einem Sechsfar-
benproblem von G. Ringel. Abh. Math. Sem. Univ. Hamburg 53, 41–52 (1983)

6. Bose, P., Everett, H., Fekete, S.P., Houle, M.E., Lubiw, A., Meijer, H., Romanik,
K., Rote, G., Shermer, T.C., Whitesides, S., Zelle, C.: A visibility representation
for graphs in three dimensions. J. Graph Algorithms Appl. 2(3), 1–16 (1998)

7. Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algo-
rithms Appl. 18(3), 421–438 (2014)

8. Dean, A.M., Evans, W.S., Gethner, E., Laison, J.D., Safari, M.A., Trotter, W.T.:
Bar k-visibility graphs. J. Graph Algorithms Appl. 11(1), 45–59 (2007)

9. Dean, A.M., Hutchinson, J.P.: Rectangle-visibility representations of bipartite
graphs. Discr. Appl. Math. 75(1), 9–25 (1997)

10. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Englewood (1999)

11. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic
digraphs. Theor. Comput. Sci. 61, 175–198 (1988)

12. Di Giacomo, E., Didimo, W., Evans, W.S., Liotta, G., Meijer, H., Montecchiani, F.,
Wismath, S.K.: Ortho-polygon visibility representations of embedded graphs. In:
Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 280–294. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50106-2 22

https://arxiv.org/abs/1708.06196
https://arxiv.org/abs/1708.06196
https://doi.org/10.1007/978-3-319-50106-2_20
https://doi.org/10.1007/978-3-319-50106-2_22

3D Visibility Representations of 1-planar Graphs 109

13. Evans, W.S., Kaufmann, M., Lenhart, W., Mchedlidze, T., Wismath, S.K.: Bar
1-visibility graphs vs. other nearly planar graphs. J. Graph Algorithms Appl. 18(5),
721–739 (2014)

14. Cobos, F.J., Dana, J.C., Hurtado, F., Márquez, A., Mateos, F.: On a visibility
representation of graphs. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027,
pp. 152–161. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0021799

15. Fekete, S.P., Meijer, H.: Rectangle and box visibility graphs in 3D. Int. J. Comput.
Geometry Appl. 9(1), 1–28 (1999)

16. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few cross-
ings per edge. Algorithmica 49(1), 1–11 (2007)

17. Hong, S.H., Kaufmann, M., Kobourov, S.G., Pach, J.: Beyond-planar graphs: algo-
rithmics and combinatorics (Dagstuhl Seminar 16452). Dagstuhl Rep. 6(11), 35–62
(2017)

18. Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness
two graphs. Comput. Geom. 13(3), 161–171 (1999)

19. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.
2017.06.002

20. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of
1-planarity testing. J. Graph Theor. 72(1), 30–71 (2013)

21. Liotta, G.: Graph drawing beyond planarity: some results and open problems. In:
ICTCS 2014. CEUR Workshop Proceedings, vol. 1231, pp. 3–8. CEUR-WS.org
(2014)

22. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

23. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations
of planar graphs. Discr. Comput. Geom. 1, 343–353 (1986)

24. Shermer, T.C.: On rectangle visibility graphs. III. External visibility and complex-
ity. In: Fiala, F., Kranakis, E., Sack, J. (eds.) CCCG 1996, pp. 234-239. Carleton
University Press, Ottawa (1996)

25. Štola, J.: Unimaximal sequences of pairs in rectangle visibility drawing. In: Tol-
lis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 61–66. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00219-9 7

26. Tamassia, R., Tollis, I.G.: A unified approach a visibility representation of planar
graphs. Discr. Comput. Geom. 1, 321–341 (1986)

27. Thomassen, C.: Plane representations of graphs. In: Progress in Graph Theory, pp.
43–69. AP (1984)

28. Wismath, S.K.: Characterizing bar line-of-sight graphs. In: O’Rourke, J. (ed.)
SoCG 1985, pp. 147–152. ACM (1985)

https://doi.org/10.1007/BFb0021799
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1016/j.cosrev.2017.06.002
http://www.CEUR-WS.org
https://doi.org/10.1007/978-3-642-00219-9_7

Topological Graph Theory

Lombardi Drawings of Knots and Links

Philipp Kindermann1(B), Stephen Kobourov2, Maarten Löffler3,
Martin Nöllenburg4, André Schulz1, and Birgit Vogtenhuber5

1 FernUniversität in Hagen, Hagen, Germany
{Philipp.Kindermann,Andre.Schulz}@fernuni-hagen.de

2 University of Arizona, Tucson, AZ, USA
kobourov@cs.arizona.edu

3 Universiteit Utrecht, Utrecht, The Netherlands
m.loffler@uu.nl

4 TU Wien, Vienna, Austria
noellenburg@ac.tuwien.ac.at

5 Graz University of Technology, Graz, Austria
bvogt@ist.tugraz.at

Abstract. Knot and link diagrams are projections of one or more 3-
dimensional simple closed curves into lR2, such that no more than two
points project to the same point in lR2. These diagrams are drawings of
4-regular plane multigraphs. Knots are typically smooth curves in lR3,
so their projections should be smooth curves in lR2 with good continu-
ity and large crossing angles: exactly the properties of Lombardi graph
drawings (defined by circular-arc edges and perfect angular resolution).

We show that several knots do not allow plane Lombardi drawings. On
the other hand, we identify a large class of 4-regular plane multigraphs
that do have Lombardi drawings. We then study two relaxations of
Lombardi drawings and show that every knot admits a plane 2-Lombardi
drawing (where edges are composed of two circular arcs). Further, every
knot is near-Lombardi, that is, it can be drawn as Lombardi drawing
when relaxing the angular resolution requirement by an arbitrary small
angular offset ε, while maintaining a 180◦ angle between opposite edges.

1 Introduction

A knot is an embedding of a simple closed curve in 3-dimensional Euclidean
space lR3. Similarly, a link is an embedding of a collection of simple closed curves
in lR3. A drawing of a knot (link) (also known as knot diagram) is a projection
of the knot (link) to the Euclidean plane lR2 such that for any point of lR2,
at most two points of the curve(s) are mapped to it [6,15,16]. From a graph
drawing perspective, drawings of knots and links are drawings of 4-regular plane
multigraphs that contain neither loops nor cut vertices. Likewise, every 4-regular
plane multigraph without loops and cut vertices can be interpreted as a link.
Unless specified otherwise, we assume that a multigraph has no self-loops or cut
vertices.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 113–126, 2018.
https://doi.org/10.1007/978-3-319-73915-1_10

114 P. Kindermann et al.

Fig. 1. Hand-made drawings of knots from the books of Rolfsen [15] (left),
Livingston [14] (middle), and Kauffman [11] (right).

In this paper, we address a question that was recently posed by Benjamin
Burton: “Given a drawing of a knot, how can it be redrawn nicely without
changing the given topology of the drawing?” We do know what a drawing of
a knot is, but what is meant by a nice drawing? Several graphical annotations
of knots and links as graphs have been proposed in the knot theory literature,
but most of the illustrations are hand-drawn; see Fig. 1. When studying these
drawings, a few desirable features become apparent: (i) edges are typically drawn
as smooth curves, (ii) the angular resolution of the underlying 4-regular graph
is close to 90◦, and (iii) the drawing preserves the continuity of the knot, that is,
in every vertex of the underlying graph, opposite edges have a common tangent.

There already exists a graph drawing style that fulfills the requirements
above: a Lombardi drawing of a (multi-)graph G = (V,E) is a drawing of G
in the Euclidean plane with the following properties:

1. The vertices are represented as distinct points in the plane.
2. The edges are represented as circular arcs connecting the representations of

their end vertices (and not containing the representation of any other vertex);
note that a straight-line segment is a circular arc with radius infinity.

3. Every vertex has perfect angular resolution, i.e., its incident edges are equian-
gularly spaced. For knots and links this means that the angle between any
two consecutive edges is 90◦.

A Lombardi drawing is plane if none of its edges intersect. Note that we are
particularly interested in plane Lombardi drawings, since crossings change the
topology of the drawn knot.

Knot drawing software: Software for generating drawings for knots and links
exists. One powerful package is KnotPlot [16], which provides several meth-
ods for drawing knot diagrams. It contains a library of over 1,000 precomputed
knots and can also generate knot drawings of certain families, such as torus
knots. KnotPlot also provides methods for drawing general knots based on the
embedding of the underlying plane multigraph. By replacing every vertex by a
4-cycle, the multigraph becomes a simple planar 3-connected graph, which is
then drawn using Tutte’s barycentric method [18]. In the end, the modifications
are reversed and a drawing of the knot is obtained with edges drawn as polyg-
onal arcs. The author noticed that this method “... does not yield ‘pleasing’
graphs or knot diagrams.” In particular, he noticed issues with vertex and angu-
lar resolution [16, pg. 102]. Another approach was used by Emily Redelmeier [1].

Lombardi Drawings of Knots and Links 115

Here, every arc, crossing, and face of the knot diagram is associated with a disk.
The drawing is then generated from the implied circle packing as a circular arc
drawing. As a result of the construction, every edge in the diagram is made
of three circular arcs with common tangents at opposite edges. Since no fur-
ther details are given, it is hard to evaluate the effectiveness of this approach,
although as we show in this paper, three circular arcs per edge are never needed.
A related drawing style for knots are the so-called arc presentations [5]. An arc
presentation is an orthogonal drawing, that is, all edges are sequences of hori-
zontal and vertical segments, with the additional properties that at each vertex
the vertical segments are above the horizontal segments in the corresponding
knot and that each row and column contains exactly one horizontal and vertical
segment, respectively. However, these drawings might require a large number of
bends per edge.

Lombardi drawings: Lombardi drawings were introduced by Duncan et al. [8].
They showed that 2-degenerate graphs have Lombardi drawings and that all
d-regular graphs, with d �≡ 2 (mod 4), have Lombardi drawings with all vertices
placed along a common circle. Neither of these results, however, is guaranteed
to result in plane drawings. Duncan et al. [8] also showed that there exist pla-
nar graphs that do not have plane Lombardi drawings, but restricted graph
classes (e.g., Halin graphs) do. In subsequent work, Eppstein [9,10] showed that
every (simple) planar graph with maximum degree three has a plane Lombardi
drawing. Further, he showed that a certain class of 4-regular planar graphs (the
medial graphs of polyhedral graphs) also admit plane Lombardi drawings and
he presented an example of a 4-regular planar graph that does not have a plane
Lombardi drawing. A generalization of Lombardi drawings are k-Lombardi draw-
ings. Here, every edge is a sequence of at most k circular arcs that meet at a
common tangent. Duncan et al. [7] showed that every planar graph has a plane
3-Lombardi drawing. Related to k-Lombardi-drawings are smooth-orthogonal
drawings of complexity k [4]. These are plane drawings where every edge consists
of a sequence of at most k quarter-circles and axis-aligned segments that meet
smoothly, edges are axis-aligned (emanate from a vertex either horizontally or
vertically), and no two edges emanate in the same direction. Note that in the
special case of 4-regular graphs, smooth-orthogonal drawings of complexity k
are also plane k-Lombardi drawings.

Our Contributions: The main question we study here is motivated by the
application of the Lombardi drawing style to knot and link drawings: Given a
4-regular plane multigraph G without loops and cut vertices, does G admit a
plane Lombardi drawing with the same combinatorial embedding? In Sect. 2 we
start with some positive results on extending a plane Lombardi drawing, as well
as composing two plane Lombardi drawings. In Sect. 3, by extending the results
of Eppstein [9,10], we show that a large class of multigraphs, including 4-regular
polyhedral graphs, does have plane Lombardi drawings. Unfortunately, there
exist several small knots that do not have a plane Lombardi drawing. Section 4
discusses these cases but also lists a few positive results for small examples.

116 P. Kindermann et al.

In Sect. 5, we show that every 4-regular plane multigraph has a plane 2-Lombardi
drawing. In Sect. 6, we show that every 4-regular plane multigraph can be drawn
with non-crossing circular arcs, so that the perfect angular resolution criterion
is violated only by an arbitrarily small value ε, while maintaining that opposite
edges have common tangents.

2 General Observations

If a knot or a link has an embedding with minimum number of vertices that
admits a plane Lombardi drawing, we call it a plane Lombardi knot (link). We
further call the property of admitting a plane Lombardi drawing plane Lombar-
diness. If two vertices in a plane Lombardi drawing of a knot are connected by
a pair of multi-edges, we denote the face enclosed by these two edges as a lens.

There exist a number of operations that maintain the plane Lombardiness
of a 4-regular multigraph. Two knots A and B can be combined by cutting
one edge of each of them open and gluing pairwise the loose ends of A with
the loose ends of B. This operation is known as a knot sum A + B. Knots
that cannot be decomposed into a sum of two smaller knots are known as prime
knots. By Schubert’s theorem, every knot can be uniquely decomposed into prime
knots [17]. The smallest prime knot is the trefoil knot with three crossings or
vertices; see Fig. 1 (right). Rolfsen’s knot table1 lists all prime knots with up to
ten vertices. The Alexander-Briggs-Rolfsen notation [3,15] is a well established
notation that organizes these knots by their vertex number and a counting index,
e.g., the trefoil knot 31 is listed as the first (and only) knot with three vertices.

Theorem 1. Let A and B be two 4-regular multigraphs with plane Lombardi
drawings. Let a be an edge of A and b an edge of B. Then the knot sum A + B,
obtained by connecting A and B along edges a and b, admits a plane Lombardi
drawing.

Sketch of Proof. The idea of the composition is sketched in Fig. 2. We first apply
Möbius transformations, rotations, and translations to the two drawings so that
edges a and b can be aligned along a circle with infinite radius. This can be done
such that the drawings of A and B do not intersect after removing a and b. We
can now reconnect the two drawings into a single plane Lombardi drawing by
introducing two edges c and d along the straight line.

Another operation that preserves the plane Lombardiness is lens multiplica-
tion. Let G = (V,E) be a 4-regular plane multigraph with a lens between two
vertices u and v. A lens multiplication of G is a 4-regular plane multigraph that
is obtained by replacing the lens between u and v with a chain of lenses.

Lemma 1. Let G = (V,E) be a 4-regular plane multigraph with a plane
Lombardi drawing Γ . Then, any lens multiplication G′ of G also admits a plane
Lombardi drawing.

1 http://katlas.org/wiki/The Rolfsen Knot Table.

http://katlas.org/wiki/The_Rolfsen_Knot_Table

Lombardi Drawings of Knots and Links 117

Sketch of Proof. Let f be a lens in Γ spanned by two vertices u and v as shown
in Fig. 3. We draw a bisecting circular arc b that splits the angles at u and v into
two 45◦ angles. Now we can draw any chain of lenses inside f by placing the
additional vertices on b. The resulting drawing is a plane Lombardi drawing.

+
a a

b

b
BA

=

A Bc dd

Fig. 2. Adding two plane Lombardi
drawings of 4-regular multigraphs.

u

v

pe1 e2

b

Fig. 3. Subdividing a
lens between u and v
by a new vertex p.

u v
du dv

w

Fig. 4. Placement circle
for neighbor w of u and
v in a 4-regular graph.

We will use the following property several times throughout the paper.

Property 1 (Property 2 in [7,8]). Let u and v be two vertices with given posi-
tions that have a common, unplaced neighbor w. Let du and dv be two tangent
directions and let θ be a target angle. Let C be the locus of all positions for
placing w so that (i) the edge (u,w) is a circular arc leaving u in direction du,
(ii) the edge (v, w) is a circular arc leaving v in direction dv, and (iii) the angle
formed at w is θ. Then C is a circle, the so-called placement circle of w.

Duncan et al. [7] further specify the radius and center of the placement circle
by the input coordinates and angles. For the special case that the two tangent
directions du and dv are symmetric with respect to the line through u and v,
and that the angle θ is 90◦ or 270◦, the corresponding placement circle is such
that its tangent lines at u and v form an angle of 45◦ with the arc directions du

and dv. In particular, the placement circle bisects the right angle between du

(resp. dv) and its neighboring arc direction. Figure 4 illustrates this situation.

3 Plane Lombardi Drawings via Circle Packing

Recall that polyhedral graphs are simple planar 3-connected graphs, and that
those graphs have a unique (plane) combinatorial embedding. The (plane) dual
graph M ′ of a plane graph M has a vertex for every face of M and an edge
between two vertices for every edge shared by the corresponding faces in M . In
the “classic” drawing D(M,M ′) of a primal-dual graph pair (M,M ′), every ver-
tex of M ′ lies in its corresponding face of M and vice versa, and every edge of M ′

intersects exactly its corresponding edge of M . Hence, every cell of D(M,M ′)

118 P. Kindermann et al.

has exactly two such edge crossings and exactly one vertex of each of M and M ′

on its boundary. The medial graph of a primal-dual graph pair (M,M ′) has
a vertex for every crossing edge pair in D(M,M ′) and an edge between two
vertices whenever they share a cell in D(M,M ′); see Fig. 5a. Every cell of the
medial graph contains either a vertex of M or a vertex of M ′ and every edge in
the medial graph is incident to exactly one cell in D(M,M ′).

Every 4-regular plane multigraph G can be interpreted as the medial graph
of some plane graph M and its dual M ′, where both graphs possibly contain
multi-edges. If G contains no loops and cut vertices, then neither M nor M ′

contains loops. Eppstein [9] showed that if M (and hence also M ′) is polyhedral,
then G admits a plane Lombardi drawing. We show next how to extend this
result to a larger graph class. We only give a short sketch of the proof here. The
full proof, as well as an example of the algorithm can be found in the arXiv
version [12].

Theorem 2. Let G = (V,E) be a biconnected 4-regular plane multigraph and
let M and M ′ be the primal-dual multigraph pair for which G is the medial
graph. If one of M and M ′ is simple, then G admits a plane Lombardi drawing
preserving its embedding.

Sketch of Proof. Assume w.l.o.g. that M is simple. If M (and hence also M ′)
is polyhedral, then G admits a plane Lombardi drawing Γ by Eppstein [9].
Moreover, Γ is embedding-preserving (up to Möbius transformation), as the
combinatorial embedding of M is unique (up to homeomorphism on the sphere).

If M is not 3-connected, we proceed in three steps. First, we augment M to a
polyhedral graph Mp by iteratively adding p edges (any added edge splits a face
of size at least four into two faces of size at least three). During this process,
we also iteratively modify the dual graph and the medial graph as shown in
Fig. 5a–b.

Second, we apply Eppstein’s result to obtain a primal-dual circle packing
of Mp and M ′

p, together with a Lombardi drawing Γp of the medial graph Gp;
see Fig. 5c. Finally, we revert the augmentation process from the first step by
iteratively changing the plane Lombardi drawing Γp of Gp to a plane Lombardi
drawing Γ of G. A main ingredient for this last step is the following: In the
primal-dual circle packing of Mp and M ′

p, every edge g of Γp lies in a region �(g)
that is bounded by a primal and a dual circle. This region �(g) is interior-disjoint
with the region �(g′) of any other edge g′ of Γp. When removing an edge from
the primal graph, a vertex is removed from the Lombardi drawing and the four
incident edges are replaced by two edges connecting the non-common endpoints
of the four edges. We show how to draw each new edge g that replaces g1 and g2
in a way that again has a uniquely assigned region �(g) that is interior-disjoint
with the regions of all other edges; see Fig. 6 for a sketch.

We remark that this result is not tight: there exist 4-regular plane multi-
graphs whose primal-dual pair M and M ′ contain parallel edges that still admit
plane Lombardi drawings, e.g., knots 812, 814, 815, 816; see the arXiv version [12]
for illustrations.

Lombardi Drawings of Knots and Links 119

e

f

(a)

e

f1

f2

(b)

c(g)

d(g)

d1(g)

d2(g)

d (g)

(g)

(c)

Fig. 5. (a)–(b) Modifications due to an edge addition and (c) a primal-dual circle
packing. The medial graph G is drawn solid, the primal M is drawn dotted, and the
dual M ′ is drawn dashed. The shaded area is the lens region l(g).

g1

g2

g

(a)

g1

g2

g

(b)

Fig. 6. Two examples of a lens region �(g) resulting from �(g1) and �(g2): (a) convex
and (b) reflex. The lens regions of g1 and g2 are drawn as shaded areas, while the one
of g is the cross-hatched region.

We now prove that 4-regular polyhedral graphs are medial graphs of a simple
primal-dual pair.

Lemma 2. Let G = (V,E) be a 4-regular polyhedral graph and let M and M ′

be the primal-dual pair for which G is the medial graph. If there is a multi-edge
in M or in M ′, then the corresponding vertices of G either have a multi-edge
between them or they form a separation pair of G.

Proof. W.l.o.g., assume that there are two edges between vertices f and g in M .
Let u and v be the vertices of G that these two edges pass through; see Fig. 7.
The vertices f and g of M correspond to faces in the embedding of G that both
contain u and v. Hence, the removal of u and v from G disconnects G into two
parts: the part inside the area spanned by the two edges between f and g and
the part outside this area. Both u and v have two edges in both areas, so either

120 P. Kindermann et al.

there is a multi-edge between u and v, or there are vertices in both parts, which
makes u, v a separation pair of G.

f

g

u v

(a)

f

g

u v

(b)

Fig. 7. If there is a multi-edge between vertices f and g in the primal, then there is a
multi-edge (u, v) or a separation pair u, v in the medial.

Lemma 2 and Theorem 2 immediately give the following theorem.

Theorem 3. Let G = (V,E) be a 4-regular polyhedral graph. Then G admits a
plane Lombardi drawing.

4 Positive and Negative Results for Small Graphs

We next consider all prime knots with 8 vertices or less. We compute plane
Lombardi drawings for those that have it and argue that such drawings do not
exists for the others. We start by showing that no knot with a K4 subgraph is
plane Lombardi.

Lemma 3. Every 4-regular plane multigraph G that contains K4 as a subgraph
does not admit a plane Lombardi drawing.

Proof. Let a, b, c, d be the vertices of the K4. Every plane embedding of K4 has a
vertex that lies inside the cycle through the other 3 vertices; let d be this vertex.
Since d has degree 4, it has another edge to either one of a, b, c, or to a different
vertex. In the former case, assume that there is a multi-edge between c and d.
In the latter case, by 4-regularity, there has to be another vertex of a, b, c that
is connected to a vertex inside the cycle through a, b, c; let c be this vertex. In
both cases, c has two edges that lie inside the cycle through a, b, c.

Assume that G has a Lombardi drawing. Since Möbius transformations do not
change the properties of a Lombardi drawing, we may assume that the edge (a, b)
is drawn as a straight-line segment as in Fig. 8b. Since both c and d are neighbors
of a and b, there are two corresponding placement circles by Property 1. In fact,
since any two edges of a Lombardi drawing of a 4-regular graph must enclose an
angle of 90◦ and since a and b have “aligned tangents” due to being neighbors
themselves, the two placement circles coincide and a situation as shown in Fig. 8
arises. In particular, this means that in any Lombardi drawing of G the four

Lombardi Drawings of Knots and Links 121

vertices must be co-circular. It is easy to see that we cannot draw the missing
circular arcs connecting c and d: any such arc must either lie completely inside
or completely outside of the placement circle. Yet, the stubs for the two edges
between c and d point inside at c and outside at d.

a b

d

c

(a)

a b

c
d

(b)

Fig. 8. Knot 41 (left) has no
Lombardi drawing.

a b

c

d

e

(a)

a b

cd
e

(b)

Fig. 9. Knot 52 and a non-plane Lombardi
drawing.

The full proof for the following lemma is given in in the arXiv version [12].

Lemma 4. Knots 41 and 52 are not plane Lombardi knots.

Sketch of Proof. For knot 41, the claim immediately follows from Lemma 3. For
knot 52 (see Fig. 9) we can argue that all five vertices must be co-circular. Unlike
knot 41 we can geometrically draw all edges of knot 52 as Lombardi arcs, see
the non-plane drawing in Fig. 9b. However, by carefully considering the smooth
chain of arcs a − c − e − d − b and their radii, we can prove that this path must
self-intersect in any Lombardi drawing, so the claim follows.

As the above lemma shows, even very small knots may not have a plane
Lombardi drawings. However, most knots with a small number of crossings are
indeed plane Lombardi. In the arXiv version [12], we provide plane Lombardi
drawings of all knots with up to eight vertices except 41 and 52. Most of these
drawings can actually be obtained using the techniques from Sect. 2 and 3.

Theorem 4. All prime knots with up to eight vertices other than 41 and 52 are
plane Lombardi knots.

Note that Theorem 4 implies that each of these knots has a combinatorial
embedding that supports a plane Lombardi drawing. It is not true, however,
that any embedding admits a plane Lombardi drawing. In fact, the knot 75 has
an embedding that cannot be drawn plane Lombardi; details can be found in
the arXiv version [12].

Theorem 5. There exists an infinite family of prime knots and links that have
embeddings that do not support plane Lombardi drawings.

122 P. Kindermann et al.

5 Plane 2-Lombardi Drawings of Knots and Links

Since not every knot admits a plane Lombardi drawing, we now consider plane
2-Lombardi drawings; see Fig. 10a for an example. Bekos et al [4] recently intro-
duced smooth orthogonal drawings of complexity k. These are drawings where
every edge consists of a sequence of at most k circular arcs and axis-aligned
segments that meet smoothly with horizontal or vertical tangents, and where
at every vertex, each edge emanates either horizontally or vertically and no two
edges emanate in the same direction. For the special case of 4-regular graphs,
every smooth orthogonal drawing of complexity k is also a plane k-Lombardi
drawing. Alam et al. [2] showed that every plane graph with maximum degree
4 can be redrawn as a plane smooth-orthogonal drawing of complexity 2. Their
algorithm takes as input an orthogonal drawing produced by the algorithm of Liu
et al. [13] and transforms it into a smooth orthogonal drawing of complexity 2.
We show how to modify the algorithm by Liu et al., to compute an orthogonal
drawing for a 4-regular plane multigraph and then use the algorithm by Alam
et al. to transform it into a smooth orthogonal drawing of complexity 2. Details
are given in the arXiv version [12].

(a) (b) (c)

Fig. 10. Drawings of knot 41 which by Lemma 4 does not admit a plane Lombardi
drawing. (a) A smooth orthogonal drawing of complexity 2, (b) a different plane
2-Lombardi drawing, and (c) a plane ε-angle Lombardi drawing.

Theorem 6. Every biconnected 4-regular plane multigraph G admits a plane
2-Lombardi drawing with the same embedding.

6 Plane Near-Lombardi Drawings

Since not all knots admit a plane Lombardi drawing, in this section we relax
the perfect angular resolution constraint. We say that a knot (or a link) is near-
Lombardi if it admits a drawing for every ε > 0 such that

1. All edges are circular arcs,
2. Opposite edges at a vertex are tangent;
3. The angle between crossing pairs at each vertex is at least 90◦ − ε.

Lombardi Drawings of Knots and Links 123

We call such a drawing a ε-angle Lombardi drawing. Note that a Lombardi draw-
ing is essentially a 0-angle Lombardi drawing. For example, the knot 41 does not
admit a plane Lombardi drawing, but it admits a plane ε-angle Lombardi draw-
ing, as depicted in Fig. 10c.

Let Γ be an ε-angle Lombardi drawing of a 4-regular graph. If each
angle described by the tangents of adjacent circular arcs at a vertex in Γ is
exactly 90◦ + ε or 90◦ − ε, then we call Γ an ε-regular Lombardi drawing. Note
that any Lombardi drawing is a 0-regular Lombardi drawing.

We first extend some of our results for plane Lombardi drawings to plane
ε-angle Lombardi drawings. The following Lemma is a stronger version of
Theorem 2. The full proof is given in the arXiv version [12].

Lemma 5. Let G = (V,E) be a biconnected 4-regular plane multigraph and
let M and M ′ be the primal-dual multigraph pair for which G is the medial
graph. If one of M and M ′ is simple, then G admits a plane ε-regular Lombardi
drawing preserving its embedding for every 0◦ ≤ ε < 90◦.

Sketch of Proof. We first direct the edges such that every vertex has two incom-
ing opposite edges and two outgoing opposite edges by orienting the edges
around each face that belongs to M in counter-clockwise order. We use the same
primal-dual circle packing approach as in Theorem 2 to obtain a drawing of G′,
but instead of using the bisection of the lens region, we draw every edge with
angles 45◦ + ε/2 and 45◦ − ε/2 around the source vertex in counter-clockwise
order and around the target vertex in clockwise order. Whenever a vertex is
removed, an incoming and an outgoing edge of it is substituted by a new edge
between its neighbors, so the angles at the neighbors are compatible and the
new edge can inherit the direction of the old edges.

The following Lemmas is a stronger version of Lemma 1 and Theorem 1.
Since the proofs do not rely on 90◦ angles, they can be immediately applied
to the stronger version. A formal proof of Lemma 6 can be found in the arXiv
version [12].

Lemma 6. Let G = (V,E) be a 4-regular plane multigraph with a plane ε-angle
Lombardi drawing Γ . Then, any lens multiplication G′ of G also admits a plane
ε-angle Lombardi drawing.

Lemma 7. Let A and B be two 4-regular plane multigraphs with plane ε-angle
Lombardi drawings. Let a be an edge of A and b an edge of B. Then the com-
position A + B obtained by connecting A and B along edges a and b admits a
plane ε-angle Lombardi drawing.

Let G = (V,E) be a 4-regular plane multigraph and let x ∈ V with
edges (x, a), (x, b), (x, c), and (x, d) in counter-clockwise order. A lens exten-
sion of G is a 4-regular plane multigraph that is obtained by removing x and
its incident edges from G, and adding two vertices u and v to G with two edges
between u and v and the edges (u, a), (u, b), (v, c), (v, d). Informally, that means
that a vertex is substituted by a lens.

124 P. Kindermann et al.

Lemma 8. Let G = (V,E) be a 4-regular plane multigraph with a plane ε-angle
Lombardi drawing Γ . Then, any lens extension of G admits a plane (ε+ε′)-angle
Lombardi drawing for every ε′ > 0.

Sketch of Proof. Let x ∈ V be the vertex that we want to perform the lens
extension on, such that we get the edges (u, a), (u, b), (v, c), (v, d) in the obtained
graph G′. Let α be the angle between the tangents of (x, a) and (x, b) at x in Γ .
Since Γ is a plane ε-angle Lombardi drawing, we have that α ≤ 90◦ +ε. Further,
the angle between the tangents of (x, c) and (x, d) at x in Γ is also α, while the
angles between the tangents of (x, b) and (x, c) at x and between the tangents
of (x, d) and (x, a) at x are both 180◦ −α. We apply the Möbius-transformation
on Γ that maps the edges (x, a) and (x, d) to straight-line segments and a lies
on the same y-coordinate and to the right of x; hence, d lies strictly below x.

We aim to place v such that the angle between the arcs (v, c) and (v, d) is
α+λ for some 0 < λ ≤ ε′, which we will show how to choose later. We have fixed
ports at c and d and a fixed angle α+λ at v. According to Property 1, all possible
positions of v lie on a circle through c and d. Note that the circle through c, d,
and x describes all possible positions of neighbors of c and d with angle α. Since
the desired angle gets larger, the position circle for v contains a point vd on the
straight-line edge (x, d) and a point vc on the half-line starting from x with the
angle of the port used by the arc (x, c); see Fig. 11. We denote by Cλ

v the circular
arc between vc and vd on the placement circle of v that gives the angle α+λ at v.
We use the same construction for u to obtain the circular arc Cλ

u between ua

and ub. Since the drawing of G is plane, there exists some non-empty region in
which we can move x, such that the arcs (x, a), (x, b), (x, c), (x, d) are drawn with
the same ports at a, b, c, d and do not cross any other edge of the drawing. We
choose λ as the largest value with 0 < λ ≤ ε′ such that the two circular arcs Cu

and Cv lie completely inside this region.
We show how to find a pair of points on Cλ

v and Cλ
u such that we can connect

them via a lens in the arXiv version [12].

Lemma 9. Every 4-regular plane multigraph with at most 3 vertices admits a
plane ε-regular Lombardi drawing for every 0 ≤ ε < 90◦.

Proof. There are only two 4-regular multigraphs with at most 3 vertices and each
of them has a plane Lombardi drawing as depicted in Fig. 12a. For some 0◦ <
ε < 90◦, we can obtain a plane ε-regular Lombardi drawing by simply making
the circular arcs larger or smaller, as depicted in Fig. 12b.

We are now ready to present the main result of this section. The proof boils
down to a large case distinction using the tools developed in the previous dis-
cussion. We split the original graph into biconnected components and then use
Lemma 9 and 5 as base cases. With the help of lens extensions, lens multi-
plications, and knot sums we can combine the “near-Lombardi” drawings of
the biconnected graphs to generate an “near-Lombardi” drawing of the original
graph. As a consequence, every knot is near-Lombardi. The full proof is given in
the arXiv version [12].

Lombardi Drawings of Knots and Links 125

α
α + λ

α + λ

u

v
Cλ

u

Cλ
v

vd

vc ua

ub

c

d

a

b

x

Fig. 11. The circular arc Cλ
u between ua

and ub on the placement circles of u and
the circular arc Cλ

v between vc and vd on
the placement circles of v.

(a) (b)

Fig. 12. The only biconnected 4-regular
multigraphs with at most 3 vertices. (a)
plane Lombardi and (b) plane ε-angle
Lombardi drawings.

Theorem 7. Let G = (V,E) be a biconnected 4-regular plane multigraph and
let ε > 0. Then G admits a plane ε-angle Lombardi drawing.

Acknowledgements. Research for this work was initiated at Dagstuhl Seminar 17072
Applications of Topology to the Analysis of 1-Dimensional Objects which took place in
February 2017. We thank Benjamin Burton for bringing the problem to our attention
and Dylan Thurston for helpful discussion.

References

1. Knot drawing in Knot Atlas. http://katlas.org/wiki/Printable Manual#Drawing
Planar Diagrams. Accessed 08 July 2017

2. Alam, M.J., Bekos, M.A., Kaufmann, M., Kindermann, P., Kobourov, S.G., Wolff,
A.: Smooth orthogonal drawings of planar graphs. In: Pardo, A., Viola, A. (eds.)
LATIN 2014. LNCS, vol. 8392, pp. 144–155. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54423-1 13

3. Alexander, J.W., Briggs, G.B.: On types of knotted curves. Ann. Math. 28, 562–
586 (1927)

4. Bekos, M.A., Kaufmann, M., Kobourov, S.G., Symvonis, A.: Smooth orthogonal lay-
outs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 150–161.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2 14

5. Cromwell, P.R.: Arc presentations of knots and links. Banach Center Publ. 42,
57–64 (1998)

6. Cromwell, P.R.: Knots and Links. Cambridge University Press, Cambridge (2004)
7. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Löffler, M.: Planar

and Poly-arc Lombardi drawings. In: van Kreveld, M., Speckmann, B. (eds.) GD
2011. LNCS, vol. 7034, pp. 308–319. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-25878-7 30

http://katlas.org/wiki/Printable_Manual#Drawing_Planar_Diagrams
http://katlas.org/wiki/Printable_Manual#Drawing_Planar_Diagrams
https://doi.org/10.1007/978-3-642-54423-1_13
https://doi.org/10.1007/978-3-642-54423-1_13
https://doi.org/10.1007/978-3-642-36763-2_14
https://doi.org/10.1007/978-3-642-25878-7_30
https://doi.org/10.1007/978-3-642-25878-7_30

126 P. Kindermann et al.

8. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.:
Lombardi drawings of graphs. J. Graph Algorithms Appl. 16(1), 37–83 (2012)

9. Eppstein, D.: Planar Lombardi drawings for subcubic graphs. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 126–137. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36763-2 12

10. Eppstein, D.: A Möbius-invariant power diagram and its applications to soap bub-
bles and planar Lombardi drawing. Discrete Comput. Geom. 52, 515–550 (2014)

11. Kauffman, L.H.: On knots. In: Annals of Mathematical Studies, vol. 115. Princeton
University Press, Princeton (1987)

12. Kindermann, P., Kobourov, S., Löffler, M., Nöllenburg, M., Schulz, A., Vogtenhuber,
B.: Lombardi drawings of knots and links. Arxiv report 1708.09819 (2017)

13. Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of
planar graphs in the two-dimensional grid. Discrete Appl. Math. 81(1–3), 69–91
(1998)

14. Livingston, C.: Knot theory. In: The Carus Mathematical Monographs, vol. 24.
Mathematical Association of America, Washington, DC (1993)

15. Rolfsen, D.: Knots and Links. American Mathematical Society, Providence (1976)
16. Scharein, R.G.: Interactive topological drawing. Ph.D. thesis, Department of Com-

puter Science, The University of British Columbia (1998)
17. Schubert, H.: Sitzungsbericht. Heidelberger Akad. Wiss., Math.-Naturwiss.

Klasse, 3. Abhandlung (1949)
18. Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 13(3), 743–768 (1963)

https://doi.org/10.1007/978-3-642-36763-2_12

Arrangements of Pseudocircles:
Triangles and Drawings

Stefan Felsner1(B) and Manfred Scheucher2

1 Technische Universität Berlin, Berlin, Germany
felsner@math.tu-berlin.de

2 Graz University of Technology, Graz, Austria
mscheuch@ist.tugraz.at

Abstract. A pseudocircle is a simple closed curve on the sphere or
in the plane. The study of arrangements of pseudocircles was initiated
by Grünbaum, who defined them as collections of simple closed curves
that pairwise intersect in exactly two crossings. Grünbaum conjectured
that the number of triangular cells p3 in digon-free arrangements of n
pairwise intersecting pseudocircles is at least 2n − 4. We present exam-
ples to disprove this conjecture. With a recursive construction based
on an example with 12 pseudocircles and 16 triangles we obtain a fam-
ily with p3(A)/n → 16/11 = 1.45. We expect that the lower bound
p3(A) ≥ 4n/3 is tight for infinitely many simple arrangements. It may
however be that digon-free arrangements of n pairwise intersecting cir-
cles indeed have at least 2n − 4 triangles.

For pairwise intersecting arrangements with digons we have a lower
bound of p3 ≥ 2n/3, and conjecture that p3 ≥ n − 1.

Concerning the maximum number of triangles in pairwise intersecting
arrangements of pseudocircles, we show that p3 ≤ 2n2/3 +O(n). This is
essentially best possible because families of pairwise intersecting arrange-
ments of n pseudocircles with p3/n

2 → 2/3 as n → ∞ are known.
The paper contains many drawings of arrangements of pseudocircles

and a good fraction of these drawings was produced automatically from
the combinatorial data produced by the generation algorithm. In the
final section we describe some aspects of the drawing algorithm.

1 Introduction

Arrangements of pseudocircles generalize arrangements of circles in the same vein
as arrangements of pseudolines generalize arrangements of lines. The study of
arrangements of pseudolines was initiated 1918 with an article of Levi [7] where
he studied triangles in arrangements. Since then arrangements of pseudolines
were intensively studied and the handbook article on the topic [2] lists more
than 100 references.

S. Felsner—Partially supported by DFG Grant FE 340/11-1.
M. Scheucher—Partially supported by ERC Advanced Research Grant no 267165
(DISCONV).

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 127–139, 2018.
https://doi.org/10.1007/978-3-319-73915-1_11

128 S. Felsner and M. Scheucher

Grünbaum [6] initiated the study of arrangements of pseudocircles. By stat-
ing a large number of conjectures he was hoping to attract the attention of
researchers for the topic. The success of this program was limited and several of
Grünbaum’s 45 year old conjectures remain unsettled. In this paper we report on
some progress regarding conjectures involving numbers of triangles and digons
in arrangements of pseudocircles.

Some of our results and new conjectures are based on a program written
by the second author that enumerates all arrangements of up to 7 pairwise
intersecting pseudocircles. Before formally stating our main results we introduce
some terminology:

An arrangement of pseudocircles is a collection of closed curves in the plane
or on the sphere, called pseudocircles, with the property that the intersection of
any two of the pseudocircles is either empty or consists of two points where the
curves cross. An arrangement A of pseudocircles is

simple, if no three pseudocircles of A intersect in a common point.
pairwise intersecting, if any two pseudocircles of A have non-empty intersec-

tion. We will frequently abbreviate and just write “intersecting” instead of
“pairwise intersecting”.

cylindrical, if there are two cells of the arrangement which are separated by
each of the pseudocircles.

digon-free, if there is no cell of the arrangement which is incident to only two
pseudocircles.

We consider the sphere to be the most natural ambient space for arrange-
ments of pseudocircles. Consequently, we call two arrangements isomorphic if
they induce homeomorphic cell decompositions of the sphere. In many cases, in
particular in all our figures, arrangements of pseudocircles are embedded in the
Euclidean plane, i.e., there is a distinguished outer/unbounded cell. An advan-
tage of such a representation is that we can refer to the inner and outer side
of a pseudocircle. Note that for every cylindrical arrangement of pseudocircles
it is possible to choose the unbounded cell such that there is a point in the
intersection of the interior pseudodiscs of all pseudocircles.

In an arrangement A of pseudocircles, we denote a cell with k crossings on
its boundary as a k-cell and let pk(A) be the number of k-cells of A . Following
Grünbaum we call 2-cells digons and remark that some other authors call them
lenses. 3-cells are triangles, 4-cells are quadrangles, and 5-cells are pentagons.

Conjecture 3.7 from Grünbaum’s monograph [6] is: Every (not necessar-
ily simple) digon-free arrangement of n pairwise intersecting pseudocircles has
at least 2n − 4 triangles. Grünbaum also provides examples of arrangements
with n ≥ 6 pseudocircles and 2n − 4 triangles.

Snoeyink and Hershberger [10] showed that the sweeping technique, which
serves as an important tool for the study of arrangements of lines and pseudolines,
can be adapted to work also in the case of arrangements of pseudocircles. They
used sweeps to show that, in an intersecting arrangement of pseudocircles, every
pseudocircle is incident to two cells which are digons or triangles on either side.

Arrangements of Pseudocircles: Triangles and Drawings 129

Therefore, 2p2+3p3 ≥ 4n, and whence, every intersecting digon-free arrangement
of n pseudocircles has at least 4n/3 triangles.

Felsner and Kriegel [3] observed that the bound from [10] also applies to non-
simple intersecting digon-free arrangements and gave examples of arrangements
showing that the bound is tight on this class for infinitely many values of n.
These examples disprove the conjecture in the non-simple case.

In Sect. 2, we give counterexamples to Grünbaum’s conjecture which are sim-
ple. With a recursive construction based on an example with 12 pseudocircles and
16 triangles we obtain a family with p3/n

n→∞−−−−→ 16/11 = 1.45. We then replace
Grünbaum’s conjecture by Conjecture 2: The lower bound p3(A) ≥ 4n/3 is tight
for infinitely many non-isomorphic simple arrangements.

A specific arrangement N6 of 6 pseudocircles with 8 triangles appears as a
subarrangement in all known simple, intersecting, digon-free arrangements with
p3 < 2n − 4. From [5] it is known that N6 is not circularizable, i.e., not rep-
resentable by circles. This motivates the question, whether indeed Grünbaum’s
conjecture is true when restricted to intersecting arrangements of circles, see
Conjecture 1. In Subsect. 2.1 we discuss arrangements with digons. We give an
easy extension of the argument of Snoeyink and Hershberger [10] to show that
these arrangements contain at least 2n/3 triangles. All arrangements known to
us have at least n − 1 triangles and therefore our Conjecture 3 is that n − 1 is a
tight lower bound for intersecting arrangements with digons.

In Sect. 3 we study the maximum number of triangles in arrangements of n
pseudocircles. We show an upper bound of order 2n2/3 + O(n). For the lower
bound construction we glue two arrangements of n pseudolines into an arrange-
ment of n pseudocircles. Since respective arrangements of pseudolines are known,
we obtain arrangements of pseudocircles with 2n(n − 1)/3 triangles for n ≡ 0, 4
(mod 6).

The paper contains many drawings of arrangements of pseudocircles and a
good fraction of these drawings was produced automatically from the combina-
torial data produced by the generation algorithm. In Sect. 4 we describe some
aspects of the drawing algorithm which is based on iterative calls to a Tutte
embedding a.k.a. spring embedding with adapting weights on the edges.

From now on (unless explicitly stated otherwise) the term arrangement is
used as equivalent to simple arrangement of pairwise intersecting pseudocircles.

2 Arrangements with Few Triangles

The main result of this section is the following theorem, which disproves
Grünbaum’s conjecture.

Theorem 1. The minimum number of triangles in digon-free arrangements of
n pseudocircles is

(i) 8 for 3 ≤ n ≤ 6.
(ii) � 4

3n� for 6 ≤ n ≤ 14.
(iii) < 16

11n for all n = 11k + 1 with k ∈ N.

130 S. Felsner and M. Scheucher

Fig. 1. Arrangements of n = 3, 4, 5 circles and p3 = 8 triangles each. Triangles (except
the outer face) are colored gray.

Figures 1 and 2 show arrangements with the minimum number of triangles for
up to 8 pseudocircles. We remark that, in total, there are three non-isomorphic
arrangements of n = 8 pseudocircles with p3 = 11 triangles, these are the small-
est counterexamples to Grünbaum’s conjecture (cf. Lemma 1). We refer to our
website [8] for further examples.

The basis for Theorem 1 was laid by exhaustive computations, which gen-
erated all simple arrangements of up to n = 7 pseudocircles. Starting with the
unique arrangement of two intersecting pseudocircles, our program recursively
inserted pseudocircles in all possible ways. Since counting arrangements is also
interesting, we state the numbers in Table 1. The table shows the number of sim-
ple intersecting pseudocircle arrangements on the sphere. The first row shows
the numbers when digons are allowed and the second row shows the numbers of
digon-free arrangements. The arrangements and more information can be found
on the companion website [8].

Table 1. Number of combinatorially different arrangements of n pseudocircles.

n 2 3 4 5 6 7

General 1 2 8 278 145 058 447 905 202

Digon-free 0 1 2 14 2 131 3 012 972

Fig. 2. Arrangements with n = 6, 7, 8 and 8, 10, 11 triangles respectively.

Arrangements of Pseudocircles: Triangles and Drawings 131

From the complete enumeration we know the minimum number of triangles
for n ≤ 7. In the range from 8 to 14, we iteratively used arrangements with n
pseudocircles and a small number of triangles and digons to generate arrange-
ments with n + 1 pseudocircles and the same property. Using this strategy, we
found arrangements with �4n/3� triangles for all n in this range. The correspond-
ing lower bound p3(A) ≥ 4n/3 is known from [10].

A result of the computations was that the triangle-minimizing example for
n = 6 is unique, i.e., there is a unique simple arrangement N6 with 6 pseudocir-
cles and only 8 triangles. In [5] we have shown that N6 is not circularizable. The
arrangement N6 is a subarrangement of all known arrangements with less than
2n − 4 triangles. Therefore, the following weakening of Grünbaum’s conjecture
may be true.

Conjecture 1 (Weak Grünbaum Conjecture). Every digon-free arrangement of n
circles has at least 2n − 4 triangles.

We know that this conjecture is true for all n ≤ 9. The claim, that we
have checked all arrangements with p3(A) < 2n − 4 in this range, is justified
by the following lemma, which restricts the pairs (p2, p3) for which there exist
arrangements of n pseudocircles whose extensions have p3(A) < 2n − 4. In
particular, to get all digon-free arrangements with n = 9 and 12 triangles we
only had to extend arrangements with n = 7 and n = 8, where p3 +2p2 ≤ 12. It
turned out, that all arrangements on n = 9 pseudocircles with 12 triangles are
non-circularizable since all of them contain N6 as a subarrangement.

Lemma 1. Let A be an arrangement of pseudocircles. Then for every subar-
rangement A ′ of A we have

p3(A ′) + 2p2(A ′) ≤ p3(A) + 2p2(A).

Proof. We show the statement for a subarrangement A ′ in which one pseudocir-
cle C is removed from A . The inequality then follows by iterating the argument.
The arrangement A ′ partitions the pseudocircle C into arcs. Reinsert these arcs
one by one.

Consider a triangle of A ′. After adding an arc, one of the following cases
occurs: (1) the triangle remains untouched, or (2) the triangle is split into a
triangle and a quadrangle, or (3) a digon is created in the region of the triangle.

Now consider a digon of A ′. After adding an arc, either (1) there is a new
digon inside this digon, or (2) the digon has been split into two triangles. 	

We now prepare for the proof of Theorem1 (iii). The basis of the construc-
tion is the arrangement A12 with 12 pseudocircles and 16 triangles shown in
Fig. 3a. This arrangement will be used iteratively for a ‘merge’ as described by
the following lemma.

Lemma 2. Let A and B be digon-free arrangements of nA ≥ 3 and nB ≥ 3
pseudocircles, respectively. If there is a simple curve PA that (1) intersects every
pseudocircle of A exactly once (2) contains no vertex of A , (3) traverses τ ≥ 1

132 S. Felsner and M. Scheucher

Fig. 3. (a) A digon-free, intersecting arrangement A12 of n = 12 pseudocircles with
exactly 16 triangles. The dashed curve intersects every pseudocircle exactly once.
(b) An illustration of the construction in Lemma 2. Pseudocircles of A (B) are drawn
red (blue). (Colour figure online)

triangles of A , and (4) forms δ triangles with pairs of pseudocircles from A ,
then there is a digon-free arrangement C of nA + nB − 1 pseudocircles with
p3(C) = p3(A) + p3(B) + δ − τ − 1 triangles.

Proof. Take a drawing of A and make a hole in the two cells, which contain
the ends of PA . This yields a drawing of A on a cylinder such that none of
the pseudocircles is contractible. The path PA connects the two boundaries
of the cylinder. In fact, the existence of a path with the properties of PA is
characterizing cylindrical arrangements.

Stretch the cylindrical drawing such that it becomes a narrow belt, where
all intersections of pseudocircles take place in a small disk, which we call belt-
buckle. This drawing of A is called a belt drawing. The drawing of the red
subarrangement in Fig. 3b shows a belt drawing.

Choose a triangle � in B and a pseudocircle B which is incident to �. Let b
be the edge of B on the boundary of �. Specify a disk D, which is traversed
by b and disjoint from all other edges of B. Now replace B by a belt drawing
of A in a small neighborhood of B such that the belt-buckle is drawn within D;
see Fig. 3b.

The arrangement C obtained from merging A and B, as we just described,
has nA +nB −1 pseudocircles. Moreover if A and B are digon-free/intersecting,
then C has the same property. Most of the cells c of C are of one of the following
four types:

(a) All boundary edges of c belong to pseudocircles of A .
(b) All boundary edges of c belong to pseudocircles of B.

Arrangements of Pseudocircles: Triangles and Drawings 133

(c) All but one of the boundary edges of c belong to pseudocircles of B and the
remaining edge belongs to A . (These cells correspond to cells of B with a
boundary edge on B.)

(d) Quadrangular cells, whose boundary edges alternatingly belong to A and B.

From the cells of B, only � and the other cell containing b (which is not a
triangle since B is digon-free) have not been taken into account. In C , the cor-
responding two cells have at least two boundary edges from B and at least two
from A . Consequently, neither of the two cells are triangles. The remaining cells
of C are bounded by pseudocircles from A together with one of the two bound-
ing pseudocircles of � other than B. These two pseudocircles cross through A
following the path prescribed by PA . There are δ triangles among these cells,
but τ of these are obtained because PA traverses a triangle of A . Among cells
of C of types (1) to (4) all the triangles have a corresponding triangle in A or B.
But � is a triangle of B which does not occur in this correspondence. Hence,
there are p3(A) + p3(B) + δ − τ − 1 triangles in C . 	

Proof of Theorem 1 (iii). We use A12, the arrangement shown in Fig. 3a, in
the role of A for our recursive construction. The dashed path in the figure is
used as PA with δ = 2 and τ = 1. Starting with C1 = A12 and defining Ck+1

as the merge of Ck and A12, we construct a sequence {Ck}k∈N of digon-free
arrangements with n(Ck) = 11k + 1 pseudocircles and p3(Ck) = 16k triangles.
The fraction 16k/(11k + 1) is increasing with k and converges to 16/11 = 1.45
as n goes to ∞. 	

We remark that using other arrangements from Theorem 1 (ii) (which also
admit a path with δ = 2 and τ = 1) in the recursion, we obtain arrangements
with p3 = � 16

11n� triangles for all n ≥ 6.
Since the lower bound � 4

3n� is tight for 6 ≤ n ≤ 14, we believe that the
following is true:

Conjecture 2. There are digon-free arrangements A with p3(A) = �4n/3� for
infinitely many values of n.

2.1 Arrangements with Digons

We know arrangements of n pseudocircles with digons and only n − 1 triangles.
The example shown in Fig. 4a is part of an infinite family of such arrangements.

Using ideas based on sweeps (cf. [10]), we can show that every pseudocircle
is incident to at least two triangles. This implies the following theorem:

Theorem 2. Every arrangement of n ≥ 3 pseudocircles has at least 2n/3 trian-
gles.

The proof of the theorem is based on the following lemma:

Lemma 3. Let C be a pseudocircle in an arrangement of n ≥ 3 pseudocircles.
Then all digons incident to C lie on the same side of C.

134 S. Felsner and M. Scheucher

Fig. 4. Example arrangements (a) n pseudocircles with n digons and n − 1 triangles
(b) “trees of circles” with no triangles (c) connected arrangements of n pseudocircles
with triangle-cell-ratio of 5

6
− O(1√

n
).

Proof. Consider a pseudocircle C ′ that forms a digon D′ with C that lies, say,
“inside” C. If C ′′ also forms a digon D′′, then C ′′ has to cross C ′ in the exterior
of C. Hence D′′ also has to lie “inside” C. Consequently, all digons incident to
C lie on the same side of C. 	

Proof of Theorem 2. Let A be an arrangement and consider a drawing of A
in the plane. Snoeyink and Hershberger [10] have shown that starting with any
circle C from A the outside of C can be swept with a closed curve γ until
all of the arrangement is inside of γ. During the sweep γ is intersecting every
pseudocircle from A at most twice. The sweep uses two types1 of move to make
progress:

(1) take a crossing, in [10] this is called ‘pass a triangle’;
(2) leave a pseudocircle, this is possible when γ and some pseudocircle form a

digon which is on the outside of γ, in [10] this is called ‘pass a hump’.

Let C be a pseudocircle of A . By the previous lemma, all digons incident
to C lie on the same side of C. Redraw A so that all digons incident to C are
inside C. The first move of a sweep starting at C has to take a crossing, and
hence, there is a triangle � incident to C. Redraw A such that � becomes the
unbounded face. Again consider a sweep starting at C. The first move of this
sweep reveals a triangle �′ incident to C. Since � is not a bounded triangle
of the new drawing we have � = �′, and hence, C is incident to at least two
triangles. The proof is completed by double counting the number of incidences
of triangles and pseudocircles. 	

Since for 3 ≤ n ≤ 7 every arrangement has at least n−1 triangles, we believe
that the following is true:

Conjecture 3. Every intersecting arrangement of n ≥ 3 pseudocircles has at least
n − 1 triangles.

1 There is a third type of move for sweeps of arrangements of pseudocircles, it is
called take a hump and does not occur in our case, as each two pseudocircles already
intersect.

Arrangements of Pseudocircles: Triangles and Drawings 135

If the arrangement is not required to be intersecting, then the proof of
Lemma 3 fails and indeed there are examples of non-intersecting arrangements
without triangles, e.g., a “tree of circles”, see Fig. 4b.

3 Maximum Number of Triangles

Regarding the maximal number of triangles the complete enumeration provides
precise data for n ≤ 7. We used heuristics to generate examples with many
triangles for larger n. Table 2 and Fig. 5 shows the results. For n ≥ 4 there is only
one instance where we know an arrangement with more than 4

3

(
n
2

)
triangles. This

number is 1/3 times the number of edges of the arrangement, i.e., it is an upper
bound for the number of triangles in arrangements where each edge is incident
to at most one triangle. In the next subsection we show that asymptotically
the contribution of edges that are incident to two triangles is neglectable. The
last subsection gives a construction of arrangements which show that � 4

3

(
n
2

)� is
attained for infinitely many values of n.

Table 2. Upper bound on the number of triangles.

2 3 4 5 6 7 8 9 10

Simple 0 8 8 13 20 29 ≥37 ≥48 ≥60

Digon-free – 8 8 12 20 29 ≥37 ≥48 ≥60

� 4
3

(
n
2

)� 1 4 8 13 20 28 37 48 60

Fig. 5. (a) and (b) show arrangements with n = 5 pseudocircles. The first one is digon-
free and has 12 triangles and the second one has 13 triangles and one digon. (c) and
(d) show arrangements with n = 6 and 20 triangles. The arrangement in (c) is the
skeleton of the Icosidodecahedron.

Recall that we only study simple arrangements. Grünbaum [6] also looked
at non-simple arrangements. His Figures 3.30, 3.31, and 3.32 show drawings of
simplicial arrangements that have n = 7 with p3 = 32, n = 8 with p3 = 50,
and n = 9 with p3 = 62, respectively. Hence, non-simple arrangements can have
more triangles.

136 S. Felsner and M. Scheucher

Theorem 3. p3(A) ≤ 2
3n2 + O(n).

The proof of this theorem can be found in the appendix of the version sub-
mitted to the arXiv [4].

Remarks

– Since intersecting arrangements have 2
(
n
2

)
+ 2 = n2 − O(n) faces we can also

state the bound as: at most 2
3 +O(1n) of all cells of an arrangement are trian-

gles. However, this is not true if we consider non-intersecting arrangements.
Figure 4c shows a construction where this ratio converges to 5

6 as n → ∞. It
can be shown with a counting argument that 5

6 is an upper bound for the
triangle-cell-ratio of simple arrangements.

– It would be interesting to get more precise results. In particular, we would
like to know whether p3 ≤ 4

3

(
n
2

)
+ O(1) is true for all n.

3.1 Constructions Using Arrangements of Pseudolines

Great circles on the sphere are a well known model for projective arrangements
of lines. Antipodal pairs of points on the sphere correspond to points of the pro-
jective plane. Hence, the great circle arrangement corresponding to a projective
arrangement A of lines has twice as many vertices, edges, and faces of every type
as A . The same idea can be applied to projective arrangement of pseudolines.
If A is a projective arrangement of pseudolines take a drawing of A in the unit
disk D such that every line � of A connects two antipodal points of D. Project D
to the upper hemisphere of a sphere S, such that the boundary of D becomes the
equator of S. Use a projection through the center of � to copy the drawing from
the upper hemisphere to the lower hemisphere of S. By construction the two
copies of a pseudoline � from A join together to form a pseudocircle. The collec-
tion of these pseudocircles yields an arrangement of pseudocircles on the sphere
with twice as many vertices, edges, and faces of every type as A . Arrangements
of pseudocircles obtained by this construction have a special property:

– If three pseudocircles C, C ′, and C ′′ have no common crossing, then C ′′

separates the two crossings of C and C ′.

Grünbaum calls arrangements with this property ‘symmetric’. In the context
of oriented matroids the property is part of the definition of arrangements of
pseudocircles.

Arrangements of pseudolines which maximize the number of triangles have
been studied intensively. The end of this line of research is marked by Blanc [1].
This paper gives precise bounds for the maximum both in the Euclidean and
in the projective case. In particular, Blanc constructs examples of projective
arrangements of pseudolines with 2

3

(
n
2

)
triangles for an infinite number of val-

ues of n. This directly yields arrangements of pseudocircles with 4
3

(
n
2

)
triangles.

The ‘doubling method’ that has been used for constructions of arrangements of
pseudolines with many triangles, see [1], can also be applied for pseudocircles. In
fact, in the case of pseudocircles there is more flexibility for applying the method.
Therefore, it is possible that � 4

3

(
n
2

)� triangles can be achieved for all n.

Arrangements of Pseudocircles: Triangles and Drawings 137

4 Visualization

Most of the figures in this paper have been automatically generated by our
framework, which was written in the mathematical software SageMath [11] and
is available on demand. We encode an arrangement of pseudocircles by its dual
graph. Each face in the arrangement is represented by a vertex and two ver-
tices share an edge if and only if the two corresponding faces share a common
pseudosegment. As our arrangements are intersecting, it is easy to see that the
dual graph is 3-connected and thus its embedding is unique on the sphere (up to
isomorphism).

To visualize an arrangement of pseudocircles, we draw the primal
(multi)graph using straight-line segments, in which vertices represent crossings
of pseudocircles and edges connect two vertices if they are connected by a pseu-
docircle segment. Note that in the presence of digons we obtain double-edges.

In our drawings, pseudocircles are colored by distinct colors, and triangles
(except the outer face) are filled gray. In straight-line drawings, edges correspond-
ing to digons are drawn dashed in the two respective colors alternatingly, while in
the curved drawings digons are represented by a point where the two respective
pseudocircles touch.

4.1 Iterated Tutte Embeddings

To generate nice aesthetic drawings automatically, we iteratively use weighted
Tutte embeddings. We fix a non-digon cell as the outer cell and arrange the
vertices of the outer cell as the corners of a regular polygon. Starting with edge-
weights all equal to 1, we obtain an ordinary plane Tutte embedding.

For iteration j, we set the weights (force of attraction) of an edge e = {u, v}
proportional to p(A(f1)) + p(A(f2)) + q(‖u − v‖/j) where f1, f2 are the faces
incident to e, A(.) is the area function, ‖ · ‖ is the Euclidean norm, and p, q are
suitable monotonically increasing functions from R

+ to R
+ (we use p(x) = x4

and q(x) = x2/10).
Intuitively, if the area of a face becomes too large, the weights of its incident

edges are increased and will rather be shorter so that the area of the face will
also get smaller in the next iteration. It turned out that in some cases the areas
of the faces became well balanced but some edges were very short and others
long. Therefore we added the dependence on the edge length which is strong
at the beginning and decreases with the iterations. The particular choice of the
functions was the result of interactive tuning. The iteration is terminated when
the change of the weights is small.

4.2 Visualization Using Curves

On the basis of the straight-line embedding obtained with the Tutte iteration
we use splines to smoothen the curves. The details are as follows. First we take
a 2-subdivision of the graph, where all subdivision-vertices adjacent to a given
vertex v are placed at the same distance d(v) from v. We choose d(v) so that

138 S. Felsner and M. Scheucher

it is at most 1/3 of the length of an edge incident to v. We then use B-splines
to visualize the curves. Even though one can draw Bézier curves directly with
Sage, we mostly generated ipe files (xml-format) so that we can further process
the arrangements. Figures 6a and b show the straight-line and curved drawing
of the same arrangement.

Fig. 6. (a) Straight-line and (b) curved drawings of the arrangement of pseudo (great)
circles, which consists of two copies of (c) the (non-stretchable) non-Pappus pseudoline
arrangement of pseudolines.

4.3 Visualization of Arrangements of Pseudolines

We also adopted the code to visualize arrangements of pseudolines nicely. One of
the lines is considered as the “line at infinity” which is then drawn as a regular
polygon. Figure 6c gives an illustration.

For arrangements of pseudolines we used the framework pyotlib, which orig-
inated from the Bachelor’s thesis of Scheucher [9].

References

1. Blanc, J.: The best polynomial bounds for the number of triangles in a simple
arrangement of n pseudo-lines. Geombinatorics 21, 5–17 (2011)

2. Felsner, S., Goodman, J.E.: Pseudoline arrangements. In: Toth, C.D., O’Rourke,
J., Goodman, J.E. (eds.) Handbook of Discrete and Computational Geometry, 3rd
edn. CRC Press, Boca Raton (2016)

3. Felsner, S., Kriegel, K.: Triangles in Euclidean arrangements. In: Hromkovič, J.,
Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 137–148. Springer, Heidelberg
(1998). https://doi.org/10.1007/10692760 12

4. Felsner, S., Scheucher, M.: Arrangements of pseudocircles: triangles and drawings.
http://arXiv.org/abs/1708.06449v2 (2017)

5. Felsner, S., Scheucher, M.: Triangles in arrangements of pseudocircles. In: Proceed-
ings of 33rd European Workshop on Computational Geometry (EuroCG 2017), pp.
225–228 (2017). http://csconferences.mah.se/eurocg2017/proceedings.pdf

6. Grünbaum, B.: Arrangements and Spreads. Reg. Conf. Ser. Math. AMS (1972).
reprinted 1980

https://doi.org/10.1007/10692760_12
http://arXiv.org/abs/1708.06449v2
http://csconferences.mah.se/eurocg2017/proceedings.pdf

Arrangements of Pseudocircles: Triangles and Drawings 139

7. Levi, F.: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Ber.
Math. Phys. Kl. sächs. Akad. Wiss. Leipzig 78, 256–267 (1926)

8. Scheucher, M.: http://www.ist.tugraz.at/scheucher/arrangements of
pseudocircles/

9. Scheucher, M.: On Order Types, Projective Classes, and Realizations, Bachelor’s
thesis (2014)

10. Snoeynik, J., Hershberger, J.: Sweeping arrangements of curves. In: Goodman, J.E.,
Pollack, R., Steiger, W. (eds.) Discrete and Computational Geometry, DIMACS
series in discrete mathematics and theoretical computer science, vol. 6, pp. 309–349.
AMS (1991)

11. Stein, W., et al.: Sage Mathematics Software (Version 7.6). The Sage Development
Team (2017). http://www.sagemath.org

http://www.ist.tugraz.at/scheucher/arrangements_of_pseudocircles/
http://www.ist.tugraz.at/scheucher/arrangements_of_pseudocircles/
http://www.sagemath.org

Drawing Bobbin Lace Graphs, or, Fundamental
Cycles for a Subclass of Periodic Graphs

Therese Biedl and Veronika Irvine(B)

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada

{biedl,virvine}@uwaterloo.ca

Abstract. In this paper, we study a class of graph drawings that arise
from bobbin lace patterns. The drawings are periodic and require a
combinatorial embedding with specific properties which we outline and
demonstrate can be verified in linear time. In addition, a lace graph draw-
ing has a topological requirement: it contains a set of non-contractible
directed cycles which must be homotopic to (1, 0), that is, when drawn
on a torus, each cycle wraps once around the minor meridian axis and
zero times around the major longitude axis. We provide an algorithm
for finding the two fundamental cycles of a canonical rectangular schema
in a supergraph that enforces this topological constraint. The polygo-
nal schema is then used to produce a straight-line drawing of the lace
graph inside a rectangular frame. We argue that such a polygonal schema
always exists for combinatorial embeddings satisfying the conditions of
bobbin lace patterns, and that we can therefore create a pattern, given
a graph with a fixed combinatorial embedding of genus one.

1 Introduction

Bobbin lace is a 500-year-old fibre art-form created by braiding threads together
in complex patterns. See Fig. 1. Bobbin lace can depict landscapes, figures, flow-
ers, as well geometric and abstract designs. Common to all bobbin lace compo-
sitions is the use of doubly periodic patterns to fill regions of any shape or size.
It is the study of these periodic patterns that we pursue here. To create bobbin
lace, threads, which are wound around wooden bobbins to facilitate handling, are
arranged left to right in linear order t1, t2, . . . t2n−1, t2n. The lacemaker selects
four consecutive threads, starting at an odd index, and crosses the four threads
over and under each other to form an alternating braid. After one or several
crossings are made in this manner, the four threads are set aside and another
set of four (not the same four, but possibly using a subset of the original four) is
selected, again starting at an odd index, and braided. Since the selected threads
are consecutive starting at an odd index, we can describe the pattern by tracking
the movement of pairs of threads rather than individual strands.

T. Biedl and V. Irvine—Research supported by NSERC. Thank you to Anna Lubiw
for helpful input.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 140–152, 2018.
https://doi.org/10.1007/978-3-319-73915-1_12

Drawing Bobbin Lace Graphs, or, Fundamental Cycles 141

)c()b()a(

Fig. 1. Bobbin lace. (a) Pattern, (b) Lace with two different ζ(v) mappings, (c) Periodic
graph drawing. Four osculating circuits distinguished using black and gray.

The application of mathematics to the study of fibre arts dates back to the
beginnings of computer science. A survey of various areas, including knitting
and weaving, is presented by Belcastro and Yackel [3]. Grishanov et al. take a
deep look into knot theory and its relevance to the topology of textiles [6]. The
second author and Ruskey [7] were the first to develop a mathematical model for
bobbin lace and express its patterns using graph drawings. Specifically, a lace
pattern can be represented as (Γ(G), ζ(v)) where G is a combinatorial embedding
that captures the flow of pairs of threads from one grouping of four to another,
Γ(G) gives a specific drawing of G which assigns a geometry to the position of
the braids, and ζ(v) is a mapping from each node v ∈ V (G) to a mathematical
braid word which specifies the over and under crossings performed on the subset
of four threads that meet at v. A systematic exploration of different ζ(v) map-
pings is straight-forward, although time consuming, and has been undertaken by
lacemakers for several traditional patterns; see [7] for more details. Discovering
which pairs of threads can be successfully combined, as represented by Γ(G), is
a much harder task and is therefore the focus of this paper.

The main question investigated in this paper is to decide, for a directed
graph with a fixed rotation system, whether we can construct a straight-line
drawing that is a lace pattern. We argue that recognizing such graphs can be
done in linear time and depends only on their combinatorial structure (some of
these results were reported earlier [7]). Lace patterns are doubly periodic. As
a result, a lace graph can be drawn on the surface of a torus and lifted to its
universal cover, an infinite, periodic, planar graph. A toroidal embedding can
be drawn as a straight-line planar graph drawing with a rectangular outer face
by choosing a canonical rectangular schema [1,4]. The challenge is to find two
fundamental cycles to serve as the borders of the rectangle under the constraints
of the topological requirements of the lace pattern and restrictions imposed by
the drawing algorithm itself. We show how to find a suitable polygonal schema
for any valid combinatorial embedding.

2 Mathematical Model of Bobbin Lace

We assume familiarity with graphs and combinatorial embeddings; see for exam-
ple [8]. Throughout this paper, G = (V,E) is a directed graph that comes with

142 T. Biedl and V. Irvine

a rotation system, i.e., a clockwise order of edges around each vertex. We will
assume that the rotation system describes a cellular combinatorial embedding
on an orientable surface (i.e., the complement of G on the orientable surface is a
collection of open topological disks). The genus of the cellular embedding can be
determined from the rotation system by computing the facial walk consisting of
edges and vertices incident to each face in order while walking around the face.
All embeddings of interest here have an Euler characteristic of 0.

A circuit is a closed path in which a vertex may be visited more than once
but no edges are repeated. A cycle is a closed path in which each vertex and
edge is only visited once. A contractible cycle is a cycle that can be continuously
retracted to a point. A canonical rectangular representation of a torus is bounded
by a pair of non-contractible cycles, also referred to as fundamental cycles, that
have only one vertex in common, their point of intersection.

2.1 Conditions on Lace Pattern Graph Embeddings

In a lace pattern graph, every vertex v must have exactly two incoming and
two outgoing edges, corresponding to two pairs of threads that meet at v, are
braided together and then separate. We call such a graph a 2-2-regular digraph.

Lace patterns are doubly periodic, i.e., they can tile the plane by translation
in two non-parallel directions. One “tile” of the repeat can be drawn using a
canonical rectangular schema in which the position of a thread intersecting the
horizontal boundaries of the schema has the same abscissa top and bottom and a
thread intersecting the vertical boundaries of the schema has the same ordinate
value left and right. In graph drawing this is called periodic.

We do not want lace created from a pattern to “fall apart”, i.e., the graph
needs to be suitably connected. In graph-theoretical terms, this means G must
be a cellular embedding.

For a lace pattern to be workable, there must exist a partial ordering of the
vertices such that, for any directed edge, the braid mapped to the tail vertex
is worked before that of the head. The pattern, when repeated over the infinite
plane, cannot contain directed cycles, or equivalently, the associated graph on
the torus must be free from contractible directed circuits.

The graph may have loops but they must be non-contractible. Parallel edges
with the same orientation do not represent a change in the four threads being
braided and therefore do not appear in a lace graph. Parallel edges with opposite
orientation must form a non-contractible directed cycle. In other words, a lace
graph may be a multigraph but no loop or parallel edge can be a face.

In summary, the following three conditions are required for the combinatorial
embedding of any lace pattern graph G:

C1. G is a directed 2-2-regular digraph.
C2. The rotation system of G describes a toroidal cellular embedding in which

all facial walks contain at least 3 edges.
C3. All directed circuits of G are non-contractible.

Drawing Bobbin Lace Graphs, or, Fundamental Cycles 143

It is easy to check in linear time whether (C1) holds. To test (C2), we
first compute the facial walks to ascertain the number of faces, and can then
determine whether the embedding is toroidal since, by Euler’s formula, such an
embedding with n vertices and 2n edges must have exactly n faces.

To test (C3) in linear time, we take advantage of the regular structure of our
digraph via the following lemma:

Lemma 1. Presume a 2-2-regular digraph has a toroidal cellular embedding G.
If G has a contractible directed circuit C, then G will have at least one face
bounded by a contractible directed circuit.

Proof. (Sketch) Arbitrarily declare one face to contain the origin so that “inside”
and “outside” are well-defined for any contractible directed circuit C. Let OC

and IC be the number of faces outside and inside C, and consider a directed
contractible circuit C that maximizes |OC − IC |. Prove, by contradiction, that a
directed cycle containing an edge in its interior cannot maximize |OC − IC | and
therefore the inside of C is a face as required. Details are in the full version. ��

It follows that to verify condition (C3), we simply test whether any facial
walk is a directed circuit. Clearly this takes linear time.

There is one more important restriction for a workable bobbin lace pattern.
The threads in the periodic pattern are continuous; threads are neither removed
(by cutting) nor added (by knotting or weaving in). In other words, to fill a
rectangle of fixed width and undetermined height, a fixed set of threads starts
at the top of the rectangle and the same set of threads terminates (not necessarily
in the same order) at the bottom of the rectangle. To achieve this, the threads
in one repeat of the pattern must not have a net drift to the right or left. See
[7] for a more detailed discussion of this thread conservation property.

To formulate the thread conservation property in a mathematically precise
way, we require additional terminology and some observations resulting from
(C1, C2, C3) which we will describe in the next section.

2.2 Osculating Circuits and Thread Conservation

Fix a digraph G with a combinatorial embedding such that (C1, C2, C3) hold.
There are two ways in which edges can be arranged at a vertex v with indeg(v) =
outdeg(v) = 2: Either rotationally alternating in which edges alternate between
incoming and outgoing directions or rotationally consecutive with edges in the
order incoming, incoming, outgoing, outgoing. Irvine and Ruskey [7] showed that
the following condition is necessary for (C3):

C3′. At all vertices of G, the outgoing arcs are rotationally consecutive.

Under (C3′), we define the left/right incoming/outgoing edges of v as follows:
going in clockwise order around v, we encounter first the left outgoing edge,
then the right outgoing edge, then the right incoming edge and finally the left
incoming edge. Consider two edge-disjoint directed circuits C1, C2 that have a

144 T. Biedl and V. Irvine

vertex v in common. There are two possible ways in which C1 and C2 can meet
at v. In an osculating intersection these circuits only touch (“kiss”), i.e., both
incoming and outgoing edges of C1 are on the left side of v and the edges of C2

are on the right side of v (or vice versa). In contrast, at a transverse intersection
the circuits truly cross, i.e., C1 enters from the left side of v and exits from the
right, C2 enters from the right and exits from the left (or vice versa).

Lemma 2. Presume (C1,C2,C3′) hold. The edges of G can be partitioned into
a set P(G) of disjoint directed circuits such that no two circuits in P(G) have a
transverse intersection. Furthermore, this partition is unique and can be found
in linear time.

Proof. Arbitrarily select an edge e1 of G as the start of a circuit P1. If this edge
is left incoming at its head v, then let e2 be the left outgoing edge at v, else let
e2 be the right outgoing edge at v. Put differently, e1 and e2 are on the “same
side” of v. Append e2 to P1 and repeat the operation at the head of e2. Since the
graph is finite, we eventually must close the circuit P1; this is the first element
of the partition P(G). In fact, circuit P1 must exactly finish at edge e1, because
for any edge the rule of “stay on the same side” uniquely determines the edge
before and after in the circuit.

Now select some edge f1 of G that was not in P1, and repeat the process
starting at f1. The new circuit P2 will not contain an edge of P1 by the same
“stay on the same side” rule. Thus we obtain the next circuit in the partition.
Repeat until all edges belong to some circuit. Since there is never a choice about
which next edge to take, the partition is unique. Each edge is visited exactly
once resulting in a linear runtime. ��

We call the circuits in P(G) the osculating circuits of G, see also Fig. 1(c). We
distinguish two cases of P(G) based on whether or not the osculating circuits
are simple directed cycles. It turns out that when a circuit visits a vertex twice,
P(G) has a trivial structure.

Lemma 3. Presume (C1–C3) hold. If some osculating circuit P ∈ P(G) visits
a vertex twice, then P is the only element in P(G).

Proof. Follow P1 ∈ P(G), a non-simple osculating directed circuit, until the first
time a vertex v ∈ P1 is reached for the second time. P1 can be partitioned into
a simple directed cycle C ′ (by taking the part from v to v that we just followed)
and a directed circuit C ′′ (the rest of P1). Both C ′ and C ′′ are incident to v.

Fix an arbitrary drawing of G on the torus T . By (C3) C ′ is non-contractible,
so cutting T along C ′ produces a cylinder. The cut will split v into two vertices,
v′ and v′′, one on each boundary of the cylinder.

Because of the osculating construction of P1, C ′ and C ′′ must intersect trans-
versely at v (otherwise, P1 would have terminated the first time it returned to v).
Thus C ′′ contains an incident edge at each of the two copies, v′ and v′′, of v.
Taking the subpath D of C ′′ between v′ and v′′, we obtain a path that travels
on the cylinder from one boundary to the other. Cutting along D will cut the
cylinder into one or more disks.

Drawing Bobbin Lace Graphs, or, Fundamental Cycles 145

Now consider some other circuit Pi ∈ P(G), Pi �= P1. It cannot have a trans-
verse crossing with either C ′ or C ′′, because P1 and Pi are osculating circuits.
Therefore, it intersects neither C ′ nor D and we can conclude that Pi resides
entirely within (or on the boundary) of one of the disks of T − C ′ − D. But
then Pi is a contractible directed circuit, a contradiction. So P(G) contains no
osculating circuits other than P1. ��

The osculating partition can contain more than one element, see Fig. 1(c). It
follows from the previous lemma that if |P(G)| > 1, then all circuits in P(G)
must be simple directed cycles.

In a transverse intersection under (C3′), if C1 uses the left incoming (and
right outgoing) edge of v we say that C1 crosses C2 left-to-right at v. Summing
over all shared vertices, we define the algebraic crossing number of two circuits
C1 and C2 to be:

î(C1, C2) = #{C1 crosses C2 left-to-right} − #{C1 crosses C2 right-to-left}

Finally, using the following well known lemma, we can make a statement
about the homotopy class of the osculating circuits in P(G):

Lemma 4. [9, p. 209] Two closed simple curves C,C ′ have î(C,C ′) = 0 if and
only if they belong to the same homotopy class.

Lemma 5. If (C1–C3) hold, then all directed cycles Pi ∈ P(G) belong to the
same homotopy class.

Proof. If P(G) contains a non-simple circuit then, by Lemma 3, it is the only
member of P(G) and the claim holds trivially. Otherwise, the osculating circuits
of P(G) are all simple closed curves. None of them intersect transversally, which
means that î(Pi, Pj) = 0 for all pairs of osculating circuits i �= j. This proves
the result by Lemma 4. ��

A (canonical) polygonal schema for a toroidal graph consists of two funda-
mental cycles (called the meridian M and the longitude L) such that M and L
intersect in exactly one point. Cutting G along the edges of M ∪ L will result in
a topological disk. A circuit C belongs to homotopy class (m, �) (with respect to
a fixed polygonal schema) if î(C,L) = m and î(C,M) = �.

With these terms in place, we can now state the thread conservation property
via the following constraint:

C4. There exists a meridian M , a longitude L and a partition P(G) of edges into
osculating directed circuits such that each circuit in the partition is in the
(1, 0)-homotopy class.

The (1, 0)-homotopy class restriction ensures that at each upward repeat all
thread pairs return to the same left-right starting position. The thread conser-
vation property is impossible to formulate as a condition of the combinatorial
embedding because the homotopy class is affected by how the graph is drawn on

146 T. Biedl and V. Irvine

Fig. 2. A Dehn twist changes a valid lace graph on left into an invalid one on right.
(Color figure online)

the torus. In particular, consider Fig. 2 which shows two drawings of the same
graph on the torus differing by a homeomorphism known as a Dehn twist. Both
drawings have the same combinatorial embedding, yet on the left side of Fig. 2
the red (bold) osculating circuit returns to its starting point while on the right
side of the figure the osculating circuit drifts to the right.

Clearly, thread conservation demands that we fix more than the combinato-
rial embedding of the graph. However, based only on the combinatorial embed-
ding, we can make a statement about the existence of a suitable graph drawing:

Lemma 6. Given a digraph G that satisfies (C1–C3), there exists a drawing of
G for which (C4) holds.

Proof. By the Dehn-Lickorish theorem (see e.g. [5]) there exists a homeomor-
phism that maps any simple, non-contractible cycle to the (1, 0) homotopy class
of the torus. By Lemma 5, such a homeomorphism will map all elements in P(G)
to the desired homotopy class. ��

The main contribution of this paper is a linear time algorithm for finding such
a drawing:

Theorem 1. Given a digraph G that satisfies (C1–C3), we can draw a lace
pattern in linear time. The drawing resides in an O(n4) × O(n4)-grid.

Proof. In Sect. 3, we provide an algorithm for finding a polygonal schema to sat-
isfy (C4) for any digraph G that satisfies (C1–C3). We then use known algorithms
([1,4]) for straight-line rectangular-frame drawings to create a lace pattern in the
required time and space. ��

3 Finding a Polygonal Schema

In general, finding a polygonal schema with vertex-disjoint interiors is NP-
hard [4]. However, for the purpose of drawing the lace-pattern, we do not need to
find a polygonal schema within the given graph; it suffices (and in fact, is prefer-
able) to add vertices and edges to the graph and find a polygonal schema within
the additions. In this manner, the original edges of G are not on the schema
boundary giving more freedom to where they can be placed. In this section we
describe how to find such a supergraph with O(n) nodes.

Drawing Bobbin Lace Graphs, or, Fundamental Cycles 147

DrawLacePattern Algorithm

A. Partition G into a set P(G) of osculating circuits and select one directed
circuit P ∗ from the set.

B. Create the offset graph O(G).
C. Find a simple cycle M in O(G) such that î(M,P ∗) = 0 and M intersects

every edge of G at most once.
D. Find a simple cycle L in O(G) such that î(L,P ∗) = ±1, M and L

intersect exactly once, and L intersects every edge of G at most once.
E. Use existing torus-drawing techniques to draw G on a rectangle with

meridian M and longitude L.

All steps are linear or constant time, and step E. will create a drawing of the
required size, proving the theorem. Step A. was explained in Sect. 2.2 already;
all other steps are explained below.

Creating the offset graph: We first create an offset graph O(G) in which we
will choose a suitable meridian M and longitude L. Roughly speaking, O(G) is
obtained by creating two copies of every osculating circuit P in P(G), which
we will represent as

....
P (used to find M) and P (used to find L). In each copy,

the circuits are separated (they do not share vertices as they do in G) and are
simple cycles. The copies lie on top of G introducing crossings which we remove
by inserting dummy vertices. Finally, for the simple cycles of P , we connect the
two halves of each vertex, split in the process of separating osculating paths, by
introducing “crossover-edges”.

)c()a()b(

v....
v� v�

....
vr vr

vc

Fig. 3. Create offset graph. (a) Close-up near a vertex showing
....
P (thick, dashed,

square, orange), P (thick, solid, triangle, green), crossover-edges (thin, solid, purple)
and shortcut-edges (thin, dotted, blue). (b) Offset graph of non-simple osculating cir-
cuit. (c) Offset graph with multiple simple osculating cycles. (Color figure online)

Figure 3 illustrates two such toroidal graph embeddings O(G), with O(n)
vertices and edges, which we will now define formally. The left-face of a directed
edge v → w is the face to the left of it while walking from v to w. For each
vertex in O(G) we define f�(v) to be the left-face of the left incoming and left
outgoing edges of v, fr(v) to be the right-face of the right incoming and right
outgoing edges of v, and fc(v) to be the face incident to the left incoming and
right incoming edges of v.

148 T. Biedl and V. Irvine

– Initially, O(G) contains all vertices and edges of G, embedded as in G.
– For every vertex v ∈ V (G), add four new vertices

v� , v�,
....
vr , vr. Place

v� , v�

in f�(v) such that v� is closer to the left incoming edge than
v� . Place

vr , vr

in fr(v) such that
vr is closer to the right incoming edge than vr.

– For every edge e = v → w ∈ E(G), we add two new edges
....
e and e. If e is

left outgoing at v, then
....
e starts at

v� and e starts at v�, else
....
e starts at

vr

and e starts at vr. If e is left incoming at w, then
....
e ends at

w� and e ends
at w�, else

....
e ends at

wr and e ends at wr.
– Note that edge e ∈ E(G) may be intersected by its copies

....
e and e. This

occurs, for example, when e is right outgoing at its tail and left incoming
at its head. We remove these crossings (so that we again have a toroidal
embedding) in the standard way by inserting dummy vertices that subdivide
e,

....
e , e. (In the following descriptions, we will ignore these dummy-vertices,

and speak of an edge e, even though it has become a path with 3 edges.)
– For every osculating circuit P there are now two circuits

....
P and P , using

for each edge e ∈ P the corresponding edges
....
e and e. Note that

....
P and

P are simple, even if P is not. When P visits a vertex v twice, once via the
incoming left and outgoing left edges of v and once via the incoming right and
outgoing right edges of v, the corresponding

....
P visits

v� and
vr respectively

and similarly P visits v� and vr. Due to the order of the copies near v,
....
P

and P do not cross.
– Next add the crossover-edge ev = (v�, vr) for each vertex v ∈ V . To obtain

a toroidal embedding, route this edge so that it crosses three edges: the two
incoming edges of G at v and the edge

....
e that is incoming to

vr . These
crossings are again replaced by dummy-vertices. In the crossover-edge insert
a vertex vc in the face fc(v).

– For a straight-line drawing, an edge e in E(G) must not cross the rectangular
frame twice. Consider an edge e that crosses e = v → w where e originates
inside the face fc(w), say e = vr → w�. It may happen that the chosen
longitude L contains e followed by the crossover-edge ew = (w�, wr) resulting
in a double crossing of e by L. To avoid this situation, we add a shortcut-
edge to O(G) that connects a point on e inside fc(w) to wc. Note that any
circuit using e ew acts the same (with respect to algebraic crossing numbers)
as a circuit shortened via the shortcut-edge, since all other crossings are
unaffected.

Finding the meridian: In step A. we selected an osculating circuit P ∗. Define
M to be the copy

....
P ∗ of circuit P ∗ in the offset graph (Fig. 4(a)). M is a simple

cycle. It may cross P ∗ repeatedly but it does so only by switching back and forth
between being left of P ∗ and right of P ∗. In other words, î(P ∗,M) = 0 as desired.
Finally M intersects every edge of G at most once by construction of

....
P .

Finding the longitude: Define L(G) to be the subgraph of O(G) taking only
the copies P of osculating circuits, the crossover-edges, and the shortcut-edges.
We claim that we can find a suitable longitude in L(G). The algorithm is quite
simple (find a shortest path within L(G), with some edges removed), but arguing
that it works is not.

Drawing Bobbin Lace Graphs, or, Fundamental Cycles 149

Case (1) Circuit P ∗: First consider the easier case in which P ∗ is not simple
and is therefore, by Lemma 3, the only element in P(G). Let v be a vertex visited
twice by P ∗, hence v� and vr both belong to P ∗. Define L∗ to be a subpath of
P ∗ between v� and vr and L̂ to be L∗ plus the crossover-edge (vr, v�). We have
constructed P ∗ such that it does not intersect

....
P ∗. So L∗ does not intersect M .

The crossover-edge (vr, v�) intersects M exactly once. Therefore, L̂ intersects M
exactly once as desired.

L∗ and P ∗ may intersect numerous times between v� and vr. But v� is to
the left of P ∗ while vr is to the right, so in total L∗ has one more left-to-right
intersection than right-to-left-intersection. The crossover-edge (vr, v�) intersects
both incoming edges at v, and both of these edges belong to P ∗. This adds two
more right-to-left intersections, and so in total î(L̂, P ∗) = −1 as desired.

Case (2) Simple P ∗: If P ∗ is simple then we find L using a path that connects
“both sides” of P ∗ without crossing P ∗. The existence of such a path is non-
trivial, and crucially needs condition (C2), i.e., that the embedding is cellular.
Specifically, we show:

Lemma 7. Presume (C1–C3) hold. Let P be a directed osculating cycle. Then
there exists a directed walk W in G that starts at a vertex v ∈ P with a left
outgoing edge e1 �∈ P , ends at a vertex w ∈ P with a right incoming edge ek �∈ P ,
and has no transverse intersection or shared edges with P .

Proof. (Sketch) The edge e1 must exist otherwise the directed cycle P would
bound a face, contradicting (C2) or (C3). One can now argue that starting from
e1 and always taking the left outgoing edge, we must reach such an edge ek or
find a contradiction to (C2). Details are in the full version. ��

Let Q be such a walk in G from v ∈ P ∗ to w ∈ P ∗, shortened by eliminating
directed cycles (if any) so that it becomes a simple path. We obtain the longitude
L by “translating” Q into L(G) and adding a subpath of P ∗ (Fig. 4(b) and (c)).

Note that the directed edges of Q need not be rotationally consecutive.
For example, ei ∈ E(Q) may be right incoming at its head vertex x while
ei+1 ∈ E(Q) may be left outgoing at its tail vertex x. If x �∈ P ∗ then we
can can add the crossover-edge (x�, xr) to connect ei and ei+1 without crossing
M =

....
P ∗. If x ∈ P ∗ but ei �∈ P ∗ and ei+1 �∈ P ∗ then no crossover-edge is required

because ei and ei+1 are rotationally consecutive. It is not possible to have x ∈ P ∗

and only one of ei ∈ P ∗ or ei+1 ∈ P ∗ because of the way in which Q is defined.
Formally, let Q = e1, . . . , ek be a simple path in G − E(P ∗) from v ∈ P ∗ to

w ∈ P ∗ and let L− = e1, . . . , ek be a simple path using the corresponding edges
in L(G) and crossover-edges as needed. L− begins at v� since e1 is left outgoing
and ends at wr since ek is right incoming. Define L∗ to be the subpath of P ∗
connecting w� to vr. Finally, define L̂ to be the simple cycle consisting of L−,
crossover-edge (wr, w�), L∗ and crossover-edge (vr, v�).

Note that L− and L∗ never cross the meridian M =
....
P ∗. The only place

where L̂ can intersect M is at the two crossover-edges (vr, v�) and (wr, w�). We
claim that exactly one of them intersects

....
P ∗. To see this, recall that P ∗ uses the

150 T. Biedl and V. Irvine

right incoming and outgoing edge at v and the left incoming and outgoing edge
at w. The order of vertices in the vicinity of v is

v� , v�, v,
....
vr , vr, and

....
P ∗ uses

vr ,
so (vr, v�) crosses

....
P ∗. On the other hand the order of vertices in the vicinity of

w is
w�, w�, w,

....
wr, wr, and

....
P ∗ uses

w�, so (wr, w�) does not cross
....
P ∗. Therefore,

L and M cross exactly once as desired.
To see that î(L̂, P ∗) = ±1, observe that L− has no transverse intersections

with P ∗ and so contributes nothing. L∗ may intersect P ∗ repeatedly, alternat-
ingly from left to right and from right to left, however, L∗ starts on the left side
of P ∗ at w� and ends on the right side of P ∗ at vr, so it has a net of one left
to right crossing. The crossover-edges (wr, w�) and (vr, v�) are both right to left
crossings. Thus L̂ has one more crossing from right to left than it has crossings
from left to right, yielding î(L̂, P ∗) = −1 as desired.

Fig. 4. (a) M is a shifted copy of P ∗. (b) L exits from the left side of M at e1 and
returns on the right side of M at ek. Loops where shortcuts are required are shaded
purple. (c) Connect e1 to ek following P ∗. (Color figure online)

Applying shortcuts: As desired, the simple cycle L̂ intersects M once and has
î(L̂, P ∗) = ±1. However, L̂ may intersect an edge e of G repeatedly. This happens
only when e transversely crosses e, and a crossover-edge at the tail of e follows
immediately after. Let L be the simple cycle obtained from L̂ by substituting the
shortcut-edge at any such edge e. This has the same algebraic crossing number
with P ∗, still crosses M exactly once, and is a suitable longitude.

We finally remark that the simplest way to find L is as follows. Start with
graph L(G) and remove all dummy-vertices that lie on

....
P ∗. This effectively dis-

allows any path in L(G) that crosses M . Pick any vertex v ∈ P ∗ and, in what
remains of L(G), find a shortest path L− from v� to vc (the vertex within the
crossover-edge (vr, v�)). Finally add the edge (vc, v�) to close the cycle into a
suitable longitude L.

Drawing the graph: Let T (G) be the graph obtained from O(G) by remov-
ing all edges that do not belong to G,M or L and smoothing any degree-2
vertices. T (G) has a natural embedding on a torus with a well defined merid-
ian and longitude. Cut T (G) along L to form graph C(G) which has a natural
embedding on a cylinder with top and bottom boundaries Lt and Lb. Cut C(G)

Drawing Bobbin Lace Graphs, or, Fundamental Cycles 151

along M to obtain a planar graph R(G) with a natural embedding on a rect-
angle whose top/right/bottom/left sides are formed by the four boundary-paths
Lt/Mr/Lb/M�.

In our construction, we have been careful to ensure that boundary-cycles do
not cross an edge of G more than once. As a consequence, we can now apply
known algorithms for straight-line rectangular-frame drawings to R(G). The
first such algorithm was given by Duncan et al. [4] and creates a drawing in an
O(n) × O(n2)-grid in linear time. Unfortunately, the algorithm does not neces-
sarily produce a periodic drawing. We therefore turn to the drawing algorithm
of Aleardi et al. [2], a modification of the algorithm of Duncan et al. which
ensures periodic drawings. This is still achieved in linear time but at the cost of
increasing the grid-size to O(n4) × O(n4)-grid. This proves Theorem 1.

4 Discussion and Open Problems

In this paper we provide an algorithm to generate a lace pattern given a directed
graph and a fixed combinatorial embedding that satisfy the conditions (C1–C3).
Our main challenge was to produce a graph drawing such that the threads in the
pattern weave back and forth within a fixed width (follow a directed circuit that
wraps once around the minor meridian axis and zero times around the major
longitude axis). It turns out that if (C1–C3) are satisfied we can easily define a
supergraph of linear size supporting a suitable rectangular schema and extract
the schema in linear time. With care, we can sure that neither the meridian nor
longitude of the schema intersects an edge of the graph twice, allowing us to
reuse existing graph drawing techniques.

Our drawings are still somewhat unsatisfying for use as lace patterns. Con-
sider an edge e ∈ E(G) that crosses the rectangular schema, say the horizontal
border L. The edge is broken into two parts et and eb, where et intersects the top
of the rectangle along Lt and eb intersects the bottom along Lb. The algorithm
of Aleardi et al. [2] ensures that the end points of et and eb on L have the same
x-coordinate but for e to be truly seen as “one edge”, et and eb should also have
the same slope. The bend is clearly visible when viewing several tiled repeats
of the pattern as shown in Fig. 5. At the current time, we cannot see a way to
simultaneously satisfy the topological (1, 0) homotopy constraint enforced by the
rectangular representation and provide smooth continuity of edges across this
rectangular boundary.

Fig. 5. Unwanted bends along border. (a) Result of algorithm. (b) Desired result.

152 T. Biedl and V. Irvine

References

1. Castelli Aleardi, L., Devillers, O., Fusy, É.: Canonical ordering for triangulations on
the cylinder, with applications to periodic straight-line drawings. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 376–387. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36763-2 34

2. Castelli Aleardi, L., Fusy, É., Kostrygin, A.: Periodic planar straight-frame drawings
with polynomial resolution. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol.
8392, pp. 168–179. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54423-1 15

3. Belcastro, S.M., Yackel, C.: Making Mathematics with Needlework: Ten Papers and
Ten Projects. AK Peters, Natick (2008)

4. Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Planar drawings of higher-genus
graphs. J. Graph Algorithms Appl. 15(1), 7–32 (2011)

5. Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton University
Press, Princeton (2011)

6. Grishanov, S., Meshkov, V., Omelchenko, A.: A topological study of textile struc-
tures. part I: an introduction to topological methods. Text. Res. J. 79(8), 702–713
(2009)

7. Irvine, V., Ruskey, F.: Developing a mathematical model for bobbin lace. J. Math.
Arts 8(3–4), 95–110 (2014)

8. Mohar, B., Thomassen, C.: Graphs on Surfaces. John Hopkins University Press,
Baltimore (2001)

9. Stillwell, J.: Classical Topology and Combinatorial Group Theory. GTM, vol. 72.
Springer-Verlag, New York (1980)

https://doi.org/10.1007/978-3-642-36763-2_34
https://doi.org/10.1007/978-3-642-54423-1_15
https://doi.org/10.1007/978-3-642-54423-1_15

Many Touchings Force Many Crossings

János Pach1,2 and Géza Tóth2(B)

1 École Polytechnique Fédérale de Lausanne, St. 8, 1015 Lausanne, Switzerland
2 Rényi Institute, Hungarian Academy of Sciences,

POB 127, Budapest 1364, Hungary
pach@cims.nyu.edu, geza@renyi.hu

Abstract. Given n continuous open curves in the plane, we say that
a pair is touching if they have only one interior point in common and
at this point the first curve does not get from one side of the second
curve to its other side. Otherwise, if the two curves intersect, they are
said to form a crossing pair. Let t and c denote the number of touching

pairs and crossing pairs, respectively. We prove that c ≥ 1
105

t2

n2 , provided
that t ≥ 10n. Apart from the values of the constants, this result is best
possible.

Keywords: Planar curves · Touching · Crossing

1 Introduction

In the context of the theory of topological graphs and graph drawing, many
interesting questions have been raised concerning the adjacency structure of a
family of curves in the plane or in another surface [5]. In particular, during the
past four decades, various important properties of string graphs (i.e., intersection
graphs of curves in the plane) have been discovered, and the study of different
crossing numbers of graphs and their relations to one another has become a vast
area of research. A useful tool in these investigations is the so-called crossing
lemma of Ajtai, Chvátal, Newborn, Szemerédi and Leighton [1,7]. It states the
following: Given a graph of n vertices and e > 4n edges, no matter how we draw
it in the plane by not necessarily straight-line edges, there are at least constant
times e3/n2 crossing pairs of edges.

This lemma has inspired a number of results establishing the existence of
many crossing subconfigurations of a given type in sufficiently rich geometric or
topological structures [2,6,10–12].

In this note, we will be concerned with families of curves in the plane. By
a curve, we mean a non-selfintersecting continuous arc in the plane, that is, a
homeomorphic image of the open interval (0, 1). Two curves are said to touch
each other if they have precisely one interior point in common and at this point
the first curve does not pass from one side of the second curve to the other. Any
other pair of curves with nonempty intersection is called crossing. A family of

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 153–159, 2018.
https://doi.org/10.1007/978-3-319-73915-1_13

154 J. Pach and G. Tóth

curves is in general position if any two of them intersect in a finite number of
points and no three pass through the same point.

Let n be even, t be a multiple of n, and suppose that n ≤ t < n2

4 . Consider
a collection A of n − 2t

n > n
2 pairwise disjoint curves, and another collection B

of 2t
n curves such that

(i) A ∪ B is in general position,
(ii) each element of B touches precisely n

2 elements of A, and
(iii) no two elements of B touch each other.

The family A ∪ B consists of n curves such that the number of touching pairs
among them is t. The only pairs of curves that may cross each other belong to
B. Thus, the number of crossing pairs is at most

(
2t/n
2

) ≤ 2t2

n2 . See Fig. 1.

n/2

2t/n
B

A

Fig. 1. A set of n curves with t touching pairs and at most 2t2

n2 crossing pairs.

The aim of the present note is to prove that this construction is optimal up
to a constant factor, that is, any family of n curves and t touchings has at least
constant times t2

n2 crossing pairs.

Theorem 1. Consider a family of n curves in general position in the plane
which determines t touching pairs and c crossing pairs.

If t ≥ 10n, then we have c ≥ 1
105

t2

n2 . This bound is best possible up to a
constant factor.

We make no attempt to optimize the constants in the theorem.
Pach et al. [8] established a similar relationship between t, the number of

touching pairs, and C, the number of crossing points between the curves. They
proved that C ≥ t(log log(t/n))δ, for an absolute constant δ > 0. Obviously, we
have C ≥ c. There is an arrangement of n red curves and n blue curves in the
plane such that every red curve touches every blue curve, and the total number
of crossing points is C = Θ(n2 log n); cf. [4]. Of course, the number of crossing
pairs, c, can never exceed

(
n
2

)
.

Between n arbitrary curves, the number of touchings t can be as large as
(34 + o(1))

(
n
2

)
; cf. [9]. However, if we restrict our attention to algebraic plane

curves of bounded degree, then we have t = O(n3/2), where the constant hidden
in the notation depends on the degree [3].

Many Touchings Force Many Crossings 155

2 Proof of Theorem

We start with an easy observation.

Lemma. Given a family of n ≥ 3 curves in general position in the plane, no
two of which cross, the number of touchings, t, cannot exceed 3n − 6.

Proof. Pick a different point on each curve. Whenever two curves touch each
other at a point p, connect them by an edge (arc) passing through p. In the
resulting drawing, any two edges that do not share an endpoint are represented
by disjoint arcs. According to the Hanani-Tutte theorem [13], this means that the
underlying graph is planar, so that its number of edges, t, satisfies t ≤ 3n− 6. �
Proof of Theorem. We proceed by induction on n. For n ≤ 20, the statement is
void. Suppose that n > 20 and that the statement has already been proved for
all values smaller than n.

We distinguish two cases.

CASE A: t ≤ 10n3/2.
In this case, we want to establish the stronger statement

c ≥ 1
104

t2

n2
.

By the assumption, we have

1
104

t2

n2
≤ n

100
. (1)

Let Gt (resp., Gc) denote the touching graph (resp., crossing graph) associated
with the curves. That is, the vertices of both graphs correspond to the curves,
and two vertices are connected by an edge if and only if the corresponding curves
are touching (resp., crossing).

Let T be a minimal vertex cover in Gc, that is, a smallest set of vertices
of Gc such that every edge of Gc has at least one endpoint in T . Let τ = |T |.
Let U denote the complement of T . Obviously, U is an independent set in Gc.
According to the Lemma, the number of edges in Gt[U], the touching graph
induced by U , satisfies

|E(Gt[U])| < 3|U | ≤ 3n. (2)

By the minimality of T , Gc has at least |T | = τ edges. That is, we have
c ≥ τ , so we are done if τ ≥ 1

104
t2

n2 .
From now on, we can and shall assume that τ < 1

104
t2

n2 . By (1), we have
1

104
t2

n2 ≤ n
100 . Hence, |T | ≤ n

100 and

|U | = n − |T | ≥ 99n

100
. (3)

Let U ′ ⊆ U denote the set of all vertices in U that are not isolated in the
graph Gc. By the definition of T , all neighbors of a vertex v ∈ U in Gc belong
to T . If |U ′| ≥ 1

104
t2

n2 , then we are done, because c ≥ |U ′|.

156 J. Pach and G. Tóth

T (cover)
|T|= τ

U(isolated)0U

Gc

Fig. 2. Graph Gc.

Therefore, we can assume that

|U ′| <
1

104
t2

n2
≤ n

100
, (4)

where the second inequality follows again by (1) (Fig. 2).
Letting U0 = U \ U ′, by (3) and (4) we obtain |U0| = |U | − |U ′| ≥ 98n

100 .
Clearly, all vertices in U0 are isolated in Gc.

Suppose that Gt[T ∪ U ′] has at least t
10 edges. Consider the set of curves

T ∪ U ′. We have n0 = |T ∪ U ′| ≤ 2n
100 and, the number of touchings, t0 =

|E(Gt[T ∪ U ′])| ≥ t
10 . Therefore, by the induction hypothesis, for the number

of crossings we have c0 = |E(Gc[T ∪ U ′])| ≥ 1
105

t20
n2
0

≥ 1
104

t2

n2 and we are done.
Hence, we assume in the sequel that Gt[T ∪ U ′] has fewer than t

10 edges.
Consequently, for the number of edges in Gt running between T and U0, we

have

|E(Gt[T,U0])| ≥ t − |E(Gt[T ∪ U ′])| − |E(Gt[U0 ∪ U ′])| ≥ t − t

10
− 3n >

t

2
. (5)

Here we used the assumption that t ≥ 10n.
Let χ = χ(Gc[T]) denote the chromatic number of Gc[T]. In any coloring of

a graph with the smallest possible number of colors, there is at least one edge
between any two color classes. Hence, Gc[T] has at least

(
χ
2

) ≥ 1
104

t2

n2 edges, and
we are done, provided that χ > 1

70 · t
n .

Thus, we can suppose that

χ = χ(Gc[T]) ≤ 1
70

· t

n
. (6)

Many Touchings Force Many Crossings 157

Consider a coloring of Gc[T] with χ colors, and denote the color classes
by I1, I2, . . . , Iχ. Obviously, for every j, Ij ∪ U0 is an independent set in Gc.
Therefore, by the Lemma, Gt[Ij ∪U0] has at most 3n edges. Summing up for all
j and taking (6) into account, we obtain

|E(Gt[T,U0])| ≤
χ∑

j=1

|E(Gt[Ij ∪ U0])| ≤ 1
70

· t

n
3n ≤ t

20
,

contradicting (5). This completes the proof in CASE A.

CASE B: t ≥ 10n3/2. Set p = 10n3

t2 ≤ 1
10 . Select each curve independently with

probability p. Let n′, t′, and c′ denote the number of selected curves, the number
of touching pairs, and the number of crossing pairs between them, respectively.
Clearly,

E[n′] = pn, E[t′] = p2t, E[c′] = p2c. (7)

The number of selected curves, n′, has binomial distribution, therefore,

Prob[|n′ − pn| >
1
4
pn] <

1
3
. (8)

By Markov’s inequality,

Prob[c′ > 3p2c] <
1
3
. (9)

Consider the touching graph Gt. Let d1, . . . , dn denote the degrees of the
vertices of Gt, and let e1, . . . , et denote its edges, listed in any order. We say
that an edge ei is selected (or belongs to the random sample) if both of its
endpoints were selected. Let Xi be the indicator variable for ei, that is,

Xi =
{

1 if ei was selected,
0 otherwise.

We have E[Xi] = p2. Let t′ =
∑t

i=1 Xi. It follows by straightforward com-
putation that for every i,

var[Xi] = E[(Xi − E[Xi])2] = p2 − p4,

If ei and ej have a common endpoint for some i �= j, then

cov[Xi,Xj] = E[XiXj] − E[Xi]E[Xj] = p3 − p4.

If ei and ej do not have a common vertex, then Xi and Xj are independent
random variables and cov[Xi,Xj] = 0. Therefore, we obtain

158 J. Pach and G. Tóth

σ2 = var[t′] =
t∑

i=1

var[Xi] +
∑

1≤i�=j≤t

cov[Xi,Xj]

= (p2 − p4)t + (p3 − p4)
n∑

i=1

di(di − 1) < p2t + 2p3nt.

From here, we get σ <
√

p2t+
√

2p3nt < p2t = E[t′]. By Chebyshev’s inequality,

Prob[|t′ − p2t| ≥ λσ] ≤ 1
λ2

.

Setting λ = 1
4 ,

Prob[|t′ − p2t| ≥ p2t

4
] ≤ 1

42
<

1
3
. (10)

It follows from (8), (9), and (10) that, with positive probability, we have

|n′ − pn| ≤ 1
4
pn, c′ ≤ 3p2c, |t′ − p2t| ≤ 1

4
p2t. (11)

Consider a fixed selection of n′ curves with t′ touching pairs and c′ crossing
pairs for which the above three inequalities are satisfied. Then we have

t′ ≥ 3
4
p2t =

300
4

· n6

t3
,

n′ ≤ 5
4
pn =

50
4

· n4

t2
,

and, hence,

t′ ≥ 6n2

t
n′ ≥ 10n′. (12)

On the other hand,

t′ ≤ 5
4
p2t =

500
4

· n6

t3
,

n′ ≥ 3
4
pn =

30
4

· n4

t2
,

so that

10(n′)3/2 ≥ 10 · 303/2

43/2
· n6

t3
> t′. (13)

According to (12) and (13), the selected family meets the requirements of the
Theorem in CASE A. Thus, we can apply the Theorem in this case to obtain
that c′ ≥ 1

104
t′2
n′2 . In view of (11), we have

3p2c ≥ c′, t′ ≥ 3
4
p2t, n′ ≤ 5

4
pn.

Many Touchings Force Many Crossings 159

Thus,

3p2c ≥ c′ ≥ 1
104

t′2

n′2 ≥ 1
104

(3p2t/4)2

(5pn/4)2
=

1
104

(
3
5

)2
p2t2

n2
.

Comparing the left-hand side and the right-hand side, we conclude that

c ≥ 1
105

t2

n2
,

as required. This completes the proof of the Theorem. �

Acknowledgment. The work of János Pach was partially supported by Swiss
National Science Foundation Grants 200021-165977 and 200020-162884. Géza Tóth’s
work was partially supported by the Hungarian National Research, Development and
Innovation Office, NKFIH, Grant K-111827.

References

1. Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs. In:
Theory and Practice of Combinatorics. North-Holland Mathematics Studies, vol.
60, pp. 9–12, North-Holland, Amsterdam (1982)

2. Dey, T.K.: Improved bounds on planar k-sets and related problems. Discrete Com-
put. Geom. 19, 373–382 (1998)

3. Ellenberg, J. S., Solymosi, J., Zahl, J.: New bounds on curve tangencies and orthog-
onalities. Discrete Anal., Paper No. 18, 22 pp. (2016)

4. Fox, J., Frati, F., Pach, J., Pinchasi, R.: Crossings between curves with many
tangencies. In: Rahman, M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942,
pp. 1–8. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11440-3 1

5. Fox, J., Pach, J.: A separator theorem for string graphs and its applications. Comb.
Probab. Comput. 19, 371–390 (2010)

6. Garćıa, A., Noy, M., Tejel, J.: Lower bounds on the number of crossing-free sub-
graphs of Kn. Comput. Geom. 16(4), 211–221 (2000)

7. Leighton, T.: Complexity Issues in VLSI, Foundations of Computing Series. MIT
Press, Cambridge (1983)

8. Pach, J., Rubin, N., Tardos, G.: Beyond the Richter-Thomassen Conjecture. In:
Proceedings of 27th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, pp. 957–968. SIAM (2016)

9. Pach, J., Tóth, G.: How many ways can one draw a graph? Combinatorica 26(5),
559–576 (2006)

10. Sharir, M.: The Clarkson-Shor technique revisited and extended. Comb. Prob.
Comput. 12(2), 191–201 (2003)

11. Solymosi, J., Tóth, C.D.: Distinct distances in the plane. Discrete Comput. Geom.
25(4), 629–634 (2001)

12. Székely, L.A.: Crossing numbers and hard Erdős problems in discrete geometry.
Comb. Prob. Comput. 6(3), 353–358 (1997)

13. Tutte, W.T.: Toward a theory of crossing numbers. J. Comb. Theory 8, 45–53
(1970)

https://doi.org/10.1007/978-3-642-11440-3_1

Thrackles: An Improved Upper Bound

Radoslav Fulek1(B) and János Pach2,3

1 IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
radoslav.fulek@gmail.com

2 École Polytechnique Fédérale de Lausanne,
Station 8, 1015 Lausanne, Switzerland

pach@cims.nyu.edu
3 Rényi Institute, Hungarian Academy of Sciences,

P.O. Box 127, Budapest 1364, Hungary

Abstract. A thrackle is a graph drawn in the plane so that every pair
of its edges meet exactly once: either at a common end vertex or in a
proper crossing. We prove that any thrackle of n vertices has at most
1.3984n edges. Quasi-thrackles are defined similarly, except that every
pair of edges that do not share a vertex are allowed to cross an odd
number of times. It is also shown that the maximum number of edges of
a quasi-thrackle on n vertices is 3

2
(n − 1), and that this bound is best

possible for infinitely many values of n.

1 Introduction

Conway’s thrackle conjecture [8] is one of the oldest open problems in the theory
of topological graphs. A topological graph is a graph drawn in the plane so that
its vertices are represented by points and its edges by continuous arcs connecting
the corresponding points so that (i) no arc passes through any point representing
a vertex other than its endpoints, (ii) any two arcs meet in finitely many points,
and (iii) no two arcs are tangent to each other. A thrackle is a topological graph
in which any pair of edges (arcs) meet precisely once. According to Conway’s
conjecture, every thrackle of n vertices can have at most n edges. This is anal-
ogous to Fisher’s inequality [3]: If every pair of edges of a hypergraph H have
precisely one point in common, then the number of edges of H cannot exceed
the number of vertices.

The first linear upper bound on the number of edges of a thrackle, in terms
of the number of vertices n, was established in [6]. This bound was subsequently
improved in [1,4], with the present record, 1.4n, held by Goddyn and Xu [5],
which also appeared in the master thesis of the second author [9]. One of the
aims of this note is to show that this latter bound is not best possible.

R. Fulek—Gratefully acknowledges support from Austrian Science Fund (FWF):
M2281-N35.
J. Pach—Supported by Swiss National Science Foundation Grants 200021-165977
and 200020-162884.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 160–166, 2018.
https://doi.org/10.1007/978-3-319-73915-1_14

Thrackles: An Improved Upper Bound 161

Theorem 1. Any thrackle on n > 3 vertices has at most 1.3984n edges.

Several variants of the thrackle conjecture have been considered. For
example, Ruiz-Vargas et al. [7] established a linear upper bound on the number
of edges even if two edges are allowed to be tangent to each other. The notion of
generalized thrackles was introduced in [6]: they are topological graphs in which
any pair of edges intersect an odd number of times, where each point of intersec-
tion is either a common endpoint or a proper crossing. A generalized thrackle in
which no two edges incident to the same vertex have any other point in common
is called a quasi-thrackle. We prove the following.

Theorem 2. Any quasi-thrackle on n vertices has at most 3
2 (n − 1) edges, and

this bound is tight for infinitely many values of n.

The proof of Theorem 1 is based on a refinement of parity arguments devel-
oped by Lovász et al. [6], by Cairns and Nikolayevsky [1], and by Goddyn and
Xu [5], and it heavily uses the fact that two adjacent edges cannot have any
other point in common. Therefore, one may suspect, as the authors of the present
note did, that Theorem 1 generalizes to quasi-thrackles. Theorem 2 refutes this
conjecture.

2 Terminology

Given a topological graph G in the projective or Euclidean plane, if it leads to
no confusion, we will make no distinction in notation or terminology between
its vertices and edges and the points and arcs representing them. A topological
graph with no crossing is called an embedding. A connected component of the
complement of the union of the vertices and edges of an embedding is called
a face. A facial walk of a face is a closed walk in G obtained by traversing a
component of the boundary of F . (The boundary of F may consist of several
components.) The same edge can be traversed by a walk at most twice; the length
of the walk is the number of edges counted with multiplicities. The edges of a
walk form its support.

A pair of faces, F1 and F2, in an embedding are adjacent (or neighboring)
if there exists at least one edge traversed by a facial walk of F1 and a facial
walk of F2. In a connected graph, the size of a face is the length of its (uniquely
determined) facial walk. A face of size k (resp., at least k or at most k) is called
a k-face (resp., k+-face and k−-face).

A cycle of a graph G is a closed walk along edges of G without vertex repe-
tition. (To emphasize this property, sometimes we talk about “simple” cycles.)
A cycle of length k is called a k-cycle.

A simple closed curve on a surface is said to be one-sided if its removal does
not disconnect the surface. Otherwise, it is two-sided. An embedding of a graph
G in the projective plane is called a parity embedding if every odd cycle of G
is one-sided and every even cycle of G is two-sided. In particular, in a parity
embedding every face is of even size.

162 R. Fulek and J. Pach

3 Proof of Theorem 1

For convenience, we combine two theorems from [2,6].

Corollary 1. A graph G is a generalized thrackle if and only if G admits a
parity embedding in the projective plane. In particular, any bipartite thrackle can
be embedded in the (Euclidean) plane.

Proof. If G is a non-bipartite generalized thrackle, then, by a result of Cairns
and Nikolayevsky [2, Theorem 2], it admits a parity embedding in the projective
plane.

On the other hand, Lovász et al. [6, Theorem 1.4] showed that a bipartite graph
is a generalized thrackle if and only if it is planar, in which case it can be embedded
in the projective plane so that every cycle is two-sided. �

The proof of the next lemma is fairly simple and is omitted in this version.

Lemma 1. A thrackle does not contain more than one triangle.

Next, we prove Theorem 1 for triangle-free graphs. Our proof uses a refine-
ment of the discharging method of Goddyn and Xu [5].

Lemma 2. Any triangle-free thrackle on n > 3 vertices has at most 1.3984(n−1)
edges.

Proof. Since no 4-cycle can be drawn as a thrackle, the lemma holds for graphs
with fewer than 5 vertices. We claim that a vertex-minimal counterexample to the
lemma is (vertex) 2-connected. Indeed, letG = G1∪G2, where |V (G1)∩V (G2)| <
2 ≤ |V (G1)|, |V (G2)|. Suppose that |V (G1)| = n′. By the choice of G, we have
|E(G)| = |E(G1)| + |E(G2)| ≤ 1.3984(n′ − 1) + 1.3984(n − n′) = 1.3984(n − 1).

Thus, we can assume that G is 2-connected. Using Corollary 1, we can embed
G as follows. If G is not bipartite, we construct a parity embedding of G in
the projective plane. If G is bipartite, we construct an embedding of G in the
Euclidean plane. Note that in both cases, the size of each face of the embedding
is even.

The following statement can be verified by a simple case analysis. It was
removed from the short version of this note.

Proposition 1. In the parity embedding of a 2-connected thrackle in the projec-
tive plane, the facial walk of every 8−-face is a cycle, that is, it has no repeated
vertex.

To complete the proof of Lemma 2, we use a discharging argument. Since G
is embedded in the projective plane, by Euler’s formula we have

e+ 1 ≤ n+ f (1)

where f is the number of faces and e is the number of edges of the embedding.

Thrackles: An Improved Upper Bound 163

We put a charge d(F) on each face F of G, where d(F) denotes the size of
F , that is, the length of its facial walk. An edge is called bad if it is incident to
a 6-face. Let F be an 8+-face. Through every bad edge uv of F , we discharge
from its charge a charge of 1/6 to the neighboring 6-face on the other side of uv.

We claim that every face ends up with a charge at least 7. Indeed, we proved
in [4] that in a thrackle no pair of 6-cycles can share a vertex. By Proposition 1,
G has no 8-face with 7 bad edges. Furthermore, every 8−-face is a 6-face or an
8-face, since in a parity embedding there is no odd face, and 4-cycles are not
thrackleable.

Proposition 2. Unless G has 12 vertices and 14 edges, no two 8+-faces that
share an edge can end up with charge precisely 7.

Proof. An 8-face F with charge 7 must be adjacent to a pair of 6-faces, F1 and
F2. By Proposition 1, the facial walks of F, F1, and F2 are cycles. Since G does
not contain a cycle of length 4, both F1 and F2 share three edges with F , or one
of them shares two edges with F and the other one four edges. Hence, any 8-face
F ′ adjacent to F shares an edge uv with F , whose both endpoints are incident
to a 6-face. If F ′ has charge 7, both edges adjacent to uv along the facial walk F ′

must be incident to a 6-face. By the aforementioned result from [4], these 6-faces
must be F1 and F2. By Proposition 1, the facial walk of F ′ is an 8-cycle. Since
F ′ shares 6 edges with F1 and F2, we obtain that G has only 4 faces F, F ′, F1,
and F2. �

In the case where G has 12 vertices and 14 edges, the lemma is true. By
Proposition 2, if a pair of 8+-faces share an edge, at least one of them ends up
with a charge at least 43/6. Let F be such a face. We can further discharge 1/24
from the charge of F to each neighboring 8+-face. After this step, the remaining
charge of F is at least 43

6 − 3 1
24 = 7 + 1

24 , which is possibly attained only by
an 8-face that shares 5 edges with 6-faces. Every 9+-face F ′ has charge at least
d(F ′) − d(F ′)

6 ≥ 7 + 1
2 .

In the last discharging step, we discharge through each bad edge of an 8+-
face an additional charge of 1/288 to the neighboring 6-face. At the end, the
charge of every face is at least 7 + 1

24 − 6 1
288 = 7 + 1

48 . Since the total charge∑
F d(F) = 2e has not changed during the procedure, we obtain 2e ≥ (7+ 1

48)f .
Combining this with (1), we conclude that

e ≤ 7 + 1
48

5 + 1
48

n − 7 + 1
48

5 + 1
48

≤ 1.3984(n − 1),

which completes the proof of Lemma 2. �
Now we are in a position to prove Theorem 1.

Proof of Theorem 1. If G does not contain a triangle, we are done by Lemma 2.
Otherwise, G contains a triangle T . We remove an edge of T from G and denote
the resulting graph by G′. According to Lemma 1, G′ is triangle-free. Hence, by
Lemma 2, G′ has at most 1.3984(n− 1) edges, and it follows that G has at most
1.3984(n − 1) + 1 < 1.3984n edges. �

164 R. Fulek and J. Pach

Fig. 1. Graph H(k) embedded in the projective plane such that the embedding is a
parity embedding. The projective plane is obtained by identifying the opposite pairs
of points on the ellipse.

Remark 1. Without introducing any additional forbidden configuration, our
methods cannot lead to an upper bound in Theorem 1, better than 22

16n = 1.375n.

This is a simple consequence of the next lemma. LetH(k) be a graph obtained
by taking the union of a pair of vertex-disjoint paths P = p1 . . . p6k and Q =
q1 . . . q6k of length 6k; edges piqi for all i mod 3 = 0; edges piq6k−i for all i
mod 3 = 2; and paths pip′

ip
′′
i qi, for all i mod 3 = 1, which are internally vertex-

disjoint from P,Q, and from one another.

Lemma 3. For every k ∈ N, the graph H(k) has 16k vertices and 22k−2 edges,
it contains no two 6-cycles that share a vertex or are joined by an edge, and it
admits a parity embedding in the projective plane.

Proof. For every k, H(k) has 12k−4 vertices of degree three and 4k+4 vertices
of degree two. Thus, H(k) has 3(6k − 2) + 4k + 4 = 22k − 2 edges. A projective
embedding of G(k) with the required property is depicted in Fig. 1. Using the
fact that all 6-cycles are facial, the lemma follows. �

Remark 2. It was stated without proof in [2] that the thrackle conjecture has
been verified by computer up to n = 11. Provided that this is true, the upper
bound in Theorem 1 can be improved to e ≤ 7+ 1

5
5+ 1

5
(n − 1) ≤ 1.3847(n − 1). This

follows from the fact that in this case an 8-face and a 6-face can share at most
one edge and therefore we can maintain a charge of at least 7+ 1

5 on every face.

4 Proof of Theorem 2

It is known [1] that C4, a cycle of length 4, can be drawn as a generalized
thrackle. Hence, our next result whose simple proof is left to the reader implies
that the class of quasi-thrackles forms a proper subclass of the class of generalized
thrackles.

Lemma 4. C4 cannot be drawn as a quasi-thrackle.

Let G(k) denote a graph consisting of k pairwise edge-disjoint triangles that
intersect in a single vertex. The drawing of G(3) as a quasi-thrackle, depicted in
Fig. 2, can be easily generalized to any k. Therefore, we obtain the following

Lemma 5. For every k, the graph G(k) can be drawn as a quasi-thrackle.

Thrackles: An Improved Upper Bound 165

v

v

Fig. 2. A drawing of G(3) as a quasi-thrackle. The two copies of the vertex v are
identified in the actual drawing.

In view of Lemma 1, Gk cannot be drawn as a thrackle for any k > 1. Thus,
the class of thrackles is a proper sub-class of the class of quasi-thrackles.

Cairns and Nikolayevsky [1] proved that every generalized thrackle of n ver-
tices has at most 2n − 2 edges, and that this bound cannot be improved. The
graphs G(k) show that for n = 2k + 1, there exists a quasi-thrackle with n ver-
tices and with 3

2 (n − 1) edges. According to Theorem 2, no quasi-thrackle with
n vertices can have more edges.

Proof of Theorem 2. Suppose that the theorem is false, and let G be a coun-
terexample with the minimum number n of vertices.

We can assume that G is 2-vertex-connected. Indeed, otherwise G = G1∪G2,
where |V (G1)∩V (G2)| ≥ 1 and E(G1)∩E(G2) = ∅. Suppose that |V (G1)| = n′.
By the choice of G, we have |E(G)| = |E(G1)|+|E(G2)| ≤ 3

2 (n
′−1)+ 3

2 (n−n′) =
3
2 (n − 1), so G is not a counterexample.

Suppose first that G is bipartite. By Corollary 1, G (as an abstract graph) can
be embedded in the Euclidean plane. By Lemma 4, all faces in this embedding
are of size at least 6. Using a standard double-counting argument, we obtain that
2e ≥ 6f , where e and f are the number of edges and faces of G, respectively. By
Euler’s formula, we have e+2 = n+f . Hence, 6e+12 ≤ 6n+2e, and rearranging
the terms we obtain e ≤ 3

2 (n− 6), contradicting our assumption that G was not
a counterexample.

If G is not bipartite, then, according to Corollary 1, it has a parity embedding
in the projective plane. By Lemma 4,G contains no 4-cycle. It does not have loops
and multiple edges, therefore, the embedding has no 4-face. G cannot have a 5-
face, because the facial walk of a 5-face would be either a one-sided 5-cycle (which
is impossible), or it would contain a triangle and a cut-vertex (contradicting the
2-connectivity of G). The embedding of G also does not have a 3-face, since G is
bipartite. By Euler’s formula, e + 1 = n + f and, as in the previous paragraph,
we conclude that 6e+ 6 ≤ 6n+ 2e, the desired contradiction. �

166 R. Fulek and J. Pach

References

1. Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput.
Geom. 23(2), 191–206 (2000)

2. Cairns, G., Nikolayevsky, Y.: Generalized thrackle drawings of non-bipartite graphs.
Discrete Comput. Geom. 41(1), 119–134 (2009)

3. Fisher, R.A.: An examination of the different possible solutions of a problem in
incomplete blocks. Ann. Hum. Genet. 10(1), 52–75 (1940)

4. Fulek, R., Pach, J.: A computational approach to Conway’s thrackle conjecture.
Comput. Geom. 44(67), 345–355 (2011)

5. Goddyn, L., Xu, Y.: On the bounds on Conway’s thrackles. Discrete Comput. Geom.
58(2), 410–416 (2017)

6. Lovász, L., Pach, J., Szegedy, M.: On Conway’s thrackle conjecture. Discrete Com-
put. Geom. 18(4), 369–376 (1997)

7. Ruiz-Vargas, A.J., Suk, A., Tóth, C.D.: Disjoint edges in topological graphs and the
tangled-thrackle conjecture. Eur. J. Combin. 51, 398–406 (2016)

8. Woodall, D.R.: Thrackles and deadlock. Comb. Math. Appl. 348, 335–348 (1971)
9. Xu, Y.: Generalized thrackles and graph embeddings. M.Sc. thesis, Simon Fraser

University (2014)

Orthogonal Representations and Book
Embeddings

On Smooth Orthogonal and Octilinear Drawings:
Relations, Complexity and Kandinsky Drawings

Michael A. Bekos, Henry Förster(B), and Michael Kaufmann

Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

{bekos,foersth,mk}@informatik.uni-tuebingen.de

Abstract. We study two variants of the well-known orthogonal drawing
model: (i) the smooth orthogonal, and (ii) the octilinear. Both models
form an extension of the orthogonal, by supporting one additional type
of edge segments (circular arcs and diagonal segments, respectively).

For planar graphs of max-degree 4, we analyze relationships between
the graph classes that can be drawn bendless in the two models and we
also prove NP-hardness for a restricted version of the bendless drawing
problem for both models. For planar graphs of higher degree, we present
an algorithm that produces bi-monotone smooth orthogonal drawings
with at most two segments per edge, which also guarantees a linear
number of edges with exactly one segment.

1 Introduction

Orthogonal graph drawing is an intensively studied and well established
model for drawing graphs. As a result, several efficient algorithms providing
good aesthetics and good readability have been proposed over the years, see
e.g., [8,18,29,35]. In such drawings, each vertex corresponds to a point on the
Euclidean plane and each edge is drawn as a sequence of axis-aligned line seg-
ments; see Fig. 1.

Several research directions build upon this successful model. We focus on two
models that have recently received attention: (i) the smooth orthogonal [5], in
which every edge is a sequence of axis-aligned segments and circular arc seg-
ments with common axis-aligned tangents (i.e., quarter, half or three-quarter
arc segments), and (ii) the octilinear [3], in which every edge is a sequence of
axis-aligned and diagonal (at ±45◦) segments.

Observe that both models extend the orthogonal by allowing one more type
of edge-segments. The former was introduced with the aim of combining the
artistic appeal of Lombardi drawings [13,15] with the clarity of the orthogonal
drawings. The latter, on the other hand, is primarily motivated by metro-map
and map schematization applications (see, e.g., [25,31,32,34]). Note that in the
orthogonal and in the smooth orthogonal models, each edge may enter a vertex

This work is supported by DFG grant Ka812/17-1.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 169–183, 2018.
https://doi.org/10.1007/978-3-319-73915-1_15

170 M. A. Bekos et al.

(a) (b) (c) (d)

Fig. 1. Different drawings of a planar graph of max-degree 4: (a) straight-line,
(b) orthogonal 3-drawing, (c) octilinear 2-drawing, and (d) smooth orthogonal 2-
drawing.

using one out of four available (axis-aligned) directions, called ports. Thus both
models support graphs of max-degree 4. In the octilinear model, each vertex has
eight available ports and therefore one can draw graphs of max-degree 8.

For readability purposes, usually in such drawings one seeks to minimize
the edge complexity [11,27], i.e., the maximum number of segments used for
representing any edge. Also, when the input is a planar graph, one seeks for a
corresponding planar drawing. Note that drawings with edge complexity 1 are
also called bendless. We refer to drawings with edge complexity k as k-drawings;
thus, by definition, orthogonal k-drawings have at most k − 1 bends per edge.

Known results. There exists a plethora of results for each of the aforementioned
models; here we list existing results for drawings with low edge complexity.

– All planar graphs of max-degree 4, except for the octahedron, admit orthog-
onal 3-drawings; the octahedron is orthogonal 4-drawable [8,29]. Minimizing
the number of bends over all embeddings of a planar graph of max-degree 4
is NP-hard [22]. For a given planar embedding, however, finding a planar
orthogonal drawing with minimum number of bends can be done in polyno-
mial time by an approach, called topology-shape-metrics [35], that is based
on min-cost flow computations and works in three phases. Initially, a planar
embedding is computed if not specified by the input. In the next phase, the
angles and the bends of the drawing are computed, yielding an orthogonal
representation. In the last phase, the actual coordinates for the vertices and
bends are computed.

– All planar graphs of max-degree 4 (including the octahedron) admit smooth
orthogonal 2-drawings. Note that not all planar graphs of max-degree 4 allow
for bendless smooth orthogonal drawings [5], and that such drawings may
require exponential area [1]. Bendless smooth orthogonal drawings are pos-
sible only for subclasses, e.g., for planar graphs of max-degree 3 [4] and for
outerplanar graphs of max-degree 4 [1]. It is worth mentioning that the com-
plexity of the problem, whether a planar graph of max-degree 4 admits a
bendless smooth orthogonal drawing, has not been settled (it is conjectured
to be NP-hard [1]).

– All planar graphs of max-degree 8 admit octilinear 3-drawings [28], while pla-
nar graphs of max-degree 4 or 5 allow for octilinear 2-drawings [3]. Bendless
octilinear drawings are always possible for planar graphs of max-degree 3 [23].

On Smooth Orthogonal and Octilinear Drawings 171

Note that deciding whether an embedded planar graph of max-degree 8
admits a bendless octilinear drawing is NP-hard [31]. It is not, however,
known whether this negative result applies for planar graphs of max-degree 4
or whether these graphs allow for a decision algorithm (in fact, there exist
planar graphs of max-degree 4 that do not admit bendless octilinear draw-
ings [6]).

Our contribution. Motivated by the fact that usually one can “easily” convert
an octilinear drawing of a planar graph of max-degree 4 to a corresponding
smooth orthogonal one (e.g., by replacing diagonal edge segments with quarter
circular arc segments; see Figs. 1c and d for an example), and vice versa, we
study in Sect. 2 inclusion-relationships between the graph-classes that admit such
drawings. In Sect. 3, we show that it is NP-hard to decide whether an embedded
planar graph of max-degree 4 admits a bendless smooth orthogonal or a bendless
octilinear drawing, in the case where the angles between any two edges incident
to a common vertex and the shapes of all edges are specified as part of the
input (e.g., as in the last step of the topology-shape-metrics approach [35]). Our
proof is a step towards settling the complexities of both decision problems in
their general form. Inspired from the Kandinsky model (see, e.g., [7,10,18]) for
drawing planar graphs of arbitrary degree in an orthogonal style, we present
in Sect. 4 two drawing algorithms that yield bi-monotone smooth orthogonal
drawings of good quality. The first yields drawings of smaller area, which can
also be transformed to octilinear with bends at 135◦. The second yields larger
drawings but guarantees that at most 2n−5 edges are drawn with two segments.
We conclude in Sect. 5 with open problems.

Preliminaries. For graph theoretic notions refer to [24]. For definitions on planar
graphs, we point the reader to [11,27]. We also assume familiarity with standard
graph drawing techniques, such as the canonical ordering [19,26] and the shift-
method by de Fraysseix et al. [19]; see [2] for more details.

2 Relationships Between Graph Classes

In this section, we consider relationships between the classes of graphs that admit
smooth orthogonal k-drawings and octilinear k-drawings, k ≥ 1, denoted as SCk

and 8Ck, respectively. Our findings are also summarized in Fig. 2.

8C3 = max-degree 8 planar [3]

8C2

SC2 = max-degree 4 planar
8C1

caterpillarsSC1

Octahedron

Thm.1

[6]

Thm.2

Thm.3 degree 8

[5,6]

Fig. 2. Different inclusion-relationships: For k ≥ 1, SCk and 8Ck correspond to the
classes of graphs admitting smooth orthogonal and octilinear k-drawings, respectively.

172 M. A. Bekos et al.

W1,t W2,t

W1,b W2,b

W3,t

W3,b

W4,t

W4,b

(a) A smooth orthogonal 1-drawing

W1,t W2,t

W1,b W2,b

W3,t W4,t

W4,bW3,b

(b) An octilinear 1-drawing

Fig. 3. Illustrations for the proof of Theorem 1.

By definition, SC1 ⊆ SC2 and 8C1 ⊆ 8C2 ⊆ 8C3 hold. Since each pla-
nar graph of max-degree 8 admits an octilinear 3-drawing [28], class 8C3 coin-
cides with the class of planar graphs of max-degree 8. Similarly, class SC2 coin-
cides with the class of planar graph of max-degree 4, as these graphs admit
smooth orthogonal 2-drawings [1]. This also implies that SC2 ⊆ 8C2, since each
planar graph of max-degree 4 admits an octilinear 2-drawing [3]. The relation-
ship 8C2 �= 8C3 follows from [3], where it was proven that there exist planar
graphs of max-degree 6 that do not admit octilinear 2-drawings. The relation-
ship SC2 �= 8C2 follows from [6], where it was shown that there exist planar
graphs of max-degree 5 that admit octilinear 2-drawings and no octilinear 1-
drawings, and the fact that planar graphs of max-degree 5 cannot be drawn in
the smooth orthogonal model. The octahedron graph admits neither a bendless
smooth orthogonal drawing [5] nor a bendless octilinear drawing [6]. However,
since it is of max-degree 4, it admits 2-drawings in both models [1,3]. Hence, it
belongs to 8C2 ∩ SC2 \ (8C1 ∪ SC1). To prove that 8C1 \ SC2 �= ∅, observe that
a caterpillar whose spine vertices are of degree 8 clearly admits an octilinear
1-drawing, however, due to its degree it does not admit a smooth orthogonal.

To complete the discussion of the relationships of Fig. 2, we have to show that
SC1 and 8C1 are incomparable. This is the most interesting part of our proof, as
usually one can “easily” convert a bendless octilinear drawing of a planar graph
of max-degree 4 to a corresponding bendless smooth orthogonal one (e.g., by
replacing diagonal segments with quarter circular arcs), and vice versa; see, e.g.,
Figs. 1c and d. Since the endpoints of each edge of a bendless smooth orthogonal
or octilinear drawing are along a line with slope 0, 1, −1 or ∞, such conversions
are in principle possible. Two difficulties that might arise are to preserve pla-
narity and to guarantee that no two edges enter a vertex using the same port.
Clearly, however, there exist infinitely many (even 4-regular) planar graphs that
admit both drawings in both models; see Fig. 3 and [2] for more details.

Theorem 1. There is an infinitely large family of 4-regular planar graphs that
admit both bendless smooth orthogonal and bendless octilinear drawings.

In the next two theorems we show that SC1 and 8C1 are incomparable.

On Smooth Orthogonal and Octilinear Drawings 173

C c

(a)

C

c

(b)

c

c

225◦

(c)

C1

C2

C3

c1

c2

(d)

Fig. 4. Illustrations for the proof of Theorem 2.

Theorem 2. There is an infinitely large family of 4-regular planar graphs that
admit bendless smooth orthogonal drawings but no bendless octilinear drawings.

Proof. Consider the planar graph C of Fig. 4a, which is drawn bendless smooth
orthogonal. We claim that C admits no bendless octilinear drawing. If one sub-
stitutes its degree-2 vertex (denoted by c in Fig. 4a) by an edge connecting its
two neighbors, then the resulting graph is triconnected, which admits an unique
embedding (up to the choice of its outerface; see Figs. 4a and b). Now, observe
that the outerface of any octilinear drawing of graph C (if any) has length at
most 5 (Constraint 1). In addition, each vertex of this outerface (except for c,
which is of degree 2) must have two ports pointing in the interior of this drawing,
because every vertex of C is of degree 4 except for c. This implies that the angle
formed by any two consecutive edges of this outerface is at most 225◦, except
for the pair of edges incident to c (Constraint 2). But if we want to satisfy both
constraints, then at least one edge of this outerface must be drawn with a bend;
see Fig. 4c. Hence, graph C does not admit a bendless octilinear drawing.

Based on graph C, for each k ∈ N0 we construct a 4-regular planar graph Gk

consisting of k + 2 biconnected components C1, . . . , Ck+2 arranged in a chain;
see Fig. 4d for the case k = 1. Clearly, Gk admits a bendless smooth orthogonal
drawing for any k. Since the end-components of the chain (i.e., C1 and Ck+2) are
isomorphic to C, Gk does not admit a bendless octilinear drawing for any k.
�
Theorem 3. There is an infinitely large family of 4-regular planar graphs that
admit bendless octilinear drawings but no bendless smooth orthogonal drawings.

Proof (sketch). Consider the planar graph B of Fig. 5a, which is drawn bendless
octilinear. Graph B has two separation pairs (i.e., {t1, t2} and {p1, p2} in Fig. 5a).

Based on graph B, for each k ∈ N0 we construct a 4-regular planar graph
Gk consisting of 2k + 4 copies of B arranged in a cycle; see Fig. 5b where each
copy of B is drawn as a gray-shaded parallelogram. By construction, Gk admits
a bendless octilinear drawing for any k. By planarity at least one copy of graph
B must be embedded with the outerface of Fig. 5a. However, if we require the
outerface of B to be the one of Fig. 5a, then all possible planar embeddings of B
are isomorphic to the one of Fig. 5a. We exploit this property in [2] to show that B
does not admit a bendless smooth orthogonal drawing with this outerface. The

174 M. A. Bekos et al.

q2

w1

w2 w3

w4t1
t2

p1

p2

q1

(a) (b)

Fig. 5. Illustrations for the proof of Theorem 3.

detailed proof is based on an exhaustive consideration of all bendless smooth
orthogonal drawings of subgraphs of B, which we incrementally augment by
adding more vertices to them. Thus, for any k, graph Gk does not admit a
bendless smooth orthogonal drawing.
�

3 NP-hardness Results

In this section, we study the complexity of the bendless smooth orthogonal and
octilinear drawing problems. As a first step towards addressing the complexity
of both problems for planar graphs of max-degree 4 in general, here we make an
additional assumption. We assume that the input, apart from an embedding, also
specifies a smooth orthogonal or an octilinear representation, which are defined
analogously to the orthogonal ones: (i) the angles between consecutive edges
incident to a common vertex in the cyclic order around it (given by the planar
embedding) are specified, and (ii) the shape of each edge (e.g., straight-line, or
quarter-circular arc) is also specified. In other words, we assume that our input is
analogous to the one of the last step of the topology-shape-metrics approach [35].

Theorem 4. Given a planar graph G of max-degree 4 and a smooth orthogonal
representation R, it is NP-hard to decide whether G admits a bendless smooth
orthogonal drawing preserving R.

Proof. Our reduction is from the well-known 3-SAT problem [21]. Given a for-
mula ϕ in conjunctive normal form, we construct a graph Gϕ and a smooth
orthogonal representation Rϕ, such that Gϕ admits a bendless smooth orthog-
onal drawing Γϕ preserving Rϕ if and only if ϕ is satisfiable; see also Fig. 6.

The main ideas of our construction are: (i) specific straight-line edges in Γϕ

transport information encoded in their length, (ii) rectangular faces of Γϕ prop-
agate the edge length of one side to its opposite, and (iii) for a face composed of
two straight-line edges and a quarter circle arc, the straight-line edges are of same
length, which allows us to change the direction in which the information “flows”.
Variable gadget. For each variable x of ϕ, we introduce a gadget; see Figs. 7a and
b. The bold-drawn quarter circle arc ensures that the sum of the edge lengths to
its left is the same as the sum of the edge lengths to its bottom (refer to the edges

On Smooth Orthogonal and Octilinear Drawings 175

a

Pa
rit

y
a

b

Pa
rit

y
b

c

Pa
rit

y
c

a
∨

b
∨

c
¬a

∨
¬b

∨
c

C
op

ie
s

un
it

le
ng

th
ga

dg
et

F
ig
.
6
.
D

ra
w

in
g

Γ
ϕ

fo
r

ϕ
=

(a
∨

b
∨

c)
∧

(a
∨

b
∨

c)
a
n
d

th
e

a
ss

ig
n
m

en
t

a
=

f
a
l
s
e

a
n
d

b
=

c
=

t
r
u
e
.

176 M. A. Bekos et al.

u u u
x

x

�(x)

�(x)�(u)�(u)�(u)
(a) true state: �(x) = 2, �(x) = 1

u

x

x

u u

�(x)

�(x)�(u)�(u)�(u)
(b) false state: �(x) = 1, �(x) = 2

u u u u u u u u u

x x x x

(c) x = true

x x x x

u u u u u u u u u

(d) x = false

Fig. 7. In Figures (a) and (b) the variable gadget is illustrated. In Figures (c) and (d)
the parity gadget is illustrated; gray-colored arrows show the information “flow”.

with gray endvertices). As “input” the gadget gets three edges of unit length �(u).
This ensures that �(x) + �(x) = 3 · �(u) holds for the “output literals” x and x,
where �(x) and �(x) denote the lengths of two edges representing x and x.

To introduce our concept, assume that the lengths of all straight-line edges
are integral and at least 1. If we could require �(u) = 1, then �(x), �(x) ∈ {1, 2}.
This would allow us to encode the assignment x = true with �(x) = 2 and
�(x) = 1, and the assignment x = false with �(x) = 1 and �(x) = 2. However, if
we cannot avoid, e.g., that �(u) = 2, then the variable gadget would not prevent
us from setting �(x) = �(x) = 3, which means that x and x are “half-true”. We
solve this issue by the so-called parity gadget, that allows us to relax the integral
constraint and to ensure that �(x), �(x) ∈ {�(u)+ε, 2�(u)−ε}, for 0 < ε << �(u).
Parity gadget. For each variable x of ϕ, Gϕ has a gadget (see Figs. 7c and d),
which results in overlaps in Γϕ, if the values of �(x) and �(x) do not differ
significantly. The central part of this gadget is a “vertical gap” of width 3 · �(u)
(shaded in gray in Figs. 7c and d) with two blocks of vertices (triangular- and
square-shaped in Figs. 7c and d) pointing inside the gap. Each block defines two
square-shaped faces and three faces of length 3, each formed by two straight-line
edges and a quarter circle arc. Depending on the choice of �(x) and �(x), one
of the blocks may be located above the other. If �(x) ≈ �(x), however, we can
observe that the two blocks are not far enough apart from each other, which
leads to overlaps. Using elementary geometry, we prove in [2] that overlaps can
be avoided if and only if |�(x)− �(x)| >

√
3/2 · �(u) ≈ 0.866 · �(u), which implies:

that �(x), �(x) ∈ (0, 1.067 · �(u)] ∪ [1.933 · �(u), 3), i.e., ε < 0.067 · �(u).

On Smooth Orthogonal and Octilinear Drawings 177

u u u u

bc a *

(a) clause gadget
b

a

b

a

(b) crossing gadget

x

xx

x

(c) copy gadget

Fig. 8. Different gadgets; gray-colored arrows show the information “flow”.

Clause gadget. For each clause of ϕ with literals a, b and c, we introduce a gad-
get, which is illustrated in Fig. 8a. The bold-drawn quarter circle arc of Fig. 8a
compares two sums of information. From the righthand side, four edges of unit
length “enter” the arc. Observe that there is also a free edge (marked with an
asterisk in Fig. 8a), which also contributes to the sum but can be stretched inde-
pendently of any other edge. Hence, the sum of edge lengths on the righthand
side of this arc is >4 ·�(u). The three literals “enter” at the bottom; the sum here
is �(a) + �(b) + �(c). Combining both, we obtain that �(a) + �(b) + �(c) > 4 · �(u)
must hold. This implies that not all a, b and c can be false, since in this case
�(a) + �(b) + �(c) = 3 · (�(u) + ε) < 4 · �(u).
Auxiliary gadgets. The crossing gadget just consists of a rectangle and is used to
allow two flows of information to cross each other; see Fig. 8b. The copy gadget
takes an information and creates three copies of this information; see Fig. 8c.
This is because both quarter circular arcs of the copy gadget must have the
same radius in the presence of the half circular arc of the copy gadget. Finally,
the unit length gadget is a single edge, which we assume to be of length �(u).

We now describe our construction; see Fig. 6: Gϕ contains one unit length
gadget, which is copied several times using the copy gadget (the number of
copies depends linearly on the number of variables ν and clauses μ of ϕ). For
each variable of ϕ, Gϕ has a variable gadget and a parity gadget, each of which
is connected to different copies of the unit length gadget. For each clause of ϕ,
Gϕ has a clause gadget, which has four connections to different copies of the unit
length gadget. We compute Rϕ as follows. We place the variable gadget of each
variable x above and to the left of its parity gadget and we connect the output
literals of the variable gadget of x with its parity gadget through a copy gadget.
We place the variable and the parity gadgets of the i-th variable below and to
the right of the corresponding ones of the (i − 1)-th variable. We place each
clause gadget to the right of the sketch constructed so far, so that the gadget of
the i-th clause is to the right of the (i − 1)-th clause. This allows us to connect
copies of the output literals of the variable gadget of each variable with the clause
gadgets that contain it, so that all possible crossings (which are resolved using
the crossing gadget) appear above the clause gadgets. More precisely, if a clause
contains a literal of the i-th variable, we have a crossing with the literals of all
variables with indices (i + 1) to ν. Hence, for each clause we add O(ν) crossing

178 M. A. Bekos et al.

and three copy gadgets. Note that all copy gadgets of the unit length gadget lie
below all variable, parity, and clause gadgets. The obtained representation Rϕ

conforms with the one of Fig. 6. The construction can be done in O(νμ) time.
To complete the proof, assume that Gϕ admits a bendless smooth orthogonal

drawing Γϕ preserving Rϕ. For each variable x of ϕ, we set x to true if and
only if �(x) ≥ 1.933 · �(u). Since for each clause (a ∨ b ∨ c) of ϕ we have that
�(a)+�(b)+�(c) > 4·�(u), at least one of a, b and c must be true. Hence, ϕ admits
a truth assignment. For the opposite direction, based on a truth assignment of
ϕ, we can set, e.g., �(x) = 1.95 and �(x) = 1.05 for each variable x, assuming
that �(u) = 1. Then, arranging the variable and the clause gadgets of Gϕ as in
Fig. 6 yields a bendless smooth orthogonal drawing Γϕ preserving Rϕ.
�
Remark 1. The special case of our problem, in which circular arcs are not
present, is known as HV-rectilinear planarity testing [30]. As opposed to our
problem, HV-rectilinear planarity testing is polynomial-time solvable in the fixed
embedding setting [14] (and becomes NP-hard in the variable embedding set-
ting [12]).

Theorem 5. Given a planar graph G of max-degree 4 and an octilinear rep-
resentation R, it is NP-hard to decide whether G admits a bendless octilinear
drawing preserving R.

Proof (sketch). Except for the parity gadget, we can adjust to the octilinear
model simply by replacing arcs with diagonal segments; for details see [2]. In
this case the parity gadget guarantees |�(x) − �(x)| > 5/6 · �(u) ≈ 0.833 · �(u),
which implies that ε < 0.084 · �(u).
�

4 Bi-monotone Drawings

In this section, we study variants of the Kandinsky drawing model [7,10,18],
which forms an extension of the orthogonal model to graphs of degree greater
than 4. In this model, the vertices are represented as squares, placed on a coarse
grid, with multiple edges attached to each side of them aligned on a finer grid.

The Kandinsky model allows for natural extensions to both smooth orthog-
onal and octilinear models. We are aware of only one preliminary result in
this direction: A linear time drawing algorithm is presented in [5] for the pro-
duction of smooth orthogonal 2-drawings for planar graphs of arbitrary degree
in quadratic area, in which all vertices are on a line � and the edges are drawn
either as half circles (above or below �), or as two consecutive half circles one
above and one below � (i.e., the latter ones are of complexity 2, but they are at
most n − 2).

For an input maximal planar graph G (of arbitrary degree), our goal is to con-
struct a smooth orthogonal (or an octilinear) 2-drawing for G with the following
aesthetic benefits over the aforementioned drawing algorithm: (i) the vertices are
distributed evenly over the drawing area, and (ii) each edge is bi-monotone [20],

On Smooth Orthogonal and Octilinear Drawings 179

w1 = v1

w�
wr

wp = v2

Γk−1
w�

wr
Γk−1

w1 = v1 wp = v2

vk

Fig. 9. Illustration of the contour condition (left) and the placement of vk (right).

i.e., xy-monotone. We achieve our goal at the cost of slightly more edges drawn
with complexity 2 or at the cost of increased drawing area (but still polynomial).

Our first approach is a modification of the shift-method [19]. Based on a
canonical order π = (v1, . . . , vn) of G, we construct a planar smooth orthogonal
2-drawing Γ of G in the Kandinsky model, as follows. We place v1, v2 and v3 at
(0, 0), (2, 0) and (1, 1). Hence, we can draw (v1, v2) as a horizontal segment, and
each of (v1, v3) and (v2, v3) as a quarter circular arc. We also color (v1, v3) blue
and (v2, v3) green. For k = 4, . . . , n, assume that a smooth orthogonal 2-drawing
Γk−1 of the subgraph Gk−1 of G induced by v1, . . . , vk−1 has been constructed,
in which each edge of the outerface Ck−1 of Γk−1 is drawn as a quarter circular
arc, whose endvertices are on a line with slope ±1, except for edge (v1, v2), which
is drawn as a horizontal segment (called contour condition in the shift-method;
see Fig. 9). Each of v1, . . . , vk−1 is also associated with a so-called shift-set, which
for v1, v2 and v3 are singletons containing only themselves.

Let w1, . . . , wp be the vertices of Ck−1 from left to right in Γk−1, where
w1 = v1 and wp = v2. Let (w�, . . . , wr), 1 ≤ � < r ≤ p, be the neighbors of
vk from left to right along Ck−1 in Γk−1. As in the shift-method, our algorithm
first translates each vertex in ∪�

i=1S(wi) one unit to the left and each vertex in
∪p

i=rS(wi) one unit to the right, where S(v) is the shift-set of v ∈ V . During this
translation, (w�, w�+1) and (wr−1, wr) acquire a horizontal segment each (see
the bold edges of Fig. 9). We place vk at the intersection of line L� with slope
+1 through w� with line Lr with slope −1 through wr (dotted in Fig. 9) and
we set the shift-set of vk to {vk} ∪r−1

i=�+1 S(wi), as in the shift-method. We draw
each of (w�, vk) and (vk, wr) as a quarter circular arc. For i = � + 1, . . . , r − 1,
(wi, vk) has a vertical line-segment that starts from wi and ends either at L� or
Lr and a quarter circle arc from the end of the previous segment to vk. Hence,
the contour condition is satisfied. We color (w�, vk) blue, (vk, wr) green and the
remaining edges of vk red; see also [16,33]. Observe that each blue and green
edge consists of a quarter circular arc and a horizontal segment (that may have
zero length), while a red edge consists of a vertical segment and a quarter circular
arc (that may have zero radius). We are now ready to state our first theorem;
the analogous of Theorem 6 for the octilinear model is shown in [2].

180 M. A. Bekos et al.

Theorem 6. A maximal planar n-vertex graph admits a bi-monotone planar
smooth orthogonal 2-drawing in the Kandinsky model, which requires O(n2) area
and can be computed in O(n) time.

Proof. Bi-monotonicity follows by construction. The time complexity follows
from [9]. Planarity is proven by induction. Drawing Γ3 is planar by construction.
Assuming that Γk−1 is planar, we observe that no two edges incident to vk cross
in Γk. Also, these edges do not cross edges of Γk−1. Since the radii of the arcs of
the edges incident to vertices that are shifted remain unchanged and since edges
incident to vertices in the shift-sets retain their shape, drawing Γk is planar.
�

We reduce the number of edges drawn with complexity 2 in two steps. (S.1)
We stretch the drawing horizontally (by employing appropriate vertical cuts; see,
e.g., [17]) to eliminate the vertical segments of all red edges with a circular arc
segment of non-zero radius. (S.2) We stretch the drawing vertically, to guarantee
that the edges of a spanning tree (i.e., n − 1) are drawn with complexity 1.

For Step 1, we assume that each blue and green edge has a horizontal segment
(that may be of zero length). Consider a red edge (u, v) with a vertical segment
of length δ and assume w.l.o.g. that u is to the right and above v. If we shift
u by δ units to the right, then (u, v) can be drawn as a quarter circular arc. If
the shift is by more than δ units, then a horizontal segment is needed. Since all
edges incident to u that are drawn below u enter u from its left or from its right
side, the shift of u cannot introduce crossings between them.

We eliminate the vertical segments of all red edges with a circular arc segment
of non-zero radius, as follows. As long as there exist such edges, we choose the
one, call it (u, v), whose vertical segment has the largest length δ, and assume
that u is to the right and above v. We eliminate the vertical segment of (u, v)
using a vertical cut L at x(u) − ε, for small ε > 0. Since L crosses several
edges, shifting all vertices to the right of L by δ to the right has the following
effects. By the choice of (u, v), the vertical segments of all red edges crossed by
L are eliminated; note that this may introduce new horizontal segments. The
horizontal segment of each blue and green edge crossed by L is elongated by δ.
Both imply that no edge crossings are introduced. Hence, by the termination of
our algorithm all edges with vertical segments are of complexity 1.

Step 1 ensures that the x-distance of adjacent vertices is at least as large
as their y-distance (unless they are connected by vertical edges). Based on this
property, in Step 2 we compute new y-coordinates for the vertices in the sequence
of the canonical ordering π, keeping their x-coordinates unchanged. First, we set
y(v1) = y(v2) = 0. For each k = 3, . . . , n, we set y(vk) = maxw∈{w�,...,wr}{y(w)+
max{Δx(vk, w), 1}}, where w�, . . . , wr are the neighbors of vk in Γk−1, i.e., vk

is placed above w�, . . . , wr in Γk−1, such that one of its edges (the one of the
maximum; call it (vk, w∗)) is drawn with complexity 1; as a quarter circle arc or
as a vertical edge depending on whether the x- distance of vk and w∗ is non-zero
or not. Since (vk, w∗) is the edge that must be stretched the most in order to
ensure that it is drawn with complexity 1, for all other edges incident to vk in
Gk, the y-distance of their endpoints is at least as large as their corresponding

On Smooth Orthogonal and Octilinear Drawings 181

x-distance. Hence, they are drawn as vertical segments followed by quarter cir-
cular arcs (that may have zero radius). We are now ready to state our second
theorem.

Theorem 7. A maximal planar n-vertex graph admits a bi-monotone planar
smooth orthogonal 2-drawing with at least n − 1 edges with complexity 1 in the
Kandinsky model, which requires O(n4) area and can be computed in O(n2) time.

Proof (sketch). For k = 3, . . . , n, vertex vk is incident to an edge drawn with
complexity 1 in Step 2. Since (v1, v2) is drawn as a horizontal segment, at least
n−1 edges have complexity 1. Planarity is proven by induction; the main invari-
ant is that all edges on Ck \ {(v1, v2)} have a quarter circular arc and possibly
a vertical segment. Time and area requirements are shown in [2].
�

5 Conclusions

In this paper, we continued the study on smooth orthogonal and octilinear draw-
ings. Our NP-hardness proofs are a first step towards settling the complexity of
both drawing problems. We conjecture that the former is NP-hard, even in the
case where only the planar embedding is specified by the input. For the latter,
it is of interest to know if it remains NP-hard even for planar graphs of max-
degree 4 or if these graphs allow for a decision algorithm. Our drawing algorithms
guarantee bi-monotone 2-drawings with a certain number of complexity-1 edges
for maximal planar graphs. Improvements on this number or generalizations to
triconnected or simply connected planar graphs are of importance.

Acknowledgements. The authors would like to thank Patrizio Angelini and Martin
Gronemann for useful discussions.

References

1. Alam, M.J., Bekos, M.A., Kaufmann, M., Kindermann, P., Kobourov, S.G., Wolff,
A.: Smooth orthogonal drawings of planar graphs. In: Pardo, A., Viola, A. (eds.)
LATIN 2014. LNCS, vol. 8392, pp. 144–155. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54423-1 13

2. Bekos, M.A., Förster, H., Kaufmann, M.: On smooth orthogonal and octilinear
drawings: Relations, complexity and kandinsky drawings. CoRR 1708.09197 (2017)

3. Bekos, M.A., Gronemann, M., Kaufmann, M., Krug, R.: Planar octilinear drawings
with one bend per edge. J. Graph Algorithms Appl. 19(2), 657–680 (2015)

4. Bekos, M.A., Gronemann, M., Pupyrev, S., Raftopoulou, C.N.: Perfect smooth
orthogonal drawings. In: Bourbakis, N.G., Tsihrintzis, G.A., Virvou, M. (eds.)
IISA, pp. 76–81. IEEE (2014)

5. Bekos, M.A., Kaufmann, M., Kobourov, S.G., Symvonis, A.: Smooth orthogonal
layouts. J. Graph Algorithms Appl. 17(5), 575–595 (2013)

6. Bekos, M.A., Kaufmann, M., Krug, R.: On the total number of bends for planar
octilinear drawings. J. Graph Algorithms Appl. 21(4), 709–730 (2017)

https://doi.org/10.1007/978-3-642-54423-1_13
https://doi.org/10.1007/978-3-642-54423-1_13

182 M. A. Bekos et al.

7. Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with
the minimum number of bends. IEEE Trans. Comput. 49(8), 826–840 (2000)

8. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.
Geom. 9(3), 159–180 (1998)

9. Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph on
a grid. Inf. Process. Lett. 54(4), 241–246 (1995)

10. Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Orthogonal and quasi-
upward drawings with vertices of prescribed size. In: Kratochv́ıyl, J. (ed.) GD
1999. LNCS, vol. 1731, pp. 297–310. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-46648-7 31

11. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)

12. Didimo, W., Liotta, G., Patrignani, M.: On the complexity of HV-rectilinear pla-
narity testing. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp.
343–354. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-
7 29

13. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.:
Lombardi drawings of graphs. J. Graph Algorithms Appl. 16(1), 85–108 (2012)

14. Durocher, S., Felsner, S., Mehrabi, S., Mondal, D.: Drawing HV-restricted planar
graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 156–167.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54423-1 14

15. Eppstein, D.: Planar lombardi drawings for subcubic graphs. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 126–137. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36763-2 12

16. Felsner, S.: Geometric Graphs and Arrangements. Advanced Lectures in Mathe-
matics. Vieweg, Wiesbaden (2004). https://doi.org/10.1007/978-3-322-80303-0

17. Fößmeier, U., Heß, C., Kaufmann, M.: On improving orthogonal drawings: The
4M-algorithm. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 125–137.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2 10

18. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021809

19. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

20. Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte and mono-
tone drawings. In: Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp.
283–294. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25870-
1 26

21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

22. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

23. Di Giacomo, E., Liotta, G., Montecchiani, F.: The planar slope number of subcubic
graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 132–143.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54423-1 12

24. Harary, F.: Graph Theory. Addison-Wesley, MA (1991)
25. Hong, S., Merrick, D., do Nascimento, H.A.D.: Automatic visualisation of metro

maps. J. Vis. Lang. Comput. 17(3), 203–224 (2006)
26. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),

4–32 (1996)

https://doi.org/10.1007/3-540-46648-7_31
https://doi.org/10.1007/3-540-46648-7_31
https://doi.org/10.1007/978-3-662-45803-7_29
https://doi.org/10.1007/978-3-662-45803-7_29
https://doi.org/10.1007/978-3-642-54423-1_14
https://doi.org/10.1007/978-3-642-36763-2_12
https://doi.org/10.1007/978-3-322-80303-0
https://doi.org/10.1007/3-540-37623-2_10
https://doi.org/10.1007/BFb0021809
https://doi.org/10.1007/978-3-642-25870-1_26
https://doi.org/10.1007/978-3-642-25870-1_26
https://doi.org/10.1007/978-3-642-54423-1_12

On Smooth Orthogonal and Octilinear Drawings 183

27. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44969-8

28. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree
with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)

29. Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of
planar graphs in the two-dimensional grid. Discrete Appl. Math. 81(1–3), 69–91
(1998)

30. Maňuch, J., Patterson, M., Poon, S.-H., Thachuk, C.: Complexity of finding non-
planar rectilinear drawings of graphs. In: Brandes, U., Cornelsen, S. (eds.) GD
2010. LNCS, vol. 6502, pp. 305–316. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-18469-7 28

31. Nöllenburg, M.: Automated Drawing of Metro Maps. Master’s thesis, Fakultät für
Informatik, Universität Karlsruhe (TH), August 2005

32. Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-
integer programming. IEEE Trans. Vis. Comput. Graph. 17(5), 626–641 (2011)

33. Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) SODA,
pp. 138–148. SIAM (1990)

34. Stott, J.M., Rodgers, P., Martinez-Ovando, J.C., Walker, S.G.: Automatic metro
map layout using multicriteria optimization. IEEE Trans. Vis. Comput. Graph.
17(1), 101–114 (2011)

35. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

https://doi.org/10.1007/3-540-44969-8
https://doi.org/10.1007/978-3-642-18469-7_28
https://doi.org/10.1007/978-3-642-18469-7_28

EPG-representations with Small Grid-Size

Therese Biedl1(B), Martin Derka1, Vida Dujmović2, and Pat Morin3

1 Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON, Canada

{biedl,mderka}@uwaterloo.ca
2 School of Computer Science and Electrical Engineering,

University of Ottawa, Ottawa, ON, Canada
vida.dujmovic@uottawa.ca

3 School of Computer Science, Carleton University, Ottawa, ON, Canada
morin@cs.carleton.ca

Abstract. In an EPG-representation of a graph G, each vertex is repre-
sented by a path in the rectangular grid, and (v, w) is an edge in G if and
only if the paths representing v an w share a grid-edge. Requiring paths
representing edges to be x-monotone or, even stronger, both x- and y-
monotone gives rise to three natural variants of EPG-representations, one
where edges have no monotonicity requirements and two with the afore-
mentioned monotonicity requirements. The focus of this paper is under-
standing how small a grid can be achieved for such EPG-representations
with respect to various graph parameters.

We show that there are m-edge graphs that require a grid of area Ω(m)
in any variant of EPG-representations. Similarly there are pathwidth-k
graphs that require height Ω(k) and area Ω(kn) in any variant of EPG-
representations. We prove a matching upper bound of O(kn) area for
all pathwidth-k graphs in the strongest model, the one where edges are
required to be both x- and y-monotone. Thus in this strongest model, the
result implies, for example, O(n), O(n log n) and O(n3/2) area bounds
for bounded pathwidth graphs, bounded treewidth graphs and all classes
of graphs that exclude a fixed minor, respectively. For the model with
no restrictions on the monotonicity of the edges, stronger results can be
achieved for some graph classes, for example an O(n) area bound for
bounded treewidth graphs and O(n log2 n) bound for graphs of bounded
genus.

1 Introduction

The w × h-grid (or grid of width w and height h) consists of all grid-points (i, j)
that have integer coordinates 1 ≤ i ≤ w and 1 ≤ j ≤ h, and all grid-edges that
connect grid-points of distance 1. An EPG-representation of a graph G consists

Work done during the 5th Workshop on Graphs and Geometry, Bellairs Research
Institute. The authors would like to thank the other participants, and especially
Günter Rote, for helpful input. Research of TB, VD and PM supported by NSERC.
Research of MD supported by an NSERC Vanier scholarship.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 184–196, 2018.
https://doi.org/10.1007/978-3-319-73915-1_16

EPG-representations with Small Grid-Size 185

of an assignment of a vertex-path, path(v), to every vertex v in G such that
path(v) is a path in a grid, and (v, w) is an edge of G if and only if path(v) and
path(w) have a grid-edge in common.

Since their initial introduction by Golumbic et al. [11], a number of papers
concerning EPG-representations of graphs have been published. It is easy to
see that every graph has an EPG-representation [11]. Later papers asked what
graph classes can be represented if the number of bends in the vertex-paths is
restricted (see e.g. [3,4,9,13]) or gave approximation algorithms for graphs with
an EPG-representation with few bends (see e.g. [8,17]).

The main objective of this paper is to find EPG-representations such that the
size of the underlying grid is small (rather than the number of bends in vertex-
paths). As done by Golumbic et al. [11], we wonder whether additionally we
can achieve monotonicity of vertex-paths. We say that path(v) is x-monotone
if any vertical line that intersects path(v) intersects it in a single interval. It
is xy-monotone if it is x-monotone and additionally any horizontal line that
intersects path(v) intersects it in a single interval. Finally, it is xy+-monotone
if it is monotonically increasing, i.e., it is xy-monotone and the left endpoint is
not above the right endpoint. An x-monotone EPG-representation is an EPG-
representation where every vertex-path is x-monotone, and similarly an xy+-
monotone EPG-representation is an EPG-representation where every vertex-
path is xy+-monotone.

It is easy to see that every n-vertex graph has an EPG-representation in
an O(n) × O(n)-grid, i.e., with quadratic area. This is best possible for some
graphs. In Sect. 4, we study lower bounds and show that there are m-edge graphs
that require a grid of area Ω(m) in any EPG-representation and that there
are pathwidth-k graphs that require height Ω(k) and area Ω(kn) in any EPG-
representation.

Biedl and Stern [4] showed that pathwidth-k graphs have an EPG-
representation of height k and width O(n), thus area O(kn). In Sect. 5, we prove a
strengthening of that result. In particular, we show that every pathwidth-k graph
has an xy+-monotone EPG-representation of height O(k) and width O(n) thus
matching the lower bound in this strongest of the models. This result implies,
for example, O(n), O(n log n) and O(n3/2) area bounds for xy+-monotone EPG-
representations of bounded pathwidth graphs, bounded treewidth graphs and all
classes of graphs that exclude a minor, respectively. In fact, the result implies
that all hereditary graph classes with o(n)-size balanced separators have o(n2)
area xy+-monotone EPG-representations.

If the monotonicity requirement is dropped, better area bounds are possi-
ble for some graph classes. For example, in Sect. 6, we prove that graphs of
bounded treewidth have O(n) area EPG-representations and that graphs of
bounded genus (thus planar graphs too) have O(n log2 n) EPG-representations.

2 Preliminaries

Throughout this paper, G = (V,E) denotes a graph with n vertices and m edges.
We refer, e.g., to [6] for all standard notations for graphs. The pathwidth pw(G)

186 T. Biedl et al.

of a graph G is a well-known graph parameter. Among the many equivalent
definitions, we use here the following: pw(G) is the smallest k such that there
exists a super-graph H of G that is a (k+1)-colourable interval graph. Here, an
interval graph is a graph that has an interval representation, i.e., an assignment
of a (1-dimensional) interval to each vertex v such that there exists an edge if and
only if the two intervals share a point. We may without loss of generality assume
that the intervals begin and end at distinct x-coordinates in {1, . . . , 2n}, and will
do so for all interval representations used in this paper. We use I(v) = [�(v), r(v)]
for the interval representing vertex v. It is well-known that an interval graph is
k-colourable if and only if its maximum clique size is k.

Contracting an edge (v, w) of a graph G means deleting both v and w, insert-
ing a new vertex x, and making x adjacent to all vertices in G−{v, w} that were
adjacent to v or w. A graph H is called a minor of a graph G if H can be
obtained from G by deleting some vertices and edges of G and then contracting
some edges of G. It is known that pw(H) ≤ pw(G) for any minor H of G.

3 From Proper VPG to EPG

A VPG-representation of a graph G consists of an assignment of vertex-paths in
the grid to vertices of G such that (v, w) is an edge of G if and only if path(v)
and path(w) have a grid-point in common. Many previous EPG-representation
constructions (see e.g. [11]) were obtained by starting with a VPG-representation
and transforming it into an EPG-representation by adding a “bump” whenever
two paths cross. The lemmas below formalize this idea, and also study how this
transformation affects the grid-size and whether monotonicity is preserved.

We give the transformations only for proper VPG-representations, which sat-
isfy the following: (a) Any grid-edge is used by at most one vertex-path. (b) If
a grid-point p belongs to path(v) and path(w), then one of the vertex-paths
includes the rightward edge at p and the other includes the upward edge at p1.

Lemma 1. Let G be a graph that has a proper VPG-representation RV in a
w × h-grid. Then any subgraph G′ of G has an EPG-representation RE in a
2w × 2h-grid. Furthermore, if RV is x-monotone then RE is x-monotone.

Proof. Double the resolution of the grid by inserting a new grid-line after each
existing one. For each edge (v, w) of G′, consider the two paths path(v) and
path(w) that represent v and w in RV . Since (v, w) was an edge of G, the
vertex-paths share a grid-point (i, j) in RV , which corresponds to point (2i, 2j)
in RE .

Since RV is proper, we may assume (after possible renaming) that path(v)
uses the rightward edge at (2i, 2j), and path(w) uses the upward edge at (2i, 2j).
Re-route path(v) by adding a “bump”

(2i, 2j+1) (2i+1, 2j+1)
| |

(2i, 2j) (2i+1, 2j)

1 The transformation could be done with a larger factor of increase if (b) is violated,
but restriction (a) is vital.

EPG-representations with Small Grid-Size 187

in the first quadrant of (2i, 2j). See also Fig. 1(a) and (b). Note that path(w)
is unchanged in the vicinity of (2i, 2j), and the bump added to path(v) is x-
monotone. So if RV is x-monotone then so are the resulting vertex-paths.

Since RV is proper, no other vertex-path used (i, j) in RV , and therefore no
other vertex-path in RE can use any grid-edge of this bump. Therefore no new
adjacencies are created, and RE is indeed an EPG-representation of G′. ��

(a) VPG. (b) EPG. (c) Skewed VPG. (d) xy+-mon. EPG.

Fig. 1. Transforming a proper VPG-representation. We only show the transformation
for the edge from blue (dotted) to green (dashed) vertex. (Color figure online)

We now give a second construction, which is similar in spirit, but re-routes
differently in order to preserve xy+-monotonicity.

Lemma 2. Let G be a graph that has a proper VPG-representation RV in a
w × h-grid with xy+-monotone vertex-paths. Then any subgraph G′ of G has an
xy+-monotone EPG-representation RE in a (2w + h) × 2h-grid

Proof. We do two transformations; the first results in a proper VPG-
representation R′

V that has some special properties such that it can then be
transformed into an EPG-representation.

The first transformation is essentially a skew. Map each grid-point (i, j) of
RV into the corresponding point (2i + j, 2j). Any horizontal grid-edge used by a
vertex-path is mapped to the corresponding horizontal grid-edge, i.e., we map a
horizontal grid-edge (i, j) − (i+1, j) of RV into the length-2 horizontal segment
(2i + j, 2j) − (2(i + 1) + j, 2j) that connects the corresponding points. Every
vertical grid-edge (i, j) − (i, j+1) is mapped into the zig-zag path

(2i+(j+1), 2(j+1)
|

(2i+j, 2j+1) (2i+j+1, 2j+1)
|

(2i+j, 2j)

that connects the corresponding points. See also Fig. 1(a) and (c). It is easy to
verify that this is again a proper VPG-representation of exactly the same graph,
and vertex-paths are again xy+-monotone.

Now view R′
V as an EPG-representation. Since R′

V is proper, currently
no edge is represented. We now modify R′

V such that intersections are cre-
ated if and only if an edge exists. Consider some edge (v, w) of G′. Since

188 T. Biedl et al.

it is an edge of G, there must exist a point (i, j) in RV where path(v) and
path(w) meet. Since RV is proper, we may assume (after possible renaming)
that path(v) uses the rightward edge at (i, j) while path(w) uses the upward
edge at (i, j). Consider the corresponding point (2i + j, 2j) in R′

V , and observe
that path′(v) and path′(w) (the vertex-paths in R′

V) use its incident right-
ward and upward edges, respectively. Moreover, path′(w) uses the “zig-zag”
(2i+j, 2j)−(2i+j, 2j+1)−(2i+j+1, 2j+1). We can now re-route the vertex-path
of w to use instead (2i+ j, 2j)− (2i+ j +1, 2j)− (2i+ j +1, 2j +1), i.e., to share
the horizontal edge with path′(w) and then go vertically. See Fig. 1(d). Thus the
two paths now share a grid-edge. Since no other vertex-paths used (i, j) in RV ,
this re-routing does not affect any other intersections and overlaps. So we obtain
an EPG-representation of G, and one easily verifies that it is xy+-monotone. ��
Theorem 1. Every graph G with n vertices has an xy+-monotone EPG-repre-
sentation in a 3n × 2n-grid.

Proof. It is very easy to create a proper VPG-representation of the complete
graph Kn in an n × n-grid, using a Γ -shape (hence an xy+-monotone vertex-
path). Namely, place the corner of the Γ of vertex i at (i−1, i) and extending
the two arms to y = 1 and x = n. For vertex 1, the grid-edge (0, 1)− (1, 1) is not
needed and can be omitted to save a column. See Fig. 2. Since G is a subgraph
of Kn, the result then follows by Lemma 2. ��

Fig. 2. A VPG-representation of Kn, and an EPG-representation for any graph. In
gray areas vertex-paths may get re-routed to create shared grid-edges.

Contrasting this with existing results, it was already known that any graph
has an EPG-representation [11], but our construction additionally imposes xy+-
monotonicity, and our grid-size is O(n2), rather than O(nm).

4 Lower Bounds

We now turn to lower bounds. These hold for arbitrary EPG-representations;
we make no use of monotonicity.

EPG-representations with Small Grid-Size 189

Theorem 2. Let G be a triangle-free graph with m edges. Then any EPG-
representation of G uses at least m grid-edges (hence a grid of area Ω(m)).

Proof. If G has no triangle, then the maximal clique-size is 2. Hence no grid-edge
can belong to three or more vertex-paths. Consequently, for every edge (v, w)
we must have at least one grid-edge (the one that is common to path(v) and
path(w)). No grid-edge belongs to three vertex-paths, and so there must be at
least m grid-edges. ��
A consequence of Theorem 2 is that Kn,n requires Ω(n2) area in any EPG-
representation. Later, we relate pathwidth to EPG-representations. For now, we
note that Kn−k,k is an n-vertex triangle-free graph with pathwidth k and Θ(kn)
edges. Together with Theorem 2, this implies:

Corollary 1. For every k ≥ 1 and every n ≥ 2k, there exists an n-vertex
pathwidth-k graph G for which any EPG-representation of G uses Ω(kn) grid-
edges (hence a grid of area Ω(kn)).

One wonders whether there are graphs that have only a linear number of
edges and still require a big, even quadratic, area. The following lower bound,
also based on pathwidth, allows us to answer this question in the affirmative.

Theorem 3. Let G be a graph that has an EPG-representation in a grid with
h rows and for which any grid-edge is used by at most c vertex-paths. Then
pw(G) ≤ c(3h − 1) − 1.

Proof. For every vertex v, define I(v) to be the x-projection of path(v). This is
an interval since path(v) is connected. Define H to be the interval graph of these
intervals. If (v, w) is an edge, then path(v) and path(w) share a grid-edge, and
hence the intervals I(v) and I(w) share at least one point. So G is a subgraph
of H. We claim that H has clique-size ω(H) ≤ 6h − 2; this implies the result.

Fix an arbitrary maximal clique D in H. It is well-known (see e.g. [10])
that, in the projected interval-representation, there exists a vertex v such that
D corresponds to those vertices whose intervals intersect the left endpoint �(v).
Hence for any vertex w in D, at least one grid-edge of path(w) is incident to
a grid-point with x-coordinate �(v). There are only 3h − 1 such grid-edges (2h
horizontal ones and h−1 vertical ones), and each of them can belong to at most
c vertex-paths. Hence |D| ≤ c(3h − 1), which proves the claim. ��

In particular, if G is triangle-free then no three vertex-paths can share a
grid-edge. Applying the theorem with c = 2 for such graphs we get:

Corollary 2. Any triangle-free graph with pathwidth k requires an Ω(k)×Ω(k)-
grid and thus Ω(k2) area in any EPG-representation.

So all that remains to do for a better lower bound is to find a graph that
has few edges yet high pathwidth. For this, we use expander-graphs, which are
graphs such that for any vertex-set S the ratio between the boundary of S (the
number of vertices in S with neighbors in V −S) and |S| is bounded from below.

190 T. Biedl et al.

Theorem 4. There are n-vertex graphs with O(n) edges for which any EPG-
representation requires Ω(n2) area.

Proof. It is known that expander-graphs of maximum degree 3 exist (see e.g. [15])
Let G be one such graph. It hence has O(n) edges. Since G is an expander, it
has pathwidth Ω(n) (see e.g. [12]). Subdivide all edges of G to obtain a bipartite
graph G′ that has O(n) vertices and edges. This operation cannot decrease the
pathwidth since G is a minor of G′. So pw(G′) ∈ Ω(n). Since G′ is triangle-
free, any EPG-representation of G′ must have height Ω(n), and a symmetric
argument shows that it must have width Ω(n). ��

5 Upper Bounds on xy+-monotone EPG Representations

Corollaries 1 and 2 imply that the best upper-bounds for EPG-representations
in terms of pathwidth have height Ω(k) and area Ω(kn). Naturally, one wonders
whether this bound can be matched. As noted in the introduction, Biedl and
Stern showed that any graph with pathwidth k has an EPG-representation of
height k and area O(kn) [4]. We now use a completely different approach to
strengthen their result and obtain xy+-monotone EPG-representations of path-
width k graphs with optimal height O(k) and optimal area O(kn).

Theorem 5. Every graph G of pathwidth k has an xy+-monotone EPG-
representation of height 8k + O(1) and width O(n), thus with O(kn) area.

Proof. Recall that G is a subgraph of a (k+1)-colourable interval graph H. By
Lemma 2, it suffices to show the following:

Lemma 3. Let H be a (k+1)-colourable interval graph with interval represen-
tation {I(v) = [�(v), r(v)] : v ∈ V }. There exists a proper VPG-representation
with xy+-monotone vertex-paths of a supergraph of H such that

1. all vertex-paths are contained within the [2, 2n + 1] × [−2k − 2, 2k + 1]-grid
(more precisely, the x-range is [2minv∈V �(v), 1 + 2maxv∈V r(v)]);

2. path(v) contains a horizontal segment whose x-range is [2�(v), 2r(v)] and
whose y-coordinate is negative; and

3. some vertical segment path(v) includes the segment {2r(v)} × [−1, 1].

We prove the lemma by induction on k. We may assume that H is con-
nected, for if it is not, then obtain representations of each connected component
separately and combine them. The x-ranges of intervals of each component are
disjoint (else there would be an edge), and so the representations of the compo-
nents do not overlap by (1).

The claim is straightforward for k = 0: Since H is connected and 1-colourable,
it has only one vertex v. Set path(v) to use the two segments [2�(v), 2r(v)]×{−1}
and {2r(v)} × [−1, 1]. All claims hold.

Now assume that k ≥ 1. We find a path P of “farthest-reaching” intervals
as follows. Set a1 := argminv∈V �(v), i.e., a1 is the interval that starts leftmost.

EPG-representations with Small Grid-Size 191

Assume ai has been defined for some i ≥ 1. Let Ai be the set of all vertices v
with �(ai) < �(v) < r(ai) < r(v). If Ai is empty then stop the process; we have
reached the last vertex of P . Else, set ai+1 := argmaxv∈Ai

r(v) to be the vertex
in Ai whose interval goes farthest to the right, and repeat. See also Fig. 3. Let
P = a1, a2, . . . , ap be the path that we obtained (this is indeed a path since I(ai)
intersects I(ai+1) by definition).

a1
a2

a3 A3

ap

Fig. 3. An interval graph (bold intervals denote the path P chosen in Theorem 5), and
its proper VPG-representation with x-monotone vertex-paths.

Claim. P is an induced path.

Proof. It suffices to show that r(ai) < �(ai+2) for all 1 ≤ i ≤ p − 2. Assume
for contradiction that �(ai+2) < r(ai) for some 1 ≤ i ≤ p − 2. We show
that this contradicts the choice of P as the vertices that go farthest right.
Namely, let j ≤ i be the smallest index such that �(ai+2) < r(aj). If j > 1
then �(ai+2) > r(aj−1) > �(aj) by definition of j and Aj−1. If j = 1 then
�(ai+2) ≥ minv∈V �(v) = �(a1) = �(aj), and the inequality is strict since i+2 �= 1.
Thus in both cases �(ai+2) > �(aj). Therefore �(aj) < �(ai+2) < r(aj) ≤
r(ai+1) < r(ai+2), which implies ai+2 ∈ Aj . By r(aj+1) ≤ r(ai+1) < r(ai+2)
this contradicts the choice of aj+1 as argmaxv∈Aj

r(v). ��
By definition a1 is the leftmost interval, i.e., �(a1) = minv∈V �(v). We claim

that ap is the rightmost interval, i.e., r(ap) = maxv∈V r(v). Assume for contra-
diction that some vertex v has an interval that ends farther right. By connectivity
we can choose v so that it intersects I(ap), thus �(v) < r(ap) < r(v). Let j ≤ p
be maximal such that �(v) < r(aj). Similarly, as in the claim, one argues that
v ∈ Aj , and therefore v, rather than aj+1, should have been added to path P .

We are now ready for the construction. Define H ′ := H − P . Since the
intervals of P cover the entire range [minv∈V �(v),maxv∈V r(v)], any maximal
clique of H contains a vertex of P . Therefore the maximum clique-size of H ′

satisfies ω(H ′) ≤ ω(H) − 1, which implies (for an interval-graph) that χ(H ′) ≤
χ(H) − 1, hence H ′ is k-colourable. Apply induction to H ′ (with the induced
interval representation) and let Γ ′ be the resulting VPG-representation.

192 T. Biedl et al.

Since Γ ′ uses only orthogonal vertex-paths, we can insert two rows each above
and below the x-axis by moving all other bends up/down appropriately. Now set
path(ai) to be

(2r(ai),−Y) (2r(ai+1) + 1, Y)
|

(2�(ai),−Y) (2r(ai),−Y)
|

(2�(ai),−2k − 2)

where Y = 1 if i is odd and Y = 2 if i is even. We omit the rightmost horizontal
segment for i = p (because ap+1 is undefined). See also Fig. 4.

a1
a2

a3

r(a2)

r(a3)+1

0

1

2

−1

−2

a2
a3a1

w1 w2 w3

�(a2)

Fig. 4. Representation with xy-monotone vertex-paths.

Note that these vertex-paths satisfy conditions (2) and (3). Also note that for
any 1 ≤ i < p, the vertex-paths of ai and ai+1 intersect, namely at (2r(ai+1), 1) if
i is odd and at (2�(ai+1),−2) and (2r(ai),−1) if i is even. It remains to show that
for any edge (w, ai) (for some 1 ≤ i ≤ p and w �∈ P) the vertex-paths intersect.
Here we have three cases (Fig. 4 illustrates the �th case for edge (w�, a�+1)):

1. If r(w) < r(ai), then �(ai) < r(w), else the intervals would not intersect. By
(3), and since we inserted new rows around the x-axis, we know that path(w)
contains the vertical segment 2r(w) × [−3, 3]. Therefore path(ai) intersects
this segment at (2r(w),−Y) where Y ∈ {1, 2}.

2. If �(w) < �(ai), then �(ai) < r(w), else the intervals would not intersect. By
(2), and since we inserted new rows around the x-axis, we know that path(w)
has a horizontal segment [2�(w), 2r(w)] × −Y for some Y ≥ 3. Therefore
path(ai) intersects this segment at (2�(ai),−Y).

3. Finally assume that �(ai) < �(w) and r(ai) < r(w). We must have �(w) <
r(ai), else the intervals would not intersect. Therefore w ∈ Ai. By choice of
ai+1 we have r(w) ≤ maxv∈Ai

r(v) = r(ai+1). By (3), and since we inserted
new rows around the x-axis, we know that path(w) contains the vertical

EPG-representations with Small Grid-Size 193

segment 2r(w)× [−3, 3]. By r(w) ≤ r(ai+1), therefore path(ai) intersects this
segment at (2r(w), Y) where Y ∈ {1, 2}.

Hence all edges of H are represented by intersection of vertex-paths and as one
easily verifies, these are proper intersections. This finishes the induction and
proves the theorem. ��

We can use Theorem 5 to obtain small EPG-representations for other graph
classes. Graphs of bounded treewidth have pathwidth at most O(log n) [5].
Graphs excluding a fixed minor have treewidth O(

√
n) [2]. A graph class has

treewidth O(nε) if it is hereditary (subgraphs also belong to the class) and has
balanced separators (for any weight-function on the vertices there exists a small
set S such that removing S leaves only components with at most half the weight)
for which the size (the cardinality of S) is at most O(nε), for some fixed ε ∈ (0, 1)
[7]. It is well known that hereditary graph classes with treewidth O(nε), for some
fixed ε ∈ (0, 1), have pathwidth O(nε) (see [5] for example), so graphs exclud-
ing a fixed minor have pathwidth O(

√
n) and graphs with O(nε)-size balanced

separators have pathwidth O(nε). This implies:

– Graphs of bounded treewidth have xy+-monotone EPG-representations in an
O(log n) × O(n)-grid.

– Graphs excluding a fixed minor have xy+-monotone EPG-representations in
an O(

√
n) × O(n)-grid.

– Hereditary classes of graphs with O(nε)-sized balanced separators for some
ε ∈ (0, 1] have xy+-monotone EPG-representations in an O(nε) × O(n)-grid.

The O(n) area result for bounded pathwidth graphs is tight by Theorem 2.
Naturally, one wonders if the other three results in above are tight. The O(

√
n)×

O(n)-grid bound applies, for example, to all planar graphs and more generally
all bounded genus graphs. Some planar graphs with n vertices have pathwidth
Ω(

√
n) (the

√
n × √

n-grid is one example), so the height cannot be improved.
But can the width or the area be improved? This turns out to be true for some
graph classes if the monotonicity condition is dropped. In the next section, we
show these improved bounds via a detour into orthogonal drawings. Some of
these results are tight.

6 EPG-representations via Orthogonal Drawings

In this section, we study another method of obtaining EPG-representations,
which gives (for some graph classes) even smaller EPG-representations. Define
a 4-graph to be a graph where all vertices have degree at most 4. An orthogonal
drawing of a 4-graph is an assignment of grid-points to vertices and grid-paths to
edges such that the path of each edge connects the grid points of its end-vertices.
Edges are allowed to intersect, but any such intersection point must be a true
intersection, i.e., one edge uses only horizontal grid-edges while the other uses
only vertical grid-edges at the intersection point.

194 T. Biedl et al.

Lemma 4. Let G be a 4-graph that has an orthogonal drawing in a w × h-grid.
Then any minor of G has an EPG-representation in a 2w × 2h-grid.

Proof. First delete from the orthogonal drawing all edges of G that are not
needed for the minor H; this cannot increase the grid-size. So we may assume
that H is obtained from G via edge contractions only.

We first explain how to obtain an EPG-representation of G. Double the grid
by inserting a new row/column after each existing one. Every grid-point that
belonged to a vertex v hence now corresponds to 4 grid-points that form a unit
square; denote this by �v. Duplicate all segments of grid-paths for edges in the
adjacent new grid-line, and extend/shorten suitably so that the copies again
form grid-paths, connecting the squares of their end. Thus for each edge (v, w)
we now have two grid-paths P 1

v,w and P 2
v,w from �v to �w.

We now define path(v) (which will be a closed path) by tracing the edges of
the orthogonal drawing suitably. To describe this in more detail, first arbitrarily
direct the edges of G. Initially, path(v) is simply the boundary of �v. Now consider
each edge (v, w) incident to v. If it is directed v → w, then remove from path(v)
the grid-edge along �v that connects the two ends of P 1

v,w and P 2
v,w, add these

two grid-paths, and add the grid-edge e′ along �w that connects these two paths.
Note that e′ also belongs to path(w), so with this path(v) and path(w) share a
grid-edge and we obtain the desired EPG-representation of G. See Fig. 5.

It remains to argue that this can be turned into an EPG-representation of a
graph H obtained from G via edge contractions. Suppose we want to contract
edge (v, w). The two grid-paths path(v) and path(w) share a grid-edge e that
belongs to no other vertex-path. Delete e from both paths, and let the path
of the contraction-vertex be the union of the two resulting open paths, which
is again a closed path. Thus we obtain an EPG-representation of H where all
vertex-paths are closed paths.

If desired, we can turn this into an EPG-representation with open paths by
deleting for every v ∈ V one grid-edge from path(v) that is not shared with any
other vertex-path. If deg(v) ≤ 3, then a suitable edge is the grid-edge of �v

on the side where no edge attaches. If v has an outgoing edge v → w, then a
suitable edge is any grid-edge of P 1

v,w. We can achieve that one of these always
holds as follows: If all vertex degrees of G are 4, then direct G by walking along
an Eulerian cycle; then all vertices have outgoing edges. If some vertex v has
degree 3 or less, then find a spanning tree T of G, root it at v, direct all tree-edges
towards the root and all other arbitrarily. Either way, this direction satisfies that
any vertex of degree 4 has at least one outgoing edge and we can delete an edge
of each path(v) such that all vertex-paths are open paths. ��

We note that a somewhat similar transformation from orthogonal drawings
was used recently to create pixel-representations [1], but in contrast to their
result we do not need the orthogonal drawings to be planar. We use this lemma
to obtain small EPG-representations for a number of graph classes (we will not
give formal definitions of these graph classes; see [6]).

EPG-representations with Small Grid-Size 195

(a) (b) (c)

Fig. 5. Transforming an orthogonal drawing into an EPG-representation. For ease of
reading we show the duplicated grid-line close to the original one.

Corollary 3. All graphs of bounded treewidth (in particular, trees, outer-planar
graphs and series-parallel graphs) have an EPG-representation in O(n) area.
Graphs of bounded genus have an EPG-representation in O(n log2 n) area.

Proof. Let G be one such graph for which we wish to obtain the EPG-
representation. G may not be a 4-graph, but we can turn it into a 4-graph
by vertex-splitting, defined as follows. Let v be a vertex with 5 or more neigh-
bours w1, . . . , wd. Create a new vertex v′, which is adjacent to w1, w2, w3 and v,
and delete the edge (v, wi) for i = 1, 2, 3. Observe that deg(v′) = 4 and deg(v) is
reduced by 2, so sufficient repetition ensures that all vertex degrees are at most
4. Let H be the resulting graph, and observe that G is a minor of H.

Every vertex v of G gives rise to at most deg(v)/2 new vertices in H, so H
has at most n + m vertices. Since graphs of bounded treewidth have O(n) edges
and graphs of bounded genus have O(n) edges, therefore H has O(n) vertices.
Markov and Shi [16] argued that the splitting can be done in such a way that
tw(H) ≤ tw(G)+1. It is also not hard to see that with a suitable way of splitting,
one can ensure that in the case of bounded genus graphs the graph H obtained
by splitting has the same genus.

By Leiserson’s construction [14], 4-graphs of bounded treewidth have an
orthogonal drawing in O(n) area and those of bounded genus have an orthogonal
drawing in O(n log2 n) area. ��

For classes of 4-graphs, Lemma 4 and Leiserson’s construction [14] give
directly the following stronger results:

Corollary 4. Hereditary classes of 4-graphs that have balanced separators of
size O(nε) with ε < 1/2 have EPG-representation in O(n) area. Hereditary
classes of 4-graphs that have balanced separators of size O(nε) with ε > 1/2
have EPG-representation in O(n2ε) area.

The first bound in Corollary 4 is tight thanks to Theorem 2. The second
bound is tight thanks to Corollary 2 and the fact that there are such classes of
graphs which contain triangle-free graphs of pathwidth Ω(nε), for example the
class of finite 4-graphs that are subgraphs of the 3D integer grid with ε = 2/3.

196 T. Biedl et al.

References

1. Alam, M.J., Bläsius, T., Rutter, I., Ueckerdt, T., Wolff, A.: Pixel and Voxel Rep-
resentations of Graphs. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS,
vol. 9411, pp. 472–486. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27261-0 39

2. Alon, N., Seymour, P., Thomas, R.: A separator theorem for graphs with an
excluded minor and its applications. In: Proceedings of the Twenty-second Annual
ACM Symposium on Theory of Computing, STOC 1990, pp. 293–299. ACM, New
York (1990)

3. Asinowski, A., Suk, A.: Edge intersection graphs of systems of paths on a grid with
a bounded number of bends. Discrete Appl. Math. 157(14), 3174–3180 (2009)

4. Biedl, T., Stern, M.: Edge-intersection graphs of k-bend paths in grids. Discrete
Math. Theor. Comput. Sci. 12(1), 1–12 (2010). (electronic journal)

5. Bodlaender, H.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci. 209(1–2), 1–45 (1998)

6. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

7. Dvorak, Z., Norin, S.: Treewidth of graphs with balanced separations. CoRR
abs/1408.3869 (2014)

8. Epstein, D., Golumbic, M.C., Morgenstern, G.: Approximation Algorithms for B1-
EPG Graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 328–340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40104-6 29

9. Francis, M., Lahiri, A.: VPG and EPG bend-numbers of Halin graphs. Discrete
Appl. Math. 215, 95–105 (2016)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Aca-
demic Press, New York (2004)

11. Golumbic, M., Lipshteyn, M., Stern, M.: Edge intersection graphs of single bend
paths on a grid. Networks 54(3), 130–138 (2009)

12. Grohe, M., Marx, D.: On tree width, bramble size, and expansion. J. Comb. Theory,
Ser. B 99(1), 218–228 (2009)

13. Heldt, D., Knauer, K., Ueckerdt, T.: Edge-intersection graphs of grid paths: the
bend-number. Discrete Appl. Math. 167, 144–162 (2014)

14. Leiserson, C.: Area-efficient graph layouts (for VLSI). In: IEEE Symposium on
Foundations of Computer Science (FOCS 1980), pp. 270–281 (1980)

15. Marcus, A., Spielman, D., Srivastava, N.: Interlacing families I: bipartite Ramanu-
jan graphs of all degrees. In: Symposium on Foundations of Computer Science,
FOCS. pp. 529–537. IEEE Computer Society (2013)

16. Markov, I., Shi, Y.: Constant-degree graph expansions that preserve treewidth.
Algorithmica 59(4), 461–470 (2011)

17. Mehrabi, S.: Approximation algorithms for independence and domination on B1-
VPG and B1-EPG-graphs. CoRR abs/1702.05633 (2017)

https://doi.org/10.1007/978-3-319-27261-0_39
https://doi.org/10.1007/978-3-319-27261-0_39
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-642-40104-6_29
https://doi.org/10.1007/978-3-642-40104-6_29

Mixed Linear Layouts of Planar Graphs

Sergey Pupyrev(B)

University of Arizona, Tucson, AZ, USA
spupyrev@gmail.com

Abstract. A k-stack (respectively, k-queue) layout of a graph consists
of a total order of the vertices, and a partition of the edges into k sets of
non-crossing (non-nested) edges with respect to the vertex ordering. In
1992, Heath and Rosenberg conjectured that every planar graph admits
a mixed 1-stack 1-queue layout in which every edge is assigned to a stack
or to a queue that use a common vertex ordering.

We disprove this conjecture by providing a planar graph that does not
have such a mixed layout. In addition, we study mixed layouts of graph
subdivisions, and show that every planar graph has a mixed subdivision
with one division vertex per edge.

1 Introduction

A stack layout of a graph consists of a linear order on the vertices and an assign-
ment of the edges to stacks, such that no two edges in a single stack cross.
A “dual” concept is a queue layout, which is defined similarly, except that no
two edges in a single queue may be nested. The minimum number of stacks
(queues) needed in a stack layout (queue layout) of a graph is called its stack
number (queue number). Stack and queue layouts were respectively introduced
by Ollmann [13] and Heath et al. [10,11]. These are ubiquitous structures with a
variety of applications, including complexity theory, VLSI design, bioinformat-
ics, parallel process scheduling, matrix computations, permutation sorting, and
graph drawing; see [7] for more details.

Stack and queue layouts have been extensively studied for planar graphs.
The stack number of a graph, also known as book thickness, is one if and only if
the graph is outerplanar [4]. The stack number of a graph G is at most two if
and only if G is subhamiltonian, that is, a subgraph of a planar graph that has
a Hamiltonian cycle [4]. More generally, all planar graphs have stack number at
most four [18]. Similarly, every graph admitting a 1-queue layout is planar with
an “arched leveled-planar” embedding [10]. Many subclasses of planar graphs
have bounded queue number: Every tree has queue number one [11], outerpla-
nar graphs have queue number at most two [10]; series-parallel graphs have
queue number at most three [15], and planar 3-trees have queue number at most
seven [17]. It is, however, an open question whether every planar graph have a
constant queue number; Dujmović shows that planar graphs have queue number
O(log n) [6], improving an earlier result of O(log4 n) by Di Battista et al. [5].

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 197–209, 2018.
https://doi.org/10.1007/978-3-319-73915-1_17

198 S. Pupyrev

Stack and queue layouts are generalized through the notion of a mixed layout,
in which every edge is assigned to a stack or to a queue that is defined with
respect to a common vertex ordering [11]. Such a layout is called an s-stack q-
queue layout, if it utilizes s stacks and q queues. One reason for studying mixed
stack and queue layouts is that they model the dequeue data structure, as a
dequeue may be simulated by two stacks and one queue [1,8]. Here we study
mixed layouts of planar graphs.

In their seminal paper [11], Heath and Rosenberg make the following conjec-
ture, which has hitherto been unresolved.

Conjecture 1 (Heath and Rosenberg [11]). Every planar graph admits a
mixed 1-stack 1-queue layout.

In this paper we disprove the conjecture by providing a planar graph that
does not have a 1-stack 1-queue layout.

Theorem 1. There exists a planar graph that does not admit a mixed 1-stack
1-queue layout.

We found, however, that mixed layouts are rather “powerful”. Our experi-
mental evaluation indicates that all planar graphs with |V | ≤ 18 vertices admit
a 1-stack 1-queue layout. This is in contrast with pure stack and queue layouts:
There exists a 11-vertex planar graph that requires three stacks, and there exists
14-vertex planar graphs that requires three queues. Thus a reasonable question
is what subclasses of planar graphs admit a 1-stack 1-queue layout. Dujmović
and Wood [8] consider graph subdivisions, that is, graphs created by replac-
ing every edge of a graph by a path; they show that every planar graph has a
1-stack 1-queue subdivision with four division vertices per edge. We strengthen
this result by showing that one division vertex per edge is sufficient.

Theorem 2. Every planar graph admits a mixed 1-stack 1-queue subdivision
with one division vertex per edge.

Proof Ideas and Organization. Our construction of the counterexample for
Conjecture 1 (presented in Sect. 2) is based on a sequence of gadgets — pla-
nar graphs that do not admit a mixed layout under certain conditions. We start
with a relatively simple gadget whose linear layouts can be analyzed exhaus-
tively; this gadget does not admit a mixed layout under fairly strong conditions.
Several small gadgets are combined into a bigger one, that does not have a mixed
layout under weaker conditions; these bigger gadgets are combined together to
produce the final counterexample. We believe that such an approach is general
and can be used for creating other lower bounds in the context of linear layouts.

Our technique for proving Theorem 2 (considered in Sect. 3) is quite different
from the one used by Dujmović and Wood [8] for proving the earlier (weaker)
result. We make use of the so-called concentric representation of planar graphs.
While the existence of such a representation for a planar graph is known, we
extend the representation by finding a suitable order for the vertices, and show

Mixed Linear Layouts of Planar Graphs 199

that all planar graphs admit the extended representation. We are not aware of
any work that uses concentric representations in the context of linear layouts.

Section 4 concludes the paper with a discussion of our experiments, possible
future directions, and interesting open problems.

Related Work. Although there exists numerous works on stack and queue lay-
outs of graphs (refer to [7] for a detailed list of references), the concept of
mixed layouts received much less attention. Heath and Rosenberg [11] suggest to
study such generalized layouts and present Conjecture 1, which is a topic of this
paper. Dujmović and Wood [8] investigate mixed layouts of graph subdivisions.
They show that every graph G (not necessarily planar) has an s-stack q-queue
subdivision with O(log sn(G)) or O(log qn(G)) vertices per edge, where sn(G)
and qn(G) are the stack and queue numbers of G, respectively. Enomoto and
Miyauchi [9] improve the constants of the bounds for the numbers of division
vertices per edge.

For the case of planar graphs, Dujmović and Wood [8] show that four division
vertices per edge are sufficient to construct a mixed 1-stack 1-queue; the bound is
improved by Theorem 2. Our result mimics the fact that every planar graph with
one division vertex per edge has a 2-stack layout, as such graphs are bipartite [14].
Also related is a work by Auer [1] who study dequeue layouts of planar graphs,
and prove that a planar graph admits a dequeue layout if and only if it contains
a Hamiltonian path. Since a dequeue may be simulated by two stacks and one
queue, such graphs also admit a 2-stack 1-queue layout. To the best of our
knowledge, it is open whether every planar graph has a 2-stack 1-queue layout.

2 A Counterexample for Conjecture 1

A vertex ordering of a graph G = (V,E) is a total order of the vertex set V . In a
vertex ordering < of G, let L(e) and R(e) denote the endpoints of an edge e ∈ E
such that L(e) < R(e). Consider two edges e, f ∈ E. If L(e) < L(f) < R(e) <
R(f) then e and f cross, and if L(e) < L(f) < R(f) < R(e) then e and f nest.
In the latter case, we also say that e covers f . It is convenient to express the total
order < by permutation of vertices [v1, v2, . . . , v|V |], where v1 < v2 < · · · < v|V |.
This notion extends to a subset of vertices in the natural way. Thus, two edges,
e and f , cross if the order is [L(e), L(f), R(e), R(f)], and they nest if the order is
[L(e), L(f), R(f), R(e)]. A stack (resp. queue) is a set of edges E′ ⊂ E such that
no two edges in E′ cross (nest). A mixed layout of a graph is a pair (<, {S,Q}),
where < is a vertex ordering of G, and {S,Q} is a partition of E into a stack S
and a queue Q.

Our counterexample for Conjecture 1 is depicted in Fig. 1. The graph, G, is
built from 19 copies of a gadget, H, by identifying two vertices, A and B. The
graph consists of 173 vertices and 361 edges. Let us introduce some definitions
for the graph. Every copy of gadget H consists of two twins, s and t, connected
by a twin edge, (s, t). Each pair of twins is connected by A, B, and seven degree-2
vertices, x1, . . . , x7, that we call connectors. The set of connectors corresponding
to s and t is denoted by Cs,t. Now we prove the main result of the section.

200 S. Pupyrev

A B

s

t

x1 x2 x4 x5x3 x6 x7

(a) Gadget H

H

A B

s1

t1

H

H
si

ti

t19

s19

(b) A complete graph G

Fig. 1. A graph that does not admit a mixed 1-stack 1-queue layout.

Theorem 1. There exists a planar graph that does not admit a mixed 1-stack
1-queue layout.

Proof. The proof is by contradiction; we assume that there exists a mixed layout
of graph G shown in Fig. 1b. Using symmetry, we may assume that in the mixed
layout of the graph A < B, si < ti for all 1 ≤ i ≤ 19, and s1 < s2 < · · · < s19.
Let us analyze possible relative orderings of vertices A,B and two twins, s and
t in a gadget H. It is easy to see that there are only six permutations of the ver-
tices: (i) [s, t, A,B]; (ii) [s,A, t, B]; (iii) [s,A,B, t]; (iv) [A, s, t, B]; (v) [A, s,B, t];
(vi) [A,B, s, t]. Since graph G contains 19 pairs of twins, there exist at least four
twin pairs that form the same permutation with A and B. Therefore, to prove
the claim of the theorem, it is sufficient to show impossibility of a mixed layout
with four twin pairs forming the same permutation. Permutations (i) and (vi)
are considered in Case 4, as they are symmetric. Permutations (ii) and (v) are
considered in Case 2. Permutation (iii) is considered in Case 1. Permutation (iv)
is considered in Case 3. ��

Before moving to the case analysis, we prove three lemmas that are common
for the proofs of all the cases.

Lemma 1. Assume that a vertex ordering of graph G contains [v1, s, t, v2] with
edge (v1, v2) ∈ Q and twins s, t. Then the following holds:

1a the order is [v1, s, t, v2, x1, x2, x3] or [x1, x2, x3, v1, s, t, v2] for some connec-
tors x1, x2, x3 ∈ Cs,t; that is, at least three of the connectors are either before
v1 or after v2 in the order;

1b (s, xi) ∈ S and (t, xi) ∈ Q, or (s, xi) ∈ Q and (t, xi) ∈ S for some xi ∈ Cs,t,
1 ≤ i ≤ 3; that is, at least one of the connectors is adjacent to a queue edge
and a stack edge.

Proof. For the first part of the lemma, assume that three of the connectors
corresponding to s and t are between v1 and v2; that is, v1 < x5 < x6 < x7 <
v2 for some connectors x5, x6, x7 ∈ Cs,t. Since the graph induced by vertices
s, t, x5, x6, x7 is not 1-stack (that is, outerplanar), at least one of edges, (s, x5),

Mixed Linear Layouts of Planar Graphs 201

(s, x6), (s, x7), (t, x5), (t, x6), (t, x7), is a queue edge. However, this edge is
covered by (v1, v2) ∈ Q, a contradiction.

For the second part of the lemma, assume the order is [v1, s, t, v2, x1, x2, x3]
(the proof for the other order is symmetric). Suppose that none of the connectors
is adjacent to both queue and stack edges. Hence, there are two connectors, say
x1 and x2, with edges assigned to a queue or to a stack. However, one of (s, x1)
and (t, x2) is a queue edge, as the two edges cross. Similarly, one of edges (s, x2)
and (t, x1) is a stack edge, as the edges are nested, a contradiction. ��
Lemma 2. Assume that a vertex ordering of graph G contains [v1, u1, s, t, u2, v2]
with edges (v1, v2) ∈ Q, (u1, u2) ∈ S and twins s, t. Then G does not admit a
mixed layout.

Proof. By Lemma 1a applied for vertices v1, s, t, v2, there exists a connector
x ∈ Cs,t such that x < v1 or x > v2. By Lemma 1b, one of edges (s, x), (t, x) is
a stack edge. However, this edge crosses stack edge (u1, u2), a contradiction; see
Fig. 2a. ��

t u2su1v1 v2 x

(a) Lemma 2

v1 sptqsq tp v2 x1 y1

ep, fp

eq, fq

(b) Lemma 3

Fig. 2. Impossible configurations for a mixed layout of graph G, as shown by Lemmas 2
and 3. Stack edges are blue and queue edges are red. (Color figure online)

Lemma 3. Assume that for three pairs of twins si, ti, 1 ≤ i ≤ 3, a vertex
ordering of graph G contains [v1, si, ti, v2], where edge (v1, v2) ∈ Q. Then G
does not admit a mixed layout.

Proof. Notice that all twin edges, (si, ti) for 1 ≤ i ≤ 3, are stack edges, as they
are covered by (v1, v2) ∈ Q. Moreover, the edges do not nest each other, as
otherwise the two nested edges together with (v1, v2) form a configuration as in
Lemma 2, which is impossible. Thus, we have three non-nested pairs of twins,
that is, up to renumbering the order is [v1, s1, t1, s2, t2, s3, t3, v2].

Let us apply Lemma 1a for the three pairs of twins and edge (v1, v2) ∈ Q.
There are two triples of connectors, x1, x2, x3 ∈ Csp,tp and y1, y2, y3 ∈ Csq,tq for
p, q ∈ {1, 2, 3}, that are all either before v1 or after v2 in the order. Without loss
of generality, we assume v2 < xj and v2 < yj for all 1 ≤ j ≤ 3.

By Lemma 1b applied for twins sp and tp, one of the connectors, say x1, is
adjacent to a queue edge, ep, and to a stack edge, fp. Similarly, a connector of

202 S. Pupyrev

sq and tq, say y1, is adjacent to a queue edge, eq, and to a stack edge, fq; see
Fig. 2b. However, it is not possible to assign these four edges to S and Q: If
x1 < y1, then the two queue edges, ep and eq, nest; If x1 > y1, then the two
stack edges, fp and fq, cross. ��

Now we are ready to analyze the cases proving Theorem 1.

Case 1 (sABt). Assume that the vertex ordering is [si, A,B, ti] for twins si, ti
for all 1 ≤ i ≤ 4. Then graph G does not admit a mixed layout.

Proof. Let us assume that the vertex ordering is [s1, s2, s3, s4, A,B, d1, d2, d3, d4],
where di ∈ {t1, t2, t3, t4} for all 1 ≤ i ≤ 4. Note that G contains edges (A, di)
and (B, di) for all 1 ≤ i ≤ 4.

Start with a pair of edges (A, d4) and (B, s1); since they cross, one of the edges
is a queue edge. Without loss of generality, we may assume that (A, d4) ∈ Q.
Hence, all edges covered by (A, d4) are stack edges; that is, (B, d3), (B, d2),
(B, d1) ∈ S. It follows that all edges crossing the three edges are in the queue:
(A, d2), (A, d1) ∈ Q; see Fig. 3a.

Now let sx be a twin of d2. Edge (sx, d2) is a stack edge since it covers
(A, d1) ∈ Q. However, (sx, d2) crosses (B, d3) ∈ S, a contradiction. ��

A Bs4s3s2s1 d1 d2 d3 d4

(a) Case 1

A Bs4s3s2s1 d1 d2 d3 d4

(b) Case 2

Fig. 3. An illustration for the proofs of cases of Theorem 1. Stack edges are blue and
queue edges are red. (Color figure online)

Case 2 (AsBt). Assume that the vertex ordering is [A, si, B, ti] for twins si, ti
for all 1 ≤ i ≤ 4. Then graph G does not admit a mixed layout.

Proof. Let us assume that the vertex ordering is [A, s1, s2, s3, s4, B, d1, d2, d3, d4],
where di ∈ {t1, t2, t3, t4} for all 1 ≤ i ≤ 4.

Suppose that e = (A, d2) is a stack edge. Then (B, d3) ∈ Q, as it crosses e.
This is impossible, as twin edge (sx, d4) (for some 1 ≤ x ≤ 4) crosses a stack
edge, (A, d2), and covers a queue edge, (B, d3). Hence, (A, d2) is a queue edge.

Since (A, d2) ∈ Q, all nested edges are in the stack; in particular, (s1, B) ∈ S
and (sy, d1) ∈ S, where sy is the twin of d1. Notice that in order for edges (s1, B)
and (sy, d1) to be non-crossing, sy should be equal to s1; see Fig. 3b. It follows
that edge (B, d2) is a queue edge since it crosses (s1, d1). Finally, we observe that
the twin edge of d3, (sz, d3) for some 2 ≤ z ≤ 4, crosses a stack edge, (s1, d1),
and covers a queue edge, (B, d2), which is not possible. ��

Mixed Linear Layouts of Planar Graphs 203

Case 3 (AstB). Assume that the vertex ordering is [A, si, ti, B] for twins si, ti
for all 1 ≤ i ≤ 4. Then graph G does not admit a mixed layout.

Proof. Let us assume that the vertex ordering is [A, d1, d2, . . . , d8, B], where
si, ti ∈ {d1, . . . , d8} for all 1 ≤ i ≤ 4.

Since edges (A, d8) and (d1, B) cross, one of them is a queue edge. With-
out loss of generality, we may assume (A, d8) ∈ Q. Consider seven vertices
d1, d2, . . . , d7. It is easy to see that they form three pairs of twins (while the
forth pair is formed with d8). By Lemma 3 applied for (A, d8) ∈ Q and the
twins, it is impossible. ��
Case 4 (ABst). Assume that the vertex ordering is [A,B, si, ti] for twins si, ti
for all 1 ≤ i ≤ 4. Then graph G does not admit a mixed layout.

Proof. Let us assume that the vertex ordering is [A,B, d1, d2, . . . , d8], where
si, ti ∈ {d1, . . . , d8} for all 1 ≤ i ≤ 4.

Suppose that edge e = (A, d7) ∈ Q; then edge (B, d6) ∈ S, as it is covered
by e. Additionally, we have five vertices, d1, d2, d3, d4, d5, which form at least one
pair of twins. This pair of twins together with (A, d7) ∈ Q and (B, d6) ∈ S form
a configuration as in Lemma 2, which is impossible. Therefore, edge (A, d7) ∈ S
and the crossing edge, (B, d8), is a queue edge.

Consider vertices d1, . . . , d7. There are three pairs of twins formed by the
vertices; all of the pairs are covered by (B, d8) ∈ Q, contradicting Lemma 3. ��

3 Mixed Layouts of Planar Subdivisions

In this section we prove Theorem 2. To this end, we utilize a special represen-
tation of a planar graph, which is called ordered concentric. In such a represen-
tation, the vertices of a graph are laid out on a set of circles around a specified
origin vertex, so that each circle contains exactly the vertices with the same
graph-theoretic distance to the origin; see Fig. 4. To construct such a represen-
tation, we begin with an arbitrary vertex of the graph as the origin, and consider
a planar embedding of the graph with the origin on the outer face. The layers of
vertices are formed by a breadth-first search starting at the origin, and the edges
are routed without crossings and connect vertices of the same layer or vertices of
two consecutive layers. Formally an ordered concentric representation is defined
next. We assume that for a graph G = (V,E), distG(u, v) is the graph-theoretic
distance between vertices u, v ∈ V .

Definition 1. Let G = (V,E) be a connected planar graph with a specified vertex
v∗ ∈ V . An ordered concentric representation of G with the origin v∗,
denoted by Γ o, is a drawing of G with the following properties:

(i) The drawing is planar with vertex v∗ lying on the outer face;
(ii) Vi = {x ∈ V | distG(v∗, x) = i} for all 0 ≤ i ≤ k and some k ∈ N. The set

Vi is called the i-th level of G. For every level Vi, 1 ≤ i ≤ k, the vertices
of Vi are arranged in a sequence x1, x2, . . . , xr with |Vi| = r.

204 S. Pupyrev

1

610

2 3 4

5

7

8
9

11
12

13

14

(a)

1

610

4

711
12

13

14
5

8

2 3

9

(b)

Fig. 4. (a) A plane graph and (b) its ordered concentric representation with the origin
v∗ = 1. Concentric circles are shown dashed.

In the drawing, the vertices are laid out on a closed curve in the order; the
curve is called the i-th circle. The vertices of Vj, j < i are located inside
the area bounded by the i-th circle, while the vertices of Vj, j > i are located
outside the area bounded by the i-th circle.

(iii) For every edge (u,w) ∈ E with u ∈ Vi and w ∈ Vj, it holds that either i = j,
in which case the edge is called a level edge, or |i − j| = 1, corresponding
to a non-level edge.
Every level edge (u,w) ∈ E, u,w ∈ Vi is realized as a curve routed outside
the i-th circle. Every non-level edge (u,w) ∈ E, u ∈ Vi, w ∈ Vi+1 is realized
as a curve consisting of at most two pieces: the first (required) piece is routed
between the i-th and the (i + 1)-th circles, and the second (optional) piece
is routed outside the (i + 1)-th circle.

Notice that the notion of concentric representations is related to radial draw-
ings [2]. The main difference is that in radial drawings “monotonicity” of edges
is required; equivalently, every edge shares at most one point with a circle in a
radial drawing. In contrast, some edges of a concentric representation may cross
a circle multiple times; for example, see an edge (5, 8) in Fig. 4b. As a result,
a radial drawing may not exist for a planar graph, while an ordered concentric
representation can always be constructed as shown by Lemma 4.

Another closely related concept is a (non-ordered) concentric representation
of a planar graph [12,16]. Such a representation is defined similarly, except that
the vertices of each level form a cyclic sequence and the origin vertex is not
required to lie on the outer face. In a sense, Definition 1 provides a refinement of
a concentric representation, as it dictates the (non-cyclic) order of the vertices
of every level. The next lemma shows that every planar graph admits an ordered
concentric representation.

Mixed Linear Layouts of Planar Graphs 205

Lemma 4. For every connected planar graph G = (V,E) and every v∗ ∈ V ,
there exists an ordered concentric representation of G with the origin v∗.

Proof. We start by constructing a breadth-first search tree, T , of G rooted at v∗.
Consider an arbitrary combinatorial embedding of G (that is, cyclic orders of
edges around each vertex), and draw T on a set of horizontal lines respecting the
planar embedding. A line with y-coordinate = i contains vertices Vi, 0 ≤ i ≤ k
with k = maxu∈V distG(v∗, u). The order of the vertices along each line is defined
by the embedding of G. Notice that the drawing is planar and satisfies Defini-
tion 1. Here the circles are formed by connecting the leftmost and the rightmost
vertices of each horizontal line with a curve surrounding the drawing; see Fig. 5a.
All the edges of T are drawn as straight-line segments between consecutive lev-
els, that is, they are non-level edges. Next we show how to draw the remaining
edges of E while preserving the properties of Definition 1.

To this end, we maintain the following invariant: For every face f of the
currently drawn graph, H, there exists a vertical line segment of length ε > 0
such that every vertex u ∈ f can be connected to every point of the segment
via a curve, which is monotone in the y-direction, while avoiding crossing with
the edges of H. Since the drawing of T defines only one face, it is clear that the
segment with endpoints (x, k) and (x, k+1) (for an arbitrary x ∈ R) satisfies the
invariant; see Fig. 5a. Let us show how to draw the next edge. Assume that an
edge, (u,w) ∈ E, belongs to a face f of H. Due to the invariant, there exists a
line segment with endpoints p0 = (x, y0) and p1 = (x, y1) (for some x, y0, y1 ∈ R)
that is reachable from both u and w. We identify point p = (x, (y0 + y1)/2) on
the segment and route the edge along the curves connecting u to p and then
p to w. The edge splits f into two faces such that the condition of the invariant
can be satisfied using segments p0, p and p, p1; see Fig. 5b. To complete the proof,

1

2 10 6 3

14 11 9

12

8 5 4

7

13y = 2

y = 3

y = 1

y = 0

y = 4

(a)

1

10 6 3

14 11

12

4

7

13 9

2

8 5

(b)

Fig. 5. (a) A starting point for construction an ordered concentric representation for
graph shown in Fig. 4a, as described in Lemma 4. (b) Maintaining the invariant of
Lemma 4 while drawing edge (2, 9) and then edge (5, 8).

206 S. Pupyrev

we observe that the edge also satisfies Definition 1. If distG(v∗, u) = distG(v∗, w),
then (u,w) is a level edge. Otherwise, if |distG(v∗, u) − distG(v∗, w)| = 1, then
(u,w) is a non-level edge represented by a two-piece curve. ��

Now we are ready to prove the main result of the section. Our construction
of a mixed layout for a given graph G is as follows. We start with an ordered
concentric representation, Γ o, of G, which is created by a breadth-first search
starting at an arbitrary vertex v∗. We distinguish three types of edges in Γ o:
(a) level edges with both endpoints belonging to the same level of Γ o, (b) short
non-level edges whose curves are routed between consecutive levels of Γ o, and
(c) long non-level edges whose curves cross some circles of Γ o. Our goal is to
keep the edges of type (a) in the stack and the edges of type (b) in the queue.
The edges of type (c) shall be subdivided into a stack edge and a queue edge.
The order of vertices in the mixed layout is constructed from the levels of Γ o:
we place the origin v∗, which is followed by the vertices of V1 (in the order given
by the ordered concentric representation), followed by the vertices of V2 etc. The
correctness of the mixed layout follows from the planarity of Γ o; see Fig. 6. Next
we provide a formal proof.

1

6 3

14 9 8 413 11

2 10

12 7

5

(a)

10 6 3 4589111413 12 71 2

(b)

Fig. 6. (a) An ordered concentric representation for graph shown in Fig. 4a. Red
squares are subdivision vertices introduced for long non-level edges. (b) A mixed 1-stack
1-queue layout of the graph constructed as described in Theorem 2. (Color figure online)

Theorem 2. Every planar graph admits a mixed 1-stack 1-queue subdivision
with one division vertex per edge.

Proof. Let G = (V,E) be a planar graph and v∗ ∈ V . We assume that G is
connected; otherwise, each connected component of G can be processed individ-
ually. Using Lemma 4, construct an ordered concentric representation Γ o of the
graph with the origin v∗ and a set of levels Vi, 0 ≤ i ≤ k for some k ≥ 0.

Consider an edge (u,w) ∈ E with u ∈ Vi and w ∈ Vj . Since the levels are
constructed with a breadth-first search, it holds that i = j or |i−j| = 1. Let Pu,w

Mixed Linear Layouts of Planar Graphs 207

be the (ordered) sequence of levels of Γ o such that the corresponding circles share
a point with the curve realizing edge (u,w). By Definition 1, E = Ea ∪ Eb ∪ Ec,
where

– Ea = {(u,w) : u,w ∈ Vi for some 1 ≤ i ≤ k with Pu,w = (Vi, . . . , Vi) in Γ o};
– Eb = {(u,w) : u ∈ Vi, w ∈ Vi+1 with Pu,w = (Vi, Vi+1) in Γ o};
– Ec = {(u,w) : u ∈ Vi, w ∈ Vi+1 with Pu,w = (Vi, Vy1 , . . . , Vyd

, Vi+1) in Γ o for
some d ≥ 1, y1 = i + 1 and yt > i + 1 for 2 ≤ t ≤ d}.

We construct a subdivision Gs = (V s, Es) as follows. For an edge e = (u,w) ∈
Ec, consider the crossing point, y1(e), between the (i+1)-th circle and the curve
realizing e in Γ o (which corresponds to the second element, Vy1 , of Pu,w). Let

V s = V ∪
⋃

e∈Ec

{y1(e)} and Es = Ea ∪ Eb ∪ Ec1 ∪ Ec2 , where

Ec1 =
⋃

e∈Ec

{(u, y1(e))} and Ec2 =
⋃

e∈Ec

{(y1(e), w)}.

In order to construct a mixed layout of Gs, we use the following order:

σ = (v∗, x1
1, x

1
2, . . . , x

1
r1 , x2

1, x
2
2, . . . , x

2
r2 , x3

1, x
3
2, . . . , x

3
r3 , . . .),

where {xi
1, x

i
2, . . . , x

i
ri} = V s

i ⊇ Vi are the vertices of the i-th level of Gs in the
order given by Γ o. All edges of Ea and Ec2 are stack edges; that is, e ∈ S for
every e ∈ Ea ∪ Ec2 . All the remaining edges are queue edges; that is, e ∈ Q for
every e ∈ Eb ∪ Ec1 . Next we prove the correctness of the construction.

Let us show that all stack edges are crossing-free with respect to the specified
order, σ. Assume two edges, (u1, w1), (u2, w2) ∈ S, cross each other, that is
u1 < u2 < w1 < w2 with respect to σ. Observe that all edges in the stack
are the edges of the same level in the ordered concentric representation. Thus,
u1, w1 ∈ V s

i and u2, w2 ∈ V s
j for some 0 ≤ i, j ≤ k. However, the levels are

arranged consecutively in σ, which means that i = j and two edges of the same
level cross. This is impossible, as all vertices of the same level of Γ o and the
corresponding level edges form an outerplanar graph by Definition 1.

Finally, let us show that all queue edges are non-nested with respect to σ.
Assume that two edges, (u1, w1), (u2, w2) ∈ Q, nest each other so that u1 <
u2 < w2 < w1. Since the queue edges belong to consecutive levels in the ordered
concentric representation, it holds that u1 ∈ V s

i , w1 ∈ V s
i+1, u2 ∈ V s

j , w2 ∈ V s
j+1

for some 0 ≤ i, j ≤ k. Since the levels do not overlap in σ, it holds that i = j.
Hence, the two edges are routed between the same consecutive levels, V s

i and
V s
i+1, and therefore, cross each other, which violates the planarity of Γ o. ��

4 Discussion

In this paper we resolved a conjecture by Heath and Rosenberg [11] by providing
a graph that does not admit a mixed 1-stack 1-queue layout. The graph contains

208 S. Pupyrev

173 vertices, and a reasonable question is what is the size of the smallest coun-
terexample. In an attempt to answer the question, we implemented an exhaustive
search algorithm1 (based on the SAT formulation of the linear embedding prob-
lem suggested by Bekos et al. [3]) and tested all 977, 526, 957 maximal planar
graphs with |V | ≤ 18. It turns out that all such graphs have a mixed 1-stack
1-queue layout. The evaluation suggests that mixed layouts are more “power-
ful” than pure stack and queue layouts, as there exist fairly small graphs that
do not admit 2-stack and 2-queue layouts. The smallest planar graph requir-
ing three stacks contains 11 vertices, and the smallest planar graph requiring
three queues contains 14 vertices; see Figs. 7a and b. We were able to find a
smaller counterexample for Conjecture 1; see Fig. 7c. This instance consists of
|V | = 37 vertices and |E| = 77 edges, and has a similar structure as the graph
in Theorem 1. However, showing that the graph does not admit a mixed layout
requires significantly more effort.

(a) (b)

H
s1

t1

H

t7

s7

A B
x1 x2 x3

t

s

A B

(c)

Fig. 7. The smallest planar graphs that require (a) 3 stacks, (b) 3 queues. (c) A graph
with |V | = 37 and |E| = 77 that does not admit a mixed layout.

An interesting future direction is to consider bipartite planar graphs. We
noticed that all our counterexamples contain triangles, which seem to be impor-
tant for non-embeddability. Based on our experiments, we conjecture that every
bipartite planar graph admits a mixed 1-stack 1-queue layout. Such a result
would strengthen Theorem 2, as a subdivision of a graph with one vertex per
edge is clearly bipartite. Also observe that a pure 2-stack layout exists for every
bipartite planar graph, as shown by Overbay [14].

Conjecture 2. Every bipartite planar graph admits a mixed 1-stack 1-queue
layout.

1 An online tool and the source code for testing linear embeddability of graphs is
available at http://be.cs.arizona.edu.

http://be.cs.arizona.edu

Mixed Linear Layouts of Planar Graphs 209

Another future direction is to study mixed s-stack q-queue layouts of planar
graphs. What are possible values of s and q such that there exists a mixed s-stack
q-queue layout for every planar graph? By the result of Yannakakis [18], we know
that s = 4, q = 0 is a valid option, while Theorem 1 shows that s = 1, q = 1 is
not sufficient. Here it is worth mentioning a result by Auer [1] who shows that
every planar graph with a Hamiltonian path admits a mixed layout with s = 2
and q = 1. However it is open whether there exists some s > 0 and q > 0 with
2 < s + q ≤ 4 realizing all planar graphs.

References

1. Auer, C.: Planar graphs and their duals on cylinder surfaces. Ph.D. thesis,
Universität Passau (2014)

2. Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and
embedding in linear time. J. Graph Algorithms Appl. 9(1), 53–97 (2005)

3. Bekos, M.A., Kaufmann, M., Zielke, C.: The book embedding problem from a
SAT-solving perspective. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS,
vol. 9411, pp. 125–138. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27261-0 11

4. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theor. Ser.
B 27(3), 320–331 (1979)

5. Di Battista, G., Frati, F., Pach, J.: On the queue number of planar graphs. SIAM
J. Comput. 42(6), 2243–2285 (2013)

6. Dujmović, V.: Graph layouts via layered separators. J. Comb. Theor. Ser. B 110,
79–89 (2015)

7. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6(2), 339–358 (2004)

8. Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivi-
sions. Discrete Math. Theor. Comput. Sci. 7, 155–202 (2005)

9. Enomoto, H., Miyauchi, M.: Stack-queue mixed layouts of graph subdivisions. In:
Forum on Information Technology, pp. 47–56 (2014)

10. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as
machines for laying out graphs. SIAM J. Discrete Math. 5(3), 398–412 (1992)

11. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput.
21(5), 927–958 (1992)

12. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-662-03442-2

13. Ollmann, L.T.: On the book thicknesses of various graphs. In: Southeastern Con-
ference on Combinatorics, Graph Theory and Computing. vol. 8, p. 459 (1973)

14. Overbay, S.B.: Generalized book embeddings. Ph.D. thesis, Colorado State
University (1998)

15. Rengarajan, S., Veni Madhavan, C.E.: Stack and queue number of 2-trees. In:
Du, D.-Z., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 203–212. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0030834

16. Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press, Rockville
(1984)

17. Wiechert, V.: On the queue-number of graphs with bounded tree-width. Electr. J.
Comb. 24(1), P1.65 (2017)

18. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
38(1), 36–67 (1989)

https://doi.org/10.1007/978-3-319-27261-0_11
https://doi.org/10.1007/978-3-319-27261-0_11
https://doi.org/10.1007/978-3-662-03442-2
https://doi.org/10.1007/BFb0030834

Upward Partitioned Book Embeddings

Hugo A. Akitaya1(B), Erik D. Demaine2, Adam Hesterberg2,
and Quanquan C. Liu2(B)

1 Tufts University, Medford, MA, USA
hugo.alves akitaya@tufts.edu

2 Massachusetts Institute of Technology, Cambridge, MA, USA
{edemaine,achester,quanquan}@mit.edu

Abstract. We analyze a directed variation of the book embedding prob-
lem when the page partition is prespecified and the nodes on the spine
must be in topological order (upward book embedding). Given a directed
acyclic graph and a partition of its edges into k pages, can we lin-
early order the vertices such that the drawing is upward (a topological
sort) and each page avoids crossings? We prove that the problem is NP-
complete for k ≥ 3, and for k ≥ 4 even in the special case when each
page is a matching. By contrast, the problem can be solved in linear time
for k = 2 pages when pages are restricted to matchings. The problem
comes from Jack Edmonds (1997), motivated as a generalization of the
map folding problem from computational origami.

1 Introduction

Book Embeddings. Bernhart and Keinen [BK79] first introduced the con-
cept of book embeddings and book thickness of graphs in 1979. Since then, book
embeddings and book thickness have been widely studied as natural geometric
invariants in directed and undirected graphs with applications in graph drawing
and graph algorithms. Book embeddings (also studied under the name of stack
layouts [CLR87,HP97,HPT99,HP99]) have applications in VLSI design, fault-
tolerant processing, parallel process scheduling, sorting networks, and parallel
matrix computations [CLR87,HLR92,HR92].

Given an undirected graph G = (V,E), where |V | = n and |E| = m, a book
embedding consists of

1. a linear ordering π of the vertices V , defining an embedding of the vertices
into the spine (a line in the plane); and

2. a disjoint partition of the edges E into sets, so that each set of the partition
can be embedded into a page (half-plane bounded by the spine) without
intersection between the edges on each page.

The pages join together at the spine to form a book. The book thickness of a
graph G is the minimum number k of pages in any book embedding of G.

Much of the previous research on book embedding (on undirected graphs)
focuses on the book thickness of particular graph classes such as complete
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 210–223, 2018.
https://doi.org/10.1007/978-3-319-73915-1_18

Upward Partitioned Book Embeddings 211

bipartite graphs [ENO97] and planar graphs (which have an upper bound of 4
pages) [Yan89,BBKR15,BGR16]. Graphs of book thickness 1 turn out to have a
simple characterization as (exactly) outerplanar graphs [BK79], and such graphs
can be recognized in linear time [Wie86]. By contrast, graphs with a 2-page book
embedding are exactly the sub-Hamiltonian graphs [BK79], and recognizing such
graphs is NP-complete [Wig82].

Directed Graphs. Motivated by many of the same applications, book embed-
ding has been generalized to directed graphs. For directed acyclic graphs (DAGs),
an upward book embedding is a book embedding such that the linear ordering
of the vertices on the spine is in topological order [HP99,HPT99]. For general
digraphs, oriented book embeddings [MK16] require that all arcs embedded into
a page (or the spine) must agree in orientation (pointed up or down with respect
to the order on the spine).

Research in upward book embedding includes combinatorial results for classes
of DAGs such as trees, cycles, or paths by using characteristics of the underlying
undirected graph [HP99]. Furthermore, more recent research studied the book
embedding of directed planar graphs [FFR11]. As in the undirected case, there
is a linear-time algorithm to determine whether a DAG has a 1-page upward
book embedding [HP99] (although the algorithm is very different from the 1-
page book embedding algorithm applied to the DAG’s underlying undirected
graph). Furthermore, determining whether a DAG has a 6-page upward book
embedding is NP-complete [HP99]. There is a linear-time algorithm for 2-page
upward book embedding of planar directed series-parallel graphs [DGDLW06].
Note that undirected series-parallel graphs are necessarily sub-Hamiltonian. For
graphs with cycles, oriented book embeddings and oriented book thickness have
been found for several graph classes including cycles and oriented trees [MK16].

See [DW04,DW05] for more detailed citations lists and surveys about book
embeddings and linear graph layouts for both directed and undirected graphs.

Partitioned Problem. In the partitioned book embedding problem, we are
given the partition of edges into pages. This variation eliminates one of the
previous combinatorial aspects of finding a book embedding (namely finding
the partition of edges), and leaves only finding the vertex order on the spine.
Intuitively, this problem should be simpler. Indeed, there is a linear-time algo-
rithm for determining whether a given edge partition can result in a 2-page book
embedding of an undirected graph [HN14,ABD12]. Nonetheless, the partitioned
k-page book embedding problem is NP-complete for undirected graphs where
k ≥ 3 [ALN15]. In their proof, the gadgets only work with undirected edges and
therefore cannot directly be applied to upward book embedding.

In terms of partitioned book embedding problems where the edges in a parti-
tion form a matching, [Hos12] showed that for undirected graphs, it is NP-hard
to find the ordering of vertices given unbounded number of pages (i.e. unbounded
number of partitions). Although the reduction in [Hos12] is also from Between-
ness (defined in Definition 1), the techniques used are simpler and different from
ours since they consider undirected graphs and allow unbounded number of par-
titions of edges.

212 H. A. Akitaya et al.

Table 1. Summary of known and new results in partitioned book embedding. New
results are written in bold.

Type k = 1 k = 2 k = 3 k ≥ 4

Undirected O(n) [BK79] O(n) [HN14] NP-complete
[ALN15]

NP-complete
[ALN15]

Upward O(n) [HP99] OPEN NP-complete
[Theorem 1]

NP-complete
[Theorem 1]

Matching O(n) [HP99] O(n) [Theorem 3] OPEN NP-complete
[Theorem 2]

Our Results. In this paper, we study the natural combination of the partitioned
variation (where we are given the partition of edges into pages) with upward book
embedding of DAGs, which has not been considered before (Upward Parti-
tioned k-Page Book Embedding). We prove that the resulting problem is
NP-complete for any k ≥ 3. Our hardness proof techniques also apply to a special
case of this problem, called Upward Matching-Partitioned k-Page Book
Embedding, where only disjoint edges map to each page (forming a matching).
For this special case, we show NP-hardness for k ≥ 4 and that book embedding
can be solved in linear time for k = 1 page or k = 2 pages. Table 1 puts these
results in context with previous results.

Upward Matching-Partitioned 4-Page Book Embedding is in fact
motivated by the (nonsimple) map folding problem, posed by Jack Edmonds
in 1997 (personal communication with E. Demaine); see [ABD+04,DLM12].
Edmonds showed that the problem of finding a flat folded state of an m × n
grid crease pattern, with specified mountains and valleys, reduces to exactly this
type of book embedding problem, with the k = 4 pages corresponding to the
four compass directions of a square. Furthermore, 1 × n and 2 × n map fold-
ing reduce to the problems with k = 2 and k = 3 pages. Algorithms for solving
Upward Matching-Partitioned k-Page Book Embedding are thus of par-
ticular interest because they solve the long-standing map folding open problem
as well.

In Sect. 2, we formally define our book embedding models. In Sect. 3, we
prove NP-completeness for Upward Partitioned 3-Page Book Embedding.
Finally, in Sect. 4, we show that Upward Matching-Partitioned Book
Embedding can be solved in linear time for 2 pages and is NP-complete for
4 pages.

2 Definitions

We define the Upward Partitioned k-Page Book Embedding (UPBE-k)
problem similarly to the definition for Partitioned k-Page Book Embedding
as given in [ALN15]. Specifically, we are given a directed acyclic graph (DAG)
G = (V,E) and a partition of the edges in E: P = {E1, E2, . . . , Ek} where

Upward Partitioned Book Embeddings 213

E1∪̇E2∪̇ · · · ∪̇Ek = E, where ∪̇ denotes disjoint union. The goal is to determine
whether G can be embedded in a k-page book such that the ordering π of the
vertices on the spine is topologically sorted and each Ei ∈ P lies in a separate
page.

The Upward Matching-Partitioned k-Page Book Embedding
(UMPBE-k) problem is the special case of UPBE-k in which every edge par-
tition Ei ∈ P forms a directed matching, that it, has at most one edge incident
to each vertex in G.

For a given upward partitioned book embedding instance G = (V,E, P), let
π represent a valid ordering of V on the spine where a valid ordering is one
that satisfies the constraints on every page (e.g. non-crossing edges) and follows
topological order. As stated previously, π is also a valid topological sorting of V .
We write π(x) < π(y) (resp., π(x) > π(y)) if node x ∈ V comes earlier/before
(resp., later/after) y ∈ V in π. For ease of wording, we will assign colors to edge
partitions and refer to edges within each partition to have a particular color.

3 UPBE is NP-Complete

We show that UPBE-k is NP-hard via a reduction from the NP-complete prob-
lem Betweenness. The problem Betweenness is defined as follows.

Definition 1 (Betweenness [Opa79]). We are given a set L of n elements and
a set C of m ordered triples where each member of a triple is a member of L.
Let φ be a total ordering of the elements in L. An ordered triple, 〈a, b, c〉 ∈ C is
satisfied if either φ(a) < φ(b) < φ(c) or φ(c) < φ(b) < φ(a) is true. The goal is
to find an ordering φ such that all ordered triples in C are satisfied.

Given an instance (L,C) of Betweenness, we construct an instance,
G = (V,E), with edge partition, P = {Red, Green, Blue}, of UPBE-3 such
that a subsequence of a solution π corresponds to a valid ordering φ of L
in the Betweenness instance. For each element x ∈ L, we create vertices
x1, . . . , x2m−1 in V . We call these vertices the element vertices. Our reduction
uses two types of gadgets: ordered triple gadgets and order preserving gadgets.
Their function is to enforce a betweenness constraint given by an element of
C and to ensure that the order of element vertices of subscript j in π, with
j ∈ {1, . . . , 2m − 2}, is the reverse order of element vertices of subscript j + 1,
respectively. We prove that (G,P) admits an upward book embedding given by π
if and only if the order of element vertices of the same subscript in π corresponds
to a solution φ for the (L,C) Betweenness instance.

3.1 Gadgets

Ordered Triple Gadget. We order the set C arbitrarily. For the (i+1
2)-th

ordered triple 〈a, b, c〉 ∈ C, where i is an odd integer between and including 1
and 2m− 1, we construct an ordered triple gadget that enforces the betweenness
constraint on the triple of element vertices ai, bi, ci in π. Specifically, we create
the following nodes and edges.

214 H. A. Akitaya et al.

Definition 2 (Ordered Triple Gadget). Let (L,C) be an instance of
Betweenness. Order the set C arbitrarily. For the

(
i+1
2

)
-th ordered triple

〈a, b, c〉, where i is an odd integer between and including 1 and 2m−1, construct
nodes li, αi, ωi, a′

i, b′
i, c′

i, and hi. Then, create directed edges (li, αi), (li, ωi) ∈
Red, (αi, a

′
i), (αi, b

′
i), (ωi, b

′
i), (ωi, c

′
i) ∈ Blue, and (a′

i, hi), (b′
i, hi), (c′

i, hi) ∈
Green.

Refer to Fig. 1 for an example construction. Nodes a′
i, b

′
i and c′

i are respec-
tively connected to a′′

i , b′′
i and c′′

i by an edge in Red (where a′′
i , b′′

i , and c′′
i are

part of the order preserving gadget defined in Definition 3). The topologically
earliest and latest nodes in the gadget are respectively li and hi. The choice
between π(a′

i) < π(b′
i) < π(c′

i) and π(a′
i) > π(b′

i) > π(c′
i) (and hence the choice

between π(ai) < π(bi) < π(ci) and π(ai) > π(bi) > π(ci)) is encoded in the
choice between π(αi) < π(ωi) and π(αi) > π(ωi) as we prove in Lemmas 1
and 2.

Lemma 1. Given a positive instance (G,P) containing the ordered triple gadget
shown in Fig. 1 (left), if π(hi) < min(π(a′′

i), π(b′′
i), π(c′′

i)) then either π(a′′
i) <

π(b′′
i) < π(c′′

i) or π(c′′
i) < π(b′′

i) < π(a′′
i).

li

αi ωi

hi

a′
i b′

i c′
i

di

ci

bi

ai

ri

c′′
i

b′′
i

a′′
i

aj

rj

bj

cj

dj

Fig. 1. Ordered triple gadget (left) and order preserving gadget for odd i (center) and
for even j (right). The red edges from a′

i, b
′
i and c′

i from the ordered triple gadget lead
to a′′

i , b
′′
i , and c′′

i in the order preserving gadget. The red edge from hi directs to ri.
(Color figure online)

li αi ωi hia′
ib′

ic′
i

li αiωi hia′
i b′

i c′
i

Fig. 2. The two possible embeddings of the ordered triple gadget. (Color figure online)

Upward Partitioned Book Embeddings 215

Proof. Notice that hi must appear after a′
i, b′

i and c′
i due to topological order.

By the assumption in the lemma, hi be before a′′
i , b′′

i , c′′
i respectively. We first

prove that min(π(a′
i), π(b′

i), π(c′
i)) > max(π(αi), π(ωi)), i.e., no vertex in the

gadget must occur between αi and ωi. Because of the topological order, π(b′
i) >

max(π(αi), π(ωi)). Suppose π(αi) < π(ωi) (see Fig. 2 (top)). By topological order
π(c′

i) > π(ωi) = max(π(αi), π(ωi)). If π(a′
i) < π(ωi), since π(ωi) < π(a′′

i), the
red edges (a′

i, a
′′
i) and (li, ωi) would intersect, a contradiction. The case when

π(αi) > π(ωi) is symmetric.
Trivially, either π(αi) < π(ωi) or π(αi) > π(ωi). We first assume π(αi) <

π(ωi) (Fig. 2 (top)). Then π(c′
i) < π(b′

i) < π(a′
i), or else at least one pair of

blue edges ((αi, b
′
i), (αi, a

′
i), (ωi, c

′
i), (ωi, b

′
i)) would cross. Since all red edges

(a′
i, a

′′
i), (b′

i, b
′′
i) and (c′

i, c
′′
i) nest around hi, every pair of such edges must be

nested. Therefore, π(a′′
i) < π(b′′

i) < π(c′′
i). The case when π(αi) > π(ωi) is

symmetric. ��

Order Preserving Gadget. By Lemma 1, each ordered triple gadget enforces
a betweenness constraint on vertices a′′

i , b′′
i and c′′

i . The order preserving gadgets
serve two purposes: ensuring that the i-th betweenness constraint is enforced in
the i-th copy of element vertices; and ensuring that each copy of element vertices
must occur in the reverse order of its predecessor. That implies that every other
copy of element vertices occur in exactly the same order. We build 2m− 1 order
preserving gadgets, the j-th gadget containing xj for each x ∈ L.

Definition 3 (Order Preserving Gadget). For each odd i in the range
[1, 2m − 1], we build the following nodes and edges:

1. Nodes a′′
i , b′′

i , c′′
i , xp

i for p ∈ [1, n], and ri.
2. Directed edges (a′′

i , ai), (b′′
i , bi), (c′′

i , ci) ∈ Red.
3. Directed paths of length 7 connecting ri to xp

i for all p ∈ [1, n] and where
xp
i 	= ai, bi, ci. The paths alternate between red and green edges.

4. Directed paths of length 7 connecting ri to a′′
i , b′′

i , and c′′
i with alternating red

and green edges.

For each even j in the range [1, 2m − 1], we build the following nodes and
edges:

1. Nodes xp
j for p ∈ [1, n] and rj.

2. Directed edges (xp
j , rj) ∈ Red for all p ∈ [1, n].

The gadget is divided into two parts: the elements part containing the element
vertices, and the order preserving tree whose root is labeled ri or rj . Figure 1
(center) shows an example of an order preserving gadget containing element ver-
tices with odd subscript. Such instances are connected to ordered triple gadgets
by three incoming red edges and have the vertex ri as the lowest vertex in the
topological order. The dashed edges represent a path of length 7 of alternating
red/green edges that are connected to the element vertex xi if x ∈ L is not in the(
i+1
2

)
-th ordered triple, or connected to the vertex x′′

i otherwise. The vertices

216 H. A. Akitaya et al.

x′′
i for an element x in the i-th ordered triple are then connected to the element

vertex xi by a blue edge. For gadgets that contain element vertices with even
subscript j (Fig. 1 (right)), rj is the highest vertex in the topological order. For
even j ∈ {2, . . . , 2m−2}, we connect xj to xj−1 with a blue edge and xj to xj+1

with a green edge, for all x ∈ L (see Fig. 6).
For odd i, the order preserving tree consists of n paths of length 7 of alternating

red/green edges connected to the i-th element vertex (represented in Fig. 1 (cen-
ter) as dashed arrows). Informally, their purpose is to allow such paths to “cross”
the vertices connected to the i-th ordered triple gadget by red edges, while ri as
the first vertex in the topological order of the order preserving gadget.

Lemma 2. Let (G,P) be a positive instance containing an order preserv-
ing gadget of odd index i connected to an ordered triple gadget representing
〈a, b, c〉. If there exists a set of blue edges (si−1, xi), π(si−1) < π(ri) and
π(si−1) < min(π(a′′

i , b′′
i , c′′

i)), from some vertices si−1 for all x ∈ L, then either
π(ai) < π(bi) < π(ci) or π(ai) > π(bi) > π(ci).

Proof. By topological order, π(ri) < π(xi) for all x ∈ L. Then, all blue edges of
the form (si−1, xi) must nest around ri. By Lemma 1, the order of vertices a′′

i , b′′
i

and c′′
i must obey the betweenness constraint 〈a, b, c〉. Since π(y′′

i) > π(ri), y ∈
{a, b, c}, if π(a′′

i) < π(b′′
i) then π(ai) < π(bi) or else edges (a′′

i , ai) and (si−1, bi)
would cross. With similar arguments, we can show that the order of the i-th
element vertices must obey the betweenness constraint 〈a, b, c〉. ��
Lemma 3. Let (G,P) be a positive instance containing three subsequent order
preserving gadgets with indices j − 1, j, and j + 1 where j is an even integer
in {2, . . . , 2m − 2}. If π(rj) < min{π(rj−1), π(rj+1)}, the element vertices with
subscript j+1 appear in π in the same order as the element vertices with subscript
j − 1.

Proof. We prove that the order of the element vertices with subscript j−1 is the
reverse order of the element vertices with subscript j in π. By a similar argument,
we can then show the same for j and j + 1, completing the proof. Notice that,
since j is even, π(xj) < π(rj), π(rj) < π(rj−1), and π(rj−1) < π(xj−1) for all
x ∈ L due to the topological order of the vertices. By the assumption in the
lemma, all blue edges (xj , xj−1) nest around rj and rj−1. Therefore, any pair
of such edges must be nested or they would cross. Hence, if π(bj) > π(aj), then
π(bj−1) < π(aj−1) or the blue edges (bj , bj−1) and (aj , aj−1) would cross (see
Fig. 6 for example). Therefore, the order of the (j−1)-th copy of element vertices
is the reverse order of the j-th copy. The same argument holds for xj and xj+1

for all x ∈ L. Given that the order of the (j−1)-th and the order of the (j+1)-th
copy of the element vertices are in reverse order of the j-th copy, the order of
the (j − 1)-th and (j + 1)-th copies of the element vertices must be the same. ��

The next corollary immediately follows from Lemma 3.

Upward Partitioned Book Embeddings 217

Corollary 1. If π(rj) < min{π(rj−1), π(rj+1)} for all even j ∈ {2, . . . , 2m−2},
then all element vertices with even subscript, j ∈ {2, . . . , 2m − 2} appear in the
same order and all element vertices with odd subscript, i ∈ {1, . . . , 2m − 1}
appear in the same order. Furthermore, all element vertices with even subscript,
j, appear in the reverse order of all element vertices with odd subscript, i.

3.2 Final Reduction

We create n ordered triple gadgets as defined in Definition 2 and 2m − 1 order
preserving gadgets as defined in Definition 3, connecting via the following set of
edges:

1. (a′
i, a

′′
i), (b′

i, b
′′
i), (ci, c′′

i) ∈ Red for all odd i ∈ [1, 2m − 1].
2. (rj , lj−1), (rj , lj+1) ∈ Red for all even j ∈ [1, 2m − 1].
3. (s, xp

n) ∈ Blue for all p ∈ [1, n].
4. (xp

j , x
p
j−1) ∈ Blue for all p ∈ [1, n] and even j ∈ [1, 2m − 1].

5. (xp
j , x

p
j+1) ∈ Green for all p ∈ [1, n] and even j ∈ [1, 2m − 1].

6. (hi, ri) ∈ Red for all odd i ∈ [1, 2m − 1].
7. (xp

j , rj) ∈ Red for all p ∈ [1, n] and even j ∈ [1, 2m − 1].
8. (r2m−2, s), (s, l2m−1) ∈ Blue.
9. (r2m−2, l2m−1) ∈ Red.

We connect the ordered triple and order preserving gadgets as described
above, obtaining an instance (G,P) of UPBE-k. Using this reduction, we prove
that UPBE-k is NP-complete for k ≥ 3.

Theorem 1. UPBE-k is NP-complete for k ≥ 3.

The proof follows from Lemmas 1, 2, and 3 and the constructions of the
gadgets; please refer to our full paper for the proof [ADHL17].

4 UMPBE

In this section, we discuss the Upward Matching-Partitioned Book
Embedding problem, where given an instance (G,P), each set of the parti-
tion P induces a subgraph in G that is a matching (i.e. no vertex is incident
to more than one edge of each set of the partition). We first show UMPBE-4
is NP-complete and then show that UMPBE-2 is solved in O(n) time. When
|P | = 1, the algorithm in [HP99] for UPBE-1 can also solve UMPBE-1 in O(n)
time.

218 H. A. Akitaya et al.

ri
li

αi ωi

hi

a′
i b′

i c′
i

di

ci

bi

ai

d∗
i a∗

i c∗
i b∗

i

rj

cj

bj

aj

d∗
j a∗

j c∗
j b∗

j

dj

Fig. 3. Gadgets for the reduction to UMPBE-4. (Color figure online)

4.1 UMPBE-4

Theorem 2. UMPBE-k is NP-complete for k ≥ 4.

Proof. As with UPBE, it is clear that UMPBE is in NP since an order π of
vertices of G serves as a certificate. We show NP-hardness by reducing from
Betweenness, adapting the proof of Theorem 1 to UMPBE-4. We again refer
to the partitions in P = {Red, Blue, Green, Yellow} as colors. The gadgets
adapted from Sect. 3.1 are shown in Fig. 3.

For odd i in {1, . . . , 2m−1} we connect gadgets with yellow edges (hi, ri) and
(ri−1, li) (if i > 1), and with the red edge (ri+1, li) (if i < 2m − 1). Lemmas 1
holds for the new gadget replacing x′′

i by xi. We omit its proof due to the
similarity. The dashed arrows in Fig. 3 represent paths of alternating colors as
described in the next paragraph. Lemma 3 also trivially holds. Therefore, given
a valid order π of vertices of G, the order of element vertices corresponds to a
solution φ of the Betweenness instance.

It remains to show that, given a solution φ of the Betweenness instance,
we can obtain a solution π for the produced instance. The order in which the
gadgets are embedded are the same as in the proof of Theorem 1 and, therefore,
no edge between gadgets cross. We now show that each gadget has a cross-free
embedding using φ. The embedding of the ordered triple gadget is very similar
to that shown in Fig. 2 and we chose π(αi) > π(ωi) or π(αi) < π(ωi) depending
on whether a appears before c or vice-versa in φ. In the order preserving gadget,
we use the same order (resp., reverse order) of φ for even (resp., odd) j.

ri dicibiaid∗
ia∗

ic∗
ib∗

i

Fig. 4. Embedding the order preserving gadget in Fig. 3 (center). (Color figure online)

Upward Partitioned Book Embeddings 219

Notice that the order preserving gadget now contains a binary tree and we
cannot chose arbitrarily the order of vertices x∗

j for x ∈ L. We call this tree the
binary order preversing tree that ensures that π(xi) > π(ri) and π(xj) < π(rj)
for all x ∈ L for odd i and even j. The tree is obtained by ordering the vertices
x∗
j arbitrarily and building a binary tree that alternates between green/blue

and yellow/red edges in order for the induced subgraph of each color to be a
matching. The paths connecting x∗

j to xj allows us to order the element vertices
xj using φ, independent of the order of vertices x∗

j . We construct such paths
in the following way. Each of the paths contains n edges. These paths alternate
between green/blue and yellow/red edges starting with the opposite color group
from the last row of the tree. Let x∗

j be the t-th vertex, t ∈ {1, . . . , n − 1}, in an
arbitrary order chosen as the order of the leaves of the order preserving tree. The
colors of edges alternate between blue and red except for the t-th edge of the t-th
vertex, such that the edge is green (resp., yellow) if the alternation would make
it blue (resp., red). The embedding of the paths can be obtained by changing
the order of the paths in an insertion sort manner, considering the last path (the
path from d∗

j to dj in Fig. 4) as the first element in the array and adding paths
one by one in increasing order (see Fig. 4). Let xt

j be the t-th vertex of the path
from x∗

j to xj and let yt
j be the t-th vertex, t ∈ {1, . . . , n−1}, in the order chosen

as the order of the leaves of the order preserving tree. Assume that the set A of
all xt−1

j is embedded so that the vertices are contiguous in the spine. We embed
the set B of vertices of the form xt

j immediately after the vertices in A in the
reverse order in which they appear in A, apart from yt

j . This order guarantees
that no crossing is induced since all edges of the same color (xt−1

j , xt
j) are nested

in parallel from A except for (yt−1
j , yt

j) which is of a different color. We can thus
add yt

j in any place in the ordering of B. ��

4.2 UMPBE-2

Theorem 3. Given an instance (G, {E1, E2}) where G = (V,E), E = E1∪̇E2

and both (V,E1) and (V,E2) are matchings, UMPBE can be solved in O(n) time
where n = |V |.
Proof. In positive instances, G = (V,E) must be 2-page book embeddable and
therefore planar [BK79]. Hence |E| = O(n). Every connected component of the
undirected version of G must be either a path or a cycle, or else the induced
subgraph of the partitions would not be a matching. Furthermore, the edges
connected in such paths or cycles must alternate in color. Each connected com-
ponent can be solved separately since the concatenation of the solution (total
order on vertices) of connected components is a solution of the original problem.
Without loss of generality, we consider only the case when G is connected.

We provide a reduction to 1D origami when G is a path and a reduction to
single vertex flat foldability if G is a cycle. The reduction runs in O(n) time
producing an instance with n−1 creases. Both the flat foldability of 1D origami
and single vertex flat foldability can be determined in linear time [ABD+04,
BH96]. A face in an 1D origami is defined as a segment in the 1D origami and a

220 H. A. Akitaya et al.

crease is defined as a place where the origami can be folded. A face in a single
vertex crease pattern is the space between creases. A 1D origami is defined by a
line while a single vertex crease pattern is defined by a single vertex where rays
originating from the vertex represent creases.

For both the case of the path and the cycle, we create an instance of 1D
origami and single vertex flat foldability, respectively, in the following way. For
each edge e ∈ E we create a mountain crease if e ∈ Red and a valley crease
if e ∈ Blue. Each face of the produced instance represents a vertex in G. The
reduction will thus produce an instance where each face of the origami has the
same length, which can be viewed as a linkage formed by identical bars. If G
is a path (resp., cycle), the output will be a list (resp., circular list) containing
the assignment of the creases on a line segment (resp., a single vertex origami).
Start with one endpoint of the path or with an arbitrary vertex of the cycle.
Traverse the undirected version of G using BFS. For each edge traversed add
mountain (resp., valley) to the end of the list if the traversed edge corresponds
to an edge in E1 with the same direction of the traversal or to an edge in E2

in the opposite direction (resp., corresponds to an edge in E2 with the same
direction of the traversal or to an edge in E1 in the opposite direction). Since
every edge is traversed once, the size of the list is n − 1 (resp., n if a cycle).
Thus, the only difference between single vertex crease patterns and 1D origami
is that the faces form a cycle as opposed to a line segment, respectively.

Due to the similarity of the reduction models for paths and cycles, it suffices
to show the equivalence between instances when G is a path. As previously
stated, each face of the paper corresponds to a vertex in G. Each crease represents
an edge in G and whether the crease is a mountain fold or a valley fold in the
final state of the origami determines the partition of the edges of G into Red
or Blue edges. If we consider the starting vertex as the leftmost face of the
unfolded paper and that f1 is not flipped in the folded state, a mountain fold
puts the adjacent face f2 below f1. Without loss of generality, the edge in G
that represents the connection between f1 and f2 is in E2 and points from f2
to f1. By repeating the argument for every edge, we conclude that G represents
the above/below relation of faces of the folded state of the 1D origami and E1

(resp., E2) represents the creases that lie right (resp., left) of the folded state (see
Fig. 5). Then, it is easy to verify that the origami is flat-foldable iff (G, {E1, E2})
is a positive instance of UMPBE. ��

M V VV M

f1 fn

f1

fn

f1

fn

Fig. 5. A 1D origami crease pattern is shown (left) with mountain/valley labeled
as M/V respectively, together with its folded state (center) and the corresponding
UMPBE-2 instance (right). (Color figure online)

Upward Partitioned Book Embeddings 221

a2

b2

c2

d2

a4

b4

c4

d4

d1

c1

b1

a1

r1c′′
1

b′′
1

a′′
1

l1

α1 ω1

h1

a′
1 b′

1 c′
1

d3

c3

b3

a3

r3

c′′
3

b′′
3

d′′
3

l3

α3 ω3

h3

b′
3 c′

3 d′
3

d5

c5

b5

a5

r5

a′′
5

b′′
5

d′′
5

l5

α5 ω5

h5

d′
5 b′

5 a′
5

r4

r2

s

Fig. 6. Example of a full construction of a reduction. Here, the instance of Between-
ness is (L,C) where L = {a, b, c, d} and C = {〈a, b, c〉, 〈b, c, d〉, 〈d, b, a〉}. (Color figure
online)

222 H. A. Akitaya et al.

Acknowledgements. We thank Jack Edmonds for valuable discussions in August
1997 where he described how Upward Matching-Partitioned k-Page Book
Embedding generalizes the map folding problem. We also thank Therese Biedl for
valuable discussions in 2007 about the complexity this problem.

This research was conducted during the 31st Bellairs Winter Workshop on Compu-
tational Geometry which took place in Holetown, Barbados on March 18–25, 2016. We
thank the other participants of the workshop for helpful discussion and for providing
a fun and stimulating environment. We also thank our anonymous referees for helpful
suggestions in improving the clarity of our paper.

Supported in part by the NSF award CCF-1422311 and Science without Borders.
Quanquan Liu is supported in part by NSF GRFP under Grant No. (1122374).

References

[ABD+04] Arkin, E.M., Bender, M.A., Demaine, E.D., Demaine, M.L., Mitchell,
J.S.B., Sethia, S., Skiena, S.S.: When can you fold a map? Comput. Geom.
Theor. Appl. 29(1), 23–46 (2004)

[ABD12] Angelini, P., Di Bartolomeo, M., Di Battista, G.: Implementing a parti-
tioned 2-page book embedding testing algorithm. In: Didimo, W., Patrig-
nani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 79–89. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-36763-2 8

[ADHL17] Akitaya, H.A., Demaine, E.D., Hesterberg, A., Liu, Q.C.: Upward parti-
tioned book embeddings. CoRR, abs/1708.06730 (2017)

[ALN15] Angelini, P., Da Lozzo, G., Neuwirth, D.: Advancements on SEFE and
partitioned book embedding problems. Theoret. Comput. Sci. 575, 71–89
(2015)

[BBKR15] Bekos, M.A., Bruckdorfer, T., Kaufmann, M., Raftopoulou, C.: 1-planar
graphs have constant book thickness. In: Bansal, N., Finocchi, I. (eds.)
ESA 2015. LNCS, vol. 9294, pp. 130–141. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48350-3 12

[BGR16] Bekos, M.A., Gronemann, M., Raftopoulou, C.N.: Two-page book embed-
dings of 4-planar graphs. Algorithmica 75(1), 158–185 (2016)

[BH96] Bern, M., Hayes, B.: The complexity of flat origami. In: Proceedings
of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 1996, pp. 175–183. Society for Industrial and Applied Mathemat-
ics, Philadelphia (1996)

[BK79] Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb.
Theor. Ser. B 27(3), 320–331 (1979)

[CLR87] Chung, F.R., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in
books: a layout problem with applications to VLSI design. SIAM J. Alge-
braic Discrete Methods 8(1), 33–58 (1987)

[DGDLW06] Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Book embed-
dability of series-parallel digraphs. Algorithmica 45(4), 531–547 (2006)

[DLM12] Demaine, E.D., Liu, E., Morgan, T.: A polynomial-time algorithm for
2 × n map folding. Manuscript, 2012. See Tom Morgan’s M.Eng. thesis,
“Map folding”, MIT (2012)

[DW04] Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math’.
Theor. Comput. Sci. 6(2), 339–358 (2004)

https://doi.org/10.1007/978-3-642-36763-2_8
https://doi.org/10.1007/978-3-662-48350-3_12

Upward Partitioned Book Embeddings 223

[DW05] Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph
subdivisions. Discrete Math. Theor. Comput. Sci. 7(1), 155–202 (2005)

[ENO97] Enomoto, H., Nakamigawa, T., Ota, K.: On the pagenumber of complete
bipartite graphs. J. Comb. Theor. Ser. B 71(1), 111–120 (1997)

[FFR11] Frati, F., Fulek, R., Ruiz-Vargas, A.J.: On the page number of upward
planar directed acyclic graphs. In: van Kreveld, M., Speckmann, B. (eds.)
GD 2011. LNCS, vol. 7034, pp. 391–402. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-25878-7 37

[HLR92] Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and
stacks as machines for laying out graphs. SIAM J. Discrete Math. 5(3),
398–412 (1992)

[HN14] Hong, S.-H., Nagamochi, H.: Simpler algorithms for testing two-page
book embedding of partitioned graphs. In: Cai, Z., Zelikovsky, A., Bour-
geois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 477–488. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08783-2 41

[Hos12] Hoske, D.: Book embedding with fixed page assignments. Bachelor Thesis
(2012)

[HP97] Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of posets. SIAM
J. Discrete Math. 10(4), 599–625 (1997)

[HP99] Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic
graphs: Part II. SIAM J. Comput. 28(5), 1588–1626 (1999)

[HPT99] Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts
of directed acyclic graphs: Part I. SIAM J. Comput. 28(4), 1510–1539
(1999)

[HR92] Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J.
Comput. 21(5), 927–958 (1992)

[MK16] McAdams, S., Kanno, J.: Oriented book embeddings. arXiv:1602.02147
(2016)

[Opa79] Opatrný, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114
(1979)

[Wie86] Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Tinhofer,
G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer,
Heidelberg (1987). https://doi.org/10.1007/3-540-17218-1 57

[Wig82] Wigderson, A.: The complexity of the hamiltonian circuit problem for
maximal planar graphs. Technical report 298, EECS Department, Prince-
ton University, Princeton, New Jersey (1982)

[Yan89] Yannakakis, M.: Embedding planar graphs in four pages. J. Comput.
Syst. Sci. 38(1), 36–67 (1989)

https://doi.org/10.1007/978-3-642-25878-7_37
https://doi.org/10.1007/978-3-319-08783-2_41
http://arxiv.org/abs/1602.02147
https://doi.org/10.1007/3-540-17218-1_57

Experimental Evaluation of Book Drawing
Algorithms

Jonathan Klawitter1(B), Tamara Mchedlidze2(B), and Martin Nöllenburg3(B)

1 University of Auckland, Auckland, New Zealand
jo.klawitter@gmail.com

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
mched@iti.uka.de

3 TU Wien, Vienna, Austria
noellenburg@ac.tuwien.ac.at

Abstract. A k-page book drawing of a graph G = (V,E) consists of
a linear ordering of its vertices along a spine and an assignment of
each edge to one of the k pages, which are half-planes bounded by the
spine. In a book drawing, two edges cross if and only if they are assigned
to the same page and their vertices alternate along the spine. Crossing
minimization in a k-page book drawing is NP-hard, yet book drawings
have multiple applications in visualization and beyond. Therefore sev-
eral heuristic book drawing algorithms exist, but there is no broader
comparative study on their relative performance. In this paper, we pro-
pose a comprehensive benchmark set of challenging graph classes for
book drawing algorithms and provide an extensive experimental study
of the performance of existing book drawing algorithms.

1 Introduction

Book embeddings and book drawings are a fundamental and well-studied topic
in graph theory and graph drawing. Combinatorially, a k-page book drawing of
a graph G = (V,E) consists of a cyclic linear ordering of its vertices along a
spine and an assignment of each edge to one of the k pages, which are half-
planes bounded by the spine. The spine and the k pages form a book (Fig. 1).
Clearly, two edges {u, v} and {w, z} in a book drawing cross if and only if they
are assigned to the same page and the four vertices alternate on the spine.

A book drawing is called a book embedding if it is crossing-free. The book
thickness (or pagenumber) of a graph G is the smallest k such that G admits
a k-page book embedding [5]. Deciding whether a graph can be embedded on
k pages is an NP-complete problem even for k = 2 [6,30] and there are many
results about lower and upper bounds on the book thickness of specific graph
classes. A long-standing open question [13] is to determine whether the book
thickness of planar graphs is three or four. Yannakakis [41] showed that any
planar graph can be embedded on four pages and there are planar graphs that

Preliminary results of this paper were presented in a poster at Graph Drawing 2016.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 224–238, 2018.
https://doi.org/10.1007/978-3-319-73915-1_19

Experimental Evaluation of Book Drawing Algorithms 225

cannot be embedded on two pages. Likewise, the book thickness of k-planar
graphs is open. Alam et al. [1] showed that there are 1-planar graphs that need
four pages and that 16 is an upper bound.

Fig. 1. 3-page book
drawing of K5 with
two crossings.

If the number k of pages is given, a k-page book embed-
ding may not exist. In this case, crossing minimization
becomes the primary optimization goal. It reduces to two
basic and interdependent combinatorial problems: the ver-
tex ordering (VO) along the spine and the page assignment
(PA) for the edges.

Again, computing the k-page book crossing number,
i.e., the minimum number of crossings over all k-page
book drawings of a graph, is an NP-hard problem [30,35]
and fixed-parameter tractable algorithms for 1- and 2-page
crossing minimization are known [2]. Book drawings are
motivated by several applications, e.g., network visualiza-
tion [4,16–18,39], VLSI design [40], RNA folding [11], and
knot theory [14]. Various heuristic algorithms have been
proposed in the literature. In addition, crossing minimiza-
tion in book drawings has been the challenge problem of the Graph Drawing
Contests in 2015 and 2016. Yet there are no broader comparative studies of
these algorithms and no established set of challenging benchmark graph classes.
In this paper, we introduce a comprehensive benchmark set for book drawing
algorithms and provide the first extensive experimental study of the performance
of state-of-the-art book drawing algorithms for multiple numbers of pages.

There are several heuristics for 2-page crossing minimization [8–10] with a
fixed linear vertex ordering, as well as algorithms for the general 2-page crossing
minimization problem [21,22]. Genetic and evolutionary crossing minimization
algorithms have been proposed for one page [18], two pages [3,19,32], and any
number of pages [34]. Further, neural networks have been used for 2-page crossing
minimization [20,38] and for k-page crossing minimization [29].

Experimental evaluations have been performed by Satsangi et al. [34],
who, however, excluded previously best performing algorithms by Baur and
Brandes [4] and tested algorithms for VO and PA problems only independently
fromeach other, not in combination.He et al. [23] performed an experimental study
of several heuristics, but only for the 2-page crossing minimization problem.

Contributions and outline. In this paper, we determine the strengths and weak-
nesses as well as the relative performance of heuristic algorithms for the book
drawing problem by means of a detailed quantitative experimental study. To this
end, we present a list of state-of-the-art heuristic algorithms from the literature
as well as some newly proposed heuristics in Sect. 2. Section 3 presents a collec-
tion of different graph classes together with suitable random graph generators
to be used for creating benchmark graphs for our evaluation. Finally, Sect. 4
contains our comparative experimental evaluation. The main focus of our study
is the relative performance of the heuristics in terms of crossing minimization
depending on the properties of the benchmark instances, such as book thickness,

226 J. Klawitter et al.

graph size, edge density, and graph structure. Since out implementations are not
optimized for a fast performance, we refrained from a detailed running time
analysis. Some preliminary indications of the running times can be found in the
appendix of the full version of this paper [27]. The code of our benchmark graph
generators and of the book drawing algorithms can be found online1.

2 Algorithms

We distinguished between constructive heuristics that have the common prop-
erty that they consider each vertex and edge once, and local search heuristics
that make several rounds re-considering the same vertices and edges iteratively.
We evaluate these algorithms separately, as the latter can be seen as local search
heuristics, which also use much more computation time. The constructive heuris-
tics themselves can be characterized as VO heuristics, PA heuristics, and com-
bined heuristics, that construct both VO and PA simultaneously.

2.1 Constructive Heuristics

Four of the heuristics presented in this section have not appeared in the literature
earlier, namely treeBFS, conGreedy, conGreedy+, and earDecomp (see [26] for
more details). Several additional heuristics are referenced, but not included in our
study because they were always outperformed by the other presented heuristics
in previous experimentation.

VO Heuristics. A VO heuristic considers vertices in some particular order and
places them on the spine based on some criteria. An edge {u, v} where only one
of u and v (resp. both) has been placed on the spine is called open (resp. closed).

smallest degree DFS (smlDgrDFS) [18]. DFS-based heuristics set the VO to
be the order in which the vertices are visited by a depth-first traversal of
the graph. The smlDgrDFS heuristic starts with a smallest degree vertex and
chooses a neighbor with smallest degree to proceed.

random DFS (randDFS) [3]. In contrast to smlDgrDFS, randDFS starts with a
random vertex and proceeds with a random neighbor.

tree-based BFS (treeBFS). This heuristic generates a breath-first spanning
tree of the graph and embeds it crossing-free in a 1-page book yielding the
VO. All three search based heuristics have a running time of O(m + n).

connectivity based (conCro) [4]. This heuristics builds the VO step by step.
At each step it selects the vertex with the most neighbors already placed and
breaks ties in favor of vertices with fewest unplaced neighbors (connectivity →
con). It places the vertex on that end of the already computed spine, where it
introduces fewer crossings with open edges (crossings → Cro). The intuition
behind this heuristic is that the chosen vertex closes most open edges and
opens fewest at ties. Its running time is O((m + n) log n).

1 Graph generators: github.com/joklawitter/GraphGenerators, book drawing algo-
rithms: github.com/joklawitter/BookDrawingAlgorithms.

http://github.com/joklawitter/GraphGenerators
http://github.com/joklawitter/BookDrawingAlgorithms

Experimental Evaluation of Book Drawing Algorithms 227

greedy connectivity based (conGreedy). Like conCro it selects the next ver-
tex to place based on connectivity, however, it places it on any position (not
just one of the end points) of the current spine where it introduces fewer
crossings with closed edges. With O(m2n) it has the highest running time.

Heuristics excluded, due to relatively poor performance, are among others a
maximum neighborhood heuristic, a vertex-cover heuristic, a simple BFS heuris-
tic [34], and variations of conCro [4].

PA Heuristics. The following first three heuristics share a general framework.
They first compute an edge order according to some strategy and then place the
edges one by one on the page where the increase in crossings is minimal.

ceil-floor (ceilFloor) [24]. In this strategy the edges are ordered non-increa-
singly by their length in a circular drawing.

length (eLen) [8,34]. Here the edges are ordered non-increasingly by the dis-
tance of their end vertices on a spine. Thus edge {1, n} is listed first and any
edge {i, i + 1} last. Like ceilFloor, it has a O(m2) running time.

circular (circ) [34]. The edges are enumerated in the order they are visited
by the paths P1 . . . P�n

2 �, where path Pi starts at vertex i and visits vertices
i + 1, i − 1, i + 2, . . . , i + �n

2 �. This heuristic is inspired by the fact that it
achieves zero crossings for complete graphs on �n

2 � pages by placing edges of
each path on a distinct page. It has a running time of O(n4).

ear decomposition (earDecomp). Consider a circular drawing ΓC of a graph
G = (V,E). The edge intersection graph is defined as GC = (E, {{e, e′} |
e, e′ ∈ E ∧ e, e′ cross in ΓC}). The heuristic earDecomp considers the circular
drawing for the given VO, constructs its intersection graph GC , and an ear
decomposition of GC , and then assigns the vertices of each ear (i.e., the edges
of G) alternatingly to different pages. The intuition behind the heuristic is
that it tries to put the conflicting edges to different pages. earDecomp can be
implemented to run in O(m2) time.

slope (slope) [22]. Consider the circular drawing with equally distributed ver-
tices for a graph and VO. Then, the more the geometric slopes of two non-
incident edges in this drawing differ, the more likely they cross. slope groups
the edges based on their slopes and assigns each group to a page. It has a
linear running time O(m).

Again, due to relatively poor performance, we excluded several other greedy
variations [8,21,34], a dynamic programming and a divide and conquer app-
roach [8].

Combined Heuristics. Almost all existing constructive heuristics compute a
VO and a PA independently. He et al. [21] first combined the two problems. They
extended smlDgrDFS such that whenever an edge is closed it is assigned to the
page where it introduces the smallest number of crossings. We experimented with
such extensions for smlDgrDFS and randDFS heuristics and concluded that they

228 J. Klawitter et al.

performed worse than using them in combination with another PA heuristic [26].
The following heuristic utilizes this idea for conGreedy.

combined greedy connectivity based (conGreedy+). While constructing
the VO like conGreedy, this heuristic considers the PA of already placed
edges. More precisely, the best position for a new vertex is the position where
this vertex’s incident and now closed edges induce fewest new crossings. The
PA is then accordingly extended to these newly closed edges. The heuristic’s
overall asymptotic running time is O(m2n).

We note that the immediate page assignment done by conGreedy+ also affects
the computed VO. Hence, conGreedy+ can also be used as VO heuristic by
discarding the produced PA.

2.2 Local Search Heuristics

Local search heuristics take a given book drawing and try to reduce its number
of crossings by performing local changes. Heuristics greedyAlt and greedy+ are
newly proposed, while simAnn has been proposed by Cibulka [7], who won the
Automated Graph Drawing Challenge in 2015 [25].

alternating greedy search (greedyAlt). A single vertex round of this heuris-
tic considers vertices in a random order, takes each of them in this order and
places it on the position on the spine where it produces the least number of
crossings. Here edges stay on the pages they are. A single edge round does the
same with the edges: it considers edges in a random order and places them on
the page where it produces the least number of crossings. greedyAlt alter-
nates between vertex and edge rounds until it converges to a local minimum.

combined greedy search (greedy+). A single round of this heuristic is simi-
lar to conGreedy+, but the vertices are considered in a random order. Several
rounds are performed until a local minimum is found.

simulated annealing (simAnn) [7]. This algorithm, depending on a temper-
ature that decreases with each iteration, makes local changes to the book
drawing and accepts them if they either improve the drawing, or with a cer-
tain probability depending on the temperature and how many crossings the
move introduces. The moves in each iteration are (1) m times moving an edge
to a random page, (2) n

√
n times swapping a random vertex with its neigh-

bor, (3) n times moving a vertex to a random position and greedily improving
the assignment of its incident edges, and (4) 4

n times searches, in the fashion
of greedy+, for the best position of a vertex. It runs 1000 iterations.

The literature contains similar greedy optimization algorithms for the VO [21,
36], another simulated annealing approach [34], evolutionary [24,33], and neural
network algorithms [29,38]. However, they all were either restricted to only two
pages or were outperformed by other heuristics in previous experiments [26].

Experimental Evaluation of Book Drawing Algorithms 229

3 Benchmark Graphs

Our previous experiments have shown that there is no fixed ranking for the per-
formance of the construction heuristics in terms of crossing minimisation [26]. On
the contrary, rankings depend on the number of pages, the edge densities of the
graphs and their structuredness. We therefore selected nine different benchmark
graph classes that vary in terms of density and structuredness and that are chal-
lenging for book drawing algorithms. This excludes some previously used graph
classes such as trees or complete graphs. With our choices we aim to establish a
set of benchmark graphs that will also serve as a basis for future investigations
on book drawings.

Random. We use random graphs (Erdős-Rényi model) with linear density a,
i.e., n-vertex graphs with an edges for a = 2, . . . , 10, and with quadratic
density in terms of n, i.e., edge probabilities p.

Topological planar. To generate n-vertex triangulated planar graphs, we used
a random edge-flip walk of length n3 in the space of planar triangulations
with a random Apollonian network as starting point. Known bounds suggest
that n3 is a suitable and still practical length [31].

Topological 1-planar. We generated 1-planar graphs by augmenting the 4-
cycles in our planar triangulations with diagonals in a random order. This
yielded on average 93% of the maximal number of edges in a 1-planar graph.

Geometric k-planar. For k from zero to four, we generated k-planar graphs
as follows. Taking a random set of points in the plane, we sort them lexico-
graphically, and then add an edge from a vertex (processed in sorted order)
to an already processed vertex (in reversed order) only if the segment con-
necting them would not create more than k crossings in the current drawing.
This process achieved on average 85% of the maximal number of edges.

k-tree. A k-tree is a recursively defined graph that is formed by starting with a
k-clique and adding vertices and connecting them to all vertices of a k-clique
of the current graph. We used this process to construct k-trees.

Hypercube. We used hypercubes Qd of dimension d. They have n = 2d vertices
and m = 1

2nd = 1
2n log n edges. Their book thickness is d − 1 [28].

Cube-connected cycles. A cube-connected cycle CCCd of dimension d is a
hypercube Qd with vertices replaced by cycles of length d. They have n = d2d

vertices and m = 1.5n edges.
Toroidal mesh. A toroidal mesh Ci × Cj is the product graph of two cycles of

length i and j. It has n = ij vertices and m = 2n edges.
3-toroidal mesh. A 3-toroidal mesh Ci×Cj ×Ck is the product graph of three

cycles of length i, j and k. It has n = ijk vertices and m = 3n edges.

The structuredness of these graph classes varies from very symmetric graphs,
such as hypercubes and toroidal meshes (we call them homogeneous) to less
homogeneous but still geometrically structured graphs, such as k-trees and k-
planar graphs (we call them structured) to finally random, unstructured graphs.

230 J. Klawitter et al.

4 Evaluation

In this section, we present the results of our experiments on the performance of
the heuristic algorithms presented in Sect. 2 on the different benchmark graph
classes introduced in Sect. 3. Our main focus in the evaluation is to analyze the
relative performance of the book drawing heuristics, based on the density and
structuredness of the graph classes, as well as the specified number of pages.

4.1 Experimental Setup

For each experiment, we used specific graphs, like hypercubes, 200 times or 200
graphs of the same class. For each graph, in the data representation, the order
of the vertices and adjacency lists were randomized. The maximal number of
pages considered in an experiment was either determined by the book thickness
of a graph (if known), or limited to the first number where the best heuristic
achieved less than ten crossings, or a 20 pages otherwise.

4.2 Constructive Heuristics

We first evaluate the constructive heuristics of Sect. 2.1 by considering all possi-
ble combinations of VO and PA heuristics. In previous experiments we observed
that the right combination of them is crucial [26]. We thus refrained from testing
them independently as done by Satsangi et al. [34]. By plotting the number of
produced crossings for all the heuristic combinations and various graph classes,
we observed that the parameters density, number of pages, and structure have a
significant impact. To analyze how the performance depends on these three fac-
tors we consider each graph class individually, grouping them into homogeneous,
structured and random graphs.

8

7

6

5

4

3

2

1

n
u

m
b

e
r

o
f
p

a
g

e
s

conGreedy

conGreedy+

conCro

treeBFS

circ

ceilFloor

eLen

earDecomp

Fig. 2. Tile diagram for homogeneous graphs. One tile repre-
sents the heuristic or heuristic combination that achieved the
best mean of crossings for the specific number of pages (row)
and graph (column).

Homogeneous graphs.
Figure 2 shows the
best heuristics on
the hypercubes Q4

to Q9 and on differ-
ent toroidal meshes.
For Q4, having book
thickness d − 1 =
3, conGreedy-ceil
Floor could almost
achieve its book
embedding, however
as the dimension
increases the perfor-
mance of the heuris-
tics gets worse. The same holds for toroidal meshes and cube-connected cycles,
which both have book thickness three [26,37]. As we can observe by more detailed

Experimental Evaluation of Book Drawing Algorithms 231

analysis (see the appendix of the full version of this paper [27]), all heuristics have
on average more than a hundred crossings for hypercubes and toroidal meshes on
book thickness many pages. For example, as shown in Fig. 3b, the best heuristics
have on average more than 250 crossings for C16C16 on three pages. We suspect
that the book thickness of 3-toroidal meshes is constant, and most likely below
8. If this holds, the performance of the heuristics is also poor for this graph class.
The best performing heuristics (refer to Fig. 2) for hypercubes are conGreedy-
ceilFloor and conCro-circ. For 3-toroidal meshes conCro-ceilFloor is also
often the winner. For toroidal meshes and cube-connected cycles conGreedy+
performs best.

Figure 3a illustrates the vertical dimension of the tile diagram for Q7. It
shows the performance of heuristics depending on the number of pages. We see
that the changes are smooth and that, however, for a high number of pages
conGreedy-ceilFloor is substantially better than conCro-circ and the other
heuristic. Figure 3b shows the results for all heuristics on C16C16 and three
pages. Here conGreedy+ performed best. Overall, we see that the choice of the
VO heuristics has higher significance than PA, except if in combination with
slope. It is also interesting that treeBFS performs significantly better than the
other search based heuristics. Similar results appear for the other homogeneous
graphs (see the full version of this paper [27] for figures).

Fig. 3. Number of crossings of the heuristics (a) with respect to conCro-ceilFloor
(lower means less) for Q7 depending on the number of pages, and (b) in absolute
values for the toroidal mesh C16C16 and three pages.

Structured graphs. The structured graphs that we investigate are the k-planar
graphs and k-trees. Figure 4 presents the best performing heuristics for geometric
k-planar graphs and topological planar and 1-planar graphs. We observe that
the difference in the structure of these graphs is crucial for the performance of
the heuristics. For topological planar graphs conGreedy-ceilFloor dominates,
while for geometric k-planar graphs conCro-ceilFloor is ahead in the majority
of the cases. The PA heuristic earDecomp performs well for two pages.

232 J. Klawitter et al.

8

7

6

5

4

3

2

1

n
u

m
b
e
r

o
f
p
a
g
e
s

vertices 50 100 150 200 250 50 100 150 200 250

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 0 1 0 1 0 1 0 1k

conGreedy conGreedy+ earDecompconCro ceilFloor

Fig. 4. Tile diagram for k-planar graphs, geometric (left) and topological (right).

Figure 5a shows the performance of the heuristics for topological planar
graphs plotted as a function of the number of vertices for four pages, the
upper bound for the book thickness of planar graphs [41]. The leading heuris-
tic conGreedy-ceilFloor is not close to the optimum of zero, but achieves, for
example, for graphs with 250 vertices on average 62 crossings. In contrast to the
homogeneous graphs, we see in Fig. 5b, that the two DFS-based heuristics per-
form better on topological planar graphs, while treeBFS performs worst. Similar
observations [27] can be made for k-planar graphs.

Fig. 5. Performance of the heuristics on topological planar graphs.

Figure 6 shows the overview of the results for k-trees. The diagram is dom-
inated by conGreedy-circ and conGreedy-ceilFloor. We note that the book
thickness of k-trees is at most k + 1 [13,15] and then observe that conGreedy+
achieves less than ten crossings on average for k + 1 pages. This becomes more
apparent in Fig. 7, which shows the performance as a function of the number
of pages for 8-trees with 250 vertices. We see that for a small number of pages,
where conGreedy-circ dominates, the performance of all heuristics is compa-
rable, while for more pages conGreedy-ceilFloor performs clearly better and
finally, on nine pages, conGreedy+ takes significant lead.

Experimental Evaluation of Book Drawing Algorithms 233

vertices 50 100 150 200 250

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10k

11

10

9

8

7

6

5

4

3

2

1

n
u
m

b
e
r

o
f
p
a
g
e
s

conGreedy conGreedy+ circ ceilFloor slopeeLen

Fig. 6. Tile diagram for k-trees.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

number of pages

2 3 4 5 6 7 8 9

conGreedy+
conGreedy−ceilFloor
conGreedy−circ
conGreedy−eLen
conGreedy−slope

re
la

tiv
e

#
 c

ro
ss

in
gs

Fig. 7. Performance of conGreedy+ relative to conGreedy in combination with PA
heuristics, for 8-trees, n = 150 and two to nine pages. A higher value means thus fewer
crossings compared to conGreedy+.

Random graphs. The tile diagram in Fig. 8 for random graphs with linear number
of edges shows again a clear pattern. Further investigation (see the full version
of this paper [27]) shows that the transition between the best heuristics in Fig. 8
shifts smoothly along the number of vertices, pages and density. The heuristic
conGreedy+ dominates for small number of pages and not too high density.
However, if the number of pages is relatively high, we observe that conGreedy+-
ceilFloor and conGreedy-ceilFloor perform best. The differences between PA
heuristics becomes more apparent for both higher density and more pages. The
performance of slope gets significantly better with higher density, either with
conGreedy or randDFS. The search based VO heuristics perform nearly equally,
as do the greedy VO heuristics with conGreedy however slightly in the lead.

The good performance of slope seems natural, as with high density, and
thus more edges per page, one edge with a slope different from other edges on
the same page, is very likely to produce a lot of crossings. The results for random
graphs with quadratic density illustrate this even further (see [27]). In fact, de
Klerk et al. [12] conjecture that on complete graphs slope finds an optimal
solution for any number of pages. They proved this for two and �n

2 	 pages, with
the latter being the book thickness of complete graphs Kn [5].

234 J. Klawitter et al.

vertices 50 100 150 200 250

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10aa

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

n
u
m

b
e
r

o
f
p
a
g
e
s

conGreedy conGreedy+ rDFS ceilFloor slope

Fig. 8. Tile diagram for random graphs with linear density, i.e. roughly an edges.

4.3 Local Search Heuristics

In this section, we evaluate the local search heuristics greedyAlt, greedy+ and
simAnn (the core of the algorithm that won the 2015 Graph Drawing Contest),
described in Sect. 2.2. Recall that conGreedy+ is a combined constructive heuris-
tic that considers VO and PA simultaneously, and as seen above often out-
performs other heuristic combinations. With greedy+, we extended the idea of
conGreedy+ to a local search heuristic, which does multiple rounds on all vertices
and edges, until a local minimum is found.

We tested the local search heuristics, similarly to the constructive heuristics,
on graphs of different sizes, densities, structure, and with different numbers of
pages (see Fig. 9 and Fig. 20 in the full version of this paper [27]). Here our find-
ings are more clear-cut. In all our experiments greedy+ performed best, followed

c
o

n
G

re
e

d
y
+

s
im

A
n
n

g
re

e
d

y
A

lt

0

200

400

600

800

1000

1200

1400

c
ro

s
s
in

g
s

g
re

e
d

y
+

(a) Topological 1-planar,
n = 250, 3 pages.

c
o

n
G

re
e

d
y
+

s
im

A
n
n

g
re

e
d

y
A

lt

0

100

200

300

400

500

600

c
ro

s
s
in

g
s

g
re

e
d

y
+

(b) Hypercube Q7,
6 pages.

c
o

n
G

re
e

d
y
+

s
im

A
n
n

g
re

e
d

y
A

lt

36k

38k

40k

42k

44k

46k

48k

c
ro

s
s
in

g
s

g
re

e
d

y
+

(c) Random (quadratic
density 0.5), n = 100,
6 pages.

Fig. 9. Performance of the local search heuristics on graphs of various classes.

Experimental Evaluation of Book Drawing Algorithms 235

by greedyAlt. The heuristic simAnn had sometimes difficulties to improve the
given book drawings, and performed worse than greedyAlt. The good perfor-
mance of greedy+ comes with a high trade-off in running time compared to
greedyAlt. However, our implementation of simAnn was even slower2.

5 Discussion and Conclusions

In our experiment, we investigated the relative performance of the heuristics
presented in Sect. 2. We saw that the choice of the best constructive heuristic
depends on several factors: density of the graphs, their structural properties and
the number of pages. We could also saw that the performance strongly depends
on the selected combination of VO and PA heuristics.

We observed that constructive heuristics are mostly unable to achieve optimal
results. For graph classes with known book thickness, the constructive heuris-
tics could achieve very low crossing numbers only on k-trees. For homogeneous
and structured graphs the results were far from optimal. We also observed that
whenever the constructive heuristics performed poorly, the results of local search
heuristics were also far from optimal. This fact, however, is not surprising, as
even for trees, starting from random configuration, local search heuristics cannot
achieve a book embedding [26]. Since most crossing numbers for the considered
graph classes are unknown, we could not further investigate the relative perfor-
mances in these cases.

The constructive heuristics conGreedy and its combined version conGreedy+
performed best most of the times, but at a cost of higher running time. In several
cases the VO heuristic conCro performed better than conGreedy, even though
the former is just a restricted version of the latter. We observed that the slope
heuristic performed well on dense graphs or in the case of a high ratio of the
number of edges to the number of pages, which complies with the earlier conjec-
ture about the power of slope to achieve optimal results for complete graphs.
We also saw that our new VO heuristic treeBFS and PA heuristic earDecomp
perform best or comparably to the other heuristics for homogeneous graphs and
few pages. Regarding the local search heuristics, greedy+ performed significantly
better than the other local search heuristics on all graph classes, densities and
number of pages. The simulated annealing algorithm performed even worse.

Our experiment can be extended into several directions that were beyond
the limit of this paper: other theoretically and practically interesting graphs
or graph classes, concentration on particular graph classes, more sophisticated
implementations of the heuristics that would make it possible to test larger
graphs, and finally a more detailed analysis of the results.

With respect to the tested heuristics, closer investigation would be necessary
to understand why conCro performs better than conGreedy in several cases. It
would also be of interest to see whether the performance of treeBFS on regular
graphs could be further improved by derandomizing the way the BFS tree is
2 We implemented our algorithms in Java and tested on a standard home computer

(IntelR© CoreTM i5-6600, 3.3 GHz, 8 GB RAM and Windows OS).

236 J. Klawitter et al.

constructed. Concerning local search heuristics, an interesting open question is
whether the optimisation of the VO or the PA is more influential on the overall
performance of a heuristics.

References

1. Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: On the book thickness of 1-planar
graphs. CoRR, abs/1510.05891, October 2015. http://arxiv.org/abs/1510.05891

2. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page draw-
ings of graphs with bounded treewidth. In: Duncan, C., Symvonis, A. (eds.) GD
2014. LNCS, vol. 8871, pp. 210–221. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45803-7 18

3. Bansal, R., Srivastava, K., Varshney, K., Sharma, N., et al.: An evolutionary algo-
rithm for the 2-page crossing number problem. In: Evolutionary Computation
(CEC 2008), pp. 1095–1102. IEEE, June 2008. https://doi.org/10.1109/CEC.2008.
4630933

4. Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J.,
Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0 28

5. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theor. Ser.
B 27(3), 320–331 (1979). http://dx.doi.org/10.1016/0095-8956(79)90021-2

6. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books:
a layout problem with applications to vlsi design. SIAM J. Algebraic Discrete
Methods 8(1), 33–58 (1987). http://dx.doi.org/10.1137/0608002

7. Cibulka, J.: Simulated annealing book embedder (2015). https://github.com/
josefcibulka/book-embedder

8. Cimikowski, R.: Algorithms for the fixed linear crossing number problem.
Discrete Appl. Math. 122(1), 93–115 (2002). http://dx.doi.org/10.1016/S0166-
218X(01)00314-6

9. Cimikowski, R.: An analysis of some linear graph layout heuristics. J. Heuristics
12(3), 143–153 (2006). http://dx.doi.org/10.1007/s10732-006-4294-9

10. Cimikowski, R., Mumey, B.: Approximating the fixed linear crossing number. Dis-
crete Appl. Math. 155(17), 2202–2210 (2007). http://dx.doi.org/10.1016/j.dam.
2007.05.009

11. Clote, P., Dobrev, S., Dotu, I., Kranakis, E., Krizanc, D., Urrutia, J.: On the page
number of RNA secondary structures with pseudoknots. J. Math. Biol. 65(6–7),
1337–1357 (2012). http://dx.doi.org/10.1007/s00285-011-0493-6

12. de Klerk, E., Pasechnik, D.V., Salazar, G.: Improved lower bounds on book cross-
ing numbers of complete graphs. SIAM J. Discrete Math. 27(2), 619–633 (2013).
http://dx.doi.org/10.1137/120886777

13. Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parame-
ters. Discrete Comput. Geom. 37(4), 641–670 (2007). http://dx.doi.org/10.1007/
s00454-007-1318-7

14. Dynnikov, I.A.: Three-page approach to knot theory. Encoding and local moves.
Funct. Anal. Appl. 33(4), 260–269 (1999). http://dx.doi.org/10.1007/BF02467109

15. Ganley, J.L., Heath, L.S.: The pagenumber of k-trees is O(k). Discrete Appl. Math.
109(3), 215–221 (2001). http://dx.doi.org/10.1016/S0166-218X(00)00178-5

16. Gansner, E.R., Koren, Y.: Improved circular layouts. In: Kaufmann, M., Wagner,
D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-70904-6 37

http://arxiv.org/abs/1510.05891
https://doi.org/10.1007/978-3-662-45803-7_18
https://doi.org/10.1007/978-3-662-45803-7_18
https://doi.org/10.1109/CEC.2008.4630933
https://doi.org/10.1109/CEC.2008.4630933
https://doi.org/10.1007/978-3-540-30559-0_28
http://dx.doi.org/10.1016/0095-8956(79)90021-2
http://dx.doi.org/10.1137/0608002
https://github.com/josefcibulka/book-embedder
https://github.com/josefcibulka/book-embedder
http://dx.doi.org/10.1016/S0166-218X(01)00314-6
http://dx.doi.org/10.1016/S0166-218X(01)00314-6
http://dx.doi.org/10.1007/s10732-006-4294-9
http://dx.doi.org/10.1016/j.dam.2007.05.009
http://dx.doi.org/10.1016/j.dam.2007.05.009
http://dx.doi.org/10.1007/s00285-011-0493-6
http://dx.doi.org/10.1137/120886777
http://dx.doi.org/10.1007/s00454-007-1318-7
http://dx.doi.org/10.1007/s00454-007-1318-7
http://dx.doi.org/10.1007/BF02467109
http://dx.doi.org/10.1016/S0166-218X(00)00178-5
https://doi.org/10.1007/978-3-540-70904-6_37

Experimental Evaluation of Book Drawing Algorithms 237

17. Giacomo, E.D., Didimo, W., Liotta, G., Wismath, S.K.: Book embed-
dability of series-parallel digraphs. Algorithmica 45(4), 531–547 (2006).
http://dx.doi.org/10.1007/s00453-005-1185-7

18. He, H., Sýkora, O.: New circular drawing algorithms. In: Workshop on Information
Technologies - Applications and Theory (ITAT 2004) (2004). https://dspace.lboro.
ac.uk/2134/2386

19. He, H., Sýkora, O., Mäkinen, E.: Genetic algorithms for the 2-page
book drawing problem of graphs. J. Heuristics 13(1), 77–93 (2007).
http://dx.doi.org/10.1007/s10732-006-9000-4

20. He, H., Sýkora, O., Mäkinen, E.: An improved neural network model for the
two-page crossing number problem. IEEE Trans. Neural Netw. 17(6), 1642–1646
(2006). http://dx.doi.org/10.1109/TNN.2006.881486

21. He, H., Sýkora, O., Salagean, A., Vrt’o, I.: Heuristic crossing minimisation algo-
rithms for the two-page drawing problem. Technical report, Loughborough Uni-
versity (2006). https://dspace.lboro.ac.uk/2134/2377

22. He, H., Sýkora, O., Vrt’o, I.: Crossing minimisation heuristics for 2-
page drawings. Electron. Notes Discrete Math. 22, 527–534 (2005).
http://dx.doi.org/10.1016/j.endm.2005.06.088

23. He, H., Sălăgean, A., Mäkinen, E., Vrt’o, I.: Various heuristic algorithms to min-
imise the two-page crossing numbers of graphs. Open Comput. Sci. 5(1), 22–40
(2015). https://doi.org/10.1515/comp-2015-0004

24. Kapoor, N., Russell, M., Stojmenovic, I., Zomaya, A.Y.: A genetic algorithm for
finding the pagenumber of interconnection networks. J. Parallel Distrib. Comput.
62(2), 267–283 (2002). http://dx.doi.org/10.1006/jpdc.2001.1789

25. Kindermann, P., Löffler, M., Nachmanson, L., Rutter, I.: Graph drawing contest
report. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 531–
537. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0 43

26. Klawitter, J.: Algorithms for crossing minimisation in book drawings. Master’s
thesis, Karlsruhe Institute of Technology (2016)

27. Klawitter, J., Mchedlidze, T., Nöllenburg, M.: Experimental evaluation of book
drawing algorithms. CoRR, abs/1708.09221, August 2017. http://arxiv.org/abs/
1708.09221

28. Konoe, M., Hagihara, K., Tokura, N.: Page-number of hypercubes
and cube-connected cycles. Syst. Comput. Jpn. 20(4), 34–47 (1989).
http://dx.doi.org/10.1002/scj.4690200404

29. López-Rodŕıguez, D., Mérida-Casermeiro, E., Ort́ız-de-Lazcano-Lobato, J.M.,
Galán-Maŕın, G.: K -Pages graph drawing with multivalued neural networks. In:
de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds.) ICANN 2007. LNCS,
vol. 4669, pp. 816–825. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74695-9 84

30. Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimiza-
tion in linear embeddings of graphs. IEEE Trans. Comput. 39(1), 124–127 (1990).
http://dx.doi.org/10.1109/12.46286

31. McShine, L., Tetali, P.: On the mixing time of the triangulation walk and other
catalan structures. Randomization Methods Algorithm Des. 43, 147–160 (1999)

32. Poranen, T., Mäkinen, E., He, H.: A simulated annealing algorithm for the 2-page
crossing number problem. In: Proceedings of International Network Optimization
Conference (INOC) (2007)

http://dx.doi.org/10.1007/s00453-005-1185-7
https://dspace.lboro.ac.uk/2134/2386
https://dspace.lboro.ac.uk/2134/2386
http://dx.doi.org/10.1007/s10732-006-9000-4
http://dx.doi.org/10.1109/TNN.2006.881486
https://dspace.lboro.ac.uk/2134/2377
http://dx.doi.org/10.1016/j.endm.2005.06.088
https://doi.org/10.1515/comp-2015-0004
http://dx.doi.org/10.1006/jpdc.2001.1789
https://doi.org/10.1007/978-3-319-27261-0_43
http://arxiv.org/abs/1708.09221
http://arxiv.org/abs/1708.09221
http://dx.doi.org/10.1002/scj.4690200404
https://doi.org/10.1007/978-3-540-74695-9_84
https://doi.org/10.1007/978-3-540-74695-9_84
http://dx.doi.org/10.1109/12.46286

238 J. Klawitter et al.

33. Satsangi, D., Srivastava K., Gursaran: A hybrid evolutionary algorithm for the
page number minimization problem. In: Nagamalai, D., Renault, E., Dhanuskodi,
M. (eds.) Trends in Computer Science, Engineering and Information Technology.
Communications in Computer and Information Science, vol. 204. pp. 463–475.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24043-0 47

34. Satsangi, D., Srivastava, K., Srivastava, G.: K-page crossing number minimiza-
tion problem: an evaluation of heuristics and its solution using gesakp. Memetic
Comput. 5(4), 255–274 (2013). http://dx.doi.org/10.1007/s12293-013-0115-5

35. Shahrokhi, F., Székely, L.A., Sýkora, O., Vrt’o, I.: The book crossing number
of a graph. J. Graph Theor. 21(4), 413–424 (1996). https://doi.org/10.1002/
(SICI)1097-0118(199604)21:4〈413::AID-JGT7〉3.0.CO;2-S

36. Six, J.M., Tollis, I.G.: A framework and algorithms for circu-
lar drawings of graphs. J. Discrete Algorithms 4(1), 25–50 (2006).
http://dx.doi.org/10.1016/j.jda.2005.01.009

37. Tanaka, Y., Shibata, Y.: On the pagenumber of the cube-connected cycles. Math.
Comput. Sci. 3(1), 109–117 (2010). http://dx.doi.org/10.1007/s11786-009-0012-y

38. Wang, J.: Hopfield neural network based on estimation of distribution for two-page
crossing number problem. IEEE Trans. Circ. Syst. II Express Briefs 55(8), 797–801
(2008). http://dx.doi.org/10.1109/TCSII.2008.922373

39. Wattenberg, M.: Arc diagrams: visualizing structure in strings. In: Information
Visualization (INFOVIS 2002), pp. 110–116. IEEE (2002)

40. Yannakakis, M.: Linear and book embeddings of graphs. In: Makedon, F.,
Mehlhorn, K., Papatheodorou, T., Spirakis, P. (eds.) AWOC 1986. LNCS, vol. 227,
pp. 226–235. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16766-
8 20

41. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
38(1), 36–67 (1989). http://dx.doi.org/10.1016/0022-0000(89)90032-9

https://doi.org/10.1007/978-3-642-24043-0_47
http://dx.doi.org/10.1007/s12293-013-0115-5
https://doi.org/10.1002/(SICI)1097-0118(199604)21:4<413::AID-JGT7>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1097-0118(199604)21:4<413::AID-JGT7>3.0.CO;2-S
http://dx.doi.org/10.1016/j.jda.2005.01.009
http://dx.doi.org/10.1007/s11786-009-0012-y
http://dx.doi.org/10.1109/TCSII.2008.922373
https://doi.org/10.1007/3-540-16766-8_20
https://doi.org/10.1007/3-540-16766-8_20
http://dx.doi.org/10.1016/0022-0000(89)90032-9

Evaluations

Visual Similarity Perception of Directed Acyclic
Graphs: A Study on Influencing Factors

K. Ballweg1(B), M. Pohl2, G. Wallner2, and T. von Landesberger1

1 Technische Universität Darmstadt, Darmstadt, Germany
{kathrin.ballweg,tatiana.von.landesberger}@gris.tu-darmstadt.de

2 Vienna University of Technology, Vienna, Austria
margit@igw.tuwien.ac.at, guenter.wallner@tuwien.ac.at

Abstract. While visual comparison of directed acyclic graphs (DAGs)
is commonly encountered in various disciplines (e.g., finance, biology),
knowledge about humans’ perception of graph similarity is currently
quite limited. By graph similarity perception we mean how humans per-
ceive commonalities and differences in graphs and herewith come to a
similarity judgment. As a step toward filling this gap the study reported
in this paper strives to identify factors which influence the similarity
perception of DAGs. In particular, we conducted a card-sorting study
employing a qualitative and quantitative analysis approach to identify
(1) groups of DAGs that are perceived as similar by the participants and
(2) the reasons behind their choice of groups. Our results suggest that
similarity is mainly influenced by the number of levels, the number of
nodes on a level, and the overall shape of the graph.

Keywords: Graphs · Perception · Similarity · Comparison
Visualization

1 Introduction

The visual comparison of directed acyclic graphs (DAGs) is a task encountered in
various disciplines, e.g., in finance, biology, natural language processing, or social
network analysis. The task is strongly influenced by the human perception of
similarity since comparison builds upon making similarity judgments. In spite of
the numerous occurrences of this task and recent papers surveying visual graph
comparison techniques and visualizations [4,12], knowledge about the human
perception of graph similarity – especially for DAGs – is quite limited.

Only a few investigations address the comparison of graphs. Gleicher et al.
[12] identify the basic types of techniques for visual comparison (juxtaposition,
superposition, and explicit encoding). Tominski et al. [43] explicitly deal with the
comparison of large node-link diagrams in superposition. They argue that inter-
action is essential for this process. Some interesting insights can be gained from
the literature on dynamic graphs showing the evolution of node-link diagrams
over time. The survey of Beck et al. [4] about visualizations of dynamic graphs
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 241–255, 2018.
https://doi.org/10.1007/978-3-319-73915-1_20

242 K. Ballweg et al.

provides an overview of visualization options transferable to general visual graph
comparison since dynamic graph visualization has an inherent comparison com-
ponent. Others discuss the extension of these visualizations and techniques with
features like highlighting of commonalities and differences or the effectiveness of
difference maps [1–3,5,16]. However, none of these papers deal with the issue
of similarity perception within the context of graph comparison. There is also a
large amount of research on graph readability. This research is partially relevant
since the DAGs need to be read in order to compare them. Examples include
studies on edge crossings and mental map perseverance (e.g., [23,35,37,39].
These aspects are, however, not in the focus of our attention. The research inves-
tigating the comparison of visualizations in general is also interesting. Pandey
et al. [33] conducted an experiment to study the similarity perception of scat-
terplots. So, their work inspired our methodology.

To the best of our knowledge, there is no research focusing on how humans
perceive the similarity of DAGs. We are especially interested in the factors which
influence the perception of similarity (possibly, number of nodes/edges, edge
crossings, etc.). We deem the knowledge about the influencing factors important
for the generation of future actionable guidelines for comparative visualizations.
Towards this end, we conducted a study with small, unlabeled synthetic DAGs
and used card sorting as our methodology. We decided for these DAGs in order
to be able to keep the number of to be tested factors manageable. However,
because of our systematic procedure the study scope can be easily extended in
the future. The DAGs are represented as node-link diagrams. We address two
research questions: (1) Which groups do the participants form?, and (2) Which
factors did the participants consider to judge the similarity?

Our results indicate that similarity is mainly influenced by the number of
levels and the number of nodes on a level as well as the overall shape. We
provide additional material - i.a. our study material, our collected data and our
analysis results here:

www.gris.tu-darmstadt.de/research/vissearch/projects/DAGSimilarityPerception.

2 Related Work

While there exists an extensive body of research in perceptual psychology and
pattern recognition on similarity judgments and dissimilarity measures (cf. e.g.,
[13,34] for an overview), we will concentrate on work dealing with graphs and
other types of plots.

Starting with graph visualization techniques and visual comparison tech-
niques there exist several recent surveys of these areas (e.g., [4,12,15,25,44]).
The basic techniques, that is, juxtaposition, superposition, and explicit encod-
ing – following Gleicher et al.’s [12] classification – are sometimes enriched by
emphasizing the correspondences between graphs [7,16], e.g., by highlighting
similar parts [3,5,16], or by emphasizing differences by collapsing the identical
parts [1]. The enrichment, that is, emphasizing the commonalities or differences,
usually relies on a similarity function respecting specific criteria. In this respect,
Gao et al. [10] provide an overview of research done on graph edit distances, a

http://www.gris.tu-darmstadt.de/research/vissearch/projects/DAGSimilarityPerception/index.html

Visual Similarity Perception of Directed Acyclic Graphs 243

mathematical way to measure the similarity between pairwise graphs. However,
it is still unknown whether the criteria on which existing similarity functions are
based correspond to the criteria used by humans when visually comparing two
or more node-link diagrams. Tominski et al. [43] proposed interaction techniques
which aid users in doing comparison tasks and which were inspired by the real-
world behavior of people when comparing information printed on paper. Getting
a better understanding of the perceived differences and commonalities is likely
to result in better visualization and interaction techniques.

Moreover, the existing body of work dealing with perceptual and cognitive
aspects focuses primarily on the readability of single graphs. Several factors,
including graph aesthetics (edge crossings [23,37,38], layout [8,20,29,30,32],
graph design [17,40], and graph semantics or content knowledge [24,32,39]) have
been identified to be important for graph readability. Huang et al. [18] – con-
cerned with sociograms – note that good readability is not enough to effectively
communicate network structures, emphasizing that the spatial arrangement of
the nodes also influences viewers in perceiving the structure of social networks.

While perceptual aspects of single graphs have been thoroughly investigated,
literature dealing with perceptual aspects when comparing node-link visualiza-
tions is considerably more scarce. Notable papers in this space are the work of
Bach et al. [3] and Ghani et al. [11] who are both concerned with dynamic graphs
(cf. Beck et al. [4] for an overview). Noteworthy is also the work of Archambault
et al. [2] who evaluated the effectiveness of difference maps which show changes
between time slices of dynamic graphs. While we are not necessarily concerned
with dynamic graphs these works are nonetheless relevant in our context as
dynamic graphs are often analyzed by using discrete time-slices. In our own
previous work [27] we provided an overview of methodological challenges when
dealing with the investigation of graph comparison and described a first prelim-
inary study targeted towards identifying factors which influence the recognition
of graph differences in very small star-shaped node-link diagrams. The work
presented in this paper can be viewed as a continuation of these efforts.

Looking beyond the perception of node-link diagrams literature is currently
also quite limited when it comes to similarity perception of other types of plots,
a sentiment shared by Pandey et al. [33] who investigated how human observers
judge the similarity of scatterplots. Our quantitative analysis as presented in
this paper is partly based on the methodology put forward by Pandey et al.
Fuchs et al. [9] looked into how contours affect the recognition of data similarity
in star glyphs. Likewise, Klippel et al. [22] investigated the similarity judgments
of star glyphs using a methodology comparable to the one used by Pandey et al.
[33] and us: Participants were shown various plots which they then had to group
according to their perceived similarity.

3 Study Methodology

In this section, we present our study methodology. As noted above, Pandey et
al.’s [33] work about the human similarity perception of large sets of scatterplots

244 K. Ballweg et al.

strongly inspired our basic methodology, since we share the research ques-
tions for different data types. Furthermore, Pandey et al. substantiate that the
methodological principle of card sorting produces valuable results for this type
of research questions. For advantages, drawbacks, and the suitability of card
sorting for research questions like ours see Sect. 3.4.

3.1 Research Questions

Our superordinate research question (RQ) is: What factors influence human sim-
ilarity perception of DAGs? We firstly have to know the factors influencing the
similarity judgment. Once we know the influencing factors, we can, for instance,
research the specific degree of influence of a single factor as well as the interplay
between the factors. In order to analyze our superordinate RQ, we formulate
two subordinate ones:

– RQ1: Which groups do the participants form?
– RQ2: Which factors did the participants consider to judge the similarity?

3.2 Dataset

Creating an appropriate study dataset is challenging due to the large number of
possible variations [27]. Therefore, we were forced to limit the number of DAGs.
Our object of study were 69 small (6–9 nodes), unlabeled, synthetic DAGs visu-
alized as node-link diagrams. In the following we will use the term DAG to also
refer to its embedding. When creating the DAGs we considered known factors
influencing graph readability (e.g., edge crossings) and characteristics of DAGs
from real-world datasets (e.g., a node may be the child of more than one parent
node). We decided to have synthetic and small DAGs in order to be able to keep
the number of to be tested factors manageable and to evaluate them systemat-
ically. Because of our study and data creation methodology it is easily feasible
to extend our results with further studies considering further factors. Especially
since knowledge about human graph similarity perception is currently quite lim-
ited, we consider the manageability of the problem as crucial. The size of our
DAGs is also realistic. They are comparable to cascades in finance and biology
(e.g., [26,28]) and directed acyclic word graphs [41].

We deem factors of graph readability as potentially important for visual graph
comparison since in order to be able to visually compare DAGs it is necessary
to read them. We consider properties of real DAGs as important for our studies
since they influence the visual appearance of the DAGs. More importantly, con-
sidering properties of real DAGs strengthens the realism of our synthetic data
and, consequently, the transferability of our results to real world use cases.

To create our dataset, we started with G0, as depicted in Fig. 1. G0 is sym-
metric since it is easier to break symmetry than to introduce symmetry. We
herewith cover symmetric and asymmetric DAGs on the basis of G0. This is
important since humans are prone to symmetry [45]. G0 is single-rooted since

Visual Similarity Perception of Directed Acyclic Graphs 245

this is typical for various real-world DAG datasets; e.g., cascades. To test node
and edge changes (addition of node(s) and edge(s)) we had a two stage DAG
creation process. First, we created the base graphs G1 - G6 and their reflections
by adding one, two, and three nodes. We ensured that the addition of the node(s)
is done in the inner as well as the outer areas of G0 (cf. Fig. 1 - Base graphs).
Secondly, we created all possible DAGs resulting from adding one and two edges
(cf. Fig. 1 - Alternatives) using our custom-made GraphCreator – a tool to create
all possible DAGs resulting from a specific change of a DAG, e.g., adding one
edge to G1 - G6 and their reflections. Herewith, we ensure that we have the
maximal possible variation from which we then sample our study dataset.

Down-sampling is necessary since the visual comparison of DAGs is a quite
cognitive demanding task for the participants. For the down-sampling we consid-
ered the following factors: edge crossing, visual layout, more than one parent node
has the same child node, and long connections – typically across more than one
level. We considered edge crossing since it is a prominent factor in graph read-
ability [23,37] for which reason we assume that it also plays a role in visual graph
comparison. Furthermore, we considered the visual layout – another known factor
from graph readability. The visual layout of DAGs does not contain any analyti-
cally relevant information about the DAGs’ data structure and properties. How-
ever, it still has a significant impact on graph readability which is why we deem
it important to test its influence on visual graph comparison [8,18]. We test this
factor by horizontally reflecting G2, G4, and G6 (cf. Fig. 1). The ability to test
the impact of isomorphism is a beneficial byproduct of this decision. We decided
for a traditional hierarchical node-link diagram layout with the root placed
on top since Burch et al. found that this layout type outperforms other types such
as upward layouts. In order to avoid confounding effects by destroying the mental
map we did not optimize the layout after a DAG change; e.g., resolving an avoid-
able edge crossing. By visually inspecting DAGs from real-world datasets we found
that two frequently occurring properties are: more than one parent node has the
same child node – e.g., cascades in finance and biology), long connections –

typically across more than one level – e.g., directed acyclic word graphs in nat-
ural language processing). Consequently, we considered them as factors for our
final dataset. We did the down-sampling under the constraint of preserving the
systematic variation (cf. Fig. 1 – Final dataset) and by ensuring that changes take
place at the inner as well as the outer areas of the respective base graph. Our dataset
is available here: website (http://www.gris.tu-darmstadt.de/research/vissearch/
projects/DAGSimilarityPerception/index.html).

3.3 Participants

We recruited 20 volunteers (13 male, 7 female, between 20 and 60 years). We had
no prerequisite of having experience with DAGs. This way our results are not
limited to experienced users. In our opinion, it is more likely that experienced
users know which factors really bear relevant information for the comparison
task whereas for inexperienced users misconceptions are more likely. We are

http://www.gris.tu-darmstadt.de/research/vissearch/projects/DAGSimilarityPerception/index.html
http://www.gris.tu-darmstadt.de/research/vissearch/projects/DAGSimilarityPerception/index.html

246 K. Ballweg et al.

Fig. 1. Dataset creation: (I) Base graph creation by adding 1, 2, and 3 nodes to G0
ensuring that the added node is placed at the inner as well as the outer areas of G0,
(II) creation of all possible alternatives by adding one and two edges to the base graphs,
(III) down-sampling of the alternatives considering the factors described in Sect. 3.2.
(Color figure online)

convinced that if we want to understand the human similarity perception and
as a consequence improve comparative visualizations, we need a varying range
of expertise with DAGs. Our participants had a diverse educational level (voca-
tional training, undergraduate, graduate, post-graduate) and came from various
disciplines. Two of our participants had basic knowledge in information visu-
alization and five had advanced knowledge. In spite of this, the participants’
experience with DAGs varied vastly.

3.4 Study Procedure

Every participant was welcomed and the experimenter handed over the study
material and explained the task. Each session took approximately one hour.

Task. We asked the participants to group 69 DAGs with respect to their per-
ceived similarity – multiple occurrences of a single DAG in different groups were
allowed. Furthermore, we asked them to tag each group with the factors they
used to build them. Finally, participants had to judge the easiness of forming the
respective group (“How difficult or easy was it for you to create this group?”)
and their confidence in the group’s consistency (“How doubtful or confident are
you about the consistency of the DAGs in the group, i.e., would you create the
same group again if you did this task again?”). The questions regarding easi-
ness and confidence were to judge on a five-point Likert scale (“1 = very diffi-
cult/doubtful, 2 = difficult/doubtful, 3 = neutral, 4 = easy/confident, 5 = very
easy/confident”). The formed groups provide the data needed to answer RQ1
while the participants’ group tags provide the data to answer RQ2. For the task
formulation we kept the one from Pandey et al. [33] since it captured exactly
what we wanted to ask our participants. Moreover, the formulation was already
pretested and successful in Pandey et al.’s study.

Card Sorting Methodology. Card sorting is a well-known methodology in psychol-
ogy and human-computer interaction for externalizing mental models humans
have about the environment they live in. Wood and Wood [46] define card sorting

Visual Similarity Perception of Directed Acyclic Graphs 247

as follows: As the name implies, the method originally consisted of researchers
writing labels representing concepts (either abstract or concrete) on cards, and
then asking participants to sort (categorize) the cards into piles that were similar
in some ways. Humans group objects according to their perceived similarity into
different categories. In this way, card sorting helps to uncover the structure of
mental models. There are different methods to conduct card sorting. Researchers
generally distinguish between open vs. closed sorting tasks and between paper-
based and computer-supported card sorting [14]. In closed card sorting, partici-
pants have to sort the cards according to a given scheme, in open card sorting,
the participants develop it themselves. The procedures for card sorting tasks
sometimes differ considerably. Sometimes, the cards that have been assigned to
a category are placed in a pile [46], so that participants do not shuffle them
around on a canvas. Especially in computerized card sorting, it is often not pos-
sible to see all cards from which to choose at the same time [6,33] which forces
the study participants to compare the cards in memory. We used an open, paper-
based card sorting since literature indicates that the paper-based approach yields
more consistent results than the computerized one [14].

Study Setup and Materials. We used an empty meeting room with good lighting
for conducting the study. The participant got the task sheet, the data sheet,
sheets for building the groups, and sheets for tagging each group with the group
building factors as well as for judging the easiness and the confidence. The task
sheet contained the afore explained task. The data sheet consisted of the 69
randomly positioned DAGs. We decided to present our dataset on paper, so
that the participants could see all data items at the same time. The order of the
data items was kept the same for all participants to exclude order as a possible
confounding variable. The participants had to write down the DAGs’ IDs which
belong to a group and give each group a unique identifier. Furthermore, they had
to write down the tags as well as their easiness and confidence judgment together
with the unique group identifier. The material is available on our website.

4 Analysis and Results

To analyze the collected data with respect to our research questions we used a
mixed-approach involving a quantitative (RQ1, RQ2) and a qualitative (RQ2)
analysis. The qualitative analysis provided the factors the participants tagged
their formed groups with. The quantitative analysis resulted in the perceptual
consensus over all participants as well as it served as a check of the participants’
self-reported factors extracted in the qualitative analysis.

4.1 Quantitative Analysis (RQ1, RQ2)

We did a perceptual consensus calculation over all participants with complete
data (16), i.e., participants who assigned each DAG to at least one group.
The perceptual consensus of the perceived similarity served as a basis to find

248 K. Ballweg et al.

out (1) whether the similarity perception of humans is consistent across indi-
vidual people and (2) whether it is objectifiable with graph theoretical or visual
properties.

To gain insights into the consistency and objectifiability of the similarity per-
ception and to mitigate the potential bias – saying one thing and doing another –
of self-reporting questions such as tagging we analyzed the perceived similarity
consensus regarding which of the known graph theoretical and visual proper-
ties explain the clusters best. The mitigation potential resides in the perceived
similarity consensus encapsulating what the participants really did.

The consensus easiness and confidence scores for each cluster provide informa-
tion about the similarity consensus’ perceived solidness and robustness. A high
average easiness score means that the grouping is solid, thus, due to an easy
assignment, it is less likely that a participant assigned a DAG randomly. The
average confidence score reflects the participants’ opinion whether they would
form the same group again. A high score means that the grouping is robust since
it is highly probable that it would look similar if the task were repeated.

Analysis. To build the perceptual consensus for the participants’ similarity judg-
ments, we calculated a pairwise perceptual distance between each pair of DAGs,
based on the number of occurrences of each DAG pair in the same group and
on the number of individual occurrences (for details cf. [33]). The perceptual
distance calculation resulted in a 69 × 69 perceptual distance matrix (PDM).
Like Pandey et al. [33] we did a hierarchical clustering, in our case with average
linkage. We evaluated the correct number of clusters with the mean/median of
number of groups and with the gap statistic [42]. The mean/median indicate
the average number of participant-built groups and thus served as a reasonable
estimator for the number of clusters. The gap statistic respects, like the indi-
vidual groupings and similarity per se, the cluster similarity which made it to a
further reasonable estimator. The hierarchical clustering result is the consensus
grouping of all DAGs based on the similarity consensus contained in the PDM.

For the clusters’ property analysis we determined various properties for each
graph. Based on this we determined the dominating properties of the clusters as
well as the cluster separating properties. Examples of the employed properties
are: depth, visual symmetry, visual leaning, edge crossing – number and exis-
tence, edge length, number of nodes on a specific level, and the existence and
the number of nodes having more than on parent node.

For the consensus of the easiness and confidence score we calculated an easi-
ness and confidence value for each plot on the basis of the assumption that each
plot inherits the easiness and confidence score of the participant-built groups it
belongs to. Then we calculated an average easiness and confidence score for the
hierarchical clustering result. For a detailed explanation please refer to [33].

Results. The gap statistic indicated that the data supports eight clusters. Both
the mean and median of the number of built groups supported the indicated
eight clusters (mean = 7.6,median = 8.0, STD = 2.6). As all three were simi-
lar, we decided to cut the tree into eight clusters. Figure 2 shows the resulting

Visual Similarity Perception of Directed Acyclic Graphs 249

Fig. 2. Dendrogram resulting from hierarchical clustering with average linkage. The
resulting eight clusters (C1–C8) are marked using colored boxes. (Color figure online)

Fig. 3. Excerpts of the hierarchical clusters (cf. website complete clusters). (Color
figure online)

dendrogram and the resulting clusters – marked using colored boxes. Excerpts
of the hierarchical clusters are shown in Fig. 3. The entire clusters can be found
on our website. The easiness and confidence scores of all hierarchical clusters
are around 4.0 (cf. Table 1). This means that the participants on average found
their groups easy to build and were confident they would look similar if they
repeated the task. Consequently, this results in a good solidness and robustness
of the consensus grouping.

The properties which distinguish the clusters best are the depth of the DAGs,
the number of nodes on a specific level of the DAGs, and the visual leaning of
the DAGs. Table 1 summarizes the properties of the clusters. Clusters C1 and C2
are identical in depth and number of nodes on each of their four levels. However,
they are separated by the leaning. While the DAGs of C1 are left-skewed, those
of C2 are right-skewed. The leaning separating the clusters C1 and C2 suggests
that not the reflection of G6 (cf. Fig. 1) itself was apparent to the participants
but rather a property which changed – the leaning (cf. Sect. 3.2).

Clusters C3, C4, and C5 have identical depth (3) as well as three nodes on
the second level. The number of nodes on the third level separates these clusters.
The depth separates the clusters C3, C4, C5 from C1, C2. Cluster C5 clearly
shows that neither the reflection of G2 (cf. Fig. 1) itself nor a changed property
mattered. It seems that the pure number of nodes dominates significantly over,
e.g., node position (2 left, 1 right vs. reflected: 1 left, 2 right).

250 K. Ballweg et al.

Clusters C6, C7, and C8 have identical depth (3) and four nodes on the second
level. The number of nodes on the third level separates them. The number of
nodes on the second level separates C6, C7, C8 from C3, C4, C5. C6, C7, C8
and C1, C2 are separated by depth. C7 shows that also the reflection of G4 itself
(cf. Fig. 1) or a changed property, e.g., node position, did not matter.

Interestingly, edges and edge crossings – important factors of graph theory
and graph aesthetics – seem not to matter to the participants. The excerpts of
C3 and C5 in Fig. 3 clearly show: The edges had no influence on the similar-
ity judgment of the participants. Otherwise DAGs with such different topology
would not have been grouped together. The excerpt of C7 shows that the partic-
ipants also did not really care about edge crossings. To conclude, we consider the
consistency of the hierarchical clusters as high regarding graph theoretical and
visual DAG properties. They are also well objectifiable with these properties.

Table 1. Properties of the DAGs in the clusters C1-C8 along with average easiness
(Ease) and confidence (Conf) values for each cluster.

Cluster Ease Conf DAG properties

C1 4.3 4.2 depth: 4 • number of nodes on level 2 : 4; on level 3: 3; on
level 4: 1 • leaning : left

C2 4.4 4.3 depth: 4 • number of nodes on level 2 : 4; on level 3: 3; on
level 4: 1 • leaning : right

C3 4.1 4.0 depth: 3 • number of nodes on level 2 : 3; on level 3: 4

C4 4.1 4.1 depth: 3 • number of nodes on level 2 : 3; on level 3: 2

C5 3.6 3.8 depth: 3 • number of nodes on level 2 : 3; on level 3: 3

C6 3.7 3.7 depth: 3 • number of nodes on level 2 : 4; on level 3: 4

C7 3.6 3.8 depth: 3 • number of nodes on level 2 : 4; on level 3: 3

C8 3.8 3.9 depth: 3 • number of nodes on level 2 : 4; on level 3: 2

4.2 Qualitative Analysis (RQ2)

We performed a thematic analysis of the participants’ tags to reveal the factors
they considered. We also analyzed the factors’ importance based on the number
of mentions of a specific factor. For this analysis we used the data of all 20
participants since it does not depend on whether a DAG was grouped or not.

Analysis. First, we transcribed the participants’ tags by noting each tag together
with how the participant used it, e.g., in a hierarchical manner. Additionally we
collected the following data for the tags (henceforth called factors) of each par-
ticipant: factor type (visual, graph theoretical), combined vs. single factors (e.g.,
number of levels vs. number of levels and number of nodes), number of consid-
ered factors, number of values per factor (e.g., number of edge crossings = 1,
2 and 3 → number of values = 3). We deemed the factor type as important
since the graph theoretical properties are those which contain the information

Visual Similarity Perception of Directed Acyclic Graphs 251

relevant for comparison insights. However, we already know from graph read-
ability research the significant influence of visual factors (e.g., edge crossing).
Knowing those for visual comparison is beneficial for controlling their influence.
We collected the other data as meta-information on the factors the participants
used in order to learn more about the participants’ usage of the factors.

Results. The individual transcriptions can be found on our website. Figure 4
shows the factors considered by the participants together with how often a factor
was named. Multiple mentions of one and the same factor by one participant
were not considered. In total, our participants used 27 distinct factors (cf. Fig. 4).
Ten of these can be considered to be graph theoretical factors (yellow) and 15
to be visual factors (blue). Two of the used factors are neither graph theoretical
nor visual (gray). Just five out of 20 participants used a combined factor and
only two of these five used more than one combined factor. The most frequently
combined factor was number of nodes on a specific level (five times); e.g., number
of nodes on the second level = 3 and number of nodes on the third level = 4.
Eight of the 27 factors were used by at least 20% of the participants (cf. Fig. 4,
left). We will focus on these eight, for the other 20 factors please refer to Fig. 4,
right.

The most important factors according to usage frequency were: number of
levels (i.e., depth of the DAG), number of nodes on a specific level, shape,
arm/branch (≡ DAG sub-shape), one parent node, edge crossing, child node(s)
with > 1 parent node, visual leaning (left: right:). The factor shape is basi-
cally the convex hull of the DAG (). Regarding shape it is interesting to note
that we could observe a coherence of shape with the number of nodes on a specific
level. Participants, for instance, denoted a DAG such as as “narrow/small
pyramid” and a DAG such as as “wide/large pyramid”. However, it is clear
that this coherence is also influenced by the DAGs’ layout. Arm/branch refers
to the shape of a DAG’s sub-graph (). Edge crossing deals with crossings of
the visualized edges (). The participants considered different types of edge
crossings, e.g., presence of edge crossing or (un)resolvable edge crossings. The
factors one parent node and child node(s) with > 1 parent node relate to the

Fig. 4. Factors used by the participants (yellow: graph theoretical, blue: visual, gray:
no type). Multiple mentions of the same factor by the same participant were excluded.
(Color figure online)

252 K. Ballweg et al.

number of nodes which are parent to another node (,). Again, we could
observe that participants used different types of these factors.

Interestingly, also the extracted factors substantiate that edges and edge
crossings did not really matter (cf. Sect. 4.1). The factor edge crossing is one of
the least used of the most important factors. Other edge related factors were
used just once (cf. Fig. 4, right). Various individual groupings also support this,
e.g.: (factor: one parent left).

5 Discussion and Conclusion

We conducted a card sorting study to identify the factors influencing the simi-
larity perception of DAGs to mitigate the present knowledge gap regarding this
topic despite the vast presence of visual comparison tasks in various disciplines.

Both, the results of our quantitative and qualitative analysis point to simi-
lar factors which seem to dominantly influence similarity perception of DAGs,
namely the number of levels (depth), the number of nodes on specific levels, as
well as shape-related aspects such as the visual leaning of a DAG. Herewith, we
can be certain that the self-reported factors of the participants were not biased.
The strong influence of shape is remarkable as in our case the spatial arrange-
ment did not convey any additional information. This resulted in cases where
structurally identical DAGs were assigned to different groups due to one being
left-skewed or right-skewed. Being skewed to the left or right mainly played a
role for the 4-level DAGs (cf. C1 and C2), most likely because it had a stronger
influence on the overall shape as in the 3-level cases. Nevertheless, this observa-
tion supports previous results which found evidence that perception of graphs
is sensitive to its spatial layout (cf. e.g., [18,30]). Surprisingly, edge crossings –
an important factor concerning the readability of graphs [36] – contrary to our
expectations did not seem to have a strong impact on perceived DAG similarity.
This is, for example, evident in the clusters C5 and C6 where no distinction
between DAGs with and without edge crossings has been made (cf. Fig. 3). In
the participants’ statements we found soft evidence that they did not subcon-
sciously resolve the edge crossing and therefore did not mention edge factors; on
the contrary, the edges were not in the focus of the participants.

The fixed order of our data items did not lead to arbitrary groupings. The
individual groupings and the consensus grouping are well objectifiable with DAG
properties. We analyzed the individual groupings by checking the objectifiability
of grouped consecutive data items (cf. website for details). The quantitative
analysis shows the objectifiability of the consensus grouping (cf. Sect. 4.1).

In future work, it will be necessary to investigate how the identified factors
and their importance varies across different graph sizes. It is, for instance, rea-
sonable to assume that, for larger graphs, factors concerning details of a graph
(e.g., number of parent nodes, number of nodes on a specific layer) decrease
in importance while factors concerning the overall appearance (e.g., shape)
increase. Regardless of that, our study provides first results which can contribute

Visual Similarity Perception of Directed Acyclic Graphs 253

to the design of comparative visualizations. Moreover, a better understanding of
the factors which drive humans’ similarity judgment may also be used towards
developing perception-based graph similarity measures. Current notions of graph
similarity such as graph isomorphism and edit distance (cf. [10]), descriptive
statistics of graph structure measures such as degree distribution or diameter,
or iterative approaches which assess the similarity of the neighborhood of nodes
(e.g., [19,21,31]) rely purely on graph theoretical properties.

Besides understanding the individual factors we also deem it important to
understand the strategies that participants employ while judging the similar-
ity of data items. This will help to offer useful interactions with comparative
visualizations. While our study was not specifically designed for this we could
observe circumstantial evidence, as a byproduct from our transcription, that
the participants used three distinctive strategies: Eleven participants chose a
factor, grouped the entire dataset according to it, and then grouped the result-
ing groups into further sub-groups (divide-and-conquer). There were also seven
participants who always respected the entire dataset considering the factors one
after the other. Some of the participants chose all their factors in advance. Still
others chose their factors in an ad hoc fashion; meaning, after having grouped
the dataset according to a factor they thought about the next. Finally, there were
two participants who did their grouping by considering just one single factor.
More thorough investigations will be necessary to verify these observations.

To conclude, we consider the similarity perception of DAGs in visual compar-
ison across people as consistent and well objectifiable with graph theoretical or
visual properties. We find this substantiated by our quantitative and qualitative
analysis. An in-depth analysis is subject to future research.

Acknowledgments. This work was financially supported by the Deutsche
Forschungsgemeinschaft e.V. (DFG, LA 3001/2-1) and the Austrian Science Fund
(FWF, I 2703-N31).

References

1. Archambault, D.: Structural differences between two graphs through hierarchies.
In: Proceedings of Graphics, pp. 87–94. Canadian Information Processing Society
(2009)

2. Archambault, D., Purchase, H.C., Pinaud, B.: Difference map readability for
dynamic graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502,
pp. 50–61. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18469-
7 5

3. Bach, B., Pietriga, E., Fekete, J.D.: GraphDiaries: animated transitions and tem-
poral navigation for dynamic networks. IEEE Trans. Vis. Comput. Graphics 20(5),
740–754 (2014)

4. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualizing
dynamic graphs. In: Proceedings of EuroVis - STARs (2014)

5. Bremm, S., Von Landesberger, T., Heß, M., Schreck, T., Weil, P., Hamacher, K.:
Interactive visual comparison of multiple trees. In: Proceedings of IEEE VAST,
pp. 31–40 (2011)

https://doi.org/10.1007/978-3-642-18469-7_5
https://doi.org/10.1007/978-3-642-18469-7_5

254 K. Ballweg et al.

6. Chaparro, B.S., Hinkle, V.D., Riley, S.K.: The usability of computerized card sort-
ing: a comparison of three applications by researchers and end users. J. Usability
Stud. 4(1), 31–48 (2008)

7. Collins, C.M., Carpendale, S.: VisLink: revealing relationships amongst visualiza-
tions. IEEE Trans. Vis. Comput. Graph. 13(6), 1192–1199 (2007)

8. Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G., North, C.:
A comparison of user-generated and automatic graph layouts. IEEE Trans. Vis.
Comput. Graph. 15(6), 961–968 (2009)

9. Fuchs, J., Isenberg, P., Bezerianos, A., Fischer, F., Bertini, E.: The influence of
contour on similarity perception of star glyphs. IEEE Trans. Vis. Comput. Graph.
20(12), 2251–2260 (2014)

10. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010)

11. Ghani, S., Elmqvist, N., Yi, J.S.: Perception of animated node-link diagrams for
dynamic graphs. Comput. Graph. Forum 31(3), 1205–1214 (2012)

12. Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual
comparison for information visualization. Inf. Vis. 10(4), 289–309 (2011)

13. Goldstone, R.L., Son, J.Y.: Similarity. In: Holyoak, K.J., Morrison, R.G. (Eds.)
The Cambridge Handbook of Thinking and Reasoning (2005)

14. Greve, G.: Different or alike? comparing computer-based and paper-based card
sorting. Int. J. Strateg. Innovative Mark. 1(1), 27–36 (2014)

15. Hadlak, S., Schumann, H., Schulz, H.J.: A survey of multi-faceted graph visualiza-
tion. In: Proceedings of EuroVis - STARs (2015)

16. Holten, D., Van Wijk, J.J.: Visual comparison of hierarchically organized data.
Comput. Graph. Forum 27(3), 759–766 (2008)

17. Holten, D., van Wijk, J.J.: A user study on visualizing directed edges in graphs.
In: Proceedings of CHI, pp. 2299–2308 (2009)

18. Huang, W., Hong, S.-H., Eades, P.: Layout effects on sociogram perception. In:
Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 262–273. Springer,
Heidelberg (2006). https://doi.org/10.1007/11618058 24

19. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: Pro-
ceedings of KDD, pp. 538–543 (2002)

20. Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: HOLA: Human-like orthogonal
network layout. IEEE Trans. Vis. Comput. Graph. 22(1), 349–358 (2016)

21. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
46(5), 604–632 (1999)

22. Klippel, A., Hardisty, F., Weaver, C.: Star plots: how shape characteristics influence
classification tasks. Cartogr. Geogr. Inf. Sci. 36(2), 149–163 (2009)

23. Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large
graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–
245. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7 20

24. Körner, C.: Concepts and misconceptions in comprehension of hierarchical graphs.
Learn. Instr. 15(4), 281–296 (2005)

25. von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.,
Fekete, J.D., Fellner, D.: Visual analysis of large graphs: State-of-the-art and future
research challenges. Comput. Graph. Forum 30(6), 1719–1749 (2011)

26. von Landesberger, T., Diel, S., Bremm, S., Fellner, D.W.: Visual analysis of con-
tagion in networks. Inf. Vis. 14(2), 93–110 (2015)

27. von Landesberger, T., Pohl, M., Wallner, G., Distler, M., Ballweg, K.: Investigating
graph similarity perception: a preliminary study and methodological challenges. In:
Proceedings of VISIGRAPP, pp. 241–250 (2017)

https://doi.org/10.1007/11618058_24
https://doi.org/10.1007/978-3-662-45803-7_20

Visual Similarity Perception of Directed Acyclic Graphs 255

28. Lenz, O., Keul, F., Bremm, S., Hamacher, K., von Landesberger, T.: Visual analysis
of patterns in multiple amino acid mutation graphs. In: Proceedings of IEEE VAST,
pp. 93–102 (2014)

29. McGee, F., Dingliana, J.: An empirical study on the impact of edge bundling on
user comprehension of graphs. In: Proceedings of AVI, pp. 620–627 (2012)

30. McGrath, C., Blythe, J., Krackhardt, D.: The effect of spatial arrangement on
judgments and errors in interpreting graphs. Soc. Netw. 19(3), 223–242 (1997)

31. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In: Proceedings of
ICDE, pp. 117–128 (2002)

32. Novick, L.R.: The importance of both diagrammatic conventions and domain-
specific knowledge for diagram literacy in science: the hierarchy as an illustrative
case. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006. LNCS
(LNAI), vol. 4045, pp. 1–11. Springer, Heidelberg (2006). https://doi.org/10.1007/
11783183 1

33. Pandey, A.V., Krause, J., Felix, C., Boy, J., Bertini, E.: Towards understanding
human similarity perception in the analysis of large sets of scatter plots. In: Pro-
ceedings of CHI, pp. 3659–3669 (2016)

34. Pekalska, E., Duin, R.P.W.: The dissimilarity representation for pattern recogni-
tion: Foundations and applications (2005)

35. Purchase, H.C., Pilcher, C., Plimmer, B.: Graph drawing aesthetics - created by
users, not algorithms. IEEE Trans. Vis. Comput. Graph. 18(1), 81–92 (2012)

36. Purchase, H.: Which aesthetic has the greatest effect on human understanding? In:
DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1 67

37. Purchase, H.C.: Metrics for graph drawing aesthetics. Vis. Lang. Comput. 13(5),
501–516 (2002)

38. Purchase, H.C., Hoggan, E., Görg, C.: How important is the “Mental Map”? – An
empirical investigation of a dynamic graph layout algorithm. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70904-6 19

39. Purchase, H.C., McGill, M., Colpoys, L., Carrington, D.: Graph drawing aesthetics
and the comprehension of UML class diagrams: An empirical study. In: Proceedings
of Invis.au. pp. 129–137 (2001)

40. Tennekes, M., de Jonge, E.: Tree colors: color schemes for tree-structured data.
IEEE Trans. Vis. Comput. Graph. 20(12), 2072–2081 (2014)

41. Thornley, S., Marshall, R., Wells, S., Jackson, R.: Using directed acyclic graphs for
investigating causal paths for cardiovascular disease. J. Biometrics Biostatistics 4,
182 (2013)

42. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data
set via the gap statistic. J. R. Stat. Soc. Ser. B Stat. Methodol. 63(2), 411–423
(2001)

43. Tominski, C., Forsell, C., Johansson, J.: Interaction support for visual comparison
inspired by natural behavior. IEEE Trans. Vis. Comput. Graph. 18(12), 2719–2728
(2012)

44. Vehlow, C., Beck, F., Weiskopf, D.: The state of the art in visualizing group struc-
tures in graphs. In: Proceedings of EuroVis - STARs (2015)

45. Welch, E., Kobourov, S.: Measuring symmetry in drawings of graphs. Comput.
Graph. Forum 36(3), 341–351 (2017)

46. Wood, J.R., Wood, L.E.: Card sorting: current practices and beyond. J. Usability
Stud. 4(1), 1–6 (2008)

https://doi.org/10.1007/11783183_1
https://doi.org/10.1007/11783183_1
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/978-3-540-70904-6_19

GiViP: A Visual Profiler for Distributed Graph
Processing Systems

Alessio Arleo(B), Walter Didimo, Giuseppe Liotta,
and Fabrizio Montecchiani

Università degli Studi di Perugia, Perugia, Italy
alessio.arleo@studenti.unipg.it, {walter.didimo,giuseppe.liotta,

fabrizio.montecchiani}@unipg.it

Abstract. Analyzing large-scale graphs provides valuable insights in
different application scenarios. While many graph processing systems
working on top of distributed infrastructures have been proposed to deal
with big graphs, the tasks of profiling and debugging their massive com-
putations remain time consuming and error-prone. This paper presents
GiViP, a visual profiler for distributed graph processing systems based
on a Pregel-like computation model. GiViP captures the huge amount of
messages exchanged throughout a computation and provides an interac-
tive user interface for the visual analysis of the collected data. We show
how to take advantage of GiViP to detect anomalies related to the com-
putation and to the infrastructure, such as slow computing units and
anomalous message patterns.

1 Introduction

The analysis of large-scale graphs provides valuable insights in different appli-
cation scenarios, including social networking, crime detection, content ranking
and recommendations (see, e.g., [19,37,43,60]). On the other hand, graph com-
putations are often difficult to scale and parallelize, due to the inherent interde-
pendencies within graph data. Furthermore, graph algorithms are usually iter-
ative and hence poorly suited for popular Big Data processing systems such
as Hadoop/MapReduce (see, e.g., [20,42]). In response to these shortcomings,
new frameworks based on the Think-Like-A-Vertex (TLAV) programming model
have been proposed, such as Google’s Pregel [43] and its open source counterpart
Apache Giraph [19]. The idea behind the TLAV model is to provide a common
vertex-centric programming interface, abstracting from low-level details of the
distributed infrastructure. Graph processing systems based on the TLAV model
outperform general purpose Big Data processing systems by improving locality
and by demonstrating linear scalability [45]. In view of their effectiveness, these
systems are being adopted by a growing number of applications. For example
Apache Giraph is used in the contexts of social networking [37], fraud detec-
tion [60], and network visualization [8,9].

We thank Maria Elisa Ganci for her contribution in the development of GiViP.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 256–271, 2018.
https://doi.org/10.1007/978-3-319-73915-1_21

GiViP: A Visual Profiler for Distributed Graph Processing Systems 257

Fig. 1. The graphical interface of GiViP.

While many graph processing systems working on top of modern distributed
infrastructures have been proposed to deal with large graphs, the tasks of pro-
filing and debugging their massive computations remain time consuming and
error-prone [31,54]. Low-level profiling systems for distributed architectures
exist [18,39], but none of them is tailored to the needs of TLAV frameworks
(or other types of distributed graph processing systems). For example, Hadoop
Profiler [18] is designed to analyze CPU workloads of Apache Hadoop clusters [1],
but it disregards the interaction between pairs of computing units, which is cru-
cial in a TLAV framework. Indeed, algorithms written for TLAV-based graph
processing systems usually rely on slim user-defined functions that do not require
much CPU resources, but they may require huge numbers of messages and/or
iterations to propagate the results of a local computation throughout the graph.
A classical example is the TLAV implementation of the PageRank algorithm,
which requires each vertex to iteratively execute a simple computation and to
communicate the output to all its neighbors, until convergence is achieved [43].
Moreover, anomalies related to the distributed infrastructure may yield to unbal-
anced partitions of the input graph over the computing units which, in turn,
leads to overloaded links in the distributed infrastructure. Similarly, a buggy
implementation of an algorithm may yield to anomalous message patterns.

Contribution. In this paper we tackle the challenge of profiling massive com-
putations that run on top of a TLAV-based graph processing system, and we
provide a publicly available implementation of our approach1, called GiViP,
for Apache Giraph. Figure 1 shows a screenshot of the graphical interface of
GiViP. The system collects the networked data related to messages exchanged by
pairs of computing units throughout a specific computation, constructs suitable

1 http://givip.graphdrawing.cloud/.

http://givip.graphdrawing.cloud/

258 A. Arleo et al.

aggregations of these data, and presents to the user an interactive visual interface
for exploring them. To demonstrate the effectiveness of our approach, we discuss
key usage scenarios of GiViP in terms of resource profiling and detection of both
computation- and infrastructure-related issues, such as overloaded computing
units and anomalous message patterns. For reasons of space some material has
been omitted and can be found in [7].

2 Background and Related Work

Background. The Think-Like-A-Vertex (TLAV) programming model provides a
common vertex-centric programming interface, abstracting from low-level details
of the computation and of the distributed infrastructure. Assuming (with no
restrictions) that the input graph is directed, a user-defined function aims at
updating the internal value of the vertex and/or of its outgoing edges. It takes
as input data from the incoming edges of the vertex, while its output is com-
municated through the outgoing edges. Thus, each vertex exchanges messages
only with its neighbors. Google’s Pregel [43] was the first published implementa-
tion of a TLAV framework. It is based on the Bulk-Synchronous Programming
(BSP) model [62], which splits the computation into iterations called supersteps,
with synchronization barriers occurring between consecutive supersteps. At each
superstep the user-defined function is executed over the vertices of the graph, and
the messages sent by a vertex during a superstep are received by its neighbors
at the beginning of the next superstep. The computation halts after a number
of rounds, or when a halting condition is met. Apache Giraph [19] is a pop-
ular Java-based TLAV framework built on Apache Hadoop [1] and originated
as the open source counterpart of Pregel. Giraph exhibits additional features
with respect to Pregel, but it is still based on the BSP model. A fundamental
ingredient of large-scale graph processing systems is a preliminary partitioning
operation that splits the input graph into parts assigned to different computing
units. Good partitions often lead to improved performance, but expensive parti-
tioning strategies may end up dominating the processing time. In Giraph, a basic
computing unit is called worker, and each computer, or host, can run multiple
workers. In large clusters, hosts are grouped into racks. Giraph provides a default
hash-based partitioning algorithm to assign each vertex of the input graph to a
worker. Different strategies can be employed by overriding suitable methods of
the library. We point to the survey by McCune et al. [45] for further references
and explanations about TLAV frameworks. In particular, Apache Hama [56] and
GPS [55] are Pregel-like systems, hence our approach can be adapted for them.

Debuggers, profilers, and monitoring tools. While modern distributed
platforms transparently handle the hassles related to the distributed infrastruc-
ture, debugging and profiling computations, as well as monitoring and optimizing
the underneath infrastructure, remain challenging tasks. Hadoop Profiler [18]
is a tool to analyze CPU workloads for Apache Hadoop clusters. The statsd-
jvm-profiler [39] enables the analysis of memory usage, garbage collection, and
the aggregate execution time of each function within Apache Hadoop clusters.

GiViP: A Visual Profiler for Distributed Graph Processing Systems 259

Both these tools work at low-level, without distinguishing between concurrent
computations running on the same cluster. We also mention high performance
computing (HPC) profilers such as Gprof [30] and VTune [52], which sample the
execution of a computation and analyze the time spent on each part of the code.
BigDebug [31] is a tool offering interactive, real-time debugging primitives for
computations running on Apache Spark [2,66], an in-memory engine for Apache
Hadoop. Graft [54] offers a graphical interface to debug TLAV programs, and it
is implemented for Apache Giraph. None of these tools offers resource profiling
features. CloudGazer [59] is a visualization system that allows users to moni-
tor cloud-based networks. This system has provided valuable inspiration for our
work but its focus is different from ours, as it is directed towards the optimiza-
tion of cloud-based infrastructures in order to reduce energy consumption and
to increase the quality of service.

Time series visualizations. Profiling a computation involves the analysis
of time-varying parameters. Classic charts for time-series data include line
charts [48], small multiples [61], stacked graphs [17], horizon graphs [53], and
braided graphs [38] (see also [33]). Javed et al. [38] compared these types of
visualizations in a user study with local and global tasks on samples with up to
8 simultaneous time series. They observed that shared-space visualizations excel
at comparisons with a local visual span, while split-space techniques are more
robust against high numbers of concurrent time series for tasks that need large
visual spans. More compact iconic representations can also be used when dealing
with many simultaneous time series, at the expenses of a less intuitive tempo-
ral encoding; see, e.g., the survey by Ward [64] and the user study by Fuchs
et al. [28]. Also, several application-driven systems have been proposed that
make use of ad-hoc visualizations. Examples are: ThermalPlot [58], for the visu-
alization of multi-attribute time-series data highlighting significant developments
over time; CloudLines [40], for time-based representations of large and dynamic
event data sets; LiveRAC [46], for the visualization of large collections of system
management time-series data with hundreds of parameters; ThemeRiver [32], for
visualizing thematic variations over time within a large collection of documents;
LifeLines [47], for representing personal histories.

Dynamic graph drawing. In GiViP the communication among workers is con-
veniently modeled as a graph whose edges are weighted based on the amount
or the size of messages exchanged between pairs of workers during a superstep.
Hence, our problem intersects the rich literature on dynamic graph drawing
(see, e.g., [11,16,21,27]). Nonetheless, the topology of our communication graph
is unlikely to change over time, as each worker communicates with workers that
manage the neighbors of its vertices, regardless of the superstep.

3 The GiViP System

3.1 Tasks and Requirements

The tasks that guided the design of GiViP are conceived having in mind the anal-
ysis of the resources used by computations running on top of Pregel-like graph

260 A. Arleo et al.

processing systems; thus, they substantially differ from the common objectives
of low-level distributed profilers. The main tasks are as follows.

T1 Analyze the performance trend of a computation in terms of running time
and traffic load. This task is relevant to evaluate the scalability of a distributed
algorithm and to detect possible bottlenecks. High running times may be alle-
viated by scaling up the resources of the cluster; at the same time, adding com-
putational units may even increase the traffic load (as it increases the input
fragmentation). Also, peaks of resources may be caused by software or hardware
faults, and a deeper inspection of the data may shed more light on the problem.

T2 Analyze the traffic between pairs of computing units (workers, hosts, racks).
This is useful to detect overloaded links at different levels of the cluster hierarchy,
and to estimate the quality of the graph partitioning algorithm. Note that links
between racks are usually slower than links between hosts in the same rack,
which are in turn slower than links between workers in the same host.

T3 Analyze data aggregated at different computing scale and time scale. Aggre-
gating data at different computing scales is needed because the size of a cluster
can vary from a few hosts in the same rack, up to many hosts within multiple
racks. By aggregating data at different time scales we mean the possibility of
aggregating sequences of supersteps. This is particularly useful for executions
that span hundreds or thousands of supersteps. The number of supersteps taken
by an execution usually depends on several variables such as the structural prop-
erties of the input graph, the type of algorithm, and the halting condition.

We also considered two requirements aimed at simplifying the usage of the
system: R1 Avoid user code instrumentation. While distributed debuggers often
require specific instructions to be incorporated in the user code (see, e.g., [54]),
this is commonly avoided in distributed profilers. This feature facilitates the
portability of the code in production environments, as the profiler can be
switched off without recompiling the user code. R2 Allow remote access to the
user interface. This is essential when the user has no direct access to the com-
puting platform (e.g., when using PaaS products such as Amazon EC2), but
instead uses a remote connection or a Web interface to access the cluster.

3.2 Data Model and Data Aggregation

We now describe how data are organized in GiViP and how they can be aggre-
gated to support scalability in the visual interface.

Data model. The inclusion relationships between workers, hosts, and racks
(see Sect. 2) are represented by an inclusion tree T , which does not change over
time. A Giraph computation, called job, is spread over a sequence of k > 0
synchronized supersteps. For each superstep i (for i = 1, . . . , k), starting at
instant si, the data collected by GiViP are modeled as a weighted directed
graph (digraph) Gi = (Vi, Ei). Each vertex v of Gi represents a worker and
has a weight ti(v), denoting the time taken by the worker to complete its task
in superstep i. The synchronization barriers between supersteps imply that

GiViP: A Visual Profiler for Distributed Graph Processing Systems 261

si + maxv∈Vi
{ti(v)} ≤ si+1. Also, each directed edge (u, v) has two weights,

mi(uv) and bi(uv), denoting the number of messages and their total size (in
bytes) sent from u to v during superstep i, respectively.

Data aggregation. GiViP allows two types of data aggregation. Temporal aggre-
gation consists of grouping consecutive supersteps in a single frame. Let si and
sj (i ≤ j) be the first and the last superstep of a frame fij . The system com-
putes a weighted digraph Gij = (Vi ∪ Vi+1 ∪ · · · ∪ Vj , Ei ∪ Ei+1 ∪ . . . · · · ∪ Ej).
For example, if a computation takes 10, 000 supersteps, a temporal aggregation
with 100 supersteps per frame results in a sequence of 100 digraphs. The weight
of each vertex v of Gij is tij(v) =

∑j
z=i tz(v), and for each edge (u, v) of Gij ,

we have mij(uv) =
∑j

z=i mz(uv) and bij(uv) =
∑j

z=i bz(uv).
Hierarchy aggregation merges workers based on their membership in the same

host or rack. Aggregating data in a hierarchical fashion is a well established
method to alleviate visual clutter and to support scalability [26]. Consider a
weighted digraph Gij (possibly with i = j). A hierarchy aggregation at the host
level computes a weighted digraph GH

ij as follows. For each host h ∈ T we have a
vertex v in GH

ij , whose weight tHij (v) equals the sum of the weights of all vertices
of Gij that belongs to h. Similarly, we have an edge (u, v) in GH

ij if there is
at least an edge in Gij between a vertex in the host of u and a vertex in the
host of v. The weights mH

ij (uv) and bHij (uv) are computed as the sum of the
corresponding weights over all edges between a vertex in the host of u and a
vertex in the host of v. Analogously, a hierarchy aggregation at the rack level
computes a graph GR

ij by aggregating workers in the same rack. A hierarchy
aggregation at the worker level trivially corresponds to GW

ij = Gij .
In what follows, for a weighted digraph Gij we assume that i ≤ j. If i = j,

then no temporal aggregation has been performed. To simplify the notation, we
may omit the superscript (W, H, or R) that specifies the hierarchy aggregation
level, if this is not relevant for the discussion and does not create ambiguities.

3.3 Visualization Paradigm and Interface

The interface of GiViP allows users to interactively explore the networkeddata
associated with a computation. The interface is divided into four main views,
which we call Aggregation Panel, Cluster View, Trend View, and Frame View
(see Fig. 1). The Trend View and the Frame View mainly support tasks T1
and T2, respectively. The Aggregation Panel supports task T3. The Cluster
View conveys the hierarchical structure of the computing cluster and is used
to filter elements of this hierarchy. The three views are coordinated and highly
interactive. Each worker is associated with a unique color, which is consistently
used in all views. We used color schemes offered by the D3.js library [13].

Aggregation Panel. It contains controls that have impact on both the Trend
View and the Frame View. A temporal aggregation can be performed by using a
slider to set the size of each frame. A hierarchy aggregation can be set by means
of a three-state switch. In addition, the user can filter the computing units based

262 A. Arleo et al.

Fig. 2. The Trend View.

on the total amount of messages they exchange, so to hide those units that have
a smaller impact in terms of traffic load. Finally, this panel contains some high-
level statistics such as the total running time and the number of supersteps taken
by the computation, and the total number of exchanged messages and bytes.

Cluster View. Interacting with this view allows focusing only on a subset of
computational units, by filtering out workers, hosts, and racks. Filtered workers
disappear from both the Frame and the Trend View. If a host (rack) is filtered
out, then all its workers (hosts) are filtered out. The inclusion tree T is shown
by means of a squarified treemap [15]. By clicking on a tile, the corresponding
computational unit is filtered in or out based on its current state. The size of a
tile is proportional to the number of vertices of the input graph assigned to the
corresponding computational unit. This is helpful in two ways. First, the user
can decide to filter those units that contain fewer vertices. Second, the user has
an immediate feeling of whether the graph partitioning algorithm produced a
balanced partition or not. Recall that Giraph’s default partitioning algorithm
guarantees balanced partitions, but different strategies can be employed to opti-
mize other criteria, such as minimizing inter-worker links [63].

Trend View. For each computing unit, this view shows the evolution through-
out the computation of running time, number of exchanged messages, and
amount of exchanged bytes. (A computing unit is a worker, a host, or a rack,
depending on the hierarchy aggregation level.) We encode this information as a
set of three small multiples [61], vertically stacked and with a shared time axis,
see Fig. 2. We recall that Javed et al. [38] experimentally observed that split-
space visualizations are particularly robust against various concurrent time series
for tasks that need large visual spans, which is exactly our setting (T1). The
first small multiple shows the running time over all the computation frames.

GiViP: A Visual Profiler for Distributed Graph Processing Systems 263

Fig. 3. The Frame View, hierarchy aggregation at (a) worker and (b) host level.

Each single chart is an area chart showing the evolution for the correspond-
ing computing unit. The second small multiple shows the number of messages
exchanged over all computation frames. Each single chart is a stacked area chart
(also known as stream graph) that shows both the incoming and the outgoing
messages of the corresponding computing unit, and thus which also conveys the
total number of messages. The incoming messages are depicted with a regular
texture to darken the original color assigned to the computing unit. Distinguish-
ing between incoming and outgoing messages is useful because each worker is
responsible only for the outgoing edges incident to its vertices, while the incom-
ing edges play a role in the amount of messages that will be received in the next
frame. The third small multiples is similar to the previous one but the traffic
load is measured in terms of bytes. Each of the three small multiples is enclosed
in a collapsible panel. Finally, the shared time axis is paginated and initialized
responsively with a number of frames per page to guarantee an adequate resolu-
tion. As a rule of thumb, a display with 1920 × 1080 px allows up to 50 frames,
while 20 frames guarantees a pleasant distribution of the labels.

Frame View. Here we depict the traffic load between pairs of computing units.
Let Gij be the digraph corresponding to a frame fij . As discussed in Sect. 2,
the topology of Gij does not depend on the specific frame fij . Indeed, as we
observed in our experiments, Gij is usually a complete graph, especially if the
hierarchy aggregation is set to the host or rack level. On the other hand, the
edge weights may significantly differ depending on the frame. These observations
motivate a network visualization method that privileges the user mental map
preservation [5,51], and that is conceived to effectively encode edge weights.
We implemented an enhanced version of the chord diagram available in [13],
as shown in Fig. 3. A chord diagram is a circular layout in which the vertices
of the graph are arranged as thick circle arcs, and the edges are shown with
ribbons connecting pairs of arcs. The size of a ribbon encodes the quantitative
information associated with the corresponding edge, and thus each circle arc

264 A. Arleo et al.

is long enough to accommodate the ends of its ribbons. Chord diagrams are
effectively adopted in various contexts such as comparative genomics [41], urban
mobility trajectories [29], and others [3]. Also, they can be extended to support
hierarchical data sets (see, e.g., [6,36]), as in our case. We use concentric circles to
encode the hierarchy levels. Circle arcs representing workers (hosts) in the same
host (rack) appear consecutively around the circle. If the hierarchy aggregation
is set at the worker level, then the three levels of the hierarchy are simultaneously
shown; see Fig. 3(a). If the data are aggregated at host or rack level, then only
two levels or one level are shown, respectively; see Fig. 3(b). The main novelties
introduced by our enhanced chord diagram are: (i) the use of heuristics for
crossing minimization inspired by the literature on circular layouts (see, e.g., [10,
22,24,57]), and (ii) a bimodal orientation of the edges in which the incoming
and the outgoing edges of each vertex form two contiguous intervals [23].

Edge crossing minimization. Edge crossings are a form of visual clutter that dete-
riorates the readability of a drawing [49,50,65]. We use a variant of the heuristic
by Baur and Brandes [10] to minimize edge crossings (the optimization problem
is NP-complete [44]); it deals with the constraints imposed by the inclusion tree
T and with (dynamic) edge weights. Our algorithm takes as input the graph
G1k, where k is the number of supersteps of the computation, and computes
a unique circular order of the vertices, used for the visualization of all graphs
Gij . This is crucial for the user mental map preservation, especially when the
visualization changes due to filtering or aggregations.

Bimodal orientation. In the chord diagram, the orientation of an edge is encoded
by coloring its ribbon with the same color as the source vertex. In addition, we
split the circle arc of a vertex into two intervals, one for the incoming edges
and one for the outgoing. The length of each interval reflects the total weight of
the corresponding edges, which facilitates the comparison between incoming and
outgoing traffic at a computing unit. To avoid crossings between adjacent edges,
the outgoing edges of a vertex always follow the incoming edges in clockwise
order. The interval for the incoming edges is filled with a regular pattern to
darken its original color (as in the Trend View). Furthermore, in our chord
diagram, a self-loop is encoded by thickening its vertex (circle arc) proportionally
to its weight; this helps to understand the amount of traffic within the same unit.

Interaction. Every aggregation or filtering operation is immediately reflected
in all views. Changes in the Trend and Frame Views are smoothed by animated
transitions, which help in preserving the user mental map. The time axis of the
Trend View is anchored with a slider to browse the frames of the computation.
When the user releases the cursor of the slider, the chord diagram smoothly
changes the width of its ribbons, so to highlight significant changes. By mouse
hovering on the various visualizations, details are immediately shown through
pop-ups. For example, by hovering a ribbon of the chord diagram, the number
of messages (and bytes) associated with the edge is displayed, or by hovering an
area chart, the corresponding value of the diagram is shown.

GiViP: A Visual Profiler for Distributed Graph Processing Systems 265

3.4 Architecture and Implementation Notes

The architecture of GiViP is composed of two main modules. The Message
Sniffer collects all data that need to be analyzed. It is realized as a patch for
Giraph’s source code and can be deployed without user code instrumentation
(R1). The data are collected asynchronously so to minimize the impact of this
module on the computation. Some experiments (on 20 computations) showed
that using our patch does not slow down a Giraph job by more than 36%, and
only by 7.5% on average. As a comparison, other systems to monitor parallel
and distributed algorithms have an overhead around 5% [4,14]. Although GiViP
is not meant to be used in production environments, these numbers suggest the
profiling activity does not seriously affect the running time of a computation. The
Visual Analyzer has a Java back-end that aggregates and stores the collected
data in a MySQL database, and that provides a RESTful API to access the data.
The front-end runs in a Web browser (R2) and implements the GUI of GiViP.
It is coded in HTML/CSS/Javascript and exploits the D3.js [13] library.

4 Usage Scenarios

We discuss the effectiveness of GiViP in key scenarios covering all tasks of
Sect. 3.1. We used two clusters, depending on the experiment. One is an Ama-
zon EC2 cluster with 1 rack, 10 hosts, and 20 workers. The other is a cluster of
commodity machines at our university with 1 rack, 6 hosts, and 11 workers.

Scenario 1: Resource profiling. Distributed algorithms are characterized by
the trend of the performance parameters throughout a computation. This trend
can be regarded as the “heartbeat” of the algorithm, as it is only partially
affected by the input graph and by the cluster configuration. Deviations from
the expected behavior should raise a warning on possible hardware or software
failures. We performed experiments that show how GiViP effectively conveys
the heartbeats of some algorithms. This feature can be used both for a visual
confirmation of a successful execution and for didactic purposes. We consid-
ered four algorithms: Single-Source Shortest-Path (SSSP) and Page Rank
(PR) [43] are well-known graph algorithms, available in the set of examples pro-
vided by the Apache Giraph library; GILA (GI) [8] and MultiGILA (MGI) [9] are
TLAV implementations of a force-directed algorithm and of a multilevel force-
directed algorithm, respectively. We ran these algorithms on two graphs, cti and
Gnutella31. The first is a mesh with 16, 840 vertices and 48, 232 edges, while
the second is a peer-to-peer communication network with 62, 686 vertices and
147, 892 edges. Table 1 refers to graph cti. It shows the small multiples repre-
senting the exchanged messages (with a hierarchy aggregation at the host level,
and after filtering out some hosts with lower traffic), and two representative
snapshots of the chord diagram The traffic load of SSSP follows a Gaussian-
like trend, since the algorithm is based on a flooding technique that reaches its
peak when all vertices know their shortest distance from the source vertex. From
the first chord diagram, one can see that there is only one host that generates

266 A. Arleo et al.

Table 1. Resource profiling for SSSP and GI on graph cti.

SSSP

GI

messages in the first superstep, which means that this host contains the source
vertex. The messages of GI follows a periodic pattern, where each period repre-
sents a controlled flooding in which the coordinates of a vertex u are broadcast
to all vertices within a fixed topological distance from u. The chord diagrams at
different supersteps look very similar, which tells that the percentages of traffic
exchanged between pairs of hosts are stable, even if the total number of mes-
sages changes. The traffic load of PR is flat, as the algorithm is based on a set of
identical supersteps in which each vertex updates its internal status and com-
municates with all its neighbors. The chord diagram does not change among
different supersteps, as a further witness of this constant behavior. Algorithm
MGI alternates computation phases with a periodic trend and phases with flat
trend, as a consequence of the multilevel scheme. For example the initial super-
steps (concerned with the coarsening phase of algorithm) are very short and
generate few messages; the corresponding chord diagrams highlight unbalanced
links, due to the fact that only some vertices of the graph are activated in this
phase of the algorithm.

Scenario 2: Anomalous message patterns. A deviation from the expected
heartbeat of an algorithm should warn the user of a possible issue in the com-
putation. To see this, we injected a bug in the SSSP algorithm and we ran a new
experiment. According to the algorithm, if during a superstep there is a vertex

GiViP: A Visual Profiler for Distributed Graph Processing Systems 267

Fig. 4. Scenario 2: Anomalous message pattern for algorithm SSSP. Detail of the (a)
Trend View and of the (b) Frame View with hierarchy aggregation at the host level.

u that decreases its best-known distance from the source vertex, then u sends a
message to all its neighbors. We added a piece of code that delivers messages to
the neighbors of u also if its best-known distance does not change. This causes
unnecessary messages, but does not affect the correctness of the algorithm; thus,
such a bug would not be discovered by just looking at the output of the com-
putation. From the Trend View, the user immediately observes a flat trend of
messages, which deviates from the expected Gaussian-like heartbeat (see Fig. 4).
The chord diagram shows that there are no overloaded links, i.e., the anomalous
messages are distributed among the hosts. This confirms that the problem comes
from an implementation bug, rather than from a hardware issue.

Scenario 3: Slow computing units. Due to the synchronization barriers
between supersteps, if a computing unit is significantly slower than the others, it
causes a bottleneck for the entire computation. Since the resource management
is transparent to the user, such an event is difficult to spot by using default
tools such as the Hadoop dashboard and the Giraph counters. In contrast, a
slow computing unit can be easily detected in our Trend View. Also, since the
problem is usually due to a faulty or overloaded host, an aggregation at the host
level may expose the problem.

We ran the PR algorithm on the 4elt graph (a mesh with 15, 607 vertices and
45, 878 edges). We used our local cluster, whose hosts run within a virtualized
environment. We limited the percentage of usable CPU for one of them (while
keeping the virtualized hardware the same for all the hosts). The Trend View
clearly shows the existence of a host whose running time is way higher than the
others (indeed, the others are barely visible). Also, the Frame View shows that
the slow host (red) handles an amount of messages similar to that of the others.
Hence, the poor performance cannot be accounted to a difference in the traffic
load, but should be searched in the host conditions (see Fig. 5).

268 A. Arleo et al.

Fig. 5. Scenario 3: Slow host for algorithm PR. Detail of the (a) Trend View and of
the (b) Frame View with hierarchy aggregation at the host level. (Color figure online)

5 Discussion and Future Work

We presented GiViP, the first visual profiler for distributed algorithms on Pregel-
like graph processing systems, and showed that it can be used in several situ-
ations to detect different computation- and infrastructure-related issues. One
limitation of GiViP is concerned with the Frame View, that requires the usage
of filters and/or aggregations if more than a few tens of vertices need to be
displayed. This is due to fact that the chord diagram suffers from edge clutter.
Although it is uncommon to have more than a few tens of computers allocated
for a single computation, one can think of investigating alternative graph visual-
izations, such as matrix-based ones (see, e.g., [12,25,34]), to improve scalability
in our application domain. We also plan to extend GiViP with the possibility of
executing temporal queries [35], and of aggregating sequences of supersteps by
computation phase. In addition, it would be interesting to collect events from the
cluster’s resource manager, to detect possible failures of the resource containers.

References

1. http://hadoop.apache.org/. Accessed 10 June 2017
2. https://spark.apache.org/. Accessed 10 June 2017
3. http://www.circos.ca. Accessed 10 June 2017
4. Hpc toolkit (2011). http://hpctoolkit.org/index.html Accessed 22 Aug 2017
5. Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and the

effect of mental map preservation in dynamic graphs. IEEE Trans. Vis. Comput.
Graph. 17(4), 539–552 (2011)

6. Argyriou, E.N., Symvonis, A., Vassiliou, V.: A fraud detection visualization system
utilizing radial drawings and heat-maps. In: Laramee, R.S., Kerren, A., Braz, J.
(eds.) IVAPP 2014, pp. 153–160. SciTePress (2014)

7. Arleo, A., Didimo, W., Liotta, G., Montecchiani, F.: GiViP: a visual profiler for
distributed graph processing systems. ArXiv e-prints http://arxiv.org/abs/1708.
07985 (2017)

http://hadoop.apache.org/
https://spark.apache.org/
http://www.circos.ca
http://hpctoolkit.org/index.html
http://arxiv.org/abs/1708.07985
http://arxiv.org/abs/1708.07985

GiViP: A Visual Profiler for Distributed Graph Processing Systems 269

8. Arleo, A., Didimo, W., Liotta, G., Montecchiani, F.: A distributed multilevel force-
directed algorithm. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801,
pp. 3–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2 1

9. Arleo, A., Didimo, W., Liotta, G., Montecchiani, F.: Large graph visualizations
using a distributed computing platform. Inf. Sci. 381, 124–141 (2017)

10. Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J.,
Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0 28

11. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic
graph visualization. Comput. Graph. Forum 36(1), 133–159 (2017)

12. Behrisch, M., Bach, B., Hund, M., Delz, M., von Rüden, L., Fekete, J., Schreck,
T.: Magnostics: image-based search of interesting matrix views for guided network
exploration. IEEE Trans. Vis. Comput. Graph. 23(1), 31–40 (2017)

13. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans.
Vis. Comput. Graph. 17(12), 2301–2309 (2011)

14. Braun, B., Qin, H.: ddtrace: rich performance monitoring in distributed systems
15. Bruls, M., Huizing, K., van Wijk, J.J.: Squarified treemaps. In: de Leeuw, W.C.,

van Liere, R. (eds.) IEEE TCVG 2000. pp. 33–42. Eurographics Association (2000)
16. Burch, M., Vehlow, C., Beck, F., Diehl, S., Weiskopf, D.: Parallel edge splatting for

scalable dynamic graph visualization. IEEE Trans. Vis. Comput. Graph. 17(12),
2344–2353 (2011)

17. Byron, L., Wattenberg, M.: Stacked graphs - geometry & aesthetics. IEEE Trans.
Vis. Comput. Graph. 14(6), 1245–1252 (2008)

18. CERN: Hadoop profiler (2016). https://github.com/cerndb/Hadoop-Profiler.
Accessed 10 June 2017

19. Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., Muthukrishnan, S.: One trillion
edges: graph processing at Facebook-scale. PVLDB 8(12), 1804–1815 (2015)

20. Cohen, J.: Graph twiddling in a mapreduce world. Comput. Sci. Eng. 11(4), 29–41
(2009)

21. Crnovrsanin, T., Chu, J., Ma, K.: An incremental layout method for visualizing
online dynamic graphs. J. Graph Algorithms Appl. 21(1), 55–80 (2017)

22. Dehkordi, H.R., Eades, P., Hong, S., Nguyen, Q.H.: Circular right-angle crossing
drawings in linear time. Theor. Comput. Sci. 639, 26–41 (2016)

23. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)

24. Dogrusoz, U., Belviranli, M.E., Dilek, A.: CiSE: a circular spring embedder layout
algorithm. IEEE Trans. Vis. Comput. Graph. 19(6), 953–966 (2013)

25. Elmqvist, N., Do, T.N., Goodell, H., Henry, N., Fekete, J.D.: ZAME: Interactive
large-scale graph visualization. In: IEEE PacificVis 2008, pp. 215–222 (2008)

26. Elmqvist, N., Fekete, J.D.: Hierarchical aggregation for information visualization:
overview, techniques, and design guidelines. IEEE Trans. Vis. Comput. Graph.
16(3), 439–454 (2010)

27. Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE Trans. Vis. Comput.
Graph. 14(4), 727–740 (2008)

28. Fuchs, J., Fischer, F., Mansmann, F., Bertini, E., Isenberg, P.: Evaluation of alter-
native glyph designs for time series data in a small multiple setting. In: Mackay,
W.E., Brewster, S.A., Bødker, S. (eds.) 2013 ACM SIGCHI, pp. 3237–3246. ACM
(2013)

29. Gabrielli, L., Rinzivillo, S., Ronzano, F., Villatoro, D.: From Tweets to semantic
trajectories: mining anomalous urban mobility patterns. In: Nin, J., Villatoro, D.
(eds.) CitiSens 2013. LNCS (LNAI), vol. 8313, pp. 26–35. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04178-0 3

https://doi.org/10.1007/978-3-319-50106-2_1
https://doi.org/10.1007/978-3-540-30559-0_28
https://github.com/cerndb/Hadoop-Profiler
https://doi.org/10.1007/978-3-319-04178-0_3

270 A. Arleo et al.

30. Graham, S.L., Kessler, P.B., McKusick, M.K.: Gprof: a call graph execution pro-
filer. ACM SIGPLAN Not. 39(4), 49–57 (2004)

31. Gulzar, M.A., Interlandi, M., Yoo, S., Tetali, S.D., Condie, T., Millstein, T.D.,
Kim, M.: BigDebug: debugging primitives for interactive big data processing in
spark. In: ICSE 2016, pp. 784–795. ACM (2016)

32. Havre, S., Hetzler, B., Nowell, L.: Themeriver: visualizing theme changes over time.
In: IEEE InfoVis 2000, pp. 115–123. IEEE (2000)

33. Heer, J., Bostock, M., Ogievetsky, V.: A tour through the visualization zoo. Com-
mun. ACM 53(6), 59–67 (2010)

34. Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)

35. Hochheiser, H., Shneiderman, B.: Dynamic query tools for time series data sets:
timebox widgets for interactive exploration. Inform. Vis. 3(1), 1–18 (2004)

36. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hier-
archical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)

37. Jackson, J.: Facebook’s graph search puts Apache Giraph on the map (2013).
http://www.pcworld.com/article/2046680/facebooks-graph-search-puts-apache-gi
raph-on-the-map.html/. Accessed 10 June 2017

38. Javed, W., McDonnel, B., Elmqvist, N.: Graphical perception of multiple time
series. IEEE Trans. Vis. Comput. Graph. 16(6), 927–934 (2010)

39. Johnson, A.: Introducing statsd-jvm-profiler: a JVM profiler for hadoop (2015).
https://github.com/cerndb/Hadoop-Profiler. Accessed 10 June 2017

40. Krstajic, M., Bertini, E., Keim, D.: CloudLines: compact display of event episodes
in multiple time-series. IEEE Trans. Vis. Comput. Graph. 17(12), 2432–2439
(2011)

41. Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones,
S.J., Marra, M.A.: Circos: an information aesthetic for comparative genomics.
Genome Res. 19(9), 1639–1645 (2009)

42. Lumsdaine, A., Gregor, D.P., Hendrickson, B., Berry, J.W.: Challenges in parallel
graph processing. Parallel Process. Lett. 17(1), 5–20 (2007)

43. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: ACM SIG-
MOD 2010, pp. 135–146. ACM (2010)

44. Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T.: On the NP-completeness
of a computer network layout problem. In: IEEE International Symposium on
Circuits and Systems, pp. 292–295 (1987)

45. McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex: a survey of vertex-
centric frameworks for large-scale distributed graph processing. ACM Comput.
Surv. 48(2), 25:1–25:39 (2015)

46. McLachlan, P., Munzner, T., Koutsofios, E., North, S.: LiveRAC: interactive visual
exploration of system management time-series data. In: 2008 ACM SIGCHI, pp.
1483–1492. ACM (2008)

47. Plaisant, C., Milash, B., Rose, A., Widoff, S., Shneiderman, B.: LifeLines: visual-
izing personal histories. In: 1996 ACM SIGCHI, pp. 221–227. ACM (1996)

48. Playfair, W.: The Commercial and Political Atlas: Representing, by Means of
Stained Copper-plate Charts, the Progress of the Commerce, Revenues, Expendi-
ture and Debts of England During the Whole of the Eighteenth Century. Printed
by T. Burton for J. Wallis, etc; 3rd edn. (1801)

49. Purchase, H.C.: Effective information visualisation: a study of graph drawing aes-
thetics and algorithms. Interact. Comput. 13(2), 147–162 (2000)

http://www.pcworld.com/article/2046680/facebooks-graph-search-puts-apache-giraph-on-the-map.html/
http://www.pcworld.com/article/2046680/facebooks-graph-search-puts-apache-giraph-on-the-map.html/
https://github.com/cerndb/Hadoop-Profiler

GiViP: A Visual Profiler for Distributed Graph Processing Systems 271

50. Purchase, H.C., Carrington, D.A., Allder, J.A.: Empirical evaluation of aesthetics-
based graph layout. Empirical Softw. Eng. 7(3), 233–255 (2002)

51. Purchase, H.C., Hoggan, E., Görg, C.: How important is the “Mental Map”? – an
empirical investigation of a dynamic graph layout algorithm. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70904-6 19

52. Reinders, J.: VTune Performance Analyzer Essentials. Intel Press (2005)
53. Saito, T., Miyamura, H.N., Yamamoto, M., Saito, H., Hoshiya, Y., Kaseda, T.:

Two-tone pseudo coloring: Compact visualization for one-dimensional data. In:
2005 IEEE InfoVis, pp. 173–180. IEEE (2005)

54. Salihoglu, S., Shin, J., Khanna, V., Truong, B.Q., Widom, J.: Graft: a debugging
tool for Apache Giraph. In: ACM SIGMOD 2015, pp. 1403–1408. ACM (2015)

55. Salihoglu, S., Widom, J.: GPS: a graph processing system. In: SSDBM 2013, pp.
22:1–22:12. ACM (2013)

56. Seo, S., Yoon, E.J., Kim, J., Jin, S., Kim, J., Maeng, S.: HAMA: an efficient matrix
computation with the mapreduce framework. In: CloudCom 2010, pp. 721–726.
IEEE (2010)

57. Six, J.M., Tollis, I.G.: A framework for circular drawings of networks. In:
Kratochv́ıyl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 107–116. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-46648-7 11

58. Stitz, H., Gratzl, S., Aigner, W., Streit, M.: ThermalPlot: visualizing multi-
attribute time-series data using a thermal metaphor. IEEE Trans. Vis. Comput.
Graph. 22(12), 2594–2607 (2016)

59. Stitz, H., Gratzl, S., Krieger, M., Streit, M.: CloudGazer: a divide-and-conquer
approach to monitoring and optimizing cloud-based networks. In: IEEE PacificVis
2015, pp. 175–182. IEEE (2015)

60. Tang, J.: Graph mining with Apache Giraph (2013). https://www.slideshare.net/
Hadoop Summit/tang-june26-205pmroom210cv2, Accessed 10 June 2017

61. Tufte, E.: The Visual Display of Quantitative Information. Encyclopedia of Math-
ematics and its Applications. Graphics Press, Cheshire (1983)

62. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

63. Vaquero, L.M., Cuadrado, F., Logothetis, D., Martella, C.: Adaptive partitioning
for large-scale dynamic graphs. In: IEEE ICDCS 2014, pp. 144–153. IEEE (2014)

64. Ward, M.O.: Multivariate data glyphs: principles and practice. Handbook of
Data Visualization. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-33037-0 8

65. Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of
graph aesthetics. Inform. Vis. 1(2), 103–110 (2002)

66. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: NSDI 2012, p. 2. USENIX Association
(2012)

https://doi.org/10.1007/978-3-540-70904-6_19
https://doi.org/10.1007/3-540-46648-7_11
https://www.slideshare.net/Hadoop_Summit/tang-june26-205pmroom210cv2
https://www.slideshare.net/Hadoop_Summit/tang-june26-205pmroom210cv2
https://doi.org/10.1007/978-3-540-33037-0_8
https://doi.org/10.1007/978-3-540-33037-0_8

Drawing Big Graphs Using Spectral
Sparsification

Peter Eades, Quan Nguyen(B), and Seok-Hee Hong

The School of Information Technologies, University of Sydney, Sydney, Australia
{peter.eades,quan.nguyen,seokhee.hong}@sydney.edu.au

Abstract. Spectral sparsification is a general technique developed by
Spielman et al. to reduce the number of edges in a graph while retaining
its structural properties. We investigate the use of spectral sparsifica-
tion to produce good visual representations of big graphs. We evaluate
spectral sparsification approaches on real-world and synthetic graphs.
We show that spectral sparsifiers are more effective than random edge
sampling. Our results lead to guidelines for using spectral sparsification
in big graph visualization.

1 Introduction

The problem of drawing very large graphs is challenging and has motivated a
large body of research (see [15] for a survey). As the number of vertices and
edges becomes larger, layout algorithms become less effective. Further, runtime
is increased both at the layout stage and at the rendering stage. Recent work
(for example [20]) approaches the problem by replacing the original graph with
a “proxy graph”. The proxy graph is typically much smaller than the original
graph, and thus layout and rendering is easier. The challenge for the proxy
graph approach is to ensure that the proxy graph is a good representation of the
original graph; for visualization, we want the drawing of the proxy graph to be
faithful [21] to the original graph.

In this paper we examine a specific proxy graph approach using spectral spar-
sification as introduced by Spielman et al. [1]: roughly speaking, the spectrum
(that is, the eigenvalues of the Laplacian; see [10]) of the proxy graph approxi-
mates the spectrum of the original graph. Since the spectrum is closely related
to graph-theoretic properties that are significant for graph drawing, this kind of
proxy seems to promise faithful drawings.

We report results of an empirically investigation of the application of spec-
tral sparsification to graph drawing. Specifically, we consider two closely related
spectral sparsification techniques, one deterministic and one stochastic. We con-
sider the quality of drawings so produced, using real-world and synthetic data
sets. Quality is evaluated using the shape-based proxy graph metrics [20]. The
results of spectral sparsification are compared to sparsifications obtained by sim-
ple random edge sampling. Our investigation confirms the promise of spectral
sparsification, and shows that (overall) it is better than simple random edge
sampling.
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 272–286, 2018.
https://doi.org/10.1007/978-3-319-73915-1_22

Drawing Big Graphs Using Spectral Sparsification 273

Section 2 recalls the proxy graph approach, and shape-based quality metrics
for large graph drawing. Section 3 describes the application of spectral sparsifi-
cation to graph visualization. Section 4 presents our experiments with spectral
sparsification. The results of these experiments are presented and discussed in
Sect. 5. Section 6 concludes.

2 Background

Proxy Graphs and Sparsification. The proxy graph approach is described
in Fig. 1: for a given input graph G, a proxy graph G′ and a drawing D′ of G′

are computed. The proxy graph represents G but is simpler and/or smaller than
G in some sense. The user sees the drawing D′ of G′, and does not see a drawing
of the original graph G. However, if G′ is a “good” representation of G, then D′

is an adequate visualization of G in that the user can see all the structure of G
in the drawing D′.

Fig. 1. In the proxy graph approach, the user sees a “proxy” of the original graph.

If G′ is a subgraph of G, and the edge density of G′ is smaller than the edge
density of G, then we say that G′ is a sparsification of G. Sparsification is the
most common kind of proxy.

Sparsification has been extensively investigated in Graph Mining [9,16,19]
(see survey [14]). Typically, sparsification is achieved by some kind of stochastic
sampling. The most basic sparsification method is random edge sampling (RE) :
each edge is chosen independently with probability p [23]. This and many other
simple stochastic strategies have been empirically investigated in the context of
visualization of large graphs [20,29]. In this paper we apply a more sophisticated
graph sparsification approach to visualization: the spectral sparsification work
of Spielman et al. [1,25,26].

Shape-Based Quality Metrics. Traditional graph drawing metrics such as
edge bends, edge crossings, and angular resolution are based on the readability
of graphs; these metrics are good for small scale visualisation but become mean-
ingless beyond a few hundred nodes [22]. For large graphs, faithfulness metrics
are more important: informally, a drawing D of a graph G is faithful insofar as
D determines G, that is, insofar as the mapping G → D is invertible.

Here we use shape-based faithfulness metrics [7]. The aim of these metrics is
to measure how well the “shape” of the drawing represents the graph. For large
graphs, such as in Fig. 2, the shape of the drawing is more significant than the
number of edge bends and edge crossings. To make this notion more precise, we

274 P. Eades et al.

(a) (b) (c)

Fig. 2. The graphs can 144, cN1031M22638, and gN733M62509, drawn using FM3.
Note that each has a distinctive shape.

use “shape graphs”. Given a set P of n points, a shape graph S(P) is a graph with
vertex set P such that the edge of S(P) define the “shape” of P in some sense.
Examples of shape graphs are the Euclidean minimum spanning tree (EMST),
the relative neighbourhood graph (RNG), and the Gabriel graph (GG) [27].

Suppose that G = (V,E) is a graph and P is a set of points in the plane,
and each vertex u ∈ V is associated with a point p(u) ∈ P . Denote the set of
neighbours of u in G by NG(u), and the set of neighbours of p(u) in the shape
graph S(P) by NS(P)(p(u)). We say that

Jaccard(S(P), G) =
1

|V |
∑

u∈V

|NG(u) ∩ NS(P)(p(u))|
|NG(u) ∪ NS(P)(p(u))|

is the Jaccard similarity between the shape graph S(P) and G. If D is a drawing
of G then the (shape-based) quality of D is Q(D,G) = Jaccard(P,G), where P
is the set of vertex locations in the drawing D. Similarly, if D′ is a drawing of a
sparsification G′ of G, then the (shape-based) (proxy) quality of D′ is Q(D′, G) =
Jaccard(P ′, G), where P ′ is the set of vertex locations in the drawing D′. Note
that if u does not occur in D′, we consider that N ′(u) = ∅. For more details,
see [8].

3 The Spectral Sparsification Approach to Large Graph
Drawing

First we describe some of the terminology and concepts of spectral graph theory.
More details are in standard texts; for example, [5,10]1. The adjacency matrix
of an n-vertex graph G = (V,E) is the n × n matrix A, indexed by V, such that
Auv = 1 if (u, v) ∈ E and Auv = 0 otherwise. The degree matrix D of G is the
diagonal matrix with where Duu is the degree of vertex u. The Laplacian of G
is L = D − A. The spectrum of G is the list λ1, λ2, . . . , λn of eigenvalues of L. It
can be shown that L has real nonnegative eigenvalues [5], and we assume that
λ1 ≤ λ2 ≤ . . . ≤ λn; straightforward computation shows that λ1 = 0.
1 Beware: much of the terminology in spectral graph theory is not standardised.

Drawing Big Graphs Using Spectral Sparsification 275

The spectrum of a graph is closely related to many structural properties of
the graph:

Connectivity: The number of connected components of G is largest value of i
for which λi = 0 [5]. Roughly speaking, a larger value of λ2 indicates a more
highly connected graph and is related to the diameter of the graph. If λ2 > 0
then it is called the algebraic connectivity of G [11].

Clusters: Spectral clustering involves the projection of the graph using its small-
est eigenvalues. Spectral clustering solves a relaxation of the ratio cut prob-
lem, that is, the problem of dividing a graph into clusters to minimise the
ratio between the number of inter-cluster edges and the cluster size [28].
Informally, the ratio cut problem seeks to find clusters of similar size so that
the coupling between clusters is minimised.

Stress: The spectrum solves a kind of constrained stress problem for the graph.
More specifically, the Courant-Fischer theorem (see [5]) implies that

λi = min
x∈Xi

∑

(u,v)∈E

(xu − xv)2, (1)

where Xi is the set of unit vectors orthogonal to the first (i−1) eigenvectors.
The minimum is achieved when x is an eigenvalue corresponding to λi. Note
that the right hand side of Eq. (1) is a kind of stress function.

Commute distance: The average time that a random walker takes to travel
from vertex u to vertex v and return is the commute distance between u
and v. Eigenvalues are related to random walks in the graph, and thus to
commute distances (see [17]).

Spielman and Teng [26], following Benczur and Karger [3], first introduced the
concept of “spectral approximation”. Suppose that G is an n-vertex graph with
Laplacian L, and G′ is an n-vertex subgraph of G with Laplacian L′. If there is
an ε > 0 such that for every x ∈ Rn,

(1 − ε)
xT L′x
xT x

≤ xT Lx

xT x
≤ (1 + ε)

xT L′x
xT x

, (2)

then G′ is an ε-spectral approximation of G. Using the Courant-Fischer
Theorem [5] with (2), one can show that if G′ is an ε-spectral approximation
of G then the eigenvalues and eigenvectors of G′ are close to those of G. The
importance of this is that spectral approximation preserves the structural prop-
erties listed above.

Spielman and Teng first showed that every n-vertex graph has a spectral
approximation with O(n log n) edges [26]. The following theorem is one such
result:

Theorem 1 ([26]). Suppose that G is an n-vertex graph and 1√
n

≤ ε ≤ 1.
Then with probability at least 1

2 , there is an ε-spectral approximation G′ of G
with O(1ε n log n) edges.

276 P. Eades et al.

Further research of Spielman et al. refines and improves spectral sparsification
methods (see [1]). These results have potential for resolving scale issues in graph
visualisation by reducing the size of the graph while retaining its (spectral)
structure. However, the practical impact of these results for graph visualization
is not clear, because of large constants involved.

The proof of Theorem 1 is essentially a stochastic sampling method, using the
concept of “effective resistance”. Suppose that we regard a graph G = (V,E) as
an electrical network where each edge is a 1−Ω resistor, and a current is applied.
The voltage drop over an edge (u, v) is the effective resistance ruv of (u, v).
Effective resistance in a graph is closely related to commute distance, and can
be computed simply from the Moore-Penrose inverse [2] of the Laplacian. If L† is
the Moore-Penrose inverse of L and (u, v) ∈ E, then ruv = L†

uu + L†
vv − 2L†

uv.
We next describe two graph drawing algorithms, both variants of algorithms

of Spielman et al. [1]. Each takes a graph G and an integer m′, and computes a
sparsification G′ with m′ edges, then draws G′.

SSS (Stochastic Spectral Sparsification) randomly selects edges with probability
proportional to their resistance value. Let E′ be the edge set from m′ random
selections. Let G′ be the subgraph of G induced by E′; draw G′.

DSS (Deterministic Spectral Sparsification). Let E′ consist of the m′ of largest
effective resistance. Let G′ be the subgraph of G induced by E′; draw G′.

In both DSS and SSS, the sparsified graph can be drawn with any large-graph
layout algorithm.

4 The Experiments

The driving hypothesis for this paper is that for large graphs, spectral sparsifica-
tion gives good proxy graphs for visualization. To be more precise, we define the
relative density of the sparsification G′ for a graph G to be m′

m , where G has m
edges and G′ has m′ edges. Note that a proxy with higher relative density should
be a better approximation to the original graph; thus we expect that drawings
of the proxy with higher relative density should have better quality.

Since spectral sparsification (approximately) preserves the eigenvalues, we
hypothesize that both SSS and DSS are better than RE. Further, we expect that
the difference becomes smaller when the relative density is larger. To state this
precisely, let D′

SSS (respectively D′
RE) denote the drawing obtained by SSS (respec-

tively RE). We say that Q(D′
SSS,G)

Q(D′
RE,G) is the quality ratio of SSS; similarly define the

quality ratio of DSS. We expect that the quality ratio of both SSS and DSS is
greater than 1. Further, we expect that the quality ratio for both algorithms
tends to 1 as relative density tends to 1.

We implemented DSS, SSS and RE in Java, on top of the OpenIMAJ
toolkit [13]. In particular, we used OpenIMAJ to compute the Moore-Penrose
inverse. The experiments were performed on a Dell XPS 13 laptop, with an i7
Processor, 16 GB memory and 512 GB SSD. The laptop was running Ubuntu
16.04 with 20 GB swap memory. The computation of the Moore-Penrose inverse

Drawing Big Graphs Using Spectral Sparsification 277

used Java 8, with a specified 16 GB heap. We used multiple threads to speed up
the resistance computation.

We used three data sets. The first set of graphs is taken from “defacto-
benchmark” graphs, including the Hachul library, Walshaw’s Graph Partition-
ing Archive, the sparse matrices collection [6] and the network repository [24].
These include two types of graphs that have been extensively studied in graph
drawing research: grid-like graphs and scale-free graphs. The second set is the
GION data set [18]; this consists of RNA sequence graphs that are used for the
analysis of repetitive sequences in sequencing data; these graphs have been used
in previous experiments. They are locally dense and globally sparse, and gener-
ally have distinctive shapes. The third set consists of randomly generated graphs
that contain interesting structures that are difficult to model with sparsification.
Specifically, we generated a number of “black-hole graphs”, each of which con-
sists of one or more large and dense parts (so-called “black holes”), and these
parts connect with the rest of the graph by relatively few edges. These rela-
tively few edges outside the “black holes” determine the structure of the graph.
Such graphs are difficult to sparsify because sampling strategies tend to take
edges from the dense “black holes” and miss the structurally important edges.
Tuesday, December 19, 2017 at 9:06 am Figures 2(b) and (c) are black-hole
graphs. Details of the graphs that we used are in Table 1.

Table 1. Data sets

graph |V | |E| type
can 144 144 576 grid
G 15 1785 20459 scalef
G 2 4970 7400 grid
G 3 2851 15093 grid
G 4 2075 4769 scalef
mm 0 3296 6432 grid
nasa1824 1824 18692 grid
facebook01 4039 88234 scalef
oflights 2939 15677 scalef
soc h 2426 16630 scalef
yeastppi 2361 7182 scalef

(a) Benchmark graphs

graph |V | |E|
graph 1 5452 118404
graph 2 1159 6424
graph 3 7885 427406
graph 4 5953 186279
graph 5 1748 13957
graph 6 1785 20459
graph 7 3010 41757
graph 8 4924 52502

(b) GION graphs

graph |V | |E|
cN377M4790 377 4790
cN823M14995 823 14995
cN1031M226386 1031 22638
gN285M2009 285 2009
gN733M62509 733 62509
gN1080M17636 1080 17636
gN4784M38135 4784 38135

(c) Black-hole graphs

We sparsify these input graphs to a range of relative density values: from
small (1%, 2%, 3%, 4%, 5%, 10%) to medium and large (15%, 20%, · · · , 100%),
using SSS, DSS, and RE.

For layout, we use the FM 3 algorithm [12], as implemented in OGDF [4].
However, we also confirmed our results using FM3 variants (see Sect. 5.1).

We measured quality of the resulting visualizations by proxy quality metrics
Q(D,G) described in Sect. 2. For shape graphs, we used GG, RNG, and EMST ;

278 P. Eades et al.

the results for these three shape graphs are very similar, and here we report the
results for GG.

5 Results from the Experiments

First we describe typical examples of the results of our experiments, using the
graphs illustrated in Fig. 2; these are a relatively small defacto-benchmark graph
can 144, and two black-hole graphs cN1031M22638 and gN733M62509.

Sparsifications of cN1031M22638 using RE, DSS, and SSS at relative densities
of 3% and 15% are in Fig. 3. At relative density of 3%, both RE and SSS give
poor results; the drawings do not show the structure of the graph. However,
DSS gives a good representation. At relative density 15%, both DSS and SSS are
good, while RE remains poor. A similar example, with relative densities of 1%
and 10% for the black-hole graph gN733M62509, is in Fig. 4.

(a) RE 3% (b) DSS 3% (c) SSS 3%

(d) RE 15% (e) DSS 15% (f) SSS 15%

Fig. 3. Sparsifications of the graph cN1031M22638 at relative densities 3% and 15%.

While the results for cN1031M22638 and gN733M62509 are typical, some
results did not fit this mold. For can 144, see Fig. 5; here RE and SSS give poor
representations, even at very high relative density (40%). However, all three
algorithms give good representations at relative density 50%.

5.1 Quality: Results and Observations

Figure 6 shows the quality metrics for the three data sets for all three algorithms.
The x-axis shows relative densities from 1% to 95%; the y-axis shows quality
measures of the proxies.

We make the following five observations from the results.

Drawing Big Graphs Using Spectral Sparsification 279

(a) RE 1% (b) DSS 1% (c) SSS 1%

(d) RE 10% (e) DSS 10% (f) SSS 10%

Fig. 4. Sparsifications of the graph gN733M62509 at relative densities 1% and 10%.

(a) RE 40% (b) DSS 40% (c) SSS 40%

(d) RE 50% (e) DSS 50% (f) SSS 50%

Fig. 5. Sparsifications of the graph can 144 at relative densities 40% and 50%.

1. Quality increases with relative density. In general, quality increases as
relative density increases. For many graphs there is a more interesting pattern:
quality mostly increases up to a limit, achieved at a relative density between
10% and 30%, and then stays steady. Some of the defacto-benchmark graphs
do not show this pattern: they show close to linear improvement in quality
with density all the way up to 95%.

2. Spectral sparsification is better than random edge sampling. Figure 7
depicts the quality ratio (y-axis) for DSS and SSS for each data set, over

280 P. Eades et al.

(a) QDSS - Benchmark graphs (b) QSSS - Benchmark graphs

(c) QDSS - GION graphs (d) QSSS - GION graphs

(e) QDSS - Black-hole graphs (f) QSSS - Black-hole graphs

Fig. 6. Proxy quality metrics of output of DSS, SSS and RE: (a) and (b) defacto-
benchmark graphs, (c) and (d) GION graphs, (e) and (f) black-hole graphs. The metrics
use FM3 layout and GG shape graphs. (Color figure online)

relative density from 1% to 95%. Note that the quality ratio is significant in
most cases, especially at low relative density. For example, DSS metrics are
around 200 times better than RE, and sometimes much more (for the yeast
dataset it is about 400).
For most of the graphs, the quality ratio decreases as the relative density
increases. Quality ratio is best for relative density smaller than 10%. When
the relative density is more than 15%, RE may be slightly better than DSS for
a few graphs, such as defacto-benchmark graphs mm 0 graph (light blue),
and G 2 (red). Interestingly, soc h and oflights show a peak at around 10%
and 15% before a drop for larger relative density.

3. Sparsification is better for grid-like graphs than for scale-free
graphs. Figure 8(a) shows the quality change for DSS, SSS, and REwith den-
sity, over the grid-like and scale-free defacto-benchmark graphs. Note that
average values for DSS and SSS are better than the average value for RE when
the relative density is less than 35%. When relative density is greater than

Drawing Big Graphs Using Spectral Sparsification 281

(a) QDSS/QRE - Benchmark graphs (b) QSSS/QRE - Benchmark graphs

(c) QDSS/QRE - GION graphs (d) QSSS/QRE - GION graphs

(e) QDSS/QRE - Black-hole graphs (f) QSSS/QRE - Black-hole graphs

Fig. 7. Proxy quality ratio for DSS and SSS, for (a) and (b) defacto-benchmark graphs,
(c) and (d) GION graphs, (e) and (f) black hole graphs. The y-axis shows the quality
ratio. (Color figure online)

40%, there are fluctuations between SSS and DSS. For grid-like graphs, the
DSS and SSS proxies give better average proxy measures than RE proxies for
relative density less than 20%. For relative density greater than 35%, RE prox-
ies improve. For scale-free graphs, DSS and SSS outperformed when relative
density is under 80%.
Figure 8(b) shows the ratio of the quality average between DSS over RE and
SSS over RE. Overall, the quality ratios decline when relative density increase.
The ratios are good from 1.2 to 3 times better for relative density up to 20%.
For both types of graphs, DSS gives best quality, then SSS comes second.

4. Deterministic spectral sparsification is better. We compared the aver-
age of quality metrics for DSS, SSS and RE sparsification. Figure 9 shows the
average quality values for the three data sets. As expected, average values
increase when the relative density increases. Note that DSS gives the best
average and SSS is the second best.
Figure 10 shows the quality ratios QDSS/QRE and QSSS/QRE for all the data
sets. Again, DSS gives an overall larger improvement over RE than SSS.
The improvement of DSS over RE is good when relative density is less than
35%; SSS shows in improvement over RE as well, but it is not so dramatic.

282 P. Eades et al.

(a) Average quality metrics (b) Average quality ratio

Fig. 8. Comparison of proxy quality metrics of defacto-benchmark graphs: (1) Average
quality measures, (2) Average of quality ratio. The values are computed by graph types
for scale-free graphs (scalef), grid-like (grid) graphs, and overall (avg). QDSS/QRE.

(a) Benchmark graphs (b) GION graphs (c) Black-hole graphs

Fig. 9. Average quality metrics of DSS, SSS and RE over all data sets.

(a) Benchmark graphs (b) GION graphs (c) Black-hole graphs

Fig. 10. Quality ratios of DSS/RE and SSS/RE over all data sets.

When relative density is beyond 35%, the ratio becomes small (close to 1) or
even becomes smaller than 1. Further note from Fig. 10(a)–(c) that DSS and
SSS give better quality ratios for black-hole graphs than for GION graphs
and defacto-benchmark graphs.

5. Quality results are consistent across different layout algorithms. The
results reported above use FM3 for layout. However, we found that results
using other layout algorithms were very similar. We measured the quality
ratios using FM 3, Fast, Nice and NoTwist layouts from OGDF. For example,
Fig. 11 shows the quality ratio of DSS. As depicted from the graphs, the
improvement of DSS over RE is consistent across different layout algorithms.
The differences in the ratios is very small.

Drawing Big Graphs Using Spectral Sparsification 283

(a) GION graphs (b) Black-hole graphs

Fig. 11. Comparison of average quality ratio of DSS over RE between FM3, Fast, Nice
and NoTwist layouts. The y-axis shows the average quality ratio QDSS/QRE.

5.2 Runtime

Although the main purpose of our investigation was to evaluate the effectiveness
of spectral sparsification, some remarks about runtime are in order.

Figure 12(a) illustrates runtimes. The x-axis shows the number of edges,
and the y-axis shows the computation time in minutes. Figure 12(b) shows the
amount of time for (parallel) computing resistance values. The x-axis shows the
number of edges, and the y-axis shows the computation time in seconds.

(a) Inverse time (b) Resistance computation time

Fig. 12. The running time of computing Moore-Penrose inverse (in minutes) and resis-
tance values of all edges (in seconds).

The dominant part of runtime is the computation of the Moore-Penrose
inverse (and thus effective resistance); for this we used standard software [13].
For the defacto-benchmark graphs, computing the Moore-Penrose inverse takes
10.42 min on average. Graph can 144 takes minimum time for the Moore-
Penrose inverse calculation (0.0003 min), and graph graph 3 takes the longest
time (115 min).

284 P. Eades et al.

6 Concluding Remarks

This paper describes the first empirical study of the application of spectral spar-
sification in graph visualization.

Our experiments suggest that spectral sparsification approaches (DSS and
SSS) are better than random edge approach. Further, the results suggest some
guidelines for using spectral sparsification:

– DSS works better than SSS in practice.
– DSS and SSS give better quality metrics for grid-like graphs than for scale-free

graphs.
– For sparsifications with low relative density (1% to 20%), DSS and SSS are

considerably better than edge sampling. For relative density larger than 35%,
RE may be more practical, because it is simpler, faster, and produces similar
results to DSS and SSS.

Future work includes the following:

– Improve the runtime of these methods. For example, Spielman and
Srivastava [25] present a nearly-linear time algorithm that builds a data struc-
ture from which we can query the approximate effective resistance between
any two vertices in a graph in O(log n) time. This would allow testing spectral
sparsification for larger graphs.

– More extensive evaluation: our experiments compare spectral sparsification
with random edge sampling, but not with the wide range of sampling strate-
gies above. Further, extension to larger data sets would be desirable.

– In our experiments, quality is measured using an objective shape-based met-
ric. It would be useful to measure quality subjectively as well, using graph
visualization experts as subjects in an HCI-style experiment.

References

1. Batson, J.D., Spielman, D.A., Srivastava, N., Teng, S.: Spectral sparsification of
graphs: theory and algorithms. Commun. ACM 56(8), 87–94 (2013)

2. Ben-Israel, A., Greville, T.N.: Generalized Inverses: Theory and Applications, vol.
15. Springer Science & Business Media, New York (2003)

3. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in Õ(n2) time.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 47–55 (1996)

4. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The
Open Graph Drawing Framework (OGDF). CRC Press, Boca Raton (2012)

5. Chung, F.: Spectral Graph Theory. American Maths Society (1997)
6. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM

Trans. Math. Softw. 38(1), 1:1–1:25 (2011)
7. Eades, P., Hong, S., Nguyen, A., Klein, K.: Shape-based quality metrics for large

graph visualization. J. Graph Algorithms Appl. 21(1), 29–53 (2017). https://doi.
org/10.7155/jgaa.00405

https://doi.org/10.7155/jgaa.00405
https://doi.org/10.7155/jgaa.00405

Drawing Big Graphs Using Spectral Sparsification 285

8. Eades, P., Hong, S., Nguyen, A., Klein, K.: Shape-based quality metrics for large
graph visualization. J. Graph Algorithms Appl. 21(1), 29–53 (2017)

9. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in facebook: a
case study of unbiased sampling of OSNs. In: Proceedings of the 29th Conference
on Information Communications, INFOCOM 2010 pp. 2498–2506. IEEE Press,
Piscataway (2010)

10. Godsil, C.D., Royle, G.F.: Algebraic Graph Theory. Graduate Texts in Mathemat-
ics. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0163-9

11. Gross, J., Yellen, J.: Handbook of Graph Theory. CRC Press, Boca Raton (2004)
12. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel

algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9 29

13. Hare, J.S., Samangooei, S., Dupplaw, D.: OpenIMAJ and ImageTerrier: Java
libraries and tools for scalable multimedia analysis and indexing of images. In:
Proceedings of the 19th International Conference on Multimedia 2011, pp. 691–
694 (2011)

14. Hu, P., Lau, W.C.: A survey and taxonomy of graph sampling. CoRR
abs/1308.5865 (2013)

15. Hu, Y., Shi, L.: Visualizing large graphs. WIREs Comput. Stat. 7(2), 115–136
(2015). https://doi.org/10.1002/wics.1343

16. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 631–636. ACM (2006)

17. Lovász, L.: Random walks on graphs: a survey. In: Miklós, D., Sós, V.T., Szőnyi,
T. (eds.) Combinatorics, Paul Erdős is Eighty, vol. 2, pp. 353–398. János Bolyai
Mathematical Society (1996)

18. Marner, M.R., Smith, R.T., Thomas, B.H., Klein, K., Eades, P., Hong, S.-H.:
GION: interactively untangling large graphs on wall-sized displays. In: Duncan, C.,
Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 113–124. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45803-7 10

19. Morstatter, F., Pfeffer, J., Liu, H., Carley, K.: Is the sample good enough? Com-
paring data from Twitter’s streaming API with Twitter’s firehose, pp. 400–408.
AAAI press (2013)

20. Nguyen, Q.H., Hong, S.H., Eades, P., Meidiana, A.: Proxy graph: visual quality
metrics of big graph sampling. IEEE Trans. Visual Comput. Graphics 23(6), 1600–
1611 (2017)

21. Nguyen, Q., Eades, P., Hong, S.-H.: On the faithfulness of graph visualizations.
In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 566–568.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2 55

22. Nguyen, Q.H., Eades, P., Hong, S.: On the faithfulness of graph visualizations.
In: IEEE Pacific Visualization Symposium, PacificVis 2013, 27 February–1 March
2013, Sydney, NSW, Australia, pp. 209–216 (2013). https://doi.org/10.1109/
PacificVis.2013.6596147

23. Rafiei, D., Curial, S.: Effectively visualizing large networks through sampling. In:
16th IEEE Visualization Conference, VIS 2005, Minneapolis, MN, USA, 23–28
October 2005, pp. 375–382 (2005)

24. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015). http://networkrepository.com

25. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. CoRR
abs/0803.0929 (2008). http://arxiv.org/abs/0803.0929

https://doi.org/10.1007/978-1-4613-0163-9
https://doi.org/10.1007/978-3-540-31843-9_29
https://doi.org/10.1002/wics.1343
https://doi.org/10.1007/978-3-662-45803-7_10
https://doi.org/10.1007/978-3-642-36763-2_55
https://doi.org/10.1109/PacificVis.2013.6596147
https://doi.org/10.1109/PacificVis.2013.6596147
http://networkrepository.com
http://arxiv.org/abs/0803.0929

286 P. Eades et al.

26. Spielman, D.A., Teng, S.: Spectral sparsification of graphs. SIAM J. Comput.
40(4), 981–1025 (2011)

27. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recogn. 12(4), 261–268 (1980). https://doi.org/10.1016/0031-3203(80)90066-7

28. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

29. Wu, Y., Cao, N., Archambault, D., Shen, Q., Qu, H., Cui, W.: Evaluation of graph
sampling: a visualization perspective. IEEE Trans. Visual Comput. Graphics 23(1),
401–410 (2017)

https://doi.org/10.1016/0031-3203(80)90066-7

Revisited Experimental Comparison
of Node-Link and Matrix Representations

Mershack Okoe1, Radu Jianu2(B), and Stephen Kobourov3

1 Department of Computer Science, Florida International University, Miami, USA
mokoe001@cis.fiu.edu

2 giCentre, City, University of London, London, UK
radu.jianu@city.ac.uk

3 Department of Computer Science, University of Arizona, Tucson, USA
kobourov@cs.arizona.edu

Abstract. Visualizing network data is applicable in domains such as
biology, engineering, and social sciences. We report the results of a study
comparing the effectiveness of the two primary techniques for showing
network data: node-link diagrams and adjacency matrices. Specifically,
an evaluation with a large number of online participants revealed statis-
tically significant differences between the two visualizations. Our work
adds to existing research in several ways. First, we explore a broad spec-
trum of network tasks, many of which had not been previously evaluated.
Second, our study uses a large dataset, typical of many real-life networks
not explored by previous studies. Third, we leverage crowdsourcing to
evaluate many tasks with many participants.

1 Introduction

Visualizing network data is known to benefit a wide range of domains, including
biology, engineering, and social sciences [54]. The data visualization community
has proposed many approaches to visual network exploration. By comparison,
the body of work that evaluates the ability of such methods to support data-
reading tasks is limited. We describe the results of a comparative evaluation of
the two most popular ways of visualizing networks: node-link diagrams (NL) and
adjacency matrices (AM). Specifically, we consider two interactive visualizations
(NL and AM), using a crowdsourced, between-subject methodology, with 557
distinct online users, 14 evaluated tasks, and 1 real-world dataset; see Fig. 1.

Several earlier studies compare NL and AM visualizations on specific classes
of networks and using a variety of tasks [21,22,30,36]. They show that the
effectiveness of the visualization depends heavily on the properties of the given
dataset and the given data-reading tasks. For example, Ghoniem et al.’s semi-
nal evaluation [21] found that the two visualizations’ ability to support specific
tasks depends on the size and density of the network. Similarly, it is reason-
able to hypothesize that there might be differences depending on the structure
of the network (e.g., clustered networks, small-world networks). Thus exploring

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 287–302, 2018.
https://doi.org/10.1007/978-3-319-73915-1_23

288 M. Okoe et al.

Fig. 1. Evaluated visualizations: node-link diagram and adjacency matrix.

the effectiveness of NL and AM visualizations on different types of graphs, and
using a broader spectrum of tasks, seems worthwhile.

Our study uses one real-world, scale-free dataset of 258 nodes and 1090 edges.
This makes our dataset different in structure and larger than previously eval-
uated networks. For example, Ghoniem et al. evaluated random networks that
were about 2.5 times smaller, albeit somewhat denser. We argue (in Sect. 3) that
our chosen dataset is worth studying as it exemplifies a large class of networks
that occur in real applications.

More recently, networks are used to solve increasingly complex problems
and as a result, there is an expanding range of tasks that are relevant in real
applications and which are of interest to the visualization community. Our study
evaluates many tasks (14), carefully chosen to span multiple task taxonomies
[4,32]. Many of these tasks were not previously investigated in the context of
NL and AM representations.

Given the caveat that these results apply to the specific underlying network
and the specific implementations of NL and AM visualizations, some of our
results confirm prior observations in similar settings, while others are new. NL
outperforms AM for questions about graph topology (e.g., “Select all neighbors
of node,” “Is a highlighted node connected to a named node?”). Of 10 such tasks,
participants who used the node-link diagram were more accurate in 5 and less
accurate in 2. NL and AM give similar results for 4 tasks which tested the ability
of the participants to identify and compare node groups or clusters, except one
instance in which AM outperforms NL. Finally, NL and AM provide similar
results on 2 memorability tasks. The full results are shown in Fig. 4.

2 Related Work

Considerable effort has been expended on optimizing NL and AM visualizations
to remove clutter, increase the saliency of visual patterns, and support data

Revisited Experimental Comparison 289

reading tasks [54]. NL, AM, and slight variations thereof have long been used
in practice to support analyses of data in a broad range of domains, including
proteomic data [8,28,29,50], brain connectivity data [3], social-networks [53],
and engineering [49].

Static visual encodings were augmented by interaction to support the explo-
ration and analysis of large and intricate datasets typical of real-life applications.
Interactive systems that visualize complex relational data use NL [6,9,50], and
AM [7,10–12,17,20,45,51]. We reviewed such systems to determine common
interactions and included them in our evaluated visualizations.

While the two types of visualizations have been used broadly for a long
time, studying how people parse them visually and which visualization method
better supports specific tasks and datasets, is ongoing. For example, studies by
Purchase et al. [40,41,55] consider how node-link layouts impact data readability,
eye-tracking research by Huang et al. reveal visual patterns and measure the
cognitive load associated with network exploration [26,27]. More recently Jianu
et al. and Saket et al. consider the performance of node-link diagrams with
overlaid group information [28,48].

Our work is one in a series of studies that compare NL and AM representa-
tions. Ghoniem et al. [21] evaluated the two approaches on seven connectivity
and counting tasks, using interactive visualizations (e.g., node can be selected
and highlighted). Synthetic graphs of three sizes (20, 50, 100 nodes) and three
densities (0.2, 0.4, and 0.6) were used. The authors found that for small sparse
graphs, NL was better in connectivity tasks, but that for large and dense graphs,
AM outperformed NL for all tasks. Similarly, Keller et al. [30] evaluated six tasks
on three real-life networks of varying small sizes (8, 22, 50) and three densities
(unspecified, 0.2, 0.5). Using both static and interactive variants of NL and AM,
Abuthawabeh et al. found that the participants were equally able to detect struc-
ture in graphs representing code dependencies [1]. Alper et al. found that in tasks
involving the comparison of weighted graphs, matrices outperform node-link dia-
grams [3]. Finally, Christensen et al. [16] evaluated matrix quilts in addition to
NL and AM in a smaller scale study.

Our study adds to what is already known in several ways. First, we explore
a significantly broader range of tasks than earlier studies. These were carefully
selected to cover the graph task taxonomy of Lee et al. [32] and the general
taxonomy of visualization tasks by Amar et al. [4]. We also considered the task
taxonomies for simple graphs [32], clustered graphs [47], and more generally for
visualization tasks [4,52], which have been found to be useful in guiding research
and informing user study task choices [28,48]. Second, our study uses a large
real-world network, typical of many scale-free networks that arise in practical
applications. Finally, unlike previous studies, we leverage crowdsourcing, via
Amazon’s Mechanical Turk, to evaluate many tasks with many participants.

Note that Mechanical Turk provides access to a diverse participant popula-
tion [31,33], and is considered a valid platform for evaluation in general [31,38],
as well as specifically in the context of visualization studies [23]. Many recent
visualization studies are crowdsourced [14,15,28,35,43] and specific platforms

290 M. Okoe et al.

for online evaluations are developed, including GraphUnit designed for online
evaluation of network visualizations [37].

3 Study Design

3.1 Stimuli: Data

We evaluated a single network with 258 nodes and 1090 edges, representing cook-
ing ingredients connected by edges when frequently used together in recipes. The
density of the network was 0.016 (computed as #edges/#nodes2). This network
had been explored previously by Ahn et al. [2]. In its original form, the network
is larger (381 nodes) but we reduced it slightly to ensure it could be visualized
smoothly in a browser. We did so by removing disconnected components and
low-weight edges. Evaluating a single dataset allowed us to cover a broad spec-
trum of tasks while keeping the size of the study manageable, but naturally, this
choice has several limitations, discussed in Sect. 5.

Rationale: Our motivation for choosing our network was three-fold. First, it
is different than those evaluated already. Our network is 2.5 and 5 times larger
than those evaluated by Ghoniem et al. and Keller et al. Second, our network was
chosen as a representative of several types of real-world networks. Specifically, we
reviewed 17 relational datasets (e.g., trade exchanges between countries, the Les
Miserable dataset, TVCG paper co-authorships, protein-interaction networks).
We selected one from this set that was representative in terms of structure and
density, while at the same time sufficiently small to be evaluated in a browser.
Our network has about 4 times more edges than nodes. This was close to the
average edge/node ratio in the 17 networks we reviewed and representative of
many networks commonly found in practice [34]. Third, we believe a dataset
revolving around cooking ingredients would have a greater appeal to participants.
Ingredients were shown as node labels and several tasks referred to ingredients
by name. Relatable, concrete dataset may help users understand tasks better [5].

3.2 Stimuli: Visual Encoding

We evaluated two visual encodings: a node-link diagram (NL) drawn using
the neato algorithm from graphviz [18], and an adjacency matrix (AM),
sorted to reveal clusters using the barycenter algorithm available in the
Reorder.js library [20]. We clustered the network using modularity clustering
from GMap [25] and encoded this information in the two visual representations
using color, as shown in Fig. 1. Both visualizations were developed using the D3
web-library.

Rationale: The neato algorithm is provided in popular layout tools such as
graphviz and frequently part of NL evaluations [21,28]. We ordered our AM to
reveal structure, as we considered this more representative of how matrices are
used in practice, unlike Ghoniem et al. [21], who used a lexicographical order.

Revisited Experimental Comparison 291

3.3 Stimuli: Interactions

Both visualizations support panning and zooming, using the mouse-wheel. Multi-
ple nodes can be selected by clicking on them, and deselected with an additional
click. Selecting a node in NL colors both the node and its outgoing edges in
purple. Selections in AM operate on node labels but change the color of the cor-
responding node’s row or column. Similarly, node mouse-over in NL turns the
node and its edges green and shows the node label via tooltips. Node mouse-
over in AM colors the row or column. Note that for both node selection and
node mouse-over in AM, if a row (column) is colored the complementary column
(row) is not. We chose this approach since both Ghoniem et al. and Okoe et al.
mention that multiple markings for the same node can confuse users [21,28].

To select a node as the answer to a task, the participants double-click it. This
marks the node with a thick black contour. In both NL and AM this marking
was restricted to nodes and labels, without extending to edges or rows/columns.
The participants could also deselect an answer by double-clicking it again.

Similar interactions apply to edge selection: An edge mouse-over in NL turns
the edge green, and if clicked it is selected and so turns purple. In AM, hovering
over an edge-cell highlights its corresponding row and column in green, and
clicking it selects the edge.

Rationale: We chose to evaluate interactive visualizations as interactivity is
typical in real-world applications. Previous studies, such as those of Ghoniem
et al. or Keller et al., also used basic interactions for the same reason. Interac-
tivity can significantly change the effectiveness of a visual encoding, however,
and a careful choice of interactive techniques is warranted.

Our goal was to use interactions that are ecologically valid (i.e., represen-
tative of interactions typical of NL or AM visualizations) and fair (i.e., pro-
viding similar functionality and power in both visualizations). To this end, we
reviewed 9 systems for network visualization (e.g., Gephi [9], Cytoscape [50],
Tulip [6]), 12 network evaluation papers (e.g., Ghoniem et al. [21], Keller et al.
[30], Okoe et al. [36]) and 6 systems and papers for adjacency matrices (e.g.,
ZAME [19], TimeMatrix [56], work by Perin et al. [39], work by Henry et al. [24]).
We cataloged the interactions described or available in these systems, as well
as their particular implementation, and then selected the set of most common
interactions.

This resulted in a set of interactions that both overlapped and differed
slightly from those implemented in previous studies. Overlapping interactions
were described above. New interactions included zooming and panning, which
was required to solve some of the tasks. We believe the addition of zooming and
panning is valuable since such basic navigation is an integral part of real-life sys-
tems. Our node-link diagrams also allowed users to move nodes, an interaction
that can be used to disambiguate cases in which nodes or edges overlap, and is
ubiquitous in NL systems. This interaction does not have an equivalent in AM
but is also not necessary as rows and columns are evenly spaced.

292 M. Okoe et al.

Fig. 2. Participants mouse-over nodes to highlight them (green) and click on nodes to
select them (purple). Designating a node as the answer for a task answer is accomplished
via a double-click, which draws a black contour around the node. (Color figure online)

3.4 Tasks

We evaluated the 14 tasks described in Table 1. Participants solved multiple
repeats (generally 5 or 10) of each task. Task repeats were selected manually
on the network so as to cover multiple levels of complexity. For example, our
repeats included nodes with both low and large degrees (e.g., T1, T2), short and
long paths (e.g., T10, T13), or nodes with few and many neighbors (e.g., T4).

Three of our tasks warrant a more detailed discussion. We included two
memorability tasks, (T11, T14). The former tested the ability of participants to
recall data they had looked for or accessed at an earlier time, and is similar to
memorability tasks evaluated by Saket et al. [46]. The latter tested the ability of
participants to recognize visual configurations they had viewed previously and
is more similar to tasks used by Jianu et al. and Borkin et al. [14,28]. Both
memorability tasks were based on questions that the participants had to answer
early in their session (i.e., T9 in group 4, and T12 in group 5) to prime the
participants with a particular piece of information or visual configuration. A few
minutes later, after performing a set of other tasks (i.e., T10 in group 4, T13 in
group 5), the participants were asked about the information from the earlier task.
Finally, we added a path-estimation task (T5), which required the participants
to estimate how far two nodes are, in terms of the shortest path between them.
Timing constraints ensured that participants used perceptual mechanisms to
give a best-guess response instead of “computing” the correct answer.

Rationale: Our overarching goal in selecting our tasks was to cover a wide
spectrum of different and realistic network tasks. We selected tasks to cover
the graph objects they provide answers about (i.e., nodes, edges, paths), as
well as cover Lee et al.’s categories of graph-reading tasks, and Amar et al.’s
general types of visualization tasks. Several of our tasks have been used before

Revisited Experimental Comparison 293

but under slightly different conditions. Additionally, we included tasks that go
beyond previous studies comparing NL and AM, such as tasks involving clusters.
We also included memorability tasks as they are a topic of growing interest in the
visualization community [14,46]. We also hypothesized there would be differences
between the two visualizations in this respect. We included a path-estimation
task [28], as it is a good representative of the “Overview” category of graph
tasks, and underlies perceptual queries that users make on relational data.

3.5 Hypotheses

Based on previous results by Ghoniem et al. [21], Keller et al. [30], Okoe
et al. [37], Jianu et al. [28], and Saket et al. [48] we devised the null hypotheses:

H1: There is no statistically significant difference in time and accuracy per-
formance between using NL and AM for tasks involving the retrieval of infor-
mation about nodes and direct connectivity (T1, T2, T4, T9, T12).
H2: There is no statistically significant difference in time and accuracy per-
formance between using NL and AM for connectivity and accessibility tasks
involving paths of length greater than two (T5, T10, T13).
H3: There is no statistically significant difference in time and accuracy per-
formance between using NL and AM on group tasks (T3, T6, T7, T8).
H4: There is no statistically significant difference in memorability between
using NL and AM.

We expected H1 to hold and H2 not to hold. We also thought H3 would hold,
except for estimating group interconnectivity (T6), since estimating the number
of non-overlapping dots in a square (AM) should be easier than estimating over-
lapping edges in an irregular 2D area (NL). Finally, we anticipated memorability
would be higher in node-link diagrams due to its more distinguishable features.

3.6 Design

We used a between-subjects experiment with two conditions. We divided our 14
task types into 5 experimental groups, as shown in Table 1, and we evaluated
each group separately. Each participant was allowed to participate in a single
group and used just one of the two visualizations. We assigned participants to
groups and conditions in a round-robin fashion. We aimed to collect data from
around 50 participants per condition. As some participants did not complete
the study, the total number of participants for whom we collected data varies
slightly between conditions. All tasks were timed as shown in Table 1, with time
limits determined experimentally through a pilot-study and chosen to allow most
participants to complete the tasks, while moving the study along.

Rationale: Between-subject experiments are frequently used in the visualization
community [13,28,31,35,42,48,57]. One advantage of this design is the absence
of learning effects between evaluated conditions. A disadvantage is the need

294 M. Okoe et al.

Table 1. Tasks: the columns describe (i) the task, (ii) targeted network element, (iii-iv)
task categories in Lee et al.’s and Amar et al.’s taxonomies, (v) group number the task
was evaluated in, (vi) number of instances of this task type, (vii) task time limit (sec).

Task Target Task tax. [32] Task tax. [4] Group #Repeats Time

1. Given two highlighted nodes,

select the one with the larger degree

node Topology

(adjacency)

Retrieve value,

Sort

1 10 15

2. Given a highlighted node, select

all its neighbors

edge Topology

(adjacency,

accessability)

Retrieve value,

Filter

1 10 25

3. Given two clusters of highlighted

nodes, which one is more

interconnected?

clusters,

cliques

Overview

(connectivity)

Filter, Sort,

Cluster

1 10 10

4. Given two highlighted nodes,

select all of the common neighbors

edge Topology

(shared

neighbor)

Retrieve value,

Filter

2 10 30

5. Given two pairs of highlighted

nodes (red and blue) and limited

time, estimate which pair is closer in

terms of graph topology?

path, edge Overview

(connectivity)

Derive value,

Sort

2 10 10

6. How many clusters are there in the

visualization?
∗clusters shown via color (Sect. 3.2)

clusters Overview

(connectivity)

Derive value 3 1 10

7. Given two groups of highlighted

nodes (e.g., red and blue) and

limited time, estimate which group is

larger

clusters Attribute

based

Filter, Sort,

Derive value,

Correlate

3 10 10

8. Given two highlighted nodes decide

whether they belong to the same clus-

ter
∗clusters shown via color (Sect. 3.2)

clusters,

nodes

Attribute

based

Cluster, Filter 3 10 10

9. Given one highlighted node and

one named node, are they connected?

edge Topology

(adjacency)

Retrieve value 4 5 20

10. Given two highlighted nodes,

how long is the shortest path

between them?

path, edge Topology

(connectivity)

Retrieve value,

Derived value,

filter

4 5 60

11. Memorability: After spending

several minutes on task 10, can

participants remember the answers

they gave to task 9, without access

to the visualization?

See Sect. 3.4 See Sect. 3.4 4 5 unlim

12. Given two highlighted nodes and

three named ones, which of the

named nodes is connected to both

highlighted nodes? (exemplified in

Fig. 3)

edge Topology

(shared

neighbor)

Retrieve value,

Filter

5 5 60

13. Given a selected node, how many

nodes are within two edges’ reach?

edge Topology

(accessibility)

Retrieve value,

Derive value,

Filter

5 5 60

14. Memorability: After spending

several minutes on tasks 13, can

participants remember (i.e., select)

which nodes were highlighted as part

of task 12, if showed the

visualization with the answers they

gave to task 13 highlighted?

**See paper

body

**See paper

body

5 5 unlim

Revisited Experimental Comparison 295

for large numbers of participants, which is easily mitigated in a crowdsourced
setting. Moreover, between-subjects designs are quicker (since only one condition
is evaluated at a time) and online participants prefer shorter studies.

We divided the tasks into groups for the same reason. Having each participant
evaluate all tasks would have resulted in excessively long sessions that partici-
pants would have found tiring. Having participants solve only subsets of tasks
allowed us to reduce their time commitment. We used estimated task completion
times to group tasks, aiming for an expected duration of about 15 min.

We aimed for 50 participants per condition, matching the numbers used in
earlier crowdsourced studies [15,28]. We decided to enforce short time-limits in
order to limit and make uniform the total session duration across participants.

3.7 Procedure

We used Amazon’s Mechanical Turk (MTurk) to crowdsource our study to a
broad population. To account for variations in participant demographics during
the day, we published study batches throughout the day. We ran conditions in
parallel and directed incoming participants to them using a round-robin assign-
ment, to ensure that the two conditions sampled participants from the same
populations. The demographics of MTurk users are reported by Ross et al. [44].

Each incoming participant was first presented with an introduction to the
study, dataset, the visualization they would see and use, and the tasks they would
perform. Each task was exemplified in the introduction, as shown in Fig. 2. Since
our interactions relied on color, participants were administered a color-blindness
test. Next came a training session which involved solving two instances of each
type of task in their assigned group. During the training session the participants
could check the correctness of their answers.

Finally, the participants were lead to the main part of the study. In the main
part of the study, task instances of each type in an assigned group were shown to
the participants. For example, since group 1 involved three distinct task types,
participants assigned to it solved three consecutive sections of ten task-instances
each. At the end, we asked the participants for comments.

We used GraphUnit [37] to create the study, deploy it, and collect data.
Visualizations were shown on the left, while task instructions and answer widgets
were shown on the right. Depending on each task, users answered by selecting
nodes or by using interactive widgets (e.g., text-boxes, check-boxes). Time limits
were enforced by showing a count-down timer and hiding the visualization once
the counter expired. To increase the chances of collecting clean data we awarded
a bonus to the best result in each group and told participants that two of the
task-instances were control tasks easy enough for anyone to solve.

4 Results

Our results are summarized in Fig. 4. By and large, they show that node-link
diagrams were better for most types of connectivity tasks (T1, T2, T4, T5, T9,

296 M. Okoe et al.

T10, T13) thereby invalidating both H1 and H2. The fact that H1 does not hold
is surprising given previous results. Performance on group tasks was generally
comparable with the two visualizations, as hypothesized (H3), though we found
that the AM was better for estimating the number of clusters rather than their
interconnectivity. Finally, NL supported memorability tasks better (invalidating

Fig. 3. Number of participants in each task group per condition and the number of
valid submissions used after data cleaning.

Fig. 4. Results: accuracy and time. Error bars show one standard error. Statistically
significant results and effect sizes are also marked. Tasks 14, 11 had no time limits.

Revisited Experimental Comparison 297

H4). In particular, NL users outperformed AM users when recalling previously
used data (T11).

Data Processing: We collected data from 557 individual participants dis-
tributed across task groups and conditions as shown in Fig. 3. We removed a
total of 28 responses from participants who spent an average of 2 s per task
and had accuracy in the bottom 10 percentile. We considered these likely to be
random responses by participants attempting to game the study.

To compute the accuracy of node selections (T1, T2, T4), we used the formula
Acc = (‖PS ∩ TA‖)/‖TA‖, where PS is the participant’s selection and TA is
the true answer. To compute answers for tasks involving numeric answers (T6,
T10, T13) we used the formula Acc = max(0, 1 − ‖PA − TA|/|TA|), where
PA is the participant’s answer and TA is the true answer. For other tasks we
gave a 1 to correct answers, and a 0 to incorrect answers. Since each task type
was represented in the study by several repeats, we averaged the accuracies of a
task’s individual repeats into an accuracy for the task as a whole.

Statistical Analysis: If the data is normally distributed (determined via a
Shapiro-Wilk test) we use a t-test analysis between conditions to determine if
the observed differences are significant. Otherwise we use a Wilcoxon-Rank-Sum
test. We indicate statistically significant differences and effect sizes in Fig. 4.

5 Discussion

Based on the quantitative results and our own interactions with the visualiza-
tions, we believe the results can be explained by several factors.

First, NL can be more compact than AM since their layout fully leverages the
2D area, while matrices are constrained to two 1D linear node orders. Matrices
favor dense networks (as number of edges increases, matrix size remains constant)
but not sparse ones (empty matrices are as large as a dense ones). Instead, sparse
NL diagrams can be packed tightly. At the extreme, an empty network can be
shown without loss in readability using NL in a

√
N × √

(N) square. The same
empty network would require a N ×N square in an AM. Thus, as networks grow
larger but not necessarily denser, AM may incur an increasing navigation cost.
Concretely, our NL diagrams required less zooming for nodes to become legible
and selected accurately. This could explain the differences in T1.

Second, NL draw a node’s glyph and connections together. Thus, once a label
is spotted, from it, its outgoing edges can be traced to other nodes and their
labels. Moreover, the presence of the edge aids this tracing. Instead, matrices
show node information and edge information separately. Finding the endpoints
of an edge involves two potentially long visual-traces along the horizontal and
vertical axes. Similarly, finding an edge of an identified node involves a horizon-
tal or vertical search. This could be one of the reasons for the large effect in
T9. However, this described behavior is only hypothesized and yet to be demon-
strated.

298 M. Okoe et al.

Third, Ghoniem et al. found that AM performs poorly on tasks involving
long paths [21], and our results on T10 and T13 confirm this. Interestingly, the
average time of participants performing path tasks (T10) in AM is significantly
shorter than that for NL. However, we found that this is due to many AM users
giving up on solving the task altogether early on. Moreover, NL layouts aim
to place nodes so that their network distance matches their embedded distance.
While matrices can also order rows and columns, they are constrained by the use
of a single dimension. This could explain the results of T5: when one pair of nodes
were in the same cluster and the other not, comparing their topological proximity
was possible in both visualizations, but in all other cases NL outperforms AM.

Matrices eliminate occlusion and ambiguity problems. In NL diagrams it is
sometimes difficult to tell if an edge connects to a node or passes through it, but
this is not the case in AMs. Moreover, many tasks that involve visual searches
in unconstrained 2D space with NL, are easier with AM. For example, finding
a node in an AM involves a linear scan in a list of labels. Counting nodes with
certain properties can also be done sequentially by moving through the matrix’s
headers. Such tasks are difficult in NL diagrams as users have to search a 2D
space and keep track of already visited nodes. This may account for T4, where
AM outperforms NL: participants could systematically scan two selected AM
node-rows and identify the columns where both rows had an edge.

Limitations: Several earlier studies comparing NL and AM considered the
effects of network size and density [22,30]. While we recognize the value of this
approach, this was beyond the scope of our current study. Instead, we aimed to
understand how the two visualizations support a more complete range of tasks
(14 versus previously 7 and 6) in a network that is representative of real-world
networks in size and structure. It is unclear whether our results would generalize
to real-world networks that are significantly larger or denser but our work does
provide additional experimental data for a network unlike those evaluated earlier.

We use one type of network and a single instance thereof. This is a method-
ological drawback which we accepted, due to the overhead associated with
preparing multiple appropriate real-world networks for evaluation and phras-
ing participant instructions using the semantics of different networks. While the
limitations of this approach are non-trivial, we attempted to balance them by
using multiple task-repeats of the same type and focusing on different parts of
the network.

The density of our network was significantly lower than [21,30]. However,
Melancon points out that large real-world networks with high densities are
rare [34]. He argues that the edge-to-node ratio is a better indicator for den-
sity in real-world networks as it is less sensitive to the number of nodes. Indeed,
only 1 of the 17 networks we considered, and 3 of the 19 networks Melancon con-
sidered had densities higher than 0.2. In 3 of these 4 cases, these dense networks
were also the smallest in terms of number of nodes.

As in recent studies, we evaluate interactive visualizations. Given the different
visual encoding in NL and AM it is difficult to ensure that all interactions are fair

Revisited Experimental Comparison 299

to both visualizations. To alleviate this concern we relied on a detailed review
of the NL and AM literature, and selected the most common interactions and
their implementations (see Sect. 3.3). This ensured, at least to some degree, that
we evaluated the interactive visualizations as they appear in practice.

Crowdsourced studies have known inherent limitations (e.g., difficulty con-
trolling the experimental setup and verifying what participants do). By and
large, however, crowdsourcing studies replicate prior controlled lab studies [23].

6 Conclusions

We presented the results of a crowdsourced evaluation of NL and AM network
visualizations. Our study involved 557 online participants who used interactive
versions of the two encodings, to answer 14 varied types of questions about a
large network of 256 nodes and 1090 edges. We found that NL is better than
AM for questions about network topology and connectivity, and comparable
for group and memorability tasks, and therefore a better choice for visualizing
datasets similar to the one we evaluated, provided a similar interaction set.

References

1. Abuthawabeh, A., Beck, F., Zeckzer, D., Diehl, S.: Finding structures in multi-
type code couplings with node-link and matrix visualizations. In: 2013 First IEEE
Working Conference on Software Visualization (VISSOFT), pp. 1–10. IEEE (2013)

2. Ahn, Y.Y., Ahnert, S.E., Bagrow, J.P., Barabási, A.L.: Flavor network and the
principles of food pairing. Scientific reports 1 (2011)

3. Alper, B., Bach, B., Henry Riche, N., Isenberg, T., Fekete, J.D.: Weighted graph
comparison techniques for brain connectivity analysis. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 483–492. ACM
(2013)

4. Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in infor-
mation visualization. In: 2005 IEEE Symposium on Information Visualization,
INFOVIS 2005, pp. 111–117. IEEE (2005)

5. Archambault, D., Purchase, H.C., Hoßfeld, T.: Evaluation in the Crowd: Crowd-
sourcing and Human-Centred Experiments. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66435-4

6. Auber, D.: Tulip: a huge graph visualization framework. In: Jünger, M., Mutzel, P.
(eds.) Graph Drawing Software, pp. 105–126. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-642-18638-7 5

7. Bach, B., Pietriga, E., Fekete, J.D.: Visualizing dynamic networks with matrix
cubes. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in
Computing Systems, pp. 877–886. ACM (2014)

8. Barsky, A., Gardy, J.L., Hancock, R.E., Munzner, T.: Cerebral: a cytoscape plugin
for layout of and interaction with biological networks using subcellular localization
annotation. Bioinformatics 23(8), 1040–1042 (2007)

9. Bastian, M., Heymann, S., Jacomy, M., et al.: Gephi: an open source software for
exploring and manipulating networks. ICWSM 8, 361–362 (2009)

https://doi.org/10.1007/978-3-319-66435-4
https://doi.org/10.1007/978-3-319-66435-4
https://doi.org/10.1007/978-3-642-18638-7_5
https://doi.org/10.1007/978-3-642-18638-7_5

300 M. Okoe et al.

10. Behrisch, M., Davey, J., Fischer, F., Thonnard, O., Schreck, T., Keim, D.,
Kohlhammer, J.: Visual analysis of sets of heterogeneous matrices using projection-
based distance functions and semantic zoom. In: Computer Graphics Forum, vol.
33, pp. 411–420. Wiley Online Library (2014)

11. Bezerianos, A., Dragicevic, P., Fekete, J.D., Bae, J., Watson, B.: Geneaquilts: a
system for exploring large genealogies. IEEE Trans. Vis. Comput. Graph. 16(6),
1073–1081 (2010)

12. Blanch, R., Dautriche, R., Bisson, G.: Dendrogramix: a hybrid tree-matrix visual-
ization technique to support interactive exploration of dendrograms. In: 2015 IEEE
Pacific Visualization Symposium (PacificVis), pp. 31–38. IEEE (2015)

13. Borkin, M., Gajos, K., Peters, A., Mitsouras, D., Melchionna, S., Rybicki, F.,
Feldman, C., Pfister, H.: Evaluation of artery visualizations for heart disease diag-
nosis. IEEE Trans. Vis. Comput. Graph. 17(12), 2479–2488 (2011)

14. Borkin, M., Vo, A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., Pfister, H.,
et al.: What makes a visualization memorable? IEEE Trans. Vis. Comput. Graph.
19(12), 2306–2315 (2013)

15. Chapman, P., Stapleton, G., Rodgers, P., Micallef, L., Blake, A.: Visualizing sets:
an empirical comparison of diagram types. In: Dwyer, T., Purchase, H., Delaney, A.
(eds.) Diagrams 2014. LNCS (LNAI), vol. 8578, pp. 146–160. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44043-8 18

16. Christensen, J., Bae, J.H., Watson, B., Rappa, M.: Understanding which graph
depictions are best for viewers. In: Christie, M., Li, T.-Y. (eds.) SG 2014. LNCS,
vol. 8698, pp. 174–177. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11650-1 17

17. Dinkla, K., Westenberg, M.A., van Wijk, J.J.: Compressed adjacency matrices:
untangling gene regulatory networks. IEEE Trans. Vis. Comput. Graph. 18(12),
2457–2466 (2012)

18. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—open
source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001.
LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45848-4 57

19. Elmqvist, N., Do, T.N., Goodell, H., Henry, N., Fekete, J.D.: Zame: interactive
large-scale graph visualization. In: 2008 IEEE Pacific Visualization Symposium,
PacificVIS 2008, pp. 215–222. IEEE (2008)

20. Fekete, J.D.: Reorder.js: a javascript library to reorder tables and networks. In:
IEEE VIS 2015 (2015)

21. Ghoniem, M., Fekete, J.D., Castagliola, P.: A comparison of the readability of
graphs using node-link and matrix-based representations. In: 2004 IEEE Sympo-
sium on Information Visualization, INFOVIS 2004, pp. 17–24. IEEE (2004)

22. Ghoniem, M., Fekete, J.D., Castagliola, P.: On the readability of graphs using
node-link and matrix-based representations: a controlled experiment and statistical
analysis. Inf. Vis. 4(2), 114–135 (2005)

23. Heer, J., Bostock, M.: Crowdsourcing graphical perception: using mechanical turk
to assess visualization design. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 203–212. ACM (2010)

24. Henry, N., Fekete, J.D.: Matrixexplorer: a dual-representation system to explore
social networks. IEEE Trans. Vis. Comput. Graph. 12(5), 677–684 (2006)

25. Hu, Y., Gansner, E., Kobourov, S.G.: Visualizing graphs and clusters as maps.
IEEE Comput. Graph. Appl. 30(6), 54–66 (2010)

https://doi.org/10.1007/978-3-662-44043-8_18
https://doi.org/10.1007/978-3-319-11650-1_17
https://doi.org/10.1007/978-3-319-11650-1_17
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57

Revisited Experimental Comparison 301

26. Huang, W.: Using eye tracking to investigate graph layout effects. In: 2007 6th
International Asia-Pacific Symposium on Visualization, APVIS 2007, pp. 97–100.
IEEE (2007)

27. Huang, W., Eades, P., Hong, S.H.: Measuring effectiveness of graph visualizations:
a cognitive load perspective. Inf. Vis. 8(3), 139–152 (2009)

28. Jianu, R., Rusu, A., Hu, Y., Taggart, D.: How to display group information on
node-link diagrams: an evaluation. IEEE Trans. Vis. Comput. Graph. 20(11),
1530–1541 (2014)

29. Jourdan, F., Melançon, G.: Tool for metabolic and regulatory pathways visual
analysis. In: Electronic Imaging 2003, pp. 46–55. International Society for Optics
and Photonics (2003)

30. Keller, R., Eckert, C.M., Clarkson, P.J.: Matrices or node-link diagrams: which
visual representation is better for visualising connectivity models? Inf. Vis. 5(1),
62–76 (2006)

31. Kosara, R., Ziemkiewicz, C.: Do mechanical turks dream of square pie charts? In:
Proceedings of the 3rd BELIV 2010 Workshop: Beyond Time and Errors: Novel
Evaluation Methods for Information Visualization, pp. 63–70. ACM (2010)

32. Lee, B., Plaisant, C., Parr, C.S., Fekete, J.D., Henry, N.: Task taxonomy for graph
visualization. In: Proceedings of the 2006 AVI Workshop on Beyond Time and
Errors: Novel Evaluation Methods for Information Visualization, pp. 1–5. ACM
(2006)

33. Mason, W., Suri, S.: Conducting behavioral research on Amazons mechanical turk.
Behav. Res. Methods 44(1), 1–23 (2012)

34. Melancon, G.: Just how dense are dense graphs in the real world?: a methodological
note. In: Proceedings of the 2006 AVI Workshop on Beyond Time and Errors: Novel
Evaluation Methods for Information Visualization, pp. 1–7. ACM (2006)

35. Micallef, L., Dragicevic, P., Fekete, J.D.: Assessing the effect of visualizations
on bayesian reasoning through crowdsourcing. IEEE Trans. Vis. Comput. Graph.
18(12), 2536–2545 (2012)

36. Okoe, M., Jianu, R.: Ecological validity in quantitative user studies-a case study
in graph evaluation (2015)

37. Okoe, M., Jianu, R.: Graphunit: evaluating interactive graph visualizations using
crowdsourcing. In: Computer Graphics Forum, vol. 34, pp. 451–460. Wiley Online
Library (2015)

38. Paolacci, G., Chandler, J., Ipeirotis, P.G.: Running experiments on Amazon
mechanical turk. Judgment Decis. Making 5(5), 411–419 (2010)

39. Perin, C., Dragicevic, P., Fekete, J.D.: Revisiting bertin matrices: new interactions
for crafting tabular visualizations. IEEE Trans. Vis. Comput. Graph. 20(12), 2082–
2091 (2014)

40. Purchase, H.: Which aesthetic has the greatest effect on human understanding?
In: Graph Drawing. pp. 248–261. Springer, Heidelberg (1997).https://doi.org/10.
1007/3-540-63938-1 67

41. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021827

42. Robertson, G., Fernandez, R., Fisher, D., Lee, B., Stasko, J.: Effectiveness of ani-
mation in trend visualization. IEEE Trans. Vis. Comput. Graph. 14(6) (2008)

43. Rodgers, P., Stapleton, G., Chapman, P.: Visualizing sets with linear diagrams.
ACM Trans. Comput.-Hum. Interact. (TOCHI) 22(6), 27 (2015)

https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/BFb0021827

302 M. Okoe et al.

44. Ross, J., Irani, L., Silberman, M., Zaldivar, A., Tomlinson, B.: Who are the
crowdworkers?: shifting demographics in mechanical turk. In: CHI 2010 Extended
Abstracts on Human Factors in Computing Systems, pp. 2863–2872. ACM (2010)

45. Rufiange, S., McGuffin, M.J., Fuhrman, C.P.: Treematrix: a hybrid visualization
of compound graphs. In: Computer Graphics Forum, vol. 31, pp. 89–101. Wiley
Online Library (2012)

46. Saket, B., Scheidegger, C., Kobourov, S., Börner, K.: Map-based visualizations
increase recall accuracy of data. Comput. Graph. Forum 34(3), 441–450 (2015)

47. Saket, B., Simonetto, P., Kobourov, S.: Group-level graph visualization taxonomy.
arXiv preprint arXiv:1403.7421 (2014)

48. Saket, B., Simonetto, P., Kobourov, S., Borner, K.: Node, node-link, and node-
link-group diagrams: an evaluation. IEEE Trans. Vis. Comput. Graph. 20(12),
2231–2240 (2014)

49. Sedlmair, M., Isenberg, P., Baur, D., Mauerer, M., Pigorsch, C., Butz, A.: Car-
diogram: visual analytics for automotive engineers. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 1727–1736. ACM (2011)

50. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin,
N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504
(2003)

51. Sheny, Z., Maz, K.L.: Path visualization for adjacency matrices. In: Proceedings of
the 9th Joint Eurographics/IEEE VGTC conference on Visualization, pp. 83–90.
Eurographics Association (2007)

52. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: 1996 Proceedings of the IEEE Symposium on Visual Languages,
pp. 336–343. IEEE (1996)

53. Viégas, F.B., Donath, J.: Social network visualization: can we go beyond the graph.
In: Workshop on Social Networks, CSCW, vol. 4, pp. 6–10 (2004)

54. Von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.J.,
Fekete, J.D., Fellner, D.W.: Visual analysis of large graphs: state-of-the-art and
future research challenges. In: Computer Graphics Forum, vol. 30, pp. 1719–1749.
Wiley Online Library (2011)

55. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph
aesthetics. Inf. Vis. 1(2), 103–110 (2002)

56. Yi, J.S., Elmqvist, N., Lee, S.: Timematrix: analyzing temporal social networks
using interactive matrix-based visualizations. Int. J. Hum.-Comput. Interact.
26(11–12), 1031–1051 (2010)

57. Ziemkiewicz, C., Kosara, R.: The shaping of information by visual metaphors.
IEEE Trans. Vis. Comput. Graph. 14(6) (2008)

http://arxiv.org/abs/1403.7421

Tree Drawings

Improved Bounds for Drawing Trees on Fixed
Points with L-Shaped Edges

Therese Biedl1(B), Timothy M. Chan2, Martin Derka1, Kshitij Jain1,
and Anna Lubiw1

1 University of Waterloo, Waterloo, ON N2L 3G1, Canada
{biedl,mderka,k22jain,alubiw}@uwaterloo.ca

2 University of Illinois at Urbana-Champaign, Urbana, IL, USA
tmc@illinois.edu

Abstract. Let T be an n-node tree of maximum degree 4, and let P be
a set of n points in the plane with no two points on the same horizontal
or vertical line. It is an open question whether T always has a planar
drawing on P such that each edge is drawn as an orthogonal path with
one bend (an “L-shaped” edge). By giving new methods for drawing
trees, we improve the bounds on the size of the point set P for which
such drawings are possible to: O(n1.55) for maximum degree 4 trees;
O(n1.22) for maximum degree 3 (binary) trees; and O(n1.142) for perfect
binary trees.

Drawing ordered trees with L-shaped edges is harder—we give an
example that cannot be done and a bound of O(n logn) points for L-
shaped drawings of ordered caterpillars, which contrasts with the known
linear bound for unordered caterpillars.

1 Introduction

The problem of drawing a planar graph so that its vertices are restricted to a
specified set of points in the plane has been well-studied, both from the perspec-
tive of algorithms and from the perspective of bounding the size of the point set
and/or the number of bends needed to draw the edges. Throughout this paper
we consider the version of the problem where the points are unlabelled, i.e., we
may choose to place any vertex at any point.

One basic result is that every planar n-vertex graph has a planar drawing on
any set of n points, even with the limitation of at most 2 bends per edge [11].
If every edge must be drawn as a straight-line segment then any n points in
general position still suffice for drawing trees [4] and outerplanar graphs [3] but
this result does not extend to any non-outerplanar graph [9], and the decision
version of the problem becomes NP-complete [5]. Since n points do not always
suffice, the next natural question is: How large must a universal point set be,
and how many points are needed for any point set to be universal? An upper
bound of O(n2) follows from the 1990 algorithms that draw planar graphs on an
O(n) × O(n) grid [8,13], but the best known lower bound, dating from 1989, is
c · n for some c > 1 [6].
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 305–317, 2018.
https://doi.org/10.1007/978-3-319-73915-1_24

306 T. Biedl et al.

Although orthogonal graph drawing has been studied for a long time, anal-
ogous questions of universal point sets for orthogonal drawings have only been
explored recently, beginning with Katz et al. [10] in 2010. Since at most 4 edges
can be incident to a vertex in an orthogonal drawing, attention is restricted to
graphs of maximum degree 4. Throughout the paper we will restrict attention
to point sets in “general orthogonal position” meaning that no two points share
the same x- or y-coordinate. We study the simplest type of orthogonal drawings
where every edge must be drawn as an orthogonal path of two segments. Such
a path is called an “L-shaped edge” and these drawings are called “planar L-
shaped drawings”. Observe that any planar L-shaped drawing lives in the grid
formed by the n horizontal and n vertical lines through the points.

Di Giacomo et al. [7] introduced the problem of planar L-shaped drawings
and showed that any tree of maximum degree 4 has a planar L-shaped drawing
on any set of n2 − 2n + 2 points (in general orthogonal position, as will be
assumed henceforth). Aichholzer et al. [1] improved the bound to O(nc) with
c = log2 3 ≈ 1.585. It is an open question whether n points always suffice.
Surprisingly, nothing better is known for trees of maximum degree 3.

The largest subclass of trees for which n points are known to suffice is the
class of caterpillars of maximum degree 3 [7]. A caterpillar is a tree such that
deleting the leaves gives a path, called the spine. For caterpillars of maximum
degree 4 with n nodes, any point set of size 3n − 2 permits a planar L-shaped
drawing [7], and the factor was improved to 5/3 by Scheucher [12].

1.1 Our Results

We give improved bounds as shown in Table 1. A tree of max degree 3 (or 4)
is perfect if it is a rooted binary tree (or ternary tree, respectively) in which all
leaves are at the same height and all non-leaf nodes have 2 (or 3, respectively)
children. Our bounds are achieved by constructing the drawings recursively and
analyzing the resulting recurrence relations, which is the same approach used
previously by Aichholzer et al. [1]. Our improvements come from more elaborate
drawing methods. Results on maximum degree 3 trees are in Sect. 3 and results
on maximum degree 4 trees are in Sect. 4.

Table 1. Previous and new bounds on the number of points sufficient for planar L-
shaped drawings of any tree of n nodes. The previous bounds all come from Aichholzer
et al. [1].

Previous New

deg 3 perfect n1.585 n1.142

deg 3 general n1.585 n1.22

deg 4 perfect n1.465 a

deg 4 general n1.585 n1.55

aThe bound of n1.465 is not explicit in [1] but

will be explained in Sect. 4.

Improved Bounds for Drawing Trees on Fixed Points with L-Shaped Edges 307

We also consider the case of ordered trees where the cyclic order of edges
incident to each vertex is specified. We give an example of an n-node ordered
tree (in fact, a caterpillar) and a set of n points such that the tree has no L-
shaped planar drawing on the point set. We also give a positive result about
drawing some ordered caterpillars on O(n log n) points. The caterpillars that
can be drawn on such O(n log n) points include our example that cannot be
drawn on a given set of n points. These results are in Sect. 2.

1.2 Further Background

Katz et al. [10] introduced the problem of drawing a planar graph on a specified
set of points in the plane so that each edge is an orthogeodesic path, i.e. a path
of horizontal and vertical segments whose length is equal to the L1 distance
between the endpoints of the path. They showed that the problem of deciding
whether an n-vertex planar graph has a planar orthogeodesic drawing on a given
set of n points is NP-complete. Subsequently, Di Giacomo et al. [7] showed that
any n-node tree of maximum degree 4 has an orthogeodesic drawing on any set
of n points where the drawing is restricted to the 2n × 2n grid that consists of
the “basic” horizontal and vertical lines through the points, plus one extra line
between each two consecutive parallel basic lines. If the drawing is restricted
to the basic grid, their bounds were 4n − 3 points for degree-4 trees, and 3n/2
points for degree-3 trees. These bounds were improved by Scheucher [12] and
then by Bárány et al. [2].

2 Ordered Trees—The Case of Caterpillars

All previous work has assumed that trees are unordered, i.e., that we may freely
choose the cyclic order of edges incident to a vertex. In this section we show
that ordered trees on n vertices do not always have planar L-shaped drawings
on n points. Our counterexample is a top-view caterpillar, i.e., a caterpillar such
that the two leaves adjacent to each vertex lie on opposite sides of the spine.
The main result in this section is that every top-view caterpillar has a planar
L-shaped drawing on cn log n points for some c > 0.

First the counterexample. We prove the following in the full version:

Lemma 1. The top-view caterpillar C14 on n = 14 nodes shown in Fig. 1(a)
cannot be drawn with L-shaped edges on the point set P14 of size 14 shown in
Fig. 1(c).

It is conceivable that this counter-example is an isolated one—we have been
unable to extend it to a family of such examples.

Next we explore the question of how many points are needed for a planar
L-shaped drawing of an n-vertex top-view caterpillar. Consider the appearance
of the caterpillar’s spine (a path) in such a drawing. Each node of the spine,
except for the two endpoints, must have its two incident spine edges aligned—
both horizontal or both vertical. Define a straight-through drawing of a path to

308 T. Biedl et al.

(c)(b)

(a)

Fig. 1. The ordered top-view caterpillar C14 shown in (a) does not have a planar
L-shaped drawing on the point set P14 shown in (c). The ordering shown in (b) does.

be a planar L-shaped drawing such that the two incident edges at each vertex
are aligned. The best bound we have for the number of points that suffice for
a straight-through drawing of a path is obtained when we draw the path in a
monotone fashion, i.e. with non-decreasing x-coordinates.

Theorem 1. Any path of n vertices has an x-monotone straight-through draw-
ing on any set of at least c · n log n points for some constant c.

Proof. We prove that if the number of points satisfies the recurrence M(n) =
2M(n2) + 2n then any path of n vertices has an x-monotone straight-through
drawing on the points. Observe that this recurrence relation solves to M(n) ∈
Θ(n log n) which will complete the proof. Within a constant factor we can assume
without loss of generality that n is a power of 2.

Order the points by x-coordinate. Recall our assumption that no two points
share the same x- or y-coordinate. By induction, the first half of the path has
an x-monotone straight-through drawing on the first M(n2) points. We add the
assumption that the path starts with a horizontal segment.

Let p be the second last point used. Since n is a power of 2, the path goes
through p on a horizontal segment. Let T be the set of points to the right of and
above p. Let B be the set of points to the right of and below p. Refer to Fig. 2(a).
In T , consider the partial order (x1, y1) ≺T (x2, y2) if x1 < x2 and y1 < y2. Let
T ′ be the set of minimal elements in this partial order. Similarly, in B, let B′

be the set of elements that are minimal in the ordering (x1, y1) ≺B (x2, y2) if
x1 < x2 and y1 > y2. If T ′ has n or more points, then we can draw the whole path
on T ′ with an x-monotone straight-through drawing starting with a horizontal
segment. The same holds if B′ has n or more points. Thus we may assume that
|T ′|, |B′| < n. We now remove T ′ and B′; let R = (T − T ′) ∪ (B − B′). Then
|R| ≥ M(n2).

By induction the second half of the path has an x-monotone straight-through
drawing on the set R starting with a horizontal segment. Let r be the first point
used for this drawing. Assume without loss of generality that r lies in T . (The
other case is symmetric.) Consider the rectangle with opposite corners at p and

Improved Bounds for Drawing Trees on Fixed Points with L-Shaped Edges 309

p

q

r

T

B

(b)

(c)

(a)

Fig. 2. (a) The construction for the proof of Theorem 1. The points of T ′ and B′ are
drawn as hollow red points above p and hollow blue points below p, respectively. (b-c)
Examples of point sets of size 2n for which the maximum length of an x-monotone
straight-through path is n + 1. Such paths are shown in grey. In both cases there
are non-monotone planar straight-through paths of length 2n (dashed). (Color figure
online)

r. Since r is not in T ′, there is a point q ∈ T inside the rectangle. We can join
the two half paths using a vertical segment through q and the last vertex of the
first half path is embedded at q. ��

We can extend the above result to draw the entire caterpillar (not just its
spine) with the same bound on the number of points:

Theorem 2. Any top-view caterpillar of n vertices has a planar L-shaped draw-
ing on any set of c · n log n points for some constant c.

Proof (outline). Follow the above construction, but in addition to T ′ and B′,
also take the second and third layers. If any layer has n or more points, we
embed the whole caterpillar on it [7]. Otherwise, we remove at most a linear
number of points, and embed the second half of the caterpillar by induction on
the remaining points. Then, in the rectangle between p and r there must be an
increasing sequence of 3 points. Use the middle one for the left-over spine-vertex
q and the other two for the leaves of q. ��

We conjecture that 2n points suffice for an x-monotone straight-through
drawing of any n-path. See Fig. 2(b-c) for a lower bound of 2n. Do n points
suffice if the x-monotone condition is relaxed to planarity? Finally, we mention
that the problem of finding monotone straight-through paths is related to a
problem about alternating runs in a sequence, as explained in the full paper.

3 Trees of Maximum Degree 3

In this section, we prove bounds on the number of points needed for L-shaped
drawings of trees with maximum degree 3. We treat the trees as rooted and thus,

310 T. Biedl et al.

we refer to them as binary trees. We name the parts of the tree as shown in
Fig. 3(a). The root r0 has two subtrees T1 and T2 of size n1 and n2, respectively,
with n1 ≤ n2. T2’s root, r1, has subtrees of sizes n2,1 and n2,2 with n2,1 ≤ n2,2.

p

Q

p

Q

f

g

f(n)

g(n)

r0

r1T
1

n1

n2,1 n2,2

a1 b1 r1

rk−2

r0

rk−1

rk

b2

bk−1

bk

a2

ak−1

ak

Ta1 1bT

(a) (b)

(c)

(d)

na1 1bn

Fig. 3. The naming conventions for (a) binary and (b) ternary trees. The set-up for
(c) f -configurations and (d) g-configurations.

The main idea is to draw a tree T on a set of points in a rectangle Q by par-
titioning the rectangle into subrectangles in which we recursively draw subtrees.
This gives rise to recurrence relations for the number of points needed to draw
trees of size n, which we then analyze. We distinguish two subproblems or “con-
figurations.” In each, we must draw a tree T rooted at r0 in a rectangle Q that
currently has no part of the drawing inside it. Furthermore, the parent p of r0
has already been drawn, and one or two rays outgoing from p have been reserved
for drawing the first segment of edge (p, r0) (without hitting any previous part
of the drawing).

In the f -configuration the reserved ray from p goes vertically downward to
Q. See Fig. 3(c). Let f(n) be the smallest number of points such that any binary
tree with n vertices can be drawn in any rectangle with f(n)−1 points in the f -
configuration1. We will give various ways of drawing trees in the f -configuration,
each of which gives an upper bound on f(n). Among these choices, the algorithm
uses the one that requires the fewest points.

In the g-configuration we reserve a horizontal ray from p, that allows the
L-shaped edge (p, r0) to turn downward into Q at any point without hitting any
previous part of the drawing. In addition, we reserve the vertical ray downward
from p in case this ray enters Q. See Fig. 3(d) for the case where the horizontal
ray goes to the right. Let g(n) be the smallest number of points such that any
binary tree with n vertices can be drawn in any rectangle with g(n) − 1 points
in the g-configuration. Observe that f(n) ≥ g(n) since the g-configuration gives
us strictly more freedom.

We start with two easy constructions to give the flavour of our methods.
f -draw-1. This method, illustrated in Fig. 4(a), applies to an f -configuration.
We first describe the construction and then say how many points are required.
1 Beware: we will use the same notation f(n) in Sect. 4 to refer to ternary trees.

Improved Bounds for Drawing Trees on Fixed Points with L-Shaped Edges 311

Q
R

Q
L

Q
B

h

f

g

T
1

T
2

p

Q
A

Q
B

h

f g
T1

T2

p

r0

r0

h

T1

T2,2

p

f

p1

pk

p2

p
k+1

g
g

T2,1

Q
L

Q
R

(a) (b) (c)

Q
B

Fig. 4. Three methods: (a) f -draw-1; (b) g-draw; and (c) f -draw-2.

Continue the vertical ray from p downward to a horizontal half-grid line h deter-
mined as follows. Partition Q by h and the ray down to h into 3 parts: QB , the
rectangle below h; QL, the upper left rectangle; and QR, the upper right rect-
angle. Choose h to be the highest half-grid line such that QL or QR has f(n1)
points. Without loss of generality, assume that QL has f(n1) points, and QR has
at most f(n1) points. Place r0 at the bottommost point of QL. Draw the edge
(p, r0) down and left. Start a ray vertically up from r0, and recursively draw T1

in f -configuration (rotated 180◦) in the subrectangle of QL above r0, which has
f(n1) − 1 points. This leaves the leftward and downward rays free at r0, so we
can draw T2 recursively in g-configuration in QB so long as there are g(n2) − 1
points. The total number of points required is 2f(n1) + g(n2) − 1. Recall that
f(n) is 1 more than the number of required points, so this proves:

f(n) ≤ 2f(n1) + g(n2). (f -1)

Observe that we could have swapped f and g which proves:

f(n) ≤ 2g(n1) + f(n2). (f -1’)

The above method can be viewed as a special case of Aichholzer et al.’s method
for ternary trees [1] (see Sect. 4). We incorporate two new ideas to improve their
result: first, they used only f -configurations, but we notice that one of the above
two recursive subproblems is a g-configuration in the binary tree case, and can
be solved by a better recursive algorithm; second, their method wasted all the
points in QR, but we will give more involved constructions that allow us to use
some of those points.

g-draw. This method applies to a g-configuration where the ray from the parent
node p goes to the right. Partition Q at the highest horizontal half-grid line such
that the top rectangle QA has f(n1) points. We separate into two cases depending
whether the rightmost point, q, of QA is to the right or left of p.

312 T. Biedl et al.

If q is to the right of p, place r0 at q, and draw the edge (p, r0) right and
down. See Fig. 4(b). Start a ray leftward from r0 and recursively draw T1 in
f -configuration in the subrectangle of QA to the left of q. Note that there are
f(n1) − 1 points here, which is sufficient. The rightward and downward rays at
r0 are free, so we can draw T2 recursively in g-configuration in QB if there are
g(n2) − 1 points. The total number of points required is f(n1) + g(n2) − 1.

If all points of QA lie to the left of p, then place r0 at the bottommost point
of QA and observe that we now have the situation of f -draw-1 with QR empty,
and f(n1) + g(n2) − 1 points suffice.

This proves:

g(n) ≤ f(n1) + g(n2). (g)

We now describe a different f -drawing method that is more efficient than
f -draw-1 above, and will be the key for our bound for binary trees.

f -draw-2. This method applies to an f -configuration. We begin as in f -draw-
1, though with the f -drawing and the g-drawing switched. Partition Q by a
horizontal half-grid line h and the ray from p down to h into 3 parts: QB ,
the rectangle below h; QL, the upper left rectangle; and QR, the upper right
rectangle. Choose h to be the highest half-grid line such that QL or QR has
g(n1) points. Without loss of generality, assume the former. We separate into
two cases depending on the size of QR.

If |QR| < g(n2,1) then we follow the f -draw-1 method. Let p1 be the bot-
tommost point of QL. Place r0 at p1, draw the edge (p, r0) down and left, recur-
sively draw T1 in g-configuration in QL using leftward/upward rays from r0, and
recursively draw T2 in f -configuration in QB using a downward ray from r0.
This requires g(n1) + g(n2,1) + f(n2) − 1 points, where g(n2,1) accounts for the
wasted points in QR.

If |QR| ≥ g(n2,1) then we make use of the points in QR by drawing subtree
T2,1 there. Let p1 be the bottommost point of QL, and let p2, p3, . . . be the points
of QB below p1 in decreasing y-order. Let k ≥ 2 be the smallest index such that
either k = n or point pk+1 lies to the right of pk. See Fig. 4(c).

We have two subcases. If k = n, then p1, . . . , pk form a monotone chain of
length n, i.e., a diagonal point set in the terminology of Di Giacomo et al. [7].
They showed that any tree of n points can be embedded on a diagonal point set,
so we simply draw T on these n points. (Note that if this construction is used
in the induction step, upward visibility is needed for connecting T to the rest of
the tree, and this can be achieved.)

Otherwise k < n. Place r0 at point pk and r1 at pk+1. Draw the edge (p, r0)
down and left, and the edge (r0, r1) down and right. Recursively draw T1 in
g-configuration in QL using leftward/upward rays from r0. Draw T2,2 in f -
configuration in the rectangle below r1 using a downward ray from r1. Draw
T2,1 in g-configuration in QR using the rightward ray from r1. Observe that if r1
lies to the right of p (i.e., below QR rather than below QL) then the upward ray

Improved Bounds for Drawing Trees on Fixed Points with L-Shaped Edges 313

from r1 is clear (as required for a g-drawing). The number of points required is
at most 2g(n1) + n + f(n2,2) − 1. This accounts for at most g(n1) points in QR,
and at most n points below h and above r1.

This proves:

f(n) ≤ max{g(n1) + g(n2,1) + f(n2), 2g(n1) + f(n2,2) + n}. (f -2)

Theorem 3. Any perfect binary tree with n nodes has an L-shaped drawing on
any point set of size c · n1.142 for some constant c.

Proof. For perfect binary trees we have n1 = n2 = 1
2n and n2,1 = n2,2 = 1

4n.
We solve the simultaneous recurrence relations for f and g in the full paper. ��
Theorem 4. Any binary tree has an L-shaped drawing on any point set of size
c · n1.22 for some constant c.

Proof. For n1 ≤ 0.349n, we use recursion (f -1). For n2,1 ≤ 0.082n, we combine
recursion (f -1’) and (f -1) to obtain f(n) ≤ 2g(n1)+2f(n2,1)+g(n2,2). For n1 >
0.349n and n2,1 > 0.082n, we use recursion (f -2). We solve the simultaneous
recurrence relations for f and g in the full paper. ��

4 Trees of Maximum Degree 4

In this section, we prove bounds on the number of points needed for L-shaped
drawings of trees with maximum degree 4. We treat the trees as rooted and refer
to them as ternary trees. Given a ternary tree of n nodes, let a1, b1 and r1 be
the three children of the root r0. We use Tv to denote the subtree rooted at a
node v, and nv to denote the number of nodes in Tv. We name the children of
the root such that na1 ≤ nb1 ≤ nr1 . For i ≥ 2, let ai, bi, ri be the three children
of ri−1, named such that nai

≤ nbi ≤ nri . See Fig. 3(b).
We will draw ternary trees using only the f -configuration as defined in Sect. 3

(see Fig. 3(c)). In this section (as opposed to the previous one) we define f(n)
to be minimum number such that any ternary tree of n nodes can be drawn in
f -configuration on any set of f(n) − 1 points.

As in Sect. 3, we will give various drawing methods, each of which gives a
recurrence relation for f(n). We begin with a re-description of Aichholzer et al.’s
method [1].

f4-draw-1. Extend the vertical ray from p downward to a horizontal half-grid
line h determined as follows. Partition Q by h and the ray down to h into 3
parts: QB , the rectangle below h; QL, the upper left rectangle; and QR, the
upper right rectangle. Choose h to be the highest half-grid line such that QL or
QR has 2f(na1)+2f(nb1) points. Without loss of generality, assume the former.
Partition QL vertically into two rectangles QLL and QLR with at least f(na1)
points on the left and at least f(nb1) points on the right respectively, with QLL to
the left of QLR. Place r0 at the bottommost point in QLR. Extend a ray upward

314 T. Biedl et al.

from r0 and recursively draw Tb1 on the remaining f(nb1) − 1 points in QLR.
Extend a ray to the left from r0 and recursively draw Ta1 on the f(na1) points
in QLL. Finally, extend a ray downward from r0 and recursively draw Tr1 in QB .
See Fig. 5(a). The number of points required is 2f(na1) + 2f(nb1) + f(nr1) − 1,
so this proves:

f(n) ≤ 2f(na1) + 2f(nb1) + f(nr1). (f 4-1)

For example, in the case when T is perfect (with na1 = nb1 = nr1 = n
3),

the inequality (f4-1) becomes f(n) ≤ 5f(n/3), which resolves to O(nlog3 5) and
log3 5 ≈ 1.465. The critical case for this recursion, though, turns out to be when
na1 = 0 and nb1 = nr1 = n

2 , which gives f(n) ≤ 3f(n/2) and leads to Aichholzer
et al.’s O(nlog3 2) result.

Q
R

Q
L

Q
B

p

r0

p

Q
L

Q
R

(a) (b) (c)

Q
LL

Q
LR

Ta1

Tb1

Tr1

pQ
L

L1

L2

r0

Ta1
Tb1

Ta2

Tb2

rk-2

r1
rk-2

Q
B

E

rk-1
Trk

Tak Tbk

Lk-1

Fig. 5. (a) f4-draw-1. (b) Drawing the “small” subtrees in QL. (c) f4-draw-2A.

f4-draw-2. To improve their result, our idea again is to avoid wasting the points
in QR, and use some of those points in the recursive drawings of subtrees at
the next levels. However, simply considering subtrees at the second level is not
sufficient for an asymptotic improvement if Ta2 and Tb2 are too small. Thus, we
consider a more complicated approach that stops at the first level k ≥ 2 where
nrk ≤ 0.9nrk−1 . Note that for i = 2, . . . , k − 1, we have nri > 0.9nri−1 and
nai

, nbi ≤ 0.1nri−1 , and so Tai
and Tbi are “small” subtrees. We apply the same

idea as above to draw not just Ta1 , Tb1 but also all the small subtrees Tai
and

Tbi , i = 2, . . . , k−1 in QL (appropriately defined), and then consider a few cases
for how to draw the remaining “big” subtrees Tak

, Tbk , and Trk , possibly using
some points in QR. The number of points we will need to reserve for drawing
Ta1 , Tb1 , . . . , Tak−1 , Tbk−1 is

Y = f(na1) + f(nb1) +
k−1∑

i=2

(2f(nai
) + 2f(nbi)).

Extend the vertical ray from p downward until QL or QR has Y points. Without
loss of generality, assume the former.

Improved Bounds for Drawing Trees on Fixed Points with L-Shaped Edges 315

Drawing the Small Subtrees. We draw nodes ri and subtrees Tai
and Tbi , i =

1, . . . , k − 1 in QL as follows. Split QL horizontally into rectangles L1, . . . , Lk−1.
The plan is to draw ri, Tai

and Tbi in Li, in the same way that Ta1 and Tb1 were
drawn in f4-draw-1. See Fig. 5(b). Level L1 is special because the vertical ray
from p is at the right boundary of L1. Thus, we require f(na1) + f(nb1) points.
For levels Li, i = 2, . . . , k − 1 the vertical ray from ri−2 may enter Li at any
point, so we require 2f(nai

)+2f(nbi) points to follow the plan of f4-draw-1, and
the L-shaped edge from ri−2 to ri−1 may turn left or right. The total number of
points we need in all levels is Y , which is why we defined Y as we did.

Drawing the Final Three Subtrees. It remains to draw rk−1 and its three
subtrees Tak

, Tbk , and Trk . We will draw Trk on the bottommost f(nrk) − 1
points of Q. Call this rectangle QB . Let E be the “equatorial zone” that lies
between QL, QR above and QB below. See Fig. 5(c). If we are lucky, then not
too many points are wasted in QR. Let Z ≤ Y be the number of points in QR.

Case A: Z < f(nbk). In this case we draw rk−1, Tak
and Tbk in E as in f4-draw-1.

See Fig. 5(c). For this, we need 2f(nak
)+2f(nbk) points in E. The total number

of points required in this case is Y + Z + 2f(nak
) + 2f(nbk) + f(nrk) − 1,

so this proves:

f(n) ≤ Y + Z + 2f(nak) + 2f(nbk) + f(nrk) (f 4-2A)

= f(na1) + f(nb1) +
k−1∑

i=2

(
2f(nai) + 2f(nbi)

)
+ 2f(nak) + 3f(nbk) + f(nrk).

We must now deal with the unlucky case when Z ≥ f(nbk). We will require
3f(nak

) + f(nbk) points in E. We sum up the total number of points below,
but first we describe how to complete the drawing in E. Partition E into three
regions: EL, EM , and ER, where EL is the region to the left of rk−2, ER is the
region to the right of p, and EM is the region between them. See Fig. 6. Observe
that either |EL| ≥ f(nak

) + f(nbk), or |EM | ≥ f(nak
), or |ER| > f(nak

). We
show how to draw rk−1, Tak

and Tbk in each of these 3 cases.

Case B1: |EL| ≥ f(nak
)+f(nbk). In this case we draw rk−1, Tak

and Tbk in EL

as in f4-draw-1. See Fig. 6(a). Since EL is to the left of the ray down from
rk−2, we have sufficiently many points.

Case B2: |EM | ≥ f(nak
). In this case we place rk−1 at the lowest point of EM ,

draw Tak
above it in EM , and Tbk to its right in QR ∪ER. See Fig. 6(b). Since

|QR| = Z ≥ f(nbk), we have enough points to do this.
Case B3: |ER| > f(nak

). In this case we place rk−1 at the leftmost point of
ER, draw Tak

to its right in ER and Tbk above it in QR. See Fig. 6(c). Again,
there are sufficiently many points.

The total number of points required in each of these three cases is Y + Z +
3f(nak

) + f(nbk) + f(nrk) − 1, and Y ≤ Z which yields:

316 T. Biedl et al.

p

Q
L

Q
R

(a)

rk-2

E
L

Q
B

(b) (c)

Tak
Tbk

rk-1

Trk

E
M

E
R

p

Q
L

Q
R

rk-2

E
L

Q
B

rk-1

Trk

E
R

Tbk
Tak

p

Q
L

Q
R

rk-2

E
L

Q
B

rk-1

Trk

E
R

Tbk

Tak

E
M

Fig. 6. The drawings for f4-draw-2B: (a) Case B1, with EL in blue; (b) Case B2, with
EM in red; (c) Case B3, with ER in green. (Color figure online)

f(n) ≤ Y + Z + 3f(nak) + f(nbk) + f(nrk) (f 4-2B)

= 2f(na1) + 2f(nb1) +

k−1∑

i=2

(4f(nai) + 4f(nbi)) + 3f(nak) + f(nbk) + f(nrk).

The bound on f(n) obtained from f4-draw-2 is the maximum of (f4-2A) and
(f4-2B).

Theorem 5. Any ternary tree with n nodes has an L-shaped drawing on any
point set of size 2n1.55.

Proof. For nb1 ≤ 0.47n, we use recursion (f4-1). Otherwise, we use (f4-2A) or
(f4-2B) and take the larger of the two bounds. We solve the recurrence relation
for f in the full paper. ��

5 Conclusions

We have made slight improvements on the exponent t in the bounds that c · nt

points always suffice for drawing trees of maximum degree 4, or 3, with L-shaped
edges. Improving the bounds to, e.g., O(n log n) will require a breakthrough. In
the other direction, there is still no counterexample to the possibility that n
points suffice.

We introduced the problem of drawing ordered trees with L-shaped edges,
where many questions remain open. For example: Do c · n points suffice for
drawing ordered caterpillars? Can our isolated example be expanded to prove
that n points are not sufficient in general?

Acknowledgments. We thank Jeffrey Shallit for investigating the alternating
sequences discussed in Sect. 2. This work was done as part of a Problem Session in
the Algorithms and Complexity group at the University of Waterloo. We thank the
other participants for helpful discussions.

Improved Bounds for Drawing Trees on Fixed Points with L-Shaped Edges 317

References

1. Aichholzer, O., Hackl, T., Scheucher, M.: Planar L-shaped point set embeddings
of trees. In: European Workshop on Computational Geometry (EuroCG) (2016).
http://www.eurocg2016.usi.ch/

2. Bárány, I., Buchin, K., Hoffmann, M., Liebenau, A.: An improved bound for ortho-
geodesic point set embeddings of trees. In: European Workshop on Computational
Geometry (EuroCG) (2016). http://www.eurocg2016.usi.ch/

3. Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom.
23(3), 303–312 (2002)

4. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a
point set. J. Graph Algorithms Appl. 1(2), 1–15 (1997)

5. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. J. Graph Algorithms Appl. 10(2), 353–363 (2006)

6. Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar
graphs. ACM SIGACT News 20(4), 83–86 (1989)

7. Di Giacomo, E., Frati, F., Fulek, R., Grilli, L., Krug, M.: Orthogeodesic point-set
embedding of trees. Comput. Geom. 46(8), 929–944 (2013)

8. Fraysseix, H.D., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

9. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation
with vertices at specified points. Am. Math. Monthly 98, 165–166 (1991)

10. Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-geodesic embedding of planar
graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207–
218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0 21

11. Kaufmann, M., Wiese, R.: Embedding vertices at points: few bends suffice for
planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)

12. Scheucher, M.: Orthogeodesic point set embeddings of outerplanar graphs. Master’s
thesis, Graz University of Technology (2015)

13. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 138–148 (1990)

http://www.eurocg2016.usi.ch/
http://www.eurocg2016.usi.ch/
https://doi.org/10.1007/978-3-642-11805-0_21

On Upward Drawings of Trees on a Given Grid

Therese Biedl1(B) and Debajyoti Mondal2

1 Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada
biedl@uwaterloo.ca

2 Department of Computer Science, University of Saskatchewan,
Saskatoon, SK, Canada
dmondal@cs.usask.ca

Abstract. Computing a minimum-area planar straight-line drawing of
a graph is known to be NP-hard for planar graphs, even when restricted
to outerplanar graphs. However, the complexity question is open for
trees. Only a few hardness results are known for straight-line drawings of
trees under various restrictions such as edge length or slope constraints.
On the other hand, there exist polynomial-time algorithms for comput-
ing minimum-width (resp., minimum-height) upward drawings of trees,
where the height (resp., width) is unbounded.

In this paper we take a major step in understanding the complexity
of the area minimization problem for strictly-upward drawings of trees,
which is one of the most common styles for drawing rooted trees. We
prove that given a rooted tree T and a W × H grid, it is NP-hard to
decide whether T admits a strictly-upward (unordered) drawing in the
given grid. The hardness result holds both in polyline and straight-line
drawing settings.

1 Introduction

Drawing planar graphs on a small integer grid is an active research area [17],
which is motivated by various practical needs such as for VLSI circuit layout
and small-screen visualization. Trees are one of the most studied graph classes
in this context. While computing a minimum-area planar straight-line drawing
of an arbitrary planar graph is known to be NP-complete [11], even for planar
graphs with bounded pathwidth [11] and outerplanar graphs [4], the problem
seems very intriguing for trees.

In this paper we examine rooted and unordered trees, i.e., one of the vertices
is designated as the root and the left to right order of the children can be
chosen arbitrarily. A natural way to display such a tree is to compute a (strictly)
upward drawing, where each vertex is mapped to an integer grid point such that
the parents have (strictly) larger y-coordinates than their children, each edge is
drawn with y-monotone polylines with bends at integer grid points, and no two
edges cross except possibly at their common endpoint. The width, height and area

Work of the authors supported in part by NSERC.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 318–325, 2018.
https://doi.org/10.1007/978-3-319-73915-1_25

On Upward Drawings of Trees on a Given Grid 319

of the drawing are respectively the width, height, and area of the smallest axis-
parallel rectangle that encloses the drawing. In a straight-line (strictly) upward
drawing, the edges are restricted to be straight line segments.

We refer the reader to [17, Chapt. 5] or [8] for a survey on small-area drawings
of trees. Here we review only the results that focus on exact minimization. In
the fixed-embedding setting, there exist polynomial-time algorithms to compute
minimum-area drawings for certain classes of planar graphs [4,15], namely, those
that simultaneously have bounded treewidth and bounded face-degrees. On the
other hand, the problem becomes NP-hard as soon as one of the above constraints
is dropped [4]. The intractability of minimum-area tree drawings has been well
established under some edge length and slope restrictions, e.g., when edges must
be drawn with unit length or the slopes of the edges in the drawing must belong
to one of the (k/2) slopes determined by a k-grid. Note that an orthogonal
grid is a 4-grid. Determining whether a tree can be drawn on a given k-grid,
where k ∈ {4, 6, 8} with edges of unit length is an NP-complete problem [2,3,
10]. Similar hardness results hold also for ordered trees under various aesthetic
requirements [7].

Not much is known about minimum-area upward drawings of trees.
Trevisan [18] showed that every complete tree (resp., Fibonacci tree) with n
vertices admit a strictly-upward straight-line drawing in n+O(log n

√
n) (resp.,

1.17n + +O(log n
√

n)) area, and conjectured that exact minimization may be
possible in polynomial time. Trevisan mentioned that the problem of minimum-
area strictly-upward drawing of a complete tree is a ‘sparse problem’. Therefore,
proving this NP-hard would imply P = NP by Mahaney’s theorem [12].

Interestingly, there exist polynomial-time algorithms for computing
minimum-width upward drawings of trees, where the height is unbounded [5],
and minimum-height drawings where the width is unbounded [1] (even for non-
upward drawings [14]). Marriott and Stuckey [13] showed that minimizing the
width of a strictly-upward straight-line drawing is NP-hard under the additional
constraint that the x-coordinate of a parent is the average of the x-coordinates
of its children. This additional requirement implies that a vertex with a single
child must be placed directly above the child. Minimizing the width is known to
be NP-hard even for ordered tree drawings under several other constraints [16].

We show that computing a strictly-upward drawing of a tree that resides in
a given W × H-grid is NP-hard. Formally, we consider the following problem:

Problem: Strictly-Upward Tree Drawing (SUTD)
Instance: An unordered rooted tree T , and two natural numbers W and H.
Question: Does T admit a strictly-upward (polyline or straight-line) drawing
with width at most W and height at most H?

320 T. Biedl and D. Mondal

2 NP-Hardness

We prove the NP-hardness of SUTD by a reduction from the following problem:

Problem: Numerical 3-Dimensional Matching (N3DM)
Instance: Positive integers ri, gi, bi, where 1 ≤ i ≤ k, and an integer B such
that

∑k
i=1(ri + bi + gi) = k · B.

Question: Do there exist permutations π and π′ of {1, . . . , k} such that
rπ(i) + bi + gπ′(i) = B for all 1 ≤ i ≤ k?

N3DM is strongly NP-complete [9], and remains NP-complete even if we require
all bi’s to be odd, and the bi’s are large and the gi’s are huge relative to the ri’s.
(More precisely, 3kc ≤ ri ≤ 4kc, k2c ≤ bi ≤ k2c + kc, and k4c ≤ gi ≤ k4c + kc,
where c > 1 is a constant.) See the full version [6] for further details.

Idea of the Reduction: One crucial ingredient is to construct a tree whose
height matches the height-bound H of the drawing; this determines the layer for
all vertices on paths to the deepest leaves because in a strictly-upward drawing
every edge must lead to a layer farther down. Another crucial ingredient is to
add so many vertices to the tree that (other than on the topmost layer) all grid-
points must have a vertex on them. The next ingredient is to add “walls” that
force the given W × H-grid to be divided into k regions that have B grid points
available in each. (These walls are simply high-degree vertices, but since every
grid-point must be used, nearly all neighbours of such a vertex must be in the
layer below.) Finally we add gadgets that encode ri, bi, gi in such a way that bi

vertices must be in the ith region defined by the walls, while ri and gi can freely
choose into which of the regions they fall. Therefore, the division of them into
the regions gives rise to a solution to N3DM.

Construction of T : Given an instance I of N3DM, we construct a tree T
with height 2k + 3 as follows. We start with the spinal path v1, . . . , v2k+3 and
choose v1 to be the root of T . We add two supporting paths u2, . . . , u2k+3 and
w2, . . . , w2k+3 where u2 and w2 are children of v1. We set H := 2k +3; hence in
any strictly-upward drawing, ui, vi, wi must be on layer �i for 2 ≤ i ≤ 2k+3. (We
count the layers from top to bottom, i.e., layer �1 is the layer with y-coordinate
H that contains the root v1, and �i is the layer whose y-coordinate is H−i+1.)

Next we add the “walls” as shown in Fig. 1(a). Namely, add B +1 leaves to T
that are children of the root; the star graph induced by v1 and its children is called
the wall of v1 with wall root v1. The wall children of v1 are these B + 1 added
leaves, as well as child v2. Similarly we add a wall of v2j for j ∈ {1, . . . , k +1}, by
adding B+1 leaves to T that are children of v2j so that v2j has B+2 wall children
(including v2j+1).

Finally, we encode ri, gi, bi of the N3DM instance. For 1 ≤ i ≤ k, we add bi−1
leaves to T and make them children of v2i+1, see Fig. 1(b). We will call v2i+1 a
blue parent and its bi children (including v2i+2) the blue children of v2i+1. For
each ri (resp., gi), we create a star with ri (resp., gi) leaves and connect the center

On Upward Drawings of Trees on a Given Grid 321

(a)

(b)

(c)

v1
u2 w2

v2k+3

v3

v5

v7

v1

v1

Green stars

Red stars

v2k+3

v3

v5

v7

Blue stars

u2 w2

u2 w2

u2k+3
w2k+3

u2k+3
w2k+3

b1 = 5

b2 = 7

b3 = 7

r1 = 2

r2 = 5

r3 = 4

g1 = 7

g2 = 2

g3 = 3

Fig. 1. (a) Illustration for the spinal path, supporting paths and walls. (b) Construction
of the blue vertices. (c) Construction of the red and green vertices. For space reasons,
the numbers in this example do not satisfy the constraints that we imposed in N3DM.
(Color figure online)

to u2 (resp., w2), see Fig. 1(c). We refer to the stars corresponding to ri and gi

as the red and green stars, respectively. This finishes the construction of tree T .
Set W := B+4 and observe that T has 2kB+2B+8k+9 = (B+4)(2k+2)+1 =
W × (H − 1) + 1 vertices, which means that in any strictly-upward drawing in
a W × H-grid, all layers except the top one must be completely full because the
top layer can contain only one vertex (the root v1).

From N3DM to Tree Drawing: If I is a yes-instance, then we create a
straight-line strictly-upward drawing of T on a W × H grid as illustrated in
Fig. 2. The root v1 is anywhere in the top layer. We place the supporting paths
in layers �2, . . . , �2k+3 in the leftmost (resp., rightmost) column, as forced by the
strictly-upward constraints. Vertex v1 has B + 4 children (u2, w2 and the B + 2
wall children); we place all these in the second layer. We do not yet pick which
of these B + 2 wall children becomes v2; this will be determined later.

The solution to I gives two permutations π, π′. Place the red, blue and green
parents corresponding to rπ(i), bi and gπ′(i) on layer �2i+1. More precisely, from
left to right, we have first u2i, then the red parent, then B wall children of v2i,
then the green parent, and then w2i. Later, we will choose one of these B children
to be v2i+1, hence the blue parent corresponding to bi. Observe that layer �2i+1

is completely filled with vertices of T .
Place the red/blue/green children corresponding to rπ(i), bi and gπ′(i) on layer

�2i+2. More precisely, from left to right, we have first u2i, then rπ(i) red children,
then one wall child of v2i, then bi blue children of v2i+1, then another wall child
of v2i, then gπ′(i) green children and finally w2i. Since rπ(i) + bi + gπ′(i) = B,
layer �2i+2 is also completely filled.

322 T. Biedl and D. Mondal

(b)

(c)

(d)

v1

v1v1

z′′(= v4)
v5

z z′

�9

�8

�7

�6

�5

�4

�3

�2

�1

(a)

v1c1 c18

red blue green

u2 w2

u2 w2u2 w2

Fig. 2. Construction of a drawing of T on a W ×H grid. (a) Placement of the vertices
of T , drawing of the edges of the supporting paths, and the wall of v1. (b)–(c) Drawing
of the blue stars and the remaining walls. (d) Drawing of the red and green stars.
(Color figure online)

We must argue that all edges can be connected straight-line. This holds for
the red stars since red children lie in the layer below their parent, and red parents
lie in the column next to u2. See also Fig. 2(d). Similarly we can connect green
stars. For the blue stars, because the bi’s are much larger than the ri’s, one can
argue that the blue intervals of children of v2i−1 and v2i+1 overlap. We pick
v2i to be within this overlap in such a way that it can connect to the two wall
children that are on layer �2i+2 without using up grid points. We use as v2i+1 the
point directly below v2i; due to the choice of v2i then v2i+1 can connect to the
blue interval on layer �2i+2 without crossing. Details are in the full version [6].

From Tree Drawing to N3DM: We now show that any strictly-upward
polyline drawing of T in a W × H-grid gives rise to permutations π and π′ such
that rπ(i) + bi + gπ′(i) = B holds for 1 ≤ i ≤ k. We select rπ(i) and gπ′(i) in a
bottom-up fashion, i.e., we first construct the triple (rπ(k), bk, gπ′(k)), then the
triple (rπ(k−1), bk−1, gπ′(k−1)), and so on.

Since H equals the height of the tree, we know that vi, ui, wi (for i > 1) are
on layer �i, and the wall children of v2k+2 are on layer �2k+3 (the bottommost
layer). Hence layer �2k+3 contains these B + 2 wall children, as well as u2k+3

and w2k+3. By W = B + 4 this layer is full and contains no other vertices. Also
v2k lies is on layer 2k, and so all its wall children must be on layers �2k+1 and
�2k+2. We need an observation that crucially requires that all grid points are
used. Details are in the full version [6].

On Upward Drawings of Trees on a Given Grid 323

Lemma 1. Presume we know that all wall children of v2i are on layers �2i+1

and �2i+2. Then at most two wall children of v2i are on layer �2i+2, and the wall
children of v2i on layer �2i+1 occupy a consecutive set of points.

Thus there are at least B wall children of v2k that form an interval on �2k+1.
Also u2k+1 and w2k+1 are on layer �2k+1, leaving at most two points in this layer
free to be used for red or green stars, or blue or wall children from higher up.

We argue that indeed these two points must be used for a red parent and a
green parent. To see this, consider the interval λm that consists of the middle
W−16=B−12 points on layer �2k+2. T has O(k2c+1) vertices that are not in
green stars while B > 3kc + k2c + k4c so there must exist a green vertex in λm.
It must be a green leaf lg since layer �2k+3 is full.

We claim that if a vertex x uses a point in λm, then its parent px is either
v2k or px is on layer �2k+1, i.e., one layer above x. To see this, assume otherwise
and consider the place where edge (x, px) traverses layer �2k+1. If px �= v2k then
this point must be outside the interval of the B = W − 4 wall children of v2k in
this layer, else we would intersect an edge. So this point is within the leftmost or
rightmost four units of �2k+1. Since λm covers all but the leftmost and rightmost
8 points of layer �2k+2, this forces px to be outside the allotted width of the
drawing, a contradiction. See the details in the full version [6].

Consequently, the green parent pg of lg is on layer �2k+1 and its green children
are all on �2k+2. Due to our assumptions on N3DM, these green children, plus
the blue children of v2k+1, are not enough to fill λm, but leave too little space
to place another green star. Therefore some point in λm must be occupied by a
red child lr, and its parent pr hence is in layer �2k+1. Let rπ(k) and gπ′(k) be the
numbers corresponding to the red and green stars at pr and pg.

We had u2k+1, w2k+1, pr, pg, and at least B wall children in �2k+1, which by
W = B + 4 means that there are exactly B wall children in �2k+1 and no other
vertices. So two wall children are in layer �2k+2. These two, plus u2k+2 and w2k+2,
leave B points for the red, blue and green children, so rπ(k)+bk+gπ′(k) ≤ B. On
the other hand, λm cannot contain any vertex x other than two wall-children of
v2k and these red, blue and green children, because layer �2k+1 has no space left
for the parent of x. So rπ(k) + bk + gπ′(k) ≥ B − 14. Since all input numbers are
big enough, this implies rπ(k) + bk + gπ′(k) = B, as desired.

It also follows that �2k+1 is completely filled by these vertices, which means
that no wall children of v2k−2 can be in layer �2k+1 or below. We can now apply
the same argument iteratively to compute the upper level triples (rπ(k−1), bk−1,
gπ′(k−1)), . . . , (rπ(1), b1, gπ′(1)). This completes the NP-hardness reduction.

We can extract π and π′ from any polyline drawing, while a solution to I gives
rise to a straight-line drawing. Therefore, the reduction holds both in polyline
and straight-line drawing settings. Since SUTD is clearly in NP we hence have:

Theorem 1. Given a tree T , and two natural numbers W and H, it is NP-
complete to decide whether T admits a strictly-upward (polyline or straight-line)
drawing with width at most W and height at most H.

324 T. Biedl and D. Mondal

3 Directions for Future Research

Several interesting questions remain. In our reduction, we crucially used that the
underlying tree has high degree, that the height of the drawing equals the height
of the tree, that the order among children is not fixed, and that the drawing is
strictly upward. Does SUTD remain NP-hard for bounded degree trees? What
if the given width is optimal for the tree and the height needs to be minimized?
How about order-preserving drawings and/or upward drawings?

The above questions are open also for many other popular styles for drawing
trees. Specifically, is the problem of computing (not necessarily upward) drawings
of trees on a given grid NP-hard? Are there polynomial-time algorithms that can
approximate the area within a constant factor?

References

1. Alam, M.J., Samee, M.A.H., Rabbi, M., Rahman, M.S.: Minimum-layer upward
drawings of trees. J. Graph Algorithms Appl. 14(2), 245–267 (2010)

2. Bachmaier, C., Matzeder, M.: Drawing unordered trees on k-grids. J. Graph Algo-
rithms Appl. 17(2), 103–128 (2013)

3. Bhatt, S.N., Cosmadakis, S.S.: The complexity of minimizing wire lengths in VLSI
layouts. Inf. Process. Lett. 25(4), 263–267 (1987)

4. Biedl, T.: On area-optimal planar graph drawings. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I. LNCS, vol. 8572, pp.
198–210. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-
7 17

5. Biedl, T.: Optimum-width upward drawings of trees I: rooted pathwidth. CoRR
abs/1502.02753 (2015)

6. Biedl, T., Mondal, D.: On upward drawings of trees on a given grid. CoRR
abs/1708.09515 (2017). http://arxiv.org/abs/1708.09515

7. Brunner, W., Matzeder, M.: Drawing ordered (k − 1)-ary trees on k -grids. In:
Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 105–116. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18469-7 10

8. Di Battista, G., Frati, F.: A survey on small-area planar graph drawing (2014),
coRR report 1410.1006

9. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W H Freeman & Co, New York (1979)

10. Gregori, A.: Unit-length embedding of binary trees on a square grid. Inf. Process.
Lett. 31(4), 167–173 (1989)

11. Krug, M., Wagner, D.: Minimizing the area for planar straight-line grid drawings.
In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp.
207–212. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77537-
9 21

12. Mahaney, S.R.: Sparse complete sets of NP: Solution of a conjecture of Berman
and Hartmanis. J. Comput. Syst. Sci. 25(2), 130–143 (1982)

13. Marriott, K., Stuckey, P.J.: NP-completeness of minimal width unordered tree
layout. J. Graph Algorithms Appl. 8(2), 295–312 (2004)

14. Mondal, D., Alam, M.J., Rahman, M.S.: Minimum-layer drawings of trees. In:
Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 221–232.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19094-0 23

https://doi.org/10.1007/978-3-662-43948-7_17
https://doi.org/10.1007/978-3-662-43948-7_17
http://arxiv.org/abs/1708.09515
https://doi.org/10.1007/978-3-642-18469-7_10
https://doi.org/10.1007/978-3-540-77537-9_21
https://doi.org/10.1007/978-3-540-77537-9_21
https://doi.org/10.1007/978-3-642-19094-0_23

On Upward Drawings of Trees on a Given Grid 325

15. Mondal, D., Nishat, R.I., Rahman, M.S., Alam, M.J.: Minimum-area drawings of
plane 3-trees. J. Graph Algorithms Appl. 15(2), 177–204 (2011)

16. Supowit, K.J., Reingold, E.M.: The complexity of drawing trees nicely. Acta Infor-
matica 18, 377–392 (1982)

17. Tamassia, R. (ed.): Handbook of Graph Drawing and Visualization (Discrete Math-
ematics and Its Applications). Chapman and Hall/CRC, Boca Raton (2014)

18. Trevisan, L.: A note on minimum-area upward drawing of complete and Fibonacci
trees. Inf. Process. Lett. 57(5), 231–236 (1996)

Simple Compact Monotone Tree Drawings

Anargyros Oikonomou1 and Antonios Symvonis2(B)

1 School of Electrical and Computer Engineering,
National Technical University of Athens, Athens, Greece
2 School of Applied Mathematical and Physical Sciences,
National Technical University of Athens, Athens, Greece

symvonis@math.ntua.gr

Abstract. A monotone drawing of a graph G is a straight-line drawing
of G such that every pair of vertices is connected by a path that is
monotone with respect to some direction.

Trees, as a special class of graphs, have been the focus of several papers
and, recently, He and He [6] showed how to produce a monotone drawing
of an arbitrary n-vertex tree that is contained in a 12n × 12n grid.

In this paper, we present a simple algorithm that constructs for each
arbitrary tree a monotone drawing on a grid of size at most n × n.

1 Introduction

A straight-line drawing Γ of a graph G is a mapping of each vertex to a distinct
point on the plane and of each edge to a straight-line segment between the
vertices. A path P = {p0, p1, . . . , pn} is monotone if there exists a line l such
that the projections of the vertices of P on l appear on l in the same order as
on P . A straight-line drawing Γ of a graph G is monotone, if a monotone path
connects every pair of vertices.

Monotone graph drawing has gained the recent attention of researchers and
several interesting results have appeared. Given a planar fixed embedding of a
planar graph G, a planar monotone drawing of G can be constructed, but at
the cost of some bends on some edges [2]. In the variable embedding setting,
we can construct a planar monotone drawing of any planar graph without any
bends [8].

One way to find a monotone drawing of a graph is to simply find a monotone
drawing of one of its spanning trees. For that reason, the problem of finding
monotone drawings of trees has been the subject of several recent papers, starting
from the work by Angelini et al. [1] which introduced monotone graph drawings.
Angelini et al. [1] provided two algorithms that used ideas from number theory
and more specifically Stern-Brocot trees [3,11], [4, Sect. 4.5]. The first algorithm
used a grid of size O(n1.6) × O(n1.6) (BFS-based algorithm) while the second
one used a grid of size O(n)×O(n2) (DFS-based algorithm). Later, Kindermann

The work of Prof. Symvonis was supported by the iRead H2020 research grant (No.
731724).

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 326–333, 2018.
https://doi.org/10.1007/978-3-319-73915-1_26

Simple Compact Monotone Tree Drawings 327

et al. [9] provided an algorithm based on Farey sequence (see [4, Sect. 4.5]) that
used a grid of size O(n1.5)× O(n1.5). He and He [7] gave an algorithm based on
Farey sequence and reduced the required grid size to O(n1.205)×O(n1.205), which
was the first result that used less than O(n3) area. Recently, He and He [5] firstly
reduced the grid size for a monotone tree drawing to O(n log(n)) × O(n log(n))
and, in a sequel paper, to O(n) × O(n) [6]. Their monotone tree drawing uses a
grid of size at most 12n × 12n which turns out to be asymptotically optimal as
there exist trees which require at least n

12 × n
12 area [6].

Our Contribution: We provide a simple algorithm that given any n-vertex
tree T , outputs a monotone drawing of T on a grid of size n × n. Example
drawings of our algorithm appear at Figs. 1, 2, 3, 4 and 5. Our algorithm does
not employ number theory techniques but a rather simple weighting method and
some simple facts from geometry that can be more analytically expressed. Due
to space limitation, some proofs appear in the arXiv version of the paper [10].

Fig. 1. 3-layer full binary
tree (15 nodes).

Fig. 2. 2-layer full ternary
tree (13 nodes).

Fig. 3. Tree used in [5,6].

Fig. 4. 3-layer full binary tree plus path
(29 nodes).

Fig. 5. 2-layer full ternary tree plus path
(25 nodes).

2 Definitions and Preliminaries

Let Γ be a drawing of a graph G and (u, v) be an edge from vertex u to vertex
v in G. The slope of edge (u, v), denoted by slope(u, v), is the angle spanned by
a counter-clockwise rotation that brings a horizontal half-line starting at u and

328 A. Oikonomou and A. Symvonis

directed towards increasing x-coordinates to coincide with the half-line starting
at u and passing through v. We consider slopes that are equivalent modulo 2π
as the same slope. Observe that slope(u, v) = slope(v, u) − π.

Let T be a tree rooted at a node r. Denote by Tu the subtree of T rooted
at a node u. By |Tu| we denote the number of vertices of Tu. In the rest of the
paper, we assume that all tree edges are directed away from the root.

In order to simplify the description of our algorithm, we extend the definition
of slope-disjoint tree drawings given by Angelini et al. [1]. More specifically, a
tree drawing Γ of a rooted tree T is called a non-strictly slope-disjoint drawing
if the following conditions hold:

1. For every node u ∈ T , there exist two angles a1(u) and a2(u), with 0 ≤
a1(u) < a2(u) ≤ π such that for every edge e that is either in Tu or enters u
from its parent, it holds that a1(u) < slope(e) < a2(u).

2. For every two nodes u, v ∈ T such that v is a child of u, it holds that a1(u) ≤
a1(v) < a2(v) ≤ a2(u).

3. For every two nodes u1, u2 with the same parent, it holds that either a1(u1) <
a2(u1) ≤ a1(u2) < a2(u2) or a1(u2) < a2(u2) ≤ a1(u1) < a2(u1).

The idea behind the original definition of slope-disjoint tree drawings is that
all edges in the subtree Tu as well as the edge entering u from its parent will
have slopes that strictly fall within the angle range (a1(u), a2(u)) defined for
vertex u. (a1(u), a2(u)) is called the angle range of u with a1(u) and a2(u)
being its boundaries. In our extended definition, we allow for angle ranges of
adjacent vertices (parent-child relationship) or sibling vertices (children of the
same parent) to share angle range boundaries. Note that replacing the “≤”
symbols in our definition by the “<” symbol gives us the original definition of
Angelini et al. [1] for the slope disjoint tree drawings.

Lemma 1. Every non-strictly slope-disjoint drawing of a tree T is also a slope-
disjoint drawing.

Theorem 1. [1] Every slope-disjoint drawing of a tree is monotone.

Theorem 2. Every non-strictly slope-disjoint drawing of a tree is monotone.

Based on geometry, we now prove that it is always possible to identify points on
a grid that satisfy several properties with respect to their location.

Lemma 2 [See Fig. 6]. Consider two angles θ1, θ2 with 0 ≤ θ1 < θ2 ≤ π
4 ,

and let d = � 1
θ2−θ1

�. Then, edge e connecting the origin (0, 0) to point p =
(d, �tan(θ1)d + 1�) satisfies θ1 < slope(e) < θ2.

Lemma 3 [See Fig. 7]. Consider angles θ1, θ2 with 0 ≤ θ1 < θ2 ≤ π
2 and let

d = � 1
θ2−θ1

�. Then, a grid point p such that the edge e that connects the origin
(0, 0) to p satisfies θ1 < slope(e) < θ2, can be identified as follows:

Simple Compact Monotone Tree Drawings 329

a1(u) a2(u)

b

a

c

x = k

l2

l1

Fig. 6. Geometric representation of
Lemma 2.

(2, 1)
(1, 1)

(1, 2)

arctan(12)

π
4 − arctan(12)

arctan(12)

Fig. 7. Point, slopes angular sectors
used in Lemma 3.

θ2 − θ1 > π
4
: p = (1, 1)

π
4

≥ θ2 − θ1 > arctan(1
2
) :

⎧
⎪⎨

⎪⎩

p = (1, 2) if θ1 ≥ π
4

p = (1, 1) if π
4

> θ1 ≥ arctan(1
2
)

p = (2, 1) if arctan(1
2
) > θ1

arctan(1
2
) ≥ θ2 − θ1 :

⎧
⎪⎨

⎪⎩

p = (d, �tan(θ1)d + 1�) if π
4

≥ θ2 > θ1 ≥ 0

p = (1, 1) if θ2 > π
4

> θ1

p = (�tan(π
2

− θ2)d + 1�, d) if θ2 > θ1 ≥ π
4

Moreover, if p = (x, y) is the identified point, it also holds that:

max(x, y)

{
≤ π

2
1

θ2−θ1
if θ2 − θ1 > arctan(12)

< 1
θ2−θ1

+ 1 if arctan(12) ≥ θ2 − θ1

3 Monotone Tree Drawing on an n × n Grid

Our tree drawing algorithm will produce a non-strictly slope-disjoint tree draw-
ing which, by Theorem2, is monotone. We make the assumption that the given
tree is rooted, otherwise, it can be rooted at any arbitrary node. In order to
describe a non-strictly slope-disjoint tree drawing, we need to identify for each
vertex u of the tree a grid point to draw u as well as to assign to it two angles
a1(u), a2(u), with a2(u) > a1(u). For every tree vertex, the identified grid point
and the two angles should be such that the three properties of the non-strictly
slope-disjoint drawing are satisfied.

The basic idea behind our algorithm is to split in a balanced way the angle
range (a1(u), a2(u)) of vertex u to its children based on the size of the subtrees
rooted at them. The following lemma formalizes this idea.

Lemma 4. Let u be a node of the rooted tree T such that we already have
assigned values for a1(u) and a2(u), with a1(u) < a2(u). Let u1, u2, . . . , um, m ≥
1, be the children of u in T . Then, the following assignment of a1, a2 for the

330 A. Oikonomou and A. Symvonis

children of u satisfies Property-2 and Property-3 of the non-strictly slope disjoint
drawing:

a1(ui) =

{
a1(u) if i = 1
a2(ui−1) if 1 < i ≤ m

a2(ui) = a1(ui) + (a2(u) − a1(u)) ∗ |Tui
|

|Tu|−1 , 1 ≤ i ≤ m

Observation 1. If a vertex u has only one child, say u1, then the angle assign-
ment strategy of Lemma4 assigns a1(u1) = a1(u) and a2(u1) = a2(u), which
means that the child “inherits” the angle-range of its parent.

Algorithm1 describes our monotone tree drawing algorithm. It consists of three
steps: Procedure AssignAngles which assigns angle-ranges to the vertices
of the tree according to Lemma4, Procedure DrawVertices which assigns
each tree vertex to a grid point according to Lemma3 and Procedure Bal-
ancedTreeMonotoneDraw which assigns the root to point (0, 0) with angle-
range

(
0, π

2

)
and initiates the drawing of the tree.

Algorithm 1. Balanced Monotone Tree Drawing algorithm
1: procedure BalancedTreeMonotoneDraw
2: Input: An n-vertex tree T rooted at vertex r.
3: Output: A monotone drawing of T on a grid of size at most n × n.
4: a1(r) ← 0, a2(r) ← π

2

5: AssignAngles(r, a1(r), a2(r))
6: Draw r at (0, 0)
7: DrawVertices(r)

8: procedure AssignAngles(u, a1, a2)
9: Input: A vertex u and the boundaries of the angle-range (a1, a2) assigned to u.

10: Action: It assigns angle-ranges to the vertices of Tu.
11: for each child ui of u do
12: Assign a1(ui), a2(ui) as described in Lemma 4.
13: AssignAngles(ui, a1(ui), a2(ui))

14: procedure DrawVertices(u)
15: Input: A vertex u that has already been drawn on the grid.
16: Action: It draws the vertices of Tu.
17: for each child ui of u do
18: Find a valid pair (x, y) as in Lemma 3 where θ1 ← a1(u), θ2 ← a2(u)
19: If u is drawn at (ux, uy), draw ui at (ux + x, uy + y)
20: DrawVertices(ui)

Lemma 5. The drawing produced by Algorithm1 is monotone.

Proof. The angle-range assignment satisfies Property-2 and Property-3 of the
non-strictly slope disjoint drawing as proved in Lemma4. In addition, the
assignment of the vertices to grid points satisfies Property-1 of the non-strictly
slope disjoint drawing as proved in Lemma3. Thus, the produced drawing by
Algorithm1 is non-strictly slope disjoint and, by Theorem2, it is monotone.
�

Simple Compact Monotone Tree Drawings 331

It remains to establish a bound on the grid size required by Algorithm1. Our
proof will use induction on the number of tree vertices having more than one
child. The following lemma will be used as the basis of our induction.

Lemma 6. Let T be an n-vertex rooted tree in which all vertices have at most
one child, i.e., T is a path rooted at one of its endpoints. Then, Algorithm1
draws T in the diagonal of an n × n grid.

Lemma 7. Let T be a rooted tree in which k > 0 of its vertices have at least
two children. Let u be a vertex with at least two children and, moreover, every
other vertex in Tu has at most one child. Let T ′ be the tree derived by replacing
(in T) the subtree Tu by a path of length |Tu|. Then, the size of the grid which
Algorithm1 uses in the worst case for the drawing of T is smaller or equal to
the size of the grid it uses in the worst case for the drawing of T ′.

Proof. Let u be a vertex as the one stated in the lemma, i.e., in Tu, u is the only
vertex having at least two children. Let u1, u2, . . . um, m ≥ 2, be the children of
u, and let Tui

be the subtree rooted at ui. Note that each Tui
is a path. From

Observation 1, we recall that for each node in Tui
, the assigned values for a1 and

a2 by Algorithm1 will be the same as a1(ui) and a2(ui). Let φ(u) = a2(u)−a1(u).
We consider two subcases based on whether arctan(12) ≥ φ(u) or not.

Case-1: arctan(12) ≥ φ(u). Since Algorithm1 performs its angle-range assign-
ment based on Lemma 4, for each child of u we have that φ(ui) = a2(ui) −
a1(ui) =

|Tui
|

|Tu|−1φ(u). Observe that it also holds that φ(ui) ≤ arctan(12).
A node in Tui

is drawn, based on Lemma3 where θ1 ← a1(ui) and θ2 ←
a2(ui), in a grid of length at most 1

θ2(ui)−θ1(ui)
+ 1 if its parent is considered

to be drawn at the origin. So, the length of the total grid that is used for the
drawing of path Tui

is at most: |Tui
|(1

θ2(ui)−θ1(ui)
+1) = |Tui

| 1
|Tui

|
|Tu|−1φ(u)

+|Tui
|

= |Tu|−1
φ(u) + |Tui

| ≤ |Tu|−1
φ(u) + |Tu| − 1 = (|Tu| − 1)(1

φ(u) + 1).
The last term is the maximum grid length dictated by Lemma3 for the draw-
ing of a path of size |Tu| with θ1 ← a1(u) and θ2 ← a2(u). Note also that
in Algorithm1 the largest grid devoted to any of Tui

, 1 ≤ i ≤ m, determines
the grid size of the drawing of Tu since the subtrees rooted at children of u
are drawn completely inside non-overlapping (but possibly touching) angular
sectors. The above statement holds because all the grids that will be used for
the subtrees have the same origin (u) and all angular sectors lies in the first
quadrant since Algorithm1 assigns root with angle-range

(
0, π

2

)
. So, the grid

size that is used in the worst case for the drawing of Tu by Algorithm1 is
smaller or equal to that used by it in the worst case for the drawing of a path
of length |Tu|. Thus, the size of the grid which Algorithm1 uses in the worst
case for the drawing of T is smaller or equal to the size of the grid it uses in
the worst case for the drawing of T ′.

Case-2: φ(u) > arctan(12). Let φ(ui) = a2(ui)−a1(ui), 1 ≤ i ≤ m. We consider
two subcases based on whether arctan(12) ≥ φ(ui) or not.

332 A. Oikonomou and A. Symvonis

Case-2a: arctan(12) ≥ φ(ui). A node in Tui
is drawn, based on Lemma3

where θ1(u1) ← a1(ui) and θ2(ui) ← a2(ui), in a grid of length at most
1

φ(ui)
+ 1 < π

2
1

φ(ui)
, assuming that its parent is drawn at the origin. The

last inequality holds for φ(ui) ≤ π−2
2 , and so it also holds for φ(ui) ≤

arctan(12) < π−2
2 . So, the maximum length of the total grid that is used

for the drawing of path Tui
is at most: |Tui

|π
2

1
φ(ui)

= |Tui
|π
2

1
|Tui

|
|Tu|−1φ(u)

=

π
2

|Tu|−1
φ(u) .

Case-2b: φ(ui) > arctan(12). A node in Tui
is drawn, based on Lemma3

where θ1(ui) ← a1(ui) and θ2(ui) ← a2(ui), in a grid of length at most
π
2 ∗ 1

φ(ui)
, assuming that its parent is drawn at the origin. So, the maxi-

mum length of the total grid that is used for the drawing of path Tui
is:

|Tui
|π
2

1
φ(ui)

= |Tui
|π
2

1
|Tui

|
|Tu|−1φ(u)

= π
2

|Tu|−1
φ(u) .

The last term in both subcases is the maximum grid length dictated by
Lemma3 for the drawing of a path of size |Tu| with θ1 ← a1(u) and θ2 ← a2(u)
where φ(u) > arctan(12). So, the drawing of Tu uses in the worst case a grid
length that is smaller or equal to that used in the worst case for the drawing
of a path of length |Tu|, when both drawings are done by Algorithm1. Thus,
Algorithm1 uses in the worst case for the drawing of T a grid of size smaller
or equal to the one used in the worst case for the drawing of T ′.
�

Theorem 3. Given a rooted Tree T , Algorithm1 produces a monotone grid
drawing using a grid of size at most n × n.

Proof. The monotonicity of the drawing follows directly from Lemma5. By
repeatedly applying Lemma7, we get that in the worst case the drawing of
T uses a grid length that is smaller or equal to the one used in the worst case for
the drawing of a path of length |T |, when both drawings are done by Algorithm1.
By Lemma 6, we get that the used grid is of size at most n × n.
�

References

1. Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone
drawings of graphs. J. Graph Algorithms Appl. 16(1), 5–35 (2012)

2. Angelini, P., Didimo, W., Kobourov, S., Mchedlidze, T., Roselli, V., Symvonis, A.,
Wismath, S.: Monotone drawings of graphs with fixed embedding. Algorithmica
71(2), 233–257 (2015)

3. Brocot, A.: Calcul des rouages par approximation, nouvelle methode. Revue
Chronometrique 6, 186–194 (1860)

4. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation
for Computer Science, 2nd edn. Addison-Wesley Longman Publishing Co. Inc.,
Boston (1994)

5. He, D., He, X.: Nearly optimal monotone drawing of trees. Theor. Comput. Sci.
654, 26–32 (2016)

6. He, D., He, X.: Optimal monotone drawings of trees. CoRR abs/1604.03921 (2016)

Simple Compact Monotone Tree Drawings 333

7. He, X., He, D.: Compact monotone drawing of trees. In: Xu, D., Du, D., Du,
D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 457–468. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21398-9 36

8. Hossain, M.I., Rahman, M.S.: Good spanning trees in graph drawing. Theor. Com-
put. Sci. 607, 149–165 (2015)

9. Kindermann, P., Schulz, A., Spoerhase, J., Wolff, A.: On monotone drawings of
trees. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 488–500.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7 41

10. Oikonomou, A., Symvonis, A.: Simple compact monotone tree drawings. CoRR
abs/1708.09653v2 (2017). http://arxiv.org/abs/1708.09653v2

11. Stern, M.: Ueber eine zahlentheoretische funktion. Journal fur die reine und ange-
wandte Mathematik 55, 193–220 (1858)

https://doi.org/10.1007/978-3-319-21398-9_36
https://doi.org/10.1007/978-3-662-45803-7_41
http://arxiv.org/abs/1708.09653v2

Visualizing Co-phylogenetic Reconciliations

Tiziana Calamoneri1, Valentino Di Donato2, Diego Mariottini2,
and Maurizio Patrignani2(B)

1 Computer Science Department, University of Rome “Sapienza”, Rome, Italy
2 Engineering Department, Roma Tre University, Rome, Italy

patrigna@dia.uniroma3.it

Abstract. We introduce a hybrid metaphor for the visualization of the
reconciliations of co-phylogenetic trees, that are mappings among the
nodes of two trees. The typical application is the visualization of the
co-evolution of hosts and parasites in biology. Our strategy combines a
space-filling and a node-link approach. Differently from traditional meth-
ods, it guarantees an unambiguous and ‘downward’ representation when-
ever the reconciliation is time-consistent (i.e., meaningful). We address
the problem of the minimization of the number of crossings in the repre-
sentation, by giving a characterization of planar instances and by estab-
lishing the complexity of the problem. Finally, we propose heuristics for
computing representations with few crossings.

1 Introduction

Producing readable and compact representations of trees has a long tradition in
the graph drawing research field. In addition to the standard node-link diagrams,
which include layered trees, radial trees, hv-drawings, etc., trees can be visualized
via the so-called space-filling metaphors, which include circular and rectangular
treemaps, sunbursts, icicles, sunrays, icerays, etc. [14,15].

Unambiguous and effective representation of co-phylogenetic trees, that are
pairs of phylogenetic trees with a mapping among their nodes, is needed in
biological research. A phylogenetic tree is a full rooted binary tree (each node has
zero or two children) representing the evolutionary relationships among related
organisms. Biologists who study the co-evolution of species, such as hosts and
parasites, start with a host phylogenetic tree H, a parasite tree P , and a mapping
function ϕ (not necessarily injective nor surjective) from the leaves of P to
the leaves of H. The triple 〈H,P, ϕ〉, called co-phylogenetic tree, is traditionally
represented with a tanglegram drawing, that consists of a pair of plane trees
whose leaves are connected by straight-line edges [2–4,9,10,12,16]. However, a
tanglegram only represents the input of a more complex process that aims at
computing a mapping γ, called reconciliation, that extends ϕ and maps all the
parasite nodes onto the host nodes.

This research was partially supported by MIUR project “MODE – MOrphing graph
Drawings Efficiently”, prot. 20157EFM5C 001 and by Sapienza University of Rome
project “Combinatorial structures and algorithms for problems in co-phylogeny”.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 334–347, 2018.
https://doi.org/10.1007/978-3-319-73915-1_27

Visualizing Co-phylogenetic Reconciliations 335

Given H, P , and ϕ, a great number of different reconciliations are possible.
Some of them can be discarded, since they are not consistent with time (i.e. they
induce contradictory constraints on the periods of existence of the species associ-
ated to internal nodes). The remaining reconciliations are generally ranked based
on some quality measure and only the optimal ones are considered. Even so, opti-
mal reconciliations are so many that biologists have to perform a painstaking
manual inspection to select those that are more compatible with their under-
standing of the evolutionary phenomena.

In this paper we propose a new and unambiguous metaphor to represent rec-
onciliations of co-phylogenetic trees (Sect. 3). The main idea is that of represent-
ing H in a suitable space-filling style and of using a traditional node-link style to
represent P . This is the first representation guaranteeing the downwardness of P
when time-consistent (i.e., meaningful) reconciliations are considered. In order
to pursue readability, we study the number of crossings that are introduced in
the drawing of tree P (tree H is always planar): on the one hand, in Sect. 4 we
characterize planar reconciliations, on the other hand, we show in Sect. 5 that
reducing the number of crossings in the representation of the reconciliations is
NP-complete. Finally, we propose heuristics to produce drawings with few cross-
ings (Sect. 6) and experimentally show their effectiveness and efficiency (Sect. 7).
Details and full proofs can be found in [5].

2 Background

In this paper, whenever we mention a tree T , we implicitly assume that it is a
full rooted binary tree with node set V(T) and arc set A(T), and that arcs are
oriented away from the root r(T) down to the set of leaves VL(T) ⊂ V(T) (see [5]
for formal definitions). The lowest common ancestor of two nodes u, v ∈ V(T),
denoted lca(u, v), is the last common node of the two directed paths leading
from r(T) to u and v. Two nodes u and v are comparable if lca(u, v) ∈ {u, v},
otherwise they are incomparable.

A tanglegram 〈T1, T2, G〉 generalizes a co-phylogenetic tree and consists of two
generic rooted trees T1 and T2 and a bipartite graph G = (VL(T1),VL(T2), E)
among their leaves. In a tanglegram drawing of 〈T1, T2, G〉: (i) tree T1 is planarly
drawn above a horizontal line l1 with its arcs pointing downward and its leaves
on l1, (ii) tree T2 is planarly drawn below a horizontal line l2, parallel to l1,
with its arcs pointing upward and its leaves on l2, and (iii) edges of G, called
tangles, are straight-line segments drawn in the horizontal stripe bounded by l1
and l2. A decade-old literature is devoted to tanglegram drawings (see e.g. [2–
4,9,10,12,16]). Finding a tanglegram drawing that minimizes the number of
crossings among the edges in E is known to be NP-complete, even if the trees
are binary trees or if the graph G is a matching [10].

A reconciliation of the co-phylogenetic tree 〈H,P, ϕ〉 is a mapping γ : V(P) →
V(H) that satisfies the following properties: (i) for any p ∈ VL(P), γ(p) = ϕ(p),
that is, γ extends ϕ, (ii) for any arc (pi, pj) ∈ A(P), lca(γ(pi), γ(pj))) �= γ(pj),
that is, a child pj of pi cannot be mapped to an ancestor of γ(pi) and (iii)

336 T. Calamoneri et al.

for any p ∈ V \ VL(P) with children p1 and p2, lca(γ(p), γ(p1)) = γ(p) or
lca(γ(p), γ(p2)) = γ(p), that is, at least one of the two children is mapped in the
subtree rooted at γ(p).

The set of all reconciliations of 〈H,P, ϕ〉 is denoted R(H,P, ϕ).
Four types of events may take place in a reconciliation (see formal definitions

in [5]): co-speciation, when both the host and the parasite speciate; duplication,
when the parasite speciates (but not the host) and both parasite children remain
associated with the host; loss, when the host speciates but not the parasite,
leading to the loss of the parasite in one of the two host children; and host-
switch, when the parasite speciates and one child remains with the current host
while the other child jumps to an incomparable host.

Each of the above events is usually associated with a penalty and the mini-
mum cost reconciliations are searched (they can be computed with polynomial
delay [8,21]). However, only reconciliations not violating obvious temporal con-
straints are of interest. A reconciliation γ is time-consistent if there exists a lin-
ear ordering π of the parasites V(P) such that: (i) for each arc (p1, p2) ∈ A(P),
π(p1) < π(p2); (ii) for each pair p1, p2 ∈ V(P) such that π(p1) < π(p2), γ(p2) is
not a proper ancestor of γ(p1). Recognizing time-consistent reconciliations is a
polynomial task [8,18,21], while producing exclusively time-consistent reconcil-
iations is NP-complete [13,19]. This is why usually time-inconsistent reconcilia-
tions are filtered out in a post-processing step [1].

The available tools to compute reconciliations adopt three main conventions
to represent them. The simplest strategy, schematically represented in Fig. 1(a),
represents the two trees by adopting the traditional node-link metaphor, where
the nodes of P are drawn close to the nodes of H they are associated to. Unfor-
tunately, when several parasite nodes are associated to the same host node, the
drawing becomes cluttered and the attribution of parasite nodes to host nodes
becomes unclear. Further, even if P was drawn without crossings (tree H always
is), the overlapping of the two trees produces a high number of crossings (see [5]).

(a) (b) (c)

Fig. 1. Three visualization strategies for representing co-phylogenetic trees.

An alternative strategy (Fig. 1(b)) consists in representing H as a background
shape, such that its nodes are shaded disks and its arcs are thick pipes, while P
is contained in H and drawn in the traditional node-link style. This strategy is

Visualizing Co-phylogenetic Reconciliations 337

used, for example, by CophyTrees [1], the viewer associated with the Eucalypt
tool [8]. The representation is particularly effective, as it is unambiguous and
crossings between the two trees are strongly reduced, but it is still cluttered
when a parasite subtree has to be squeezed inside the reduced area of a host
node (see [5]).

Finally, some visualization tools adopt the strategy of keeping the con-
tainment metaphor while only drawing thick arcs of H and omitting host
nodes (Fig. 1(c)). This produces a node-link drawing of the parasite tree drawn
inside the pipes representing the host tree. Examples include Primetv [17] and
SylvX [6]—see [5]. Also this strategy is sometimes ambiguous, since it is unclear
how to attribute parasites to hosts.

3 A New Model for the Visualization of Reconciliations

Inspired by recent proposals of adopting space-filling techniques to represent bio-
logical networks [20], and with the aim of overcoming the limitations of existing
visualization strategies, we introduce a new hybrid metaphor for the represen-
tation of reconciliations. A space-filling approach is used to represent H, while
tree P maintains the traditional node-link representation. The reconciliation is
unambiguously conveyed by placing parasite nodes inside the regions associated
with the hosts they are mapped to.

)b()a(

Fig. 2. (a) An icicle. (b) The representation adopted for trees H and P .

More specifically, the representation of tree H is a variant of a representation
known in the literature with the name of icicle [11]. An icicle is a space-filling
representation of hierarchical information in which nodes are represented by
rectangles and arcs are represented by the contact of rectangles, such that the
bottom side of the rectangle representing a node touches the top sides of the
rectangles representing its children (see Fig. 2(a)). In our model, in order to
contain parasite subtrees of different depths, we allow rectangles of different
height. Also we force all leaves of H (i.e. present-day hosts) to share the same
bottom line that intuitively represents current time.

Formally, an HP-drawing Γ (γ) of γ ∈ R(H,P, ϕ) is the simultaneous repre-
sentation of H and P as follows. Tree H is represented in a space-filling fashion

338 T. Calamoneri et al.

such that: (1) nodes of H are represented by internally disjoint rectangles that
cover the drawing area; the rectangle corresponding to the root of H covers the
top border of the drawing area while the rectangles corresponding to the leaves
of H touch the bottom border of the drawing area with their bottom sides; and
(2) arcs of H are represented by the vertical contact of rectangles, the upper
rectangle being the parent and the lower rectangle being the child. Conversely,
tree P is represented in a node-link style such that: (1) each node p ∈ V(P) is
drawn as a point in the plane inside the representation of the rectangle corre-
sponding to node γ(p); and (2) each arc (p1, p2) ∈ A(P) is drawn as a vertical
segment if p1 and p2 have the same x-coordinate; otherwise, it is drawn as a
horizontal segment followed by a vertical segment.

It can be assumed that an HP-drawing only uses integer coordinates. In par-
ticular the corners of the rectangles representing the nodes of H could exclusively
use even coordinates and the nodes of P could exclusively use odd coordinates.

Graphically, since the icicle represents a binary tree, we give the rectangles a
slanted shape in order to ease the visual recognition of the two children of each
node (see Fig. 2(b)). Also, the bend of an arc of P is a small circular arc.

We say that HP-drawing Γ (γ) is planar if no pair of arcs of P intersect
except, possibly, at a common endpoint, and that it is downward if, for each arc
(p1, p2) ∈ A(P), parasite p1 has a y-coordinate greater than that of parasite p2.

4 Planar Instances and Reconciliations

In this section we characterize the reconciliations that can be planarly drawn,
showing that a time-consistent reconciliation is planar if and only if the corre-
sponding co-phylogenetic tree admits a planar tanglegram drawing.

Theorem 1. Given a co-phylogenetic tree 〈H,P, ϕ〉, the following statements
are equivalent: (1) 〈H,P, ϕ〉 admits a planar tanglegram drawing Δ. (2) Every
time-consistent reconciliation γ ∈ R(H,P, ϕ) admits a planar downward HP-
drawing Γ (γ).

Sketch of proof. First, we prove that (2) implies (1). Consider a planar drawing
Γ (γ) of γ ∈ R(H,P, ϕ) and let l be the horizontal line passing through the
bottom border of Γ (γ). Observe that the leaves of P lie above l. Construct
a tanglegram drawing Δ of 〈H,P, ϕ〉 as follows: (a) Draw H by placing each
node h ∈ V(H) in the center of the rectangle representing h in Γ (γ) and by
representing each arc a ∈ A(H) as a suitable curve between its incident nodes;
(b) draw P in Δ as a mirrored drawing with respect to l of the drawing of P
in Γ (γ); (c) connect each leaf p ∈ L(P) to the host γ(p) with a straight-line
segment. It is immediate that Δ is a tanglegram drawing of 〈H,P, ϕ〉 and that
it is planar whenever Γ (γ) is.

Proving that (1) implies (2) is more laborious. Let Δ be a planar tanglegram
drawing of 〈H,P, ϕ〉. We construct a drawing Γ (γ) of the given time-consistent
reconciliation γ ∈ R(H,P, ϕ) as follows. First, insert into the arcs of P dummy

Visualizing Co-phylogenetic Reconciliations 339

nodes of degree two to represent losses, obtaining a new tree P ′. Since γ is time-
consistent, consider any ordering π′ of V(P ′) consistent with H. Remove from
π′ the leaves of P and renumber the remaining nodes obtaining a new ordering
π from 1 to |V(P ′) − VL(P ′)|. Regarding y-coordinates: all the leaves of P ′ have
y-coordinate 1, that is, they are placed at the bottom of the drawing, while
each internal node p ∈ V(P ′) \ VL(P ′) has y-coordinate 2π(p) + 1. Regarding
x-coordinates: each leaf p ∈ VL(P) has x-coordinate 2σ(p) + 1, where σ(p) is
the left-to-right order of the leaves of T2 in Δ. The x-coordinate of an internal
node p of P is copied from one of its children p1 or p2, arbitrarily chosen if
none of them is connected by a host-switch, the one (always present) that is not
connected by a host-switch otherwise.

Let h be a node of V(H); rectangle Rh, representing h in Γ , has the minimum
width that is sufficient to span all the parasites contained in the subtree Th(H)
of H rooted at h (hence, it spans the interval [xmin − 1, xmax + 1], where xmin

and xmax are the minimum and maximum x-coordinates of a parasite contained
in Th(H), respectively). The top border of Rh has y-coordinate ymin − 1, where
ymin is the minimum y-coordinate of a parasite node contained in the parent of h.
The bottom border of Rh is ymin − 1, where ymin is the minimum y-coordinate
of a parasite node contained in h.

The proof concludes by showing that the obtained representation Γ (γ) is
planar and downward [5]. �	

We remark that a statement analogous to the one of Theorem 1 can be
proved also for the visualization strategy schematically represented in Fig. 1(b)
and adopted, for example, by CophyTrees [1].

The algorithm we actually implemented, called PlanarDraw, is a refinement
of the one described in the proof of Theorem 1. It assigns to the parent parasite
an x-coordinate that is intermediate between those of the children whenever both

Fig. 3. A planar HP-drawing of a reconciliation of the co-phylogenetic tree of Pelican
& Lice (MP) computed by Algorithm PlanarDraw.

340 T. Calamoneri et al.

children are not host-switches and it produces a more compact representation
with respect to the y-axis (see Figs. 2(b) and 3).

5 Minimizing the Number of Crossings

In this section we focus on non-planar instances and prove that computing an
HP-drawing of a reconciliation with the minimum number of crossings is NP-
complete. Given a reconciliation γ ∈ R(H,P, ϕ) and a constant k, we consider
the decision problem Reconciliation Layout (RL) that asks whether there
exists an HP-drawing of γ that has at most k crossings. We prove that RL is
NP-hard by reducing to it the NP-complete problem Two-Trees Crossing
Minimization (TTCM) [10]. The input of TTCM consists of two binary trees
T1 and T2, whose leaf sets are in one-to-one correspondence, and a constant k.
The question is whether T1 and T2 admit a tanglegram drawing with at most k
crossings among the tangles. In [4] it is shown that TTCM remains NP-complete
even if the input trees are two complete binary trees of height h (hence, with 2h

leaves). We reduce this latter variant to RL.

Theorem 2. Problem RL is NP-complete.

Sketch of proof. Problem RL is in NP by exploring all possible HP-drawings
of γ. Let ITTCM = 〈T1, T2, ψ, k〉 be an instance of TTCM, where T1 and T2 are
complete binary trees of height h, ψ is a one-to-one mapping between VL(T1)
and VL(T2), and k is a constant. We show how to build an equivalent instance
IRL = 〈γ ∈ R(H,P, ϕ), k′〉 of RL.

First we introduce a gadget, called ‘sewing tree’, that will help in the def-
inition of our instance. A sewing tree is a subtree of the parasite tree whose
nodes are alternatively assigned to two host leaves h1 and h2 as follows. A sin-
gle node p0 with γ(p0) = h2 is a sewing tree S0 of size 0 and root p0. Let Sm

be a sewing tree of size m and root pm such that γ(pm) = h2 (γ(pm) = h1,
respectively). In order to obtain Sm+1 we add a node pm+1 with γ(pm+1) = h1

(γ(pm+1) = h2, respectively) and two children, pm and p′
m, with γ(p′

m) = h1

(γ(p′
m) = h2, respectively). See Fig. 4 for examples of sewing trees. Intuitively,

a sewing tree has the purpose of making costly from the point of view of the

Sm Sm+1S0 S1 S2

h1 h2 h1 h2 h1 h2 h1 h2 h1 h2

p0 p’0

p1

p2

p’1

Fig. 4. Sewing trees S0, S1, S2, and Sm+1 obtained from Sm.

Visualizing Co-phylogenetic Reconciliations 341

number of crossings the insertion of a host node h3 between hosts h1 and h2,
whenever h3 contains several vertical arcs of P towards leaves of the subtree
rooted at h3.

Nodes r(H), h1, h2, . . . , h8 of the host tree H and their relationships are
depicted in Fig. 5. Rooted at h5 and h8 we have two complete binary trees of
height h. Intuitively, these two subtrees of H correspond to T1 and T2, respec-
tively (they are drawn filled green and filled pink in Fig. 5). Hence, the leaves
l1,1, l1,2, . . . , l1,2h of T1 are associated to the leaves h1,1, h1,2, . . . , h1,2h of the sub-
tree rooted at h5, and, similarly, the leaves l2,1, l2,2, . . . , l2,2h of T2 are associated
to the leaves h2,1, h2,2, . . . , h2,2h of the subtree rooted at h8.

The root r(P) of P has γ(r(P)) = r(H). One child of r(P) is the root of a
sewing tree between h3 and h6. The other child p1, with γ(p1) = r(H), has one
child that is the root of a sewing tree between h3 and h7, and one child p2, with
γ(p2) = h2. Parasite p2 is the root of a complete binary tree Th of height h, whose
internal nodes are assigned to h2, while the leaves are assigned to h3. Each one
of the 2h leaves of Th is associated with a tangle of the instance ITTCM. Namely,
suppose e = (l1,i, l2,j) is a tangle edge in the instance ITTCM. Then, an arbitrary
leaf pe of Th is associated with e. Node pe has children p1,i, with γ(p1,i) = h1,i,
and p′

e, with γ(p′
e) = h3. Node p′

e, in turn, has children p2,j , with γ(p2,j) = h2,j ,
and p′′

e , with γ(p′′
e) = h3. Finally, we pose k′ = k + 2h · (2h − 1).

h1

h3

h5

h1,1 h1,2 h1,3 h1,4

h6 h8

h2,2 h2,3 h2,4h2,1

h7

h2

h4

p1

p2

r(H) r(P)

Th

Fig. 5. The construction of the instance of RL starting from an instance of TTCM
with h = 2. Filled green and pink are the subtrees of H whose embeddings correspond
to the embeddings of T1 and T2, respectively. (Color figure online)

342 T. Calamoneri et al.

The proof concludes by showing that instance ITTCM is a yes instance of
TTCM if and only if instance IRL is a yes instance of RL [5]. �	

Since in the proof of Theorem 2 a key role is played by host-switch arcs, one
could wonder whether an instance without host-switches is always planar. This
is not the case: for any non-planar time-consistent reconciliation γ ∈ R(H,P, ϕ),
there exists a time-consistent reconciliation γr ∈ R(H,P, ϕ) that maps all inter-
nal nodes of P to r(H) and that has no host-switch. If the absence of host-
switches could guarantee planarity, γr would be planar and, by Theorem 1, also
γ would be planar, leading to a contradiction. Indeed, it is not difficult to con-
struct reconciliations without host-switches and not planar [5].

6 Heuristics for Drawing Reconciliations with Few
Crossings

Theorem 2 shows that a drawing of a reconciliation with the minimum number of
crossings cannot be efficiently found. For this reason, we propose two heuristics
aiming at producing HP-drawings with few crossings (Fig. 6 shows two examples
of non-planar HP-drawings produced by the heuristics). In the following we will
briefly describe them.

(a) (b)

Fig. 6. (1) An HP-drawing of a reconciliation of Gopher & Lice drawn by Search-

MaximalPlanar. (2) The same instance drawn by ShortenHostSwitch.

6.1 Heuristic SearchMaximalPlanar

This heuristic is based on the strategy of first drawing a large planar sub-instance
and then adding non-planar arcs. We hence construct a maximal planar subgraph
Gpl of tanglegram 〈H,P, ϕ〉 by adding to it one by one the following objects: (i)
all nodes of H and of P ; (ii) all arcs of H; (iii) edge (r(H), r(P)); (iv) for each
lp ∈ VL(P), edge (lp, ϕ(lp)); (v) for each p ∈ V(P)\VL(P), edge (p, p′), where p′

is any child of p that is not a host-switch, while the arc from p to the sibling of
p′ is added to a set missingArcs; (vi) all arcs from missingArcs that is possible
to add without introducing crossings (all arcs that have not been inserted in Gpl

Visualizing Co-phylogenetic Reconciliations 343

are stored in a set of non-planarArcs). A planar embedding of the graph Gpl is
used as input for Algorithm PlanarDraw so obtaining a planar drawing of part
of reconciliation γ; arcs in non-planarArcs are added in a post-processing step.

6.2 Heuristic ShortenHostSwitch

This heuristic is based on the observation that ‘long’ host-switch arcs are more
likely to cause crossings than ‘short’ ones. Hence, this heuristic searches for an
embedding of H that reduces the distance between the end-nodes of host-switch
arcs of P . To do this, as a preliminary step, ShortenHostSwitch chooses the
embedding of H with a preorder traversal as follows. Let v ∈ V(H) be the cur-
rent node of the traversal. Consider the set of nodes of H that are ancestors
or descendants of v. The removal of this set would leave two connected compo-
nents, one on the left, denoted Vv,left(H) ⊆ V(H) and one on the right, denoted
Vv,right(H) ⊆ V(H). Denote by Vv,left(P) (Vv,right(P), respectively) the set of
parasite nodes mapped to some node in Vv,left(H) (Vv,right(H), respectively).
Moreover, denote by Vv(P) ⊆ V(P) the set of the parasite nodes mapped to the
subtree of H rooted at v.

If v ∈ VL(H) no embedding choice has to be taken for v. Otherwise let
v1 and v2 be its children. For i ∈ {1, 2} and X ∈ {left, right} compute the
number hvi,X of the host-switch arcs from Vvi

(P) to Vv,X(P) or vice versa. If
h1,right + h2,left > h2,right + h1,left then v1 is embedded as the right child and
v2 as the left child of v, otherwise v2 will be the right child and v1 the left child.

Observe that the sets Vv,left(P) and Vv,right(P) can be efficiently computed
while descending H. Namely, we start with Vr(H),left(P) = Vr(H),right(P) = ∅
and, supposing vl and vr are chosen to be the left and right children of v,
respectively, we set Vvl,left(P) = Vv,left(P), Vvl,right(P) = Vv,r(P) ∪ Vvr

,
Vvr,left(P) = Vv,left(P) ∪ Vvl

, and Vvr,right(P) = Vv,right(P).
It remains to describe how ShortenHostSwitch places parasite nodes inside

the representation of host nodes. First, we temporarily assign to each node
p ∈ V(P) the lower x− and y−coordinates inside γ(p) (observe that all nodes
mapped to the same host are overlapped). For the leaves V(P) the temporary
y-coordinate is definitive and only the x-coordinate has to be decided. We order
the parasite leaves p1, p2, . . . , pk inside each host leaf vk as follows. We divide
the leaves into two sets Lv,left(P) and Lv,right(P), where Lv,left(P) contains
the leaves associated with v that have a parent with lower x-coordinates and
Lv,right(P) contains the remaining leaves associated with v. We order the set
Lv,left(P) (Lv,right(P), respectively) ascending (descending, respectively) based
on the y-coordinates of their parents. We place the set Lv,left(P) and then the
Lv,right(P) inside v according to their orderings. Once the leaves of P have
been placed, the remaining internal nodes of P are placed according to the same
algorithm used for planar instances by PlanarDraw.

344 T. Calamoneri et al.

7 Experimental Evaluation

We collected standard co-phylogenetic tree instances from the domain literature.
Table 1 shows their properties.

Table 1. The co-phylogenetic trees used to generate the datasuite.

Instance Acronym # hosts # par. Planar

Caryophyllaceae & Microbotryum [21] CM 35 39 No

Stinkbugs & Bacteria [21] SB 27 23 Yes

Encyrtidae & Coccidae [8] EC 13 19 Yes

Fishs & Dactylogyrus [8] FD 39 101 No

Gopher & Lice [8] GL 15 19 No

Seabirds & Chewing Lice [8] SC 21 27 No

Rodents & Hantaviruses [8] RH 67 83 No

Smut Fungi & Caryophill. plants [8] SFC 29 31 No

Pelican & Lice (ML) [8] PML 35 35 Yes

Pelican & Lice (MP) [8] PMP 35 35 Yes

Rodents & Pinworms [8] RP 25 25 No

Primates & Pinworms [8] PP 71 81 No

COG2085 [8] COG2085 199 87 No

COG4965 [8] COG4965 199 59 No

COG3715 [8] COG3715 199 79 No

COG4964 [8] COG4964 199 53 No

Since reconciliations obtained from planar co-phylogenetic trees are always
planar, we restricted our experiments to non-planar instances. In order to obtain
a datasuite of reconciliations we used the Eucalypt tool [8] to produce the set
of minimum-cost reconciliations of each instance with costs 0, 2, 1, and 3 for
co-speciation, duplication, loss, and host-switch, respectively. We configured the
tool to filter out all time-inconsistent reconciliations based on the algorithm
in [19]. Also, we bounded to 100 the reconciliations of each instance.

We implemented the two heuristics SearchMaximalPlanar and Shorten-
HostSwitch in JavaScript (but we used Python for accessing the file system and
the GDToolkit library [7] for testing planarity) and run the experiments on a
Linux laptop with 7.7 GiB RAM and quadcore i5-4210U 1.70 GHz processor.

Table 2 shows the results of the experiments. Planar instances SB, EC, PML,
and PMP were not used to generate reconciliations. Also, instances COG3715 and
COG3715 did not produce any time-consistent reconciliation. For all the other
phylogenetic-trees, the second column of Table 2 shows the number of recon-
ciliations computed by Eucalypt (we bounded to 100 the reconciliations of RH,
COG2085, and COG4965). Table 2 is vertically divided into three sections, each

Visualizing Co-phylogenetic Reconciliations 345

Table 2. The results of the experiments.

Inst. #Rec. ShortenHostSwitch SearchMaximalPlanar∗ SearchMaximalPlanar

#Crossings Avg ms #Crossings Avg ms #Crossings Avg ms

Max Min Avg Max Min Avg Max Min Avg

CM 64 30 15 21 0.5 21 13 17 644 20 10 16 485

FD 80 84 55 69 1 108 74 92 7289 110 67 91 4596

GL 2 1 1 1 0 1 1 1 180 2 2 2 67

PP 72 6 2 3 1 4 3 3 4840 2 1 1 1154

RH 100 11 11 11 2 11 9 10 1710 15 10 12 1701

RP 3 4 2 3 1 3 3 3 737 3 3 3 195

SC 1 6 6 6 0 4 4 4 499 4 4 4 166

SFC 16 22 11 17 0 16 12 13 412 20 11 15 355

COG2085 100 80 58 70 7 95 84 89 20540 99 68 82 17270

COG4965 100 125 79 97 8 68 57 60 9901 65 52 58 5636

devoted to a different heuristics. Each section shows the minimum, maximum,
and average number of crossings and the average computation time for the
HP-drawings produced by the heuristics on the reconciliations obtained for the
phylogenetic-tree specified in the first column.

The section labeled SearchMaximalPlanar∗ shows the results of Search-
MaximalPlanar where we computed the embedding of tree H (which is the most
expensive algorithmic step) once for all the reconciliations of the same instance.
Hence, differently from the other two sections, the computation times reported
in this section refer to the sum of computation times for all the reconciliations
obtained from the same instance.

From Table 2 it appears that heuristic SearchMaximalPlanar is much slower
than ShortenHostSwitch. This could have been predicted, since Search-
MaximalPlanar runs a planarity test several times. However, the gain in terms of
crossings is questionable. Although there are instances where SearchMaximal-
Planar appears to outperform ShortenHostSwitch (for example, CM, PP) this
is hardly a general trend. We conclude that aiming at planarity is not the right
strategy for minimizing crossings in this particular application context.

The strategy of computing the embedding of H once for all reconciliations of
the same co-phylogenetic tree (central section labeled SearchMaximalPlanar∗

of Table 2) seems to be extremely effective in reducing computation times. For
example, on instance COG2085, where this heuristics needed 20.5 s, it actually
used 205 msec per reconciliation, about 11% of the time needed by Search-
MaximalPlanar, at the cost of very few additional crossings.

8 Conclusions and Future Work

This paper introduces a new and intriguing simultaneous visualization problem,
i.e. producing readable drawings of the reconciliations of co-phylogenetic trees.

346 T. Calamoneri et al.

Also, a new metaphor is proposed that takes advantage both of the space-filling
and of the node-link visualization paradigms. We believe that such a hybrid
strategy could be effective for the simultaneous visualization needs of several
application domains.

As future work, we would like to address the problem of visually exploring
and analyzing sets of reconciliations of the same co-phylogenetic tree, which is
precisely the task that several researchers in the biological field need to perform.
Heuristic SearchMaximalPlanar∗ is a first step in this direction, since it main-
tains the mental map of the user by fixing the drawing of H. Finally, we would
like to adapt heuristics for the reduction of the crossings of tanglegram draw-
ings, such as those in [3,12,16], to our problem and we would like to perform
user tests to assess the effectiveness of the proposed metaphor.

Acknowledgments. We thank Riccardo Paparozzi for first experiments on the visu-
alization of co-phylogenetic trees. Moreover, we are grateful to Marie-France Sagot and
Blerina Sinaimeri for proposing us the problem and for the interesting discussions.

References

1. CophyTrees - viewer associated with [8]. http://eucalypt.gforge.inria.fr/viewer.
html

2. Bansal, M.S., Chang, W.-C., Eulenstein, O., Fernández-Baca, D.: Generalized
binary tanglegrams: algorithms and applications. In: Rajasekaran, S. (ed.) BICoB
2009. LNCS, vol. 5462, pp. 114–125. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00727-9 13

3. Böcker, S., Hüffner, F., Truss, A., Wahlström, M.: A faster fixed-parameter app-
roach to drawing binary tanglegrams. In: Chen, J., Fomin, F.V. (eds.) IWPEC
2009. LNCS, vol. 5917, pp. 38–49. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-11269-0 3

4. Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R.I.,
Wolff, A.: Drawing (complete) binary tanglegrams. Algorithmica 62(1–2), 309–332
(2012)

5. Calamoneri, T., Di Donato, V., Mariottini, D., Patrignani, M.: Visualizing co-
phylogenetic reconciliations. Technical report arXiv:1708.09691, Cornell University
(2017)

6. Chevenet, F., Doyon, J.P., Scornavacca, C., Jacox, E., Jousselin, E., Berry, V.:
SylvX: a viewer for phylogenetic tree reconciliations. Bioinformatics 32(4), 608–
610 (2016)

7. Di Battista, G., Didimo, W.: Gdtoolkit. In: Tamassia, R. (ed.) Handbook on Graph
Drawing and Visualization, pp. 571–597. Chapman and Hall/CRC, Boca Raton
(2013)

8. Donati, B., Baudet, C., Sinaimeri, B., Crescenzi, P., Sagot, M.F.: EUCALYPT:
efficient tree reconciliation enumerator. Algorithms Mol. Biol. 10(1), 3 (2015)

9. Dwyer, T., Schreiber, F.: Optimal leaf ordering for two and a half dimensional phy-
logenetic tree visualisation. In: Proceedings of the 2004 Australasian Symposium
on Information Visualisation - Volume 35, APVis 2004, pp. 109–115. Australian
Computer Society Inc., Darlinghurst (2004)

http://eucalypt.gforge.inria.fr/viewer.html
http://eucalypt.gforge.inria.fr/viewer.html
https://doi.org/10.1007/978-3-642-00727-9_13
https://doi.org/10.1007/978-3-642-00727-9_13
https://doi.org/10.1007/978-3-642-11269-0_3
https://doi.org/10.1007/978-3-642-11269-0_3
http://arxiv.org/abs/1708.09691

Visualizing Co-phylogenetic Reconciliations 347

10. Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization.
J. Comput. Syst. Sci. 76(7), 593–608 (2010)

11. Kruskal, J.B., Landwehr, J.M.: Icicle plots: better displays for hierarchical cluster-
ing. Am. Stat. 37(2), 162–168 (1983)

12. Nöllenburg, M., Völker, M., Wolff, A., Holten, D.: Drawing binary tanglegrams:
an experimental evaluation. In: Finocchi, I., Hershberger, J. (eds.) ALENEX 2009.
pp. 106–119. SIAM (2009)

13. Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The co phylogeny recon-
struction problem is NP-complete. J. Comput. Biol. 18(1), 59–65 (2011)

14. Rusu, A.: Tree drawing algorithms. In: Tamassia, R. (ed.) Handbook on Graph
Drawing and Visualization, pp. 155–192. Chapman and Hall/CRC, Boca Raton
(2013)

15. Schulz, H.J.: Treevis.net: a tree visualization reference. IEEE Comput. Graphics
Appl. 31(6), 11–15 (2011)

16. Scornavacca, C., Zickmann, F., Huson, D.H.: Tanglegrams for rooted phylogenetic
trees and networks. Bioinformatics 13(27), i248–i256 (2011)

17. Sennblad, B., Schreil, E., Sonnhammer, A.C.B., Lagergren, J., Arvestad, L.:
primetv: a viewer for reconciled trees. BMC Bioinform. 8(1), 148 (2007)

18. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplica-
tions, losses, transfers and incomplete lineage sorting with nonbinary species trees.
Bioinformatics 28(18), i409–i415 (2012)

19. Tofigh, A., Hallett, M.T., Lagergren, J.: Simultaneous identification of duplications
and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(2), 517–
535 (2011)

20. Tollis, I.G., Kakoulis, K.G.: Algorithms for visualizing phylogenetic networks. In:
Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 183–195. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50106-2 15

21. Wieseke, N., Hartmann, T., Bernt, M., Middendorf, M.: Cophylogenetic reconcil-
iation with ILP. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(6), 1227–1235
(2015)

https://doi.org/10.1007/978-3-319-50106-2_15

Graph Layout Designs

Anisotropic Radial Layout for Visualizing
Centrality and Structure in Graphs

Mukund Raj(B) and Ross T. Whitaker

University of Utah, Salt Lake City, USA
{mraj,whitaker}@cs.utah.edu

Abstract. This paper presents a novel method for layout of undirected
graphs, where nodes (vertices) are constrained to lie on a set of nested,
simple, closed curves. Such a layout is useful to simultaneously display the
structural centrality and vertex distance information for graphs in many
domains, including social networks. Closed curves are a more general con-
straint than the previously proposed circles, and afford our method more
flexibility to preserve vertex relationships compared to existing radial lay-
out methods. The proposed approach modifies the multidimensional scal-
ing (MDS) stress to include the estimation of a vertex depth or centrality
field as well as a term that penalizes discord between structural centrality
of vertices and their alignment with this carefully estimated field. We also
propose a visualization strategy for the proposed layout and demonstrate
its effectiveness using three social network datasets.

Keywords: Centrality · Graph layout · Network visualization

1 Introduction

Graphs are an important data structure that are used to represent relationships
between entities in a wide range of domains. An interesting aspect in graph
analysis is the notion of (structural) centrality, which pertains to quantifying
importance of entities (or vertices, nodes) within the context of the graph struc-
ture as defined by it’s relationships (or edges). The need to compute centrality
and convey it through visualization is seen in many areas, for example, in biol-
ogy [27], transportation [6] and social sciences [5]. In this work, we propose a
method to visualize node centrality information in the context of overall graph
structure, which we capture through intervertex (graph theoretical) distances.
The proposed method determines a layout (positions of nodes on a 2D drawing)
that meet the following two, often competing, criteria:

– Preservation of distances: The Euclidean (geometrical) distances in the layout
should approximate, to the extent possible, the graph theoretical distances
between the respective nodes.

– Anisotropic radial monotonicity: Along any ray traveling away from the posi-
tion of the most central node, nodes with a lower centrality should be placed
geometrically further along the ray.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 351–364, 2018.
https://doi.org/10.1007/978-3-319-73915-1_28

352 M. Raj and R. T. Whitaker

Fig. 1. Visualization of Zachary’s karate club social network using (a) MDS, (b) radial
layout, and (c) anisotropic radial layout. Node sizes encode betweenness centrality.

We also introduce a visualization strategy for the proposed layout that further
highlights the centrality and structure in the graph by using additional encod-
ing channels, and demonstrate the benefits of our approach with real datasets
(see Fig. 1 as an example).

Visualization methods for gaining insights from graph structured data are an
important and active area of research. Significant efforts in this area are targeted
toward developing effective layouts. Layout methods can have various goals that
range from trying to reduce clutter and edge crossings [7] to faithfully repre-
senting the structure by preserving the distances between nodes and topological
features [15]. As positions are the best way to graphically convey numbers [8],
layouts are also used to convey numerically encoded measures of hierarchy or
importance associated with nodes [5,11].

Radial layouts have been shown to be an effective method to visually convey
the relative importance of nodes, where importance may be defined, for instance,
by a node’s centrality [5]. The centrality of a node is a quantification of its
importance in a graph by considering its various structural properties, such

Anisotropic Radial Layout for Visualizing Centrality 353

as, connectedness, closeness to others, and role as an intermediary [14,34]. In
conventional radial layouts, the distance of nodes from the geometric center
(origin) of the layout depends only on the node’s centrality, and nodes with a
higher centrality value are placed closer to the origin in the layout, often times
forming rings or concentric circles.

Given a graph and centrality values associated with its nodes, several
approaches have been proposed to determine a radial layout. One line of work,
which deals with discrete centrality values, attempts to minimize edge cross-
ings [1]. Another approach, which also tackles continuous centrality values,
involves optimizing a stress energy (Sect. 2.2) by including a penalty for represen-
tation error (of graph distances) as well as deviation from radial constraints [5,6].
The penalty acts a soft constraint wherein the solution is allowed to deviate from
the constraint at the expense of increased local stress. The literature shows that
radial constraints may also be included as a hard constraint by only allowing
those solutions that satisfy the constraints [2,12,13].

While state-of-the-art methods for radial graph layout do effectively con-
vey node centrality, the associate circular centrality constraints make it difficult
to preserve other important, structural graph characteristics such as distances,
which, in turn, makes it difficult to preserve the holistic structure of the graph.
On the other hand, despite being effective in preserving the overall structure,
general layout methods such as multidimensional scaling are often fail to read-
ily convey centrality (e.g. by failing to ensure that structurally central nodes in
the graph-theoretical sense appear near the center of the layout and vice versa).
In this manuscript, we propose a method that simultaneously tackles both the
above issues.

The underlying idea for the proposed layout algorithm is that we can relax
the constraint that requires nodes with similar centrality to lie on a circle, and
instead, allow for such nodes to be constrained by a more general shape: a simple
closed curve or centrality contour. Centrality contours are nested isolevel curves
on a smooth, radially decreasing estimate of node centrality values over a 2D
field. We demonstrate that the additional flexibility in placing the nodes afforded
by the centrality contours over circles, in conjunction with some additional visual
cues in the background, lets us achieve a better trade off than existing methods
in conveying centrality and general structure together.

2 Background

In this section, we describe the various underlying technicalities that are relevant
to the proposed method, and begin with some notation/definitions.

We define a weighted, undirected graph G(V,E,W) as a set of vertices (or
nodes) V , a set of edges E ⊆ V × V and a set of edge weights, W : E �→ R

+,
assigned to each edge. We define n to be cardinality of node set; i.e., n = |V |. The
graph-theoretical distance (shortest-path along edges) between two nodes u and
v is denoted by duv. We denote a general position in a 2D layout as x̄ = (x, y) and
the Euclidean distance between two nodes u and v as δ(x̄i, x̄j) = ||x̄u − ȳv||2.

354 M. Raj and R. T. Whitaker

Fig. 2. An (a) interpolation field for node centrality values, and (b) the associated (radi-
ally) monotonic field for a 30 node random graph generated using the Barabasi-Albert
model. Node positions are determined using MDS and node sizes encode betweenness
centrality.

2.1 Centrality and Depth

The need to measure, and quantify, the importance of individual entities within
the context of a group occurs in many domains. In graph analytics, this need
is addressed by centrality indices, which are typically real-valued functions over
the nodes of a graph [34]. The specific properties that qualify the importance
of nodes may depend on the application or data type, and several methods to
compute centrality have been proposed, such as degree centrality [14], closeness
centrality [26], and betweenness centrality [14]. While the emphasis of the various
centrality definitions can be different, they all share a common characteristic of
depending only on the structure of the graph rather than parameters associated
with the nodes [34]. For the examples in this paper we use betweenness centrality
due to its relevance to the datasets (Sect. 4).

The betweenness centrality of a node, v ∈ G, is defined as the percentage
(or number) of shortest paths in the entire graph G that pass through the node
v. As shown in work of Raj et al. [23], barring instances of multiple geodesics,
betweenness centrality is a special case of a more general notion of vertex depth
on graphs—a generalization of data depth to vertices on graphs. Data depth is
a family of methods from descriptive statistics that attempts to quantify the
idea of centrality for ensemble data without any assumption of the underlying
distribution. Data depth methods often rely on the formation of bands from
convex sets and the probability of a point lying within a randomly chosen band.
The extension of band depth to graphs [23] relies on the convex closure of a set
of points (via shortest paths), and thereby generalizes betweenness centrality by
considering bands formed by sets of nodes, rather than only the shortest paths
between pairs of nodes, and allows for a nonuniform probability distribution over
the nodes of the graph.

Anisotropic Radial Layout for Visualizing Centrality 355

In addition to graphs, data depth methods have been proposed for sev-
eral other data types such as points in Euclidean space [29], functions [19],
and curves [20,22]. Despite their distinct formulations, data depth methods are
expected to share a few common desirable properties [33] such as: 1. maximum
at geometric center 2. zero at infinity 3. radial monotonicity; which make data
depth an attractive basis for ensemble visualization methods [22,25,28]. Graph
centrality is a type of data depth on the nodes of a graph, and here we pursue
layout methods that convey these depth properties.

2.2 Stress and Multidimensional Scaling (MDS)

Our proposed method is based on a modification to the MDS objective function,
and therefore we give a brief summary of MDS. MDS is family of methods
that help visualize the similarity (or dissimilarity) between members in a data
set [4]. Over the years, MDS has been the foundation for a range of graph
drawing algorithms that aim to achieve an isometry between graph theoritical-
and Euclidian distances between nodes [6,17]. From among various types of MDS
methods that exist, here we consider metric MDS with distance scaling, which
is popular in the graph drawing literature [15] (see Fig. 2 for an example).

In the context of graph drawing, given a distance matrix based on graph-
theoretical distance, the goal is to find node positions X = {x̄i : 1 ≤ i ≤ n} that
minimize the following sum of squared residuals—also known as stress:

σ(X) =
∑

u,v

wuv

(
duv − ||x̄u − x̄v||2

)2
, (1)

where wuv ≥ 0 is the weighting term for residual associated with pair u, v. In
the proposed work we employ a standard weighting scheme for graphs, known as
elastic scaling [21], by setting wuv = d−2

uv . This gives preference to local distances
by minimizing relative error rather than absolute error during the optimization.

Node positions that minimize the objective (Eq. (1)) have been shown to be
visually pleasing and convey general structure of the graph [17]. Although, the
state-of-the-art approach for optimizing the objective function is stress majoriza-
tion [15], we employ standard gradient descent because of its compatibility with
the proposed modification to the objective (Sect. 3). The gradient of the standard
MDS objective is as follows [4]:

∇σ(X) = 2V X − B(X)X (2)

where matrices V = (vij) and B = (bij), with 1 ≤ i, j ≤ n, can be compactly
represented as:

vij =

{
−wij for i 	= j∑n

j=1,j �=i wij for i = j
bij =

{
− wijdij

δ(x̄i,x̄j)
for i 	= j and δ(x̄i, x̄j) 	= 0

0 for i 	= j and δ(x̄i, x̄j) = 0

bii = −
n∑

j=1,j �=i

bij .

356 M. Raj and R. T. Whitaker

2.3 Strictly Monotone and Smooth Regression

The proposed method also relies on the construction of a smooth and radially
decreasing approximation of centrality values over a 2D field, which we call the
monotonic field (Fig. 2). The first part of this construction is an interpolation
of centrality values of sparsely located nodes on the layout to obtain a dense 2D
field, which we call the interpolation field (Fig. 2a). For this we use thin plate
splines [3] interpolation, a standard technique for interpolating unstructured
data which produces optimally smooth fields.

The next part is to construct a radially monotonic approximation of the
interpolation field. We devote the rest of this section to a brief description of
the method that we use for constructing this approximation (monotonic field),
which is adapted from Dette et al. [9,10].

For a 1D function [9], m(t) : [0, 1] → R, an elegant algorithm for computing
its monotonic approximation m̂A(t) proceeds as follows in two steps [9]:

– Step 1 (Monotonization): Construct a density estimate from sampled values
of input function m and use it as input to compute an estimate of the inverse
of the regression function m̂−1

A .

m̂−1
A (t) =

1
Qω

Q∑

i=1

∫ t

∞
K

(
m

(
i
Q

) − u

ω

)
du, (3)

where Q is the parameter controlling the sampling density, K is a continuously
differentiable and symmetric kernel, and ω is the bandwidth. Here, m̂−1

A is a
strictly increasing estimate of m−1, however, we can easily obtain a strictly
decreasing estimate by reversing the limits on the integral in Eq. (3).

– Step 2 (Inversion): Obtain the final estimate of m̂A by numerically inverting
m̂−1

A .

In order to obtain an approximation to a 2D function that is monotonic
along radial lines emanating from the deepest or most central node, we use a
polar coordinate representation of the field. We build the polar representation
by sampling the interpolation field along 360 evenly spaced, center outward rays.
The idea is to repeatedly monotonize the interpolation field with respect to a
single variable i.e., for a fixed value of the angular coordinate, obtain a (1D)
estimate that is strictly decreasing along the radial coordinate. We then repeat
this process, successively monotonizing 1D functions that correspond to each
value of angular coordinate in its (discrete) domain; see Fig. 2b for an example
of the resulting monotonic field. The spline interpolation is smooth, and by the
properties of the monotonic approximation (see [10]), the resulting monotonic
field is smooth (except at origin, where polar the coordinates maybe nonsmooth).

3 Method

Here we describe our method in two parts. First is the layout algorithm
(Sect. 3.1), and second is a visualization strategy (Sect. 3.2) that complements
the layout to simultaneously convey graph structure and node centrality.

Anisotropic Radial Layout for Visualizing Centrality 357

Fig. 3. Sensitivity of anisotropic radial layout to penalty weights for the graph in Fig. 2:
(a) wρ = 0.1, (b) wρ = 1, (c) wρ = 10; centrality contours with isovalues 0.1, 0.2 and
0.3 as well as nodes X (red) and Y (green) with centrality values 0.2 and 0.1 are
identified, and (d) a typical plot of objective energy during the optimization process
(wρ = 1). (Color figure online)

3.1 Anisotropic Radial Layout

In addition to preserving the graph-theoretical distances, we also aim to place
every node on a radially monotonic approximation of a centrality field—called
the monotonic field (Sect. 2.3)—such that the value of the field at the location
of the node is equal to the centrality value of the node. We accomplish this by
modifying the (distance preserving) MDS objective or stress (Sect. 2.2) to incor-
porate the following penalty term, which penalizes the deviation of monotonic
field values from the node centrality values:

ρ(X) =
(
MX,c̄(X) − c̄

)2 (4)

where c̄ ∈ R
n is a vector of node centrality values and X ∈ R

n×2 =
{x̄i : 1 ≤ i ≤ n} denotes associated node positions. MX,c̄(X) ∈ R

n denotes
a vector of values of the 2D monotonic field at locations X. The symbols in the
subscript (X and c̄) denote the use of node positions and centrality values in the

358 M. Raj and R. T. Whitaker

construction of the monotonic field. In the limiting case where the interpolation
field (Sect. 2.3) itself is monotonic, the value of this penalty term drops to zero.
Our final objective is a sum of the MDS stress and the above penalty term, and
can be stated as follows:

γ
(
X

)
= σ(X)︸ ︷︷ ︸

MDS stress

+ wρ ρ(X) (5)

where wρ is a weighting factor that controls the influence of the penalty, with
respect to the MDS stress. The gradient of the modified objective above is
obtained as:

∇γ
(
X

)
= ∇σ(X) + wρ × 2

(
MX,c̄(X) − c̄

)
 ∇MX,c̄(X)
︸ ︷︷ ︸

∇ρ(X)

, (6)

where
 denotes element wise product. It is difficult to compute the gradient
of MX,c̄(X) because of dependence of M on X and the associated process for
monotonic approximation. Therefore, we let the field lag, and treat X (in sub-
script) as a constant when numerically approximating the gradient of M . We
deal with the resulting accumulation of error by recomputing the depth field
after a fixed number of iterations, or lag, denoted by �.

The parameters wρ and � need to be chosen carefully. wρ needs to be set to
find a balance between preserving the intrinsic graph structure and ensuring that
the centrality of nodes match the field value at their position. Figure 3a-c show,
respectively, results of a small wρ unable to move nodes to appropriate positions
with regard to the field (observe nodes X, Y), an intermediate wρ, and a large
wρ resulting in unnecessary structural distortion with regard to initial positions
(observe node Y). The parameter � controls the lag of the monotonic field; if � is
too small, the frequent updates can lead to instabilities, while values that are too
large can cause slow convergence. A typical energy profile during optimization
is shown in Fig. 3d; where the sharp changes in the total energy correspond to
the updates of the monotonic field. We encourage the layout to be as similar
as possible to the MDS layout by initializing the node positions as determined
by an unmodified MDS objective [15]. The entire process, as summarized in
Algorithm 1, iterates until updates no longer result in significant changes to
node positions.

The computational complexity of a single iteration is O(n3) due to the step
of computing the monotonic field which involves interpolation using thin plate
spline. However, we only update the field once every � iterations. This leads to
a complexity of O(n2) (same as MDS) for a large majority of iterations.

3.2 Visualization

In this layout, nodes are constrained to lie on level sets of centrality, which are
general closed curves, rather than circles, and the shapes of these curves depend
on the structure of the graph. Therefore, we can help interpretability of the lay-
out and reduce cognitive load for the user by providing additional cues for shapes

Anisotropic Radial Layout for Visualizing Centrality 359

Algorithm 1. Layout with anisotropic radial constraints
Input: Graph G = {V, E, W}, maximum number of iterations k ∈ N, depth

field lag �, step size α, weighing factor wρ

Output: Positions X = {x̄i : 1 ≤ i ≤ n} for all vi ∈ V
n ← |V |
X0 ← initialize node positions using MDS ; /* (Sect. 2.2) */

c̄ ∈ R
n ← compute graph centrality values for vi ∈ V

j ← −1 ; /* index to keep track of field updates */

for t = 1, . . . , k do
if t mod � = 0 then

j ← j + 1
Xj ← Xt

MXj ,c̄(Xt) ← compute monotonic field ; /* (Sect. 2.3) */

end

Xt+1 ← Xt − α
(
∇σ(Xt) + wρ × 2

(
MXj ,c̄(Xt) − c̄

) � ∇MXj ,c̄(Xt)
)
;

/* gradient update step (Sect. 3.1) */

end

of these curves. We provide cues in the form of faded renderings of centrality con-
tours (isolines on the monotonic field) and a monotonic field colormap in the back-
ground. The radial monotonicity described in Sect. 3.1 ensures that the contours
are nested curves that enclose a common maxima (at origin); leading to a bijec-
tive mapping between contours and centrality values, and pushing nodes to lie
on the unique contour that corresponds to their centrality. In this paper, we nor-
malize node centrality to fall between 0 and 1; and show 10 contour curves that
evenly span this range. We also use node size as an extra encoding channel for
centrality—in addition to location—to further highlight the centrality structure.
We can, of course, use the size channel to encode centrality even with the standard
MDS layout, however, that approach can lead to the issue of conflicting centrality
cues from size and location channels (see image (a) in Figs. 1, 4 and 5).

4 Results

4.1 Zachary’s Karate Club

The Zachary’s karate club graph is a well known data set that is a social network
of friendships in a karate club at a US university, as recorded during a study [32].
This graph contains 34 nodes, each representing an individual, and 78 unweighted
edges that represent a friendship between the associated individuals (Fig. 1).
During the period of observation, a conflict between two key members, identified
as the “administrator” and “instructor”, leads to a split in the club, giving it an
interesting two cluster structure. In Fig. 1, nodes representing members who are
part of the instructor’s and administrator’s groups are drawn in green and blue,
respectively.

360 M. Raj and R. T. Whitaker

Fig. 4. Network of terrorists and affiliates connected to the 2004 Madrid train bombing
using (a) MDS, (b) radial layout, (c) anisotropic radial layout. (Color figure online)

Figure 1 shows three different visualizations of the karate club network: MDS,
radial layout (from [6]), and anisotropic radial layout (ARL). We can make a few
observations from the visualizations. While MDS does a good job of preserving
the two clusters, it is does not unambiguously convey centrality. On the other
hand, radial layout clearly showcases the centrality at the expense of dispersing
the clusters by distorting distances among their nodes, thereby obscuring their
internal structure. We see that ARL is able to largely preserve the structure
seen in MDS with clearly distinguishable clusters, and also clearly convey the
centrality information. While radial layout pushes the instructor’s group far away
due to low betweenness centrality, ARL lets them remain close by bringing in
the outermost contour toward to the group instead. Similarly, the administrator
is also allowed to remain closer to their group by the protrusion of the inner
contours, which enclose the most central nodes, toward the administrator.

4.2 Terrorist Network from 2004 Madrid Train Bombing

Figure 4 shows visualizations of a network of individuals connected to the bomb-
ing of trains in Madrid on March 11, 2004. This data was originally compiled by

Anisotropic Radial Layout for Visualizing Centrality 361

Fig. 5. Coappearance network for characters in the novel Les Miserables using (a)
MDS, (b) radial layout, (c) anisotropic radial layout. (Color figure online)

Rodriguez [24] from newspaper articles that reported on the subsequent police
investigation. There are 64 nodes that represent suspects and their relatives, and
243 edges that have weights ranging from 1 to 4 which represent an aggregated
strength of connection based on various parameters such as contact, kinship,
ties to Al Qaeda, etc [16]. In Fig. 4, (as well as Fig. 5), distances between nodes
are related inversely to edge weights. In the visualization, we identify nodes
using numbers to avoid text clutter, however, we include a mapping to names of
individuals represented by the nodes in the Appendix.

Rodriguez [24] identifies several key suspects as follows: ring leaders (marked
in blue in Fig. 4), members of a field operating group who were closely involved
with the actual carrying out the attack (green), intermediaries (red), as well
as suspects with local roots, ties to foreign Al Queda, and those who supplied
explosives. On comparing the visualizations in Fig. 4 we see that ARL (Fig. 4c) is
able to better preserve the structure and cohesiveness of the core members of the
field operating group in comparison to the radial layout (Fig. 4b). Critically, a key
mastermind in this event, despite having a low centrality (due to communicating

362 M. Raj and R. T. Whitaker

often through an intermediary), is allowed to be close to the center in the ARL.
This arrangement, possible due to the ability of centrality contours to adapt
to the circumstance, preserves the close association between the masterminds
that is lost in the radial layout. We also see that the flexibility of contours in
ARL preserves the locality of various groups, which allows us to see the role of
intermediaries with high centrality in acting as a bridge between various groups.

4.3 Coappearance Network for Characters in Les Miserables

The third dataset is a graph of character associations in the famous French novel
Les Miserables (Fig. 5) [18]. This graph consists of 77 nodes, each representing a
character in the novel, and 254 weighted edges where the weights represent the
number of chapters that feature both characters associated with an edge.

We see the that the main protagonist Valjean (marked in red) is placed
prominently in all three visualizations (Fig. 5). However, other key characters in
the plot such as Inspector Javert (blue) and Cosett (orange), who do not appear
often with characters other than the protagonist (and thus have low betweenness
centrality) are treated differently. While the radial layout relegates them to the
periphery (far from Valjean) (Fig. 5b), MDS (Fig. 5a) paints a conflicting picture
with regard to their centrality, e.g., Cosett’s node almost overlaps with Valjean
despite its low centrality. In contrast, the proposed ARL (Fig. 5c) is able to
coherently convey the low centrality of the Inspector Javert and Cosett, as well
as, their closeness to Valjean. The above issue of distance distortion appears to
be a frequent occurrence in the radial layout due to many characters who have a
low centrality value causing them to end up being packed in the outer periphery.
A case of contrast is that of the character Bishop Myriel (green) who despite
being associated with several characters, is only seen with Valjean once.

5 Discussion

This paper describes an energy-based layout algorithm for graphs, called
anisotropic radial layout, which conveys structural centrality using anisotropic,
radial constraints, while also preserving approximate distances (or structure) in
the graph. In contrast to existing methods for conveying node centrality which
employ an isotropic centrality field [2,6], the proposed method determines an
anisotropic centrality field on which to project nodes. While the energy min-
imization strategy described in this paper allows the solution to deviate from
constraints, one can enforce hard constraints by adding a post processing step
that projects nodes onto the closest position on their associated isocontour.

The key implication of the anisotropic centrality field in our method is that
more central nodes are allowed to be placed further from origin than less central
nodes—without an energy penalty—if they do not lie on a common ray; which
aids our objective of achieving a better balance between visual representations
of centrality and structure than possible with existing methods. Our objective
differs from other prior work that use centrality or continuous fields to visualize
structure of dense graphs [30,31].

Anisotropic Radial Layout for Visualizing Centrality 363

References

1. Bachmaier, C.: A radial adaptation of the sugiyama framework for visualizing
hierarchical information. IEEE Trans. Visual Comput. Graphics 13(3), 583–594
(2007)

2. Baingana, B., Giannakis, G.B.: Embedding graphs under centrality constraints for
network visualization. arXiv preprint arXiv:1401.4408 (2014)

3. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of defor-
mations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

4. Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: Theory and Applica-
tions. Springer Science & Business Media, New York (2005). https://doi.org/10.
1007/0-387-28981-X

5. Brandes, U., Kenis, P., Wagner, D.: Communicating centrality in policy network
drawings. IEEE Trans. Visual Comput. Graphics 9(2), 241–253 (2003)

6. Brandes, U., Pich, C.: More flexible radial layout. In: Eppstein, D., Gansner,
E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 107–118. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11805-0 12

7. Brandes, U., Wagner, D.: Analysis and visualization of social networks. In: Jünger,
M., Mutzel, P. (eds.) Graph Drawing Software, pp. 321–340. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-642-18638-7 15

8. Cleveland, W.S., McGill, R.: Graphical perception: theory, experimentation, and
application to the development of graphical methods. J. Am. Stat. Assoc. 79(387),
531–554 (1984)

9. Dette, H., Neumeyer, N., Pilz, K.F., et al.: A simple nonparametric estimator of a
strictly monotone regression function. Bernoulli 12(3), 469–490 (2006)

10. Dette, H., Scheder, R.: Strictly monotone and smooth nonparametric regression
for two or more variables. Can. J. Stat. 34(4), 535–561 (2006)

11. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: an incremental procedure for
separation constraint layout of graphs. IEEE Trans. Visual Comput. Graphics
12(5), 821–828 (2006)

12. Dwyer, T.: Scalable, versatile and simple constrained graph layout. In: Computer
Graphics Forum, vol. 28, pp. 991–998. Wiley Online Library (2009)

13. Dwyer, T., Koren, Y., Marriott, K.: Constrained graph layout by stress majoriza-
tion and gradient projection. Discrete Mathe. 309(7), 1895–1908 (2009)

14. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw.
1(3), 215–239 (1978)

15. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31843-9 25

16. Hayes, B.: Connecting the dots can the tools of graph theory and social-network
studies unravel the next big plot? Am. Sci. 94(5), 400–404 (2006)

17. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31(1), 7–15 (1989)

18. Knuth, D.E.: The Stanford GraphBase: a platform for combinatorial computing,
vol. 37 (1994)

19. López-Pintado, S., Romo, J.: On the concept of depth for functional data. J. Am.
Stat. Assoc. 104(486), 718–734 (2009)

20. López-Pintado, S., Sun, Y., Lin, J., Genton, M.: Simplicial band depth for multi-
variate functional data. Adv. Data Anal. Classif. 8, 1–18 (2014)

http://arxiv.org/abs/1401.4408
https://doi.org/10.1007/0-387-28981-X
https://doi.org/10.1007/0-387-28981-X
https://doi.org/10.1007/978-3-642-11805-0_12
https://doi.org/10.1007/978-3-642-18638-7_15
https://doi.org/10.1007/978-3-540-31843-9_25

364 M. Raj and R. T. Whitaker

21. McGee, V.E.: The multidimensional analysis of elastic distances. Br. J. Math. Stat.
Psychol. 19(2), 181–196 (1966)

22. Mirzargar, M., Whitaker, R., Kirby, R.: Curve boxplot: generalization of boxplot
for ensembles of curves. IEEE Trans. Visual Comput. Graphics 20(12), 2654–2663
(2014)

23. Raj, M., Mirzargar, M., Ricci, R., Kirby, R.M., Whitaker, R.T.: Path boxplots: a
method for characterizing uncertainty in path ensembles on a graph. J. Comput.
Graph. Stat. 26(2), 243–252 (2017)

24. Rodŕıguez, J.A., Rodŕıguez, J.A.: The March 11th terrorist network: in its weakness
lies its strength (2005)

25. Rousseeuw, P.J., Ruts, I., Tukey, J.W.: The bagplot: a bivariate boxplot. Am. Stat.
53(4), 382–387 (1999)

26. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603
(1966)

27. Schreiber, F., Dwyer, T., Marriott, K., Wybrow, M.: A generic algorithm for layout
of biological networks. BMC Bioinf. 10(1), 375 (2009)

28. Sun, Y., Genton, M.G.: Functional boxplots. J. Comput. Graph. Stat. 20(2), 316–
334 (2011)

29. Tukey, J.W.: Mathematics and the picturing of data (1975)
30. Van Ham, F., Wattenberg, M.: Centrality based visualization of small world graphs.

In: Computer Graphics Forum, vol. 27, pp. 975–982. Wiley Online Library (2008)
31. Van Liere, R., De Leeuw, W.: Graphsplatting: visualizing graphs as continuous

fields. IEEE Trans. Visual Comput. Graphics 9(2), 206–212 (2003)
32. Zachary, W.W.: An information flow model for conflict and fission in small groups.

J. Anthropol. Res. 33(4), 452–473 (1977)
33. Zuo, Y., Serfling, R.: General notions of statistical depth function. Ann. Statist.

28, 461–482 (2000)
34. Zweig, K.A., et al.: Network analysis literacy. In: MMB & DFT 2014, p. 3 (2014)

Computing Storyline Visualizations
with Few Block Crossings

Thomas C. van Dijk, Fabian Lipp(B) , Peter Markfelder,
and Alexander Wolff

Lehrstuhl für Informatik I, Universität Würzburg, Würzburg, Germany
fabian.lipp@uni-wuerzburg.de

http://www1.informatik.uni-wuerzburg.de/en/staff/

Abstract. Storyline visualizations show the structure of a story, by
depicting the interactions of the characters over time. Each character is
represented by an x-monotone curve from left to right, and a meeting is
represented by having the curves of the participating characters run close
together for some time. There have been various approaches to drawing
storyline visualizations in an automated way. In order to keep the visual
complexity low, rather than minimizing pairwise crossings of curves, we
count block crossings, that is, pairs of intersecting bundles of lines.

Partly inspired by the ILP-based approach of Gronemann et al. [GD
2016] for minimizing the number of pairwise crossings, we model the
problem as a satisfiability problem (since the straightforward ILP formu-
lation becomes more complicated and harder to solve). Having restricted
ourselves to a decision problem, we can apply powerful SAT solvers to
find optimal drawings in reasonable time. We compare this SAT-based
approach with two exact algorithms for block crossing minimization,
using both the benchmark instances of Gronemann et al. and random
instances. We show that the SAT approach is suitable for real-world
instances and identify cases where the other algorithms are preferable.

1 Introduction

A storyline visualization is a particular abstraction of the structure of a narrative.
A good visualization reveals the underlying structure by removing the details of
how the story is presented and, instead, focusing on which entities interact as
time passes within the narrative. This type of diagram was originally conceived
to visualize meetings between characters in movies and, though it has since
been interpreted more generally as an elegant way to visualize a sequence of
interconnected interactions over time, the term storyline visualization remains.

In a storyline visualization, each character is represented by an x-monotone
curve in the plane; we will refer to curves and characters interchangeably. Time
goes from left to right, and a meeting between a set of characters (occurring for

The full version of this paper is available on arXiv [4].
F. Lipp was supported by Cusanuswerk.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 365–378, 2018.
https://doi.org/10.1007/978-3-319-73915-1_29

http://orcid.org/0000-0001-7833-0454
http://orcid.org/0000-0001-5872-718X

366 T. C. van Dijk et al.

the duration of a given time interval) is represented by a corresponding region
in the plane where those curves come closely together. This drawing style is
commonly attributed to Munroe [12], who represented several popular movies
in this fashion. See Fig. 1 for an example drawn using our system.

Block Crossings in Storyline Visualization. When formalizing the drawing of
storyline visualizations as an optimization problem, it is natural to minimize the
number of crossings among the characters. As with graph drawing in general,
this is not the be-all-end-all objective. For example, two groups of curves crossing
each other in a grid structure are easier to understand visually than the same
number of crossings scattered wildly throughout the drawing. In this paper we
continue the study of such block crossings in storyline visualization.

Intuitively, a block crossing consists of two sets of locally parallel curves inter-
secting each other without any further curves in the crossing area [3]. (A formal
definition is given below.) In the design of his movie narrative charts, Munroe
seems aware (at least implicitly) of the concept of block crossings. Indeed, the
Gestalt principle of “continuity” or “good continuation” [14] suggests that block
crossings are easier to read, but what exactly makes the most readable drawing
should be analyzed in proper user studies. Here we focus on practical computa-
tional aspects, having decided to minimize block crossings.

Concurrent Meetings. An important modeling decision that the literature has
handled variously is whether it is possible for multiple meetings to occur at over-
lapping time intervals. Some papers define the input to the storyline visualization
problem such that these concurrent meetings are impossible, for example by rep-
resenting the meetings as a totally ordered set. Whether or not it is important
to support concurrent meetings is open for discussion. One could, for example,
represent each scene of a movie as a separate meeting that includes precisely
the characters that participate: then meetings do not overlap. However, this is a
rather mechanical interpretation of what storyline visualizations are for. Indeed,
rather than strictly following the order of appearance in the movies, Munroe’s
“movie narrative charts” [12] visualize the spatio-temporal structure underly-
ing the story, rather than the presentation of the story: the x-axis in his charts
represents time within the story, not time in the movie.1 This paper supports
concurrent meetings.

Previous Work. Tanahashi and Ma [13] computed storyline visualizations auto-
matically and discuss various aesthetic criteria to be optimized. Kim et al. [9]
used storylines to visualize genealogical data: meetings correspond to marriages
and special techniques are used to indicate child–parent relationships.

1 For example, Gandalf meets Éomer while the host of elves arrives at Helm’s Deep. In
the movie, we learn about this only afterward; Munroe’s visualization of The Lord
of the Rings [12] makes clear that this is concurrent.

Computing Storyline Visualizations with Few Block Crossings 367

Kostitsyna et al. [11] formalized the problem of crossing minimization for
storylines. Their aim was to minimize the number of pairwise crossings (that is,
not block crossings) in storylines. They proved the problem NP-hard, presented
an FPT algorithm, and gave an upper bound on the number of crossings in a
restricted setting. Gronemann et al. [8] designed an integer linear program (ILP)
to minimize the number of pairwise crossings and evaluated it experimentally.
Their approach is able to solve instances with 10–20 characters and up to about
50 meetings from real-world movies (and to a lesser degree, books) to optimality
in a few seconds.

In an earlier paper [3], we introduced the concept of minimizing block cross-
ings for drawing storylines. We showed that block crossing minimization in sto-
rylines is NP-hard. For special cases, we provided an approximation algorithm.
Of particular relevance to the current paper are two exact algorithms, one of
which is fixed-parameter tractable (FPT) in the number of characters.

The current paper improves on the above in two ways. Firstly, we have devel-
oped a new SAT-based algorithm for computing optimal storyline visualizations.
We note that SAT formulations have been used before in graph drawing, for
example by Bekos et al. [2]. Whereas we previously restricted ourselves to meet-
ings that are points in time, we now handle concurrent meetings. (This more
general problem is clearly NP-hard as well.) Secondly, we have now implemented
the exact algorithms of our earlier paper [3], which enables an experimental eval-
uation and comparison. We see that the new algorithm is able to handle larger
realistic instances than our previous algorithms, but that the FPT algorithm
also has practical relevance.

Problem Definition. We generalize the problem statement compared to our pre-
vious paper [3] in order to handle the instances used by Gronemann et al. [8]. In
this more general statement, we support meetings that span a certain amount
of time (instead of allowing only instantaneous meetings); thus, meetings can
overlap with other meetings. Additionally, we allow for birth and death of char-
acters, that is, each character is only drawn in the storyline during its lifespans
(being a set of time intervals).

A storyline S is a triple (C,M,E) where C = {1, . . . , κ} is a set of characters,
M = {m1,m2, . . . ,mn} is a set of meetings, and E : C → P(IR) describes the
lifespans of a character with IR being the set of intervals of real numbers. A
meeting mj is a triple (sj , ej , Cj) where sj ∈ R is the start time of the meeting,
ej ∈ R is the end time of the meeting, sj < ej , and Cj ⊆ C contains the involved
characters. A meeting mj is said to be active at time t ∈ R if t ∈ [sj , ej). The
set E(i) = {[b1i , d

1
i), . . . , [b

ηi

i , dηi

i)} contains the lifespans of character i, that is,
ηi disjoint time intervals, in which the character is alive. For each of these time
intervals (1 ≤ ι ≤ ηi), bι

i describes the “birth” while dι
i describes the “death”

of the character. Character i is said to be alive at time t ∈ R if t ∈ I for some
I ∈ E(i).

We forbid that a character participates in two meetings at the same time:
in our drawing style, it wouldn’t be possible to distinguish the two groups.
More formally, for any two meetings mj ,m� with sj < s� < ej , we require

368 T. C. van Dijk et al.

that Cj ∩ C� = ∅. Obviously, character i can only be part of a meeting mj if
i is alive during the time span of the meeting, that is, if [sj , ej) ⊆ I for some
I ∈ E(i). In particular, a character cannot be born or die during a meeting.

A solution for a storyline instance S = (C,M,E) consists of a sequence
Π = [π1, . . . , πλ] of permutations of subsets of C and a nondecreasing function
A : R → {1, . . . , λ} describing the connection between points in time and the
permutations in the solution. A solution is admissible if it fulfills the following
conditions.

(a) For any point in time t ∈ R,
(i) πA(t) contains exactly the characters that are alive at time t, and
(ii) for any meeting that is active at time t, its set of characters must be a

contiguous block in πA(t).
(b) For p ∈ {2, . . . , λ}:

(i) If the character sets of πp−1 and πp are identical, then either πp−1 and πp

are identical or they differ in a block crossing, that is, two adjacent blocks
of characters switch their order. Suppose that, after renumbering, πp−1 =
〈1, . . . , a, . . . , b, . . . , c, . . . , κ〉. Then exchanging the two adjacent blocks
〈a, . . . , b〉 and 〈b + 1, . . . , c〉 yields the permutation πp = 〈1, . . . , a − 1, b +
1, . . . , c, a, . . . , b, c + 1, . . . , κ〉.

(ii) If the character sets of πp−1 and πp are not identical, then their intersec-
tion must be in the same order in πp−1 and in πp. They need not remain
contiguous.

Now we can formally state the problem that we consider in this paper, General
Storyline Block Crossing Minimization: Given a storyline instance (C,M,E),
find an admissible solution (Π,A) that minimizes the number of block crossings.

We define E to be the finite set of events, that is, points in time, at which
a meeting starts or ends or a character is born or dies. Our aim is to find the
smallest number λOPT of permutations that accommodates all events subject to
the constraints above. This also minimizes the number of block crossings bcOPT

since bcOPT = λOPT − |E ′| + 1, where E ′ denotes the points in time at which at
least one character is born or dies (including the birth of the first character and
death of the last character in the storyline).

Our Results. Partly inspired by the ILP from Gronemann et al. [8], we developed
a SAT formulation of the problem that can be used to decide whether there is a
solution using a fixed number of permutations (and, hence, block crossings); see
Sect. 2. Initial experiments with a similar ILP model performed poorly and led
us to explore SAT solvers. We experimentally compare our new SAT approach
to the two exact algorithms from our previous paper [3]; see Sect. 3. The source
code of all three implementations is available online2.

2 http://www1.pub.informatik.uni-wuerzburg.de/pub/data/storylines/.

http://www1.pub.informatik.uni-wuerzburg.de/pub/data/storylines/

Computing Storyline Visualizations with Few Block Crossings 369

2 SAT Formulation for the Decision Problem

We present a SAT formulation that encodes, for a given storyline S and an
integer λ, whether there is a solution whose sequence of permutations consists
of exactly λ elements. From a satisfying truth assignment we can derive the
solution for S. The optimal number of block crossings can then be found using
this decision problem by searching for the minimum satisfiable λ, for example
using linear or exponential search. Our formulation is inspired by the ILP of
Gronemann et al. [8], which minimizes the number of pairwise crossings in a
storyline visualization.

In the following, we do not always describe the clauses in conjunctive normal
form, using other operators where this improves readability. The transformation
into conjunctive normal form is straightforward. For the sake of completeness,
the result of this transformation is shown in the full version [4, Appendix A]. In
the following, unless specified or bound otherwise, the variables and clauses are
quantified over all i, j, k ∈ C with i
= j, i
= k, j
= k and all r, p ∈ {1, . . . , λ},
r
= p, and � ∈ {1, . . . , μ}, where μ is the number of meeting groups, a concept
we introduce later on.

Describing the Permutations. To describe a solution, we start with the sequence
of permutations Π = [π1, . . . , πλ]. Each permutation πr is represented by
Boolean variables of type xr

ij . These variables describe the relative order of the
characters in the permutation. The truth assignment of variable xr

ij indicates
whether character i is above character j in permutation πr. To handle “dead”
characters, we introduce another set of variables or

i . Character i is omitted in
permutation πr if and only if or

i is true. The clauses described here and under
the following two headers (constraints for permutations, crossings between char-
acters, and block crossings) are only active if all involved characters are available
(that is, ¬or

i) in the permutation considered. We model this by adding or
i as a

positive literal to each clause for each affected character i.
To ensure that the variables describe a permutation, we add the following

clauses. We guarantee antisymmetry by xr
ij ⇔ ¬xr

ji. We ensure transitivity by
xr

ij ∨ xr
jk ∨ xr

ki and ¬xr
ij ∨ ¬xr

jk ∨ ¬xr
ki; this forces one of the three variables to

have a different value than the others.

Crossings Between Characters. To simplify the treatment of crossings, we intro-
duce variables that indicate when they occur. For r ∈ {1, . . . , λ−1}, variable χr

ij

encodes whether characters i and j have a crossing between permutations r and
r + 1. This is the case precisely if they change their relative order between the
two permutations, that is: χr

ij ⇔ (xr
ij
= xr+1

ij) for all r ∈ {1, . . . , λ − 1}. Note
that this – together with the previously described clauses – implies χr

ij ⇔ χr
ji.

(Recall that constraints involving omitted characters are “switched off” using
the variables of type or

i).
According to our problem definition we have to ensure that if there is an

addition or removal of characters between successive permutations, then there
can be no block crossing. So we forbid crossings for all pairs of characters between

370 T. C. van Dijk et al.

permutation πr and πr+1 if a character i is added or removed between these
permutations: (or

i
= or+1
i) ⇒ ¬χr

jk for all r ∈ {1, . . . , λ − 1}.

Block Crossings. By the problem definition, there is at most one block crossing
between any two successive permutations πr and πr+1. We describe this block
crossing by partitioning the character set of permutation πr into three sets Fr,
Gr, and Hr. For simplicity, we drop the subscript r in the following. We express
the membership of a character i in any of these sets using variables fr

i , gr
i and

hr
i , respectively. Let G and H be the two sets of characters that are involved

in the potential block crossing between πr and πr+1, and let F be the set of
characters that are not affected by the crossing. If there is no block crossing
between the two permutations, at least one of the two sets G and H is empty.

First we add clauses that ensure that every character is in one of the three
sets, that is, exactly one of the variables fr

i , gr
i , and hr

i is true. Next, the charac-
ters of G and the characters of H must each form a contiguous block. We enforce
this by requiring that a character j is in G if j lies between two characters i and k
in G: xr

ij ∧xr
jk ∧gr

i ∧gr
k ⇒ gr

j . Similarly, for H we require xr
ij ∧xr

jk ∧hr
i ∧hr

k ⇒ hr
j .

We ensure that the blocks G and H are adjacent, by requiring that no char-
acter in F lies between characters in G and in H: xr

ij ∧ xr
jk ∧ gr

i ∧ hr
k ⇒ ¬fr

j .
Additionally, we prescribe the order of the blocks G and H in the permutation
by restricting the characters in G to be above the characters of H: gr

i ∧hr
j ⇒ xr

ij .
Finally, we ensure that two characters cross each other if and only if they

participate in the block crossings, that is, if one of the characters is in G and
the other is in H: gr

i ∧ hr
j ⇔ χr

ij for all r ∈ {1, . . . , λ − 1}.

Meeting Groups. So far we have introduced various structural constraints to our
variables, but we haven’t yet established the connection to our input storyline S.
We implement this connection now through the concept of meeting groups. A
meeting group is a set of meetings that contain a common point in time. Instead
of the meeting triples (that is, a set of characters, start time, and end time), we
only consider the character sets for the meeting group. Characters who are alive
at that time, but are not part of any meeting, are added to the meeting group
as a singleton meeting.3 We transform the storyline S to a sequence of meeting
groups M = [M1, . . . ,Mμ] by sorting the events in E and putting together the
meetings and live characters for each event in the correct order. We use M only
to construct our SAT instance; afterward we transform the satisfying assignment
back into a solution for S.

We add variables that connect these meeting groups to the permutations of
the solution. The variable qr

� indicates whether the meeting group M� is assigned
to permutation πr. We require that every meeting group is assigned to exactly
one permutation, that is, every group is assigned somewhere (

∨λ
r=1 qr

�) and no
group is assigned twice (¬(qr

� ∧ qp
�)).

The meeting groups must be assigned to permutations in the correct order.
If we map M� to πr, M�−1 has to be assigned to the same permutation or an
3 This concept of meeting groups is similar to the trees constructed by Gronemann

et al. [8] to generate MLCM-TC instances.

Computing Storyline Visualizations with Few Block Crossings 371

earlier one: qr
� ⇒ ∨r

j=1 qj
�−1 for � ∈ {2, . . . , μ}. We can assume that the first

meeting group is assigned to the first permutation, as it is not optimal to use
block crossings before the first meetings. Therefore, we set q11 to true.

Next, we handle the birth and death of characters. Let Li be the meeting
groups that contain character i. A permutation πr should contain exactly the
characters that are contained in the assigned meeting groups: those are precisely
the alive characters. We add the clause qr

� ⇒ ¬or
i if M� ∈ Li and the clause

qr
� ⇒ or

i if M� /∈ Li. This makes sure that characters involved in meetings must
be present and dead characters are omitted.

Note that we allow permutations to not have any meeting groups assigned to
them. This is necessary, for example to allow multiple block crossings between
successive meetings (which may be necessary in an optimal drawing [3]). How-
ever, such “loose” permutations can be exploited to avoid block crossings by
omitting all characters for one permutation and reintroducing them afterward
in an arbitrary order. To forbid this, for r = 2, . . . , λ, if no meeting group is
assigned to permutation πr, we do not allow characters to be removed or added
in πr:

∧μ
�=1 ¬qr

� ⇒ (or
i = or−1

i).
Finally, we come to the actual storyline visualization constraint: characters

in a meeting must form a contiguous group in the corresponding permutation.
We add clauses that prohibit characters that are not part of a meeting from
being between characters in the meeting. That is, if characters i and k are part
of a certain meeting in M� and j is not, we have qr

� ⇒ (xr
ij = xr

kj).
This concludes our SAT formulation. If the resulting formula has a satisfy-

ing assignment, a solution to our storyline block crossing minimization problem
exists, and it is easy to extract the permutations. To get the function A that
maps the time to the permutations, we have to remember which meeting group
corresponds to which point in time.

Counting the quantifiers in the above construction shows that there are
O(λ(κ2 +μ)) variables and O(λμ(λ+κ3)) clauses. The conjunctive normal form
of this SAT formula can clearly be constructed from the storyline in polynomial
time.

3 Experimental Evaluation

We refer to the approach from Sect. 2 as Sat. Additionally, we have implemented
two exponential-time exact algorithms that minimize block crossings [3]. The
first is a branching algorithm that searches for the shortest sequence of block
crossings using iterative deepening depth-first search (ItD). This search strategy
ensures low memory usage. The second algorithm is fixed-parameter tractable
in the number of characters and works by performing a breadth-first search
in an exponentially-large state graph. Note that these two algorithms do not
support concurrent meetings, whereas Sat does. We also consider an algorithm
by Gronemann et al. [8] that optimizes pairwise crossings.

372 T. C. van Dijk et al.

Implementation Details. All implementations are written in C++, with the excep-
tion of some “driver” code in Python for Sat. Comparable effort has been put
into optimizing each program. Memory usage was not optimized, but there are
no flagrant memory inefficiencies.

Sat uses the SAT formulation from Sect. 2 and performs exponential search
on λ. We use Python to write CNF SAT instances in DIMACS format, to run
minisat [5,6] on these instances, and to perform the search; the exponential
search uses factor 2. We have used version 2.2.0 of minisat.4. As runtime of
Sat, we report the total time spent by minisat. This includes all “real” work,
as well as launching minisat for each formula and the time it spends reading
the DIMACS files; it does not include the runtime of our Python code, which
has unnecessarily-poor performance and would be unfair in comparison to the
other algorithms.

ItD and Fpt are implemented in C++ following the description in [3], includ-
ing the data structure for block crossings and checking meetings. For ItD, we
branch and “unbranch” on a single data structure rather than making copies.
Fpt performs a breadth-first search in a large graph. We store the nodes explic-
itly in a flat array addressed by Lehmer codes [10]: this requires Θ(κ!n) space,
but enables efficient lookup. The edges of the graph are enumerated lazily using
the “forward pointers” from the original paper.

All runtime experiments have been performed on an Intel® Core™ i5-2400
CPU at 3.10 GHz with 8 GB of RAM and running Windows 7. This configuration
is in some contrast to the experimental setup of Gronemann et al.: a 2 × 10-core
machine with 128 GB of RAM. Our implementations are single-threaded; their
implementation, being based on CPLEX, presumably makes use of the available
cores, but this is not reported explicitly.

Real-World Instances. We use the same real-world instances as Gronemann
et al. [8]. These include three movies and chapters from several books. See Fig. 1

Fig. 1. A snippet of a block-crossing optimal drawing of The Matrix based on the
sequence of permutations found by Sat, and the start and end times of the meetings
(visualized by the gray blocks). The drawing reflects the linear order of the events but
not their absolute points in time.

4 Slightly modified to measure peak memory usage on Windows.

Computing Storyline Visualizations with Few Block Crossings 373

for a block-crossing optimal drawing of The Matrix computed using Sat. More
drawings computed using Sat are found in the full version [4, Appendix B].

Table 1 compares our block crossing optimization to solutions optimized for
pairwise crossings. It shows that the optimal number of block crossings is much
lower than the optimal number of pairwise crossings. This decrease is not just
counting things differently: Gronemann et al.’s drawing of The Matrix, for exam-
ple, has the optimal number of 12 crossings and happens to have 8 block cross-
ings, whereas we give an optimal drawing with 4 block crossings. Our drawing
happens to have 33 pairwise crossings: this presents an interesting trade-off.

Table 1. Comparison of pairwise crossings (cr) and block crossings (bc) on movie
instances; subscript OPT indicates the value that the algorithm optimized. The run-
time of both approaches is similar, even on rather different machines (see Sect. 3 –
“Implementation Details”.).

Instance Block crossings using Sat Gronemann et al. [8]

λOPT Memory cr bcOPT Time [s] crOPT bc Time [s]

Star Wars 20 79 MB 54 10 3.77 39 18 0.99

The Matrix 18 67 MB 21 4 2.86 12 8 0.77

Inception 23 39 MB 51 12 1.54 35 20 2.02

The book instances unfortunately present a strong challenge for our algo-
rithms. Even though there are no concurrent meetings, the number of characters
immediately disqualifies Fpt and the optimum is too large for ItD. This leaves
Sat, but these instances (as modeled in Gronemann et al.) contain an extreme
number of ‘births’ and ‘deaths.’ While this is convenient for their algorithm
(or at least: not detrimental), our SAT formulation requires a large number of
permutations to handle this. One might hope that – even though large – these
formulas are still relatively easy for minisat: alas, they are not.

Finally, we look at the exponential search that Sat uses to find the optimal
number of permutations. If testing a number of permutations takes exponential
time (we are solving a SAT instance, after all), a single overestimate would be
disastrous. However, on the real-world instances we observe fairly modest time
for overestimated λ (see Fig. 2). This means exponential search can have a sig-
nificant advantage over linear search. On the movie instances, using exponential
search is indeed faster than linear search, but just by about a third.

Random Instances. We test using random instances of two kinds. The first are
uniform instances and these are the same as in previous work [3]. First, pick κ,
n, and a probability p. (We report here on p = 0.5.) Then generate a meeting
by picking, independently at random with probability p, whether each character
is in the meeting. Reject meetings with fewer than two characters, and repeat
until there are n meetings. We let all characters be alive at all times, so we can
run all three algorithms.

374 T. C. van Dijk et al.

0 20 40
0

1

2

OPT

↓

The Matrix

Permutations

T
im

e
[s
]

0 20 40
0

1

2

OPT

↓

Star Wars

Permutations

0 20 40
0

1

2

OPT

↓

Inception

Permutations

Fig. 2. Runtime of minisat for different numbers of permutations on the movie
instances. Recall that the number of permutations does not equal the number of block
crossings.

0 200 400 600 800 1,000
0

0.5

1 κ = 5

κ = 4

Number of meetings

T
im

e
on

10
0
in
st
an

ce
s
[s
]

0 200 400 600 800 1,000
0

10

20

κ = 5

κ = 6
κ = 7

Number of meetings

T
im

e
on

10
0
in
st
an

ce
s
[s
]

Fig. 3. Total runtime of Fpt on 100 random instances from the uniform model with
p = 0.5, increasing number of meetings, and κ ∈ {3, 4, 5, 6, 7}.

Figure 3 shows the runtime of Fpt on these instances as a function of n, for
various numbers of characters. It confirms the fixed-parameter tractable runtime
in practice. Note that the plot reports the runtime for solving 100 instances. The
other algorithms have trouble handling 1000 meetings in any reasonable setting;
with κ = 5, Fpt solves 100 such instances in little more than a second. However,
the explosive dependence on κ is also clear.

0 50 100
0

0.5

1

1.5

2
κ = 5

Number of meetings

T
im

e
on

1
in
st
an

ce
[s
]

0 20 40
0

20

40

60

80

100
κ = 9

Number of meetings

T
im

e
on

1
in
st
an

ce
[s
]

Fig. 4. Circular marks: runtime of Sat on instances from the uniform model with
p = 0.5, and κ = 5 (left) and κ = 9 (right). Crosses, left plot: runtime of ItD. It is
highly variable and practically dominated by Sat.

Computing Storyline Visualizations with Few Block Crossings 375

Figure 4 similarly shows the runtime of Sat. Since there is more variance,
we show 10 data points for every number of meetings, rather than the sum. For
κ = 5, Sat can easily handle 100 meetings: except for an outlier, we are not yet
hit by a runtime explosion. Note, however, that it is significantly slower than
Fpt: approximately three orders of magnitude at n = 100. As for ItD: it is so
slow on these instances that its runtime escapes the plot almost immediately.

For κ = 9, a different picture develops. Firstly, Sat experiences difficulty as
the number of meetings increases. With instances approaching 50 meetings, the
runtime starts to explode. For these instances, the runtime of Fpt is similar
since it too has become slow at κ = 9. The difference is that, if we are willing to
wait longer, Sat can be run on instances with more than 9 characters, whereas
Fpt is quite fundamentally limited by its memory usage (see “Memory Usage”).

Yet another picture emerges when we look at instances that have a solu-
tion with few block crossings. To consider such instances is fair since in practice
we are particularly interested in instances that can be realized with few block
crossings. First, pick κ, n, a probability p, and a number β: we generate ran-
dom instances that have optimum at most β as follows. Start from the identity
permutation and sample β uniformly-random block crossings: this results in a
sequence of β + 1 permutations. Now generate n meetings: pick, for each one
independently, one of the permutations at random and then c adjacent charac-
ters from this permutation at random, where c is binomially distributed with
success probability p so as to match the uniform model; put these meetings in
the order of the permutations they come from. By construction, these instances
have a solution with (at most) β block crossings.

Figure 5 shows that Sat and ItD can solve much larger instances of this
kind. This is as expected, since β directly bounds the branching depth of ItD
and the number of permutations required by Sat. We see that Sat practically
dominates ItD; the only reason to use ItD is if no high-quality SAT solver is
available, or if memory usage is important (the redeeming quality of ItD).

0 50 100 150 200
0

1

2
κ = 5↪ β ≤ 5

Number of meetings

T
im

e
on

1
in
st
an

ce
[s
]

0 50 100 150 200
0

0.5

1

1.5

2
κ = 10, β ≤ 10

Number of meetings

T
im

e
on

1
in
st
an

ce
[s
]

Fig. 5. Circular marks: runtime of Sat on random instances from the small-opt model
with p = 0.5, and κ = 5 (left) and κ = 10 (right). Crosses, left plot: runtime of ItD.
It is highly variable and practically dominated by Sat.

376 T. C. van Dijk et al.

Memory Usage. Table 2 shows that the (peak) memory usage of the algorithms is
quite different. ItD is implemented to branch with a single data structure. This
is good for runtime (no copying), and has the additional benefit that memory
usage is very low. In fact, it is hardly impacted by recursion depth since we use
iterative deepening depth-first search and, rather than having the entire data
structure at each level of the recursion, there is only a small stack frame.

The memory usage of Sat increases significantly with λ and the overhead is
more than for ItD: this is because of the large, explicitly-stated SAT formulas
and the use of a general-purpose SAT solver.

For small κ, Fpt uses less memory than Sat due to the latter’s overhead.
However, Fpt clearly uses the most memory as κ increases, since it quite fun-
damentally relies on the memoization of a large recurrence. Its memory usage
in fact limits the number of characters that can be supported – in practice by
the available memory, but even more generally by the memory architecture of
normal environments.

Table 2. Memory usage in MB on uniform random instances (p = 0.5) with 100
meetings and a variable number of characters κ. Only Sat’s memory usage varies
considerably over different instances with the same number of characters.

κ ItD Sat Fpt

5 0.69 13–31 1.2

6 0.69 44–48 1.7

7 0.69 64–76 8.3

8 0.69 110–218 64.0

9 0.70 338–422 645.9

1000 4.00 × ×

Concluding Remarks. We conclude with some practical advice about picking an
algorithm. The first consideration is a hard constraint: if concurrent meetings
are required, ItD and Fpt are disqualified and Sat remains as a fine default.
We now assume concurrent meetings are not required.

If the number of characters is small, the use of Fpt is clearly preferred.
This algorithm can truly be considered fixed-parameter tractable in the number
of characters κ. However, the dependence on κ includes factorial space, which
makes it impractical to run the algorithm on personal computers beyond κ = 10
and impossible to run at all for even a few characters more than that. Many
real-world instances have too many characters for Fpt.

The runtime of both ItD and Sat depends heavily on the number of block
crossings in the optimum. For very small optimum, ItD can be faster, but only
if the number of characters is also quite small: there is still the branching factor
of κ!. If memory is a problem and the optimum is small, then ItD is an option,
but in general Sat is vastly preferable.

Computing Storyline Visualizations with Few Block Crossings 377

As a final remark, we note that all these implementations are single-threaded,
and as such achieve only “25%” utilization on our quad-core test machine. ItD
could be trivially parallelized by dividing the search space; Fpt is trickier to
parallelize from an engineering perspective. It would be possible to use a par-
allelized SAT solver, like PMSat [7] or HordeSAT [1]. However, it is not clear
a priori how effective those would be for our specific SAT formulas.

4 Conclusion

In this paper we have presented a SAT-based algorithm for computing block-
crossing optimal storyline visualizations and extensive experimentation on ran-
dom instances. We have demonstrated that on some real-world instances (in par-
ticular, the movies), Sat has runtime similar to the ILP of Gronemann et al., who
optimize pairwise crossings. For other instances (the books), Sat fares poorly.
We have also evaluated implementations of two further algorithms for storyline
block crossing optimization.

For future work, it would be interesting to perform further algorithm engi-
neering on Sat. In particular, it may be possible to handle the birth/death of
characters more efficiently or to better integrate with SAT algorithms.

In a different direction, one might use an ILP solver on a model very similar
to that of Sect. 2. This would, for example, enable us to minimize the number
of pairwise crossings subject to the number of block crossings being optimal.
However, preliminary experiments showed very poor performance.

From a graphic design perspective, optimizing for block crossings intuitively
makes sense. However, we are not aware of any user studies that investigated
whether block crossings are good, and what the trade-offs are. For example, is
a 4 × 4 block crossing equally bad as a 2 × 8 block crossing?

Acknowledgments. We thank Martin Gronemann for providing the input files used
in the experiments of [8].

References

1. Balyo, T., Sanders, P., Sinz, C.: HordeSat: a massively parallel portfolio SAT solver.
In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 156–172. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 12

2. Bekos, M.A., Kaufmann, M., Zielke, C.: The book embedding problem from a
SAT-solving perspective. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS,
vol. 9411, pp. 125–138. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27261-0 11

3. van Dijk, T.C., Fink, M., Fischer, N., Lipp, F., Markfelder, P., Ravsky, A., Suri, S.,
Wolff, A.: Block crossings in storyline visualizations. J. Graph Algorithms Appl.
21(5), 873–913 (2017). https://doi.org/10.7155/jgaa.00443

4. van Dijk, T.C., Lipp, F., Markfelder, P., Wolff, A.: Computing storyline visual-
izations with few block crossings. arXiv report http://arxiv.org/abs/1709.01055
(2017)

https://doi.org/10.1007/978-3-319-24318-4_12
https://doi.org/10.1007/978-3-319-27261-0_11
https://doi.org/10.1007/978-3-319-27261-0_11
https://doi.org/10.7155/jgaa.00443
http://arxiv.org/abs/1709.01055

378 T. C. van Dijk et al.

5. Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up
SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501,
pp. 272–286. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
72788-0 26

6. Eén, N., Sörensson, N.: MiniSat SAT solver (2003). http://minisat.se
7. Gil, L., Flores, P., Silveira, L.M.: PMSat: a parallel version of MiniSAT. J. Satisf.

Bool. Model. Comput. 6, 71–98 (2008). https://satassociation.org/jsat/index.php/
jsat/article/view/70

8. Gronemann, M., Jünger, M., Liers, F., Mambelli, F.: Crossing minimization in sto-
ryline visualization. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801,
pp. 367–381. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-
2 29

9. Kim, N.W., Card, S.K., Heer, J.: Tracing genealogical data with TimeNets. In:
Proceedings of the International Conference on Advanced Visual Interfaces (AVI
2010), pp. 241–248 (2010). https://doi.org/10.1145/1842993.1843035

10. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Search-
ing, 2nd edn. Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)

11. Kostitsyna, I., Nöllenburg, M., Polishchuk, V., Schulz, A., Strash, D.: On minimiz-
ing crossings in storyline visualizations. In: Di Giacomo, E., Lubiw, A. (eds.) GD
2015. LNCS, vol. 9411, pp. 192–198. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27261-0 16

12. Munroe, R.: Movie narrative charts (2009). https://xkcd.com/657/. Accessed 16
Feb 2017

13. Tanahashi, Y., Ma, K.: Design considerations for optimizing storyline visualiza-
tions. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012). https://doi.
org/10.1109/TVCG.2012.212

14. Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt. II. Psychologische
Forschung 4(1), 301–350 (1923)

https://doi.org/10.1007/978-3-540-72788-0_26
https://doi.org/10.1007/978-3-540-72788-0_26
http://minisat.se
https://satassociation.org/jsat/index.php/jsat/article/view/70
https://satassociation.org/jsat/index.php/jsat/article/view/70
https://doi.org/10.1007/978-3-319-50106-2_29
https://doi.org/10.1007/978-3-319-50106-2_29
https://doi.org/10.1145/1842993.1843035
https://doi.org/10.1007/978-3-319-27261-0_16
https://doi.org/10.1007/978-3-319-27261-0_16
https://xkcd.com/657/
https://doi.org/10.1109/TVCG.2012.212
https://doi.org/10.1109/TVCG.2012.212

MLSEB: Edge Bundling Using Moving Least
Squares Approximation

Jieting Wu, Jianping Zeng, Feiyu Zhu, and Hongfeng Yu(B)

University of Nebraska-Lincoln, Lincoln, NE 68588, USA
{jwu,jizeng,fzhu,hfyu}@cse.unl.edu

Abstract. Edge bundling methods can effectively alleviate visual clut-
ter and reveal high-level graph structures in large graph visualization.
Researchers have devoted significant efforts to improve edge bundling
according to different metrics. As the edge bundling family evolve rapidly,
the quality of edge bundles receives increasing attention in the literature
accordingly. In this paper, we present MLSEB, a novel method to gener-
ate edge bundles based on moving least squares (MLS) approximation.
In comparison with previous edge bundling methods, we argue that our
MLSEB approach can generate better results based on a quantitative
metric of quality, and also ensure scalability and the efficiency for visu-
alizing large graphs.

Keywords: Edge bundling · Graph visualization
Moving least squares · Visualization quality

1 Introduction

Traditional exploration methods of large graphs are often overwhelmed by severe
visual clutter such as excessive vertex overlappings and edge crossings. Edge
bundling is one of the effective approaches to reducing edge crossings in graph
drawings. The main idea of edge bundling is to visually merge edges with sim-
ilar features (e.g., position, direction, and length) such that edge crossings are
significantly reduced and the readability of graph drawings is improved.

Substantial efforts have been made to develop various edge bundling algo-
rithms to improve visual results. The current edge bundling family have pro-
vided a diverse graph layouts that work with a wide spectrum of applications
and domains based on different strategies or metrics [22]. As the edge bundling
techniques develop rapidly, the information visualization community is putting
increasing interests in evaluating the results of edge bundle drawings. The read-
ability and faithfulness criteria are often used to evaluate graph drawings. Edge
bundling helps simplify graph drawings and increase readability, but yields dis-
tortion that makes it hard to preserve the faithfulness of original graphs [29]. To
holistically address the evaluation of both readability and faithfulness for edge
bundling visualization, Lhuillier et al. [22] suggested a general metric where a
ratio of clutter reduction to amount of distortion is computed to measure the
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 379–393, 2018.
https://doi.org/10.1007/978-3-319-73915-1_30

380 J. Wu et al.

quality of edge bundling visualization. In this work, we aim to generate high-
quality edge bundling results based on Lhuillier’s suggestion, and meanwhile
ensure scalability and efficiency.

We introduce a novel edge bundling technique to generate edge bundles with
moving least squares (MLS) approximation, namely MLSEB. Inspired by thin-
ning an unorganized point cloud to curve-like shapes [20], we use a distance-
minimizing approximation function to generate bundle effects. In particular, we
first sample a graph into a point cloud data, and then use a moving least squares
projection to generate curve-like bundles. Based on Lhuillier’s suggestion, we
develop a quality assessment to evaluate edge bundling results. Using different
real-world datasets, we demonstrate that MLSEB can produce bundle results
with a higher quality, and is scalable and efficient for large graphs by comparing
different edge bundling methods.

2 Related Work

The recent study [22] has surveyed the state-of-the-art edge bundling techniques
and their applications in a very detailed manner. We revisit some of these meth-
ods by briefly summarizing the categories of the diverse bundling techniques.
We consider our method as an image-based method, and hence we will discuss
the image-based methods in more details. We will also cover some studies of
quality evaluation in edge bundling and some studies on moving least squares
approximation.

Holten [11] pioneered the edge bundling techniques in graph drawings using
a hierarchical structure. Geometric-based methods [4,17,18,25] used a control
mesh to guide bundling process. Energy-based minimization methods have been
also used in many studies. Examples include ink-minimization methods [8,9]
and force-directed methods [12,31,37,42,43]. Most of these methods used com-
patibility criteria to measure the similarity of different edges based on spatial
information (i.e., length, position, angle, and visibility), and then moved the
similar edges with ink-minimization or force-directed strategies.

Image-based techniques used a density assessment to guide bundling pro-
cess [3,6,13,23,33,44]. These methods are generally based on Kernel Density
Estimation. Kernel density estimation edge bundling (KDEEB) [13] first trans-
formed an input graph into a density map using kernel density estimation, and
then moved the sample points of edges towards the local density maxima to form
bundles. Peysakhovich et al. [33] extended KDEEB using edge attributes to dis-
tinguish bundles. CUDA Universal Bundling (CUBu) [44] used GPU acceleration
to enable interactively bundling a graph with a million edges. Fast Fourier Trans-
form Edge Bundling (FFTEB) [23] improved the scalability of density estimation
by transforming the density space to the frequency space.

There are other edge bundling studies. Bach et al. [2] investigated the con-
nectivity of edge bundling methods on Confluent Drawings. Nguyen et al. [30]
proposed an edge bundling method for streaming graphs, which extended the
idea of TGI-EB [31]. Wu et al. [41] used textures to accelerate bundling for

MLSEB: Edge Bundling Using Moving Least Squares Approximation 381

web-based applications. Kwon et al. [16] showed their layout, rendering, and
interaction methods for edge bundling in an immersive environment.

Several studies introduced general metrics to quantify the readability
[5,35,36,38] and the faithfulness [29] of graph drawings. Some existing studies in
edge bundling have defined quality assessments to evaluate the resulting bundles.
Nguyen et al. [29] conducted a study on the faithfulness for force-directed edge
bundling methods. Telea et al. [39] surveyed different hierarchical edge bundling
techniques and conducted a user study for the comparison between bundled and
unbundled methods. Pupyrev et al. [34] and Kobourov et al. [15] worked towards
measuring edge crossings. KDEEB [13] and CUBu [44] proposed post-relaxation
if the distortion of edge bundles is too large, such that the mental map is pre-
served. For sequence graph edge bundling, Hurter et al. [14] used interpolation
to preserve the mental map between sequence graphs. McGee and Dingliana [26]
conducted an empirical study on the impact of edge bundling.

Moving least squares (MLS) has been widely used to approximate smooth
curves and surface from unorganized point clouds [1,21,27]. Lee [20] constructed
a curve-like shape from unorganized point clouds using an Euclidean minimum
spanning tree. Least square projection (LSP) has been used in graph draw-
ings [32], where multidimensional data points are projected into lower dimen-
sions, while the similar relationship in neighboring points is preserved.

3 Background

3.1 Definition of Edge Bundling

We first revisit a formal definition of edge bundling [23]. Let G = (V,E) ⊂
R

2, V = {vi}, E = {ei} be a graph, where vi is a vertex and ei is an edge of G.
Let D : E → R

2 be a drawing operator, such that D(G) represents the drawing
of G and D(ei) represents the drawing of an edge ei. We define a compatibility
operator φ, where φ(ei, ej) measures the similarity of two edges ei and ej . Edges
that are more similar than a threshold φmax should be bundled together, and
φ can be used with some reasonable attributes and metrics(e.g., spatial infor-
mation [12]). Let B : D → D be a bundling operation, where D ⊂ R

2 denotes
the space of all graph drawings, and B(D(ei)) denotes the resulting bundled
drawing of ei. For example, D(ei) can be a straight line drawing and B(D(ei))
can be a drawing of curve or polyline. Hence, an edge bundling algorithm can
be expressed as:

∀(ei ∈ G, ej ∈ G)|φ(ei, ej) < φmax →
δ(B(D(ei)), B(D(ej))) � δ(D(ei),D(ej)),

(1)

where δ is a distance metric in R
2. Different edge bundling approaches explored

various φ, B, and δ to tackle Eq. 1 to gain different visual effects of edge
bundling [22].

382 J. Wu et al.

3.2 Quality of Edge Bundling

Edge bundling techniques trade the increase of readability for overdrawing by
bending edges to form bundle effects. Hence, edge bundle techniques naturally
generate distortion from original graphs. To quantify the quality of a bundled
graph, Lhuillier et al. [22] suggested to use the ratio of clutter reduction C to
amount of distortion T as a quality metric Q, i.e.,

Q =
C

T
, (2)

In general, a larger Q corresponds to a higher quality, and vice versa. Lhuillier
et al. [22] further posed a distortion measure. Simply, for an edge ei, the dis-
tortion between an unbundled drawing D(ei) and a bundled result B(D(ei))
is measured by computing the distance between them, i.e., δ(D(ei), B(D(ei))).
Therefore, the overall distortion T between an original unbundled graph and its
bundled result can be defined as:

T =
n∑

i=1

δ(D(ei), B(D(ei))), (3)

where n is the number of edges. Equation 3 provides an intuitive metric to eval-
uate the distortion generated by a bundled graph. The calculation of clutter
reduction has not been fully concluded in the existing work. We propose a sim-
ple method to evaluate clutter reduction C, modify Eq. 3 to compute T , and
then use C and T to quantify the quality Q of edge bundling (Sect. 6.2).

4 Our Bundling Algorithm

The main purpose of edge bundling is to achieve appealing bundle effects by
bending edges, expressed by Eq. 1. Meanwhile, according to Eq. 2, an ideal algo-
rithm should increase clutter reduction C, while decrease amount of distortion
T , in order to achieve a higher quality Q of edge bundling. Therefore, we should
holistically address Eqs. 1 and 2, which, however, has not been fully investigated
in the existing work [22].

4.1 Sampling

In general, given a graph G, a polyline is used to draw the line or curve presen-
tation of an edge ei. Sample points xi

k, namely sites, are used to discretize the
drawing of ei. Formally,

{xi
k|1 ≤ k ≤ mi} ≈ D(ei), (4)

where mi is the number of sites for D(ei). Note, many methods [13,23,33,44]
use a sampling step that is a small fraction of the size of the display to sample

MLSEB: Edge Bundling Using Moving Least Squares Approximation 383

each edge, which means the number of sites of D(ei) may be different. Similarly,
the bundled drawing can also be discretized as:

B({xi
k|1 ≤ k ≤ mi}) ≈ B(D(ei)). (5)

We measure the distortion between D(ei) and B(D(ei)) by summing the
Euclidean distance between each pair of xi

k and B(xi
k). Let | · | denote the

Euclidean distance. Replace the edges in Eq. 3 using Eqs. 4 and 5, we have

T =
n∑

i=1

(
mi∑

k=1

|{xi
k}, B({xi

k})|). (6)

Similarly, Eq. 1 can be modified as:

∀(ei ∈ G, ej ∈ G)|φ(ei, ej) < φmax →
|B({xi

k}), B({xj
k})| � |{xi

k}, {xj
k}|.

(7)

Therefore, we discretize each edge drawing D(ei) of G by Eq. 4. All the sample
points generated by Eq. 4 form a point cloud. According to Eq. 7, xi

k is moved
to a new position B(xi

k) by a bundling operator B. In the case of kernel density
estimation edge bundling [13,23,33,44], xi

k is moved to B(xi
k) according to its

local density gradient. These methods form the bundles by gathering sample
points to their local density maxima, but do not consider the distortion of edges
when moving sample points. Therefore, certain artifacts, such as lattice effects
and subsampled edge fragments, can be incurred. The methods, such as resam-
pling and post-relaxation [13,44], have been proposed to address these issues.
However, these methods typically introduce a significant performance overhead
that is challenging to alleviate [44]. We develop a new bundling operator B
with respect to Eq. 7, and minimize the distortion of each sample point locally.
Moreover, our method does not require resampling, and thereby can reduce the
computational cost.

4.2 Moving Least Squares Approximation

We consider all the points formed by sampling, and assess the global distortion
by expressing Eq. 6 as:

T =
S∑

i=1

|xi − B(xi)|2, (8)

where xi is a site in the point cloud, and S is the number of sites of all edges.
We assume there is a skeleton near xi and its neighborhood locally. A skeleton

can be a suitable place to gather curves to form bundles [6]. Assume a skeleton
can be interpreted as an implicit polynomial or piece-wise polynomial curve fi,
which is unknown. The unknown fi can be gained by computing the coefficients

384 J. Wu et al.

of fi, i.e., by minimizing the following weighted least squares error ε within a
set H(xi) consisting of xi and its neighbor sites:

ε =
hi∑

j=1

|xj − fi|2θ(|xj − xi|), (9)

where xi ∈ H(xi), xj ∈ H(xi), hi is the size of H(xi), and |xj − fi| means the
shortest Euclidean distance between xj and fi. We define the bundling operator
B on xi as a two-step procedure: first to construct fi, and then to project xi onto
fi. The projected point is thereby B(xi) that is on fi. The distance |xi − B(xi)|
from xi to B(xi) is locally minimized by an appropriate nonnegative weighting
function θ. The input of θ is |xj − xi|, which is the distance of neighborhood xj

to the site xi. Instead of taking all sites of a graph into account, we use a circle
of radius r (bandwidth) centered at xi to collect the neighborhood xj for xi.

Fig. 1. Two steps of our
bundling operator B on
a site xi u in an iter-
ation u. First, a local
implicit regression curve
fi u is constructed by
the neighborhood of xi u

with a bandwidth r using
the MLS approximation.
Second, xi u is moved to
a new position xi (u+1)

that is the projection of
xi u on fi u.

If θ ≡ 1, a least squares (LS) approximation is gen-
erated. However, LS approximation does not work well
to generate a polynomial curve that locally reflects the
density distribution of neighborhood. Alternatively, the
moving least squares (MLS) method can reduce a point
cloud to a thin curve-like shape that is a near-best
approximation of the point set [20,21]. Hence, we use a
local assessment to approximate fi [19]. The weighting
function we use is a cubic function [27]:

θ(d) =

⎧
⎨

⎩
2
d3

r3
− 3

d2

r2
+ 1 if d < r,

0 if d ≥ r,
(10)

where d = |xj − xi|. In this sense, minimizing Eq. 9
leads to an MLS approximation so that fi is a local
regression curve, and |xi − B(xi)| is locally minimized.
In other words, the distortion is locally minimized.

In our work, we use an MLS approximation to eval-
uate the distance |xj − fi| for the neighborhood H(xi)
of xi. Therefore, we use a basic projection [19] to con-
struct the implicit local regression curve fi: We take a
partial derivative of Eq. 9 with respect to each coeffi-
cient of fi, make each partial derivative equal to zero, and then solve the system
of equations to generate all the coefficients of fi [28].

Similar to existing work [6,13,23,33,44], we implement our bundling operator
B through an iteration strategy. In our method, two steps are applied iteratively,
as shown in Fig. 1. We initially treat xi as xi 0. Then, in each iteration u, the first
step is to construct an optimal regression curve fi u by thinning the unordered
point cloud within H(xi u), the neighborhood of xi u. In the second step, we
project xi u onto fi u and obtain the projected point xi (u+1), i.e., B(xi u). In
this way, a site xi u is moved to xi (u+1) based on the weighting function θ of

MLSEB: Edge Bundling Using Moving Least Squares Approximation 385

its neighborhood H(xi u). Different from the kernel density estimation methods
[6,13,23,33,44], MLS moves the site xi u in the sense that the local error ε is
bounded with the error of a local best polynomial approximation [20]. In our
current work, this process stops when the iteration number reaches a predefined
threshold. Then, for each edge, we compute a B-spline curve based on the final
positions of its sites. Figure 2 shows an example with two different iterations.
For an illustration purpose, we show the corresponding B-spline curves for the
iterations. In Fig. 2, we can see that a curve-like skeleton is gradually formed
from the point cloud through the iterations in the top row, and a bundle effect
becomes increasingly distinct as shown by the B-spline results in the bottom row.

Iteration 0 Iteration 2 Iteration 8

Fig. 2. Using an US airlines dataset as an example, we first sample each edge into a
set of points (or sites). The resulting sites form a point cloud (top-left). The top row
shows the point cloud is converged through an iterative MLS processing. The bottom
row shows the corresponding B-spline results. The first column shows the initial result
before MLS. The following columns show the results generated after the 2nd and 8th
iteration, respectively.

Most of the existing image-based techniques use kernel density estimation
(KDE), essentially, a mean-shift method that evaluates the local density maxima
and advects a site based on the gradients of the local density. However, KDE
does not consider the distortion (Eq. 3) when moving sample points, and thus
resampling or post-relaxation is often required [13,44]. Alternatively, our MLSEB
method uses an MLS approximation that projects a site xi to its local regression
curve fi, where fi is locally approximated by minimizing the distance between
H(xi) and fi with a weighted function (Eq. 9). Therefore, the distance between
its original position xi and its projected position B(xi) is locally minimized
based on the density of its neighborhood H(xi). One advantage of our method
is that MLS does not need to resample each edge in bundling iterations because
sites are projected into curves that do not generate over-converge artifacts or
lattice effects. Fröhlich et al. [7] showed that MLS produced better convergence
results than KDE in biological studies. However, it remains an open question
to determine if KDE or MLS is better than one another in edge bundling. In
Sect. 6.2, we will develop a quality assessment from Eq. 2, and use it to evaluate

386 J. Wu et al.

and compare the quality of the drawings generated by our MLSEB method,
the FFTEB method (a KDE-based method), and the FDEB method (a force-
directed method).

5 Implementation

Our implementation involves simple data structures and computations, and thus
is easy to implement. First, we sample the edges of an input graph. We use the
same scheme as KDEEB’s [13] to sample the input edges with an uniform step
ρ. The most time consuming step in our method is gathering the neighborhood
for every site. A typical solution in a GPU implementation is to use Uniform
Grid [10] that subdivides the space into uniformly sized cells. We use this method
and set the size of the cell to be 2

3r (r is a prescribed radius or bandwidth) such
that we can limit the search space of each site to only cover at most 9 grid
cells [10], thus avoid a O(S2) search time for S sites.

At the start of each iteration, all the sites are put into the corresponding cells
according to their current positions. This can be easily parallelized using CUDA
on a GPU [10]. Then, we project each site onto its local regression line. The solu-
tion to compute the coefficients of Eq. 9 is introduced in the work [19,28]. It only
requires a constant time to solve the coefficients of a linear or quadratic system
of equations. This can also be parallelized using a GPU because computing the
new projection position for every site is independent.

To enhance the visualization of a bundled graph, we use the same shader
scheme of CUBu [44]. We use the HSVA (i.e., hue H, saturation S, value V , and
alpha A) color representation to visualize edges. Each edge site xi is encoded with
an HSVA value. We encode the direction and the length of the corresponding edge
into H and S, respectively. V and A are used with a parabolic profile function

c(x) =
√

1 − 2|t(x) − 1
2 |, and t ∈ [0, 1] is the edge arc-length parameterization.

The functions of V and A are then V (x) = l
lmax

+ (1 − l
lmax

)c(x) and A(x) =
α(1− l

lmax
+ l

lmax
c(x)) respectively, where l is the length of the edge, lmax is the

longest edge in the graph, and α controls the overall transparency of all edges.
Next, we analyze the complexity of our MLSEB method. Similar to the exist-

ing KDE-based methods [13,23,33,44], MLSEB requires gathering neighbor sites
for computation. After gathering, KDE-based methods conduct kernel splatting,
gradient calculation, and site advection, which use a constant time for each site.
In MLSEB, the time to solve Eq. 9 and project a site to its local approximated
curve is also constant for each site. Thereby, the complexity of MLSEB is the
same as the traditional KDE-based methods, which is O(I ·N ·S), where I is the
image resolution, N is the number of bundling iterations, and S is the number
of sample points. However, MLSEB does not need additional operations, such
as resampling, that are employed in the existing KDE-based methods.

We explore the parameter choices of MSLEB as follows. Similar to most the
existing edge bundling methods, we use a step ρ, which is 5% of the image resolu-
tion I, to sample each edge. The bandwidth, r, plays an important role in MLS to

MLSEB: Edge Bundling Using Moving Least Squares Approximation 387

estimate the density information around each site. A larger bandwidth captures
more sample sites to reflect a more global feature, while a smaller bandwidth
reveals a more local feature. By following a similar strategy in FDEB [43] and
KDEEB [13], we decrease r by a reduction factor λ after each iteration. Hurter
et al. [13] stated that a kernel size follows an average density estimation when
0.5 ≤ λ ≤ 0.9. We set r to be 5% ≤ r ≤ 20% of the display size I to generate
a stable edge-convergence result. Through a heuristic study, we found that it is
sufficient to yield good results by setting the iteration number N between 3 and
10 and making the polynomial order of fi in Eq. 9 to be 1 or 2.

6 Results

6.1 Visualization and Performance Results

We apply our MLSEB method to several graphs and compare its effect and
computational performance to the two existing methods: FDEB that is the clas-
sic force-directed method, and FFTEB that is the latest enhanced KDE-based
method of image-based edge bundling algorithms (such as KDEEB and CUBu).

The left column in Fig. 3 compares the visualization results of our MLSEB
method with other bundling methods using the US airlines dataset (2101 edges).
Our MLSEB method provides similar results, and generates tight, smooth and
locally well-separated bundles. High-level graph structures are also revealed in
our results. The right column in Fig. 3 shows the comparison using the US migra-
tions dataset (9780 edges). Figure 4 shows another example using the France air-
lines dataset with 17274 edges. In these results, the main migration and airline
patterns are clearly revealed using MLSEB. In the migrations dataset, FDEB
and FFTEB fall short in showing some subtle structures of the original graph.
For example, in the original node-link diagram of Fig. 3(b), the edges (within
the red box) connect the city of Portland to some cities in the northern U.S are
distorted significantly from their original positions in the results of the FDEB
(Fig. 3(d)) and FFTEB (Fig. 3(f)), while our MLSEB result has a distinguished
bundle effect that reveals this subtle graph structure. In Fig. 5, we compare
the visual result of MLSEB to FFTEB using a large US migrations dataset with
545881 edges. We encode the color of a edge with only its length in this example.
MLSEB shows more long-length edge patterns than FFTEB.

Table 1 shows the performance comparison between our MLSEB method and
the current fastest edge bundling method FFTEB. In our performance compari-
son, we used the US airlines graph, the US migrations graph, the France airlines
graph, and the large US migrations graph. The timing results for MLSEB and
FFTEB are based on one iteration, and we excluded the timing of memory allo-
cation and data transferring for both methods. The devices used in our experi-
ments are a desktop with an 8X Intel Core i7-6700K 4.0 GHz CPU with 32 GB
memory and a NVIDIA GeForce GTX TITAN X GPU. Comparing with the
fastest algorithm FFTEB in the state-of-the-art, we can clearly see that MLSEB
is at the same order of magnitude of FFTEB in terms of computational speed,
as shown in Table 1.

388 J. Wu et al.

)b()a(
Original Node-link Diagrams

)d()c(
FDEB

)f()e(
FFTEB

)h()g(
MLSEB

Fig. 3. Visualize the US airlines dataset (the left column) and the US migrations
dataset (the right column) with three different edge bundling methods, FDEB, FFTEB
and MLSEB, respectively. (Color figure online)

6.2 Quality Assessment of Bundled Graphs

Apart from comparing the visualization and performance results, we propose a
quality metric to evaluate the quality of bundling drawings based on Eq. 2.

Equation 2 gives a general quality metric Q based on the ratio of clutter
reduction C to amount of distortion T . However, the quantification of clutter
reduction C has been not fully concluded in existing work. We propose to employ

MLSEB: Edge Bundling Using Moving Least Squares Approximation 389

BESLMBETFFBEDF

Fig. 4. Visualize the France airlines dataset (17274 edges) with FDEB, FFTEB, and
MLSEB.

BESLMBETFF

Fig. 5. Comparison of FFTEB and MLSEB using a large US migrations dataset
(545881 edges).

Table 1. Performance comparison.

Graph Edges FFTEB MLSEB

Samples Time (ms) Samples Time (ms)

US airlines 2180 105 K 40 85 K 22

US migrations 9780 489 K 48 207 K 38

France airlines 17274 864 K 70 990 K 94

Large US migrations 545881 6.4 M 123 5.8 M 554

the reduction of the used pixel number ΔP in a graph drawing to measure C.
Specifically, C = ΔP = P −P ′ that is the difference of the used pixel number P
of the original drawing and the used pixel number P ′ of the bundled drawing.

Intuitively, T can be given by Eq. 6 that quantifies the total distortion of all
the sample points. However, different methods can generate different numbers
of sample points. For example, FDEB generates the same number of sample
points for each edge, while our MLSEB method and the KDE-based methods

390 J. Wu et al.

Table 2. Quality comparison using the US migrations graph.

Graph Edges FDEB FFTEB MLSEB
S P P ′ T Q S P P ′ T Q S P P ′ T Q

US airlines 2180 813K 32K 25K 1.10K 6.2 105K 32K 18K 1.2K 11.9 85K 32K 19K 0.88K 14.4
US migrations 9780 3785K 34K 26K 0.88K 8.9 489K 32K 24K 1.0K 7.60 207k 33k 25k 0.92k 9.20
France airlines 17274 6685K 81K 72K 2.60K 3.7 864K 81K 57K 1.6K 21.3 990K 81K 60K 0.80K 26.0
Large US migrations 545881 n/a n/a n/a n/a n/a 6.4M 108k 84k 1.8k 13.3 5.8M 107k 95k 0.90 13.3

sample different edges into different numbers of points. Thus, instead of the total
distortion of all the sample points, we use the average distortion: T = T

S , where
S is the total number of the sample points in the graph. Therefore, we modify
Eq. 2 to

Q =
ΔP

T
. (11)

The rationale of Eq. 11 is to measure how many pixels are decreased by gen-
erating one unit distortion. A higher value of Q means a better quality result.
Table 2 shows the quantitative quality comparison between our MLSEB method,
FDEB and FFTEB. Our comparison is based on the drawings with an image
resolution of 400 × 400, as shown in Figs. 3, 4 and 5. All the statistic results
are generated after a graph is bundled, i.e., after all iterations. We note that it
makes less sense to compare the distortion in each iteration because the initial
iterations of some methods, such as FDEB and FFTEB, may have surprisingly
large distortion. It is more reasonable to compare the quality of results after the
bundling iterations are finished. We also note that using different parameters,
such as different iteration numbers and different bandwidths for different meth-
ods, can yield different results. We use the recommended parameters in FDEB’s
and FFTEB’s papers [12,23], which are the best results we can get from the
existing work. The S columns in Table 2 show the numbers of the sample points
in a graph using different methods.

We can see that the quality of MLSEB is generally better than the other two
methods in terms of Eq. 11. For the four different datasets, FFTEB makes the
most clutter reduction. However, it also incurs more distortion. FDEB achieves
a comparable quality as ours for the US migrations dataset; whereas, when
the dataset is getting larger (France airlines), FDEB will generate tremendous
distortion, as shown in Table 2 and Fig. 4, thus lowering the quality score. Note
when using the large US migrations dataset, the advantage of MLSEB over
FFTEB becomes marginal. Overall, MLSEB gains the highest quantitative scores
in terms of quality according to Eq. 11.

7 Conclusions and Future Work

We present a new edge bundling method MLSEB that holistically considers
distortion minimization and clutter reduction. Inspired by the MLS work [1,20],
our approach generate bundle effects by iteratively projecting each site to its local
regression curve to converge with other nearby sites based on its neighborhood’s

MLSEB: Edge Bundling Using Moving Least Squares Approximation 391

density. Such a local regression curve can reduce the distortion of the local
bundle. Our method is easy to implement. The timing result shows MLSEB is
at the same order of magnitude of the current fastest edge bundling method
FFTEB in terms of computational speed.

We use a quality assessment to evaluate the quality of resulting edge bun-
dles. Our MLSEB method shows better results in our preliminary comparison.
However, a more comprehensive comparison between our MLSEB method and
the other methods requires further investigation, where other factors (e.g., edge
crossing reduction) may be also considered. In addition, we plan to apply optimal
bandwidth selection [24,40] to improve MLSEB. We would also like to incorporate
semantic attributes into MLSEB to enhance bundling results. Last but not least,
bundling a very large graph (e.g., one with billions or trillions of edges) remains
a very challenging task, which is a next possible direction in our future work.

Acknowledgment. This research has been sponsored by the National Science Foun-
dation through grants IIS-1652846, IIS-1423487, and ICER-1541043.

References

1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing
and rendering point set surfaces. IEEE Trans. Vis. Comput. Graph. 9(1), 3–15
(2003)

2. Bach, B., Riche, N.H., Hurter, C., Marriott, K., Dwyer, T.: Towards unambiguous
edge bundling: investigating confluent drawings for network visualization. IEEE
Trans. Vis. Comput. Graph. 23(1), 541–550 (2017)

3. Böttger, J., Schäfer, A., Lohmann, G., Villringer, A., Margulies, D.S.: Three-
dimensional mean-shift edge bundling for the visualization of functional connec-
tivity in the brain. IEEE Trans. Vis. Comput. Graph. 20(3), 471–480 (2014)

4. Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for
graph visualization. IEEE Trans. Vis. Comput. Graph. 14(6), 1277–1284 (2008)

5. Di Battista, G.: Graph Drawing: Algorithms for the Visualization of Graphs. Pren-
tice Hall, Upper Saddle River (1999)

6. Ersoy, O., Hurter, C., Paulovich, F., Cantareiro, G., Telea, A.: Skeleton-based edge
bundling for graph visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2364–
2373 (2011)

7. Fröhlich, F., Hross, S., Theis, F.J., Hasenauer, J.: Radial basis function approx-
imations of bayesian parameter posterior densities for uncertainty analysis. In:
Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp.
73–85. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12982-2 6

8. Gansner, E.R., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge
bundling for visualizing large graphs. In: 2011 IEEE Pacific Visualization Sympo-
sium, pp. 187–194. IEEE (2011)

9. Gansner, E.R., Koren, Y.: Improved circular layouts. In: Kaufmann, M., Wagner,
D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-70904-6 37

10. Green, S.: Particle simulation using CUDA. NVIDIA whitepaper 6, 121–128 (2010)
11. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hier-

archical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)

https://doi.org/10.1007/978-3-319-12982-2_6
https://doi.org/10.1007/978-3-540-70904-6_37

392 J. Wu et al.

12. Holten, D., Wijk, J.J.V.: Force-directed edge bundling for graph visualization.
Comput. Graph. Forum 28(3), 983–990 (2009)

13. Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation.
Comput. Graph. Forum 31(3pt1), 865–874 (2012)

14. Hurter, C., Ersoy, O., Telea, A.: Smooth bundling of large streaming and sequence
graphs. In: 2013 IEEE Pacific Visualization Symposium (PacificVis), pp. 41–48.
IEEE (2013)

15. Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large
graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–
245. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7 20

16. Kwon, O.H., Muelder, C., Lee, K., Ma, K.L.: A study of layout, rendering, and
interaction methods for immersive graph visualization. IEEE Trans. Vis. Comput.
Graph. 22(7), 1802–1815 (2016)

17. Lambert, A., Bourqui, R., Auber, D.: 3D edge bundling for geographical data
visualization. In: 2010 14th International Conference Information Visualisation,
pp. 329–335, July 2010

18. Lambert, A., Bourqui, R. and Auber, D.: Winding roads: routing edges into bun-
dles. In: Computer Graphics Forum, vol. 29, no. 3, pp. 853–862. Wiley (2010)

19. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods.
Math. Comput. 37(155), 141–158 (1981)

20. Lee, I.K.: Curve reconstruction from unorganized points. Comput. Aided Geom.
Des. 17(2), 161–177 (2000)

21. Levin, D.: Mesh-independent surface interpolation. In: Brunnett, G., Hamann,
B., Müller, H., Linsen, L. (eds.) Geometric Modeling for Scientific Visualization.
Mathematics and Visualization, pp. 37–49. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-662-07443-5 3

22. Lhuillier, A., Hurter, C., Telea, A.: State of the art in edge and trail bundling
techniques. Comput. Graph. Forum 36(3), 619–645 (2017)

23. Lhuillier, A., Hurter, C., Telea, A.: FFTEB: edge bundling of huge graphs by
the fast fourier transform. In: PacificVis 2017, 10th IEEE Pacific Visualization
Symposium. IEEE (2017)

24. Lipman, Y., Cohen-Or, D., Levin, D.: Error bounds and optimal neighborhoods for
MLS approximation. In: Proceedings of the Fourth Eurographics Symposium on
Geometry Processing, SGP 2006, Eurographics Association, Aire-la-Ville, Switzer-
land, pp. 71–80 (2006)

25. Luo, S.J., Liu, C.L., Chen, B.Y., Ma, K.L.: Ambiguity-free edge-bundling for
interactive graph visualization. IEEE Trans. Vis. Comput. Graph. 18(5), 810–821
(2012)

26. McGee, F., Dingliana, J.: An empirical study on the impact of edge bundling
on user comprehension of graphs. In: Proceedings of the International Work-
ing Conference on Advanced Visual Interfaces, AVI 2012, pp. 620–627. ACM,
New York (2012)

27. Mederos, B., Velho, L., Figueiredo, L.H.D.: Moving least squares multiresolution
surface approximation. In: 16th Brazilian Symposium on Computer Graphics and
Image Processing (SIBGRAPI 2003), pp. 19–26, October 2003

28. Nealen, A.: An As-Short-As-Possible Introduction to the Least Squares, Weighted
Least Squares and Moving Least Squares Methods for Scattered Data Approxima-
tion and Interpolation (2004)

29. Nguyen, Q., Eades, P., Hong, S.-H.: On the faithfulness of graph visualizations. In:
2013 IEEE Pacific Visualization Symposium (PacificVis), pp. 209–216, February
2013. https://doi.org/10.1109/PacificVis.2013.6596147. ISSN:2165-8765

https://doi.org/10.1007/978-3-662-45803-7_20
https://doi.org/10.1007/978-3-662-07443-5_3
https://doi.org/10.1007/978-3-662-07443-5_3
https://doi.org/10.1109/PacificVis.2013.6596147

MLSEB: Edge Bundling Using Moving Least Squares Approximation 393

30. Nguyen, Q., Eades, P., Hong, S.-H.: StreamEB: stream edge bundling. In: Didimo,
W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 400–413. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2 36

31. Nguyen, Q., Hong, S.-H., Eades, P.: TGI-EB: a new framework for edge bundling
integrating topology, geometry and importance. In: van Kreveld, M., Speckmann,
B. (eds.) GD 2011. LNCS, vol. 7034, pp. 123–135. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-25878-7 13

32. Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projec-
tion: a fast high-precision multidimensional projection technique and its applica-
tion to document mapping. IEEE Trans. Vis. Comput. Graph. 14(3), 564–575
(2008)

33. Peysakhovich, V., Hurter, C., Telea, A.: Attribute-driven edge bundling for gen-
eral graphs with applications in trail analysis. In: 2015 IEEE Pacific Visualization
Symposium (PacificVis), pp. 39–46. IEEE (2015)

34. Pupyrev, S., Nachmanson, L., Kaufmann, M.: Improving layered graph layouts
with edge bundling. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol.
6502, pp. 329–340. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-18469-7 30

35. Purchase, H.: Which aesthetic has the greatest effect on human understanding? In:
DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1 67

36. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021827

37. Selassie, D., Heller, B., Heer, J.: Divided edge bundling for directional network
data. IEEE Trans. Vis. Comput. Graph. 17(12), 2354–2363 (2011)

38. Tamassia, R.: Handbook of Graph Drawing and Visualization (Discrete Mathe-
matics and Its Applications). Chapman & Hall/CRC (2007)

39. Telea, A., Ersoy, O., Hoogendorp, H., Reniers, D.: Comparison of node-link
and hierarchical edge bundling layouts: a user study. In: Keim, D.A., Pras, A.,
Schönwälder, J., Wong, P.C. (eds.) Visualization and Monitoring of Network
Traffic. No. 09211 in Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, Dagstuhl, Germany (2009)

40. Wang, H., Scheidegger, C.E., Silva, C.T.: Bandwidth selection and reconstruction
quality in point-based surfaces. IEEE Trans. Vis. Comput. Graph. 15(4), 572–582
(2009)

41. Wu, J., Yu, L., Yu, H.: Texture-based edge bundling: a web-based approach for
interactively visualizing large graphs. In: 2015 IEEE International Conference on
Big Data (Big Data), pp. 2501–2508, October 2015

42. Zhou, H.: Visual Clustering in Parallel Coordinates and Graphs. Ph.D. thesis
(2009), aAI3398258

43. Zielasko, D., Weyers, B., Hentschel, B., Kuhlen, T.W.: Interactive 3D force-directed
edge bundling. In: Computer Graphics Forum, vol. 35, no. 3, pp. 51–60. Wiley
(2016)

44. van der Zwan, M., Codreanu, V., Telea, A.: CUBu: universal real-time bundling
for large graphs. IEEE Trans. Vis. Comput. Graph. 22(12), 2550–2563 (2016)

https://doi.org/10.1007/978-3-642-36763-2_36
https://doi.org/10.1007/978-3-642-25878-7_13
https://doi.org/10.1007/978-3-642-18469-7_30
https://doi.org/10.1007/978-3-642-18469-7_30
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/BFb0021827

Drawing Dynamic Graphs Without Timeslices

Paolo Simonetto1, Daniel Archambault1(B), and Stephen Kobourov2

1 Swansea University, Swansea, UK
{paolo.simonetto,d.w.archambault}@swansea.ac.uk

2 University of Arizona, Tucson, USA
kobourov@cs.arizona.edu

Abstract. Timeslices are often used to draw and visualize dynamic
graphs. While timeslices are a natural way to think about dynamic
graphs, they are routinely imposed on continuous data. Often, it is
unclear how many timeslices to select: too few timeslices can miss
temporal features such as causality or even graph structure while too
many timeslices slows the drawing computation. We present a model for
dynamic graphs which is not based on timeslices, and a dynamic graph
drawing algorithm, DynNoSlice, to draw graphs in this model. In our
evaluation, we demonstrate the advantages of this approach over times-
licing on continuous data sets.

1 Introduction

Graphs offer a natural way to represent a static set of relations. In order to encode
changes to a graph over time, static graphs can be extended to dynamic graphs.
Dynamic graphs are traditionally thought of as a sequence of static graphs in
a finite number of moments in time, or timeslices. We refer to these dynamic
graphs as discrete dynamic graphs. Discrete dynamic graphs are widely used for
several reasons. Drawing timesliced graphs is similar to drawing static graphs,
allowing force-directed approaches to be easily adapted to dynamic data. Also,
timeslicing works fine for data that changes at discrete, regular time intervals.

Algorithms to draw discrete dynamic graphs strike a balance between graph
drawing readability and stability [3]. Readability requires the drawing of indi-
vidual timeslices to be of high quality while stability (mental map preservation)
requires nodes to not move too much between consecutive timeslices for easy
identification [2]. These requirements conflict with each other as node movement
is required for timeslice readability, while it negatively impacts stability.

Approaches for discrete dynamic graph drawing extend static graph draw-
ing algorithms. Each timeslice is a static graph that is drawn considering the
timeslices before and after to stabilize the transition. However, when the time
dimension is continuous, there are no timeslices. Thus, evenly spaced timeslices
are selected and the graph elements are projected to the closest one. This oper-
ation implicitly aggregates data along the time dimension (Fig. 1). Selecting too
many timeslices leads to slow layout computation while selecting too few leads
to information loss due to projection errors when events are of short duration,
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 394–409, 2018.
https://doi.org/10.1007/978-3-319-73915-1_31

Drawing Dynamic Graphs Without Timeslices 395

obscuring graph structure. Even for graphs with nodes and edges that span long
periods of time, regular timeslices can obscure important temporal patterns.

A natural solution to the problems above would be to refrain from imposing
timeslices on the continuous data and draw the graph directly along a continuous
time dimension. In a recent state-of-the-art report, Beck et al. [7, p. 15] states
“the effects of using continuous time with arbitrary fine sampling rates, rather
than discretized time, are largely unexplored”. In this paper, we introduce a
model for dynamic graph drawing that does not use timeslices. We call these
graphs continuous dynamic graphs and propose the first dynamic graph drawing
algorithm, DynNoSlice, to draw them along a continuous time dimension.

Fig. 1. A dynamic graph with 5 nodes. (a) A discrete representation with nodes pro-
jected onto timeslices. Projecting the nodes (purple dots) results in information loss
due to aggregation across time. (b) In our approach, nodes are defined as piecewise
linear curves in the space-time cube, as timeslices are not imposed on continuous data.
(Color figure online)

2 Related Work

Dynamic graphs visualization is a well established field of research, as shown in
the recent survey by Beck et al. [7]. If we were to place our approach in this
model, it would be an “offline time-to-time mapping” without timeslices, as it
works with full knowledge of the input data. Related approaches also include
the “superimposed time-to-space mapping”, as this approach inherently defines
a space-time cube.

Offline Drawing. Offline dynamic graph drawing algorithms capture all of
the dynamic data beforehand and optimize across it simultaneously. Foresighted
layout algorithms [17,18] are among the first attempts at offline dynamic graph
drawing. They create a supergraph as the union of the elements at each timeslice.
The supergraph is then used to define the position of nodes and edge bends.
Mental map preservation is the primary focus of this approach.

Brandes and Corman [8] designed an approach for offline dynamic graph
drawing that visually refers to time as a third, discrete spacial component.
Timeslices are placed on top of each other, forming a layered space-time cube.

396 P. Simonetto et al.

A similar technique is also used by Dwyer and Eades [19]. In both approaches,
the time dimension is modeled using timeslices.

Erten et al. [21] explored several ways to superimpose different graphs, includ-
ing the use of different colors for different timeslices of a layered space-time cube.
In GraphAEL [20,23], the space-time cube was created by connecting the same
nodes in consecutive timeslices with inter-timeslice edges and optimizing this
structure with a force-directed algorithm. A similar technique is used by Groh
et al. [30] and by Itoh et al. [32] for social networks. Brandes and Mader [9] per-
form a metric-based evaluation of several strategies for drawing discrete dynamic
graphs including aggregation, anchoring, and linking. Linking strategies per-
formed best in balancing drawing quality (measured using stress) and mental
map preservation (measured using distance traveled). Rauber et al. [43], iden-
tify vectors vi[t] in the cost gradient whose geometrical interpretation would be
identical when working in a layered space-time cube.

Our approach can be seen as an extension of offline discrete dynamic graph
drawing approaches to continuous time. However, the difference is substantial
as in related work timeslices are imposed on the data. By drawing in continuous
time, each node and edge defines its own trajectory with its own complexity
whereas discrete algorithms impose linear interpolations between timeslices.

Time-to-space mapping approaches [7] use one dimension for space and one
dimension for time in order to visualize the network [12,36,45,49]. Recent scal-
able approaches use dimensionality reduction to show time as a curve in the
plane [6,50]. By using spatial dimensions to represent time, these visualizations
are substantially different from classic dynamic node-link diagrams.

Online Drawing. Given an incoming stream of data, online drawing algorithms
continuously update the current graph drawing to take into account new data.
Misue et al. [37] optimize mental map preservation by maintaining the horizontal
and vertical order of the nodes through adjustments. Frishman and Tal [25] pro-
posed a different force-directed algorithm which could also be partially executed
on the GPU. Gorochowski et al. [28] use node aging to decide how much a node
position should be preserved at a given time. Finally, Crnovrsanin et al. [14]
adapted the FM3 [31] multilevel approach to an online setting.

Although related, online approaches are different as they operate under more
stringent constraints due to lack of access to future information. Offline algo-
rithms, such as DynNoSlice, use the full knowledge of the graph evolution.

3D Graph Drawing. Several 2D algorithms have been extended to 3D.
Bruß and Frick [11] proposed Gem3D, which extends Gem [24] to 3D. Cruz
and Twarog [15] extended the simulated annealing approach of Davidson and
Harel [16] to 3D. Other algorithms work in both 2D and 3D, such as GRIP by
Gajer and Kobourov [26]. Munzner [38] proposed an algorithm to draw directed
graphs in a 3D hyperbolic space. Several other algorithms deal with particular
constraints, such as orthogonal [34], or nested [41] drawings. Cordeil et al. [13]
investigate the visualization of graphs in 3D using immersive environments.

Drawing Dynamic Graphs Without Timeslices 397

Although our approach does compute a 3D layout of the dynamic graph, we
do not produce a 3D visualization. Since our third dimension is time, nodes and
edges have additional constraints and are not free to move arbitrarily in 3D.

Space-Time Cubes. Sallaberry et al. [44] visualize dynamic graphs by manip-
ulating the space-time cube. Several other information visualization methods
perform similar operations in the space-time cube, as discussed in Bach et al. [5].
These approaches assume that the space-time cube is already given and focus on
how to accommodate it in 2D, whereas our approach constructs the space-time
cube for dynamic graphs using a continuous time dimension.

Fig. 2. A continuous dynamic graph in the space-time cube. (a) Position attribute for
a node v. (b) The appearance attribute. (c) An edge in a continuous dynamic graph,
as encoded by the edge appearance attribute.

3 Continuous Dynamic Graph Model

Let G = (V,E) be a static graph defined with node set V and edge set E ⊆ V ×V .
We define attributes (functions) on the nodes and edges of the graph that encode
characteristics such as their positions, weights, and labels. The node position
attribute (PG : V → R

2) maps a node v into its position in the 2D plane pv,
e.g., PG(v) = (1, 4). This attribute is not integral to our model of continuous
dynamic graphs, but is used to compute and store the layout of these graphs.

We define a continuous dynamic graph D = (V,E) as a graph whose
attributes are also a function of time. Let T be the time domain defined as
an interval in R. Attributes are functions defined in the domain V ×T for nodes,
and E ×T for edges. For example, the node position attribute PD : V ×T → R

2

is the function that describes the position of v for each time t ∈ T . We assume
(w.l.o.g.) that the node and edge attributes can be defined piecewise, e.g.:

398 P. Simonetto et al.

PD(v, t) = Pv(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pv,1(t) for t ∈ T1

...
Pv,n(t) for t ∈ Tn

pv,ω otherwise

In other words, a dynamic attribute can be thought of as a map that links
each node (edge) to a sequence of functions Pv,i that describe its behavior in
disjoint intervals of time Ti, with a default value returned for t /∈ ⋃

i Ti. In the
rest of paper we consider only piecewise linear functions for nodes and edges.

Attributes specify a variety of node and edge characteristics. For data that
can be meaningfully interpolated (e.g., colors, weights, positions), the functions
above can be described by initial and final values. For attributes without mean-
ingful interpolation (e.g., labels), we prefer functions that are constant in the
related interval. Position and label attributes for a node v of D can be:

Pv(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1, 0) → (4, 0) for t ∈ (9, 12]

(2,−2) → (5, 1) for t ∈ (12, 15]

(5, 1) → (4, 5) for t ∈ [17; 19]

(0, 0) otherwise

Lv(t) =

⎧
⎪⎨

⎪⎩

Jane Doe for t ∈ (10, 11]

Jane Smith for t ∈ (11, 16]

unknown otherwise

We define the attribute appearance that implements the classic dynamic
graph operations node/edge insertion and deletion.

Av(t) =

⎧
⎪⎨

⎪⎩

true for t ∈ [2, 7)
true for t ∈ (9, 13]
false otherwise

In order to mark an edge e = (u, v) as present in Tx, we need to ensure that
both u and v are present for the entire Tx.

This definition supports changes in node (edge) characteristics at any time,
whereas discrete dynamic graphs allow changes only to occur in timeslices. Dyn-
NoSlice implements the above model as a collection of piecewise, linear functions
defined on intervals in the space-time cube. Fast access to these functions at any
given time is required. In our implementation, we use interval trees. When the
intervals are guaranteed to be non-overlapping, simpler structures such as binary
search trees can be used.

4 DynNoSlice Implementation

A continuous dynamic graph D can be transformed into a 3D static graph D′ by
embedding it in the space-time cube. Algorithms for static or discrete dynamic
graphs can be extended to work with this new representation. In this section, we
describe our force-directed algorithm for drawing continuous dynamic graphs. It
has been implemented and the source code is available1.
1 http://cs.swan.ac.uk/∼dynnoslice/software.html.

http://cs.swan.ac.uk/~dynnoslice/software.html

Drawing Dynamic Graphs Without Timeslices 399

4.1 Representation in the Space-Time Cube

We can define a space-time cube transformation (STCT) that transforms a con-
tinuous dynamic graph into a drawing in the space-time cube. In D′, the pres-
ence and position of each node is represented by a sequence of trajectories. The
shapes of these trajectories are defined by the position attributes. In the example
above, the trajectory of v is defined by three line segments, (1, 0, 9) → (4, 0, 12),
(2,−2, 12) → (5, 1, 15) and (5, 1, 17) → (4, 5, 19), and by portions of the line
(0, 0, x) (see Fig. 2a). The number of these trajectories is also affected by the
appearance attribute. In the example above, the node v appears two times: at
[2, 7) and at (9, 13]. Clearly, the behavior of the node at times when it is not part
of the graph is non-influential. Therefore, the node appearance and position in
the space-time cube can be identified by the segments sv,1 = (0, 0, 2) → (0, 0, 7),
sv,2 = (1, 0, 9) → (4, 0, 12) and sv,3 = (2,−2, 12) → (3,−1, 13) (see Fig. 2b). The
trajectory given by the polyline is made of the start and end points, as well as
the bends (the junctions of consecutive segments).

The representation of edges in the space-time cube is less intuitive. By con-
necting two trajectories with lines in the space-time cube, we obtain a ruled
surface. Therefore, an edge e = (u, v) is a surface that connects trajectories u
and v for a duration indicated by Ae. If the node trajectories are not continuous
as in the above example:

lim
t→12−

Pv(t) = (4, 0) and lim
t→12+

Pv(t) = (2,−2),

an edge might create two or more surfaces (see Fig. 2c).
If the trajectory segments, considered as vectors, form an acute angle with

respect to the positive time axis, this transformation is easily invertible. Thus,
trajectory segments cannot fold back on themselves, as it would identify multiple
positions for that node at a given time. We can then work on this continuous
dynamic graph in 3D as if it were a static graph as follows:

Da → STCT → D′
a → Operation → D′

b → STCT−1 → Db

4.2 Force-Directed Drawing Algorithm

Our force-directed algorithm is based on earlier variants by Simonetto et al.
[46,47]. As in most force-directed algorithms, after an initialization phase, the
algorithm iteratively improves the current layout of the drawing in 3D for a
given number of iterations in the following way:

– For each iteration of the algorithm:
• Compute and sum the forces based on the force system.
• Move nodes based on these forces and the constraints.
• Adjust trajectory complexity in the space-time cube.

Initialization. Each node v is randomly assigned a position (a, b) in the 2D
plane. The points defining v’s trajectory are extruded linearly along the time
axis (a, b, x), where x is the time coordinate.

400 P. Simonetto et al.

Forces. DynNoSlice has five forces. The first three forces adapt standard, force-
directed approaches to work with trajectories in the space-time cube. The final
two are novel for continuous dynamic graph drawing. In our notation, a star
transforms 3D vector to 2D by dropping the time coordinate. For example, if
p = (1, 2, 3) then p∗ is (1, 2). The parameter δ is an ideal distance between two
node trajectories.

1. Node Repulsion. This force repels trajectories from each other. The force
evenly distributes node trajectories in space and prevents crowding [35,42].

(a) (b) (c) (d) (e)

Fig. 3. Forces and constraints. (a) and (b) Node repulsion force between point a and
the line segment c → d that represents the trajectories of nodes u and v. (c) and
(d) Edge attraction for an edge in the interval highlighted with yellow background.
(e) Time movement restriction. Endpoints (a and c) must keep their assigned time
coordinates. Bend b cannot move past half the distance with other bends or endpoints.

For each segment endpoint a in the trajectory of node u and segment sv,j =
c → d of node v, with u �= v, we compute the forces generated on the points a, c
and d (see Fig. 3). If the points a, c and d are not collinear and (p ∈ sv,j), they
form a plane. In this case, we apply the force EdgeNodeRepulsion (δ) described
in previous work [47], except node positions are in 3D. If the points are collinear
or the projection p of a does not fall in the segment sv,j (p /∈ sv,j), we apply
NodeNodeRepulsion(δ) [47] between a and c and between a and d.

Since distant segments do not interact significantly, they can be ignored to
reduce the running time. A multi-level interval tree is used to identify segments
that are sufficiently close (<5δ). All other pairs are ignored.

2. Edge Attraction. This attractive force pulls trajectories that are linked by
an edge closer to each other. The force is exerted only for the intervals where
the edge is present.

Let us consider an edge e = (u, v) that appears at interval (t1, t2) and let
I = (t1τ, t2τ) be the transformed time interval in the space-time cube with
conversion factor τ that transforms time into the third dimension of the space
time cube. For each pair of segments su,i = a → b and sv,j = c → d that overlap
with the interval (f, g), we compute the points m,n of segment su,i and p, q of
segment sv,j so that:

min
{
f ∈ I : ∃m ∈ su,i, ∃p ∈ sv,j , f = m[2] = p[2]

}

max
{
g ∈ I : ∃n ∈ su,i, ∃q ∈ sv,j , g = n[2] = q[2]

}

Drawing Dynamic Graphs Without Timeslices 401

where x[2] is the time coordinate of the point x in the space-time cube. We
compute the attractive force between the points m and p, and n and q, using
EdgeContraction (δ) [47] (see Fig. 3c). This force is applied to the segment end-
points once scaled by its distance from the application point and by the coverage
of the edge appearance on the segment (see Fig. 3d). For example, if the force
Fm attracts m to p, then Fa applied to a will be:

Fa = Fm ∗ a[2] − m[2]
a[2] − b[2]

∗ n[2] − m[2]
a[2] − b[2]

.

3. Gravity. This force encourages a compact drawing of node trajectories.
Let c be the center in 2D of the initial node placement in the space-time cube.
The gravity F of each segment endpoint a is F = c∗ − a∗.

4. Trajectory Straightening. This force smooths node trajectories, helping
with node movements over time. For trajectory bends, we use the CurveSmooth-
ing [47] force, which pulls a bend b to the centroid of the triangle Δabc formed by
using the previous and next bends or endpoints a and c. A trajectory endpoint
a has no such triangle. Therefore, it is pulled in 2D toward the midpoint of the
segment formed with the closest bend or endpoint b.

5. Mental Map Preservation. This force prevents trajectory segments from
making large angles with respect to time. When segments form a 90◦ angle with
time, a node essentially “teleports” from one place to another, while segments
parallel to the time axis result in no node movement. Thus, segments should
form small angles with the time axis. This force pulls endpoints a and b of each
trajectory towards each other in 2D with a magnitude based on the angle α the
segment makes with the time axis:

Fa = (b∗ − a∗) ∗ α

90◦ − α

Constraints. Node movement constraints ensure valid drawing of the continu-
ous dynamic graph in the space-time cube. In particular, constraints are needed
to prevent undesired movements.

Decreasing Max Movement. We insert a constraint on the maximum node move-
ment allowed at each iteration. This allows large movements at the beginning
of the computation, and smaller refinements towards the end. This constraint is
similar to DecreasingMaxMovement (δ) [47].

Movement Acceleration. This constraint promotes consistent movements with
previous iterations and penalizes movements in the opposite direction. This con-
straint corresponds to MovementAcceleration (δ) [47].

Time Correctness. This constraint prevents a node from changing its time
coordinate. Consider the trajectory formed by the segment t = a → b. If a
changes its time coordinate in the space-time cube, the time of its appear-
ance will also change. Now, consider a trajectory formed by several segments,
t = a → b → c → d. The trajectory endpoints a and d, corresponding to the

402 P. Simonetto et al.

appearance and disappearance of the node, should have fixed time positions.
However, bends b and c can move in time, so long as they do not pass each other
(a[2] < b[2] < c[2] < d[2]) as this would result in a node being in two locations
at once. Therefore, the movement Ma of node a in time is constrained to be:
Ma ← M∗

a if a is the endpoint of a trajectory, and

Mb ← Mb ∗ max
{

r ∈ [0, 1] :
Ma[2] − Mb[2]

2
< rMb[2] <

Mc[2] − Mb[2]
2

}

if b is a trajectory bend between other bends or endpoints a and c (see Fig. 3e).

Complexity Adjustment of Node Trajectories. As bends move freely in
time and space, node trajectories can be oversampled or undersampled. There-
fore, bends can be inserted or removed from the polyline representing a node
trajectory. If a segment of the trajectory between bends a and b is greater than
a threshold (2δ in this paper), a bend is inserted at its midpoint. Similarly, if
two consecutive segments ab and bc are placed such that the distance between
a and c is less than a threshold (1.5δ in this paper), the bend b is removed and
the two segments are replaced by ac.

5 Evaluation

We perform a metric-based evaluation of our approach against the state-of-the-
art algorithm visone [10] to demonstrate the advantages of our model.

5.1 Data Sets

InfoVis Co-Authorship (Discrete): a co-authorship network for papers published
in the InfoVis conference from 1995 to 2015 [1]. Authors collaborating on a paper
are connected in a clique at the time of publication of the paper. Note this is
not a cumulative network as authors can appear, disappear, and appear again.
The data is of discrete nature with exactly 21 timeslices (one per year).

Van De Bunt (Discrete): shows the relationships between 32 freshmen at
seven different time points. A discrete dynamic graph is built using the method
of Brandes et al. [9], with an undirected edge inserted into a timeslice if the
participants reciprocally report “best friendship” or “friendship” at that time.

Newcomb Fraternity Data (Discrete): contains the sociometric preference of
17 members of a fraternity in the University of Michigan in the fall of 1956 [39].
As in previous work [9], at each timeslice, we inserted undirected edges connect-
ing students to their three best friends.

Rugby (Continuous): is a network derived from over 3,000 tweets involving
teams in the Guinness Pro12 rugby competition. The tweets were posted between
09.01.2014 and 10.23.2015. Each tweet contains information about the involved
teams and the time of publication with a precision down to the second.

Pride and Prejudice (Continuous): lists the dialogues between characters in
the novel Pride and Prejudice in order [29]. The book has 61 chapters and the
data set includes over 4,000 interactions between characters.

Drawing Dynamic Graphs Without Timeslices 403

5.2 Method

As there are no continuous dynamic graph drawing algorithms, we need to com-
pare our results with discrete dynamic graph drawing algorithms. In our metric
evaluation, we considered three drawing approaches:

– Visone (v) drawings were computed using the discrete version (timesliced)
with visone [10]. We use a linking strategy [9] with a default link length of
200 and a stability parameter α = 0.5.

– Discrete (d) drawings were computed using a modified version of DynNoSlice
on the discrete version. Each trajectory bend coincides with a timeslice and
bends cannot be inserted or removed. The rest of the algorithm is unaltered.
We used δ = 1 as the desired edge length parameter.

– Continuous (c) drawings were computed using DynNoSlice. We used δ = 1 as
the desired edge length parameter.

We evaluate the results using a variety of metrics:

– Stress: the average edge stress, as defined by Brandes and Mader [9, Formula 1].
As stress is defined for a static graph, we slice the space-time cube and average
the stress computed on each timeslice.

– Node Movement: the average 2D movements of the nodes. Intuitively, this is
the average distance traveled by nodes when animating the dynamic graph.

– Crowding: This metric counts the number of times nodes collide during the
animation of the dynamic graph.

– Running Time in seconds.

For continuous dynamic graphs, we can compute the stress of the nodes and
edges present in the timeslice defined by the discrete dynamic graph or on the
node and edge set at that precise point in continuous time. We can also compute
stress between timeslices. Thus, we consider four measures of stress:

– StressOn (d): the stress computed on the timeslices using the node and edge
set of that timeslice.

– StressOff (d): the stress computed on and between the default timeslices using
the node and edge set of the closest timeslice in time, when between two
timeslices.

– StressOn (c): the stress computed on the timeslices using the precise node
and edge appearances in continuous time.

– StressOff (c): the stress computed on and between the timeslices using the
precise node and edge appearances in continuous time.

Graph Scaling. Uniformly scaling node positions changes the measure of stress
even though the layout is the same [27,33,40]. In order to compare methods as
fairly as possible, we used a strategy where scale-independent values of stress
are compared as follows. Both visone and DynNoSlice have a parameter that
indicates the desired edge length. First, we verified that visone produces the

404 P. Simonetto et al.

same result (up to scale) when changing the edge length parameter. Thus, we use
the default value of edge length but consider different scaling factors to compare
to the output of our algorithm. For the experiment, we defined nodes to be circles
of diameter 0.2 and with an ideal edge length of 1. To obtain such drawing with
our approach, we run the algorithm with an ideal edge length parameter δ = 1.
To obtain such drawing with visone, we run it with the default edge length of
200 and scale it down by a factor 200.

Related work in static graph drawing [27,33,40] searches for the best scaling
factor via binary search, as a minimum is guaranteed. For our metric (average
stress across all timeslices) we have no such guarantee. Thus, we evaluate scaling
factors (1.1)i, with i ∈ Z : −20 < i < 20 for the best StressOn(d) value. This
scaling factor is used to compute all metrics. After plotting the average stress
for each data set, a minimum in this range was consistently observed.

5.3 Results

Videos of Newcomb, Rugby, and Pride and Prejudice are available2. In this
section, we present our quantitative results.

visone is often faster than our continuous approach as DynNoSlice operates
on a greater volume of data – the data between timeslices. The discrete version
of DynNoSlice is often slower than both, as the continuous approach is more
naturally expressed without timeslices. Therefore, there is a penalty for imposing
timeslices on it.

Table 1 shows the results on the discrete data sets. Continuous stress metrics
are not computed, because nodes and edges only appear on timeslices. In the
VanDeBunt and Newcomb data sets, visone outperforms DynNoSlice in terms
of stress. Movement and crowding are comparable among all three approaches.
Our continuous approach is sometimes able to improve on visone when stress is
computed off timeslices. When comparing the discrete and continuous versions
of DynNoSlice, our discrete version is often able to optimize on-timeslice stress.

Table 1. Results for the discrete data sets on our metrics.

Graph Type Time (s) Scale StressOn (d) StressOff (d) Movement Crowding

VanDeBunt v 0.13 1.00 1.14 1.46 3.80 0

d 7.73 0.62 1.20 1.20 3.91 0

c 6.73 0.68 1.19 1.29 3.69 0

Newcomb v 0.11 1.00 14.04 14.77 16.36 8

d 9.68 0.68 16.61 16.59 13.48 2

c 7.62 0.75 18.13 17.98 12.37 0

InfoVis v 77.43 0.47 51.66 52.98 2.15 36

d 388.38 0.56 31.09 31.04 2.03 8

c 381.15 0.56 32.70 34.02 1.91 6

2 http://cs.swan.ac.uk/∼dynnoslice/files/video.mp4.

http://cs.swan.ac.uk/~dynnoslice/files/video.mp4

Drawing Dynamic Graphs Without Timeslices 405

InfoVis is an outlier for the timesliced data sets. In particular, our continuous
approach outperforms visone in terms of stress.

Table 2 shows the results of our metric experiment on the continuous data
sets. Our continuous approach has lower off-timeslice stress, lower average move-
ment, fewer crowding events, and occasionally lower on-timeslice stress.

Table 2. Results for the continuous data sets on our metrics.

Graph Type Time (s) Scale StressOn (c) StressOff (c) Movement Crowding

Rugby v 0.08 0.68 3.08 2.71 25.47 6

d 7.40 0.68 1.84 1.71 16.23 1

c 3.88 0.51 1.84 1.77 6.57 0

Pride v 3.39 0.18 0.62 0.88 5.44 682

d 1655.50 0.32 0.82 0.86 6.95 13

c 75.61 0.24 0.83 0.85 1.12 3

5.4 Discussion

Our results on the discrete data sets were expected: visone optimizes for stress
directly on every timeslice and so outperforms our force system in terms of stress,
while it is comparable in terms of movement and crowding. As a state-of-the-art
algorithm for timesliced graph drawing, it is difficult to compete with visone
when it is running on the type of data for which it was designed. However,
when stress is measured off the timeslices, our continuous approach often out-
performs visone. The timesliced model does not allow for stress to be optimized
between timeslices and must resort to linear interpolation, leading to subopti-
mal stress. In our continuous dynamic graph model, we optimize for stress in
continuous time, leading to this performance improvement. The InfoVis data
set is an exception where DynNoSlice is able to improve on visone in terms of
stress. This result could be due to the bursty nature of this graph (edges are only
present if two authors published a joint paper that year). Therefore, large parts
of the graph change drastically from year to year. Allowing node trajectories to
evolve independently of timeslices may allow DynNoSlice to perform better.

For nearly all continuous data sets, our continuous model often outperforms
visone in terms of stress, movement, and crowding. This is likely due to the
fact we do not use timeslices to compute the layout of the dynamic graph. As
a result, we are able to optimize stress between timeslices as well. On-timeslice
stress is an exception, as it is directly optimized by visone.

It is surprising that our continuous dynamic graph drawing algorithm simul-
taneously improves node movement and crowding while remaining competitive
or improving on stress. This finding may seem counter-intuitive as low stress
usually corresponds to high node movement. This result can be explained by the
fact that nodes in our continuous models are polylines of adaptive complexity

406 P. Simonetto et al.

in the space-time cube. Nodes with few interactions in the data will be long
straight lines, potentially passing through many timeslices. These areas of low
complexity will reduce average node movement. In a model that uses timeslices,
each timeslice is forced to have that node with inter-timeslice edges. Therefore,
timeslices impose additional node movement that may not be necessary.

In terms of crowding, the continuous model allows the polyline representing
a node to adapt its complexity between timelices if there are many interac-
tions. When there are many changes to the graph in a short period of time,
these polylines have increased complexity, allowing nodes to avoid crowding. In
a timesliced model, only linear interpolation is possible, and all nodes must fol-
low straight lines. Thus, crowding is incurred. Crowding is also avoided in our
continuous model as our polylines have repulsive forces between them. In all
timeslice approaches, inter-timeslice edges do not repel each other, potentially
causing crowding events.

6 Conclusions and Future Work

We presented a model for dynamic graph drawing without timeslices in which
nodes and edges, along with their attributes, are defined on continuous time
intervals. We developed a dynamic graph drawing algorithm, DynNoSlice, that
visualizes graphs in this model by working on the space-time cube. An imple-
mentation of this algorithm is available along with a video. In our evaluation,
we demonstrate that our continuous approach has significant advantages over
timeslicing the continuous data.

The focus of this paper is a method to draw dynamic graphs without times-
lices. An animation of a slice traversing the layout in the space-time cube is
a natural visualization. However, animation is not always effective in terms of
human performance [4,22,48], especially when events are of short duration. More
effective visual representations the layout present in the space-time cube are nec-
essary.

The primary issue that we have found with collapsing continuous time down
onto a series of timeslices is that the timeslices could oversample/undersample
the data in the continuous dimension. In signal processing, the Nyquist frequency
gives the minimum sampling rate required to reconstruct the signal. Regular
timeslices taken a the smallest temporal distance between two events should
be sufficient to avoid undersampling, but lower sampling frequencies could be
possible and remain future work.

References

1. Citevis citation datafile. http://www.cc.gatech.edu/gvu/ii/citevis/infovis-
citation-data.txt. Accessed 28 Aug 2017

2. Archambault, D., Purchase, H.C.: Mental map preservation helps user orientation
in dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol.
7704, pp. 475–486. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36763-2 42

http://www.cc.gatech.edu/gvu/ii/citevis/infovis-citation-data.txt
http://www.cc.gatech.edu/gvu/ii/citevis/infovis-citation-data.txt
https://doi.org/10.1007/978-3-642-36763-2_42
https://doi.org/10.1007/978-3-642-36763-2_42

Drawing Dynamic Graphs Without Timeslices 407

3. Archambault, D., Purchase, H.C.: Can animation support the visualization of
dynamic graphs? Inf. Sci. 330, 495–509 (2016)

4. Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and the
effect of mental map preservation in dynamic graphs. IEEE Trans. Vis. Comput.
Graph. 17(4), 539–552 (2011)

5. Bach, B., Dragicevic, P., Archambault, D., Hurter, C., Carpendale, S.: A descrip-
tive framework for temporal data visualizations based on generalized space-time
cubes. In: Computer Graphics Forum (2016)

6. Bach, B., Shi, C., Heulot, N., Madhyastha, T., Grabowski, T., Dragicevic, P.: Time
curves: folding time to visualize patterns of temporal evolution in data. IEEE
Trans. Vis. Comput. Graphics (InfoVis 2015) 22(1), 559–568 (2016)

7. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualizing
dynamic graphs. In: Borgo, R., Maciejewski, R., Viola, I. (eds.) EuroVis - STARSs.
The Eurographics Association (2014)

8. Brandes, U., Corman, S.R.: Visual unrolling of network evolution and the analysis
of dynamic discourse. Inform. Vis. 2(1), 40–50 (2003)

9. Brandes, U., Mader, M.: A quantitative comparison of stress-minimization
approaches for offline dynamic graph drawing. In: van Kreveld, M., Speckmann, B.
(eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-25878-7 11

10. Brandes, U., Wagner, D.: Analysis and visualization of social networks. In: Jünger,
M., Mutzel, P. (eds.) Graph Drawing Software. Mathematics and Visualization, pp.
321–340. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-18638-
7 15

11. Bruß, I., Frick, A.: Fast interactive 3-D graph visualization. In: Brandenburg, F.J.
(ed.) GD 1995. LNCS, vol. 1027, pp. 99–110. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0021794

12. Burch, M., Vehlow, C., Beck, F., Diehl, S., Weiskopf, D.: Parallel edge splatting for
scalable dynamic graph visualization. IEEE Trans Vis. Comput. Graphics (InfoVis
2011) 17(12), 2344–2353 (2011)

13. Cordeil, M., Dwyer, T., Klein, K., Laha, B., Marriott, K., Thomas, B.H.: Immer-
sive collaborative analysis of network connectivity: CAVE-style or head-mounted
display? IEEE Trans. Vis. Comput. Graphics (InfoVis 2016) 23(1), 441–450 (2017)

14. Crnovrsanin, T., Chu, J., Ma, K.-L.: An incremental layout method for visualizing
online dynamic graphs. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS,
vol. 9411, pp. 16–29. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27261-0 2

15. Cruz, I.F., Twarog, J.P.: 3D graph drawing with simulated annealing. In: Bran-
denburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 162–165. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0021800

16. Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM
Trans. Graphics 15(4), 301–331 (1996)

17. Diehl, S., Görg, C.: Graphs, they are changing. In: Goodrich, M.T., Kobourov,
S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 23–31. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36151-0 3

18. Diehl, S., Görg, C., Kerren, A.: Preserving the mental map using foresighted layout.
In Eurographics/IEEE VGTC Symposium on Visualization (VisSym 2001), pp.
175–184 (2001)

19. Dwyer, T., Eades, P.: Visualising a fund manager flow graph with columns and
worms. In: Proceedings of the International Conference on Information Visualisa-
tion (IV 2002), pp. 147–152 (2002)

https://doi.org/10.1007/978-3-642-25878-7_11
https://doi.org/10.1007/978-3-642-25878-7_11
https://doi.org/10.1007/978-3-642-18638-7_15
https://doi.org/10.1007/978-3-642-18638-7_15
https://doi.org/10.1007/BFb0021794
https://doi.org/10.1007/BFb0021794
https://doi.org/10.1007/978-3-319-27261-0_2
https://doi.org/10.1007/978-3-319-27261-0_2
https://doi.org/10.1007/BFb0021800
https://doi.org/10.1007/3-540-36151-0_3

408 P. Simonetto et al.

20. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL:
graph animations with evolving layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol.
2912, pp. 98–110. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24595-7 9

21. Erten, C., Kobourov, S.G., Le, V., Navabi, A.: Simultaneous graph drawing: layout
algorithms and visualization schemes. In: Liotta, G. (ed.) GD 2003. LNCS, vol.
2912, pp. 437–449. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24595-7 41

22. Farrugia, M., Quigley, A.: Effective temporal graph layout: a comparative study of
animation versus static display methods. J. Inform. Vis. 10(1), 47–64 (2011)

23. Forrester, D., Kobourov, S.G., Navabi, A., Wampler, K., Yee, G.V.: Graphael: a
system for generalized force-directed layouts. In: Pach, J. (ed.) GD 2004. LNCS,
vol. 3383, pp. 454–464. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31843-9 47

24. Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected
graphs (extended abstract and system demonstration). In: Tamassia, R., Tollis,
I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 388–403. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-58950-3 393

25. Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE Trans. Vis. Comput.
Graphics 14(4), 727–740 (2008)

26. Gajer, P., Kobourov, S.G.: GRIP: graph drawing with intelligent placement. In:
Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 222–228. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44541-2 21

27. Gansner, E.R., Hu, Y.: A maxent-stress model for graph layout. IEEE Trans. Vis.
Comput. Graphics 19(6), 927–940 (2013)

28. Gorochowski, T.E., Di Bernardo, M., Grierson, C.S.: Using aging to visually
uncover evolutionary processes on networks. IEEE Trans. Vis. Comput. Graph-
ics 18(8), 1343–1352 (2012)

29. Grayson, S., Wade, K., Meaney, G., Greene, D.: Sensibility of different sliding
windows in constructing co-occurrence networks from literature. In: Bozic, B.,
Mendel-Gleason, G., Debruyne, C., O’Sullivan, D. (eds.) Proceedings of 2nd Inter-
national Workshop on Computational History and Data-Driven Humanities, pp.
65–77 (2016)

30. Groh, G., Hanstein, H., Wörndl, W.: Interactively visualizing dynamic social net-
works with DySoN. In: Workshop on Visual Interfaces to the Social and the Seman-
tic Web (VISSW 2009), February 2009

31. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9 29

32. Itoh, M., Yoshinaga, N., Toyoda, M., Kitsuregawa, M.: Analysis and visualization
of temporal changes in bloggers’ activities and interests. In: IEEE Pacific Visual-
ization Symposium (PacificVis 2012), pp. 57–64 (2012)

33. Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large
graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–
245. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7 20

34. Landgraf, B.: 3D graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing
Graphs. LNCS, vol. 2025, pp. 172–192. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44969-8 7

35. Liu, G., Austen, E.L., Booth, K.S., Fisher, B.D., Argue, R., Rempel, M.I., Enns,
J.T.: Multiple-object tracking is based on scene, not retinal, coordinates. J. Exp.
Psychol. Hum. Percept. Perform. 31(2), 235–247 (2005)

https://doi.org/10.1007/978-3-540-24595-7_9
https://doi.org/10.1007/978-3-540-24595-7_9
https://doi.org/10.1007/978-3-540-24595-7_41
https://doi.org/10.1007/978-3-540-24595-7_41
https://doi.org/10.1007/978-3-540-31843-9_47
https://doi.org/10.1007/978-3-540-31843-9_47
https://doi.org/10.1007/3-540-58950-3_393
https://doi.org/10.1007/3-540-44541-2_21
https://doi.org/10.1007/978-3-540-31843-9_29
https://doi.org/10.1007/978-3-662-45803-7_20
https://doi.org/10.1007/3-540-44969-8_7
https://doi.org/10.1007/3-540-44969-8_7

Drawing Dynamic Graphs Without Timeslices 409

36. Liu, Q., Hu, Y., Shi, L., Mu, X., Zhang, Y., Tang, J.: EgoNetCloud: event-based
egocentric dynamic network visualization. In: Proceedings of the IEEE Confer-
ence on Visual Analytics Science and Technology (VAST 2015), pp. 65–72. IEEE
Computer Society (2015)

37. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental
map. J. Visual Lang. Comput. 6(2), 183–210 (1995)

38. Munzner, T.: H3: laying out large directed graphs in 3D hyperbolic space. In:
Proceedings of the IEEE Symposium on Information Visualization (InfoVis 1997),
pp. 2–10, 1997

39. Newcomb, T.M.: The Acquaintance Process. New York, Holt, Reinhard & Winston
(1961)

40. Ortmann, M., Klimenta, M., Brandes, U.: A sparse stress model. In: Hu, Y.,
Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 18–32. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-50106-2 2

41. Parker, G., Franck, G., Ware, C.: Visualization of large nested graphs in 3D: nav-
igation and interaction. J. Visual Lang. Comput. 9(3), 299–317 (1998)

42. Pylyshyn, Z.W., Storm, R.W.: Tracking multiple independant targets: Evidence
for a parallel tracking mechanism. Spat. Vis. 3(3), 179–197 (1988)

43. Rauber, P.E., Falcão, A.X., Telea, A.C.: Visualizing time-dependent data using
dynamic t-SNE. In: Bertini, E., Elmqvist, N., Wischgoll, T. (eds.) EuroVis 2016,
Short Papers. Eurographics Association (2016)

44. Sallaberry, A., Muelder, C., Ma, K.-L.: Clustering, visualizing, and navigating for
large dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS,
vol. 7704, pp. 487–498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36763-2 43

45. Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE
Trans. Vis. Comput. Graphics (InfoVis 2006) 12(5), 733–740 (2006)

46. Simonetto, P., Archambault, D., Auber, D., Bourqui, R.: ImPrEd: an improved
force-directed algorithm that prevents nodes from crossing edges. Comput. Graph-
ics Forum (EuroVis 2011) 30(3), 1071–1080 (2011)

47. Simonetto, P., Archambault, D., Scheidegger, C.: A simple approach for bound-
ary improvement of Euler diagrams. IEEE Trans. Vis. Comput. Graphics (InfoVis
2015) 22(1), 678–687 (2016)

48. Tversky, B., Morrison, J., Betrancourt, M.: Animation: can it facilitate? Int. J.
Hum Comput Stud. 57(4), 247–262 (2002)

49. van den Elzen, S., Holten, D., Blaas, J., van Wijk, J.J.: Dynamic network visualiza-
tion with extended massive sequence views. IEEE Trans. Vis. Comput. Graphics
20(8), 1087–1099 (2014)

50. van den Elzen, S., Holten, D., Blaas, J., van Wijk, J.J.: Reducing snapshots to
points: a visual analytics approach to dynamic network exploration. IEEE Trans.
Vis. Comput. Graphics 22(1), 1–10 (2016)

https://doi.org/10.1007/978-3-319-50106-2_2
https://doi.org/10.1007/978-3-642-36763-2_43
https://doi.org/10.1007/978-3-642-36763-2_43

Point-Set Embeddings

Colored Point-Set Embeddings of Acyclic
Graphs

Emilio Di Giacomo1(B), Leszek Gasieniec2, Giuseppe Liotta1,
and Alfredo Navarra1

1 Università degli Studi di Perugia, Perugia, Italy
{emilio.digiacomo,giuseppe.liotta,alfredo.navarra}@unipg.it

2 University of Liverpool, Liverpool, UK
L.A.Gasieniec@liverpool.ac.uk

Abstract. We show that any planar drawing of a forest of three stars
whose vertices are constrained to be at fixed vertex locations may require

Ω(n
2
3) edges each having Ω(n

1
3) bends in the worst case. The lower

bound holds even when the function that maps vertices to points is not a
bijection but it is defined by a 3-coloring. In contrast, a constant number
of bends per edge can be obtained for 3-colored paths and for 3-colored
caterpillars whose leaves all have the same color. Such results answer to
a long standing open problem.

1 Introduction

A pioneering paper by Pach and Wenger [9] studied the problem of computing a
planar drawing of a graph G with the constraint that the mapping of the vertices
to the points in the plane, that represent the vertices of G, is given as part of
the input. Pach and Wenger proved that, for any given mapping, a planar graph
with n vertices admits a planar drawing such that the curve complexity, i.e. the
number of bends per edge, is O(n). Furthermore, they proved that the bound
on the curve complexity is (almost surely) tight as n tends to infinity when G
has O(n) independent edges. This implies that the curve complexity of a planar
drawing with vertices at fixed locations may be Ω(n) even for structurally very
simple graphs such as paths or matchings, for which the number of independent
edges is linear in n.

These results have motivated the study of a relaxed version of the problem
where the function that associates vertices of the graph to points of the plane
is not a bijection. Namely, an instance of the k-colored point set embeddability
problem receives as input an n-vertex planar graph G such that every vertex is

The work has been supported in part by the European project “Geospatial based
Environment for Optimisation Systems Addressing Fire Emergencies” (GEO-SAFE),
contract no. H2020-691161, by the Network Sciences and Technologies (NeST) initia-
tive at University of Liverpool, and by the Italian project: “RISE: un nuovo frame-
work distribuito per data collection, monitoraggio e comunicazioni in contesti di
emergency response”, Fondazione Cassa Risparmio Perugia, code 2016.0104.021.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 413–425, 2018.
https://doi.org/10.1007/978-3-319-73915-1_32

414 E. Di Giacomo et al.

given one of k distinct colors and a set S of n distinct points, such that, each
point is given one of the k distinct colors. The number of points of S having a
certain color i is the same as the number of vertices of G having color i. The goal
is to compute a planar drawing of G with curve complexity independent of n
where every vertex of a specific color is represented by a point of the same color.
When k = n the k-colored point set embeddability problem coincides with the
problem of computing a drawing with vertices at fixed locations and thus the
lower bounds by Pach and Wenger hold. Therefore several papers have focused
on small values of k (typically k ≤ 3) to see whether better bounds on the curve
complexity could be achieved in this scenario (see, e.g., [1,4–7]).

For k = 1, Kaufmann and Wiese [8] proved that every planar graph admits a
1-colored point set embedding onto any point set with curve complexity at most
2. For k = 2, outerplanar graphs always admit a 2-colored point set embedding
with O(1) curve complexity [2]. However, for k ≥ 2, there are 2-connected k-
colored planar graphs for which a k-colored point set embedding may require
Ω(n) bends on Ω(n) edges [1]. This result extends the lower bound of Pach
and Wenger [9] to a much more relaxed set of constraints on the location of
the vertices, but it does so by using 2-connected graphs instead of just (not
necessarily connected) planar graphs. For example, the problem of establishing
tight bounds on the curve complexity of k-colored forests for small values of
k ≥ 3 is a long standing open problem (see, e.g., [1]). We explicitly address this
gap in the literature and consider the k-colored point set embeddability problem
for acyclic graphs and k ≥ 3. Our main results are as follows.

– In Sect. 3, we prove that a planar drawing of a forest of three stars and n
vertices may require Ω(n

2
3) edges with Ω(n

1
3) bends each, even if the mapping

of the vertices to the points is defined by using a set of k colors with k ≥ 3.
In contrast, a constant number of bends per edge can always be achieved if
the number of stars is at most two (for any number of colors) or the number
of colors is at most two (for any number of stars).

– Since the above result implies that 3-colored point set embeddings of 3-colored
caterpillars may have a non-constant curve complexity, in Sect. 4 we study
subfamilies of 3-colored caterpillars for which constant curve complexity is
possible. We prove that every 3-colored path and every 3-colored caterpillar
whose leaves all have the same color admit a 3-colored point-set emebdding
with constant curve complexity onto any 3-colored point set.

– Finally, still in Sect. 4, we prove that any 4-colored path π such that the
vertices of colors 0 and 1 precede all vertices of colors 2 and 3 when moving
along π has a 4-colored point set embedding with at most five bends per edge
onto any 4-colored point-set.

Concerning the lower bound, it is worth mentioning that the argument by
Pach and Wenger [9] does not apply to families of graphs where the number
of independent edges is not a function of n. Hence, our lower bound extends
the one by Pach and Wenger about the curve complexity of planar drawings
with vertices at fixed locations also to those graphs for which the number of

Colored Point-Set Embeddings of Acyclic Graphs 415

independent edges does not grow with n. For reasons of space some proofs are
omitted in this paper and can be found in [3].

2 Preliminaries

Let G = (V,E) be a graph. A k-coloring of G is a partition {V0, V1, . . . , Vk−1}
of V . The integers 0, 1, . . . , k − 1 are called colors and G is called a k-colored
graph. For each vertex v ∈ Vi we denote by col(v) the color i of v.

Let S be a set of distinct points in the plane. For any point p ∈ S, we
denote by x(p) and y(p) the x- and y-coordinates of p, respectively. We denote
by CH(S) the convex hull of S. Throughout the paper we always assume that
the points of S have different x-coordinates (if not we can rotate the plane so
to achieve this condition). A k-coloring of S is a partition {S0, S1, . . . , Sk−1}
of S. A set of points S with a k-coloring is called a k-colored point set. For
each point p ∈ Si, col(p) denotes the color i of p. A k-colored point set S is
compatible with a k-colored graph G if |Vi| = |Si| for every i. If G is planar we
say that G has a topological point-set embedding on S if there exists a planar
drawing of G such that: (i) every vertex v is mapped to a distinct point p of
S with col(p) = col(v), (ii) each edge e of G is drawn as simple Jordan arc.
We say that G has a k-colored point-set embedding on S if there exists a planar
drawing of G such that: (i) every vertex v is mapped to a distinct point p of
S with col(p) = col(v), (ii) each edge e of G is drawn as a polyline λ. A point
shared by any two consecutive segments of λ is called a bend of e. The maximum
number of bends along an edge is the curve complexity of the k-colored point-set
embedding. A k-colored sequence σ is a sequence of (possibly repeated) colors c0,
c1, . . . , cn−1 such that 0 ≤ cj ≤ k−1 (0 ≤ j ≤ n−1). We say that σ is compatible
with a k-colored graph G if color i occurs |Vi| times in σ. Let S be a k-colored
point set. Let p0, . . . , pn−1 be the points of S with x(p0) < . . . < x(pn−1). The
k-colored sequence col(p0), . . . col(pn−1) is called the k-colored sequence induced
by S, and is denoted as seq(S). A set of points S is one-sided convex if they are in
convex position and the two points with minimum and maximum x-coordinate
are consecutive along CH(S). In a k-colored one-sided convex point set, the
sequence of colors encountered clockwise along CH(S), starting from the point
with minimum x-coordinate, coincides with seq(S).

A Hamiltonian cycle of a graph G is a simple cycle that contains all vertices
of G. A graph G that admits a Hamiltonian cycle is said to be Hamiltonian.
A planar graph G is sub-Hamiltonian if either G is Hamiltonian or G can be
augmented with dummy edges (but not with dummy vertices) to a graph aug(G)
that is Hamiltonian and planar. A subdivision of a graph G is a graph obtained
from G by replacing each edge by a path with at least one edge. Internal vertices
on such a path are called division vertices. Every planar graph has a subdivision
that is sub-Hamiltonian. Let G be a planar graph and let sub(G) be a sub-
Hamiltonian subdivision of G. The graph aug(sub(G)) is called a Hamiltonian
augmentation of G and will be denoted as Ham(G). Let C be the Hamiltonian
cycle of a Hamiltonian augmentation Ham(G) of G. Let e be an edge of C,

416 E. Di Giacomo et al.

let P = C \ e be the Hamiltonian path obtained by removing e from C, and let
v0, v1, . . . , vn′−1 be the vertices of G in the order they appear along P. Finally, let
σ = c0, c1, . . . , cn′−1 be a k-colored sequence. P is a k-colored Hamiltonian path
consistent with σ if col(vi) = ci (0 ≤ i ≤ n′ − 1). C is a k-colored Hamiltonian
cycle consistent with σ if there exists an edge e ∈ C such that P = C \ e is
a k-colored Hamiltonian path consistent with σ. Ham(G) is called a k-colored
Hamiltonian augmentation of G consistent with σ. The following theorem has
been proved in [2] (see also [1,6]).

Theorem 1. [2] Let G be a k-colored planar graph and S be a k-colored point
set consistent with G. If G has a k-colored Hamiltonian augmentation consistent
with seq(S) and at most d division vertices per edge then G admits a k-colored
point-set embedding on S with at most 2d + 1 bends per edge.

The next lemma can be easily derived from Theorem 1.

Lemma 1. Let G be a k-colored graph, and S be a k-colored one-sided convex
point set compatible with G. If G has a topological k-colored point-set embedding
on S such that each edge crosses CH(S) at most b times, then G admits a
k-colored point-set embedding on S with at most 2b + 1 bends per edge.

Let G = (V,E) be a planar graph. A topological book embedding of G is a
planar drawing such that all vertices of G are represented as points of a horizontal
line �, called the spine. Each of the half-planes defined by � is a page. Each edge
of a topological book embedding is either in the top page, or completely in the
bottom page, or it can be on both pages, in which case it crosses the spine.
Each crossing between an edge and the spine is called a spine crossing. It is
also assumed that in a topological book embedding every edge consists of one or
more circular arcs, such that no two consecutive arcs are in the same page1. Let
G be a k-colored graph and let σ be a k-colored sequence compatible with G. A
topological book embedding of G is consistent with σ if the sequence of vertex
colors along the spine coincides with σ. Let S be a k-colored point set compatible
with a k-colored planar graph G and let seq(S) be the k-colored sequence induced
by S. The following lemma can be proved similarly to Lemma 1.

Lemma 2. If G admits a topological book embedding consistent with seq(S) and
having at most h spine crossing per edge, then G admits a point-set embedding
on S with curve complexity at most 2h + 1.

3 Point-Set Embeddings of Stars

In this section we establish that a 3-colored point-set embedding of a forest of
three stars may require Ω(n

1
3) bends along Ω(n

2
3) edges by exploiting a previous

1 The more general concept of h-page topological book embedding exists, where each
arc can be drawn on one among h different pages. For simplicity we use the term
topological book embedding to mean 2-page topological book embedding.

Colored Point-Set Embeddings of Acyclic Graphs 417

result about biconnected outerplanar graphs. We start by recalling the result
in [2]. An alternating point set Sn is a 3-colored one-sided convex point set such
that: (i) Sn has n points for each color 0, 1, and 2, and (ii) when going along the
convex hull CH(Sn) of Sn in clockwise order, the sequence of colors encountered
is 0, 1, 2, 0, 1, 2, Each set of consecutive points colored 0, 1, 2 is called a triplet.

Fig. 1. A 3-fan Gn

for n = 12.

A 3-fan, denoted as Gn, is a 3-colored outerplanar
graph with 3n vertices (n ≥ 2) and defined as follows.
Gn consists of a simple cycle formed by n vertices of color
0, followed (in the counterclockwise order) by n vertices
of color 1, followed by n vertices of color 2. The vertex
of color i adjacent in the cycle to a vertex of color i − 1
(indices taken modulo 3) is denoted as vi. Also, in Gn every
vertex colored i is adjacent to vi (i = 0, 1, 2) and vertices
v0, v1, v2 form a 3-cycle of Gn. See, e.g. Fig. 1. The follow-
ing theorem has been proved in [2].

Theorem 2. [2] Let h be a positive integer and let Gn be a 3-fan for n ≥ 79h3,
and let Sn be an alternating point set compatible with Gn. In every 3-colored
point-set embedding of Gn on Sn there is one edge with more than h bends.

The forest of stars that we use to establish our lower bound is called a 3-sky
and is denoted by Fn. It consists of three stars T0, T1, T2 such that: (i) each Ti

(i = 0, 1, 2) has n vertices (n ≥ 2); (ii) all the vertices of each Ti (i = 0, 1, 2)
have the same color i.

Let Γn be a point-set embedding of Fn on Sn. An uncrossed triplet of Γn

is a triplet pi, pi+1, pi+2 of points of Sn such that, when moving along CH(Sn)
in clockwise order, no edge of Γn crosses CH(Sn) between pi and pi+1 and
between pi+1 and pi+2. A triplet is crossed k times if the total number of times
that CH(Sn) is crossed by some edges between pi and pi+1 and between pi+1

and pi+2 is k. A leaf triplet of Γn is a triplet of Sn whose points represent leaves
of Fn. Analogously, a root triplet is a triplet of Sn whose points represent the
three roots of Fn. The following lemma establishes the first relationship between
the curve complexity of some special types of 3-colored point-set embeddings of
Fn and those of a 3-fan Gn.

Lemma 3. Let Fn be a 3-sky, Sn be an alternating point set compatible with
Fn, and Γn be a 3-colored topological point-set embedding of Fn on Sn. If Γn has
an uncrossed leaf triplet and each edge of Γn crosses CH(Sn) at most b times,
then the 3-fan Gn has a 3-colored topological point-set embedding on Sn such
that each edge crosses CH(Sn) at most 3b + 2 times.

Proof. We show how to use Γn to construct a topological point-set embedding
of the 3-fan Gn on Sn with at most 3b + 2 crossings of CH(Sn) per edge.

Let pj , pj+1, pj+2 be an uncrossed leaf triplet. Every point of the triplet
represents a leaf of a different star (because they have different color). Denote
by qi the point of Γn representing the root of Ti (i = 0, 1, 2) and denote by ei
the edge connecting qi to pj+i. The idea is to connect the three points q0, q1, q2

418 E. Di Giacomo et al.

Fig. 2. Insertion of a cycle connecting q0, q1 and q2. (a) Drawing of the curves following
the edge e1. (b), (c), and (d) Connection of the six curves to form a cycle.

with a 3-cycle that does not cross any existing edges. For each edge ei we draw
two curves that from qi run very close to ei until they reach CH(Sn). The two
curves are drawn on the same side of ei such that they are consecutive in the
circular order of the edges around qi (see Fig. 2(a) for an illustration). These two
curves do not intersect any existing edges and cross CH(Sn) the same number of
times as ei. The six drawn curves are now suitably connected to realize a cycle C
connecting q0, q1, q2. Depending on which side the various curves reach CH(Sn),
the connections are different. However in all cases we can connect two curves to
form a single edge by crossing CH(Sn) at most two additional times and without
violating planarity (see Fig. 2(b), (c) and (d)). Thus, we have added to Γn three
edges e′

i connecting qi to qi+1 (indices taken modulo 3), each crossing CH(Sn)
at most 2b + 2 times. Also, since the two curves that follow an edge ei are both
drawn on the same side of ei, the cycle C does not have any vertices inside.
Notice that, depending on the case with respect to the connection of the curves,
q0, q1, and q2 appear along C either in the clockwise or in the counterclockwise
order. W.l.o.g. we assume that the clockwise order is q0, q1, and q2.

The obtained drawing is not yet a topological point-set embedding of Gn

because the cycle C ′ connecting all the vertices is missing. We first add edges
connecting leaves of the same color. Let e′

i = e0, e1, . . . , en−2 = e′
i−1 be the

edges incident to qi in the circular order around qi (this is the counterclockwise
order under our assumption that q0, q1, and q2 are located in the clockwise
order along C). We add an edge between the leaf of ej and the leaf of ej+1

(for j = 0, 1, . . . , n − 3) as follows. Starting from the leaf of ej , we draw a curve
following the edge ej until we arrive very close to qi and then we follow ej+1 until
we reach the leaf of ej+1. The added edges do not cross any existing edges and
cross CH(Sn) a number of times equal to the number of times that ej crosses
CH(Sn) plus the number of times that ej+1 crosses CH(Sn), so at most 2b.

It remains to add the edges of C ′ connecting vertices of different colors. There
are three such edges and they connect vertex vi (i = 0, 1, 2) of Gn to a vertex
of color i + 1 (indices taken modulo 3). We add an edge connecting qi to a leaf
of color i + 1 as follows. Let e′′

i+1 be the edge incident to qi+1 that follows e′
i

in the clockwise order around qi+1 (this is an edge connecting qi+1 to a leaf of
color i + 1). Starting from qi we draw a curve following the edge e′

i until we

Colored Point-Set Embeddings of Acyclic Graphs 419

arrive very close to qi+1 and then we follow e′′
i+1 until we reach the leaf of e′′

i+1.
The constructed curve connects qi to a leaf of color i + 1 and does not cross any
existing edge. It crosses CH(Sn) at most the number of times that e′

i+1 crosses
CH(Sn) (that is 2b + 2) plus the number of times that e′′

i+1 crosses CH(Sn)
(that is b). Thus the total number of crossing of CH(Sn) is at most 3b + 2. ��

The next two lemmas explain how to obtain a 3-colored topological book
embedding that satisfies Lemma 3.

Lemma 4. Let Fn be a 3-sky, Sn be an alternating point set compatible with
Fn, and Γn be a 3-colored topological point-set embedding of Fn on Sn with a
root triplet. If Γn has a leaf triplet τ that is crossed c times (c < n) and each
edge crosses CH(Sn) at most b times, then there exists a 3-sky Fn′ which is a
subgraph of Fn and an alternating point set Sn′ which is a subset of Sn such
that: (i) n′ ≥ n − c; (ii) there exists a 3-colored topological point-set embedding
Γn′ of Fn′ on Sn′ such that each edge crosses CH(Sn′) at most b+1 times; (iii)
τ is an uncrossed leaf triplet of Γn′ .

Lemma 5. Let Fn be a 3-sky, Sn be an alternating point set compatible with
Fn, and Γn be a 3-colored topological point-set embedding of Fn on Sn. If each
edge of Γn crosses CH(Sn) at most b times, then there exists a 3-sky Fn′ which
is a subgraph of Fn and an alternating point set Sn′ which is a subset of Sn such
that: (i) n′ ≥ n

3 − 3; (ii) there exists a 3-colored topological point-set embedding
Γn′ of Fn′ on Sn′ such that each edge crosses CH(Sn′) at most b+2 times; (iii)
Γn′ has a root triplet.

Lemma 6. Let h be a positive integer, Fn be a 3-sky for n = 520710h3, and
Sn be an alternating point set compatible with Fn. In every 3-colored point-set
embedding of Fn on Sn there exist at least h2 edges with more than h bends.

Proof (sketch). Let Fni
, i = 1, 2, . . . , h2, be a 3-sky for ni = 520689h3+21h·i and

let Sni
be an alternating point set compatible with Fni

. We prove by induction
on i that in every 3-colored point-set embedding of Fni

on Sni
there exist i edges

with more than h bends. Notice that for i = h2, we have ni = n.

Base case: i = 1: We have to prove that in any 3-colored point-set embedding
of Fn1 on Sn1 with n1 = 520689h3 + 21h, there exists one edge with more
than h bends. Suppose as a contradiction that there exists a 3-colored point-
set embedding Γn1 of Fn1 on Sn1 with curve complexity h. Γn1 is also a 3-
colored topological point-set embedding of Fn1 on Sn1 such that each edge crosses
CH(Sn1) at most 2h times (each edge consists of at most h + 1 segments). By
Lemma 5 there exists a 3-colored point-set embedding Γn′ of a 3-sky Fn′ on an
alternating point set Sn′ such that: (i) n′ ≥ n1

3 ; (ii) each edge of Γn′ crosses
CH(Sn′) at most 2h + 2 times; (iii) Γn′ has a root triplet.

Since each edge of Γn′ crosses CH(Sn′) at most 2h + 2 times and there are
3(n′ − 1) ≥ n1 − 3 edges in total, there are at most (2h + 2)(n1 − 3) crossings of
CH(Sn1) in total. The number of leaf triplets in Γn′ is n′ −1 ≥ n1

3 −1. It follows
that there is at least one leaf triplet τ crossed at most 3(2h+2)(n1−3)

(n1−3) = 6h+6 ≤ 7h

420 E. Di Giacomo et al.

times. By Lemma 4 there exists a 3-colored point-set embedding Γn′′ of a 3-sky
Fn′′ on an alternating point set Sn′′ such that: (i) n′′ ≥ n′ −7h; (ii) each edge of
Γn′′ crosses Sn′′ at most 2h+3 times; (iii) τ is uncrossed. By Lemma 3, the 3-fan
Gn′′ has a 3-colored topological point-set embedding on Sn′′ such that each edge
crosses CH(Sn′′) at most 6h + 11 times and by Lemma 1 a 3-colored point set
embedding with curve complexity at most 12h + 23. On the other hand, since
n1 = 520689h3+21h, we have that n′′ ≥ n′−7h ≥ n1

3 −7h = 520689h3+21h
3 −7h =

520689
3 h3 ≥ 520689

3 h3 = 79(13h)3 and by Theorem 2, in every 3-colored point-set
embedding of Gn′′ on Sn′′ at least one edge that has more than 13h bends – a
contradiction.

Inductive step: i > 1. We have to prove that in any 3-colored point-set embed-
ding of Fni

on Sni
with ni = 520689h3 + 21h · i, there exist i edges with more

than h bends.
We first prove that there exists at least one edge with more than h bends.

Suppose as a contradiction that there exists a 3-colored point-set embedding Γni

of Fni
on Sni

with curve complexity h. With the same reasoning as in the base
case, there would exist a 3-colored point set embedding with curve complexity at
most 12h+23 of a 3-fan Gn′′ , with n′′ ≥ ni

3 −7h. Since ni = 520689h3+21h·i, we
have that n′′ ≥ ni

3 −7h = 520689h3+21h·i
3 −7h = 520689

3 h3+7h(i−1) ≥ 520689
3 h3 =

79(13h)3 and by Theorem 2, in every 3-colored point-set embedding of Gn′′ on
Sn′′ at least one edge has more than 13h bends – again a contradiction.

This proves that there is at least one edge e crossed more than h times. We
now remove this edge and the whole triplet that contains the point representing
the leaf of e. We then arbitrarily remove 21h − 1 triplets. The resulting drawing
is a 3-colored point-set embedding Γn′′′ of Fn′′′ on Sn′′′ for n′′′ = ni−1. By
induction, it contains i− 1 edges each having more than h bends. It follows that
Γni

has i edges each having more than h bends. Since for i = h2 we have ni = n,
the statement follows. ��
Theorem 3. For sufficiently large n, there exists a 3-colored forest Fn consisting
of three monochromatic stars with n vertices and a 3-colored point set Sn in
convex position compatible with Fn such that any 3-colored point-set embedding
of Fn on Sn has Ω(n

2
3) edges having Ω(n

1
3) bends.

We conclude this section with some results deriving from Theorem 3 and/or
related to it. Firstly, Theorem 3 extends the result of Theorem 2 since it implies
that a 3-colored point set embedding of Gn may require Ω(n

2
3) edges with Ω(n

1
3)

bends each. Moreover, the result of Theorem 3 implies an analogous result for a
k-colored forest of at least three stars for every k ≥ 3. In particular, when k = n
we have the following result that extends the one by Pach and Wenger [9].

Corollary 1. Let F be a forest of three n-vertex stars. Every planar drawing of
F with vertices at fixed vertex locations has Ω(n

2
3) edges with Ω(n

1
3) bends each.

One may wonder whether the lower bound of Theorem 3 also holds when
the number of colors or the number of stars is less than three. However, it is
immediate to see that this is not the case, i.e., the following theorem holds.

Colored Point-Set Embeddings of Acyclic Graphs 421

Theorem 4. Let F be a k-colored forest of h stars and S be a set of points
compatible with F . If max{k, h} = 2 then F has a k-colored point-set embedding
on S with curve complexity at most 2.

Since a caterpillar can be regarded as a set of stars whose roots are con-
nected in a path, the lower bound of Theorem 3 also holds for caterpillars. This
answers an open problem in [1] about the curve complexity of k-colored point-set
embeddings of trees for k ≥ 3. Note that O(1) curve complexity for 2-colored
outerplanar graphs has been proved in [2].

Corollary 2. For sufficiently large n, a 3-colored point-set embedding of a 3-
colored caterpillar may require Ω(n

2
3) edges having Ω(n

1
3) bends.

4 Point-Set Embeddings of Paths and Caterpillars

In the light of Corollary 2, one may ask whether there exist subclasses of 3-
colored caterpillars for which constant curve complexity can be guaranteed. In
this section we first prove that this is the case for 3-colored paths and then we
extend the result to 3-colored caterpillars whose leaves all have the same color.

Based on Lemma 2, we prove that a 3-colored path P has a topological
book embedding consistent with seq(S) and having a constant number of spine
crossings. Namely, we first remove the vertices and points of one color from
P and S, obtaining a 2-colored path P ′ and a compatible 2-colored point set
S′. Next, we construct a topological book embedding γP ′ of P ′ consistent with
seq(S′) with at most two spine crossings per edge and with suitable properties.
Then we use such properties to reinsert the third color and obtain a topological
book embedding of P consistent with seq(S).

P ′ and σ′ = seq(S′) can be regarded as two binary strings of the same size
where one color is represented by bit 0 and the other one by bit 1. P ′ and σ′

are balanced if the number of 0’s (1’s, resp.) in P ′ equals the number of 0’s (1’s,
resp.) in σ′. P ′ and σ′ are a minimally balanced pair if there does not exist a
prefix of P ′ and a corresponding prefix of σ′ that are balanced.

Lemma 7. Let P and σ be a minimally balanced pair of length k > 1. Let bj(P)
denote the j-th bit of P and bj(σ) denote the j-th bit of σ. Then b1(P) �= bk(P),
bk(P) = b1(σ), and b1(P) = bk(σ).

Let Γ be a topological book embedding, � be the spine of Γ , and p be a point
of � (possibly representing a vertex). We say that p is visible from above (below)
if the vertical ray with origin at p and lying in the top (bottom) page does not
intersect any edge of Γ . We say that the segment pq is visible from above (below)
if each point r in the segment is visible from above (below). Let u and v be two
vertices of Γ that are consecutive along the spine �, we say that segment uv is
accessible if it contains a segment that is visible from below. A vertex v of Γ
is hook visible if there exists a segment pq of the spine such that pq is visible
from below and for any point r of pq we can add an edge in the top page of Γ

422 E. Di Giacomo et al.

Fig. 3. (a) Illustration of the hook visibility property. The bold segment is the access
interval. (b)-(d) Proof of Lemma 8: (b) Base cas; (c) Case 1; (d) Case 2.

connecting v with r without crossing any other edges of Γ (see Fig. 3(a)); pq is
the access interval for vertex v. If the access interval is to the right (left) of v
we say that v is hook visible from the right (left).

Lemma 8. Let P be a 2-colored path and σ be a 2-colored sequence compatible
with P . Path P admits a topological book embedding γ consistent with σ and
with the following properties: (a) Every edge of γ crosses the spine at least once
and at most twice. (b) For any two vertices u and v that are consecutive along
the spine � of γ, segment uv is accessible from below. (c) Every spine crossing
is visible from below. (d) The first vertex v1 of P is visible from above; the last
vertex vn of P is hook visible from the right; to the right of its access interval
there is only one vertex and no spine crossing.

Proof. We prove the statement by induction on the length n of P (and of σ). If
n = 1 the statement trivially holds. If n = 2 we draw the unique edge of P with
one spine crossing immediately to the left of the leftmost vertex in the drawing
(see Fig. 3(b)). Also in this case the statement holds. Suppose that n > 2 and
that the statement holds for every k < n. We distinguish between two cases.

Case 1: P and σ are a minimally balanced pair. By Lemma 7 the first
vertex of P has the same color as the last element of σ, the last element of P has
the same color as the first element of σ and these two colors are different. This
means that by removing the first and the last elements from both P and σ, we
obtain a new 2-colored path P ′ of length n − 2 and a new 2-colored sequence σ′

compatible with P ′. By induction, P ′ admits a topological book embedding γ′

consistent with σ′ and satisfying properties (a)–(d). To create a topological book
embedding of P consistent with σ, we add a point p1 before all the points of γ′,
whose color is the same as the last vertex vn of P , and a point p2 after all points
of γ′, whose color is the same as the first vertex v1 of P . Vertex v1 is mapped to
p2 and vertex vn is mapped to p1. We connect v1 to the first vertex u1 of P ′ with
an edge incident to p2 from above, crossing the spine once immediately before p1
and once immediately after p1 and arriving to u1 from above (by property (d),
u1 is visible from above). We then connect the last vertex un′ of P ′ to vn. Since
un′ is hook visible by property (d), we connect it to vn with an edge that starting
from un′ reaches the access interval of un′ , crosses the spine between the last
vertex of γ′ and p2 and reaches p1 from above. As shown in Fig. 3(c) the two edges
(v1, u1) and (un′ , vn) can be added without creating any crossing. Property (a)

Colored Point-Set Embeddings of Acyclic Graphs 423

holds by construction. About properties (b) and (c), we added two arcs in the
bottom page. The first one connects a point immediately before vn and a point
immediately after it, so the segment of the spine between vn and its following
vertex is accessible from below; also, the addition of this arc does not change
the accessibility of the spine crossing of γ′. The second arc added in the bottom
page connects a point q in the access interval of un′ with a point immediately
after u1; by property (d) of γ′ there is no vertex or spine crossings between q
and u1. Thus the segments connecting u1 to its preceding and to its following
vertices are visible from below and property (b) holds; furthermore the addition
of this arc does not change the accessibility to existing spine crossings. Since the
new created spine crossings are visible from below, property (c) also holds. It is
immediate to see that also property (d) holds; see for example Fig. 3(c).

Case 2: P and σ are not a minimally balanced pair. In this case there
exists a prefix (i.e. a subpath) P ′ of P and a corresponding prefix σ′ of σ that
are balanced. P ′ is 2-colored path and σ′ is a 2-colored sequence compatible
with P ′ and their length is less than n. By induction, P ′ admits a topological
book embedding γ′ consistent with σ′ and statisfying properties (a)–(d). On
the other hand, P ′′ = P \ P ′ is also a 2-colored path and σ′′ = σ \ σ′ is a 2-
colored sequence consistent with P ′′. Thus, P ′′ also admits a topological book
embedding γ′′ consistent with σ′′ and statisfying properties (a)–(d). Since the
last vertex un of P ′ is hook visible in γ′ and the first vertex w1 of P ′′ is visible
from above in γ′′, the two vertices can be connected with an edge that crosses
the spine twice (see Fig. 3(d)), thus creating a topological book embedding γ of
P consistent with σ. Property (a) holds by construction. The only arc added
in the bottom page connects a point q in the access interval of un and a point
q′ immediately after the first vertex u1 of P ′. By property (d) of γ′ there is no
vertex or spine crossing between q and u1 and between u1 and q′, thus properties
(b) and (c) hold for γ. Property (d) holds because it holds for γ′ and γ′′. ��
Lemma 9. A 3-colored path admits a topological book embedding with at most
two spine crossings per edge consistent with any compatible 3-colored sequence.

Proof (sketch). Let c2 be a color distinct from the colors of the end-vertices of
P . Let v1, v2, . . . , vk be a maximal subpath of P colored c2. Let u1 and u2 be
the vertices along P before v1 and after vk, respectively. We replace the subpath
u1, v1, v2, . . . , vk, u2 with an edge (u1, u2). We do the same for every maximal
subpath colored c2. Let P ′ be the resulting 2-colored path and σ′ be the 2-colored
sequence obtained from σ by removing all elements of color c2.

By Lemma 8, P ′ admits a topological book embedding γ′ consistent with σ′

that satisfies properties (a), (b), (c) and (d). We add to γ′ a set Q of points
colored c2 to represent the removed vertices that will be added back. These
points must be placed so that the sequence of colors along the spine coincides
with σ. By property (b) of γ′ all these points can be placed so that they are
accessible from below. We now have to replace some edges of P ′ with paths of
vertices colored c2. Let (u1, u2) be an edge that has to be replaced by a path
u1, v1, v2, . . . , vk, u2. For each vertex vi to be added (i = 1, 2, . . . , k) we add an

424 E. Di Giacomo et al.

image point to the drawing. The image points are added as follows. By property
(a), the edge (u1, u2) crosess the spine at least once. Let χ be the point where
(u1, u2) crosses the spine for the first time when going from u1 to u2. By property
(c) χ is visible from below. This means there is a segment s of � with χ as an
endpoint that is visibile from below. We place k−1 image points p1, p2, . . . , pk−1

inside this segment, while χ is the k-th image point pk (it is the leftmost if s
is to the left of χ, while it is the rightmost if s is to the right of χ). The first
arc of the edge (u1, u2) is replaced by an arc connecting u1 to p1. Each image
point pi is connected to the pi+1 (i = 1, 2, k − 1) by means of an arc in the top
page. Finally, the last image point pk is already connected to u2 by means of the
remaining part of the original edge (u1, u2). Notice that the edge (u1, p1) does
not cross the spine, and the same is true for any edge (pi, pi+1), while the edge
(pk, u2) crosses the spine at most once (the original edge had at most two spine
crossing one of which was at χ = pk). We have replaced the edge (u1, u2) with a
path π = 〈u1, p1, p2, . . . , pk, u2〉 with k +1 edges, as needed. However, the points
representing the intermediate vertices of this path are not the points of the set
Q. The idea then is to “connect” the image points to the points of Q. To this
aim, we add matching edges in the bottom page between the image points and
the points of Q. Since both the points of Q and the image points are visible from
below, these matching edges do not cross any other existing edge. Moreover, by
using a simple brackets matching algorithm, we can add the matching edges so
that they do not cross each other. Finally the matching edges can be used to
create the actual path that represent u1, v1, v2, . . . , vk, u2. ��

The following theorem is a consequence of Lemmas 2 and 9.

Theorem 5. Every 3-colored path admits a 3-colored point-set embedding with
curve complexity at most 5 on any compatible 3-colored point set.

Theorem 5 can be extended to a subclass of 3-colored caterpillars.

Theorem 6. Every 3-colored caterpillar with monochromatic leaves admits a
3-colored point-set embedding with curve complexity at most 5 on any compatible
3-colored point set.

The above results motivate the study of 4-colored graphs, in particular a
natural question is whether 4-colored paths admit point-set embedding on any
set of points with constant curve complexity.

Theorem 7. Let P be a 4-colored path with n vertices and let S be a 4-colored
point set compatible with P . If the first h ≥ 2 vertices along P only have two
colors and the remaining n − h only have the other two colors, then P has a
4-colored point-set embedding on S with curve complexity at most 5.

5 Open Problems

Motivated by the results of this paper we suggest the following open problems:
(i) Investigate whether the lower bound of Theorem 3 is tight. We recall that an

Colored Point-Set Embeddings of Acyclic Graphs 425

upper bound of O(n) holds for all n-colored planar graphs [9]. (ii) Study whether
constant curve complexity can always by guaranteed for 4-colored paths. (iii)
Characterize the 3-colored caterpillars that admit a 3-colored point-set embed-
ding with constant curve complexity on any given set of points.

References

1. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points.
Theor. Comput. Sci. 408(2–3), 129–142 (2008)

2. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.:
k−colored point-set embeddability of outerplanar graphs. J. Graph Algorithms
Appl. 12(1), 29–49 (2008)

3. Di Giacomo, E., Gasieniec, L., Liotta, G., Navarra, A.: Colored point-set embeddings
of acyclic graphs. CoRR 1708.09167 (2017), arXiv:1708.09167

4. Di Giacomo, E., Liotta, G.: The Hamiltonian augmentation problem and its applica-
tions to graph drawing. In: Rahman, M.S., Fujita, S. (eds.) WALCOM 2010. LNCS,
vol. 5942, pp. 35–46. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11440-3 4

5. Di Giacomo, E., Liotta, G., Trotta, F.: On embedding a graph on two sets of points.
Int. J. Found. Comput. Sci. 17(5), 1071–1094 (2006)

6. Di Giacomo, E., Liotta, G., Trotta, F.: Drawing colored graphs with constrained
vertex positions and few bends per edge. Algorithmica 57(4), 796–818 (2010)

7. Frati, F., Glisse, M., Lenhart, W.J., Liotta, G., Mchedlidze, T., Nishat, R.I.: Point-
set embeddability of 2-colored trees. In: Didimo, W., Patrignani, M. (eds.) GD
2012. LNCS, vol. 7704, pp. 291–302. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36763-2 26

8. Kaufmann, M., Wiese, R.: Embedding vertices at points: few bends suffice for planar
graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)

9. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs
Comb. 17(4), 717–728 (2001)

http://arxiv.org/abs/1708.09167
https://doi.org/10.1007/978-3-642-11440-3_4
https://doi.org/10.1007/978-3-642-11440-3_4
https://doi.org/10.1007/978-3-642-36763-2_26
https://doi.org/10.1007/978-3-642-36763-2_26

Planar Drawings of Fixed-Mobile Bigraphs

Michael A. Bekos1, Felice De Luca2, Walter Didimo2(B), Tamara Mchedlidze3,
Martin Nöllenburg4, Antonios Symvonis5, and Ioannis G. Tollis6

1 University of Tübingen, Tübingen, Germany
bekos@informatik.uni-tuebingen.de

2 Università degli Studi di Perugia, Perugia, Italy
felice.deluca@studenti.unipg.it, walter.didimo@unipg.it

3 Karlsruhe Institute of Technology, Karlsruhe, Germany
mched@iti.uka.de

4 TU Wien, Vienna, Austria
noellenburg@ac.tuwien.ac.at

5 National Technical University of Athens, Athens, Greece
symvonis@math.ntua.gr

6 University of Crete, Heraklion, Greece
tollis@csd.uoc.gr

Abstract. A fixed-mobile bigraph G is a bipartite graph such that the
vertices of one partition set are given with fixed positions in the plane and
the mobile vertices of the other part, together with the edges, must be
added to the drawing. We assume that G is planar and study the problem
of finding, for a given k ≥ 0, a planar poly-line drawing of G with at most
k bends per edge. In the most general case, we show NP-hardness. For
k = 0 and under additional constraints on the positions of the fixed
or mobile vertices, we either prove that the problem is polynomial-time
solvable or prove that it belongs to NP. Finally, we present a polynomial-
time testing algorithm for a certain type of “layered” 1-bend drawings.

1 Introduction

This paper considers the following problem. Let G = (Vf , Vm, E) be a planar
bipartite graph such that the vertices in Vf , called fixed vertices, have fixed
distinct locations (points) in the plane, while the vertices in Vm, called mobile
vertices, can be freely placed. Does G admit a crossing-free drawing Γ with at
most k bends per edge, where k is a given non-negative integer? We assume that
each vertex of G is drawn in Γ as a distinct point of the plane and that each edge
is drawn as a simple poly-line. We call G an FM-bigraph and a drawing Γ with
the properties mentioned above a planar k-bend drawing of G. In particular, since
edge bends negatively affect the readability of a graph layout (see, e.g., [32,33]),

Research in this work started at the Bertinoro Workshop on Graph Drawing 2016.
We thank all the participants and in particular S.-H. Hong for useful discussions.
We also thank an anonymous reviewer of this research for some valuable comments,
and especially for suggesting the idea behind the proof of Theorem 6.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 426–439, 2018.
https://doi.org/10.1007/978-3-319-73915-1_33

Planar Drawings of Fixed-Mobile Bigraphs 427

we are mainly interested in drawings with small values of k, ideally with k = 0
(i.e., straight-line drawings). We define the bend number of G as the minimum
value of k for which G admits a planar k-bend drawing.

Besides its intrinsic theoretical interest, our problem is motivated by the
following practical scenario. Fixed vertices represent geographic locations and
each mobile vertex is an attribute of one or more locations. One wants to place
each mobile vertex in the plane and connect it to its associated locations, while
guaranteeing a “readable” layout. We interpret readability in terms of planarity
and small number of bends per edge. Other criteria can also be studied, like for
example angular resolution, edge length, drawing area (see, e.g., [10,34]).

Contribution. We introduce k-bend drawings of FM-bigraphs with a focus on
k = 0 and k = 1. Our results are as follows:

(i) We prove that computing the bend number of an FM-bigraph G is NP-
hard. More generally, deciding whether G admits a planar k-bend drawing is at
least as hard as deciding whether an n-vertex graph admits a planar embedding
with given correspondence (mapping) on a set of n points, such that each edge
has at most 2k + 1 bends (Sect. 2.1). If all fixed vertices of G are collinear, the
existence of a 0-bend drawing can be tested in linear time.

(ii) Since it is difficult to discretize the problem in the general case [15,30],
we investigate the case in which each mobile vertex is restricted to lie in the
convex hull of its neighbors. This scenario is reasonable in practice, as the user
may expect that each attribute is placed in a sort of “barycentric” position
with respect to its associated locations. In this setting, we prove that testing
the existence of a 0-bend drawing is a problem in NP. With a reduction to a
combinatorial problem, which is of its own independent interest (but unfortu-
nately NP-hard in its general form), we obtain polynomial-time solutions when
the intersection graph of the convex hulls is a path, a cycle or, more generally,
a cactus (Sect. 2.2).

(iii) We finally study 1-bend drawings of FM-bigraphs in a convention called
h-strip drawing model, inspired by practical labeling scenarios [3]. All fixed ver-
tices are partitioned into a finite set of horizontal strips and each mobile vertex
is placed outside these strips. Edges are not allowed to cross any strip, i.e., to
intersect both its top and bottom side; see also Fig. 4. For this model we provide
polynomial-time testing algorithms (Sect. 3).

Related Work. Our problem is related to several problems addressed in the
literature, but it also has substantial differences from all of them.

Point labeling. A close connection is with the problem of labeling a given set of
points in the plane (see, e.g., [28,37]), because mobile vertices can be regarded
as labels for the fixed vertices (points). Similarly to our setting, the many-to-one
boundary labeling problem [3,23] assumes that each label can have multiple asso-
ciated vertices and it is visually connected to them by poly-line edges. However,
edges can only be drawn as chains of horizontal and vertical segments (which may
partially overlap), and the labels are placed outside a single rectangular region
that encloses all vertices. Variants of the boundary labeling problem, where each
fixed vertex is associated with exactly one label are also studied in the literature

428 M. A. Bekos et al.

(see, e.g., [2,5,22]). Note that, in labeling problems, labels are geometric shapes
of non-empty area, while we model mobile vertices as points.

Partial drawings. Our problem is a special case of the problem of extending a par-
tial drawing of a (not necessarily bipartite) planar graph G to a planar straight-
line drawing of G. This problem is NP-hard in general [30] and polynomial-time
solvable for restricted cases [9,13,18,24,36].

Point-set embedding. In a point-set embedding problem, a planar graph with n
vertices must be planarly mapped onto a given set of n points, with or without
a predefined correspondence between the vertices and the points (see, e.g., [1,
8,11,12,21,29]). Thus, in all settings of the point-set embedding problem, each
vertex can only be mapped to a finite set of points. The results in [1,29] imply
that any n-vertex planar FM-bigraph admits a k-bend drawing with k = O(n).
Indeed, [1,29] prove that any n-vertex planar graph can be planarly mapped onto
any set of n points, with given correspondences, using a linear number of bends
per edge (which is also necessary in some cases). Hence, for a given FM-bigraph,
one can place the mobile vertices anywhere so to realize a planar drawing.

Constrained drawings of bipartite graphs. Misue [26] proposed a model and a
technique for drawing bipartite graphs such that the vertices of a partition set,
called anchors, are evenly distributed on a circle. Anchors are similar to fixed
vertices in our setting, but the order of the anchors in Misue’s model can be
freely chosen. Extensions to the 3D space and to semi-bipartite graphs have
been subsequently presented [19,27]. Finally, several papers study how to draw
a bipartite graph such that the vertices of each partition set are on a line or
within a specific plane region (see, e.g., [6,7,14]). In these scenarios, the vertices
do not have predefined locations.

Notation. We assume familiarity with graph theory (see, e.g., [17]). For stan-
dard definitions on planar graphs and drawings, we point the reader to [20,35].

We denote an FM-bigraph by a pair 〈G,φ〉, where G = (Vf , Vm, E) is a
bipartite graph and φ : Vf → R

2 is a function that maps each vertex v ∈ Vf

to a distinct point pv = φ(v). A k-bend drawing of 〈G,φ〉 is a k-bend drawing
of G such that each vertex v ∈ Vf is mapped to φ(v). In order to study the
complexity of computing the bend number of planar FM-bigraphs, we introduce
the k-bend FM-bigraph decision problem: Given a planar FM-bigraph 〈G,φ〉
and a non-negative integer k, is there a planar k-bend drawing of 〈G,φ〉?

From now on, we assume that G is planar. Also, we let nf = |Vf |, nm = |Vm|,
and n = nf + nm. For reasons of space, some proofs are sketched or omitted;
full proofs can be found in [4].

2 Straight-Line Planar Drawings of FM-Bigraphs

We show that the 0-bend FM-bigraph problem is NP-hard (Theorem 1), which
implies that it is NP-hard to compute the bend number of a planar FM-bigraph.
A simple linear-time testing algorithm is given when all fixed vertices are
collinear (Theorem 3). If each mobile vertex must be placed inside the convex

Planar Drawings of Fixed-Mobile Bigraphs 429

hull of its neighbors, then the 0-bend FM-bigraph problem belongs to NP
(Theorem 4), and it becomes polynomial-time solvable if the intersection graph
of the convex hulls is a cactus (Theorem 5).

2.1 NP-Hardness and Collinear Fixed Vertices

To prove that 0-bend FM-bigraph is NP-hard we use a reduction from the
1-bend point set embeddability with correspondence problem (or 1-BPSEWC,
for short), which has been proven to be NP-hard by Goaoc et al. [15]. Problem 1-
BPSEWC is defined as follows: Given a planar graph G = (V,E), a set S of |V |
points in the plane, and a one-to-one correspondence ζ between V and S, is there
a planar 1-bend drawing of G such that each vertex v is mapped to point ζ(v)?

Theorem 1. The 0-bend FM-bigraph problem is NP-hard, even if each
mobile vertex has degree at most two.

Proof. Let 〈G = (V,E), S, ζ〉 be an instance of 1-BPSEWC. Construct (in linear
time) an instance 〈G′ = (Vf , Vm, E′), φ〉 of 0-bend FM-bigraph as follows: Let
Vf = V and φ = ζ; for each edge e = (u, v) ∈ E, define a corresponding vertex
we ∈ Vm and two edges (we, u), (we, v) in E′. Clearly, G has a 1-bend drawing
Γ that respects ζ if and only if G′ has a planar 0-bend drawing Γ ′ that respects
φ: The position of a bend along an edge e = (u, v) of Γ corresponds to the
positions of the mobile vertex we in Γ ′; if e has no bend, we is drawn anywhere
along segment uv. ��

The reduction in Theorem 1 can be applied with no change to prove that,
for any k ≥ 0, problem k-bend FM-bigraph is at least as difficult as problem
(2k + 1)-BPSEWC, which allows up to (2k + 1) bends per edge.

Theorem 2. The k-bendFM-bigraph problem is at least as hard as the (2k+1)-
BPSEWC problem, for any k ≥ 0.

When all fixed vertices of an FM-bigraph 〈G,φ〉 are collinear, it can be
checked in linear time whether 〈G,φ〉 admits a planar 0-bend drawing.

Theorem 3. Let 〈G = (Vf , Vm, E), φ〉 be an n-vertex FM-bigraph such that
all vertices of Vf are collinear. There exists an O(n)-time algorithm that tests
whether 〈G,φ〉 admits a planar 0-bend drawing.

Proof (sketch). Let � be the line passing through all fixed vertices. Deciding
whether 〈G,φ〉 has a planar 0-bend drawing coincides with testing the planarity
of a graph obtained by augmenting G with a cycle that connects all fixed vertices
in the order they appear along �. ��

2.2 Mobile Vertices at Internal Positions

We now focus on convex-hull drawings, in which all fixed vertices are in general
position and each vertex um ∈ Vm lies in the convex hull of its neighbors. With

430 M. A. Bekos et al.

Fig. 1. Illustration of the proof of Lemma 1. (b-c) Part of trajectory T between r and
r′ is shown by a dotted line.

slight abuse of notation, we denote by CH(um) the convex hull of the neighbors
of um. Let A = A(Vf) be the arrangement of lines defined by all pairs of fixed
points; see Fig. 2(a). A has O(n2

f) lines and O(n4
f) cells [16]. Lemma 1 allows us

to discretize the set of possible positions for the mobile vertices; it implies that
all positions of um in the same cell of A within CH(um) are equivalent for a
planar 0-bend drawing of 〈G,φ〉.

Lemma 1. Let 〈G = (Vf , Vm, E), φ〉 be an FM-bigraph, um ∈ Vm, and C a cell
of A = A(Vf) inside CH(um). Let also p and p′ be two points in C. Suppose that
Γ is a 0-bend drawing of 〈G,φ〉 where um is at point p and let Γ ′ be a 0-bend
drawing of 〈G,φ〉 obtained from Γ by only moving um from point p to point p′.
Then Γ ′ is planar if and only if Γ is planar.

Proof. Suppose by contradiction that Γ ′ is planar and Γ is not (the proof for
the other direction is symmetric). This implies that while moving um along some
trajectory T from p′ to p inside cell C, at some point we get a crossing along
one of the edges incident to um. Let r be the point of T closest to p′, such that
placing um at r causes such a crossing (i.e., placing um on any point between r
and p′ implies no crossing). Let (um, uf) be an edge crossed by some other edge
(wm, wf), when um is placed at r. Assume w.l.o.g. that wm ∈ Vm and wf ∈ Vf ,
and that um lies to the right of the oriented edge (wm, wf); see Fig. 1(a). Denote
by �(uf , wf) the line through uf and wf and by �(uf , wm) the line through
uf and wm. Let R be the region delimited by lines �(uf , wf), �(uf , wm) and
edge (wm, wf) that contains um. Let r′ be a point of T lying between r and
p′. Notice that r′ has to lie outside of R. Thus T crosses the border of R.
Let us additionally assume that r′ lies arbitrarily close to the border of R. We
distinguish three cases, based on whether T crosses �(uf , wf), �(uf , wm), or edge
(wm, wf).

Case 1. T crosses �(uf , wf). Since line �(uf , wf) is part of A, r′ lies outside C.
This is a contradiction to the assumption that T lies in C.

Case 2. T crosses �(uf , wm); see Fig. 1(b). Since wm is in the convex hull of
its neighbors, there is an edge (wm, w′

f) with wf and w′
f on different sides of

Planar Drawings of Fixed-Mobile Bigraphs 431

Fig. 2. (a) Line arrangement A = A(Vf) with the neighbors N(u) in black and N(v)
in white; CH(u) and CH(v) intersect and thus form an edge in Gx. (b) Two clusters
C(u) and C(v) of Gc with one exemplary edge between two cell vertices a and b.
(c) Placing u inside cell(a) and v inside cell(b) yields a planar drawing of the FM-
bigraph (thick edges).

�(uf , wm) (if not, the crossing is resolved). Placing um at r′ yields a crossing with
(wm, w′

f), as r′ is arbitrarily close to �(uf , wm); a contradiction to the choice of r.

Case 3. T crosses (wm, wf). Since um lies in the convex hull of its neighbors,
there is an edge (um, u′

f), where u′
f and uf lie on different sides of the line

through edge (wf , wm); see Fig. 1(c). Placing um at r′ would introduce a crossing
between (um, u′

f) and (wm, wf), as r′ lies arbitrarily close to (wm, wf). This again
contradicts the choice of r. ��

Lemma 1 implies that, the 0-bend FM-bigraph problem belongs to NP for
convex-hull drawings1. A non-deterministic algorithm guesses an assignments of
the mobile vertices to the O(n4

f) cells and, since G is planar, checks in O(n2
f) time

whether the corresponding 0-bend drawing is planar (note that nm = O(nf)).
We summarize this observation in the following theorem.

Theorem 4. The 0-bend FM-bigraph problem belongs to NP if each mobile
vertex must lie in the convex hull of its neighbors.

Central ingredients to prove that the problem is in fact in P for certain input
configurations are the CH intersection graph Gx of G, the cell graph Gc of G,
and the skeleton graph Gs of Gc, which we formally define in the following.

The CH intersection graph Gx is defined as the intersection graph [25] of the
convex hulls CH(u) over all u ∈ Vm.

The cell graph Gc is a clustered graph defined as follows; see Fig. 2(b) for an
example. Each mobile vertex u is associated with a cluster C(u); the vertices
of C(u), called cell vertices, are the cells of A that intersect with CH(u) (and
in fact are contained in CH(u)). The vertices of Gc are defined by the disjoint
union of the vertices of all clusters2, that is, V (Gc) = 	u∈Vm

C(u). For a cell
vertex a of Gc, we denote by cell(a) the cell corresponding to a in A. For a pair
of mobile vertices u and v such that CH(u)∩CH(v) �= ∅, a cell vertex a ∈ C(u)
1 We remark that in a preliminary version of [30], it is claimed membership in NP for

the partial planarity extension problem [31], which would imply membership in NP
also for our problem. That claim, however, lacks a proof in [31] and the author was
only able to prove the NP-hardness of the problem in [30] (personal communication).

2 Cells in the intersection of two convex hulls correspond to different vertices of Gc.

432 M. A. Bekos et al.

is adjacent to a cell vertex b ∈ C(v) if and only if placing u in cell(a) and v in
cell(b) produces no crossing among the edges incident to u and v; see Fig. 2(c).
Note that Gc has O(n4

fnm) vertices and O(n8
fn2

m) edges. Also, by definition, for
each pair of mobile vertices u and v such that CH(u)∩CH(v) �= ∅, u and v can
be positioned within their convex hulls without creating edge crossings if and
only if there exist two adjacent cell vertices a ∈ C(u) and b ∈ C(v) in Gc.

The skeleton graph Gs is created by selecting exactly one cell vertex, called
a skeleton vertex, from each cluster of Gc, such that for every pair of mobile
vertices u and v with CH(u) ∩ CH(v) �= ∅, the skeleton vertices of C(u) and
C(v) are adjacent in Gc. Graph Gs is the subgraph of Gc induced by the skeleton
vertices. Note that Gs might not exist. If Gs exists, then it is isomorphic to Gx.
The following characterization is an immediate consequence of our definitions.

Lemma 2. An FM-bigraph 〈G,φ〉 admits a planar 0-bend convex-hull drawing
if and only if cell graph Gc has a skeleton.

Proof. A planar 0-bend drawing immediately defines a skeleton. Conversely, if
Gc has a skeleton Gs, a planar 0-bend drawing Γ is obtained by placing each
u ∈ Vm in the cell corresponding to the skeleton vertex of C(u) in Gs. Since
crossings may only occur between edges incident to mobile vertices u and v such
that CH(u) ∩ CH(v) �= ∅, Γ is planar. ��

The characterization of Lemma 2 allows us to translate the geometric problem
of finding a 0-bend convex-hull drawing of an FM-bigraph bigraph 〈G,φ〉 to a
purely combinatorial problem on a support clustered graph Gc constructed from
〈G,φ〉. Unfortunately, however, this combinatorial problem is NP-hard in its
general form, as Theorem 6 shows. Nonetheless, we are able to solve it efficiently
when Gx is a cactus (Theorem 5), which includes the special cases in which Gx

is a cycle or a tree. The next two lemmas are base cases for Theorem 5.

Lemma 3. Let 〈G,φ〉 be an FM-bigraph such that Gx is a path. There exists a
polynomial-time algorithm that tests whether 〈G,φ〉 has a planar 0-bend convex-
hull drawing.

Proof. By Lemma 2, it is enough to test whether Gc has a skeleton. Let u1, . . . , uλ

be the mobile vertices in the order their convex hulls appear along path Gx. Call
a cell vertex a of C(ui) active if and only if the subgraph of Gc induced by
C(u1)∪ · · · ∪C(ui) has a skeleton containing a, where 1 ≤ i ≤ λ. Thus, Gc has a
skeleton if and only if there is an active cell vertex in C(uλ). A simple algorithm
that tests this condition works as follows. Initially mark all cell vertices of C(u1)
as active, and then propagate this information forward to the cell vertices of
C(uλ), that is, for each i = 2, . . . , λ, mark each cell vertex of C(ui) as active if
it has an active neighbor in C(ui−1). The time complexity is bounded by the
number of vertices and edges in Gc. ��

Lemma 4. Let 〈G,φ〉 be an FM-bigraph such that Gx is a simple cycle. There
exists a polynomial-time algorithm that tests whether 〈G,φ〉 has a planar 0-bend
convex-hull drawing.

Planar Drawings of Fixed-Mobile Bigraphs 433

Proof. Let u1, . . . , uλ be the mobile vertices in the cyclic order their convex hulls
appear along Gx. Our approach is similar to the one of Lemma 3, but now it
is not enough to propagate the information about the active vertices only from
C(u1) to C(uλ). Indeed, there might be vertices of C(u1) that cannot close a
cycle with an active vertex of C(uλ).

In the first phase, our refined algorithm starts by marking all cell vertices of
C(u1) as active and then propagates this information forward to C(uλ), as in
the case of a path. However, all cell vertices of a cluster that are not marked
as active at the end of this phase are now definitely removed from Gc (along
with their incident edges), as they cannot occur in any skeleton. Then, the
algorithm cleans all vertex marks and executes a backward propagation phase
from C(uλ) to C(u1) (symmetric to the previous one), where all the remaining
vertices in C(uλ) are initially marked as active. As before, all vertices that are
not marked as active at the end of this phase are definitely removed from Gc.
Now, the algorithm removes from C(u1) all vertices with no neighbor in C(uλ)
and from C(uλ) all vertices with no neighbor in C(u1), as these vertices cannot
occur in a skeleton of Gc. Finally, for each pair of adjacent vertices v ∈ C(u1)
and w ∈ C(uλ) in Gc, the algorithm checks whether there exists a path πvw

from v to w that passes through each C(uj) exactly once (j = 1, . . . , λ). If
πvw exists, both v and w are marked as confirmed. At the end, every vertex in
C(u1) ∪ C(uλ) that is not confirmed is removed from Gc, as it cannot occur in
a skeleton. Conversely, by construction, every remaining vertex v in C(u1) has
an adjacent vertex w ∈ C(uλ) such that πvw ∪ (v, w) is a skeleton (simple cycle)
of Gc. Thus the test is positive if and only if C(u1) is not empty.

It is immediate to see that the whole testing algorithm works in polynomial
time in the size of Gc and, if the test is positive, a skeleton of Gc can be easily
reconstructed visiting Gc from any vertex v ∈ C(u1). ��

We now extend the previous result to the case that Gx is a cactus, which also
covers the case of a tree. We recall that a cactus is a connected graph in which
any two simple cycles share at most one vertex. A cactus is an outerplanar graph
and can always be decomposed into a tree where each node corresponds to either
a single vertex or a simple cycle (refer to Fig. 3(a)).

Theorem 5. Let 〈G,φ〉 be an FM-bigraph such that Gx is a cactus. There
exists a polynomial-time algorithm that tests whether 〈G,φ〉 has a planar 0-bend
convex-hull drawing.

Proof. By Lemmas 3 and 4, the statement holds when Gx is a path or a cycle.
In the general case, our testing algorithm decomposes Gx into its tree T (as in
Fig. 3(b)), roots T at any node, and visits T bottom-up. More precisely, each
vertex of Gx corresponds to a convex hull CH(u) of a mobile vertex u, and it
has a one-to-one correspondence with a cluster C(u) of Gc. Thus, each node μ
of T corresponds to either a single cluster of Gc or to a cycle of clusters of Gc.
Note that when in Gx two cycles share a vertex (cluster of Gc), we replicate such
a vertex in both nodes of T that correspond to the two cycles. For example, in
Fig. 3(b) cluster C11 inside μ6 and cluster C3 inside μ1 correspond to the same

434 M. A. Bekos et al.

Fig. 3. (a) An intersection graph Gx that is a cactus. (b) The decomposition tree T of
Gx. Clusters C11 of µ6 and C3 of µ1 correspond to the same vertex of Gx.

vertex of Gx. Once the root of T has been chosen, we define the anchor of μ
as the cluster that connects μ to its parent node in T (light-gray in Fig. 3(b)).
During the bottom-up visit of T , two cases are possible when a node μ is visited:

– µ is a leaf. If μ contains a single cluster (i.e., its anchor), then all its cell
vertices are marked as active; if μ contains a cycle of clusters, then the active
cell vertices of its anchor are computed as for C(u1) in the proof of Lemma 4.

– µ is an internal node. Let ν1, ν2, . . . , νk be the children of μ in T and
denote by Cqi the cluster of μ connected to the anchor of νi. Note that Cqi

may coincide with some Cqj if qi �= qj . Also, the anchor of νi and Cqi may
correspond to the same vertex of Gx.

• For each i = 1, . . . , k, if the anchor of νi differs from Cqi in Gx, remove
from Cqi all cell vertices that are not connected to an active cell vertex
of the anchor of νi in Gc, as they cannot occur in any skeleton of Gc. On
the other hand, if the anchor of νi and Cqi coincide in Gx, remove from
Cqi all vertices of the anchor of νi that are not marked as active.

• Now, if μ contains a single cluster (i.e., its anchor), then all its remaining
cell vertices are marked as active; if μ contains a cycle of clusters, then
the active cell vertices of its anchor are computed as in Lemma 4. At this
point, if the anchor of μ contains no active vertex, the algorithm stops
and the instance is rejected, as a skeleton does not exist.

Once the bottom-up visit of T ends, the test is positive if and only if the
anchor of the root node of T has an active cell vertex w, and in this case one
can reconstruct a skeleton of Gc starting from w and visiting T top-down. In
particular, during the top-down visit, for each node μ of T , any active vertex
in the anchor of μ can be arbitrarily selected, as it is connected to the parent
node of μ by construction. Also, if μ corresponds to a simple cycle of clusters,
the construction of a cycle that connects these clusters is done as in Lemma 4.

Planar Drawings of Fixed-Mobile Bigraphs 435

Concerning the time complexity, the above algorithm takes polynomial time
in the size of Gc. Indeed, the number of clusters that may occur in multiple
nodes of T (i.e., those that are shared by multiple cycles of clusters) is at most
the number of cycles in Gx. Therefore, the total number of clusters over all nodes
of T is linear in the number of clusters of Gc. This also implies that the total
number of cell vertices over all clusters of T is linear in the number of cell vertices
in Gc. Finally, each node μ of T is visited twice (once in the bottom-up visit and
once in the top-down visit), and in each visit of μ the algorithm has a running
time that is polynomial in the number of cell vertices in the clusters of μ. ��

Finally, we show the following NP-completeness result on a combinatorial
generalization of our problem. We re-use the terminology of the 0-bend FM-
bigraph problem to emphasize the analogies.

Theorem 6. Let Gx = (C, E) be a graph, where C is a set of disjoint clusters of
cells. Also, let Gc = (V,E) be a graph, where each v ∈ V is a cell of a cluster
C(v) ∈ C and (u, v) ∈ E only if (C(u), C(v)) ∈ E. It is NP-complete to test if
there is a subset V ′ ⊆ V of skeleton vertices, containing exactly one cell from
each cluster in C such that the induced subgraph Gc[V ′] is isomorphic to Gx.

Proof (sketch). The problem is clearly in NP. The hardness proof is by reduction
from 3Sat. For a boolean 3Sat formula ψ create a cluster C(x) for each variable
x in ψ and a cluster C(γ) for each clause γ of ψ. In Gx each clause cluster is
adjacent to the three clusters of the variables occurring in the clause. Each
variable cluster C(x) consists of two cells in Gc, one for the positive literal x and
one for its negation ¬x. Also, each clause cluster C(γ) contains three cells, one
for each literal. Finally, connect each literal cell of a clause λ to the corresponding
cell of its variable cluster and to all four cells of the other two variables of γ. It
can be seen that ψ has a satisfying truth assignment iff there exists a subset of
skeleton vertices in Gc that induces a subgraph isomorphic to Gx. ��

3 1-Bend Drawings in the h-Strip Drawing Model

Our model for 1-bend FM-bigraphs is inspired by the boundary labeling app-
roach [3], where mobile vertices are regarded as labels that must be connected to
the fixed vertices. In the boundary labeling model, the fixed vertices are inside
a single rectangular region and each label is either to the left or to the right of
this region. Our model allows for multiple rectangular regions (corresponding to
horizontal strips); each mobile vertex is placed outside of these regions, either
below or above each of them. To avoid long edges and make the drawing more
readable, edges are not allowed to traverse regions.

More formally, our model is called the h-strip model and is defined as follows.
Let 〈G = (Vf , Vm, E), φ〉 be an FM-bigraph and assume that the vertices of Vf

all have distinct x-coordinates (this condition is always achievable by a suitable
rotation of the plane). For the sake of simplicity, for a vertex u ∈ Vf , we do
not distinguish between u and its fixed position φ(u). Let S = {S1, S2, . . . , Sh}

436 M. A. Bekos et al.

(h ≥ 1) be a top-to-bottom sequence of (closed) disjoint horizontal strips of the
plane that partition Vf , i.e., each Si has a finite height and infinite width, each
vertex of Vf lies in one Si, and Si ∩ Si+1 = ∅ for i = 1, . . . , h − 1. Since the
strips are disjoint, there is always a non-empty region of the plane between two
consecutive strips, which does not contain fixed vertices. Also, there are no fixed
vertex above S1 and below Sh. Any point that is not inside a strip is called a
free point. For a vertex u ∈ Vf , the strip that contains u is called the strip of u.

A 1-bend drawing of G within S is defined as follows; see Fig. 4: (i) Each
vertex v ∈ Vm is mapped to a distinct free point. (ii) Each edge e = (u, v), with
u ∈ Vf and v ∈ Vm consists of a segment vp from v to a point p on the boundary
of the strip of u and of a vertical segment pu; all points of vp but p are free
points, while pu is completely inside the strip of u. (iii) No edge intersects the
boundary of a strip twice and no two edges cross in a free point.

Fig. 4. A 3-strip drawing.

Note that in the h-strip model two dis-
tinct edges e1 = (u, v1) and e2 = (u, v2),
where u ∈ Vf , share their vertical segments
if these segments are incident to u both from
below or both from above. This overlap does
not create ambiguity and reduces the visual
complexity caused by the edges. Figure 4
shows a 1-bend drawing of a bigraph within
a given set of three strips (gray regions), with
fixed vertices in black. Also note that, if an
FM-bigraph G has no 1-bend drawing for a
set S of strips, splitting an element of S into
two strips may lead to a feasible solution; see Fig. 5(a). Conversely, splitting a
strip may transform a positive instance into a negative one; see Fig. 5(b). We
prove the following.

Theorem 7. Let 〈G = (Vf , Vm, E), φ〉 be an n-vertex FM-bigraph and let S be
a set of horizontal strips that partition Vf . There exists an O(n)-time algorithm
that tests whether 〈G,φ〉 admits a 1-bend drawing within S.

Proof (sketch). Call a fixed vertex black, a mobile vertex with all neighbors in the
same strip white, and the remaining vertices gray. A gray vertex with neighbors
in two consecutive strips must lie between them, while each white vertex can lie
either above or below the strip of its neighbors. If a grey vertex has neighbors
that are not in two consecutive strips, the instance is immediately rejected.

Let S = {S1, . . . , Sh} be the sequence of strips. For each strip Si ∈ S, let
V i

f = {ui
1, . . . , u

i
ri

} be the left-to-right sequence of black vertices inside Si. Also,
let V i

m be the set of mobile vertices connected to some vertex of V i
f . Arranging

the vertices of V i
m above or below Si so to avoid crossings between their incident

edges equals to assigning each of them either above or below the half-plane
determined by a horizontal line that contains ui

1, . . . , u
i
ri

, in this left-to-right
order. Hence, testing if a 1-bend drawing within S exists generalizes testing
the existence of a 0-bend drawing when all fixed vertices are collinear. As in

Planar Drawings of Fixed-Mobile Bigraphs 437

Fig. 5. (a) An instance with a single strip and no solution (left); splitting the strip into
two strips, the instance becomes feasible (right). (b) A positive instance with a single
strip; splitting the strip into two strips, it becomes unfeasible.

Theorem 3, this problem is reduced to testing planarity of a graph G′ suitably
defined by augmenting G. Namely, for each Si, add a cycle Ci connecting all
edges of V i

f in their left-to-right order; then, subdivide edge (ui
1, u

i
ri

) of Ci with
three vertices vi

1, v
i
2, v

i
3, in this order from ui

1 to ui
ri

, and call C ′
i the subdivision of

Ci; finally, for each i = 1, . . . , h−1 and j = 1, 2, 3, connect vi
j to vi+1

j . Graph G′ is
planar iff it has a planar embedding where C ′

i is inside C ′
i+1 (i ∈ {1, . . . , h− 1}).

A mobile vertex w between C ′
i and C ′

i+1 corresponds to placing w above Si+1

and below Si. If w is in the outer face of G′ then w is below Sh, and if w is inside
C ′

1 then w is above S1. Since the size of G′ is linear in the size of G and graph
planarity testing is linear-time solvable, the statement holds. ��

The next result immediately follows by iterating the technique in the proof
of Theorem 7 over all possible ways of partitioning Vf into h strips.

Corollary 1. Let 〈G = (Vf , Vm, E), φ〉 be an n-vertex FM-bigraph and let h ∈
N

+ be a constant. There is an O(|Vf |h−1n)-time algorithm that tests if 〈G,φ〉
has a 1-bend drawing within S, for some set S of h strips that partition Vf .

4 Conclusions and Open Problems

We introduced FM-bigraphs, showed that the k-bend FM-bigraph problem is
NP-hard in the general case, and gave polynomial-time algorithms for k ∈ {0, 1}
in some interesting restricted cases. Several open research questions remain:

Q1. We could solve the 0-bend FM-bigraph problem for convex-hull drawings
if the CH intersection graph is a cactus and show that it is NP-complete in a
non-geometric setting. Can we solve the problem for larger classes of convex-hull
drawings in polynomial time or extend the NP-completeness to our geometric
setting? More generally, for which other layout constraints or sub-families of
FM-bigraphs does the k-bend FM-bigraph problem become tractable?

Q2. Our focus was on proving the existence of polynomial-time algorithms under
certain layout constraints, but some of the algorithms have high time complexity.
Thus, finding more efficient algorithms is of interest.

438 M. A. Bekos et al.

Q3. We focused on crossing-free drawings of FM-bigraphs. Relaxing the pla-
narity requirement (e.g., for a given maximum number of permitted crossings per
edge) is an interesting variant, as well as, designing heuristics or exact approaches
for crossing/bend minimization.

References

1. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points.
Theoret. Comput. Sci. 408(2–3), 129–142 (2008)

2. Barth, L., Gemsa, A., Niedermann, B., Nöllenburg, M.: On the readability of
boundary labeling. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol.
9411, pp. 515–527. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27261-0 42

3. Bekos, M.A., Cornelsen, S., Fink, M., Hong, S., Kaufmann, M., Nöllenburg, M.,
Rutter, I., Symvonis, A.: Many-to-one boundary labeling with backbones. J. Graph
Algorithms Appl. 19(3), 779–816 (2015)

4. Bekos, M.A., De Luca, F., Didimo, W., Mchedlidze, T., Nöllenburg, M., Symvonis,
A., Tollis., I.: Planar drawings of fixed-mobile bigraphs. CoRR 1708.09238 (2017)

5. Bekos, M.A., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary labeling: mod-
els and efficient algorithms for rectangular maps. Comput. Geom. 36(3), 215–236
(2007)

6. Biedl, T.C.: Drawing planar partitions I: LL-drawings and LH-drawings. In: Janar-
dan, R. (ed.) Computational Geometry (SoCG 1998), pp. 287–296. ACM (1998)

7. Biedl, T., Kaufmann, M., Mutzel, P.: Drawing planar partitions II: HH-drawings.
In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 124–136.
Springer, Heidelberg (1998). https://doi.org/10.1007/10692760 11

8. Brandes, U., Erten, C., Estrella-Balderrama, A., Fowler, J.J., Frati, F., Geyer, M.,
Gutwenger, C., Hong, S., Kaufmann, M., Kobourov, S.G., Liotta, G., Mutzel, P.,
Symvonis, A.: Colored simultaneous geometric embeddings and universal pointsets.
Algorithmica 60(3), 569–592 (2011)

9. Chambers, E.W., Eppstein, D., Goodrich, M.T., Löffler, M.: Drawing graphs in
the plane with a prescribed outer face and polynomial area. J. Graph Algorithms
Appl. 16(2), 243–259 (2012)

10. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)

11. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.:
k-colored point-set embeddability of outerplanar graphs. J. Graph Algorithms
Appl. 12(1), 29–49 (2008)

12. Di Giacomo, E., Liotta, G., Trotta, F.: Drawing colored graphs with constrained
vertex positions and few bends per edge. Algorithmica 57(4), 796–818 (2010)

13. Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Planar drawings of higher-genus
graphs. J. Graph Algorithms Appl. 15(1), 7–32 (2011)

14. Fößmeier, U., Kaufmann, M.: Nice drawings for planar bipartite graphs. In: Bon-
giovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp.
122–134. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62592-5 66

15. Goaoc, X., Kratochv́ıl, J., Okamoto, Y., Shin, C., Spillner, A., Wolff, A.: Untangling
a planar graph. Discrete Comput. Geom. 42(4), 542–569 (2009)

16. Halperin, D.: Arrangements. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of
Discrete and Computational Geometry, Chap. 24, pp. 529–562. CRC Press LLC,
Boca Raton (2004)

https://doi.org/10.1007/978-3-319-27261-0_42
https://doi.org/10.1007/978-3-319-27261-0_42
https://doi.org/10.1007/10692760_11
https://doi.org/10.1007/3-540-62592-5_66

Planar Drawings of Fixed-Mobile Bigraphs 439

17. Harary, F.: Graph Theory. Addison-Wesley, Reading (1972)
18. Hong, S.H., Nagamochi, H.: Convex drawings of graphs with non-convex boundary

constraints. Discrete Appl. Math. 156(12), 2368–2380 (2008)
19. Ito, T., Misue, K., Tanaka, J.: Sphere anchored map: a visualization technique

for bipartite graphs in 3D. In: Jacko, J.A. (ed.) HCI 2009. LNCS, vol. 5611, pp.
811–820. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02577-
8 89

20. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44969-8

21. Kaufmann, M., Wiese, R.: Embedding vertices at points: few bends suffice for
planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)

22. Kindermann, P., Niedermann, B., Rutter, I., Schaefer, M., Schulz, A., Wolff, A.:
Multi-sided boundary labeling. Algorithmica 76(1), 225–258 (2016)

23. Lin, C.: Crossing-free many-to-one boundary labeling with hyperleaders. In: IEEE
Pacific Visualization Symposium PacificVis 2010, Taipei, Taiwan, 2–5 March 2010,
pp. 185–192. IEEE Computer Society (2010)

24. Mchedlidze, T., Nöllenburg, M., Rutter, I.: Extending convex partial drawings of
graphs. Algorithmica 76(1), 47–67 (2016)

25. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. SIAM Mono-
graphs on Discrete Mathematics and Applications (1999)

26. Misue, K.: Anchored map: Graph drawing technique to support network mining.
IEICE Trans. 91–D(11), 2599–2606 (2008)

27. Misue, K., Zhou, Q.: Drawing semi-bipartite graphs in anchor+matrix style. In:
Information Visualisation (IV 2011), London, UK, 13–15 July 2011, pp. 26–31.
IEEE Computer Society (2011)

28. Neyer, G.: Map labeling with application to graph drawing. In: Kaufmann, M.,
Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 247–273. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44969-8 10

29. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs
and Combinatorics 17(4), 717–728 (2001)

30. Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Com-
put. Sci. 17(5), 1061–1070 (2006)

31. Patrignani, M.: On extending a partial straight-line drawing. In: Healy, P., Nikolov,
N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 380–385. Springer, Heidelberg (2006).
https://doi.org/10.1007/11618058 34

32. Purchase, H.C.: Metrics for graph drawing aesthetics. J. Vis. Lang. Comput. 13(5),
501–516 (2002)

33. Purchase, H.C., Carrington, D.A., Allder, J.: Empirical evaluation of aesthetics-
based graph layout. Empirical Softw. Eng. 7(3), 233–255 (2002)

34. Tamassia, R. (ed.): Handbook on Graph Drawing and Visualization. Chapman and
Hall/CRC, Boca Raton (2013)

35. Tamassia, R., Liotta, G.: Graph drawing. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, 2nd edn., pp. 1163–1185.
Chapman and Hall/CRC, Boca Raton (2004)

36. Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13(3), 743–768 (1963)
37. Wolff, A., Strijk, T.: The map-labeling bibliography (1996). http://i11www.ira.

uka.de/map-labeling/bibliography

https://doi.org/10.1007/978-3-642-02577-8_89
https://doi.org/10.1007/978-3-642-02577-8_89
https://doi.org/10.1007/3-540-44969-8
https://doi.org/10.1007/3-540-44969-8_10
https://doi.org/10.1007/11618058_34
http://i11www.ira.uka.de/map-labeling/bibliography
http://i11www.ira.uka.de/map-labeling/bibliography

Ordered Level Planarity, Geodesic Planarity
and Bi-Monotonicity

Boris Klemz(B) and Günter Rote

Institute of Computer Science, Freie Universität Berlin, Berlin, Germany
klemz@inf.fu-berlin.de

Abstract. We introduce and study the problem Ordered Level Pla-
narity which asks for a planar drawing of a graph such that vertices are
placed at prescribed positions in the plane and such that every edge is
realized as a y-monotone curve. This can be interpreted as a variant of
Level Planarity in which the vertices on each level appear in a pre-
scribed total order. We establish a complexity dichotomy with respect
to both the maximum degree and the level-width, that is, the maximum
number of vertices that share a level. Our study of Ordered Level
Planarity is motivated by connections to several other graph drawing
problems.

Geodesic Planarity asks for a planar drawing of a graph such that
vertices are placed at prescribed positions in the plane and such that
every edge e is realized as a polygonal path p composed of line segments
with two adjacent directions from a given set S of directions symmet-
ric with respect to the origin. Our results on Ordered Level Pla-
narity imply NP-hardness for any S with |S| ≥ 4 even if the given
graph is a matching. Katz, Krug, Rutter and Wolff claimed that for
matchings Manhattan Geodesic Planarity, the case where S con-
tains precisely the horizontal and vertical directions, can be solved in
polynomial time [GD 2009]. Our results imply that this is incorrect
unless P = NP . Our reduction extends to settle the complexity of the
Bi-Monotonicity problem, which was proposed by Fulek, Pelsmajer,
Schaefer and Štefankovič.

Ordered Level Planarity turns out to be a special case of T-Level
Planarity, Clustered Level Planarity and Constrained Level
Planarity. Thus, our results strengthen previous hardness results. In
particular, our reduction to Clustered Level Planarity generates
instances with only two non-trivial clusters. This answers a question posed
by Angelini, Da Lozzo, Di Battista, Frati and Roselli.

Due to space constraints, some proofs in this manuscript are only sketched or omitted
entirely. Full proofs of all claims can be found in the appendix of the preprint [17].

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 440–453, 2018.
https://doi.org/10.1007/978-3-319-73915-1_34

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity 441

1 Introduction

In this paper we introduce Ordered Level Planarity and study its complex-
ity. We establish connections to several other graph drawing problems, which we
survey in this first section. We proceed from general problems to more and more
constrained ones.

Upward Planarity: An upward planar drawing of a directed graph is a plane
drawing where every edge e = (u, v) is realized as a y-monotone curve that goes
upward from u to v. Such drawings provide a natural way of visualizing a partial
order on a set of items. The problem Upward Planarity of testing whether
a directed graph has an upward planar drawing is NP-complete [10]. However,
if the y-coordinate of each vertex is prescribed, the problem can be solved in
polynomial time [15]. This is captured by the notion of level graphs.

Level Planarity: A level graph G = (G, γ) is a directed graph G = (V,E)
together with a level assignment γ : V → {0, . . . , h} where γ is a surjective map
with γ(u) < γ(v) for every edge (u, v) ∈ E. Value h is the height of G. The vertex
set Vi = {v | γ(v) = i} is called the i-th level of G and λi = |Vi| is its width.
The level-width λ of G is the maximum width of any level in G. A level planar
drawing of G is an upward planar drawing of G where the y-coordinate of each
vertex v is γ(v). The horizontal line with y-coordinate i is denoted by Li. The
problem Level Planarity asks whether a given level graph has a level planar
drawing. The study of the complexity of Level Planarity has a long history
[7,9,13–15], culminating in a linear-time approach [15]. Level Planarity has
been extended to drawings of level graphs on surfaces different from the plane
such as standing cylinder, a rolling cylinder or a torus [1,3,4].

An important special case are proper level graphs, that is, level graphs in
which γ(v) = γ(u)+1 for every edge (u, v) ∈ E. Instances of Level Planarity
can be assumed to be proper without loss of generality by subdividing long
edges [7,15]. However, in variations of Level Planarity where we impose
additional constraints, the assumption that instances are proper can have a
strong impact on the complexity of the respective problems [2].

Level Planarity with Various Constraints:Clustered Level Planarity
is a combination of Cluster Planarity and Level Planarity. The task is
to find a level planar drawing while simultaneously visualizing a given cluster
hierarchy according to the rules of Cluster Planarity. The problem is NP-
complete in general [2], but efficiently solvable for proper instances [2,8].

T-Level Planarity is a consecutivity-constrained version of Level Pla-
narity: every level Vi is equipped with a tree Ti whose set of leaves is Vi. For
every inner node u of Ti the leaves of the subtree rooted at u have to appear con-
secutively along Li. The problem is NP-complete in general [2], but efficiently
solvable for proper instances [2,18]. The precise definitions of both problems and
a longer discussion about the related work can be found in [17].

Very recently, Brückner and Rutter [6] explored a variant of Level Pla-
narity in which the left-to-right order of the vertices on each level has to

442 B. Klemz and G. Rote

be a linear extension of a given partial order. They refer to this problem as
Constrained Level Planarity and they provide an efficient algorithm for
single-source graphs and show NP-completeness of the general case.

A Common Special Case - Ordered Level Planarity: We introduce a
natural variant of Level Planarity that specifies a total order for the vertices
on each level. An ordered level graph G is a triple (G = (V,E), γ, χ) where (G, γ)
is a level graph and χ : V → {0, . . . , λ − 1} is a level ordering for G. We require
that χ restricted to domain Vi bijectively maps to {0, . . . , λi − 1}. An ordered
level planar drawing of an ordered level graph G is a level planar drawing of (G, γ)
where for every v ∈ V the x-coordinate of v is χ(v). Thus, the position of every
vertex is fixed. The problem Ordered Level Planarity asks whether a given
ordered level graph has an ordered level planar drawing.

In the above definitions, the x- and y-coordinates assigned via χ and γ merely
act as a convenient way to encode total and partial orders respectively. In terms
of realizability, the problems are equivalent to generalized versions where χ and γ
map to the reals. In other words, the fixed vertex positions can be any points
in the plane. All reductions and algorithms in this paper carry over to these
generalized versions, if we pay the cost for presorting the vertices according to
their coordinates. Ordered Level Planarity is also equivalent to a relaxed
version where we only require that the vertices of each level Vi appear along Li

according to the given total order without insisting on specific coordinates. We
make use of this equivalence in many of our figures for the sake of visual clarity.

Geodesic Planarity: Let S ⊂ Q
2 be a finite set of directions symmetric with

respect to the origin, i.e. for each direction s ∈ S, the reverse direction −s is
also contained in S. A plane drawing of a graph is geodesic with respect to S
if every edge is realized as a polygonal path p composed of line segments with
two adjacent directions from S. Two directions of S are adjacent if they appear
consecutively in the projection of S to the unit circle. Such a path p is a geodesic
with respect to some polygonal norm that corresponds to S. An instance of the
decision problem Geodesic Planarity is a 4-tuple G = (G = (V,E), x, y, S)
where G is a graph, x and y map from V to the reals and S is a set of directions
as stated above. The task is to decide whether G has a geodesic drawing, that
is, G has a geodesic drawing with respect to S in which every vertex v ∈ V is
placed at (x(v), y(v)).

Katz et al. [16] study Manhattan Geodesic Planarity, which is the
special case of Geodesic Planarity where the set S consists of the two hor-
izontal and the two vertical directions. Geodesic drawings with respect to this
set of direction are also referred to as orthogeodesic drawings [11,12]. Katz et
al. [16] show that a variant of Manhattan Geodesic Planarity in which
the drawings are restricted to the integer grid is NP-hard even if G is a per-
fect matching. The proof is by reduction from 3-Partition and makes use of
the fact the number of edges that can pass between two vertices on a grid line
is bounded. In contrast, they claim that the standard version of Manhattan
Geodesic Planarity is polynomial-time solvable for perfect matchings [16,
Theorem 5]. To this end, they sketch a plane sweep algorithm that maintains

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity 443

a linear order among the edges that cross the sweep line. When a new edge is
encountered it is inserted as low as possible subject to the constraints implied
by the prescribed vertex positions. When we asked the authors for more details,
they informed us that they are no longer convinced of the correctness of their
approach. Theorem 2 of our paper implies that the approach is indeed incorrect
unless P = NP.

Bi-Monotonicity: Fulek et al. [9] present a Hanani-Tutte theorem for y-
monotone drawings, that is, upward drawings in which all vertices have distinct
y-coordinates. They accompany their result with a simple and efficient algorithm
for Y-Monotonicity, which is equivalent to Level Planarity restricted to
instances with level-width λ = 1. They propose the problem Bi-Monotonicity
and leave its complexity as an open problem. The input of Bi-Monotonicity
is a triple G = (G = (V,E), x, y) where G is a graph and x and y injectively
map from V to the reals. The task is to decide whether G has a bi-monotone
drawing, that is, a plane drawing in which edges are realized as curves that are
both y-monotone and x-monotone and in which every vertex v ∈ V is placed
at (x(v), y(v)).

Main Results: In Sect. 3 we study the complexity of Ordered Level Pla-
narity. While Upward Planarity is NP-complete [10] in general but
becomes polynomial-time solvable [15] for prescribed y-coordinates, we show
that prescribing both x-coordinates and y-coordinates renders the problem NP-
complete. We complement our result with efficient approaches for some special
cases of ordered level graphs and, thereby, establish a complexity dichotomy with
respect to the level-width and the maximum degree.

Theorem 1. Ordered Level Planarity is NP-complete, even for maxi-
mum degree Δ = 2 and level-width λ = 2. For level-width λ = 1 or Δ+ = Δ− = 1
or proper instances Ordered Level Planarity can be solved in linear time,
where Δ+ and Δ− are the maximum in-degree and out-degree respectively.

Ordered Level Planarity restricted to instances with λ = 2 and Δ = 2
is an elementary problem. We expect that it may serve as a suitable basis for
future reductions. As a proof of concept, the remainder of this paper is devoted
to establishing connections between Ordered Level Planarity and several
other graph drawing problems. Theorem 1 serves as our key tool for settling
their complexity. In Sect. 2 we study Geodesic Planarity and obtain:

Theorem 2. Geodesic Planarity is NP-hard for any set of directions S
with |S| ≥ 4 even for perfect matchings in general position.

Observe the aforementioned discrepancy between Theorem 2 and the claim by
Katz et al. [16] that Manhattan Geodesic Planarity for perfect matchings
is in P. Bi-Monotonicity is closely related to a special case of Manhattan
Geodesic Planarity. With a simple corollary we settle the complexity of
Bi-Monotonicity and, thus, answer the open question by Fulek et al. [9].

444 B. Klemz and G. Rote

Theorem 3. Bi-Monotonicity is NP-hard even for perfect matchings.

Ordered Level Planarity is an immediate and very constrained spe-
cial case of Constrained Planarity. Further, we establish Ordered Level
Planarity as a special case of both Clustered Level Planarity and
T-Level Planarity by providing the following reductions.

Theorem 4. Ordered Level Planarity with maximum degree Δ = 2 and
level-width λ = 2 reduces in linear time to T-Level Planarity with maximum
degree Δ′ = 2 and level-width λ′ = 4.

Theorem 5. Ordered Level Planarity with maximum degree Δ = 2 and
level-width λ = 2 reduces in quadratic time to Clustered Level Planarity
with maximum degree Δ′ = 2, level-width λ′ = 2 and κ′ = 3 clusters.

Angelini et al. [2] propose the complexity of Clustered Level Planarity
for clustered level graphs with a flat cluster hierarchy as an open question. The-
orem 5 answers this question by showing that NP-hardness holds for instances
with only two non-trivial clusters.

2 Geodesic Planarity and Bi-Monotonicity

In this section we establish that deciding whether an instance G = (G, x, y, S) of
Geodesic Planarity has a geodesic drawing is NP-hard even if G is a perfect
matching and even if the coordinates assigned via x and y are in general position,
that is, no two vertices lie on a line with a direction from S. The NP-hardness
of Bi-Monotonicity for perfect matchings follows as a simple corollary. Our
results are obtained via a reduction from Ordered Level Planarity.

Lemma 1. Let S ⊂ Q
2 with |S| ≥ 4 be a finite set of directions symmetric with

respect to the origin. Ordered Level Planarity with maximum degree Δ = 2
and level-width λ = 2 reduces to Geodesic Planarity such that the resulting
instances are in general position and consist of a perfect matching and direction
set S. The reduction can be carried out using a linear number of arithmetic
operations.

Proof Sketch. In this sketch, we prove our claim only for the classical case that
S contains exactly the four horizontal and vertical directions. Our reduction is
carried out in two steps. Let Go = (Go = (V,E), γ, χ) be an Ordered Level
Planarity instance with maximum degree Δ = 2 and level-width λ = 2.
In Step (i) we turn Go into an equivalent Geodesic Planarity instance
G′

g = (Go, x
′, γ, S). In Step (ii) we transform G′

g into an equivalent Geodesic
Planarity instance Gg = (Gg, x, y, S) where Gg is a perfect matching and the
vertex positions assigned via x and y are in general position.

Step (i): In order to transform Go into G′
g we apply a shearing transformation.

We translate the vertices of each level Vi by 3i units to the right, see Fig. 1(a)

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity 445

Fig. 1. (a), (b) and (c): Illustrations of Step (i). (d) The two gadget squares of each
level. Grid cells have size 1/48 × 1/48. (e) Illustration of Step (ii). Turning a drawing
of Gg into a drawing of G′

g (f) and vice versa (g).

and (b). Clearly, every geodesic drawing of G′
g can be turned into an ordered

level planar drawing of Go. On the other hand, consider an ordered level planar
drawing Γo of Go. Without loss of generality we can assume that in Γo all edges
are realized as polygonal paths in which bend points occur only on the horizontal
lines Li through the levels Vi where 0 ≤ i ≤ h. Further, we may assume that
all bend points have x-coordinates in the open interval (−1, 2). We shear Γo

by translating the bend points and vertices of level Vi by 3i units to the right
for 0 ≤ i ≤ h, see Fig. 1(b). In the resulting drawing Γ ′

o, the vertex positions
match those of G′

g. Furthermore, all edge-segments have a positive slope. Thus,
since the maximum degree is Δ = 2 we can replace all edge-segments with
L1-geodesic rectilinear paths that closely trace the segments and we obtain a
geodesic drawing Γ ′

g of G′
g, see Fig. 1(c).

Step (ii): In order to turn G′
g = (Go = (V,E), x′, γ, S) into the equivalent

instance Gg = (Gg, x, y, S) we transform Go into a perfect matching. To this
end, we split each vertex v ∈ V by replacing it with a small gadget that fits
inside a square rv centered on the position pv = (x′(v), γ(v)) of v, see Fig. 1(e).
We call rv the square of v and use ptr

v , ptl
v , pbr

v and pbl
v to denote the top-

right, top-left, bottom-right and bottom-left corner of rv, respectively. We use
two different sizes to ensure general position. The size of the gadget square is
1/4 × 1/4 if χ(v) = 0 and it is 1/8 × 1/8 if χ(v) = 1. The gadget contains
a degree-1 vertex for every edge incident to v. In the following we explain the
gadget construction in detail, for an illustration see Fig. 1(d). Let {v, u} be an
edge incident to v. We create an edge {v1, u} where v1 is a new vertex which
is placed at ptr

v − (1/48, 1/48) if u is located to the top-right of v and it is
placed at pbl

v + (1/48, 1/48) if u is located to the bottom-left of v. Similarly,

446 B. Klemz and G. Rote

if v is incident to a second edge {v, u′}, we create an edge {v2, u
′} where v2 is

placed at ptr
v − (1/24, 1/24) or pbl

v +(1/24, 1/24) depending on the position of u′.
Finally, we create a blocking edge {vtl, vbr} where vtl is placed at ptl

v and vbr is
placed at pbr

v . The thereby assigned coordinates are in general position and the
construction can be carried out in linear time.

Assume that Gg has a geodesic drawing Γg. By construction, all blocking
edges have a top-left and a bottom-right endpoint. On the other hand, all other
edges have a bottom-left and a top-right endpoint. As a result, a non-blocking
edge e = {u, v} can not pass through any gadget square rw, except the squares ru

or rv since e would have to cross the blocking edge of rw. Accordingly, it is
straight-forward to obtain a geodesic drawing of Γ ′

g: We remove the blocking
edges, reinsert the vertices of V according to the mappings x′ and γ and connect
them to the vertices of their respective gadgets in a geodesic fashion. This can
always be done without crossings. Figure 1(f) shows one possibility. If the edge
from v2 passes to the left of v1, we may have to choose a reflected version. Finally,
we remove the vertices v1 and v2 which now act as subdivision vertices.

On the other hand, let Γ ′
g be a geodesic planar drawing of G′

g. Without loss of
generality, we can assume that each edge {u, v} passes only through the squares
of u and v. Furthermore, for each v ∈ V we can assume that its incident edges
intersect the boundary of rv only to the top-right of ptr

v − (1/48, 1/48) or to the
bottom-left of pbl

v + (1/48, 1/48), see Fig. 1(g). Thus, we can simply remove the
parts of the edges in the interior of the gadget squares and connect the gadget
vertices to the intersection points of the edges with the gadget squares in a
geodesic fashion. ��

The bit size of the numbers involved in the calculations of our reduction is
linearly bounded in the bit size of the directions of S. Together with Theorem 1
we obtain the proof of Theorem 2. The instances generated by Lemma 1 are in
general position. In particular, this means that the mappings x and y are injec-
tive. We obtain an immediate reduction to Bi-Monotonicity. The correctness
follows from the fact that every L1-geodesic rectilinear path can be transformed
into a bi-monotone curve and vice versa. Thus, we obtain Theorem 3.

3 Ordered Level Planarity

To show NP-hardness of Ordered Level Planarity we reduce from
a 3-Satisfiability variant described in this paragraph. A monotone 3-
Satisfiability formula is a Boolean 3-Satisfiability formula in which each
clause is either positive or negative, that is, each clause contains either exclu-
sively positive or exclusively negative literals respectively. A planar 3SAT for-
mula ϕ = (U , C) is a Boolean 3-Satisfiability formula with a set U of variables
and a set C of clauses such that its variable-clause graph Gϕ = (U 	C, E) is pla-
nar. The graph Gϕ is bipartite, i.e. every edge in E is incident to both a clause
vertex from C and a variable vertex from U . Furthermore, edge {c, u} ∈ E if
and only if a literal of variable u ∈ U occurs in c ∈ C. Planar Monotone

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity 447

3-Satisfiability is a special case of 3-Satisfiability where we are given a
planar and monotone 3-Satisfiability formula ϕ and a monotone rectilinear
representation R of the variable-clause graph of ϕ. The representation R is a
contact representation on an integer grid in which the variables are represented
by horizontal line segments arranged on a line 	. The clauses are represented
by E-shapes turned by 90◦ such that all positive clauses are placed above 	
and all negative clauses are placed below 	, see Fig. 2a. Planar Monotone
3-Satisfiability is NP-complete [5]. We are now equipped to prove the core
lemma of this section.

Lemma 2. Planar Monotone 3-Satisfiability reduces in polynomial time
to Ordered Level Planarity. The resulting instances have maximum
degree Δ = 2 and all vertices on levels with width at least 3 have out-degree
at most 1 and in-degree at most 1.

Fig. 2. (a) Representation R of ϕ with negative clauses (u1 ∨ u4 ∨ u5), (u1 ∨ u3 ∨ u4)
and (u1 ∨ u2 ∨ u3) and positive clauses (u1 ∨ u4 ∨ u5) and (u1 ∨ u2 ∨ u3) and (b) its
modified version R′ in Lemma 2. (c) Tier T0.

Proof Sketch. We perform a polynomial-time reduction from Planar Mono-
tone 3-Satisfiability. Let ϕ = (U , C) be a planar and monotone
3-Satisfiability formula with C = {c1, . . . , c|C|}. Let Gϕ the variable-clause
graph of ϕ. Let R be a monotone rectilinear representation of Gϕ. We con-
struct an ordered level graph G = (G, γ, χ) such that G has an ordered level
planar drawing if and only if ϕ is satisfiable. In this proof sketch we omit some
technical details such as precise level assignments and level orderings.

Overview: The ordered level graph G has l3 + 1 levels which are partitioned
into four tiers T0 = {0, . . . , l0}, T1 = {l0 + 1, . . . , l1}, T2 = {l1 + 1, . . . , l2}
and T3 = {l2 + 1, . . . , l3}. Each clause ci ∈ C is associated with a clause
edge ei = (cs

i , c
t
i) starting with cs

i in tier T0 and ending with ct
i in tier T2.

The clause edges have to be drawn in a system of tunnels that encodes the
3-Satisfiability formula ϕ. In T0 the layout of the tunnels corresponds directly

448 B. Klemz and G. Rote

to the rectilinear representation R, see Fig. 2c. For each E-shape there are three
tunnels corresponding to the three literals of the associated clause. The bottom
vertex cs

i of each clause edge ei is placed such that ei has to be drawn inside one
of the three tunnels of the E-shape corresponding to ci. This corresponds to the
fact that in a satisfying truth assignment every clause has at least one satisfied
literal. In tier T1 we merge all the tunnels corresponding to the same literal.
We create variable gadgets that ensure that for each variable u edges of clauses
containing u can be drawn in the tunnel associated with either the negative or
the positive literal of u but not both. This corresponds to the fact that every
variable is set to either true or false. Tiers T2 and T3 have a technical purpose.

We proceed by describing the different tiers in detail. Recall that in terms
of realizability, Ordered Level Planarity is equivalent to the generalized
version where γ and χ map to the reals. For the sake of convenience we will begin
by designing G in this generalized setting. It is easy to transform G such that it
satisfies the standard definition in a polynomial-time post processing step.

Fig. 3. (a) The E-shape and (b) the clause gadget of clause ci. The thick gray lines
represent the gates of ci.

Tier 0 and 2, Clause Gadgets: The clause edges ei = (cs
i , c

t
i) end in tier T2.

It is composed of l2 − l1 = |C| levels each of which contains precisely one vertex.
We assign γ(ct

i) = l1 + i. Observe that this imposes no constraint on the order
in which the edges enter T2.

Tier T0 consists of a system of tunnels that resembles the monotone rectilinear
representation R of Gϕ = (U 	 C, E), see Fig. 2c. Intuitively it is constructed as
follows: We take the top part of R, rotate it by 180◦ and place it to the left of the
bottom part such that the variables’ line segments align, see Fig. 2b. We call the
resulting representation R′. For each E-shape in R′ we create a clause gadget,
which is a subgraph composed of 11 vertices that are placed on a grid close
to the E-shape, see Fig. 3. The red vertex at the bottom is the lower vertex cs

i

of the clause edge ei of the clause ci corresponding to the E-shape. Without
loss of generality we assume the grid to be fine enough such that the resulting
ordered level graph can be drawn as in Fig. 2c without crossings. Further, we
assume that the y-coordinates of every pair of horizontal segments belonging to
distinct E-shapes differ by at least 3. This ensures that all vertices on levels with
width at least 3 have out-degree at most 1 and in-degree at most 1 as stated in
the lemma.

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity 449

Fig. 4. (a) The variable gadget of uj in (b) positive and (c) negative state.

The clause gadget (without the clause edge) has a unique ordered level planar
drawing in the sense that for every level Vi the left-to-right sequence of vertices
and edges intersected by the horizontal line Li through Vi is identical in every
ordered level planar drawing. This is due to the fact that the order of the top-
most vertices v′

1, v6, v′
2, v7, v′

3 and v8 is fixed. We call the line segments v′
1v6,

v′
2v7 and v′

3v8 the gates of ci. Note that the clause edge ei has to intersect one
of the gates of ci. This corresponds to the fact the at least one literal of every
clause has to be satisfied.

The subgraph G0 induced by T0 (without the clause edges) has a unique
ordered level planar drawing. In tier T1 we bundle all gates that belong to one
literal together by creating two long paths for each literal. These two paths form
the tunnel of the corresponding literal. All clause edges intersecting a gate of
some literal have to be drawn inside the literal’s tunnel, see Fig. 2c. To this end,
for j = 1, . . . , |U| we use N0

j (n0
j) to refer to the left-most (right-most) vertex

of a negative clause gadget placed on a line segment of R′ representing uj ∈ U .
The vertices N0

j and n0
j are the first vertices of the paths forming the negative

tunnel Tn
j of the negative literal of variable uj . Analogously, we use P 0

j (p0j) to
refer to the left-most (right-most) vertex of a positive clause gadget placed on a
line segment of R′ representing uj . The vertices P 0

j and p0j are the first vertices
of the paths forming the positive tunnel T p

j of the positive literal of variable uj . If
for some j the variable uj is not contained both in negative and positive clauses,
we artificially add two vertices N0

j and n0
j or P 0

j and p0j on the corresponding
line segments in order to avoid having to treat special cases in the remainder of
the construction.

Tier 1 and 3, Variable Gadgets: Recall that every clause edge has to pass
through a gate that is associated with some literal of the clause, and, thus,
every edge is drawn in the tunnel of some literal. We need to ensure that it is
not possible to use tunnels associated with the positive, as well as the negative
literal of some variable simultaneously. To this end, we create a variable gadget
with vertices in tier T1 and tier T3 for each variable. The variable gadget of
variable uj is illustrated in Fig. 4a. The variable gadgets are nested in the sense
that they start in T1 in the order u1, u2, ..., u|U|, from bottom to top and they end
in the reverse order in T3, see Fig. 5. We force all tunnels with index at least j to

450 B. Klemz and G. Rote

be drawn between the vertices ua
j and ub

j . This is done by subdividing the tunnel
edges on this level, see Fig. 4b. The long edge (us

j , u
t
j) has to be drawn to the

left or right of uc
j in T3. Accordingly, it is drawn to the left of ua

j or to the right
of ub

j in T1. Thus, it is drawn either to the right (Fig. 4b) of all the tunnels or to
the left (Fig. 4c) of all the tunnels. As a consequence, the blocking edge (us

j , u
p
j)

is also drawn either to the right or the left of all the tunnels. Together with the
edge (uq

j , u
p
j) it prevents clause edges from being drawn either in the positive

tunnel T p
j or negative tunnel Tn

j of variable uj which end at level γ(uq
j) because

they can not reach their endpoints in T2 without crossings. We say T p
j or Tn

j are
blocked respectively.

The construction of the ordered level graph G can be carried out in polyno-
mial time. Note that maximum degree is Δ = 2 and that all vertices on levels
with width at least 3 have out-degree at most 1 and in-degree at most 1 as
claimed in the lemma.

Correctness: It remains to show that G has an ordered level planar drawing if
and only if ϕ is satisfiable. Assume that G has an ordered level planar drawing Γ .
We create a satisfying truth assignment for ϕ. If Tn

j is blocked we set uj to true,
otherwise we set uj to false for j ∈ 1, . . . , |U|. Recall that the subgraph G0

induced by the vertices in tier T0 has a unique ordered level planar drawing.
Consider a clause ci and let f, g, j be the indices of the variables whose literals
are contained in ci. Clause edge ei = (es

i , e
t
i) has to pass level l0 through one of

the gates of ci. More precisely, it has to be drawn between either N0
f and n0

f ,

Fig. 5. Nesting structure of the variable gadgets.

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity 451

N0
g and n0

g or N0
j and n0

j if ci is negative or between either P 0
f and p0f , P 0

g and
p0g or P 0

j and p0j if ci is positive, see Fig. 2c. First, assume that ci is negative
and assume without loss of generality that it traverses l0 between N0

j and n0
j . In

this case clause edge ei has to be drawn in Tn
j . Recall that this is only possible

if Tn
j is not blocked, which is the case if uj is false, see Fig. 4c. Analogously, if ci

is positive and ei traverses w.l.o.g. between pP
j and pp

j , then uj is true, Fig. 4b.
Thus, we have established that one literal of each clause in C evaluates to true
for our truth assignment and, hence, formula ϕ is satisfiable.

Now assume that ϕ is satisfiable and consider a satisfying truth assignment.
We create an ordered level planar drawing Γ of G. It is clear how to create the
unique subdrawing of G0. The variable gadgets are drawn in a nested fashion, see
Fig. 5. For j = 1, . . . , |U| − 1 we draw edge (ua

j , uc
j) to left of ua

j+1 and us
j+1 and

edge (ub
j , u

c
j) to right of ub

j+1 and us
j+1. In other words, the pair ((ua

j , uc
j), (u

b
j , u

c
j))

is drawn between all such pairs with index smaller than j. Recall that the vertices
ua

j , ub
j , us

j , up
j and uq

j are located on higher levels than the according vertices
of variables with index smaller than j and that ut

j and uc
j are located on lower

levels than the according vertices of variables with index smaller than j.
For j = 1, . . . , |U| if uj is positive we draw the long edge (us

j , u
t
j) to the right

of ub
j and uc

j and, accordingly, we have to draw all tunnels left of us
j and uq

j

(except for Tn
j , which has to be drawn to the left of us

j and end to the right
of uq

j), see Fig. 4b. If uj is negative we draw the long edge (us
j , u

t
j) to the left

of ub
j and uc

j and, accordingly, we have to draw all tunnels right of us
j and uq

j

(except for T p
j , which has to be drawn to the right of us

j and end to the left of uq
j),

see Fig. 4c. We have to draw the blocking edge (us
j , u

p
j) to the right of nj+1

j if uj

is positive and to the left of P j+1
j if uj is negative.

It remains to describe how to draw the clause edges. Let ci be a clause. There
is at least one true literal in ci. Let k be the index of the corresponding variable.
We describe the drawing of clause edge ei = (cs

i , c
t
i) from bottom to top. We

start by drawing ei in the tunnel T p
k (Tn

k) if ci is positive (negative). After the
variable gadget of uk the edge ei leaves its tunnel and is drawn to the left (right)
of all gadgets of variables with higher index, see Fig. 5. ��

We obtain NP-hardness for instances with maximum degree Δ = 2. In fact,
we can restrict our attention to instances level-width λ = 2. To this end, we split
levels with width λi > 2 into λi − 1 levels containing exactly two vertices each.

Lemma 3. An instance G = (G = (V,E), γ, χ) of Ordered Level Pla-
narity with maximum degree Δ ≤ 2 can be transformed in linear time into an
equivalent instance G′ = (G′ = (V ′, E′), γ′, χ′) of Ordered Level Planarity
with level-width λ′ ≤ 2 and maximum degree Δ′. If in G all vertices on levels with
width at least 3 have out-degree at most 1 and in-degree at most 1, then Δ′ ≤ 2.
Otherwise, Δ′ ≤ Δ + 1.

The reduction in Lemma 2 requires degree-2 vertices. With Δ = 1, the prob-
lem becomes polynomial-time solvable. In fact, even if Δ = 2 one can easily

452 B. Klemz and G. Rote

solve it as long as the maximum in-degree and the maximum out-degree are
both bounded by 1. Such instances consists of a set P of y-monotone paths.

We write p ≺ q, meaning that p ∈ P must be drawn to the left of q ∈ P , if p
and q have vertices vp and vq that lie adjacent on a common level. If ≺ is acyclic,
we can draw G according to a linear extension of ≺, otherwise there exists no
solution.

Lemma 4. Ordered Level Planarity restricted to instances with maxi-
mum in-degree Δ− = 1 and maximum out-degree Δ+ = 1 can be solved in
linear time.

For λ = 1 Ordered Level Planarity is solvable in linear time since
Level Planarity can be solved in linear time [15]. Proper instances can be
solved in linear-time via a sweep through every level. The problem is obviously
contained in NP. The results of this section establish Theorem 1.

Acknowledgements. We thank the authors of [16] for providing us with unpub-
lished information regarding their plane sweep approach for Manhattan Geodesic
Planarity.

References

1. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter,
I.: Beyond level planarity. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS,
vol. 9801, pp. 482–495. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50106-2 37

2. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: The importance of
being proper: (in clustered-level planarity and T-level planarity). Theor. Comput.
Sci. 571, 1–9 (2015). https://doi.org/10.1016/j.tcs.2014.12.019

3. Bachmaier, C., Brandenburg, F., Forster, M.: Radial level planarity testing
and embedding in linear time. J. Graph Algorithms Appl. 9(1), 53–97 (2005).
http://jgaa.info/accepted/2005/BachmaierBrandenburgForster2005.9.1.pdf

4. Bachmaier, C., Brunner, W.: Linear time planarity testing and embedding of
strongly connected cyclic level graphs. In: Halperin, D., Mehlhorn, K. (eds.) ESA
2008. LNCS, vol. 5193, pp. 136–147. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-87744-8 12

5. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in
the plane. Int. J. Comput. Geometry Appl. 22(3), 187–206 (2012). http://www.
worldscinet.com/doi/abs/10.1142/S0218195912500045

6. Brückner, G., Rutter, I.: Partial and constrained level planarity. In: Klein, P.N.
(ed.) Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, 16–19 January,
pp. 2000–2011. SIAM (2017). https://doi.org/10.1137/1.9781611974782

7. Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Trans. Syst.
Man Cybern. 18(6), 1035–1046 (1988). https://doi.org/10.1109/21.23105

8. Forster, M., Bachmaier, C.: Clustered level planarity. In: Van Emde Boas, P.,
Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932,
pp. 218–228. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24618-3 18

https://doi.org/10.1007/978-3-319-50106-2_37
https://doi.org/10.1007/978-3-319-50106-2_37
https://doi.org/10.1016/j.tcs.2014.12.019
http://jgaa.info/accepted/2005/BachmaierBrandenburgForster2005.9.1.pdf
https://doi.org/10.1007/978-3-540-87744-8_12
https://doi.org/10.1007/978-3-540-87744-8_12
http://www.worldscinet.com/doi/abs/10.1142/S0218195912500045
http://www.worldscinet.com/doi/abs/10.1142/S0218195912500045
https://doi.org/10.1137/1.9781611974782
https://doi.org/10.1109/21.23105
https://doi.org/10.1007/978-3-540-24618-3_18
https://doi.org/10.1007/978-3-540-24618-3_18

Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity 453

9. Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone
drawings, and level-planarity. In: Pach, J. (ed.) Thirty Essays on Geometric Graph
Theory, pp. 263–287. Springer, New York (2013). https://doi.org/10.1007/978-1-
4614-0110-0 14

10. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2001). https://doi.org/10.
1137/S0097539794277123

11. Giacomo, E.D., Frati, F., Fulek, R., Grilli, L., Krug, M.: Orthogeodesic point-set
embedding of trees. Comput. Geom. 46(8), 929–944 (2013). https://doi.org/10.
1016/j.comgeo.2013.04.003

12. Giacomo, E.D., Grilli, L., Krug, M., Liotta, G., Rutter, I.: Hamiltonian ortho-
geodesic alternating paths. J. Discrete Algorithms 16, 34–52 (2012). https://doi.
org/10.1016/j.jda.2012.04.012

13. Heath, L.S., Pemmaraju, S.V.: Recognizing leveled-planar dags in linear time.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 300–311. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021813

14. Jünger, M., Leipert, S., Mutzel, P.: Pitfalls of using PQ-trees in automatic graph
drawing. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 193–204. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63938-1 62

15. Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In:
Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2 17

16. Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-geodesic embedding of planar
graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207–
218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0 21

17. Klemz, B., Rote, G.: Ordered level planarity, geodesic planarity and Bi-
Monotonicity. CoRR abs/1708.07428 (2017). https://arxiv.org/abs/1708.07428

18. Wotzlaw, A., Speckenmeyer, E., Porschen, S.: Generalized k-ary tanglegrams on
level graphs: a satisfiability-based approach and its evaluation. Discrete Appl.
Math. 160(16–17), 2349–2363 (2012). https://doi.org/10.1016/j.dam.2012.05.028

https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1016/j.comgeo.2013.04.003
https://doi.org/10.1016/j.comgeo.2013.04.003
https://doi.org/10.1016/j.jda.2012.04.012
https://doi.org/10.1016/j.jda.2012.04.012
https://doi.org/10.1007/BFb0021813
https://doi.org/10.1007/3-540-63938-1_62
https://doi.org/10.1007/3-540-37623-2_17
https://doi.org/10.1007/978-3-642-11805-0_21
https://arxiv.org/abs/1708.07428
https://doi.org/10.1016/j.dam.2012.05.028

Non-crossing Paths with Geographic Constraints

Rodrigo I. Silveira1(B), Bettina Speckmann2, and Kevin Verbeek2

1 Department de Matemàtiques, Universitat Politècnica de Catalunya,
Barcelona, Spain

rodrigo.silveira@upc.edu
2 Department of Mathematics and Computer Science, TU Eindhoven,

Eindhoven, The Netherlands
{b.speckmann,k.a.b.verbeek}@tue.nl

Abstract. A geographic network is a graph whose vertices are restricted
to lie in a prescribed region in the plane. In this paper we begin to
study the following fundamental problem for geographic networks: can
a given geographic network be drawn without crossings? We focus on
the seemingly simple setting where each region is a unit length vertical
segment, and one wants to connect pairs of segments with a path that
lies inside the convex hull of the two segments. We prove that when paths
must be drawn as straight line segments, it is NP-complete to determine
if a crossing-free solution exists. In contrast, we show that when paths
must be monotone curves, the question can be answered in polynomial
time. In the more general case of paths that can have any shape, we show
that the problem is polynomial under certain assumptions.

1 Introduction

Highway, train, and river networks, airline and VLSI routing maps, information
flow over the internet, and the flow of goods and people between different regions
all have one thing in common: they can be effectively visualized as a geographic
network : a graph, whose embedding is fixed, but not completely. The vertices of
a geographic network are restricted to lie in a pre-scribed region while the edges
might or might not be required to follow a particular course. In this paper we
begin to study the following fundamental problem for geographic networks: can
a given geographic network be drawn without crossings?

Many different formulations of this problem exist, which differ in aspects like
the shape of the regions, the type of curve used to draw edges, and the type of
graph being drawn. We study the seemingly simple variant where each region is
a unit length vertical segment. We restrict the edges to be drawn to be simple
curves that lie inside the convex hull of the vertical segments corresponding to
the end vertices, to force edges to be more or less straight. Formally, we are
given a graph G = (V,E) and one unit vertical segment region Iv for each vertex
v ∈ V . For each edge (u, v) ∈ E, we define the tube Tuv of (u, v) as the convex
hull of Iu∪Iv. The goal is to determine if it is possible to draw each vertex v ∈ V

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 454–461, 2018.
https://doi.org/10.1007/978-3-319-73915-1_35

Non-crossing Paths with Geographic Constraints 455

as a point pv ∈ Iv, and each edge e = (u, v) ∈ E as a path from pu to pv that is
contained in Tuv, such that no two paths cross at a point interior to both.

Related work. Force-directed layout methods for some particular cases of the
problem studied here have been proposed in [1]. Also related is recent work on
fitting planar graphs to planar maps [2], which is closely related to c-planarity
for clustered graphs [5]. In the context of data imprecision, it has been shown
that if the regions are vertical line segments or scaled copies of an arbitrary
region, and the paths are straight line segments, determining if one can draw a
cycle without crossings is NP-hard [10].

Another related problem studied is that of non-crossing matchings where
each edge connects a point to a geometric object or a set of points. It was shown
in [3] that the problem is polynomial in some special cases, most notably when
matching a point to one of two other points, and NP-hard when the number of
options increases. In particular, [3] shows that our problem for arbitrary (non-
unit) vertical segment regions and straight-line segment paths is NP-hard, a fact
that was also proven earlier in the Master’s thesis of one of the authors of the
current paper [12]. The same problem with unit-size square regions, but drawing
general planar graphs instead of matchings, was also shown to be NP-hard in [4].
Considering monotone paths instead of straight-line paths, our problem is similar
to the problem studied in [6], where the goal is to connect points with non-
crossing paths that are rectilinear and xy-monotone. This problem was shown
to be NP-hard recently [7]. However, our problem is slightly different, since
endpoints are not fixed and paths are restricted to the tubes.

The most relevant previous work in our context is that on the non-crossing
connector problem [9]: given m sets of points Pi, 1 ≤ i ≤ m, and a region Ri

(with Pi ⊂ Ri) for each i, the goal is to compute one curve inside each region
Ri that goes through all the points in Pi and no two curves cross. It was shown
in [9] that non-crossing connectors always exist if the regions are pseudo-disks. If
that is not the case, existence can be decided in polynomial time for a few cases,
while in general the problem is NP-complete. An important difference with our
setting is that all given points Pi in each region must be connected.1

Results and organization. We assume that G is a matching, so we can solely
focus on drawing the edges. We then study the problem for different restrictions
on the path representing the edges. In Sect. 2 we show that the problem is NP-
complete if the paths must be straight-line segments. In Sect. 3 we show that, if
paths must be x-monotone curves, we can decide in polynomial time if a crossing-
free drawing exists. For arbitrary paths we can provide such a polynomial-time
algorithm only under certain assumptions, as shown in Sect. 4.

1 Confusingly, [9] quotes one of the current authors as stating that our problem is NP-
complete for monotone paths, which is incorrect. Also, [9] incorrectly claims that it
was proven in [12] that the problem is NP-complete for unit segments (the reduction
in [12] uses segments of several lengths).

456 R. I. Silveira et al.

2 Straight Line Paths

In this section we show that, if the edges must be drawn as straight line segments,
the problem is NP-complete. Let V = {v1, . . . , v2n} and let Ii be the unit length
vertical segment associated with vi. For convenience we assume that there is an
edge between v2i−1 and v2i (1 ≤ i ≤ n), and let Ti be the corresponding tube.

Fig. 1. Gadgets in the NP-hardness reduction. All black segments have unit length. (a)
A blocker b. (b) A basic variable gadget, based on eight blockers (omitting for clarity
the unit segments defining each of them). (c) Variable gadgets can be connected to
propagate a truth value (blue or red diagonal). Note that blockers are not shown for
clarity. (d) Negation of a variable. (Color figure online)

x1 x2 x3 x4

We prove NP-hardness by reduction from Recti-
linear planar 3-SAT [8]. An instance of this NP-
complete problem consists of a 3-SAT formula and a
rectilinear embedding of the graph associated to the for-
mula. In the embedding all variable vertices lie on a straight line, and clauses
are represented as horizontal lines with at most three vertical lines that connect
to the variables appearing in the clause. See the figure on the right for an illus-
tration of four variables and three clauses. The reduction relies on the following
gadgets for variables and clauses.

Blockers. An essential building block is the construction of vertical edges that
cannot be crossed by any segment in a solution, see Fig. 1(a). This is achieved
by placing a tube connecting two disjoint vertical segments Ii and Ii+1 exactly
above each other,2 forcing the segment between Ii and Ii+1 to be part of any
path connecting the tube.

Variable gadgets. The main component for modeling variables is the basic
gadget shown in Fig. 1(b). Using a small set of blockers, we can limit the possible

2 Note that the degenerate situation of two equal x-coordinates can be avoided by
using small perturbations. The same applies to the other gadgets that make use of
collinearities: they can all be removed while preserving the behavior of the gadgets.

Non-crossing Paths with Geographic Constraints 457

Fig. 2. Clause gadgets. (a) The gadget consists of three tubes. The three literals
{b1, b2, b3} that participate in the clause cross the blue edges when their value is false.
(b) Example of the only non-crossing solution when the first literal is true and the
other two are false (dotted edges create crossings). (Color figure online)

connections for a tube to only two, shown in blue and red in the figure. These
two solutions will correspond to the truth values true or false of the variable
or literal. In general, if we want to limit the possible connections for a tube to
a constant number of options, we can enforce this using a constant number of
blockers. One generic way to achieve this is to choose three vertical segments
(at arbitrary x-coordinates) spanning the tube and let these be interrupted by
the chosen possible connections. In a non-degenerate situation this will leave
only the chosen possible connections as options. As shown in Fig. 1(c), several
basic gadgets can be connected in order to propagate the value in any of four
directions. The value of a variable can be negated by adding a tube with two
horizontal segments as options, as shown in Fig. 1(d).

Clause gadgets. In the embedding given in Rectilinear 3-SAT, a clause
is represented by a horizontal line segment with three vertical segments, which
connect to the variables. A horizontal segment can be recreated by using a single
tube wide enough. Vertical segments can be represented by a chain of vertically
stacked tubes (see Fig. 1(c)). The most interesting part of the clause is the point
at which the three paths connect, in which the values of the three literals interact.
In our gadget, this is achieved by using three tubes, as shown in Fig. 2. The top
and bottom tubes have only two possible paths connecting them (for clarity, in
the figures we omit the blockers needed to force this situation). The middle tube
can be connected with three different edges. The three literals that form the
clause attach to it through the blue edges. More precisely, a literal will have an
edge crossing with one of the blue edges of the clause if and only if its value is
false. The key property of the clause gadget is that there exist non-crossing paths

458 R. I. Silveira et al.

connecting the three tubes if and only if at least one literal is true. Note that
the variable gadgets do not all connect to the clause gadgets from the bottom.
However, we can easily achieve this construction by minor modifications to the
rectilinear embedding and using the construction in Fig. 1(c).

With this construction we obtain the desired NP-hardness reduction: a satis-
fying truth assignment for the variables in the 3-SAT formula exists if and only
if all tubes can be connected without crossings. In the full version [11] we show
that the problem is in NP, leading to the following result.

Theorem 1. Given n tubes defined by unit vertical segments, deciding if the
tubes can be connected with straight line segments is NP-Complete.

3 Monotone Paths

In this section we consider edges drawn as x-monotone paths. However, we first
make some observations that hold for arbitrary paths.

We say that two tubes fully cross if the vertical segments are completely
disjoint from the other tube, and the intersection of the two tubes is nonempty.
The first basic observation is that whenever two tubes fully cross, no solution
can exist. Therefore we assume from now on that no two tubes fully cross. The
most interesting cases occur when two tubes intersect, without fully crossing.
This necessarily happens because (at least) one of the vertical segments of a
tube intersects the other tube. Figure 3 shows examples of such situations. We
distinguish between single intersections, where only one tube segment intersects
another tube, or double intersections, where two different segments intersect
another tube (either both from the same tube, or one from each).

Single intersections (locally) induce a vertical order between the paths in
any solution. For instance, in the situations in Fig. 3(a), the red tube can be
considered above the blue one, because in any solution the red path will be
above the blue one at the x-coordinate equal to the vertical segment creating
the intersection. On the other hand, no such order exists for a double intersection.
Indeed, in any double intersection there are solutions with both orders of the
paths in the tubes, see Fig. 3(b). Based on this we define the order graph.

Order graph. The order graph of a set of tubes has a vertex for each tube and
a directed edge from T1 to T2 if T1 and T2 have a single intersection where T2

is above T1. We also add a directed edge from T1 to T2 if T1 ∩ T2 = ∅ and T1

Fig. 3. Examples of tube intersections and solutions: (a) single and (b) double. Double
intersections also admit solutions with the inverse red/blue order. (Color figure online)

Non-crossing Paths with Geographic Constraints 459

and T2 share an x-coordinate where T2 is above T1. If T1 and T2 have a double
intersection, we add an undirected edge between them. The order graph encodes
enough information to decide whether a solution exists using x-monotone paths.

Theorem 2. Given a set of tubes defined by unit vertical segments, the tubes
can be connected with x-monotone paths if and only if the order graph contains
no cycles of directed edges and no two tubes fully cross.

Proof. First we prove that if the order graph has no cycle, and no two tubes fully
cross, then there exists a solution. The directed edges in the order graph induce
a partial order that can be extended to a total order on the tubes. Let T1, . . . , Tn

be that order from bottom to top. Let �i denote the bottom side of tube Ti. We
maintain the following invariant: every drawn path pi of tube Ti consists of parts
of �j with 1 ≤ j ≤ i and vertical segments. We can clearly draw p1 along �1.
Suppose we want to draw path pi (i > 1). We start pi at the highest intersection
of the left vertical segment with any path pj (j < i), or at �i if no such path
exists. We follow a restricting path pj until the right side of Tj , after which we
drop down vertically, hitting either another path pk or �i. In the latter case, or if
we already hit �i before reaching the right side of Tj while following pj , we can
follow �i until hitting another restricting path. We then repeat this process until
we reach the right side of Ti. The resulting path pi only follows paths pj (j < i),
vertical segments, and �i, and thus satisfies the invariant. Finally note that pi
can leave Ti only if it is restricted by a path pj intersecting the top of Ti. By
the invariant, there must be some �k (k < i) intersecting the top of Ti, violating
the order. We defer the proof of the remaining direction to the full version of
the paper [11]. �	
Therefore, the problem for monotone paths can be solved in polynomial time.

4 Arbitrary Paths

If we allow edges to be drawn by arbitrary paths, then
a cycle in the order graph can sometimes be realized, as
shown in the figure to the right (top)—the cycle here is
red → green → blue → red. However, that is not always
the case, as the bottom example of the figure shows.

Nevertheless, if we disallow double intersections, then
we can still decide in polynomial time whether a solution
exists. The key idea is to use a result in [9] that shows
that if the regions (in our case, tubes) form a set of
pseudo-disks, then there is always a solution. Two tubes
with a single intersection may not be pseudo-disks, but
we can try to convert them into pseudo-disks by cutting
off parts that cannot be used in any solution. This leads to a procedure that
allows us to determine if a solution exists in polynomial time. The proof of the
following is deferred to the full version [11].

460 R. I. Silveira et al.

Theorem 3. Given a set of tubes defined by unit vertical segments such that no
two tubes form a double intersection, one can determine if all the tubes can be
connected without crossings using arbitrary paths in polynomial time.

If we allow double intersections, the problem remains open. We finish by conjec-
turing that this problem admits a Helly-type property, implying a polynomial
time algorithm.

Conjecture 1. If a set of tubes defined by unit vertical segments does not admit
a solution with arbitrary paths, then there exists a constant size subset of tubes
that also does not admit a solution.

Acknowledgements. R.I.S was partially supported by projects MTM2015-63791-R
(MINECO/FEDER) and Gen. Cat. DGR2014SGR46, and by MINECO’s Ramón y
Cajal program. B.S. and K.V. are supported by the Netherlands Organisation for Sci-
entific Research (NWO) under project no. 639.023.208 and 639.021.541, respectively.

References

1. Abellanas, M., Aiello, A., Hernández, G., Silveira, R.I.: Network drawing with
geographical constraints on vertices. In: Actas XI Encuentros de Geometŕıa Com-
putacional, pp. 111–118 (2005)

2. Alam, M.J., Kaufmann, M., Kobourov, S.G., Mchedlidze, T.: Fitting planar graphs
on planar maps. J. Graph Algorithms Appl. 19, 413–440 (2015). https://doi.org/
10.7155/jgaa.00367

3. Aloupis, G., Cardinal, J., Collette, S., Demaine, E.D., Demaine, M.L., Dulieu, M.,
Fabila-Monroy, R., Hart, V., Hurtado, F., Langerman, S., Saumell, M., Seara, C.,
Taslakian, P.: Non-crossing matchings of points with geometric objects. Comput.
Geom. 46(1), 78–92 (2013). https://doi.org/10.1016/j.comgeo.2012.04.005

4. Angelini, P., Da Lozzo, G., Di Bartolomeo, M., Di Battista, G., Hong, S.-H.,
Patrignani, M., Roselli, V.: Anchored drawings of planar graphs. In: Duncan, C.,
Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 404–415. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45803-7 34

5. Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.
(ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60313-1 145

6. Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-geodesic embedding of planar
graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207–
218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0 21

7. Klemz, B., Rote, G.: Ordered level planarity and geodesic planarity. In: Abstracts
33rd European Workshop on Computational Geometry, pp. 269–272 (2017)

8. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM
J. Discrete Math. 5(3), 422–427 (1992). https://doi.org/10.1137/0405033

9. Kratochv́ıl, J., Ueckerdt, T.: Non-crossing connectors in the plane. In: Chan,
T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 108–
120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38236-9 11

https://doi.org/10.7155/jgaa.00367
https://doi.org/10.7155/jgaa.00367
https://doi.org/10.1016/j.comgeo.2012.04.005
https://doi.org/10.1007/978-3-662-45803-7_34
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/978-3-642-11805-0_21
https://doi.org/10.1137/0405033
https://doi.org/10.1007/978-3-642-38236-9_11

Non-crossing Paths with Geographic Constraints 461

10. Löffler, M.: Existence and computation of tours through imprecise points.
Int. J. Comput. Geom. Appl. 21(01), 1–24 (2011). https://doi.org/10.1142/
S0218195911003524

11. Silveira, R.I., Speckmann, B., Verbeek, K.: Non-crossing paths with geographic
constraints (2017) arXiv:1708.05486. http://arxiv.org/abs/1708.05486

12. Verbeek, K.: Non-crossing paths with fixed endpoints. Master’s thesis, Technical
University of Eindhoven (2008)

https://doi.org/10.1142/S0218195911003524
https://doi.org/10.1142/S0218195911003524
http://arxiv.org/abs/1708.05486
http://arxiv.org/abs/1708.05486

Special Representations

Planar L-Drawings of Directed Graphs

Steven Chaplick1, Markus Chimani2, Sabine Cornelsen3,
Giordano Da Lozzo4(B), Martin Nöllenburg5, Maurizio Patrignani6,

Ioannis G. Tollis7, and Alexander Wolff1

1 Universität Würzburg, Würzburg, Germany
steven.chaplick@uni-wuerzburg.de

2 Universität Osnabrück, Osnabrück, Germany
markus.chimani@uni-osnabrueck.de

3 Universität Konstanz, Konstanz, Germany
sabine.cornelsen@uni-konstanz.de

4 University of California, Irvine, CA, USA
gdalozzo@uci.edu

5 TU Wien, Vienna, Austria
noellenburg@ac.tuwien.ac.at

6 Roma Tre University, Rome, Italy
patrigna@dia.uniroma3.it

7 University of Crete, Heraklion, Greece
tollis@csd.uoc.gr

Abstract. We study planar drawings of directed graphs in the
L-drawing standard. We provide necessary conditions for the existence
of these drawings and show that testing for the existence of a planar
L-drawing is an NP-complete problem. Motivated by this result, we focus
on upward-planar L-drawings. We show that directed st-graphs admit-
ting an upward- (resp. upward-rightward-) planar L-drawing are exactly
those admitting a bitonic (resp. monotonically increasing) st-ordering.
We give a linear-time algorithm that computes a bitonic (resp. monoton-
ically increasing) st-ordering of a planar st-graph or reports that there
exists none.

1 Introduction

In an L-drawing of a directed graph each vertex v is assigned a point in the
plane with exclusive integer x- and y-coordinates, and each directed edge (u, v)
consists of a vertical segment exiting u and of a horizontal segment entering v [1].
The drawings of two edges may cross and partially overlap, following the model

This research was initiated at the Bertinoro Workshop on Graph Drawing 2017.
This article reports on work supported by the U.S. Defense Advanced Research
Projects Agency (DARPA) under agreement no. AFRL FA8750-15-2-0092. The views
expressed are those of the authors and do not reflect the official policy or position
of the Department of Defense or the U.S. Government. This research was also par-
tially supported by MIUR project “MODE – MOrphing graph Drawings Efficiently”,
prot. 20157EFM5C 001.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 465–478, 2018.
https://doi.org/10.1007/978-3-319-73915-1_36

http://orcid.org/0000-0001-5872-718X

466 S. Chaplick et al.

Fig. 1. (a) A bitonic st-orientation of the octahedron that admits an upward planar
L-drawing (b). (c) The corresponding drawing in the Kandinsky model. (d) An upward
planar st-graph U that does not admit an upward-planar L-drawing

of [17]. The ambiguity among crossings and bends is resolved by replacing bends
with small rounded junctions. An L-drawing in which edges possibly overlap,
but do not cross, is a planar L-drawing; see, e.g., Fig. 1b. A planar L-drawing is
upward planar if its edges are y-monotone, and it is upward-rightward planar if
its edges are simultaneously x-monotone and y-monotone.

Planar L-drawings correspond to drawings in the Kandinsky model [12] with
exactly one bend per edge and with some restrictions on the angles around each
vertex; see Fig. 1c. It is NP-complete [4] to decide whether a multigraph has a
planar embedding that allows a Kandinsky drawing with at most one bend per
edge [5]. On the other hand, every simple planar graph has a Kandinsky drawing
with at most one bend per edge [5]. Bend-minimization in the Kandinsky-model
is NP-complete [4] even if a planar embedding is given, but can be approximated
by a factor of two [2,11]. Heuristics for drawings in the Kandinsky model with
empty faces and few bends have been discussed by Bekos et al. [3].

Bitonic st-orderings were introduced by Gronemann for undirected planar
graphs [14] as an alternative to canonical orderings. They were recently extended
to directed plane graphs [16]. In a bitonic st-ordering the successors of any
vertex must form an increasing and then a decreasing sequence in the given
embedding. More precisely, a planar st-graph is a directed acyclic graph with a
single source s and a single sink t that admits a planar embedding in which s
and t lie on the boundary of the same face. A planar st-graph always admits an
upward-planar straight-line drawing [8]. An st-ordering of a planar st-graph is
an enumeration π of the vertices with distinct integers, such that π(u) < π(v)
for every edge (u, v) ∈ E. Given a plane st-graph, i.e., a planar st-graph with
a fixed upward-planar embedding E , consider the list S(v) = 〈v1, v2, . . . , vk〉 of
successors of v in the left-to-right order in which they appear around v. The
list S(v) is monotonically decreasing with respect to an st-ordering π if π(vi) >
π(vi+1) for i = 1, . . . , k − 1. It is bitonic with respect to π if there is a vertex
vh in S(v) such that π(vi) < π(vi+1), i = 1, . . . , h − 1 and π(vi) > π(vi+1),
i = h, . . . , k − 1. For an upward-planar embedding E , an st-ordering π is bitonic
or monotonically decreasing, respectively if the successor list of each vertex is
bitonic or monotonically decreasing, respectively. Here, 〈E , π〉 is called a bitonic
pair or monotonically decreasing pair, respectively, of G.

Planar L-Drawings of Directed Graphs 467

Gronemann used bitonic st-orderings to obtain on the one hand upward-
planar polyline grid drawings in quadratic area with at most |V | − 3 bends
in total [16] and on the other hand contact representations with upside-down
oriented T-shapes [15]. A bitonic st-ordering for biconnected undirected planar
graphs can be computed in linear time [14] and the existence of a bitonic st-
ordering for plane (directed) st-graphs can also be decided in linear time [16].
However, in the variable embedding scenario no algorithm is known to decide
whether an st-graph G admits a bitonic pair. Bitonic st-orderings turn out
to be strongly related to upward-planar L-drawings of st-graphs. In fact, the
y-coordinates of an upward-planar L-drawing yield a bitonic st-ordering.

In this work, we initiate the investigation of planar and upward-planar
L-drawings. In particular, our contributions are as follows. (i) We prove that
deciding whether a directed planar graph admits a planar L-drawing is NP-
complete. (ii) We characterize the planar st-graphs admitting an upward
(upward-rightward, resp.) planar L-drawing as the st-graphs admitting a bitonic
(monotonic decreasing, resp.) st-ordering. (iii) We provide a linear-time algo-
rithm to compute an embedding, if any, of a planar st-graph that allows for
a bitonic st-ordering. This result complements the analogous algorithm pro-
posed by Gronemann for undirected graphs [14] and extends the algorithm pro-
posed by Gronemann for planar st-graphs in the fixed embedding setting [16].
(iv) Finally, we show how to decide efficiently whether there is a planar L-drawing
for a plane directed graph with a fixed assignment of the edges to the four ports
of the vertices.

Due to space limitations, full proofs are provided in [6].

2 Preliminaries

We assume familiarity with basic graph drawing concepts and in particular with
the notions of connectivity and SPQR-trees (see also [6,9]).

A (simple, finite) directed graph G = (V,E) consists of a finite set V of
vertices and a finite set E ⊆ {(u, v) ∈ V ×V ;u �= v} of ordered pairs of vertices.
If (u, v) is an edge then v is a successor of u and u is a predecessor of v. A
graph is planar if it admits a drawing in the plane without edge crossings. A
plane graph is a planar graph with a fixed planar embedding, i.e., with fixed
circular orderings of the edges incident to each vertex—determined by a planar
drawing—and with a fixed outer face.

Given a planar embedding and a vertex v, a pair of consecutive edges incident
to v is alternating if they are not both incoming or both outgoing. We say that
v is k-modal if there exist exactly k alternating pairs of edges in the cyclic order
around v. An embedding of a directed graph G is k-modal, if each vertex is at
most k-modal. A 2-modal embedding is also called bimodal. An upward-planar
drawing determines a bimodal embedding. However, the existence of a bimodal
embedding is not a sufficient condition for the existence of an upward-planar
drawing. Deciding whether a directed graph admits an upward-planar (straight-
line) drawing is an NP-hard problem [13].

468 S. Chaplick et al.

L-Drawings. A planar L-drawing determines a 4-modal
embedding. This implies that there exist planar directed
graphs that do not admit planar L-drawings. A 6-wheel whose
central vertex is incident to alternating incoming and outgo-
ing edges is an example of a graph that does not admit any
4-modal embedding, and therefore any planar L-drawing.

On the other hand, the existence of a 4-modal embedding is not sufficient
for the existence of a planar L-drawing. E.g., the octahedron depicted in the
figure on the right does not admit a planar L-drawing. Since the octahedron is
triconnected, it admits a unique combinatorial embedding (up to a flip). Each
vertex is 4-modal. However, the rightmost vertex in a planar L-drawing must be
1-modal or 2-modal.

Any upward-planar L-drawing of an st-graph G can be modified to obtain an
upward-planar drawing of G: Redraw each edge as a y-monotone curve arbitrar-
ily close to the drawing of the corresponding 1-bend orthogonal polyline while
avoiding crossings and edge-edge overlaps. However, not every upward-planar
graph admits an upward-planar L-drawing. E.g., the graph in Fig. 1d contains a
subgraph that does not admit a bitonic st-ordering [16]. In Sect. 4 (Theorem 3),
we show that this means it does not admit an upward planar L-drawing.

The Kandinsky Model. In the Kandinsky model [12], vertices are drawn as
squares of equal sizes on a grid and edges—usually undirected—are drawn as
orthogonal polylines on a finer grid; see Fig. 1c. Two consecutive edges in the
clockwise order around a vertex define a face and an angle in {0, π/2, π, 3π/2, 2π}
in that face. In order to avoid edges running through other vertices, the Kandin-
sky model requires the so called bend-or-end property : There is an assignment of
bends to vertices with the following three properties. (a) Each bend is assigned
to at most one vertex. (b) A bend may only be assigned to a vertex to which
it is connected by a segment (i.e., it must be the first bend on an edge). (c) If
e1, e2 are two consecutive edges in the clockwise order around a vertex v that
form a 0 angle inside face f , then a bend of e1 or e2 forming a 3π/2 angle inside
f must be assigned to v. Further, the Kandinsky model requires that there are
no empty faces.

Given a planar L-drawing, consider a vertex v and all edges incident to one of
the four ports of v. By assigning to v all bends on these edges—except the bend
furthest from v—we satisfy the bend-or-end property. This implies the following
lemma, which is proven in [6].

Lemma 1. A graph has a planar L-drawing if and only if it admits a drawing in
the Kandinsky model with the following properties: (i) Each edge bends exactly
once; (ii) at each vertex, the angle between any two outgoing (or between any
two incoming) edges is 0 or π; and (iii) at each vertex, the angle between any
incoming edge and any outgoing edge is π/2 or 3π/2.

3 General Planar L-Drawings

We consider the problem of deciding whether a graph admits a planar L-drawing.
In Sect. 3.1, we show that the problem is NP-complete if no planar embedding

Planar L-Drawings of Directed Graphs 469

Fig. 2. 4-wheel graph W and two planar L-drawings of W .

is given. In the fixed embedding setting (Sect. 3.2) the problem can be described
as an ILP. It is solvable in linear time if we also fix the ports.

3.1 Variable Embedding Setting

As a central building block for our hardness reduction we use a directed graph
W that can be constructed starting from a 4-wheel with central vertex c and
rim (u, v, w, z). We orient the edges of W so that v and z (the V-ports of W)
are sinks and u and w (the H-ports of W) are sources. Finally, we add directed
edges (v, c), (z, c), (c, w), and (c, u); see Fig. 2. We now provide Lemma 2 which
describes the key property of planar L-drawings of W .

Lemma 2. In any planar L-drawing of W with cycle (u, v, w, z) as the outer
face the edges of the outer face form a rectangle (that contains vertex c).

We are now ready to give the main result of the section.

Theorem 1. It is NP-complete to decide whether a directed graph admits a
planar L-drawing.

Sketch of proof. We reduce from the NP-complete problem of HV-rectilinear pla-
narity testing [10]. In this problem, the input is a biconnected degree-4 planar
graph G with edges labeled either H or V, and the goal is to decide whether G
admits an HV-drawing, i.e., a planar drawing such that each H-edge (V-edge)
is drawn as a horizontal (vertical) segment. Starting from G, we construct a
graph G′ by replacing: (i) vertices with 4-wheels as in Fig. 2; (ii) V-edges with
the gadget shown in Fig. 3a; and (iii) H-edges with an appropriately rotated and
re-oriented version of the V-edge gadget. If (u, v) is a V-edge, the two vertices
labeled u and v of its gadget are identified with a V-port of the respective ver-
tex gadgets. Otherwise, they are identified with an H-port. Figure 3b shows a
vertex gadget with four incident edges. The proof that G′ and G are equivalent
is somewhat similar to Brückner’s hardness proof in [5, Theorem 3] and exploits
Lemma 2. Refer to [6] for the full details. ��

470 S. Chaplick et al.

Fig. 3. (a) Edge gadget for a V-edge. (b) Connections among gadgets.

3.2 Fixed Embedding and Port Assignment

In this section, we show how to decide efficiently whether there is a planar
L-drawing for a plane directed graph with a fixed assignment of the edges to
the four ports of the vertices. Using Lemma 1 and the ILP formulation of Barth
et al. [2], we first set up linear inequalities that describe whether a plane 4-modal
graph has a planar L-drawing. Using these inequalities, we then transform our
decision problem into a matching problem that can be solved in linear time.

We call a vertex v an in/out-vertex on a face f if v is incident to both,
an incoming edge and an outgoing edge on f . Let xvf ∈ {0, 1, 2} describe the
angle in a face f at a vertex v: the angle between two outgoing or two incoming
edges is xvf · π and the angle between an incoming and an outgoing edge is
xvf · π + π/2. Let xv

fe ∈ {0, 1} be 1 if there is a convex bend in face f on edge e
assigned to a vertex v to fulfill the bend-or-end property. There is a planar
L-drawing with these parameters if and only if the following four conditions
are satisfied (see [6] for details): (1) The angles around a vertex v sum to 2π.
(2) Each edge has exactly one bend. (3) The number of convex angles minus
the number of concave angles is 4 in each inner face and −4 in the outer face.
(4) The bend-or-end property is fulfilled, i.e., for any two edges e1 and e2 that
are consecutive around a vertex v and that are both incoming or both outgoing,
and for the faces f1, f , and f2 that are separated by e1 and e2 (in the cyclic
order around v), it holds that xvf +xv

f1e1
+xv

f2e2
≥ 1. Let e = (v, w) be incident

to faces f and h, Condition (2) implies −xv
he − xw

he = xv
fe + xw

fe − 1. Hence, (3)
yields

(3′)
∑

e=(v,w) incident to f

(xv
fe + xw

fe) −
∑

v on f

xvf = ±2 + (# in/out-vertices on f − deg f)/2.

Observe that the number of in/out-vertices on a face f is odd if and only
if deg f is odd. Moreover, if we omit the bend-or-end property, we can for-
mulate the remaining conditions as an uncapacitated network flow problem.
The network has three types of nodes: one for each vertex, face, and edge
of the graph. It has two types of edges: from vertices to incident faces and

Planar L-Drawings of Directed Graphs 471

from faces to incident edges. The supplies are
 4−k
2 � for the k-modal vertices,

±2 + 1/2 · (#in/out-vertices − deg f) for a face f , and −1 for the edges.

Theorem 2. Given a directed plane graph G and labels out(e) ∈ {top,bottom}
and in(e) ∈ {right, left} for each edge e, it can be decided in linear time whether
G admits a planar L-drawing in which each edge e leaves its tail at out(e) and
enters its head at in(e).

Sketch of proof. First, we have to check whether the cyclic order of the edges
around a vertex is compatible with the labels. The labels determine the bends
and the angles around the vertices, i.e., xv

fe + xw
fe for each edge e = (v, w) and

each incident face f , and xvf for each vertex v and each incidence to a face f .
We check whether these values fulfill Conditions 1, 2, and 3′. In order to also
check Condition 4, we first assign for each port of a vertex v, all but the middle
edges to v (where a middle edge of a port is the last edge in clockwise order
bending to the left or the first edge bending to the right). We check whether
we thereby assign an edge more than once. Assigning the middle edges can be
reduced to a matching problem in a bipartite graph of maximum degree 2 where
the nodes on one side are the ports with two middle edges and the nodes on the
other side are the unassigned edges. ��

4 Upward- and Upward-Rightward Planar L-Drawings

In this section, we characterize (see Theorem 3) and construct (see Theorem 6)
upward-planar and upward-rightward planar L-drawings.

4.1 A Characterization via Bitonic st-Orderings

Characterizing the plane directed graphs that admit an L-drawing is an elusive
goal. However, we can characterize two natural subclasses of planar L-drawings
via bitonic st-orderings.

Theorem 3. A planar st-graph admits an upward- (upward-rightward-) planar
L-drawing if and only if it admits a bitonic (monotonically decreasing) pair.

Sketch of proof. “⇒”: Let G = (V,E) be an st-graph with n vertices. The
y-coordinates of an upward- (upward-rightward-) planar L-drawing of G yield a
bitonic (monotonically decreasing) st-ordering.
“⇐”: Given a bitonic (monotonically decreasing) st-ordering π of G = (V,E),
we construct an upward- (upward-rightward-) planar L-drawing of G using an
idea of Gronemann [16]. For each vertex v, we use π(v) as its y-coordinate.

For the x-coordinates we use a linear extension of a partial order ≺. Let
v1, . . . , vn be the vertices of G in the ordering given by π. Let Gi be the subgraph
of G induced by Vi = {v1, . . . , vi}. To construct ≺, we augment Gi to Gi in such
a way that the outer face fGi

of Gi is a simple cycle and all vertices on fGi

are comparable: We start with a triangle on v1 and two new vertices v−1 and

472 S. Chaplick et al.

Fig. 4. How to turn a bitonic st-ordering into a planar L-drawing.

v−2, with y-coordinates −1 and −2, respectively, and set v−2 ≺ v1 ≺ v−1. For
i = 2, . . . , n, let u1, . . . , uk be the predecessors of vi in ascending order with
respect to ≺. If π is monotonically decreasing or if k = 1, we add an edge e
with head vi. The tail of e is the right neighbor r of uk or the left neighbor �
of u1 on fGi

, respectively, if the maximum successor smax of u1 is to the left
(or equal to) or the right of vi, respectively; see Fig. 4a. Now let u1, . . . , uk be
the predecessors of vi in the possibly augmented graph; see Fig. 4b. We add the
condition uk−1 ≺ vi ≺ uk. ��

Corollary 1. Any undirected planar graph can be oriented such that it admits
an upward-planar L-drawing.

Proof. Triangulate the graph G and construct a bitonic st-ordering for undi-
rected graphs [14]. Orient the edges from smaller to larger st-numbers. ��

4.2 Bitonic st-Orderings in the Variable Embedding Setting

By Theorem 3, testing for the existence of an upward- (upward-rightward-) pla-
nar L-drawing of a planar st-graph G reduces to testing for the existence of a
bitonic (monotonically decreasing) pair 〈E , π〉 for G. In this section, we give a
linear-time algorithm to test an st-graph for the existence of a bitonic pair 〈E , π〉.

The following lemma is proved in [6].

Lemma 3. Let G = (V,E) be a planar st-graph with source s, sink t, and (s, t) /∈
E. Then there exists a supergraph G′ = (V ′, E′) of G, where V ′ = V ∪ {s′} and
E′ = E∪{(s′, s), (s′, t)}, such that (i) G′ is an st-graph with source s′ and sink t,
and (ii) G′ admits a bitonic (resp., monotonically increasing) st-ordering if and
only if G does.

By Lemma 3, in the following we assume that an st-graph G always contains
edge (s, t). Hence, either G coincides with edge (s, t), which trivially admits a
bitonic st-ordering, or it is biconnected.

A path p from u to v in a directed graph is monotonic increasing (monotonic
decreasing) if it is exclusively composed of forward (backward) edges. A path
p is monotonic if it is either monotonic increasing or monotonic decreasing. A
path p with endpoints u and v is bitonic if it consists of a monotonic increasing

Planar L-Drawings of Directed Graphs 473

path from u to w and of a monotonic decreasing path from w to v; if u �= w and
v �= w, then the path p is strictly bitonic and w is the apex of p. An st-graph G is
v-monotonic, v-bitonic, or strictly v-bitonic if the subgraph of G induced by the
successors of v is, after the removal of possible transitive edges, a monotonic,
bitonic, or strictly-bitonic path p, respectively. The apex of p, if any, is also
called the apex of v in G. If p is monotonic and it is directed from u to w, then
vertices u and w are the first successor of v in G and the last successor of v in
G, respectively. If p is strictly bitonic, then its endpoints are the first successors
of v in G. If p consists of a single vertex, then such a vertex is both the first
and the last successor of v in G. Let G be an st-graph and let G∗ be an st-graph
obtained by augmenting G with directed edges. We say that the pair 〈G,G∗〉
is v-monotonic, v-bitonic, or strictly v-bitonic if the subgraph of G∗ induced
by the successors of v in G is, after the removal of possible transitive edges, a
monotonic, bitonic, or strictly-bitonic path, respectively.

Although Gronemann [16] didn’t state this explicitly, the following theorem
immediately follows from the proof of his Lemma 4.

Theorem 4 ([16]). A plane st-graph G = (V,E) admits a bitonic st-ordering
if and only if it can be augmented with directed edges to a planar st-graph G∗

such that, for each vertex v ∈ V , the pair 〈G,G∗〉 is v-bitonic. Further, any
st-ordering of G∗ is a bitonic st-ordering of G.

In the remainder of the section, we show how to test in linear-time whether
it is possible to augment a biconnected st-graph G to an st-graph G∗ in such
a way that the pair 〈G,G∗〉 is v-bitonic, for any vertex v of G. By virtue of
Theorem 4, this allows us to test the existence of a bitonic pair 〈E , π〉 for G. We
perform a bottom-up visit of the SPQR-tree T of G rooted at the reference edge
(s, t) and show how to compute an augmentation for the pertinent graph of each
node μ ∈ T together with an embedding of it, if any exists.

Note that each vertex in an st-graph is on a directed path from s to t. Further,
by the choice of the reference edge, neither s nor t are internal vertices of the
pertinent graph of any node of T . This leads to the next observation.

Observation 1. For each node μ ∈ T with poles u and v, the pertinent graph
pert(μ) of μ is an st-graph whose source and sink are u and v, or vice versa.

Let e be a virtual edge of skel(μ) corresponding to a node ν whose pertinent
graph is an st-graph with source sν and sink tν . By Observation 1, we say that
e exits sν and enters tν .

The outline of the algorithm is as follows. Consider a node μ ∈ T and sup-
pose that, for each child μi of μ, we have already computed a pair 〈pert∗(μi), E∗

i 〉
such that pert∗(μi) is an augmentation of pert(μi), E∗

i is an embedding of
pert∗(μi), and 〈pert(μi),pert∗(μi)〉 is v-bitonic, for each vertex v of pert(μi).
We show how to compute a pair 〈pert∗(μ), E∗〉 > for node μ, such that (i) the
pair 〈pert(μ),pert∗(μ)〉 is v-bitonic for each vertex v in pert(μ), and (ii) the
restriction of E∗ to pert∗(μi) is E∗

i , up to a flip. In the following, for the sake of

474 S. Chaplick et al.

Fig. 5. Illustration for Lemma 4.

clarity, we first describe an overall quadratic-time algorithm. We will refine this
algorithm to run in linear time at the end of the section.

For a node μ ∈ T , we say that the pair 〈pert(μ),pert∗(μ)〉 is of Type B
if it is strictly sμ-bitonic and it is of Type M if it is sμ-monotonic. For sim-
plicity, we also say that node μ is of Type B or of Type M when, during the
traversal of T , we have constructed an augmentation pert∗(μ) for μ such that
〈pert(μ),pert∗(μ)〉 is of Type B or of Type M, respectively. Figure 5 shows an
example where an augmentation G∗ of G contains an augmentation pert∗(μ) for
μ which is replaced with an augmentation pert+(μ) such that 〈pert(μ),pert∗(μ)〉
is of Type B, 〈pert(μ),pert+(μ)〉 is of Type M, and G∗ admits a bitonic st-
ordering if and only if it still does after this replacement. The following lemma
formally shows that this type of replacement is always possible.

Lemma 4. Let G be a biconnected st-graph and let G∗ be an augmentation of G
such that 〈G,G∗〉 is v-bitonic, for each vertex v of G. Consider a node μ of the
SPQR-tree of G and let pert∗(μ) be the subgraph of G∗ induced by the vertices
of pert(μ). Suppose that 〈pert(μ),pert∗(μ)〉 is of Type B and that pert(μ) also
admits an augmentation pert+(μ) such that 〈pert(μ),pert+(μ)〉 is of Type M and
it is v-bitonic, for each vertex v of pert(μ). There exists an augmentation G+

of G such that 〈G,G+〉 is v-bitonic, for each vertex v of G, and such that the
subgraph of G+ induced by the vertices of pert(μ) is pert+(μ).

Consider a node μ of the SPQR-tree T of G. We now show how to test the
existence of a pair 〈pert∗(μ), E∗〉 such that (i) μ is of Type M or, secondarily, of
Type B, or report that no such a pair exists, and (ii) E∗ is a planar embedding
of pert∗(μ). In fact, by Lemma 4, an embedding of μ of Type M would always
be preferable to an embedding of Type B.

In any planar embedding E of pert(μ) in which the poles are on the outer
face fout of E , we call left path (right path) of E the path that consists of the
edges encountered in a clockwise traversal (in a counter-clockwise traversal) of
the outer face of E from sμ to tμ.

The following observation will prove useful to construct embedding E∗.

Observation 2. Let 〈pert∗(μ), E∗〉 be a pair such that 〈pert(μ),pert∗(μ)〉 is sμ-
bitonic and E∗ is a planar embedding of pert∗(μ) in which sμ and tμ lie on the
external face. We have that:

Planar L-Drawings of Directed Graphs 475

(i) If μ is of Type M, then the first and the last successors of sμ in pert∗(μ) lie
one on the left path and the other on the right path of E∗. In particular, if
the first and the last successor of μ are the same vertex, then such a vertex
belongs to both the left path and the right path of E∗.

(ii) If μ is of Type B, then the two first successors of sμ in pert∗(μ) lie one on
the left path and the other on the right path of E∗.

We distinguish four cases based on whether node μ is an S-, P-, Q-, or R-node.

Q-node. Here, 〈pert(μ),pert(μ)〉 is trivially of Type M, i.e., pert∗(μ) = pert(μ).

S-node. Let e1, . . . , ek be the virtual edges of skel(μ) in the order in which they
appear from the source sμ to the target tμ of skel(μ), and let μ1, . . . , μk be the
corresponding children of μ, respectively. We obtain pert∗(μ) by replacing each
virtual edge ei in skel(μ) with pert∗(μi). Also, we obtain the embedding E∗ by
arbitrarily selecting a flip for each embedding E∗

i of pert∗(μi). Clearly, node μ is
of Type M if and only if μ1 is of Type M and it is of Type B, otherwise.

P-node. Let e1, . . . , ek be the virtual edges of skel(μ) and let μ1, . . . , μk be the
corresponding children of μ, respectively.

First, observe that if there exists more than one child of μ that is of Type B,
then node μ does not admit an augmentation pert∗(μ) where 〈pert(μ),pert∗(μ)〉
is sμ-bitonic. In fact, if there exist two such nodes μi and μj , then both the
subgraphs of pert∗(μi) and pert∗(μj) induced by the successors of sμ in pert(μi)
and in pert(μj), respectively, contain an apex vertex. This implies that sμ would
have more than one apex.

Second, observe that if there exists a child μi of μ of Type B and the edge
(sμ, tμ) belongs to pert(μ), then node μ does not admit an augmentation pert∗(μ)
such that 〈pert(μ),pert∗(μ)〉 is sμ-bitonic. In fact, pert∗(μi) contains a apex of
sμ different from tμ; this is due to the fact that edge (sμ, tμ) /∈ pert∗(μi). Also,
vertex tμ must be an apex of sμ in any augmentation pert∗(μ) of pert(μ) such
that 〈pert(μ),pert∗(μ)〉 is v-bitonic, for each vertex v of pert(μ). Namely, any
augmentation pert∗(μ) of pert(μ) yields an st-graph with source sμ and sink tμ
and, as such, no directed path exits from tμ in pert∗(μ). As for the observation
in the previous paragraph, this implies that sμ would have more than one apex.

We construct pert∗(μ) as follows. We embed skel(μ) in such a way that the
edge (sμ, tμ), if any, or the virtual edge corresponding to the unique child of
μ that is of Type B, if any, is the right-most virtual edge in the embedding.
Let e1, . . . , ek be the virtual edges of skel(μ) in the order in which they appear
clockwise around sμ in skel(μ). Then, for each child μi of μ, we choose a flip of
embedding E∗

i such that a first successor of sμ in pert∗(μi) lies along the left path
of E∗

i . Now, for i = 1, . . . , k − 2, we add an edge connecting the last successor of
sμ in pert∗(μi) and the first successor of sμ in pert∗(μi+1). Finally, we possibly
add an edge connecting the last successor vl of sμ in pert∗(μk−1) and a suitable
vertex in pert∗(μk). Namely, if a node μk is of Type B, then we add an edge
between vl and the first successor of sμ in pert∗(μk) that lies along the left path
of E∗

k . If μk is of Type M and it is not a Q-node, then we add an edge between

476 S. Chaplick et al.

vl and the first successor of sμ in pert∗(μk). Otherwise pert∗(μk) = (sμ, tμ) and
we add the edge (vl, tμ) if no such an edge belongs to pert∗(μk−1).

Observe that, the added edges do not introduce any directed cycle as there
exists no directed path from a vertex in pert∗(μi+1) to a vertex in pert∗(μi).
Further, by Observation 2 the added edges do not disrupt planarity. Therefore,
the obtained augmentation pert∗(μ) of pert(μ) is, in fact, a planar st-graph.

Finally, we have that node μ is of Type M if and only if μk is of Type M.

R-node. The case of an R-node μ is detailed in [6]. For each node v of skel(μ),
we have to consider the virtual edges e1, . . . , ek of skel(μ) exiting v and the
corresponding children μ1, . . . , μk of μ, respectively. Similarly to the P-node case,
we pursue an augmentation of pert(μ) by inserting edges that connect pert(μi)
with pert(μi+1), with i = 1, . . . , k−1. Differently from the P-node case, however,
more than one pert(μi) may contain an edge between the poles of μi. Further,
also the faces of skel(μ) may play a role, introducing additional constraints on
the existence and the choice of the augmentation.

We have the following theorem.

Theorem 5. It is possible to decide in linear time whether a planar st-graph G
admits a bitonic pair 〈E , π〉.
Proof. Let ρ be the root of the SPQR-tree of G. The algorithm described above
computes a pair 〈pert∗(ρ), E∗〉 for G, if any exists, such that (i) the st-graph
pert∗(ρ) is an augmentation of G, (ii) for any vertex v of G, 〈pert(ρ),pert∗(ρ)〉 is
v-bitonic, and (iii) E∗ is a planar embedding of pert∗(ρ). Let E be the restriction
of E∗ to G. By Theorem 4, any st-ordering π of pert∗(ρ) is a bitonic st-ordering
of G with respect to E . Hence, 〈E , π〉 is a bitonic pair of G.

We first show that the described algorithm has a quadratic running time.
Then, we show how to refine it in order to run in linear time. For each node μ of T ,
the algorithm stores a pair 〈pert∗(μ), E〉. Processing a node takes O(|pert∗(μ)|)
time. Since |pert∗(μ)| ∈ O(|pert(μ)|), the overall running time is O(|G|2).

To achieve a linear running time, observe that we do not need to compute the
embeddings of the augmented pertinent graphs pert∗(μ), for each node μ of T ,
during the bottom-up traversal of T . In fact, any embedding E∗ of pert∗(ρ) yields
an embedding E of G such that π is bitonic with respect to E . To determine the
endpoints of the augmenting edges, we only need to associate a constant amount
of information with the nodes of T . Namely, for each node μ in T , we maintain
(i) whether μ is of Type B or of Type M, (ii) if μ is of Type M, the first successor
and the last successor of sμ in pert∗(μ), and (iii) if μ is of Type B, the two first
successors of sμ in pert∗(μ). Therefore, processing a node takes O(| skel(μ)|)
time. Since the sum of the sizes of the skeletons of the nodes in T is linear in
the size of G [7], the overall running time is linear. ��
Corollary 2. It is possible to decide in linear time whether a planar st-graph G
admits a monotonically decreasing pair 〈E , π〉.
Proof. The statement immediately follows from the fact that, in the algorithm
described in this section, when computing a pair 〈pert∗(μ), E∗〉 for each node μ

Planar L-Drawings of Directed Graphs 477

in T , a pair 〈pert(μ),pert∗(μ)〉 of Type M is built whenever possible. Therefore,
rejecting instances for which a pair 〈pert(μ),pert∗(μ)〉 of Type B is needed yields
the desired algorithm. ��

In conclusion, we have the following main result.

Theorem 6. It can be tested in linear time whether a planar st-graph admits an
upward- (upward-rightward-) planar L-drawing, and if so, such a drawing can be
constructed in linear time.

Proof. We first test in linear time whether a planar st-graph admits a bitonic pair
(Theorem 5) or a monotonically decreasing pair (Corollary 2). Then, Theorem 3
shows how to construct in linear time an upward- (upward-rightward-) planar
L-drawing from a bitonic (monotonically decreasing) pair. ��

5 Open Problems

Several interesting questions are left open: Can we efficiently test whether a
directed plane graph admits a planar L-drawing? Can we efficiently recognize
the directed graphs that are edge maximal subject to having a planar L-drawing
(they have at most 4n−6 edges where n is the number of vertices—see [6]? Does
every upward-planar graph have a (not necessarily upward-) planar L-drawing?
Can we extend the algorithm for computing a bitonic pair in the variable embed-
ding setting to single-source multi-sink di-graphs? Does every bimodal graph
have a planar L-drawing?

References

1. Angelini, P., Da Lozzo, G., Di Bartolomeo, M., Di Donato, V., Patrignani, M.,
Roselli, V., Tollis, I.G.: L-drawings of directed graphs. In: Freivalds, R.M., Engels,
G., Catania, B. (eds.) SOFSEM 2016. LNCS, vol. 9587, pp. 134–147. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49192-8 11

2. Barth, W., Mutzel, P., Yıldız, C.: A new approximation algorithm for bend mini-
mization in the Kandinsky model. In: Kaufmann, M., Wagner, D. (eds.) GD 2006.
LNCS, vol. 4372, pp. 343–354. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-70904-6 33

3. Bekos, M.A., Kaufmann, M., Krug, R., Siebenhaller, M.: The effect of almost-
empty faces on planar Kandinsky drawings. In: Bampis, E. (ed.) SEA 2015. LNCS,
vol. 9125, pp. 352–364. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20086-6 27

4. Bläsius, T., Brückner, G., Rutter, I.: Complexity of higher-degree orthogonal graph
embedding in the Kandinsky model. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014.
LNCS, vol. 8737, pp. 161–172. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44777-2 14

5. Brückner, G.: Higher-degree orthogonal graph drawing with flexibility constraints.
Bachelor thesis, Department of Informatics, KIT (2013). https://i11www.iti.kit.
edu/ media/teaching/theses/ba-brueckner-13.pdf

https://doi.org/10.1007/978-3-662-49192-8_11
https://doi.org/10.1007/978-3-540-70904-6_33
https://doi.org/10.1007/978-3-540-70904-6_33
https://doi.org/10.1007/978-3-319-20086-6_27
https://doi.org/10.1007/978-3-319-20086-6_27
https://doi.org/10.1007/978-3-662-44777-2_14
https://doi.org/10.1007/978-3-662-44777-2_14
https://i11www.iti.kit.edu/_media/teaching/theses/ba-brueckner-13.pdf
https://i11www.iti.kit.edu/_media/teaching/theses/ba-brueckner-13.pdf

478 S. Chaplick et al.

6. Chaplick, S., Chimani, M., Cornelsen, S., Da Lozzo, G., Nöllenburg, M., Patrignani,
M., Tollis, I.G., Wolff, A.: Planar L-drawings of directed graphs. arXiv:1708.09107,
Cornell University (2017)

7. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25,
956–997 (1996). https://doi.org/10.1137/S0097539794280736

8. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic
digraphs. Theor. Comput. Sci. 61, 175–198 (1988). https://doi.org/10.1016/0304-
3975(88)90123-5

9. Di Battista, G., Tamassia, R.: On-line graph algorithms with SPQR-trees. In:
Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer,
Heidelberg (1990). https://doi.org/10.1007/BFb0032061

10. Didimo, W., Liotta, G., Patrignani, M.: On the complexity of HV-rectilinear pla-
narity testing. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp.
343–354. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-
7 29

11. Eigelsperger, M.: Automatic layout of UML class diagrams: a topology-shape-
metrics approach. Ph.D. thesis, Eberhard-Karls-Universität zu Tübingen (2003)

12. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021809

13. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2001). https://doi.org/10.
1137/S0097539794277123

14. Gronemann, M.: Bitonic st-orderings of biconnected planar graphs. In: Duncan, C.,
Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 162–173. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45803-7 14

15. Gronemann, M.: Algorithms for incremental planar graph drawing and two-page
book embeddings. Ph.D. thesis, University of Cologne (2015). http://kups.ub.uni-
koeln.de/id/eprint/6329

16. Gronemann, M.: Bitonic st-orderings for upward planar graphs. In: Hu, Y.,
Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 222–235. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-50106-2 18. https://arxiv.org/abs/
1608.08578

17. Kornaropoulos, E.M., Tollis, I.G.: Overloaded orthogonal drawings. In: van
Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 242–253.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25878-7 24

http://arxiv.org/abs/1708.09107
https://doi.org/10.1137/S0097539794280736
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1007/BFb0032061
https://doi.org/10.1007/978-3-662-45803-7_29
https://doi.org/10.1007/978-3-662-45803-7_29
https://doi.org/10.1007/BFb0021809
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1007/978-3-662-45803-7_14
http://kups.ub.uni-koeln.de/id/eprint/6329
http://kups.ub.uni-koeln.de/id/eprint/6329
https://doi.org/10.1007/978-3-319-50106-2_18
https://arxiv.org/abs/1608.08578
https://arxiv.org/abs/1608.08578
https://doi.org/10.1007/978-3-642-25878-7_24

NodeTrix Planarity Testing with Small Clusters

Emilio Di Giacomo1(B), Giuseppe Liotta1, Maurizio Patrignani2,
and Alessandra Tappini1

1 Università degli Studi di Perugia, Perugia, Italy
{emilio.digiacomo,giuseppe.liotta}@unipg.it,

alessandra.tappini@studenti.unipg.it
2 Roma Tre University, Rome, Italy

patrigna@dia.uniroma3.it

Abstract. We study the NodeTrix planarity testing problem for flat
clustered graphs when the maximum size of each cluster is bounded by
a constant k. We consider both the case when the sides of the matrices
to which the edges are incident are fixed and the case when they can be
arbitrarily chosen. We show that NodeTrix planarity testing with fixed

sides can be solved in O(k3k+ 3
2 n3) time for every flat clustered graph

that can be reduced to a partial 2-tree by collapsing its clusters into
single vertices. In the general case, NodeTrix planarity testing with fixed
sides can be solved in O(n3) time for k = 2, but it is NP-complete for
any k ≥ 3. NodeTrix planarity testing remains NP-complete also in the
free side model when k > 4.

1 Introduction

Motivated by the need of visually exploring non-planar graphs, hybrid planarity
is one of the emerging topics in graph drawing (see, e.g., [1–3,9]). A hybrid planar
drawing of a non-planar graph suitably represents in restricted geometric regions
those dense subgraphs for which a classical node-link representation paradigm
would not be visually effective. These regions are connected by edges that do
not cross each other. Different representation paradigms for the dense subgraphs
give rise to different types of hybrid planar drawings.

Angelini et al. [1] consider hybrid planar drawings where dense portions of the
graph are represented as intersection graphs of sets of rectangles and study the
complexity of testing whether a non-planar graph admits such a representation.
In the context of social network analysis, Henry et al. [9] introduce NodeTrix
representations, where the dense subgraphs are represented as adjacency matri-
ces. Batagelj et al. [2] study the question of minimizing the size of the matrices
in a NodeTrix representation of a graph while guaranteeing the planarity of the
edges that connect different matrices. While Batagelj et al. can choose the sub-
graphs to be represented as matrices, Da Lozzo et al. [3] consider the problem
of testing whether a flat clustered graph (i.e. a graph with clusters and no sub-
clusters) admits a NodeTrix planar representation. In the paper of Da Lozzo
et al. each cluster must be represented by a different adjacency matrix and the
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 479–491, 2018.
https://doi.org/10.1007/978-3-319-73915-1_37

480 E. Di Giacomo et al.

inter-cluster edges are represented as non-intersecting simple Jordan arcs. They
prove that NodeTrix planarity testing for flat clustered graphs is NP-hard even
in the constrained case where for each matrix it is specified which inter-cluster
edges must be incident on the top, or on the left, or on the bottom, or on the
right side.

Motivated by these hardness results, in this paper we study whether NodeTrix
planarity testing can be efficiently solved when the size of the clusters is not
“too big”. More precisely, we consider flat clustered graphs whose clusters have
size bounded by a fixed parameter k and we want to understand whether the
NodeTrix planarity testing problem is fixed parameter tractable, i.e. it can be
solved in time f(k)T (n), where T (n) is a polynomial in n and f(k) is a function
that depends only on k. Our main results can be listed as follows:

– We describe an O(k3k+ 3
2 ·n3)-time algorithm to test NodeTrix planarity with

fixed sides for flat clustered graphs that are partial 2-trees. Informally, a flat
clustered graph G is a partial 2-tree if the graph obtained by collapsing every
cluster of G into a single vertex is a partial 2-tree.

– When the flat clustered graph is not a partial 2-tree, NodeTrix planarity
testing with fixed sides can still be solved in O(n3) time for k = 2, but it
becomes NP-complete for any larger value of k.

– Finally, we extend the above hardness result to the free sides model and show
that NodeTrix planarity testing remains NP-complete when the maximum
cluster dimension is larger than four. This is done by proving that NAE3SAT
is NP-complete even for triconnected Boolean formulas, which may be a result
of independent interest.

Our polynomial-time solution solves a special type of the planarity testing
problem where the order of the edges around each vertex is suitably constrained
to take into account the fact that a vertex of a matrix M has four copies along
the four sides of M . It may be worth recalling that Gutwenger et al. [7] have
considered an apparently similar problem. Namely, they studied planarity testing
where the order of the edges around the vertices may not be arbitrarily permuted.
Unfortunately, not only our problem does not fall in any of the cases addressed
by Gutwenger et al., but it does not seem solvable by introducing a gadget
of polynomial size that models the embedding constraints at each vertex. This
characteristic associates NodeTrix planarity testing with other known variants
of planarity testing, including clustered planarity, where the use of gadgets of
polynomial size has been so far an elusive goal.

The rest of the paper is organized as follows. Preliminary definitions are
in Sect. 2. Sections 3 and 4 describe a polynomial time algorithm for clustered
2-trees with bounded cluster-size. In Sect. 5 we show that for general flat clus-
tered graphs and fixed sides NodeTrix planarity testing can be solved in poly-
nomial time for k = 2 but it is NP-complete for k ≥ 3. In the same section we
extend this completeness result to NodeTrix planarity testing of flat clustered
graphs with free sides. Finally open problems can be found in Sect. 6. For reasons
of space, some proofs are sketched or omitted and can be found in [6].

NodeTrix Planarity Testing with Small Clusters 481

2 Preliminaries

We assume familiarity with basic definitions of graph theory and graph drawing
and in particular with the notions of block-cut-vertex tree and of SPQR-tree
(see, e.g., [4,8]).

A flat clustered graph G = (V,E, C) is a simple graph with vertex set V ,
edge set E, and a partition C of V into sets V1, . . . , Vh, called clusters. An edge
(u, v) ∈ E with u ∈ Vi and v ∈ Vj is an intra-cluster edge if i = j and it is an
inter-cluster edge if i �= j.

A NodeTrix representation of a flat clustered graph G is such that: (i) Each
cluster Vi with |Vi| = 1 (called trivial cluster) is represented as a distinct point
in the plane. (ii) Each cluster Vi with |Vi| > 1 (called non-trivial cluster) is
represented by a symmetric adjacency matrix Mi (with |Vi| rows and columns),
where Mi is drawn in the plane so that its boundary is a square with sides
parallel to the coordinate axes. (iii) There is no intersection between two distinct
matrices or between a point representing a vertex and a matrix. (iv) Each intra-
cluster edge of a cluster Vi is represented by the adjacency matrix Mi. (v) Each
inter-cluster edge (u, v) with u ∈ Vi and v ∈ Vj is represented by a simple
Jordan arc connecting a point on the boundary of matrix Mi with a point on
the boundary of matrix Mj , where the point on Mi (on Mj) belongs to the
column or to the row of Mi (resp. of Mj) associated with u (resp. with v).

A NodeTrix representation of a flat clustered graph G is planar if there is
no intersection between any two inter-cluster edges (except possibly at common
end-points) nor an intersection between an inter-cluster edge and a matrix. A flat
clustered graph is NodeTrix planar if it admits a planar NodeTrix representation.
Figure 1(a) is an example of a NodeTrix planar representation.

A formal definition of the problem investigated in the paper is as follows. Let
G = (V,E, C) be a flat clustered graph with n vertices and let k be the maximum
cardinality of a cluster in C. Clustered graph G is NodeTrix planar with fixed
sides if it has a NodeTrix planar representation where for each inter-cluster
edge, the sides of matrices it attaches to is specified as part of the input; G is
NodeTrix planar with free sides if the sides of the matrices to which inter-cluster
edges attach can be arbitrarily chosen.

Let Mi be the matrix representing cluster Vi in a NodeTrix representation
of G; let v be a vertex of Vi and let (u, v) be an inter-cluster edge. Edge (u, v)
can intersect the boundary of Mi in four points pv,t, pv,b, pv,l, and pv,r since the
row and column that represent v in Mi intersect the four sides of the boundary
of Mi. We call such points the top copy, bottom copy, left copy, and right copy
of v in Mi, respectively.

A side assignment for Vi ∈ C specifies for each inter-cluster edge whether the
edge must attach to the matrix Mi representing Vi in its top, left, right, or bottom
side. More precisely, a side assignment is a mapping φi:

⋃
j �=i Ei,j → {t,b, l,r},

where Ei,j is the set of inter-cluster edges between the clusters Vi and Vj (Vi

and Vj are adjacent if Ei,j �= ∅). A side assignment for C is a set Φ of side
assignments for each Vi ∈ C.

482 E. Di Giacomo et al.

We denote as G = (V,E, C, Φ) a flat clustered graph G = (V,E, C) with a
given side assignment Φ = {φ1, φ2, . . . , φ|C|}. Let Γ be a NodeTrix representation
of G such that, for every inter-cluster edge e = (u, v) ∈ E with u ∈ Vi and v ∈ Vj ,
the incidence points of e with the matrices Mi and Mj representing Vi and Vj in
Γ are exactly the points pu,φi(e) and pv,φj(e), respectively. We call Γ a NodeTrix
representation of G consistent with Φ. We say that G = (V,E, C, Φ) is NodeTrix
planar if it admits a NodeTrix planar representation consistent with Φ.

An inter-cluster edge is heavy if both its end-vertices belong to non-trivial
clusters. It is light otherwise. A flat clustered graph is light if every inter-
cluster edge is light. A 1-subdivision of a heavy edge e = (u, v) of a flat clus-
tered graph G = (V,E, C) replaces e with a path u0 = u, u1, u2 = v and
defines a new flat clustered graph G′ = (V ′, E′, C′), where V ′ = V ∪ {u1},
E′ = E/e ∪ {(u0, u1), (u1, u2)}, and C′ = C ∪ {u1}. The light reduction of G
is the flat clustered graph G′ obtained by performing a 1-subdivision of every
heavy inter-cluster edge of G. A consequence of Theorem 1 in [5] about the edge
density of NodeTrix planar graphs, is that the light reduction G′ of a NodeTrix
planar flat clustered graph G has O(|V |) vertices and O(|V |) inter-cluster edges.

Property 1. A flat clustered graph G is NodeTrix planar if and only if its light
reduction G′ is NodeTrix planar.

Based on Property 1, in the remainder we shall assume that flat clustered
graphs are always light and we call them clustered graphs, for short.

The frame of a clustered graph G = (V,E, C) is the graph F obtained by
collapsing each cluster Vi ∈ C, with |Vi| > 1, into a single vertex ci of F , called
the representative vertex of Vi in F . Let ci and cj be the two representative
vertices of Vi and Vj in F , respectively. For every inter-cluster edge connecting
a vertex of Vi to a vertex of Vj in G there is an edge in F connecting ci and cj .
Observe that the frame graph F of G is in general a multigraph; however, F is
simple when G is light.

Since the NodeTrix planarity of a clustered graph implies the planarity of
its frame graph, we will test NodeTrix planarity only on those clustered graphs
that have a planar frame.

A 2-tree is a graph recursively defined as follows: (i) an edge is a 2-tree;
(ii) the graph obtained by adding a vertex v to a 2-tree G and by connecting v
to two adjacent vertices of G is a 2-tree. A (planar) graph is a partial 2-tree if it
is a subgraph of a (planar) 2-tree. A biconnected partial 2-tree is a series-parallel
graph. A clustered graph is a partial 2-tree if its frame is a partial 2-tree. We
will sometimes talk about series-parallel clustered graphs when their frames are
series parallel.

3 NodeTrix Representations and Wheel Reductions

The polynomial-time algorithms described in Sects. 4 and 5 are based on decom-
posing the planar frame F of a clustered graph G = (V,E, C, Φ) into its bicon-
nected components and storing them into a block-cut-vertex tree. We process

NodeTrix Planarity Testing with Small Clusters 483

each block of F by using an SPQR decomposition tree that is rooted at a ref-
erence edge and visited from the leaves to the root. For each visited node μ of
the decomposition tree of a block of F we test whether the subgraph of G whose
frame is the pertinent graph of μ satisfies the planar constraints imposed by the
side assignment on the inter-cluster edges. A key ingredient to efficiently perform
the test at μ is the notion of wheel replacement.

Let G = (V,E, C, Φ) be a clustered graph with side assignment Φ and
let Vi ∈ C be a cluster with k > 1 vertices. Vi admits k! permutations of
its vertices and we associate a suitable graph to each such permutation. Let
πi = v0, v1, . . . , vk−1 be a permutation of the vertices of Vi. The wheel of Vi con-
sistent with πi is the wheel graph consisting of a vertex v of degree 4k adjacent
to the vertices of an oriented cycle v0,t, v1,t, . . . , vk−1,t, v0,r, v1,r, . . . , vk−1,r,
vk−1,b, vk−2,b, . . . , v0,b, vk−1,l, vk−2,l, . . . , v0,l where each edge of the cycle is ori-
ented forward. Intuitively, this oriented cycle will be embedded clockwise to
encode the constraints induced by a matrix Mi representing Vi when its left-to-
right order of columns is πi. More precisely, a wheel replacement of cluster Vi

consistent with πi is the clustered graph obtained as follows: (i) remove Vi and
all the inter-cluster edges incident to Vi; (ii) insert the wheel Wi of Vi consistent
with πi; and (iii) for each inter-cluster edge e = (u, vj), with vj ∈ Vi, insert edge
(u, vj,φi(e)) incident to Wi. We call edge (u, vj,φi(e)) the image of edge e = (u, vj).

Let G = (V,E, C, Φ,Π) be a clustered graph with side assignment Φ where
Π is a set of permutations {π1, π2, . . . , π|C|}, one for each cluster Vi (with i =
1, . . . , |C|). We call Π the permutation assignment of G and we say that G
is NodeTrix planar with side assignment Φ and permutation assignment Π if
G admits a NodeTrix planar representation with side assignment Φ where for
each matrix Mi the permutation of its columns is πi. The wheel reduction of G
consistent with Π is the graph obtained by performing a wheel replacement of
Vi ∈ C consistent with πi for each i = 1, . . . , |C|.
Theorem 1. Let G = (V,E, C, Φ,Π) be a clustered graph with side assignment
Φ and permutation assignment Π. G is NodeTrix planar if and only if the planar
wheel reduction of G admits a planar embedding where the external oriented cycle
of each wheel Wi is embedded clockwise.

Figure 1(a) and (b) show respectively a NodeTrix planar representation of
a clustered graph G and the corresponding wheel reduction with its planar
embedding.

Based on Theorem 1, we can test the graph G = (V,E, C, Φ) for NodeTrix
planarity by exploring the space of the possible permutation sets Π and corre-
sponding wheel reductions in search of a NodeTrix planar G = (V,E, C, Φ,Π).
Note that, if the maximum size of a cluster is given as a parameter k, every
cluster Vi can be replaced by k! wheel graphs, one for each possible permutation
of the vertices of Vi. In order to test planarity, for any such wheel replacement
Wi, the cyclic order of the inter-cluster edges incident to the same vertex of Wi

can be arbitrarily permuted. While each wheel reduction yields an instance of
constrained planarity testing that can be solved with the linear-time algorithm

484 E. Di Giacomo et al.

Fig. 1. (a) A NodeTrix planar representation of a clustered graph. (b) The planar
embedding of the corresponding wheel reduction. (c) Labeling of the vertices of Wtμ ;
the complete internal and external sequences are highlighted.

described in [7], a brute-force approach that repeats this algorithm on each pos-
sible wheel reduction may lead to testing planarity on |C|k! different instances.
Instead, for each visited node μ of the decomposition tree T we compute a suc-
cinct description of the possible NodeTrix planar representations of the subgraph
Gμ of G represented by the subtree of T rooted at μ. This is done by storing
for the poles of μ those pairs of wheel graphs that are compatible with a Node-
Trix planar representation of Gμ. How to efficiently compute such a succinct
description will be the subject of the next sections.

4 Testing NodeTrix Planarity for Partial 2-Trees

In this section we prove that NodeTrix planarity testing with fixed sides can
be solved in polynomial time for a clustered graph G = (V,E, C, Φ) when the
maximum size of any cluster of C is bounded by a constant and the frame graph
is a partial 2-tree. This contrasts with the NP-hardness of NodeTrix planarity
testing with fixed sides proved in [3] in the case where the size of the clusters is
unbounded.

We first study the case of a clustered graph whose frame graph is a series-
parallel graph, i.e., it is biconnected and its SPQR decomposition tree only has
Q-, P-, and S-nodes. We then consider the case of partial 2-trees, i.e., graphs
whose biconnected components are series-parallel.

4.1 Series-Parallel Frame Graphs

In this section we prove that NodeTrix planarity testing with fixed sides can
be solved in O(k3k+ 3

2 · n2) time for clustered graphs whose frame graphs are
series-parallel and have cluster size at most k.

NodeTrix Planarity Testing with Small Clusters 485

Let G = (V,E, C, Φ) be a series-parallel clustered graph with side assignment
Φ and let F be its frame graph. Let T be the SPQ decomposition tree of F
rooted at any Q-node. To simplify the description and without loss of generality,
we assume that every S-node of T has exactly two children. Let μ be a node of
T , and let sμ, tμ be the poles of μ. Consider the pertinent graph Fμ represented
by the subtree of T rooted at μ and let vμ be a pole of μ (vμ ∈ {sμ, tμ}). Pole
vμ in the frame graph F may correspond to a non-trivial cluster Vi of C. In this
case, we call vμ a non-trivial pole of μ and cluster Vi the pertinent cluster of vμ.

The edges of Fμ incident to vμ are the intra-component edges of vμ. The
other edges of F incident to vμ are the extra-component edges of vμ. Each intra-
component (extra-component) edge of vμ corresponds to an inter-cluster edge e′

of G incident to one vertex of the pertinent cluster Vμ of vμ. We call e′ an intra-
component edge (extra-component edge) of Vμ. We associate k! wheel graphs
to each non-trivial pole vμ of μ. Each of them is a wheel replacement of the
pertinent cluster of vμ, consistent with one of the k! permutations of its vertices.

Let vμ be a non-trivial pole of μ, let Vμ be the pertinent cluster of vμ, let πμ

be a permutation of the vertices of Vμ, and let Wμ be the wheel replacement of
Vμ consistent with πμ. Every edge e incident to Wμ such that e is the image of
an inter-cluster edge e′ of G is labeled either int or ext, depending on whether
e′ is an intra-component or an extra-component edge of Vμ. A vertex w of the
external cycle of Wμ is assigned one label of the set {void, int, ext, int-ext}
as follows. Vertex w is labeled void if no edge incident to w is the image of
an inter-cluster edge. Vertex w is labeled int (resp. ext) if we have a label
int (resp. ext) on every edge e incident to w such that e is the image of an
inter-cluster edge. Otherwise, vertex w is labeled int-ext. See Fig. 1(c) for an
example concerning the wheel Wtμ

of Fig. 1(b); the dashed curve of Fig. 1(b)
shows the subgraph of the wheel reduction corresponding to Fμ.

A clockwise sequence v0, v1, . . . , vj of vertices of the external cycle of Wμ is
an external sequence of pole vμ consistent with πμ if v0 and vj are labeled either
ext or int-ext and all the other vertices of the sequence are labeled either
void or ext. An external clockwise sequence of pole vμ is complete if it contains
all the vertices of Wμ that are labeled ext and int-ext. Note that a complete
external sequence may contain many void vertices but no int vertex. Internal
and complete internal sequences of pole vμ are defined analogously. Observe that
a complete internal sequence and a complete external sequence of vμ may not
exist when vertices labeled int and vertices labeled ext alternate more than
twice when traversing clockwise the external cycle of Wμ, or when three vertices
are labeled int-ext. A special case is when Wμ has exactly two vertices w1 and
w2 labeled int-ext and all other vertices are void. In this case, the clockwise
sequence from w1 to w2 and the clockwise sequence from w2 to w1 are both
complete internal and complete external sequences.

In order to test G = (V,E, C, Φ) for NodeTrix planarity, we implicitly take
into account all possible permutation assignments Π by considering, for each
non-trivial pole wμ of each node μ of T , its k! possible wheels and by computing
their complete internal and complete external sequences. We visit the SPQ

486 E. Di Giacomo et al.

decomposition tree T from the leaves to the root and equip each node μ of T with
information regarding the complete internal and complete external sequences of
its non-trivial poles. Let μ be an internal node of T , let vμ be a non-trivial pole
of μ, let πvμ

be a permutation of the pertinent cluster Vμ of vμ, and let Wμ be
the wheel of Vμ consistent with πvμ

. We denote as ISeq(μ, vμ, πvμ
) the complete

internal sequence of vμ consistent with πvμ
in pole μ and as ESeq(μ, vμ, πvμ

) the
complete external sequence of vμ consistent with πvμ

in pole μ. We distinguish
between the different types of nodes of T .

Node μ is a Q-node. Since G is light, at most one of its poles is non-trivial.
Let e be an edge of F that is the pertinent graph of μ. One end-vertex of e is
the representative vertex in F of the pertinent cluster of the non-trivial pole vμ.
In fact, edge e corresponds to an edge e′ = (u, z) of G such that u ∈ Vμ and z
is a trivial cluster. The side assignment φvμ

defines whether e is incident to the
top, bottom, left, or right copy uW of u in the wheel Wμ of Vμ. For any possible
permutation πvμ

we have ISeq(μ, vμ, πvμ
) = uW . If uW is labeled int-ext, then

ESeq(μ, vμ, πvμ
) is the external cycle of Wμ starting at uW and ending at uW .

Otherwise, traverse the external cycle of Wμ starting at uW and following the
direction of the edges; ESeq(μ, vμ, πvμ

) consists of all the encountered vertices
from the first labeled ext to the last labeled ext.

Node μ is a P-node. Let ν0, ν1, . . . , νh−1 be the children of μ. Observe that
vμ is a non-trivial pole also for the children ν0, ν1, . . . , νh−1 of μ. We consider
every permutation πvμ

such that ν0, ν1, . . . , νh−1 have both a complete inter-
nal sequence and a complete external sequence compatible with πvμ

. The com-
plete internal sequence of vμ consistent with πvμ

is the union of the complete
internal sequences of the children ν0, ν1, . . . , νh−1, that is ISeq(μ, vμ, πvμ

) =
∪h−1

i=0 ISeq(νi, vμ, πvμ
).

To determine the complete external sequence of vμ consistent with πvμ
we

consider the intersection of the complete external sequences of the children of
μ. If this intersection consists of exactly one sequence of consecutive vertices,
then ESeq(μ, vμ, πvμ

) = ∩h−1
i=0 ESeq(νi, vμ, πvμ

). Otherwise (i.e., the intersection
is empty or it consists of more than one sequence of consecutive vertices), vμ

does not have a complete external sequence consistent with πvμ
.

Node μ is an S-node. Let ν be the child of μ that shares the pole vμ with μ.
We consider every permutation πvμ

such that ν has both ISeq(ν, vμ, πvμ
) and

ESeq(ν, vμ, πvμ
). The complete internal (external) sequence of vμ consistent with

πvμ
is ISeq(μ, vμ, πvμ

) = ISeq(ν, vμ, πvμ
) (ESeq(μ, vμ, πvμ

) = ESeq(ν, vμ, πvμ
)).

To test G for NodeTrix planarity we execute a bottom-up traversal of T
and, for each node μ with poles sμ and tμ, we check whether each possible pair
(πsμ

, πtμ
) induces complete internal and external sequences for sμ and tμ that

are ‘compatible’ with a planar embedding of the wheel reduction of G. If this is
the case, by Theorem 1, G is NodeTrix planar, otherwise we reject G.

More formally, let πsμ
(πtμ

, respectively) be a permutation such that sμ (tμ,
respectively) has both a complete internal sequence and a complete external
sequence compatible with πsμ

(πtμ
, respectively). We say that (πsμ

, πtμ
) is a

NodeTrix Planarity Testing with Small Clusters 487

Fig. 2. (a) A NodeTrix planar representation Γ of G = (V, E, C, Φ). (b) Γ induces
a permutation assignment and a planar embedding of a wheel reduction of G; the
complete internal and external sequences for a pair of poles are also highlighted.

compatible pair of permutations for μ if either one of the poles is a trivial pole
or one of the following cases applies.

Node μ is a Q-node. In this case all k! possible pairs of permutations for sμ

or tμ (recall that only one of them is non-trivial) are compatible for μ.

Node μ is a P-node. Let ν0, ν1, . . . , νh−1 be the children of μ. Consider a pair
of permutations (πsμ

, πtμ
); we recall that, for i = 0, . . . , h−1, each νi has poles sμ

and tμ. A first condition for pair (πsμ
, πtμ

) to be a compatible pair for μ is that
(πsμ

, πtμ
) is also a compatible pair for νi, with i = 0, . . . , h−1. A second condition

asks that the pair (πsμ
, πtμ

) defines opposite orders on the poles of μ. Namely, let
W s

μ (resp., W t
μ) be the wheel of Vsμ

(resp., Vtμ
) consistent with πsμ

(resp., πtμ
).

Traversing clockwise the external cycle of W s
μ starting from the first vertex of

ESeq(μ, sμ, πsμ
), let ISeq(ν0, sμ, πsμ

), ISeq(ν1, sμ, πsμ
), . . . , ISeq(νh−1, sμ, πsμ

)
be the order by which the internal sequences are encountered. Pair (πsμ

, πtμ
)

defines opposite orders on the poles of μ if, traversing clockwise the external
cycle of W t

μ starting from the first vertex of ESeq(μ, tμ, πsμ
), the order by which

we encounter the internal sequences of ν0, ν1, . . . , νh−1 is the opposite one, i.e.,
the order is ISeq(νh−1, tμ, πtμ

), ISeq(νh−2, tμ, πtμ
), . . . , ISeq(ν0, tμ, πtμ

).

Node μ is an S-node. Let ν0 and ν1 be the children of μ such that sν0 = sμ,
tν0 = sν1 , and tν1 = tμ. A pair (πsμ

, πtμ
) is a compatible pair for μ if there exists

a permutation πtν0
such that the pair (πsμ

, πtν0
) is compatible for ν0 and the

pair (πtν0
, πtμ

) is compatible for ν1.
Figure 2 suggests that a NodeTrix planar representation of a clustered graph

G defines a permutation assignment Π such that, for every node μ of T , pair
(πsμ

, πtμ
) is a compatible pair for μ.

488 E. Di Giacomo et al.

Lemma 1. Let G = (V,E, C, Φ) be a clustered graph with side assignment Φ
and let T be the SPQ decomposition tree of the frame graph of G. Graph G is
NodeTrix planar if and only if there exists a permutation assignment Π such that,
for every node μ of T with poles sμ and tμ, we have that permutation πsμ

∈ Π
and permutation πtμ

∈ Π form a compatible pair of permutations for μ.

Lemma 2. Let G = (V,E, C, Φ) be a series-parallel clustered graph with side
assignment Φ. Let k be the maximum size of any cluster in C and let n be the
cardinality of V . There exists an O(k3k+ 3

2 ·n2)-time algorithm that tests whether
G is NodeTrix planar with side assignment Φ and if so, it computes a NodeTrix
planar representation of G consistent with Φ.

Proof. Let F be the frame graph of G; for any possible choice of an edge e
of F we repeat the following procedure. We construct the SPQ decomposition
tree of G rooted at the Q-node whose pertinent graph is e. We visit T from the
leaves to the root and test whether G has a permutation assignment Π such that
G = (V,E, C, Φ,Π) is NodeTrix planar. We first equip each non-trivial pole vμ

of every node μ of T with its possible complete internal and complete external
sequences. The maximum number of complete internal sequences of vμ is k!. The
same is true for the complete external sequences. If each complete (internal or
external) sequence of pole vμ is encoded by means of its first and last vertex in the
clockwise order around Wvμ

, then each complete internal or external sequence
needs constant space. It follows that the intersection or the union of two complete
internal or external sequences can be computed in constant time. Therefore, all
complete internal and external sequences for each non-trivial pole of T can be
computed in O(k!) time. Hence, the whole bottom-up traversal to equip all
non-trivial poles with every possible complete internal/external sequence can
be executed in O(k! · n) time. We now test whether there exists a permutation
assignment Π such that any node μ of T has a compatible pair of permutations.
To this aim, we look at the complete internal and external sequences for the pair
of poles of the children of μ. For each pair (πsμ

, πtμ
) of permutations of the poles

of μ we equip μ with the information about whether such pair is compatible
for μ. This requires O(k!2) space. If μ is a Q-node, every pair of permutations
(πsμ

, πtμ
) is compatible for μ. It follows that all compatible pairs for μ can be

computed in O(k!) time (recall that one between sμ and tμ is non-trivial) and,
hence, in O(k! · n) time for all the Q-nodes of T . If μ is a P-node with children
ν0, ν1, . . . , νh−1, πsμ

is one of the permutations that equip sμ, and πtμ
is one of the

permutations that equip tμ, testing whether the pair (πsμ
, πtμ

) is a compatible
pair for μ can be executed in O(h) time. It follows that all compatible pairs for μ
can be computed in O(k!2 ·h) time and, hence, in O(k!2 ·n) time for all P-nodes
of T . If μ is an S-node with children ν0 and ν1, πsμ

is one of the permutations
that equip sμ, and πtμ

is one of the permutations that equip tμ, testing whether
the pair (πsμ

, πtμ
) is a compatible pair for μ can be executed in O(k!) time,

corresponding to choosing all possible permutations for the pole shared between
ν0 and ν1. It follows that all compatible pairs for μ can be computed in O(k!3)
time and, hence, in O(k!3 · n) time for all S-nodes of T .

NodeTrix Planarity Testing with Small Clusters 489

In conclusion, the time complexity of a bottom-up visit of T rooted at e is
O(k!3 · n). By rooting T at all possible Q-nodes, we obtain an overall time com-
plexity of O(k!3 · n2). By Stirling’s approximation, k! ∼ √

2πk(k
e)k and thus a

series-parallel clustered graph G with n vertices, side assignment Φ, and maxi-
mum cluster size k can be tested for NodeTrix planarity in O(k3k+ 3

2 · n2) time.
Note that the compatible pair of permutations stored at each node μ of T implic-
itly define a planar embedding of a wheel reduction of G. It can be shown that
it is possible to construct a NodeTrix planar representation of G in time propor-
tional to the number of edges of G, which is O(n · k) [5]. The statement of the
lemma follows. ��

4.2 Partial 2-Trees

We now consider clustered graphs whose cluster size is at most k and such that
their frame graph is a partial 2-tree, i.e. it is a planar graph whose biconnected
components are series-parallel. We handle this case by decomposing the frame
graph into its blocks and we store them into a block-cut-vertex tree. The follow-
ing theorem generalizes the result of Lemma 2.

Theorem 2. Let G = (V,E, C, Φ) be a partial 2-tree clustered graph with side
assignment Φ. Let k be the maximum size of any cluster in C and let n be the
cardinality of V . There exists an O(k3k+ 3

2 ·n3)-time algorithm that tests whether
G is NodeTrix planar with side assignment Φ and if so, it computes a NodeTrix
planar representation of G consistent with Φ.

5 General Planar Frame Graphs

In this section we study the problem of extending Theorem 2 to planar frame
graphs that may not be partial 2-trees. We prove that NodeTrix planarity testing
with fixed sides can be solved in polynomial time for maximum cluster size k = 2.
However, the problem becomes NP-complete with fixed sides for k ≥ 3 and it
remains NP-complete even in the free sides scenario for k ≥ 5.

Every block of the frame graph can be decomposed into its triconnected com-
ponents by means of an SPQR decomposition tree. For each block, we adopt the
same approach as for series-parallel graphs and look for a permutation assign-
ment Π such that, for every pair of poles sμ and tμ, (πsμ

, πtμ
) forms a compatible

pair for μ when μ is either a Q-node, a P-node, or an S-node. We extend the
definition of compatible pairs of permutations for an R-node as follows.

Let G = (V,E, C, Φ) be a clustered graph with side assignment Φ, let F be
the frame graph of G, and let T be the SPQR decomposition tree of F . Let μ be
an R-node of T with poles sμ and tμ. A pair of permutations (πsμ

, πtμ
) forms a

compatible pair for μ if there exists a planar embedding of the skeleton skel(μ)
of μ for which the following conditions hold: (i) For each vertex v of skel(μ),
let e0, e1, . . . eh−1 be the virtual edges of skel(μ) incident to v in clockwise order
around v. Each such edge ei is associated with a child νi of μ. There exists

490 E. Di Giacomo et al.

a permutation πv such that the complete internal sequences ISeq(ν0, v, πv),
ISeq(ν1, v, πv), . . . , ISeq(νh−1, v, πv) appear in this clockwise order around v. (ii)
Every vertex v of skel(μ) can be assigned a permutation πv such that: πv = πsμ

if v = sμ and πv = πsμ
if v = tμ, and for each virtual edge e = (u, v) in skel(μ)

that corresponds to a child ν of μ, the permutation pair (πu, πv) is compatible
for ν.

Observe that, in the case of maximum cluster size k = 2, the possible per-
mutations of the induced cluster Vv of a vertex v of skel(μ) are exactly two,
denoted by π+

v and π−
v . In order to test whether (πsμ

, πtμ
) forms a compatible

pair for μ, we perform a traversal of skel(μ) starting at sμ. Permutation πsμ
and

the clockwise order of the edges incident to sμ can impose to choose only one of
the two permutations π+

w o π−
w available for each vertex w adjacent to sμ and

corresponding to a non-trivial cluster of G. Each such w and its incident edges,
in turn, propagate constraints on the possible permutations to their neighbors,
till tμ is reached. Therefore, testing whether πsμ

and πtμ
form a compatible pair

for μ can be reduced to a suitable problem of labeling the edges and vertices of
skel(μ) and verifying that at the end sμ and tμ are labeled with πtμ

and πsμ
.

Theorem 3. Let G = (V,E, C, Φ) be an n-vertex clustered graph with side
assignment Φ such that the maximum size of any cluster in C is two. There
exists an O(n3)-time algorithm that tests whether G is NodeTrix planar with the
given side assignment and if so, computes a NodeTrix planar representation of
G consistent with Φ.

The proof of the following theorem is based on a reduction from (non-planar)
NAE3SAT.

Theorem 4. NodeTrix planarity testing with fixed sides and cluster size at most
k is NP-complete for any k ≥ 3.

Now, we extend the above hardness result to the free sides model and show
that NodeTrix planarity testing remains NP-complete when the maximum clus-
ter dimension is larger than four. This is done by proving that NAE3SAT is
NP-complete even for triconnected Boolean formulas, which may be a result of
independent interest.

Theorem 5. NAE3SAT is NP-complete for triconnected Boolean formulas.

Theorem 6. NodeTrix planarity testing with free sides and cluster size at most
k is NP-complete for any k ≥ 5.

6 Open Problems

We conclude the paper by listing some open problems that, in our opinion, are
worth investigating. (i) Study the complexity of NodeTrix planarity testing in the
free sides scenario for values of k between 2 and 5. (ii) Study families of clustered
graphs for which NodeTrix planarity testing is fixed parameter tractable in the
free sides scenario. (iii) Determine whether the time complexity of the algorithms
in Theorems 2 and 3 can be improved.

NodeTrix Planarity Testing with Small Clusters 491

References

1. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.:
Intersection-link representations of graphs. J. Graph Algorithms Appl. 21(4), 731–
755 (2017)

2. Batagelj, V., Brandenburg, F., Didimo, W., Liotta, G., Palladino, P., Patrignani,
M.: Visual analysis of large graphs using (X, Y)-clustering and hybrid visualizations.
IEEE Trans. Vis. Comput. Graph. 17(11), 1587–1598 (2011)

3. Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix rep-
resentations of clustered graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS,
vol. 9801, pp. 107–120. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50106-2 9

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall,
Upper Saddle River (1999)

5. Di Giacomo, E., Liotta, G., Patrignani, M., Tappini, A.: NodeTrix Planarity Testing
with Small Clusters. In: Frati, F., Ma, K. (eds.) GD 2017. LNCS, vol. 10692, pp.
479–491. Springer, Cham (2018)

6. Di Giacomo, E., Liotta, G., Patrignani, M., Tappini, A.: NodeTrix planarity testing
with small clusters. CoRR 1708.09281 (2017). http://arxiv.org/abs/1708.09281

7. Gutwenger, C., Klein, K., Mutzel, P.: Planarity testing and optimal edge insertion
with embedding constraints. J. Graph Algorithms Appl. 12(1), 73–95 (2008)

8. Harary, F.: Graph Theory. Addison-Wesley Series in Mathematics. Addison Wesley,
Reading (1969)

9. Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)

https://doi.org/10.1007/978-3-319-50106-2_9
https://doi.org/10.1007/978-3-319-50106-2_9
http://arxiv.org/abs/1708.09281

The Painter’s Problem: Covering a Grid
with Colored Connected Polygons

Arthur van Goethem1, Irina Kostitsyna1, Marc van Kreveld2,
Wouter Meulemans1, Max Sondag1, and Jules Wulms1(B)

1 Department of Mathematics and Computer Science, TU Eindhoven,
Eindhoven, The Netherlands

{a.i.v.goethem,i.kostitsyna,w.meulemans,m.f.m.sondag,
j.j.h.m.wulms}@tue.nl

2 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands
m.j.vankreveld@uu.nl

Abstract. Motivated by a new way of visualizing hypergraphs, we study
the following problem. Consider a rectangular grid and a set of colors χ.
Each cell s in the grid is assigned a subset of colors χs ⊆ χ and should be
partitioned such that for each color c ∈ χs at least one piece in the cell
is identified with c. Cells assigned the empty color set remain white. We
focus on the case where χ = {red, blue}. Is it possible to partition each
cell in the grid such that the unions of the resulting red and blue pieces
form two connected polygons? We analyze the combinatorial properties
and derive a necessary and sufficient condition for such a painting. We
show that if a painting exists, there exists a painting with bounded com-
plexity per cell. This painting has at most five colored pieces per cell if
the grid contains white cells, and at most two colored pieces per cell if
it does not.

1 Introduction

Hypergraphs are a powerful structure to represent unordered set systems. In gen-
eral, there are a number of elements (vertices of the hypergraph) and a number
of different subsets over these elements (the hyperedges of the graph). The pur-
pose of visualizing hypergraphs is to clarify the various set relations between the
hyperedges. There are, roughly speaking, two strands of hypergraph visualiza-
tions: those where the position of the elements is fixed (e.g. [2,7,8,15]), and those
where the positions can be chosen by the layout algorithm (e.g. [10,18,19]). For
a more detailed overview and in-depth classification of set visualization meth-
ods we refer to the survey by Alsallakh et al. [4]. Though some methods aim to

This work was initiated at the 2nd Workshop on Applied Geometric Algorithms
(AGA 2017) supported by the Netherlands Organisation for Scientific Research
(NWO), 639.023.208. AvG is supported by NWO 612.001.102; IK by FRS-FNRS;
MvK by NWO 612.001.651; WM and JW by NLeSC 027.015.G02; MS by NWO
639.023.208.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 492–505, 2018.
https://doi.org/10.1007/978-3-319-73915-1_38

The Painter’s Problem: Covering a Grid with Colored Connected Polygons 493

overcome layout complexity by replicating elements (e.g. [3,10]), we focus on a
visualization using a single representation for each element.

In theoretic research on drawing hypergraphs (e.g. [6,12]), the (often implicit)
assumption is that the representations of two sets may cross at common vertices.
Such crossings are not deemed problematic as most visual encodings rely on the
local nesting of intersecting polygons (in line with the prototypical Venn and
Euler diagrams [5] and similar visual overlays [7,8,15]) to identify set mem-
berships. Nesting, however, gives a strong visual cue of containment and may
result in misleading visual representations implying containment relationships
between hyperedges. A rendering style without nesting is one suggested for Kelp
Diagrams [8]. However, its cluttered appearance caused it not to feature in the
later extension, KelpFusion [15].

One of the most well-established quality criteria of graph drawings is pla-
narity (see e.g. [16,17]). When nested encodings are used, a planar drawing
relates to finding a planar support [6]: a planar (regular) graph such that the
vertices of each hyperedge induce a connected subgraph in the support. Deciding
whether a planar support exists is possible for some simple support classes (see [6]
for a discussion), but is already NP-hard for 2-outerplanar support graphs [6].
Optimizing hypergraph supports for total graph length without planarity con-
straints is NP-hard, but approximation algorithms exist [1,11].

Representations that do not require nesting are edge-based drawings [13] or
the equivalent Zykov representation [22], for which notions of planarity follow
readily from the standard notion for regular graphs.

Fig. 1. A hypergraph that
is not Zykov-planar (top)
but has a disjoint-polygons
drawing (bottom).

Instead we suggest a visual design that uses dis-
joint polygons to present hyperedges: vertices are rep-
resented as simple geometric primitives (e.g. a square
or circle); hyperedges are represented as connected
polygons that overlaps only and all its incident ver-
tices; and all such polygons are pairwise disjoint. As
illustrated in Fig. 1, our disjoint-polygons encoding is
stronger as it can visualize some hypergraphs that are
not Zykov-planar, whereas any Zykov-planar hyper-
graph admits a disjoint-polygons representation. We
can use vertices to “pass in between” the represen-
tations of other hyperedges, though not as flexibly
as is allowed for planar supports: the polygons must
remain disjoint.

Contributions. We investigate the properties of drawing hypergraphs using dis-
joint polygons. Motivated by moving towards a set visualization in a geographic
small multiples or grid map (see e.g. [14,23]), we specifically study the variant
where each element has a fixed location, being a cell in a rectangular grid. As
an initial exploration we focus on the 2-color case, where each cell is either red,
blue, both (purple), or uncolored (white). We thus aim to partition each purple
cell into red and blue pieces, such that the resulting pieces of a single color form
a connected polygon. We derive a necessary and sufficient condition to efficiently

494 A. van Goethem et al.

recognize whether an instance is solvable. For solvable instances, we bound the
number of colored pieces within each cell by a small constant and show that these
bounds are tight. Due to space constraints, some proofs have been shortened or
omitted; for full proofs, please refer to the ArXiv version [21].

2 Preliminaries

We define a k-colored grid Γ as a rectangular grid, in which each cell s has a set of
associated colors χs ⊆ {1, . . . , k}. A fully k-colored grid is the case where χs �= ∅

for all cells s. Throughout this paper, we primarily investigate 2-colored grids
and use colored grid to refer to the 2-colored case, unless indicated otherwise.
We refer to the two colors as (r)ed and (b)lue; cells for which χs = {r, b} are
called (p)urple. Cells with no associated colors are white.

A region is a maximal set of cells that have the same color assignment (r, b,
or p) and where every cell s in the region is connected via adjacent cells to every
other cell s′ in the region. Cells are considered adjacent if they are horizontally
or vertically adjacent.

A panel πs for cell s (with χs �= ∅) maps each color c ∈ χs to a (possibly
disconnected) area πs(c) such that these partition the cell: that is,

⋃
c∈χs

πs(c) =
s and πs(c1) ∩ πs(c2) = ∅ for colors c1 �= c2. A painting Π of a k-colored grid
consists of panels πs for each cell s with πs(c) �= ∅ for each c ∈ χs and πs(c) = ∅

otherwise. We call a painting connected if each color forms a connected polygon:
that is,

⋃
s∈Γ πs(c) is a connected polygon for each color c ∈ {1, . . . , k}. For this

definition, two cells sharing only a corner are not considered connected. Our
primary interest is in connected paintings: in the remainder, we use painting to
indicate a connected painting.

3 Characterizing Colored Grids with a Painting

In this section we show how to test whether a 2-colored grid admits a painting
and how to find a painting if one exists. As all completely red, blue, and white
panels are fixed, finding a painting reduces to finding partitions of purple cells
that ensure that the resulting red and blue polygon are connected. We show
that this connectivity is of key importance: if we can find suitable connections
though the purple regions, then we can also create a partition that results in a
valid panel for each cell in the purple regions.

We capture the connectivity options for the red and blue polygon using two
embedded graphs, Gr and Gb. We construct these graphs in three steps:

1. Connect red (blue) regions that are adjacent along a purple region’s boundary.
2. Remove holes from the purple regions by inserting connections (Sect. 3.3).
3. Construct Gr and Gb using a gadget for purple regions (Sects. 3.1 and 3.2).

For the first step, observe that consecutive (not necessarily distinct) adjacent
regions of the same color can always be safely connected via the purple region’s

The Painter’s Problem: Covering a Grid with Colored Connected Polygons 495

Fig. 2. Safe connections
between adjacent same-color
regions. (Color figure online)

Fig. 3. 2-colored grid with 4 regions around each
purple region and corresponding graphs Gr and
Gb. (Color figure online)

boundary without restricting the connectivity options for the other color (see
Fig. 2). After the first two steps, we represent the remaining red (blue) regions
as vertices in Gr (Gb). Edges in Gr and Gb represent connection options through
purple regions; intersections indicate a choice to connect either blue or red regions
through (part of) a purple region. The gadget for purple regions with many
adjacent red and blue regions also requires some additional vertices in these
graphs. We prove that these graphs admit a simple characterization of 2-colored
grids that admit a painting, as captured in the theorem below.

Theorem 1. A 2-colored grid Γ admits a painting if and only if the correspond-
ing graphs Gr and Gb are each other’s exact duals: there is exactly one blue vertex
in every red face and there is exactly one red vertex in every blue face.

For explanatory reasons we start with the simplest case: purple regions with
at most four neighbors and without holes (Sect. 3.1). Subsequently, we alleviate
the assumption on the number of neighbors (Sect. 3.2) and permit holes in the
purple regions, by showing how to perform Step 2 (Sect. 3.3).

3.1 Simple Purple Regions

We assume that Step 1 has been performed and a purple region has no holes
and at most four adjacent regions. The adjacent red and blue regions of a purple
region P form an ordered cyclic list as they appear along the boundary of P and
alternate in color (due to Step 1). Let κ(P) denote the length of this list for P .
κ is even due to color alternation, and by assumption here κ(P) ≤ 4. There can
be duplicates in this list as the same red or blue region can touch P multiple
times.

Every purple region with κ(P) = 2 can be painted by creating a spanning
tree on the centers of the panels of P in one color and connecting it to the corre-
sponding region. The rest of the panels is colored in the other color. We assume
these are handled; what remains is to deal with the regions with κ(P) = 4.

For a purple region P with κ(P) = 4, we create a red edge in Gr and a blue
edge in Gb that intersect: the red edge connects the red vertices corresponding to

496 A. van Goethem et al.

the adjacent red regions; the blue edge connects the corresponding blue vertices.
There may be multiple edges between two vertices (see Fig. 3). If the same red
or blue region touches the purple region twice, the edge is a self-loop. Every
red or blue edge intersects exactly one blue or red edge respectively, and Gr

and Gb are plane by construction. Using the following lemma we prove the
exact characterization of graphs Gr and Gb of a 2-colored grid Γ that admits a
painting.

Lemma 1 ([9,20]). Let G be a plane graph, G∗ its dual and T a spanning tree
of G. Then T ∗ = {e∗ | e �∈ T} is a spanning tree of G∗.

Lemma 2. A 2-colored grid Γ in which each purple region P has no holes and
κ(P) ≤ 4, admits a painting if and only if the corresponding graphs Gr and Gb

are each other’s exact duals.

Proof (sketch). We prove that if Γ admits a painting then graphs Gr and Gb are
each other’s duals using a counting argument. We count the number of edges
needed to connect all red and blue regions, and use Euler’s formula to show the
number of red faces must be equal to the number of blue vertices, and vice versa.
The other direction follows from Lemma 1. Having two dual spanning trees (e.g.,
Fig. 3), simply draw the two spanning trees and for any cell not yet having a
blue (red) piece add a crossing-free connection to the blue (red) polygon. ��

3.2 Spiderweb Gadgets

Let us now extend the result in the previous section, by showing how to include
purple regions with more than four adjacent regions. For every purple region P
with κ(P) > 4 we construct a spiderweb gadget and insert it into the graphs Gr

and Gb, such that an argument similar to Lemma 2 can be applied.
A spiderweb gadget W of P with κ(P)/2 = k red and k blue alternating

adjacent regions consists of 	k/2
 + 1 levels, labeled 0 (outermost) to 	k/2

(innermost), see Fig. 4. Each level, except 0 and 	k/2
, is a cycle of k vertices.
The level 0 has k (blue) vertices without any edges between them, and the
innermost level 	k/2
 consists of only a single vertex. The vertices of even levels
are blue and labeled with even numbers from 0 to 2k − 2 clockwise. The vertices
of odd levels are red and labeled with odd numbers 1 to 2k − 1 clockwise.

Each vertex of level � with 2 ≤ � < 	k/2
 is connected to the vertex with
the same label on level � − 2. The single vertex of level 	k/2
 is connected to all
the vertices of level 	k/2
 − 2. This gives us 2k paths starting from levels 0 and
1 to the two innermost levels. We call these paths spokes, and refer to them by
the label of the corresponding vertices. We embed the two resulting connected
components in such a way that they are each other’s dual, by making sure that
we get a proper clockwise numbering on the vertices of the two outermost levels
(see Fig. 4). The vertices on levels 0 and 1 represent respectively the blue and red
regions around the purple region P and respect the adjacency order around P .

If a blue (or red) region touches P multiple times, then the corresponding
vertices on level 0 (or 1) map to the same region and are in fact one and the same

The Painter’s Problem: Covering a Grid with Colored Connected Polygons 497

0
1

2

3

4
5

6

9

7
8

10
11

level 0
level 1

Fig. 4. Spiderweb gadget for k = 6:
three blue levels with indices 0, 2, 4,
and two red levels with indices 1, 3.
(Color figure online)

Fig. 5. Topology of the connections in a
purple region and the corresponding bridg-
ing paths through a spiderweb gadget.
(Color figure online)

vertex in Gb (or Gr). All edges connected to this vertex are consistent with the
topology of the nested neighboring regions of P ; they intersect the same edges
as they would when they were represented by multiple vertices.

To prove that all possible connections in P , which can occur in a painting
Π, can be replicated in a spiderweb gadget W , we define bridging paths: let u
and v be two vertices on level 0 in W that represent two blue regions that are
connected by a painting Π through P . Assume that the clockwise distance from
u to v is not greater than k, that is, if u has label x then v has label (x + 2i)
mod 2k for some 1 ≤ i ≤ 	k/2
. To connect u and v with a bridging path, we
start from u, go to level 2	(i + 1)/2
 along the spoke x, take a shortest path
within the level 2	(i + 1)/2
 from the vertex with label x to the vertex with
label (x + 2i) mod 2k, and move along the spoke (x + 2i) mod 2k to vertex v.
If there are two possible shortest paths, we take the clockwise path.

The same kind of path can be constructed for a pair of red vertices, but
starting from level 1, going to level 2	i/2
 + 1, and moving back to level 1. We
now show that connecting different blue and red regions using bridging paths
within the spiderweb gadgets results in blue trees and red trees, such that no
pair of a blue and a red edge intersect (see Fig. 5 for an example).

By performing a case analysis on the possible red and blue pairs of adjacent
regions to be connected, we can prove that the following lemma holds.

Lemma 3. Consider a painting Π in which two blue and two red regions, adja-
cent to a purple region P , are connected through P . The corresponding vertices
in the spiderweb gadget W of P can be connected by non-intersecting bridging
paths.

With spiderweb gadgets and the above lemma, we now strengthen Lemma 2
to the following lemma, without a condition on κ, and prove it in a similar way.

Lemma 4. A 2-colored grid Γ in which each purple region has no holes admits
a painting if and only if the corresponding Gr and Gb are each other’s exact
duals.

498 A. van Goethem et al.

Fig. 6. An annulus-type purple
region with adjacent blue and red
regions, both inside and outside.
(Color figure online)

Fig. 7. By adding edges (vin, yin) and
(uout, xout) we reconnect the disconnected
subpolygons formed be removing cross-
annulus connections γv and γx. (Color
figure online)

3.3 Purple Regions with Holes

We may also have purple regions with holes (see Fig. 6). We show that the
number of holes can be reduced without affecting the solvability. For simplic-
ity of explanation we assume a region with a single hole (an annulus); regions
with more holes can be reduced by considering only connections to the outer
boundary.

Let P be a purple annulus. Any painting subdivides P into a number of
colored simple components. Each component of color c connects one or more
regions of color c on the boundary of P . The existence of a painting is defined
only by the connectivity structure of these components. The connectivity of a
component can be represented (transitively) using a set of non-intersecting sim-
ple paths (connections) each connecting two regions on the boundary. Let a
cross-annulus connection γx be a connection between a region xin on the inside
of the annulus and a region xout on the outside of the annulus. A (connectivity)
structure is a maximal set of (pairwise non-intersecting) connections in P that
can be extended to a valid painting. Let CS be the set of cross-annulus connec-
tions in a given structure S. We assume the annulus is not degenerate, so red
and blue regions exist both inside and outside the annulus.

Lemma 5. If a structure S exists with two adjacent cross-annulus connections
γx and γy of the same color, possibly separated by non-crossing connections, then
there also exists a structure S′ where CS′ = CS \ {γy}.

Lemma 6. If there exists a structure S with |CS | > 3 and all cross-annulus
connections are alternating in color, then there also exists a structure S′ with
|CS | − 2 cross-annulus connections.

Proof. Let γu, γv, γx, and γy be four consecutive cross-annulus connections.
W.l.o.g., assume γu and γx are red and γv and γy are blue. We remove γv and
γx from the structure separating both the red and blue into two components.
For both colors one component is still connected to the remaining cross-annulus
connection γu, respectively γy. The disconnected components cannot both be

The Painter’s Problem: Covering a Grid with Colored Connected Polygons 499

bout

γy

bout

(a) (c)(b)

yout

yin

rout

yin

γb
γr

γz γz
γxγxγx

rout
bout

rout

yout yout

Fig. 8. (a) Initial configuration with several connections covering rout. (b) Rerouting
the blue connections, introducing γz, and rerouting the intersecting red connection
leaves only one intersecting (blue) connection. (c) As the blue disconnected component
cannot be covered by the new red connection, we can always connect it back to γx.
(Color figure online)

on the outside (inside) of the annulus. If so, the connection γu to γx must be
connected through xin, and γv to γy through vin. However, as there is no cross-
annulus connection between γu and γy, any connection from γu to xin separates
γy and vin. Hence, both connections cannot exist at the same time. The red and
blue disconnected components are thus on different sides of the annulus and we
connect them to γu respectively γy without mutually interfering (see Fig. 7). ��
Corollary 1. If a structure exists, then a structure also exists that has exactly
one red and one blue connection across each annulus.

Lemma 7. If a structure exists, then there also exists a structure with exactly
one red and one blue cross-annulus connection starting from any two regions on
the inner annulus and connecting to any two regions on the outer annulus.

Proof. Let an interval be a maximal arc of the same color on the boundary.
By Corollary 1 we know there exists a structure with exactly one red and one
blue connection across the annulus. Let γx be the blue cross-annulus connection
and γy the red cross-annulus connection. We show that each of the endpoints
of the cross-annulus connection can freely be moved. W.l.o.g., assume that γx

is not counter-clockwise adjacent to γy on the outside of the annulus. Let kout,
lout, and mout be three intervals in clockwise order on the outer boundary of the
annulus. We say a clockwise connection through the annulus from kout to mout

covers lout.
Let bout be the blue interval that is counter-clockwise adjacent to yout and

rout the red interval that is counter-clockwise adjacent to bout. Interval bout may
have several incoming blue connections that cover rout (see Fig. 8(a)). We can
rewire the blue connections inside the annulus to connect the blue intervals in
sorted order around the annulus, resulting in only one blue connection γb that
covers rout. Similarly we can also rewire the red connections covering rout, and
ending at yout, to ensure only one red connection γr covers rout.

Remove γy and insert a new red cross-annulus connection γz = (yin, rout).
The connection γz can only intersect γr and γb. Removing γr results in two red
components, one of which contains γz. Assume w.l.o.g. that yout is in the same

500 A. van Goethem et al.

connected component as γz. As γr intersected γz, the disconnected component
can be connected to γz while only intersecting γb (see Fig. 8(b)).

Removing γb results in two blue components, one of which contains γx. We
prove that bout must be part of the blue component not containing γx. Assume to
the contrary that bout is still connected to γx. Interval rout must be connected to
yout outside of the annulus as there was only one red cross-annulus connection
and γb blocked any connection through the inside of the annulus. Similarly,
interval bout must have been connected through the outside of the annulus, as it
is separated from any other region inside the annulus by γy and γz. However, they
cannot both be connected through the outside of the annulus, as the connection
rout to yout separates bout and xout on the outside of the annulus. Contradiction.

Therefore, we can safely reconnect the disconnected blue component through
the annulus to γx (see Fig. 8(c)). Repeatedly moving the end-point of one of the
cross-annulus connections allows the creation of any configuration of the two red
and blue cross-annulus connections without invalidating the structure. ��

Lemma 7 implies that we can cut the annulus open to reduce the number of
holes of a purple region by one without changing the solvability of the problem.
Together with Lemma 4, this then implies Theorem 1.

4 Optimizing Panels

Fig. 9. Panels with complex-
ity 3 and 5 respectively. (Color
figure online)

As shown, not all colored grids admit a paint-
ing. Here we investigate the design of the panels
themselves, assuming that some painting is pos-
sible. To this end, we define the complexity of
a panel as the number of pieces of maximal red
and blue areas in the panel, see Fig. 9. The com-
plexity of a painting is the maximal complexity
of any of its panels. A t-panel (t-painting) has
complexity t.

Assuming some painting exists, we prove in this section that a 5-painting
exists in general and that even a 2-painting exists if there are no white cells.

4.1 Ensuring a 5-Painting

We prove here that a 5-painting can always be realized. To this end, we show
that a valid painting for a colored grid can be redrawn to include no more than
three colored intervals along each side of all panels.

Lemma 8. If a 2-colored grid admits a painting, then it admits a painting where
each panel π has at most 3 intervals of alternating red and blue along each side.

Proof (sketch). Assume that a panel π has at least 4 intervals of alternating
red and blue on the left-side of π. As the painting is valid, both blue (/red)
intervals are connected in the painting. For each interval we identify whether

The Painter’s Problem: Covering a Grid with Colored Connected Polygons 501

Fig. 10. Reducing the number of intervals along a side of
panel π, where there are at least four. (b) The two middle
directions cannot be the same, as we cannot connect them
with nonintersecting paths. (c) Shortcutting inside π reduces
the number of intervals while maintaining a painting. (Color
figure online)

Fig. 11. A panel with
six pieces can always
be reduced to have
five, using either dot-
ted line. (Color figure
online)

the path exiting or entering π connects to the other interval of the same color
(see Fig. 10(a)). The red and blue path cannot leave or exit the border of π in
the same direction for the middle two intervals (see Fig. 10(b)). To reduce the
number of intervals, we recolor the interval by shortcutting both the blue and
the red piece inside π (see Fig. 10(c)). ��
Theorem 2. If a partially 2-colored grid admits a painting, then it admits a
5-painting.

Proof. By Lemma 8 there are at most three alternatingly colored intervals along
each side of π. If a red and blue interval meet in a corner, we extend one in π around
the corner to get four intervals and use Lemma 8 to reduce it back to at most three.
If we have more than five pieces, a piece that has only one interval in π can be
removed while maintaining a painting. Each remaining piece connects at least two
intervals: with k intervals, the number of pieces is at most 	k/2
. A 6-panel thus
requires 12 intervals: four equal-color (red) corners and a middle interval (blue)
along each side. This enforces two pieces between the blue intervals, and one in
each corner. However, we can now reduce the number of pieces to five, connecting
either two blue pieces or two red corners (Fig. 11). ��

This bound is tight as a 5-panel may be required when the grid includes
white cells (Fig. 12(a)). A 5-panel with at least two pieces of each color is never
required—though such a 4-panel may be necessary (Fig. 12(b)). The above proof
implies that there is only one option to create such a 5-panel: it has only two
ways to connect the two blue pieces; both can be simplified to a 4-panel (Fig. 13).

4.2 Ensuring a 2-Painting

We show that a fully 2-colored grid (rectangular and without white cells) even
admits a 2-painting, provided it admits any painting. As an intermediate step,
we first prove that a painting exists that uses only one blue piece in any panel.

Lemma 9. If a fully 2-colored grid admits a painting, then it admits a painting
in which each panel has at most one blue piece.

502 A. van Goethem et al.

Fig. 12. Examples requiring complex panels. (a) A colored grid requiring a 5-panel.
(b) A colored grid requiring a 4-panel with two pieces of both colors in the same cell.
(Color figure online)

Fig. 13. There are two configurations for a 5-panel where both colors have at least two
pieces. Both possible configuration can be simplified to a 4-panel. (Color figure online)

Proof (sketch). Since the grid admits a painting, we show how to modify the
painting of each purple region P to ensure that the lemma holds. We first create
a blue spanning forest in the panels of P that connects the panel-centers of
adjacent panels. This ensures that each panel has exactly one blue piece inside,
but may result in a disconnected blue polygon. However, since we know that a
painting exists and the current solution maps to some forest in Gb, Lemma 1
implies that its dual Gr has a cycle around some tree in the forest. Hence, we
can add connections between unconnected subpolygons to create a single blue
polygon again, without disconnecting the red polygon. ��

The above construction relies on the alternation of the blue and red intervals
along the boundary of P . As there are no white cells we can guarantee this
alternating pattern. Indeed, the higher complexity with white cells is caused by
long connections along a purple region’s boundary that are needed to achieve
this alternating pattern for a partially colored grid (e.g., Fig. 12).

Theorem 3. If a fully 2-colored grid admits a painting, then it admits a 2-
painting.

Proof (sketch). Since the fully 2-colored grid admits a painting, Lemma 9 implies
that there is a painting Π where the panel for every purple cell contains only a
single blue piece. For any purple cell with more than one red piece, we remove
red pieces that only connect to one neighboring panel and recolor red corners

The Painter’s Problem: Covering a Grid with Colored Connected Polygons 503

Fig. 14. Reducing panel complexity when there are two red corners along the same
panel side. (a) The corners are connected via adjacent (or the same) sides of the panel:
connect r1 and r2, and recolor r3 to blue. (b) The corners are connected via opposite
sides: recolor r1 to blue and connect r3 and r4 as well as b1 and b2. (Color figure online)

Fig. 15. Two diagonally positioned red corners. The complexity of the panel can be
reduced by introducing a red L-shape that connects all the red. (a) Reducing complexity
if either p1 or p2 was blue. (b) Reducing complexity if both p1 and p2 were red. (Color
figure online)

to blue if the other three cells incident to that corner have a red corner as well.
Now, the pattern of the panel matches one of the following four cases.

1. There are two red corners r1 and r2 on the same side of the panel. The
connecting path exits the current panel via the same side and enters either
on the same or adjacent side (see Fig. 14(a)).

2. There are two red corners r1 and r2 on the same side of the panel. The
connecting path exits the panel via opposite sides of the panel (see Fig. 14(b)).
The blue piece connects only downwards in the panel below.

3. There are two red corners r1 and r2 that do not share a common side of
the panel. In this case the other corners are blue, otherwise one of the two
previous cases applies (see Fig. 15(a)). Furthermore, either p1 or p2 is blue.

4. There are two red corners r1 and r2 that do not share a common side of the
panel (see Fig. 15(b)). Furthermore, both p1 and p2 are red.

We design a reduction rule for each case, as sketched in Figs. 14 and 15.
Repeated application of the reduction rules, interlaced with the reduction of the
number of red pieces in a panel, results in a 2-painting. ��

5 Conclusion

We took the first steps towards investigating a disjoint-polygons representa-
tion for visualizing set memberships (hypergraphs). We investigated the 2-color

504 A. van Goethem et al.

version in which each element is positioned as a cell in a (unit-)grid. We showed
how to test whether a disjoint-polygons representation is possible for a given 2-
colored grid. Moreover, we proved that if such a representation is possible, then
we can also bound the complexity of the corresponding “panels” (the coloring
of a single cell). Each panel requires at most five colored pieces, and even only
two pieces are sufficient when no white cells are present in the grid.

There are myriad options for further exploration. As not all grids admit
a painting, we could study minimizing the number of polygons of the same
color. We have not touched upon variants with more colors: does our approach
readily generalize? However, considering the restrictions already in the studied
2-color variant, it seems likely that many practical instances do not admit a
painting. If we allow rearranging elements, the 2-color variant becomes trivial,
but is particularly interesting for multiple colors. Finally, we may consider the
situation where some cells have no assigned set of colors but may be painted
using any subset of the colors. Given enough such cells, the disjoint-polygons
encoding can then represent more than Zykov-planar hypergraphs but cannot
represent all planar supports.

Acknowledgments. The authors would like to thank Jason Dykes for fruitful discus-
sions at an early stage of this research.

References

1. Akitaya, H.A., Löffler, M., Tóth, C.D.: Multi-colored spanning graphs. In: Hu,
Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 81–93. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-50106-2 7

2. Alper, B., Riche, N.H., Ramos, G., Czerwinski, M., Czerwinski, M.: Design study
of LineSets, a novel set visualization technique. IEEE Trans. Vis. Comput. Graph.
17(12), 2259–2267 (2011)

3. Alsallakh, B., Aigner, W., Miksch, S., Hauser, H.: Radial sets: interactive visual
analysis of large overlapping sets. IEEE Trans. Vis. Comput. Graph. 19(12), 2496–
2505 (2013)

4. Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: The
state of the art of set visualization. Comput. Graph. Forum 35(1), 234–260 (2016)

5. Baron, M.: A note on the historical development of logic diagrams: Leibniz, Euler
and Venn. Math. Gaz. 53(384), 113–125 (1969)

6. Buchin, K., van Kreveld, M., Meijer, H., Speckmann, B., Verbeek, K.: On planar
supports for hypergraphs. J. Graph Algorithms Appl. 15(4), 533–549 (2011)

7. Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with
isocontours over existing visualizations. IEEE Trans. Vis. Comput. Graph. 15(6),
1009–1016 (2009)

8. Dinkla, K., van Kreveld, M., Speckmann, B., Westenberg, M.: Kelp diagrams: point
set membership visualization. Comput. Graph. Forum 31(3pt1), 875–884 (2012)

9. Eppstein, D., Italiano, G., Tamassia, R., Tarjan, R., Westbrook, J., Yung, M.:
Maintenance of a minimum spanning forest in a dynamic plane graph. J. Algo-
rithms 13(1), 33–54 (1992)

10. Riche, N.H., Dwyer, T.: Untangling Euler diagrams. IEEE Trans. Vis. Comput.
Graph. 16(6), 1090–1099 (2010)

https://doi.org/10.1007/978-3-319-50106-2_7

The Painter’s Problem: Covering a Grid with Colored Connected Polygons 505

11. Hurtado, F., Korman, M., van Kreveld, M., Löffler, M., Sacristán, V., Silveira,
R.I., Speckmann, B.: Colored spanning graphs for set visualization. In: Wismath,
S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 280–291. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03841-4 25

12. Kaufmann, M., van Kreveld, M., Speckmann, B.: Subdivision drawings of hyper-
graphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 396–
407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00219-9 39

13. Mäkinen, E.: How to draw a hypergraph. Int. J. Comput. Math. 34, 177–185 (1990)
14. Meulemans, W., Dykes, J., Slingsby, A., Turkay, C., Wood, J.: Small multiples

with gaps. IEEE Trans. Vis. Comput. Graph. 23(1), 381–390 (2017)
15. Meulemans, W., Riche, N.H., Speckmann, B., Alper, B., Dwyer, T., Dwyer, T.:

KelpFusion: a hybrid set visualization technique. IEEE Trans. Vis. Comput. Graph.
19(11), 1846–1858 (2013)

16. Purchase, H.: Metrics for graph drawing aesthetics. J. Vis. Lang. Comput. 13(5),
501–516 (2002)

17. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021827

18. Simonetto, P., Auber, D.: Visualise undrawable Euler diagrams. In: Proceedings
of the 12th Conference on Information Visualisation, pp. 594–599 (2008)

19. Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of over-
lapping sets. Comput. Graph. Forum 28(3), 967–974 (2009)

20. Tutte, W.: Graph Theory. Addison-Wesley, Menlo Park (1984)
21. van Goethem, A., Kostitsyna, I., van Kreveld, M., Meulemans, W., Sondag, M.,

Wulms, J.: The painter’s problem: covering a grid with colored connected polygons.
Computing Research Repository, arXiv:1709.00001 (2017)

22. Walsh, T.: Hypermaps versus bipartite maps. J. Comb. Theor. 18, 155–163 (1975)
23. Wood, J., Dykes, J.: Spatially ordered treemaps. IEEE Trans. Vis. Comput. Graph.

14(6), 1348–1355 (2008)

https://doi.org/10.1007/978-3-319-03841-4_25
https://doi.org/10.1007/978-3-642-00219-9_39
https://doi.org/10.1007/BFb0021827
http://arxiv.org/abs/1709.00001

Triangle-Free Penny Graphs: Degeneracy,
Choosability, and Edge Count

David Eppstein(B)

Department of Computer Science, University of California, Irvine, USA
eppstein@uci.edu

Abstract. We show that triangle-free penny graphs have degeneracy at
most two, list coloring number (choosability) at most three, diameter
D = Ω(

√
n), and at most min

(
2n − Ω(

√
n), 2n − D − 2

)
edges.

1 Introduction

Penny graphs are the contact graphs of unit circles [1,2] — they are formed from
non-overlapping sets of unit circles by creating a vertex for each circle and an
edge for each tangency between two circles — and as such, fit into a long line of
graph drawing research on contact graphs of geometric objects [3–7]. The same
graphs (except the graph with no edges) are also proximity graphs, the graphs
determined from a finite set of points in the plane by adding edges between
all closest pairs of points, and for this reason they are also called minimum-
distance graphs [8,9]. A minimum-distance representation can be obtained from
a contact representation by choosing a point at the center of each circle, and a
contact representation can be obtained from a minimum-distance representation
by scaling the points so their minimum distance is two and using each point as
the center of a unit circle. However, finding either type of representation given
only the graph is NP-hard, even for trees [10].

As graph drawings, minimum distance representations are in many ways
ideal: they have no crossings, all edges have unit length, and the angular reso-
lution is at least π/3. Every graph that can be drawn with this combination of
properties is a penny graph. Moreover, penny graphs have degeneracy at most
three, where the degeneracy of a graph G is the minimum number d such that
every subgraph of G contains a vertex of at most d. Equivalently, the vertices of
any penny graph can be ordered so each vertex has at most three neighbors later
than it in the ordering. This ordering leads to a linear-time greedy 4-coloring
algorithm [11], much simpler than known quadratic-time 4-coloring algorithms
for arbitrary planar graphs [12]. Additionally, although planar graphs with n
vertices can have 3n − 6 edges, penny graphs have at most

⌊
3n − √

12n − 3
⌋

edges [13]. This bound is tight for pennies tightly packed into a hexagon [14], and

Supported in part by the National Science Foundation under Grants CCF-1228639,
CCF-1618301, and CCF-1616248.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 506–513, 2018.
https://doi.org/10.1007/978-3-319-73915-1_39

Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count 507

its lower-order square-root term stands in an intriguing contrast to many simi-
lar bounds on the edge numbers of planar graphs, k-planar graphs, quasi-planar
graphs, and minor-closed graph families, with constant or unknown lower-order
terms [15–20].

Swanepoel [9] first considered corresponding problems for the triangle-free
penny graphs. In graph drawing terms, these are the graphs that can be drawn
with no crossings, unit-length edges, and angular resolution strictly larger than
π/3. Swanepoel observed that, as with triangle-free planar graphs more generally,
an n-vertex triangle-free penny graph can have at most 2n− 4 edges. As a lower
bound, the square grids have

⌊
2n − 2

√
n
⌋

edges, as do some subsets of grids
and some pentagonally-symmetric graphs found by Oloff de Wet [9]. Swanepoel
conjectured that, of the two bounds, it is the lower bound that is tight.

Triangle-free planar graphs more generally have also been considered.
Grötzsch proved that these graphs are 3-colorable [21,22] and they can be
3-colored in linear time [23]. However, not every triangle-free planar graph is
3-list-colorable: if each vertex is given a list of three colors, it is not always pos-
sible to assign each vertex a color from its list that differs from all its neighbors’
assigned colors [24]. 3-list-colorability is known for bipartite planar graphs [25],
planar graphs with girth at least five [22], and planar graphs of girth four with
well-separated 4-cycles [26], but these subclasses do not include all triangle-free
penny graphs.

We continue these lines of research with the following new results.

– Every triangle-free penny graph with at least one cycle has at least four
vertices of degree two or less. Consequently, the triangle-free penny graphs
have degeneracy at most two.

– Every triangle-free penny graph has list chromatic number (choosability) at
most three, and any list-coloring problem on a triangle-free penny graph with
three colors per vertex can be solved in linear time.

– Every n-vertex triangle-free penny graph has at most 2n − Ω(
√

n) edges.
Thus, the form of Swanepoel’s conjectured edge bound is correct, although
we cannot confirm the conjectured constant factor on the square-root term.

– Every penny graph has graph-theoretic diameter Ω(
√

n), and every triangle-
free penny graph with n vertices and diameter D has at most 2n − D − 2
edges. The combination of these two results provides an alternative proof of
the 2n − Ω(

√
n) edge bound, but with a worse constant factor in the Ω.

2 Degeneracy

We begin by showing that every triangle-free penny graph with at least one cycle
has at least four vertices of degree two or less. It is convenient to begin with a
special case of these graphs, the ones that are biconnected.

Lemma 1. Every biconnected triangle-free penny graph has at least four vertices
of degree two.

508 D. Eppstein

Fig. 1. Rays Rv extending from the center of each boundary vertex directly away
from the clockwise neighbor of its clockwise boundary neighbor, used in the proof of
Lemma 1.

Proof. Given a biconnected triangle-free penny graph G, and its representation
as a penny graph, the outer face of the representation (as in any biconnected
plane graph) consists of a simple cycle of vertices; in particular each vertex of
this face has at least two neighbors. For each vertex v of this simple cycle, let
w be the clockwise neighbor of v in the cycle, and let u be the neighbor of v
that is next in clockwise order around v from w; define a ray Rv, having the
center of the disk of v as its apex, and pointing directly away from the center of
u (Fig. 1). Given the same boundary vertices v and w in clockwise order, define
the angle θw to be the angle made by rays Rv and Rw, assigned a sign so that θw
is positive if Rw turns a clockwise angle (less than π/2) from Rv, and negative if
Rw turns counterclockwise with respect to Rv. If Rv and Rw are parallel, then
we define θw = 0. Then these rays and their angles have the following properties:

– Each ray Rv points into the outer face of the drawing. Therefore, the sum of
the turning angles of the rays as we traverse the entire outer face in clockwise
order,

∑
θv, must equal 2π.

– If a boundary vertex w has degree three or more, then θw ≤ 0. For, if v and
w are consecutive on the outer face, with Rv pointing away from a neighbor
u of v (as above) and Rw pointing away from a neighbor x of w, then the
assumption that w has degree at least three implies that x �= v, and the
assumption that G is triangle-free implies that x �= u. If x and u touch,
so that uvwx forms a quadrilateral in G, then Rv and Rw are necessarily
parallel, so θw = 0. In any other case, to prevent x and u from touching, x
must be rotated counterclockwise around w from the position where it would
touch u, causing angle θw to become negative.

Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count 509

– At a boundary vertex w of degree two, θw < 2π/3. For, in this case, Rw

points away from v, the counterclockwise neighbor of w on the outer face.
Let u be the neighbor of v such that Rv points away from u; then w �= u.
Because both Rv and Rw belong to lines through the center of v, their angle
θw is complementary to angle wvu, which must be greater than π/3 in order to
prevent circles u and w from overlapping or touching (and forming a triangle).
Therefore, θw is less than 2π/3.

For the sequence of angles θw, each less than 2π/3, to add to a total angle of 2π,
there must be at least four positive angles in the sequence, and therefore there
must be at least four degree-two vertices. ��
Theorem 1. Every triangle-free penny graph G with at least one cycle has at
least four non-articulation vertices of degree two or less.

Proof. By the assumption that G has at least one cycle, it has at least one
nontrivial biconnected component C. By Lemma 1, C has at least four degree-two
vertices, each of which either has degree two in G or forms an articulation point
of G. If it forms an articulation point, then the tree of biconnected components
connected through it to G has at least one leaf, which must either be a vertex
of degree one in G or a nontrivial biconnected component with at least four
degree-two vertices, only one of which can be an articulation point. Thus, each
of the four degree-two vertices in C is either itself a non-articulation vertex of
degree at most two in G or leads to such a vertex. ��

The bound on the number of degree-two vertices is tight for square grids.

Theorem 2. The degeneracy of every triangle-free penny graph is at most two.

Proof. Every subgraph of a triangle-free penny graph is another triangle-free
penny graph, so the result follows from Theorem1 and from the fact that, in a
graph with no cycles (a forest) there always exists a vertex of degree one or less
(a leaf or an isolated vertex). ��

3 Choosability

The choosability, or list chromatic number, of a graph G is the minimum number
c such that, for every labeling of each vertex of G by a list of c colors, there exists
an assignment of a single color from its list to each vertex, with no two adjacent
vertices assigned the same color. The usual graph coloring problem is a special
case in which all vertices have the same list. Known relations between list coloring
and graph degeneracy [25] give us the following result:

Theorem 3. If a triangle-free penny graph is labeled by a list of three colors
for each vertex, then we can find a solution to the list coloring problem for the
resulting labeled graph in linear time. The algorithm needs as input only the
abstract graph, not its representation as a penny graph.

510 D. Eppstein

Proof. Find a vertex of degree at most two, remove it from the graph, color the
remaining subgraph recursively, and put back the removed vertex. It has at most
two neighbors, preventing it from being assigned at most two colors from its list
of three colors, so there always remains at least one color available for it to use.

Linear time follows by maintaining the degree of each vertex in the reduced
graph formed by the removals, a list of vertices of reduced degree at most two,
and a stack of removals to be reversed. It takes constant time per vertex removal
and replacement to update these data structures. ��
Corollary 1. Triangle-free penny graphs have choosability at most three.

This bound is tight as the odd cycles of length ≥ 5 are triangle-free penny
graphs with choosability exactly three.

4 Edge Count

We derive a bound on the number of edges of a triangle-free penny graph by
using the isoperimetric theorem to show that the outer face of any representation
as a penny graph has many vertices, and then by using Euler’s formula to show
that a planar graph with a large face has few edges.

Lemma 2. Let v be a vertex of a penny graph that (in some representation of the
graph as a penny graph) is not on the outer face. Then, in the Voronoi diagram
of the centers of the circles in the representation, the Voronoi cell containing
v has area at least 2

√
3, which is the area of a regular hexagon circumscribed

around a unit circle.

Proof. The area is minimized when each Voronoi neighbor of v is as close as
possible to v (so that the neighbor’s circle touches that of v, causing the Voronoi
cell of v to circumscribe its circle), when the neighbors are equally spaced around
v (forming a regular polygon), and when the number of neighbors is as large as
possible (forming a hexagon). The first two of these claims follow from the fact
that any other configuration of neighbors can be continuously deformed to make
the area of v’s cell smaller, while the last one follows by comparing the areas of
the other possible regular polygons. ��
Lemma 3. In any penny graph representation of a graph G with n vertices, the
number of vertex-face incidences on the outer face of the representation is at
least √

π · 2
√

3 · n − O(1) ≈ 3.3
√

n.

Proof. Unless there are at least this many incidences, by Lemma 2 there must be
a total area of at least 2

√
3 ·n−O(

√
n) enclosed by the outer face, because each

Voronoi cell of an inner vertex is enclosed and the Voronoi cells are all disjoint.
The result follows from the facts that each vertex-face incidence accounts for
2 units of length of the outer face (the two radii of a single unit circle in the
representation, along which the outer face enters and then leaves that circle)
and that any curve that encloses area A must have length at least 2

√
πA (the

isoperimetric theorem, with the shortest enclosing curve being a circle). ��

Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count 511

Lemma 4. Let G be an n-vertex triangle-free plane graph in which one face has
k vertex-face incidences. Then G has at most 2n − k/2 − 2 edges.

Proof. Vertex-face incidences and edge-face incidences on any face are equal,
so the same face of G that has k vertex-face incidences also has k edge-face
incidences. We count the number of edge-face incidences in G in two ways: by
counting two incidences for each edge, and by summing the lengths of the faces.
Each face of G has at least four edges, so if there are e edges and f faces then
we have the inequality 2e ≥ 4(f − 1) + k, or equivalently e/2 − k/4 + 1 ≥ f .
Using this inequality to replace f in Euler’s formula n − e + f = 2, we obtain
n − e + e/2 − k/4 + 1 ≥ 2, or equivalently e ≤ 2n − k/2 − 2 as claimed. ��
Theorem 4. The number of edges in any n-vertex triangle-free penny graph is
at most

2n − 1
2

√
π · 2

√
3 · n + O(1) ≈ 2n − 1.65

√
n.

Proof. Lemma 3 proves the existence of a large face, and plugging the size of this
face as the variable k in Lemma 4 gives the stated bound. ��

We leave the problem of closing the gap between this upper bound and
Swanepoel’s 2n − 2

√
n lower bound as open for future research.

5 Diameter

Our results on degeneracy and number of edges can be connected via the follow-
ing two results, which provide an alternative proof that the number of edges in
a triangle-free penny graph is 2 − Ω(

√
n).

Theorem 5. Every connected n-vertex penny graph has diameter Ω(
√

n).

Proof. By a standard isodiametric inequality [27], for the convex hull of n disjoint
unit disks to enclose area 2πn, it must have (geometric) diameter Ω(

√
n). In

order to connect two unit disks at geometric distance Ω(
√

n) from each other,
they must also be at graph-theoretic distance Ω(

√
n). ��

Theorem 6. Every connected n-vertex triangle-free penny graph G with diam-
eter D has at most 2n − D − 2 edges.

Proof. We use induction on n. If G has no cycle, it is a tree, with n − 1 edges,
and the result follows from the fact that D ≤ n − 1. Otherwise, let uw be a
diameter pair, and let v be any vertex of degree at most two, whose removal
does not disconnect G, distinct from u and w. The existence of v follows from
Theorem 1. Then G−v has one less vertex, one or two fewer edges, and diameter
at least D. The result follows by applying the induction hypothesis to G − v. ��

512 D. Eppstein

It is not true more generally that 2-degenerate triangle-free planar graphs
with diameter D have at most 2n − D − 2 edges; Theorem 6 relies on the spe-
cific properties of triangle-free penny graphs. However, we can prove analogous
bounds of 2n−Ω(

√
n) and 2n−D−2 on the numbers of edges in squaregraphs [28],

plane graphs in which every bounded face is a quadilateral and every vertex that
does not belong to the unbounded face has degree at least four. The details are
given in the appendix of the preprint of this paper [29].

References

1. Hliněný, P., Kratochv́ıl, J.: Representing graphs by disks and balls (a survey of
recognition-complexity results). Discrete Math. 229(1–3), 101–124 (2001)

2. Pisanski, T., Randić, M.: Bridges between geometry and graph theory. In: Gorini,
C.A. (ed.) Geometry at Work. MAA Notes, vol. 53, pp. 174–194. Cambridge Uni-
versity Press (2000)

3. de Fraysseix, H., Ossona de Mendez, P., Rosenstiehl, P.: On triangle contact graphs.
Comb. Probab. Comput. 3(2), 233–246 (1994)

4. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rect-
angular layouts and contact graphs. ACM Trans. Algorithms 4(1), A8 (2008)

5. Klawitter, J., Nöllenburg, M., Ueckerdt, T.: Combinatorial properties of triangle-
free rectangle arrangements and the squarability problem. In: Di Giacomo, E.,
Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 231–244. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-27261-0 20

6. Hliněný, P.: Contact graphs of line segments are NP-complete. Discrete Math.
235(1–3), 95–106 (2001)

7. Alam, M.J., Eppstein, D., Kaufmann, M., Kobourov, S.G., Pupyrev, S., Schulz,
A., Ueckerdt, T.: Contact graphs of circular arcs. In: Dehne, F., Sack, J.-R., Stege,
U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 1–13. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21840-3 1

8. Csizmadia, G.: On the independence number of minimum distance graphs. Discrete
Comput. Geom. 20(2), 179–187 (1998)

9. Swanepoel, K.J.: Triangle-free minimum distance graphs in the plane. Geombina-
torics 19(1), 28–30 (2009)

10. Bowen, C., Durocher, S., Löffler, M., Rounds, A., Schulz, A., Tóth, C.D.: Realiza-
tion of Simply connected polygonal linkages and recognition of unit disk contact
trees. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 447–459.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0 37

11. Hartsfield, N., Ringel, G.: Problem 8.4.8. In: Pearls in Graph Theory: A Compre-
hensive Introduction. Dover Books on Mathematics, pp. 177–178. Courier Corpo-
ration (2003)

12. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: Efficiently four-coloring
planar graphs. In: Miller, G.L. (ed.) Proceedings of the 28th ACM Symposium
on Theory of Computing (STOC 1996), pp. 571–575. Association for Computing
Machinery (1996)

13. Harborth, H.: Lösung zu problem 664A. Elemente der Mathematik 29, 14–15
(1974)

14. Kupitz, Y.S.: On the maximal number of appearances of the minimal distance
among n points in the plane. In: Böröczky, K., Tóth, G.F. (eds.) Intuitive Geom-
etry: Papers from the Third International Conference. Colloq. Math. Soc. János
Bolyai, Szeged, 2–7 September 1991, vol. 63, pp. 217–244, North-Holland (1994)

https://doi.org/10.1007/978-3-319-27261-0_20
https://doi.org/10.1007/978-3-319-21840-3_1
https://doi.org/10.1007/978-3-319-21840-3_1
https://doi.org/10.1007/978-3-319-27261-0_37

Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count 513

15. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007)

16. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs
have a linear number of edges. Combinatorica 17(1), 1–9 (1997)

17. Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K.,
Reislhuber, J.: On the density of maximal 1-Planar graphs. In: Didimo, W., Patrig-
nani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36763-2 29

18. Eppstein, D.: Densities of minor-closed graph families. Electron. J. Comb. 17(1),
R136 (2010)

19. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

20. Suk, A., Walczak, B.: New bounds on the maximum number of edges in k-quasi-
planar graphs. Comput. Geom. Theory Appl. 50, 24–33 (2015)

21. Grötzsch, H.: Zur Theorie der diskreten Gebilde, VII: Ein Dreifarbensatz für
dreikreisfreie Netze auf der Kugel. Wiss. Z. Martin-Luther-U. Halle-Wittenberg
Math. Nat. Reihe 8, 109–120 (1959)

22. Thomassen, C.: A short list color proof of Grötzsch’s theorem. J. Comb. Theory
Ser. B 88(1), 189–192 (2003)

23. Dvořák, Z., Kawarabayashi, K., Thomas, R.: Three-coloring triangle-free planar
graphs in linear time. In: Mathieu, C. (ed.) Proceedings of the 20th ACM-SIAM
Symposium on Discrete Algorithms (SODA 2009), pp. 1176–1182. Society for
Industrial and Applied Mathematics (2009)

24. Voigt, M.: A not 3-choosable planar graph without 3-cycles. Discrete Math.
146(1–3), 325–328 (1995)

25. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12(2),
125–134 (1992)

26. Dvořák, Z., Lidický, B., Škrekovski, R.: 3-choosability of triangle-free planar graphs
with constraint on 4-cycles. SIAM J. Discrete Math. 24(3), 934–945 (2010)

27. Bieberbach, L.: Über eine Extremaleigenschaft des Kreises. Jber. Deutsch. Math.
Verein. 24, 247–250 (1915)

28. Bandelt, H.J., Chepoi, V., Eppstein, D.: Combinatorics and geometry of finite and
infinite squaregraphs. SIAM J. Discrete Math. 24(4), 1399–1440 (2010)

29. Eppstein, D.: Triangle-Free penny graphs: degeneracy, choosability, and edge count.
Electronic preprint arXiv:1708.05152 (2017)

https://doi.org/10.1007/978-3-642-36763-2_29
http://arxiv.org/abs/1708.05152

Beyond Planarity

1-Fan-Bundle-Planar Drawings of Graphs

Patrizio Angelini1, Michael A. Bekos1, Michael Kaufmann1,
Philipp Kindermann2(B), and Thomas Schneck1

1 Institut für Informatik, Universität Tübingen, Tübingen, Germany
2 LG Theoretische Informatik, FernUniversität in Hagen, Hagen, Germany

philipp.kindermann@fernuni-hagen.de

Abstract. Edge bundling is an important concept heavily used for
graph visualization purposes. To enable the comparison with other estab-
lished near-planarity models in graph drawing, we formulate a new edge-
bundling model which is inspired by the recently introduced fan-planar
graphs. In particular, we restrict the bundling to the endsegments of the
edges. Similarly to 1-planarity, we call our model 1-fan-bundle-planarity,
as we allow at most one crossing per bundle.

For the two variants where we allow either one or, more naturally,
both endsegments of each edge to be part of bundles, we present edge
density results and consider various recognition questions, not only for
general graphs, but also for the outer and 2-layer variants. We conclude
with a series of challenging questions.

1 Introduction

Edge bundling is a powerful tool used in information visualization to avoid visual
clutter. When the edge density of the network is too high, the traditional tech-
niques of graph layouts and flow maps become unusable. In this case, grouping
together parts of edges that flow parallel to each other into a single bundle allows
to reduce the clutter and improve readability. Among the many, we mention here
the seminal papers of Holten [18], and of Telea and Ersoy [23], which focus on
radial layouts, as well as works on flow maps [10] and parallel coordinates [25].
For an overview refer to Zhou et al. [24].

In this work, we combine for the first time this powerful visualization tech-
nique with previous theoretical considerations from the area of nearly-planar
graphs, where in addition to a planar graph structure some crossings are allowed,
if they are limited to locally defined configurations. Classical examples include
1-planar graphs [22], which can be drawn so that each edge is crossed at most
once, and quasi-planar graphs [2], which allow for drawings not containing any
three mutually crossing edges.

Another typical example of nearly-planar graphs are the fan-planar
graphs [20]. In a fan-planar drawing [6–8,20], an edge is allowed to cross multiple
edges as long as they belong to the same fan, that is, if they are all incident to a
common vertex; refer to Fig. 1a. Such a crossing is called a fan crossing. The idea
is that edges incident to the same vertex are somehow close to each other, and
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 517–530, 2018.
https://doi.org/10.1007/978-3-319-73915-1_40

518 P. Angelini et al.

thus having an edge crossing all of them does not affect readability too much. In
other words, edges of a fan can be grouped into a bundle, so that the crossings
between an edge and all the edges of the fan become a single crossing between
this edge and the corresponding bundle. In Fig. 1b, we show the bundle-like edge
routing corresponding to the fan-planar drawing in Fig. 1a. Note, however, that
the original definition of fan-planar drawings does not always allow for this type
of bundling, as in the case of graph K4,n−4, for large enough n (see Sect. 2).

We thus introduce 1-fan-bundle-planar (1-fbp for short) drawings, in which
edges of a fan can be bundled together and crossings between bundles are allowed
as long as each bundle is crossed by at most one other bundle; see Figs. 1b–d.
Formally, in a 1-fbp drawing every edge has 3 parts: the first and last parts are
fan-bundles, which may be shared by several edges; the middle part is unbundled.
Each fan-bundle can cross at most one other fan-bundle. The unbundled parts
are crossing-free. Fan-bundles are not allowed to branch, i.e., each fan-bundle
has two endpoints: one of them is the vertex the fan is incident to, while at the
other one all edges in the fan are separated from each other.

The “1-planarity” restriction prevents a fan-bundle of an edge to cross edges
of several fans, which is not allowed in fan-planar drawings. Since every edge
has two fan-bundles, each of which can cross another fan-bundle, it is possible
that an edge crosses two different fans, making the drawing not fan-planar. To
avoid this, we introduce a restricted model of 1-fbp drawings, called 1-sided, in
which an edge can be bundled with other edges only on one of its endvertices;
see Fig. 1d. This restriction implies that 1-sided 1-fbp drawings are fan-planar.
As we will see in Sect. 2, this is not the case for the so-called 2-sided model, in
which each edge has two fan-bundles (see Figs. 1b–c).

Fig. 1. (a–b) The fan-planar graph of (a) is redrawn in (b) under the 2-sided model,
(c) a 2-sided 1-fbp drawing of K6, (d) a 1-sided 1-fbp drawing of K5 \ e (the missing
edge is drawn dotted).

Since each bundle collects a set of edges and allows them to participate in
a crossing, natural near-planarity theoretical questions arise: (i) Characterize or
recognize the graphs that admit 1-fbp drawings, and (ii) provide upper and lower
bounds on their edge density, i.e., the maximum number of edges with respect to
the number of vertices. We study these questions in the general case and in two
restricted variants that have been commonly studied for other classes of nearly-
planar graphs. Namely, in an outer -1-fbp drawing all the vertices are incident to
the unbounded face of the drawing, while in a 2-layer 1-fbp drawing the graph

1-Fan-Bundle-Planar Drawings of Graphs 519

is bipartite, and the vertices of the two partitions lie on two parallel lines and
the edges lie completely between these lines.

Our Contribution. In Sect. 2, we study inclusion relationships between the
classes of 1- and 2-sided 1-fbp graphs and other classes of nearly-planar graphs.
In Sect. 3, we present bounds on the edge density of these classes; see Table 1. We
then prove in Sect. 4 that the recognition problem is NP-complete in general for
both 1- and 2-sided models, while in Sect. 5 we present linear-time recognition
and drawing algorithms for biconnected and maximal 2-layer 1-fbp graphs, and
triconnected outer-1-fbp graphs in the 1-sided model. We conclude in Sect. 6
with open problems.

Table 1. Lower bounds (LB) and upper bounds (UB) on the edge-density

Model 2-layer Outer General

LB UB Ref. LB UB Ref. LB UB Ref.

1-sided 5n−7
3

5n−7
3 Theorem4 8n−13

3
8n−13

3 Theorem3 13n−26
3

13n−26
3 Theorem2

2-sided 2n − 4 3n − 7 Theorem7 4n − 9 4n − 9 Theorem6 6n − 18 8.6n − 15.6 Theorems 5 and 8

Related Work. Apart from 1-planar [22], quasi-planar [2], and fan-planar [20]
graphs, which have already been discussed, several other classes of nearly-planar
graphs have been proposed over the last few years, e.g.: (i) k-planar [21], which
generalize 1-planar graphs, as they can be drawn so that each edge is crossed at
most k times; (ii) fan-crossing free [11], which complement fan-planar graphs,
as they forbid fan crossings but allow each edge to cross several pairwise inde-
pendent edges; and (iii) RAC [13], which admit straight-line drawings in which
edges cross at right angles.

These classes have been mainly studied with respect to their edge den-
sity [1,11,13,20–22] and to the complexity of their corresponding recognition
problem, which has been proven NP-complete for most of the classes [4,8,17],
except for quasi-planar and fan-crossing free graphs, whose complexities are
unknown. However, for the restricted outer and 2-layer cases, several polynomial-
time algorithms have been given [5,6,16,19].

Fink et al. [14] considered a different style of edge bundling, where groups
of locally parallel edges are bundled and only bundled crossings are allowed.
Confluent drawings do not explicitly bundle edges, but represent edges by planar
curves that are not interior-disjoint, so the parts that are used by several edges
can be interpreted as bundles [12].

Preliminaries. A graph G admitting a 1-sided (2-sided) 1-fbp drawing is called
1-sided (2-sided) 1-fbp. Graph G is maximal if the addition of any edge destroys
its 1-fan-bundle-planarity (in every drawing). Analogously, we define the (maxi-
mal) 1- or 2-sided outer -1-fbp and 2-layer 1-fbp graphs. The drawings we consider
are almost simple, meaning that no two fan-bundles of the same vertex cross.
However, two edges incident to the same vertex may cross; refer to [3] for more

520 P. Angelini et al.

details A rotation system describes the clockwise order of the edges around each
vertex of G.

A vertex u can be incident to several fan-bundles. Let Bu be such a fan-
bundle. We say that Bu is anchored at u, which is the origin of Bu. We refer
to the endpoint of Bu different from u (the point where all the edges of Bu are
separated from each other) as the terminal of Bu, and to the endvertex different
from u of any edge in Bu as a tip of Bu. A Bu-Bv-following curve is a curve
that starts at u, follows Bu up to the crossing point with Bv, then follows Bv,
and ends at v without crossing fan-bundles.

2 Relationships with Other Graph Classes

In this section, we discuss inclusion relationships between the classes of 1- and 2-
sided 1-fbp graphs and other relevant classes of nearly-planar graphs; see Fig. 2a.

Fig. 2. (a) Inclusion relationships: The graph denoted by K4,12 is obtained from K4,12

by joining on a path the 4 vertices of its first bipartition and on a second path the 12
vertices of its second one (see Fig. 2(a) in [20]). D12 corresponds to the graph obtained
from the dodecahedron by adding a pentagram in each of its faces (see Fig. 2(b) in [20]).
(b) A k-planar drawing of K3,2k+1.

The inclusion relationship 1-planar ⊆ 1-sided 1-fbp ⊆ fan-planar follows
directly from the definition of 1-sided 1-fbp graphs, and the same holds for the
inclusion 2-planar ⊆ 2-sided 1-fbp. Also, Binucci et al. [8] proved that the
class of 2-planar graphs is incomparable with the one of fan-planar graphs.

The graph D12 obtained from the dodecahedron by adding a pentagram in
each of its faces is 2-planar, fan-planar, and meets the common maximum density
of these classes of graphs [20]. As we will see in Sect. 3, this graph is too dense
to be 1-sided 1-fbp (and hence 1-planar). Since K9 has more than 5n−10 edges,
it is neither fan-planar nor 2-planar. However, K9 is 2-sided 1-fbp; we give an
illustration in [3]. We do not know whether K10 is 2-sided 1-fbp or not, but we
know that there exists a value n for which Kn is not 2-sided 1-fbp, since these
graphs have O(n) edges; see Sect. 3. We recall that K10 is quasi-planar [9].

In [3], we demonstrate that the graph K4,12 obtained from K4,12 by joining
on a path the 4 vertices of its first bipartition and on a second path the 12
vertices of its second bipartition is 2-sided 1-fbp. This graph is fan-planar [20],

1-Fan-Bundle-Planar Drawings of Graphs 521

but not 2-planar (as it contains K3,11 as a subgraph, which is not 2-planar; see
Lemma 1). In addition, this particular graph contains 62 edges and is therefore
too dense to be 1-sided 1-fbp (see Sect. 3).

We now show that K3,11 is not 2-planar; note that even K3,14 is 1-sided 1-fbp;
refer to [3]. We also show that K3,10 is 2-planar, by a more general proof.

Lemma 1. For k ≥ 0, graph K3,4k+2 is k-planar, while K3,4k+3 is not k-planar.

Proof (sketch). To obtain a k-planar drawing of K3,4k+2, we merge two copies of
the drawing of K3,2k+1 of Fig. 2b. For the negative result, we show that in any
k-planar drawing of K3,4k+3 there is an induced K2,2 whose edges do not cross
each other, and that the third vertex of the first bipartition can lie neither inside
nor outside the region bounded by this K2,2 (due to the crossing restrictions).
For the full proof refer to [3]. ��

As already noted, K4,n−4 is fan-planar. We now show that there is a value n
such that K4,n−4 is not 2-sided 1-fbp. Hence, fan-planar (and also quasi-planar)
graphs are not a subclass of 2-sided 1-fbp graphs. Note that K4,14 is 2-sided
1-fbp; for an illustration refer to [3].

Theorem 1. Graph K4,n−4 is not 2-sided 1-fbp for n ≥ 571.

Proof (sketch). Assume that K4,n−4 admits a 2-sided 1-fbp drawing Γ . Using
Lemma 1, we can prove that in Γ there is a fan-bundle Bu anchored at a vertex
u of the first bipartition that is shared by a certain number z > 0 of edges. We
then consider the graph K3,z composed of the three vertices different from u in
the first bipartition and of the z vertices of the second bipartition that are tips
of Bu. Using Lemma 1 again, we can prove that in Γ there is a fan-bundle Bv

anchored at another vertex v of the first bipartition that is shared by at least
nine edges. Thus, Bu and Bv have at least nine common tips. Finally, we prove
that this is not possible. For the full proof refer to [3]. ��

3 Density

In this section, we consider Turán-type problems concerning 1-sided and 2-sided
1-fbp graphs, i.e., we ask what is the maximum number of edges they can have.

1-sided model. We start by giving a tight bound for the density.

Theorem 2. A 1-sided 1-fbp graph with n ≥ 3 vertices has at most (13n−26)/3
edges, which is a tight bound.

Proof. Let Γ be a 1-sided 1-fbp drawing of a maximally dense 1-sided 1-fbp
graph G with n vertices, i.e., G has the largest possible number of edges. To
estimate this number we transform G into a (not necessarily simple) maximal
planar graph with no pair of homotopic parallel edges, i.e., both the interior
and the exterior regions defined by any pair of parallel edges contain at least
one vertex. Under this assumption, the maximum number of edges of a planar

522 P. Angelini et al.

multi-graph on n vertices is still 3n − 6. We say that Γ contains an edge e, if
there exists a drawn edge of G in Γ that is homotopic to e.

Consider two crossing fan-bundles Bu and Bv in Γ anchored at vertices u and
v of G, respectively; see Fig. 3a. Let (u, u1), . . . , (u, uμ) and (v, v1), . . . , (v, vν) be
the edges bundled in Bu and Bv, in the order that they appear around the
terminals of Bu and Bv in Γ , such that (u, u1) and (v, v1) are the edges that
follow Bu and Bv along their terminals in clockwise direction. Note that Bu and
Bv may share some tips, i.e., there may exist indices i, j, with 1 ≤ i ≤ μ and
1 ≤ j ≤ ν, such that ui = vj (e.g., by the maximality of G, v1 = uμ holds).

Fig. 3. The transformation used in Theorem2 for the case μ = ν = 4. Note that
v1 = uμ and u3 = vν . There exist two non-homotopic copies of (u, u3) in (b)

Consider the edge (u, v) that one can draw in Γ as a Bu-Bv-following curve;
we call (u, v) the base-edge of Bu and Bv. Since G is maximally dense, Γ contains
this edge. For the same reason, Γ contains the edges (v, u1), . . ., (uμ−1, uμ),
(uμ, v1), . . ., (vν−1, vν), and (vν , u) that can be drawn by following either Bu, or
Bv, or the unbundled parts of the edges incident to u and v (dotted in Fig. 3a).

We now describe a transformation of G; see Fig. 3b. We remove from
G all edges bundled in Bv and introduce edges (u, v2), . . . , (u, vν−1), drawn
crossing-free completely in the interior of the region defined by edges
(u, v1), . . . , (vν−1, vν), and (vν , u) in Γ . Note that this transformation eliminates
the crossing between Bu and Bv, without introducing homotopic parallel edges.
However, the transformed drawing has two edges less than Γ , namely (v, v1) and
(v, vν). Applying this transformation recursively to every pair of crossing fan-
bundles, we obtain a planar drawing Γ ′ of a (not necessarily simple) graph G′ on
the same vertices as G with no pair of homotopic parallel edges. Hence, G′ has at
most 3n − 6 edges and 2n − 4 faces. As noted above, G contains as many edges
as G′ plus twice the number of transformations. If a transformation involves
exactly four vertices, then it introduces two faces of Γ ′ which will no be part of
another transformation, as they are delimited by uncrossed edges, and Γ ′ has
only one edge less than Γ . If a transformation involves at least five vertices, then
it introduces at least three such faces of Γ ′ and Γ ′ has at most two edges less
than Γ . Let f ′ be the number of faces of Γ ′ created by transformations that
involve four vertices, and let f ′′ be the number of faces of Γ ′ created by the

1-Fan-Bundle-Planar Drawings of Graphs 523

remaining transformations. It follows that f ′ + f ′′ ≤ 2n − 4. Thus, G has at
most 3n− 6+ f ′/2+2 · �f ′′/3� ≤ 3n− 6+2 · �(2n− 4)/3� ≤ (13n− 26)/3 edges.

To show that this upper bound is tight, let Pn be a planar graph on n vertices
whose faces are of length five. By Euler’s formula, Pn has (5n− 10)/3 edges and
(2n−4)/3 faces. Since at each face of Pn one can add four edges without violating
1-fan-bundle-planarity (see e.g. Fig. 1d), the resulting graph has (5n − 10)/3 +
4(2n − 4)/3 = (13n − 26)/3 edges, and the statement follows. ��

The same technique used in Theorem 2 can be applied to obtain tight bounds
also in the outer and in the 2-layer models. The full proofs are in [3].

Theorem 3. A 1-sided outer-1-fbp graph with n ≥ 5 vertices has at most (8n−
13)/3 edges, which is a tight bound.

Theorem 4. A 1-sided 2-layer 1-fbp graph with n ≥ 5 vertices has at most
(5n − 7)/3 edges, which is a tight bound.

2-sided model. We first establish a tight bound for outer-1-fbp graphs, and
then upper and lower bounds for 2-layer and general 1-fbp graphs.

We start by presenting 2-sided outer-1-fbp graphs with n vertices and 4n− 9
edges. A flower drawing of a graph is a 2-sided outer-1-fbp drawing in which
(i) the vertices v1, . . . , vn lie on a circle C in this clockwise order, (ii) each vertex
vi has exactly two fan-bundles, called right and left as seen from the center
of C, and (iii) for each i = 1, . . . , n, the right fan-bundle of vi crosses the left
fan-bundle of vi+1, where n + 1 = 1; see Fig. 4a.

A water lily is a flower drawing of a graph with n ≥ 9 vertices where the
terminals of the fan-bundles are partitioned into three sets S1, S2, and S3, such
that (i) each set Sj , for j = 1, 2, 3, contains at least seven consecutive terminals,
(ii) each two sets Sj and Sk, with j 	= k, have one terminal in common, which
belongs to the right fan-bundle of a vertex, (iii) the terminal of the right fan-
bundle of each vertex vi is connected to the terminals of the left fan-bundles of
vertices vi+1 and vi+2, and (iv) the terminals in each set Sj , with 1 ≤ j ≤ 3,
are connected by a zigzag-pattern such that all but two faces have degree 3, the
other two have degree 4 in order to avoid parallel edges; see Fig. 4a.

Fig. 4. (a) A water lily, (b) a 2-sided 1-fbp drawing of K8, (c) a 2-sided 1-fbp drawing
of a graph with n vertices and 6n − 18 edges for n = 12, and (d) crossing middle fan-
bundles. In (b) and (c) the gray edges can be drawn on the outer face of the drawing
by using twice as many fan-bundles.

524 P. Angelini et al.

Lemma 2. A water lily drawing of a graph with n ≥ 9 vertices has 4n−9 edges.

Proof. Consider the graph H whose vertices are the terminals of the fan-bundles
and whose edges are the unbundled parts of the edges of the water lily (non-bold
in Fig. 4a). Graph H has 2n vertices, as each original vertex has one left and one
right fan-bundle. By construction, H is biconnected and outerplanar. Also, all
internal faces of H are triangular, except for six faces (two for each set Sj), which
have size 4. Since an internally triangulated biconnected outerplanar graph on
k vertices has 2k − 3 edges, graph H has 2 · 2n − 3 − 6 = 4n − 9 edges. ��

The next theorem follows from the fact that we can draw on the outer face of
a water lily another set of 2n − 9 edges and obtain a 2-sided 1-fbp drawing with
6n−18 edges. Figure 4c shows that this can be done avoiding parallel edges; For
the full proof refer to [3].

Theorem 5. There are 2-sided 1-fbp graphs with n vertices and 6n − 18 edges.

We now show that 2-sided outer-1-fbp graphs are not denser than water lilies.

Theorem 6. A 2-sided outer-1-fbp graph with n ≥ 3 vertices has at most 4n−9
edges, which is a tight bound.

Proof. The proof of the upper bound is by induction on n. For the base, observe
that all graphs with n ≤ 6 vertices have at most 4n − 9 edges and that K6 is
2-sided outer-1-fbp; see Fig. 1c. For the inductive step, let Γ be a 2-sided outer-1-
fbp drawing of a graph G with n ≥ 7. We show that G has at most 4n−9 edges.
W.l.o.g., we assume that G has no vertex of degree less than 5, as otherwise we
could remove it and apply induction.

Let v1, . . . , vn be the vertices of G in clockwise order on the outer face of Γ .
We call right and left bundle of a vertex vi the first and last fan-bundle in
clockwise order around vi, respectively, starting from the outer face. We assume
that the left bundle of vi crosses the right bundle of vi−1; otherwise, we could
add two crossing dummy bundles.

First suppose that two middle bundles of two vertices vi and vj cross; see
Fig. 4d. If j = i+1 then the right bundle of vi and the left bundle of vj would be
isolated and could be removed. So, we assume vi and vj are not consecutive and
that (vi, vj) belongs to G, as otherwise we could add it. Hence, there is another
pair of crossing bundles on the other side of (vi, vj), as otherwise we could add
two crossing dummy bundles. Thus, edge (vi, vj) splits Γ into two parts Γ1 and
Γ2 containing n1 and n2 vertices. Since Γ1 and Γ2 contain vi and vj , we have
n1 + n2 = n + 2. By induction, Γ1 and Γ2 have at most 4n1 − 9 and 4n2 − 9
edges. Hence, Γ has at most (4n1 − 9) + (4n2 − 9) < 4n − 9 edges.

Suppose now that no two middle bundles cross. W.l.o.g., we assume that each
vertex is incident to at most one middle bundle, as otherwise we could merge
them all into one. Let k be the number of vertices having a middle bundle. Let H
be the graph whose vertices are the terminals of all fan-bundles and whose edges
are the unbundled parts of the edges in Γ ; see Fig. 4a. Graph H is outerplanar,
has 2n+ k vertices, and thus at most 4n+2k − 3 edges (2n+ k outer edges, i.e.,

1-Fan-Bundle-Planar Drawings of Graphs 525

those on the outer face, and 2n+ k − 3 inner edges). The next two claims imply
that H (and thus G) has at most 4n − 9 edges.

Claim 1. Graph H has at most 2n − k outer edges.

Claim 2. Graph H has at most 2n + k − 9 inner edges.

Proof. To prove Claim 1 note that, for each of the k vertices vi with a middle
bundle, the terminal of the right bundle of vi−1 lies between the terminals of the
left and of the middle bundles of vi along the outer face of H. So, there exist
two outer edges of H representing the same edge (vi, vi−1) of G, one of which
has to be removed to obtain simplicity. The claim follows by applying the same
argument on the left bundle of vi+1.

The proof of Claim 2 is based on the fact that inner edges connecting vertices
that are at small distance along the outer face of H represent in G either self-
loops or edges that are already represented by outer edges of H; refer to [3].

The fact that the bound is tight follows from Lemma2. ��
The upper bound of the following theorem follows from Theorem6. The lower

bound exploits a construction similar to the one of Lemma2; refer to [3].

Theorem 7. A 2-sided 2-layer 1-fbp graph with n ≥ 3 vertices has at most 3n−7
edges. There are 2-sided 2-layer 1-fbp graphs with n vertices and 2n − 4 edges.

We now give an upper bound on the edge density in the general case.

Theorem 8. An n-vertex 2-sided 1-fbp graph has at most (43n − 78)/5 edges.

Proof (sketch). Let Γ be a 2-sided 1-fbp drawing of a maximally dense graph
G that has a maximum number of uncrossed edges. We define a planar graph
Gp on the same vertex set as G that contains all the uncrossed edges of G in
Γ . Since Γ has a maximum number of uncrossed edges, for each pair of crossing
fan-bundles Bu and Bv, the base edge (u, v) of Bu and Bv is contained in Gp

(note that multiple copies of (u, v) in Γ are pairwise non-homotopic). Hence, Gp

has at most 3n − 6 edges.
Next, we define another planar graph G′

p containing the vertices of G and
the terminals of the fan-bundles of Γ , which we call terminal vertices. Graph
G′

p has an edge for each base edge of Γ . Also, for each pair of crossing fan-
bundles Bu and Bv with terminals tu and tv, graph G′

p contains (u, tv), (tv, tu),
(tu, v), and either (u, tu) or (v, tu); we call these edges bridging edges. Finally,
for each unbundled part of each edge in Γ , graph G′

p has an edge connecting
the corresponding terminal vertices of G′

p. Since G′
p is planar, it has at most

3(n + t) − 6 edges, where t is the number of terminal vertices.
Note that G has as many edges as those in G′

p connecting terminal ver-
tices, while each bridging edge has an endpoint that is not a terminal vertex.
Since every two terminal vertices define four bridging edges, graph G has at
most 3(n + t) − 6 − 2t = 3n + t − 6 edges. For each edge e of Gp, there exist at
most two adjacent crossing fan-bundle pairs, i.e., one on each side of e in Γ . So,
t ≤ 4 · (3n − 6) = 12n − 24, which implies that G has at most 15n − 30 edges. In
[3], we improve this bound to (43n − 78)/5. ��

526 P. Angelini et al.

4 NP-Completeness

In this section, we study the problem of deciding whether a graph G with a given
rotation system R admits a 1-sided or a 2-sided 1-fbp drawing preserving R.

Theorem 9. Given a graph G and a fixed rotation system R, it is NP-complete
to decide whether G admits a 1-sided or 2-sided 1-fbp drawing preserving R.

Proof (sketch). Membership in NP can be proved as for the fan-planarity [6,8].
We prove NP-hardness by a reduction from 3-Partition [15] similar to the
one of Bekos et al. [6] for the fan-planarity problem. An instance 〈A,B〉 of 3-
Partition consists of an integer B and a set A = {a1, . . . , a3m} of 3m positive
integers in (B

4 , B
2) such that

∑3m
i=1 ai = mB. The problem asks whether A can

be partitioned into m subsets, each of cardinality 3, such that the sum of the
elements in each subset is B.

Central in the reduction of [6] is the barrier gadget, i.e., a subgraph whose
edges cannot be crossed by other edges. This gadget is used to construct a
wall surrounding the construction and a set of obstacles in its interior (gray in
Fig. 5a). The edges between the obstacles (and the wall) constrain the routes of
some paths, called transversal (bold in Fig. 5a), such that 〈A,B〉 has a solution
if and only if all transversal paths can be routed without violating fan-planarity
(in our case 1-fan-bundle-planarity).

For the 1-sided model, the connection between the two problems is the fol-
lowing. Each of the 3m columns in the interior of the wall consists of several sets
of edges, called cells; one of these is sparse and contains as many edges as one
of the elements in A; the other ones are dense and contain significantly more
edges. The length of the transversal paths ensures that each of them can cross
m − 3 dense and 3 sparse cells. Since there are m such paths, a routing through
the sparse cells implies a valid solution of 〈A,B〉, and vice versa.

In our case, it suffices to adjust the barrier gadget so that it is not traversable
by any of the transversal paths without violating 1-fan-bundle-planarity. To this
end, we propose the barrier gadget of Fig. 5b. The rest of the proof is similar to
the one of [6]; details are given in [3].

Fig. 5. (a) Sketch of the reduction with m = 3, A = {2, 2, 2, 3, 3, 3, 4, 5, 6} and B = 10.
The transversal paths are routed according to the following solution of 3-Partition:
A1 = {2, 3, 5}, A2 = {2, 2, 6} and A3 = {3, 3, 4}. The barrier gadget in the (b) 1- and
(c) 2-sided models, resp.

1-Fan-Bundle-Planar Drawings of Graphs 527

Fig. 6. Edges in the
same cell.

The proof under the 2-sided model requires the following
modifications. Since each edge of the transversal paths can
be crossed twice, we double the number of edges in each
cell. Also, to avoid that transversal paths cross the same
cell, we make consecutive pairs of edges in each cell cross;
see Fig. 6. Finally, we modify the barrier gadget as in Fig. 5c.
This concludes our proof. ��

5 Recognition and Drawing Algorithms

In this section, we give characterizations, recognition and drawing algorithms
for subclasses of 1-sided 2-layer and outer 1-fbp graphs.

2-layer. Our results for 1-sided 2-layer 1-fan-bundle-planarity build upon con-
cepts of Binucci et al. [7] for fan-planar graphs, who showed that a biconnected
bipartite graph is maximal 2-layer fan-planar if and only if it is a snake, i.e., a
chain of graphs K2,hi

, hi ≥ 2, so that consecutive graphs share a pair of merged
vertices, and no vertex is shared by more than two graphs. Also, it is 2-layer
fan-planar if and only if it is a spanning subgraph of a snake [7]. Hence, a bicon-
nected 2-layer 1-fbp graph is also a spanning subgraph of a snake. However, not
every snake is 1-sided 2-layer 1-fbp, since K2,4 is not 1-sided 2-layer 1-fbp (refer
to [3] for more details); note that K2,3 is (see Fig. 7a).

This leads to the following characterization, where a snake is a baby snake if
each graph in the chain is a K2,2 or a K2,3. Hence, with the algorithm of Binucci
et al. [7], we can also recognize and draw these graphs; see Theorem 10.

Theorem 10. A biconnected graph is 2-layer 1-fbp if and only if it is a spanning
subgraph of a baby snake; these can be recognized and drawn in linear time.

We now relax biconnectivity and require maximality. It is known that a graph
is maximal 2-layer fan-planar if and only if it is a stegosaurus, i.e., a chain of
snakes that are connected at a common cutvertex, where each common cutvertex
is incident to exactly two snakes, plus a set of vertices of degree 1 (legs) connected
to the common cutvertices [7]. A stegosaurus is a baby stegosaurus if it consists
of baby snakes and has no legs. A baby stegosaurus can be drawn 1-sided 2-layer
1-fbp by drawing its snakes and connecting them via their common cutvertices.
The main argument is that no vertex incident to a K2,2 has a leg; refer to [3] for
more details.

Theorem 11. Maximal 1-sided 2-layer 1-fbp graphs can be recognized and drawn
in linear time.

A leg not adjacent to a K2,2 is a big leg. This yields the following character-
ization for non-maximal graphs, but not an efficient recognition algorithm.

Theorem 12. A graph is 1-sided 2-layer 1-fbp if and only if it is a spanning
subgraph of a baby stegosaurus with big legs.

528 P. Angelini et al.

Outer. We give a linear-time algorithm for recognizing and drawing triconnected
1-sided outer-1-fbp graphs. We first describe properties of maximal biconnected
and of triconnected 1-sided outer-1-fbp graphs; see Figs. 7b–c and [3].

Fig. 7. (a) The only drawing of K2,3 (solid) and the possible edges that can be added
(dashed). Illustrations for (b) Lemma 3, (c) Lemma4, and (d) Lemma 5.

Lemma 3. Any maximal biconnected 1-sided outer-1-fbp graph G has a 1-sided
outer-1-fbp drawing in which all edges on the outer face are planar.

Lemma 4. In a 1-sided outer-1-fbp drawing Γ of a triconnected graph in which
all edges on the outer face f are planar, (i) no inner edge is planar, (ii) the
origins of two crossing fan-bundles are consecutive on f , and (iii) there is at
most one crossing. Such a drawing is called a canonical drawing.

Lemma 5. A triconnected graph G with n ≥ 5 vertices is 1-sided outer-1-fbp
if and only if it consists of (i) a Hamiltonian path v1, . . . , vn, (ii) edges (vn, vi)
and (v1, vj), with 2 ≤ i < k ≤ j ≤ n − 1 for some k, (iii) edge (v1, vn) if
k ∈ {2, n − 1}, and (iv) possibly edges (vn, vk) and (v1, vn).

Proof (sketch). For the sufficiency, see Fig. 7d. For the necessity, if G is maximal,
by Lemma 3, it has a 1-sided outer-1-fbp drawing Γ whose outer face is a simple
planar cycle v1, . . . , vn, v1, so (i) holds. By Lemma 4, Γ is canonical, so there
are only two fan-bundles Bv1 and Bvn

incident to every inner edge. Due to min-
degree 3, all edges of (ii) and (vn, vk) exist. If k ∈ {2, n − 1}, then (v1, vn) exists
for triconnectivity, so (iii) holds. If G is not maximal, then only (vn, vk) and
(v1, vn), if k ∈ [3, n − 2], are not needed for triconnectivity, so (iv) holds. ��

From Lemma 5, we derive a linear-time recognition and drawing algorithm,
since for our graphs a Hamiltonian path can be found efficiently; refer to [3].

Theorem 13. Triconnected 1-sided outer-1-fbp graphs can be recognized and
drawn in linear time.

6 Conclusions

Our work opens several research directions: (i) Find recognition algorithms for
1- or 2-sided (biconnected) outer- or 2-layer 1-fbp graphs, (ii) close the gaps in
the bounds of Table 1, (iii) discuss relationships with other nearly-planar graph
classes, (iv) study k-fbp graphs, in which each fan-bundle is crossed at most k
times, and (v) other models of edge bundling suitable for theoretical analyses.

1-Fan-Bundle-Planar Drawings of Graphs 529

References

1. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007)

2. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs
have a linear number of edges. Combinatorica 17(1), 1–9 (1997)

3. Angelini, P., Bekos, M.A., Kaufmann, M., Kindermann, P., Schneck, T.: 1-fan-
bundle-planar drawings of graphs. CoRR arXiv:1702.06163 (2017)

4. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing prob-
lem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012)

5. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth,
D., Reislhuber, J.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016)

6. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.-H., Kaufmann, M.: On the recogni-
tion of fan-planar and maximal outer-fan-planar graphs. In: Duncan, C., Symvonis,
A. (eds.) GD 2014. LNCS, vol. 8871, pp. 198–209. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45803-7 17

7. Binucci, C., Chimani, M., Didimo, W., Gronemann, M., Klein, K., Kratochv́ıl,
J., Montecchiani, F., Tollis, I.G.: Algorithms and characterizations for 2-layer fan-
planarity: from caterpillar to stegosaurus. J. Graph Algorithms Appl. 21(1), 81–102
(2017)

8. Binucci, C., Giacomo, E.D., Didimo, W., Montecchiani, F., Patrignani, M., Symvo-
nis, A., Tollis, I.G.: Fan-planarity: properties and complexity. Theor. Comput. Syst.
589, 76–86 (2015)

9. Brandenburg, F.J.: A simple quasi-planar drawing of K10. In: Hu, Y., Nöllenburg,
M. (eds.) GD 2016. LNCS, vol. 9801, pp. 603–604. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-50106-2

10. Buchin, K., Speckmann, B., Verbeek, K.: Flow map layout via spiral trees. IEEE
Trans. Vis. Comput. Graph. 17(12), 2536–2544 (2011)

11. Cheong, O., Har-Peled, S., Kim, H., Kim, H.: On the number of edges of fan-
crossing free graphs. Algorithmica 73(4), 673–695 (2015)

12. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings:
visualizing non-planar diagrams in a planar way. In: Liotta, G. (ed.) GD 2003.
LNCS, vol. 2912, pp. 1–12. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24595-7 1

13. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theor. Comput. Syst. 412(39), 5156–5166 (2011)

14. Fink, M., Hershberger, J., Suri, S., Verbeek, K.: Bundled crossings in embedded
graphs. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol.
9644, pp. 454–468. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49529-2 34

15. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

16. Giacomo, E.D., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing
drawings. Algorithmica 68(4), 954–997 (2014)

17. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few cross-
ings per edge. Algorithmica 49(1), 1–11 (2007)

18. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hier-
archical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)

19. Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time
algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015)

http://arxiv.org/abs/1702.06163
https://doi.org/10.1007/978-3-662-45803-7_17
https://doi.org/10.1007/978-3-319-50106-2
https://doi.org/10.1007/978-3-319-50106-2
https://doi.org/10.1007/978-3-540-24595-7_1
https://doi.org/10.1007/978-3-540-24595-7_1
https://doi.org/10.1007/978-3-662-49529-2_34
https://doi.org/10.1007/978-3-662-49529-2_34

530 P. Angelini et al.

20. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. arXiv:1403.6184
(2014)

21. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

22. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamb.
29, 107–117 (1965)

23. Telea, A., Ersoy, O.: Image-based edge bundles: simplified visualization of large
graphs. Comput. Graph. Forum 29(3), 843–852 (2010)

24. Zhou, H., Xu, P., Yuan, X., Qu, H.: Edge bundling in information visualization.
Tsinghua Sci. Technol. 18(2), 145–156 (2013)

25. Zhou, H., Yuan, X., Qu, H., Cui, W., Chen, B.: Visual clustering in parallel coor-
dinates. Comput. Graph. Forum 27(3), 1047–1054 (2008)

http://arxiv.org/abs/1403.6184

Gap-Planar Graphs

Sang Won Bae1, Jean-Francois Baffier2, Jinhee Chun3, Peter Eades4,
Kord Eickmeyer5, Luca Grilli6, Seok-Hee Hong4, Matias Korman3,

Fabrizio Montecchiani6(B), Ignaz Rutter7, and Csaba D. Tóth8

1 Kyonggi University, Suwon, South Korea
swbae@kgu.ac.kr

2 National Institute of Informatics, Tokyo, Japan
jf baffier@nii.ac.jp

3 Tohoku University, Sendai, Japan
{jinhee,mati}@dais.is.tohoku.ac.jp

4 University of Sydney, Sydney, Australia
peter.eades@sydney.edu.au, shhong@it.usyd.edu.au

5 TU Darmstadt, Darmstadt, Germany
eickmeyer@mathematik.tu-darmstadt.de

6 University of Perugia, Perugia, Italy
{luca.grilli,fabrizio.montecchiani}@unipg.it

7 TU Eindhoven, Eindhoven, The Netherlands
i.rutter@tue.nl

8 California State University Northridge, Los Angeles, USA
csaba.toth@csun.edu

Abstract. We introduce the family of k-gap-planar graphs for k ≥ 0,
i.e., graphs that have a drawing in which each crossing is assigned to
one of the two involved edges and each edge is assigned at most k of
its crossings. This definition finds motivation in edge casing, as a k-gap-
planar graph can be drawn crossing-free after introducing at most k local
gaps per edge. We obtain results on the maximum density, drawability
of complete graphs, complexity of the recognition problem, and relation-
ships with other families of beyond-planar graphs.

1 Introduction

“Beyond-planar graphs” are informally defined as nonplanar graphs that can be
represented with some forbidden edge crossing patterns (see, e.g., [29,30,36]).

Research started at the NII Shonan Meeting “Algorithmics for Beyond Pla-
nar Graphs.” The authors thank the organizers, and Yota Otachi for useful
discussions. Bae was supported by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry
of Education (2015R1D1A1A01057220). Baffier was supported by JST-ERATO
Grant Number JPMJER1201, Japan. Eades and Hong were partially supported
by ARC DP160104148. Korman was partially supported by MEXT KAKENHI
No. 15H02665, 17K12635 and JST ERATO Grant Number JPMJER1305. Tóth was
supported in part by the NSF awards CCF-1422311 and CCF-1423615.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 531–545, 2018.
https://doi.org/10.1007/978-3-319-73915-1_41

532 S. W. Bae et al.

Fig. 1. (a) A drawing of a graph G and (b) its cased version where each edge is
interrupted at most twice, i.e., a 2-gap-planar drawing of G.

Research on this topic is attracting increasing attention within the communities
of graph theory, graph algorithms, graph drawing, and computational geometry,
as these graphs represent a natural generalization of planar graphs, and their
study can provide significant insights for the design of effective methods to visu-
alize real-world networks. Indeed, the motivation for this line of research stems
from both the interest raised by the combinatorial and geometric properties of
these graphs, and experiments showing how the absence of particular edge cross-
ing patterns has a positive impact on the readability of a graph drawing [31].

Among the investigated families of beyond-planar graphs are: k-planar graphs
(see, e.g., [11,34,38]), which can be drawn with at most k > 0 crossings per edge;
k-quasiplanar graphs (see, e.g., [2,3,22]), where there are no k > 2 pairwise cross-
ing edges; fan-planar graphs (see, e.g., [9,12,32]), where no edge can be crossed
by two indepedent edges; fan-crossing-free graphs [17], where crossings between
an edge and two adjacent edges are forbidden; planarly-connected graphs [1], in
which each pair of crossing edges is independent and there is a crossing-free edge
that connects their endpoints; RAC graphs (refer, e.g., to [19]), which admit a
straight-line (or polyline with few bends) drawing with right-angle crossings.

In this paper we introduce k-gap-planar. Intuitively speaking, each crossing
is assigned to one of the two involved edges and each edge is assigned at most
k crossings (see Sect. 2). This definition generalizes that of k-planar graphs, and
it is practically motivated by edge casing, a method commonly used to alleviate
the visual clutter generated by crossing lines in a diagram [5,21]. In a cased
drawing of a graph, each crossing is resolved by locally interrupting one of the
two crossing edges. Clearly, minimizing the number of gaps per edge is one of the
desirable goals in this situation, and a k-gap-planar graph can be equivalently
defined as a graph that admits a cased drawing in which each edge has at most
k gaps. Figure 1 shows a drawing of a graph and its version with edge casing.
Eppstein et al. [21] studied many optimization problems related to edge casing,
assuming the input to be a drawing (rather than a graph). In particular, the
problem of minimizing the maximum number of gaps (called tunnels) for any
edge of a drawing can be solved in polynomial time (see also Sect. 2). We also
remark that a similar drawing paradigm is used by partial edge drawings (PEDs),
in which the central part of each edge is erased, while the two remaining stubs
are required to be crossing-free (see, e.g., [15,16]).

Gap-Planar Graphs 533

Our results can be summarized as follows:

– Every k-gap-planar graph with n vertices has O(
√

k · n) edges (Sect. 3). If
k = 1, a bound of 5n − 10 edges is proved for 1-gap-planar multigraphs,
which is tight as there exist k-gap-planar (simple) graphs with these many
edges. Note that this density bound equals that of 2-planar graphs [38].

– The complete graph Kn is 1-gap-planar if and only if n ≤ 8 (Sect. 4).
– Deciding whether a graph is 1-gap-planar is NP-complete, even when the

input graph comes with a fixed rotation system that is part of the input
(Sect. 5). We remark that analogous recognition problems for other families
of beyond-planar graphs are also NP-hard (see, e.g., [7,9,12,13,25,35]), while
polynomial algorithms are known only in restricted settings (see, e.g., [6,9,
13,18,20,27,28]).

– We study relationships of the k-gap-planar family with other beyond-planar
families. For all k ≥ 1, the class of 2k-planar graphs is properly included in
the class of k-gap-planar graphs, which in turn is properly included in the
(2k+2)-quasiplanar graphs (Sect. 6). It is worth observing that recent papers
proved that k-planar graphs are (k + 1)-quasiplanar [4,26].

For reasons of space some proofs and technicalities have been omitted and can
be found in [8].

2 Preliminaries and Basic Results

A drawing Γ of a graph G = (V,E) is a mapping of the vertices of V to dis-
tinct points of the plane, and of the edges of E to Jordan arcs connecting their
corresponding endpoints but not passing through any other vertex. If two edges
are incident to the same vertex, then they do not cross in Γ ; else, they have
at most one common interior point where they cross transversely. For a subset
E′ ⊆ E, Γ [E′] denotes the restriction of Γ to the curves representing the edges
of E′. Drawing Γ is planar if no edge is crossed. The crossing number cr(G) of a
graph G is the smallest number of edge crossings over all drawings of G. A graph
is planar if it admits a planar drawing. A planar drawing subdivides the plane
into topologically connected regions, called faces. The unbounded region is the
outer face. A planar embedding of a planar graph G is an equivalence class of
topologically equivalent drawings of G. A plane graph is a planar graph with a
planar embedding. The crossing graph C(Γ) of a drawing Γ is the graph having
a vertex ve for each edge e of G, and an edge (ve, vf) if and only if edges e and
f cross in Γ . The planarization Γ ∗ of Γ is the plane graph formed from Γ by
replacing each crossing by a dummy vertex. To avoid ambiguities, we call real
vertices the vertices of Γ ∗ that are not dummy.

Let Γ be a drawing of a graph G. We shall assume that exactly two edges
of G cross in one point p of Γ , and we say that these two edges are responsible
for p. A k-gap assignment of Γ maps each crossing point of Γ to one of its two
responsible edges so that each edge is assigned with at most k of its crossings;
see, e.g., Fig. 1(b). The gap of an edge is the number of crossings assigned to it.

534 S. W. Bae et al.

An edge with at least one gap is gapped, or a gap edge, else it is gap free. A
drawing is k-gap-planar if it admits a k-gap assignment. A graph is k-gap-planar
if it has a k-gap-planar drawing. Note that the 0-gap-planar graphs coincide
with the planar graphs, and that k-gap-planarity is a monotone property: every
subgraph of a k-gap-planar graph is k-gap-planar. From the pigeonhole principle
we have:

Property 1. Let Γ be a k-gap-planar drawing of a graph G = (V,E). For any
E′ ⊆ E, Γ [E′] contains at most k · |E′| crossings.

A k-gap assignment of a drawing Γ corresponds to orienting the edges of the
crossing graph C(Γ) such that each vertex has indegree at most k (intuitively,
orienting a crossing towards an edge means we assign the crossing to that edge).
Since finding a lowest indegree orientation of a graph corresponds to finding its
pseudoarboricity [23,39], Property 2 follows. A pseudoforest is a graph in which
every connected component has at most one cycle, and the pseudoarboricity of
a graph is the smallest number of pseudoforests needed to cover all its edges.

Property 2. A graph is k-gap-planar if and only if it admits a drawing whose
crossing graph has pseudoarboricity at most k.

Given a drawing Γ of a graph G = (V,E), finding the minimum k such that Γ is
k-gap-planar can be solved in O(|E|4) time, due to the fact that finding a lowest
indegree orientation of C(Γ) can be solved in time quadratic in the number of
edges of C(Γ) [40].

3 Density of k-gap-planar Graphs

We begin with an upper bound on the number of edges of k-gap-planar graphs.

Theorem 1. A k-gap-planar graph on n ≥ 3 vertices has O(
√

k · n) edges.

Proof. The crossing number of a graph G with n vertices and m edges is bounded
by cr(G) ≥ 1024

31827 · m3/n2 when m ≥ 103
6 n [37]. Combined with the bound

cr(G) ≤ k · m (Property 1), we obtain

1024
31827

· m3

n2
≤ cr(G) ≤ km,

which implies m ≤ max(5.58
√

k, 17.17) · n, as required. �

Better upper bounds are possible for small values of k, in particular for
k = 1. Pach et al. [37] proved that a graph G with n ≥ 3 vertices satisfies
cr(G) ≥ 7

3m − 25
3 (n − 2). Combined with the bound cr(G) ≤ k · m, we have

m ≤ 25(n − 2)
7 − 3k

.

Gap-Planar Graphs 535

For k = 1 (i.e., for 1-gap-planar graphs), this gives m ≤ 6.25n − 12.5. We now
show how to improve this bound to m ≤ 5n−10. The idea is to follow a strategy
developed by Pach and Tóth [38] and Bekos et al. [11] on the density of 2- and
3-planar graphs, with several important differences.

We start by stating the assumptions and notations for the proof of Theorem 2.
In order to accommodate the elementary operations in the proof, we work on
a broader class of graphs, namely multigraphs admitting a drawing without
homotopic1 parallel edges.

(i) For any n ∈ N, n ≥ 3, let G = (V,E) be a 1-gap-planar multigraph
with n vertices that has the maximum number of edges possible over all n-
vertex 1-gap-planar multigraphs without homotopic parallel edges; (ii) let Γ be a
1-gap-planar drawing of G with the minimum number of edge crossings over all
possible 1-gap-planar drawings of G with non-homotopic parallel edges; and
(iii) let H = (V,E′) be a sub-multigraph of G, where E′ ⊆ E is a multiset of
edges that are pairwise noncrossing in Γ [E′]. (iv) We assume that over all choices
of G, Γ , and H described above, the multigraph H is maximum and, in case of
ties, has the fewest connected components.

Our proof is based on the next technical lemma.

Lemma 1. The multigraph H is a triangulation, that is, a plane multi-graph in
which every face is bounded by a walk with three vertices and three edges.

We can now show that |E| ≤ 5n − 10.

Theorem 2. A 1-gap-planar graph on n ≥ 3 vertices has at most 5n−10 edges.

Proof. By Lemma 1, we know that H = (V,E′) is a triangulation. By Euler’s
polyhedron theorem, it has 3n − 6 edges and 2n − 4 triangular faces. Consider
the edges in E′′ = E \ E′. It remains to show that |E′′| ≤ 2n − 4.

The embedding of edge e ∈ E′′ is a Jordan arc that visits two or more triangle
faces of H. We call the first and last triangles along e the end triangles of e. For
an end triangle Δ, the connected component of e ∩ Δ incident to a vertex of Δ
is called an end portion. We use the following charging scheme.

Each edge e ∈ E′′ charges one unit to a triangle face of H. If e has an
end portion that has a gap neither in the interior nor on the boundary of the
corresponding end triangle Δ, then e charges one unit to Δ. (If neither end
portions of e has a gap in the interior or on the boundary of its end triangle,
then e charges one arbitrary end triangle.) Otherwise the two end portions of
e lie in two adjacent triangles, say, Δ1 and Δ2, and e uses its gap to cross the
common edge on the boundary between them; in this case e charges one unit to
Δ1 or Δ2 as follows: If the gap of the common edge between Δ1 and Δ2 is used
for an end portion of e′ ∩ Δ1 for another edge e′ ∈ E′′ and e′ charges Δ1, then
e charges Δ2, otherwise it charges Δ1.

We claim that each face of H receives at most one unit of charge. Let Δ =
Δabc be a face in H. Note that if Δ receives positive charge from an edge e ∈ E′′,
1 Two parallel edges are homotopic if at least one of the two regions defined by these

two edges contains no vertex in its interior.

536 S. W. Bae et al.

(a) (b) (c)

Fig. 2. Patterns that produce 1-gap-planar graphs with n vertices and 5n−Θ(1) edges.

then an end portion of e lies in Δ, and does not use any gap in the interior of
Δ. Consequently if Δ received positive charge from edges e1, e2 ∈ E′′, then the
end portions of e1 and e2 in Δ cannot cross, and they are incident to the same
vertex of Δ. Therefore, all edges in E′′ that charge Δ are incident to the same
vertex of Δ, say a, and cross the edge of Δ opposite to a, namely (b, c). Let
Δ′ = Δ′bcd be the face of the plane graph H on the opposite side of (b, c).

The gap of edge (b, c) can be used for at most one crossing along (b, c). If the
gap of (b, c) is used for a crossing with one of the end portions in Δ, then e sends
1 unit charge to Δ. The only other edge that could possibly send a charge to
Δ is the edge (a, d) ∈ E′′ that uses its own gap to cross (b, c). However, in this
case, (a, d) charges one unit to Δ′ in our charging scheme. If the gap of (b, c) is
not used for any of these end portions in Δ, then the edge (a, d) may send 1 unit
charge to Δ. Overall, Δ receives at most 1 unit of charge. Consequently, |E′′| is
bounded above by the number of faces of H, which is 2n − 4, as required. �

We now show that the bound of Theorem 2 is worst-case optimal. A 2-planar
graph with n vertices and 5n − 10 edges is also 1-gap-planar (see Lemma 6).
Pach and Tóth [38] construct such a graph by starting with a plane graph with
pentagonal faces (e.g., using nested copies of an icosahedron), and then add all
five diagonals in each pentagonal face; see Fig. 2(a). This construction yields a
1-gap-planar graph with n vertices and m = 5n − 10 edges for all n ≥ 20, n ≡ 5
(mod 15).

We can modify this construction by inserting a new vertex in one or more
pentagons, and connecting it to the 5 vertices of the pentagon; see Fig. 2(b).
Every new edge crosses exactly one diagonal of the pentagon, so the new crossings
can be charged to the new edges. Since every new vertex has degree 5, the
equation m = 5n − 10 prevails. By inserting a suitable number of vertices into
pentagons, we obtain constructions for n ∈ N such that 20 ≤ n ≤ 32 or n ≥ 38.
A similar construction is based on hexagonal faces; see Fig. 2(c). Start with a
fullerene, that is, a 3-regular, plane graph G0 with n0 vertices, 12 pentagon
faces, and n0/2 − 10 hexagon faces (including the external face). Add diagonals
in each face to connect a vertex to their second neighbors (the graph is 2-planar
so far); finally insert a new vertex in each face of G0, and connect them to
all vertices of that face. We obtain a 1-gap-planar graph G. The number of
vertices is n = n0 + 12 + (n0/2 − 10) = 3

2n0 + 2, and the number of edges is
m = 3

2n0 + 10 · 12 + 12 · (n0/2 − 10) = 15
2 n0 = 5n − 10. Fullerenes exist for

Gap-Planar Graphs 537

n0 = 20 and for all even integers n0 ≥ 24 [14]. This yields a lower bound of
5n− 10 for n = 32 and for all n ≥ 35 where n ≡ 2 mod 3. However, similarly to
the previous construction, the equation m = 5n − 10 prevails if we delete up to
12 vertices inserted into pentagons. Consequently, the upper bound 5n − 10 in
Theorem 2 is tight for all n ≥ 20.

Theorem 3. For every n ≥ 20 there exists a 1-gap-planar graph G with n
vertices and 5n − 10 edges.

4 1-gap-planar Drawings of Complete Graphs

Theorem 4. The complete graph Kn is 1-gap-planar if and only if n ≤ 8.

Proof. Figure 3(a) shows a 1-gap-planar drawing of K8, and by monotonicity
the graphs K1, . . . ,K7 are 1-gap-planar as well. We now prove that K9 is not
1-gap-planar, which again by monotonicity settles all cases Kn for n ≥ 9.

Since K9 has 36 edges and cr(K9) = 36, a 1-gap-planar drawing of K9 can
only arise from assigning exactly one gap to each edge in a crossing-minimal
drawing of K9 (cf. Property 1). We obtain a contradiction by showing that in
every crossing-minimal drawing of K9 some edge has no crossing at all.

Let Γ ∗ be the planarization of such a crossing-minimal drawing Γ . Note that
Γ ∗ has n∗ = 45 vertices and m∗ = 108 edges (since it has 9 real vertices of
degree 8 and 36 dummy vertices of degree 4), so by Euler’s formula, the number
of faces of Γ ∗ is f∗ = m∗ − n∗ + 2 = 108 − 45 + 2 = 65. For a real vertex u of
Γ ∗, we denote by F (u) the set of faces of Γ ∗ that are incident to u. We claim
that Γ ∗ is biconnected and |F (u)| = 8 for every real vertex u of Γ ∗.

Suppose, for a contradiction, that Γ ∗ is not biconnected. Then it contains a
cut-vertex c, which is either a dummy or a real vertex. If c is a dummy vertex,
note that it is adjacent to exactly two connected components of Γ ∗ \ {c}. Then
we can reflect the drawing of one of the two components, thereby eliminating the
crossing at c, which contradicts the crossing-minimality of Γ . We now show that
no real vertex is a cut-vertex in Γ ∗. Every 3-cycle in K9 forms a simple cycle in
Γ ∗ (since Γ is a simple drawing and thus adjacent edges do not cross). On the
other hand, any three real vertices in Γ ∗ are part of a 3-cycle in K9, and thus
part of a simple cycle in Γ ∗. Hence, no real vertex is a cut-vertex in Γ ∗. Finally,
|F (u)| = 8 because every real vertex u has degree 8 and Γ ∗ is biconnected.

It follows that there are real vertices u, v which share a face (i.e. F (u) ∩
F (v) 	= ∅), as otherwise there would have to be

∑
u |F (u)| = 9 ·8 = 72 > 65 = f∗

faces. But now the edge (u, v) can be redrawn inside this face, and since Γ was
assumed to be crossing-minimal this edge can not have had any crossing to begin
with. �

5 Recognizing 1-gap-planar Graphs

We use 1GapPlanarity to denote the problem of deciding whether a given
graph G is 1-gap-planar. We show that 1GapPlanarity is NP-complete, and

538 S. W. Bae et al.

(a)

u v

(b)

Fig. 3. A 1-gap-planar drawing of (a) K8 and (b) K3,12.

we use a reduction from 3Partition. Recall that an instance of 3Partition
consists of a multiset A = {a1, a2, . . . , a3m} of 3m positive integers in the range
(B/4, B/2), where B is an integer such that B = 1/m·∑3m

i=1 ai, and asks whether
A can be partitioned into m subsets A1, A2, . . . , Am, each of cardinality 3, such
that the sum of integers in each subset is B. This problem is strongly NP-
hard [24], and thus we may assume that B is bounded by a polynomial in m.

The fact that 1GapPlanarity is in NP can easily be shown by exploiting
Property 2.

Our reduction is reminiscent to the reduction used in [9]. However, the proof
in [9] holds only for the case in which a clockwise order of the edges around
each vertex is part of the input, i.e., only if the rotation system of the input
graph is fixed. A similar reduction is also used in [10], in which the rotation
system assumption is not used. However, the gadgets used in [10] have a unique
embedding. We do not use the fixed rotation system assumption, nor we can
easily derive a unique embedding for our gadgets, and thus have to deal with
additional challenges in our proof. In what follows we define a “blob” graph
that will be used to enforce an ordering among the edges adjacent to certain
vertices. Consider the complete bipartite graph K3,12, whose crossing number
is 30 [33,41]. We exhibit a 1-gap-planar drawing of K3,12 with exactly 30 gaps
in Fig. 3(b). Note that two degree-12 vertices, u and v, are drawn on the outer
face. Since K3,12 has 36 edges, the next lemma easily follows.

Lemma 2. Every 1-gap-planar drawing of K3,12 has at most 6 gap-free edges.

A blob B is a copy of K3,12. A gapped chain C of a 1-gap-planar drawing is
a closed, possibly nonsimple, curve such that any point of C either belongs to a
gap edge or it corresponds to a vertex.

Lemma 3. Let u and v be any two degree-12 vertices of B. Every 1-gap-planar
drawing Γ of B contains a gapped chain C containing u and v.

Sketch of proof. Let Γ ∗ be the planarization of Γ . Let Γ ′ be the subgraph of Γ ∗

consisting only of those edges that correspond to or belong to gap edges of Γ .

Gap-Planar Graphs 539

We prove that Γ ′ contains two edge-disjoint paths from u to v. Note that
these two edge-disjoint paths may meet at real vertices and at dummy vertices
(i.e., a crossing between two gap edges). A curve that goes through these two
paths is the desired gapped chain. According to Menger’s theorem, two such
paths exist if and only if every (u, v)-cut of Γ ′ has size at least 2, where a (u, v)-
cut of Γ ′ is a set of edges of Γ ′ whose removal disconnects u and v. Such edge
cuts correspond to cycles in the dual, which in turn correspond to curves that
separate u and v by crossing a set of edges. By Lemma 2, one can show that any
such curve crosses at least two gap edges in the original drawing Γ . �

We are now ready to show how to transform an instance A of 3Partition
into an instance GA of 1GapPlanarity. We start by defining some gadgets for
our construction. A path gadget Pk is a graph obtained by merging a sequence of
k > 0 blobs as follows. Denote by B1, B2, . . . , Bk, k blobs such that ui and vi are
two vertices of degree 12 in Bi. We let vi = ui+1 for i = 1, . . . , k−1, each of these
vertices is an attaching vertex. Thus, Pk has k + 1 attaching vertices. A 1-gap-
planar drawing of Pk is such that any two gapped chains of any two blobs Bi and
Bj (i < j) do not share points, except at a possible common attaching vertex. A
schematization of Pk (for k = 3) is shown in Fig. 4(a). A top beam Gt is a path
gadget Pk with k = 3m(�B/2� + 2) + 1. Recall that Gt has 3m(�B/2� + 2) + 2
attaching vertices. A right wall Gr is a path gadget Pk with k = 2. Symmetrically,
a bottom beam Gr is a path gadget with k = 3m(�B/2� + 2) + 1, and a left wall
Gl is a path gadget with k = 2. A global ring R is obtained by merging Gt, Gr,
Gb, and Gl in a cycle as in Fig. 4(b). Again, in any 1-gap-planar drawing ΓR of
R, the gapped chains of any two blobs Bi and Bj do not share points, except at
a possible common attaching vertex. Thus, ΓR contains a gapped chain CR that
is the union of all the gapped chains of the blobs of R.

We start the construction of GA with a global ring R. Let α, β, γ, δ be the
attaching vertices shared by Gl and Gt, Gt and Gr, Gr and Gb, Gb and Gl,
respectively (see also Fig. 4(b)). First we add the edges (α, β) and (γ, δ). Denote
as R+ the resulting graph, and consider a 1-gap-planar drawing of this graph.
The gapped chain of R subdivides the plane into a set of connected regions,
such that only two of them contain all of α, β, γ, and δ on their boundaries. We
denote these two regions as r1 and r2. For ease of illustration, we assume that
one of them is infinite (as in Fig. 4(b)), say r2. Since the drawing is 1-gap-planar,
each of (α, β) and (γ, δ) is drawn entirely in one of these two regions. We assume
that both these two edges are drawn in the same region, say r2, and we will later
show that this is the only possibility in any 1-gap-planar drawing of the final
graph GA. We continue by connecting the top and bottom beams by a set of 3m
columns; refer to Fig. 4(c). Each column consists of 2m − 1 cells; a cell consists
of a set of pairs of crossing edges, called its vertical pairs. In particular, there are
m−1 bottom cells, one central cell and m−1 top cells. Cells of the same column
are separated by 2m − 2 path gadgets, called floors. Note that we are assuming
a particular left-to-right order for the attaching vertex of a floor, we will see
that this is the only possible order in a 1-gap-planar drawing. The central cells
(we have 3m of them in total) have a number of vertical pairs depending on

540 S. W. Bae et al.

u1 B1

gapped chain of B1

B2 B3

v1 = u2

v3

(a) P3

Gt

Gl

Gb

Gr

α β

γδ

a b

(b) R

π2

π3

a bπ1

α β

γδ

(c) GA

Fig. 4. (a) Schematization of a path gadget P3. (b) A global ring R. (c) Schematization
of the instance GA with m = 3, A = {7, 7, 7, 8, 8, 8, 8, 9, 10} and B = 24. Transversal
paths are routed according to the following solution of 3Partition A1 = {7, 7, 10},
A2 = {7, 8, 9} and A3 = {8, 8, 8}. For simplicity, the gapped chains of the various blobs
are not shown, as well as vertex w and all the degree-2 vertices of the transversal paths.

the elements of A. Specifically, the central cell Ci of the i-th column contains
ai vertical pairs connecting its delimiting floors (i ∈ {1, 2, . . . , 3m}). Each of
the remaining cells each has �B/2� + 1 vertical pairs. Hence, a noncentral cell
contains more edges than any central cell. Further, the number of attaching
vertices of a floor can be computed based on how many vertical pairs must be
connected to the gadget. It is now straightforward to see that it is not possible
to draw both a column and one of (α, β) and (γ, δ) in r1 or r2 without violating
1-gap-planarity. Hence, we shall assume that both (α, β) and (γ, δ) are in r2
and that all the columns are in r1. Consider now a 1-gap-planar drawing of a
column. If we invert the left-to-right order of the attaching vertices of a floor
(i.e., we mirror its drawing), then the resulting drawing is not 1-gap-planar, since
each floor delimits at least one noncentral cell with �B/2� + 1 vertical pairs.
Moreover, since each vertical pair has a gap edge, two vertical pairs cannot cross
each other in a 1-gap-planar drawing, and thus the drawings of the columns
are disjoint one another. Finally, let a and b be the attaching vertices of the
left and right walls distinct from α, β, γ, and δ. We connect a and b with m
pairwise internally disjoint paths, called transversal paths; each transversal path
has exactly (3m − 3)(�B/2� + 1) + B edges. The routing of these paths will

Gap-Planar Graphs 541

be used to determine a solution of A, if it exists. Thus, we aim at forcing the
transversal paths to be inside r1 in a 1-gap-planar drawing of the graph. For
this purpose, adding a vertex w connected to all the attaching vertices of Gt and
Gb will suffice. Due to the presence of the columns in r1, vertex w must be in
r2 and, due to the edges (α, β) and (δ, γ) in r2, all its incident edges (except at
most two) are gapped. Thus, the transversal paths must be drawn in r1. This
concludes the construction of GA.

We can prove the following.

Theorem 5. The 1GapPlanarity problem is NP-complete.

We conclude by observing that our proof can be easily adjusted for the setting
in which the rotation system of the input graph is fixed. We call this problem
1GapPlanarityWithRotSys. It suffices to choose a rotation system for GA

that guarantees the existence of a 1-gap-planar drawing ignoring the transver-
sal paths (we already discussed the details of this drawing), and such that the
transversal paths are attached to a and b with the ordering of their edges around
a reversed with respect to the ordering around b. The membership of the problem
to NP can be easily verified. Thus, the next theorem follows.

Theorem 6. The 1GapPlanarityWithRotSys problem is NP-complete.

6 Relationship Between k-gap-planar Graphs and Other
Families of Beyond Planar Graphs

In this section we prove the following theorem.

Theorem 7. For every integer k ≥ 1, the following relationships hold.

(2k)-planar � k-gap-planar � (2k + 2)-quasiplanar

We begin by showing the following.

Lemma 4. For all k ≥ 1, every k-gap-planar drawing is (2k + 2)-quasiplanar.

Proof. Recall that a graph G is q-quasiplanar, for q ∈ N, if it admits a drawing
in which there is no subset of q pairwise crossing edges, or equivalently if every
subset of q edges has less than

(
q
2

)
= q(q − 1)/2 crossings. On the other hand,

in a k-gap-planar drawing there are at most kq crossings among any q edges
(Property 1). Consequently, a k-gap-planar graph is (2k + 2)-quasiplanar. �

We also need to show that for every k ∈ N there is a (2k + 2)-quasiplanar graph
that is not k-gap-planar. We prove a stronger statement:

Lemma 5. For all k ≥ 1, there is a 3-quasiplanar graph Gk that is not k-gap-
planar.

542 S. W. Bae et al.

Proof. Let k ∈ N. We construct a graph Gk = (V,E) as follows. Start with K3,3

and replace each edge by t = 19k edge-disjoint paths of length 2. Note that the
total number of edges is |E| = 9 · 2t = 18t. Graph Gk is 3-quasiplanar. Since
cr(K3,3) = 1, it admits a drawing with precisely one crossing. The paths of length
2 can be drawn close to the edges of K3,3 such that two paths cross if and only if
the two corresponding edges of K3,3 cross. Consequently any two crossing edges
in this drawing are part of two paths that correspond to two crossing edges of
K3,3, which in turn implies that no three edges of Gk pairwise cross.

Suppose that Gk admits a k-gap-planar drawing Γ . Then the total number
of crossings is at most k|E| = 18kt. We derive a contradiction by showing that
cr(Gk) ≥ 19kt. If we choose one of the t paths for each of the 9 edges of K3,3

independently, then we obtain a subdivision of K3,3, therefore there is a crossing
between at least one pair of paths. There are t9 ways to choose a path for each of
the 9 edges of K3,3. Each crossing between two paths in Γ is counted t9−2 = t7

times. Consequently, the total number of crossings in Γ is at least t2 = 19kt. �

We now show that every 2k-planar drawing is k-gap-planar. We note that
a similar result can be also derived from [16] (Lemma 10) for the case k = 1.
A bipartite graph with vertex sets A and B is denoted as H = (A,B,E). A
matching from A into B is a set M ⊆ E such that every vertex in A is incident
to exactly one edge in M and every vertex in B is incident to at most one edge
in M . The neighborhood of a subset A′ ⊆ A is the set of all vertices in B that
are adjacent to a vertex in A′, and is denoted as N(A′). We recall that, by Hall’s
theorem, the graph H has a matching from A into B if and only if for each set
A′ ⊆ A it is |N(A′)| ≥ |A′|.
Lemma 6. For all k ≥ 1, every (2k)-planar drawing is k-gap-planar.

Proof. Let G be a (2k)-planar graph, for any k ≥ 1, and let Γ be a 2k-planar
drawing of G. Let H = (A ∪ B,EH) be a bipartite graph obtained as follows.
The set A has a vertex ae,f for each crossing in Γ between two edges e and f
of G. For each edge e of G there are k vertices b1e, . . . , b

k
e in B. For every pair of

edges e, f of G that cross in Γ , graph H contains edges (ae,f , b1e), . . . , (ae,f , bke)
and (ae,f , b1f), . . . , (ae,f , bkf) in H. Notice that if H admits a matching of A in B,
then each crossing of Γ between an edge e and an edge f of G can be assigned
to either e or f , and no edge of G is assigned with more than k crossings.

Consider any subset A′ of A, and let B′ = N(A′) be the neighborhood of A′

in B. We claim that |A′| ≤ |B′|. Let E′ ⊆ EH denote the edges between A′ and
B′. By construction every vertex in A has degree 2k, and hence |E′| ≥ 2k|A′|.
On the other hand, every vertex in B has degree at most 2k as every edge of G
has at most 2k crossings, and hence |E′| ≤ 2k|B′|. Hence |A′| ≤ |B′| as claimed.

By Hall’s theorem, it now follows that H admits a matching from A into B,
which corresponds to an assignment of gaps in Γ such that no edge has more
than k gaps, i.e., Γ is a k-gap-planar drawing. �

To conclude the proof of Theorem 7, we should prove that for every k ≥ 1,
there is a k-gap-planar graph that is not 2k-planar. A stronger result holds:

Gap-Planar Graphs 543

Lemma 7. For every k ≥ 1, there exists a 1-gap-planar graph Gk that is not
k-planar.

7 Conclusions and Open Problems

We introduced k-gap-planar graphs, our results give rise to several questions for
future research. Among them are: (i) We proved that k-gap-planar graphs have
O(

√
k ·n) edges, and that 1-gap-planar graphs have at most 5n−10 edges, which

is a tight bound. Can we establish a tight bound also for 2-gap-planar graphs?
(ii) We proved that Kn is 1-gap-planar if and only if n ≤ 8. A similar charac-
terization could be studied also for complete bipartite graphs. Note that K5,7 is
not 1-gap-planar since it has crossing number greater than its number of edges,
while we can exhibit a 1-gap-planar drawing of K5,6. It is open whether K6,6

is 1-gap-planar. Similarly, K3,12 (Fig. 3(b)) and K4,8 are 1-gap-planar, while we
ask if this is true also for K3,13 and K4,9. (iii) We proved that deciding whether a
graph is 1-gap-planar is NP-complete, even if the rotation system is fixed. Does
the problem become polynomial for drawings in which all vertices are on the
outer boundary? (iv) We proved that a drawing with at most 2k crossings per
edge is k-gap-planar, and that a k-gap-planar drawing does not contain 2k + 2
pairwise crossing edges. Do 1-gap-planar graphs have RAC drawings with at
most 1 or 2 bends per edge?

References

1. Ackerman, E., Keszegh, B., Vizer, M.: On the size of planarly connected crossing
graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 311–320.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2 24

2. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Combin. Theory Ser. A 114(3), 563–571 (2007)

3. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs
have a linear number of edges. Combinatorica 17(1), 1–9 (1997)

4. Angelini, P., et al.: On the relationship between k -planar and k -quasi-planar
graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520,
pp. 59–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6 5

5. Appel, A., Rohlf, F.J., Stein, A.J.: The haloed line effect for hidden line elimination.
SIGGRAPH Comput. Graph. 13(2), 151–157 (1979)

6. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth,
D., Reislhuber, J.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016)

7. Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs
with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)

8. Bae, S.W., Baffier, J.F., Chun, J., Eades, P., Eickmeyer, K., Grilli, L., Hong, S.H.,
Korman, M., Montecchiani, F., Rutter, I., Tóth, C.D.: Gap-planar graphs. CoRR
abs/1708.07653 (2017). https://arxiv.org/abs/1708.07653

9. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.H., Kaufmann, M.: On the recog-
nition of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79, 1–27
(2016)

https://doi.org/10.1007/978-3-319-50106-2_24
https://doi.org/10.1007/978-3-319-68705-6_5
https://arxiv.org/abs/1708.07653

544 S. W. Bae et al.

10. Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC
drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48–57 (2017)

11. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On the density of non-simple 3-
planar graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp.
344–356. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2 27

12. Binucci, C., Di Giacomo, E., Didimo, W., Montecchiani, F., Patrignani, M., Symvo-
nis, A., Tollis, I.G.: Fan-planarity: properties and complexity. Theor. Comput. Sci.
589, 76–86 (2015)

13. Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montec-
chiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636,
1–16 (2016)

14. Brinkmann, G., Goedgebeur, J., McKay, B.D.: The generation of fullerenes. J.
Chem. Inf. Model. 52(11), 2910–2918 (2012)

15. Bruckdorfer, T., Cornelsen, S., Gutwenger, C., Kaufmann, M., Montecchiani, F.,
Nöllenburg, M., Wolff, A.: Progress on partial edge drawings. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 67–78. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36763-2 7

16. Bruckdorfer, T., Kaufmann, M.: Mad at edge crossings? Break the edges!. In:
Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 40–
50. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30347-0 7

17. Cheong, O., Har-Peled, S., Kim, H., Kim, H.-S.: On the number of edges of fan-
crossing free graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013.
LNCS, vol. 8283, pp. 163–173. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-45030-3 16

18. Dehkordi, H.R., Eades, P., Hong, S., Nguyen, Q.H.: Circular right-angle crossing
drawings in linear time. Theor. Comput. Sci. 639, 26–41 (2016)

19. Didimo, W., Liotta, G.: The crossing angle resolution in graph drawing. In: Pach,
J. (ed.) Thirty Essays on Geometric Graph Theory. Springer, New York (2012).
https://doi.org/10.1007/978-1-4614-0110-0 10

20. Eades, P., Hong, S., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear
time algorithm for testing maximal 1-planarity of graphs with a rotation system.
Theor. Comput. Sci. 513, 65–76 (2013)

21. Eppstein, D., van Kreveld, M.J., Mumford, E., Speckmann, B.: Edges and switches,
tunnels and bridges. Comput. Geom. 42(8), 790–802 (2009)

22. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J.
Discr. Math. 27(1), 550–561 (2013)

23. Frank, A., Gyárfás, A.: How to orient the edges of a graph? Colloq. Math. Soc.
János Bolyai 18, 353–364 (1978)

24. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

25. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few cross-
ings per edge. Algorithmica 49(1), 1–11 (2007)

26. Hoffmann, M., Tóth, C.D.: Two-planar graphs are quasiplanar. CoRR
abs/1705.05569 (2017). http://arxiv.org/abs/org/abs/1705.05569

27. Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time
algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015)

28. Hong, S.-H., Nagamochi, H.: Testing full outer-2-planarity in linear time. In: Mayr,
E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 406–421. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53174-7 29

https://doi.org/10.1007/978-3-319-50106-2_27
https://doi.org/10.1007/978-3-642-36763-2_7
https://doi.org/10.1007/978-3-642-30347-0_7
https://doi.org/10.1007/978-3-642-45030-3_16
https://doi.org/10.1007/978-3-642-45030-3_16
https://doi.org/10.1007/978-1-4614-0110-0_10
http://arxiv.org/abs/org/abs/1705.05569
https://doi.org/10.1007/978-3-662-53174-7_29

Gap-Planar Graphs 545

29. Hong, S.H., Kaufmann, M., Kobourov, S.G., Pach, J.: Beyond-planar graphs: algo-
rithmics and combinatorics (Dagstuhl Seminar 16452). Dagstuhl Rep. 6(11), 35–62
(2017)

30. Hong, S.H., Tokuyama, T.: Algorithmics for beyond planar graphs. In: NII
Shonan Meeting, Shonan Village Center (2016). http://shonan.nii.ac.jp/shonan/
blog/2015/11/15/3972/

31. Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read.
J. Vis. Lang. Comput. 25(4), 452–465 (2014)

32. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR
abs/1403.6184 (2014). http://arxiv.org/abs/org/abs/1403.6184

33. Kleitman, D.J.: The crossing number of K5,n. J. Combin. Theor. 9(4), 315–323
(1970)

34. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 59–74 (2017). https://doi.org/10.1007/978-3-319-
68705-6 5

35. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of
1-planarity testing. J. Graph Theor. 72(1), 30–71 (2013)

36. Liotta, G.: Graph drawing beyond planarity: some results and open problems.
In: ICTCS 2014. CEUR Workshop Proceedings, vol. 1231, pp. 3–8 (2014).
CEUR-WS.org

37. Pach, J., Radoičić, R., Tardos, G., Tóth, G.: Improving the crossing lemma by
finding more crossings in sparse graphs. Discrete Comput. Geom. 36(4), 527–552
(2006)

38. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

39. Picard, J.C., Queyranne, M.: A network flow solution to some nonlinear 0 − 1
programming problems, with applications to graph theory. Networks 12(2), 141–
159 (1982)

40. Venkateswaran, V.: Minimizing maximum indegree. Discr. Appl. Math. 143(13),
374–378 (2004)

41. Zarankiewicz, C.: On a problem of P. Turan concerning graphs. Fund. Math. 41(1),
137–145 (1955)

http://shonan.nii.ac.jp/shonan/blog/2015/11/15/3972/
http://shonan.nii.ac.jp/shonan/blog/2015/11/15/3972/
http://arxiv.org/abs/org/abs/1403.6184
https://doi.org/10.1007/978-3-319-68705-6_5
https://doi.org/10.1007/978-3-319-68705-6_5
http://CEUR-WS.org

Beyond Outerplanarity

Steven Chaplick1, Myroslav Kryven1, Giuseppe Liotta2, Andre Löffler1(B),
and Alexander Wolff1

1 Lehrstuhl für Informatik I, Universität Würzburg, Würzburg, Germany
andre.loffler@uni-wuerzburg.de

2 Department of Engineering, University of Perugia, Perugia, Italy
giuseppe.liotta@unipg.it

http://www1.informatik.uni-wuerzburg.de/en/staff

Abstract. We study straight-line drawings of graphs where the vertices
are placed in convex position in the plane, i.e., convex drawings. We
consider two families of graph classes with nice convex drawings: outer
k-planar graphs, where each edge is crossed by at most k other edges;
and, outer k-quasi-planar graphs where no k edges can mutually cross.

We show that the outer k-planar graphs are (�√4k + 1� + 1)-
degenerate, and consequently that every outer k-planar graph can be
(�√4k + 1� + 2)-colored, and this bound is tight. We further show that
every outer k-planar graph has a balanced separator of size at most
2k+3. For each fixed k, these small balanced separators allow us to test
outer k-planarity in quasi-polynomial time, i.e., none of these recognition
problems are NP-hard unless ETH fails.

For the outer k-quasi-planar graphs we discuss the edge-maximal
graphs which have been considered previously under different names.
We also construct planar 3-trees that are not outer 3-quasi-planar.

Finally, we restrict outer k-planar and outer k-quasi-planar drawings
to closed drawings, where the vertex sequence on the boundary is a
cycle in the graph. For each k, we express closed outer k-planarity and
closed outer k-quasi-planarity in extended monadic second-order logic.
Thus, since outer k-planar graphs have bounded treewidth, closed outer
k-planarity is linear-time testable by Courcelle’s Theorem.

1 Introduction

A drawing of a graph maps each vertex to a distinct point in the plane, each
edge to a Jordan curve connecting the points of its incident vertices but not
containing the point of any other vertex, and two such Jordan curves have at
most one common point. In the last few years, the focus in graph drawing has
shifted from exploiting structural properties of planar graphs to addressing the
question of how to produce well-structured (understandable) drawings in the
presence of edge crossings, i.e., to the topic of beyond-planar graph classes. The
primary approach here has been to define and study graph classes which allow

The full version of this paper is available at http://arxiv.org/abs/1708.08723v2.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 546–559, 2018.
https://doi.org/10.1007/978-3-319-73915-1_42

http://orcid.org/0000-0001-5872-718X
http://arxiv.org/abs/1708.08723v2

Beyond Outerplanarity 547

some edge crossings, but restrict the crossings in various ways. Two commonly
studied such graph classes are:

1. k-planar graphs, the graphs which can be drawn so that each edge (Jordan
curve) is crossed by at most k other edges.

2. k-quasi-planar graphs, the graphs which can be drawn so that no k pairwise
non-incident edges mutually cross.

Note that the 0-planar graphs and 2-quasi-planar graphs are precisely the
planar graphs. Additionally, the 3-quasi-planar graphs are simply called quasi-
planar.

In this paper we study these two families of classes of graphs by restricting
the drawings so that the points are placed in convex position and edges mapped
to line segments, i.e., we apply the above two generalizations of planar graphs to
outerplanar graphs and study outer k-planarity and outer k-quasi-planarity. We
consider balanced separators, treewidth, degeneracy (see paragraph “Concepts”
below), coloring, edge density, and recognition for these classes.

Related work. Ringel [27] was the first to consider k-planar graphs by showing
that 1-planar graphs are 7-colorable. This was later improved to 6-colorable
by Borodin [8]. This is tight since K6 is 1-planar. Many additional results on
1-planarity can be found in a recent survey paper [21]. Generally, each n-vertex
k-planar graph has at most 4.108n

√
k edges [26] and treewidth O(

√
kn) [14].

Outer k-planar graphs have been considered mostly for k ∈ {0, 1, 2}. Of
course, the outer 0-planar graphs are the classic outerplanar graphs which are
well-known to be 2-degenerate and have treewidth at most 2. It was shown that
essentially every graph property is testable on outerplanar graphs [5]. Outer
1-planar graphs are a simple subclass of planar graphs and can be recognized
in linear time [4,18]. Full outer 2-planar graphs, which form a subclass of outer
2-planar graphs, can been recognized in linear time [19]. General outer k-planar
graphs were considered by Binucci et al. [7], who (among other results) showed
that, for every k, there is a 2-tree which is not outer k-planar. Wood and Telle [30]
considered a slight generalization of outer k-planar graphs in their work and
showed that these graphs have treewidth O(k).

The k-quasi-planar graphs have been heavily studied from the perspective of
edge density. The goal here is to settle a conjecture of Pach et al. [25] stating
that every n-vertex k-quasi-planar graph has at most ckn edges, where ck is a
constant depending only on k. This conjecture is true for k = 3 [2] and k = 4 [1].
The best known upper bound is (n log n)2α(n)ck [16], where α is the inverse
of the Ackermann function. Edge density was also considered in the “outer”
setting: Capoyleas and Pach [9] showed that any k-quasi-planar graph has at
most 2(k−1)n−(

2k−1
2

)
edges, and that there are k-quasi-planar graphs meeting

this bound. More recently, it was shown that the semi-bar k-visibility graphs are
outer (k + 2)-quasi-planar [17]. However, the outer k-quasi-planar graph classes
do not seem to have received much further attention.

The relationship between k-planar graphs and k-quasi-planar graphs was
considered recently. While any k-planar graph is clearly (k + 2)-quasi-planar,
Angelini et al. [3] showed that any k-planar graph is even (k + 1)-quasi-planar.

548 S. Chaplick et al.

The convex (or 1-page book) crossing number of a graph [29] is the minimum
number of crossings which occur in any convex drawing. This concept has been
introduced several times (see [29] for more details). The convex crossing number
is NP-complete to compute [23]. However, recently Bannister and Eppstein [6]
used treewidth-based techniques (via extended monadic second order logic) to
show that it can be computed in linear FPT time, i.e., O(f(c) · n) time where c
is the convex crossing number and f is a computable function. Thus, for any k,
the outer k-crossing graphs can be recognized in time linear in n + m.
Concepts. We briefly define the key graph theoretic concepts that we will study.

A graph is d-degenerate when every subgraph of it has a vertex of degree
at most d. This concept was introduced as a way to provide easy coloring
bounds [22]. Namely, a d-degenerate graph can be inductively d + 1 colored
by simply removing a vertex of degree at most d. A graph class is d-degenerate
when every graph in the class is d-degenerate. Furthermore, a graph class which
is hereditary (i.e., closed under taking subgraphs) is d-degenerate when every
graph in that class has a vertex of degree at most d. Note that outerplanar
graphs are 2-degenerate, and planar graphs are 5-degenerate.

A separation of a graph G is pair A,B of subsets of V (G) such that A∪B =
V (G), and no edge of G has one end in A\B and the other in B\A. The set A∩B
is called a separator and the size of the separation (A,B) is |A∩B|. A separation
(A,B) of a graph G on n vertices is balanced if |A \ B| ≤ 2n

3 and |B \ A| ≤ 2n
3 .

The separation number of a graph G is the smallest number s such that every
subgraph of G has a balanced separation of size at most s. The treewidth of
a graph was introduced by Robertson and Seymour [28]; it is closely related
to the separation number. Namely, any graph with treewidth t has separation
number at most t+1 and, as Dvořák and Norin [15] recently showed, any graph
with separation number s has treewidth at most 105s. Graphs with bounded
treewidth are well-known due to Courcelle’s Theorem (see Theorem 6) [10], i.e.,
having bounded treewidth means many problems can be solved efficiently.

The Exponential Time Hypothesis (ETH) [20] is a complexity theoretic
assumption defined as follows. For k ≥ 3, let sk = inf{δ : there is an O(2δn)-time
algorithm to solve k-SAT}. ETH states that for k ≥ 3, sk > 0, e.g., there is no
quasi-polynomial time1 algorithm that solves 3-SAT. So, finding a problem that
can be solved in quasi-polynomial time and is also NP-complete, would contra-
dict ETH. In recent years, ETH has become a standard assumption from which
many conditional lower bounds have been proven [12].

Contribution. In Sect. 2, we consider outer k-planar graphs. We show that they
are (�√4k + 1	 + 1)-degenerate, and observe that the largest outer k-planar
clique has size (�√4k + 1	 + 2), i.e., implying each outer k-planar graph can
be (�√4k + 1	 + 2)-colored and this is tight. We further show that every outer
k-planar graph has separation number at most 2k + 3. For each fixed k, we
use these balanced separators to obtain a quasi-polynomial time algorithm to
test outer k-planarity, i.e., these recognition problems are not NP-hard unless
ETH fails.
1 i.e., with a runtime of the form 2poly(logn).

Beyond Outerplanarity 549

In Sect. 3, we consider outer k-quasi-planar graphs. Specifically, we discuss
the edge-maximal graphs which have been considered previously under different
names [9,13,24]. We also relate outer k-quasi-planar graphs to planar graphs.

Finally, in Sect. 4, we restrict outer k-planar and outer k-quasi-planar draw-
ings to closed drawings, where the sequence of vertices on the outer boundary
is a cycle. For each k, we express both closed outer k-planarity and closed outer
k-quasi-planarity in extended monadic second-order logic. Thus, closed outer
k-planarity is testable in O(f(k) · n) time, for a computable function f .

2 Outer k-Planar Graphs

In this section we show that every outer k-planar graph is O(
√

k)-degenerate
and has separation number O(k). This provides tight bounds on the chromatic
number, and allows for testing outer k-planarity in quasi-polynomial time.

Degeneracy. We show that every outer k-planar graph has a vertex of degree
at most

√
4k + 1 + 1. First we note the size of the largest outer k-planar clique

and then we prove that each outer k-planar graph has a vertex matching the
clique’s degree. This also tightly bounds the chromatic number in terms of k,
i.e., Theorem 1 follows from Lemma 1 (proven in Appendix B.1) and Lemma 2.

Lemma 1. Every outer k-planar clique has at most �√4k + 1	 + 2 vertices.

Lemma 2. An outer k-planar graph can have maximum minimum degree at
most

√
4k + 1 + 1 and this bound is tight.

Proof. Assume that the outer k-planar graph has maximum minimum degree
δ. Since we can create a clique with �√4k + 1	 + 2 vertices (see Lemma 1),
δ ≥ �√4k + 1	 + 1. Let us show that δ cannot be larger than

√
4k + 1 + 1.

Consider an edge ab that cuts l ∈ N vertices of the graph to one side (not
counting a and b), then there are at least δl − l(l + 1) edges crossing the edge
ab. We will now show by induction that if there existed an outer k-planar graph
with minimum degree δ ≥ √

4k + 1 + 2, it would be too small to accommodate
such a minimum degree vertex.

Any edge ab that cuts l vertices is crossed by at least δl − l(l + 1) edges.
Therefore, if δ ≥ √

4k + 1 + 2, there is l∗ such that ab cannot cut l∗ ≥ 1
2 (δ − 1 −√

(δ − 1)2 − 4(k + 1)) vertices because then it is crossed by δl∗−l∗(l∗+1) ≥ k+1
edges. Take the smallest such l∗ and let us show that there also cannot be an
edge ab that cuts more than l∗ vertices. As the induction hypothesis, assume
that no edge ab cuts between l∗ and l vertices inclusive. Thus, the minimum
number of edges that cross ab is: δl − l(l + 1) + 2(

∑l−l∗

j=1 j) > k, where the last
term accounts for the absent edges that cut more than l − l∗ vertices. Now, if ab
cuts l + 1 vertices, it is crossed by

≥ δl − l(l + 1) + 2(
∑l−l∗

j=1 j) + δ − 2(l + 1) + 2(l − l∗ + 1)

> k + δ − 2(l + 1) + 2(l − l∗ + 1) > k

edges if δ > 2l∗.

550 S. Chaplick et al.

Since for δ >
√

4k + 1 + 2 the inequality is always satisfied, there cannot be
an edge that cuts more then l∗ <

√
4k + 1/2 vertices in any outer k-planar graph

with the maximum minimum degree δ ≥ √
4k + 1 + 2. But then, such a graph

can have at most 2l∗ <
√

4k + 1 vertices, which is not enough to accommodate
the minimum degree vertex required; a contradiction.
�
Theorem 1. Each outer k-planar graph is

√
4k + 1 + 2 colorable. This is tight.

Quasi-polynomial time recognition via balanced separators. We show that
outer k-planar graphs have separation number at most 2k+3 (Theorem 2). Via a
result of Dvořák and Norin [15], this implies they have O(k) treewidth. However,
Proposition 8.5 of [30] implies that every outer k-planar graph has treewidth at
most 3k + 11, i.e., a better bound on the treewidth than applying the result of
Dvořák and Norin to our separators. The treewidth 3k + 11 bound also implies
a separation number of 3k + 12, but our bound is better. Our separators also
allow outer k-planarity testing in quasi-polynomial time (Theorem 3).

Theorem 2. Each outer k-planar graph has separation number at most 2k + 3.

Proof. Consider an outer k-planar drawing. If the graph has an edge that cuts
[n
3 , 2n

3] vertices to one side, we can use this edge to obtain a balanced separator
of size at most k + 2, i.e., by choosing the endpoints of this edge and a vertex
cover of the edges crossing it. So, suppose no such edge exists. Consider a pair of
vertices (a, b) such that the line ab divides the drawing into left and right sides
having an almost equal number of vertices (with a difference at most one). If
the edges which cross the line ab also mutually cross each other, there can be at
most k of them. Thus, we again have a balanced separator of size at most k + 2.
So, it remains to consider the case when we have a pair of edges that cross the
line ab, but do not cross each other. We call such a pair of edges parallel. We now
pick a pair of parallel edges in a specific way. Starting from b, let bl be the first
vertex along the boundary in clockwise direction such that there is an edge blb

′
l

that crosses the line ab. Symmetrically, starting from a, let ar be the first vertex
along the boundary in clockwise direction such that there is an edge ara

′
r that

crosses the line ab; see Fig. 1 (left). Note that the edges ara
′
r and blb

′
l are either

identical or parallel. In the former case, we see that all other edges crossing the
line ab must also cross the edge ara

′
r = blb

′
l, and as such there are again at most

k edges crossing the line ab. In the latter case, there are two subcases that we
treat below. For two vertices u and v, let [u, v] be the set of vertices that starts
with u and, going clockwise, ends with v. Let (u, v) = [u, v] \ {u, v}.

Case 1. The edge blb
′
l cuts μ ≤ n

3 vertices to the top; see Fig. 1 (center).
In this case, either [b′

l, b] or [b, bl] has [n
3 , n

2] vertices. We claim that neither
the line bbl nor the line bb′

l can be crossed more than k times. Namely, each
edge that crosses the line bbl also crosses the edge blb

′
l. Similarly, each edge that

crosses the line bb′
l also crosses the edge blb

′
l. Thus, we have a separator of size

at most k + 2, regardless of whether we choose bbl or bb′
l to separate the graph.

As we observed above, one of them is balanced.

Beyond Outerplanarity 551

a

b

bl

b′
l

ar

a′
r

a

b

bl

b′
l

n
3 ≥ μ

a

b

bl

b′
l

ar

a′
r

n
3 ≥ α

β ≤ n
3

γ

δ

Fig. 1. Left: the pair of parallel edges blb
′
l and ara

′
r; center: case 1; right: case 2

Case 1′. The edge ara
′
r cuts at most n

3 vertices to the bottom.
This is symmetric to case 1.

Case 2. The edge blb
′
l cuts at most n

3 vertices to the bottom, and the edge ara
′
r

cuts at most n
3 vertices to the top; see Fig. 1 (right).

We show that we can always find a pair of parallel edges such that one cuts
at most n

3 vertices to the bottom and the other cuts at most n
3 vertices to the

top, and no edge between them is parallel to either of them. We call such a pair
close. If there is an edge e between blb

′
l and ara

′
r, we form a new pair by using

e and ara
′
r if e cuts at most n

3 vertices to the bottom or by using e and blb
′
l

if e cuts at most n
3 vertices to the top. By repeating this procedure, we always

find a close pair. Hence, we can assume that blb
′
l and ara

′
r actually form a close

pair. Let α = |(a′
r, ar)|, β = |(b′

l, bl)|, γ = |(ar, b
′
l)|, and δ = |(bl, a

′
r)|; see Fig. 1

(right).
Suppose that a′

r = bl or ar = b′
l. We can now use both edges blb

′
l and ara

′
r

(together with any edges crossing them) to obtain a separator of size at most
2k + 3. The separator is balanced since α + β ≤ 2n

3 and γ + δ ≤ 2n
3 .

So, now ar, a
′
r, bl, b

′
l are all distinct. Note that γ, δ ≤ n

2 since each side of
the line ab has at most n

2 vertices. We separate the graph along the line blar.
Namely, all the edges that cross this line must also cross blb

′
l or a′

rar. Therefore,
we obtain a separator of size at most 2k + 2.

To see that the separator is balanced, we consider two cases. If δ ≥ n
3 (or

γ ≥ n
3), then α + β + γ ≤ 2n

3 (or α + β + δ ≤ 2n
3). Otherwise δ < n

3 and
γ < n

3 . In this case δ + α ≤ 2n
3 and γ + β ≤ 2n

3 . In both cases the separator is
balanced.
�
Theorem 3. For fixed k, testing the outer k-planarity of an n-vertex graph takes
O(2polylog n) time.

Proof. Our approach is to leverage the structure of the balanced separators as
described in the proof of Theorem 2. Namely, we enumerate the sets which could
correspond to such a separator, pick an appropriate outer k-planar drawing
of these vertices and their edges, partition the components arising from this
separator into regions, and recursively test the outer k-planarity of the regions.

552 S. Chaplick et al.

v

w1 w2

c2

c3

c4

c1

(a)

v

w

vi

wic2

c1

c3 c4

(b)

v

w

a1

b1

. . .
a�

(c)

Fig. 2. Shapes of separators, special separator S in blue, regions in different colors
(red, orange, and pink), components connected to blue vertices in green: (a) closest-
parallels case; (b) single-edge case; (c) special case for single-edge separators. (Color
figure online)

To obtain quasi-polynomial runtime, we need to limit the number of com-
ponents on which we branch. To do so, we group them into regions defined by
special edges of the separators.

By the proof of Theorem 2, if our input graph has an outer k-planar draw-
ing, there must be a separator which has one of the two shapes depicted in
Fig. 2(a) and (b). Here we are not only interested in the up to 2k + 3 vertices
of the balanced separator, but actually the set S of up to 4k + 3 vertices one
obtains by taking both endpoints of the edges used to find the separator. Note:
S is also a balanced separator. We use a brute force approach to find such an S.
Namely, we first enumerate vertex sets of size up to 4k + 3. We then consider
two possibilities, i.e., whether this set can be drawn similar to one of the two
shapes from Fig. 2. So, we now fix this set S. Note that since S has O(k) vertices,
the subgraph GS induced by S can have at most a function of k different outer
k-planar drawings. Thus, we further fix a particular drawing of GS .

We now consider the two different shapes separately. In the first case, in S,
we have three special vertices v, w1 and w2 and in the second case we will have
two special vertices v and w. These vertices will be called boundary vertices and
all other vertices in S will be called regional vertices. Note that, since we have
a fixed drawing of GS , the regional vertices are partitioned into regions by the
specially chosen boundary vertices. Now, from the structure of the separator
which is guaranteed by the proof of Theorem 2, no component of G \ S can be
adjacent to regional vertices which live in different regions with respect to the
boundary vertices.

We first discuss the case of using GS as depicted in Fig. 2(a). Here, we start
by picking the three special vertices v, w1 and w2 from S to take the role as
shown in Fig. 2(a). The following arguments regarding this shape of separator
are symmetric with respect to the pair of opposing regions.

Notice that if there is a component connected to regional vertices of different
regions, we can reject this configuration. From the proof of Theorem 2, we fur-
ther observe that no component can be adjacent to all three boundary vertices.
Namely, this would contradict the closeness of the parallel edges or it would

Beyond Outerplanarity 553

contradict the members of the separator, i.e., it would imply an edge connecting
distinct regions. We now consider the four possible different types of components
c1, c2, c3 and c4 in Fig. 2(a) that can occur in a region neighboring w1. Compo-
nents of type c1 are connected to (possibly many) regional vertices of the same
region and may be connected to boundary vertices as well. In any valid drawing,
they will end up in the same region as their regional vertices. Components of type
c2 are not connected to any regional vertices and only connected to one of the
three boundary vertices. Since they are not connected to regional vertices, they
can not interfere with other parts of the drawing, so we can arbitrarily assign
them to an adjacent region of their boundary vertex. Components that are con-
nected to two boundary vertices appear at first to have two possible placements,
e.g., as c3 or c4 in Fig. 2(a). However, c4 is not a valid placement for this type
of component since it would contradict the fact that this separator arose from
two close parallel edges as argued in the proof of Theorem 2. From the above
discussion, we see that from a fixed configuration (i.e., set S, drawing of GS ,
and triple of boundary vertices), if the drawing of GS has the shape depicted
in Fig. 2(a), we can either reject the current configuration (based on having bad
components), or we see that every component of G \ S is either attached to
exactly one boundary vertex or it has a well-defined placement into the regions
defined by the boundary vertices. For those components which are attached to
exactly one boundary vertex, we observe that it suffices to recursively produce a
drawing of that component together with its boundary vertex and to place this
drawing next to the boundary vertex. For the other components, we partition
them into their regions and recurse on the regions. This covers all cases for this
separator shape.

The other shape of our separator can be seen in Fig. 2(b). Note that we now
have two boundary vertices v and w and thus only have two regions. Again we
see the two component types c1 and c2 and can handle them as above. We also
have components connected to both v and w but no regional vertices. These
components now truly have two different placement options c3, c4. If we have
an edge viwi (as in Fig. 2(b)) of the separator that is not vw, we now observe
that there cannot be more than k such components. Namely, in any drawing,
for each component, there will be an edge connecting this component to either
v or w which crosses viwi. Thus, we now enumerate all the different placements
of these components as type c3 or c4 and recurse accordingly.

However, the separator may be exactly the pair (v, w). Note that there are no
components of type c1 and the components of type c2 can be handled as before.
We will now argue that we can have at most a function of k different components
of type c3 or c4 in a valid drawing. Consider the components of type c3 (the
components of type c4 can be counted similarly). In a valid drawing, each type
c3 component defines a sub-interval of the left region spanning from its highest to
its lowest vertex such that these vertices are adjacent to one of v or w. Two such
intervals relate in one of three ways: They overlap, they are disjoint, or one is
contained in the other. We group components with either overlapping or disjoint
intervals into layers. We depict this situation in Fig. 2(c) where, for simplicity,

554 S. Chaplick et al.

for every component we only draw its highest vertex and its lowest vertex and
they are connected by one edge.

Let a1b1 be the bottommost component of type c3 (i.e., a1 is the clockwise-
first vertex from v in a component of type c3). The first layer is defined as the
component a1b1 together with every component whose interval either overlaps
or is disjoint from the interval of a1b1. Now consider the green edge b1w (see
Fig. 2(c)), note we may have that this edge connects a1 to w instead. Now, for
every component of this layer which is disjoint from the interval of a1b1, this
edge is crossed by at least one edge connecting it to v. Furthermore, for every
component of this layer which overlaps the interval of a1b1, there is an edge
connecting b1 to either v or w which is crossed by at least one edge within that
component. So in total, there can only be O(k) components in this first layer.
New layers are defined by considering components whose intervals are contained
in a1b1. To limit the total number of layers, let a� be the bottommost vertex of
the first component of the deepest layer and consider the purple edge va�. This
edge is crossed by some edge of every layer above it and as any edge can only
have k crossings, there can only be O(k) different levels in total. This leaves us
with a total of at most O(k2) components per region and again we can enumerate
their placements and recurse accordingly.

The above algorithm provides the following recurrence regarding its runtime.
Namely, we let T (n) denote the runtime of our algorithm, and we can see that
the following expression generously upper bounds its value. Here f(s) denotes
the number of different outer k-planar drawings of a graph with s vertices.

T (n) ≤
{

nO(k) · f(4k + 3) · n3 · n · T (2n
3) for n > 5k

f(n) otherwise

Thus, the algorithm runs in quasi-polynomial time, i.e., 2poly(log n).
�

3 Outer k-Quasi-Planar Graphs

In this section we consider outer k-quasi-planar graphs. We first describe some
classes of graphs which are outer 3-quasi-planar. We then discuss edge-maximal
outer k-quasi-planar drawings.

Note, all sub-Hamiltonian planar graphs are outer 3-quasi-planar. One can
also see which complete and bipartite complete graphs are outer 3-quasi-planar.

Proposition 1. The following graphs are outer 3-quasi-planar: (a) K4,4; (b) K5;
(c) planar 3-tree with three complete levels; (d) square-grids of any size.

Proof. (a) and (b) are easily observed. (c) was experimentally verified by con-
structing a Boolean expression and using MiniSat to check it for satisfiability;
see Appendix A. (d) follows from square-grids being sub-Hamiltonian.
�

Correspondingly, we note complete and complete bipartite graphs which are
not outer-quasi planar. Furthermore, not all planar graphs are outer quasi-
planar, e.g., the vertex-minimal planar 3-tree in Fig. 3(a) is not outer quasi-
planar, this was verified checking for satisfiability the corresponding Boolean

Beyond Outerplanarity 555

(a) (b)

Fig. 3. A vertex-minimal 23-vertex planar 3-tree which is not outer quasi-planar:(a)
planar drawing; (b) deleting the blue vertex makes the drawing outer quasi-planar
(Color figure online)

expression; see Appendix A. A drawing of the graph in Fig. 3(b) was constructed
by removing the blue vertex and drawing the remaining graph in an outer quasi-
planar way.

Proposition 2. The following graphs are not outer 3-quasi-planar: (a) Kp,q,
p ≥ 3, q ≥ 5; (b) Kn, n ≥ 6; (c) planar 3-tree with four complete levels.

Together, Propositions 1 and 2 immediately yield the following.

Theorem 4. Planar graphs and outer 3-quasi-planar graphs are incomparable
under containment.

Remark 1. For outer k-quasi-planar graphs (k > 3) containment questions
become more intricate. Every planar graph is outer 5-quasi-planar because planar
graphs have page number 4 [31]. We also know a planar graph that is not outer
3-quasi-planar. It is open whether every planar graph is outer 4-quasi-planar.

Maximal outer k-quasi-planar graphs. A drawing of an outer k-quasi-planar
graph is called maximal if adding any edge to it destroys the outer k-quasi-
planarity. We call an outer k-quasi-planar graph maximal if it has a maximal
outer k-quasi-planar drawing. Recall that Capoyleas and Pach [9] showed the
following upper bound on the edge density of outer k-quasi-planar graphs on n
vertices: |E| ≤ 2(k − 1)n − (

2k−1
2

)
.

We prove (see Appendix B.2) that each maximal outer k-quasi-planar graph
meets this bound. Our proof builds on the ideas of Capoyleas and Pach [9] and
directly shows the result via an inductive argument. However, while preparing
the camera-ready version of this paper, we learned of two other proofs of this
result in the literature [13,24]. We thank David Wood for pointing us to these
results. Both papers prove a slightly stronger theorem (concerning edge flips)
as their main result. Namely, for a drawing G = (V,E), an edge flip produces
a new drawing G∗ by replacing an edge e ∈ E with a new edge e∗ ∈ (

n
2

) \ E.
They [13,24] show that, for every two maximal outer k-quasi-planar drawings
G = (V,E) and G′ = (V,E′), there is a sequence of edge flips producing drawings
G = G1, G2, . . . , Gt = G′ such that each Gi is a maximal k-quasi-planar drawing.

556 S. Chaplick et al.

Together with the tight example of Capoyleas and Pach [9], this implies the next
theorem, and makes our proof fairly redundant.

Theorem 5 ([13,24]). Each maximal outer k-quasi-planar drawing G = (V,E)
has:

|E| =

{(|V |
2

)
if |V | ≤ 2k − 1,

2(k − 1)|V | − (
2k−1

2

)
if |V | ≥ 2k − 1.

4 Closed Convex Drawings in MSO2

Here we express graph properties in extended monadic second-order logic
(MSO2). This subset of second-order logic is built from the following primitives.

– variables for vertices, edges, sets of vertices, and sets of edges;
– binary relations for: equality (=), membership in a set (∈), subset of a set

(⊆), and edge–vertex incidence (I);
– standard propositional logic operators: ¬, ∧, ∨, →.
– standard quantifiers (∀,∃) which can be applied to all types of variables.

For a graph G and an MSO2 formula φ, we use G |= φ to indicate that φ can
be satisfied by G in the obvious way. Properties expressed in this logic allow us
to use the powerful algorithmic result of Courcelle stated next.

Theorem 6 ([10,11]). For any integer t ≥ 0 and any MSO2 formula φ of length
�, an algorithm can be constructed which takes a graph G with treewidth at most
t and decides in O(f(t, �) · (n + m)) time whether G |= φ where the function f
from this time bound is a computable function of t and �.

Outer k-planar graphs are known to have treewidth O(k) (see Proposition 8.5
of [30]). So, expressing outer k-planarity by an MSO2 formula whose size is
a function of k would mean that outer k-planarity could be tested in linear
time. However, this task might be out of the scope of MSO2. The challenge in
expressing outer k-planarity in MSO2 is that MSO2 does not allow quantification
over sets of pairs of vertices which involve non-edges. Namely, it is unclear how
to express a set of pairs that forms the circular order of vertices on the boundary
of our convex drawing. However, if this circular order forms a Hamiltonian cycle
in our graph, then we can indeed express this in MSO2. With the edge set
of a Hamiltonian cycle of our graph in hand, we can then ask that this cycle
was chosen in such a way that the other edges satisfy either k-planarity or k-
quasi-planarity. With this motivation in mind, we define the classes closed outer
k-planar and closed outer k-quasi-planar, where closed means that there is an
appropriate convex drawing where the circular order forms a Hamiltonian cycle.
Our main result here is stated next.

Theorem 7. Closed outer k-planarity and closed outer k-quasi-planarity can be
expressed in MSO2. Thus, closed outer k-planarity can be tested in linear time.

Beyond Outerplanarity 557

The formulas for our graph properties are built using formulas for Hamil-
tonicity (Hamiltonian), partitioning of vertices into disjoint subsets (Vertex-
Partition) and connected induced subgraphs on sets of vertices using only a
subset of the edges (Connected). They can be found in Appendix C.

For a closed outer k-planar or closed outer k-quasi-planar graph G, we want
to express that two edges e and ei cross. To this end, we assume that there
is a Hamiltonian cycle E∗ of G that defines the outer face. We partition the
vertices of G into three subsets C, A, and B, as follows: C is the set containing
the endpoints of e, whereas A and B are connected subgraphs on the remaining
vertices that use only edges of E∗. In this way, we partition the vertices of G
into two sets, one left and the other one right of e. For such a partition, ei must
cross e whenever ei has one endpoint in A and one in B.

Crossing(E∗, e, ei) ≡ (∀A,B,C)
[(
Vertex-Partition(A,B,C)

∧ (I(e, x) ↔ x ∈ C) ∧ Connected(A,E∗) ∧ Connected(B,E∗)
)

→ (∃a ∈ A)(∃b ∈ B)[I(ei, a) ∧ I(ei, b)]
]

Now we can describe the crossing patterns for closed outer k-planarity and closed
outer k-quasi-planarity as follows:

Closed Outer k − PlanarG ≡ (∃E∗)
[
Hamiltonian(E∗)∧

(∀e)
[
(∀e1, . . . , ek+1)

[(k+1∧

i=1

ei �= e ∧
∧

i�=j

ei �= ej

)
→

k+1∨

i=1

¬Crossing(E∗, e, ei)
]]]

Here we insist that G is Hamiltonian and that, for every edge e and any set
of k + 1 distinct other edges, at least one among them does not cross e.

Closed Outer k − Quasi-PlanarG ≡ (∃E∗)
[
Hamiltonian(E∗)∧

(∀e1, . . . , ek)
[(∧

i�=j

ei �= ej

)
→

∨

i�=j

¬Crossing(E∗, ei, ej)
]]

Again, we insist that G is Hamiltonian and further that, for any set of k
distinct edges, there is at least one pair among them that does not cross.

We conclude this section by mentioning an intermediate concept between
closed outer k-planarity and outer k-planarity, i.e., full outer k-planarity [19].
The full outer k-planar graphs are defined as having a convex drawing which
is k-planar and additionally there is no crossing on the outer boundary of the
drawing. Hong and Nagamochi [19] gave a linear-time recognition algorithm for
full outer 2-planar graphs. Clearly, the closed 2-planar graphs are a subclass of
the full 2-planar graphs. So, one open question is whether one can generalize our
MSO2 expressions of closed outer k-planarity and closed outer k-quasi-planarity
to the full versions. If yes, this would provide linear-time recognition of full outer
k-planar graphs for every k, including the full outer 2-planar case.

558 S. Chaplick et al.

Acknowledgement. We acknowledge Alexander Ravsky, Thomas van Dijk, Fabian
Lipp, and Johannes Blum for their comments and preliminary discussion. We also
thank David Wood for pointing us to references [13,24,30].

References

1. Ackerman, E.: On the maximum number of edges in topological graphs with no four
pairwise crossing edges. Discrete Comput. Geom. 41(3), 365–375 (2009). https://
doi.org/10.1007/s00454-009-9143-9

2. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Combin. Theory Ser. A 114(3), 563–571 (2007). https://doi.org/10.
1016/j.jcta.2006.08.002

3. Angelini, P., et al.: On the Relationship Between k -Planar and k -Quasi-Planar
Graphs. In: Bodlaender, Hans L., Woeginger, Gerhard J. (eds.) WG 2017. LNCS,
vol. 10520, pp. 59–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68705-6 5

4. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth,
D., Reislhuber, J.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016).
https://doi.org/10.1007/s00453-015-0002-1

5. Babu, J., Khoury, A., Newman, I.: Every property of outerplanar graphs is testable.
In: Jansen, K., Mathieu, C., Rolim, J.D.P., Umans, C. (eds.) APPROX/RANDOM
2016. LIPIcs, vol. 60, pp. 21:1–21:19. Schloss Dagstuhl, Leibniz-Zentrum für Infor-
matik, Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.
2016.21

6. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page draw-
ings of graphs with bounded treewidth. In: Duncan, C., Symvonis, A. (eds.) GD
2014. LNCS, vol. 8871, pp. 210–221. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45803-7 18

7. Binucci, C., Di Giacomo, E., Hossain, M.I., Liotta, G.: 1-page and 2-page drawings
with bounded number of crossings per edge. In: Lipták, Z., Smyth, W.F. (eds.)
IWOCA 2015. LNCS, vol. 9538, pp. 38–51. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29516-9 4

8. Borodin, O.V.: Solution of the Ringel problem on vertex-face coloring of planar
graphs and coloring of 1-planar graphs. Metody Diskret. Analiz. 41, 12–26, 108
(1984)

9. Capoyleas, V., Pach, J.: A Turán-type theorem on chords of a convex poly-
gon. J. Combin. Theory Ser. B 56(1), 9–15 (1992). https://doi.org/10.1016/0095-
8956(92)90003-G

10. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inform. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-
5401(90)90043-H

11. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Cambridge University Press (2012)

12. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Lower bounds based on the exponential-time hypoth-
esis. Parameterized Algorithms, pp. 467–521. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3 14

13. Dress, A.W.M., Koolen, J.H., Moulton, V.: On line arrangements in the hyperbolic
plane. Eur. J. Comb. 23(5), 549–557 (2002). https://doi.org/10.1006/eujc.2002.
0582

https://doi.org/10.1007/s00454-009-9143-9
https://doi.org/10.1007/s00454-009-9143-9
https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1007/978-3-319-68705-6_5
https://doi.org/10.1007/978-3-319-68705-6_5
https://doi.org/10.1007/s00453-015-0002-1
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.21
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.21
https://doi.org/10.1007/978-3-662-45803-7_18
https://doi.org/10.1007/978-3-662-45803-7_18
https://doi.org/10.1007/978-3-319-29516-9_4
https://doi.org/10.1007/978-3-319-29516-9_4
https://doi.org/10.1016/0095-8956(92)90003-G
https://doi.org/10.1016/0095-8956(92)90003-G
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3_14
https://doi.org/10.1007/978-3-319-21275-3_14
https://doi.org/10.1006/eujc.2002.0582
https://doi.org/10.1006/eujc.2002.0582

Beyond Outerplanarity 559

14. Dujmović, V., Eppstein, D., Wood, D.R.: Structure of graphs with locally restricted
crossings. SIAM J. Discrete Math. 31(2), 805–824 (2017)

15. Dvořák, Z., Norin, S.: Treewidth of graphs with balanced separations. ArXiv
(2014). http://arxiv.org/abs/1408.3869

16. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J.
Discrete Math. 27(1), 550–561 (2013). https://doi.org/10.1137/110858586

17. Geneson, J., Khovanova, T., Tidor, J.: Convex geometric (k + 2)-quasiplanar rep-
resentations of semi-bar k-visibility graphs. Discrete Math. 331, 83–88 (2014).
https://doi.org/10.1016/j.disc.2014.05.001

18. Hong, S.H., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-
time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015).
https://doi.org/10.1007/s00453-014-9890-8

19. Hong, S.-H., Nagamochi, H.: Testing full outer-2-planarity in linear time. In: Mayr,
E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 406–421. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53174-7 29

20. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

21. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. ArXiv (2017). http://arxiv.org/abs/1703.02261

22. Lick, D.R., White, A.T.: k-degenerate graphs. Canadian J. Math. 22, 1082–1096
(1970). https://doi.org/10.4153/CJM-1970-125-1

23. Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T.: On the NP-completeness
of a computer network layout problem. In: Proceedings of IEEE International
Symposium Circuits and Systems, pp. 292–295 (1987)

24. Nakamigawa, T.: A generalization of diagonal flips in a convex polygon.
Theor. Comput. Sci. 235(2), 271–282 (2000). https://doi.org/10.1016/S0304-
3975(99)00199-1

25. Pach, J., Shahrokhi, F., Szegedy, M.: Applications of the crossing number. Algo-
rithmica 16(1), 111–117 (1996). https://doi.org/10.1007/BF02086610

26. Pach, J.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439
(1997). https://doi.org/10.1007/BF01215922

27. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Math-
ematischen Seminar der Universität Hamburg 29(1), 107–117 (1965). https://doi.
org/10.1007/BF02996313

28. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J.
Combin. Theory Ser. B 36(1), 49–64 (1984). https://doi.org/10.1016/0095-8956(84)
90013-3

29. Schaefer, M.: The graph crossing number and its variants: a survey. Electronic J.
Combin. DS21, 100 pages (2013, 2014). http://www.combinatorics.org/ojs/index.
php/eljc/article/view/DS21

30. Wood, D.R., Telle, J.A.: Planar decompositions and the crossing number of graphs
with an excluded minor. New York J. Math. 13, 117–146 (2007)

31. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
38(1), 36–67 (1989). https://doi.org/10.1016/0022-0000(89)90032-9

http://arxiv.org/abs/1408.3869
https://doi.org/10.1137/110858586
https://doi.org/10.1016/j.disc.2014.05.001
https://doi.org/10.1007/s00453-014-9890-8
https://doi.org/10.1007/978-3-662-53174-7_29
https://doi.org/10.1006/jcss.2000.1727
http://arxiv.org/abs/1703.02261
https://doi.org/10.4153/CJM-1970-125-1
https://doi.org/10.1016/S0304-3975(99)00199-1
https://doi.org/10.1016/S0304-3975(99)00199-1
https://doi.org/10.1007/BF02086610
https://doi.org/10.1007/BF01215922
https://doi.org/10.1007/BF02996313
https://doi.org/10.1007/BF02996313
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(84)90013-3
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
https://doi.org/10.1016/0022-0000(89)90032-9

The Effect of Planarization on Width

David Eppstein(B)

Department of Computer Science, University of California, Irvine, USA
eppstein@uci.edu

Abstract. We study the effects of planarization (the construction of a
planar diagram D from a non-planar graph G by replacing each cross-
ing by a new vertex) on graph width parameters. We show that for
treewidth, pathwidth, branchwidth, clique-width, and tree-depth there
exists a family of n-vertex graphs with bounded parameter value, all
of whose planarizations have parameter value Ω(n). However, for band-
width, cutwidth, and carving width, every graph with bounded parame-
ter value has a planarization of linear size whose parameter value remains
bounded. The same is true for the treewidth, pathwidth, and branch-
width of graphs of bounded degree.

1 Introduction

Planarization is a graph transformation, standard in graph drawing, in which
a given graph G is drawn in the plane with simple crossings of pairs of edges,
and then each crossing of two edges in the drawing is replaced by a new dummy
vertex, subdividing the two edges [1–4]. This should be distinguished from a dif-
ferent problem, also called planarization, in which we try to find a large planar
subgraph of a nonplanar graph [5–8]. A given graph G may have many different
planarizations, with different properties. Although the size of the planarization
(equivalently the crossing number of G) is of primary importance in graph draw-
ing, it is natural to ask what other properties can be transferred from G to its
planarizations.

One problem of this type arose in the work of Jansen and Wulms on the fixed-
parameter tractability of graph optimization problems on graphs of bounded
pathwidth [9]. One of their constructions involved the planarization of a non-
planar graph of bounded pathwidth, and they observed that the planarization
maintained the low pathwidth of their graph. Following this observation, Jansen
asked on cstheory.stackexchange.com whether planarization preserves the prop-
erty of having bounded pathwidth, and in particular whether K3,n (a graph of
bounded pathwidth) has a bounded-pathwidth planarization.1 This paper rep-
resents an extended response to this problem. We provide a negative answer

Supported in part by the National Science Foundation under Grants CCF-1228639,
CCF-1618301, and CCF-1616248. The author is grateful to Glencora Borradaile,
Erin Chambers, and Amir Nayyeri for discussions that helped clarify the distinctions
between some of the width parameters considered here.

1 See https://cstheory.stackexchange.com/q/35974/95.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 560–572, 2018.
https://doi.org/10.1007/978-3-319-73915-1_43

https://cstheory.stackexchange.com/q/35974/95

The Effect of Planarization on Width 561

Fig. 1. A tree-decomposition and path-decomposition of K3,5, with width three. Ver-
tices a, b, and c (on one side of the bipartition) belong to all bags; vertices p, q, r, s,
and t (on the other side) are each in only one bag.

to Jansen’s question: planarizations of K3,n do not have bounded pathwidth.
However, for bounded-degree graphs of bounded pathwidth, there always exists
a planarization that maintains bounded pathwidth. More generally we study
similar questions for many other standard graph width parameters.

Our work should be distinguished from a much earlier line of research on
planarization and width, in which constraints on the width of planar graphs
are transferred in the other direction, to information about the graph being
planarized. In particular, Leighton [1] used the facts that planar graphs have
width at most proportional to the square root of their size, and that (for certain
width parameters) planarization cannot decrease width, to show that when the
original graph has high width it must have crossing number quadratic in its
width. In our work, in contrast, we are assuming that the original graph has low
width and we derive properties of its planarization from that assumption.

1.1 Width Parameters in Graphs

There has been a significant amount of research on graph width parameters and
their algorithmic implications; see Nešetřil and Ossona de Mendez [10] for a more
detailed survey. We briefly describe the parameters that we use here.

Treewidth. Treewidth has many equivalent definitions; the one we use is that
the treewidth of a graph G is the minimum width of a tree-decomposition
of G [10]. Here, a tree-decomposition is a tree T whose nodes, called bags,
are labeled by sets of vertices of G. Each vertex of G must belong to the
bags of a contiguous subtree of T , and for each edge of G there must exist a
bag containing both endpoints of the edge. The width of the decomposition
is one less than the maximum cardinality of the bags. Figure 1 shows such a
decomposition for K3,5.

Pathwidth. The pathwidth of a graph is the minimum width of a tree-decom-
position whose tree is a path, as it is in Fig. 1 [10]. Equivalently the pathwidth
equals the minimum vertex separation number of a linear arrangement of the
vertices of G (an arrangement of the vertices into a linear sequence) [11].
Every linear arrangement of an n-vertex graph defines n − 1 cuts, that is,

562 D. Eppstein

n − 1 partitions of the vertices into a prefix of the sequence and a disjoint
suffix of the sequence. The vertex separation number of a linear arrangement
is the maximum, over these cuts, of the number of vertices in the prefix that
have a neighbor in the suffix. From a linear arrangement one can construct a
tree-decomposition in the form of a path, where the first bag on the path for
each vertex v contains v together with all vertices that are earlier than v in
the arrangement but that have v or a later vertex as a neighbor.

Cutwidth. The cutwidth of a graph equals the minimum edge separation num-
ber of a linear arrangement of the vertices of G [12]. The edge separation
number of a linear arrangement is the maximum, over the prefix–suffix cuts
of the arrangement, of the number of edges that cross the cut.

Bandwidth. The bandwidth of a graph equals the minimum span of a linear
arrangement of the vertices of G [12]. The span of a linear arrangement is
the maximum, over the edges of G, of the number of steps in the linear
arrangement between the endpoints of the edge.

Branchwidth. A branch-decomposition of a graph G is an undirected tree T ,
with leaves labeled by the edges of G, and with every interior vertex of T hav-
ing degree three. Removing any edge e from T partitions T into two subtrees;
these subtrees partition the leaves of T into two sets, and correspondingly
partition the edges of G into two subgraphs. The width of the decomposi-
tion is the maximum, over all edges e of T , of the number of vertices that
belong to both subgraphs. The branchwidth of G is the minimum width of
any branch-decomposition [13].

Carving width. A carving decomposition of a graph G is an undirected tree
T , with leaves labeled by the vertices of G, and with every interior vertex
of T having degree three. Removing any edge e from T partitions T into
two subtrees; these subtrees partition the leaves of T into two sets, and corre-
spondingly partition the vertices of G into two induced subgraphs. The width
of the decomposition is the maximum, over all edges e of T , of the number
of edges of G that connect one of these subgraphs to the other. The carving
width of G is the minimum width of any carving decomposition [13]. For
instance, Fig. 6 depicts a carving decomposition of K3,3 with width four, the
minimum possible for this graph.

Tree-depth. The tree-depth of G is the minimum depth of a depth-first-search
tree T of a supergraph of G (Fig. 2). Such a tree can be characterized more
simply by the property that every edge of G connects an ancestor–descendant
pair in T [10].

Clique-width. A clique-construction of a graph G is a process that constructs
a vertex-colored copy of G from smaller vertex-colored graphs by steps that
create a new colored vertex, take the disjoint union of two colored graphs,
add all edges from vertices of one color to vertices of another, or assigning a
new color to vertices of a given color. The width of a clique-construction is
the number of distinct colors it uses, and the clique-width of a graph is the
minimum width of a clique-construction [14].

The Effect of Planarization on Width 563

Fig. 2. K3,8 has tree-depth three: The depth-three tree shown by the green dashed
edges forms a depth-first search tree of a supergraph of K3,8. (Color figure online)

1.2 New Results

In this paper, we consider for each of the depth parameters listed above how the
parameter can change from a graph to its planarization, when the planarization is
chosen to minimize the parameter value. We show that for treewidth, pathwidth,
branchwidth, tree-depth, and clique-width there exists a graph with bounded
parameter value, all of whose planarizations have parameter value Ω(n). In each
of these cases, the graph can be chosen as a complete bipartite graph K3,n. (It
was also known that the planarizations of K3,n have quadratic size [15].)

However, for bandwidth, cutwidth, and carving width, every graph with
bounded parameter value has a planarization of linear size whose parameter
value remains bounded. The same is true for the treewidth, pathwidth, branch-
width, and clique-width of graphs of bounded degree. (Graphs of bounded degree
and bounded tree-depth have bounded size, so this final case is not interesting.)

2 Treewidth, Branchwidth, Pathwidth, Tree-Depth,
and Clique-Width

In this section we show that all planarizations of K3,n have high width. We begin
by computing the crossing number of K3,n. This is a special case of Turán’s brick
factory problem of determining the crossing number of all complete bipartite
graphs. For our results we need a variant of the crossing number, crpair(G),
defined as the minimum number of pairs of crossing edges (allowing edges to
cross each other multiple times, but only counting a single crossing in each case)
instead of the usual crossing number cr(G) defined as the number of points where
edges cross [16]. We bound this number by an adaptation of an argument from
Kleitman [17], who credits it to Zarankiewicz [15].

Lemma 1.

crpair(K3,n) =
(�n/2�

2

)
+

(�n/2�
2

)
=

⌊
n

2

⌋⌊
n − 1

2

⌋
.

564 D. Eppstein

Fig. 3. A drawing of K3,11 with 25 crossings, the minimum possible for this graph.

Proof. To show that a drawing with this many crossing pairs exists, place the
n vertices on one side of the bipartition of K3,n along the x-axis, with �n/2� on
one side of the origin and �n/2� on the other. Place the three vertices on the
other side of the bipartition along the y-axis, with two points on one side of the
origin and one on the other. Connect all of the pairs of points that have one point
on each axis by a straight line segment, as shown in Fig. 3. A straightforward
calculation shows that the number of crossings is as claimed.

In the other direction, we know as base cases that crpair(K3,2) = 0 and
crpair(K3,3) = 1. For any larger n, let the vertices of the n-vertex side of the
bipartition of K3,n be v1, v2, . . . vn. If every pair vi, vj form the endpoints of at
least one pair of crossing edges, then the total number of crossings is at least(
n
2

)
, larger than the stated bound; otherwise, order the vertices so that vn−1 and

vn do not form the endpoints of any pair of crossing edges.
Then, in any drawing of K3,n, the K3,n−2 subgraph formed by deleting vn−1

and vn has crpair(K3,n−2) crossings. Each of the n − 2 K3,3 subgraphs induced
by vn−1, vn, exactly one other vi, and the three vertices on the other side of the
bipartition supplies at least one additional crossing, because crpair(K3,3) = 1.
None of these subgraphs share any crossings, because the crossings in the K3,n−2

subgraph involve neither vn−1 nor vn, while the crossings in the K3,3 subgraph
all involve exactly one of these two vertices and the one other vertex vi included
in the subgraph. Therefore, we have that

crpair(K3,n) ≥ crpair(K3,n−2) + (n − 2) crpair(K3,3).

The result follows by induction on n. ��
This lemma shows that the crossing graph of a drawing, with a vertex in

the crossing graph for each edge of K3,n and an edge in the crossing graph for
each crossing of the drawing, has constant density, in the following sense. We
define the density of a graph with m edges and n vertices to be m/

(
n
2

)
. This is a

number in the range [0, 1]. For instance, the crossing graph of any planarization
of K3,n has 3n vertices and (by Lemma 1) at least

(
1 − o(1)

)
n2/4 edges, so its

density is at least

The Effect of Planarization on Width 565

(
1 − o(1)

)n2

4

/ (
3n

2

)
=

1
18

− o(1).

To prove that planarizations of K3,n have high treewidth, we need higher densi-
ties than this, which we will achieve using the following “densification lemma”:

Lemma 2. Let G be a disconnected graph with n vertices and m edges, such
that the ith connected component of G has ni vertices and mi edges. Then there
exists i such that mi/ni ≥ m/n.

Proof. We can represent m/n as a convex combination of the corresponding
quantities in the subgraphs:

m

n
=

∑
i

ni

n
· mi

ni
.

The result follows from the fact that a convex combination of numbers cannot
exceed the maximum of the numbers. ��

Given a tree-decomposition T of a drawing D of K3,n, and any connected
subtree S of T , we define a crossing graph CS as follows. Let ES be the subset
of edges of K3,n with the property that, for each edge e in ES , the only bags
of T that contain crossings on e are the bags in S. (We do not require the two
endpoints of e in K3,n to belong to these bags.) Then CS is a graph having ES

as its vertex set, and having an edge for each pair of edges in ES that cross
in D. For instance, CT is the crossing graph of the whole drawing, as defined
earlier. We will use Lemma 2 to find subtrees S whose graphs CS are more dense
(relative to their numbers of vertices) than CT . To do so, we use the separation
properties of trees:

Lemma 3. Let T be a tree-decomposition T of a drawing D of K3,n, and suppose
that T has width w. Let S be a subtree of T such that CS has nS vertices and
mS edges. Then there exists a bag B ∈ S with the following properties:

– The removal of B disconnects S into subtrees Si.
– For subtree Si, the corresponding crossing graph CSi

has at most nS/2 ver-
tices.

– The total number of edges in all of the crossing graphs CSi
for all of the

subtrees Si is at least S − 2(w + 1)(n − 2).

Proof. We choose B arbitrarily, and then as long as it fails to meet the condition
on the number of vertices in the graphs CSi

we move B to the (unique) adjacent
bag in which this condition is not met. After the move, the subtree containing
the former location of B has at most nS/2 vertices in CSi

, because these vertices
are disjoint from the ones in the large subtree before the move. Moving B also
cannot increase the numbers of vertices in the crossing graphs of the subtrees
formed from the partition of the large subtree, and it reduces the numbers of

566 D. Eppstein

bags in those subtrees. Therefore, this process must eventually terminate at a
choice of B for which all crossing graphs have the stated number of vertices.

An edge e in CS (representing a crossing between two edges f and f ′ of
K3,n) will belong to one of the CSi

unless B contains a crossing point on f or
on f ′. B may contain at most w + 1 crossings of D, and each may eliminate at
most 2(n − 2) edges of CS (if it is a crossing of two edges in ES and each has
n−2 other crossings). Therefore, the total number of edges in all of the crossing
graphs CSi

for all of the subtrees Si is as stated. ��
Theorem 1. Every planarization of K3,n has treewidth Ω(n).

Proof. Let D be an arbitrary planarization of K3,n, and let T be a minimum-
width tree-decomposition of D. Let ε > 0 be a constant to be determined later.
We will show that T either has width at least εn, or it has a subtree S whose
crossing graph CS has density strictly greater than one. Since no graph (without
repeated edges) can have density so high, the only possibility is that T has width
at least εn = Ω(n).

To find S, for drawings whose width is at most εn, begin with S = T . Then,
repeatedly use Lemma 3 to partition the current choice of subtree S into smaller
subtrees, and then use Lemma 2 to find one of these subtrees that is dense.
Each such step reduces the number of vertices in CS by at least a factor of two,
while also reducing the number of edges by approximately the same reduction
factor (approximately because of the O(εn2) edges of the crossing graph that
are eliminated by the application of Lemma 3). Therefore, each step increases
the density of CS by a factor of 2 − O(ε). When S = T , the density is at least
1/18 − o(1), so after at most five steps the density is (32 − O(ε))(1/18 − o(1)).

To complete the argument, we need only choose ε to be small enough so that
this expression, (32 − O(ε))(1/18 − o(1)), has a value exceeding one. ��
Corollary 1. For every planarization of K3,n, and every parameter in
{pathwidth, cutwidth, bandwidth, branchwidth, carving width, tree-depth, clique-
width}, the value of the parameter on the planarization is Ω(n). Therefore, there
exists a family of graphs for which each of these parameters is bounded but for
each each planarization has linear parameter value.

Proof. All of these parameters except clique-width are bounded from below by
a linear function of the treewidth.

As with any complete bipartite graph, the clique-width of K3,n−3 is two:
it can be constructed from a disjoint union of single vertices of two colors, by
adding edges between all bichromatic pairs of vertices (Fig. 4). The Ω(n) lower
bound on clique-width follows from the facts that (as a planar graph) any pla-
narization has no K3,3 subgraph and that, for graphs with no Kt,t subgraph,
the treewidth is upper-bounded by a constant factor (depending on t) times the
clique-width [18]. Equivalently, the clique-width of any planarization is lower-
bounded by a constant times its treewidth, which by Theorem1 is Ω(n). ��

The Effect of Planarization on Width 567

Fig. 4. Clique-width 2 construction of K3,6 by a disjoint union of colored single vertices,
followed by an operation that adds an edge between each bichromatic pair of vertices.

3 Cutwidth and Bounded-Degree Pathwidth

Cutwidth behaves particularly well under planarization:2

Theorem 2. Let G be a graph with n vertices and m edges, of cutwidth w. Then
G has a planarization with O(n + wm) vertices, of cutwidth at most w.

Proof. Consider a linear arrangement of G with edge separation number w, and
use the positions in this arrangement as x-coordinates for the vertices. Assign
the vertices y-coordinates that place them into convex and general position,
draw the edges of G as straight line segments between the resulting points, and
planarize the drawing by replacing each crossing by a vertex. Here, by “general
position” we mean that no two points have the same x-coordinate, no five points
form a pentagon in which two crossing points and a vertex have the same x-
coordinate, no six points form a hexagon with three coincident diagonals, and
no eight points form an octagon in which the crossing points of two pairs of
diagonals have the same x-coordinate. This will all be true of a rotation by a
sufficiently small but nonzero angle of any convex placement. In the resulting
drawing, there can be no intersections of vertices or edges other than incidences
and simple crossings, and no two vertices or crossing points can have the same
x-coordinate. An example is shown in Fig. 5.

We use the ordering by x-coordinates of the planarization as a linear arrange-
ment of the planarization. The edge intersection number is the maximum number
of edges in the drawing that can be cut by any vertical line, unchanged between
G and its planarization.

2 After the appearance of the preprint version of this paper [19], we learned that this
result has been obtained independently by van Geffen et al. [20].

568 D. Eppstein

Fig. 5. Planarizing a graph of low cutwidth (here K3,4, drawn with edge separation
number six) by lifting its linear arrangement to a convex curve.

Because of the convex position of the vertices of G, each edge (u, v) of G can
only be crossed by other edges that cross exactly one of the two vertical lines
through u and v; there are O(w) such edges, so the number of crossings per edge
is O(w) and the total number of crossings is O(wm). ��

The lower bound of Corollary 1 does not contradict Theorem 2 because K3,n

does not have bounded cutwidth. Its cutwidth is at least 3�n/2�, obtained in any
linear arrangement at the cut between the first �n/2� vertices on the n-vertex
side of the bipartition (together with any vertices from the other side that are
mixed among them) and the remaining vertices of the graph. For instance, the
drawing of K3,4 in Fig. 5 achieves the optimal cutwidth of six for this graph. An
example showing that the planarization size bound is tight is given by a disjoint
union of O(n/w) bounded-degree expander graphs, each having O(w) vertices
and crossing number Θ(w2).

Corollary 2. Let G be a graph with bounded pathwidth and bounded maximum
degree. Then G has a planarization with linear size and bounded pathwidth.

Proof. If a graph has pathwidth w and maximum degree d, it has cutwidth at
most dw [12], and so does its planarization (Theorem2). Because the planariza-
tion has cutwidth at most dw, it also has pathwidth at most dw, because the
vertex separation number of any linear arrangement is at most equal to the edge
separation number (with equality when the separation number is achieved by a
matching). ��

4 Bandwidth

The same construction used for planarizing graphs with low cutwidth also works
for graphs of low bandwidth.

Theorem 3. Let G be a graph with n vertices and m edges, of bandwidth w.
Then G has a planarization with O(n+w2m) vertices, whose bandwidth is O(w4).

The Effect of Planarization on Width 569

Proof. We lift a linear arrangement of G with low span to a convex curve in the
plane, as in the proof of Theorem2. Within the span of any edge e of G, there
are O(w2) other edges and O(w4) crossings of those edges, so the span of e in the
planarization is O(w4). This bound applies also to the span of any segment of
e created by crossings with other vertices. Each edge may be crossed by O(w2)
other edges, so the total number of dummy vertices added is O(w2m). ��

It may be possible to reduce the bandwidth of the planarization by intro-
ducing artificial crossings to break up edges with long spans, but we have not
pursued this approach as we do not believe it will lead to better graph drawings.

5 Carving Width and Bounded-Degree Treewidth

If a graph has low carving width, we can use its carving decomposition (a tree
with the vertices at its leaves, internal degree three, and with few edges spanning
the cut determined by each tree edge) to guide a drawing of the algorithm that
leads to a planarization with low carving width.

It is helpful, for our construction, to relate carving width to cutwidth.

Lemma 4. If a graph G has cutwidth w and maximum degree d, then G has
carving width at most max(w, d).

Proof. We form a carving decomposition of G in the form of a caterpillar: a
path with each path vertex having a single leaf connected to it (except for the
ends of the path which have two connected leaves). The ordering of the leaves
is given by a linear arrangement minimizing the edge separation number. Then
the cuts of the carving decomposition that are determined by edges of the path
are exactly the ones determining the edge separation number, w. The remaining
cuts, determined by leaf edges of the tree, are crossed by the neighboring edges
of each vertex, of which there are at most d. An example of this construction can
be seen in Fig. 5: the dashed horizontal green line represents the path from which
the carving decomposition is formed, the heavy vertical green lines correspond to
the leaf edges of the carving decomposition of K3,4, and the thin vertical green
edges correspond to the leaf edges of the carving decomposition of a planarization
of K3,4. ��
Theorem 4. If an n-vertex graph G has carving width w, then G has a pla-
narization with O(w2n) additional vertices that still has carving width at most w.

Proof. Let T be the tree of a carving decomposition of G with width w. Draw T
without crossings in the plane, with straight-line edges, and thicken the vertices
of T to disks and the edges of T to rectangles without introducing any addi-
tional self-intersections of the drawing. Place each vertex of G in the disk of the
corresponding leaf vertex of T . Route each edge of G as a curve through the rect-
angles and disks connecting its endpoints, so that within each rectangle it forms
a monotone curve (with respect to the orientation of the rectangle) crossing at

570 D. Eppstein

Fig. 6. Using a carving decomposition of K3,3 to guide a planarization.

most once each other edge routed within the same rectangle, and so that, at each
end of each rectangle, the curves are sorted by the ordering of their destination
leaves in the planar embedding of T . With this sorted ordering, there need not
be any crossings within the disks representing internal vertices of T , nor in the
rectangles representing leaf edges of T (Fig. 6). The n − 3 remaining edges of T
each contain at most

(
w
2

)
crossings. So the total number of crossings is at most

(n − 3)
(
w
2

)
= O(w2n).

This drawing cannot yet be recognized as a carving decomposition of a pla-
narization of G, because some of its vertices (the dummy vertices introduced
at crossings) are now placed along the edges of T rather than at leaves. How-
ever, by topologically sweeping the arrangement of monotone curves [21] within
each rectangle corresponding to an edge of T , we can arrange the crossing points
within that rectangle into a linear sequence, such that the portion of the drawing
within that rectangle has edge separation number at most w for that sequence.
Applying Lemma 4 (replacing the edge of T by a carving decomposition in the
form of a caterpillar, with a leaf of the decomposition for each vertex added in
the planarization to replace a crossing of G, and with the ordering of these leaves
given by a topological sweep of the arrangement) produces a carving decompo-
sition of the planarization with width w, as required. ��

We note that this planarization technique resembles the “simple planariza-
tion” method of Di Battista et al. [2] for clustered graphs. In this respect, we
may view the carving decomposition of G as a clustering to be respected by the
planarization.

In an appendix to the preprint version of this paper [19], we prove the fol-
lowing strengthening of Theorem 4:

The Effect of Planarization on Width 571

Theorem 5. If an n-vertex graph G has carving width w, then G has a pla-
narization with O(w3/2n) additional vertices that still has carving width O(w).

An example showing that Theorem5 is tight is given by a cluster graph
consisting of O(n/

√
w) disjoint cliques of size O(

√
w), each requiring Θ(w2)

crossings in any drawing.

Corollary 3. Let G be a graph with bounded treewidth or branchwidth and
bounded maximum degree. Then G has a planarization with linear size and
bounded treewidth and branchwidth.

Proof. Treewidth and branchwidth are always within a constant factor of each
other [13] so we may concentrate on the results for branchwidth, and the corre-
sponding results for treewidth will follow automatically.

A carving decomposition may be converted into a branch decomposition by
replacing each leaf of the carving decomposition (representing a vertex of the
given graph) with a subtree (representing edges adjacent to the given vertex),
in such a way that each edge is represented at exactly one of its endpoints. This
increases the width of the decomposition by at most a factor equal to the degree.
In the other direction, a branch decomposition may be converted into a carving
decomposition by replacing each leaf of the branch decomposition (representing
an edge of the given graph) by a subtree of zero, one, or two leaves (representing
endpoints of the edge) in such a way that each vertex is represented at exactly
one of its incident edges. This increases the width of the decomposition by at
most a factor of two. So, the carving width is at most the degree times the
branchwidth, and at least half the branchwidth [22].

Therefore, if G has bounded branchwidth and bounded maximum degree, it
has bounded carving width, and Theorem 4 tells us that it has a planarization
of linear size that also has bounded carving width. The same planarization also
must have bounded branchwidth. ��

References

1. Leighton, F.T.: New lower bound techniques for VLSI. In: Proceedings of 22nd
Symposium on Foundations of Computer Science (FOCS 1981), pp. 1–12. IEEE
(1981)

2. Di Battista, G., Didimo, W., Marcandalli, A.: Planarization of clustered graphs.
In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 60–74.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4 5

3. Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings and
planarization. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualiza-
tion. Discrete Mathematics and its Applications, pp. 43–86. CRC Press (2014)

4. Garfunkel, S., Shank, H.: On the undecidability of finite planar graphs. J. Symb.
Log. 36, 121–126 (1971)

5. Thulasiraman, K., Jayakumar, R., Swamy, M.N.S.: On maximal planarization of
nonplanar graphs. IEEE Trans. Circ. Syst. 33(8), 843–844 (1986)

6. Cimikowski, R.: An analysis of heuristics for graph planarization. J. Inform. Optim.
Sci. 18(1), 49–73 (1997)

https://doi.org/10.1007/3-540-45848-4_5

572 D. Eppstein

7. Chuzhoy, J., Makarychev, Y., Sidiropoulos, A.: On graph crossing number and
edge planarization. In: Randall, D. (ed.) Proceedings of 22nd ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2011). Society for Industrial and Applied
Mathematics, pp. 1050–1069 (2011)

8. Borradaile, G., Eppstein, D., Zhu, P.: Planar induced subgraphs of sparse graphs.
J. Graph Algorithms Appl. 19(1), 281–297 (2015)

9. Jansen, B.M.P., Wulms, J.J.H.M.: Lower bounds for protrusion replacement by
counting equivalence classes. In: Guo, J., Hermelin, D. (eds.) Proceedings of
11th International Symposium on Parameterized and Exact Computation (IPEC
2016). Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, vol. 63, pp. 17:1–17:12 (2016)

10. Nešetřil, J., Ossona de Mendez, P.: Sparsity. Graphs, Structures, and Algo-
rithms. AC, vol. 28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27875-4

11. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Inform. Process. Lett. 42(6), 345–350 (1992)

12. Chung, F.R.K., Seymour, P.D.: Graphs with small bandwidth and cutwidth. Dis-
crete Math. 75(1–3), 113–119 (1989)

13. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

14. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM J. Comput. 34(4), 825–847 (2005)

15. Zarankiewicz, K.: On a problem of P. Turan concerning graphs. Fund. Math. 41,
137–145 (1954)

16. Pach, J., Tóth, G.: Which crossing number is it, anyway? In: Motwani, R. (ed.) Pro-
ceedings of 39th Symposium on Foundations of Computer Science (FOCS 1998),
pp. 617–626. IEEE (1998)

17. Kleitman, D.J.: The crossing number of K5,n. J. Comb. Theory 9, 315–323 (1970)
18. Gurski, F., Wanke, E.: The tree-width of clique-width bounded graphs without

Kn,n. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS, vol. 1928, pp. 196–205.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40064-8 19

19. Eppstein, D.: The effect of planarization on width. Electronic preprint
arxiv:1708.05155 (2017)

20. van Geffen, B.A.M., Jansen, B.M.P., de Kroon, N.A.W.M., Morel, R., Nederlof, J.:
Optimal algorithms on graphs of bounded width (and degree): cutwidth sometimes
beats treewidth, but planarity does not help. Manuscript (2017)

21. Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. J. Com-
put. Syst. Sci. 38(1), 165–194 (1989)

22. Nestoridis, N.V., Thilikos, D.M.: Square roots of minor closed graph classes. Dis-
crete Appl. Math. 168, 34–39 (2014)

https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/3-540-40064-8_19
http://arxiv.org/abs/1708.05155

Contest Report

Graph Drawing Contest Report

William Devanny1, Philipp Kindermann2, Maarten Löffler3(B),
and Ignaz Rutter4

1 University of California, Irvine, USA
levnach@microsoft.com

2 FernUniversität in Hagen, Hagen, Germany
philipp.kindermann@fernuni-hagen.de

3 Utrecht University, Utrecht, The Netherlands
m.loffler@uu.nl

4 Karlsruhe Institute of Technology, Karlsruhe, Germany
rutter@kit.edu

Abstract. This report describes the 24th Annual Graph Drawing Con-
test, held in conjunction with the 25th International Symposium on
Graph Drawing (GD’17) in Boston, United States of America. The pur-
pose of the contest is to monitor and challenge the current state of the
art in graph-drawing technology.

1 Introduction

This year, the Graph Drawing Contest was divided into two parts: the creative
topics and the live challenge.

The creative topics had two graphs: the first one was a graph about citations
among previously presented papers in the Graph Drawing Symposium, and the
second one described human metabolism and was previously one of the largest
manually drawn graphs in biology. The data sets for the creative topics were
published almost a year in advance, and contestants could solve and submit their
results before the conference started. The submitted drawings were evaluated
according to aesthetic appearance, domain-specific requirements, and how well
the data was visually represented.

The live challenge took place during the conference in a format similar to a
typical programming contest. Teams were presented with a collection of challenge
graphs and had one hour to submit their highest scoring drawings. This year’s
topic was to maximize the smallest crossing angle in a straight-line drawing of
a graph with vertex locations restricted to a grid.

Overall, we received 12 submissions: 3 submissions for the creative topics and
9 submissions for the live challenge.

2 Creative Topics

The two creative topics for this year were a graph about the graph drawing
citations, and a human metabolism hypergraph. The goal was to visualize each
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 575–582, 2018.
https://doi.org/10.1007/978-3-319-73915-1_44

576 W. Devanny et al.

graph with complete artistic freedom, and with the aim of communicating the
data in the graph as well as possible.

We received 2 submissions for the first topic, and 1 for the second. For each
topic, we selected up to three contenders for the prize, which were printed on
large poster boards and presented at the Graph Drawing Symposium. Finally,
out of those contenders, we selected the winning submission. We will now review
the top three submissions for each topic (for a complete list of submissions, refer
to http://www.graphdrawing.de/contest2017/results.html).

2.1 Graph Drawing Citations

For the first creative topic, we extracted data of all publications in the Proceed-
ings of Graph Drawing between 1994 and 2015. For each paper, we provide the
title, the authors, the institutions of the authors, the year, and the citations. Your
task is to create a nice visualization of the given citation network. It is desirable
but not compulsory to make use of the extra data (authors, institutions, years)
or a subset of it to explore interesting structures in the network.

Runner-up: Da Ye (University of Sydney). The committee likes the com-
bination of clustering with radial layouts and organic edges, and a circular layout
for the clusters that are connected with bundled edges. The visualization gives
a good global overview of the graph structure, showing high-level connections
between different topics in the community.

http://www.graphdrawing.de/contest2017/results.html

Graph Drawing Contest Report 577

Winner: Steven Shangzhou Wang (University of Sydney). The commit-
tee likes the geolocated vertex placement in this submission, which gives a good
picture of the local and global collaborations in the community. The interac-
tive visualization allows the user to focus only on citations from certain papers,
countries, or years, making it possible to explore the global graph structure as
well as zoom in on specific details.

The graph can be explored here http://www.msbicoe.com/misc/graph
citation.html.

“ The location-based citation network can easily identify where the papers
were cited by (or citing based on the cite direction selection). The directed
flow from source to target paper is converged at the target, the thickness
of the edge indicates how many times the source paper was cited by. The
context menu in the interactive view displays more detailed information
like authors who contributed to the paper.
Steven Wang ”

2.2 Human Metabolism

Recon 2 is a community-driven, consensus ‘metabolic reconstruction’, which is
the most comprehensive representation of human metabolism that is applicable
to computational modeling. It was published by Thiele et al. in Nature Biotech-
nology [2]. Recon 2 can be used to identify causes of and new treatments for dis-
eases like cancer, diabetes and even psychiatric and neurodegenerative disorders.
Each person’s metabolism, which represents the conversion of food sources into
energy and the assembly of molecules, is determined by genetics, environment
and nutrition. Metabolic imbalances is an underlying cause of disease. Recon 2
merges complex details into a single interactive map and allows researchers to
use this existing gene expression data and knowledge of the entire metabolic net-
work to, for example, figure out how certain drugs would affect specific metabolic
pathways found to create the conditions for cancerous cell growth.

http://www.msbicoe.com/misc/graph_citation.html
http://www.msbicoe.com/misc/graph_citation.html

578 W. Devanny et al.

ReconMap 2.0 is an interactive visualization of Recon 2 by Noronha et al. [1].
The map was drawn manually by 5 undergraduate biochemists over a total of 20
months and is, to the best of our knowledge, the largest manually drawn hyper-
graph in biology. A Constraint-Based Reconstruction and Analysis (COBRA)
Toolbox extension to interact with ReconMap is available at https://github.
com/opencobra/cobratoolbox, and the map can also be explored at http://vmh.
uni.lu/#mapnavigator. There are 7440 metabolite reactions (hyperedges) and
5063 metabolite (nodes).

Winner: Fabian Klute and Irene Parada (TU Wien and TU Graz).
The committee likes the organic look of the submission; the use of curved and
mostly short edges makes it possible to follow individual connections even in
the somewhat chaotic center of the drawings. The committee also likes the way
in which the visualization managed to cluster and label distinct sections of the
graph. The labels of individual nodes are somewhat hard to read, but the use of
colour partially alliviates that problem. The committee believes that the app-
roach taken by the authors could serve as a starting point for an alternative
visualization of Recon 2 that could be used more effectively by domain experts.

“ In order to filter the information, we thin out the graph in a preprocess-
ing step. For every reaction we keep only the lowest-degree reactant and
product. Isolated and degree one nodes are removed and only the biggest
component is kept. Additionally we identify nodes corresponding to differ-
ent biological compartments (e.g. co2[c], co2[e] are contracted into one
co2 node).
To generate the layout we add edges to keep the subsystems closer together.
The size of the nodes depends on its betweenes in the reduced graph. Then
the layout is calculated using the Fruchterman-Reingold algorithm. Finally
we color the nodes based on subsystems. We distinguish two big groups

https://github.com/opencobra/cobratoolbox
https://github.com/opencobra/cobratoolbox
http://vmh.uni.lu/#mapnavigator
http://vmh.uni.lu/#mapnavigator

Graph Drawing Contest Report 579

of subsystems, the communication or transportation ones and the proper
ones. As the name suggests the first kind mainly connects the proper sub-
systems. Based on this we categorize nodes into five cases, depending on if
they are inside a proper subsystem, on its boundary, in a transport system,
on the boundary between two different transport systems, or between two
proper subsystems.
Fabian Klute ”

3 Live Challenge

The live challenge took place during the conference and lasted exactly one hour.
During this hour, local participants of the conference could take part in the man-
ual category (in which they could attempt to solve the graphs using a supplied
tool), or in the automatic category (in which they could use their own software
to solve the graphs). At the same time, remote participants could also take part
in the automatic category.

The challenge focused on maximizing the minimum crossing angle in a
straight-line embedding of a given graph, with vertex locations restricted to a
grid. The results were judged solely with respect to the minimum crossing angle;

580 W. Devanny et al.

other aesthetic criteria were not taken into account. This allows an objective
way to evaluate each drawing.

From the resulting drawings, the committee does conclude that, if the min-
imum crossing angle is an indicator of the legibility of a graph visualization, it
must be so only when combined with other criteria; for instance, penalizing low
distances between vertices or vertices and non-adjacent edges.

3.1 Manual Category

In the manual category, participants were presented with seven graphs. These
were arranged from small to large and chosen to highlight different types of
graphs and graph structures. For illustration, we include the first graph in its
initial state and the best manual solution we received (by team Aaaaaaah). For
the complete set of graphs and submissions, refer to the contest website.

We are happy to present the full list of scores for all teams. The numbers
listed are the smallest crossing angle in degrees in each graph; the horizontal
bars visualize the corresponding scores.

The winning team is team Aaaaaaah, consisting of Theresa Fröschl, Jonathan
Klawitter, and Darren Strash!

Graph Drawing Contest Report 581

“ We entered the contest in a state of total panic and excitement (see team
name). Without any conscious strategy we tackled graph after graph, often
removing one bad angle at a time. To comfort ourselves with the (false)
belief that we actually had a strategy, we also tried simple global optimiza-
tions: bundling non-crossing edges in parallel, shrinking planar subgraphs
so edges would not cross them, and moving badly-behaving vertices far
away from the others (who knows, they might be contagious). Constantly
in fear of destroying our progress with just the next step, which happened
often, we celebrated each minor improvement with a save and a submission
of our current best solution.
Jonathan Klawitter ”

3.2 Automatic Category

In the automatic category, participants had to solve the same seven graphs as
in the manual category, and in addition another nine larger graphs. Again, the
graphs were constructed to have different structure. Once more, for illustration,
we include the best solution (by team CoffeeVM) of the first large graph. The
graphs themselves can be found on the contest website.

The winning team is team CoffeeVM, consisting of Almut Demel, Dominik
Dürrschnabel, Tamara Mchedlidze, Marcel Radermacher and Lasse Wulf!

582 W. Devanny et al.

“ We use a two-step procedure. In the first step we apply energy-based
approach modified to increase the crossing angles. In the second step we
improve the result by a local search procedure. For larger graphs, we apply
a heuristic to speed up the calculations of the crossing angles.
Lasse Wulf ”

Acknowledgments. The contest committee would like to thank the generous spon-
sors of the symposium, Dennis van der Wals for programming most of the tool for the
manual category, and all the contestants for their participation. Further details includ-
ing all submitted drawings and challenge graphs can be found at the contest website:
http://www.graphdrawing.de/contest2017/results.html.

References

1. Noronha, A., Dańıelsdóttir, A.D., Jóhannsson, P.G.F., Jónsdóttir, S., Gunnarsson,
S.J.J.P., Brynjólfsson, S., Schneider, R., Thiele, I., Fleming, R.M.T.: Reconmap:
an interactive visualization of human metabolism. Bioinformatics 33(4), 605–607
(2016)

2. Thiele, I., Swainston, N., Fleming, R.M.T., Hoppe, A., Sahoo, S., Aurich, M.K.,
Haraldsdottir, H., Mo, M.L., Rolfsson, O., Stobbe, M.D., Thorleifsson, S.G., Agren,
R., Bölling, C., Bordel, S., Chavali, A.K., Dobson, P., Dunn, W.B., Endler, L., Hala,
D., Hucka, M., Hull, D., Jameson, D., Jamshidi, N., Jonsson, J.J., Juty, N., Keating,
S., Nookaew, I., Novère, N.L., Malys, N., Mazein, A., Papin, J.A., Price, N.D., Selkov
Sr., E., Sigurdsson, M.I., Simeonidis, E., Sonnenschein, N., Smallbone, K., Sorokin,
A., van Beek, J.H.G.M., Weichart, D., Goryanin, I., Nielsen, J., Westerhoff, H.V.,
Kell, D.B., Mendes, P., Palsson, B.Ø.: A community-driven global reconstruction of
human metabolism. Nat. Biotechnol. 31, 419–425 (2013)

http://www.graphdrawing.de/contest2017/results.html

Poster Abstracts

Minimizing Wiggles in Storyline Visualizations

Theresa Fröschl and Martin Nöllenburg(B)

Algorithms and Complexity Group, TU Wien, Vienna, Austria
noellenburg@ac.tuwien.ac.at

A storyline visualization is a two-dimensional drawing of a special kind of time-
varying hypergraph H(t), where the x-axis represents time and the vertices (also
called characters) are x-monotone curves. At each point in time t, the vertices
form a permutation such that groups of adjacent characters in H(t) occupy
consecutive vertical positions to indicate a meeting at time t, see Fig. 1. Each
character can only be part of at most one meeting at each point in time. This
kind of visualization has been introduced for illustrating movie narratives [8],
but is also more generally used in information visualization [6, 11].

Several aesthetic optimization criteria have been proposed [6, 11], including
minimization of crossing, line wiggles, and white-space gaps. While crossing min-
imization has been studied from an algorithmic point of view in recent years [4,
5, 7], minimizing line wiggles, as another important quality criterion, which is
similar to bend minimization in node-link diagrams [9, 10], has not been inves-
tigated on its own. We note that the problem of minimizing corners or moves
in permutation diagrams [2, 3] is related to wiggle minimization, yet does not
include the temporal aspects of storylines with meetings over time and their
induced character ordering constraints. We present the first integer linear pro-
gramming (ILP) model for exact wiggle minimization in storyline visualizations
without an initial permutation. We can include crossing minimization into a
weighted multicriteria ILP model and show examples of a first case study.

ILP formulation. A storyline visualization can be encoded as an m × p matrix
with columns for the p time points, where meetings start or end, and m > n rows
for the slots used by the n characters of H(t), where m is chosen large enough
to allow for blank lines between different meetings at the same time points. The
position of character i at time point t is expressed as a binary variable xt

i,j that
is set to 1 if and only if i uses slot j at time point t. No two characters can use
the same slot at the same time point (

∑n
i=1 x

t
i,j ≤ 1). With this information

about the position of the characters over time it is possible to determine the line
wiggles of a character i by comparing the position of i for two successive time
points t and t + 1. If the position changes, a wiggle is detected. The absolute
value of the difference of the occupied slots at both time points yields the height
of the wiggle, which is identified with the variable zti . Using this height as the
weight of a wiggle we get the following ILP model with the total wiggle height
as objective

minimize
n∑

i=1

p−1∑

t=1

zti

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 585–587, 2018.
https://doi.org/10.1007/978-3-319-73915-1

586 T. Fröschl and M. Nöllenburg

subject to
m∑

j=1

j · (xt
i,j − xt+1

i,j) ≤ zti ,

m∑

j=1

j · (xt+1
i,j − xt

i,j) ≤ zti for all zti .

In addition we need to define constraints for correctly representing the char-
acter meetings and, for better visual distinction, keeping a blank line between
any neighboring characters that do not meet. For a meeting e with k members
between time points t0 and t1 we define integer variables je,tmin and je,tmax for the
minimum and maximum slots for e at time points t with t0 ≤ t ≤ t1. The differ-
ence of these two slots must be exactly je,tmax − je,tmin = k − 1. By comparing the
variables je,tmin and je

′,t
max for distinct meetings e and e′ at the same time point t

it is possible to define constraints that require blank lines between e and e′.
Finally, by using the position variables of any two characters a and b a binary

comparison variable yta,b for this pair of characters can be created which takes
value 1 if and only if a is placed above b at time point t by the constraints

m · yta,b ≥
m∑

j=1

j · xt
b,j −

m∑

j=1

j · xt
a,j , yta,b + ytb,a = 1.

A crossing between the characters a and b at time point t can be determined
if the equation yta,b +yt+1

a,b = 1 is satisfied. If there is no crossing it evaluates to 0
or 2. With this a secondary objective function for crossing minimization can be
added to the ILP, similar to the crossing minimization of Gronemann et al. [4].

Implementation. The ILP model is implemented using Gurobi [1]. Figure 1 illus-
trates results of a snippet of the movie Inception. Figure 1a shows the result of
pure wiggle minimization with a total wiggle height of 55 (and 26 crossings)
found after 33.37 min, while Fig. 1b shows the result of minimizing wiggles and
crossings in a weighted multi-objective way with weight 1 for wiggles and weight
3 for crossings; it has a total wiggle height of 59 and 20 crossings and was found
after 16.65 min. The multi-objective seems to produce more appealing results,
yet there is still a need for improvements, especially for larger instances. We
finally note that the ILP can be modified to minimize the number of wiggles or
the maximum wiggle height instead of the total wiggle height.

(a) wiggle minimization (b) wiggle and crossing minimization

Fig. 1. Example snippets of storyline visualizations for the movie Inception; meetings
are indicated by vertical lines

Minimizing Wiggles in Storyline Visualizations 587

References

1. Gurobi optimizer 7.5 (2017). http://www.gurobi.com. Accessed 3 Aug 2017
2. Bereg, S., Holroyd, A.E., Nachmanson, L., Pupyrev, S.: Drawing permutations

with few corners. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp.
484–495. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4 42

3. Bereg, S., Holroyd, A.E., Nachmanson, L., Pupyrev, S.: Representing permutations
with few moves (2015). arXiv preprint arXiv:1508.03674

4. Gronemann, M., Jünger, M., Liers, F., Mambelli, F.: Crossing minimiza-
tion in storyline visualization. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 367–381. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50106-2 29

5. Kostitsyna, I., Nöllenburg, M., Polishchuk, V., Schulz, A., Strash, D.: On minimiz-
ing crossings in storyline visualizations. In: Di Giacomo, E., Lubiw, A. (eds.) GD
2015. LNCS, vol. 9411, pp. 192–198. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27261-0 16

6. Liu, S., Wu, Y., Wei, E., Liu, M., Liu, Y.: Storyflow: tracking the evolution of
stories. IEEE Trans. Vis. Comput. Graph. 19(12), 2436–2445 (2013)

7. van Dijk, T.C., Fink, M., Fischer, N., Lipp, F., Markfelder, P., Ravsky, A., Suri,
S., Wolff, A.: Block crossings in storyline visualizations. In: Hu, Y., Nöllenburg, M.
(eds.) GD 2016. LNCS, vol. 9801, pp. 382–398. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-50106-2 30

8. Munroe, R.: Xkcd# 657: Movie narrative charts (2009)
9. Purchase, H.: Which aesthetic has the greatest effect on human understanding? In:

Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1 67

10. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021827

11. Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visualiza-
tions. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012)

http://www.gurobi.com
https://doi.org/10.1007/978-3-319-03841-4_42
http://arxiv.org/abs/1508.03674
https://doi.org/10.1007/978-3-319-50106-2_29
https://doi.org/10.1007/978-3-319-50106-2_29
https://doi.org/10.1007/978-3-319-27261-0_16
https://doi.org/10.1007/978-3-319-27261-0_16
https://doi.org/10.1007/978-3-319-50106-2_30
https://doi.org/10.1007/978-3-319-50106-2_30
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/BFb0021827

Graph Drawing for Formalized Diagrammatic
Proofs in Geometry

Nathaniel Miller(B)

University of Northern Colorado, Greeley, USA
nathaniel.miller@unco.edu

CDEG, “Computerized Diagrammatic Euclidean Geometry,” is a computer-
ized formal system for giving diagrammatic proofs in Euclidean geometry which
uses planar graphs in drawing its diagrams. Here we discuss some of the graph-
theoretic problems that arise in this context. This computer proof system imple-
ments a diagrammatic formal system for giving diagram-based proofs of the-
orems of Euclidean geometry that are similar to the informal proofs found in
Euclid’s Elements. The theoretical ideas underlying this system and the original
version of CDEG are described in detail in the book Euclid and his Twenti-
eth Century Rivals: Diagrams in the Logic of Euclidean Geometry [4]. A much
updated version of CDEG is now publicly available at [1]. Interested readers
are encouraged to download CDEG and to try it out for themselves.

When we say that CDEG is a diagrammatic computer proof system, this
means that it allows its user to give geometric proofs using diagrams. Inter-
nally, CDEG represents a diagram abstractly as a planar graph along with
some additional information about how elements of the graph relate to the geo-
metric objects they represent. The nodes in the graph represent points in the
plane, while the edges represent line segments and arcs of circles. In general,
one diagram drawn by CDEG can actually represent many different possible
collections of lines and circles in the plane. What these collections all share, and
share with the diagram that represents them, is that they all have the same
planar topology. This means that any one can be stretched into any other. So,
for example, a diagram containing a single line segment represents all possible
single line segments in the plane, since any such line segment can be stretched
into any other.

Two sample CDEG diagrams are shown in Fig. 1. The first diagram repre-
sents a circle drawn with a point inside of it and two points on its circumference.
The circle is drawn in a way that appears to be rectangular rather than circular,
but recall that all we care about here is the topology of the diagram. The second
diagram, which occurs in the proof of Euclid’s Proposition 1, shows an equilat-
eral triangle inscribed in the intersection of two circles. In CDEG diagrams,
dotted lines represent circles while solid lines represent straight lines, and all
nodes, edges, and regions of the underlying graph are labeled for reference by
numbers drawn in boxes.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 588–590, 2018.
https://doi.org/10.1007/978-3-319-73915-1

Graph Drawing for Formalized Diagrammatic Proofs in Geometry 589

9

8

6

5

7

3

2 21

2411

10

12

13

14

15

4

19

18 17

16

22

26

25

8

9

3

2

Fig. 1. Two CDEG diagrams.

Like more traditional formal systems that are sentential (that is, that operate
on sentences that are strings of symbols in some formal language), CDEG has
rules of inference that allow us to infer one diagram from another. In addition,
and unlike traditional sentential formal systems, CDEG also has geometric con-
struction rules. When one of these rules is applied to a diagram, we may get a
set of several different possible resulting diagrams. CDEG uses a depth-first
search algorithm to identify all the possible topologically distinct planar graphs
that extend the starting graph by adding the newly constructed piece.

Once CDEG has determined the possible diagrams that result from one of
its operations, it still has to lay them out in order to display them to the user.
Each diagram is represented internally as a data structure that encapsulates
its topological structure as a planar graph. When CDEG needs to display a
diagram to the user, it relies on the open source library OGDF—the “Open
Graph Drawing Framework” described in [2]—to lay out the diagrams using the
Mixed Model algorithm of Gutwenger and Mutzel [3]. This algorithm works,
but suffers from a number of disadvantages in this context. In particular, the
diagrams would be much more readable if straight lines were represented by
edges laid out in a straight line whenever possible, and if they didn’t change so
much when new elements were added. Thus, one possible area for improvement
of this system would be to identify a graph layout algorithm that resulted in
diagrams that were easier for human users to interpret.

Another graph-theoretic challenge that arises in this context is “Lemma
Incorporation”—how to automatically reuse previously proven results in new
proofs. This is a trivial problem in traditional proof systems, but a difficult one
in this diagrammatic setting, in which planar graphs have to be merged in an
appropriate way. If diagram D2 can be derived from D1 in CDEG, we notate
this by writing D1 � D2. In order to use this result in a later proof, we would like
to be able to apply it to any diagram D′

1 that contains D1 as a subdiagram—that

590 N. Miller

is, from which D1 can be obtained by erasing elements of the original diagram.
We notate this by writing D1 ⊂ D′

1. If D1 � D2 and D1 ⊂ D′
1, then we would

like to be able to infer D′
2, where D′

2 is the set of minimal diagrams that contain
both D′

1 and D2 as subdiagrams. A diagram D′
2 is minimal if it doesn’t contain

a subdiagram that still contains D′
1 and D2 as subdiagrams. How to efficiently

implement Lemma Incorporation into CDEG is an open question.

References

1. CDEG download page. http://www.unco.edu/NHS/mathsci/facstaff/Miller/
personal/CDEG/

2. Chimani, M., Gutwenger, C., Jünger, M., Klein, K., Mutzel, P., Schulz, M.: The open
graph drawing framework. In: 15th International Symposium on Graph Drawing
2007, GD 2007, Sydney, Australia (2007)

3. Gutwenger, C., Mutzel, P.: Planar polyline drawings with good angular resolu-
tion. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2 13

4. Miller, N.: Euclid and His Twentieth Century Rivals: Diagrams in the Logic of
Euclidean Geometry. CSLI Press, Stanford, CA (2007)

http://www.unco.edu/NHS/mathsci/facstaff/Miller/personal/CDEG/
http://www.unco.edu/NHS/mathsci/facstaff/Miller/personal/CDEG/
https://doi.org/10.1007/3-540-37623-2_13

Drawing Graphs on Few Circles and Few Spheres

Myroslav Kryven1(B), Alexander Ravsky2, and Alexander Wolff3

1 Universität Würzburg, Würzburg, Germany
myroslav.kryven@uni-wuerzburg.de

2 National Academy of Sciences of Ukraine, Lviv, Ukraine
alexander.ravsky@uni-wuerzburg.de

3 Universität Würzburg, Würzburg, Germany

A drawing of a given graph can be evaluated by many different quality mea-
sures depending on the concrete purpose of the drawing. Classical examples
are the number of crossings, the ratio between the lengths of the shortest and
the longest edge, or the angular resolution. Clearly, different layouts (and lay-
out algorithms) optimize different measures. Hoffmann et al. [5] studied ratios
between optimal values of quality measures implied by different graph drawing
styles. They determined bounds for certain pairs of styles and showed that the
ratio can be unbounded for others.

A few years ago, a new type of quality measure was introduced: the num-
ber of geometric objects that are needed to draw a graph given a certain style.
Schulz [7] termed this measure the visual complexity of a drawing. More con-
cretely, Dujmović et al. [4] defined the segment number of a graph G to be the
minimum number of straight-line segments over all straight-line drawings of G.
Similarly, Schulz [7] defined the arc number with respect to circular-arc drawings
of G and showed that circular-arc drawings are an improvement over straight-
line drawings not only in terms of visual complexity but also in terms of area
consumption.

For our work, the most important precursor is the work of Chaplick et al.
[2] who introduced another measure for the visual complexity of a graph G,
namely the plane cover number, which is the minimum number of planes that
together cover a straight-line drawing of G in three-dimensional space. Similarily,
the line cover number of a planar graph G is the minimum number of lines that
together cover a straight-line drawing of G in the plane. Among others, Chaplick
et al. showed that the line cover number can be asymptotically smaller than the
segment number, constructing n-vertex triangulations with line cover number
O(

√
n) and segment number Θ(n).

Combining the approaches of Schulz and Chaplick et al., we define the spher-
ical cover number of a graph G to be the minimum number of spheres such that
G has a circular-arc drawing that is contained in the union of these spheres. Sim-
ilarily, the circular cover number of a planar graph G is the minimum number
of circles that together cover a circular-arc drawing of G on the sphere.

Any drawing with straight-lines segments and circular arcs can be trans-
formed into a circular-arc drawing by an inversion map. Therefore, we may

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 591–593, 2018.
https://doi.org/10.1007/978-3-319-73915-1

http://orcid.org/0000-0001-5872-718X

592 M. Kryven et al.

consider any line a “circle of infinite radius” and any plane a “sphere of infinite
radius”. Hence, any affine cover can be considered a spherical cover.

We show that the sphere cover number of any n-vertex graph is O(n), whereas
Chaplick et al. [2] showed that the plane cover number of Kn is Θ(n2).

Next, we analyze platonic graphs, that is, 1-skeletons of platonic solids. These
graphs possess several nice properties: they are regular, planar and Hamiltonian.
We use them as indicators to compare the above-mentioned measures of visual
complexity. We have computed the following numbers (and two ranges):

G = (V,E) |V | |E| |F | segment # line cover # arc # [ref.] circular cover #

Tetrahedron 4 6 4 6 6 3 3

Cube 8 12 6 7 7 4 4

Octahedron 6 12 8 9 9 3 3

Dodecahedron 20 30 12 13 9 . . . 10 10 [7] 5

Icosahedron 12 30 20 15 12 . . . 15 7 7

For the upper bounds in the above table, we present drawings with optimal
segment numbers, (near-) optimal line cover numbers, optimal arc cover num-
bers, and optimal circular cover numbers (we skip the tetrahedron):

[1] [6]

For the lower bounds in the above table, we use various geometric and com-
binatorial arguments. For example, for the circle cover numbers, it is enough to
count the minimum number of circles needed to accommodate the required num-
ber of vertices of given degrees. For the segment numbers, we set up an ILP that
determines a locally consistent angle assignment [3] with the maximum number
of π-angles between incident edges.

For all platonic graphs, we found symmetric circular-arc drawings with opti-
mal circular cover and arc numbers, whereas it seems that the cube and the
dodecahedron do not admit a symmetric straight-line drawing with optimal line
cover or segment number. This is another advantage of (optimal) circular-arc
drawings, apart from their smaller visual complexity.

References

1. Bekos, M.A., Raftopoulou, C.N.: Circle-representations of simple 4-regular planar
graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 138–
149. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2 13

https://doi.org/10.1007/978-3-642-36763-2_13

Drawing Graphs on Few Circles and Few Spheres 593

2. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing
graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 166–180. Springer, Cham (2016). arxiv.org/abs/1607.01196

3. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1999)

4. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. Theory Appl. 38, 194–212 (2007)

5. Hoffmann, M., van Kreveld, M., Kusters, V., Rote, G.: Quality ratios of measures
for graph drawing styles. In: Proceedings of the 26th Canadian Conference on Com-
putational Geometry, CCCG 2014, pp. 33–39 (2014)

6. Scherm, U.: Minimale Überdeckung von Knoten und Kanten in Graphen durch
Geraden. Bachelor’s Thesis, Institut für Informatik, Universität Würzburg (2016)

7. Schulz, A.: Drawing graphs with few arcs. J. Graph Algorithms Appl. 19(1),
393–412 (2015)

http://arxiv.org/abs/org/abs/1607.01196

Counterexample to the Variant
of the Hanani–Tutte Theorem

on the Genus-4 Surface

Radoslav Fulek1(B) and Jan Kynčl2

1 IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
radoslav.fulek@gmail.com

2 Department of Applied Mathematics and Institute
for Theoretical Computer Science, Faculty of Mathematics and Physics,

Charles University, Malostranské nám. 25, 118 00 Prague 1, Czech Republic
kyncl@kam.mff.cuni.cz

The Hanani–Tutte theorem [5, 11] is a classical result that provides an alge-
braic characterization of planarity with interesting theoretical and algorithmic
consequences, such as a simple polynomial algorithm for planarity testing [9].
The theorem has several variants, the strong and the weak variant are the two
most well-known. The notion “the Hanani–Tutte theorem” refers to the strong
variant.

Theorem (The (strong) Hanani–Tutte theorem [5, 11]). A graph is pla-
nar if it can be drawn in the plane so that no pair of non-adjacent edges crosses
an odd number of times.

Theorem (The weak Hanani–Tutte theorem [1, 6, 8]). If a graph G has
a drawing D on a compact surface S where every pair of edges crosses an even
number of times, then G has an embedding on S that preserves the cyclic order
of edges at each vertex of D.

Recently a common generalization of both the strong and the weak variant
in the plane has been discovered.

Theorem (Unified Hanani–Tutte theorem [3, 8]). Let G be a graph and
let W be a subset of vertices of G. Let D be a drawing of G where every pair
of edges that are non-adjacent or have a common endpoint in W cross an even
number of times. Then G has a planar embedding where cyclic orders of edges
at vertices from W are the same as in D.

Pelsmajer, Schaefer and Stasi [7] extended the strong Hanani–Tutte theorem
to the projective plane, using the list of forbidden minors. Colin de Verdière
et al. [2] recently provided an alternative proof, which does not rely on the list
of forbidden minors.

R. Fulek—Greatfully acknowledges support from Austrian Science Fund (FWF):
M2281-N35.
J. Kynčl—Supported by project 16-01602Y of the Czech Science Foundation
(GAČR).

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 594–596, 2018.
https://doi.org/10.1007/978-3-319-73915-1

Counterexample to the Variant of the Hanani–Tutte Theorem 595

Theorem (The Hanani–Tutte theorem on the projective plane [2, 7]).
If a graph G can be drawn on the projective plane so that no pair of non-adjacent
edges crosses an odd number of times, then G can be embedded on the projective
plane.

It was an open problem if the strong Hanani–Tutte theorem extends to sur-
faces other than the plane and the projective plane. Furthermore, Schaefer and
Štefankovič [10] conjectured that this is the case for all orientable surfaces.

Our results Our main result is a counterexample to the extension of the strong
Hanani–Tutte theorem on the orientable surface of genus 4.

Theorem 1 There exists a graph G that has a drawing in the compact orientable
surfaces S with 4 handles in which every pair of non-adjacent edges cross an even
number of times, but G cannot be embedded in S.

Theorem 1 disproves a conjecture of Schaefer and Štefankovič [10, Conjecture
1] for Z2-genus and genus, but the version for Euler Z2-genus and Euler genus
remains open. By taking a disjoint union of G from Theorem 1 with pairwise
disjoint copies of K5 we obtain a counterexample on an orientable surface of
arbitrary genus bigger than 4.

In order to prove the theorem we first give a counterexample to the unified
variant (see below) on the torus. Only part (1) of the following theorem is actu-
ally needed to prove Theorem 1, but (2) provides a good evidence for why the
counterexample works.

Theorem 2

(1) The complete bipartite graph K3,4 has a drawing D on the torus with every
pair of non-adjacent edges crossing an even number of times, such that for
the set W of four vertices in one part every pair of edges with a common
endpoint in W crosses an even number of times.

(2) There is no embedding E of K3,4 on the torus with the same cyclic orders of
edges at the vertices of W as in D.

The part (2) of Theorem 2 follows by an easy application of Euler’s formula
once we observe that all the faces in the hypothetical embedding E of K3,4 must
be of size at least 6.

Proof (of Theorem 1–sketch). The graph G is obtained by combining three dis-
joint copies of K1,4 with a sufficiently large grid by appropriately identifying
degree-1 vertices in the three copies of K1,4 with vertices in the grid.

A drawing of G on the orientable surface of genus 4, in which every pair of
non-adjacent edges cross an even number of times, is obtained as follows. We
start by taking the toroidal drawing D whose existence is claimed by Theorem 2,
and drill 4 small holes around the vertices of W . The final drawing of G is
obtained by gluing together the obtained torus with 4 holes containing the rest

596 R. Fulek and J. Kynčl

of the drawing D and an embedding of a large grid on a sphere with 4 holes along
boundaries. The boundaries of the holes on the sphere are formed by 4-cycles.

In order to prove that G is not embeddable on S we argue that by [4, Lemma
4] an embedding of G on S must contain a large grid embedded in a planar way.
This allows us to construct an embedding of K4,5 on S with minimal face of size
10 which cannot exist (contradiction). �

References

1. Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput.
Geom. 23(2), 191–206 (2000)

2. Colin de Verdière, É., Kaluža, V., Paták, P., Patáková, Z., Tancer, M.: A direct
proof of the strong Hanani-Tutte theorem on the projective plane. In: Hu, Y.,
Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 454–467. Springer, Cham
(2016)

3. Fulek, R., Kynčl, J., Pálvölgyi, D.: Unified Hanani-Tutte theorem. Electron. J.
Combin. 24(3)(P3.18), 8 (2017)

4. Geelen, J.F., Richter, R.B., Salazar, G.: Embedding grids in surfaces. Eur. J. Com-
bin. 25(6), 785–792 (2004)

5. Hanani, H.: Über wesentlich unplättbare Kurven im drei-dimensionalen Raume.
Fundamenta Mathematicae 23, 135–142 (1934)

6. Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser.
B. 80(2), 225–246 (2000)

7. Pelsmajer, M.J., Schaefer, M., Stasi, D.: Strong Hanani-Tutte on the projective
plane. SIAM J. Discrete Math. 23(3), 1317–1323 (2009)

8. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings. J. Com-
bin. Theory Ser. B. 97(4), 489–500 (2007)

9. Schaefer, M.: Geometry–intuitive, discrete, and convex, Hanani-Tutte and related
results. In: János, P. (eds.) Bolyai Society Mathematical Studies, vol. 24, pp. 259–
299. Budapest (2013)

10. Schaefer, M., Štefankovič, D.: Block additivity of Z2-embeddings. In: Wismath, S.,
Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 185–195. Springer, Cham (2013)

11. Tutte, W.T.: Toward a theory of crossing numbers. J. Comb. Theor. 8, 45–53
(1970)

A Geometric Heuristic for Rectilinear
Crossing Minimization

Marcel Radermacher1(B), Klara Reichard1, Ignaz Rutter2,
and Dorothea Wagner1

1 Department of Computer Science, Karlsruhe Institute of Technology,
Karlsruhe, Germany

{radermacher,dorothea.wagner}@kit.edu
2 Department of Mathematics and Computer Science, TU Eindhoven,

Eindhoven, The Netherlands
i.rutter@tue.nl

Introduction. The empirical study of Purchase [7] indicates that crossings have
a major impact on the readability of drawings. Consequently, the minimization
of crossings has received considerable attention in theory and in practice; the
bibliography of Vrt’o is an impressive list of over 700 references [11].

In the case of topological drawings, where edges can be drawn as arbitrary
Jordan arcs between their endpoints, iteratively inserting edges into a (planar)
graph with a small number of crossings proved to be effective in practice [3].
However, this approach cannot be applied to straight-line drawings. Based on
the topological drawings with a small number of crossings, Bläsius et al. [1]
heuristically straighten the edges. Unfortunately, deciding whether there is a
straight-line drawing homeomorphic to a given drawing is ∃R-complete [8]. Over-
all it is in general not possible to transfer the results on topological drawings
to the geometric setting. Thus, if we insist on straight-line drawings, there is
need for a geometric approach. For arbitrary graphs, we are only aware of one
approach actively reducing crossings in straight-line drawings, the force-directed
algorithm by Davidson and Harel [5].

Approach. Let G = (V,E) be an undirected graph with vertex set V and edge
set E, and let Γ be a straight-line drawing of G. For a vertex v ∈ V we denote
by Γ [v �→ p] , p ∈ R

2, the straight-line drawing obtained from Γ by moving v to
the point p.

Theorem 1. Let G = (V,E) be a graph with v ∈ V and a straight-line drawing Γ
of G. A point p� ∈ R

2 such that cr (Γ [v �→ p�]) = minq∈R2 cr (Γ [v �→ q]) can be
computed in O

(
(kn + m)2 log (kn + m)

)
time with k = deg v.

Based on this primitive operation of moving a vertex to its crossing-minimal
position, we introduce three heuristics in order to compute drawings with few

Work was partially supported by grant WA 654/21-1 of the German Research Foun-
dation (DFG).

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 597–599, 2018.
https://doi.org/10.1007/978-3-319-73915-1

598 M. Radermacher et al.

crossings. The vertex movement approach (VM) iteratively moves the vertices in
a particular order to their locally optimal position. The vertex insertion approach
(VI) starts from a large induced planar subgraph and inserts vertices at their
locally optimal position. The edge insertion approach (EI and EP) starts with
a maximal planar subgraph and iteratively inserts edges into the drawing and
locally modifies the drawing to reduce the number of crossings. EP only moves
the endpoints of the inserted edge, whereas EI also moves endpoints of edges
that cross the inserted edge.

Fig. 1. Comparison of stress minimization and our heuristics.

Evaluation. We evaluated the energy-based algorithms implemented in OGDF
[4] and our heuristics on four graph classes; (i) North & Rome1, (ii) Com-
munity are graphs resembling community structure, and (iii) Triangulation
+ X are maximal planar graphs with 64 vertices (generated using [2]) and ten
additional random edges. The Community graphs are generated with the LFR-
Generator [6] implemented in NetworKit [9]. Our evaluation is based on
hypotheses drawn from a scatter plot (Fig. 1) and are evaluated with a statistical
test. The evaluation showed that stress minimization outperforms the remain-
ing energy-based algorithms of OGDF, including the force-directed algorithm by
Davidson and Harel [5]. The edge-insertion heuristics computes drawings with
the smallest number of crossings, independent from the graph class. Especially,
we observe that drawings obtained from energy-based algorithms applied on
graphs in the class Triangulation + X have a significantly larger number
of crossings compared to graphs in the remaining classes. Stress minimization
and the vertex-movement approach compute drawings with a similar number of
crossings. Our statistical test shows that stress minimization computes drawings
with about twice as many crossings as computed by our edge insertion approach.
For graphs of the class Triangulation+X the vertex-insertion approach com-
putes drawings with half the crossings of stress in less than 30 s. Trading an even
smaller number of crossings for a considerable increase of running time, edge
insertion computes drawings with a third of the number of crossings compared

1 http://graphdrawing.org/data.html.

http://graphdrawing.org/data.html

A Geometric Heuristic for Rectilinear Crossing Minimization 599

to stress minimization on graphs of the class Triangulation+X. The usage of
precise geometric operations, provided by CGAL [10], has a negative influence
on the running time of our heuristics. It is desirable to tune our implementation
to handle larger instances.

References

1. Bläsius, T., Radermacher, M., Rutter, I.: How to draw a planarization. In: Steffen,
B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOF-
SEM 2017. LNCS, vol. 10139, pp. 295–308. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-51963-0 23

2. Brinkmann, G., McKay, B.D., et al.: Fast generation of planar graphs. MATCH
Commun. Math. Comput. Chem. 58(2), 323–357 (2007)

3. Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Handbook
of graph drawing and visualization. In: Crossings and Planarization, pp. 43–85.
Chapman and Hall/CRC (2013)

4. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.:
Handbook of graph drawing and visualization. In: The Open Graph Drawing
Framework (OGDF), pp. 543–569. Chapman and Hall/CRC (2013)

5. Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM
Trans. Graph. 15(4), 301–331 (1996)

6. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

7. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021827

8. Schaefer, M.: Complexity of some geometric and topological problems. In:
Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0 32

9. Staudt, C.L., Sazonovs, A., Meyerhenke, H.: Networkit: An interactive tool suite
for high-performance network analysis. arXiv preprint arXiv:1403.3005 (2014)

10. The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board,
4.10 edn. (2017). http://doc.cgal.org/4.10/Manual/packages.html

11. Vrt’o, I.: Bibliography on crossing numbers of graphs (2014). ftp://ftp.ifi.savba.
sk/pub/imrich/crobib.pdf

https://doi.org/10.1007/978-3-319-51963-0_23
https://doi.org/10.1007/978-3-319-51963-0_23
https://doi.org/10.1007/BFb0021827
https://doi.org/10.1007/978-3-642-11805-0_32
http://arxiv.org/abs/1403.3005
http://doc.cgal.org/4.10/Manual/packages.html
ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf
ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf

A Note on Plus-Contacts, Rectangular Duals,
and Box-Orthogonal Drawings

Therese Biedl1(B) and Debajyoti Mondal2

1 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
biedl@uwaterloo.ca

2 Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
dmondal@cs.usask.ca

A plus-contact representation (PCR) of an n-vertex planar graph G is a non-
crossing arrangement of n plus shapes such that each vertex v of G is mapped to a
distinct plus shape v and two plus shapes touch if and only if the corresponding
vertices are adjacent in G. If no arm of v is incident to more than cΔ+O(1)
other arms, where Δ is the maximum degree, then a PCR is called c -balanced ; see
Fig. 1(a)–(b). A 1-bend box-orthogonal drawing (BOD) (resp., 1-bend Kandinsky
drawing (KD)) is a planar drawing where each vertex is drawn as an axis-aligned
box (resp., square) and each edge is drawn as an orthogonal polyline with at most
one bend between the corresponding boxes (resp., squares). Balanced PCRs can
be transformed into 1-bend BODs or KDs [4], where vertices are drawn as squares
of small side length; see Fig. 1(c).

Balanced plus-contact representations are motivated by the application of
computing 1-bend BODs with boxes of small size and constant aspect ratio [8].
Besides, such representations have been useful to construct planar drawings with
small number of distinct edge slopes [4, 6].

Contribution: In this poster we present the following result.

Theorem 1. Every planar graph that admits a rectangular dual has the follow-
ing representations: (a) A 1-bend BOD or KD, where each vertex v is a square
of side length at most (deg(v)/2) + O(1). (b) A (1/2)-balanced PCR, where for
each vertex v, each arm of v has at most (deg(v)/2)+O(1) contacts with other
plus shapes.

A graph admits a rectangular dual if and only if it is an irreducible triangulation
(see e.g. [5]), i.e., a graph where the outer-face has degree at least 4, all inner
faces are triangles, and there are no triangles that are not face.

The closest related results are 2-bend BODs where the length of the longer
side of the box of v is at most (deg(v)/2) + O(1) [1], or 1-bend BODs, where
the length of the longer side of the box of v is at most deg(v) [2]. Well balanced
plus-contact representations are known only for 2-trees (1/4 ≤ c ≤ 1/3) and
planar 3-trees (1/3 ≤ c ≤ 1/2) [4]. It is not known whether c-balanced PCRs

Work of the authors is supported in part by NSERC. See [3] for a full version.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 600–602, 2018.
https://doi.org/10.1007/978-3-319-73915-1

A Note on Plus-Contacts, Rectangular Duals, and Box-Orthogonal Drawings 601

exist for all planar graphs with c < 1, and it seems to be an interesting open
question.

Computation of BOD: Given a rectangular dual R, we first compute a con-
sistent rectangle contact representation Rc such that for every pair of adjacent
rectangles R1, R2 ∈ R, the corresponding R1, R2 ∈ Rc have the same (vertical or
horizontal) adjacency and the line segment R1 ∩ R2 lies entirely in one or both
of R1, R2. Rc may contain four mutually adjacent rectangles and hence some
unnecessary adjacencies. Let v be a vertex represented by rectangle R ∈ Rc.
We add inside R two polygonal zig-zag paths σ and σ′ connecting the opposite
corners of R; see Fig. 1(d). Let the four cords of v be the four subpaths from the
intersection point c to the corners of R. The crucial insight is that these cords
(after a 45◦-rotation) become axis-aligned zig-zag paths. Hence all bends can
be removed using the topology-shape metric approach introduced by Tamassia
[7]. Thus this shape is a plus shape v with c at the center and the four cords
becoming the four arms. We extend the cords of the neighbours of v to realize
the required adjacencies, creating at most (deg(v)/2) + O(1) contacts on each
cord of v. For example, among the rectangles incident to the top side of R, we
can extend the bottom-left cords of half of them to touch the top-left cord of R,
and the bottom-right cords of the remaining rectangles to touch the top-right
cord of R. We call the resulting drawing a pseudo-PCR. The BOD is computed
from this by first removing the bends using [7], then transforming the resulting
PCR as explained in [4], and finally, by removing any unnecessary edge that may
appear due to four mutually adjacent rectangles; see Fig. 1(e)–(h).

Fig. 1. (a)–(c) A (1/2)-balanced PCR and a corresponding 1-bend BOD of a planar
graph. (d) Construction of the cords. (e)–(h) Transformation into 1-bend BODs. (i)–(j)
Modification of the pseudo-PCR. The plus shapes are drawn with bidirected lines. The
thin lines represent the distribution of the incoming cords.

Balanced PCRs: To compute a (1/2)-balanced PCR, we first compute the
pseudo-PCR, and then remove the unnecessary adjacencies from it as follows.
For every four mutually adjacent rectangles Ra, Rp, Rb, Rq ∈ Rc, in this clock-
wise order around their common corner z, one of the edges (a, b) or (p, q)

602 T. Biedl and D. Mondal

does not belong to the input graph. We re-route the cords locally near Rp

to remove the unnecessary adjacency. The details of processing Rp are unfor-
tunately quite tedious; Fig. 1(i)–(j) show one of the many cases. Finally, we
compute the required PCR by using the topology-shape metric approach [7].

References

1. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.
Geom. 9(3), 159–180 (1998)

2. Biedl, T.C., Kaufmann, M.: Area-efficient static and incremental graph drawings. In:
Burkard, R., Woeginger, G. (eds.) ESA 1997. LNCS, vol. 1284, pp. 37–52. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63397-9 4

3. Biedl, T., Mondal, D.: A note on plus-contacts, rectangular duals, and box-
orthogonal drawings. CoRR abs/1708.09560 (2017). https://arxiv.org/abs/1708.
09560

4. Durocher, S., Mondal, D.: On balanced -contact representations. In: Wismath, S.,
Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 143–154. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03841-4 13

5. Fusy, É.: Transversal structures on triangulations: a combinatorial study and
straight-line drawings. Discrete Math. 309(7), 1870–1894 (2009)

6. Di Giacomo, E., Liotta, G., Montecchiani, F.: 1-Bend upward planar drawings of SP-
digraphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 123–130.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2 10

7. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

8. Wood, D.R.: Multi-dimensional orthogonal graph drawing with small boxes. In:
Kratochv́ıyl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 311–322. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-46648-7 32

https://doi.org/10.1007/3-540-63397-9_4
https://arxiv.org/abs/1708.09560
https://arxiv.org/abs/1708.09560
https://doi.org/10.1007/978-3-319-03841-4_13
https://doi.org/10.1007/978-3-319-50106-2_10
https://doi.org/10.1007/3-540-46648-7_32

Grid Obstacle Representation of Graphs

Arijit Bishnu1, Arijit Ghosh1, Rogers Mathew2, Gopinath Mishra1,
and Subhabrata Paul3(B)

1 Indian Statistical Institute, Kolkata, India
2 Indian Institute of Technology, Kharagpur, India

3 Indian Institute of Technology, Patna, India
paulsubhabrata@gmail.com

1 Introduction

In 2010, Alpert et al. [1] introduced the concept of obstacle representation of
a graph G. The obstacle representation of G is about assigning points in R

2

for each vertex of G and blocking the visibility among pairs of points whose
corresponding vertices do not have an edge. In the Euclidean plane, the shortest
path and straight line visibility are essentially the same. We introduce a new
definition of obstacle representation in Z

d as follows; this can be generalized to
any metric space as given in [3, 4].

Definition 1 The grid obstacle representation of a graph G = (V,E) is an
injective map f : V → Z

d and a set of point obstacles O on grid points of
Z
d \ f(V) such that uv is an edge in G if and only if there exists a Manhattan

path between f(u) and f(v) in Z
d avoiding the obstacles of O. The grid obstacle

number of a graph is the smallest number of obstacles needed for the grid obstacle
representation of G.

v1 v2 v3 v4 v5 v6 v7

u1 u2 u3

u4 u5

Fig. 1. Grid obstacle representation of Kn,m; the size of the grid and the number of
obstacles is O(n + m). The dots represent the vertices and the squares represent the
obstacles.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 603–605, 2018.
https://doi.org/10.1007/978-3-319-73915-1

604 A. Bishnu et al.

2 Existence and Non-existence Results

We use algorithms for straight line embeddings of planar graphs in Z
2 [5, 9] and

of arbitrary graphs in Z
3 [8] to prove the following results.

Theorem 1 ([3, 4])

1. Every planar graph with n vertices admits a Z
2 grid obstacle representation

in a O(n4) × O(n4) grid.
2. Every r colorable graph with n vertices admits a Z

3 grid obstacle representa-
tion in a O(r4n3) × O(r3n4) × O(r4n4) grid.

Biedl and Mehrabi [2] in a follow-up work improved the size of the grid required
for a grid obstacle representation in Z

2 and Z
3.

We also study the grid obstacle representation of a graph G in a horizontal
strip. A horizontal strip is a grid where the y-coordinates are bounded but the
x-coordinates can be arbitrary integer. We can show another existential result
that says that if a graph has a grid obstacle representation in a horizontal strip,
then it can be embedded inside a bounded grid using a compression technique.

Theorem 2 ([4]) Let G admit a grid obstacle representation in a horizontal
strip of height b. Then G has a grid obstacle representation in a b×O(b3n) grid.

Pach [7] resolved a question raised in an earlier manuscript of ours [4] by
showing that there exists bipartite graphs with no grid obstacle representation
in Z

2. We proved the following non-existence result.

Theorem 3 ([4]) There exists a non-quasiplanar C4-free graph on more than
20 vertices (having at least 8n−19 edges, where n denotes the number of vertices
in the graph G) which does not admit a grid obstacle representation in Z

2.

3 Hardness Results

Here, we study a problem of �1-obstacle representability on a given point set
(�1-OEPS) of a graph. The input instance is a graph G = (V,E) and a set S, of
size |V |, that is a subset of a grid whose size is polynomial in |V |. The problem
is to decide whether there exists an �1-obstacle representation of G such that
the vertices of G are mapped to S. Now, we show that �1-OEPS is NP-complete
for subdivision of non-Hamiltonian planar cubic graphs. The reduction is from
a restricted version of geodesic point set embeddability problem. The problem is
whether a planar graph has a Manhattan-geodesic drawing such that the vertices
are embedded onto a given set of points S. In the restricted version of geodesic
point set embeddability problem ((P0, P1, P2)-GPSE), the given point set S is
partitioned into three sets, P0, P1 and P2, where P0 = {(−j, 0)|j = 0, 1, . . . , 2n−
2}, P1 = {(j, nj)|j = 1, 2, . . . , k1}, and P2 = {(j,−nj)|j = 1, 2, . . . , k2} with
k1 + k2 = n/2 + 1. This restricted version is known to be NP-complete [6] for
subdivision of non-Hamiltonian planar cubic graphs.

Theorem 4 ([4]) �1-OEPS is NP-complete for subdivision of planar cubic
graphs.

Grid Obstacle Representation of Graphs 605

References

1. Alpert, H., Koch, C., Laison, J.D.: Obstacle numbers of graphs. Discrete Comput.
Geom. 44(1), 223–244 (2010)

2. Biedl, T. Mehrabi, S.: Grid-obstacle representations with connections to staircase
guarding (2017). ArXiv e-prints, abs/1708.01903

3. Bishnu, A., Ghosh, A., Mathew, R., Mishra, G., Paul, S.: Grid obstacle representa-
tion of graphs. Manuscript (2015)

4. Bishnu, A., Ghosh, A., Mathew, R., Mishra, G., Paul, S.: Grid obstacle representa-
tion of graphs (2017). ArXiv e-prints, abs/1708.01765

5. Fraysseix, H.D., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Com-
binatorica 10(1), 41–51 (1990)

6. Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-geodesic embedding of planar
graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207–
218. Springer, Heidelberg (2009)

7. Pach, J.: Graphs with no grid obstacle representation. Geombinatorics 26(2), 80–83
(2016)

8. Pach, J., Thiele, T., Tóth, G.: Three-dimensional grid drawings of graphs. In:
DiBattista, G. (eds.) GD 1997. LNCS, vol. 1353, pp. 47–51. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1 49

9. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 138–148
(1990)

https://doi.org/10.1007/3-540-63938-1_49

Summarizing and Visualizing Graph Ensembles
with Rank Statistics and Boxplots

Mukund Raj1(B), Ian Ruginski2, Robert M. Kirby1, and Ross T. Whitaker1

1 School of Computing, University of Utah, Salt Lake City, USA
2 Department of Psychology, University of Utah, Salt Lake City, USA

1 Introduction

The problem of visualizing graphs becomes more complex as we consider the
growing diversity of visualization tasks on graphs. For instance, in the domain
of neuroscience, there is a need to gain insight into how a graph (representing a
brain network) compares to another, or how a graph ensemble (brain networks
associated with a specific group) compares to an individual graph or another
ensemble [1]. The goal of this project is to develop a method to visualize graph
ensembles in a way that is able to convey the underlying structure (both the
center and variability of the underlying distribution of edge weights) in context
of the relationships between nodes in the graph. Specifically, we hope to help
accomplish two important tasks that pertain to applications involving weighted
graph ensembles: (1) comparing two different graph ensembles and (2) com-
paring individual members relative to an ensemble. We limit the scope of this
project to graphs ensembles that share common vertex/edge sets and differ only
with regard to edge weights.

2 Method

We propose a visualization method, called network boxplot, for visualizing graph
ensembles. The first step for drawing a network boxplot, analogous to the tra-
ditional Tukey boxplot and other existing methods for summarizing ensembles
[3–5], is to compute center outward order and rank statistics for the members
in the ensemble. We use a discrete functional representation of graph adjacency
matrices which allows us to use the functional band depth (see [2]) to obtain
required statistics for members of the ensemble. The second step is to generate
a visualization using the order and rank statistics. Figure 1a shows a render-
ing of the network boxplot. We employ an adjacency matrix representation, and
use cells in a single matrix to display the summary statistics for the ensemble.
Each cell in a network boxplot encodes the weight on the median graph and
the extent of weights on graphs in the 50% band for corresponding edges in
the graph ensemble. The weight on median graph is encoded in two ways: the
background color of the cell as well as the radius of circle between the two gray
rings (annuli). The upper and lower extents of the 50% bands are encoded by
the outer and inner gray rings.
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 606–608, 2018.
https://doi.org/10.1007/978-3-319-73915-1

Summarizing and Visualizing Graph Ensembles with Rank Statistics 607

Fig. 1. Visualizing graph ensembles. (a) A network boxplot visualization. ‘A’ and ‘B’
(anuli) indicate the 50% band while ‘C’ (circle radius) and ‘D’ (background color) are
two different encodings of the median. (b) Heatmap, and (c) cell histogram for weighted
adjacency matrix ensemble

3 Results and Discussion

We conducted a pilot user study to evaluate the performance of the proposed
network boxplot visualization in the task of comparing two graph ensembles
(edge weights were generated using Gaussian processes). We found that partic-
ipants made more accurate—although slower— judgments using the proposed
method relative to the existing methods—namely, heatmap (Fig. 1b) and cell
histogram [6] (Fig. 1c). A key advantage of our approach over existing methods
is the ability to convey correlations across edges. We plan to conduct a larger
user study which would also include the task of comparing an individual graph
to an ensemble. We have also developed a network boxplot based interactive
system to explore real brain fMRI network ensemble data. Our plan is to work
with domain experts to evaluate the system and improve its effectiveness.

Acknowledgments. This work was supported by National Science Foundation (NSF)
grant IIS-1212806.

References

1. Alper, B., Bach, B., Henry Riche, N., Isenberg, T., Fekete, J.D.: Weighted graph
comparison techniques for brain connectivity analysis. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 483–492. ACM
(2013)

2. López-Pintado, S., Romo, J.: On the concept of depth for functional data. J. Am.
Stat. Assoc. 104(486), 718–734 (2009)

3. Mirzargar, M., Whitaker, R., Kirby, R.: Curve boxplot: generalization of boxplot for
ensembles of curves. IEEE Trans. Vis. Comput. Graph. 20(12), 2654–2663 (2014)

4. Sun, Y., Genton, M.G.: Functional boxplots. J. Comput. Graph. Stat. 20(2),
316–334 (2011)

608 M. Raj et al.

5. Whitaker, R.T., Mirzargar, M., Kirby, R.M.: Contour boxplots: a method for char-
acterizing uncertainty in feature sets from simulation ensembles. IEEE Trans. Vis.
Comput. Graph. 19(12), 2713–2722 (2013)

6. Yi, J.S., Elmqvist, N., Lee, S.: Timematrix: analyzing temporal social networks using
interactive matrix-based visualizations. Int. J. Human-Comput. Interact. 26(11–12),
1031–1051 (2010)

Planar k-NodeTrix Graphs

A New Family of Beyond Planar Graphs

Emilio Di Giacomo1, Giuseppe Liotta1, Maurizio Patrignani2,
and Alessandra Tappini1(B)

1 Università degli Studi di Perugia, Perugia, Italy
{emilio.digiacomo,giuseppe.liotta}@unipg.it,

alessandra.tappini@studenti.unipg.it
2 Roma Tre University, Rome, Italy

patrigna@dia.uniroma3.it

Introduction. Motivated by the problem of visualizing non-planar graphs, the so-
called beyond planarity has become one of the most studied graph-drawing topics
in the last years. Several families of beyond-planar graphs have been defined by
imposing restrictions on the number or type of edge crossings (see, e.g., [2, 5,
6, 8, 9]). Another emerging graph drawing paradigm for the visualization of
non-planar graphs is hybrid planarity [3, 7]. In a hybrid planar drawing dense
subgraphs (clusters), for which a node-link representation would not be effective,
are visualized with an alternative type of representation, and these clusters are
connected with edges that do not cross each other. Inspired by the NodeTrix
representations proposed by Henry et al. [7], planar NodeTrix representations
have been studied. A planar NodeTrix representation is a hybrid planar drawing
where clusters are represented by adjacency matrices. Batagelj et al. [1] studied
the problem of computing the clusters so that the NodeTrix representation is
planar, while Da Lozzo et al. [3] investigated the problem of testing a graph for
NodeTrix planarity (see also [4]). In this poster we consider NodeTrix planarity
from another perspective. We study the properties of planar k-NodeTrix graphs,
i.e., graphs that admit a planar NodeTrix representation where the matrices
have size at most k. We also define and study a new graph parameter, the
planar NodeTrix number, which is the minimum k for which a graph is planar
k-NodeTrix.

Main Results. In this section, we give a detailed list of our main results. First of
all, we prove a tight bound on the density of planar k-NodeTrix graphs.

Theorem 1. A graph with n vertices and m edges admits a planar k-NodeTrix
representation only if m ≤ n(k2 + 7

2 + 1
k) − 6. Furthermore, for every pair of

integers i ≥ 3 and k ≥ 2, there exists a planar k-NodeTrix graph Gi,k with
n = 3k · i vertices and n(k2 + 7

2 + 1
k) − 6 edges.

We then study the relationship between planar k-NodeTrix graphs and other
families of non-planar graphs. We show that the families of planar 2-NodeTrix
graphs and 1-planar graphs have a non-empty intersection, but no one is con-
tained into the other. In a 1-planar graph each edge is crossed by at most
c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 609–611, 2018.
https://doi.org/10.1007/978-3-319-73915-1

610 E. Di Giacomo et al.

one other edge. Thus, it seems reasonable to remove each crossing by merg-
ing, in a matrix of size 2, two of the vertices that are involved in the crossing.
The next two theorems show that in general this is not the case. An optimal
1-planar graph is a 1-planar graph with exactly 4n− 8 edges, which is the max-
imum number of edges that an n-vertex 1-planar graph can have. A NIC-planar
graph (resp. IC-planar graph) is a 1-planar graph that admits a drawing such
that every two pairs of crossing edges share at most one vertex (resp. share no
vertex).

Theorem 2. There exists an optimal 1-planar graph G with n = 28 vertices
and m = 104 edges such that nt(G) > 2.

Theorem 3. For every h > 2, there exists a NIC-planar graph Hh with n =
5 · 2h − 8 vertices and m = 18 · 2h − 36 edges such that nt(Hh) > 2.

(a) (b)

Fig. 1. (a) An optimal 1-planar graph G with nt(G) > 2. (b) A NIC-planar graph H3

with nt(H3) > 2.

Figure 1 shows an optimal 1-planar graph and a NIC-planar graph with pla-
nar NodeTrix number larger than 2.

In constrast with the previous theorems, the next result shows a family of
NIC-planar graphs that has planar NodeTrix number 2. Let G be a NIC-plane
graph and let 〈e1, f1〉, . . . , 〈eh, fh〉 be the pairs of crossing edges of G. The
crossing pairs graph (shortened as cp-graph) of G is a graph with a vertex wi for
each pair 〈ei, fi〉 and an edge between wi and wj if 〈ei, fi〉 and 〈ej , fj〉 share a
vertex. An AcNIC-planar graph is a NIC-planar graph whose cp-graph is acyclic.
Notice that AcNIC-planar graphs include the IC-planar graphs because the cp-
graph of an IC-planar graph has no edge.

Theorem 4. Every AcNIC-planar graph has planar NodeTrix number two.

Finally, we show that the planar NodeTrix number of Kn is at most n − 4 and
that this bound is tight for n ≥ 32.

Theorem 5. For n > 5, nt(Kn) ≤ n − 4 and for n ≥ 32, nt(Kn) = n − 4.

Planar k-NodeTrix Graphs 611

References

1. Batagelj, V., Brandenburg, F., Didimo, W., Liotta, G., Palladino, P., Patrignani,
M.: Visual analysis of large graphs using (x, y)-clustering and hybrid visualizations.
IEEE Trans. Vis. Comput. Graph. 17(11), 1587–1598 (2011)

2. Binucci, C., Di Giacomo, E., Didimo, W., Montecchiani, F., Patrignani, M.,
Symvonis, A., Tollis, I.G.: Fan-planarity: properties and complexity. TCS 589, 76–
86 (2015)

3. Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix
representations of clustered graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 107–120. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50106-2 9

4. Di Giacomo, E., Liotta, G., Patrignani, M., Tappini, A.: Planar k-NodeTrix graphs.
In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 479–491. Springer,
Cham (2017)

5. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. The-
oret. Comput. Sci. 412(39), 5156–5166 (2011)

6. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J.
Discrete Math. 27(1), 550–561 (2013)

7. Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)

8. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. CoRR abs/1703.02261 (2017)

9. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3),
427–439 (1997)

https://doi.org/10.1007/978-3-319-50106-2_9
https://doi.org/10.1007/978-3-319-50106-2_9

Towards Characterizing Strict
Outerconfluent Graphs

Fabian Klute(B) and Martin Nöllenburg

Algorithms and Complexity Group, TU Wien, Vienna, Austria

Confluent drawings of graphs are geometric representations in the plane, in which
vertices are mapped to points, but edges are not drawn as individually distin-
guishable geometric objects. Instead, an edge is represented by the presence of
a smooth curve between two vertices in a system of arcs and junctions.

More formally, a confluent drawing D of a graph G = (V,E) consists of a set
of points representing the vertices, a set of junction points, and a set of smooth
arcs, such that each arc starts and ends at a vertex point or a junction, no two
arcs intersect (except at common endpoints), and all arcs meeting in a junction
share the same tangent line in the junction point. There is an edge (u, v) ∈ E if
and only if there is a smooth path from u to v in D that does not pass through
any other vertex.

Confluent drawings were introduced by Dickerson et al. [1], who identified
classes of graphs that admit or that do not admit confluent drawings. Later,
variations such as strong and tree confluency [6], as well as Δ-confluency [2] were
introduced. Confluent drawings have further been used for layered drawings [3]
and for drawing Hasse diagrams [5]. The complexity of the recognition problem
for graphs that admit a confluent drawing remains open.

Eppstein et al. [4] defined strict confluent drawings, in which every edge of
the graph must be represented by a unique smooth path. They showed that for
general graphs it is NP-complete to decide whether a strict confluent drawing
exists. A strict confluent drawing is called strict outerconfluent if all vertices lie
on the boundary of a (topological) disk that contains the strict confluent draw-
ing. For a given cyclic vertex order, Eppstein et al. [4] presented a constructive
poly-time algorithm for testing the existence of a strict outerconfluent drawing.
Without a given vertex order the recognition complexity as well as a character-
ization of the graphs admitting such drawings remained open. We present first
results towards characterizing the strict outerconfluent (SOC) graphs by exam-
ining potential sub- and super-classes of SOC graphs. For definitions of the used
graph classes we refer to www.graphclasses.org.

If we draw a graph G as a traditional circular drawing with straight-line edges,
then all the crossings are determined by the order of the vertices alone. We can
replace a crossing by a confluent junction if the two edges forming the crossing
are part of a K2,2. We call such a crossing represented. It is clear that a graph
can only have a strict outerconfluent drawing if it has a circular layout with all
crossings represented. This is not sufficient though, as there are such graphs that

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 612–614, 2018.
https://doi.org/10.1007/978-3-319-73915-1

www.graphclasses.org

Towards Characterizing Strict Outerconfluent Graphs 613

have no strict outerconfluent drawing. We obtain two 6-vertex obstructions for
strict outerconfluent drawings, namely a K3,3 with an alternating vertex order
and a domino graph (two four-cycles sharing an edge) in bipartite order.

Our next result concerns bipartite drawings. Let G = (X,Y,E) be a bipar-
tite graph with vertex sets X and Y . We call a strict outerconfluent draw-
ing D a bipartite strict outerconfluent drawing if the nodes can be partitioned
into two independent sets, such that each set is consecutive on the boundary
of the topological disk. Hui et al. [6] showed that the bipartite outerconflu-
ent graphs are exactly the bipartite permutation graphs. We show that the
(bipartite-permutation ∩ domino-free) graphs are exactly the bipartite strict
outerconfluent graphs. The proof uses the drawing algorithm by Hui et al. to
obtain a confluent bipartite drawing, which is non-strict if and only if a domino
is present.

On the other hand we show that circle and comparability graphs are neither
sub- nor superclasses of the SOC graphs and the alternation and circle-polygon
graphs are no sub-classes of them. All the results can be shown via counterex-
amples, mostly using the wheel on six vertices and the so-called BW3 graph,
which both have no SOC drawing.

Finally our main result shows an interesting superclass of SOC graphs. The
class of outer-string graphs contains all graphs G = (V,E) which can be repre-
sented by an intersection model of curves in a disk with one end-point on the
disk’s boundary. We show that SOC graphs are outer-string graphs. The inclu-
sion is proper, because not every circle-polygon graph is an SOC graph, but
every circle-polygon graph is an outer-string graph.

Let D be a strict outerconfluent drawing. To get an outer-string representa-
tion of the corresponding graph GD we need to find for every vertex v in GD a
string starting at the node representing v in D and intersecting only strings rep-
resenting adjacent vertices in GD. We do this by exploiting the tree structure we
get for one node in D, when looking at all the junctions and other nodes which
can be reached from it via smooth paths. We call a junction j split-junction,
if the path coming from v separates at j into two paths and merge-junction if
another path fuses with it at j. One string is then constructed as follows:

– Start from a node and traverse its tree in left-first DFS order
– At leaf, make a clockwise U-turn and backtrack to the previous split-junction.
– At split-junction:

• coming from the left subtree: cross the arc from the left subtree at the
junction and descend into the right subtree

• coming from the right subtree: cross the arc to the left subtree and back-
track along the existing string to the previous split-junction

To find the complete outer-string representation of GD we have to combine
all these strings for nodes in D.We distinguish three cases, two of which are
straightforward. If two nodes are connected by a path we have to guarantee
that the two strings intersect at least once, which can be done at the leaves.
The second one considers two nodes without a path connecting them and the

614 F. Klute and M. Nöllenburg

two trees are independent, i.e., not sharing a junction. Then the strings are
independent by construction as well. Finally if the trees share junctions, then
these can be only merge-junctions. The key observation here is that at most two
merge-junctions can be shared by two nodes without a connecting path in D.

References

1. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: visu-
alizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1), 31–52
(2005)

2. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-confluent drawings. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg
(2006). https://doi.org/10.1007/11618058 16

3. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorithmica
47, 439–452 (2007)

4. Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek, K.:
Strict confluent drawing. J. Comput. Geom. 7(1), 22–46 (2016)

5. Eppstein, D., Simons, J.A.: Confluent hasse diagrams. J. Graph Algorithms Appl.
17(7), 689–710 (2013)

6. Hui, P., Pelsmajer, M.J., Schaefer, M., Stefankovic, D.: Train tracks and confluent
drawings. Algorithmica 47(4), 465–479 (2007)

https://doi.org/10.1007/11618058_16

Flattening Polygonal Linkages via Uniform
Angular Motion

Hugo A. Akitaya1, Matthew D. Jones1, Gregory A. Sandoval2,
Diane L. Souvaine1, David Stalfa1, and Csaba D. Tóth1,2(B)

1 Tufts University, Medford, MA, USA
{hugo.alves akitaya,matthew.jones,diane.souvaine,david.stalfa}@tufts.edu

2 California State University Northridge, Los Angeles, CA, USA
{gregory.sandoval.3,csaba.toth}@csun.edu

Abstract. We study the motion of polygonal linkages under the restric-
tion that the angles between adjacent edges change uniformly to 0, π,
or 2π. We show that convex polygons, orthogonally convex polygons,
and orthogonal 2-terrains unfold without self-intersection to a straight
line in this model, but there exists an orthogonal 12-gon that does not.
Further, we show that regular polygons, triangles, quadrilaterals, and
convex pentagons can be reconfigured into flat zigzag chains; and every
m × n rectangle made of unit-length edges can be reconfigured into a
unit-length zigzag.

1 Introduction

A polygonal linkage is a graph embedded in the plane where the edges are rigid
bars and the vertices are joints between adjacent edges. By the classical Carpen-
ter’s Rule Theorem, every crossing-free path can be reconfigured continuously
into a straight-line segment, and every simple polygon into a convex polygon.
However, there are configurations that are locked, in the sense that the con-
figuration space is disconnected [1–3]. In some applications, the reconfiguration
of a linkage is controlled by physical parameters (e.g., change in temperature),
and these parameters equally impact all joints of the linkage. This motivates the
study of the following model. Consider a crossing-free linkage, where the angle
between every pair of adjacent edges is a linear function of time.

We explore the configuration space of linkages in this model and obtain fea-
sibility and infeasibility results. Ultimately, we would like to characterize the
“shapes” (defined as the outer face of a graph) that can be obtained from a
“flat” linkage (i.e., a polygonal linkage in which all edges are collinear) without
self-intersection. Given a simple polygon P , we fit a polygonal linkage on P such
that its two endpoints coincide with v0. We can choose vertex v0 and target
values 0, π, or 2π for the interior angles of the linkage. Since the angles change
uniformly, these parameters determine the motion of the linkage up to congru-
ences. We wish to find parameters that yield a motion without self-intersection.

Research partially supported by the NSF awards CCF-1422311 and CCF-1423615,
and the Science Without Borders scholarship program.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 615–617, 2018.
https://doi.org/10.1007/978-3-319-73915-1

616 H. A. Akitaya et al.

2 Unfolding Polygonal Linkages into a Straight Line

Assume that the flat angle π is the target value for all angles of the linkage.
We show that for a convex polygon, an orthogonally convex polygon, and an
orthogonal 2-terrain, one can choose a vertex v0 such that the boundary of the
polygon unfolds without self-intersection to a straight line in this model.

We partition an orthogonal convex polygon into four staircases and show that
they each unfold without self-intersection. The strategy is to open the polygon
into a path at one of the two highest vertices. By case analysis we show that
the different staircases do not intersect each other. For any two edges in oppo-
site staircases we find a separating line and show that they remain in opposite
halfplanes. Our result extends to orthogonal polygons composed of up to six
staircases. However, there are orthogonal polygons composed of eight staircases
that would self-intersect no matter at which vertex we open it into a path.

We define an orthogonal 2-terrain as an x-monotone orthogonal polygon
such that there is a horizontal internal chord that connects the leftmost and
rightmost edges. We open the polygon at one of the leftmost vertices and show
that both the upper and lower chains remain monotone and lie in disjoint half-
planes throughout the motion. Opening a convex polygon at an arbitrary vertex
defines an expansive motion and therefore the linkage would unfold without
self-intersection.

3 Reconfiguring Polygonal Linkages into a Zigzag

For reconfiguring a polygonal linkage into zigzag, the main strategy is to parti-
tion the linkage into subchains, and allocate disjoint regions to the subchains,
then show that the subchains remain in their own regions, and that none of
the subchains self-intersect. For example, consider the simplest case, where the
linkage forms a triangle. Let abc be a triangle such that ab lies on the positive
x-axis, b is at the origin, and c is above the x-axis. Assume we open abc into a
polygonal chain a1bca2, where ∠a1bc goes to 0 and ∠bca2 to 2π. If a1b is fixed,
we can show that the y-coordinate of a2 remains nonnegative, hence a2 remains
above the x-axis at all times. The same strategy works for quadrilaterals by
treating each of the two pairs of edges in the quadrilaterals as sides of triangles
formed with a diagonal. Convex pentagons can be handled in the same fashion,
where a diagonal divides the pentagon into a convex quadrilateral and a triangle.

The case of regular polygons is slightly more complicated. The rotational
symmetry makes it most effective to use pairs of consecutive edges as subchains
and partition the plane radially from a point at the common intersection of
angle bisectors at all times. For m-by-n rectangles formed by unit segments, we
handle different cases based on the parities of m and n. The simplest case is
when n is even, where the plane can be partitioned using two vertical rays. The
most complicated case where m and n are both odd is handled using a more
complicated partition.

If we can choose each angle to go to 0, π, or 2π, the computational complexity
of deciding whether a given linkage self-intersects remains open.

Flattening Polygonal Linkages via Uniform Angular Motion 617

References

1. Connelly, R., Demaine, E.D.: Geometry and topology of polygonal linkages. In:
Handbook of Discrete and Computational Geometry, 3rd edn., pp. 233–256. CRC
Press, Boca Raton (2017)

2. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
and Polyhedra. Cambridge University Press, Cambridge (2007)

3. O’Rourke, J.: How to Fold It: The Mathematics of Linkages, Origami, and Polyhe-
dra. Cambridge University Press, Cambridge (2011)

Optimal Compaction of Orthogonal Grid
Drawings for Graphs of Arbitrary

Vertex Degrees

Eduardo Santiago Ramos1,2(B) and Adriano Chaves Lisboa1,2

1 Gaia, solutions on demand, Belo Horizonte, Brazil
{eduardo.ramos,adriano.lisboa}@gaiasd.com

2 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
http://www.ufmg.br

http://www.gaiasd.com

Abstract. Orthogonal graphs are used in a multitude of applications
to visualize information. Examples include database design, software
engineering, VLSI layout and UML diagrams. The TSM approach is an
effective methodology for creating orthogonal grid drawings of graphs.
Its name is an acronym of its three stages: topology, in which a planar
representation is defined; shape, when an orthogonal representation is
obtained; and metrics, in which the graph’s elements are positioned on
the grid in accordance to the orthogonal representation, while optimizing
some characteristic of the drawing.

Regarding the metrics stage, in 1998, Klau and Mutzel [5] presented an integer
linear programming formulation for the problem that performs two-dimensional
compaction and yields optimum results. This was a major accomplishment, not
only for its optimality (given that the compaction problem was proven to be
NP-complete [8]), but also for its description of characteristics that apply to
any correct layout. Additionally, it presents a great deal of flexibility [1] and
extensibility [3]. The quality of this method was showcased in the comparisons
of compaction methods made in [4].

Despite powerful, this technique provides edge-length optimum results only
for 4-planar graphs. This is unfortunate, given that graphs in real-life applica-
tions often have higher vertex degree.

Some methods have proposed ways of representing and describing graphs
with vertex degree greater than four. Among them, the Kandinsky model [2]
takes center stage. It allows edges to run on a finer grid, which means that,
without altering the size of vertices, many edges may be incident in parallel on
the same side. In comparison to other approaches [6, 7, 9], it is space-efficient
and does not abandon the expected orthogonality of the drawings.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 618–620, 2018.
https://doi.org/10.1007/978-3-319-73915-1

Optimal Compaction of Orthogonal Grid 619

In this work, we unite these two elements into a single procedure. Specifically,
we propose an extension of Klau and Mutzel’s compaction method [5], such that
any planar graph may be optimally compacted and ultimately drawn according
to the Kandinsky model, regardless of its vertex degree.

In order to do this, the properties presented by Klau and Mutzel [5] to define
the set of feasible solutions - in particular, separation and adjacency - for 4-
planar graphs are extended to cover previously inexistent situations. In addition,
novel concepts - aggregating/twin segments - are introduced to ensure correctness
and optimality. Concretely, aggregating segments are the result of transforming
parallel edges - as the ones typical of the Kandinsky model - into equivalent,
as far as the optimization problem is concerned, sequences of dummy vertices
and edges. When parallel edges bend both to the left and to the right, then
it is necessary to introduce twin segments, which are nothing more than two
aggregating segments that must occupy the same grid position and represent
different layout constraints.

The obtained results shed light on two relevant points: (i) from a practical
perspective, being able to optimally compact and draw absolutely any planar
graph is a relevant feature in many systems; (ii) computationally, it has been
observed that the increased cardinality of the graph (and, thus, average vertex
degree) does not compromise the overall execution time, due to the preprocessing
stage presented in [5] being more efficient for graphs with relatively many faces.

Therefore, it is our belief that this methodology is both of theoretical interest
and highly applicable in practice.

Acknowledgment. The authors would like to thank CNPq, Brazil for supporting this
research.

References

1. Eiglsperger, M., Kaufmann, M.: Fast compaction for orthogonal drawings with ver-
tices of prescribed size. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001.
LNCS, vol. 2265, pp. 124–138. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45848-4 11

2. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend num-
bers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021809

3. Klau, G.W., Mutzel, P.: Combining graph labeling and compaction. In: Kratochv́ıyl,
J. (ed.) GD 1999. LNCS, vol. 1731. Springer, Heidelberg (1999)

4. Klau, G.W., Klein, K., Mutzel, P.: An experimental comparison of orthogonal com-
paction algorithms. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 37–51.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44541-2 5

5. Klau, G.W., Mutzel, P.: Optimal compaction of orthogonal grid drawings (extended
abstract). In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999.
LNCS, vol. 1610, pp. 304–319. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48777-8 23

6. Klau, G., Mutzel, P.: Quasi-orthogonal Drawing of Planar Graphs. Bibliothek &
Dokumentation, MPI Informatik (1998)

https://doi.org/10.1007/3-540-45848-4_11
https://doi.org/10.1007/3-540-45848-4_11
https://doi.org/10.1007/BFb0021809
https://doi.org/10.1007/3-540-44541-2_5
https://doi.org/10.1007/3-540-48777-8_23
https://doi.org/10.1007/3-540-48777-8_23

620 E. S. Ramos and A. C. Lisboa

7. Otten, R.H.J.M., van Wijk, J.G.: Graph representations in interactive layout design.
In: Proceedings of the IEEE International Symposium. on Circuits and Systems, pp.
914–918 (1978)

8. Patrignani, M.: On the complexity of orthogonal compaction. Comput. Geom. 19(1),
47–67 (2001)

9. Tamassia, R., Battista, G.D., Batini, C.: Automatic graph drawing and readability
of diagrams. IEEE Trans. Syst. Man Cybern. 61–79 (1988)

BCSA: BC Tree-Based Sampling
and Visualization of Big Graphs

Seok-Hee Hong(B), Quan Nguyen, Amyra Meidiana, and Jiaxi Li

The School of Information Technologies, University of Sydney, Sydney, Australia
{seokhee.hong,quan.nguyen}@sydney.edu.au,

{amei2916,jili2506}@uni.sydney.edu.au

Abstract. Graph sampling techniques have been popular for the analy-
sis and visualization of big complex networks. However, existing sampling
methods often fail to preserve connectivity and important global skeletal
structure in the original graph. This poster introduces two new families
of sampling methods BCSA-W and BCSA-E for big complex graphs, based
on the decomposition of a graph into biconnected components, known
as the BC (Block Cut-vertex) tree. Experimental results using graph
sampling quality metrics show that our new sampling methods produce
better results than existing methods: 25% improvement by BCSA-W and
15% by BCSA-E over existing methods on average.

We then present DBCSA, BC tree based graph sampling algorithm
in distributed environment. Experiments on the Amazon Cloud EC2
demonstrate that DBCSA is scalable for big graph data sets; running time
speed up of 77% for distributed 5-server sampling over sequential sam-
pling on average. We also present a new layout method called BCTV, which
clearly shows the BC tree decomposition of a graph. Visual comparison
using the BCTV layout shows that our new sampling methods can better
maintain the global structure of the original graph.

1 Introduction

Graph sampling has been well studied in graph mining for analysis of big graphs
[1]. A number of graph sampling methods have been proposed and evaluated
using various quality metrics [1]. Graph sampling has also been used for the
visualization of large and complex networks [2]. Recently, Zhang et al. presented
experimental comparison of different sampling algorithms under various sam-
pling metrics [4]. More recently, Wu et al. presented user studies to investigate
how sampling methods influence graph visualization, in terms of human percep-
tion of high degree vertices, clusters and coverage area [3].

Graph sampling methods commonly aim to retain some structural properties
of the original graph; however, they often fail to preserve connectivity as well as
the important global skeletal structure of the graph. In particular, Random Ver-
tex and Random Edge sampling often produce a set of disconnected subgraphs
as samples [3].

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 621–623, 2018.
https://doi.org/10.1007/978-3-319-73915-1

622 S.-H. Hong et al.

In this poster, we propose a new approach for sampling big complex graphs,
called BCSA (BC tree-based SAmpling), based on the decomposition of a graph
into biconnected components, called BC (Block Cut-vertex) tree, to maintain the
connectivity structure and the important global skeletal structure of the original
graph.

More specifically, we first include the cut vertices of the original graph to
graph samples, since cut vertices are structurally important vertices in terms of
connectivity as well as network analysis. For example, in social network analysis,
cut vertices are important actors of the network, since their social roles and
positions are brokers or actors connecting different communities, often with high
betweenness centrality.

The main contribution of this poster can be described as follows:

1. We introduce two new families of sampling methods BCSA-W (BCSA-Whole)
and BCSA-E (BCSA-Each). Each family consists of five different sampling
methods, based on five most popular sampling methods, combined with
the BC tree decomposition. BCSA-W algorithms first add cut vertices to the
samples, and then perform sampling in a similar way as the original sam-
pling algorithms. BCSA-E is a Divide and Conquer algorithm which performs
BCSA-W algorithms for each biconnected component independently and then
merges the results to obtain the final sample.
Experimental results with real world graph data sets demonstrate that
BCSA algorithms produce better quality samples than the corresponding
original sampling methods, using well-known sampling quality metrics; 25%
improvement was obtained by BCSA-W and 15% by BCSA-E over existing meth-
ods on average.

2. We present DBCSA (Distributed BC tree-based SAmpling) to exploit the BC
tree decomposition in distributed environment for sampling big complex net-
work efficiently. The BC tree decomposition gives a set of biconnected com-
ponents, overlapping (i.e., sharing) only at cut vertices. Such a decompo-
sition is therefore useful for effectively partitioning the set of biconnected
components to a set of servers, and to reduce communication overhead on
a distributed computing platform. More specifically, we use the Divide and
Conquer BCSA-E algorithms for sampling biconnected components in each
server in parallel.
Experiments on the Amazon Cloud EC2 with both real world graph data sets
and synthetic data sets demonstrate that DBCSA is scalable for big graph data
sets; on average, the running time speed up is 77% on distributed 5-server,
and 46% on 2-server over sequential sampling.

3. For better visual comparison of the sampling results, we present a new graph
layout algorithm BCTV (BC Tree Visualization), which clearly shows the BC
tree decomposition of a graph. More specifically, BCTV is a divide and conquer
algorithm, which combines a weighted tree drawing algorithm (for drawing
the BC tree) and a force-directed algorithm (for drawing each biconnected
component).

BCSA: BC Tree-Based Sampling and Visualization of Big Graphs 623

Visual comparison using BCTV layout with real world data sets visually con-
firm that our new sampling methods can better maintain the global structure
of the original graph.

References

1. Hu, P., Lau, W.C.: A survey and taxonomy of graph sampling. CoRR abs/1308.5865
(2013)

2. Rafiei, D., Curial, S.: Effectively visualizing large networks through sampling. In:
16th IEEE Visualization Conference, VIS 2005, Minneapolis, MN, USA, 23–28 Octo-
ber 2005, pp. 375–382 (2005)

3. Wu, Y., Cao, N., Archambault, D., Shen, Q., Qu, H., Cui, W.: Evaluation of graph
sampling: a visualization perspective. IEEE Trans. Vis. Comput. Graph. 23(1),
401–410 (2017)

4. Zhang, F., Zhang, S., Wong, P.C., Swan II, J.E., Jankun-Kelly, T.: A visual and
statistical benchmark for graph sampling methods. In: Exploring Graphs at Scale
(EGAS) Workshop, IEEE VIS 2015, October 2015

Low Ply Drawings of Trees of Bounded Degree

Michael T. Goodrich and Timothy Johnson(B)

Department of Computer Science, University of California, Irvine, CA, USA

1 Introduction

An interesting paradigm for drawing graphs involves visualizing them as maps
or road networks, allowing a visualizer to use known techniques that apply to
maps.

Eppstein and Goodrich [3] introduce the concept of ply number of an embed-
ded graph and they demonstrate experimentally that real-world road networks
tend to have low ply. Intuitively, the ply concept tries to capture the way that
road networks have features that are well-separated at multiple scales.

The ply number of a drawing is computed by first assigning to each vertex
a disk with a radius of α times the length of its longest incident edge. The ply
number is then the maximum number of disks that intersect in a single point.

2 Our Results

We announce two new results in drawing graphs with low ply number.
Di Giacomo et al. [2], asked whether all bounded-degree trees have 1-ply draw-
ings for a sufficiently small α. We show that this is indeed the case.

We then extend a result from Angelini et al. [1], who showed that trees
with maximum degree six can be drawn in polynomial area with logarithmic
ply number. We extend this as well to trees of any bounded degree, using the
heavy-path decomposition technique of Sleator and Tarjan [4].

3 1-Ply Drawings

At a high level, our 1-ply drawings of bounded-degree trees are constructed as
follows. For a tree with maximum degree Δ, we divide the area around each
vertex radially into Δ equal wedges, each containing one of its neighbors. The
distance from each node to its children is chosen to be a constant fraction f of
its distance from its own parent.

The following three constraints ensure that the ply number is 1. Comparing
these constraints then allows us to prove the following theorem.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 624–626, 2018.
https://doi.org/10.1007/978-3-319-73915-1

Low Ply Drawings of Trees of Bounded Degree 625

1. Ply disks for adjacent vertices must not overlap.
2. Ply disks for vertices on separate subtrees must not overlap.
3. A ply disk for a vertex must never overlap a ply disk for one of its ancestors.

Theorem 1. Let T be a tree with maximum degree Δ, and let f =
sin(π

Δ)
1+sin(π

Δ) .

T has a 1-ply drawing if α ≤ min{ f
1+f , f

√
1 − 2f cos θ + f2) − f3

1−f }.

4 Polynomial Area, Logarithmic Ply Number

Theorem 2. For α = 0.5, a tree with maximum degree Δ can be drawn with
ply number O(log n) in area nO(Δ).

We first describe a simple algorithm for drawing trees by layering their chil-
dren, which proves this theorem for balanced trees. This relies on the following
lemma.

Lemma 1. Suppose that r is the root of a star graph. Let v1 and v2 be children
at distances d1 and d2, respectively. If d2 ≥ 3d1, then the ply disks for v1 and v2
are disjoint.

Next we show that, as in Angelini et. al. [1], the heavy path decomposition
will allow us to draw these trees with logarithmic ply number even when they
are unbalanced. We let μ = (v1, v2, . . . , vm) be a path in our heavy path decom-
position, aμ be its anchor vertex, nμ is the number of vertices whose paths are
anchored at aμ, ni is the number of vertices whose paths are anchored at vi, and
l(a, b) is the length of an edge from a to b. We use the algorithm DrawPath
from Angelini et. al. [1], which satisfies the following property.

Lemma 2. Algorithm DrawPath constructs a drawing Γ with ply number 2
of a path μ = (v1, v2, . . . , vm) such that l(aμ, v1) ≥ n1, l(vi, vi+1) ≥ ni + ni+1,
for each i = 1, . . . ,m − 1, and l(Γ) ≤ 6nμ.

We then use this DrawPath algorithm to perform a bottom-up construction
of our tree, in which the child paths of each vertex in our tree are assigned to
different layers around their root. We space each layer such that each node in
layer i+1 is at least three times the distance of any node in layer i, so that none
of the ply disks for nodes in different layers overlap.

We then scale each path so that the child paths of any two adjacent vertices
in a path do not intersect. This produces a drawing with a ply number of 3(h+1),
where h is the height of the heavy path decomposition. The spacing provided by
the DrawPath algorithm ensures that our scaling factor is constant for each
level of the decomposition, which implies that the total area is polynomial.

626 M. T. Goodrich and T. Johnson

References

1. Angelini, P., Bekos, M.A., Bruckdorfer, T., Hančl, J., Kaufmann, M., Kobourov, S.,
Symvonis, A., Valtr, P.: Low ply drawings of trees. In: Hu, Y., Nöllenburg, M. (eds.)
GD 2016. LNCS, vol. 9801, pp. 236–248. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-50106-2 19

2. Di Giacomo, E., Didimo, W., Hong, S.H., Kaufmann, M., Kobourov, S.G., Liotta,
G., Misue, K., Symvonis, A., Yen, H.C.: Low ply graph drawing. In: 2015 6th Inter-
national Conference on Information, Intelligence, Systems and Applications (IISA),
pp. 1–6. IEEE (2015)

3. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an
algorithmic lens. In: Proceedings of the 16th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, p. 16. ACM (2008)

4. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

https://doi.org/10.1007/978-3-319-50106-2_19
https://doi.org/10.1007/978-3-319-50106-2_19

Which Graph Layout Gives a Good Shape
for Large Graphs?

Quan Nguyen(B), Peter Eades, and Seok-Hee Hong

The School of Information Technologies, University of Sydney, Sydney, Australia
{quan.nguyen,peter.eades,seokhee.hong}@sydney.edu.au

Abstract. This poster empirically investigates the quality of large
graph layouts using shape-based quality metrics. We present our pre-
liminary results on several real-world graphs.

1 Introduction

Drawing very large graphs is challenging and has attracted extensive research.
Force directed methods are, so far, the most popular methods used for drawing
large graphs.

Traditionally, graph drawing algorithms often aim for some aesthetic criteria;
for example, edge bends, edge crossings and angular resolution; these metrics are
good for small graphs of up to a few hundred nodes [13].

Shape-based faithfulness metrics [7] measure how well the “shape” of the
drawing represents the graph. The drawing D is shape faithful if one can derive
G from the shape of D. For large graphs, the shape of the drawing is more
significant than the number of edge bends and edge crossings. Given a graph G
and P is the set of vertex locations in the drawing D of G. A shape graph S(P)
is a graph with vertex set P such that the edges of S(P) form the “shape” of P .
Examples of shape graphs are the Euclidean minimum spanning tree (EMST),
the relative neighbourhood graph (RNG), and the Gabriel graph (GG) [16]. The
shape-based quality of a drawing D is defined as the similarity between the shape
graph S(P) and G.

In this poster, we investigate the quality and speed of a number of standard
large graph layout algorithms. For an objective evaluation, we use the shape-
based quality metrics [7]. We empirically investigated a number of real-world
graphs. The graphs contain thousands of vertices and tens of thousands of edges.
Our results lead to suggestions of which algorithms are better than others.

2 Experiment

Data Sets. For our evaluation, we used the graphs taken from the Hachul
library, Walshaw’s Graph Partitioning Archive, the sparse matrices collection
[6] and the network repository [15]. These include two commonplace types of

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 627–629, 2018.
https://doi.org/10.1007/978-3-319-73915-1

628 Q. Nguyen et al.

graphs that have been extensively studied in graph drawing research: grid-like
graphs and scale-free graphs.

Layouts. For layout, we used available implementations of standard force-
directed algorithms implemented in OGDF [4]. We also used the LinLog lay-
out [14], Tom Sawyer’s symmetric force-directed layout [1] and yEd’s Organic
layout [2].

Particularly, we used the following standard force-directed algorithms that
are available in OGDF: (1) FM 3 by Hachul and Junger [11]; (2) stress [10]; (3) FR
by Fruchterman and Reingold [9]; (4) PivotMDS by Brandes and Pich [3]; (5)
KK by Kamada and Kawai [12]. We also used variations of force-directed layouts
available in OGDF. They include (i) FMME ; (ii) Nice; (iii) Fast ; (iv) NoTwist ;
(v) MixedForce and (vi) FRGrid : a grid-variant of the FR algorithm [9]. In addi-
tion, we also tried GEM layout by Frick et al. [8], and DH layout by Davidson
and Harel [5]; however, they did not scale.

In our experiments, we run each layout algorithm for each data set using the
default values of the parameters.

Settings. The experiments were performed on a i7 XPS Dell laptop with 16GB
memory and 512GB SSD running Ubuntu 16.04. The runtime was capped to
15min for each algorithm on each graph. OGDF’s layout implementations were
compiled with gcc 5.4.0, x86-64 (-O3). The evaluation of LinLog was conducted
on the same machine with Java 8 and 6GB of heap.

Quality Results. Overall, Fast, Nice and NoTwist are the winners for all
graphs. Tom Sawyer performed quite well, giving good shapes for most of the
graphs. FMME gave good results for many graphs, except for yeastppi, oflights
and p2p-Gnutella05 data sets. LinLog performed quite well for scale-free graphs,
but gave low quality for grid-like graphs. FM3, yEd, stress and PMDS belong to
the average performers. Layouts from FR, DH and GEM layouts using default
parameters are not so good.

Running Time. Stress, NoTwist, KK and LinLog consumed more time than
the other algorithms. DH finished only for one graph (can144) within 15min.

References

1. Tom Sawyer Software: Graph layout toolkit. http://www.tomsawyer.com
2. yEd - Java Graph Editor. http://www.yworks.com/products/yed
3. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling

of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp.
42–53. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6 6

4. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The
Open Graph Drawing Framework (OGDF). CRC Press (2012)

5. Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM
Trans. Graph. 15(4), 301–331 (1996)

6. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1:1–1:25 (2011)

http://www.tomsawyer.com
http://www.yworks.com/products/yed
https://doi.org/10.1007/978-3-540-70904-6_6

Which Graph Layout Gives a Good Shape for Large Graphs? 629

7. Eades, P., Hong, S., Nguyen, A., Klein, K.: Shape-based quality metrics for large
graph visualization. J. Graph Algorithms Appl. 21(1), 29–53 (2017)

8. Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected
graphs. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 388–403.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-58950-3 393

9. Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Softw.
Pract. Experience 21(11), 1129–1164 (1991)

10. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31843-9 25

11. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9 29

12. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. (1989)

13. Nguyen, Q.H., Eades, P., Hong, S.: On the faithfulness of graph visualizations.
In: IEEE Pacific Visualization Symposium, PacificVis 2013, 27 February–1 March
2013, Sydney, NSW, Australia, pp. 209–216 (2013)

14. Noack, A.: Energy models for graph clustering. J. Graph Algorithms Appl. 11(2),
453–480 (2007)

15. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015). http://networkrepository.com

16. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recognit. 12(4), 261–268 (1980)

https://doi.org/10.1007/3-540-58950-3_393
https://doi.org/10.1007/978-3-540-31843-9_25
https://doi.org/10.1007/978-3-540-31843-9_29
http://networkrepository.com

MetagenomeScope

Web-Based Hierarchical Visualization
of Metagenome Assembly Graphs

Marcus Fedarko1,2, Jay Ghurye1,2, Todd Treangen2, and Mihai Pop1,2(B)

1 Department of Computer Science, University of Maryland, College Park, USA
jayg@cs.umd.edu, mpop@umiacs.umd.edu

2 Center for Bioinformatics and Computational Biology, University of Maryland,
College Park, USA

{mfedarko,treangen}@umd.edu

1 Introduction

Sequencing technologies break up DNA into many small fragments, necessitating
the reconstruction of these fragments in order to identify the complete structure
of the input sequence. This process is referred to as assembly. In particular,
genome assembly involves assembling sequences arising from a single organism’s
DNA, while metagenome assembly involves assembling sequences taken from
uncultured environments in which many organisms’ genetic material may be
contained.

Most assemblers represent the fragments of DNA resulting from sequencing
as an overlap graph or a de Bruijn graph [5]. In either type of graph, nodes
correspond to pieces of DNA obtained from these fragments (also referred to
as contigs) and edges correspond to overlaps between contigs’ sequences. The
ideal graph obtained from assembly would consist of c connected components
comprised of single linear or circular paths, where c is the number of DNA
sequences in the input sample. In turn, these paths would spell out the original
sequence(s). However, complexities such as repetitive sequences and sequencing
errors can create branches and cycles in the graph—so the graphs generated by
assemblers often require manual examination after the fact to resolve ambiguous
connections and correct assembly errors [8]. This has brought about the need
for tools that can visualize these frequently-intricate graphs effectively, display-
ing relevant biological metadata and graph structural information in a readily
accessible manner. Furthermore, there is a documented dearth of hierarchical
visualization tools that allow the user to go “from the large structure down to
the base level [of the assembly graph]” [6].

To help resolve this deficit we present MetagenomeScope, an interactive web-
based tool for the visualization of assembly graphs. MetagenomeScope contains
a number of features to aid bioinformaticians in exploratory analysis of these
structures at both coarse and fine levels of complexity.

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 630–632, 2018.
https://doi.org/10.1007/978-3-319-73915-1

MetagenomeScope 631

2 Primary Contributions

MetagenomeScope uses the dot tool for hierarchical layout [3] to draw graphs in
its “standard mode.” This differs notably from existing assembly visualization
tools such as Bandage [9], ABySS-Explorer [7], and Ray Cloud Browser [4], all of
which employ force-directed layouts when drawing graphs. We found that force-
directed drawings of assembly graphs tended to produce visualizations for which
manual inspection of the graph’s structural details, such as “bubble” patterns
[5], became onerous.

To further emphasize certain biologically relevant structural patterns in the
graph, we modified MetagenomeScope’s layout process to group together col-
lections of contigs identified as belonging to these patterns. Along with being
clustered together during layout, these contig groups can also be dynamically
collapsed and uncollapsed by the user, allowing the user to reduce and expand
the scope of the graph.

MetagenomeScope also supports the use of SPQR trees [2] as a means
for decomposing biconnected components in the graph into simpler, iteratively
expandable regions. This is employed in MetagenomeScope’s SPQR “decompo-
sition mode.” We currently generate an undirected version of the input graph in
which each biconnected component is replaced with a “node” containing the root
metanode of its corresponding SPQR tree. SPQR trees are computed using the
Open Graph Drawing Framework [1]. In MetagenomeScope’s viewer interface,
the metanodes in the tree can be iteratively expanded to reveal further details
about the paths through their respective biconnected component. Along with
helping the user trace through paths in biconnected components, this feature
yields a greatly simplified initial view of the overall assembly graph. SPQR trees
have been recognized as a potential means for “finding the tangles in the [assem-
bly] graph” [6], and we plan to continue developing this feature as we receive
feedback on MetagenomeScope.

3 Demonstrated Applications

The visualizations provided by MetagenomeScope have already seen practical use
in our lab. Scaffolds (oriented and ordered groups of adjacent contigs) defined
in AGP files can be visualized in MetagenomeScope as overlaid on top of their
respective contigs in the assembly graph; we have used this feature to visually
identify nonadjacent scaffolds, thus indicating an error in our scaffold-generating
code. Upon fixing the code in question, we were able to use MetagenomeScope
to verify that the scaffolds generated for the graph in question were properly
redesigned.

The visualization component of the tool’s status as a web application has also
been of use, since it effectively minimizes the software and hardware requirements
for viewing assembly graphs. We have already used MetagenomeScope’s viewer
interface to display assembly graphs as part of the 2017 “Strategies and Tech-
niques for Analyzing Microbial Population Structure” research training course
held at the Marine Biological Laboratory.

632 M. Fedarko et al.

Acknowledgements. The authors were supported in part by the NIH, grant R01-
AI-100947, the NSF, grant IIS-1117247NRL, and the Navy Research Laboratories,
cooperative agreement N00173162C001, all to MP.

References

1. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The
open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook of Graph
Drawing and Visualization. CRC Press (2014)

2. Di Battista, G., Tamassia, R.: Incremental planarity testing. In: 30th Annual Sym-
posium on foundations of Computer Science, pp. 436–441. IEEE (1989)

3. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz —
open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD
2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45848-4 57

4. Godzaridis, E., Boisvert, S., Xia, F., Kandel, M., Behling, S., Long, B., Sosa, C.P.,
Laviolette, F., Corbeil, J.: Human analysts at superhuman scales: what has friendly
software to do? Big Data 1(4), 227–236 (2013)

5. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation
sequencing data. Genomics 95(6), 315–327 (2010)

6. Myers, G., Pop, M., Reinert, K., Warnow, T.: Next generation sequencing (Dagstuhl
seminar 16351). Dagstuhl Rep. 6(8), 91–130 (2017)

7. Nielsen, C.B., Jackman, S.D., Birol, I., Jones, S.J.M.: Abyss-explorer: visualizing
genome sequence assemblies. IEEE Trans. Visual. Comput. Graph. 15(6), 881–888
(2009)

8. Phillippy, A.M., Schatz, M.C., Pop, M.: Genome assembly forensics: finding the
elusive mis-assembly. Genome Biol. 9(3), R55 (2008)

9. Wick, R.R., Schultz, M.B., Zobel, J., Holt, K.E.: Bandage: interactive visualization
of de novo genome assemblies. Bioinformatics 31(20), 3350–3352 (2015)

https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57

Author Index

Akitaya, Hugo A. 210, 615
Angelini, Patrizio 24, 102, 517
Archambault, Daniel 394
Arleo, Alessio 256

Bae, Sang Won 531
Baffier, Jean-Francois 531
Ballweg, K. 241
Bekos, Michael A. 102, 169, 426, 517
Biedl, Therese 81, 140, 184, 305, 318, 600
Bishnu, Arijit 603

Calamoneri, Tiziana 334
Chan, Timothy M. 305
Chaplick, Steven 24, 465, 546
Chimani, Markus 465
Chun, Jinhee 531
Cornelsen, Sabine 465

Da Lozzo, Giordano 465
De Luca, Felice 24, 426
Demaine, Erik D. 210
Derka, Martin 184, 305
Devanny, William 575
Di Donato, Valentino 334
Di Giacomo, Emilio 413, 479, 609
Didimo, Walter 256, 426
Dujmović, Vida 184

Eades, Peter 272, 531, 627
Eickmeyer, Kord 531
Eppstein, David 506, 560

Fedarko, Marcus 630
Felsner, Stefan 127
Fiala, Jiří 24
Förster, Henry 169
Fröschl, Theresa 585
Fulek, Radoslav 160, 594

Gasieniec, Leszek 413
Ghosh, Arijit 603
Ghurye, Jay 630

Gimbel, John 67
Goodrich, Michael T. 624
Grilli, Luca 531

Hančl Jr., Jaroslav 24
Heinsohn, Niklas 24, 38
Hesterberg, Adam 210
Hong, Seok-Hee 272, 531, 621, 627

Irvine, Veronika 140

Jain, Kshitij 305
Jianu, Radu 287
Johnson, Timothy 624
Jones, Matthew D. 615

Kaufmann, Michael 24, 38, 102, 169, 517
Kindermann, Philipp 52, 113, 517, 575
Kirby, Robert M. 606
Klawitter, Jonathan 224
Klemz, Boris 440
Klute, Fabian 612
Kobourov, Stephen 24, 113, 287, 394
Korman, Matias 531
Kostitsyna, Irina 492
Kratochvíl, Jan 24
Kryven, Myroslav 546, 591
Kynčl, Jan 594

Lazard, Sylvain 17
Lenhart, William 17
Li, Jiaxi 621
Liotta, Giuseppe 17, 256, 413, 479, 546, 609
Lipp, Fabian 365
Lisboa, Adriano Chaves 618
Liu, Quanquan C. 210
Löffler, Andre 546
Löffler, Maarten 113, 575
Lubiw, Anna 305

Mariottini, Diego 334
Markfelder, Peter 365
Mathew, Rogers 603

Mchedlidze, Tamara 3, 224, 426
Mehrabi, Saeed 81
Meidiana, Amyra 621
Meulemans, Wouter 52, 492
Miller, Nathaniel 588
Mishra, Gopinath 603
Mondal, Debajyoti 318, 600
Montecchiani, Fabrizio 102, 256, 531
Morin, Pat 184

Navarra, Alfredo 413
Nguyen, Quan 272, 621, 627
Nöllenburg, Martin 113, 224, 426, 465, 585,

612

Oikonomou, Anargyros 326
Okoe, Mershack 287
Ossona de Mendez, Patrice 67

Pach, János 153, 160
Patrignani, Maurizio 334, 465, 479, 609
Paul, Subhabrata 603
Pohl, M. 241
Pop, Mihai 630
Pupyrev, Sergey 197

Radermacher, Marcel 3, 597
Raj, Mukund 351, 606
Ramos, Eduardo Santiago 618
Ravsky, Alexander 591
Reichard, Klara 597
Rote, Günter 440
Ruginski, Ian 606
Rutter, Ignaz 3, 531, 575, 597

Sandoval, Gregory A. 615
Scheucher, Manfred 127

Schneck, Thomas 517
Schulz, André 52, 113
Silveira, Rodrigo I. 454
Simonetto, Paolo 394
Sitchinava, Nodari 88
Sondag, Max 492
Souvaine, Diane L. 615
Speckmann, Bettina 454
Stalfa, David 615
Strash, Darren 88
Symvonis, Antonios 326, 426

Tappini, Alessandra 479, 609
Tollis, Ioannis G. 426, 465
Tóth, Csaba D. 531, 615
Tóth, Géza 153
Treangen, Todd 630

Valtr, Pavel 24, 67
van Dijk, Thomas C. 365
van Goethem, Arthur 492
van Kreveld, Marc 492
Verbeek, Kevin 454
Vogtenhuber, Birgit 113
von Landesberger, T. 241

Wagner, Dorothea 597
Wallner, G. 241
Whitaker, Ross T. 351, 606
Wolff, Alexander 365, 465, 546, 591
Wu, Jieting 379
Wulms, Jules 492

Yu, Hongfeng 379

Zeng, Jianping 379
Zhu, Feiyu 379

634 Author Index

	Preface
	Organization
	Keynote Presentations
	Fun with Recursion and Tree Drawings
	Mapping the Next Pandemic
	Contents
	Straight-Line Representations
	Aligned Drawings of Planar Graphs
	1 Introduction
	2 Preliminaries
	3 Complexity and Fixed-Parameter Tractability
	4 Drawing Aligned Graphs
	4.1 Proof Strategy
	4.2 One Pseudoline
	4.3 Alignment Complexity (1, 0,)

	5 Conclusion
	References

	On the Edge-Length Ratio of Outerplanar Graphs
	1 Introduction
	2 Proof of Theorem 1
	3 Additional Remarks and Open Problems
	References

	On Vertex- and Empty-Ply Proximity Drawings
	1 Introduction
	2 Relationships Between Ply and Vertex-Ply
	3 Properties of Graphs with Empty-Ply Drawings
	4 Graph Classes with and Without Empty-Ply Drawings
	4.1 Complete Graphs
	4.2 Complete Bipartite Graphs
	4.3 Trees of Bounded Degree
	4.4 Graph Squares

	5 Ply and Vertex-Ply of Planar Drawings
	6 Conclusions and Future Work
	References

	An Interactive Tool to Explore and Improve the Ply Number of Drawings
	1 Introduction
	2 Functionality
	3 Ply Computation Algorithm
	3.1 Precision Problems
	3.2 Plane-Sweep Algorithm

	4 Experiments
	4.1 Ply Number for Different Layouts
	4.2 Comparison on the FM3 Drawing Dataset
	4.3 Ply Minimization
	4.4 Strategies
	4.5 Results

	5 Discussion and Conclusion
	References

	Experimental Analysis of the Accessibility of Drawings with Few Segments
	1 Introduction
	2 Algorithms
	3 Hypotheses
	4 Experimental Design
	5 Results
	6 Conclusion
	References

	Obstacles and Visibility
	Obstacle Numbers of Planar Graphs
	1 Introduction
	2 Our Results
	3 Preliminaries
	4 Proof of Theorems 1 and 2
	4.1 Three Lemmas
	4.2 The Proof
	4.3 Sketch of the Proof of Lemma 3

	5 Obstacle Number of Intersection Graphs of Segments
	References

	Grid-Obstacle Representations with Connections to Staircase Guarding
	1 Introduction
	2 2D Grid-Obstacle Representations
	3 3D Grid-Obstacle Representation
	4 Non-blocking Grid-Obstacle Representations
	4.1 Planar Bipartite Graphs
	4.2 Application to Staircase Guarding
	4.3 3D Grid-Obstacle Representation of Bipartite Graphs

	5 Conclusion
	References

	Reconstructing Generalized Staircase Polygons with Uniform Step Length
	1 Introduction
	1.1 Special Classes
	1.2 Our Results

	2 Preliminaries
	3 Uniform-Length Orthogonally Convex Polygons
	3.1 Irregular Uniform-Length Orthogonally Convex Polygons

	4 Uniform-Length Histogram Polygons
	4.1 Overview of the Algorithm
	4.2 Rectangular Decomposition and Contact Tree Construction
	4.3 Mapping Candidate Polygon Vertices to the Visibility Graph
	4.4 Reducing the Number of Candidate Histograms

	5 From Reconstruction to Recognition
	References

	3D Visibility Representations of 1-planar Graphs
	1 Introduction
	2 Preliminaries and Definitions
	3 Proof of Theorem 1
	4 Open Problems
	References

	Topological Graph Theory
	Lombardi Drawings of Knots and Links
	1 Introduction
	2 General Observations
	3 Plane Lombardi Drawings via Circle Packing
	4 Positive and Negative Results for Small Graphs
	5 Plane 2-Lombardi Drawings of Knots and Links
	6 Plane Near-Lombardi Drawings
	References

	Arrangements of Pseudocircles: Triangles and Drawings
	1 Introduction
	2 Arrangements with Few Triangles
	2.1 Arrangements with Digons

	3 Maximum Number of Triangles
	3.1 Constructions Using Arrangements of Pseudolines

	4 Visualization
	4.1 Iterated Tutte Embeddings
	4.2 Visualization Using Curves
	4.3 Visualization of Arrangements of Pseudolines

	References

	Drawing Bobbin Lace Graphs, or, Fundamental Cycles for a Subclass of Periodic Graphs
	1 Introduction
	2 Mathematical Model of Bobbin Lace
	2.1 Conditions on Lace Pattern Graph Embeddings
	2.2 Osculating Circuits and Thread Conservation

	3 Finding a Polygonal Schema
	4 Discussion and Open Problems
	References

	Many Touchings Force Many Crossings
	1 Introduction
	2 Proof of Theorem
	References

	Thrackles: An Improved Upper Bound
	1 Introduction
	2 Terminology
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	References

	Orthogonal Representations and Book Embeddings
	On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings
	1 Introduction
	2 Relationships Between Graph Classes
	3 NP-hardness Results
	4 Bi-monotone Drawings
	5 Conclusions
	References

	EPG-representations with Small Grid-Size
	1 Introduction
	2 Preliminaries
	3 From Proper VPG to EPG
	4 Lower Bounds
	5 Upper Bounds on xy+-monotone EPG Representations
	6 EPG-representations via Orthogonal Drawings
	References

	Mixed Linear Layouts of Planar Graphs
	1 Introduction
	2 A Counterexample for Conjecture 1
	3 Mixed Layouts of Planar Subdivisions
	4 Discussion
	References

	Upward Partitioned Book Embeddings
	1 Introduction
	2 Definitions
	3 UPBE is NP-Complete
	3.1 Gadgets
	3.2 Final Reduction

	4 UMPBE
	4.1 UMPBE-4
	4.2 UMPBE-2

	References

	Experimental Evaluation of Book Drawing Algorithms
	1 Introduction
	2 Algorithms
	2.1 Constructive Heuristics
	2.2 Local Search Heuristics

	3 Benchmark Graphs
	4 Evaluation
	4.1 Experimental Setup
	4.2 Constructive Heuristics
	4.3 Local Search Heuristics

	5 Discussion and Conclusions
	References

	Evaluations
	Visual Similarity Perception of Directed Acyclic Graphs: A Study on Influencing Factors
	1 Introduction
	2 Related Work
	3 Study Methodology
	3.1 Research Questions
	3.2 Dataset
	3.3 Participants
	3.4 Study Procedure

	4 Analysis and Results
	4.1 Quantitative Analysis (RQ1, RQ2)
	4.2 Qualitative Analysis (RQ2)

	5 Discussion and Conclusion
	References

	GiViP: A Visual Profiler for Distributed Graph Processing Systems
	1 Introduction
	2 Background and Related Work
	3 The GiViP System
	3.1 Tasks and Requirements
	3.2 Data Model and Data Aggregation
	3.3 Visualization Paradigm and Interface
	3.4 Architecture and Implementation Notes

	4 Usage Scenarios
	5 Discussion and Future Work
	References

	Drawing Big Graphs Using Spectral Sparsification
	1 Introduction
	2 Background
	3 The Spectral Sparsification Approach to Large Graph Drawing
	4 The Experiments
	5 Results from the Experiments
	5.1 Quality: Results and Observations
	5.2 Runtime

	6 Concluding Remarks
	References

	Revisited Experimental Comparison of Node-Link and Matrix Representations
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Stimuli: Data
	3.2 Stimuli: Visual Encoding
	3.3 Stimuli: Interactions
	3.4 Tasks
	3.5 Hypotheses
	3.6 Design
	3.7 Procedure

	4 Results
	5 Discussion
	6 Conclusions
	References

	Tree Drawings
	Improved Bounds for Drawing Trees on Fixed Points with L-Shaped Edges
	1 Introduction
	1.1 Our Results
	1.2 Further Background

	2 Ordered Trees—The Case of Caterpillars
	3 Trees of Maximum Degree 3
	4 Trees of Maximum Degree 4
	5 Conclusions
	References

	On Upward Drawings of Trees on a Given Grid
	1 Introduction
	2 NP-Hardness
	3 Directions for Future Research
	References

	Simple Compact Monotone Tree Drawings
	1 Introduction
	2 Definitions and Preliminaries
	3 Monotone Tree Drawing on an n n Grid
	References

	Visualizing Co-phylogenetic Reconciliations
	1 Introduction
	2 Background
	3 A New Model for the Visualization of Reconciliations
	4 Planar Instances and Reconciliations
	5 Minimizing the Number of Crossings
	6 Heuristics for Drawing Reconciliations with Few Crossings
	6.1 Heuristic SearchMaximalPlanar
	6.2 Heuristic ShortenHostSwitch

	7 Experimental Evaluation
	8 Conclusions and Future Work
	References

	Graph Layout Designs
	Anisotropic Radial Layout for Visualizing Centrality and Structure in Graphs
	1 Introduction
	2 Background
	2.1 Centrality and Depth
	2.2 Stress and Multidimensional Scaling (MDS)
	2.3 Strictly Monotone and Smooth Regression

	3 Method
	3.1 Anisotropic Radial Layout
	3.2 Visualization

	4 Results
	4.1 Zachary's Karate Club
	4.2 Terrorist Network from 2004 Madrid Train Bombing
	4.3 Coappearance Network for Characters in Les Miserables

	5 Discussion
	References

	Computing Storyline Visualizations with Few Block Crossings
	1 Introduction
	2 SAT Formulation for the Decision Problem
	3 Experimental Evaluation
	4 Conclusion
	References

	MLSEB: Edge Bundling Using Moving Least Squares Approximation
	1 Introduction
	2 Related Work
	3 Background
	3.1 Definition of Edge Bundling
	3.2 Quality of Edge Bundling

	4 Our Bundling Algorithm
	4.1 Sampling
	4.2 Moving Least Squares Approximation

	5 Implementation
	6 Results
	6.1 Visualization and Performance Results
	6.2 Quality Assessment of Bundled Graphs

	7 Conclusions and Future Work
	References

	Drawing Dynamic Graphs Without Timeslices
	1 Introduction
	2 Related Work
	3 Continuous Dynamic Graph Model
	4 DynNoSlice Implementation
	4.1 Representation in the Space-Time Cube
	4.2 Force-Directed Drawing Algorithm

	5 Evaluation
	5.1 Data Sets
	5.2 Method
	5.3 Results
	5.4 Discussion

	6 Conclusions and Future Work
	References

	Point-Set Embeddings
	Colored Point-Set Embeddings of Acyclic Graphs
	1 Introduction
	2 Preliminaries
	3 Point-Set Embeddings of Stars
	4 Point-Set Embeddings of Paths and Caterpillars
	5 Open Problems
	References

	Planar Drawings of Fixed-Mobile Bigraphs
	1 Introduction
	2 Straight-Line Planar Drawings of FM-Bigraphs
	2.1 NP-Hardness and Collinear Fixed Vertices
	2.2 Mobile Vertices at Internal Positions

	3 1-Bend Drawings in the h-Strip Drawing Model
	4 Conclusions and Open Problems
	References

	Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity
	1 Introduction
	2 Geodesic Planarity and Bi-Monotonicity
	3 Ordered Level Planarity
	References

	Non-crossing Paths with Geographic Constraints
	1 Introduction
	2 Straight Line Paths
	3 Monotone Paths
	4 Arbitrary Paths
	References

	Special Representations
	Planar L-Drawings of Directed Graphs
	1 Introduction
	2 Preliminaries
	3 General Planar L-Drawings
	3.1 Variable Embedding Setting
	3.2 Fixed Embedding and Port Assignment

	4 Upward- and Upward-Rightward Planar L-Drawings
	4.1 A Characterization via Bitonic st-Orderings
	4.2 Bitonic st-Orderings in the Variable Embedding Setting

	5 Open Problems
	References

	NodeTrix Planarity Testing with Small Clusters
	1 Introduction
	2 Preliminaries
	3 NodeTrix Representations and Wheel Reductions
	4 Testing NodeTrix Planarity for Partial 2-Trees
	4.1 Series-Parallel Frame Graphs
	4.2 Partial 2-Trees

	5 General Planar Frame Graphs
	6 Open Problems
	References

	The Painter's Problem: Covering a Grid with Colored Connected Polygons
	1 Introduction
	2 Preliminaries
	3 Characterizing Colored Grids with a Painting
	3.1 Simple Purple Regions
	3.2 Spiderweb Gadgets
	3.3 Purple Regions with Holes

	4 Optimizing Panels
	4.1 Ensuring a 5-Painting
	4.2 Ensuring a 2-Painting

	5 Conclusion
	References

	Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count
	1 Introduction
	2 Degeneracy
	3 Choosability
	4 Edge Count
	5 Diameter
	References

	Beyond Planarity
	1-Fan-Bundle-Planar Drawings of Graphs
	1 Introduction
	2 Relationships with Other Graph Classes
	3 Density
	4 NP-Completeness
	5 Recognition and Drawing Algorithms
	6 Conclusions
	References

	Gap-Planar Graphs
	1 Introduction
	2 Preliminaries and Basic Results
	3 Density of k-gap-planar Graphs
	4 1-gap-planar Drawings of Complete Graphs
	5 Recognizing 1-gap-planar Graphs
	6 Relationship Between k-gap-planar Graphs and Other Families of Beyond Planar Graphs
	7 Conclusions and Open Problems
	References

	Beyond Outerplanarity
	1 Introduction
	2 Outer k-Planar Graphs
	3 Outer k-Quasi-Planar Graphs
	4 Closed Convex Drawings in MSO2
	References

	The Effect of Planarization on Width
	1 Introduction
	1.1 Width Parameters in Graphs
	1.2 New Results

	2 Treewidth, Branchwidth, Pathwidth, Tree-Depth, and Clique-Width
	3 Cutwidth and Bounded-Degree Pathwidth
	4 Bandwidth
	5 Carving Width and Bounded-Degree Treewidth
	References

	Contest Report
	Graph Drawing Contest Report
	1 Introduction
	2 Creative Topics
	2.1 Graph Drawing Citations
	2.2 Human Metabolism

	3 Live Challenge
	3.1 Manual Category
	3.2 Automatic Category

	References

	Poster Abstracts
	Minimizing Wiggles in Storyline Visualizations
	References

	Graph Drawing for Formalized Diagrammatic Proofs in Geometry
	References

	Drawing Graphs on Few Circles and Few Spheres
	References

	Counterexample to the Variant of the Hanani--Tutte Theorem on the Genus-4 Surface
	References

	A Geometric Heuristic for Rectilinear Crossing Minimization
	References

	A Note on Plus-Contacts, Rectangular Duals, and Box-Orthogonal Drawings
	References

	Grid Obstacle Representation of Graphs
	1 Introduction
	2 Existence and Non-existence Results
	3 Hardness Results
	References

	Summarizing and Visualizing Graph Ensembles with Rank Statistics and Boxplots
	1 Introduction
	2 Method
	3 Results and Discussion
	References

	Planar k-NodeTrix Graphs
	References

	Towards Characterizing Strict Outerconfluent Graphs
	References

	Flattening Polygonal Linkages via Uniform Angular Motion
	1 Introduction
	2 Unfolding Polygonal Linkages into a Straight Line
	3 Reconfiguring Polygonal Linkages into a Zigzag
	References

	Optimal Compaction of Orthogonal Grid Drawings for Graphs of Arbitrary Vertex Degrees
	References

	BCSA: BC Tree-Based Sampling and Visualization of Big Graphs
	1 Introduction
	References

	Low Ply Drawings of Trees of Bounded Degree
	1 Introduction
	2 Our Results
	3 1-Ply Drawings
	4 Polynomial Area, Logarithmic Ply Number
	References

	Which Graph Layout Gives a Good Shape for Large Graphs?
	1 Introduction
	2 Experiment
	References

	MetagenomeScope
	1 Introduction
	2 Primary Contributions
	3 Demonstrated Applications
	References

	Author Index

