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Active Partitions in Localization
of Semantically Important Image
Structures

Arkadiusz Tomczyk

Abstract In this chapter active partitions, a generalization of active contours concept
to other than pixel-based image representations, is presented. Active contours are
methods where optimal, with respect to a given objective function, contours are
sought in the images. Their main advantage is fact that they are able to use any
additional expert knowledge while analyzing the images. It is of special importance
if in the image itself there is no sufficient visual information allowing for proper
interpretation of its content. That knowledge can be incorporated into the search
process by proper selection of contour model, soft constraints in energy function or
hard constraints in an optimization procedure. All those advantages are preserved in
active partitions where image content is described not with pixels but with other set
of semantically more informative elements. Consequently, in active partitions not an
optimal contour is sought but optimal partition of given element set is looked for.
The change of image content description is advantageous as well. It reduces the size
of search space and allows humans to express their knowledge in more intuitive way.

4.1 Introduction

There are many different image segmentation techniques that can be directly or
indirectly applied to the tasks of object localization within an image. The main lim-
itation of the classic methods, such as thresholding or region growing, is that they
consider only what is available in the image itself, failing to utilize external knowl-
edge about the structure of interest. Such knowledge is crucial in those tasks where
the image itself contains insufficient information for proper semantic interpretation
of its content. A typical example here is radiological image interpretation, which
requires adequate anatomical knowledge, without which it would be impossible to
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distinguish between organs that have a similar representation of tissues in an image
modality under consideration.

A possible solution to that problem is provided by the active contour techniques.
This group of methods operate under the assumption that the space of contours,
unambiguously identifying objects in the image, is defined. The main objective is to
find an optimal contour within that space by proper selection of the objective function
(energy) and the optimization algorithm (evolution). The active contour model owes
its name to the fact that optimization is usually an iterative procedure, which results
in a change of the contours shape after each iteration.

The external knowledge can be incorporated into the active contour procedure in
several ways:

• Proper selection of the contour model can eliminate semantically incorrect solu-
tions.

• Proper constraints imposed on the optimization process can prevent obtaining
unacceptable solutions.

• Proper components of the energy function can penalize solutions that do not reflect
our expectations.

Active partitions can be considered as a generalization of active contours. During
the localization process the contours divide the set of image pixels into two subsets
representing the object and the background. Such a partition can be defined, however,
for any set of elements describing the image content, e.g. superpixels, line segments,
ellipses, etc. The change of image description can significantly reduce the space of
analyzed primitives without losing important semantic information, which can be
still encoded in the attributes assigned to those primitives. The chief advantages of
this approach are as follows:

• The reduced image representation enables the construction of solutions that resem-
ble more closely a conscious image analysis process specific to human beings.

• Incorporation of external knowledge seems to be more natural.
• Reduced search space allows the use of more computationally demanding opti-
mization algorithms.

• More sophisticated optimization algorithms provide the ability to avoid problems
with proper selection of initial solutions.

In this chapter, the concept of active partitions is presented and illustrated. Issues
regarding medical image analysis fall outside the scope of this study. For simplicity
reasons, the author focuses exclusively on the problem of warning road sign local-
ization. The chapter is organized as follows. In Sect. 4.2 a short overview of the
active contour techniques is provided, together with the methods of external knowl-
edge incorporation. Section4.3 introduces the basic concepts of active partitions.
Section4.4 presents a simplified example of active partition application. The chapter
concludes with a short summary in Sect. 4.5.
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4.2 Background

As already mentioned, the process of object localization in active contours is formu-
lated as an optimization problem, where the objective function (energy) expresses
the expectations about the structure of interest. Thus, the energy, if properly defined,
should assign to the contour its optimal value (usually minimal) only when the con-
tour represents the object of interest. It is obvious that this evaluation should consist
of at least two types of components:

• external components taking into account the position of the contour in the image
(they can evaluate whether the contour lies on the visible boundaries or circum-
scribes the region with desired characteristics, etc.)

• internal components taking into account the characteristics of the contour itself
(they can evaluate local contour smoothness, global contour shape, etc.).

In the literature, there are many variants of active contours, each adopting a different
contour model, which in turn determines the formulation of energy function com-
ponents and imposes specific contour evolution strategies. In this section, a short
review of active contour techniques is presented, which is followed by a discussion
of the methods for encoding knowledge about the expected contour characteristic.

4.2.1 Active Contours

The term active contour was first proposed in [1] by Kass, Witkin and Terzopoulos,
who described the snakes model, in which the contour was represented by a para-
metric curve in the image plane. Since contour parametrization is a function, the
energy is a functional, and to analytically find an optimal contour, the calculus of
variations needs to be used. The application of Euler-Lagrange equations leads in
this case to the system of partial derivative equations. Its numerical solution, which
requires contour discretization (the contour is transformed into a polygon), results in
an iterative process of optimal solution finding. Since the position of contour points
is modified at each iteration, the whole process can be interpreted as the movement
of the contour under the influence of some internal and external forces. This provides
the ability to avoid an explicit definition of the energy function and replace it by a
direct definition of the forces modifying the contour according to user expectations.

Another popular variant of active contours is thegeometric active contours
approach. It was proposed simultaneously by Malladi, Sethian and Vemuri in [2]
and by Casseles, Catte and Dibos in [3]. In those methods, the internal parametriza-
tion of the curves is not considered since it does not influence the contours shape.
Consequently, only forces normal to the contour are taken into account. At first, the
energy function was not expressed explicitly. It was added in geodesic active con-
tours by Casseles, Kimmel and Sapiro in [4] and by Yezzi, Kichenassamy, Kumar,
Olver and Tannenbaum in [5]. Thus, contour evolution is usually defined directly
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by the forces. Using a level-set approach ([6]), where the contour is defined by sec-
tions of 3D surface, it is possible to obtain contours of different topology (describing
separate regions or those with holes).

Another interesting solution is offered by active shape models, first described by
Cootes and Taylor in [7]. Here, the contour is represented by a set of characteristic
points, which need not compose a polygon. The possible relative positions of those
points are statistically trained before evolution (the so calledpoint distributionmodel)
on the basis of images that have previously been manually marked. The evolution
itself comprises two operations, performed at every iteration. First, locally optimal
positions of the characteristic points are sought. This operation usually takes into
account the expected image profile around this point. Next, the final position of
the points is estimated, allowing only three geometrical modifications of the whole
shape (translation, rotation and scale) and some local shape modifications that do
not violate point distribution model constraints.

A completely different assumption was made by Grzeszczuk and Levin in [8].
Their method, Brownian strings, represents the contour in a linguistic way using a
chain of directions describing how to move along the contour (the contour lies in the
cracks between pixels). Another non-standard element introduced by this method
is the optimization technique that it employs to detect the optimal contour. In this
case, the simulated annealing algorithm is used to avoid problems with precise local-
ization of the initial contour. Its application requires, however, a suitable choice of
local contour modifications performed at every iteration. Due to the specificity of
the contour model, those modifications are quite complex. The same optimization
technique, but another contour model, was applied by Tomczyk and Szczepaniak in
the potential active contours, proposed in [9]. In this method, the contour is defined
by a set of potential field sources. There are two types of those sources and the con-
tour lies where the summary potentials of both types are equal. The evolution of the
contour requires potential source modifications which in this case involve changes
in their location as well as in the parameters that control the generated potential
field characteristic. The optimization technique applied in both those methods pro-
vides significant flexibility in defining energy functions, since there are no special
requirements as to their form (they need not be differentiable).

In literature, many other variants of active contours can be found. A comparative
study can be found in [10, 11]. The choice of specific variant depends on considered
application. If the topology of the sought region may change, geometric active con-
tours should be used. There are modifications of snakes that allow to change region
topology but their implementation is less elegant. Snakes are good option if contour
can be initialized relatively close to the optimum of the energy functions. Other-
wise, methods allowing to explore the whole search space, like Brownian strings
or potential active contours, should be considered. The former gives full flexibility
of shape description, whereas the latter will be useful if smooth, rounded shapes
are to be found. If the sought shapes do not differ too much (mainly in their posi-
tion, orientation or scale), then properly trained active shape models will be the best
choice.
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For reasons of space, this section focuses further only on those active contour
variants that use specific external knowledge regarding the objects of interest to
enhance detection. These approaches are described in more detail below.

4.2.2 Knowledge

The ability to incorporate the external knowledge into the process of object localiza-
tion is a fundamental advantage of active contour techniques. There are three possible
elements where the expectations about the structure of interest can be expressed:

• Contour model—Knowledge encoded in the contour model makes it possible to
reduce the search space if specific properties of the object are known, for example
in potential active contourswhere the space of describable contours contains only
smooth and rounded shapes. Additionally, the achievable degree of roundness can
be controlled by a number of potential sources. This can be observed also in the
models that use Fourier descriptors presented in [12, 13] and splines discussed in
[14, 15]. Smoothness, however, is not the only requirement that can be encoded
in the model. In active rays ([16]) it assumed that not all the concave shapes need
to be described. In this case, a distance to a fixed point in the image plain enables
the description of all the desired shapes.

• Evolution strategy—If the energy function is explicitly given and some general
purpose optimization technique is used, then knowledge can be used to add hard
constraints forbidding certain contour modifications. Typical examples include the
point distribution model used in active shape models and some specific solution
generators used in methods that apply the simulated annealing algorithm. If the
energy need not be specified explicitly and the evolution strategy is designed
directly, then knowledge is encoded during the design process. A good example
are forces and force fields defined in snakes or geometric active contours. In [1],
for instance, volcano and spring forces were described, whereas in [17] a template
force was added to keep a desired shape of the contour.

• Energy function—The expectations about the contour are typically expressed as
soft constraints. They can be encoded in both internal and external components,
andmay have either local or global character. A standard internal local expectation
is contour smoothness. In snakes it is expressed by the characteristic of curve
parametrization derivatives. Another approach imposes the reduction of contour
length. External local expectations focus mainly on the image characteristics on
both sides of the contour. Global expectations concern usually the contours shape
and the characteristics of the region inside and outside of the contour. The latter
can be found in active regions ([18]) and active appearance models ([19]).

A separate problem is the acquisition and representation of the required knowl-
edge. It is not a trivial task but its detailed discussion falls outside of the scope
of this chapter. Let us only mention that many approaches use a kind of training
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procedures where the selection of optimal active contour parameters relies on man-
ual pre-localization of objects. Such procedures can be found in active shape models
or active appearance models, in Brownian strings or in potential active contours.

4.3 Active Partitions

Although the concept of contour is intuitively clear, and has been the subject of
many practical implementations within the framework of the active contour model,
there is no single, universally applicable formal definition of this term. An attempt
to formally describe the concept of contour was made, among others, in [20]. The
basic feature of the contour is its ability to unambiguously indicate which part of
the image reflects the object described by the contour and which part constitutes the
background. In other words, the contour possesses the ability of dividing the image
pixel set into two partitions.

In practical applications, however, operating on contours in a pixel space is prob-
lematic. The main issue is the cardinality of the pixel set, since the number of pixel
subsets (possible partitions) grows exponentially with the increasing size of the
image. Active contours try to tackle this problem in different ways, as described
in the previous section. A proper definition of the contour model and evolution con-
straints can reduce the space of available partitions. Moreover, appropriate contour
initialization, such that makes it relatively close to the optimal solution, can allow
one to use simpler optimization techniques, guaranteeing that the desired structure is
detected. Another issue connectedwith pixel representations is the difficulty of defin-
ing contour energy, as it often requires defining energy components at a pixel level as
well. This is something of a pitfall, which also manifests itself further while defining
evolution strategies, when potential and force fields are required, for example, in
snakes and geometric active contours. In such a situation, the process of higher-level
(global) knowledge incorporation in the localization procedure becomes significantly
more difficult.

Because of those reasons, active partitions, a generalization of active contours,
was proposed in [21–23]. In that approach, the image is not represented by a set of
simple pixels but by a reduced set of more complex, spatially localized elements
E = {e1, . . . , eN }. Naturally, the term contour, understood as a line that separates the
object elements from the background elements, is hardly applicable in this context.
That is why in active partitions instead of the optimal contour, the optimal partition
P = {EO ,EB} is sought directly where EO ⊆ E and EB ⊆ E represent object and
background elements, respectively, under the assumption that EO ∪ EB = E and
EO ∩ EB = ∅.
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4.3.1 Representation

Although active partitions do not assume anything about the nature of the elements
E, to make the method more natural, it is good to refer to observations of the human
visual system ([24]). From that perspective, it seems to be obvious that humans do
not analyze images directly at a pixel level, focusing rather on local similarities
(homogenous regions) and discontinuities (region borders). To reflect this observa-
tion, superpixels and line segments were proposed to represent image content in [21,
22], respectively. Examples of such representations of the images considered in this
chapter are presented in Fig. 4.1.

In [21], to generate a superpixel representation, the simple linear iterative clus-
tering SLIC algorithm was used ([25]). It is an adaptation of the k-means clustering
algorithm with a properly defined pixel metric. This representation was used to find
regions representing the interior of the left and right heart ventricle in CT images. To
avoid problems with insufficient image information (heart muscle grows into heart
chambers) the requirement for the partition of a minimum border size was added.
This approach was adapted from snakes method. The simulated annealing method
was used as an optimization algorithm, with a solution generator ensuring that only
connected partitions were generated. In [22], the content of mammograms and road
scenes was described using a modified line segment detector LSD algorithm ([26]).
The line segments reflected the areas of the image where a significant difference of
pixel intensity on both sides of those segments was observed. This representation
was used to localize circular and triangular regions, some of which might indicate
possible circumscribed lesions or warning signs, respectively. In this case, a heuristic
search was proposed to reduce the space of the analyzed subsets of segments. The
energy function was employed to evaluate the matching degree between a current
solution and a given template.

An alternative region-based representation was presented in [23]. In that work, the
MRknee imageswere representedby ellipses describing the regions of a similar color.
Ellipses were generated using the cross-entropy clustering CEC algorithm ([27]).
This helped to reduce the number of considered elements required for the correct
localization of elongated structures forming the fragments of articulate cartilage.
The optimal subset of ellipses was sought systematically, taking into account that a
uniform color and constant, relatively small structure thickness was expected.

In all the above examples, the number of elements describing an image content is
significantly smaller than the total number of pixels in that image. This may provoke
concern that a change of the image representation may lead to a crucial informa-
tion loss. To prevent this, all the considered elements have some additional attributes
assigned. In the case of pixels, these attributes are their coordinates and color compo-
nents. For more complex elements, the amount of information that can be assigned to
them is naturally bigger. For superpixels, this can be their center, bounding box, aver-
age color, shape descriptor, etc. In the case of ellipses, one can additionally consider
their orientation and flattening degree. Finally, for line segments, their orientation
and length as well as the characteristics of the regions on both sides of those segments
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.1 Representation of image content: a, d, g sample images, b, e, h superpixels generated
with SLIC algorithm, c, f, i line segments generated using LSD algorithm

can be taken into account. Another important fact is that some useful information can
be also encoded in the relations between elements, for example, in the neighborhood
relation. It is typical for pixels but can be also introduced for other elements. Other
relations can also be defined if they are more convenient than storing the attributes
of specific elements. To sum up, although the number of the elements is reduced,
the information about the image content can be preserved in additional attributes of
those elements and relations between them.



4 Active Partitions in Localization of Semantically Important Image Structures 59

4.3.2 Partition

Although in active partitions the contours cannot be defined in the same way as
they are in pixel representations, some partition model must be assumed to provide
a feasible partition description. The most general model is one that offers a full
flexibility of partition description. In that model all subsets EO and EB are allowed.
Since the number of elements describing the image content is reduced, such an
approach is acceptable in certain applications if additional constraints are imposed
on the energy function and the evolution strategy. Such amodel was presented in [21–
23] and is used during the global analysis described further in Sect. 4.4.1. Sometimes,
however, such a flexibility may be a source of problems if there is no convenient way
to express expectations about the partition structure (e.g. shape) in a form of soft and
hard constraints. This is illustrated in Sect. 4.4.2.

4.3.3 Evolution

Most of the typical active contour approaches use a local search algorithm as an
evolution strategy. Thus, it is crucial to initialize the contour close to the desired object
boundary. This constitutes one of the key problems of active contour applications.
The exceptions are Brownian strings and potential active contours, which apply the
simulated annealing algorithm as an optimization technique. And, even though other
search techniques could also be used, the same approach is proposed also for active
partitions, due to its simplicity and theoretical convergence with the global optimum
[28–30].

In that approach, at every iteration a new solution is proposed using a solution gen-
erator G. The solution generator should generate a random solution which is close to
the current one and it should enable the exploration of the whole search space during
the optimization process (there should always be a possibility to generate a solution
sequence transforming one solution to the other). If the generated solution is better, it
is accepted as a current one. If it is worse, it is accepted with a probability depending
on the difference in objective function values and on an artificial parameter, called
temperature. The temperature decreases during the whole process, thus reducing
also the probability of accepting worse solutions (at the beginning the temperature
is selected, such that the probability of accepting worse solutions is equal to 0.8). In
theory, if the whole process is sufficiently slow (infinite) this procedure guarantees
that local optima are avoided. Naturally, practical applications must have a finite
number of iterations, but even then the obtained results are usually satisfactory.

The choice of generator G depends on the selected partition model. In a general
case, the simplest G f generator can be considered, where the generation of a new
partition involves the movement of a single element from EO to EB , or in an opposite
direction. As shown further, such a generator, flexible as it is, does not take into
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account the spatial relationships between elements. Those relationships would allow
the addition of topological constraints, which in turn would result in more natural
partitions.

In the experiments presented in this chapter, two additional modifications were
introduced to the standard simulated annealing algorithm. Firstly, the temperature
was not decreased at every iteration but every few iterations (after a number of
iterations L). The 100 temperature changes were allowed during the optimization
process, since then the probability of accepting worse solution was almost equal to
0 (the exponential cooling scheme was considered with the 0.95 factor). Secondly,
before every change of temperature the best solution found so far was set as the
current one. Of course, since simulated annealing is a non-deterministic algorithm,
there is a need to ensure that the results obtained are acceptable and repeatable. It
can be done by proper choice of L which should be selected for a given application
in its training phase.

Finally, let us explain the process of partition initialization. Here, also different
strategies can be used. For example, it may be assumed that at the beginning EO =
E and EB = ∅. In the experiments presented below, other approaches were used,
depending on the assumed partition model and solution generatorG (initial solutions
should not violate generator constraints).

4.4 Example

The present paper examines the active partition approach to object localization,
focusing specifically on the problem of warning road sign detection. The problem
in question is split into two phases—global and local. The global phase aims at
localizing the areas of yellow color. In the local phase, those areas are analyzed in
detail to find warning signs. Such an approach should correspond to fast inspection
of the viewed scene to find the regions of interest and to the careful analysis of those
regions. To some extent it should also imitate a conscious human-specific process of
warning sign localization. In both phases, the same superpixel image representation
is used. This choice was based on the assumption that human attention focuses on
compact, homogenous regions rather than on single pixels. In the rest of this chapter,
all the operations connected with colors are performed using the CIELab color space.
In particular, it is used in the SLIC algorithm to generate superpixels and whenever
the similarity of colors is discussed.

4.4.1 Global Analysis

The goal of this phase is to localize compact, yellow regions of interest. In real scenes,
of course, there can be more than one such region and, naturally, not all of them need
to represent warning signs. A superpixel representation should provide the ability to
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Fig. 4.2 Sample input of
global analysis: a the image
with a generated superpixel
representation, b distribution
of νyellow (the brighter color,
the more yellow color is
present in the superpixel and
its neighborhood)

(a)

(b)

avoid problems with local color discontinuities (e.g. due to noise) at the pixel level.
A sample image is presented in Fig. 4.2a to illustrate the concepts discussed in this
section.

4.4.1.1 Energy

Since yellow regions are to be found, the energy evaluating the partitions should
ensure that all the superpixels in EO are to some extent yellow. This requirement is,
however, not sufficient. The regions of interest may be composed of many connected
superpixels and the above-mentioned requirement will be satisfied for every subset
of those regions. Consequently, a natural expectation is that superpixels in EB are
not yellow. This can be expressed in the following energy function:
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Ec
color (P) = wO

∑

e∈EO

I (µcolor (e) < t) + wB

∑

e∈EB

I (µcolor (e) ≥ t) (4.1)

Theµcolor represents the percentage of pixels of a given color within a superpixel and
t = 0.4 is an arbitrarily selected threshold. The function I returns 1 if the given con-
dition is true, otherwise it returns 0. This objective is composed of two components.
The first should ensure that, for the optimal partition, EO contains only superpixels
with a significant number of pixels of a given color. The second should minimize the
number of such superpixels in EB . Weights wO and wB provide the ability to control
the influence of the components. If not specified otherwise, it is assumed that both
of them are equal to 1.

The partition P minimizing the above, crisp energy function naturally represents
the regions of interest. However, from an optimization perspective, this objective
function has one drawback. If subset EO is far from the optimal one (the distance
in an image plane is considered) all the local modifications of the same size result
in the same change of the energy function value. It means that there is no guidance
available for the search algorithm on where the optimum is located. Thus, the simu-
lated annealing requires more iterations to find a proper solution (the L value must
be increased). To overcome this inconvenience, the fuzzy variant of the energy can
be defined. First, the color influence for each superpixel is calculated:

θcolor (e) =
∑

e′∈E

µcolor (e′)
1 + wρ(e, e′)

(4.2)

Its value depends on the distance ρ between superpixel centers. Parameter w, which
provides the ability to control the strength of the influence, should depend on the
image size (in this work w = 1). Next, the obtained values are scaled to fit into the
[0, 1] interval:

νcolor (e) = θcolor (e)

maxe′∈E θcolor (e′)
(4.3)

An example of νyellow distribution among superpixels is depicted in Fig. 4.2b. Finally,
the fuzzy energy value is computed using the following formula:

E f
color (P) = wO

∑

e∈EO

(1 − νcolor (e)) + wB

∑

e∈EB

νcolor (e) (4.4)

4.4.1.2 Generator

As already mentioned, the general generator G f produces solutions that are close
in a subsets space. The generated modifications, however, do not necessarily reflect
local, spatial deformations of EO in an image plane. To have this property, the solution
generator should take into account the spatial relationships (neighborhood relations)
between superpixels. Such a spatial relationship can be easily computed. Two super-
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pixels can be considered neighbors if they are adjacent, i.e. if they have at least one
pair of adjacent pixels. The neighborhood relationship provides the ability to define
some additional topological concepts. For example, borders b (EO) and b (EB) can be
defined as subsets of EO and EB where elements have at least one neighbor from EB

and EO , respectively. Thanks to this, two additional generators, taking into account
the spatial distribution of superpixels, can be defined:

• Gs—generator which either removes one element on the border b (EO) or adds
one element on the border b (EB) (of course b (EB) is adjacent to b (EO)),

• Gc—generator which behaves in the same way as Gs except that it prevents new
solutions from having holes or being composed of two disconnected parts (pre-
serves connectivity).

The second generator can be useful if only connected subsets EO are to be extracted.
Because the initial partition must not violate generator constraints, in all the

experiments presented in this section a random element is selected fromE to initialize
the partition. Next, all the elements that are spatially close to this element in the given
range are added to constitute EO . Again, the neighborhood relation is used to decide
which superpixels are close to each other. The random choice of the initial element
should demonstrate that the proposed methodology helps to avoid problems with
careful partition initialization.

4.4.1.3 Repeatability

The simulated annealing is a non-deterministic optimization algorithm. Conse-
quently, there is a concern that this algorithm does not guarantee repeatable solutions.
The concern is the more reasonable that in the presented variant of active partitions
no special limitations have been imposed on the location of initial solutions.

Thus, in order to prove that the approach presented provides stable results, another
experiment was conducted, aimed at selecting a proper value of L. In this experiment,
for selected values of L, the partition evolution was repeated 50 times for random
initial partitions. The obtained results were summarized in several ways. The dis-
tribution of final energy values is presented in Fig. 4.3a. Figure4.3b presents the
percentage of superpixels in E that always belong to either EO or EB . The graphical
representation of repeatability is depicted in Fig. 4.3c–f. The white color indicates
the pixels that are always partitioned in the same way, whereas black suggests a
lower repeatability of superpixel assignment. The more intense the black, the lower
the repeatability. If the evolution is repeatable, the whole image should be white.
It can be observed that (L ≥ 50) several stable local optima are always found. To
achieve perfect repeatability (global optimum) the optimization has to last longer
(L = 5000). Of course, those values are applicable only to the class of images under
examination and the considered energy and solution generator.

Repeatability is a key issue connected with the evolutions ability to explore the
whole search space, in particular if random initial solutions are allowed and local
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(a)

L
1 2 5 10 20 50 100 200 500 1000 2000 5000

71.4% 96.8% 97.9% 98.1% 98.8% 99.3% 99.3% 99.3% 99.4% 99.5% 100% 100%

(b)

(c) (d)

(e) (f)

Fig. 4.3 Evolution repeatability (50 executions with random initial solutions): a distribution of
energy E f

yellow value for optimal solutions for different number of iterations L, b percentage of
superpixels that were always assigned either to EO or to EB , c, d, e, f visualization of the assignment
changes
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(a) L=1 (b) L=100

(c) L=1000 (d) L=5000

Fig. 4.4 Image exploration while partition evolution with Gc generator (the darker the color the
more frequently a given superpixel was assigned to EO )

partitionmodifications are performed by the solution generator. In Fig. 4.4 this explo-
ration ability was presented for different L values. The more black color, the more
often a given superpixel was assigned to EO in a single run of the simulated anneal-
ing algorithm. This experiment also proves that for L = 5000, in the presented task,
it should be possible to find a global optimum (all the superpixels were assigned to
EO at least once).

4.4.1.4 Multiple Objects

The goal of the global analysis is to quickly find an approximate position of all yel-
low and connected regions. For that purpose E f

yellow and Gc are used. Unfortunately,
active partitions, just like active contours, are naturally designed to find only single
objects (usually only one optimum of the energy function is sought). Here, a simple
modification was introduced to enable a multiple object localization. When the opti-
mum is found, the energy function is modified by setting µyellow values equal to 0
for all those elements that belong to EO . This process is repeated until no significant
optimum is found. Because it does not matter in what order those optima are detected
there is no need to explore the whole search space. Thus, it is assumed that L = 200.
Thanks to this and the initial reduction of image size it was possible to speed up
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.5 The process of detection of multiple regions of interest: a, c, e changes in νyelllow distri-
bution, b, d, f extracted region

the whole process. The sample results of the multiple object localization process are
shown in Fig. 4.5.
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4.4.2 Local Analysis

The goal of the local analysis is to find warning signs in the previously localized
regions of interest. The diversity of the images leads one to assume that there are
more than one yellow regions in the analyzed image. Moreover, it may happen that
those regions are adjacent, as the sign and information plate in Fig. 4.1d. In such a
situation, the application of the active partition technique with E f

yellow and Gc cannot
give satisfactory results. To overcome this problem, additional knowledge is required.

4.4.2.1 Model

Acloser analysis of the results presented in Fig. 4.6 reveals that the previous approach
does not take into account shape expectations. Those expectations can be added in
many different ways. A typical approachwould involve defining an additional energy
component evaluating the similarity of the partition to the triangle. Although it is
not impossible, such soft constraints are usually problematic, especially if they are
supposed to be scale and rotation invariant. That is why, in the presented work,
knowledge was added by changing the partition model to allow only triangles to be
generated. In this model, the partition is described by three superpixels selected from
E. Their centers (it is assumed that they are always organized in an anti-clockwise
order) constitute a triangle. Superpixel is an element of EO if at least one of its pixels
lies inside this triangle. The rest of superpixels forms EB .

4.4.2.2 Generator

A modified partition model requires specialized solution generators. They should
modify the partition by moving triangle vertices. Two such generators are described
below:

(a) (b) (c)

Fig. 4.6 Optimal partitions for standard partition model, E f
yellow energy and Gc generator
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• Gv—the generator which selects a random vertex and replaces it by one of its
neighbors (the above-described neighborhood relationship is used); it forbids any
modification that would change the anti-clockwise order of vertices,

• Ge—the generator which behaves in the same way as Gv but also prevents any
modifications that would lead to a non-equilateral triangle (for every triangle side
it checks if the corresponding height has an expected length).

The changes in the model (search space) and in the solution generators (hard con-
straints) entail that a feasible initial solution for the simulated annealing algorithm
is necessary. To achieve this goal, in all the experiments the equilateral triangle of
a maximum size with one horizontal side is generated (although it is not random, it
still does not depend on the image content). The results obtained for those generators
and E f

yellow are presented in Fig. 4.8.

4.4.2.3 Energy

The above results are still not satisfactory if there are two adjacent yellow regions.
This can be overcome by considering another objective function. So far, E f

yellow has
not taken into account the spatial distribution of colors in EO and EB . It is known,
however, that warning signs have a red border enclosing its inner, yellow area. This
observation can be expressed in the following way:

Eb(P) = wO

∑

e∈b(EO )

(νred(e) − νyellow(e)) + wB

∑

e∈b(EB )

(νyellow(e) − νred(e)) (4.5)

On the EO border this energy function expects yellow superpixels, not the red ones,
whereas on the EB border the expectation is exactly the opposite. Weights wO and
wB (here equal to 1) enable the control of a trade-off between those two expectations.
Sample distributions of νyellow and νred for image presented in Fig. 4.1d are depicted
in Fig. 4.7. In Fig. 4.8c the result of triangle evolution for Eb with Ge is presented.

Fig. 4.7 Sample yellow and
red color distribution

(a) νyellow (b) νred
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(a)E f
yellow, G

v (b)E f
yellow, G

e (c) Eb, Ge

(d)E f
yellow, G

v (e) E f
yellow, G

e (f) Eb, Ge

Fig. 4.8 Results of evolution for triangular partition model with different energy functions and
solution generators

4.4.2.4 Missing Objects

Not all of the regions of interest must contain warning signs. The proposed active par-
tition approachwill of coursework for such images and, what ismore, it will generate
some optimal results. Samples are shown in Fig. 4.8. Those results are reasonable
as the algorithm tries to find the best position of the triangles. To automatically dis-
tinguish such cases, without the need of visual inspection of the results, the values
of energy functions for optimal partitions can be analyzed. If something is wrong,
these values are significantly higher than those obtained for correct structures.

4.5 Summary

The approach proposed in this chapter is a generalization of the active contour tech-
nique which can be applied to more sophisticated image content representations
than raw pixel data. Its main advantage is the reduction of the search space, which
enables the application of evolution strategies that are less sensitive or invariant to
the choice of initial solutions (Sect. 4.4.1.3). This also means less strict assumptions
about feasible objective functions. Consequently, a more natural way of express-
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ing the expectations about the structures of interest is provided (Sects. 4.4.1.1 and
4.4.2.3).

As in the case of active contours, the knowledge required for proper analysis of
the image content in active partitions can be incorporated into the search process
in three ways. A proper partition model may limit the set of acceptable partitions
(Sect. 4.4.2.1). The same goal may be achieved by using additional evolution con-
straints (region connectivity and equilateral triangles in Sects. 4.4.1.2 and 4.4.2.2,
respectively). Finally, information about the expected characteristics of the parti-
tions may be incorporated into the energy function.

Another remarkable aspect of the presented approach is its flexibility. As demon-
strated by the two-stage process of warning sign detection, it can be applied to both
global and local image analysis. Moreover, in the global phase, multiple objects can
be localized (Sect. 4.4.1.4) by adaptive modification of the energy function.

The proposed methodology endeavours to imitate, at least to some extent, the
conscious human-specific process of image analysis. Various approaches have been
put forward to model the activity of the human vision system. In the literature, there
are many methods that have achieved outstanding results in the field of image con-
tent understanding—convolutional neural networks ([31]) being a perfect example.
Those models, however, are hardly interpretable and usually require huge data sets
from which the expert knowledge could be automatically extracted in a training
phase. Those data sets are not always easily available, especially in medical appli-
cations. That is why it may be more convenient to encode expert experience directly
using the approach presented in this chapter.

As a main challenge for future work with active partitions, the choice of the
best image representation should be mentioned. And this is not only the problem of
optimal parameter selection (i.e. parameters of SLIC, LSD or CEC algorithms). As
it was presented in this chapter, different approaches may be considered. Superpixels
and ellipses focus on local region homogeneity, whereas line segments indicate some
homogeneity discontinuities. These are not, however, the only possibilities, and, since
all of thempossess different properties, a good idea could be the fusion of those image
content descriptions. Yet, the drawback of those representations is a fact that they are
chosen arbitrarily for different classes of images. Perhaps a better approach would
be an automatic design of such descriptors for a given object localization problem.
All those aspects are under further investigation.
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