
Chapter 5
Model-Based 3D Object Recognition
in RGB-D Images

Maciej Stefańczyk and Włodzimierz Kasprzak

Abstract A computational framework for 3D object recognition in RGB-D images
is presented. The focus is on computer vision applications in indoor autonomous
robotics, where objects need to be recognized either for the purpose of being grasped
and manipulated by the robot, or where the entire scene must be recognized to
allow high-level cognitive tasks to be performed. The framework integrates solu-
tions for generic (i.e. type-based) object representation (e.g. semantic networks),
trainable transformations between abstraction levels (e.g. by neural networks), rea-
soning under uncertain and partial data (e.g. Dynamic Bayesian Networks, Fuzzy
Logic), optimized model-to-data matching (e.g. constraint optimization problems)
and efficient search strategies (switching between data- and model-driven inference
steps). The computational implementation of the objectmodel and the object recogni-
tion strategy is presented in more details. Testing scenarios deal with the recognition
of cups and bottles or household furniture. Conducted experiments and the chosen
applications confirmed, that this approach is valid and may easily be adapted to
multiple scenarios.

5.1 Introduction

With the newly available sensors that generate RGB-D images (3D point clouds
and corresponding color images) of already reasonable quality, 3D image analysis
methods are intensively being developed [1, 2]. A low-level processing of such data
is usually a model-independent one and it leads to the creation of 3D maps of the
environment (typically voxel- or surfel maps) [3–5]. In turn, the Ontology level of an
agent system considered in AI operates on high-level symbolic entities like complex
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objects and actions. There is a need for a methodology and implementation for mid-
level symbolic processing of 3D images that reliably closes the gap between these
two representations.

The knowledge-based paradigm has been intensively studied for in the past, but
preferably for 2-D image analysis (e.g. [6–8]) and has not yet been really considered
for processing of RGB-D data.

Recently developedDeep Neural Networks (DNN) and deep learning techniques,
are mostly successful for appearance-based object classification. They approximate
functions, which apparently transform sensor data into numeric features either into
segments or directly into object instances or classes [9, 10]. This is of importance
when complex algorithmsor functions need to be defined and implemented.Although
the DNNs were applied to find bottom-up image transformations, the research on
modelling of context information and top-down constraints in DNNs has also begun
[11, 12]. Especially when 3D objects need to be recognized in amulti-object environ-
ment, it is crucial to explore physical and contextual object relations, like occlusion
relations and the probability of common appearance in given environment. Graph-
ical and stochastic models have proved suitable to handle such cases [13, 14]. It
is still an open question whether neural networks techniques can deal with sym-
bolic object-level and ontology-level concepts in order to mimic logical reasoning
processes. Here, the knowledge-based approach leads straightforward to adequate
solutions [15].

In particular, our focus is on basic scenarios for 3D object recognition that are
explored in service and social robotics [16, 17]: human pose recognition, obstacle
recognition/avoidance and grasping/manipulating of objects (Fig. 5.1).

Fig. 5.1 Basic scenarios for 3Dobject recognition in service and social robotics: human recognition,
obstacle avoidance and object grasping
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So far, 3D object recognition in RGB-D images follows a data-driven strategy
and mainly identifies a particular known object. Some software packages, prefer-
ably available in the ROS (Robot Operating System) programming environment,
are listed next. MOPED [18], a real-time Object Recognition and Pose Estimation
system, recognizes objects by comparing point-based features (e.g. SIFT, SURF)
and their geometric relationships with rigid 3D object models (defined by point
clouds). LINEMOD [19] (“multi-modal templates for texture-less object detection”)
is detecting texture-less 3D objects located in a strongly textured background. Tex-
tured Object Detector—is based on the standard “bag of features” technique [20].
During training, in images containing different views of the object, image features
are extracted and their descriptors are obtained. For each of those features, the 3D
position is also stored. Transparent Object Detector [21] is a pipeline that can detect
and estimate poses of transparent objects, given a point cloud model of an object.
The ODUFinder system [22] can detect and recognize textured objects in typical
kitchen scenes. The models for perceiving the objects to be detected and recognized
can be acquired autonomously using the robot’s camera as well as by loading large
object catalogs into the system. Richtsfeld et al. [2] developed an effective object
model learning approach based on surface grouping in RGB-D data. But still, object
instances are modelled and not their generic types.

Avariety ofmodel-based techniques have been developed in order to recognize 3D
objects from images—hierarchical models [23], among them deformable part-based
models [24] and probabilistic graphical models [14] appear to be most successful.
In our paper, a model-based approach is proposed that is related to the principles of
above techniques.

First, we focus on the 3D object representation and modelling issue. A discussion
of knowledge hierarchy levels in object recognition systems is provided in Sect. 5.2,
while Sect. 5.3 deals with 3D modelling in RGB-D data. In Sect. 5.4, our framework
for 3D object recognition is introduced. The system’s concept and itsmain element—
the knowledge representation techniques and inference rules—are presented here.
System implementation is summarized in Sect. 5.5. Thework is illustrated in Sect. 5.6
by an application of robot vision in a household environment.

5.2 Knowledge Representation Hierarchy

In this section, a review of some approaches to general 3D object representation in
images is presented and our solution, suitable for RGB-D images, is given. General
levels of information representation (also called categories of representation entities)
for 3D object recognition in images are discussed.
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5.2.1 Related Work

Early image analysis systems mainly used linear features and wire-frame models, so
categorization was made accordingly. Marr [25] distinguished four main conceptual
levels of information representation. The first one is the image—represented as
an array of point intensities. Second is a primal sketch, which contains some
basic structures extracted from the image, like edge segments, discontinuities of
intensity, gradient zero crossings, etc. Based on these features a 2 1

2 sketch is created,
describing the visible surfaces in terms of contours, orientation and roughly estimated
depth (all expressed in the viewer coordinate system). The last level is the 3D model,
describing the shapes and their spatial organization in an object-centered coordinate
system. An object is composed of both volumetric and surface primitives and is
arranged hierarchically.

Lowe [26] proposed a slightly different categorization in his system,where instead
of the 2 1

2 sketch 2D perceptual groupings are used. This requires a clustering
of image features, obtained in the previous step, into some consistent groups. This
extension made the description more general, as virtually any feature can be used
and not only linear segments like before. Lowe also added an explicit verification
step, connecting 3D models with low-level image features. This in turn put some
restrictions on the features and model used—there must be defined a method for
object back-projection onto the picture. The hypothesis-generation and -verification
cycle as a basic 3D scene recognition strategy was modelled formally by Kasprzak
[13] as a bi-directional syntactic-semantic derivation using an attributed structure
grammar.

Data representation categories correspond to different processes transforming data
from one form to another. Forsyth [27] distinguished early vision, consisting not
only of basic operations like image preprocessing or edge detection, but also texture
description and depth reconstruction from stereopsis or structure from motion. His
mid-level vision is responsible for clustering and segmentation, fitting objects to
segments and tracking them. High-level vision is meant to be the place, where
data is collected frommultiple measurements. Hypotheses are generated and verified
here. Object detection and recognition at this level is done using complex classifiers.
Relationships between detected objects can also be described.

Gonzalez [28] made explicit definition of the processes by defining their
interfaces—data types that are used on the input and output of a proces. For low-
level processes a picture is used as both the input and output. Processes are
elementary picture operations, like image filtering.Mid-level operations on pic-
tures are responsible for their segmentation into consistent groups, their description
reducing representation dimensionality and also the classification (or recognition)
of those segment groups into individual objects. The output of this process, usually
taking the form of classified objects characterized further by vectors of numbers
(attributes), is supplied to the high-level vision—a symbolic processing level that
is responsible for image understanding and performs cognitive reasoning.
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5.2.2 Proposed RGB-D Data Hierarchy

In case of depth data, sometimes additional processing steps are required, which
are somewhere in between preprocessing and feature extraction. Examples of these
operations are:

• normal vector calculation or curvature estimation for a surface patch,
• conversion from a depth map to full XY Z coordinates of a point cloud,
• transformation between different coordinate systems.

As a result, it seems reasonable to put an additional data extension layer
between the signal- and feature extraction layers. Wrapping up, data representation
in our 3D object recognition system is composed as a hierarchy of 6 layers, given
below.

Hardware layer. It contains actual devices for data acquisition (cameras, sensors).
Signal layer. It is responsible for image pre-processing and data preparation for

feature extraction (e.g. computing edge images or labeling consistent regions).
These operations need no any external information and can be run using only one
(current) picture.

Extension layer. It contains processes for computation of new data representation
(from those returned by the sensor) or transformation of those using some external
information (like sensor position or context images). These are operations like
background subtraction, normal vector calculation, depth extraction from stereo
images, coordinates transformation etc. Processes from extension and signal layer
can be interleaved.

Feature extraction layer. It extracts condensed, numerical information from pic-
tures, such as feature points, edges or blob segments. The produced information
may vary from simple parameters, like line end points or segment mask, through
some statistical information, like mean color or surface convexity [29], to higher-
level interpretation, like parameters of inscribed surfaces [30].

Object recognition layer. It gathers segments and features computed by the lower
layer and composes them to form an object of interest, based on some kind of
providedmodel (at this stage the recognition is limited to single, isolated, objects).
Object recognition processes can influence the way lower level processes work
(e.g. changing parameter settings of feature extraction functions in order to return
more or less crisp data).

Cognitive layer. Here a higher-level (symbolic) reasoning about the scene occurs
(e.g. physical and contextual relations between objects are explored). This layer
is also responsible for accumulating information in time (e.g. to allow lateral
processing that improves the estimation of object parameters from multiple mea-
surements).

Particular implementations of the processes located in low- and mid-level layers
depend on the chosen form (modality) of the object model. Such different modalities
(e.g. 2D edge model, 3D surface model) require different operations on previous
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layers. On the other hand, an object recognition system should be generic and should
allow usage of generic model description, making it possible to recognize different
instances of the same kind of objects (like different sizes of jars or widths of doors).

5.3 3D Object Modelling

In this section, possible 3D object modelingmodalities are discussed. The focus is on
computer vision applications in indoor autonomous robotics, where objects need to
be recognized either for the purpose of being grasped and manipulated by the robot,
or where the entire scene must be recognized to allow high-level cognitive tasks to
be performed.

Both steps require different modalities of 3D object models: geometric modelling
(of physical shapes) or conceptual modelling (aggregations of parts).

5.3.1 Geometric Primitives

Grasp planners [31] work using geometric models of actual instance of the object,
and this must be in a form compatible with physical engines used in a machine pro-
cess, like triangular meshes or, even better, a composition of basic shapes. Methods
for representation of geometric primitives can be generally divided into two main
groups—discrete and continuous.

Discrete description keeps information about some finite number of elements or
features, sampled from the original solid/object.

• When points are sampled from the surface of the object a pointcloud is produced.
The data structure of a point consists of its spatial coordinates (usually given in the
Cartesian coordinate system), but it also can include other information, like the
surface color or normal vector of a surface patch around this point. Points can be
further expanded to surface elements (called surfels) [5], which are small surface
patches approximated by discs.

• When information about volume of the object is crucial, another representation
can be used, utilizing some volumetric shapes instead of points. Those elements,
called voxels, are usually modeled with cubes, formed in either regular grid (with
every element having the same size) or hierarchic structure (like octree), allowing
for better approximation of complicated shapes with smaller number of elements.

Main advantage of discrete representations is the ease of model creation—in vast
majority of cases depth sensors return information in form easily convertible to
pointclouds.Hence,models can be built from fewobject views only [32]. The discrete
model accuracy is proportional to the density of the pointcloud or a voxel grid,
which is proportional to model size (verbosity). It must be noticed, that after the
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image sampling step some information about the scene is lost (the surface between
sampled points).

In contrary, continuous models represent the scene information by parametric
functions of continuous spatial variables, allowing recovery of any point on the
object’s surface. One example of such model, described in [33], is a functional

model, where a shape is given by an equation specifying a continuous set of points.

• Parametric equations, in form of F : Tm ⇒ Xn explicitly define the object’s
points in a n-dimensional space based onm free parameters. For three-dimensional
objects n = 3, while for m = 1 curves are defined and for m = 2—surfaces. This
representation form allows to model a broad range of shapes, from simple volumes
to superquadrics. The ability to directly enumerate surface points makes it easy
to convert such a model to a pointcloud with theoretically unlimited precision
(density).

• In contrast, if the function is given in implicit form, F(Xn) ⇒ Z , it can be treated
as a characteristic function for the described shape. Surface of the object is made
of all points satisfying F(Xn) = 0, which is sometimes hard to calculate. On the
other hand, this representation makes it very easy to check, whether point lays
inside the given volume by checking the condition: F(Xn) < 0. Hence, it can
easily be converted to a voxel grid. It also allows for a simple collision detection.
Calculating objects intersection is also much easier using few implicit functions
and checking them one by one.

The acquisition of functional models is computationally more expensive than of
discrete models, as it requires some sort of surface fitting procedure, along with
constrained set of shapes [34].

Another kind of continuous models are combinatorial models, locating itself
between simple and complex object representations.

• Models can be created by combining a finite set of functional submodels using set
operations. Using implicit functions in a way mentioned earlier, a membership

object definition can be created—for example, in terms of an intersection or sum
of few functions. This way more complicated shapes can be created from simpler
ones, without the need to use complex equations.

• Topological representation is another kind from this family. Topological struc-
ture holds the spatial relations between subelements, like two faces touching each
other or two points being connected with a line. Although the elements may be of
any type (e.g. parametric surfaces with values from some bounded set), the most
common type of this representation is a mesh, being closely related to discrete
representations. Points are connected with edges, from which planar polygons
(triangles are most common) are composed. Polygons are grouped into surfaces,
and those into a final shape.
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5.3.2 Complex Objects

Contrary to an object grasping and manipulation application, vision systems
employed for cognitive tasks require models to be composed of parts that corre-
spond (directly or via its parts) to segments that are possible to be detected in images
(e.g. feature points or textures from color images, surface patches from range data).
The hierarchic nature of the model is an added value, making it possible to build
complex objects out of simpler ones.

• Constructive solid geometry (CSG) is a way to describe objects using
logical operations on primitives (like sum, difference, common part) and some
geometrical modifiers (expansion, morphing). Representation of the primitives
must be appropriate for this task, and functional models suits here the best.

• Another method is just a simple hierarchical model, where primitives are con-
nected with each other using joints, and the transformation between them are done
using homogeneous matrices. That kind of representation makes it possible to
create objects with internal degrees of freedom (like cabinet with doors), as homo-
geneous transformations between parts can be parameterized. Similar strategy can
be used to describe whole scene as one tree with multiple smaller object trees
connected [35].

Another important factor, when talking about complex objects, is the ability to
define different levels of detail.When observing an object from far distance only
the biggest parts are visible, and those can be also simplified, as finer details may
disappear. The parts of the model can be differentiated—for coarse model only some
global percepts can be used for description (like histograms of colors or silhouettes),
whilst closer view can incorporate local texture descriptors and good quality depth
data. When the distinction is made for only two levels—coarse and fine—the first
one can be used for fast generation of object hypotheses, while the second level is
used for hypothesis verification.

5.4 System Framework

5.4.1 Solution Principles

Object recognition is considered to be an intermediate image analysis level, located
between the low-level image segmentation processes and the ontology level of a
scene understanding process.

Bothmain computational paradigms, the knowledge-basedone (e.g.model-based)
and the neural network one (e.g. appearance-based), try to overcome the limitations
of available 3D computer vision systems by concentrating on three basic design
principles:
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1. hierarchical framework-like architecturewith increasingly abstract representation
levels;

2. iterative control of object recognition by integrating bottom-up, top-down and
lateral processing;

3. adaptability of the general framework to particular application domain by learning
the object model and recognition strategy.

Following about design principles, in this section a 3D object recognition frame-
work is developed, which integrates several methodologies, like proposed by us
earlier [23, 36]: a generic (i.e. type-based) object representation (using semantic
networks), trainable transformations between abstraction levels (performed by neu-
ral networks and deep learning techniques), techniques for reasoning under uncertain
and partial data (e.g. Bayesian networks and Dynamic Bayesian Networks, Fuzzy
Logic), an optimized model-to-data matching (e.g. constraint satisfaction and opti-
mization problems) and efficient search strategies (controlling alternative realizations
of data-driven hypothesis generation andmodel-driven hypothesis verification steps).

5.4.2 Knowledge-Based Framework

Knowledge-based systems are decomposed into two main parts: the knowledge base
and the control [15]. Our particular system structure is depicted in (Fig. 5.2).

Theknowledgebase contains three elements: theMODEL, theDATA and inference
RULES. In this approach, the model has a hybrid form, built around the structure
and inference mechanism of a semantic network. Besides the declarative model and

Fig. 5.2 Our knowledge-based framework
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data structure expressed by the concepts and their interconnections in the semantic
network, other techniques are here integrated: a dedicated constraints satisfaction
problem for model-to-data matching, a Bayesian network for quality judgement of
an instance or constrained concept and a neural networks (eventually deep learning
neural networks for attribute computation.

The inference rules take the form of: “IF (condition) THEN add instance or con-
strained concept to DATA”.

The DATA holds current symbolic descriptions of the signal (image) in form of
instances and constrained concepts, generated initially by low-level image analysis
(basically—image segmentation) and later as a result of the model-based inference
process.

The CONTROL part performs a search in the space of competitive hypotheses,
guided by their judgement values. In every step an available subset of data has to be
matched with somemodel concept in order to satisfy the condition of some inference
rules. Hence a lot of alternative decisions have to be controlled.

The model-to-data matching is seen as a specific constraint satisfaction problem
or constraint optimization problem, but for many concepts it needs to be satisfied
only partially (assuming a partial match).

The judgement of concept instance is estimated by a stochastic inference in a
Bayesian net that is linked to given concept.

A general-purpose control strategy is defined by a space search algorithm.

5.4.3 Semantic Net

Common to semantic networks is the explicit structuring of domain knowledge along
two hierarchies: the decomposition (vertical) hierarchy and the specialization (hori-
zontal) hierarchy of concepts.

Starting from the pixel level the vertical hierarchy expresses increasingly abstract
representation levels (“part” or “concrete” links). Simple elements are combined into
more complex one, being parts of objects and scenes. Specialization links (“spec”)
represent inheritance relations between elements at the same abstraction level.

Every node (called “concept”) represents some object category and it contains a
parameter vector (called “attributes”), where every parameter is evaluated by some
term, and every concept defines a set of constraints, evaluated by predicates, among
its parts and related concepts.

A procedural part is added to the semantic network that implements the seman-
tics of terms and predicates. It consists of functions for attributes and relations for
predicates. In fact, a semantic network is an object-oriented form of a specific predi-
cate logic. If we allow concept attributes to hold default values then such a semantic
network represents a non-monotonic logic.

The part- and spec-links have an appropriate representation in logic. The relation,
“{set of parts} −part− > concept C”, is equivalent to a formula built around the
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implication symbol, in straight direction, (Cpart1 ∧ Cpart2 ∧ ... ∧ CpartN ⇒ C), and
in the reverse direction, (∀I∈1,...,N (C ⇒ Cpart I )).

Similarly, the dependence, “base concept−spec− > inherited concept”, is equiv-
alent to a formula: Cinheri ted ⇒ Cbase

5.4.4 Bayesian Net

A Bayesian net (BN) is a simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint distributions: (1) a set of
nodes, one per stochastic variable; (2) a directed, acyclic graph (link means “direct
influence”)—incoming links of given node represent a conditional distribution for
this node given its parents, P(Xi |Parents(Xi )). In the simplest discrete case, con-
ditional distribution is represented as a conditional probability table (CPT), giving
the distribution over Xi for each combination of parent values.

An illustration of a Bayesian net is shown in (Fig. 5.3)—it represents variables
related to a Rubik_cube concept. An intermediate level in the model represents
visible faces. The lowest-level concepts represent 9 color squares, that define the
texture of a face. There are also evidence nodes that represent constraints between
faces (fA, fB) and constraints between squares (A, B, D).

The score of a partial solution (assignment in terms of CSP), in which some
variables Xi have already been assigned to image segments lk but not all of them, is
obtained due to stochastic inference in Bayesian net. For example the computation
of posterior probability of a “cube” instance (that is a cause in terms of BN) given
its parts (that are evidences in BN). For example, if segments are assigned to X0 and
X1 then one need to compute the probability: P(cube|X0 = l1, X1 = l2).

Fig. 5.3 A Bayesian net
structure for concept:
“Rubik_cube”
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This leads to a summation of pdf over all domain values for remaining (non-
evidence) variables, X2, ..., Xl . Thus, scores of partial matches or a complete match,
between image segments and model entities, are naturally obtained by the same
evaluation method.

5.4.5 The Basic Control

The object recognition process is performed for given set of object concepts, called
the GOALS G. This set can contain “concepts”, “constrained concepts” or even
“instances”. Let M denotes concepts stored in the model base, while D is the current
data set. In every single step, the basic control algorithm activates one of the five
available inference rules, RULE_1, ... , RULE_5, for selected model concepts and
data instances.

1. IF G �= ∅ THEN perform a top-down goal concepts expansion (propagation of
constraints), using inference RULE 4; ELSE perform a bottom-up hypothesis
generation for concepts in M , based on important image segments in D, using
RULE 5.

2. A bottom-up generation of “partial instances”, that match the existing “con-
strained concepts” for obligatory parts of some modality of the selected model
concept with the data instances (using RULE 1): Ip(k) ← {(parti ∈ Mk; Ii ∈
D)|i ∈ oblig(Mk)}; where attributes of every instance Ip(i) are a = (Sk, Rk, tk)
(shape, rotation, translation);

3. Hypothesis verification: FOR every hypothesis Ip(k) DO

• constrain its remaining (non-obligatory) parts (“top-down” RULE 2) and
match these partswithDATA: Ie(k) ← {(part j ∈ Mk; I j ∈ D)| j ∈ optional
(Mk)}

• Verify the hypothesis I (k) ← (Ip(i)
⋃

Ie(k))—create a “full instance” and
re-compute its attributes a′ (a “bottom-up” RULE 3).

4. Return the lattice of verified hypotheses, i.e. a graph where nodes represent
hypotheses and arc—relations of mutual exclusion.

It depends on a particular search strategy (and current data and hypotheses) which
step is selected and performed next.

5.5 System Implementation

The particular data types and predicates will be discussed that are implementations
of nodes of the abstract semantic net (concepts) and the constraints between parts of
a concept.
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Two basic building blocks of the knowledge base, the MODEL and the DATA,
are connected with two views of a 3D object. First is the “idealized” view, i.e.
the object’s type. The other one is the instance hypothesis, i.e. a set of parts (e.g.
segments) recognized as an object of interest.

5.5.1 Model Structure

The model M is the “idealized” view of the object, describing its generic properties
and allowing to recognize multiple realisations (instances) of this type of objects,
like chairs of different sizes or different bottles, as long as they share some com-
mon features. A single object’s model is the implementation of a dedicated concept
from a semantic network. A model is built from parts P , constituting observable
objects itself, constraints C , defining relations between those parts, attributes
A, allowing a differentiation between instances and score—a judgment of instance
quality. Thus, a model is a tuple consisting of following entities:

M = {
P = {p1 . . . pn},C = {c1 . . . cm}, A = {a1 . . . ak}, score = {s1 . . . sl}

}

(5.1)
Parts have a pre-defined unique role in the model (like left leg or mug handle),

while the constraints are expressed by relations between parts of a concept and are
evaluated on attributes of these parts. Alternative “specialized” versions of a concept
or alternative subsets of the parts of a concept (called as modalities), are illustrated
by OR links on the diagram on Fig. 5.4.

The basic structure of a single model is represented by a graph on Fig. 5.5. Fol-
lowing sections describe every element of this diagram in details.

As a simple example, illustrating presented concepts, the mug object is used.
Putting termmug into the image search engine yields a list different pictures (Fig. 5.6),
but all of the presented objects possess some common elements. Every mug has a
more or less toroidal handle and a main cylindrical part for liquid. They differ in size
and color, but can be described using one generic model.

5.5.1.1 Parts

Part is some observable element of the object. It can be sometimes identified as a
physical element, like the leg of a chair or a door knob, but in other cases it can be
a more abstract thing, like the edge of a box or even a single point (or feature point)
extracted from an object surface.

For each part pi there must be assigned a class (class(pi )), i.e. another model
representing this entities type. This defines, what kind of part it is, and whether it
can be for example matched to a cylinder in applications, where one can observe 3D
geometrical shapes, or matched with a line when edge-based processing is used, etc.
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Fig. 5.4 Alternative 3D object models (specialized concepts of the “Object” concept) and typical
structure of a single model

Fig. 5.5 The TBox class structure—abstract concept implementation

There can be, of course, many parts of the same class, like there are for example four
legs in a chair.

To differentiate between parts of the model, each has to have defined a unique
role, which will be used as an identifier in further processing steps. The role of the
part can be either a more abstract one, like a left-edge when describing geometrical
shapes, or it can mimic part affordances, like a handle for the toroidal part and body
for the cylindrical part of the mug model.

5.5.1.2 Attributes

Attributes describe properties of a model. In the model, an attribute is defined by
its data type and the range of its allowed values. Only instances of such model with
attribute values lying in given range can be considered as its proper instances. The
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Fig. 5.6 Sample mugs retrieved by web image search

attribute calculation function itself can return any value from the domain D of the
attribute’s type:

Attribute(M) ∈ D (5.2)

The same attribute type can be used for multiple parts, but for each of them
different range of possible values can be set. For example, color of the main part
of the mug (modeled as a hue component) can be set to red, while the handle can
be white. Another group of attributes are of geometrical nature. Typical mugs have
radius in the range from 3 to 6cm.

5.5.1.3 Constraints

In contrast to attributes, constraints are defined on some subset (at least with two
elements) of parts, and they represent some relation between them. There could be
logical constraints (like checking, if some parts have the same size), spatial ones
(like checking, if two lines are parallel) or others.

Fuzzy set functions for constraint evaluation return values from the [0 . . . 1] range
(instead of the Boolean values {True, False}), where 1 means full constraint sat-
isfaction and 0 total inconsistency of given set of parts with examined relation. It
enables to treat the result of constraint satisfaction check as an intermediate score in
further processing steps, giving finally an overall score of the model’s instance.

Predicate(p1, . . . , pk) ∈ [0 . . . 1] (5.3)
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For the simple mug model one can require that its handle intersects with the main
part. The intersects constraint can be defined as a function returning 1 if the handle’s
(toroid) center lies on the surface of the main cylinder and gradually dropping to 0
when the toroid’s center is farther than its radius from the main part. This function
may be based on the distance between center of the toroid (with radius r ) and the
axis of the cylinder (with radius R). It looks like the one presented on Fig. 5.7. The
final model structure for the mug is presented on Fig. 5.8.

5.5.2 Object Instances

Amodel of some object is a generic representation of its structure. When an observa-
tion is made, multiple segments can be extracted from it, and those can be classified
as instances of some basic concepts (model entities), called as the primitives of sym-
bolic representation. During the object recognition process, some of these primitives
can be assigned to model parts (if their attributes are in desired ranges), and after
satisfying the constraints of given model, they eventually lead to the creation of this
model’s instance (e.g. an object hypothesis).

Fig. 5.7 Sample calculation functions for the intersects constraint

Fig. 5.8 A TBox representation of the “mug” model
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5.5.2.1 Model-to-Data Matching

Each assignment of existing instances to model parts, made in a way that for each
part of the model exactly one instance of proper class is selected, is called hypothesis
H(M). It can be defined as:

H(M) : ∀i ∈ {1..n}∃ j ∈ {1..k} : pi ← inst j ∧ class(pi ) = class(inst j ) (5.4)

where n is the number of parts in themodel and k is the number of already recognized
instances (instk , e.g. segments). Overall hypothesis score is calculated by taking the
product of all constraints for given assignment.

score
(
H(M)

) =
∏

m

eval(cm, H) (5.5)

The most naive way of generating hypotheses is to perform an exhaustive search
in the entire space of possibilities, i.e. generating all variations of existing instances
that match the model structure. This way, the number of generated hypotheses, that
must be further checked for their scores, may be big or even huge:

|O| =
∏

d∈D
|d| (5.6)

where O is a set of object hypotheses and D = {di } is a domain for particular
part (i.e. set of all instances of the same class as given part). For each hypothesis its
score is evaluated and the best ones are returned.

5.5.2.2 Matching by CSP/COP

To avoid full expanding of hypothesis before its verification (which is computation-
ally very expensive), the matching problem can be treated as a constraint optimiza-
tion problem (COP). Basic backtracking algorithm is used to build hypothesis step by
step. After assigning a new variable (in our case assigning existing part-type instance
from DATA to a yet unassigned model part) the hypothesis score is calculated and,
if the score is lower than some existing threshold, current branch is pruned and the
algorithm goes backward to search for other, better possibilities.

Classic CSP works until it finds the first solution satisfying all the constraints.
As the score in our system can be anywhere between 0 and 1, we can compare two
hypotheses and select the better one. CSP implementation is thusmodified as follows.
We keep track of N best hypotheses found so far (this list is empty when the search
algorithm starts). At each step, the hypothesis score is calculated and, if it is lower
than theworst from the list, this search tree branch is pruned. If a complete hypothesis
is generated and its score is high enough, it is placed on the list. This way we achieve
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the same effect as in exhaustive search, but with much better performance—a lot of
hypotheses are rejected at early stage.

For efficiency reasons, this basic strategy is additionally supported by three tech-
niques: selecting the most constrained variable first, selecting the highest-scoring
value first, and making a forward check of the constraints.

5.6 Testing Scenarios

As an simple illustration, generic mug model will be used (similar to presented in
previous sections), with two distinct modalities of incoming data: RGB image and
RGB-D image. In first scenario, edge-based analysis [37] is applied, with two basic
concepts—Cylinder and Arc, corresponding to two mug parts—body and handle.
Second scenario uses depth data [38], and two basic surface concepts—Cylinder
and Thorus.

5.6.1 Data Acquisition

As an input data, Complex scene 3 from WUT Visual Perception Dataset [39] was
used, which contains a recorded trajectory (77 points) “around the table”. The set was
acquired using Microsoft Kinect sensor, and it contains, for every recorded position,
a pair of images, aligned with each other: RGB image (Fig. 5.9a) and depth map
(Fig. 5.9b). The selected scene contains three cylindrical objects—two mugs and
one coffee jar, as well as some other kitchen utensils.

Thedatawas acquiredwith hand-held sensor, thus there is noground-truth position
data and the trajectory was recovered using visual odometry solution [5].

(a) (b)

Fig. 5.9 Test scene: a RGB image, b depth map



5 Model-Based 3D Object Recognition in RGB-D Images 91

(a) (b)

Fig. 5.10 Results of data extension: a calculated normal map; b mask of interesting scene part

5.6.2 Data Preprocessing and Extension

During preprocessing and extension phase, there are two steps worth mentioning.
One is the calculation of surface normals. For every valid point in depth map, if it
contains sufficiently big surrounding, it is used to calculate a vector perpendicular to
the surface in given point (Fig. 5.10a). Another operation is mask generation. Based
on information from control subsystem, search space can be restricted to a smaller
area—in this case only objects on the brown table are interesting for us (Fig. 5.10b)

5.6.3 Segmentation

Edge-based analysis uses a two-step segmentation process [37]. At first, only lin-
ear segments are detected (arcs and lines), and then those are connected into more
complex structures (cylinders in described scenario). To create those complex struc-
tures, the same hypothesis generation step is used, with a model describing cylinder
appearance. Final segmentation result looks like shown on Fig. 5.11a.

Surface segmentation uses RanSaC to inscribe cylindrical and thoroidal surfaces
into acquired 3D image (using points position in space as well as their normal vec-
tors). Sample segmentation result for one view is shown on Fig. 5.11b.

5.6.4 Hypothesis Generation

Based on detected segments, initial mug hypotheses are generated for the example
model containing two parts (body and handle) and one constraint between them
(near). In edge based scenario, four hypotheses were generated (Fig. 5.12a). One
proper hypothesis for themug on the right-hand side, two competing correct hypothe-
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(a) (b)

Fig. 5.11 Basic instances detected in segmentation step: a edges—cylinders (red) and arcs (black),
b surfaces—cylinders (red) and thoroids (blue)

(a) (b)

Fig. 5.12 Initial hypotheses: a edge-based, b surface-based

ses for the left-hand side mug (two different arcs for the handle) and one false
hypothesis for the same mug (with plate taken as an handle part).

In second scenario, where surface-based analysis is used, only two hypotheses
are generated, one for each mug on the scene. It is worth mentioning, that in both
cases coffee-jar was not taken into account as candidate object because of lack of
nearby handle-like segment.

5.6.5 Hypothesis Update and Verification

Initial hypotheses are tracked in consecutive images. When a new measurement
comes in, apart from detecting new hypotheses, existing ones are matched against
detected segments and their scores are recalculated. In edge-based scenario, this
tracking step allows to detect false mug-plate hypothesis, as in subsequent views the
underlying parts (cylinder and arc) move away from each other (Fig. 5.13a).
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(a) (b)

Fig. 5.13 Tracked hypotheses, green—good, red—bad: a edge-based, b surface-based

Second scenariowas initializedwith two proper hypotheses, so nothing is dropped
in subsequent views. More measurements, however, are used to make better estima-
tion of object parameters, for example position in space or size (using Kalman filter).

Detected (and updated) objects are returned to control subsystem for each incom-
ing measurement.

5.6.6 Method Vulnerabilities

The proposed object recognition method is generic as it explores a generic object
model. Its efficiency depends highly on the quality of particular domain model given
as its input. It should be noted, that for poorly created models the recognition results
may be disappointing, or the processing time can be very long. If the model is created
with very high level of details and precision, e.g. every model element has highly
limited range of accepted attribute values, even small sensor inaccuracies can lead to
a rejection of all available image segments, resulting in a failure of object detection.
On the other hand, when the model is defined with small number of constraints
and very relaxed attribute restrictions, almost every image segment must be checked
when building object hypotheses. This requires to expand many, if not all, possible
assignments, which in turn leads to long processing times. Thus, it is important to
select proper subsets of object features, small enough to keep a generic model, yet
specific enough to be discriminative. Our current focus is on automated methods of
creating such optimal models.
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5.7 Conclusions

An application-independent generic model-based framework for object recognition
in RGB-D images has been presented and verified on robot vision scenarios. It has
clear advantages over existing, mostly data-driven and appearance-based approaches
to object instance re-detection. First, it allows to identify what kind of knowledge
is needed and to utilize existing meta-level knowledge (e.g. types of predicates and
attributes commonly used for object description) to perform machine learning of
model concepts (to learn concept types instead of memorizing individual instances).
Secondly, common parts of object recognition systems can be pre-implemented,
which increases the efficiency of system design and its implementation in different
applications.

Another important advantage of proposed system is its human-oriented approach
to object modelling. The decomposition of an object into simpler elements, named
parts, makes it easier to further analyze the model. Using fuzzy constraint functions
enables the user to focus on overall model creation, instead of performing a hand-
made tuning of parameters.

Conducted experiments (described in Sect. 5.6) and the chosen applications (pre-
sented on Fig. 5.1) confirmed, that this approach is valid andmay easily be adapted to
multiple scenarios. In the article, we selected one example application of the system,
simple enough to be easy to follow by the reader, yet covering two most popular
data modalities—color images and depth measurements. Developed algorithms are
independent on the data source, so exactly the same methods and algorithms can be
used regardless of selected sensor. In fact, different data sources were tested (single
cameras, stereo pairs, structured light), mounted in different spots (stand alone over
the workbench, mounted on robots head or at the end of the arm, near the gripper).
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29. Stefańczyk, M., Kasprzak, W.: Multimodal segmentation of dense depth maps and associated
color information. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L., Wojciechowski, K. (eds.)
Proceedings of the International Conference on Computer Vision and Graphics. Lecture Notes
in Computer Science, vol. 7594, pp. 626–632. Springer, Berlin (2012)

30. Richtsfeld, A., Morwald, T., Prankl, J., Zillich, M., Vincze, M.: Segmentation of unknown
objects in indoor environments. In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4791–4796. IEEE (2012)

31. Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Robot.
Autom. Mag. 11(4), 110–122 (2004)
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