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Abstract We review the recent debate on the lack of reliability of scientific results

and its connections to the statistical methodologies at the core of the discovery

paradigm. Null hypotheses statistical testing, in particular, has often been related

to, if not blamed for, the present situation. We argue that a loose relation exists:

although NHST, if properly used, could not be seen as a cause, some common mis-

uses may mask or even favour bad practices leading to the lack of reliability. We

discuss various proposals which have been put forward to deal with these issues.
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1 Introduction

A discussion on the role of the hypothesis statistical testing method in jeopardizing

the reliability of scientific results is underway in the recent literature across many

disciplines [18, 39]. It has been argued that a worrying portion of published scien-

tific results, within various disciplines, are actually false discoveries [25]. This state

of things has been related to the widespread use—or abuse—of p-values to measure

evidence and corroborate new theories [7, 16, 34], to the point that a journal in psy-

chology “banned” p-values [48] (although not in a very clear-cut way, for instance,

they are allowed in submissions [49]). That of banning p-values altogether is not

a novel idea nor it is exclusive of psychology [42]. According to a recent survey

of 1576 researchers made by Nature [1], more than 90% have heard of a ‘crisis of

reproducibility’. Most of them think that the crisis is in fact in place and has not

been overemphasized. Statistics is seen both as part of the problem and as a mean to

improve the situation.

It is worth to note that the false discovery rate (FDR) across science (or a disci-

pline) is not a clear-cut concept: a reference population of findings should be iden-

tified and a criterion of falsehood defined. In empirical evaluations a (non random)
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sample of results is usually considered and falsehood is often equated to lack of repli-

cation, which is a different, although related, concept. Notwithstanding how difficult

or ambiguous it may be to precisely define the notion, however, the error rate of

scientific results is a relevant concept of general interest, as the number of attempts

which have been made to quantify it reveals.

Null hypotheses statistical testing (NHST) has a central role in the paradigm

which is commonly employed to confirm new scientific theories (Sect. 2), and a long-

running controversy on its use is in place. Whilst it may or may not be the culprit of

the lack of reliability (Sect. 3), it is relevant to discuss whether alternatives to NHST

may lead to a more reliable procedure to confirm scientific results (Sect. 4).

2 Scientific Discoveries and Statistical Testing

Null hypotheses statistical testing (NHST) is a standard topic in academic curricula

of various disciplines and a standard tool to analyse data in many scientific fields.

Controversies concerning NHST started since the proposal of significance test-

ing (and p-values) by Fisher and the alternative—and incompatible—procedure for

hypotheses testing by Neyman and Pearson. Fisher proposed to measure the strength

of evidence of a given observation against a hypothesis on the probabilistic mech-

anism which generated it with the probability, conditional on that hypothesis, of

obtaining a sample at least as extreme as the observed one (p-value) [12]. Neyman

and Pearson argued that “no test based upon a theory of probability can by itself

provide any valuable evidence of the truth or falsehood of a hypothesis” and propose

instead a procedure to choose between two alternative hypotheses on the data gen-

erating mechanism keeping under control the (conditional) probabilities of making

the wrong choice [37].

NHST plays a central role in the procedure—or mindless ritual as some scholars

provocatively called it [15]—which is used to corroborate scientific theories. The

procedure goes as follows: a theory is posited according to which a relationship is

in place between two quantities; in order to corroborate the theory a null hypothesis

of absence of relationship is statistically tested using a sample; a confirmation is

claimed whenever the null hypothesis is rejected at a specified level, which is usually

5%. Instances of the use of such a procedure abound across disciplines, for practical

examples see [4] in medicine, [2] in psychology, [41] in economics, [20] in zoology.

The exact p-value is generally taken as a measure of the evidence against the null

hypothesis and possibly also as a measure of the evidence in favor of the alternative

hypothesis. Also, acceptance of the null is often taken as evidence of the absence of

the posited effect.

It is commonly maintained that, of the two procedures, the Fisherian p-value is the

more apt to the described task, while the Neyman-Pearson procedure is more apt to

problems which are more naturally cast in a decision framework. It is also to be noted,

however, that the actual interpretation given to NHST in applications is sometimes

a combination of the two. In fact the p-value is used to draw the conclusion but
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an alternative hypothesis is also considered (which also helps to clarify what an

“extreme result” is in the definition of the p-value) and/or an error probability is

attached to the p-value based conclusions [3]. In what follows we refer to NHST

having this somewhat imprecise interpretation in mind.

This description does not encompass all uses of NHST in the scientific literature,

but it represents the most problematic use and is widespread, and debated, across

disciplines. In psychology the debate was already not new in 1994 [7, 28] (it dates

back to 1955 according to [44]), and is lively as of today. On the other hand, the use

of NHST is increasing, due to academic inertia according to some [44]. In medicine

these issues are discussed since the rise of evidence based medicine [16] and still

[19]. The practice is also widespread in economics/econometrics [35, 52], although

some scholars disagree [23] on the extent of the problem.

While it is sometimes argued that NHST is not used in hard sciences like physics

[35, 44], this is not the case: NHST has its place in high energy physics [40], in

cosmology [9], in atmospheric sciences [38]. In these contexts, however, it is

regarded as “only part of discovering a new phenomenon”, the actual degree of belief

depending on substantial considerations [8]. A p-value (or, more often, the Z-score,

which is the (1 − p)-quantile of the standard normal distribution) is used as a measure

of surprise, which suggests further investigation of the alternatives, in particular on

whether they better explain observations. A peculiarity of some hard sciences is that

different thresholds for rejection are customary: threshold values commonly used

are Z = 5 (p = 2.87 × 10−7) and Z = 1.64 (p = 0.05). The first is used for ‘discov-

ery’, that is when the alternative hypothesis includes a sought signal and the null is

a ‘background only’ hypothesis; the second is used when the null is a signal.

3 NHST (p-Value), Good, Bad or Neutral?

The debate on the reliability of scientific results is intertwined with the debate on

the suitability of the p-value as a measure of evidence. We argue that there is a rela-

tion between the use of p-values and the reliability crisis, albeit loose. In fact, some

misuses of the p-value are susceptible to exacerbate some issues of the discovery

paradigm outlined in Sect. 2.

The concerns which have been raised upon p-values can be categorized in three

classes: one related to interpretation; one to the relationship with the size of the

effect; the latter related to the role of the alternative.

Misinterpretations of the p-value take different forms, which in some cases are

equivalent. The more trivial, yet common, misinterpretation is to relate the p-value

to the probability of the null being true. This amounts at wishful thinking, since the

probability of the null is what the researcher actually wants. It is barely worth men-

tioning that such an interpretation is logically wrong (as the p-value is a probability

conditional on the null being true) and potentially strongly misleading, as a given

p-value is compatible with any value for the probability of the null being true.
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Another common misinterpretation (seen even in “serious use of statistics” [3]) is

that the p-value is the probability of wrongly rejecting the null (or the probability of

the result being due to chance [19]). That is, the (Fisherian) p-value, which is condi-

tional to the sample, is mistaken for the (Neyman-Pearson) significance level, which

is a long run error probability. The coexistence of the two approaches, whose logical

incompatibility is often under-appreciated by non-statisticians users of statistics, is

probably to be blamed for this [3].

A second class of issues arises from the fact that the p-value is a function of both

the estimate of the effect size and the size of the sample; a low p-value, indicating

a statistically significant effect, is not necessarily associated to a substantially sig-

nificant effect, and vice versa. In spite of this, in many fields it is common practice

to choose models—for example selecting the covariates in a regression analysis—

based on the significance of coefficients, that is, only those coefficients which are

significantly different from zero at a specified level are reported, implicitly assum-

ing that the others are zero. Within econometrics this practice has been labeled “sign

econometrics”, interpreting the sign of a significant coefficient regardless of its size,

and “star econometrics”, ranking importance of variables according to their signifi-

cance level ignoring their relative sizes [35, 52]. It is contended that the key question

in scientific inquiry, establishing “How large is large” (to be substantively relevant),

can not be answered by p-values [21, 30, 35, 52]. It has also been said that the p-

value alone may be only a measure of how large is the sample, since in many settings

the null hypothesis is a nil hypothesis (of absence of any effect) and this is (almost)

surely false due to what Meehl [36] calls the crud factor—the fact that in many situ-

ations the effect is not precisely zero, but the actual scientific hypothesis of interest

is the effect being so low to be irrelevant rather than it being exactly zero.

An obvious solution is to complement the information given by the p-value with

the estimate of the effect: if the p-value leads to rejection, the estimate is reported.

It has been noted, however, that coupling NHST and the size estimate is an issue

in certain circumstances: if the true effect size is non zero but such that, given the

sample size, the test has low power, then the estimate conditional on the p-value

being lower than the significance threshold is upward biased [24].

A number of authors phrase their critics of the p-value saying that it does not

convey a valid measure of the evidence against the null or in favor of the alternative.

Different meanings may be attached to this, in many cases the same issues outlined

above lie at the root of it. For instance, the already mentioned dependence on the

sample size reflects a failure of conveying evidence against the null. The fact that the

same p-value may correspond to very different probabilities of the null if a Bayesian

analysis is performed on the same data is also seen as evidence that it does not convey

all information [50]. Finally, from a formal point of view the fact that the p-value does

not measure evidence in favor of the alternative is almost obvious since by using the

p-value we do not consider an alternative, and the data may be unlikely given the

null but even more unlikely given a specific alternative. It is to be noted that this

plays well with the fact that the alternative hypothesis is usually phrased vaguely as

merely the direction of the effect, if at all.



The p-value Case, a Review of the Debate: Issues and Plausible Remedies 99

Rather than being genuine pitfalls of the p-value, the above are instances of misuse

of it. In fact, in the search for the causes of the alleged low reliability of scientific

results, it has been suggested that the p-value per se is not problematic, rather, it is

the use which is made that is questionable, prompting the recent statement by the

American Statistical Association on p-value use [51].

Roots of the reliability crisis may lie upstream the p-value. It has been pointed

out that from an epistemological point of view, the procedure outlined in Sect. 2

may not be suitable to corroborate scientific theories [13, 36]. Despite this, its use is

widespread, probably due to its simplicity, apparent objectivity and perceived com-

pelling nature as a measure of evidence. In fact, the p-value alone is a compelling

measure of evidence only if misinterpreted through wishful thinking (“it [NHST]

does not tell us what we want to know, and we so much want to know what we want

to know that, out of desperation, we nevertheless believe that it does!” [7]). The dif-

fusion of its misinterpretations may also be seen as a hint that the simplicity of the

p-value is only illusory.

The objectivity of the p-value may be a fallacy as well. In fact, the p-value may

be seen as an objective measure of a theory (whatever it measures) if the theory

and the test to be performed are specified in advance of collecting the data. If this

is not the case, the value which is obtained as a result of the testing procedure may

be driven not only objectively by the data but by the subjective judgment of the

experimenter through the conscious (or even unconscious) processes of p-hacking

[45] or the “garden of forking paths” (GOFP) [14]. The former, p-hacking, refers

to the fact that each single researcher or team uses the same data to probe different

theories, thus the final p-value is the minimum of a set of p-values obtained from

a number of (related) tests. The latter, GOFP, refers to the fact that a single theory

(even pre-specified) may be tested, but the details of the data analysis may be driven

by the data through mechanisms such as the selection of the relevant variables or the

inclusion/exclusion of observations, thus introducing a bias in the testing procedure.

Evidence of such phenomena can be found by analyzing the frequency distribution

of samples of p-values (p-curves, [46]): both phenomena are expected to lead to

a relatively high frequency in a (left) neighborhood of the common 5% threshold.

This feature has in fact been observed in different disciplines [5, 22, 32]. A further

confirmation of the effect of the researcher degrees of freedom on the likelihood of

finding significant results comes from a natural experiment in large NHLBI clinical

trials, where it has been noted that, upon the introduction of pre-registration, the

share of experiments leading to significant results dropped [26].

4 What Then?

Various changes of the procedure have been proposed to make it able to deal with sci-

entific questions. We may broadly distinguish them based on whether the paradigm

itself is left unchanged but the p-value is substituted by an alternative summary
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of compliance of data to theory (Sect. 4.2) or the paradigm is changed altogether

(Sect. 4.1).

4.1 Changing the Paradigm: The Hard Way

Gelman [13] advocates a total change of methodology in which the focus is on esti-

mation rather than testing. He argues that the correct interpretation of the p-value

makes it (almost) irrelevant to the purpose for which it is used in science (it remains

useful in indicating lack of fit of a model for the purpose of deciding how to improve

it). Moreover, from a practical point of view, the use of the p-value may mask

p-hacking or GOFP. Any conclusion concerning scientific discoveries should rather

be derived from the implications of the estimated model. This approach does not, in

general, offer a clear-cut (yes/no) answer and requires more expertise in data analysis

than what is needed to use NHST.

A different approach is to remedy the limitations of the p-value by complement-

ing it with some other measure related to the reliability of conclusions. The basic

idea can be traced back to Meehl [36], who suggested that the strength of an experi-

ment in corroborating a theory can be measured by the precision with which exper-

imental results can be predicted by the theory. More recently, Mayo and Spanos

[33] proposed the severity, which is defined as follows. Suppose that {t(Y) > t(yc)}
is a Neyman-Pearson rejection region for H0 ∶ 𝜃 ≤ 𝜃0. If y0 is observed and H0 is

accepted, this is evidence against 𝜃 > 𝜃1(> 𝜃0) and the strength of this evidence is

measured by P(t(Y) > t(y0)|𝜃 = 𝜃1). A similar notion is defined in case of rejec-

tion of the null. Loosely speaking, the evidence against a hypothesis is measured

by the probability that the test statistic would have shown less agreement with the

null had the hypothesis been false. The severity is related to the power (they are

equal if the sample is at the boundary of the rejection region) but is a different con-

cept (it is a function of the observed data, thus being a measure of power given the

observed sample). It can be said that it “retains aspects of, and also differs from, both

Fisherian and Neyman-Pearsonians accounts” [33], in particular it explicitly allows

for the alternative hypothesis but also retains the post-data interpretation of the

p-value.

A similar approach is used in physics, where a p-value is often complemented by

the “median p-value” (the p-value one would get if the observed value of the test

statistic is the median of the sample distribution in the alternative hypothesis) or

the expected significance level, both measures of the p-value one would get under

specific alternatives.

Focusing on avoiding bias phenomena such as p-hacking and GOFP, it has been

proposed to apply the principles of blinded analysis [31]. This method was intro-

duced in particle physics [27] and entails adding noise to data and/or masking labels

so that the researcher who performs the data analysis can not anticipate the substan-

tive conclusions of his inferences. The main difficulty is to hide enough information

to avoid bias but still allowing a meaningful analysis.
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Finally, Bayesian tools may be used [17]. Although a well developed technique,

Bayesian analysis has never been widely adopted in applications, likely due to the

fact that, with respect to NHST, it is less simple to use and not perceived as objective.

4.2 Changing the Paradigm: The Soft Way

The proposals reviewed in Sect. 4.1 imply a major change of paradigm and, most

important, they do not share two of the main perceived advantages of NHST: ease of

use and objectivity [50]. Although both “advantages” may be fallacious, their explicit

absence may render the suggested alternatives less appealing to potential users and

prevent their adoption. An alternative approach is to change the least of the paradigm,

substituting the p-value with some other synthetic measure which does not share its

pitfalls but keeps the (purported) advantages. We review below the main proposed

substitutes.

Substituting NHST with confidence intervals [10] is (at least in standard situ-

ations) a change in the way in which the results are communicated rather than a

change of method. However, it may still be a relevant change since it is plausible

that confidence intervals be less prone to misinterpretations (and some empirical

evidence confirming this is available [11]).

Scholars from different fields [6, 50] suggest using model selection criteria: the

null and alternative hypotheses correspond to two different models, the null hypoth-

esis is then “rejected” if the model corresponding to the alternative is preferred. This

is an appealing strategy because of its simplicity of implementation and “objectiv-

ity”. A number of options is available for the model comparison criterion: AIC and

BIC are the ones which are more often put forward. Besides the link with the like-

lihood ratio, it should be remembered that AIC is related to cross validation, while

BIC is the Bayes factor with suitable priors. We note that using BIC may be one way

to introduce the Bayes factor as a substitute of NHST without paying the price of the

complications of the Bayesian approach. Beside AIC and BIC, other similar crite-

ria may be considered depending on the models under consideration (Mallows Cp,

GCV, UBRE score), standard cross validation (leave-one-out, K-fold, fixed samples)

may also be used. Also, using the likelihood alone has been suggested [43] (mainly

on the grounds that it does not depend on the sample space (that is, on experimenter

intention)).

A further model selection method which is suitable for the task is the lasso

method, at least whenever the models can be framed in a (generalized) linear model

specification and the null hypothesis is that a coefficient is equal to zero. In that case

one may accept the null hypothesis if the lasso estimate of the coefficient is null, the

penalization weight being chosen somehow, for instance by cross validation.

Finally, the minimal change which has been suggested is to lower the conven-

tional threshold for significance. It has been noted that the 5% threshold was intro-

duced when fewer hypotheses were being tested so it makes sense to change it today.
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A lower threshold is usually employed in hard sciences, which appear less affected—

although not immune—by the reliability crisis.

One advantage of the above procedures—which admittedly would probably be

seen as a disadvantage by many—is that they offer an automatic choice. This may

allow to compare their performances by means of a simulation study to assess, under

various scenarios, the false discovery rate they would imply if used as a substitute

for NHST/p-value.

5 Discussion

A number of issues have been raised in the literature concerning the use of NHST

and the p-value since the introduction of such tools by Neyman-Pearson and Fisher.

The debate on whether they are useful or harmful for assessing scientific hypotheses

is particularly vivid today and coupled with the debate on the lack of reproducibility

and high false discovery rate of scientific results in many disciplines.

In fact, the misuse and misinterpretation of NHST are the reasons why it is often

singled out as a major weakness. On the contrary, it can be argued that there are

relevant possible reasons for the high FDR/lack of reproducibility which lie upstream

the use of NHST.

First, there is a big leap in inferring from the falsification of a null nil hypothesis

a confirmation of a specific alternative, particularly when the alternative does not

imply a precise prediction of what would have been observed had it been true (i.e.,

the alternative predicts a positive effect rather than an effect of a given size) [36].

Second, a high number of scientific hypotheses is probed. Each single researcher

or team tends to use the same data to probe different theories, thus leading to a mul-

tiple testing situation which may be explicit or, more subtly, due to the degrees of

freedom in specifying the data processing step and the model. This may be phrased

saying that exploratory studies are then treated as confirmatory ones (where by the

latter we mean experiments with pre-specified hypotheses and methods) thus creat-

ing unrealistic expectations on the reliability of the result (on the probability of it

being a false discovery). Moreover, this also happens “science-wide” meaning that,

at least in some disciplines, lots of labs and researchers means a high number of

hypotheses being tested leading to an uncontrollable multiple testing situation asso-

ciated to a search for small effects (having the “main ones”, the low hanging fruits,

already been found) [47].

Based on the above considerations, it is reasonable to think that the “soft” changes

to the present paradigm, where basically the p-value is substituted by some other

measure of concordance/discordance between theory and data would hardly be a

solution [29]. Also, it is probably unrealistic to try to devise a synthetic measure

of evidence for or against a scientific theory. A “hard” change of paradigm is more

promising, however no generally accepted alternative has been identified as of today.

Moreover, it is to be noted that most, if not all, promising changes do not give a
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clear-cut answer to the posited question (of whether a given theory is true), a cir-

cumstance which is likely to make it hard for them to become generally accepted.
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